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PREFACE 

This text is intended primarily for first-year graduate students and advanced under
graduates in engineering who are interested in control systems, signal processing, 
and communication systems. It is also appropriate for students in applied mathemat
ics, economics, and certain areas in the physical and biological sciences. Designed 
for a challenging, one-semester systems course, the book presents an introduction to 
systems theory, with an emphasis on control theory. It can also be used as supplemen
tary material for advanced systems and control courses and as a general reference 
on the subject. 

The prerequisites for using this book are topics covered in a typical undergrad
uate curriculum in engineering and the sciences: undergraduate-level differential 
equations, linear algebra, Laplace transforms, and the modeling of electric circuits 
and simple mechanical systems. 

The study of linear systems is a foundation for several disciplines, including 
control and signal processing. It is therefore very important that the coverage of linear 
systems be comprehensive and give readers sufficient breadth and depth in analysis 
and synthesis techniques of such systems. We believe that the best preparation for 
this is a firm understanding of the fundamentals that govern the behavior of complex 
systems. Indeed, only a thorough understanding of system behavior enables one to 
take full advantage of the various options available in the design of the best kinds 
of control systems and signal processors. Therefore, the primary aim of this text is 
to provide an understanding of these fundamentals by emphasizing mathematical 
descriptions of systems and their properties. 

In writing this book, our goal was to clearly present the fundamental concepts of 
systems theory in a self-contained text. In addition to covering the fundamental prin
ciples, we provide sufficient background in analysis and algebra, to enable readers 
to move on to advanced topics in the systems area. The book is designed to highlight 
the main results and distinguish them from supporting results and extensions. Fur
thermore, we present the material in a sufficiently broad context to give readers a 
clear picture of the dynamical behavior of linear systems and the limitations of such 
systems. 

The theory of linear systems is a mature topic, and there are literally thou
sands of scholarly papers reporting research on this subject. This book empha
sizes fundamental results that are widely accepted as essential to the subject. For 
those readers interested in further detail, the end-of-chapter material includes 
additional results in the exercise sections as well as pertinent references and 
notes. 

The book covers both continuous-time and discrete-time systems, which may 
be time-varying or time-invariant. The material is organized in such a manner that 
it is possible to concentrate only on the time-invariant case, if desired. The time-
invariant case is treated in separate sections, and the results are presented so that they 
can be developed independently of the time-varying case. This type of organization 
provides considerable flexibility in covering the material. 



xvi Although the text is designed to serve primarily the needs of graduate students, it 
Preface should also prove valuable to researchers, and practitioners, we tried to make it easy 

to use, and the book should prove valuable for self-study. Many simple examples 
are included to clarify the material and to encourage readers to actively participate 
in the learning process. The exercises at the end of each chapter introduce additional 
supporting concepts and results and encourage readers to gain additional insight by 
using what was learned. The exercises also encourage readers to comment, interpret, 
and visualize results (e.g., responses), making use of computer programs to aid in 
calculations and the generation of graphical results, when appropriate. 

Over the past several years, the material has been class-tested in a first-year 
graduate-level course on linear systems, and its development has been influenced 
greatly by student feedback. Although there are many ways of using this book in a 
course, we suggest in the following several useful guidelines. Because any course on 
linear systems will most likely serve students with different educational experiences 
from a variety of disciplines and institutions. Chapters 1 and 2 provide necessary 
background material and develop certain systems fundamentals. Armed with this 
foundation, we develop essential results on controllability and observability (Chapter 
3), on state observers and state feedback (Chapter 4), and on realization of systems 
(Chapter 5). Chapters 6 and 7 address basic issues concerning stabihty (Chapter 6) 
and the representation of systems using polynomial matrices and matrix fractions 
(Chapter 7). The appendix presents supplementary material (concerning numerical 
aspects). 

How to use this book 

At the beginning of each chapter is a detailed description of the chapter's con
tents, along with guidelines for readers. This material should be consulted when de
signing a course based on this book. In the following we give a general overview of 
the book's contents, with suggested topics for an introductory, one-semester course 
in linear systems. 

From Chapter 1, covering a first course in linear systems should include the fol
lowing: all the material on systems (Section 1.1); the material on initial-value prob
lems (Sections 1.3 and 1.4); the material on systems of linear first-order ordinary 
differential equations (Sections 1.11, 1.12, and 1.13); the material on state equation 
descriptions of continuous-time systems (Section 1.14) and discrete-time systems 
(Section 1.15); and the material on input-output descriptions of systems (Section 
1.16). The mathematical background material in Sections 1.2, 1.5 and Subsections 
I.IOA to 1.IOC is included for review and to establish some needed notation. This 
material should not require formal class time. In Subsection 1.1 OD [dealing with 
existence, continuation, uniqueness, and continuous dependence (on initial condi
tions and parameters) of solutions of initial-value problems], the coverage should 
emphasize the results and their implications rather than the proofs of those results. 

From Chapter 2, a first course in linear systems should include essentially all 
the material from the following sections: Section 2.3 (dealing with systems of lin
ear homogeneous and nonhomogeneous first-order ordinary differential equations); 
Section 2.4 (dealing with systems of linear first-order ordinary differential equa
tions with constant coefficients); and Sections 2.6 and 2.7 (which address the state 
equation description, the input-output description, and important properties, such 



as asymptotic stability of continuous-time and discrete-time linear systems, respec- xvii 
tively). Section 2.5 (concerned with linear periodic systems) may be omitted with- Preface 
out any loss of continuity. As in Chapter 1, the mathematical background material 
in Section 2.2 (dealing with linear algebra and matrices) is included for review and 
to establish some important notation and should not require much formal class time. 

For Chapter 3, it is best to consider the material in two parts. From Part 1 include 
Section 3.1 (where the concepts of controllability and observability are introduced); 
and Subsections 3.2B and 3.3B (where these concepts are developed in greater de
tail for continuous-time time-invariant systems). From Part 2 include Subsections 
3.4A and 3.4D (where special forms of system descriptions are considered); and 
Subsection 3.4B (where an additional controllability and observability test is pre
sented). Similarly, the course should include the following material from Chapter 4: 
Section 4.1 (where state feedback and state observers are introduced); Subsections 
4.2A and 4.2B (linear state feedback and eigenvalue assignment by state feedback 
are treated in detail); and Subsection 4.3A (where the emphasis is on identity ob
servers); and Section 4.4 (where observer-based controllers are developed). Also, 
the course should include material from Chapter 5: Section 5.2 (where realization 
theory is introduced); Section 5.3 (where the existence, minimality, and the order of 
minimal realizations are developed); and Subsections 5.4A, 5.4B, 5.4C, and 5.4E 
(where realization algorithms are presented). 

The material outlined above constitutes the major portion of a first course in 
linear systems. The course is rounded out, if time permits with selected topics from 
Chapter 6 (stability) and Chapter 7 (polynomial matrix system descriptions and frac
tional representations of transfer function matrices of linear time-invariant systems). 
The choice of these topics, and where they are presented throughout the course, de
pends on the interests of the instructor and the students. 

We have been using this textbook in a one-semester first-year graduate course in 
electrical engineering. Typically, we spend the first half of the course on Chapter 1, 
Chapter 2, and Part 1 of Chapter 3. The second half of the course is devoted to Part 2 
of Chapter 3 and Chapters 4 and 5. Selected topics from stability theory and matrix 
fractional descriptions of systems from Chapters 6 and 7 are included, as needed. 
Detailed coverage of Chapters 1 and 2, with only selective coverage of Chapters 3, 
4, and 5, would be appropriate in a course that emphasizes mathematical systems 
theory. 

Chapter 6 can also be used as an introduction to a second-level graduate course 
on nonlinear systems and stability. Similarly, Chapter 7 stands alone and can be 
used in an advanced linear systems course or as an introduction to a multi-input/ 
multi-output linear control course. There is enough material in Chapters 3 through 7 
for courses taught at several levels in a graduate program. 
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CHAPTER 1 

Mathematical Descriptions of Systems 

The dynamical behavior of systems can be understood by studying their mathemati
cal descriptions. The flight path of an airplane subject to certain engine thrust, rudder 
and elevator angles, and particular wind conditions, or the behavior of an automobile 
on cruise control when climbing a certain hill, can be predicted using mathematical 
descriptions of the pertinent behavior. Mathematical equations, typically differential 
or difference equations, are used to describe the behavior of processes and to predict 
their response to certain inputs. Although computer simulation is an excellent tool for 
verifying predicted behavior, and thus for enhancing our understanding of processes, 
it is certainly not an adequate substitute for generating the information captured in a 
mathematical model, when such a model is available. But computer simulations do 
complement mathematical descriptions. To be able to study the behavior of processes 
using mathematical descriptions, such as differential and difference equations, one 
needs a good working understanding of certain important mathematical concepts 
and procedures. Only in this way can one seriously attempt to study the behavior of 
complex systems and eventually design processes that exhibit the desired complex 
behavior. 

This chapter develops mathematical descriptions for the types of systems with 
which we are concerned, namely, linear continuous-time and linear discrete-time 
finite-dimensional systems. Since such systems are frequently the result of a lin
earization process of nonlinear systems, or the result of the modeling process of 
physical systems in which the nonlinear effects have been suppressed or neglected, 
the origins of these linear systems are frequently nonlinear systems. For this rea
son, here and in Chapter 6, when we deal with certain qualitative aspects (such as 
existence, uniqueness, continuation, and continuity with respect to parameters of so
lutions of system equations, stability of an equilibrium, and so forth), we consider 
linear as well as nonlinear system models, although the remainder of the book deals 
exclusively with linear systems. 



2 1.1 
Lhi^^Systems INTRODUCTION 

A systematic study of (physical) phenomena usually begins with a modeling pro
cess. Examples of models include electric circuits consisting of interconnections of 
resistors, inductors, capacitors, transistors, diodes, voltage or current sources, etc.; 
mechanical circuits consisting of interconnections of point masses, springs, viscous 
dampers (dashpots), applied forces, etc.; and verbal characterizations of economic 
and societal systems, among others. Next, appropriate laws ox principles are invoked 
to generate equations that describe the models (e.g., Kirchhoff's current and voltage 
laws, Newton's laws, conservation laws, and so forth). When using an expression 
such as "we consider a system described by ordinary differential equations," we will 
have in mind a phenomenon described by an appropriate set of ordinary differential 
equations (not the description of the physical phenomenon itself). 

A. Physical Processes, Models, and Mathematical Descriptions 

A physical process (physical system) will typically give rise to several different 
models, depending on what questions are being asked. For instance, in the study 
of the voltage-current characteristics of a transistor (the physical process), one may 
utilize a circuit (the model) that is valid at low frequencies or a circuit (a second 
model) that is valid at high frequencies; alternatively, if semiconductor impurities 
are of interest, a third model, quite different from the preceding two, is appropriate. 

Over the centuries, a great deal of progress has been made in developing math
ematical descriptions of physical phenomena (using models of such phenomena). 
In doing so, we have invoked laws (or principles) of physics, chemistry, biology, 
economics, etc., to derive mathematical expressions (usually equations) that char
acterize the evolution (in time) of the variables of interest. The availability of such 
mathematical descriptions enables us to make use of the vast resources offered by 
the many areas of applied and pure mathematics to conduct qualitative and quan
titative studies of the behavior of processes. A given model of a physical process 
may give rise to several different mathematical descriptions. For example, when 
applying Kirchhoff's voltage and current laws to the low-frequency transistor model 
mentioned earlier, one can derive a set of differential and algebraic equations, or a 
set consisting of only differential equations, or a set of integro-differential equations, 
and so forth. This process of mathematical modeling, ''from a physical phenomenon 
to a model to a mathematical description," is essential in science and engineering. 
To capture phenomena of interest accurately and in tractable mathematical form is a 
demanding task, as can be imagined, and requires a thorough understanding of the 
physical process involved. For this reason, the mathematical description of complex 
electrical systems, such as power systems, is typically accomplished by electrical 
engineers, the equations of flight dynamics of an aircraft are derived by aeronau
tical engineers, the equations of chemical processes are arrived at by chemists and 
chemical engineers, and the equations that characterize the behavior of economic 
systems are provided by economists. In most nontrivial cases, this type of modeling 
process is close to an art form since a good mathematical description must be de
tailed enough to accurately describe the phenomena of interest and at the same time 



simple enough to be amenable to analysis. Depending on the applications on hand, 
a given mathematical description of a process may be further simplified before it 
is used in analysis and especially in design procedures. For example, using the fi
nite element method, one can derive a set of first-order differential equations that 
describe the motion of a space antenna. Typically, such mathematical descriptions 
contain hundreds of differential equations. Whereas all of these equations are quite 
useful in simulating the motion of the antenna, a lower order model is more suitable 
for the control design that, for example, may aim to counteract the effects of certain 
disturbances. Simpler mathematical models are required mainly because of our in
ability to deal effectively with hundreds of variables and their interactions. In such 
simplified mathematical descriptions, only those variables (and their interactions) 
that have significant effects on the phenomena of interest are included. 

A point that cannot be overemphasized is that the mathematical descriptions we 
will encounter characterize processes only approximately. Most often, this is the case 
because the complexity of physical systems defies exact mathematical formulation. 
In many other cases, however, it is our own choice that a mathematical description 
of a given process approximate the actual phenomena by only a certain desired de
gree of accuracy. As discussed earlier, this is done in the interest of mathematical 
simplicity. For example, in the description of RLC circuits, one could use nonlinear 
differential equations that take into consideration parasitic effects in the capacitors; 
however, most often it suffices to use linear ordinary differential equations with con
stant coefficients to describe the voltage-current relations of such circuits, since typ
ically such a description provides an adequate approximation and since it is much 
easier to work with linear rather than nonlinear differential equations. 

In this book it will generally be assumed that the mathematical description of a 
system in question is given. In other words, we assume that the modeling of the pro
cess in question has taken place and that equations describing the process are given. 
Our main objective will be to present a qualitative theory of an important class of 
systems—finite-dimensional linear systems—by studying the equations represent
ing such systems. 
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B. Classification of Systems 

For our purposes, a comprehensive classification of systems is not particularly illu
minating. However, an enumeration of the more common classes of systems encoun
tered in engineering and science may be quite useful, if for no other reason than to 
show that the classes of systems considered in this book, although very important, 
are quite specialized. 

As pointed out earlier, the particular set of equations describing a given sys
tem will in general depend on the effects one wishes to capture. Thus, one can 
speak of lumped parameter ox finite-dimensional systems and distributed parameter 
or infinite-dimensional systems', continuous-time and discrete-time systems', linear 
and nonlinear systems', time-varying and time-invariant systems', deterministic and 
stochastic systems', appropriate combinations of the above, called hybrid systems', 
and perhaps others. 

The appropriate mathematical settings for finite-dimensional systems are finite-
dimensional vector spaces, and for infinite-dimensional systems they are most often 



4 infinite-dimensional linear spaces. Continuous-time finite-dimensional systems are 
Linear Systems usually described by ordinary differential equations or certain kinds of integral equa

tions, while discrete-time finite-dimensional systems are usually characterized by or
dinary difference equations or discrete-time counterparts to those integral equations. 
Equations used to describe infinite dimensional systems include partial differential 
equations, Volterra integro-differential equations, functional differential equations, 
and so forth. Hybrid system descriptions involve two or more different types of equa
tions. Nondeterministic systems are described by stochastic counterparts to those 
equations (e.g., Ito differential equations). 

In a broader context, not addressed in this book, most of the systems described 
by the equations enumerated generate dynamical systems. It has become customary 
in the engineering literature to use the term "dynamical system" rather loosely, and it 
has even been applied to cases where the original definition does not exactly fit. (For 
a discussion of general dynamical systems, refer, e.g., to Michel and Wang [13].) 
We will address in this book dynamical systems determined by ordinary differential 
equations or ordinary difference equations, considered next. 

C. Finite-Dimensional Systems 

The dynamical systems we will be concerned with are continuous-time and 
discrete-time finite-dimensional systems—primarily linear systems. However, since 
such systems are frequently a consequence of a linearization process, it is important 
when dealing with fundamental qualitative issues that we have an understanding 
of the origins of such linear systems. In particular, when dealing with questions of 
existence and uniqueness of solutions of the equations describing a class of systems, 
and with stability properties of such systems, we may consider nonlinear models as 
well. 

Continuous-time finite-dimensional dynamical systems that we will consider are 
described by equations of the form 

^i — fii^y ^l, ' ' -y ^m U\, . . ., Um), i = I, . . ., n, (Lla) 

yi = gi{t,xi,...,Xn,ui,...,Um), i = 1, • • •, A (1.1b) 

where Ui, i = 1 , . . . , m, denote inputs or stimuli; yi, i = 1 , . . . , /?, denote outputs 
or responses', xf, i = 1 , . . . , n, denote state variables; t denotes time; xi denotes the 
time derivative of xt; ft, i = 1 , . . . , n, are real-valued functions of 1 + ^ + m real 
variables; and gi, i = \,..., p, are real-valued functions of 1 -h ̂  + m real variables. 
A complete description of such systems will usually also require a set of initial con
ditions Xi(to) = Xio, i = \,.. .,n, where fo denotes initial time. We will elaborate 
later on restrictions that need to be imposed on the ft, gt, and ui and on the origins 
of the term "state variables." 

Equations (1.1a) and (1.1b) can be represented in vector form as 

X = f{t,x, u) (1.2a) 

y = g{t,x,u), (1.2b) 

where x is the state vector with components xt, u is the input vector with components 
Ui, y is the output vector with components j / , and/ and g are vector-valued functions 



with components ft and gi, respectively. We call (1.2a) a state equation and (1.2b) 
an output equation. 

Important special cases of (1.2a) and (1.2b) are the linear time-varying state 
equation and output equation given by 

X = A{t)x + B{t)u 

y - C{t)x + D{t)u, 

(1.3a) 

(1.3b) 

where A, B, C, and D are real nXn,nXm,pXn, and pXm matrices, respectively, 
whose elements are time-varying. Restrictions oî  these matrices will be provided 
later. 

Linear time-invariant state and output equations given by 

X = Ax + Bu 

y = Cx + Du 

(1.4a) 

(1.4b) 

constitute important special cases of (1.3a) and (1.3b), respectively. 
Equations (1.3a), (1.3b) and (1.4a), (1.4b) may arise in the modeling process or 

they may be a consequence of linearization of (1.1a) and (1.1b). 
Discrete-time finite-dimensional dynamical systems are described by equations 

of the form 

Xi(k -\- I) = fi(h xi{k),..., Xn{k), ui(k\ ..., Um{k)\ 

yi(k) = gi(k, xi{k\ . . . , Xn{k), ui(k\ . . . , Um(k)\ 

or in vector form, 

x(k + 1) = f(k, x(kl u(k)) 

y(k) = g(k, x(kl u(k)), 

where k is an integer that denotes discrete time and all other symbols are defined as 
before. A complete description of such systems involves a set of initial conditions 
x(fco) = XŷQ, where feo denotes initial time. The corresponding linear time-varying 
and time-invariant state and output equations are given by 

/ = 1,.. 

/ = 1,.. 

., n, 

.,p, 

(1.5a) 

(1.5b) 

(1.6a) 

(1.6b) 

and 

x(k + 1) = A(k)x(k) + Bik)u(k) 

y(k) = C(k)x(k) + D(k)u(k) 

x(k + 1) - Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k), 

(1.7a) 

(1.7b) 

(1.8a) 

(1.8b) 

respectively, where all symbols in (1.7a), (1.7b) and in (1.8a), (1.8b) are defined as 
in (1.3a), (1.3b) and (1.4a), (1.4b), respectively. 

This type of system characterization is called state-space description or 
state-variable description or internal description of finite-dimensional systems. 
Another way of describing continuous-time and discrete-time finite-dimensional 
dynamical systems involves operators that establish a relationship between the sys
tem inputs and outputs. Such characterization, called input-output description, or 
external description of a system, will be addressed later in this chapter. 
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D. Chapter Description 

In this book we will make liberal use of certain aspects of analysis and algebra. To help 
the reader recall some of these facts, we will provide throughout such background 
material as needed. This is done, e.g., in the second section, where we provide some of 
the notation used and where we recall certain facts concerning continuous functions. 

In the third section we present the initial-value problem for nth-order ordinary 
differential equations and for systems of first-order ordinary differential equations, 
and we give a classification of ordinary differential equations. We also show that 
the study of nth-order ordinary differential equations can be reduced to the study of 
systems of first-order ordinary differential equations. 

In the fourth section we give several specific examples of initial-value problems 
determined by ordinary differential equations. 

In the fifth section we provide mathematical background material dealing with 
sequences, sequences of functions, and the Weierstrass M-test. 

In the sixth section we establish conditions under which initial-value problems 
for ordinary differential equations possess solutions. This is accomplished in two 
stages. First, we establish an existence result for e-approximate solutions, of which 
the Euler method is a special case. Next, we state and prove a preUminary result, 
called the Ascoli-Arzela Lemma, that we use, together with the existence result 
for 6-approximate solutions, to establish a result for the existence of solutions of 
initial-value problems. These solutions need not be unique. (This result is called the 
Peano-Cauchy Theorem.) 

In the seventh section we make use of Zom's Lemma to establish a result 
that enables us to determine the extent (in time) of the existence of solutions of 
initial-value problems. This is called continuation of solutions. 

In the eighth section we prove a result that ensures the uniqueness of solutions 
of initial-value problems. In doing so, we utilize a useful result, called the Gron-
wall Inequality, that we also prove. One of the results of this section, called Picard 
iteration, provides a method of constructing solutions iteratively. 

In the ninth section we show that under reasonable conditions the solutions of 
initial-value problems depend continuously on initial conditions and system param
eters. 

To simplify our presentation, we consider in Sections 6 to 9 the case of scalar 
first-order ordinary differential equations. In the tenth section we extend all results 
to the case of systems of first-order ordinary differential equations. In the process 
of accomplishing this, we introduce additional mathematical background material 
concerning vector spaces, normed linear spaces, and convergence on normed linear 
spaces. 

The results in Sections 6 to 10 pertain to differential equations that in general 
are nonlinear. In the eleventh section we address linearization of such equations and 
provide several specific examples. 

We utilize the results of Section 10 to establish in the twelfth section conditions 
for the existence, uniqueness, continuation, and continuity with respect to initial con
ditions and parameters of solutions of initial-value problems determined by linear 
ordinary differential equations. 

In the thirteenth section we determine the solutions of linear ordinary differ
ential equations. To arrive at some of our results (the Peano-Baker series and the 



matrix exponential), we make use of the Picard iteration considered in Sections 8 
and 10. In this section we introduce for the first time the notions of state and state 
transition matrix. We also present the variations of constants formula for solving 
linear nonhomogeneous ordinary differential equations and introduce the notions of 
homogeneous and particular solutions. 

Summarizing, the purpose of Sections 3 to 13 is to provide material dealing 
with ordinary differential equations and initial-value problems that is essential in 
the study of continuous-time finite-dimensional systems. This material enables us to 
give the state-space equation representation of continuous-time finite-dimensional 
systems. This is accomplished in tho fourteenth section. We consider nonlinear as 
well as linear systems that may be time-varying or time-invariant. 

In the fifteenth section we present the state-space equation representation of 
finite-dimensional discrete-time systems. In doing so, we introduce systems of 
first-order ordinary difference equations, nth-order ordinary difference equations, 
initial-value problems involving such equations, solutions of equations, the transition 
matrix, and so forth. 

Finally, in the sixteenth section we consider an alternative description of the 
systems considered herein, called the input-output representation of systems. In the 
process of accomplishing this, we introduce several important general properties of 
systems (such as causality, systems with memory, linearity, time invariance, and 
so forth). We emphasize linear discrete-time and linear continuous-time systems. 
For the former we introduce the notion of pulse response, while for the latter we 
introduce the concepts of impulse response and the integral representation of linear 
continuous-time systems. For both continuous-time and discrete-time linear systems 
we make a connection between the state-space representation and the input-output 
description of systems, and we introduce the concept of system transfer function. In 
the first subsection of this section we encounter Dirac delta distributions. 

This chapter has been organized in such a way that proofs of results may be omit
ted without much loss of continuity, should time constraints be a factor. However, 
the concepts (including the statements of most theorems) introduced in this chapter 
are of fundamental importance and will be utilized throughout the remainder of this 
book. 
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E. Guidelines for the Reader 

In a first reading, certain material may be omitted without loss of continuity. Such 
material is identified throughout the book by starring the section or subsection 
title. 

A typical graduate course in linear systems will include the following material 
from this chapter: 

Mathematical description and classification of systems (Section 1.1). 
Initial-value problems with examples (Sections 1.3 and 1.4). 
Material on vector spaces and the results concerning existence and uniqueness 

of solutions of systems of first-order ordinary differential equations (Sections 
1.10 and 1.12). 

Linearization of nonlinear systems with examples (Section 1.11). 
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Solutions of the linear state equations x = A(t)x and x = A(t)x + g(t) (Section 
1.13). 

State-variable descriptions of continuous-time and discrete-time systems 
(Sections 1.14 and 1.15). 

Input-output description of systems (Section 1.16). 

1.2 
PRELIMINARIES 

We will employ a consistent notation and use certain facts from the calculus, analy
sis, and linear algebra. We will summarize this type of material, as needed, in various 
sections throughout the book. This is the first such section. 

A. Notation 

Let V and W be sets. Then VUW,VnW,V-W,mdVxW denote the union, 
intersection, difference, and Cartesian product of V and W, respectively. If V is a 
subset of W, we write V C W', if x is an element of V, we write x G V; and \fx is not 
an element of V, we write x ^V. We let V\dV, V, and int V denote the complement, 
boundary, closure, and interior of V, respectively. 

Let 0 denote the empty set, let R denote the real numbers, let R^ = {x ^ R \ 
x> 0} (i.e., R^ denotes the set of nonnegative real numbers), let Z denote the inte
gers, and let Z^ = {x G Z : x > 0}. 

We will let / C i? denote open, closed, or half-open intervals. Thus, for a,bGR, 
a ^ b, J may be of the form J = (a, b) = {x G R : a < x < b}, or J = [a,b] = 
{x G R : a ^ X ^ b}, or J = [a, b) = {x G R : a ^ x < b}, or J = (a, b] = {x E 
R : a < X ^ b}. 

Let R^ denote the real n-space. If x E R^, then 

''xi 

and x^ = (xi,..., Xn) denotes the transpose of the vector x. Also, let R^^^ denote 
the set ofmXn real matrices. If A G i^^X", then 

[Clij] 

an 
ail 

an 
Clin 

^ m l CLynl 

and A^ = [aji] G R^^^ denotes the transpose of the matrix A. 
Similarly, let C" denote the set of n-vectors with complex components and let 

(^mxn denote the set of mX n matrices with complex elements. 
Let f : V -^ W denote a mapping or function from a set V into a set W, and 

denote by D(f) and R(f) the domain and the range of/, respectively. Also, let f~^ : 
R(f) -^ D(f), if it exists, denote the inverse off. 



B. Continuous Functions 

First, iQiJCR denote an open interval and consider a function f : J ^ R. Recall 
that/ is said to be continuous at the point to G J if lim̂ _>/Q f(t) = f(to) exists, i.e., if 
for every e > 0 there exists a 5 > 0 such that \f(t) - f(to)\ < e whenever \t-to\ < 8 
and t ^ J. The function/ is said to be continuous on J, or simply continuous, if it is 
continuous at each point in / . 

In the above definition, 8 depends on the choice of to and e, i.e., 8 = 8(6, to). If 
at each to ^ J it is true that there is a 5 > 0, independent of fo [i-e., 8 = 8(e)], such 
that 1/(0 - /(^o)| < ^ whenever \t -to\<8 and f E / , then/ is said to be uniformly 
continuous (on J). 

Let 

C(J, R) = {f : J ^ R\ f is continuous on / } . 

Now suppose that / contains one or both endpoints. Then continuity is interpreted 
as being one-sided at these points. For example, if 7 = [a, b], then / E C(J, R) will 
mean that / G C((a, b), R) and that Um^^^+ f(t) = f(a) and lim^^^- f(t) = f(b) 
exist. 

With k any positive integer, and with J an open interval, we will use the notation 

C^J, R) = {f :J^ R\ the derivative f^J^ exists on / and 

fj^ G C(J, R) for j = 0,h...,k, where/^^^ = / } 

and will call/ in this case a C^-function. Also, we will call / apiecewise C^-function 
if / G C^~^(J, R) and /^^~^^ has continuous derivatives for all r G 7 with the possi
ble exception of a finite set of points where /"̂ ^̂  may have jump discontinuities. As 
before, when / contains one or both endpoints, then the existence and continuity of 
derivatives is one-sided at these points. 

For any subset D of the n-space R^ with nonempty interior, we can define 
C(D, R) and C^(D, R) in a similar manner as before. Thus, / G C(D, R) indi
cates that at every point xo = (:v:io,..., Xno)^ ^ D, lim;c->xo fM ^ f(^o) exists, 
or equivalently, at every XQ G D it is true that for every e > 0 there exists a S = 
8(e, Xo) > 0 such that \f(x) - f(xo)\ < e whenever \xi - xio| H -̂1-̂ /2 - x^o] < 8 
and X G D. Also, we define C^(D, R) as 

C\D, R) = {f :D R 
dJf 

dx'l' 
C(D, R), i\ + '" + in = j , 

j = l,...,k, mdfGC(D,R)} 

(i.e., ii,.. .,in take on all possible positive integer values such that their sum is7). 
When D contains its boundary (or part of its boundary), then the continuity of/ and 
the existence and continuity of partial derivatives of/, d^fldx^^ • • •o'xjf, /i + • • • -h 
in = j , j = 1 , . . . , ^, will have to be interpreted in the appropriate way at the bound
ary points. 

Recall that if K C R^, K 7^ 0 , and K is compact (i.e., K is closed and bounded), 
and if / G C(K, R), then/ is uniformly continuous (on K) and/ attains its maximum 
and minimum on K. 

Finally, let D be a subset of R'^ with nonempty interior and Ictf-.D-^R^. Then 
/ = (fh . . . , /m)^, where / : D -> 7̂ , / = 1 , . . . , m. We say that / G C(D, R"^) if 
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1.3 
INITIAL-VALUE PROBLEMS 

In this section we make precise the meaning of several concepts that arise in the 
study of continuous-time finite-dimensional dynamical systems. 

A. Systems of First-Order Ordinary Differential Equations 

Let D C R^^^ denote a domain, i.e., an open, nonempty, and connected subset of 
/^«+i We call R^^^ the {t, x)-space\ we denote elements of R^^^ by {t, x) and ele
ments of R^ hy X = {x\,..., Xnf. Next, we consider the functions ft E C{D, R), 
i = I,.. .,n, and if xt is a function of t, let jc-"̂  = d^xtldt^ denote the nth derivative 
of Xi with respect to t (provided that it exists). In particular, when n == 1, we usually 
write 

(1) . dxi 

We call the system of equations given by 

Xi = fiit, x i , . . . , Xn), i = 1 , . . . , n, (Ei) 

a system of n first-order ordinary differential equations. By a solution of the system 
of equations (Ei) we shall mean n continuously differentiable functions (/>!,...,(/)„ 
defined on an interval / = (a, b) [i.e., 4> ^ C^U^ ̂ ")] such that (f, (f)\{t),..., (j)n{t)) E 
D for all f E / and such that 

(/>/(0 = fiit, Mt),..., (/>^(0), i = l,.,,,n, 

for all t E / . 
Next, we let (to, x\o,..., x„o) E D. Then the initial-value problem associated 

with (Ei) is given by 

Xi = fi(t, xi,..., Xn\ i = l,...,n, 

Xi(to) = Xi^, i = l,...,n. 

A set of functions {(pi,..., c/)̂ } is a solution of the initial-value problem (//) if 
{(1)1,..., (pn} is a solution of (£"/) on some interval / containing ô and if 
((t)l(to), ..., (pnOo)) = (-^lO, '•-, Xno)' 

In Fig. 1.1 the solution of a hypothetical initial-value problem is depicted 
graphically when n = 1. Note that (/>(T) = / ( r , x) = tanm, where m is the slope 
of the line L that is tangent to the plot of the curve (/)(0 vs. t, at the point 
(T, X). 

In dealing with systems of equations, we will find it convenient to utilize 
the vector notation x = (x\,..., XnY, XQ = (xio, . . . , ^^Q)^' ^ ^ (^i^ • • •' 4^n)^, 
f(t, X) = (fi(t, Xi,..., Xn), ..., fn(t, Xi,..., Xn))^ = (f\(t, x), . . ., fn(t, x)Y, X = 

(xi,..., xn)\ and \l^ f(s, ci>(s)) ds = [\l fi(s, (/>(̂ )) ds,..., \l fn(s, cl>(s)) dsf. 



FIGURE 1.1 
Solution of an initial-value problem when n = I 
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With the above notation we can express the system of first-order ordinary dif
ferential equations (£"/) by 

X = fit, x) 

and the initial-value problem (//) by 

X = fit, x), xito) = XQ. 

iE) 

(/) 

We leave it to the reader to prove that the initial-value problem (/) can be equiva-
lently expressed by the integral equation 

m = X0+ C fis,cl,is))ds, iV) 
JtQ 

w^here cj) denotes a solution of (/). 

