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Controllability and Observability:
Fundamental Results

5.1 Introduction

The principal goals of this chapter are to introduce the system properties
of controllability and observability (and of reachability and constructibility),
which play a central role in the study of state feedback controllers and state
observers, and in establishing the relations between internal and external sys-
tem representations, topics that will be studied in Chapters 7, 8, and 9. State
controllability refers to the ability to manipulate the state by applying ap-
propriate inputs (in particular, by steering the state vector from one vector
value to any other vector value in finite time). Such is the case, for example, in
satellite attitude control, where the satellite must change its orientation. State
observability refers to the ability to determine the state vector of the system
from knowledge of the input and the corresponding output over some finite
time interval. Since it is frequently difficult or impossible to measure the state
of a system directly (for example, internal temperatures and pressures in an
internal combustion engine), it is very desirable to determine such states by
observing the inputs and outputs of the system over some finite time interval.

In Section 5.2, the concepts of reachability and controllability and observ-
ability and constructibility are introduced, using discrete-time time-invariant
systems. Discrete-time systems are selected for this exposition because the
mathematical development is much simpler in this case. In subsection 5.2.3
the concept of duality is also introduced. Reachability and controllability are
treated in detail in Section 5.3 and observability and constructibility in Sec-
tion 5.4 for both continuous-time and discrete-time time-invariant systems.

5.2 A Brief Introduction to Reachability and
Observability

Reachability and controllability are introduced first, followed by observabil-
ity and constructibility. These important system concepts are more easily
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explained in the discrete-time case, and this is the approach taken in this
section. Duality is also discussed at the end of the section.

5.2.1 Reachability and Controllability

The concepts of state reachability (or controllability-from-the-origin) and con-
trollability (or controllability-to-the-origin) are introduced here and are dis-
cussed at length in Section 5.3.

In the case of time-invariant systems, a state x1 is called reachable if there
exists an input that transfers the state of the system x(t) from the zero state
to x1 in some finite time T . The definition of reachability for the discrete-time
case is completely analogous. Figure 5.1 shows that different control inputs
u1(t) and u2(t) may force the state of a continuous-time system to reach the
value x1 from the origin at different finite times T1 and T2, following different
paths. Note that reachability refers to the ability of the system to reach x1

from the origin in some finite time; it specifies neither the exact time it takes
to achieve this nor the trajectory to be followed.

x(t)

x1

u1(t)

u2(t)

T1 T2 t0

Figure 5.1. A reachable state x1

A state x0 is called controllable if there exists an input that transfers the
state from x0 to the zero state in some finite time T . See Figure 5.2. The
definition of controllability for the discrete-time case is completely analogous.
Similar to reachability, controllability specifies neither the time it takes to
achieve the transfer nor the trajectory to be followed.

We note that when particular types of trajectories to be followed are of
interest, then one seeks particular control inputs that will achieve such trans-
fers. This leads to various control problem formulations, including the Linear
Quadratic (Optimal) Regulator (LQR). The LQR problem is discussed in
Chapter 9.

Section 5.3 shows that reachability always implies controllability, but con-
trollability implies reachability only when the state transition matrix Φ of the
system is nonsingular. This is always true for continuous-time systems, but is
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Figure 5.2. A controllable state x0

true for discrete-time systems only when the matrix A of the system is non-
singular. If the system is state reachable, then there always exists an input
that transfers any state x0 to any other state x1 in finite time.

In the time-invariant case, a system is reachable (or controllable-from-the-
origin) if and only if its controllability matrix C,

C � [B,AB, . . . , An−1B] ∈ Rn×mn, (5.1)

has full row rank n; that is, rankC = n. The matrices A ∈ Rn×n and B ∈
Rn×m come from either the continuous-time state equations

ẋ = Ax+Bu (5.2)

or the discrete-time state equations

x(k + 1) = Ax(k) +Bu(k), (5.3)

k ≥ k0 = 0. Alternatively, we say that the pair (A,B) is reachable. The ma-
trix C should perhaps more appropriately be called the “reachability matrix”
or the “controllability-from-the-origin matrix.” The term “controllability ma-
trix,” however, has been in use for some time and is expected to stay in use.
Therefore, we shall call C the “controllability matrix,” having in mind the
“controllability-from-the-origin matrix.”

We shall now discuss reachability and controllability for discrete-time time-
invariant systems (5.3).

If the state x(k) in (5.3) is expressed in terms of the initial vector x(0),
then (see Subsection 3.5.1)

x(k) = Akx(0) +
k−1∑
i=0

Ak−(i+1)Bu(i) (5.4)

for k > 0. Rewriting the summation in terms of matrix-vector multiplication,
it follows that it is possible to transfer the state from some value x(0) = x0 to
some x1 in n steps, that is, x(n) = x1, if there exists an n-step input sequence
{u(0), u(1), . . . , u(n− 1)} that satisfies the equation
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x1 −Anx0 = CnUn, (5.5)

where Cn � [B,AB, . . . , An−1B] = C [see (5.1)] and

Un � [uT (n− 1), uT (n− 2), . . . , uT (0)]T . (5.6)

From the theory of linear algebraic equations, (5.5) has a solution Un if
and only if

x1 −Anx0 ∈ R(C), (5.7)

where R(C) = range(C). Note that it is not necessary to take more than n
steps in the control sequence, since if this transfer cannot be accomplished in n
steps, it cannot be accomplished at all. This follows from the Cayley–Hamilton
Theorem, in view of which it can be shown that R(Cn) = R(Ck) for k ≥ n.
Also note that R(Cn) includes R(Ck) for k < n [i.e., R(Cn) ⊃ R(Ck), k < n].
(See Exercise 5.1.)

It is now easy to see that the system (5.3) or the pair (A,B) is reachable
(controllable-from-the-origin), if and only if rankC = n, since in this case
R(C) = Rn, the entire state space. Note that x1 ∈ R(C) is the condition for
a particular state x1 to be reachable from the zero state. Since R(C) contains
all such states, it is called the reachable subspace of the system. It is also clear
from (5.5) that if the system is reachable, any state x0 can be transferred to
any other state x1 in n steps. In addition, the input that accomplishes this
transfer is any solution Un of (5.5). Note that, depending on x1 and x0, this
transfer may be accomplished in fewer than n steps (see Section 5.3).

Example 5.1. Consider x(k+1) = Ax(k)+Bu(k), where A =
[

0 1
1 1

]
, B =

[
0
1

]
. Here the controllability (-from-the-origin) matrix C is C = [B,AB] =

[
0 1
1 1

]
with rank C = 2. Therefore, the system [or the pair (A,B)] is reachable,

meaning that any state x1 can be reached from the zero state in a finite number
of steps by applying at most n inputs {u(0), u(1), . . . , u(n−1)} (presently, n =

2). To see this, let x1 =
[
a
b

]
. Then (5.5) implies that

[
a
b

]
=
[

0 1
1 1

] [
u(1)
u(0)

]
or

[
u(1)
u(0)

]
=
[
−1 1

1 0

] [
a
b

]
=
[
b− a
a

]
. Thus, the control u(0) = a, u(1) = b − a

will transfer the state from the origin at k = 0 to the state
[
a
b

]
at k = 2.

To verify this, we observe that x(1) = Ax(0) + Bu(0) =
[

0
1

]
a =

[
0
a

]
and

x(2) = Ax(1) +Bu(1) =
[
a
a

]
+
[

0
1

]
(b− a) =

[
a
b

]
.

Reachability of the system also implies that a state x1 can be reached
from any other state x0 in at most n = 2 steps. To illustrate this, let
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x(0) =
[

1
1

]
. Then (5.5) implies that x1 − A2x0 =

[
a
b

]
−
[

1 1
1 2

] [
1
1

]
=

[
a− 2
b− 3

]
=
[

0 1
1 1

] [
u(1)
u(0)

]
. Solving,

[
u(1)
u(0)

]
=
[
b− a− 1
a− 2

]
, which will drive

the state from
[

1
1

]
at k = 0 to

[
a
b

]
at k = 2.

Notice that in general the solution Un of (5.5) is not unique; i.e., many
inputs can accomplish the transfer from x(0) = x0 to x(n) = x1, each corre-
sponding to a particular state trajectory. In control problems, particular in-
puts are frequently selected that, in addition to transferring the state, satisfy
additional criteria, such as, e.g., minimization of an appropriate performance
index (optimal control).

A system [or the pair (A,B)] is controllable, or controllable-to-the-origin,
when any state x0 can be driven to the zero state in a finite number of steps.
From (5.5) we see that a system is controllable when Anx0 ∈ R(C) for any
x0. If rankA = n, a system is controllable when rankC = n, i.e., when the
reachability condition is satisfied. In this case the n×mn matrix

A−nC = [A−nB, . . . , A−1B] (5.8)

is of interest and the system is controllable if and only if rank(A−nC) =
rankC = n. If, however, rankA < n, then controllability does not imply
reachability (see Section 5.3).

Example 5.2. The system in Example 5.1 is controllable (-to-the-origin).

To see this, we let, x1 = 0 in (5.5) and write −A2x0 = −
[
1 1
1 2

] [
a
b

]
=

[B,AB]
[
u(1)
u(0)

]
=
[

0 1
1 1

] [
u(1)
u(0)

]
, where x0 =

[
a
b

]
. From this we obtain

[
u(1)
u(0)

]
= −

[
−1 1

1 0

] [
1 1
1 2

] [
a
b

]
=
[

0 −1
−1 −1

] [
a
b

]
=
[

−b
−a− b

]
, which is the

input that will drive the state from
[
a
b

]
at k = 0 to

[
0
0

]
at k = 2.

Example 5.3. The system x(k + 1) = 0 is controllable since any state, say,
x(0) = [ ab ], can be transferred to the zero state in one step. In this system,
however, the input u does not affect the state at all! This example shows
that reachability is a more useful concept than controllability for discrete-
time systems.

It should be pointed out that nothing has been said up to now about
maintaining the desired system state after reaching it [refer to (5.5)]. Zeroing
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the input for k ≥ n, i.e., letting u(k) = 0 for k ≥ n, will not typically work,
unless Ax1 = x1. In general a state starting at x1, will remain at x1 for all
k ≥ n if and only if there exists an input u(k), k ≥ n, such that

x1 = Ax1 +Bu(k), (5.9)

that is, if and only if (I − A)x1 ∈ R(B). Clearly, there are states for which
this condition may not be satisfied.

5.2.2 Observability and Constructibility

In Section 5.4, definitions for state observability and constructibility are given,
and appropriate tests for these concepts are derived. It is shown that observ-
ability always implies constructibility, whereas constructibility implies observ-
ability only when the state transition matrix Φ of the system is nonsingular.
Whereas this is always true for continuous-time systems, it is true for discrete-
time systems only when the matrix A of the system is nonsingular. If a system
is state observable, then its present state can be determined from knowledge
of the present and future outputs and inputs. Constructibility refers to the
ability of determining the present state from present and past outputs and
inputs, and as such, it is of greater interest in applications.