B. Classification of Systems of First-Order Ordinary 
Differential Equations 

Systems of first-order ordinary differential equations have been classified in many 
ways. We enumerate here some of the more important cases. 

If in iE\ fit, X) ^ fix) for all it, x) G D, then 

X = fix). (A) 

We call (A) an autonomous system of first-order ordinary differential equations. 
If it-{-T,x)ED whenever it, x) G D and if fit, x) = fit + T, x) for all it, x) 

D, then iE) assumes the form 

X = fit, x) = fit + T, X). iP) 

We call such an equation a. periodic system of first-order differential equations with 
period T. The smallest T > 0 for which (P) is true is called the least period of this 
system of equations. 

When in (£"), fit, x) = Ait)x, where Ait) = [atjit)] is a real nX n matrix with 
elements aij that are defined and at least piecewise continuous on a ^interval / , then 
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and refer to (LH) as a linear homogeneous system of first-order ordinary differential 
equations. 

If for (LH), A(t) is defined for all real t, and if there is a T > 0 such that A(t) = 
A(t + T) for all t, then we have 

X = A(t)x = A(t + T)x. (LP) 

This system is called a linear periodic system of first-order ordinary differential 
equations. 

Next, if in (E), f(t, x) = A(t)x + g(t), where A(t) is as defined in (LH), and 
g(t) = [g\(Oy • • • > gn(t)V is a real /z-vector with elements gi that are defined and at 
least piecewise continuous on a ^interval / , then we have 

X = A(t)x + g(t). (LN) 

In this case we speak of a linear nonhomogeneous system of first-order ordinary 
differential equations. 

Finally, if in (E), f(t, x) = Ax, where A = [atj] G R^^^^ then we have 

X = Ax. (L) 

This type of system is called a linear, autonomous, homogeneous system of first-
order ordinary differential equations. 

C. nth-Order Ordinary Differential Equations 

Thus far we have been concerned with systems of first-order ordinary differen
tial equations. It is also possible to characterize initial-value problems by means of 
nth-order ordinary differential equations. To this end we let /z be a real function that is 
defined and continuous on a domain/) of the real (r, y,..., }^^)-space [i.e.,/) C R^^^, 
D is a domain, and h G C(D, R)]. Then 

/ - ) = h(t,y,/'\...,/--'^) (En) 

is an nth-order ordinary dijferential equation. 
A solution of (En) is a function (f) G C"(/, R) that satisfies (t, (f)(t), 4>^^\t),..., 

(/)^"-i>(0) G D for alH G / and 

cly^^\t) = h(t,cfy(tlcj>^'\t),...,cf>^--'\t)) 

for all r G / , where / = (a, b) is a r-interval. 
Now for a given (to, x io , . . . , x„o) G /) , the initial-value problem for (£„) is 

A function (/> is a solution of (/„) if 0 is a solution of Eq. (En) on some interval 
containing to and if (/)(^) = xio, • . . , <p^^~^\to) = Xno-

As in the case of systems of first-order ordinary differential equations, we 
can point to several important special cases. Specifically, we consider equations of 



the form 

/«) + a,_i(oy in-1) ^ ai(t)/^^ + ao(t)y - g(t), (3.1) 

where a/ G C(J, R), i = 0,1,.. .,n-l, and^ E C(/, R). Wereferto (3.1) as a/mear 
nonhomogeneous ordinary differential equation of order n. 

If in (3.1) we let ^(0 ^ 0, then 

/^^ + a , - i (0 /" -^^ + • • • + ^i(0/^^ + ao(Oy = 0. 

We call (3.2) a linear homogeneous ordinary differential equation of order n. 
If in (3.2) we have ai{t) = at, i = 0,1,., .,n - I, then 

(3.2) 

/-^ + an-i/^-'^ + + aiy^^^ + aoj 0, (3.3) 

and we call (3.3) a linear, autonomous, homogeneous ordinary differential equation 
of order n. 

As in the case of systems of first-order ordinary differential equations, we can 
dt^ne periodic and linear periodic ordinary differential equations of order n in the 
obvious way. 

It turns out that the theory of nth-order ordinary differential equations can be 
reduced to the theory of a system of n first-order ordinary differential equations. To 
demonstrate this, we let y = xi, j ^ ^ ^ = X2,..., y^^~^^ = Xn in Eq. (/„). We now 
obtain the system of first-order ordinary differential equations 

X\ = X2 

X2 = X3 
(3.4) 
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Xn = h(t,Xi, ...,Xn) 

that is defined for all (t, xi,..., Xn) E D. Assume that 4> = ( 0 1 , . . . , 0^)^ is a solu

tion of (3.4) on an interval J. Since 02 = (pi, 03 = 0 2 . . . . . 0« = 0 i " ^ \ and since 

h(t, 0 i (O , . . . , 0 . (0) - hit, 0i(0,0^/^(0, . . . , 0 r ' \ O ) 

it follows that the first component 0i of the vector 0 is a solution of Eq. (En) 
on the interval / . Conversely, if 0i is a solution of (En) on / , then the vector 
(0, 0^^\ . . . , 0^""^^)^ is clearly a solution of (3.4). Moreover, if 0i(ro) = ^lo. • • •. 
0i'^~^\^o) = ^no^ then the vector 0 satisfies 0(^o) ^ ^o = (- l̂o. • • •. ^no)^-

1.4 
EXAMPLES OF INITIAL-VALUE PROBLEMS 

We now give several specific examples of initial-value problems. 

EXAMPLE 4.1. The mechanical system of Fig. 1.2 consists of two point masses Mi 
and M2 that are acted upon by viscous damping forces (determined by viscous damping 
constants B, Bi, and B2), spring forces (specified by the spring constants K, K\, and 
K2), and external forces f\ and / i . The initial displacements of Mi and M2 at ^ = 0 
are given by yi(0) and y2(0), respectively, and their initial velocities are given by y\(0) 
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v77'y//////yyy////yy//7?\^ 

FIGURE 1.2 
An example of a mechanical circuit 

and J2(0). The arrows in Fig. 1.2 indicate positive directions of displacement for M\ 
and M2. 

Newton's second law yields the following coupled second-order ordinary differ
ential equations that describe the motions of the masses in Fig. 1.2 (letting y^^^ = 
d^yldf = y\ 

Miyi +{B + Bi)yi + (K + Ki)y, - Bh - ^ J2 = / i ( 0 

M2y2 + ( 5 + B2)y2 + ( ^ + ^2)^2 - ^ i j i - Kyi = - f2(t) 
(4.1) 

with initial data ji(0), 3^2(0), yi(0), and J2(0). 
Letting x\ = y\, X2 = y\, X'i = 3̂ 2, and x^ = ^2, we can express Eq. (4.1) equiv-

alently by the system of first-order ordinary differential equations 

x{ 

X2 

x?> 

M. 

0 
Ki+K 

Ml 

0 
K 

. M2 

1 
Bi+B 

Ml 

0 
B 

Ah 

0 
K 

Ml 

0 

K + K2 

M2 

0 j 
B 

Wi 

1 

5 + ^2 

M2 J 

pi 

U2 
Us 
L-^4 

0 

M2 
/2(0 

(4.2) 

with initial data given by x(0) = (xi(0), X2(0), ^3(0), ^4(6))^. 

EXAMPLE4.2. Using the node voltages vi, V2, and V3 and applying Kirchhoff's current 
law, we can describe the behavior of the electric circuit given in Fig. 1.3 by the system 
of first-order ordinary differential equations 

1 

1 
Ci 

/ I 1 

/ I 1 

1 

1 
RiCi 

(Ri 1 
V L ^2Ci 

1 

R2C2 RiC: 2 ^ 2 

1 

0 

Rl 

L 

0 

[v i ' 

V9 

LV3. 

+ 

V 

/^iCi 

V 

RiC, 

0 

(4.3) 

To complete the description of this circuit, we specify the initial data at ô = 0, 
given by vi (0), V2(0), and V3(0). • 

EXAMPLE 4.3. Figure 1.4 represents a simplified model of an armature voltage-
controlled dc servomotor consisting of a stationary field and a rotating armature and 
load. We assume that all effects of the field are negligible in the description of this 
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FIGURE 1.3 
An example of an electric 
circuit 

Armature 

FIGURE 1.4 
An example of an electromechanical system 

system. The various parameters and variables in Fig. 1.4 are: Ca = externally apphed 
armature voltage, ia = armature current, Ra = resistance of the armature winding. La = 
armature winding inductance, Cm = back-emf voltage induced by the rotating armature 
winding, B = viscous damping due to bearing friction, / = moment of inertia of the 
armature and load, and 0 = shaft position. 

The back-emf voltage (with the polarity as shown) is given by 

em = KeO, 

where KQ >0 is 2i constant and the torque T generated by the motor is given by 

T=KTia-

Application of Newton's second law and Kirchhoff's voltage law yields 

je+Be = T{t) 

and 
at 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

Combining (4.4) to (4.7) and letting xi = e,X2 = 9, and X3 = 4 yields the system of 
first-order ordinary differential equations 
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0 

_ 
pi 
\x2 

Us J 

+ 

0 
0 

[Ta\ 

0 1 0 
B KT 

J T IU2I + I "" |. (4.8) 

A suitable set of initial data for (4.8) is given by ô = 0 and (xi(0), X2(0), X3(0))^ = 
(^(0), ^(OX/,(0))^ • 

EXAMPLE 4.4. A much Studied ordinary differential equation is given by 

X + f(x)x + g(x) = 0, (4.9) 

where / G C\R, R) and g G C\R, R), 
When f(x) > 0 for all x G /? and xg(x) > 0 for all x 7̂  0, then (4.9) is called 

the Lienard Equation. This equation can be used to represent, e.g., RLC circuits with 
nonlinear circuit elements. 

Another important special case of (4.9) is the van der Pol Equation given by 

x-e{\ - x^)x + x = 0, (4.10) 

where e > 0 is a parameter. This equation has been used to represent certain electronic 
oscillators. 

If in (4.9), f(x) ^ 0, we obtain 

X + g(x) = 0. (4.11) 

When xg(x) > 0 for all x 9^ 0, then (4.11) represents various models of so-called "mass 
on a nonlinear spring." In particular, if g(x) = ^(1 + a^x^)x, where ^ > 0 and a^ > 0 are 
parameters, then g represents the restoring force of a hard spring. If g(x) = k(l-a^x^)x, 
where ^ > 0 and a^ > 0 are parameters,, then g represents the restoring force of a soft 
spring. Finally, if g(x) = x, then g represents the restoring force of a linear spring. (See 
Figs. 1.5 and 1.6.) 

For another special case of (4.9), let f(x) = 0 and g(x) = k sin jc, where /: > 0 is a 
parameter. Then (4.9) assumes the form 

X + ^ sin X = 0. (4.12) 

This equation describes the motion of a point mass moving in a circular path about the 
axis of rotation normal to a constant gravitational field, as shown in Fig. 1.7. The param
eter k depends on the radius / of the circular path, the gravitational acceleration g, and 
the mass. The symbol x denotes the angle of deflection measured from the vertical. The 
present model is called a simple pendulum. 

//////// 

FIGURE 1.5 
Mass on a nonlinear spring 



(a) Soft spring 

FIGURE 1.6 

9(x)i 

/ 

/ 

V-X 

(b) Hard spring (c) Linear spring 
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Letting x\ = x and X2 = x, the second-order ordinary differential equation (4.9) 
can be represented by the system of first-order ordinary differential equations given by 

Xi = X2 
Xl = -f(Xi)X2 - g(Xi). 

The required initial data for (4.13) are given by xi(0) and X2(0). 

(4.13) 

FIGURE 1.7 
Model of a simple pendulum 

*1.5 
M O R E M A T H E M A T I C A L P R E L I M I N A R I E S 

At this point, v^e need to review additional material from the calculus and anal
ysis. 

A . Sequences 

Let / denote an index set (usually the set of positive integers). A sequence in 7̂  (i.e., 
a real sequence) is a mapping of / into R, say, f{n) = x„. It is customary to denote 
such a sequence by {x„}, rather than {/(n)}. 

*Throughout the book, starred sections, subsections, or items may be omitted to conserve time without 
loss of continuity. 



18 Let {xn} be a sequence in R, n = 1, 2, 3 , . . . , and let ni, n2,..., n^,... be a 
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the sequence {x„J is called a subsequence of {x„}. 
Recall that a real sequence {xn} is said to converge to an element in R if for 

every 6 > 0 there is an integer N such that for all n > N,\x- Xn\ < e. In general, Â  
depends on e, i.e., N = N(€). We call x the limit of {x„}, and we usually write this 
as lim„_>oo Xn = x or Xn -^ x as n ^ ^. If there is no x E /̂  to which the sequence 
converges, then we say that {xn} diverges. 

A real sequence {xn} is said to be a Cauchy sequence or a fundamental sequence 
if for every e > 0 there is an integer Â  = N(e) such that |x^ - x^| < e whenever 
m,n^N. 

It is easy to show that every convergent sequence is also a Cauchy sequence. 
One of the fundamental results in analysis shows that for R, the converse to this 
statement is also true: every real Cauchy sequence is a convergent sequence (i.e., it 
converges to an element in R). To express this property, we say that R is complete. 
Other important fundamental properties that follow from the completeness of R in
clude the Bolzano-Weierstrass (B-W) property and the Heine-Borel (H-B) property. 
The B-W property states that every bounded sequence of real numbers contains a 
convergent subsequence. 

To present the H-B property, we require the following additional concept: by a 
finite (or countable, or uncountable) open covering of a set £ C /̂  we mean a finite 
(or countable, or uncountable) collection {Ga} of open sets such that E C UaGa. The 
H-B property states that every open covering of a compact set K contains 3. finite open 
subcovering of K. (Recall that aset K C Ris compact if it is closed and bounded.) 

B. Sequences of Functions 

Next, we consider sequences of functions. For our purposes, we let £" be a nonempty 
subset of ^, and we let {/„}, n = 1, 2, 3 , . . . denote a collection of real-valued func
tions defined on E (i.e., for each n G I, where / denotes the positive integers, there 
is a mapping fn : E -^ R). 

We say that the sequence of functions {fn} is pointwise convergent to a function 
/ on E, if lim^^oo fn(t) = f{t) for all t G E, i.e., if for every e > 0 and for every 
t E E there exists an integer N that may depend on e and t [i.e., N = N(e, t)] such 
that 1/^(0 - f(t)\ < e whenever n> N. 

The sequence {/„} is said to converge uniformly to a function/ on E if for every 
6 > 0 there is an integer N that depends only on e [i.e., N = N(e)] such that 1/^(0 ~ 
f(t)\ < e whenever n> Nfor all t G E. 

For example, the sequence {/„} specified by 

fM ^ t \ 0 < r < 1, (5.1) 

is pointwise convergent to the function 

but it is not uniformly convergent to / . Note also that whereas for each n = 
1,2,..., fn in (5.1) is continuous on E = [0, 1], the limiting function/ in (5.2) 
is not continuous on E. 



As another example, we note that the sequence {/„} specified by (^ = 1, 2, 3 , . . . ) 

1 
fn(t) ^ t+ - , - 0 0 < r < 00 

n 

is pointwise convergent and uniformly convergent to the function 
f{t) = t, -co < t <co. 

(5.3) 

(5.4) 

Note also that in the above example, the / „ , n = 1, 2, 3 , . . . given in (5.3) as well as 
/ given in (5.4) are continuous on R. 

THEOREM 5.1. Let /„ G C(E, R), n = 1, 2 , . . . , and assume that the sequence {/„} 
converges uniformly t o / on E. Then / G C{E, R). 

Proof, Let to G E. We must show that lim^^^^ f(t) = f(to), or equivalently, we must 
show that for every e > 0, there exists a 8 = 8(6, to) > 0 such that \f(t) - f(to)\ < e 
whenever |̂  - ^o| < ^• 

Since /„ converges t o / uniformly on E, given e > 0, there exists N = N(e) such 
that \fN(t) - f(t)\ < e/3 for all t G E. Also, since fN G C(E, R), there exists 8 = 
8(e, to) > 0 such that |/iv(0 - /iv(^)| < ^/3 whenever \t - to\ < 8. Therefore, when
ever 1̂  - ^1 < 8, we have 

1/(0 - /(^0)| = 1/(0 - fN(t) + fN(t) - fN(t0) + fN(to) - f(to)\ 

^ 1 / ( 0 - / v ( 0 | + | / v ( 0 - fN(to)\ + \fN(to) ~ f(to)\ 

€ € € 

< 3 + 3 + 3 = e. 

THEOREM 5.2. Let /„ G C(E, R), n = 1, 2 , . . . , and £" be a bounded subset of R. As
sume that the sequence {/«} converges uniformly t o / on E. Then 

lim fn(t)dt \imfn{t)dt = f(t)dt. 
E "-^°° JE 

(5.5) 

Proof We have 

fn(t)dt- f(t)dt= Unit)- fit)] dt. 
E JE JE 

Also, let / = (a, b) denote a bounded interval with the property that J D E and let 
L(J) = (b- a). 

Since f converges t o / in t, uniformly on a bounded set E, we can choose for a given 
e > 0 an Â  = N(€) such that \fn(t) - f(t)\ < elL{J) for dXX t G E whenever n> N. 
Therefore, 

fn(t)dt- f(t)dt \fn(t)-f(t)\dt 

L(J) 
UJ) = € 

whenever n> N. 

As an example, consider 

fn{t) = 
0^ t ^ n, 

n < t, 

n = 1, 2, 3, The sequence {fn} converges uniformly to the function f(t) = 0 for 
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r OC 

fn(t)dt = 1 
Linear Systems 

lim 
7 1 - ^ CO 0 

r 00 

while l im/„(0^^ = 0. 
Jo n^oo 

Theorem 5.2 does not apply in this case, since the interval E is not bounded. 
As another example, consider 

fn(t) = n^te~''\ 0 < ^ < 1, 

n = 1, 2, 3, The sequence {/„} converges pointwise on [0, 1]. It is easily shown 
in this case that 

lim fn(t)dt = 1 

while lim fn(t)dt = 0. 
Jo «-^°° 

Theorem 5.2 does not apply in this case, since {/„} is not uniformly convergent on 
[0, 1]. 

The point of the above two examples is this: in the case of sequences of functions, 
care must be taken when interchanging limits and integration. 

The next result is called the Cauchy criterion for the uniform convergence of 
functions. 

THEOREM 5.3. Let fn'.E-^ R, n = 1, 2, 3, The sequence of functions {/„} con
verges uniformly on E if and only if for every e > 0 there exists an integer Â  = N(e) 
such that \fn(t) - fm(t)\ < € for Sillt G E whenever n> N and m> N. 

Proof. Assume that {/„} converges uniformly on E to the limit function / . Then there 
exists an integer Â  = N{e) such that when n> N,we have 

l / « ( 0 - / ( O l < | foralUG^. 

This implies that 

\fn(t) - fm(t)\ = \fn(t) " f(t) + f(t) " fM\ 

^\fn(t)-f(t)\ + \f(t)-f^(t)\<e 

for all r E £• whenever n> N and m> N. 
Conversely, assume that the Cauchy condition holds, i.e., for all t E. E, 

\fn{t) - f^{t)\ < e when n^ N,m^ N. (5.6) 

This implies that the sequence {/n(0} converges, for every ^ E £•, to a limit that we 
call f(f). (This follows since in R, every Cauchy sequence converges to an element in 
R.) We must show that this convergence is uniform. To this end, we let e > 0 be given 
and pick Â  > 0 so that (5.6) holds. Fix n and let m ^ ^ in (5.6). Since fmit) -^ f(t), as 
m ^ 00, this yields for all t G. E, 

\fn(t)-f(t)\^e foralln^A^. • 



C. The Weierstrass M-test 

For an infinite series of real-valued functions written X j = i fj(0^ with each fj de
fined on a set £" C R, convergence is defined in terms of the sequences of partial 
sums, 

n 

Sn{t) = ^fj(t). 
7 = 1 

The series 2 J = i fn(t) is said to converge pointwise to the function/ if for every 
t GE, 

Km 
7 = 1 

= 0. 

Also, the series X j = i fj(t) is said to converge uniformly tofonE if the sequence 
of partial sums {sn} converges uniformly t o / on E. 

The next result is called the Weierstrass M-test. 

THEOREM 5.4. Let fn'. E ^ R,n = \,2,3, Suppose there exist nonnegative con
stants Mn such that \fn{t)\ < Mn for dXXt GE and 

XM„ < 00. 

Then the sum X^=i /n(0 converges uniformly on E. 

Proof, If X^=i Mn converges, then for arbitrary 6 > 0, there are m > /2 sufficiently 
large so that 

j = n 

m 

Y\fM 
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The uniform convergence of X^= i fn{t) follows now from Theorem 5.3. 

*1.6 
EXISTENCE OF SOLUTIONS OF INITIAL-VALUE PROBLEMS 

In this section we address the following question: under what conditions has the 
initial-value problem (/) at least one solution for a given set of initial data (to, XQ)! 
The significance of this question is illustrated by the following two examples. 

1. For the initial-value problem, 

X = g(x), x(0) = 0, t^O, 

I, X = 0, 

(6.1) 

where g(x) = 
0, X ^ 0, 

no differentiable function cf) exists that satisfies (6.1). Hence, no solution (as de
fined in Section 1.3) exists for this initial-value problem. 
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has the solution (j){t) = [2it - ^)/3]^^^ (determined by separation of variables). 
This solution is not unique since i//(0 = 0 is clearly also a solution. 

To simplify our presentation, we will consider in this section and in Sections 
1.7 to 1.9 one-dimensional initial-value problems [i.e., we will assume that for (/), 
n = I]. Later, we will show how these results are modified for higher dimensional 
systems. Thus, we have a domain D C R^, f E C{D, R), we are given the scalar 
differential equation 

X = fit, x), (E') 

we are given the initial data (to, XQ) G D, and we seek a solution (or solutions) to the 
one-dimensional initial-value problem 

X = f(t, X\ x(to) = XQ. (/') 

In doing so, it suffices to find a solution of the integral equation 

m = xo^ f f(s,cl>(s))ds. (V) 
J to 

We will solve the above problem in stages. First, we establish an existence result 
for a sequence of approximate solutions of (/'). Next, we show that this sequence 
converges to the actual solution of (/'), using a preliminary convergence result. We 
will establish this preliminary result first. 

A. The Ascoli-Arzela Lemma 

We will require the following concepts. 

DEFINITION 6.1. Let ^ be a family of real-valued functions defined on a set £ C R. 

(i) 9̂  is called uniformly bounded if there is a nonnegative constant M such that \f{f)\ < 
M for 2i\\t^E and for all / G 9̂ . 

(ii) ^ is called equicontinuous on E if for every € > 0 there isaS = 6 (e )>0 (inde
pendent of t\, t2, and/) such that |/(^i) - /(^2)| < ^ whenever |ri - 2̂! < ^ for all 
tut2 G £ and for a l l / G 9̂ . • 

The next result is known as the Ascoli-Arzela Lemma. 

THEOREM 6.1. Let £ be a closed and bounded subset of R and let {/̂ } be a sequence 
of functions in C(E, R). If {/m} is equicontinuous and uniformly bounded on E, then there 
is a subsequence {m }̂ of {m} and a function / G C(E, R) such that {/m̂ } converges to / 
uniformly on E. 

Proof. Let {r̂ } be a dense subset of £" (i.e., {r̂ } = E). (For example, let {r̂ } be the enu
meration of the rational numbers contained in an interval [a, b] C R.) The sequence of 
real numbers {/m(̂ i)} is bounded since {/̂ } is uniformly bounded on E. By the Bolzano-
Weierstrass Theorem (see Section 1.5), {fm(ri)} contains a convergent subsequence that 
we label {/im(̂ i)}- We denote the point to which this subsequence converges by /(ri) 
and the sequence of functions obtained in this way by {fim}- Consider next the sequence 
of real numbers {/im(̂ 2)}, which is also bounded and contains a convergent subsequence 
that we label {/2m(̂ 2)}- We denote the point to which {/2m(̂ 2)} converges by /(r2) and 



we label the sequence of functions obtained in this way by {fim}- Continuing, we ob
tain the subsequence {/̂ ^} of the sequence {fk-i,m} and the real number /(r^) such that 
fkmiXk) -^ fi^k) as m ^ 00 for ^ = 1, 2, 3, Since the sequence {fkm} is a subse
quence of all the preceding sequences {fjm} for 1 < 7 < /: - 1, it will converge at each 
point Kj with 1 < j < /:. 

Next, we generate a subsequence by ''diagonalizing" the preceding infinite collec
tion of sequences. In doing so, we set gm = fmm for all m. If the terms fkm are arranged 
as the elements of a semi-infinite matrix, as shown in Fig. 1.8, then the elements gm are 
the diagonal elements of this matrix. 

Since [gm] is eventually a subsequence of every sequence {fum}, we have gmirk) -^ 
f(rk) as m ^ 00 for /: = 1, 2, 3, We now show that {gm} converges uniformly on E. 
Fix e > 0. For any rational number rj G E there exists Mj = Mj{e) such that {gmiXj) ~ 
Sn{rj)\ < e for all m,n> Mj(e). By the equicontinuity of {/„}, there is a 5 > 0 such that 
\gn(ti) - gn(t2)\ < € foY all u whcu ti, t2 E: E and 1̂1 -12\ < 8. Therefore, for \t - rj\ < 8 
and m,n^ Mj{e), we have 

\gm(t) - gn{t)\ < \gm{t) " gm{rj)\ + \gm{rj) " gn{rj)\ 

+ \gn{rj) - gn{t)\ < 3e. 

By construction, the collection of neighborhoods B{rj, 8) = {t E R'.\t-rj\< 8} covers 
E (i.e., Uy B(rj, 8) D E). Since Eh a closed and bounded subset of R (i.e., since E is 
compact), by the Heine-Borel Theorem there is ?i finite subcollection of the above neigh
borhoods, say, {B{rji, 8),..., B(rjL, 8)} that covers E, i.e., B(rji, 5) U • • • U B(rjL, 8) D D 
(see Section 1.5). Let M(e) = max{M;i(e),.. .,MJL(€)}. If m and n are larger than 
M(e), and if t is any point in E, then t E B(rji, 8) for some / G { 1 , . . . , L}. Therefore, 
IgmiO ~ gn(t)\ < 36 for all ^ E £• whenever m,n> M(e). This shows that {gm} con
verges uniformly on £" to a function/, by Theorem 5.3. Furthermore, / E C(E, R) by 
Theorem 5.1. • 

23 

CHAPTER 1: 

Mathematical 
Descriptions of 
Systems 

/ll /12 /l3 /l4 

/2I fll /23 /24 

/3I /32 /33 /34 

FIGURE 1.8. 
Diagonalization of a collection of sequences 

B. 6-Approximate Solutions 

We will require the following concept. 

DEFINITION6.2. A real-valued function (p defined and continuous on a ^-interval J = 
(a, b) containing ^ is called an e-approximate solution of (/') if <^(^) = XQ and 

(i) {t, (/)(0) E D for all t E / ; 
(ii) (j) has a continuous derivative on / except possibly on a finite set / of points in J 

where there are jump discontinuities allowed; 
(iii) |(/)(0 - f{t, c/>(0)| < e for alU E / - / . • 

Recall that if / in the above definition is not empty, (j) is said to have apiecewise 
continuous derivative on J. 
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Now let 
S = {{t,x) eD: \t-to\ < a , |JC-JCO| <b} (6.3) 

be a fixed rectangle in D containing (^0,-^0), as shown in Fig. 1.9. Since / G C{D^R), 
it is bounded on S and there is an M > 0 such that \f{t,x)\ <M for all {t,x) e S. We 
define (see Fig. 1.9) 

b 
mm " ' M 

(6.4) 

We now prove the following existence result. 

xo + b xo + b 

rs LZ 
y^.xo) 

\ \ 

to + a 

{to^Xo)^^^>^ 

to + a 

(a) 

FIGURE 1.9 
(a) Case c = b/M, (b) case c = a 

(b) 

THEOREM 6.2. If f eC{D,R) and if c is as defined in (6.4), then for any e > 0 there 
is an e-approximate solution of (/') on the interval |̂  — ^o| < c. 

Proof, Given e > 0, we shall show that there is an e-approximate solution on [̂ o, 0̂ + c]. 
The proof for the interval [̂ 0 — c, to] is similar. The approximate solution will be made 
up of a finite number of straight line segments joined at their ends to achieve continuity. 

Since / is continuous on S, a closed and bounded set, then / is uniformly 
continuous on S. Hence, there is a 5 > 0 such that \f(t,x) — f(s,y)\ < e whenever 
(t,x) and (s,y) are in S with \t — s\ < d and \x — y\ < d. Now subdivide the interval 
[̂ 0, 0̂ + c] into m equal subintervals by a partition 0̂ < 1̂ <h < • • • <tm = to-\-c, where 
tj^i — tj < min{5, d/M} and where M is the bound for / given above. On the interval 
to <t <ti, let ^(t) be the line segment issuing from (̂ o,-̂ o) with slope /(^o,-^o)- On 
h < t < t2, ^Qt (j)(t) be the line segment starting at (^1,^(^1)) with slope f{t\,(^{t\)). 
Continuing in this manner, we define 0 over to < t < tm- A typical solution is shown 
in Fig. 1.10. The resulting <p is piecewise linear and hence piecewise continuously 
differentiable and (l){to) =xo. Indeed, on tj <t < tj^i we have 

(^it) = ^{tj)+f{tj,^{tj)){t-tj). (6.5) 

Since the slopes of the linear segments in (6.5) are bounded between ±M, then (^ 0(0) 
cannot leave S before time tm = to-\-c (see Fig. 1.10). 

To see that 0 is an 6-approximate solution, we use (6.5) to obtain 

\<i>it)-f{t,<l>{t))\ = \fitj,cj>itj))-fit,cj>it))\<e. 

This inequality is true by the choice of 5, since \tj -

\(t>it)-Htj)\<M\t- -tj\ <M 

•t\<\tj- -tj^i\ < 5 and 

d. 

This completes the proof. 



(^0. ^o) 

FIGURE 1.10 
Typical e-approximate 

^0+^ solution 
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The approximations defined in the proof of Theorem 6.2 are called Euler poly
gons, and (6.5) with t = tj+i assumes the form 

0(O+i) = ^(0) + f(^P ^(0))(0+i - 0)^ (6.6) 

which is called Euler's method. This technique and more sophisticated piecewise 
polynomial approximations are common in determining numerical approximations 
to solutions of (/') via computer solutions. 

C. The Cauchy-Peano Existence Theorem 

We are now in a position to state and prove the main result of this section. 

THEOREM 6.3. If / G C{D, R) and (̂ 0, -̂ o) G D, then (/') has a solution defined on 
\t - to\ ^ c [where c is defined in (6.4)]. 

Proof. Let {e^}, m = 1, 2, . . . be a monotone decreasing sequence of positive num
bers tending to zero, e.g., 6^ = l/m. Let c be defined in (6.4) and let c/)̂  be the 
e^-approximate solution given in Theorem 6.2. Then |0m(O "" <Pm(s)\ ^ M\t - s\ for all 
t, s in [to - c,to + c] and for all m > 1. Therefore, {(f)m} is an equicontinuous sequence. 
Now since 

\ct>m(t)\ n(to)\ + \(l>m(t) - (t>m(to)\ ^ k o | + Mc, 

the sequence is also uniformly bounded. By the Ascoli-Arzela Lemma (Theorem 6.1) 
there is a subsequence {(/>mj that converges uniformly on / = [̂ o - c, ̂  + c] to a con
tinuous function 0. 

Next, define 

emit) = (f)m{t) - fit, (j)mit)) (6.7) 

at those points where 4>m exists. From the proof of Theorem 6.2, em is piecewise contin
uous and \emit)\ ^ 6^ on 7 where 4>m exists. Integrating (6.7) and rearranging terms, we 
obtain 

(t>mit) = ^0 + [ / ( ^ , (t>mis)) + emis)] ds. 
J to 

(6.8) 



26 Now since {4>mj} tends to cf) uniformly on /, and since/ is uniformly continuous on 
Linear Systems ^̂ ^ ̂ ^̂  '^ [defined in (6.3)], it follows that f(t, (l>mj,(t)) tends to f(t, (f){t)) uniformly on / . 

To see this, we note that for every 6' > 0 there is an A/̂  = N{d') such that |(̂ ^^ (0 - 0(01 < 
3' for allr E / whenever k > N, and also, for every e > 0 there is a 6 = 6(e) such 
that for all t E J, \f{t, p) - f(t, q)\ < e for all (t, pi (t, q) e S whenever \p - q\ < 8. 
Pick Â  large enough so that |6m (̂0 ~ </>(0l < ^ for alH E / whenever k> N. Then 
\fit, (l)m^(t)) - fit, 0(0)1 < e for all f E / whenever k> N. 

Using Theorem 5.2, we now obtain 

s = I \imf(s,4>mk(s))ds 
(6.9) 

lim I f(s,(l)^^(s))ds = \ \imf(s,(l)mk(s))ds 

f(s,cl,(s))ds, 
to 

Also, observing that 

em^(s)ds<\ \em,^(s)\ds = \ e^^ds < €mj^c 
JtQ JtQ JtQ 

and recalling that lim̂ ^̂ oo 6^^ = 0 , we obtain 

lim I em,^(s)ds = 0. (6.10) 

Letting in (6.8) m = rrik and using (6.9) and (6.10), we finally obtain 

lim 0^,(0 = m = xo + f f(s,cl>(s))ds, (V) 

which completes the proof. • 

Theorem 6.3 establishes the existence of a solution of (/') "locally,'' i.e., only 
on some sufficiently short time interval. In general, this theorem cannot be changed 
to assert the existence of a solution for all t > to or for all r < ^Q. As an example, 
consider the initial-value problem 

X = 1 -\- x^, x(0) - jco = 0, 

which has a solution given by (pit) = tant. This solution exists only when -7r/2 < 
t < 77/2. 

*1.7 
CONTINUATION OF SOLUTIONS 

Once the existence of a solution of an initial-value problem has been established over 
some time interval, it is reasonable to ask w^hether this solution can be extended to a 
larger time interval. We call this process continuation of solutions. In this section we 
address this problem for the scalar initial-value problem (/'). We shall consider the 
continuation of solutions of an initial-value problem (/) characterized by a system 
of equations later (in Section LIO). 

A. Zorn's Lemma 

In the proof of the main result of this section, we will require a fundamental result 
from analysis, called Zorn's Lemma, that we will present without proof. To state this 
lemma, we need to introduce the following concepts. 



K partially ordered set {A, 
for any a, b, and c in A, 

:) consists of a set A and a relation < on A such that 27 

1. a ^ a, 
2. a ^ b and Z? < c implies that a 
3. a < Z? and b ^ a implies that a b. 

A chain is a subset AQ of A such that for all a and b in AQ, either a ^ b or b ^ a. 
An wp/̂ r̂ bound for a chain AQ is an element ^o E A such that b ^ ao for all Z? E AQ. 
A maximal element for A, if it exists, is an element ai of A such that for all b in A, 
a\ ^ b implies (3i = b. 

THEOREM 7.1. (ZORN'S LEMMA). If each chain in a partially ordered set (A, <) 
has an upper bound, then A has a maxiinal element. • 

B. Continuable Solutions 
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Now let (/) be a solution of (£"') on an interval / . By a continuation of cf) we mean an 
extension (j)o of (/) to a larger interval /Q in such a way that the extension solves (£"') 
on JQ\ then (/) is said to be continued or extended to the larger interval JQ. When no 
such continuation is possible, then cf) is called noncontinuable. 

To illustrate these ideas, consider the differential equation x = x^ that has a 
solution 

0(0 - (1 - 0 " ^ o n / = (-1,1). 

This solution is continuable to the left to -oo and is noncontinuable to the right. As 
a second example, consider the differential equation x = x^^^ that has a solution 

il/(t)^OonJ = (-1,0). 

This solution is continuable to the right in more than one way. For example, both 
i/^i(0 = 0 and il/2(t) = {ItH^f^ are solutions of i: = x^'^ for t > 0. The solution ip 
can also be continued to the left using ijj^it) = 0 for alW < - 1 . 

THEOREM 7.2. Let / E C{D, R) with/ bounded on D. Suppose (/> is a solution of {E') 
on the interval J = (a, b). Then 

(i) the limits 

lim (j){t) <t>{a^) and lim (/)(0 cj>{b-) 

exist, and 
(ii) if {a, (f)(a'^)) [respectively, (Z?, (t>(b'))] is in £), then the solution 0 can be continued 

to the left past the point t = a (respectively, to the right past the point t = b). 

Proof, We give the proof for the endpoint b. The proof for the endpoint a is similar. Let 
M be a bound for \f{t, x)\ on D, fix ̂o E / , and let (f){t{y) = XQ. Then for to < t < u < b 
the solution 0 satisfies (V), and thus. 

|ĉ (̂ )̂ - ml = f(s,ct>(s))ds 

Mds = M(u - t). 

\f(s,cl,(s))\ds 
(7.1) 



28 Given any sequence {tm} C (to,b) tending monotonically to Z?, we see from (7.1) 
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section 1.5 A). 
Next, if (b, (i>{b~)) G D, then by Theorem 6.3 there is a solution (/)o of (£') that 

satisfies (/>o(̂ ) = 4>(b~). The solution (/)o will be defined on some interval Z? < t ^ b + c 
for some c > 0. Define (f)o(t) = (j){t) on a < t < b. Then cf^o is continuous on a < r < 
b + c and satisfies 

(/>o(0 = -̂ 0 + [ f(s, (l)o(s))ds, a<t<b, (7.2) 

and (/)o(0 - (̂ (Z?") 4- f(s, (l)o(s))ds, b < t < b + c. 
Jb 

The limit of (7.2) as t tends to b is seen to be 

(/>(/?") = xo + f{s,(l)o(s))ds. 
JtQ 

(j)Q{t) = xo+\ f(s,(l)o(s))ds + f(s,(l)o{s))ds 
Jto Jb 

Therefore, 

= ^0 + f(s, (t)o(s)) ds, b < t < b + c. 
Jto 

Hence, </>o solves (V) ona < t < b + c, and therefore, (J)Q solves (/') ona < t < b + c. 

C. Continuation of Solutions to the Boundary of D 

We are now in a position to prove the following result. 

THEOREM 7.3. If / G C{D, R) and if (/) is a solution of (E') on an open interval 7, 
then (/) can be continued to a maximal open interval / * D 7 in such a way that {t, (pit)) 
tends to dD ast-^ (?/* when o'D is not empty and \t\ + \4>(t)\ -^ (^ifdD is empty. The 
extended solution (̂ * on / * is noncontinuable. 

Proof, Let 0 be a given solution of (£") on J. The graph of (/> is the set 

Gr(cl>) = {(t, m) -t^Jl 

Given any two solutions (j)\ and (/>2 of {E') that extend </>, we define ^\ < (/>2 if and 
only if Gr((pi) C Gr{4>i)^ i.e., if and only if (f)2 is an extension of cpi. The relation < 
determines a partial ordering on continuations of (f) over open intervals. If {4>a : a G A} 
is any chain of such extensions, then U{Gr((/)Q,) : a G A} is the graph of a continuation of 
(j) that we call (/)A. This (pA is an upper bound for the chain. By Zorn's Lemma (Theorem 
7.1) there is a maximal element (/>*. Clearly, ĉ * is a noncontinuable extension of the 
original solution (/>. 

Now let 7* denote the domain of (/>*. By Theorem 7.2 the interval / * must be open, 
for otherwise 0* could not be maximal. Call / * = {a, b). If b = ^, then we know that 
D is unbounded and \t\ + |0(O| -^ ô  as r ^ b~.So let us assume that b <^ and assume, 
for purposes of contradiction, that (t, </>*(0) does not approach dD on any sequence 
{tm} that approaches b~. Then (t, (p^it)) must remain in a compact subset K of D when 
^ E [c, Z?) for any c G (<2, b). S ince/ must be bounded on K, then by Theorem 7.2 we 



can continue (/)*past b. But this is impossible since (̂ *is noncontinuable. We have shown 
that {t, (/)*(0) must approach SD on some sequence {tm} that approaches b~. 

We now claim that {t, (^*(0) -^ dD as r ̂  h~ .\i this is not the case, there exists 
a sequence {T;„} that approaches h~, and a point (Z?, ^) E^ D such that (t)^{Tm) —> ^. Let 
e be one-third the distance from {b, ^) to dD. We can assume without loss of generality 
that Tm<tm< Tm+x, (T^, (/>*(T^)) ^ 5((Z?, ^ e\ and (̂ ,̂ (/>*(r̂ )) £ 5((Z7, ^), 2e) for all 
m > 1. Let M be a bound for \f{t, x)\ over (̂(Z?, ^), 2e). It now follows from the proper
ties of (£") that 

/fe(^*(5))J^ + {tm - Tm) < (M -h \){tm " T^), 

i.e., ^̂  - T̂  > el{M + 1) for all m. But this is impossible since tm 
conclude that {t, (/>*(0) -^dD2iSt->b~. 

The proof for the endpoint t = ais similar. 

b and b < ^. We 
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*1.8 
UNIQUENESS OF SOLUTIONS 

We now establish conditions for the uniqueness of solutions of initial-value prob
lems determined by scalar first-order ordinary differential equations. Later, in Sec
tion LIO, we will address the uniqueness of solutions of initial-value problems 
characterized by systems of first-order ordinary differential equations. 

A. The Gronwall Inequality 

We will require the following preliminary result on several occasions. 

THEOREM 8.1. (GRONWALL INEQUALITY). Let r, k G C([a, b], R) and suppose 

that r{t) > 0 and k(t) > 0 for all t G [a, b]. Let 6 be a given nonnegative constant. If 

foralU E [(3, Z?], then 

r ( 0 ^ d + k(s)r(s)ds 
Ja 

r(t)< 8e^ak(s)ds 

for all r G [a,b]. 

Proof. Let R(t) = 8 + \^ k(s)r(s)ds. Then r(t) < R(tX R(a) = 8, R(t) = k(t)r(t) 
k{t)R(t), and 

^(0 - k(t)R(t) < 0 

for all t G [a, b]. Let K(t) = e'^a ̂ (̂ )̂ ^ Then 

K(t) = -k(t)e-^akis)ds ^ -K{t)k{t). 

Multiplying both sides of (8.1) by ^(0, we obtain 

(8.1) 

K{t)R{t) - K(t)k(t)R(t) < 0 
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or -[K(t)R(t)]^0. (8.2) 

Integrating (8.2) from a to t, we obtain 

K(t)R(t) - K(a)R(a) < 0 

or K(t)R(t) - 6 < 0 

or e-^i^^'^'^'R(t)-8^ 0 

or r(t)^ R(t)^ 8e^ik{s)ds^ 

which is the desired inequaUty. • 

B. Unique Solutions 

Before addressing the uniqueness issue, we need to introduce the notion of Lipschitz 
continuity. 

DEFINITION 8.1. A function / E C(A R), D C R\ is said to satisfy a Lipschitz con
dition on D (with respect to x) with Lipschitz constant L if 

\f(t,x)-f(t,y)\^L\x-y\ 

for all (t, x), {t, y) in D. The function/ is said to be Lipschitz continuous mxonD in this 
case. • 

For example, if / E C ( A R) and if dfldx exists and is continuous on D, then 
/ is Lipschitz continuous on any compact and convex subset Do ofD. To show this, 
let LQ be a bound for \(df/dx)(t, x)\ on DQ. Let {t, x) and (t, y) be in DQ. Since DQ is 
convex, the straight line that connects (t, x) and (t, y) is a subset of DQ, By the Mean 
Value Theorem there is a point z on this line such that 

| / ( r , X) - fit, y)\ = (t,z)(x-y) 
dx 

Lo|x - y\. 

THEOREM 8.2. If / G C{D, R) and if/ satisfies a Lipschitz condition (with respect 
to x) on D with Lipschitz constant L, then the initial-value problem (/') has at most one 
solution on any interval \t - to\ ̂  d. 

Proof, Suppose for some d > 0 there are two solutions (/>! and (/)2 on |r - fo| — d. Since 
both solutions solve (V) on ̂ o — t — to + d, we have 

1^1(0-02(01 [f(s,Ms))-f(s,Ms))]ds 
to 

< \f(s,Ms))-f(s,Ms))\ds 
JtQ 

< f L\cl>i(s)-ct>2(s)\ds. 
JtQ 

Applying the Gronwall Inequality (Theorem 8.1) with k = L and 8 = 0, it follows that 
|(/>i(0 - 02(01 ^ 0 on the interval to^ t < to + d. Thus, 0i(O = 02(0 on this interval. 

The proof for the interval to - d ^ t ^ to proceeds similarly. • 



COROLLARY 8.3. If/ and dfldx are both in C(A R), then for any (^, XQ) G D and 31 
any J containing ô, if a solution of (/') exists on 7, it must be unique. 

Proof. Let (j)\ and (/)2 be two solutions of (/') on / and define 

b = sup{/ > to : 01(0 - 02(0}, a = mf{t < ro : 0i(O -̂  </>2(0}. 

We claim that a and Z? are the endpoints of J {dJ = {a, b}). For if b is not an endpoint 
of/, then by continuity we would have 01 (Z?) = (piib). Since (b, 4>\{b)) E Z) and D is a 
domain, we know that there exists 6 > 0 such that 

DQ = {(t, x):\t-b\^ e, Mb)\^€}ca 

Clearly, DQ is a compact and convex subset of D. Now from the comments following 
Definition 8.1 and Theorem 8.2, we have that 0i(O = 02(0 for ^ ^ [b,b + e'] for some 
0 < e' < e. This contradicts the definition of b. We conclude that b is an endpoint of 
7, and so is a. It follows that 0i(O = 02(O> t ^ J, which implies the uniqueness of the 
solution of (/'). • 

Using Theorems 7.3 and 8.2, we can prove the following continuation result. 

THEOREM 8.4. Let / E C(J X R, R) for some open interval J C R and let/ satisfy 
a Lipschitz condition on J X R (with respect to x). Then for any (to, XQ) E / X R, the 
initial value problem (/') has a unique solution that exists on the entire interval / . 

Proof, The local existence and uniqueness of solutions 0(/, to, xo) of (/') are clear from 
Theorem 8.2. Now if 0(0^ 
(V), and therefore, 

•- (j)(t, to, Xo) is a solution defined on ^ < t < c, then 0 satisfies 

0(0 - 0̂ = [f{s, <f){s)) - f(s, Xo)] ds + f{s, xo)ds 
Jto JtQ 

and 10(0 - xo| ^ L\<p(s) - xo\ds + 8, 

where 8 = [max̂ Q<̂ <c \f(s, xo)\](c - to). By the Gronwall Inequality, we have 

10(0 - xol < 6 exp[L(c - to)l to ^ t < c. 

Hence, |0(O| is bounded on [to, c) whenever 0(0 is a solution defined on [to, c), c E. J. 
Let / = (a, b) and assume that 0 is a noncontinuable solution of (/') that is defined on 
/* = (a', b'). We must prove that b' = b. If this is not the case, we have b' < b. We have 
shown that |0(O| is bounded, say, |0(O| ^ M, for t E [to, b'). Let D = J X [-M - 1, 
M + 1]. Applying Theorem 7.3, we have that (t, 0(0) -^ dD as ̂  -^ b'. Since b' < b, we 
must have |0(O| -^ M + 1 as r ̂  b'. But this contradicts our assumption that |0(O| ^ M 
for t E [to, b'). Therefore, b' = b. 

A similar argument works for r < ^. • 

Successive approximation of solution 

If a solution 0 of (/') is unique, then the e-approximate solutions constructed in 
the proof of Theorem 6.2 will tend to 0 as e -^ 0^, and this is the basis for justifying 
Euler's method, a numerical method of constructing approximations to 0. Now^ if 
we assume that / satisfies a Lipschitz condition, an alternative classical method of 
approximation is the method of successive approximations (also known as Picard 
iterations). Specifically, let / E C{D, R), D C R^, and 5' be a rectangle in D cen
tered at (^, XQ) (see Fig. 1.9), and let c and M be defined by Eq. (6.4). Successive 
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approximations for ( / ' ) , or equivalently for ( V ) , are defined as 

ft (8.3) 
^m+i(0 = -̂ 0 + f(s, (f)m{s))ds, m - 0, 1, 2 , . . . 

ho 

for |r - ôl — c. For this sequence {4>m}^ we have the following result. 

THEOREM8.5. I f / E C(A /?) and if/ is Lipschitz continuous on S (with respect to x) 
with constant L, then the successive approximations (f)m, m = 0, 1, 2 , . . . given in (8.3) 
exist on I? - 0̂1 — c, are continuous there, and converge uniformly, as m ^ oo, to the 
unique solution of (/'). 

Proof. We give the proof for the interval ^ < ^ < to + c. The proof for the interval 
to - c ^ t ^ to proceeds similarly. 

Using induction on the integer m, we first prove the following statements: 
(i) (j)fn exists on [to, to + c], 

(ii) (l>meC\[to>to + clRl 
(iii) 10^(0 - xo\^ M(t~ to) on [to, to + c] 

for all m > 0. 
Each statement is clearly true when m = 0. Assume that each statement is true 

for a fixed integer m > 0. By (iii) and by the choice of c, it follows that (t, 4>m(t)) £ 
5 C D for all t G [̂ 0, to + c]. Therefore, f(t, (pmit)) exists and is continuous in t, while 
\f(t, (t>m(t))\ ^ M on the time interval. This in turn means that 

4>m+l(t) = Xo+ \ f(s,(t)m(s))ds 
J to 

exists, that (1)^+1 G C\[to, to + c], R), and that 

\(l>m+l(t) - -̂ ol = f{s,4>m{s))ds M{t - to). 

This completes the induction on m. 
Next, we define ^mit) = 4>m+\(t) - (t>mit). Then 

|^m(0| : | / ( ^ , (l)m{s)) - f{s, (t)m-\is))\ds\ 

< L\4)m{s)- (f)ni-\{s)\ds = L \ <tm-\{s)ds. 
Jto JtQ 

Notice in particular that 

l^o(Ol 

The above two estimates show that 

f(s, xo) ds < M{t - to). 

1̂ 1 (01 ̂  L \ M(s-to)ds = 
JtQ 

LMjt - tof 
2! 

and that 

|O2(0| ^ L [LM{s - tofl2\]ds • 
Jto 

L^Mjt - tof 
3! 



and, by induction, that 

\^m(t)\ 

Therefore, the mth term of the series 

(m+ 1)! * 

M (Lc)"^^^ 
is bounded on the interval [to, to + c] by ^ ^——TTT • Now since 

(8.4) 

nLc 

L (m+ 1)!' 

Ley 
Id 

= > :̂ i- < 00, 

it follows from the Weierstrass M-test (see Theorem 5.4) that the series (8.4) converges 
uniformly to a continuous function (f). This in turn means that the sequence of partial 
sums 

m 

</>0 + ^,{4>k+\ - 4>k) = 4>0 + (<pl - M + '•• + (0m+l - </>m) = 4>m+\ 
k = 0 

tends uniformly to (̂  as m —> oo. Since the bound (iii) given above is true for all c/)̂ , it is 
also true in the limit, i.e., 

10(0 - xo\ < M(t - to). 

Therefore, f(t, (p(t)) exists and is a continuous function oft. Using an identical argument 
as in the proof of Theorem 6.3, it now follows that 

(/)(0 = lim 0^+1(0 = xo+ lim f(s,(l)m(s))ds 

= xo-h \ f{s,(j){s))ds, to < t ^ to + C. 

Therefore, (f) solves {V). • 

We will consider the application of Theorem 8.5 to specific cases (linear sys
tems) in Section 1.13. 

*1.9 
CONTINUOUS DEPENDENCE OF SOLUTIONS ON INITIAL 
CONDITIONS AND PARAMETERS 

33 

CHAPTER 1 : 

Mathematical 
Descriptions of 
Systems 

In practice it frequently happens that an initial-value problem may exhibit depen
dence on some parameter A. An example of such a class of problems is given by 

(n,.,p X = fit, X, A) 

X{T) = ^, 

where / G C{J X RX D, R), J C Ris m open interval, and D C R, 
If it is assumed that for each pair of compact subsets JQ C J and DQ C D there 

exists a constant L = LJ^,DO > 0 such that for all (t, X) G JQ X DQ, x, y G R, 

\f(t,x,X)-f(t,y,X)\^L\x-yl (9.1) 



34 then by previous results we know that for every r ^ J,\E. D, and ^ G /? the initial-
Linear Systems value problem (/{ r P ^^^ ^ unique solution (j){t) = (f){ty r, ^, A) that exists for all 

^ E / . It turns out that this solution depends continuously on the initial data (T, ^, A). 
We express this in the following result. 

THEOREM9.1. L c t / E C{J XRXD, R), where J C Risan open interval and D C R. 
Assume that for each pair of compact subsets JQ C J and Do C D, there exists a constant 
L = LJQ,DQ > 0 such that for all (t, X) E. JQXDQ, x,y G R, the Lipschitz condition (9.1) 
is true. Then the initial-value problem (I'xre^ ^^^ ^ unique solution (pit, r, ̂ , A), where 
cf) G C(J X J X R X D,R). Furthermore, if Z) is a set such that for every XQ G D there 
exists 6 > 0 so that [XQ - e, XQ + e] H D C D, then </)(̂ , r, ̂ , A) -> (j){t, TQ, Ô> AQ) uni
formly for ? E 7o as (r, ^, A) -^ (TQ, &, AQ), where Jo is any compact subset of/. • 

It is because of uniform convergence that we require the restrictions on D in 
Theorem 9.1. However, in practice, most sets that are of interest to us satisfy these 
assumptions, including open and closed sets in R, intervals such as {a, b\ and {a, b), 
sequences such as {(1/n) : n G N}, {0} U {{lln) : n G N), {m + (1/n) : m,n E. N}, 
{m : m G A/̂} U {m + (l/n) \ m,n EL N}, and so forth. 

Applying Theorem 9.1 to the initial-value problem 

X = f(t, X, A) 
(n,r) 

where it is assumed that ^A depends continuously on A, we obtain the following 
result. 

COROLLARY 9.2. Let / G C(J X R X D, R), where J C R is an open interval and 
D C R. Assume that for each pair of compact subsets Jo E J and Do E D there exists a 
constant L = LJ^,DQ > 0 such that for all (t, X) E JQ X Do, x,yER, the Lipschitz con
dition (9.1) is true. Then the initial-value problem (/ĵ )̂ has a unique solution (/>(?, r, A), 
where (f) E C(J X J X D, R). Furthermore, if D is a set such that for every AQ G D 
there exists an 6 > 0 so that [Ao - 6, Ao + e] fl D C D, then (/)(̂ , r. A) -^ (j){t, TQ, AQ), 
uniformly for r G /o as (r, A) -^ (TO, AO), where Jo is any compact subset of J. • 

Proof of Theorem 9 J. For the solution (/>(/, r, ^, A), we first show that 4> E C(J X J X 
RXD, R). By (/{ ̂ ^) we have that 

cl>(t, T, ^, A) = ^ + f f(s, cl>(s, T, ^, A), A) ds. (9.2) 
J to 

We want to show that for (to, TQ, ^O, AQ) G / X / X /? X D, 

(l>(tm> Tm, ^m, A^) -^ (f)(to, To, & , Ao) 

as {tm, Tm, U> Am) -^ (̂ 0, To, &, Ao), where (tm, Tm, U,Xm) E J X J X RXD for each 
m G Â . By (9.2) we have 

(p{tm, Tm, ^m, A^) - (j){to, To, & , Ao) 

= ^m - & + I f{s, ^{S, Tm, ^m, ^m\ Xm) ds 

I 

f{s, (f){s, To, &, Ao), Ao) ds 
•̂ 0 

= ^m - & + ( / ( 5 , (I>{S, Tm, ^m> K \ ^m) " f(s, (^(5, To, & , Ao), A^) ) ds 



m. 

{f{s, ct)(s, To, &, Ao), A^) - / (5 , (t)(s, To, ^0, Ao), Ao)) ds 

+ f(s, (/)(5, To, &, Ao), Ao) ds 
J to 

fTm 

f(s,(l)(s,To,^o,\oXXo)ds. 

Denote 

{a,b) 

(9.3) 

[b,a], \fa>b. 

Since fo, '̂ b £ «/, and 7 is an open interval, it follows that for m sufficiently large, (T^, tm), 
{to, tm), and (TO, T^) are contained in / . Also, given (TO, ^Q, AQ) E. JxjxD, (f)(s, To, ^o, Ao) 
is a continuous function on J. Note that since / E C( / X RXD, R), we can assume that 
for m sufficiently large. 

and 

niax \f(s, (i){s, To, &, Ao), Ao)| ^ M 
S^{tQ,trn) 

max 1/(5, (/>(5, To, &, Ao), Ao)| < M 
S&{TQ,Tm) 

for some M > 0. 
We now have 

\4>itm, Tm, ^m, ^m) " </>(^, ^o, & , A o ) | 

< 1̂ ^ - &| + M(\tm - tQ\ + \Tm - Tol) 

1/(5, 0(5, Tm, ^m, A^), A^) - f(s, (t){s, To, &, Ao), km)\ds 

1/(5, (/)(5, To, & , Ao), A^ ) - / ( 5 , (f){s, To, fo, Ao), Ao)|(i5 . 

Without loss of generality, we assume that ^ > To. Then for m sufficiendy large, there 
exists e > 0 such that [TO - e, ^ + e] C / and 

\4>itm, Tm, ^m, ^m) " 4>{k, To, & , Ao)| 

< \^m - & | + M{\tm - k\ + \Tm " To|) 

1/(5, (/)(5, Tm, U, Xm), ^m) " f{s, (^(5, To, & , AQ), A ; „ ) | ds 

+ 

TQ-e 

To-e 
1/(5, (^(5, To, &, Ao), Am) - f(s, (j^is, To, ^0, Ao), Ao)| J5 

\^rn - & | + M ( | ^ ^ - ^1 + \Tm " To|) 

to+6 

1/(5, (/)(5, To, &, Ao), A;„) - / (5 , (f){s, To, &, Ao), Ao)| ds 

rto+e 

+ L 10(5, Tm, ^m, Am) " 0 ( ^ , To, &, Ao)| <i5. 

By the Gronwall Inequality, we obtain that 

\(t>{tm, Tm, ^m, K) " 0(^0, TQ, & , Ao)| < (|^m " & | + M{\tm ' ^o| + Vm " To|) 

+ [ ' ' ^ ' 1/(5, 0 ( 5 , TO, &, Ao), km) - f{s, 0 ( 5 , To, & , Ao), Ao)| J5)^^(^0-0+2.)_ (9 4 ) 
J To-6 
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36 Since f(s, cl)(s, TQ, &, AQ), A) G C([TO - eJo + e]X RX {Xj, R) (with 5, A as variables 
Linear Systems and {A^} C D since A^ ^ AQ G D) and since [TQ - 6, ^ 4- e] x {A;„} is a compact subset 

of / X D, we have by Theorem 5.2 and (9.4), as m ^ oo, that 

l i m \(l)(tm> Tm, ^m, Am) " (/>(^0, TQ, & , A o ) | = 0 . 

Thus, (I)GC(JXJXRXD,R). 
Similarly, under the assumption on D, we can prove that </>(̂ , r, ̂ , A) -^ 

<l>(t, To, ô> Ao), uniformly for t G JQ as (r, ^, A) -^ (TQ, Ô> AQ), where JQ is any com
pact subset of J. In place of (9.3), we have 

(/>(?, To + AT, & + A^, Ao + AA) - 0(r, ^, &, AQ) 

= A^ + [ (f(s, (l)(s, To + AT, & + A^, Ao + AA), Ao + AA) 
JTQ+AT 

- f(s, (j){s, To, &, Ao), Ao + AA)) J^ 

+ {f{s, (j){s, To, &, Ao), Ao + AA) - f{s, (Pis, TQ, fo, Ao), Ao)) ds 
JTQ+AT 

/(5,(/)(^,To,&,Ao),Ao)J^. (9.5) 
Jro 

Let ||A|| = V(AT)2 + (A^)2 + (AA)2, ^̂ âx ^ max{^ : r G /o}, and /min = min{f : r E 
JQ}. Then there exists e > 0 such that when ||A|| < 6, < TO + AT, r > C < TO - 6, 
tmax > U < tmin, TQ + € > = Trr, C J, < TQ, TQ + A T > C [TO - 6, TQ + e ] C J, and 

[Ao - 6, Ao + 6] n D ^ DAO C D. 

Note that both 7̂ ^ and D^^ are compact subsets of J and D, respectively. For (t, A) E 
r,QXDAo,let 

M = max 1/(5, (/)(5, To, &, Ao), Ao)|. 
5G[To-e,To+e] 

By the Lipschitz condition, we obtain 

|(/)(r, To + AT, 0̂ + A^, Ao + AA) - (/)(?, TO, ^O, AO)| 

< |A^| + M | A T | 

+ I 1/(5, (/)(5, To, &, AO), AO + AA) - f(s, cf^is, TQ, &, Ao), Ao)| ds 

+ L I |(/)(5, To + AT, & + A^, Ao + AA) - (/>(5, To, &, Ao)| J^. 

Again, using the Gronwall Inequality, we have that 

|0(/, To + AT, & + A|̂ , Ao + AA) - (/>(r, TQ, &, Ao)| 

< (|A^| + M | A T | 

+ i 1/(5, (/>(5, TO, &, Ao), Ao + AA) - f(s, (/>(5, To, &, Ao), Ao)| ̂ 5) 
^ET-̂

0 

By the first part of the proof, we already know that f(s, (/)(5, To, ^o. Ao), A) E €(1^^ X 
R X DXQ, R), which implies t ha t / is uniformly continuous on the compact set Tj^ X 
DXQ. Therefore, by Theorem 5.2 and (9.6) we know that (/)(̂ , T, ^, A) -^ (pit, TQ, io, Ao), 
uniformly as (T, ^, A) -^ (TO, ^O, AO) for t ^ JQ. • 



1.10 
SYSTEMS OF FIRST-ORDER ORDINARY 
DIFFERENTIAL EQUATIONS 

In Sections 1.6 to 1.9 we addressed the existence of solutions, the continuation of 
solutions, the uniqueness of solutions, and the continuous dependence of solutions 
on initial data and parameters for the scalar initial-value problem for ordinary dif
ferential equations [characterized by {E') and (/') or by (V) (resp., by (/j^^.)]. In 
this section we show that these results can be extended to initial-value problems 
characterized by systems of equations [determined by {E) and (/) or by (V) (resp., 
by (/A,T))] with no essential changes in proofs. Before we can accomplish this, how
ever, we need to introduce additional background material. 
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A. More Mathematical Preliminaries: Vector Spaces 

We will require the notion of vector space, or linear space over a field. 

DEFINITION 10.1. Let F be a set containing more than one element and let there be 
two operations "+" and "•" defined on F (i.e.,"+" and "•" are mappings of F XF into F), 
called addition and multiplication, respectively. Then for each a, p G F there is a unique 
element a + (3 E. F, called the sum of a and jB, and a unique element a(3 = a - (3 E^ F, 
called the product of a and f3. We say that {F; +, •} is afield provided that the following 
axioms are satisfied: 

(i) a + (/3 + y) = (a + /3) + 7 and a • (jS • y) = (a • j8) • 7 for all a, jS, y G F 
(i.e., "+" and "•" are associative operations); 

(ii) a + (3 = (3 + a and a - (3 == /3 • a for all a, /3 E F (i.e., "+" and "•" are 
commutative operations); 

(iii) a • (j8 + y) = a • jS + a • y for all a, /3, y G F (i.e., "•" is distributive 
over "+"); 

(iv) There exists an element Of G F such that Of + a = a for all a E F (i.e., Of 
is the identity element of F with respect to "+"); 

(v) There exists an element IfEF^lfj^Of, such that If - a = a for all a E F 
(i.e.. If is the identity element of F with respect to "•"); 

(vi) For every a E F there exists an element -a G F such that a + (-a) = Of 
(i.e., -a is the additive inverse of F); 

(vii) For any a T^ Of there exists an o;"̂  G F such that a - (a~^) = If (i.e., a~^ 
is the multiplicative inverse of F). • 

In the sequel, we will usually speak of a field F rather than "a field {F; +, •}." 
Perhaps the most widely known fields are the field of real numbers R and the 

field of complex numbers C. Another field we will encounter (see Chapter 2) is the 
field of rational functions (i.e., rational fractions over polynomials). 

As a third example, we let F = {0, 1} and define on F (binary) addition as 0 + 
0 : ^ 0 = 1 + 1, 1 + 0 = 1 = 0 + 1 and (binary) multipHcation as 1 • 0 = 0 • 1 = 
0 • 0 = 0, 1 • 1 = 1. It is easily verified that {F; +, •} is a field. 

As a fourth example, let P denote the set of polynomials with real coefficients 
and define addition " + " and multiplication "•" on P in the usual manner. Then 
{F; +, •} is not a field since, e.g., axiom (vii) in Definition 10.1 is violated (i.e., the 
multiplicative inverse of a polynomial p G P is not necessarily a polynomial). 