In the time-invariant case a system [or a pair (A,C)] is observable if and
only if its observability matrix O, where

O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ ∈ Rpn×n, (5.10)

has full column rank; i.e., rankO = n. The matrices A ∈ Rn×n and C ∈ Rp×n

are given by the system description

ẋ = Ax +Bu, y = Cx+Du (5.11)

in the continuous-time case, and by the system description

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), (5.12)

with k ≥ k0 = 0, in the discrete-time case.
We shall now briefly discuss observability and constructibility for the

discrete-time time-invariant case. As in the case of reachability and control-
lability, this discussion will provide insight into the underlying concepts and
will clarify what these imply for a system.
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If the output in (5.12) is expressed in terms of the initial vector x(0), then

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k) (5.13)

for k > 0 (see Section 3.5). This implies that

ỹ(k) = CAkx0 (5.14)

for k ≥ 0, where

ỹ(k) � y(k) −
[
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k)

]

for k > 0, ỹ(0) � y(0)−Du(0), and x0 = x(0). In (5.14) x0 is to be determined
assuming that the system parameters are given and the inputs and outputs
are measured. Note that if u(k) = 0 for k ≥ 0, then the problem is simplified,
since ỹ(k) = y(k) and since the output is generated only by the initial condi-
tion x0. It is clear that the ability of determining x0 from output and input
measurements depends only on the matrices A and C, since the left-hand side
of (5.14) is a known quantity. Now if x(0) = x0 is known, then all x(k), k ≥ 0,
can be determined by means of (5.12). To determine x0, we apply (5.14) for
k = 0, . . . , n− 1. Then

Ỹ0,n−1 = Onx0, (5.15)

where On � [CT , (CA)T , . . . , (CAn−1)T ]T = O [as in (5.10)] and

Ỹ0,n−1 � [ỹT (0), . . . , ỹT (n− 1)]T .

Now (5.15) always has a solution x0, by construction. A system is observ-
able if the solution x0 is unique, i.e., if it is the only initial condition that,
together with the given input sequence, can generate the observed output se-
quence. From the theory of linear systems of equations, (5.15) has a unique
solution x0 if and only if the null space of O consists of only the zero vector,
i.e., Null(O) = N (O) = {0}, or equivalently, if and only if the only x ∈ Rn

that satisfies
Ox = 0 (5.16)

is the zero vector. This is true if and only if rankO = n. Thus, a system
is observable if and only if rankO = n. Any nonzero state vector x ∈ Rn

that satisfies (5.16) is said to be an unobservable state, and N (O) is said to
be the unobservable subspace. Note that any such x satisfies CAkx = 0 for
k = 0, 1, . . . , n − 1. If rankO < n, then all vectors x0 that satisfy (5.15) are
given by x0 = x0p + x0h, where x0p is a particular solution and x0h is any
vector in N (O). Any of these state vectors, together with the given inputs,
could have generated the measured outputs.
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To determine x0 from (5.15) it is not necessary to use more than n values
for ỹ(k), k = 0, . . . , n − 1, or to observe y(k) for more than n steps in the
future. This is true because, in view of the Cayley–Hamilton Theorem, it can
be shown that N (On) = N (Ok) for k ≥ n. Note also that N (On) is included
in N (Ok) (N (On) ⊂ N (Ok)) for k < n. Therefore, in general, one has to
observe the output for n steps (see Exercise 5.1).

Example 5.4. Consider the system x(k + 1) = Ax(k), y(k) = Cx(k), where

A =
[

0 1
1 1

]
and C = [0 1]. Here, O =

[
C
CA

]
=
[

0 1
1 1

]
with rankO = 2.

Therefore, the system [or the pair (A,C)] is observable. This means that x(0)
can uniquely be determined from n = 2 output measurements (in the present

cases, the input is zero). In fact, in view of (5.15),
[
y(0)
y(1)

]
=
[

0 1
1 1

] [
x1(0)
x2(0)

]

or
[
x1(0)
x2(0)

]
=
[
−1 1

1 0

] [
y(0)
y(1)

]
=
[
y(1) − y(0)

y(0)

]
.

Example 5.5. Consider the system x(k + 1) = Ax(k), y(k) = Cx(k), where

A =
[

1 0
1 1

]
and C = [1 0]. Here, O =

[
C
CA

]
=
[

1 0
1 0

]
with rankO = 1. There-

fore, the system is not observable. Note that a basis for N (O) is
{[

0
1

]}
, which

in view of (5.16) implies that all state vectors of the form
[

0
c

]
, c ∈ R, are

unobservable. Relation (5.15) implies that
[
y(0)
y(1)

]
=
[

1 0
1 0

] [
x1(0)
x2(0)

]
. For a so-

lution x(0) to exist, as it must, we have that y(0) = y(1) = a. Thus, this system
will generate an identical output for k ≥ 0. Accordingly, all x(0) that satisfy

(5.15) and can generate this output are given by
[
x1(0)
x2(0)

]
=
[
a
0

]
+
[

0
c

]
=
[
a
c

]
,

where c ∈ R.

In general, a system (5.12) [or a pair (A,C)] is constructible if the only
vector x that satisfies x = Akx̂ with Cx̂ = 0 for every k ≥ 0 is the zero
vector. When A is nonsingular, this condition can be stated more simply,
namely, that the system is constructible if the only vector x that satisfies
CA−kx = 0 for every k ≥ 0 is the zero vector. Compare this with the condi-
tion CAkx = 0, k ≥ 0, for x to be an unobservable state; or with the condition
that a system is observable if the only vector x that satisfies CAkx = 0 for
every k ≥ 0 is the zero vector. In view of (5.14), the above condition for a
system to be constructible is the condition for the existence of a unique solu-
tion x0 when past outputs and inputs are used. This, of course, makes sense
since constructibility refers to determining the present state from knowledge
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of past outputs and inputs. Therefore, when A is nonsingular, the system is
constructible if and only if the pn× n matrix

OA−n =

⎡
⎢⎣
CA−n

...
CA−1

⎤
⎥⎦ (5.17)

has full rank, since in this case the only x that satisfies CA−kx = 0 for
every k ≥ 0 is x = 0. Note that if the system is observable, then it is also
constructible; however, if it is constructible, then it is also observable only
when A is nonsingular (see Section 5.3).

Example 5.6. Consider the (unobservable) system in Example 5.5. Since A

is nonsingular, OA−2 =
[

1 0
1 0

] [
1 0

−2 1

]
=
[

1 0
1 0

]
. Since rankOA−2 = 1 < 2,

the system [or the pair (A,C)] is not constructible. This can also be seen
from the relation CA−kx = 0, k ≥ 0, that has nonzero solutions x, since
C = [1, 0] = CA−1 = CA−2 = · · · = CA−k for k ≥ 0, which implies that any

x =
[

0
c

]
, c ∈ R, is a solution.

5.2.3 Dual Systems

Consider the system described by

ẋ = Ax+Bu, y = Cx+Du, (5.18)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. The dual system of
(5.18) is defined as the system

ẋD = ADxD +BDuD, yD = CDxD +DDuD, (5.19)

where AD = AT , BD = CT , CD = BT , and DD = DT .

Lemma 5.7. System (5.18), denoted by {A,B,C,D}, is reachable (control-
lable) if and only if its dual {AD, BD, CD, DD} in (5.19) is observable (con-
structible), and vice versa.

Proof. System {A,B,C,D} is reachable if and only if C � [B,AB, . . . , An−1B]
has full rank n, and its dual is observable if and only if

OD �

⎡
⎢⎢⎢⎣

BT

BTAT

...
BT (AT )n−1

⎤
⎥⎥⎥⎦
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has full rank n. Since OT
D = C, {A,B,C,D} is reachable if and only if

{AD, BD, CD, DD} is observable. Similarly, {A,B,C,D} is observable if and
only if {AD, BD, CD, DD} is reachable. Now {A,B,C,D} is controllable if
and only if its dual is constructible, and vice versa, since it is shown in Sec-
tions 5.3 and 5.4, that a continuous-time system is controllable if and only if
it is reachable; it is constructible if and only if it is observable. �

For the discrete-time time-invariant case, the dual system is again defined
as AD = AT , BD = CT , CD = BT , and DD = DT . That such a system is
reachable if and only if its dual is observable can be shown in exactly the same
way as in the proof of Lemma 5.7. That such a system is controllable if and
only if its dual is constructible in the case when A is nonsingular is because in
this case the system is reachable if and only if it is controllable; and the same
holds for observability and constructibility. The proof for the case when A is
singular involves the controllable and unconstructible subspaces of a system
and its dual. We omit the details. The reader is encouraged to complete this
proof after studying Sections 5.3 and 5.4.

Figure 5.3 summarizes the relationships between reachability (observabil-
ity) and controllability (constructibility) for continuous- and discrete-time sys-
tems.

Dual Observability

Controllability ConstructibilityDual

Reachability

Figure 5.3. In continuous-time systems, reachability (observability) always implies
and is implied by controllability (constructibility). In discrete-time systems, reach-
ability (observability) always implies but in general is not implied by controllability
(constructibility).

5.3 Reachability and Controllability

The objective here is to study the important properties of state controllability
and reachability when a system is described by a state-space representation.
In the previous section, a brief introduction to these concepts was given for
discrete-time systems, and it was shown that a system is completely reachable
if and only if the controllability (-from-the-origin) matrix C in (5.1) has full
rank n (rankC = n). Furthermore, it was shown that the input sequence nec-
essary to accomplish the transfer can be determined directly from C by solving
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a system of linear algebraic equations (5.5). In a similar manner, we would like
to derive tests for reachability and controllability and determine the necessary
system inputs to accomplish the state transfer for the continuous-time case.
We note, however, that whereas the test for reachability can be derived by a
number of methods, the appropriate sequence of system inputs to use cannot
easily be determined directly from C, as was the case for discrete-time systems.
For this reason, we use an approach that utilizes ranges of maps, in particu-
lar, the range of an important n× n matrix—the reachability Gramian. The
inputs that accomplish the desired state transfer can be determined directly
from this matrix.

5.3.1 Continuous-Time Time-Invariant Systems

We consider the state equation

ẋ = Ax +Bu, (5.20)

where A ∈ Rn×n, B ∈ Rn×m, and u(t) ∈ Rm is (piecewise) continuous. The
state at time t is given by

x(t) = Φ(t, t0)x(t0) +
∫ t

t0

Φ(t, τ)Bu(τ)dτ, (5.21)

where Φ(t, τ) is the state transition matrix of the system, and x(t0) = x0

denotes the state at initial time.
Here

Φ(t, τ) = Φ(t− τ, 0) = exp[(t− τ)A] = eA(t−τ). (5.22)

We are interested in using the input to transfer the state from x0 to some
other value x1 at some finite time t1 > t0, [i.e., x(t1) = x1 in (5.21)]. Because
of time invariance, the difference t1− t0 = T , rather than the individual times
t0 and t1, is important. Accordingly, we can always take t0 = 0 and t1 = T .
Equation (5.21) assumes the form

x1 − eATx0 =
∫ T

0

eA(T−τ)Bu(τ)dτ, (5.23)

and clearly, there exists u(t), t ∈ [0, T ], that satisfies (5.23) if and only if such
transfer of the state is possible. Letting x̂1 � x1 − eATx0, we note that the
u(t) that transfers the state from x0 at time 0 to x1 at time T will also cause
the state to reach x̂1 at T , starting from the origin at 0 (i.e., x(0) = 0).

For the time-invariant system (5.20), we introduce the following concepts.

Definition 5.8. (i) A state x1 is reachable if there exists an input u(t), t ∈
[0, T ], that transfers the state x(t) from the origin at t = 0 to x1 in some
finite time T .
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(ii) The set of all reachable states Rr is the reachable subspace of the system
ẋ = Ax +Bu, or of the pair (A,B).