38 DEFINITION 10.2. Let V be a nonempty set, let Fbe a field, l e t "+" denote a mapping 
Linear Svstems of V X V into V, and let "•" denote a mapping of F X y into V. Let the members x ^ V 

be called vectors, let the elements a G F be called scalars, let the operation " + " defined 
on V be called vector addition, and let the mapping "•" be called scalar multiplication or 
multiplication of vectors by scalars. Then for each x,y ELV there is a unique element, 
X + y EV, called the sum ofx and y, and for each x ELV and a G F there is a unique 
element, ax = a • x E V, called the multiple ofx by a. We say that the nonempty set V 
and the field F, along with the two mappings of vector addition and scalar multiplication, 
constitute a vector space or a linear space if the following axioms are satisfied: 

(i) X + y = y + xfoY every x,ySV. 
(ii) X + (y + z) = (x + y) + zfoY every x,y,zE. V. 

(Hi) There is a unique vector in V, called the zero vector or the null vector or the 
origin, that is denoted by Oy and has the property that Oy + x == x for all 
xEV. 

(iv) a:(x + y) = ax + ay for all a G F and for all x,y EV. 
(v) (a + P)x = a x + j8x for all a, ^ G F and for all x E V. 

(vi) (a;/3)x = Q:(/3X) for all a, jS G F and for all x E V. 
(vii) OFX = Oy for all x E V. 

(viii) Ipx = X for all x G V. • 

In subsequent applications, when the meaning is clear from context, we will 
write 0 in place of OF, 1 in place of Ip, and 0 in place of Oy. To indicate the relation
ship between the set of vectors V and the underlying field F , we sometimes refer to 
a vector space V over the field F , and we signify this by writing (V, F). However, 
usually, when the field in question is clear from context, we speak of a vector space 
V. If F i s the field of real numbers, R, we call the space a real vector space. Similarly, 
if F is the field of complex numbers, C, we speak of a complex vector space. 

Examples of vector spaces 

EXAMPLE 10.1. Let V = F^ denote the set of all ordered /z-tuples of elements from 
a field F. Thus, if x E F'', then x = {x\,..., Xnf, where xt G F, i = 1 , . . . , n. With 
x,y GF"^ and a E F, let vector addition and scalar multiplication be defined as 

X + y = {Xi, . . . , Xnf + {y\, . . ., ynf 

^ {x,^-y,,...,Xn + ynf (10.1) 

and ax = a{xi,..., Xnf = {axi,.. .,axnf. (10.2) 

In this case the null vector is defined as 0 = (0 , . . . , 0)^ and the vector - x is defined as 
-X = -(xi,..., Xnf = ( - x i , . . . , -Xnf. Thcu wc utilizc the properties of the field F, 
all axioms of Definition 10.2 are readily verified, and therefore, F^ is a vector space. We 
call this space the space F" ofn-tuples of elements ofF. If in particular we let F = R, 
we have /?", the n-dimensional real coordinate space. Similarly, if we let F = C, we 
have C", the n-dimensional complex coordinate space. • 

We note that the set of points in R^, {x\, X2), that satisfy the linear equation 

Xi + X2 + C == 0, C 7^ 0, 

with addition and multiplication defined as in Eqs. (10.1) and (10.2), is not a vector 
space (why?). 

EXAMPLE 10.2. Let y = 7?°° denote the set of all infinite sequences of real numbers, 

X = {Xi, X2, . . ., Xk, . . .} = {Xi}, 



let vector addition be defined similarly as in (10.1), and let scalar multiplication be 
defined as in (10.2). It is again an easy matter to show that this space is a vector space. 

On some occasions we will find it convenient to modify V = R°° io consist of the 
set of all real infinite sequences {xi}, i eZ. • 

EXAMPLE 10.3. Let 1 < /? < oo and define V = lphy 

xeR"^ 
i=l 

<^ oo 1 < / ? < < 
(10.3) 

{xeR^^ : sup{|x;|} <oo}. 

Define vector addition and scalar multiplication on Ip as in (10.1) and (10.2), respec
tively. It can be verified that this space, called the Ip-space, is a vector space. • 

In proving that Z ,̂ 1 < p < ^ , is indeed a vector space, in establishing some of 
the properties of norms defined on the /^-spaces (see Examples 10.10 and 10.11), in 
defining linear transformations on /^-spaces (see, e.g.. Example 10.8), and in many 
other applications, we make use of the Holder and Minkowski Inequalities for infinite 
sums, given below. (These inequalities are of course also valid fox finite sums.) For 
proofs of these results, refer, e.g., to Michel and Herget [12, pp. 268-270]. 

Holder's Inequality states that if p,q e R are such that 1 < p < oo and 1/p + 

l/q = 1, and if {xi} and {yi} are sequences in either R or C, and if YtLi \^i\^ < "^ 

and YiLi \yi\^ < "^^ then 

/ oo \ ^ I P f oo \ V ^ 

Minkowski's Inequality states that if p e R, where 1 < p < ^ , and if {xi} and 
{yi} are sequences in either R or C, and if YiLi \^i\^ < "^ and YiLi \yi\^ < "̂ ^ then 

/ oo \ ^ / P / o o \ ^ / P / o o \ V P 

[l\^i^yi\n <[l\^i\n +ll\yi\n • (M,) 

If in particular p = q = 2, then (Hs) reduces to the Schwarz Inequality for sums. 

EXAMPLE 10.4. Let V = C{[a,b],R). We note that x = y if and only if x{t) = y{t) 
for all t G [a,b], and that the null vector is the function that is zero for all t G [a,b]. 
Let F denote the field of real numbers, let a G F, and let vector addition and scalar 
multiplication be defined pointwise by 

{x + y){t)=x{t)+y{t) foralU G [a,b] (10.4) 

ĵ̂ (^ {ax){t) = ax{t) foY?illt e[a,b]. (10.5) 

Then clearly x-\-y eV whenever x,y eV,ax eV whenever a G F and x G V, and all 
the axioms of a vector space are satisfied. We call this space the space of real-valued 
continuous functions on [a, b] and we frequently denote it simply by C[a,b]. • 

EXAMPLE 10.5. Let I < p < oo and let V denote the set of all real-valued functions x 
on the interval \a, b] such that 

/ \x{t)\Pdt<' 
Ja 
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40 Let F = R and let vector addition and scalar multiplication be defined as in (10.4) and 
Linear Svstems (10-5), respectively. It can be verified that this space is a vector space. 

In this book we will usually assume that in (10.6), integration is in the Riemann 
sense. When integration in (10.6) is in the Lebesgue sense, then the vector space under 
discussion is called an L^-space (or the space Lp[a, b]). • 

In proving that the L^-spaces are indeed vector spaces, in establishing properties 
of norms defined on L^-spaces (see, e.g., Example 10.12), in defining linear trans
formations on Lp-spaces (ee, e.g.. Example 10.12), and in many other applications, 
we make use of the Holder and Minkowski Inequalities for integrals, given below. 
(These inequalities are valid when integration is in the Riemann and the Lebesgue 
senses.) For proofs of these results, refer, e.g., to Michel and Herget [12, pp. 268-
270]. 

Holder's Inequality states that if p,q ^ R are such that 1 < j9 < oo and 
lip -\- 1/q = 1, if [a, b] is an interval on the real line, if / , ^ : [a, b] -^ R, and 
if \a 1/(01^ dt<^ and j / \g(t)\^ dt < oo, then 

(
, \l//7 / , \[/q 

[ 1/(01" ̂ M ij \g(t)\''dt\ . (HI) 
Minkowski's Inequality states that if p G R, where 1 ^ p <'^,ii f, g : [a,b\^' 

R, and if / / 1/(01" dt <'x> and / / [^(Ol'' dt < oo, then 

( , \A/p I , \\lp I , \\lp 

\^\f(t)±g{t)Ydt\ < M 1/(01"̂ H ^\\\g{t)Ydt\ . (M,) 
If in particular p = q = j , then (///) reduces to the Schwarz Inequality for 

integrals. 
EXAMPLE 10.6. Let V denote the set of all continuous real-valued functions on the 
interval [a, b] such that 

sup \x(t)\ < ^. (10.7) 
a<t<:b 

Let F = R and let vector addition and scalar multiplication be defined as in (10.4) and 
(10.5), respectively. It can readily be verified that this space is a vector space. 

In some applications it is necessary to expand the above space to the set of measur
able real-valued functions on [a, b] and to replace (10.7) by 

ess sup \x(t)\ < 00, (10.8) 

a<t<b 

where ess sup denotes the essential supremum, i.e., 

ess sup \x(t)\ = inf {M : m{t: \x(t)\ > M} = 0}, 
a<t<b 

where m denotes the Lebesgue measure. In this case, the vector space under discussion 
is called the Loo-space. • 
Next, we consider linear transformations. 

DEFINITION 10.3. A mapping T of a linear space V into a linear space W, where V 
and W are vector spaces over the same field F, is called a linear transformation or a 
linear operator provided that 

(L-i) T{x + y) = T{x) + T(y) for all x,yeV. 

(L-ii) T(ax) = aT(x) for all x e V and a G F. • 



In Section 1.16 we will discuss in detail the representation of linear systems 41 
by means of linear operators. This discussion will be continued in Chapter 2. In the CHAPTER 1: 
following, we consider three specific examples of linear transformations. Mathematical 

EXAMPLE 10.7. Let (V, R) = (/?«, R) and (W, R) = {R"^, R) be vector spaces defined Descriptions of 
as in Example 10.1, let A = [a/y] G /?^>'̂  and let T : V ^ VF be defined by the equation Systems 

y = Ax, y^R'' R\ 

It is easily verified, using the properties of matrices, that 7 is a linear transformation. • 

EXAMPLE 10.8. Let (V, R) = (Ip, R) be the vector space defined in Example 10.3 
(modified to consist of sequences {x/}, / G Z, in place of {x/}, / = 1,2,...). Let 
h : Z X Z ^ / ?bea function having the property that for each x E V, the infinite 
sum 

^ h(n, k)x(k) 

exists and defines a function of n on Z. Let T :V ^ F be defined by 
00 

y{n) = ^_^ h{n, k)x(k). 
k= - c o 

It is easily verified that T is a linear transformation. 
The existence of the above sum is ensured under appropriate assumptions. For 

example, by using the Holder Inequality it is readily shown that if, e.g., for fixed 
n, {h(n, k)} G I2 and {x(k)} G fc, then the above sum is well defined. The above sum 
exists also if, e.g., {x(k)} G L and {h(n, k)} G /i for fixed n. • 

EXAMPLE 10.9. Let (V, R) denote the vector space given in Example 10.5 and let 
k G C([a, b] X [a, b], R) have the property that for each x E V, the Riemann integral 

k(s,t)x(t)dt 

exists and defines a continuous function of s on [a, b]. Let T : V ^ V be defined by 

rb 

(Tx)(s) = y(s) = k{s,t)x{t)dt. 
Ja 

It is readily verified that T is a linear transformation of V into V. 

B. Further Mathematical Preliminaries: Normed Linear Spaces 

In the following, we require for (V; F) that F be either the field of real numbers R 
or the field of complex numbers C. For such linear spaces we say that a function 
II • II : y -> 7?̂  is a norm if 

(N-i) ||x|| > 0 for every vector x E V and \\x\\ = 0 if and only if x is the null 
vector (i.e., x = 0); 

(N-ii) For every scalar a E F and for every vector x E K ||Q:X|| = Iĉ Hkll, 
where |Q:| denotes the absolute value of a when F = R and the modulus 
when F = C; 

(N-iii) For every x and y in V, \\x + y\\ < ||xi| + ||y||. (This inequality is called the 
triangle inequality.) 



42 We call a vector space on which a norm has been defined a normed vector space 
Linear Systems ^^ ^ normed linear space. 

EXAMPLE 10.10. On the linear space (/?", R), we define for every x = {xi,..., XnY, 

\\A\p = Zl^'-lM ' l^P<^, (10.9) 

and ||x||oo = max{|x/| : I < i < n}. (10.10) 

Using Minkowski's Inequality for finite sums, (M )̂, it is an easy matter to show that for 
every/?, 1 < /> < oo, || • ||̂  is a norm on R^. In addition to || • ||oo, of particular interest to 
us will be the cases p = \ and p = 2, i.e., 

IWIi =i^M (10.11) 

and \\x\\2 -^\T\xi?\ . (10.12) 

The norm || • ||i is sometimes referred to as the taxicab norm or Manhattan norm, while 
II • II2 is called the Euclidean norm. 

The foregoing norms are related by the inequalities 

\\x\\o. < IWIi < ÎWJoo (10.13) 

ll̂ lloo < llxlb < >||x||oo (10.14) 

Iklb ^ IWIi < v^lWb. (10.15) 

Also, for p = 2, we obtain from the Holder Inequality for finite sums, (//^), the Schwarz 
Inequality 

\l/2 / „ xl/2 

•T^,\ ^ \x^y\ ^xtyt 
i=l 

^Eî 'H E N I (10.16) 

forallx, y E /?". 

The assertions made in the above example turn out to be also true for the space 
(C", C). We ask the reader to verify these relations. 

EXAMPLE 10.11. On the space Ip given in Example 10.3, let 

\\4p = (XM'] , i^p<^, 

and ||x||oo = sup|x/|. 

Using Minkowski's Inequahty for infinite sums, (Ms), it is an easy matter to show that 
II • lip is a norm for every p, 1 < /? < 00. • 

EXAMPLE 10.12. On the space given in Example 10.5, let 

x(t)\Pdt] , 1 < p < 00. 

Using Minkowski's Inequality for integrals, (M/), it can readily be verified that || • \\p 
is a norm for every p, 1 < p < 00. Also, on the space of continuous functions given in 



Example 10.6, assume that (10.7) holds. Then 

||x||oo = sup \x(t)\ 
a<t<b 

is easily shown to define a norm. Furthermore, expression (10.8) can also be used to 
define a norm. • 

EXAMPLE 10.13. We can also define the norm of a matrix. To this end, consider the 
set of real m X n matrices, R^^^ = V and F = R. It is easily verified that (V, F) = 
(R^^'^, R) is a vector space, where vector addition is defined as matrix addition and mul
tiplication of vectors by scalars is defined as multiplication of matrices by scalars. 

For a given norm 
I,, : R^""^ -^ i?+ by 

\\u on i?" and a given norm || • ||v on R"^, we define 

sup{||Ax||v : X G /?^ with \\x\\u = 1}. (10.17) 

It is easily verified that 

(M-i) ||Ax||v < ||A||vJx||« for any x G /?^ 

(M-ii) ||A + 5 | U < | | A | U + ||5|U; 

(M-iii) ||aA|U = |a|||A|U for all a G R; 

(M-iv) ||A||vM ^ 0 and ||A||VM = 0 if and only if A is the zero matrix (ie., A = 0); 

(M-v) ||A|U ^ XT=iT%i \aij\ for any p-vector norms defined on i?^ and /?^. 

Properties (M-ii) to (M-iv) clearly show that || • ||VM defines a norm on R^^^ and jus
tifies the use of the term matrix norm. Since the matrix norm || • ||VM depends on the choice 
of the vector norms, || • \\u, and || • ||v, defined onU = R^ and V = R^, respectively, we 
say that the matrix norm || • 
ticular, if || • ||« = || • ||̂  and 
denote the norm of A. 

As a specific case, let A = [atj] G R 

is induced by the vector norms || • \\u and || • ||v. In par-
llv = II • II;?, then the notation ||A||;, is frequently used to 

, Then it is easily verified that 

/ m 

||A||i = m a x ^ l a , - ^ 

||A||2 = [maxA(A^A)]i/^ 

where max A(A-̂  A) denotes the largest eigenvalue of A^A, and 
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||A||. = m a x ^ | f l , v l . 

When it is clear from context which vector spaces and vector norms are being 
used, the indicated subscripts on the matrix norms are usually not used. For example, if 
A G /?^^" and B G /?"><^ it can be shown that 

(M-vi) | |A5 | |^ B\\. 

In (M-vi) we have omitted subscripts on the matrix norms to indicate inducing vector 
norms. • 

We conclude this subsection by noting that it is possible to define norms on 
^j^mxn^ 7?) that need not be induced by vector norms. Furthermore, the entire discus
sion given in Example 10.13 holds also for norms defined on complex spaces, e.g., 
(C^x", C). 
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Although most of what we will present in this subsection is true in a rather general 
setting, we will confine ourselves to the spaces {R^, R) or {C^, C). 

Using the concept of norm, we can define distance between vectors x and y in 
R^ [or in C^] by d{x, y) = \\x - y\\. The three basic properties of distance are given 
next and are a consequence of the axioms of a norm: 

(D-i) \\x - y\\> 0 for all vectors x, y and \\x - y\\ = 0 if and only if x = y; 
(D-ii) \\x - y\\ = \\y - x\\ for all vectors x, y; 

(D-iii) \\x - z\\ ̂  \\x - y\\ + \\y — z\\ for all vectors x, y, z. 

We can now define spherical neighborhood in R^ (in C") with center XQ and 
radius /̂  > 0 as 

B{xo, h) = {xER'' : \\x - xo\\ < h}. 

If in particular the center of a spherical neighborhood with radius h is the origin, then 

B(h) = {xER'' : ||x|| < h}. 

we write B(0, h) = B{h), i.e. 

We shall use the notation 

B{xo, h) = {xG R"" : \\x - xo\\ < h} 

and B(h) = {x G R"" : \\x\\ < h}. 

The introduction of vector and matrix norms enables us to generalize the notions 
of convergence of sequences, continuity of functions, and the like. We will not retrace 
here the entire presentation given in Sections 1.2 and 1.5. Instead, to demonstrate 
what is involved in these generalizations, we consider a few specific cases. 

A sequence of vectors {xm) = {{x\m, • • •. ^nmf} C R^ is said to converge to a 
vector X E R^ (i.e., x^ ^ x as m ^ oo) if 

lim \\xm — x\\ = 0, 

or equivalently, if for every e > 0 there exists an integer Â  = N(e) such that 
Ikm ~ -̂11 < ^ whenever m > N. (In this definition || • || denotes a norm on R^.) 
Using the properties of norms, it is easily shown that x^ -^ x if and only if for each 
coordinate one has x^rn -^ Xk^s m-^ ^, k = 1,.. .,n. 

The above allows the generalization of many of the properties of R to R^ (e.g., 
the Bolzano-Weierstrass property and the Heine-Borel property). 

As another example, consider/>6>m^/5'^ convergence of a sequence of functions. 
We say that a sequence of functions {f^}, fk - D ^ R'^, D C R^, k = 1, 2 , . . . , is 
pointwise convergent to a function f : D ^ R^ if for every e > 0 and every x E: D 
there is an integer N = N(e, x) such that ||/^(jc) - f(x)\\ < e whenever k^ N. (In 
the above definition, || • || denotes a norm on R"^,) Using the properties of norms, it is 
again easy to show that /^(x) -> f(x) for all x G Z) if and only if for each coordinate 
one has fik(x) -^ fi(x) as fc ̂  oo, / = 1 , . . . , n, for all x E D. 

As a third example, consider continuity of a function f : D ^ R^, where D is 
an open subset of R^. The function/ is said to be continuous at point XQ G Dif for 
every e > 0 there is a § = 8(e, XQ) > 0 such that 

ll/(-^) ~ /(-^o) IIF < ^ whenever || x - XQIU < ^-



\\Y is a norm defined on R^ and || • ||x is a norm defined 45 In the above definition | 
on/?^. 

Next, let g(t) = [gi{t\ . . . , gn(t)V be a vector-valued function defined on some 
interval J C R. Assume that each component of ^ is differentiable and integrable on 
/ . As pointed out earlier, differentiation and integration of ^ are defined component
wise, e.g., 

di 
dt (0 = 

and g{t)dt = 

dg\ 
dt 

b 

(0, dgn 
dt (0 

g\{t)dt,.. gn(t)dt 

It is easily verified that for b> a, 

g{t)dt\\ 
Ja 

i)\\dt, 

where again || • || denotes a norm on R^. 
Finally, if D is an open connected nonempty set in the {t, x)-space RX R^ and 

if / : D ^ R^, then/ is said to satisfy a Lipschitz condition with Lipschitz constant 
L (with respect to x) if for all {t, x) and {t, y) in D, 

\\f{t,x)-f{t,y)\\^L\\x-yl 

This is an obvious extension of the notion of a Lipschitz condition for scalar-valued 
functions. 

D. Solutions of Systems of First-Order Ordinary Differential Equations: 
Existence, Continuation, Uniqueness, and Continuous Dependence 
on Initial Conditions 
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It turns out that every result given in Sections 1.6 to 1.9 can be restated in vector 
form and proved, using the same methods as in the scalar case and invoking obvious 
modifications (such as the replacement of absolute values of scalars by the norms 
of vectors or the norms of matrices, and so forth). In the following we restate these 
results in vector form and ask the reader to prove these results. 

We have a domain D C R^^^, f G C(A R^) and we are given the system of 
first-order ordinary differential equations 

X = fit, x). (E) 

We are given (to, XQ) G D and seek a solution (or solutions) to the initial-value 
problem 

X = fit, X), x(to) = XQ. 

In doing so, it suffices to find a solution of the integral equation 

(/>(0 = xo+ \ f(s,cl)(s))ds, 
Jto 

(/) 

(V) 

As in the scalar case, this can be accomplished by the use of 6-approximate solutions. 
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(i) (t,(l)(t)) e D for 2i\\te J; 
(ii) (p has a continuous derivative on / except possibly on a finite set / of points in / 

where there are jump discontinuities allowed; 
(iii) II 0 (0 - / ( ^ 0(0) II < e for alU G / - / , where || • || denotes a norm on R"̂ . • 

Now let 

S = {{t,x) : l^-^ol <a,\xi-Xio\ <bi, i=l,...,n} cD (10.18) 

and let (̂ o -̂̂ o) ^ S. Since / G C{D^R^), it is bounded on S, and hence, there are 
Mi > 0 such that \fi{t,x) \ < Mi for all (f,jc) G 5, / = 1 , . . . , n. Define 

bi\ 
Ci = min < a, — > , i=\,...,n, 

c = min/ {c/}. 

THEOREM 10.1. li f eC{D,W) and if c is as defined in (10.19), then for any e > 0 
there is an e-approximate solution of (/) on the interval |̂  — ^o| ^ <̂- • 

In the proof of the next result, we require a slight generalization of the Ascoli-
Arzela Lemma given in Theorem 6.1. To this end, we let ^ denote a family of 
real-valued functions defined on a set G C /^^ Then ^ is called uniformly bounded 
if there is a nonnegative constant M such that \f{x) \ < M for all x in G and for all / 
in ^ . Furthermore, ^ is called equicontinuous on G if for any e > 0 there is a 5 > 0 
(independent of x^y, and / ) such that \f{x) — f{y)\ < e whenever || x —j | |< 5 for 
all X and j in G and for ail f e ^ (|| • || denotes a norm on R^). The Ascoli-Arzela 
Lemma now reads as follows. 

THEOREM 10.2. Let G be a closed and bounded subset of R^ and let {fm} be a 
sequence of functions in C{G,R). If {fm} is equicontinuous and uniformly bounded 
on G, then there is a subsequence {rrik} and a functuion / G C{G,R) such that {fmk} 
converges uniformly to / on G. • 

THEOREM 10.3. If / G C(D,R'') and (to,xo) G Z), then (/) has a solution defined on 
\t-to\<c. m 

THEOREM 10.4. Let / G C(D,R'^) with / bounded on D. Suppose that 0 is a solution 
of (E) on the interval / = {a,b). Then 

(i) the two limits 

lim 0(r) = 0(<2+) and lim 0(r) = (l)(b~) 

exist; 
(ii) if {a,(p{a'^)) [respectively, {b,(p{b~)] is in Z), the solution (p can be continued to 

the left past the point t = a (resp., to the right past the point t = b). • 

THEOREM 10.5. If / G C{D,R'^) and if 0 is a solution of (E) on an open interval / , 
then (p can be continued to a maximal open interval /* D / in such a way that (t,(p(t)) 
tends to dD as ^ ̂  dJ* when dD is not empty and |^|+ || (p(t) | | ^ oo if dD is empty. 
The extended solution 0* on /* is noncontinuable. • 

THEOREM 10.6. If / G C{D,R'^) and if / satisfies a Lipschitz condition on D with 
Lipschitz constant L (with respect to x), then the initial-value problem (/) has at most 
one solution on any interval |̂  — ^o| ^ <̂- • 



COROLLARY 10.7. If / E C{D, /?«) and dfildxj E C(A /?") (/, j = \,...,n), then 47 
for any (to, XQ) E D and any J containing ô, a solution of (/) exists on / and is CHAPTER 1 • 
^"^n^^- • Mathematical 
THEOREM 10.8. Let / E C{J X /?«, R^) for some open interval 7 C /? and let/ satisfy Descriptions of 
a Lipschitz condition on / X /?« (with respect to x). Then for any (^, XQ) E / X /?", the Systems 
initial-value problem (/) has a unique solution that exists on the entire interval J. • 

Next, let / E C{D, R"), let 5 C D be the set defined in (10.18), centered at 
(to, JCo), and let c be defined in (10.19). Successive approximations for (/), or equiv-
alently for (V), are defined as 

<i>oit) = xo 

f{s,(f)m{s))ds, m = 0, 1, 2 , . . . (10.20) 

for \t - ^1 < c. 

THEOREM 10.9. If / E C{D, E^) and if/ is Lipschitz continuous on S with constant 
L (with respect to x), then the successive approximations (/>̂ , m = 0, 1, 2 , . . . , given in 
(10.20) exist on \t - to\ < c, are continuous there, and converge uniformly, as m ^ oo, 
to the unique solution of (/). • 

In the final result of this subsection, we address initial-value problems that ex
hibit dependence on some parameter X G G C R^ given by 

X — f(t, X, A) 
(/A,r) 

v^here / E C(J X R^ X G, R^), / C /̂  is an open interval, and ^x depends continu
ously on A. 

THEOREM 10.10. Let / E C{J X /?" X G, 7?"), where J C Rism open interval and 
G G R^. Assume that for each pair of compact subsets Jo C J and Go C G there exists 
a constant L = LJQ,GQ > 0 such that for all (t, X) G JQ X Go, x,y E jR", the Lipschitz 
condition 

\\f{t,x,X)-f(t.y,X)\\^L\\x-y\\ 

is true. Then the initial-value problem (/A,T) has a unique solution (t)(t, r, A), where 
(j) E C(J X J X G, /?"). Furthermore, if D is a set such that for all Ao E D there exists 
e > 0 such that [Ao - e, Ao + e] Pi D C D, then 0(r, r, A) -^ (f){t, TQ, AQ) uniformly for 
to E JQ as (T, A) —> (TO, AO), where JQ is any compact subset of 7. • 

Theorem 10.10 is a generalization of Corollary 9.2 from the one-dimensional 
case (/{^) to the /z-dimensional case (/A,T)- The generalization of Theorem 9.1 for 
the one-dimensional case {i'xrp) ^̂  the n-dimensional case (/A,T,^) is of course also 
readily established. We leave the details to the reader. 

1.11. 
SYSTEMS OF LINEAR FIRST-ORDER ORDINARY 
DIFFERENTIAL EQUATIONS 

In this section we v^ill address linear ordinary differential equations of the form 

X = A(t)x + g(t) (LN) 
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and 

and 

and 

X = A(t)x 

X = Ax -\- g(t) 

X = Ax, 

(LH) 

(11.1) 

(L) 

where x G /?^ A(t) = [aij(t)] G C(R, /̂ ^><"), g G C(R, R""), and A G 7^"^^ 
Linear equations of the type enumerated above may arise in a natural manner in 

the modeUng process of physical systems (see Section 1.4 for specific examples) 
or in the process of linearizing equations of the form (E) or some other kind of 
form. 

A. Linearization 

We consider the system of first-order ordinary differential equations given by 

X = fit, xl (E) 

where f : RX D-> R"" md D C R"" is some domain. If f GC\RXD, R"") and if 
(/) is a given solution of (E) defined for all t G R, then we can linearize (E) about cj) 
in the following manner. Define 8x = x - 4>{t) so that 

dt 

= fit, 8x + m) - fit, m) 

= ^it,(l>it))Sx + Fit,Sx), 
dx 

(11.2) 

where idfldx)it, x) denotes the Jacobian matrix of fit, x) = (/i it, x),..., /„(f, x)Y 
with respect to A: = (x i , . . . , x„)^, i.e.. 

dx 
it, x) = 

'J^it,x) ••• 'J^it,x) 
dX\ dXn 

dxi 
it,x) 

dXn 
it,x) 

and Fit, 8x) ^ [fit, Sx + ct>it)) - fit, (/.(O)] - ^-fit, 4>ii))8x. 
dx 

(11.3) 

(11.4) 

It turns out that Fit, 8x) is <9(||5x||) as ||5x|| -^ 0 uniformly in / on compact subsets of 
R, i.e., for any compact subset I G R,vi/e have 

lim sup 
HSx\ho\,ei 

\\Fit, 8x) 
\\8x\\ 

= 0. 

To prove this, we will use the fact that for each / = ! , . . . , « , 

• 1 

fit, Sx + <t>it)) - fit, <j>it)) = iSxf I Vfit, si8x) + (f>it))ds 
Jo 

= y 5x,- f ^ i t , si8x) + ^it))ds, (11.5) 
p i Jo dXj 



where Sxt = {Sx)i and Wfi = i ^ . . . . , ^ I . To verify (11.5), we let 
\dXi dXfi ' 

g(s) = Mt,s(8x) + cl>(t)) 

and use the fact that 

(̂1) - (̂0) = fi(t, sx + m) - fiit, m) 
• 1 r l 

g'{s)ds= f dfi{t,s{8x) + m) 
Jo 

1 n 

dx 
-(t,s{8x) + 4>(t))ds Sxj 

= (8xy Vfi(t,si8x) + (l)(t))ds. 
Jo 

Next, we note that the /th component of F(t, Sx) is given by 

Fi(t, Sx) = ^^^Sxj 
0 o'Xj dXj 

^(t,s(Sx) + ci>(t))-^(t,m) 
axj dXj 

ds. 

Choose \\Sx\\ = Q11=^i(Sxi)^)^^^ and let / be a compact interval in R. Then 

.̂ / \Ft(t,Sx)\\ 
h m sup 11̂  II 

= lim I sup 
\^U^^j\o ^(t^s(Sx) + ci>(t))-^(t,m) 

dXj dXj 

ds\ 

WSxW 
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(X;=,(Sxi)^)i 'MS}=,(sup,^,J 

< lim 
lis l̂ho 

yi{t,s{8x) + <f>{t))-^{t,<t>{t)) 
\_dxj dXj 

AI2 

dsf 

iZ%y(Sxj)2) 1/2 

\\8. 

= 0, 

lim ^ (sup ^(t^ss(x) + m)-^it^m) 
111 

ds 

where we have made use of the Schwarz Inequality. 
To establish equality (equal to zero) in the last line of the above equation re

quires perhaps a bit of extra work. Since I C Ris compact and cf) is continuous, it 
follows that the set (/>(/) is compact. Since (f)(1) C D and Z) is a domain, we have 
dist{(j){I), dD) = d> 0. Clearly, then, 

Xo = {(/)(0 + I - ^ ](Sh . --^Sn)^ : r G /, - 1 < /̂ < 1, / = 1 , . . . , n} C D 
\2jn 



^ and XQ is a compact subset of D, since (pit) + [d/(2 ^)](si,..., Sn)^ is a continuous 
Linear Systems vector-function of (t, Si,..., Sn). 

Now for ||§x|| < d/2, 0 < ^ < 1, ^ G /, we have that s(Sx) + (/)(0 G ZQ. Since 
{dfldxj){t, x) is uniformly continuous on the compact set / X XQ, we conclude the 
equality (equal to zero). 

Finally, since the above argument is true for all / = 1 , . . . , n, it follows that 
F{t, 8x) is (9(||Sx||) as ||Sx|| -^ 0 uniformly in t on compact subsets of i^. 

Letting 

^-f{t,cl>{t)) = A{t\ 
dx 

we obtain from (11.2) the equation 

^ ^ 4 S i = A{t)hx + Fit, Sx\ (11.6) 

at 

Associated with (11.6) we have the linear differential equation 

z = A(t)z, (LH) 
called the linearized equation of {E) about the solution 0. 

In applications, the linearization {LH) of (£*), about a given solution (/>, is fre
quently used as a means of approximating a nonlinear process by a linear one (in the 
vicinity of (/>). In Chapter 6, where we will study the stability properties of equilibria 
of {E) [which are specific kinds of solutions of (£")], we will show under what con
ditions it makes sense to deduce qualitative properties of a nonlinear process from 
its linearization. 

Of special interest is the case when in (£"),/ is independent of t, i.e., 
X = fix) (A) 

and (/) is a constant solution of (A), say, (f)(t) = XQ for all t ^ R. Under these condi
tions we have 

^ ^ ^ Sx = Adx + F(Sxl (11.7) 

where lim ^ ^ ^ j ^ = 0 (11.8) 

and A denotes the Jacobian {dfldx){x^). Again, associated with (11.7) we have the 
linear differential equation 

z = Az, 

called the linearized equation of (A) about the solution (j){t) = XQ. 
We can generalize the above to equations of the form 

X = fit, X, u), (Eu) 

where f : R X Di X D2 -^ R"" md Di C /?", D2 C R"^ are some domains. If 
f E C^(RX Di X D2, R^) and if (j){t) is a given solution of {Eu) that we assume to 
exist for all ^ G /? and that is determined by the initial condition XQ and the given 
specific function ip E C{R, R^), i.e., 

m = fit, m , ifjit)), t G R, 



then we can linearize (Eu) in the following manner. Define Sx = x- cf)(t) and 8u = 
u - ijj{t). Then 

d{8x) 
dt 

8x = X- (f)(t) = f(t, X, u) - fit, (j){t), ijj{t)) 

= fit, 8x + 0(0, 8u + ^(0) - fit, 0(0, ^(0) 

= ^Mt, cj)it\ iPit))8x + ^Mt, cl)it), iljit))8u 
ax du 
+ Fiit,8x,u) + F2it,8u\ (11.9) 

^ / . where Fife 8x, u) = fit, Sx + (/>(0, u)-fit, (j)it), u)-^it, cfyit), il/it))8x is oi\\8x\\ 
ax 

as \\8x\\ 

u and for any compact subset I C R, lim||§;̂ ;||_̂ o (sup^^/ 

where 

0, uniformly in t on compact subsets of R for fixed u i.e., for fixed 

\\Fiit, 8x,u 

\\Sx\\ 
and 

^f, F2{t, 8u) = fit, m , 8u + iff{t)) - fit, <^it), iPit)) - -fit, 0(0, «A(0)SM 
au 

is 6>(||Sw||) as ||Sw|| -^ 0, uniformly in t on compact subsets of R 

^F2it, 8u 
pact subset I C R, lim||§;̂ ||̂ o sup^^^ 

115̂11 
= 0 

i.e., for any com-

, and where idfldx)i • ) and 

idfldu)i ' ) denote the Jacobian matrix of/ with respect to x and the Jacobian matrix 
of/ with respect to w, respectively. 

Letting 

dx 
it, cl)it), if/it)) = Ait) and 

du 
it, cj>it), iPit)) = Bit), 

we obtain from (11.9), 

di8x) 

dt 
= 8x = Ait)8x + Bit)8u + Flit, 8x, u) + F2it, 8u). (11.10) 

Associated with (11.10), we have 

z = Ait)z + Bit)v iLN) 

and call iLN) the linearized equation of iEu) about the solution 0 and the input 
function ijj. 

As in the case of the linearization of (£") by (L//), the linearization iLN) of 
system iEu) about a given solution 0 and a given input 0 is often used in attempting 
to capture the qualitative properties of a nonlinear process by a linear process (in the 
vicinity of 0 and 0). In doing so, great care must be exercised to avoid erroneous 
conclusions. 

The motivation of linearization is of course very obvious: much more is known 
about linear ordinary differential equations than about nonlinear ones. For example, 
the explicit forms of the solutions of (L) and (11.1) are known; the structures of 
the solutions of (L//), iLN), and iLN) are known; the qualitative properties of the 
solutions of linear equations are known; and so forth. 
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B. Examples 

We now consider some specific cases. 

EXAMPLE 11.1. We consider the simple pendulum discussed in Example 4.4 and de
scribed by the equation 

x + A:sinx = 0, (H .H) 

where ^ > 0 is a constant. Letting xi = x and X2 = i:, ( I L l l ) can be expressed as 

Xi = X2 

X2 = —/:sinxi. 
(11.12) 

It is easily verified that (/)i(0 = 0 and </>2(0 = 0 is a solution of (11.12). Letting 
fi(xi, X2) = X2 and f2(xi, X2) = - ^ s i n x i , the Jacobian of f(xi,X2) = (fi(xi, X2\ 
f2{x\, X2)Y evaluated at {x\, X2Y = (0, 0)-̂  is given by 

/(O) 
0 

—/rcosxi 
1 
0_ 

JC2=0 

0 1 
-k 0 

The linearized equation of (11.12) about the solution (j)i{t) = 0, <ĵ 2(0 = 0 is given by 

0 1 
-k 0 

EXAMPLEII.2. The system of equations 

xi = ax\ — bxiX2 — cx\ 

X2 = dx2 — ex\X2 — fx\ 
(11.13) 

describes the growth of two competing species (e.g., two species of small fish) that prey 
on each other (e.g., the adult members of one species prey on the young members of 
the other species, and vice versa). In (11.13) a, b, c, d, e, a n d / are positive parame
ters and it is assumed that xi > 0 and X2 ̂  0. For (11.13), 4>i{t) = (i)\(t, 0, 0) = 0 and 
02(0 =" (}>2{t, 0, 0) = 0, r > 0, is a solution of (11.13). A simple computation yields 

A = ^ ( 0 ) = 
dx 

and thus the system of equations 

a 0 
0 d 

constitutes the linearized equation of (11.13) about the solution 01 (0 
r> 0. 

0, 02(0 = 0, 

EXAMPLE 11.3. Consider a unit mass subjected to an inverse square law force field, 
as depicted in Fig. 1.11. In this figure, r denotes radius and 6 denotes angle, and it is 
assumed that the unit mass (representing, e.g., a satellite) can thrust in the radial and in 
the tangential directions with thrusts u\ and U2, respectively. The equations that govern 
this system are given by 

r = rO^ - H- M l 

-lOr 1 
+ -U2. 

r r 

(11.14) 



/ 
y^ 

\ 
N 

FIGURE 1.11 
A unit mass subjected to an inverse square law 
force field 
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When r(0) = ro, r(0) = 0, ^(0) = ^o, ^(0) = COQ and uxif) ^ 0, U2(t) ^ 0 for r > 0, it 
is easily verified that the system of equations (11.14) has as a solution the circular orbit 
given by 

r(t) = TQ = constant 

6(t) = coo = constant 
(11.15) 

for all r > 0, which implies that 

^ ( 0 = (Oot + Oo, (11.16) 

where COQ = {klriy^. 

If we let xi = r, X2 = r, x^ = 0, and X4 = 6, the equations of motion (11.14) 
assume the form 

Xi 

X2 

X3 

X4 

= 

= 

= 

= 

X2 

Xi 

X4 

-

T2 -

2X2X4 

Xi 

k 
x\ 

u 

+1 

U2 

Xx 

(11.17) 

The linearized equation of (11.17) about the solution (11.16) [with u\{t) = 0, U2{t) = 0] 
is given by 

0 0 
0 IVQCOQ I 
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r- - | 
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EXAMPLE 11.4. In this example we consider systems described by equations of the 
form 

X + Af(x) + Bg(x) = u, (11.18) 

where xGR'^.A = [atj] G 7?̂ ><", B = [btj] G 7?"><" with an > 0, bu > 0, 1 < / < ^, 
f,ge C^R", R% u G C(/?+, /?"), and f{x) = 0, g(x) = 0 if and only if x = 0. 

Equation (11.18) can be used to model a great variety of physical systems. In 
particular, (11.18) has been used to model a large class of integrated circuits consisting 
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of (nonlinear) transistors and diodes, (linear) capacitors and resistors, and current and 
voltage sources. (Figure 1.12 gives a symbolic representation of such circuits.) For such 
circuits, we assume that f(x) = [fi(xi),..., fn{Xn)Y -

tfH-
» 

^ ^ + FIGURE 1.12 
Integrated circuit 

If u{t) = 0 for all t > 0, then (/)/(0 = 0, r > 0, 1 < / < n, is a solution of (11.18). 
The system of equations (11.18) can be expressed equivalently as 

Xi 

7 = 1 

/ - = ! , . (11.19) 

The linearized equation of (11.19) about the solution (/>/(0 = 0, and the input Ui(t) = 0, 
t > 0, / = 1 , . . . , w, is given by 

Zi = -^[atjfjiO) + bijg'jmzj + V,-, 
7 = 1 

where /;(0) = (dfj/dxj)(0) and ^;.(0) = (dgj/dxj)(0\ i = l...,n. 

(11.20) 

1.12 
LINEAR SYSTEMS: EXISTENCE, UNIQUENESS, CONTINUATION, 
AND CONTINUITY WITH RESPECT TO PARAMETERS 
OF SOLUTIONS 

In this section we address nonhomogeneous systems of first-order ordinary differen
tial equations given by 

X = A(t)x + g(tX (LN) 

where x G R^, A(t) = [aij(t)] is a real nX n matrix, and g is a real n-vector-valued 
function. 

THEOREM 12.1. Suppose thatA G C{J, /?">^")andg G C(7, /?''), where 7 is some open 
interval. Then for any to G J and any XQ G /?", equation (LN) has a unique solution 
satisfying x(to) = XQ. This solution exists on the entire interval / and is continuous in 
(t, to, xo). 

Proof. The function f(t, x) = A(t)x + g(t) is continuous in (t, jc), and moreover, for any 
compact subinterval Jo G J there is an LQ ^ 0 such that 

\\f(t, X) - fit, y)\\i = \\A(t)(x - y)\\i < ||A(0||i||x - y\\i 

- i ,^^^ ko-(Ol Ik - y\\i ^ Lo\\x - y\\i 

for all (t, x), (t, y) G JQXR^, where LQ is defined in the obvious way. Therefore,/ satisfies 
a Lipschitz condition on Jo X R^. 

If (̂ 0. -̂ o) G JoXR^, then the continuity of/ implies the existence of solutions (The
orems 6.3 and 10.3), while the Lipschitz condition implies the uniqueness of solutions 



(Theorems 8.2 and 10,6). These solutions exist for the entire interval JQ (Theorems 8.4 
and 10.8). Since this argument holds for any compact subinterval JQ C / , the solutions 
exist and are unique for alU G / . Furthermore, the solutions are continuous with respect 
to 0̂ and XQ (Theorems 9.1 and 10.10 modified for the case where A and g do not depend 
on any parameters A). • 

For the case when in {LN) the matrix A and the vector g depend continuously 
on parameters A and [x, respectively, it is possible to modify Theorem 12.1, and its 
proof, in the obvious way to show that the unique solutions of the system of equations 

X = Ait, A)x + g{t, fji) (LNx^) 

are continuous in A and /x as well. [Assume that A G C(J X R^, R^^^) and 
g G C( / X R^, /?'^)andfollowaprocedurethatissimilartotheproofofTheoreml2.1.] 
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1.13 
SOLUTIONS OF LINEAR STATE EQUATIONS 

In this section we determine the specific form of the solutions of systems of linear 
first-order ordinary differential equations. We will revisit this topic in much greater 
detail in Chapter 2. 

Homogeneous equations 

We begin by considering linear homogeneous systems 

X = A(t)x, (LH) 

where A G C(R, R""^""). By Theorem 12.1, for every XQ G /?^, {LH) has a unique 
solution that exists for all t G R. We will now use Theorem 10.9 to derive an expres
sion for the solution (/)(f, ô, ̂ o) for (LH) fovtE.R with 0(^0, to, XQ) = ^Q. In this 
case the successive approximations given in (10.20) assume the form 

(poit, to, xo) = xo 

(f>i{t, to, Xo) = xo+\ A{s)xods 
J to 

(t>2{t, to, Xo) = Xo+ \ A(s)(l)i(s, to, Xo)ds 
Jto 

Si 

A{s2)xods2dsi + 
to 

(t>m(t, to, Xo) = ^0 + A(s)(l)fn-i(s, to, Xo)ds 
JtQ 

or (i>m{t,to,xo) = ^0 + A{si)xodsi + A{sx) 
J to J to 

ft fSl C^m-l 

+ A(si)\ Afe) - - - | 
Jto Jto ho 

ft ft fsi 
| / + A(si)dsi + A(si) A(s2)ds2dsi + 

Jto Jto Jto 

A(Stn)XodSm"'dSi 

+ \ A(si)r A(s2y 
Jto Jto 

Sm-l 

A(Sm)dSni"'dSi Xo, (13.1) 
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where / denotes the n X n identity matrix. By Theorem 10.9, the sequence {(l)m}, 
m = 0,1,2,... determined by (13.1) converges uniformly, as m —̂  oo, to the unique 
solution (/)(f, to, XQ) of (LH) on compact subsets of R. We thus have 

(/)(/, to, Xo) = ^(t, to)Xo, (13.2) 

where <b{t, to) = / + 
rt rs, 

A{si)dsi + A{si) A(s2)ds2dsi 
I JtQ J to 

Si 

+ I A(s,) I Afe) 
Jto JtQ 

+ f Ais,)^ A{S2) 
Jto Jto 

S2 

A{Sy)dS2,dS2dS\ + 

Sm-\ 

A{Sm) dSm dSm- l'"dsi + -• 

(13.3) 
Expression (13.3) is called the Peano-Baker series. 

From expression (13.3) we immediately note that 

^(t,t) = L (13.4) 

Furthermore, by differentiating expression (13.3) with respect to time and substitut
ing into {LH), we obtain that 

^{t,to) = A{t)^{t,to). (13.5) 

From (13.2) it is clear that once the initial data are specified and once the 
nXn matrix ^{t, to) is known, the entire behavior of system {LH) evolving in time 
t is known. This has motivated the state terminology: x{to) = xo is the state of 
the system (LH) at time to, (j>{t, to, xo) is the state of the system (LH) at time t, the 
solution (f) is called the state vector of {LH), the components of ^ are called the state 
variables of {LH), and the matrix ^{t, to) that maps x{to) into cl){t, to, xo) is called the 
state transition matrix for {LH). Also, the vector space containing the state vectors 
is called the state space for {LH). 

We can specialize the preceding discussion to Hnear systems of equations 

X = Ax. 

In this case the mth term in (13.3) assumes the form 

{L) 

A{si) A(S2)\ Afe)-
to Jto to 

= A^ 

A{Sm) dSyj 

t rsi rs2 

ds\ 

Sm-\ 

IdSn ' ds\ = 
A'"(t - to)" 

Jto Jto Jto Jto 

and expression (13.1) for 0^ assumes now the form 

A'{t - to)^ 

ml 

(j)ni{t, to, Xo) = ^+2: 
k=i 

k\ 
Xo. 

We conclude once more from Theorem 10.9 that {c/)̂ } converges uniformly as m ^ oo 
to the unique solution </>(?, to, xo) of (L) on compact subsets ofR. We have 

(f){t, to, Xo) = 
A\t - to)'' 

k\ 
Xo 

= <|)(r, to)xo = 0(? - to)xo, (13.6) 



where ^(t - to) denotes the state transition matrix for (L). [Note that by writing 
^(t, to) = ^(t - to), we have used a slight abuse of notation.] By making the analogy 
with the scalar e^ = I + ^1=i{a^lk\), usage of the notation 

^ A^ 

- ' + 1 : ^ 
i c - 1 

k\ 
(13.7) 

should be clear. We call e^ a matrix exponential. In Chapter 2 we will explore several 
ways of determining e^ for a given A. 

Nonhomogeneous equations 

Next, we consider linear nonhomogeneous systems of ordinary differential equa
tions 

X = A(t)x + g(t), (LN) 

where A G C{R,W^'') and g G C(R, R""). Again, by Theorem 12.1, for every 
xo G /?", (LN) has a unique solution that exists for all t E: R. Instead of deriving the 
complete solution of (LN) for a given set of initial data x(to) = ;co, we will guess 
the solution and verify that it indeed satisfies (LN). To this end, let us assume that 
the solution is of the form 

(t)(t, to, xo) = ^(t, to)xo + 0(r, s)g(s)ds (13.8) 

where 3>(r, to) denotes the state transition matrix for (LH). 
To show that (13.8) is indeed the solution of (LN), we first let t = to. In view of 

(13.4) and (13.8), we have (f)(to, to, xo) = xo. Next, by differentiating both sides of 
(13.8) and by using (13.4), (13.5), and (13.8) we have 

(j)(t, to, Xo) = ^(t, to)xo + ^(t, t)g(t) + 4>(r, s)g(s) ds 

= A(t)^(t, to)xo + g(t) + A(t)^(t, s)g(s)ds 

= A(t){^(t, to)xo + ^(t,s)g(s)ds^ + g(t) 

= A(t)(f)(t, to, xo) + g(t), 

i.e., (j)(t, to, Xo) given in (13.8) satisfies (LN). Therefore, (j)(t, to, xo) is the unique 
solution of (LN). Equation (13.8) is called the variation of constants formula, which 
is discussed further in Subsection 2.3C of Chapter 2. In the exercise section of Chap
ter 2 (refer to Exercise 2.33), we ask the reader (with hints) to derive the variation 
of constants formula (13.8), using change of variables. 

We note that when xo = 0, (13.8) reduces to 

(/)(̂ , ^0,0) = ^p(t) = ^(t,s)g(s)ds, 

and when XQ 7̂  0 but g(t) = 0 for all r G /?, (13.8) reduces to 

(l)(t, to, Xo) = (/)/z(0 = ^(t, ^)^0-

(13.9) 

(13.10) 
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ing term'' g(t). This type of separation is in general possible only in linear systems 
of differential equations. We call (l)p 3. particular solution of the nonhomogeneous 
system (LN) and call (f)h the homogeneous solution. 

From (13.8) it is clear that for given initial conditions x(to) = XQ and given 
forcing term g(t), the behavior of system (LN), summarized by </>, is known for all 
t. Thus, (/)(r, to, xo) specifies the state vector of (LH) at time t. The components </>/ 
of (/), / = 1 , . . . , n, represent the state variables for (LH), and the vector space that 
contains the state vectors is the state space for (LH). 

Before closing this section, it should be pointed out that in applications the ma
trix A(t) and the vector g(t) in (LN) may be only piecewise continuous rather than 
continuous, as assumed above [i.e., A(t) and g(t) may have (at most) a finite number 
of discontinuities over any finite time interval]. In such cases, the derivative of x 
with respect to t [i.e., the right-hand side in (LN)], will be discontinuous at a finite 
number of instants over any finite time interval; however, the state itself, x, will still 
be continuous at these instants [i.e., the solutions of (LN) will still be continuous 
over R]. In such cases, all the results presented concerning existence, uniqueness, 
continuation of solutions, and so forth, as well as the explicit expressions of solutions 
of (LN), are either still valid or can be modified in the obvious way. For example, 
should g(t) experience a discontinuity at, say, ti > to, then expression (13.8) will be 
modified to read 

(/>(r, to, Xo) = ^(t, to)xo + ^(t, s)g(s)ds, to^ t<ti, (13.11) 

(t)(t,ti,xx)-^^(t,ti)xi + \ ^(t,s)g(s)ds, t^tu (13.12) 

where xi = lim^^^- (l)(t, to, xo). 

1.14 
STATE-SPACE DESCRIPTION OF CONTINUOUS-TIME SYSTEMS 

Returning now to Section 1, let us consider once more systems described by equa
tions of the form 

X = f(t,x, u) (14.1a) 

y^g(t,x,ul (14.1b) 

where x ^ R"", y ^ RP, u ^ R"^, f : R X R"" X R"^ -^ R\ md g : R X R"" X 
R^ ^ RP. Here t denotes time and u and y denote system input and system out
put, respectively. Equation (14.1a) is called the state equation, (14.1b) is called the 
output equation, and (14.1a) and (14.1b) constitute the state-space description of 
continuous-time finite-dimensional systems. 

The system input may be a function of t only (i.e., u : R-> R^), or as in the case 
of feedback control systems, it may be a function of t and x (i.e., u : RX R^ -^ R^). 
In either case, for a given (i.e., specified) u, we let f(t, x, u) = F(t, x) and rewrite 
(14.1a) as 

X = F(t, x). (14.2) 



Now according to Theorems 10.8 and 10.10, if F G CiR X /^", R"") and if for any 
compact subinterval JQ C R there is a constant Lj^ such that \\F(t, x) - F(t, x)\\ < 
Lj^\\x - x\\ for all t G JQ and for all x, x G R^, then the following are true: 

1. For any (^, XQ) ^ Rx R^, Eq. (14.2) has a unique solution (f)(t, to, XQ) satisfying 
(/)(ro, to, xo) =" XQ that exists for all t ^ R. 

2. The solution 0 is continuous in t, to, and XQ. 
3. If F depends continuously on parameters (say, \ G R^) and if XQ depends contin

uously on A, the solution (/> is continuous in A as well. 

Thus, if the above conditions are satisfied, then for a given to, XQ, and u, Eq. 
(14.1a) will have a unique solution that exists for t E. R. Therefore, as already dis
cussed in Section 13, (̂ (̂ , to, xo) characterizes the state of the system at time t. 
Moreover, under these conditions, the system will have a unique response for t E R, 
determined by Eq. (14.1b). We usually assume that g G C(R X i?^ X /^^, RP) or that 
gG C\RXR''XR'^,RP). 

An important special case of (14.1a) and (14.1b) is systems described by linear 
time-varying equations of the form 

X = A(t)x + B(t)u (14.3a) 

y = C(t)x + D(t)u, (14.3b) 

where A G C(R, R'"'"''), B G C(R, R'"'"'^), C G C{R, RP""""), and D G C(R, RP"""^). 

Such equations may arise in the modeling process of a physical system, or they may 
be a consequence of a linearization process, as discussed in Section 11. 

By applying the results of Section 12 we see that for every initial condition 
x{to) = Xo and for every given input w : R^ i?'", system (14.3a) possesses a unique 
solution that exists for alltGR and that is continuous in (t, to, xo). Moreover, if A 
and B depend continuously on parameters, say, A G /?^ then the solutions will be 
continuous in the parameters as well. Indeed, in accordance with (13.8), this solution 
is given by 

(14.4) 

(14.5) 

(/)(r, to, Xo) = ^(t, to)xo + ^(t, s)B(s)u(s)ds, 
Jto 

where ^(t, to) denotes the state transition matrix of the system of equations 

X = A{t)x. 

By using (14.3b) and (14.4) we obtain the system response as 

y(t) = C(t)<^(t, to)xo + C(t) ^(t, s)B(s)u(s)ds + D{t)u{t\ (14.6) 
JtQ 

When in (14.3a) and (14.3b), A{t) ^ A, B{t) ^ B, C{t) = C, and D(t) = D, we 
have the important linear time-invariant case given by 

X = Ax-\- Bu (14.7a) 

y = Cx + Du. (14.7b) 

In accordance with (13.6), (13.7), (13.8), and (14.4), the solution of (14.7a) is 
given by 

59 

CHAPTER 1: 

Mathematical 
Descriptions of 
Systems 

(t){t,to,xo) = e^'^'-'^^xo + e''^'~'^Bu(s)ds 
ho 

(14.8) 
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60 and the response of the system is given by 

y(t) = Ce^^^'-'^ho + C [ e^^'-'^Bu{s)ds + Du{t\ (14.9) 

Linearity 

We have referred to systems described by the hnear equations (14.3a) and 
(14.3b) [resp., (14.7a) and (14.7b)] as linear systems. In the following, we estab
lish precisely the sense in which this linearity is to be understood. To this end, for 
(14.3a) and (14.3b) we first let yi and y2 denote system outputs that correspond to 
system inputs given by u\ and W2, respectively, under the condition that XQ = 0. By 
invoking (14.6), it is clear that the system output corresponding to the system input 
u = a\U\ •^- ^2^2, where «i and a2 are real scalars, is given by y = a i j i + aiyi^ 
i.e.. 

y{t) = C{t)' <b{t, s)B{s)[a\Ui{s) + a2U2{s)\ds + D{t)[aiUi{t) + a2W2(0] 

= aiC(r) (&(r, s)B(s)ui(s)ds + 0:2^(0 *(^, s)B(s)u2(s)ds 

+ aiD(t)ui(t) + a2D(t)u2(t) 

= aiyiit) + a2y2{t\ (14.10) 

Next, for (14.3a) and (14.3b) we let yi and j2 denote system outputs that cor
respond to initial conditions XQ and XQ , respectively, under the condition that 
u(t) = Q for all t ^ R, Again, by invoking (14.6), it is clear that the system out
put corresponding to the initial condition XQ = aix^^^ + o^2^^o\ where a 1 and a 2 are 
real scalars, is given by y = aiyi -{- 0:2J2. i-̂ -? 

y(t) = C(00(r,fo)[«i4'^ + «24'^] 

= aiC(t)^(t, to)x^d^ + a2C{t)^{t, to)x^o^ 

= aiyi(t) + a2y2{tl (14.11) 

Equations (14.10) and (14.11) show that for systems described by the linear 
equations (14.3a), (14.3b) [and hence, also by (14.7a), (14.7b)], a superposition 
principle holds in terms of the input u and the corresponding output y of the system 
under the assumption of zero initial conditions, and in terms of the initial conditions 
XQ and the corresponding output y under the assumption of zero input. It is important 
to note, however, that such a superposition principle will in general not hold under 
conditions that combine nontrivial inputs and nontrivial initial conditions. For exam
ple, with xo # 0 given, and with inputs ui and U2 resulting in corresponding outputs 
yi and j2 in (14.3a) and (14.3b), it does not follow that the input aiwi + ^2^2 will 
result in an output a\yi + a2}^2-

1.15 
STATE-SPACE DESCRIPTION OF DISCRETE-TIME SYSTEMS 

State-space representation 

The state-space description of discrete-time finite-dimensional dynamical sys
tems is given by equations of the form 



Xi(k + 1) = fi(k, xi(k),..., Xn(k), u\{k),..., Utn{k)) i = I,.. .,n, (15.1a) 

yi{k) = gi{k, xi(k),..., Xn(kl ui(k),..., Um(k)) i = 1 , . . . , p, (15.1b) 

for fc = k{),k{)+\,..., where fco is an integer. (In the following we let Zdenote the set 
of integers and we let Z+ denote the set of nonnegative integers.) Letting x{kY = 
(Xiikl . . ., Xn(k)l f{'f = (/l( • X . . . , / . ( • )), U(k)^ = (Ui(kl . . ., Um(k)X 
y(kf = (yi(k\...,yp(k)), and g( - V = (gi( 'l...,gm(' )), we can rewrite 
(15.1a) and (15.1b) more compactly as 

x(k + 1) = f(k x{k), u(k)) 

y{k) = g{K x{k), u{k)). 

(15.2a) 

(15.2b) 

Throughout this section we will assume that f : Z X R^ X R"^ -^ R^ and g : Z X 

Since / is a function, for given ko, x{ko) = XQ, and for given u(k), k = ko, 
ko + I,..., Eq. (15.2a) possesses a unique solution x(k) that exists for all k = ko, 
^0 + 1. Furthermore, under these conditions, y(k) is uniquely defined for k = 
ko,ko + I.... 

As in the case of continuous-time finite-dimensional systems [see Eqs. (14.1a) 
and (14.1b)], ko denotes initial time, k denotes time, u{k) denotes the system input 
(evaluated at time k), y(k) denotes the system output or system response (evaluated 
at time k), x(k) characterizes the state (evaluated at time k), Xi(k), i = I,.. .,n, 
denote the state variables, (15.2a) is called the state equation, and (15.2b) is called 
the output equation. 

A moment's reflection should make it clear that in the case of discrete-time 
finite-dimensional dynamical systems described by (15.2a), (15.2b), questions con
cerning existence, uniqueness, and continuation of solutions are not an issue, as was 
the case in continuous-time systems. Furthermore, continuity with respect to initial 
data x(ko) = XQ, or with respect to system parameters, is not an issue either, pro
vided that / ( • ) and g( • ) have appropriate continuity properties. 

In the case of continuous-time systems described by ordinary differential equa
tions [see Eqs. (14.1a) and (14.1b)], we allow time t to evolve "forward" and "back
ward." Note, however, that in the case of discrete-time systems described by (15.2a) 
and (15.2b), we restrict the evolution of time, k, in the forward direction to en
sure uniqueness of solutions. (We will revisit this issue in further detail in Chap
ter 2.) 

Special important cases of (15.2a), (15.2b) are linear time-varying systems 
given by 
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x(k +1) = A(k)x(k) + B(k)u(k) 

y(k) = C(k)x(k) + D(k)u(k), 

(15.3a) 

(15.3b) 

where A : Z-^ i?"^", B : Z-^ î ">< ,̂ C :Z^ RP"""", and D : Z ^ RP"""^. When 
A(k) = A, B(k) = B, C(k) = C, and D(k) = £), we have linear time-invariant sys
tems given by 

x(k + 1) = Ax(k) + Bu(k) 
y(k) = Cx(k) 4- Du(kl 

(15.4a) 
(15.4b) 
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ied in terms of initial-value problems given by 

x(k + 1) = f(k x(k)\ x(ko) = xo, (ID) 

where x E. R"", f : Z X R"" -^ R"", ko G Z, and ^ = ^o, 'to + 1 , . . . . We call the 
equation 

x(k + 1) = f(k, x(k)\ (ED) 

a system offirst-order ordinary difference equations. Special important cases of (ED) 
include autonomous systems described by 

x(k + 1) - f(x(k)), (AD) 

periodic systems given by 

x(k + 1) = f(k, x(k)) = f(k + K, x(k)) (PD) 

for fixed K G Z"^ and for all k G Z, linear homogeneous systems given by 

x(k + 1) = A(k)x(k), (LHD) 

linear periodic systems characterized by 

x(k +1) = A(k)x(k) = A(k + K)x(k) (LPD) 

for fixed K E. Z^ and for all kE Z, linear nonhomogeneous systems given by 

x(k + 1) = A(k)x(k) + g(k), (LND) 

and linear, autonomous, homogeneous systems characterized by 

x(k + 1) = Ax(k). (LD) 

In these equations all symbols used are defined in the obvious way by making ref
erence to the corresponding systems of ordinary differential equations (see Sub
section 1.3B). 

Difference equations of order n 

Thus far we have addressed systems of first-order difference equations. As in 
the continuous-time case, it is also possible to characterize initial-value problems by 
nth-order ordinary difference equations, say, 

y(k +n) = h(k, y(k), y(k + I),.. .,y(k + n - \)), (E^D) 

where h : Z X R^ ^ R, n G Z^, k = ko, ko -\- 1, — By specifying an initial time 
ko G Z and by specifying y(kQ), y(ko + 1) , . . . , y(ko + n - 1), we again have an 
initial-value problem given by 

y(k + n) = h(k, y(k), y(k -h 1),.. .,y(k + n - I)) 
UnD) 

y(ko) = x io , . . . , y(ko -\- n - I) = x^o-

We call (EfiD) an nth-order ordinary difference equation and we note once more 
that in the case of initial-value problems described by such equations, there are no 
difficult issues involving the existence, uniqueness and continuation of solutions. 

We can reduce the study of (IUD) to the study of initial-value problems deter
mined by systems of first-order ordinary difference equations. To accomplish this. 



we let in (Ino) y(k) = xi(k), y(k + 1) = X2(k),..., y(k + n - 1) 
obtain the system of first-order ordinary difference equations 

xi(k + 1) = X2(k) 

Xn(k). We now 63 

Xn-l(k + 1) == Xn(k) 
(15.5) 

Xn(k + 1) = h(k, xi(k),..., Xn(k)). 

Equations (15.5), together with the initial data XQ = (xio, . . . , Xno), are equivalent 
to the initial-value problem (Ino) in the sense that these two problems will generate 
identical solutions [and in the sense that the transformation of (Ino) into (15.5) can 
be reversed unambiguously and uniquely]. 

As in the case of systems of first-order ordinary difference equations, we can 
point to several important special cases of nth-order ordinary difference equations, 
including equations of the form 

+ ai{k)y(k + 1) + ao(k)y{k) = g{k\ 

(15.6) 

+ ai(k)y(k + 1) + ao(k)y(k) = 0, 

(15.7) 

+ aiy(k + 1) + aoy(k) = 0. (15.8) 

y(k + n) + an-i(k)y(k -\- n - 1)+ • • 

y(k + n) -\- an-i(k)y(k + n- 1)+ • • 

and y{k + n) + a^-iyik -\- n - 1)+ • • 

We call (15.6) a linear nonhomogeneous ordinary difference equation of order 
n; we call (15.7) a linear homogeneous ordinary difference equation of order n; 
and we call (15.8) a linear, autonomous, homogeneous ordinary difference equation 
of order n. As in the case of systems of first-order ordinary difference equations, we 
can dtfmQ periodic and linear periodic ordinary difference equations of order n in 
the obvious way. 

Solutions of state equations 

Returning now to linear homogeneous systems 

x{k +\) = A(k)x(k), (LHD) 

we observe that 

x(k + 2) = A(k + l)x(k + 1) - A(k + l)A(k)x(k) 

x(n) = A(n - l)A(n - 2) • • • A()t + l)A{k)x(k) 
n-\ 

= YlA(j)x(k), 

i.e., the state of the system at time n is related to the state at time k by means of the 
nX n matrix YI^JZ\A(J) (as can easily be proved by induction). This suggests that 
the state transition matrix for (LHD) is given by 

n-l 

and that 

^(n, k) = Yl Mjl n> k, 

^(k, k) = I. 