(iii) The system ẋ = Ax+Bu, or the pair (A,B) is (completely state) reach-
able if every state is reachable, i.e., if Rr = Rn. �

Regarding (ii), note that the set of all reachable states x1 contains the
origin and constitutes a linear subspace of the state space (Rn, R).

A reachable state is sometimes also called controllable-from-the-origin. Ad-
ditionally, there are also states defined to be controllable-to-the-origin or sim-
ply controllable; see the definition later in this section.

Definition 5.9. The n×n reachability Gramian of the time-invariant system
ẋ = Ax+Bu is

Wr(0, T ) �
∫ T

0

e(T−τ)ABBT e(T−τ)AT

dτ. (5.24)

�

Note that Wr is symmetric and positive semidefinite for every T > 0; i.e.,
Wr = WT

r and Wr ≥ 0 (show this).
It can now be shown in [1, p. 230, Lemma 3.2.1] that the reachable subspace

of the system (5.20) is exactly the range of the reachability Gramian Wr in
(5.24). Let the n×mn controllability (-from-the-origin) matrix be

C � [B,AB, . . . , An−1B]. (5.25)

The range of Wr(0, T ), denoted by R(Wr(0, T )), is independent of T ; i.e.,
it is the same for any finite T (> 0), and in particular, it is equal to the range of
the controllability matrix C. Thus, the reachable subspace Rr of system (5.20),
which is the set of all states that can be reached from the origin in finite time,
is given by the range of C,R(C), or the range of Wr(0, T ),R(Wr(0, T )), for
some finite (and therefore for any) T > 0. This is stated as Lemma 5.10 below;
for the proof, see [1, p. 236, Lemma 3.2.10].

Lemma 5.10. R(Wr(0, T )) = R(C) for every T > 0. �

Example 5.11. For the system ẋ = Ax+Bu with A =
[

0 1
0 0

]
and B =

[
0
1

]
,

we have eAt =
[

1 t
0 1

]
and eAtB =

[
t
1

]
. The reachability Gramian is

Wr(0, T ) =
∫ T
0

[
T − τ

1

]
[T−τ, 1]dτ =

∫ T
0

[
(T − τ)2 T − τ
T − τ 1

]
dτ =

[
1
3T

3 1
2T

2

1
2T

2 T

]
.

Since detWr(0, T ) = 1
12T

4 �= 0 for any T > 0, rankWr(0, T ) = n and (A,B)

is reachable. Note that C = [B,AB] =
[

0 1
1 0

]
and that R(Wr(0, T )) = R(C) =

R2, as expected (Lemma 5.10).
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If B =
[

1
0

]
, instead of

[
0
1

]
, then C = [B,AB] =

[
1 0
0 0

]
and (A,B)

is not reachable. In this case eAtB =
[

1
0

]
and the reachability matrix is

Wr(0, T ) =
∫ T
0

[
1 0
0 0

]
dτ =

[
T 0
0 0

]
. Notice again that R(C) = R(Wr(0, T )) for

every T > 0.

The following theorems and corollaries 5.12 to 5.15 contain the main reach-
ability results. Their proofs may be found in [1, p. 237, Chapter 3], starting
with Theorem 2.11.

Theorem 5.12. Consider the system ẋ = Ax + Bu, and let x(0) = 0. There
exists an input u that transfers the state to x1 in finite time if and only if x1 ∈
R(C), or equivalently, if and only if x1 ∈ R(Wr(0, T )) for some finite (and
therefore for any) T . Thus, the reachable subspace Rr = R(C) = R(Wr(0, T )).
Furthermore, an appropriate u that will accomplish this transfer in time T is
given by

u(t) = BT eA
T (T−t)η1 (5.26)

with η1 such that Wr(0, T )η1 = x1 and t ∈ [0, T ]. �

Note that in (5.26) no restrictions are imposed on time T , other than T
be finite. T can be as small as we wish; i.e., the transfer can be accomplished
in a very short time indeed.

Corollary 5.13. The system ẋ = Ax+Bu, or the pair (A,B), is (completely
state) reachable, if and only if

rankC = n, (5.27)

or equivalently, if and only if

rankWr(0, T ) = n (5.28)

for some finite (and therefore for any) T . �

Theorem 5.14. There exists an input u that transfers the state of the system
ẋ = Ax+Bu from x0 to x1 in some finite time T if and only if

x1 − eATx0 ∈ R(C), (5.29)

or equivalently, if and only if

x1 − eATx0 ∈ R(Wr(0, T )). (5.30)

Such an input is given by
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u(t) = BT eA
T (T−t)η1 (5.31)

with t ∈ [0, T ], where η1 is a solution of

Wr(0, T )η1 = x1 − eATx0. (5.32)

�

The above theorem leads to the next result, which establishes the impor-
tance of reachability in determining an input u to transfer the state from any
x0 to any x1 in finite time.

Corollary 5.15. Let the system ẋ = Ax+Bu be (completely state) reachable,
or the pair (A,B) be reachable. Then there exists an input that will transfer
any state x0 to any other state x1 in some finite time T . Such input is given
by

u(t) = BT eA
T (T−t)W−1

r (0, T )[x1 − eATx0] (5.33)

for t ∈ [0, T ]. �

There are many different control inputs u that can accomplish the transfer
from x0 to x1 in time T . It can be shown that the input u given by (5.33)
accomplishes this transfer while expending a minimum amount of energy;
in fact, u minimizes the cost functional

∫ T
0

‖ u(τ) ‖2 dτ , where ‖ u(t) ‖�
[uT (t)u(t)]1/2 denotes the Euclidean norm of u(t).

Example 5.16. The system ẋ = Ax + Bu with A =
[

0 1
0 0

]
and B =

[
0
1

]
is

reachable (see Example 5.11). A control input u(t) that will transfer any state
x0 to any other state x1 in some finite time T is given by (see Corollary 5.15
and Example 5.11)

u(t) = BT eA
T (T−t)W−1

r (0, T )[x1 − eATx0]

= [T − t, 1]
[

12/T 3 −6/T 2

−6/T 2 4/T

] [
x1 −

[
1 T
0 1

]
x0

]
.

Example 5.17. For the (scalar) system ẋ = −ax + bu, determine u(t) that
will transfer the state from x(0) = x0 to the origin in T sec; i.e., x(T ) = 0.

We shall apply Corollary 5.15. The reachability Gramian is Wr(0, T ) =∫ T
0 e−(T−τ)abbe−(T−τ)adτ = e−2aT b2

∫ T
0 e2aτdτ = e−2aT b2 1

2a [e2aT − 1] =
b2

2a [1 − e−2aT ]. (Note [see (5.36) below] that the controllability Gramian is
Wc(0, T ) = b2

2a [e2aT − 1].) Now in view of (5.33), we have

u(t) = be−(T−t)a 2a
b2

1
1 − e−2aT

[−e−aTx0]

= −2a
b

e−2aT

1 − e−2aT
eaTx0 = −2a

b

1
e2aT − 1

eatx0.
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To verify that this u(t) accomplishes the desired transfer, we compute x(t) =
eAtx0+

∫ t
0
eA(t−τ)Bu(τ)dτ = e−atx0+

∫ t
0
e−ateaτbu(τ)dτ = e−at[x0+

∫ t
0
eaτb×(

− 2a
b

1
e2aT −1 × eaτ

)
dτ = e−at

[
1 − e2at−1

e2aT −1

]
x0. Note that x(T ) = 0, as de-

sired, and also that x(0) = x0. The above expression shows also that for
t > T , the state does not remain at the origin. An important point to notice
here is that as T → 0, the control magnitude |u| → ∞. Thus, although it
is (theoretically) possible to accomplish the desired transfer instantaneously,
this will require infinite control magnitude. In general the faster the transfer,
the larger the control magnitude required.

We now introduce the concept of a controllable state.

Definition 5.18. (i) A state x0 is controllable if there exists an input
u(t), t ∈ [0, T ], which transfers the state x(t) from x0 at t = 0 to the
origin in some finite time T .

(ii) The set of all controllable states Rc, is the controllable subspace of the
system ẋ = Ax+Bu, or of the pair (A,B).

(iii) The system ẋ = Ax +Bu, or the pair (A,B), is (completely state) con-
trollable if every state is controllable, i.e., if Rc = Rn. �

We shall now establish the relationship between reachability and control-
lability for the continuous-time time-invariant systems (5.20).

In view of (5.23), x0 is controllable when there exists u(t), t ∈ [0, T ], so
that

−eATx0 =
∫ T

0

eA(T−τ)Bu(τ)dτ

or when eATx0 ∈ R(Wr(0, T )) [1, p. 230, Lemma 3.2.1], or equivalently, in
view of Lemma 5.10, when

eATx0 ∈ R(C) (5.34)

for some finite T . Recall that x1 is reachable when

x1 ∈ R(C). (5.35)

We require the following result.

Lemma 5.19. If x ∈ R(C), then Ax ∈ R(C); i.e., the reachable subspace
Rr = R(C) is an A-invariant subspace.

Proof. If x ∈ R(C), this means that there exists a vector α such that
[B,AB, . . . , An−1B]α = x. Then Ax = [AB,A2B, . . . , AnB]α. In view of the
Cayley–Hamilton Theorem, An can be expressed as a linear combination of
An−1, . . . , A, I, which implies that Ax = Cβ for some appropriate vector β.
Therefore, Ax ∈ R(C). �
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Theorem 5.20. Consider the system ẋ = Ax+Bu.

(i) A state x is reachable if and only if it is controllable.
(ii) Rc = Rr.
(iii) The system (2.3), or the pair (A,B), is (completely state) reachable if

and only if it is (completely state) controllable.

Proof. (i) Let x be reachable, that is, x ∈ R(C). Premultiply x by eAT =∑∞
k=0(T

k/k!)Ak and notice that, in view of Lemma 5.19, Ax,A2x, . . . , Akx ∈
R(C). Therefore, eATx ∈ R(C) for any T that, in view of (5.34), implies
that x is also controllable. If now x is controllable, i.e., eATx ∈ R(C), then
premultiplying by e−AT , the vector e−AT

(
eATx

)
= x will also be in R(C).

Therefore, x is also reachable. Note that the second part of (i), that control-
lability implies reachability, is true because the inverse (eAT )−1 = e−AT does
exist. This is in contrast to the discrete-time case where the state transition
matrix Φ(k, 0) is nonsingular if and only if A is nonsingular [nonreversibility
of time in discrete-time systems].

Parts (ii) and (iii) of the theorem follow directly from (i). �

The reachability Gramian for the time-invariant case, Wr(0, T ), was de-
fined in (5.24). For completeness the controllability Gramian is defined below.

Definition 5.21. The controllability Gramian in the time-invariant case is
the n× n matrix

Wc(0, T ) �
∫ T

0

e−AτBBT e−A
T τdτ. (5.36)

�

We note that
Wr(0, T ) = eATWc(0, T )eA

TT ,

which can be verified directly.

Additional Criteria for Reachability and Controllability

We first recall the definition of a set of linearly independent functions of time
and consider in particular n complex-valued functions fi(t), i = 1, . . . , n,
where fTi (t) ∈ Cm. Recall that the set of functions fi, i = 1, . . . , n, is linearly
dependent on a time interval [t1, t2] over the field of complex numbers C if
there exist complex numbers ai, i = 1, . . . , n, not all zero, such that

a1f1(t) + · · · + anfn(t) = 0 for all t in [t1, t2];

otherwise, the set of functions is said to be linearly independent on [t1, t2] over
the field of complex numbers.

It is possible to test linear independence using the Gram matrix of the
functions fi.
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Lemma 5.22. Let F (t) ∈ Cn×m be a matrix with fi(t) ∈ C1×m in its ith
row. Define the Gram matrix of fi(t), i = 1, . . . , n, by

W (t1, t2) �
∫ t2

t1

F (t)F ∗(t)dt, (5.37)

where (·)∗ denotes the complex conjugate transpose. The set fi(t), i = 1, . . . , n,
is linearly independent on [t1, t2] over the field of complex numbers if and only
if the Gram matrix W (t1, t2) is nonsingular, or equivalently, if and only if the
Gram determinant detW (t1, t2) �= 0.

Proof. (Necessity) Assume the set fi, i = 1, . . . , n, is linearly independent
but W (t1, t2) is singular. Then there exists some nonzero α ∈ C1×n so that
αW (t1, t2) = 0, from which αW (t1, t2)α∗ =

∫ t2
t1

(αF (t))(αF (t))∗dt = 0. Since
(αF (t))(αF (t))∗ ≥ 0 for all t, this implies that αF (t) = 0 for all t in [t1, t2],
which is a contradiction. Therefore, W (t1, t2) is nonsingular.

(Sufficiency) Assume that W (t1, t2) is nonsingular but the set fi, i =
1, . . . , n, is linearly dependent. Then there exists some nonzero α ∈ C1×n

so that αF (t) = 0. Then αW (t1, t2) =
∫ t2
t1
αF (t)F ∗(t)dt = 0, which is a con-

tradiction. Therefore, the set fi, i = 1, . . . , n, is linearly independent. �

We now introduce a number of additional tests for reachability and con-
trollability of time-invariant systems. Some earlier results are also repeated
here for convenience.

Theorem 5.23. The system ẋ = Ax+Bu is reachable (controllable-from-the-
origin)

(i) if and only if

rankWr(0, T ) = n for some finite T > 0,

where

Wr(0, T ) �
∫ T

0

e(T−τ)ABBT e(T−τ)AT

dτ, (5.38)

the reachability Gramian; or
(ii) if and only if the n rows of

eAtB (5.39)

are linearly independent on [0,∞) over the field of complex numbers; or
alternatively, if and only if the n rows of

(sI −A)−1B (5.40)

are linearly independent over the field of complex numbers; or
(iii) if and only if

rankC = n, (5.41)

where C � [B,A,B, . . . , An−1B], the controllability matrix; or
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(iv) if and only if
rank[siI −A,B] = n (5.42)

for all complex numbers si; or alternatively, for si, i = 1, . . . , n, the eigen-
values of A.

Proof. Parts (i) and (ii) were proved in Corollary 5.13.
In part (ii), rankWr(0, T ) = n implies and is implied by the linear indepen-

dence of the n rows of e(T−t)AB on [0, T ] over the field of complex numbers,
in view of Lemma 5.22, or by the linear independence of the n rows of et̂AB,
where t̂ � T − t, on [0, T ]. Therefore, the system is reachable if and only if the
n rows of eAtB are linearly independent on [0,∞) over the field of complex
numbers. Note that the time interval can be taken to be [0,∞) since in [0, T ],
T can be taken to be any finite positive real number. To prove the second part
of (ii), recall that L(eAtB) = (sI −A)−1B and that the Laplace transform is
a one-to-one linear operator.

Part (iv) will be proved later in Section 6.3. �

Since reachability implies and is implied by controllability, the criteria
developed in the theorem for reachability are typically used to test the con-
trollability of a system as well.

Example 5.24. For the system ẋ = Ax+Bu, where A =
[

0 1
0 0

]
and B =

[
0
1

]

(as in Example 5.11), we shall verify Theorem 5.23. The system is reachable
since

(i) the reachability Gramian Wr(0, T ) =
[

1
3T

3 1
2T

2

1
2T

2 T

]
has rankWr(0, T ) =

2 = n for any T > 0, or since

(ii) eAtB =
[
t
1

]
has rows that are linearly independent on [0,∞) over the

field of complex numbers (since a1 × t + a2 × 1 = 0, where a1 and a2

are complex numbers implies that a1 = a2 = 0). Similarly, the rows of

(sI−A)−1B =
[

1/s2

1/s

]
are linearly independent over the field of complex

numbers. Also, since

(iii) rankC = rank[B,AB] = rank
[

0 1
1 0

]
= 2 = n, or

(iv) rank[siI − A,B] = rank
[
si −1 0
0 si 1

]
= 2 = n for si = 0, i = 1, 2, the

eigenvalues of A.

If B =
[

1
0

]
in place of

[
0
1

]
, then



5.3 Reachability and Controllability 213

(i) Wr(0, T ) =
[
T 0
0 0

]
(see Example 5.11) with rankWr(0, T ) = 1 < 2 = n,

and

(ii) eAtB =
[

1
0

]
and (sI − A)−1B =

[
1/s
0

]
, neither of which has rows that

are linearly independent over the complex numbers. Also,

(iii) rankC =
[

1 0
0 0

]
= 1 < 2 = n, and

(iv) rank[siI −A,B] = rank
[
si −1 1
0 si 0

]
= 1 < 2 = n for si = 0.

Based on any of the above tests, it is concluded that the system is not reach-
able.

5.3.2 Discrete-Time Systems

The response of discrete-time systems was studied in Section 3.5. We consider
systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k), k ≥ k0, (5.43)

where A ∈ Rn×n and B ∈ Rn×m. The state x(k) is given by

x(k) = Φ(k, k0)x(k0) +
k−1∑
i=k0

Φ(k, i+ 1)Bu(i), (5.44)

where the state transition matrix is

Φ(k, k0) = Ak−k0 , k ≥ k0. (5.45)

Let the state at time k0 be x0. For the state at some time k1 > k0 to
assume the value x1, an input u must exist that satisfies x(k1) = x1 in (5.44).

For the time-invariant system the elapsed time k1 − k0 is of interest, and
we therefore take k0 = 0 and k1 = K. Recalling that Φ(k, 0) = Ak, for the
state x1 to be reached from x(0) = x0 in K steps, i.e., x(K) = x1, an input u
must exist that satisfies

x1 = AKx0 +
K−1∑
i=0

AK−(i+1)Bu(i), (5.46)

when K > 0, or
x1 = AKx0 + CKUK , (5.47)

where

CK � [B,AB, . . . , AK−1B] (5.48)
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and

UK � [uT (K − 1), uT (K − 2), . . . , uT (0)]T . (5.49)

The definitions of reachable state x1, reachable subspace Rr, and a system
being (completely state) reachable, or the pair (A,B) being reachable, are the
same as in the continuous-time case (see Definition 5.8, and use integer K in
place of real time T ).

To determine the finite input sequence for discrete-time systems that will
accomplish a desired state transfer, if such a sequence exists, one does not have
to define matrices comparable with the reachability Gramian Wr, as in the
case for continuous-time systems, but we can work directly with the control-
lability matrix Cn = C; see also the introductory discussion in Section 5.2.1.
In particular, we have the following result.

Theorem 5.25. Consider the system x(k + 1) = Ax(k) + Bu(k) given in
(5.43), and let x(0) = 0. There exists an input u that transfers the state to x1

in finite time if and only if
x1 ∈ R(C).

In this case, x1 is reachable and Rr = R(C). An appropriate input sequence
{u(k)}, k = 0, . . . , n − 1, that accomplishes this transfer in n steps is deter-
mined by Un � [uT (n− 1), uT (n− 2), . . . , uT (0)]T , which is a solution to the
equation

CUn = x1. (5.50)

Henceforth, with an abuse of language, we will refer to Un as a control se-
quence, when in fact we actually have in mind {u(k)}.

Proof. In view of (5.47), x1 can be reached from the origin in K steps if
and only if x1 = CKUK has a solution UK , or if and only if x1 ∈ R(CK).
Furthermore, all input sequences that accomplish this are solutions to the
equation x1 = CKUK . For x1 to be reachable we must have x1 ∈ R(CK)
for some finite K. This range, however, cannot increase beyond the range of
Cn = C; i.e., R(CK) = R(Cn) forK ≥ n [see Exercise 5.1]. This follows from the
Cayley–Hamilton Theorem, which implies that any vector x in R(CK), K ≥ n,
can be expressed as a linear combination of B,AB, . . . , An−1B. Therefore,
x ∈ R(Cn). It is of course possible to have x1 ∈ R(CK) with K < n, for a
particular x1; however, in this case x1 ∈ R(Cn), since CK is a subset of Cn.
Thus, x1 is reachable if and only if it is in the range of Cn = C. Clearly, any
Un that accomplishes the transfer satisfies (5.50). �

As pointed out in the above proof, for given x1 we may have x1 ∈ R(CK)
for some K < n. In this case the transfer can be accomplished in fewer than
n steps, and appropriate inputs are obtained by solving the equation
CKUK = x1.
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Corollary 5.26. The system x(k + 1) = Ax(k) + Bu(k) in (5.43) is (com-
pletely state) reachable, or the pair (A,B) is reachable, if and only if

rankC = n. (5.51)

Proof. Apply Theorem 5.25, noting that R(C) = Rr = Rn if and only if
rankC = n. �

Theorem 5.27. There exists an input u that transfers the state of the system
x(k + 1) = Ax(k) + Bu(k) in (5.43) from x0 to x1 in some finite number of
steps K, if and only if

x1 −AKx0 ∈ R(CK). (5.52)

Such an input sequence UK � [uT (K − 1), uT (K − 2), . . . , uT (0)]T is deter-
mined by solving the equation

CKUK = x1 −AKx0. (5.53)

Proof. The proof follows directly from (5.47). �

The above theorem leads to the following result that establishes the im-
portance of reachability in determining u to transfer the state from any x0 to
any x1 in a finite number of steps.

Corollary 5.28. Let the system x(k+1) = Ax(k)+Bu(k) given in (5.43) be
(completely state) reachable or the pair (A,B) be reachable. Then there exists
an input sequence that transfers the state from any x0 to any x1 in a finite
number of steps. Such input is determined by solving Eq. (5.54).

Proof. Consider (5.47). Since (A,B) is reachable, rankCn = rankC = n and
R(C) = Rn. Then

CUn = x1 −Anx0 (5.54)

always has a solution Un = [uT (n − 1), . . . , uT (0)]T for any x0 and x1. This
input sequence transfers the state from x0 to x1 in n steps. �

Note that, in view of Theorem 5.27, for particular x0 and x1, the state
transfer may be accomplished in K < n steps, using (5.53).

Example 5.29. Consider the system in Example 5.1, namely, x(k + 1) =
Ax(k) +Bu(k), where A = [ 0 1

1 1 ] and B = [ 0
1 ]. Since rankC = rank[B,AB] =

rank [ 0 1
1 1 ] = 2 = n, the system is reachable and any state x0 can be trans-

ferred to any other state x1 in two steps. Let x1 =
[
a
b

]
, x0 =

[
a0

b0

]
.