(15.9) 

(15.10) 
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64 As in the continuous-time case, the solution to the initial-value problem 

Linear Systems ^(^ + 1) ^ A(k)x(k) 

x(ko) = Xk^, ko G Z, 

is now given by 
n-l 

x(n) = ^(n, ko)xk, = n ^U)^h, n > ko. (15.12) 

Continuing, let us next consider initial-value problems determined by linear 
nonhomogeneous systems (LND), 

x(k+l) = A(k)x(k) + 8(k) ^^^^3^ 

x(ko) = Xk^. 
Then 

x(ko + 1) - A{ko)x(ko) + g(ko) 

x(ko + 2) = A(ko + l)x(ko + 1) + g(ko + 1) 

- A(ko + l)A(ko)x(ko) + A(ko + l)g(ko) + g(ko + 1) 

x(ko + 3) = A(ko + 2)4^0 + 2) -h ^(^o + 2) 

- A(fco + 2)A(ko + l)A(/:o)4/:o) + A(ko + 2)A(/:o + l)g(^o) 

+ A(ko + 2)^(fco + 1) + g(ko + 2) 

= 0(/:o + 3, ^o)̂ ;to + ^(^0 + 3, /:o + l)g(^o) 

+ cD(/:o + 3, /:o + 2)g(ko + 1) + *(/:o + 3, /CQ + 3)g(^o + 2), 

and so forth. For fc > A:o + 1, we easily obtain the expression for the solution of 
(15.13) as 

k-i 

x(k) = ^(k, ko)Xk, + X ^ ( ^ ' '̂ + 1)^0'). (15.14) 

We note that when x^^ = 0, (15.14) reduces to 
k-i 

xp{k)= ^^{kJ+DgUl (15.15) 
; = ̂ o 

and when x^^ T^ 0 but ^(/:) = 0, (15.14) reduces to 

Xh{k) = ^{kko)xk,. (15.16) 

Therefore, the total solution of (15.13) consists of the sum of its particular solution, 
Xp(k), and its homogeneous solution, Xh(k). 

System response 

Finally, we observe that in view of (15.3b) and (15.14), the system response of 
the system (15.3a), (15.3b) is of the form 

k-\ 

y(k) = C(kmk, ko)Xk, + C(k) X ^(k, J + ^)BUMj) + D(kMk\ k > ko, 

(15.17) 

and yiko) = C(ko)Xk, + D{ko)u(ko). (15.18) 



Discrete time systems, as discussed above, arise in several ways, including the 65 
numerical solution of ordinary differential equations (see, e.g., our discussion of CHAPTER 1: 
Euler's method in Subsection 1.6B); the representation of sampled-data systems at Mathematical 
discrete points in time (which will be discussed in further detail in Chapter 2); in Descriptions of 
the modeling process of systems that are defined only at discrete points in time (e.g., Systems 
digital computer systems); and so forth. 

As a specific example of a discrete-time system we consider a second-order 
section digital filter in direct form, 

X\{k + 1) = X2{k) 

X2(k + 1) = axi{k) + bx2(k) + u(k) 

y(k) = xi(k\ 

(15.19a) 

(15.19b) 

k G Z^, where xi(k) and X2(k) denote the state variables, u(k) denotes the input, 
and y(k) denotes the output of the digital filter. We depict system (15.19a), (15.19b) 
in block diagram form in Fig. 1.13. 

ujk) + 

+ 

X2(/f + 1 ^ 

/v 
1 

Unit 
delay 

b 

x,(k + 1) Unit 
delay 

x,(k) 

a 

= y(k) 

FIGURE 1.13 
Second-order section digital filter in direct form 

1.16 
INPUT-OUTPUT DESCRIPTION OF SYSTEMS 

This section consists of four subsections. First we consider rather general aspects 
of the input-output description of systems. Because of their simplicity, we address 
the characterization of linear discrete-time systems next. In the third subsection we 
provide a foundation for the impulse response of linear continuous-time systems. 
Finally, we address the external description of linear continuous-time systems. 

A. External Description of Systems: General Considerations 

The state-space representation of systems presupposes knowledge of the internal 
structure of the system. When this structure is unknown, it may still be possible to 
arrive at a system description—an external description—that relates system inputs 
to system outputs. In linear system theory, a great deal of attention is given to re
lating the internal description of systems (the state representation) to the external 
description (the input-output description). 
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Linear Systems 

In the present context, we view system inputs and system outputs as elements of 
two real vector spaces U and 7, respectively, and we view a system as being repre
sented by an operator T that relates elements of U to elements of F. For u E. U and 
J G 7 we will assume that u: R^ R^ and y \ R-^ RP m the case of continuous-
time systems, and that u : Z —> R^ and y : Z ^ RP in the case of discrete-time 
systems. For continuous-time systems we define vector addition (on U) and multi
plication of vectors by scalars (on L̂ ) as 

and 

(ui + U2)(t) =" ui(t) + U2(t) 

{au){t) = au(t) 

(16.1) 

(16.2) 

for all ui, U2 E U,a G R, and t E R. We similarly define vector addition and mul
tiplication of vectors by scalars on Y. Furthermore, for discrete-time systems we 
define these operations on U and Y analogously. In this case the elements of U and 
Y are real sequences that we denote, e.g., by w = {uk} or u = {u(k)}. (It is easily 
verified that under these rather general conditions, U and Y satisfy all the axioms of 
a vector space, both for the continuous-time case and the discrete-time case.) In the 
continuous-time case as well as in the discrete-time case the system is represented 
hy T : U -> Y, and we write 

y = T(u). (16.3) 

In the subsequent development, we will impose restrictions on the vector spaces 
U, F, and on the operator T, as needed. For example, if T is a linear operator, the 
system is called a linear system. In this case we have 

3; = T(aiui + ^2^2) 
= aiT(ui) + a2T(u2) 
= aiyi + 0:2^2 (16.4) 

for all a i , 0̂ 2 E /?and ui, U2 G U, where j / = T{ui) E 7, / = 1,2, and j E Y. Equa
tion (16.4) represents the well-known principle of superposition of linear systems. 

If in the above, m = p = 1, we speak of a single-input/single-output (SISO) 
system. Systems for which m > 1, p > 1, are called multi-input/multi-output 
(MIMO) systems. 

We say that a system is memoryless, or without memory, if its output for each 
value of the independent variable {t or k) is dependent only on the input evaluated 
at the same value of the independent variable [e.g., yit\) depends only on u{t\) and 
y{k\) depends only on u{k\)l. An example of such a system is the resistor circuit 
shown in Fig. 1.14, where the current i{t) = u(t) denotes the system input at time 
t and the voltage across the resistor, v(t) = Ri(t) = y(t), denotes the system output 
at time t. 

v{t) 

FIGURE 1.14 
Resistor circuit 
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tinuous time system with memory is the capacitor circuit shown in Fig. 1.15, where CHAPTER 1: 
the current i(t) = u(t) represents the system input at time t and the voltage across Mathematical 
the capacitor, Descriptions of 

1 r t Systems 
y{t) = v(t) - - I /(T) dr, 

denotes the system output at time t. Another example of a continuous-time system 
with memory is described by the scalar equation 

y(t) = u(t - 1), K 
and an example of a discrete-time system with memory is characterized by the scalar 
equation 

y(n) = ^ x(k), n, k G Z. 

A system is said to be causal if its output at any time, say, ti (or ki) depends only 
on values of the input evaluated for t ^ ti (for /: < k\). Thus, y(ti) depends only 
on u{t), t ^ ti [or y(ki) depends only on u(k), fc < ki]. Such a system is referred to 
as being nonanticipative since the system output does not anticipate future values of 
the input. 

To make the above concept a bit more precise, we define the function Uj : R^ 
R"^ fovu^U by 

Uj{t) 
_ J u{t\ 

0, 
/ < T, 

t > T, 

and we similarly define the function yj \ R -^ RP fox y ^ Y. K system that is repre
sented by the mapping y ^^ T(u) is said to be causal if and only if 

(T(u))r - (T(Ur))r for all TG R, for all uGU. 

Equivalently, this system is causal if and only if for u,v^U and u^ = Vr it is true 
that 

(T(u))r = (T(v))r for all r ^ R. 

For example, the discrete-time system described by the scalar equation 

y(n) = u(n) - u(n +1) , n G Z 

is not causal. Neither is the continuous-time system characterized by the scalar 
equation 

y(t) = x(t +1) , t E R. 

v{t) 

FIGURE 1.15 
Capacitor circuit 



68 It should be pointed out that systems that are not causal are by no means use-
Linear Systems 1̂ ^̂ - ^^^ example, causality is not of fundamental importance in image-processing 

applications where the independent variable is not time. Even when time is the in
dependent variable, noncausal systems may play an important role. For example, in 
the processing of data that have been recorded (such as speech, meteorological data, 
demographic data, stock market fluctuations, etc.), one is not constrained to process
ing the data causally. An example of this would be the smoothing of data over a time 
interval, say, by means of the system 

>'̂ "̂  = 2MTT S "(« - )̂-
k=-M 

A system is said to be time-invariant if a time shift in the input signal causes a 
corresponding time shift in the output signal. To make this concept more precise, for 
fixed a E i?, we introduce the shift operator Qa - U -^ L̂  as 

Qaii(t) = u{t - a\ uG Uj ^ R. 

A system that is represented by the mapping y = T(u) is said to be time-invariant 
if and only if 

TQaiu) = Qa(T(u)) = Qaiy) 

for any a E R and any w E t/. If a system is not time-invariant, it is said to be 
time-varying. 

For example, a system described by the relation 

y(t) = cos u(t) 

is time-invariant. To see this, consider the inputs ui(t) and U2(t) == ui(t - to). Then 

yi(t) = COSWi(r), yiit) == C0SU2(t) = COSUi(t-to) 

and yi(t - ô) = cosui(t - to) = y2(t). 

As a second example, consider a system described by the relation 

y(n) = nu(n) 

and consider two inputs ui{n) and U2(n) = u\{n~ no). Then 

y\{n) — nui(n) and yiM = nu2(n) = nu\{n — no). 

However, if we shift the output yi{n) by no, we obtain 

yi{n - no) = (n - no)ui(n - ^o) ^ yiin). 

Therefore, this system is not time-invariant. 

B. Linear Discrete-Time Systems 

In this subsection we investigate the representation of linear discrete-time systems. 
We begin our discussion by considering SISO systems. 

In the following, we employ the discrete-time impulse (or unit pulse or unit 
sample), which is defined as 

[0 , ^7^0, n E Z , 
8{n) = \ (16.5) 

I I , n = 0. 



Note that if {p{n)} denotes the unit step sequence, i.e., 

J l , / I > 0 , / I G Z , 

^ ^ ^ ^ ~ | o , n < 0 , n G Z , 

then 5{n) = p{n) — p{n— 1) 

^lk=oS{n-k), n>0, 

^0, n<0. 

Furthermore, note that an arbitrary sequence {x{n)} can be expressed as 

x{n)= ^ x{k)5{n-k). (16.8) 

In Example 10.8 we showed that a transformation T :U ^Y determined by the 
equation 

and p{n) 

(16.6) 

(16.7) 

y{n)= ^ h{n,k)u{k), 
k=-oo 

(16.9) 

where y = {y{k)} G F, w = {w(^)} G 6̂ , and /z: Z x Z ^ /^, is a linear transformation. 
We also noted in Example 10.8 that for (16.9) to make any sense, we need to impose 
restrictions on {h{n,k)} and {u{k)}. For example, if for every fixed n, {h{n,k)} G h 
and {u{k)} ^ h = U, then it follows from the Holder Inequality (resp., Schwarz 
Inequality), that (16.9) is well defined. There are of course other conditions that 
one might want to impose on (16.9) (refer to Example 10.8). For example, if for 
every fixed n,Yk^_^\h{n,k)\ < oo (i.e., for every fixed n,{h{n,k)} G h) and if 
sup^^2 W(^)\ < "̂  (i-^-' {i^{k)} ^ loo), then (16.9) is also well defined. 

We shall now elaborate on the suitability of (16.9) to represent linear discrete-
time systems. To this end, we will agree once and for all that, in the ensuing 
discussion, all assumptions on {h{n,k)} and {u{k)} dire satisfied that ensure that 
(16.9) is well defined. 

We will view y eY and ueU SLS system outputs and system inputs, respectively, 
and we let r : L̂  ^ F denote a linear transformation that relates u to y. We first con
sider the case when u{k) =Ofork<ko, k, ko ^ Z. Also, we assume that for ^ > n > 
^0, the inputs u{k) do not contribute to the system output at time n (i.e., the system is 
causal). Under these assumptions, and in view of the linearity of T, and by invoking 
the representation of signals by (16.8), we obtain for j = {y{n)},n G Z, the expression 
y{n) = r ( i r _ uik)d{n -k)) = Ti^Uo <k)5{n-k))= Y.U, u{k)T{5{n-k)) = 
^l=k h{n,k)u{k),n > ko, dindy{n) = 0,/i < ^o, where T{5{n — k)) = {T5){n — k) = 
h{n,k) represents the response of T to a unit pulse (resp., discrete-time impulse or 
unit sample) occurring atn = k. 

When the assumptions in the preceding discussion are no longer valid, then 
a different argument than the one given above needs to be used to arrive at the 
system representation. Indeed, for infinite sums, the interchanging of the order of 
the summation operation X with the linear transformation T is no longer valid. 
We refer the reader to a paper by I. W. Sandberg ("A Representation Theorem 
for Linear Discrete-Space Systems", IEEE Transactions on Circuits and Systems-I, 
Vol. 45, No. 5, pp. 578-580, May 1998.) for a derivation of the representation 
of general linear discrete-time systems. In that paper it is shown that an extra 
term needs to be added to the right-hand side of equation (16.9), even in the rep
resentation of general, linear, time-invariant, causal, discrete-time systems. (In 
the proof, the Hahn-Banach Theorem (which is concerned with the extension of 

69 
CHAPTER 1: 

Mathematical 
Descriptions of 
Systems 



70 bounded linear functionals) is employed and the extra required term is given by 
Linear Systems lim/^oo T{Yk^^~^ u{k)5{n — ^) + Er=Q+l u{k)5{n — k)) with c/ ^ ©o as / ^ ©o. For 

a statement and proof of the Hahn-Banach theorem, refer, e.g., to reference [12, 
pp. 367-370] given at the end of this chapter.) In that paper it is also pointed out, 
however, that cases with such extra non-zero terms are not necessarily of importance 
in applications. In particular, if inputs and outputs are defined (to be non-zero) on just 
the non-negative integers, then for causal systems no additional term is needed (or 
more specifically, the extra term is zero), as seen in our earlier argument. In any event, 
throughout the present book we will concern ourselves with linear discrete-time sys
tems which can be represented by equation (16.9) for the single-input/single-output 
case (and appropriate generalizations for multi-input/multi-output cases). 

Next, suppose that T represents a time-invariant system. This means that if 
{/z(/i,0)} is the response to {5(/i)}, then by time invariance, the response to {d{n — 
^)}is simply {h{n — k,0)}. By a slight abuse of notation, welet/z(/i —^,0) =h{n — k). 
Then (16.9) assumes the form 

y{n)= ^ u{k)h{n-k). (16.10) 

Expression (16.10) is called a convolution sum and is written more compactly as 
y{n) = u{n) ^h{n). 

Now by a substitution of variables, we obtain for (16.10) the alternative expression 

3̂ (̂ ) = ^ h{k)u{n — k)^ 

and therefore, we have 
y{n) = u{n) *h{n) = h{n) * w(/i), 

i.e., the convolution operation * commutes. 
As a specific example, consider a linear, time-invariant, discrete-time system 

with unit impulse response given by 

^^""^ = { 0,' n < 0 / = ''''^^''^' 0 < ^ < 1. 
where p{n) is the unit step sequence given in (16.6). It is an easy matter to show that 
the response of this system to an input given by 

u{n) = p{n) — p{n — N) 

is y{n) = 0 , / i< 0, 

y{n) = Y,a"-' = a'^- - = - , 0 < n < A ^ , 
yS) l—a~^ I—a 

and y{n) = Y a^-^ = a ^ ^ — % = ^ , N<n. 
ic^o l—a~^ I—a 

Proceeding, with reference to (16.9), we note that h{n,k) represents the system 
output at time n due to a 5-function input applied at time k. Now if system (16.9) is 
causal, then its output will be identically zero before an input is applied. Hence, a 
linear system (16.9) is causal if and only if 

h{n, k) =0 for all k and all n < k. 

Therefore, when the system (16.9) is causal, we have in fact 

y{n)= ^ h{n,k)u(k). (16.11a) 



We can rewrite (16.1 la) as 

y{^) ^ ^ h{n^k)u{k)-\- ^ h{n^k)u{k) 
k=-oo k=ko 

^y{ko-l)^f^h{n,k)u{k). 
k=ko 

(16.11b) 

We say that the discrete-time system described by (16.9) is at rest 3tk = ko ^Z 
if u{k) =Ofork> ko, implies that y{k) =Ofork> ko. Accordingly, if system (16.9) 
is known to be at rest at ^ = ô» we have 

y{^) = ^ h{n^k)u{k). 
k=kQ 

Furthermore, if system (16.9) is known to be causal and at rest at ̂  = ô» its input-
output description assumes the form [in view of (16.1 lb)] 

y{^) = ^ h{n^k)u{k). 
k=kQ 

to 

(16.12) 

Next, turning to linear, discrete-time, MIMO systems, we can generalize (16.9) 

(16.13) y{n)= X H{n,k)u{k) 

where y \Z ^RP ,u\Z ^W^.dind 

H{n,k) 

'hii{n,k) hi2{n,k) 
h2i{n,k) h22{n,k) 

hpi{n,k) hp2{n,k) 

himin.k)-
h2m{n,k) 

(16.14) 

where hij{n^k) represents the system response at time n of the i\h component of y 
due to a discrete-time impulse 5 applied at time k at the jth component of u, while 
the inputs at all other components of u are being held zero. The matrix H is called 
the discrete-time unit impulse response matrix of the system. 

Similarly, it follows that the system (16.13) is causal if and only if 

H{n^ k) =0 for all k and all n < k, 

and that the input-output description of linear, discrete-time, causal systems is given 
by 

n 

y{n)= ^ H{n,k)u(k). (16.15) 

A discrete-time system described by (16.15) is said to be at rest at k = ko ^Z if 
u{k) = 0 for ̂  > ^0 implies that y{k) = 0 for ̂  > ^o- Accordingly, if system (16.13) 
is known to be at rest at ^ = ^o, we have 

y{n)= J^H{n,k)u{k). 
k=ko 

(16.16) 
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72 Moreover, if a linear discrete-time system that is at rest at ko is known to be causal, 
Linear Systems then its input-output description reduces to 

n 

y(n) = ^ H(n, k)u(k). (16.17) 
k=ko 

Finally, as in (16.10), it is easily shown that the unit impulse response H(n, k) of 
a linear, time-invariant, discrete-time MIMO system depends only on the difference 
of n and k, i.e., by a slight abuse of notation we can write 

H{n, k) = H(n - k,0) = H(n - k) (16.18) 

for all n and k. Accordingly, linear, time-invariant, causal, discrete-time MIMO sys
tems that are at rest at k = ko are described by equations of the form 

n 

y(n) = ^H(n- k)u(k), (16.19) 

We conclude by supposing that the system on hand is described by the state 
and output equations (15.3a) and (15.3b) under the assumption that x(ko) = 0, i.e., 
the system is at rest at ^ = ^o- Then, according to Eqs. (15.17) and (15.18), we 
obtain 

(16.20) Hin, k) = < 
C(«)0(n, k + \)B{k), 
Din), 
0, 

Furthermore, for the time-invariant case we obtain 

CA^'-^^^^^B, 
H{n -k) = \D, 

0, 

n 
n 
n 

n> k, 
n = k, 
n < k. 

> k, 
= k, 
< k. 

(16.21) 

C. The Dirac Delta Distribution 

For any linear time-invariant operator P from C(R, R) to itself, we say that P admits 
an integral representation if there exists an integrable function (in the Riemann or 
Lebesgue sense), gp : R^ R, such that for any / G C(R, R), 

r 00 

{Pf){x) = ( / * gp){x) ^ f(T)gpix - T) dr. 
J - c o 

We call gp a kernel of the integral representation of P. 
For the identity operator / [defined by If = f for any / E C(R, R)] an integral 

representation for which gp is a function in the usual sense does not exist (see, e.g., 
Z. Szmydt, Fourier Transformation and Linear Differential Equations, D. Reidel 
Publishing Company, Boston, 1977). However, there exists a sequence of functions 
{(/)„} such that for any / G C(R, R), 

(If)(x) = fix) = l im( / * c/>,)(x). (16.22) 



To prove (16.22) we will make use of functions {(pn) given by 

0«W = < 
«(1 -

0, 

- n\x\). if IJCI < -
n 

if \x\ > -, 
n 

n = 1, 2, 3, A plot of (/)„ is depicted in Fig. 1.16. 
We first establish the following useful property of {(/)„}. 
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FIGURE 1.16 

LEMMA 16.1. L e t / be a continuous real-valued function defined on R and let (/>„ be 
defined as above (Fig. 1.16). Then for any a E R, 

lim f{T)(f>n{a -T)dT = f(a). (16.23) 

Proof, It is easy to verify that for n = 1, 2 , . . . , 

(/>„(T) dr = 4>n{T) dr = 1. 
J-l/n 

Then 

(pnici^ ~ T) dr 
a-l/n 

\ln 

(f)n{a — T) dr 

(j)n{T)dT = 1. (16.24) 

We first assume tha t / is a nonnegative function. By the continuity of/ we may 
suppose that/ assumes a maximum value f(bn) and a minimum value /(c„), where bn 

and Cn E \a ~ -,a + -\. Then 
I n n\ 

r a+l/n 

(l>n(a - T)f{T) dr = (f)n{a - T)f(T) dr 
3 Ja-l/n 

r a+l/n 

f(bn) Ma -T)dT = f{bn), (16.25) 
Ja-\ln 

where we have used (16.24). In a similar manner we can show that 

ct>n{a-T)f{T)dT^ f{Cn). (16.26) 

Since bn and Cn 
1 1 

a - -,a + -
n n 

, it follows that lim„_̂ oo bn = lim„^oo Cn = a. Thus, 

(16.25) and (16.26) together with the continuity of/ imply (16.23). 
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Linear Systems continuous function / can be written as the sum of two nonnegative functions, 

/ = /+—/_, where 
. , J/W, if/(x)>0, 

^ ^ ^ " [ 0 , i f / (x)<0, 

[- / (x) , i f / (x)<0. 

Then 

lim / f{T)(l)n{a-T)dT 

= lim / /+(T)0„(a —T)(iT—lim / /_(T)0„(a —T)(iT 

= U{a)-U{a)=f{a). • 

The above result, when applied to (16.22), now allows us to J^^n^ a generalized 
function 5 (also called a distribution) as the kernel of di formal or symbolic integral 
representation of the identity operator/, i.e., 

f{x) = lim r f{T)Ux-T)dT (16.27) 

= / / ( T ) 5 ( J C - T ) J T (16.28) 

= /*5(jc). (16.29) 
/f is emphasized that expression (16.28) is not an integral at all (in the Riemann or 
Lebesgue sense), but only a symbolic representation. The generalized function d is 
called the unit impulse or the Dirac delta distribution. 

In applications we frequently encounter functions / G C{R^,R). If we extend / 
to be defined on all ofRby letting f{x) = 0 for x < 0, then (16.23) becomes 

lim / f{T)^n{ci-T)dT = f{a) (16.30) 

for any a > 0, where we have used the fact that in the proof of Lemma 16.1 we need 
/ to be continuous only in a neighborhood of a. Therefore, for / G C{R^,R), (16.27) 
to (16.30) yield 

lim rf{T)Ut-^)dT^ rf{T)5{t-T)dT = f{t) (16.31) 
n^^Jo Jo 

for any t > 0. Since the 0^ are even functions, we have 0^(f — T) = 0^(T — f), which 
allows for the representation d{t — T) = d{T— t). We obtain from (16.31) that 

lim rf{T)U^-t)dT^ rf{T)5{T-t)dT = f{t) 
n^^Jo Jo 

for any t > 0. Changing the variable T̂  = T — f, we obtain 

lim r f{T'+t)U^')dT'^ r f{T' + t)5{T')dT'=f{t) 

for any t > 0. Taking the limit f ^ 0+, we obtain 

lim r f{T'+ t)UT')dT' ^ r f{T')5{T')dT' = f{Q), (16.32) 
n^^Jo- Jo-



where, as in (16.24), J^- f{T')5{T')dT' is not an integral, but a symbolic representa
tion 0f\imn^ooSQf{T'+t)(^n{^')dT'. 

Now let s denote a complex variable. If in (16.31) to (16.32) we let / ( T ) = 
e~^^ ̂  T > 0, then we obtain the Laplace transform 

lim / e-'^(l)n{T)dT= I e-'^5{T)dT=l. (16.33) 
n^^ Jo- Jo-

Symbolically we denote (16.33) by 

^ ( 5 ) = 1, (16.34) 

and we say that the Laplace transform of the unit impulse function or the Dirac delta 
distribution is equal to one. 

Next, we point out another important property of 5. Consider a (time-invariant) 
operator P and assume that P admits an integral representation with kernel gp. If in 
(16.31) we let / = gp, we have 
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\im{P^n){t)=gp{t), (16.35) 

and we write this (symbolically) as 

PS = gp. (16.36) 

This shows that the impulse response of a linear, time-invariant, continuous-time 
system with integral representation is equal to the kernel of the integral representa
tion of the system. Symbolically this is depicted in Fig. 1.17. 

Next, for any linear time-varying operator P from C{R^R) to itself, we say 
that P admits an integral representation if there exists an integrable function (in the 
Riemann or Lebesgue sense), gp : RxR^ R, such that for any / G C{R,R), 

{Pf){ri) = iyit)gp{ri,t)dt. (16.37) 

Again, we call gp a kernel of the integral representation of P. It turns out that the 
impulse response of a linear, time-varying, continuous-time system with integral 

9)1 
' n 

• 
• 

• 

• 

5 

p 

• 
• 
• 
• 

p 

9n 

• 
• 

• 

• 

9p 

oo 

FIGURE 1.17 



76 representation is again equal to the kernel of the integral representation of the sys-
Linear Systems ^^^- To see this, we first observe that if /z G C{R X R, R), and if in Lemma 16.1 we 

replace / G C{R, R) by h, then all the ensuing relationships still hold, with obvious 
modifications. In particular, as in (16.27), we have for all t ^ R, 

lim h{t, T)(l>n(V -T)dT = I h{t, 7)8(7] - T) dj = h(t, 7]). (16.38) 

Also, as in (16.31), we have 

lim h(t, T)(j)n{r] -T)dT = h(t, T)8(r] -T)dT = hit, r/) (16.39) 
«^°°Jo Jo 

for 7]>0. 
Now let hit, T) = grit, r). Then (16.38) yields 

r 00 ^ 0 0 

lim gpit, r)cl)niv -r)dr = gp(t, 7)8(7] -7)d7 = grit, T]), (16.40) 

which establishes our assertion. The common interpretation of (16.40) is that gp(t, 17) 
represents the response of the system at time t due to an impulse applied at time r/. 

In establishing the results of the present subsection, we have made use of a 
specific sequence of functions {(/>„} given by 

^n(x) = { , n= \,2,,... 
n(\ -

0, 

- n\x\), if Ixl < -
n 

if \x\ > -
n 

We wish to emphasize that there are many other functions that could have served 
this purpose. An example of a commonly used sequence of functions employed in 
the development of the Dirac delta distribution is given by {ipn}, where 

^n(t) = \ In' '̂ ' " ""' 
I 0, \t\ > n, 

n = \,2, Another example of a sequence of functions that can be utilized for 
this is given by {r/^}, where 

f n^te'""^, 0 < ^ < 00, 
Vn(t) = \ n= 1,2,..,. 

0, elsewhere. 

D. Linear Continuous-Time Systems 

We let P denote a linear time-varying operator from C(R, R^) = Uto C(R, RP) = Y 
and we assume that P admits an integral representation given by 

y(t) = (Pu)(t) = i Hp(t,7)u(7)d7, (16.41) 

where Hp : R X R^ j^pxm^ u ^ U, and j G F, and where Hp is assumed to be 
integrable. This means that each element of Hp, hp.. : RX R-^ Ris integrable (in 
the Riemann or Lebesgue sense). 



Now let yi and j2 denote the response of system (16.41) corresponding to the 
input ui and U2, respectively, let ai and 0̂ 2 be real scalars, and let y denote the 
response of system (16.41) corresponding to the input aiui + 0:2^2 = u. Then 

y = P(u) — P(aiU\ + ^2^2) — Hp(t, T)[aiUi(T) + «2W2(T)] dr 

— ai \ Hp{t, T)U\(T) dr -\- a2 \ Hp(t, T)U2(T) dr 
J—00 J—cc 

= aiP(u\) -\- a2P{u2) = cxiyi + a2y2y (16.42) 

which shows that system (16.41) is indeed a linear system in the sense defined in 
(16.4). 

Next, we let all components of U(T) in (16.41) be zero, except for the jth com
ponent. Then the /th component of y(t) in (16.41) assumes the form 

yi(t) = hp.j(t,T)Uj(T)dT. 
J —00 

(16.43) 

According to the results of the previous subsection [see Eq. (16.40)], hp.j(t, r) de
notes the response of the /th component of the output of system (16.41), measured at 
time t, due to an impulse applied to thejth component of the input of system (16.41), 
applied at time r, while all the remaining components of the input are zero. There
fore, we call Hp(t, r) = [hp.j(t, r)] the impulse response matrix of system (16.41). 

Now suppose that it is known that system (16.41) is causal. Then its output will 
be identically zero before an input is applied. It follows that system (16.41) is causal 
if and only if 

Hp(t, T) = 0 for all r and for all t < r. 

Therefore, when system (16.41) is causal, we have in fact that 

y(t) = Hp{t, T)U{T) dr. (16.44) 

We can rewrite (16.44) as 

y(t) = Hp{t, T)U(T) dr + Hp(t, T)U(T) dr 

= y(to) + Hp(t, T)U{T) dr. (16.45) 

We say that the continuous-time system (16.41) is at rest at t = to if u(t) = 
0 for r ^ to implies that y(t) = 0 for ^ > ô- Note that our problem formulation 
mandates that the system be at rest at to = -^. Also, note that if a system (16.41) 
is known to be causal and to be at rest at ^ = ô̂  then according to (16.45) we have 

y(t) Hp(t, T)U(T) dr. (16.46) 
J to 

Next, suppose that it is known that the system (16.41) is time-invariant. This 
means that if in (16.43) hp..(t, r) is the response yt at time t due to an impulse applied 
at time r at thejth component of the input [i.e., UJ(T) = 8(t)], with all other input 
components set to zero, then a - r time shift in the input [i.e., Uj(t - r) = 8{t - r)] 
will result in a corresponding - r time shift in the response, resulting in hp. .(t-T,0). 
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78 Since this argument holds for all t,TGR and for all / = 1 , . . . , p, and j = 1 , . . . , m, 
Linear Systems we have Hp(t, r) = Hp(t - r, 0). If we define (using a sHght abuse of notation) 

Hp{t - T,G) = Hp{t - T), then (16.41) assumes the form 

y(t) = Hp(t - T)U(T) dr. (16.47) 
J —cc 

Note that (16.47) is consistent with the definition of the integral representation of a 
linear time-invariant operator introduced in the previous subsection. 

The right-hand side of (16.47) is the familiar convolution integral of Hp and u 
and is written more compactly as 

y(t) = (Hp * u)(t). (16.48) 

We note that since Hp(t - r) represents responses at time t due to impulse inputs 
applied at time r, then Hp(t) represents responses at time t due to impulse function 
inputs applied at r = 0. Therefore, a linear time-invariant system (16.47) is causal 
if and only if Hp(t) = 0 for all t < 0. 

If it is known that the linear time-invariant system (16.47) is causal and is at rest 
at ^0, then we have 

rt 

y(t) = Hp(t-T)u(T)dT. (16.49) 
to 

In this case it is customary to choose, without loss of generality, to = 0. We thus 
have 

y(t) = f Hp(t - T)U(T) dr, t > 0. (16.50) 
Jo 

If we take the Laplace transform of both sides of (16.50), provided it exists, we 
obtain 

y{s) = Hp(s)uis\ (16.51) 

where y(s) = [yi{s\ .. .,ypJis)f,Hp(s) = [hp.j(s)l md u(s) = [ui(s\ ..., Um(s)]\ 
where the yi(s), Uj(s), and hp..(s) denote the Laplace transforms of yi{t), Uj(t), and 
hpij(t), respectively. Consistent with Eq. (16.34), we note that Hp(s) represents the 
Laplace transform of the impulse response matrix Hp(t). We call Hp(s) a transfer 
function matrix. 