Then (5.54) implies that
[

0 1
1 1

] [
u(1)
u(0)

]
=
[
a
b

]
−
[

1 1
1 2

] [
a0

b0

]
or
[
u(1)
u(0)

]
=

[
−1 1

1 0

] [
a
b

]
−
[

0 1
1 1

] [
a0

b0

]
=
[
b − 1 − b0
a − a0 − b0

]
. This agrees with the results
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obtained in Example 5.1. In view of (5.53), if x1 and x0 are chosen so that

x1 − Ax0 =
[
a
b

]
−
[

0 1
1 1

] [
a0

b0

]
=
[

a− b0
b− a0 − b0

]
is in the R(C1) = R(B) =

span
{[

0
1

]}
, then the state transfer can be achieved in one step. For exam-

ple, if x1 =
[

1
3

]
and x0 =

[
0
1

]
, then Bu(0) =

[
0
1

]
u(0) = x1 − Ax0 =

[
0
2

]

implies that the transfer from x0 to x1 can be accomplished in this case in
1 < 2 = n steps with u(0) = 2.

Example 5.30. Consider the system x(k + 1) = Ax(k) + Bu(k) with A =[
0 1
0 0

]
and B =

[
0
1

]
. Since C = [B,AB] =

[
0 1
1 0

]
has full rank, there exists

an input sequence that will transfer the state from any x(0) = x0 to any

x(n) = x1 (in n steps), given by (5.54), U2 =
[
u(1)
u(0)

]
= C−1(x1 − A2x0) =

[
0 1
1 0

]
(x1 −x0). Compare this with Example 5.16, where the continuous-time

system had the same system parameters A and B.

Additional Criteria for Reachability. Note that completely analogous results
to Theorem 5.23(ii)–(iv) exist for the discrete-time case.

We now turn to the concept of controllability. The definitions of control-
lable state x0, controllable subspace Rc, and a system being (completely state)
controllable, or the pair (A,B) being controllable are similar to the correspond-
ing concepts given in Definition 5.18 for the case of continuous-time systems.

We shall now establish the relationship between reachability and control-
lability for the discrete-time time-invariant systems x(k+1) = Ax(k)+Bu(k)
in (5.43).

Consider (5.46). The state x0 is controllable if it can be steered to the
origin x1 = 0 in a finite number of steps K. That is, x0 is controllable if and
only if

−AKx0 = CKUK (5.55)

for some finite positive integer K, or when

AKx0 ∈ R(CK) (5.56)

for some K. Recall that x1 is reachable when

x1 ∈ R(C). (5.57)

Theorem 5.31. Consider the system x(k + 1) = Ax(k) +Bu(k) in (5.43).

(i) If state x is reachable, then it is controllable.
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(ii) Rr ⊂ Rc.
(iii) If the system is (completely state) reachable, or the pair (A,B) is reach-

able, then the system is also (completely state) controllable, or the pair
(A,B) is controllable.

Furthermore, if A is nonsingular, then relations (i) and (iii) become if and
only if statements, since controllability also implies reachability, and relation
(ii) becomes an equality; i.e., Rc = Rr.

Proof. (i) If x is reachable, then x ∈ R(C). In view of Lemma 5.19, R(C) is an
A-invariant subspace and so Anx ∈ R(C), which in view of (5.56), implies that
x is also controllable. Since x is an arbitrary vector in Rr, this implies (ii). If
R(C) = Rn, the whole state space, then Anx for any x is in R(C) and so any
vector x is also controllable. Thus, reachability implies controllability. Now,
if A is nonsingular, then A−n exists. If x is controllable, i.e., Anx ∈ R(C),
then x ∈ R(C), i.e., x is also reachable. This can be seen by noting that A−n

can be written as a power series in terms of A, which in view of Lemma 5.19,
implies that A−n(Anx) = x is also in R(C). �

Matrix A being nonsingular is the necessary and sufficient condition for
the state transition matrix Φ(k, k0) to be nonsingular, which in turn is the
condition for time reversibility in discrete-time systems. Recall that reversibil-
ity in time may not be present in such systems since Φ(k, k0) may be singular.
In contrast to this, in continuous-time systems, Φ(t, t0) is always nonsingular.
This causes differences in behavior between continuous- and discrete-time sys-
tems and implies that in discrete-time systems controllability may not imply
reachability (see Theorem 5.31). Note that, in view of Theorem 5.20, in the
case of continuous-time systems, it is not only reachability that always implies
controllability, but also vice versa, controllability always implies reachability.

When A is nonsingular, the input that will transfer the state from x0 at
k = 0 to x1 = 0 in n steps can be determined using (5.54). In particular, one
needs to solve

[A−nC]Un = [A−nB, . . . , A−1B]Un = −x0 (5.58)

for Un = [uT (n − 1), . . . , uT (0)]T . Note that x0 is controllable if and only if
−Anx0 ∈ R(C), or if and only if x0 ∈ R(A−nC) for A nonsingular.

Clearly, in the case of controllability (and under the assumption that A is
nonsingular), the matrix A−nC is of interest, instead of C [see also (5.8)]. In
particular, a system is controllable if and only if rank(A−nC) = rankC = n.

Example 5.32. Consider the system x(k + 1) = Ax(k) +Bu(k), where A =[
1 1
0 1

]
and B =

[
1
0

]
. Since rankC = rank[B,AB] = rank

[
1 1
0 0

]
= 1 < 2 = n,

this system is not (completely) reachable (controllable-from-the-origin). All
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reachable states are of the form α

[
1
0

]
, where α ∈ R since

{[
1
0

]}
is a basis

for the R(C) = Rr, the reachability subspace.
In view of (5.56) and the Cayley–Hamilton Theorem, all controllable states

x0 satisfy A2x0 ∈ R(C); i.e., all controllable states are of the form α

[
1
0

]
,

where α ∈ R. This verifies Theorem 5.31 for the case when A is nonsingular.
Note that presently Rr = Rc.

Example 5.33. Consider the system x(k + 1) = Ax(k) +Bu(k), where A =[
0 1
0 0

]
and B =

[
1
0

]
. Since rankC = rank[B,AB] = rank

[
1 0
0 0

]
= 1 < 2 = n,

the system is not (completely) reachable. All reachable states are of the form

α

[
1
0

]
, where α ∈ R since

{[
1
0

]}
is a basis for R(C) = Rr, the reachability

subspace.
To determine the controllable subspace Rc, consider (5.56) for K = n, in

view of the Cayley–Hamilton Theorem. Note that A−1C cannot be used in the

present case, since A is singular. Since A2x0 =
[

0 0
0 0

]
x0 =

[
0
0

]
∈ R(C), any

state x0 will be a controllable state; i.e., the system is (completely) controllable
and Rc = Rn. This verifies Theorem 5.31 and illustrates that controllability
does not in general imply reachability.

Note that (5.54) can be used to determine the control sequence that will
drive any state x0 to the origin (x1 = 0). In particular,

CUn =
[

1 0
0 0

] [
u(1)
u(0)

]
=
[

0
0

]
= −A2x0.

Therefore, u(0) = α and u(1) = 0, where α ∈ R will drive any state to the

origin. To verify this, we consider x(1) = Ax(0) + Bu(0) =
[

0 1
0 0

] [
x01

x02

]
+

[
1
0

]
α =

[
x02 + α

0

]
and x(2) = Ax(1)+Bu(1) =

[
0 1
0 0

] [
x02 + α

0

]
+
[

1
0

]
0 =

[
0
0

]
.

5.4 Observability and Constructibility

In applications, the state of a system is frequently required but not accessible.
Under such conditions, the question arises whether it is possible to determine
the state by observing the response of the system to some input over some
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period of time. It turns out that the answer to this question is affirmative
if the system is observable. Observability refers to the ability of determining
the present state x(t0) from knowledge of current and future system outputs,
y(t), and system inputs, u(t), t ≥ t0. Constructibility refers to the ability
of determining the present state x(t0) from knowledge of current and past
system outputs, y(t), and system inputs, u(t), t ≤ t0. Observability was briefly
addressed in Section 5.2. In this section this concept is formally defined and the
(present) state is explicitly determined from input and output measurements.

5.4.1 Continuous-Time Time-Invariant Systems

We shall now study observability and constructibility for time-invariant sys-
tems described by equations of the form

ẋ = Ax+Bu, y = Cx+Du, (5.59)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, and u(t) ∈ Rm is
(piecewise) continuous. As was shown in Section 3.3, the output of this system
is given by

y(t) = CeAtx(0) +
∫ t

0

CeA(t−τ)Bu(τ)dτ +Du(t). (5.60)

We recall that the initial time can always be taken to be t0 = 0. We will
find it convenient to rewrite (5.60) as

ỹ(t) = CeAtx0, (5.61)

where ỹ(t) � y(t) −
[∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

]
and x0 = x(0).

Definition 5.34. A state x is unobservable if the zero-input response of the
system (5.59) is zero for every t ≥ 0, i.e., if

CeAtx = 0 for every t ≥ 0. (5.62)

The set of all unobservable states x,Rō, is called the unobservable subspace
of (5.59). System (5.59) is (completely state) observable, or the pair (A,C)
is observable, if the only state x ∈ Rn that is unobservable is x = 0, i.e., if
Rō = {0}. �

Definition 5.34 states that a state is unobservable precisely when it cannot
be distinguished as an initial condition at time 0 from the initial condition
x(0) = 0. This is because in this case the output is the same as if the initial
condition were the zero vector. Note that the set of all unobservable states
contains the zero vector and it can be shown to be a linear subspace. We now
define the observability Gramian.



220 5 Controllability and Observability: Fundamental Results

Definition 5.35. The observability Gramian of system (5.59) is the n × n
matrix

Wo(0, T ) �
∫ T

0

eA
T τCTCeAτdτ. (5.63)

�

We note that Wo is symmetric and positive semidefinite for every T > 0;
i.e., Wo = WT

o and Wo ≥ 0 (show this). Recall that the pn× n observability
matrix

O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (5.64)

was defined in Section 5.2.
We now show that the null space of Wo(0, T ), denoted by N (Wo(0, T )), is

independent of T ; i.e., it is the same for any T > 0, and in particular, it is
equal to the null space of the observability matrix O. Thus, the unobservable
subspace Rō of the system is given by the null space of O,N (O), or the null
space of Wo(0, T ),N (Wo(0, T )) for some finite (and therefore for all) T > 0.

Lemma 5.36. N (O) = N (Wo(0, T )) for every T > 0.

Proof. If x ∈ N (O), then Ox = 0. Thus, CAkx = 0 for all 0 ≤ k ≤ n−1, which
is also true for every k > n − 1, in view of the Cayley–Hamilton Theorem.
Then CeAtx = C[Σ∞

k=0(t
k/k!)Ai]x = 0 for every finite t. Therefore, in view

of (5.63), Wo(0, T )x = 0 for every T > 0; i.e., x ∈ N (Wo(0, T )) for every
T > 0. Now let x ∈ N (Wo(0, T )) for some T > 0, so that xTW (0, T )x =∫ T
0

‖ CeAτx ‖2 dτ = 0, or CeAtx = 0 for every t ∈ [0, T ]. Taking derivatives
of the last equation with respect to t and evaluating at t = 0, we obtain
Cx = CAx = · · · = CAkx = 0 for every k > 0. Therefore, CAkx = 0 for every
k ≥ 0, i.e., Ox = 0 or x ∈ N (O). �

Theorem 5.37. A state x is unobservable if and only if

x ∈ N (O), (5.65)

or equivalently, if and only if

x ∈ N (Wo(0, T )) (5.66)

for some finite (and therefore for all) T > 0. Thus, the unobservable subspace
R0̄ = N (O) = N (Wo(0, T )) for some T > 0.

Proof. If x is unobservable, (5.62) is satisfied. Taking derivatives with respect
to t and evaluating at t = 0, we obtain Cx = CAx = · · · = CAkx = 0 for
k > 0 or CAkx = 0 for every k ≥ 0. Therefore, Ox = 0 and (5.65) is satisfied.
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Assume now that Ox = 0; i.e., CAkx = 0 for 0 ≤ k ≤ n − 1, which is also
true for every k > n − 1, in view of the Cayley–Hamilton Theorem. Then
CeAtx = C[Σ∞

k=0(t
k/k!)Ai]x = 0 for every finite t; i.e., (5.62) is satisfied and

x is unobservable. Therefore, x is unobservable if and only if (5.65) is satisfied.
In view of Lemma 5.36, (5.66) follows. �

Clearly, x is observable if and only if Ox �= 0 or Wo(0, T )x �= 0 for some
T > 0.

Corollary 5.38. The system (5.59) is (completely state) observable, or the
pair (A,C) is observable, if and only if

rankO = n, (5.67)

or equivalently, if and only if

rankWo(0, T ) = n (5.68)

for some finite (and therefore for all) T > 0. If the system is observable, the
state x0 at t = 0 is given by

x0 = W−1
o (0, T )

[∫ T

0

eA
T τCT ỹ(τ)dτ

]
. (5.69)

Proof. The system is observable if and only if the only vector that satisfies
(5.62) or (5.65) is the zero vector. This is true if and only if the null space
is empty, i.e., if and only if (5.67) or (5.68) are true. To determine the state
x0 at t = 0, given the output and input values over some interval [0, T ], we
premultiply (5.61) by eA

T τCT and integrate over [0, T ] to obtain

Wo(0, T )x0 =
∫ T

0

eA
T τCT ỹ(τ)dτ, (5.70)

in view of (5.63). When the system is observable, (5.70) has the unique solution
(5.69). �

Note that T > 0, the time span over which the input and output are ob-
served, is arbitrary. Intuitively, one would expect in practice to have difficulties
in evaluating x0 accurately when T is small, using any numerical method. Note
that for very small T, ||Wo(0, T )|| can be very small, which can lead to numer-
ical difficulties in solving (5.70). Compare this with the analogous case for
reachability, where small T leads in general to large values in control action.

It is clear that if the state at some time t0 is determined, then the state
x(t) at any subsequent time is easily determined, given u(t), t ≥ t0.

Alternative methods to (5.69) to determine the state of the system when
the system is observable are provided in Section 9.3 on state observers.
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Example 5.39. (i) Consider the system ẋ = Ax, y = Cx, where A =
[

0 1
0 0

]

and C = [1, 0]. Here eAt =
[

1 t
0 1

]
and CeAt = [1, t]. The observ-

ability Gramian is then Wo(0, T ) =
∫ T
0

[
1
τ

]
[1 τ ]dτ =

∫ T
0

[
1 τ
τ τ2

]
dτ =

[
T 1

2T
2

1
2T

2 1
3T

3

]
. Notice that detWo(0, T ) = 1

12T
4 �= 0 for any T > 0, i.e.,

rankWo(0, T ) = 2 = n for any T > 0, and therefore (Corollary 5.38),
the system is observable. Alternatively, note that the observability ma-

trix O =
[
C
CA

]
=
[

1 0
0 1

]
and rankO = 2 = n. Clearly, in this case

N (O) = N (Wo(0, T )) =
{[

0
0

]}
, which verifies Lemma 5.36.

(ii) If A =
[

0 1
0 0

]
, as before, but C = [0, 1], in place of [1, 0], then CeAt =

[0, 1] and the observability Gramian is Wo(0, T ) =
∫ T
0

[
0
1

]
[0, 1]dτ =

[
0 0
0 T

]
. We have rankWo(0, T ) = 1 < 2 = n, and the system is not

completely observable. In view of Theorem 5.37, all unobservable states

x ∈ N (Wo(0, T )) and are therefore of the form
[
α
0

]
, α ∈ R. Alter-

natively, the observability matrix O =
[
C
CA

]
=
[

0 1
0 0

]
. Note that

N (O) = N (W0(0, T )) = span
{[

1
0

]}
.

Observability utilizes future output measurements to determine the present
state. In (re)constructibility, past output measurements are used. Constructi-
bility is defined in the following, and its relation to observability is determined.

Definition 5.40. A state x is unconstructible if the zero-input response of
the system (5.59) is zero for all t ≤ 0; i.e.,

CeAtx = 0 for every t ≤ 0. (5.71)

The set of all unconstructible states x,Rcn, is called the unconstructible sub-
space of (5.59). The system (5.59) is (completely state) (re)constructible, or
the pair (A,C) is (re)constructible, if the only state x ∈ Rn that is uncon-
structible is x = 0; i.e., Rcn = {0}.

We shall now establish a relationship between observability and con-
structibility for the continuous-time time-invariant systems (5.59). Recall that
x is unobservable if and only if
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CeAtx = 0 for every t ≥ 0. (5.72)

Theorem 5.41. Consider the system ẋ = Ax + Bu, y = Cx + Du given in
(5.59).

(i) A state x is unobservable if and only if it is unconstructible.
(ii) Rō = Rcn.
(iii) The system, or the pair (A,C), is (completely state) observable if and

only if it is (completely state) (re)constructible.

Proof. (i) If x is unobservable, then CeAtx = 0 for every t ≥ 0. Taking
derivatives with respect to t and evaluating at t = 0, we obtain Cx = CAx =
· · · = CAkx = 0 for k > 0 or CAkx = 0 for every k ≥ 0. This, in view of
CeAtx =

∑∞
k=0(t

k/k!)CAkx, implies that CeAtx = 0 for every t ≤ 0; i.e., x
is unconstructible. The converse is proved in a similar manner. Parts (ii) and
(iii) of the theorem follow directly from (i). �

The observability Gramian for the time-invariant case, Wo(0, T ), was de-
fined in (5.63). The constructibility Gramian is now defined.

Definition 5.42. The constructibility Gramian of system (5.59) is the n×n
matrix

Wcn(0, T ) �
∫ T

0

eA
T (τ−T )CTCeA(τ−T )dτ. (5.73)

�

Note that
Wo(0, T ) = eA

TTWcn(0, T )eAT , (5.74)

as can be verified directly.

Additional Criteria for Observability and Constructibility

We shall now use Lemma 5.22 to develop additional tests for observability and
constructibility. These are analogous to the corresponding results established
for reachability and controllability in Theorem 5.23.

Theorem 5.43. The system ẋ = Ax+Bu, y = Cx+Du is observable

(i) if and only if
rankWo(0, T ) = n (5.75)

for some finite T > 0, where W0(0, T ) �
∫ T
0
eA

T τCTCeAτdτ , the observ-
ability Gramian, or
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(ii) if and only if the n columns of

CeAt (5.76)

are linearly independent on [0,∞) over the field of complex numbers, or
alternatively, if and only if the n columns of

C(sI −A)−1 (5.77)

are linearly independent over the field of complex numbers, or
(iii) if and only if

rankO = n, (5.78)

where O �

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦, the observability matrix, or

(iv) if and only if

rank
[
siI −A
C

]
= n (5.79)

for all complex numbers si, or alternatively, for all eigenvalues of A.

Proof. The proof of this theorem is completely analogous to the (dual) results
on reachability (Theorem 5.23) and is omitted. �

Since it was shown (in Theorem 5.41) that observability implies and is im-
plied by constructibility, the tests developed in the theorem for observability
are typically also used to test for constructibility.

Example 5.44. Consider the system ẋ = Ax, y = Cx, where A =
[

0 1
0 0

]
and

C = [1, 0], as in Example 5.39(i). We shall verify (i) to (iv) of Theorem 5.43
for this case.

(i) For the observability Gramian, Wo(0, T ) =
[
T 1

2T
2

1
2T

2 1
3T

3

]
, we have

rankWo(0, T ) = 2 = n for any T > 0.
(ii) The columns of CeAt = [1, t] are linearly independent on [0,∞) over

the field of complex numbers, since a1 × 1 + a2 × t = 0 implies that the
complex numbers a1 and a2 must both be zero. Similarly, the columns of
C(sI −A)−1 =

[
1
s ,

1
s2

]
are linearly independent over the field of complex

numbers.

(iii) rankO = rank
[
C
CA

]
= rank

[
1 0
0 1

]
= 2 = n.

(iv) rank
[
siI −A
C

]
= rank

⎡
⎣
si −1
0 si
1 0

⎤
⎦ = 2 = n for si = 0, i = 1, 2, the

eigenvalues of A.
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Consider again A =
[

0 1
0 0

]
but C = [0, 1] [in place of [1, 0], as in Exam-

ple 5.39(ii)].
The system is not observable for the reasons given below.

(i) Wo(0, T ) =
[

0 0
0 T

]
with rankWo(0, T ) = 1 < 2 = n.

(ii) CeAt = [0, 1] and its columns are not linearly independent. Similarly, the
columns of C(sI −A)−1 = [0, 1

s ] are not linearly independent.

(iii) rankO = rank
[
C
CA

]
= rank

[
0 1
0 0

]
= 1 < 2 = n.

(iv) rank
[
siI −A
C

]
= rank

⎡
⎣
si −1
0 si
0 1

⎤
⎦ = 1 < 2 = n for si = 0 an eigenvalue of

A.

5.4.2 Discrete-Time Time-Invariant Systems

We consider systems described by equations of the form

x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +Du(k), k ≥ k0, (5.80)

where A ∈ Rn×n, C ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The output y(k) for
k > k0 is given by

y(k) = C(k)Φ(k, k0)x(k0) +
k−1∑
i=k0

C(k)Φ(k, i+ 1)B(i)u(i) +D(k)u(k), (5.81)

where the state transition matrix Φ(k, k0) is given by

Φ(k, k0) = Ak−k0 , k ≥ k0. (5.82)

Observability and (re)constructibility for discrete-time systems are defined
as in the continuous-time case. Observability refers to the ability to uniquely
determine the state from knowledge of current and future outputs and in-
puts, whereas constructibility refers to the ability to determine the state from
knowledge of current and past outputs and inputs. Without loss of generality,
we take k0 = 0. Then

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k) (5.83)

for k > 0 and y(0) = Cx(0) +Du(0). Rewrite as

ỹ(k) = CAkx0 (5.84)

for k ≥ 0, where ỹ(k) � y(k) −
[∑k−1

i=0 CA
k−(i+1)Bu(i) +Du(k)

]
for k > 0

and ỹ(0) � y(0), and x0 = x(0).
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Definition 5.45. A state x is unobservable if the zero-input response of sys-
tem (5.80) is zero for all k ≥ 0, i.e., if

CAkx = 0 for every k ≥ 0. (5.85)

The set of all unobservable states x,Rō, is called the unobservable subspace of
(5.80). The system (5.80) is (completely state) observable, or the pair (A,C)
is observable, if the only state x ∈ Rn that is unobservable is x = 0, i.e., if
Rō = {0}. �

The pn×n observability matrix O was defined in (5.64). Let N (O) denote
the null space of O.

Theorem 5.46. A state x is unobservable if and only if

x ∈ N (O); (5.86)

i.e., the unobservable subspace Rō = N (O).