Now suppose that the input-output relation of a system is specified by the state 
and output equations (14.3a), (14.3b), repeated here as 

X = A(t)x + B(t)u (16.52a) 

y = C(t)x + D(t)u. (16.52b) 

If we assume that x(to) = 0 so that the system is at rest at to = 0, we obtain for 
the response of this system, 

y(t) = [ C{t)^{t,T)B{T)u{T)dT + D{t)u{t) (16.53) 

= [ {C{t)^{t, T)B(T) + D(t)8(t - T)]U(T) dr, (16.54) 
JtQ 



where in (16.54) we have made use of the interpretation of 8 given in Subsection C. 
Comparing (16.54) with (16.46), we conclude that the impulse response matrix for 
system (16.52a), (16.52b) is given by 

M (tr^-l ^^^)*(^^ ^)^(^) + ^WS(r - T), t^ T, (16.55) 

Finally, for time-invariant systems described by the state and output equations 
(14.7a), (14.7b), repeated here as 

X = Ax + Bu 

y = Cx -\- Du, 

we obtain for the impulse response matrix the expression 

r) = f Ce'^^'-^^B + D8(t - r), Hp(t 
0, 

r > T, 
t < T, 

or, as is more commonly written. 

Ce^'B + D8(t\ 
0, 

t^ 0, 
t<0. 

Hp(t) = 

We will pursue the topics of this section further in Chapter 2. 

(16.56a) 

(16.56b) 

(16.57) 

(16.58) 
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1.17 
SUMMARY 

In this chapter we addressed mathematical descriptions of systems. First, initial-
value problems determined by systems of first-order nonlinear ordinary differential 
equations were introduced. Conditions for existence and uniqueness of solutions, and 
approaches to determine such solutions, were established. The main reason for con
sidering nonlinear mathematical descriptions of systems in a book on linear systems 
is that the origins of most linear systems are nonlinear systems. Specifically, linear 
systems are frequently obtained from nonlinear systems by a linearization process, 
or are the result of modeling where the nonlinear effects of a physical process have 
been suppressed or neglected. Accordingly, the validity of linear mathematical de
scriptions must always be interpreted in the context of the nonlinear systems they 
approximate. 

The linearization of nonlinear systems along a given solution (and a given input) 
was discussed in Section 1.11. The solutions of linear (time-varying) state equations 
were obtained in Section 1.13 using the method of successive approximations. The 
response of a linear continuous time system to an input, given initial states, was 
derived in Section 1.14. 

The development of the theory of discrete-time systems parallels that of 
continuous-time systems and was addressed in Section 1.15. 

State-space representations provide detailed descriptions of the internal behav
ior of a system, while input-output descriptions of systems emphasize external be
havior and how a system interacts with its environment. Input-output descriptions 
of linear systems, addressed in Section 1.16, involve the convolution integral for 
continuous-time systems and the convolution sum for discrete-time systems. 



80 In the next chapter, both state-space descriptions and input-output descriptions 
Linear Systems ^f systems are revisited, and their dynamic behavior is studied in detail. 

1.18 
NOTES 

Standard references on linear algebra include Birkhoff and MacLane [2], Halmos 
[9], and Gantmacher [8]. For more recent texts on this subject, refer, e.g., to Strang 
122] and Michel and Herget [12]. 

Excellent sources on analysis at the elementary level include Apostol [1], Rudin 
[17], and Taylor [24]. For treatments at an intermediate level, consult, e.g., Royden 
[16], Taylor [23], Naylor and Sell [15], and Michel and Herget [12]. 

For a classic reference on ordinary differential equations, see Coddington and 
Levinson [6]. Other excellent sources include Brauer and Nohel [3], Hartman [10], 
and Simmons [21]. Our treatment of ordinary differential equations in this chapter 
was greatly influenced by Coddington and Levinson [6] and Miller and Michel [14]. 

An original standard reference on linear systems is Zadeh and Desoer [25]. Of 
the many excellent texts on this subject, the reader may want to refer to Brockett 
[4], Kailath [11], and Chen [5]. For more recent texts on linear systems, consult, 
e.g., Rugh [18] and DeCarlo [7]. 

In Section 16 we showed that continuous-time finite-dimensional linear sys
tems described by state equations have an input-output description given by integral 
equations. For a general and comprehensive treatment of the integral representation 
of linear systems, refer to Sandberg [19], [20]. 
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1.20 
EXERCISES 

1.1. (Hamiltonian dynamical systems) Conservative dynamical systems, also called 
Hamiltonian dynamical systems, are those systems that contain no energy-dissipating 
elements. Such systems with n degrees of freedom can be characterized by means of a 
Hamiltonian function H{p, q), where q^ = {q\,..., qn) denotes n generalized position 
coordinates and p^ = {p\,..., Pn) denotes n generalized momentum coordinates. We 
assume that H{p, ^) is of the form 

H{p,q) = T(q,q) + W(qX (20.1) 

where T denotes the kinetic energy and W denotes the potential energy of the system. 
These energy terms are obtained from the path-independent line integrals 

(20.2) 

(20.3) 

where fj = 1 , . . . , n, denote generalized potential forces. 
For the integral (20.2) to be path-independent, it is necessary and sufficient that 

T(q,q)=\ p(q,^fd^=\ ^pt(q,Od^i 
JO Jo / ^ i 

dpi{q,q) _ dpj{q,q) 
dqj dqt 

i,j=l,..., n. (20.4) 

A similar statement can be made about Eq. (20.3). 
Conservative dynamical systems are described by the system of 2n ordinary differ

ential equations 

qi = -z—{p,q), I = l,...,n, 
"^P^ (20.5) 

Pi = -—-(p,q), I = h...,n. 
oqt 
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Note that if we compute the derivative of H(p, q) with respect to t for (20.5) [i.e., along 
the solutions qi{t), Pi{t\ i = I,.. .,n], then we obtain, by the chain rule. 

-^(p(t\q(t)) 
i=l 

^ dH ^ JH^ , ^ OH ^ JH ^ , ^ 

^ - S ̂ ^̂ ' '^-^'' '^ ̂  S ̂ ^̂ ' 'W' '^ ̂  '• 
In other words, in a conservative system (20.5) the Hamiltonian, i.e., the total energy, 
will be constant along the solutions (20.5). This constant is determined by the initial data 
(p(0),^(0)). 
(a) In Fig. 1.18, Mi and M2 denote point masses, ^1 , K2, K denote spring constants, 

and xi, X2 denote the displacements of the masses M\ and M2. Use the Hamiltonian 
formulation of dynamical systems described above to derive a system of first-order 
ordinary differential equations that characterize this system. Verify your answer by 
using Newton's second law of motion to derive the same system of equations. As
sume that x\{0\ x\{0), ^2(0), i:2(0) are given. 

A 

A 

K Ko 

M, 1 h^A/W- 2̂ —VW i 
/77777777777V7777777777777777777777777A 
FIGURE 1.18 
Example of a conservative dynamical system 

(b) In Fig. 1.19, a point mass m is moving in a circular path about the axis of rotation 
normal to a constant gravitational field (this is called the simple pendulum problem). 
Here / is the radius of the circular path, g is the gravitational acceleration, and x 
denotes the angle of deflection measured from the vertical. Use the Hamiltonian 
formulation of dynamical systems described above to derive a system of first-order 
ordinary differential equations that characterize this system. Verify your answer by 

FIGURE 1.19 
Simple pendulum 



using Newton's second law of motion to derive the same system of equations. As
sume that x(0) and i:(0) are given, 

(c) Determine a system of first-order ordinary differential equations that characterizes 
the two-link pendulum depicted in Fig. 1.20. Assume that ^i(O), ^2(0), ^i(O), and 
^2(0) are given. 
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FIGURE 1.20 
Two-link pendulum 

1.2. (Lagrange's equation) If a dynamical system contains elements that dissipate energy, 
such as viscous friction elements in mechanical systems and resistors in electric circuits, 
then we can use Lagrange's equation to describe such systems. (In the following, we use 
some of the same notation used in Exercise 1.1.) For a system with n degrees of freedom, 
this equation is given by 

d idL \ dL ..^dD 
/ = 1 , . . . , n, (20.6) 

where q^ = {q\, ••-,qn) denotes the generalized position vector. The function L{q, q) is 
called the Lagrangian and is defined as 

L{q, q) = T(q, q) - W{ql 

i.e., the difference between the kinetic energy T and the potential energy W. 
The function D{q) denotes Rayleigh's dissipation function, which we shall assume 

to be of the form 

(̂̂ )- la^iMp 
^ i=\ 7=1 

where [jS/y] is a positive semidefinite matrix (i.e., [/3/y] is symmetric and all its eigenval
ues are nonnegative). The dissipation function D represents one-half the rate at which 
energy is dissipated as heat. It is produced by friction in mechanical systems and by 
resistance in electric circuits. 

Finally, ft in Eq. (20.6) denotes an applied force and includes all external forces 
associated with the qt coordinate. The force ft is defined as being positive when it acts 
to increase the value of the coordinate qt. 
(a) In Fig. 1.21, M\ and M2 denote point masses; Ki, K2, K denote spring constants; 

yh yi denote the displacements of masses M\ and M2, respectively; and B\, B2, B 
denote viscous damping coefficients. Use the Lagrange formulation of dynamical 
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FIGURE 1.21 
An example of a mechanical system with energy dissipation 

systems described above to derive two second-order ordinary differential equations 
that characterize this system. Transform these equations into a system of first order 
ordinary differential equations. Verify your answer by using Newton's second law of 
motion to derive the same system equations. Assume that ji(0), ji(0), j2(0), J2(0) 
are given. 

(b) Consider the capacitor microphone depicted in Fig. 1.22. Here we have a capacitor 
constructed from a fixed plate and a moving plate with mass M. The moving plate is 
suspended from the fixed frame by a spring that has a spring constant k and also some 
damping expressed by the damping constant B. Sound waves exert an external force 
fit) on the moving plate. The output voltage v ,̂ which appears across the resistor 
R, will reproduce electrically the sound-wave patterns that strike the moving plate. 

When fit) = 0 there is a charge q^ on the capacitor. This produces a force 
of attraction between the plates that stretches the spring by an amount x\, and the 
space between the plates is XQ. When sound waves exert a force on the moving plate, 
there will be a resulting motion displacement x that is measured from the equilibrium 
position. The distance between the plates will then be XQ - x, and the charge on the 
plates will be ^0 + ^• 

Fixed plate 

Moving plate 
with mass M 

- x o - x -

-Xi -\- X-

K 
->AAN— 

^B 

tl'tr^ 

fit) 
V 

•^Tjc ir—' 

FIGURE 1.22 
Capacitor microphone 



(c) 

When displacements are small, the expression for the capacitance is given ap
proximately by 

XQ — X 

with Co = eA/xo, where e > 0 is the dielectric constant for air and A is the area of 
the plate. 

Use the Lagrange formulation of dynamical systems to derive two second-order 
ordinary differential equations that characterize this system. Transform these equa
tions into a system of first-order ordinary differential equations. Verify your answer 
by using Newton's laws of motion and Kirchhoff's voltage/current laws. Assume 
that x(0), i(0), ^(0), and q{0) are given. 
Use the Lagrange formulation to derive a system of first-order differential equations 
for the system given in Example 4.3. 

1.3. Find examples of initial-value problems for which (a) no solutions exist; (b) more than 
one solution exists; (c) one or more solutions exist, but cannot be continued for all r G R\ 
and (d) unique solutions exist for all r G /?. 

1.4. (Numerical solution of ordinary differential equations—Euler's method) In Sub
section 1.6B it is shown that an approximation to the solution of the scalar initial-value 
problem 

fit, y), j(ro) = JO (20.7) y = jyt,y), y{to) = Jo 

is given by Euler's method [see Eq. (6.6)], 

yk+i = yk + hf{tk,yk\ k = Q,h2,. (20.8) 

where h = tk+\— tk is the (constant) integration step. The interpretation of this method 
is that the area below the solution curve [see Eq. (V) in Section 1.6] is approximated by 
a sequence of sums of rectangular areas. This method is also called \hQ forward rectan
gular rule (of integration), 
(a) Use Euler's method to determine the solution of the initial-value problem 

j = 3 j , y{tQ) tQ = 0, tQ^ t ^ 10. 

(b) Use Euler's method to determine the solution of the initial-value problem 

y = t{yf - / yit^) = 1, y(to) = 0, to = 0, to ^ t ^ 10. 

Hint: In both cases, use h = 0.2. For part (b), let y = xi, xi = X2, X2 = tx^ - x\, 
and apply (20.8), appropriately adjusted to the vector case. In both cases, plot yk vs. 
^^ ŷ  = 0,1, 2 , . . . . 

Remark: Euler's method yields arbitrarily close approximations to the solutions of 
(20.7), by making h sufficiently small, assuming infinite {computer) word length. In 
practice, however, where truncation errors (quantization) and round-off errors (finite 
precision operations) are a reality, extremely small values of h may lead to numerical 
instabilities. Therefore, Euler's method is of limited value as a means of solving initial-
value problems numerically. 

1.5. (Numerical solution of ordinary differential equations—Runge-Kutta methods) 
The Runge-Kutta family of integration methods are among the most widely used tech
niques to solve initial-value problems (20.7). A simple version is given by 

where 

yi+i = yi + K 

k = Uki -h 2ŷ 2 + 2^3 + ^4), 
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Linear Systems fe = hfiu + ^hyi + ^ki) 

h = hf(ti + i/i,};/ + ife) 

k4 = hfiti + h, ji + h), 

andf/+i = ti + Kyito) = y^. 
The idea of this method is to probe ahead (in time) by one-half or by a whole step h 

to determine the values of the derivative at several points, and then to form a weighted 
average. 

Runge-Kutta methods can also be applied to higher order ordinary differential equa
tions. For example, after a change of variables, suppose that a second-order differential 
equation has been changed to a system of two first-order differential equations, say, 

x\ = fi(t,xi,X2), xiito) = xio ^20 9) 

Xl = flit, Xi, X2X X2(to) = X20. 

In solving (20.9), a simple version of the Runge-Kutta method is given by 

yt+i = Ji + k, 

where yi = {xu, xiiY and k = (k, lY 

with k = ^('^i + ^h + 2fe + h), I = l(l\+ 2/2 + 2/3 + U) 

and 

h = hfi{tuXii,X2i) h = hfiiU, Xu, X2i) 

h = hfiiti + i/z, Xu + ^ki, X2i + 5/1) h = hf2(ti + ^h, xu + ^h, X2i + 5/1) 

h = hfiiU + ^h, Xu + ^k2, X2i + 5/2) h = hf2(ti + \K Xu + {h, X2i + ^2) 

h = hfi(ti + h, Xu + ks, X2i + h) k = hf2(ti + h, Xu + h, X2i + h\ 

Use the Runge-Kutta method described above to obtain numerical solutions to the 
initial value problems given in parts (a) and (b) of Exercise 1.4. As there, plot your data. 

Remark: Since Runge-Kutta methods do not use past information, they consti
tute attractive starting methods for more efficient numerical integration schemes (e.g., 
predictor-corrector methods). We note that since there are no built-in accuracy measures 
in the Runge-Kutta methods, significant computational efforts are frequently expended 
to achieve a desired accuracy. 

1.6. (Numerical solution of ordinary differential equations—Predictor-Corrector 
methods) A common predictor-corrector technique for solving initial-value problems 
determined by ordinary differential equations, such as (20.7), is the Milne method, 
which we now summarize. In this method, yt-i denotes the value of the first derivative 
at time ^/_i, where ti is the time for the /th iteration step, j / -2 is similarly defined, and 
yt+i represents the value of j to be determined. The details of the Milne method are: 

Ah, 

T 
2. yi+i,p = fiti+uyt+ip) 

h 
3. yt+ic = yt-i + 3 (i^z-i + 4j / + yt+ip) (corrector) 

4. yi+i,c = f(ti+uyi+i,c) 
h 

5. yt+u = yi-i + 3 (>'/-i + 4j / + yt+ic) (iterating corrector) 

The first step is to obtain a predicted value of yt+i and then substitute yi+\,p into 
the given differential equation to obtain a predicted value of yi+i, as indicated in the 

1- yi+i,p = yi-3 + —(2J/-2 - yt-i + 2j/) (predictor) 



second equation above. This predicted value, yi+i,p is then used in the second equation, 
the corrector equation, to obtain a corrected value of yi+\. The corrected value, yt+ic 
is next substituted into the differential equation to obtain an improved value of y/+i, 
and so on. If necessary, an iteration process involving the fourth and fifth equations 
continues until successive values of yi+i differ by less than the value of some desirable 
tolerance. With yt+i determined to the desired accuracy, the method steps forward one 
h increment. 

A more complicated predictor-corrector method that is more reliable than the 
Milne method is the Adams-Bashforth-Moulton method, the essential equations of 
which are 

^ 5 5 ^ , - 59y,-i + 31yi-2 - 9^,-3) yi+i,p = yt + 

Ji+U J/ + 

24' 

- ( 9 j , + i + 19j,- 5 j / - i + yi-2), 

where in the corrector equation, yi+\ denotes the predicted value. 
The application of predictor-corrector methods to systems of first-order ordinary 

differential equations is straightforward. For example, the application of the Milne 
method to the second-order system in (20.9) yields from the predictor step 

4/z. 
^k,i + \,p = Xk,i-3 + ^(2Xk,i-2 - Xk,i^i + 2Xk,il k = 1, 2. 
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T h e n ^k,i+i,p — fk{U+\, ^i,i+\,py X2,i+\,p)> 

and the corrector step assumes the form 

k= 1,2, 

^k,i+\,c — ^k,i-l + l^{^k,i-\ + ^^k,i + ^k,i + \), k — 1,2, 

and Xk,i+\,c = fk(ti+h xij+ic, X2,i+i,c\ k = 1,2. 

Use the Milne method and the Adams-Bashforth-Moulton method described 
above to obtain numerical solutions to the initial-value problems given in parts (a) and 
(b) of Exercise 1.4. To initiate the algorithm, refer to the Remark in Exercise 1.5. 

Remark. Derivations and convergence properties of numerical integration schemes, 
such as those discussed here and in Exercises 1.4 and 1.5, can be found in many of the 
standard texts on numerical analysis (see, e.g., D. Kincaid and W. Cheney, Numerical 
Analysis, Brooks-Cole, Belmont, CA, 1991). 

1.7. (a) Prove Theorem 6.2 for the interval [to - c, to]. 
(b) Prove Theorem 7.2 for the endpoint a. 
(c) Prove Theorem 8.2 for the interval [to - d, to]. 
(d) Prove Theorem 8.4 for t < to. 
(e) Prove Theorem 8.5 for the interval [to - c,to]. 
(f) Prove Theorem 10.1 through and including Theorem 10.10. 

1.8. (a) Prove that the function f(x) = x̂ ^̂  is continuous but not Lipschitz continuous. 
(b) Show that the initial-value problem i; = x^^^, 

ent solutions. (Remember to consider t < 0.) 
x(0) = 0 has infinitely many differ-

1.9. Use Theorem 8.5 to solve the initial-value problem x = ax + t, x(0) = xo for ^ > 0. 
Here a E R. 

1.10. Consider the initial-value problem 

X = Ax, x(0) - Xo, (20.10) 



88 where x ^ R^ and A E R^^^. Let Ai, A2 denote the eigenvalues of A, i.e., Ai and A2 
Linear Systems ^^^ ^^^ ^^^^^ ^^ ^^^ equation det (A - XI) = 0, where det denotes determinant, A is a 

scalar, and / denotes the 2 X 2 identity matrix. Make specific choices of A to obtain the 
following cases: rollowing cases: 

L Ai > 0, A2 > 0, and Ai 7^ A2; 
2. Ai < 0, A2 < 0, and Ai 7^ A2; 
^ \. = \. ^ 0-3. Ai = A2 > 0; 
4. Ai = A2 < 0; 
5. Ai > 0, A2 < 0; 
6. Ai = a + /j8, A2 = a - /jS, / = v ^ , a > 0; 
7. Ai = a + //3, A2 = a - //3, a < 0; 
8. Ai = /jS,A2 = - / / 3 . 

Using r as a parameter, plot (l)2(t, 0, xo) vs. (t)i(t, 0, XQ) for 0 < ^ < r/ for every 
case enumerated above. Here [(/>i(t, to, XQ), (f)2{t, to, xo)V = <P(t, to, xo) denotes the so
lution of (20.10). On your plots, indicate increasing time t by means of arrows. Plots 
of this type are called trajectories for (20.10), and sufficiently many plots (using dif
ferent initial conditions and sufficiently large tf) make up a phase portrait for (20.10). 
Generate a phase portrait for each case given above. 

1.11. Write two first-order ordinary differential equations for the van der Pol equation (4.10) 
by choosing xi = x and X2 = i i . Determine by simulation/?/z<35^p6>rrra/r5 (see Exer
cise LIO) for this example for the cases e = 0.05 and e = 10 (refer also to Exercises 
L5 and L6 for numerical methods for solving differential equations). The periodic 
function to which the trajectories of (4.10) tend is an example of a limit cycle. 

1.12. For (4.11) consider the hard, linear, and soft spring models given by 

g(x) = k(l + a^x^)x, 

g{x) = kx, 

g(x) = k(l - a^x^)x, 

respectively, where ^ > 0 and a 7̂  0. Write two first-order ordinary differential equa
tions for (4.11) by choosing x\ = x and X2 = x. Pick specific values for k and a^. 
Determine by simulation/7/i(2>y^ portraits (see Exercise 1.10) for this example for the 
above three cases. 

1.13. Verify that the spaces in Examples 10.1 to 10.6 satisfy the axioms of vector space. 

1.14. Let F = {0, 1, 2, 3}. Determine operations " + " and "•" so that [F, -H, •} is a field. 

1.15. (a) Verify that the transformation given in Example 10.8 is linear, 
(b) Verify that the transformation given in Example 10.9 is linear. 

1.16. (a) Prove (10.13), (10.14), (10.15), and (10.16). 
(b) Verify that the functions || • ||i, || • lb, and || • ||oo defined in (10.11), (10.12), and 

(10.10), respectively, each satisfy the axioms of a norm. 
(c) Prove the relations (D-i), (D-ii), (D-iii) given at the beginning of Subsection 1 .IOC. 

1.17. Let g{t) = [g\(t),..., gn(t)V be defined on some interval J C R and assume that 

gi : J ^ R is integrable over J,i = I,.. .,n. Prove that for b > a, \\\^ g(t)dt\\ < 

J 11̂ (011 dt, where || • || denotes a norm on 7?". 



1.18. (a) Show that x^ = (0, 0) is a solution of the system of equations 

Xi = x\ + x\ + X2 cos X\ 

X2 = {\ + X\)x\ + (1 + X2)x2 + xi sinx2. 

Linearize this system about the point x^ = (0, 0). By means of computer simula
tions, compare solutions corresponding to different initial conditions in the vicinity 
of the origin of the above system of equations and its linearization. 

(b) Linearize the (bilinear control) system 

jc + (3 + x^)x + (1 + jc + x^)u = 0 

about the solution ;c = 0, i = 0, and the input u{t) = 0. As in part (a), compare (by 
means of computer simulations) solutions of the above equation with corresponding 
solutions of its linearization. 

(c) In the circuit given in Fig. 1.23, v/(0 is a voltage source and the nonlinear resis
tor obeys the relation IR = 1.5v| [Vi(t) is the circuit input and v/?(0 is the circuit 
output]. Derive the differential equation for this circuit. Linearize this differential 
equation for the case when the circuit operates about the point v/ = 14. 

CHAPTER 1: 

Mathematical 
Descriptions of 
Systems 

1 Q 

-MAr 
'fl(0 

.(.) Q 1 F. VR(t) 

FIGURE 1.23 
Nonlinear circuit 

1.19. Consider a system whose state-space description is given by 

X = —k\k2j^+ k2u(t) 

y = ki Jx. 

Linearize this system about the nominal solution 

Wo = 0, 2 Vxo(0 = 2 Jk — ki k2t, 

where xo(0) = k. 

1.20. (Inverted pendulum) The inverted pendulum on a moving carriage subjected to an 
external force ix{t) is depicted in Fig. 1.24. 

The moment of inertia with respect to the center of gravity is / and the coefficient 
of friction of the carriage (see Fig. 1.24) is F. From Fig. 1.25 we obtain the following 
equations for the dynamics of this system: 

m—r(5' + Lsin(/>) = H (20.11a) 
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FIGURE 1.24 
Inverted pendulum 

m-r^{Lcos^) = Y - mg 
dfi 

J—p2 ^ LY sin (j) - LH COS (I) 

Assuming that m « M, (20.lid) reduces to 

,^d^S , , dS 

Eliminating H and Y from (20.11a) to (20.11c), we obtain 

(/ + mL^)cf> = mgL sin (/) - mLS cos (/>. 

Thus, the system of Fig. 1.24 is described by the equations 

4> - (77 )sin(^ + (^]scos(t> = 0, 

MS + F 5 = fji(t), 

(20.11b) 

(20.11c) 

(20. l id) 

(20. l ie) 

(20.1If) 

(20.11g) 

FIGURE 1.25 



where L' = 

denotes the effective pendulum length. 
Linearize system (20.11g) about cj) 

J + mL'^ 
mL 

0. 

1.21. (Magnetic ball suspension system) Figure 1.26 depicts a schematic diagram of a ball 
suspension control system. The steel ball is suspended in air by the electromagnetic 
force generated by the electromagnet. The objective of the control is to keep the steel 
ball suspended at a desired equilibrium position by controlling the current i(t) in the 
magnet coil by means of the applied voltage v(0, where r > 0 denotes time. The resis
tance and inductance of the coil are R and L(s(t)) = L/s(t), respectively, where L > 0 
is a constant and s(t) denotes the distance between the center of the ball and the magnet 
at time t. The force produced by the magnet is Kfl(t)/s^(t), where jfiT > 0 is a propor
tional constant and g denotes acceleration due to gravity. 
(a) Determine the differential equations governing the dynamics of this system. 
(b) Let v(t) = Veq,2i nominal (desired) value of v{t). Determine the resulting equilib

rium of this system. 
(c) Linearize the equation obtained in (a) about the equilibrium solution determined 

in (b). 
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FIGURE 1.26 
Magnetic ball suspension system 

1.22. (a) For the mechanical system given in Exercise 1.2a, we view / i and / i as making 
up the system input vector, and y\ and y2 the system output vector. Determine a 
state-space description for this system. 

(b) For the same mechanical system, we view (/i, 5/2)^ as the system input and we 
view 83̂ 1 + 10^2 as the (scalar-valued) system output. Determine a state-space 
description for this system. 

(c) For part (a), determine the input-output description of the system. 
(d) For part (b), determine the input-output description of the system. 
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1.23. For the magnetic ball suspension system given in Exercise 1.21, we view v and s as 
the system input and output, respectively. 
(a) Determine a state-space representation for this system. 
(b) Using the linearized equation obtained in part (c) of Exercise 1.21, obtain the input-

output description of this system. 

1.24. In Example 4.3, we view Ca and 9 as the system input and output, respectively. 
(a) Determine a state-space representation for this system. 
(b) Determine the input-output description of this system. 

1.25. For the second-order section digital filter in direct form, given in Fig. 1.13, determine 
the input-output description, where xi(k) and u(k) denote the output and input, respec
tively. 

1.26. In the circuit of Fig. 1.27, Vi{t) and Vo(t) are voltages (at time t) and Ri and R2 are 
resistors. There is also an ideal diode that acts as a short circuit when V/ is positive 
and as an open circuit when Vi is negative. We view Vi and VQ as the system input and 
output, respectively. 
(a) Determine an input-output description of this system. 
(b) Is this system Hnear? Is it time-varying or time-invariant? Is it causal? Explain 

your answers. 

•̂(0 O 

FIGURE 1.27 
Diode circuit 

Diode i{t) 

^o(0 

1.27. We consider the truncation operator given by 

y{t) = Tr(u(t)) 

as a system, where r E 7? is fixed, u and y denote system input and output, respectively, 
t denotes time, and Tr( • ) is specified by 

Tr(u(t)) 
u{t), 
0, 

t < T, 

t > T. 

Is this system causal? Is it linear? Is it time-invariant? What is its impulse re
sponse? 

1.28. We consider the shift operator given by 

y{t) = Qr(u(t)) = u(t - T) 

as a system, where r ^ R is fixed, u and y denote system input and system output, 
respectively, and t den tes time. Is this system causal? Is it linear? Is it time-invariant? 
What is its impulse response? 



1.29. Consider the system whose input-output description is given by 

y(t) = min{wi (0,^2(01, 

where u(t) = [ui(t), U2(t)]^ denotes the system input and y(t) is the system output. Is 
this system linear? 

1.30. Suppose it is known that a linear system has impulse response given by h(t, r) = 
exp(-|r - T|). IS this system causal? Is it time-invariant? 

1.31. Consider a system with input-output description given by 

y(k) = 3u(k + 1) + 1, kGZ, 

where y and u denote the output and input, respectively (recall that Z denotes the inte
gers). Is this system causal? Is it linear? 
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1.32. Use expression (16.8), 

x(n) = ^ x(k)8(n - k), 

and 8(n) = p(n) - p(n - 1) to express the system response y(n) due to any input u{k), 
as a function of the unit step response of the system [i.e., due to u{k) = p(k)]. 

1.33. (Simple pendulum) A system of first-order ordinary differential equations that char
acterize the simple pendulum considered in Exercise 1.1b is given by 

X2 

— J smjJCi 

where xi = 6 and X2 = 6 with xi(0) = 0(0) and ^2(0) = 6(0) specified. A linearized 
model of this system about the solution x = [0, 0]"^ is given by 

0 11 Xi 

X2\ 1 ° 
Xi 

X2\ 

Let ^ = 10 (m/sec^) and / = 1 (m). 
(a) For the case when x(0) = [OQ, Of with ^o = ^/18, 77/12, 7r/6, and 7r/3, plot the 

states for t > 0, for the nonlinear model. 
(b) Repeat (a) for the linear model. 
(c) Compare the results in (a) and (b). 



CHAPTER 2 

Response of Linear Systems 

In system theory it is important to clearly understand how inputs and initial condi
tions affect the response of a system. There are many reasons for this. For example, 
in control theory, it is important to be able to select an input that will cause the sys
tem output to satisfy certain properties [e.g., to remain bounded (stability), to follow 
a given trajectory (tracking), and the like]. This is in stark contrast to the study of 
ordinary differential equations, where it is usually assumed that the forcing function 
(input) is given. 

2.1 
INTRODUCTION 

The goal of this chapter is to study the response of linear systems in greater detail 
than was done in Chapter 1. To this end, solutions of linear ordinary differential 
equations are reexamined, this time with an emphasis on characterizing all solu
tions using bases (of the solution vector space) and on determining such solutions. 
For convenience, certain results from Chapter 1 are repeated, and time-varying and 
time-invariant cases are treated separately, as are continuous-time and discrete-time 
cases. Whereas in Chapter 1 certain fundamental issues that include input-output 
system descriptions, causality, linearity, and time-invariance are emphasized, we 
will here address in greater detail impulse (and pulse) response and transfer func
tions for continuous-time systems and discrete-time systems. 

A. Chapter Description 

As in Chapter 1, we will concern ourselves with linear, continuous-time, finite-
dimensional systems represented by the state and output equations (internal descrip
tion) 
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X = A(t)x + B(t)u, y = C(t)x + D(t)u 

and the corresponding input-output description (external description) 

y(t) H{t,T)u{T)dT, 

(1.1) 

(1.2) 

where H{t, r) denotes the impulse response matrix. As pointed out in Chapter 1, in 
the special case when A{t) = A, B(t) = B, C{t) = C, and D(t) = D, with initial 
time to = 0, the external description (1.2) can be represented equivalently in terms 
of Laplace transform variables 

y(s) = H(s)u(s), (1.3) 

where H(s) denotes the transfer function matrix of the system. We will examine in 
greater detail the relationship between the internal description (1.1) and the external 
description (1.2) here and in subsequent chapters. 

Again, as in Chapter 1, we will also concern ourselves with linear, discrete-time, 
finite-dimensional systems represented by the state and output equations (internal 
description) 

x(k + 1) = A(k)x(k) + B(kMk), y(k) - C(k)x(k) + D(k)u(k) (1.4) 

and the corresponding input-output description (external description) 
n 

y(n) = ^H{n,k)u{k\ (1.5) 
k = h 

where H{n, k) denotes the unit pulse response. In the time-invariant case, with k^ = 
0, (1.5) can be represented equivalently (in terms of z-transform variables) as 

y(z) = H(z)u(zl (1.6) 

where H(z) denotes the system transfer function matrix. 
In the following, we provide a brief outline of the contents of this chapter. 
In the second section we provide some mathematical background material 

on linear algebra and matrix theory. In the third section we further study sys
tems of linear homogeneous and nonhomogeneous ordinary differential equations. 
Specifically, in this section we develop a general characterization of the solu
tions of such equations and we study the properties of the solutions by inves
tigating the properties of fundamental matrices and state transition matrices. In 
section four we further investigate systems of linear, autonomous, homogeneous 
ordinary differential equations. In particular, in this section we emphasize sev
eral methods of determining the state transition matrix of such systems and we 
study the asymptotic behavior of the solutions of such systems. In the fifth sec
tion we study systems of linear, periodic ordinary differential equations (Floquet 
theory). In the sixth and seventh sections we further investigate the properties of 
the state representations and the input-output representations of continuous-time 
and discrete-time finite-dimensional systems. Specifically, in these sections we 
study equivalent representations of such systems, we investigate the properties of 
transfer function matrices, and for the discrete-time case we also address sampled-
data systems and the asymptotic behavior of the system response of time-invariant 
systems. 
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96 B. Guidelines for the Reader 

Linear Systems 
In a first reading, the background material on linear algebra, given in Section 2.2, 
can be reviewed rather quickly. In the study of the subsequent material of this book, 
selective detailed coverage of topics in Section 2.2 may also be desirable. 