Proof. If x ∈ N (O), then Ox = 0 or CAkx = 0 for 0 ≤ k ≤ n − 1. This
statement is also true for k > n − 1, in view of the Cayley–Hamilton Theo-
rem. Therefore, (5.85) is satisfied and x is unobservable. Conversely, if x is
unobservable, then (5.85) is satisfied and Ox = 0. �

Clearly, x is observable if and only if Ox �= 0.

Corollary 5.47. The system (5.80) is (completely state) observable, or the
pair (A,C) is observable, if and only if

rankO = n. (5.87)

If the system is observable, the state x0 at k = 0 can be determined as the
unique solution of

[Y0,n−1 −MnU0,n−1] = Ox0, (5.88)

where

Y0,n−1 � [yT (0), yT (1), . . . , yT (n− 1)]T is a pn× 1 matrix,

U0,n−1 � [uT (0), uT (1), . . . , uT (n− 1)]T is an mn× 1 matrix,

and Mn is the pn×mn matrix given by

Mn �

⎡
⎢⎢⎢⎢⎢⎣

D 0 · · · 0 0
CB D · · · 0 0
...

...
. . .

...
...

CAn−2B CAn−3B · · · D
CAn−1B CAn−2B · · · CB D

⎤
⎥⎥⎥⎥⎥⎦
.
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Proof. The system is observable if and only if the only vector that satisfies
(5.85) is the zero vector. This is true if and only if N (O) = {0}, or if (5.87)
is true. To determine the state x0, apply (5.83) for k = 0, 1, . . . , n − 1, and
rearrange in a form of a system of linear equations to obtain (5.88). �

The matrix Mn defined above has the special structure of a Toeplitz ma-
trix. Note that a matrix T is Toeplitz if its (i, j)th entry depends on the value
i− j; that is, T is “constant along the diagonals.”

Additional Criteria for Observability. Note that completely analogous results
to Theorem 5.43(ii)–(iv) exist for the discrete-time case.

Constructibility refers to the ability to determine uniquely the state x(0)
from knowledge of current and past outputs and inputs. This is in contrast
to observability, which utilizes future outputs and inputs. The easiest way to
define constructibility is by the use of (5.84), where x(0) = x0 is to be deter-
mined from past data ỹ(k), k ≤ 0. Note, however, that for k ≤ 0, Ak may not
exist; in fact, it exists only when A is nonsingular. To avoid making restric-
tive assumptions, we shall define unconstructible states in a slightly different
way than anticipated. Unfortunately, this definition is not very transparent.
It turns out that by using this definition, an unconstructible state can be re-
lated to an unobservable state in a manner analogous to the way a controllable
state was related to a reachable state in Section 5.3 (see also the discussion
of duality in Section 5.2).

Definition 5.48. A state x is unconstructible if for every k ≥ 0, there exists
x̂ ∈ Rn such that

x = Akx̂, Cx̂ = 0. (5.89)

The set of all unconstructible states, Rcn, is called the unconstructible sub-
space. The system (5.80) is (completely state) constructible, or the pair
(A,C) is constructible, if the only state x ∈ Rn that is unconstructible is
x = 0, i.e., if Rcn = {0}. �

Note that if A is nonsingular, then (5.89) simply states that x is uncon-
structible if CA−kx = 0 for every k ≥ 0 (compare this with Definition 5.45 of
an unobservable state).

The results that can be derived for constructibility are simply dual to
the results on controllability. They are presented briefly below, but first, a
technical result must be established.

Lemma 5.49. If x ∈ N (O), then Ax ∈ N (O); i.e., the unobservable subspace
Rō = N (O) is an A-invariant subspace.

Proof. Let x ∈ N (O), so that Ox = 0. Then CAkx = 0 for 0 ≤ k ≤ n − 1.
This statement is also true for k > n − 1, in view of the Cayley–Hamilton
Theorem. Therefore, OAx = 0; i.e., Ax ∈ N (O). �

Theorem 5.50. Consider the system x(k + 1) = Ax(k) + Bu(k), y(k) =
Cx(k) +Du(k) given in (5.80).
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(i) If a state x is unconstructible, then it is unobservable.
(ii) Rcn ⊂ Rō.
(iii) If the system is (completely state) observable, or the pair (A,C) is ob-

servable, then the system is also (completely state) constructible, or the
pair (A,C) is constructible.

If A is nonsingular, then relations (i) and (iii) are if and only if statements.
In this case, constructibility also implies observability. Furthermore, in this
case, (ii) becomes an equality; i.e., Rcn = Rō.

Proof. This theorem is dual to Theorem 5.31, which relates reachability and
controllability in the discrete-time case. To verify (i), assume that x satisfies
(5.89) and premultiply by C to obtain Cx = CAkx̂ for every k ≥ 0. Note
that Cx = 0 since for k = 0, x = x̂, and Cx̂ = 0. Therefore, CAkx̂ = 0 for
every k ≥ 0; i.e., x̂ ∈ N (O). In view of Lemma 5.49, x = Akx̂ ∈ N (O), and
thus, x is unobservable. Since x is arbitrary, we have also verified (ii). When
the system is observable, Rō is empty, which in view of (ii), implies that
Rc̄n = {0} or that the system is constructible. This proves (iii). Alternatively,
one could also prove this directly: Assume that the system is observable but
not constructible. Then there exist x, x̂ �= 0, which satisfy (5.89). As above,
this implies that x̂ ∈ N (O), which is a contradiction since the system is
observable.

Consider now the case when A is nonsingular and let x be unobservable.
Then, in view of Lemma 5.49, x̂ � A−kx is also in N (O); i.e., Cx̂ = 0.
Therefore, x = Akx̂ is unconstructible, in view of Definition 5.48. This implies
also that Rō ⊂ Rcn, and therefore, Rō = Rcn, which proves that in the present
case constructibility also implies observability. �

Example 5.51. Consider the system in Example 5.5, x(k+1) = Ax(k), y(k) =

Cx(k), where A =
[

1 0
1 1

]
and C = [1, 0]. As shown, rankO = rank

[
1 0
1 0

]
=

1 < 2 = n; i.e., the system is not observable. All unobservable states are of

the form α

[
0
1

]
, where α ∈ R since

{[
0
1

]}
is a basis for N (O) = Rō, the

unobservable subspace.
In Example 5.6 it was shown that all the states x that satisfy CA−kx = 0

for every k ≥ 0, i.e., all the unconstructible states, are given by α
[

0
1

]
, α ∈ R.

This verifies Theorem 5.50(i) and (ii) for the case when A is nonsingular.

Example 5.52. Consider the system x(k+1) = Ax(k), y(k) = Cx(k), where

A =
[

0 0
1 0

]
and C = [1, 0]. The observability matrix O =

[
1 0
0 0

]
is of rank 1,
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and therefore, the system is not observable. In fact, all states of the form

α

[
0
1

]
are unobservable states since

{[
0
1

]}
is a basis for N (O).

To check constructibility, the defining relations (5.89) must be used since

A is singular. Cx̂ = [1, 0]x̂ = 0 implies x̂ =
[

0
β

]
. Substituting into x = Akx̂,

we obtain for k = 0, x = x̂, and x = 0 for k ≥ 1. Therefore, the only un-
constructible state is x = 0, which implies that the system is constructible
(although it is unobservable). This means that the initial state x(0) can be
uniquely determined from past measurements. In fact, from x(k+1) = Ax(k)

and y(k) = Cx(k), we obtain x(0) =
[
x1(0)
x2(0)

]
=
[

0 0
1 0

] [
x1(−1)
x2(−1)

]
=

[
0

x1(−1)

]
and y(−1) = Cx(−1) = [1, 0]

[
x1(−1)
x2(−1)

]
= x1(−1). Therefore,

x(0) =
[

0
y(−1)

]
.

When A is nonsingular, the state x0 at k = 0 can be determined from past
outputs and inputs in the following manner. We consider (5.84) and note that
in this case

ỹ(k) = CAkx0

is valid for k ≤ 0 as well. This implies that

Ỹ−1,−n = OA−nx0 =

⎡
⎢⎣
CA−n

...
CA−1

⎤
⎥⎦x0 (5.90)

with Ỹ−1,−n � [ỹT (−n), . . . , ỹT (−1)]T . Equation (5.90) must be solved for x0.
Clearly, in the case of constructibility (and under the assumption that A is
nonsingular), the matrix OA−n is of interest instead of O [compare this with
the dual results in (5.58)]. In particular, the system is constructible if and
only if rank(OA−n) = rankO = n.

Example 5.53. Consider the system in Example 5.4, namely, x(k + 1) =
Ax(k), y(k) = Cx(k), where A = [ 0 1

1 1 ] and C = [0, 1]. Since A is nonsingu-

lar, to check constructibility we consider OA−2 =
[
CA−2

CA−1

]
=
[−1 1

1 0

]
, which

has full rank. Therefore, the system is constructible (as expected), since it is

observable. To determine x(0), in view of (5.90), we note that
[
y(−1)
y(−2)

]
=

OA−2x(0) =
[
−1 1

1 0

] [
x1(0)
x2(0)

]
, from which

[
x1(0)
x2(0)

]
=
[

0 1
1 1

] [
y(−1)
y(−2)

]
=

[
y(−2)

y(−1) + y(−2)

]
.
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5.5 Summary and Highlights

Reachability and Controllability

• In continuous-time systems, reachability always implies and is implied by
controllability. In discrete-time systems, reachability always implies con-
trollability, but controllability implies reachability only when A is nonsin-
gular. See Definitions 5.8 and 5.18 and Theorems 5.20 and 5.31.

• When a discrete-time system x(k+1) = Ax(k)+Bu(k) [denoted by (A,B)]
is completely reachable (controllable-from-the-origin), the input sequence
{u(i)}, i = 0, . . . ,K − 1 that transfers the state from any x0(= x(0)) to
any x1 in some finite time K (x1 = x(K), K > 0) is determined by solving

x1 = AKx0 +
K−1∑
i=0

AK−(i+1)Bu(i) or

x1 −AKx0 = [B,AB, . . . , AK−1] [uT (K − 1), . . . , uT (0)]T .

A solution for this always exists when K = n. See Theorem 5.27.

• C = [B,AB, . . . , An−1B] (n×mn) (5.25)

is the controllability matrix for both discrete- and continuous-time time-
invariant systems, and it has full (row) rank when the system, denoted by
(A,B), is (completely) reachable (controllable-from-the-origin).

• When a continuous-time system ẋ = Ax + Bu [denoted by (A,B)] is
controllable, an input that transfers any state x0(= x(0)) to any other
state x1 in some finite time T (x1 = x(T ) is

u(t) = BT eA
T (T−t)W−1

r (0, T )[x1 − eATx0] t ∈ [0, T ], (5.33)

where

Wr(0, T ) =
∫ T

0

e(T−τ)ABBT e(T−τ)AT

dτ (5.24)

is the reachability Gramian of the system.
• (A,B) is reachable if and only if

rank[siI −A,B] = n (5.42)

for si, i = 1, . . . , n, all the eigenvalues of A.

Observability and Constructibility

• In continuous-time systems, observability always implies and is implied
by constructibility. In discrete-time systems, observability always implies
constructibility, but constructibility implies observability only when A is
nonsingular. See Definitions 5.34 and 5.40 and Theorems 5.41 and 5.50.
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• When a discrete-time system x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k) +
Du(k) [denoted by (A,C)] is completely observable, any initial state
x(0) = x0 can be uniquely determined by observing the input and output
over some finite period of time, and using the relation

ỹ(k) = CAkx0 k = 0, 1, . . . , n− 1, (5.84)

where ỹ(k) = y(k) −
[∑k−1

i=0 CA
k−(i+1)Bu(i) +D(k)u(k)

]
. To determine

x0, solve ⎡
⎢⎢⎢⎣

ỹ(0)
ỹ(1)

...
ỹ(n− 1)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ x0.

See (5.88).

• O =

⎡
⎢⎢⎢⎣

C
CA
...

CAn−1

⎤
⎥⎥⎥⎦ (pn× n) (5.64)

is the observability matrix for both discrete- and continuous-time, time-
invariant systems and it has full (column) rank when the system is com-
pletely observable.

• Consider the continuous-time system ẋ = Ax +Bu, y = Cx +Du. When
this system [denoted by (A,C)] is completely observable, any initial state
x0 = x(0) can be uniquely determined by observing the input and output
over some finite period of time T and using the relation

ỹ(t) = CeAtx0,

where ỹ(t) = y(t) −
[∫ t

0
CeA(t−τ)Bu(τ)dτ +Du(t)

]
. The initial state x0

may be determined from

x0 = W−1
o (0, T )

[∫ T

0

eA
T τCT ỹ(τ)dτ

]
, (5.69)

where

Wo(0, T ) =
∫ T

0

eA
T τCTCeAτdτ (5.63)

is the observability Gramian of the system.
• (A,C) is observable if and only if

rank
[
siI −A
C

]
= n (5.79)

for si, i = 1, . . . , n, all the eigenvalues of A.



232 5 Controllability and Observability: Fundamental Results

Dual Systems

• (AD = AT , BD = CT , CD = BT , DD = DT ) is the dual of (A,B,C,D).
Reachability is dual to observability. If a system is reachable (observable),
its dual is observable (reachable).

5.6 Notes

The concept of controllability was first encountered as a technical condition in
certain optimal control problems and also in the so-called finite-settling-time
design problem for discrete-time systems (see Kalman [4]). In the latter, an
input must be determined that returns the state x0 to the origin as quickly
as possible. Manipulating the input to assign particular values to the initial
state in (analog-computer) simulations was not an issue since the individual
capacitors could initially be charged independently. Also, observability was
not an issue in simulations due to the particular system structures that were
used (corresponding, e.g., to observer forms). The current definitions for con-
trollability and observability and the recognition of the duality between them
were worked out by Kalman in 1959–1960 (see Kalman [7] for historical com-
ments) and were presented by Kalman in [5]. The significance of realizations
that were both controllable and observable (see Chapter 5) was established
later in Gilbert [2], Kalman [6], and Popov [8]. For further information regard-
ing these historical issues, consult Kailath [3] and the original sources. Note
that [3] has extensive references up to the late seventies with emphasis on the
time-invariant case and a rather complete set of original references together
with historical remarks for the period when the foundations of the state-space
system theory were set, in the late fifties and sixties.
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Exercises

5.1. (a) Let Ck � [B,AB, . . . , Ak−1B], where A ∈ Rn×n, B ∈ Rn×m. Show
that

R (Ck) = R (Cn) for k ≥ n, and R(Ck) ⊂ R(Cn) for k < n.

(b) Let Ok � [CT , (CA)T , . . . , (CAk−1)T ]T , where A ∈ Rn×n, C ∈ Rp×n.
Show that

N (Ok) = N (On) for k ≥ n, and N (Ok) ⊃ N (On) for k < n.

5.2. Consider the state equation ẋ = Ax+Bu, where

A =

⎡
⎢⎢⎣

0 1 0 0
3w2 0 0 2w
0 0 0 1
0 −2w 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎥⎦ ,

which was obtained by linearizing the nonlinear equations of motion of an or-
biting satellite about a steady-state solution. In the state x = [x1, x2, x3, x4]T ,
x1 is the differential radius, whereas x3 is the differential angle. In the input
vector u = [u1, u2]T , u1 is the radial thrust and u2 is the tangential thrust.

(a) Is this system controllable from u? If y =
[
y1
y2

]
=
[
x1

x3

]
, is the system

observable from y?
(b) Can the system be controlled if the radial thruster fails? What if the

tangential thruster fails?
(c) Is the system observable from y1 only? From y2 only?

5.3. Consider the state equation
[
ẋ1

ẋ2

]
=
[
−1/2 0

0 −1

] [
x1

x2

]
+
[

1/2
1

]
u.

(a) If x(0) =
[
a
b

]
, derive an input that will drive the state to

[
0
0

]
in T sec.

(b) For x(0) =
[

5
−5

]
, plot u(t), x1(t), x2(t) for T = 1, 2, and 5 sec. Comment

on the magnitude of the input in your results.

5.4. Consider the state equation x(k+1) =

⎡
⎣

1 1 0
0 1 0
0 0 1

⎤
⎦x(k)+

⎡
⎣

0
1
1

⎤
⎦u(k), y(k) =

[
1 1 0
0 1 0

]
x(k).
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(a) Is x1 =

⎡
⎣

3
2
2

⎤
⎦ reachable? If yes, what is the minimum number of steps

required to transfer the state from the zero state to x1? What inputs do
you need?

(b) Determine all states that are reachable.
(c) Determine all states that are unobservable.
(d) If ẋ = Ax + Bu is given with A,B as in (a), what is the minimum time

required to transfer the state from the zero state to x1? What is an ap-
propriate u(t)?

5.5. Output reachability (controllability) can be defined in a manner analogous
to state reachability (controllability). In particular, a system will be called
output reachable if there exists an input that transfers the output from some
y0 to any y1 in finite time.

Consider now a discrete-time time-invariant system x(k + 1) = Ax(k) +
Bu(k), y(k) = Cx(k) + Du(k) with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and
D ∈ Rp×m. Recall that

y(k) = CAkx(0) +
k−1∑
i=0

CAk−(i+1)Bu(i) +Du(k).

(a) Show that the system {A,B,C,D} is output reachable if and only if

rank[D,CB,CAB, . . . , CAn−1B] = p.

Note that this rank condition is also the condition for output reachability
for continuous-time time-invariant systems ẋ = Ax+Bu, y = Cx+Du.
It should be noted that, in general, state reachability is neither necessary
nor sufficient for output reachability. Notice for example that if rankD =
p, then the system is output reachable.

(b) Let D = 0. Show that if (A,B) is (state) reachable, then {A,B,C,D} is
output reachable if and only if rankC = p.

(c) Let A =

⎡
⎣

1 0 0
0 −2 0
0 0 −1

⎤
⎦, B =

⎡
⎣

1
0
1

⎤
⎦, C = [1, 1, 0], and D = 0.

(i) Is the system output reachable? Is it state reachable?
(ii) Let x(0) = 0. Determine an appropriate input sequence to transfer

the output to y1 = 3 in minimum time. Repeat for x(0) = [1,−1, 2]T .

5.6. (a) Given ẋ = Ax + Bu, y = Cx +Du, show that this system is output
reachable if and only if the rows of the p ×m transfer matrix H(s) are
linearly independent over the field of complex numbers. In view of this

result, is the system H(s) =
[ 1
s+2
s
s+1

]
output reachable?



Exercises 235

(b) Similarly, for discrete-time systems, the system is output reachable if and
only if the rows of the transfer function matrix H(z) are linearly inde-
pendent over the field of complex numbers. Consider now the system of
Exercise 5.5 and determine whether it is output reachable.

5.7. Show that the circuit depicted in Figure 5.4 with input u and output y
is neither state reachable nor observable but is output reachable.

u

+
y

1

1

1

1

1

–

Figure 5.4. Circuit for Exercise 5.7

5.8. A system ẋ = Ax+Bu, y = Cx+Du is called output function controllable
if there exists an input u(t), t ∈ [0,∞), that will cause the output y(t) to follow
a prescribed trajectory for 0 ≤ t <∞, assuming that the system is at rest at
t = 0. It is easiest to derive a test for output function controllability in terms
of the p×m transfer function matrix H(s), and this is the approach taken in
the following. We say that the m× p rational matrix HR(s) is a right inverse
of H(s) if

H(s)HR(s) = Ip.

(a) Show that the right inverseHR(s) exists if and only if rankH(s) = p. Hint:
In the sufficiency proof, select HR = HT (HHT )−1, the (right) pseudoin-
verse of H .

(b) Show that the system is output function controllable if and only if H(s)
has a right inverse HR(s). Hint: Consider ŷ = Hû. In the necessity proof,
show that if rankH < p, then the system may not be output function
controllable.
Input function observability is the dual to output function controllablity.
Here, the left inverse of H(s), HL(s), is of interest and is defined by

HL(s)H(s) = Im.

(c) Show that the left inverse HL(s) of H(s) exists if and only if rankH(s) =
m. Hint: This is the dual result to part (a).

(d) Let H(s) =
[
s+1
s , 1

s

]
and characterize all inputs u(t) that will cause the

system (at rest at t = 0) to exactly follow a step, ŷ(s) = 1/s.

Part (d) points to a variety of questions that may arise when inverses are
considered, including: Is HR(s) proper? Is it unique? Is it stable? What is the
minimum degree possible?
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5.9. Consider the system ẋ = Ax + Bu, y = Cx. Show that output function
controllability implies output controllability (-from-the-origin, or reachabil-
ity).

5.10. Given x(k+1) =
[

1 1
0 1

]
x(k)+

[
1
1

]
u(k), y(k) =

[
1 0
1 1

]
x(k), and assume

zero initial conditions.

(a) Is there a sequence of inputs {u(0), u(1), . . .} that transfers the output

from y(0) =
[

0
0

]
to
[

0
1

]
in finite time? If the answer is yes, determine

such a sequence.
(b) Characterize all outputs that can be reached from the zero output (y(0) =[

0
0

]
), in one step.

5.11. Suppose that for system x(k+1) =

⎡
⎣

1 1 0
0 1 0
0 0 1

⎤
⎦x(k), y(k) =

[
1 1 0
0 1 0

]
x(k),

it is known that y(0) = y(1) = y(2) =
[

1
0

]
. Based on this information, what

can be said about the initial condition x(0)?

5.12. (a) Consider the system ẋ = Ax + Bu, y = Cx + Du, where (A,C)
is assumed to be observable. Express x(t) as a function of y(t), u(t) and
their derivatives. Hint: Write y(t), y(1)(t), . . . , y(n−1)(t) in terms of x(t)
and u(t), u(1)(t), . . . , u(n−1)(t) ( x(t) ∈ Rn ).

(b) Given the system ẋ = Ax + Bu, y = Cx + Du with (A,C) observable.
Determine x(0) in terms of y(t), u(t) and their derivatives up to order
n − 1. Note that in general this is not a practical way of determining
x(0), since this method requires differentiation of signals, which is very
susceptible to measurement noise.

(c) Consider the system x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k),
where (A,C) is observable. Express x(k) as a function of y(k), y(k +
1), . . . , y(k + n − 1) and u(k), u(k + 1), . . . , y(k + n − 1). Hint: Express
y(k), . . . , y(k + n− 1) in terms of x(k) and u(k), u(k + 1), . . . , u(k + n −
1) [ x(k) ∈ Rn ]. Note the relation to expression (5.88) in Section 5.4.