A typical beginning graduate course in linear systems will include Theorem 3.1 
in Subsection 2.3 A, which shows that the set of solutions of the linear homogeneous 
equation x = A(t)x forms an n-dimensional vector space. This theorem provides the 
basis for the definitions of the fundamental and the state transition matrix (Subsec
tions 2.3A, 2.3B, and 2.3D). These results enable us to determine solutions of the 
nonhomogeneous equation x = A(t)x + g(t) in Subsection 2.3C. Background re
quired for the above topics includes material on vector spaces, linear independence 
of vectors, bases for vector spaces, and linear transformations (Subsections 2.2A to 
2.2E). 

A typical beginning graduate course in linear systems will also address the ma
terial on time-invariant systems given in Section 2.4, including solutions of the equa
tion X = Ax-\- g(t), various methods of determining the matrix exponential e^\ and 
asymptotic behavior of time-invariant systems x = Ax (including system modes and 
stability properties of an equilibrium). Background required for these topics includes 
material on equivalence and similarity, eigenvalues and eigenvectors (Subsections 
2.21 and 2.2J). 

In addition to the above, a beginning graduate course on linear systems will 
also treat the input-output description of continuous-time systems and its relation 
to state-space representations, including the impulse response for time-varying and 
time-invariant systems, the transfer function matrix for time-invariant systems, and 
the equivalence of state-space representations (Section 2.6). 

Finally, such a course will also cover state-space and input-output descriptions 
of discrete-time systems (Section 2.7). 

2.2 
BACKGROUND MATERIAL 

In this section we consider material from linear algebra and matrix theory. We as
sume that the reader has some background in these areas, and therefore, our presen
tation will constitute a summary rather than a development of the subject matter on 
hand. 

This section consists of fifteen subsections. In the first three subsections we con
sider Hnear subspaces of vector spaces, linear independence of a set of vectors, and 
bases of vector spaces, respectively. In the next five subsections, we address general 
linear transformations defined on vector spaces, the representation of such transfor
mations by matrices, some of the properties of matrices and determinants of matri
ces, and solutions of linear algebraic equations, respectively. In the ninth and tenth 
subsections, we address equivalence and similarity of matrices and eigenvalues and 
eigenvectors, respectively. In the eleventh subsection we digress by considering di
rect sums of linear subspaces. In the last four subsections we address, respectively, 
certain canonical forms of matrices, minimal polynomials of matrices, nilpotent op
erators, and the Jordan canonical form. 



A. Linear Subspaces 

In Section 1.10 we gave the formal definition of vector space over afield, say, (K F), 
where V denotes the set of vectors and F denotes the set of scalars. When F (the field) 
is clear from context, we usually speak of a vector space V (or a linear space V) rather 
than {V, F). 

A nonempty subset W of a vector space V is called a linear subspace (or a linear 
manifold) in V if (i) w\ + W2 is in W whenever w\ and W2 are in W, and (ii) aw is in 
W whenever a G F and w ^ W.li is an easy matter to verify that a linear subspace 
W satisfies all the axioms of a vector space and may as such be regarded as a linear 
space itself. 

Two trivial examples of linear subspaces include the null vector (i.e., the set 
W = {0} is a linear subspace of V) and the vector space V itself. Another example 
of a linear subspace is the set of all real-valued polynomials defined on the inter
val [a, b], that is a linear subspace of the vector space consisting of all real-valued 
continuous functions defined on the interval [a, b] (refer to Example 10.4 in Chapter 

1). 
As another example of a linear subspace (of R^), we cite the set of all points on 

a straight line passing through the origin. On the other hand, a straight line that does 
not pass through the origin is not a linear subspace of R^ (why?). 

It is an easy matter to show that if Wi and W2 are linear subspaces of a vector 
space V, then Vl̂ i Pi 1^2. the intersection of Wi and W2, is also a linear subspace of 
V. A similar statement cannot be made, however, for the union of Wi and W2 (prove 
this). Note that to show that a set V is a vector space, it suffices to show that it is a 
linear subspace of some vector space. 

97 
CHAPTER 2 : 

Response of 
Linear Systems 

B. Linear Independence 

Throughout the remainder of this section, we let {a i , . . . , a„}, at G F, denote an 
indexed set of scalars and we let {v\ . . . , v"}, v' E V, denote an indexed set of 
vectors. 

Now let W be a set in a linear space V (W may be a finite set or an infinite set). 
We say that a vector v E V is 3. finite linear combination of vectors in W if there is 
a finite set of elements {w^,..., w^] in W and a finite set of scalars {a i , . . . , an) in F 
such that 

V = a\w^ + •• • + a^w^. 

Now let Ty be a nonempty subset of a linear space V and let S{W) be the set of all 
finite linear combinations of the vectors from W, i.e., w G S{W) if and only if there 
is some set of scalars {a\,..., a^} and some finite subset {w^,..., w^} of W such 
that w = aiw^ ^ h a^v^^, where m may be any positive integer. Then it is easily 
shown that S(W) is a linear subspace of V, called the linear subspace generated by 
the set W. 

Now if t/ is a linear subspace of a vector space V and if there exists a set of 
vectors W CV such that the linear space S{W) generated by W is U, then we say 
that W spans U. It is easily shown that S(W) is the smallest Hnear subspace of a 
vector space V containing the subset W of V. Specifically, if t/ is a linear subspace 
of V and if U contains W, then U also contains S(W). 



98 As an example, in the space (R^, R) the set Si = {e^} = {(1, 0)^} spans the set 
Linear Systems consisting of all vectors of the form (a, 0)^, a EL R, while the set ^2 = {e^, e^}, e^ = 

(0,1)^ spans all of 7^2. 
We are now in a position to introduce the notion of linear dependence. 

DEFINITION 2.1. Let 5 = {v\ . . . , v'"} be a finite nonempty set in a linear space V. If 
there exist scalars ai,..., a^, not all zero, such that 

aiv^ + ••• + a ^ v ^ = 0, (2.1) 

then the set S is said to be linearly dependent (over F)- If a set is not linearly dependent, 
then it is said to be linearly independent. In this case relation (2.1) implies that a\ = 
• • • = am = 0. An infinite set of vectors T̂  in V is said to be linearly independent if 
every finite subset of W is linearly independent. • 

EXAMPLE 2.1. Consider the linear space (R^,R) (see Example 10.1 in Chapter 
1), and let e^ = (1, 0 , . . . , 0)^, e^ = (0, 1, 0 , . . . , 0 )^ , . . . , ^" = (0 , . . . , 0,1)^. Clearly, 
S"^i < /̂̂ ' = 0 implies that at = 0, / = I,.. .,n. Therefore, the set 5" = {e^,..., ^"} is 
a linearly independent set of vectors in R^ over the field of real numbers R. • 

EXAMPLE 2.2. Let V be the set of 2-tuples whose entries are complex-valued rational 
functions over the field of complex-valued rational functions. Let 

1 
s-h 1 

1 
^s + 2 

s + 2 

(s + 1)(^ + 3) 

1 
s + 3 

and let «! == - 1 , 0̂ 2 = (s + 3)/(s + 2). Then aiv^ + a^v^ = 0, and therefore, the set 
S = {v\ v^} is linearly dependent over the field of rational functions. On the other hand, 
since aiv^ +0:2 v̂  = 0 when a i , 0:2 ^ ^ is true if and only if a i = 0:2 = 0, it follows 
that S is linearly independent over the field of real numbers (which is a subset of the 
field of rational functions). This shows that linear dependence of a set of vectors in V 
depends on the field F. m 

Linear independence of functions of time 

EXAMPLE 2.3. Let V = C{{a, b), R""), let F = R, and for x,y EV mda E F, de
fine addition of elements in V and multiplication of elements in V by elements in F by 
(x + y)(t) = x(t) + y(t) for all t G (a, b) and iax){t) = ax(t) for all t E (a, b). Then as 
in Example 10.4 of Chapter 1, we can easily show that (V, F) is a vector space. An inter
esting question that arises is whether for this space, linear dependence (and linear inde
pendence) of a set of vectors can be phrased in some testable form. The answer is yes. 
Indeed, it can readily be verified that for the present vector space (K F), linear depen
dence of a set of vectors S = {(f)i,..., (f)k} in V = C{{a, b\ 7?") over F = Ris equivalent 
to the requirement that there exist scalars a/ G F, / = 1 , . . . , ^, not all zero, such that 

ai4>i(t) + • • • + ak(i)k(t) = 0 for all t G (a, b). 

Otherwise, S is linearly independent. 
To see how the above example applies to specific cases, let V = C((-^, 00), R^) 

and consider the vectors (/)i(0 = [1, tY, <p2(t) = [L t^]^. To show that the set S = 
{</>b (f>2} is linearly independent (over F = R), assume for purposes of contradiction that 
S is linearly dependent. Then there must exist scalars ai and a2, not both zero, such 
that Q!i[l, tf + a2[l, t^f = [0, 0]^ for all t G ( -^ , 00). But in particular, for t = 2, the 
above equation is satisfied if and only if a 1 = a2 = 0, which contradicts the assumption. 
Therefore, 5" = {(̂ 1, (/)2} is linearly independent. 



As another specific case of the above example, let V = C((-<^, ^), R^) and consider 
the set S = {</>!, ^2, h> </>4}, where cj^iit) = [1, tf, (j)2{t) = [1, fl (jy^it) = [0, 1]^, and 
04(0 = [e~^, 0]. The set S is clearly independent over R since aiipiit) + 0L2(t>2{t) + 
0^303(0 + 0L4r4>A{t) = 0 for all t G (-00, 00) if and only if ai = 0:2 = 0:3 = 0:4 = 0. • 

Next, let 5 = {v^ . . . , v^} be a linearly independent set in a vector space V. If 
Xr= 1 ^^^^ ^ 2 r = 1 i^i^^ t^^^ it is readily shown that at = j8/, for all / = 1 , . . . , m. 
Also, it is easily shown that the set S is linearly dependent if and only if for 
some index /, 1 < / < m, we can find scalars y i , . . . , 7/-1, 7 /+1, . . . , ym such that 
v' = yiv^ H hy^~^v'~^ +y^+iyi+i -̂  hy^v'^. Furthermore, it is not hard to ver
ify that a finite nonempty set V̂  in a linear space is linearly independent if and only 
if for each v G 5(W), v 7̂  0, there is a unique finite subset of W, say, {v^ v^,. . . , v^} 
and a unique set of nonzero scalars {81,..., S^}, such that v = Si v̂  + • • • + 8mV^. 
Finally, if t/ is a finite set in a linear space V, then it is easily shown that U 
is linearly independent if and only if there is no proper subset Z of U such that 
S(U) = S(Z). (Recall that Z is a proper subset of U if there is a w G 6̂  such that 
u ^ Z . ) 
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C. Bases 

We are now in a position to introduce another important concept. 

DEFINITION 2.2. A set W in a linear space V is called a basis for V if 
(i) W is linearly independent, 

(ii) The span of W is the linear space V itself, i.e., S(W) = V. • 

An immediate consequence of the above definition is that if W is a linearly in
dependent set in a vector space V, then T̂  is a basis for S(W). 

To introduce the notion of dimension of a vector space, it is shown that if a linear 
space V is generated by a finite number of linearly independent elements, then this 
number of elements must be unique. The following results lead up to this. 

Let {v^ . . . , v"} be a basis for a linear space V. Then it is easily shown that for 
each vector v EV, there exist unique scalars a\,. ..,an such that 

Furthermore, ifu^,...,u^is any linearly independent set of vectors in V, then m < 
n. Moreover, any other basis of V consists of exactly n elements. These facts allow 
the definitions given in the following. 

If a linear space V has a basis consisting of a finite number of vectors, say, 
{v^ . . . , v'̂ }, then V is said to be di finite-dimensional vector space and the dimen
sion of V is n, abbreviated dim V = n.ln this case we speak of an n-dimensional 
vector space. If V is not a finite-dimensional vector space, it is said to be an infinite-
dimensional vector space. 

By convention, the linear space consisting of the null vector is finite-dimensional 
with dimension equal to zero. 

An alternative to the above definition of dimension of a (finite-dimensional) vec
tor space is given by the following result, which is easily verified: let V be a vector 
space that contains n linearly independent vectors. If every set of n + 1 vectors in V 
is linearly dependent, then V is finite-dimensional and dim V = n. 



100 The preceding results enable us now to introduce the concept of coordinates of a 
Linear Systems vector. We let {v^ . . . , v'^} be a basis of a vector space V and let v E V be represented 

by 

The unique scalars ^ i , . . . , ^̂^ are called the coordinates ofv with respect to the basis 

EXAMPLE 2.4. For the linear space (/?^/?), let S = {e\...,e''}, where the e' G 
R^, i = 1,..., n, were defined earlier (following Defintion 2.1). Then S is clearly a basis 
for (/?", R) since it is linearly independent and since given any v G R^, there exist unique 
real scalars at, i = 1,..., n, such that v = X"=i ocie^ = (ai,..., a:„)^, i.e., S spans /?". 
It follows that with every vector v E /?^, we can associate a unique n-tuple of scalars 

ai 

or (ai, . . . ,a„) 

relative to the basis {e^,..., e^}, the coordinate representation of the vector v E /?" with 
respect to the basis 5" = {e\ ..., ^"}. Henceforth, we will refer to the basis S of this 
example as the natural basis for R^. • 

EXAMPLE2.5. We note that the vector space of all (complex-valued) polynomials with 
real coefficients of degree less than n is an ^-dimensional vector space over the field 
of real numbers. A basis for this space is given by S = {I, s,..., s'^~^}, where ^ is a 
complex variable. Associated with a given element of this vector space, say, p(s) = 
ao + ais + ' • • + an-\s^~^, we have the unique fz-tuple given by (ao, OL\, ..., ocn-iY, 
which constitutes the coordinate representation of p{s) with respect to the basis S given 
above. • 

EXAMPLE 2.6. We note that the space (V, /?), where V = C([a, b], R), given in Exam
ple 10.4 of Chapter 1, is an infinite-dimensional vector space (why?). • 

D. Linear Transformations 

In Subsection 1.IDA we introduced the notion of linear transformation ST from a 
vector space V (over the fiield F) into a vector space W (over the same fiield F). 
Henceforth, we will write ST E L(V, W) to express this. It is our objective in this 
subsection to identify some of the important properties of linear transformations. 

Linear equations 

With Sr E L(V; ^ ) we define the null space of 3' as the set 

J<(^) = {v E y : STv = 0} 

and the range space of?) as the set 

91(9") = {w E W : w = STv, V E y}. 

Note that since STO = 0, }({^) and 2/1(9") are never empty. It is easily verified 
that M{^) is a linear subspace of V and that 91(9") is a linear subspace of W. If V is 
finite-dimensional (of dimension n), then it is easily shown that dim 91(9") < n. Also, 
if V is finite-dimensional and if {w^ . . . , w^} is a basis for 91(9") and v̂  is defined 



by ^V w i = I,.. .,n, then it is readily proved that the vectors v^ . . . , v^ are 
Hnearly independent. 

One of the important results of linear algebra, called iht fundamental theorem 
of linear equations, states that for ^ G L{V, W) with V finite-dimensional, we have 

dim>r(2r) + dimSlCST) = dim V. 

For the proof of this result, refer to any of the references on linear algebra cited at 
the end of this chapter. 

The above result gives rise to the notions of the rank, p{^), of a linear transfor
mation ST of a finite-dimensional vector space V into a vector space W, which we 
define as the dimension of the range space 9l(2r), and the nullity, v{?F), of ST, which 
we define as the dimension of the null space }^{^). 

With the above machinery in place, it is now easy to establish the following im
portant results concerning linear equations. We let ST E L{V, W), where V is finite-
dimensional, let s = dim>r(2r), and let {v^ . . . , v^} be a basis for >r(2r). Then it is 
easily verified that (i) a vector v G V satisfies the equation STv = 0 if and only if 
V = XJ= 1 <̂ /v̂  for some set of scalars {ai,..., as}, and furthermore, for each v G V 
such that STv = 0 is true, the set of scalars {ai,..., a^} is unique; (ii) ifw^GW is 
a fixed vector, then STv = w^ holds for at least one vector v G V (called the solu
tion of the equation STv = w^) if and only if w^ G 5/1(9"); and (iii) if w^ is any fixed 
vector in W and if v̂  is some vector in V such that STv̂  = w^ (i.e., v^ is a solution 
of the equation STv̂  = w^), then a vector v G V satisfies STv = w^ if and only if 
V = v^ + X/ = i PiV^ for some set of scalars {/3i,..., Ps}, and furthermore, for each 
V G V such that STv = WQ, the set of scalars {j8i,..., jŜ } is unique. 

General properties of linear transformations 

Before proceeding further, we briefly digress by recalling certain elementary 
properties of a function/ from a set X to a set 7, written f : X ^ Y. Letting 2/l(/) 
denote the range of/, we can classify/ in the following manner: if 9 l ( / ) = F, then 
/ is said to be surjective or a surjection and we say tha t / maps X onto Y; iff is 
such that for every xi, X2 G X, f(xi) = f(x2) implies that xi = X2, then/ is said 
to be injective or an injection or a one-to-one mapping; and if/ is both injective and 
surjective, we say that/ is bijective or a one-to-one and onto mapping or a bijection. 
When/ is injective, its inverse f'^ : 2/l(/) -^ X exists, so that f~^(f(x)) = x for 
all X G X and f{f~^(y)) = y for all y G 9l( / ) . Note that when/ is bijective, we 
h a v e / - I :Y^ X. 

Returning now to the subject on hand, we note that since a linear transformation 
ST of a linear space V into a linear space W is a mapping, we distinguish in particular 
among linear transformations that are surjective, injective, and bijective. We will 
often be particularly interested in knowing when a linear transformation ST has an 
inverse 2r~^ When this is the case, we say that 9" is invertible, that ST"̂  exists, or 
that 9" is nonsingular. A linear transformation that is not nonsingular is said to be 
singular. 

Concerning the inverse of a linear transformation ST G L(V, W), it is eas
ily shown that ST"̂  exists if and only if STv = 0 implies v = 0, and further
more, if 2r~^ exists, then ST"̂  is a linear transformation from 9l(2r) onto V [i.e., 
S''^ G L(2ft(2r), V)]. Moreover, if V is finite-dimensional, then S" has an inverse if 
and only if 91(9") has the same dimension as V, i.e., p(9') = dim V. Also, if both 
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102 V and W are finite-dimensional and of the same dimension, then 9l(2r) = W if and 
Linear Systems only if ST has an inverse. 

In the next few results, which are phrased in terms of equivalent statements, we 
summarize some of the important properties of linear transformations. 

(Injective linear transformations) For 9" G L{V, W), the following statements 
are equivalent: (i) ST is injective; (ii) ST has an inverse; (iii) STv = 0 implies 
V = 0; (iv) for each w G ?k('3'), there is a unique v G V such that STv = w; 
(v) if gTv̂  = STv^ then v̂  - v^; (vi) if v̂  T̂  V^ then STv̂  T̂  STV .̂ If in 
addition, V is finite-dimensional, then the following are equivalent: (i) ST is 
injective; (ii) p(2r) = dim V. 

(Surjective linear transformations) For ST G L{V, W), the following statements 
are equivalent: (i) ST is surjective; (ii) for each w G W, there is a v G V 
such that STv = w. If in addition, V and W are finite-dimensional, then the 
following are equivalent: (i) ST is surjective; (ii) dim W = pi^f). 

(Bijective linear transformations)¥or3' G L(V, W), the following are equivalent: 
(i) 9" is bijective; (ii) for every w G W, there is a unique v E V such that 
9'v = w. If in addition y and Ware finite-dimensional, then the following are 
equivalent: (i) ST is bijective; (ii) dim V = dim W = p(?J'). 

(Injective, surjective, and bijective linear transformations) For S' E L(V, W) 
with V and W finite-dimensional and with dim V = dim W, the following 
are equivalent: (i) ST is injective; (ii) ST is surjective; (iii) ST is bijective; 
(iv) ST has an inverse. 

Next, we examine some of the properties of L(V, W), the set of all linear trans
formations from a vector space V into a vector space W. As before, we assume that 
V and W are linear spaces over the same field F. 

We let ^ , 3" G L(V, W) and we define the sum of^ and ST by 

(^ + 2r)v = SPv + STv (2.2) 

for all V G y. Also, with a G F and ST G L(V; W), we define multiplication of ST by 
a scalar a as 

{a^)v = a^v (2.3) 

for all V G y. It is easily shown that (&'-\-^)G L(V, W) and also that aST G L(V, W). 
We further note that there exists a zero element in L(V, W), called the zero transfor
mation, denoted by 0 and defined by 

Cv = 0 (2.4) 

for all V G y. Furthermore, we note that to each ST G L(V, W) there corresponds a 
unique linear transformation - 9 " G L(V, W) defined by 

(-oj-)v ^ -STv (2.5) 

for all V G y. In this case it follows trivially that -ST + ST = 0. 
With these definitions in place, it is easily proved that L(V, W) is a linear space 

over F, called the space of linear transformations [with vector addition defined by 
(2.2) and multiplication of vectors by scalars defined by (2.3)]. 

To explore the properties of the space of linear transformations further, we briefly 
digress to recall the definition of an algebra. Specifically, a set V is called an algebra 



if it is a linear space and if in addition to each v,w GV there corresponds an element 
in V, denoted by v • w and called the product ofv times w, satisfying the following 
axioms: 

1. V • (w + w) = V • w + V • w for all V, w, w G y. 
2. (v + w) • u = V ' u -\- w ' u for dill V, w, u E: V. 
3. (av)' (f3w) = (cĵ /3)(v • w) for all v, w E V and for all a, p G F. 

If in addition to the above, 

4. (v'w)' u = V'(w- u) for all v,w,uG V, then V is called an associative algebra. 

If there exists an element / G V such that i-v = v i = v for every v G V, then 
/ is called the identity of the algebra. It can readily be shown that if / exists, then 
it is unique. Furthermore, if v • w = w • v for all v, w G V, then V is said to be a 
commutative algebra. 

Returning to the subject on hand, let V, W, and U be linear spaces over F, and 
consider the vector spaces L(V, W) and L(W, U). If S/̂  G L{W, U) and ST G LiV, W), 
then we define the product 5f ST as the mapping of V into U by the relation 

(^2r)v = ^(STv) (2.6) 

for all V G y. It is easily verified that ^ST G L{V, U). 
Next, let y = \y = f/. If ^,^,^E LiV, V) and if a, jS G F, then it is easily 

shown that 

and 

^(sra) = (SP2r)a 

(^ + 2r)a = jf a + gra 
(aSf)(/32r) = (af3)&'^. 

(2.7) 
(2.8) 
(2.9) 

(2.10) 

We emphasize that, in general, commutativity of linear transformations does not 
hold, i.e., in general 

spsr 7̂  srsp. (2.11) 

There is a special mapping from a linear space V into V, called the identity 
transformation, defined by 

3v = V (2.12) 

for all V G y. We note that Ĵ  G L(V, V), that ^ T̂  0 if and only if V T̂  {0}, that 3 is 
unique, and that 

aj-^ = ^Gj- ^ aj- (2.13) 

for all ST G L(V, V). Also, we can readily verify that the transformation a Ĵ , a G F, 
defined by 

(a^)v = aS>v = av (2.14) 

is also a linear transformation. 
Relations (2.7) to (2.14) now give rise to the following result: L(V,V) is 

an associative algebra with identity ^. This algebra is in general not commu
tative. 
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104 Concerning invertible linear transformations we note that if J G L(V; V) is bi-
Linear Systems jective, then ST"̂  G L(V, V), and furthermore, 

of-^oj- = g-gj-1 ^ ^̂  (2.15) 

where ^ denotes the identity transformation defined in (2.12). 
Next, if V is a finite-dimensional vector space and ST G L(V, V), then we can 

readily show that the following are equivalent: (i) ST is invertible; (ii) pCJ) = dim V; 
(iii) ST is one-to-one; (iv) ST is onto; and (v) STv = 0 implies that v = 0. 

For bijective linear transformations, we can easily verify the following char
acterizations. Let £/", ST, a G L(V, V) and let ^ denote the identity transformation. 
Then (i) if SPST = aSP - Ĵ , then £P is bijective and Sf ~i = ST = 1; (ii) if ^ and 
Sr are bijective, then if?r is bijective, and (S^^y^ = ^T'^if-^; (iii) if ^ is bi
jective, then (S^'^y^ = ^ ; and (iv) if ^ is bijective, then a ^ is bijective and 
(aSP)-i = ( l / a ) y - i for all a G F, a T̂  0. 

With the aid of the above concepts and results we can now construct certain 
classes of functions of linear transformations. Since (2.7) allows us to write the 
product of three or more linear transformations without the use of parentheses, we 
can define 3'^, where 9" G L(V, V) and n is a positive integer, as 

aj-n A Of ,0}- . .,. .oj-^^ (2 .16) 

n times 

Similarly, if ST Ms the inverse of ST, then we can define 9" ^, where m is a positive 
integer, as 

aj-m A (2r-i)^ =. ^-^ ^or-\' '" -gr-y (2.17) 
m times 

Using these definitions, the usual laws of exponents can be verified. Thus, 
aj-m ,aj-n ^ oj-m+n ^ aj-n , aj-m (2.I8) 

/(jrm\n __ oj-mn __ arnm _ rarnyn /o 1 Q\ 

and ST"' • 9"-" = gT'"-", (2.20) 

where m and n are positive integers. Consistent with the above, we also have 

3"! = Sr (2.21) 

and Sro = 3>. (2.22) 

We are now in a position to consider polynomials of linear transformations. For 
example, if /(A) is a polynomial, i.e., 

/(A) = ao + aiA + ---+a„A", (2.23) 

where oio,..., Q!̂  G i^, then by f(^) we mean 

/(ST) = a o i + aiSr + • • • + A^gr^ (2.24) 

The reader is cautioned that in general the above concept cannot be extended to 
functions of two or more linear transformations, because linear transformations in 
general do not commute. 

E. Representation of Linear Transformations by Matrices 

In the following, we let (V, F) and (W, F) be vector spaces over the same field and 
we let ^ : y -^ W denote a linear mapping. We let {v^ . . . , v"} be a basis for V and 



we set v̂  = ^ v ^ . . . , v" = siv^. Then it is an easy matter to show that if v is any 
vector in V and if ( a i , . . . , a^) are the coordinates of v with respect to {v^ . . . , v"}, 
then ^ v = aiv^ + • • • + a„v". Indeed, we have siv = si(aiv^ + • • • + a^v") = 
ai^v^ 4- • • • + a„64v" = aiv^ + • • • + a„v". 

Next, we let {v^ . . . , v'̂ } be any set of vectors in W. Then it can be shown 
that there exists a unique Hnear transformation si from V into W such that ^v^ = 
v^ . . . , ^̂ v'̂  = v". To show this, we first observe that for each v E V we have unique 
scalars ai,.. .,an such that 

V = aiv^ + ••• + a„v". 

Now define a mapping M : V ^ W as 

1,.. .,n. We first must show that d- is Hnear and, then, that 
aiv^ + • • • + a„v" and w = /3iv^ + • • • + jS^v'̂ , we have 

Clearly, ^ (v^ = v^ / 
^ is unique. Given v 
^(v + w) = 64 [ (a i+ )8 iy + --- + (a^ + i8>" ] = (aj+/3i)v^ + •••+ (a„ + iS^)v^ 
On the other hand, d(v) = aiv^ + • • • + a^v'^, d(w) = /3iv^ + • • • + j8„v". Thus, 
^(v) + ^(w) = (aiyi + • • • + a^v^) + (jSiv^ + • • • + ^^v^) = (^i + f3i)v^ + • • • + 
(a„ + i8„)v" = 62i(v + w). In a similar manner, it is easily established that ad(v) = 
d(av) for all Q: G F and v G V. Therefore, ^ is linear. Finally, to show that ^ is 
unique, suppose there exists a linear transformation ^ : V ^ W such that ^v^ = 
v^ / = 1 , . . . , /2. It follows that (d - ^)v^ = 0, / = 1 , . . . , n, and, therefore, that 
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These results show that a linear transformation is completely determined by 
knowing how it transforms the basis vectors in its domain, and that this linear trans
formation is uniquely determined in this way. These results enable us to represent 
linear transformations defined on finite-dimensional spaces in an unambiguous way 
by means of matrices. We will use this fact in the following. 

Let (V, F) and {W, F) denote n-dimensional and m-dimensional vector spaces, 
respectively and let {v^ . . . , v^} and {w\ . . . , w^} be bases for V and W, respec
tively. Let 
Since {w^ 
1 , . . . , n, such that 

V ^ W be a linear transformation and let v' = siv\ / = 1, 
w^} is a basis for W, there are unique scalars {aij}, i = I,.. .,m, j 

n. 

siv = V = aiiw + a2iw + • • • + a^iw^ 

siv^ = Sp' = a\2W^ 4- a22>v̂  + • • • + a^2>^^ 

^v^ = y" = aiyiW^ + a2nW^ + • • • + amn"^^' 

(2.25) 

Next, let V G V. Then v has the unique representation v = aiv^ + 0:2v^ H h a^v" 
with respect to the basis {v^ . . . , v"}. In view of the result given at the beginning of 
this subsection, we now have 

^ v = aiv^ + • • • + anv"". (2.26) 

Since ^^v G W, d-v has a unique representation with respect to the basis {w^ . . . , w^}, 
say, 

^ v = jiw^ + 72W^ + • • • + 7mw'^. (2.27) 
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+ ^2(^121^^ + • • • + Clm2^^) 

+ aniainW^ + • • • + amn^"^)' 

Rearranging this expression, we have 

^ v = (cin^i + î2<^2 + • • • + ai^a„)w^ 

+ (̂ 21 a; 1 + a22<̂ 2 + • * * + a2nOin)'^^ 

+ (amiai + am20^2 + • • • + amnO^n)'^'^' 

In view of the uniqueness of the representation in (2.27), we have 

71 = a\\a\ + ^120:2 + • • • + ainOLn 

72 == Cl2\0i-\ + <322«2 + • • • + a2̂ Q̂ Az (2.28) 

Tm = ^ m l « l + Clm20^2 + * * • + ^m^Q^m 

where ( a i , . . . , anf and ( 7 1 , . . . , 7m)^ are coordinate representations of v E V and 
siv ^ W with respect to the bases {v^ . . . , v"} of V and {w^,..., w^} of W, re
spectively. This set of equations enables us to represent the linear transformation 
si from the linear space V into the linear space W by the unique scalars {atj}, i = 
I,.. .,m, j = ! , . . . , / ! . For convenience we let 

[atj] 
an ai2 . . . ain 
CI21 ^22 • • • ^2n 

^m\ ^m2 ' • • ^mn 

(2.29) 

We see that once the bases {v^ . . . , v^}, {w^ . . . , w^} are fixed, we can represent the 
linear transformation d- by the array of scalars in (2.29) that are uniquely determined 
by (2.25). Note that thejth column of A is the coordinate representation of the vector 
Av^ G W with respect to the basis [w^,..., w^}. 

In view of the results given at the beginning of this subsection, the converse 
to the preceding statement also holds. Specifically, with the bases for V and W still 
fixed, the array given in (2.29) is uniquely associated with the linear transformation 
^ o f Vinto W. 

The above discussion gives rise to the following important definition. 

DEFINITION 2.3. The array given in (2.29) is called the matrix A of the linear trans
formation si from a linear space V into a linear space W (over F) with respect to the 
basis {v^ ... , v"} of V and the basis {w\ ... , w^} of W. • 

If in Definition 2.3, V = W, and if for both V and W the same basis {v^ . . . , v'̂ } 
is used, then we simply speak of the matrix A of the linear transformation si with 
respect to the basis {v^ . . . , v"}. 

In (2.29) the scalars (an, ai2,..., atn) form the /th row of A and the scalars 
(aij, a2j,..., amj)^ form thejth column of A. The scalar atj refers to that element of 



matrix A that can be found in the ith row and jth column of A. The array in (2.29) is 
said to be an m X n matrix. If m = n, we speak of a square matrix. Consistent with 
the above, an ^ X 1 matrix is called a column vector, column matrix, or n-vector, and 
a 1 X n matrix is called a row vector. Finally, if A === [a/y] and B = [btj] are two 
mX n matrices, then A = B, i.e., A and B are equal if and only if aij = btj for all 
/ = 1 , . . . , m, and for all j = 1 , . . . , n. Furthermore, we call A^ = [ciijV = l^ji] 
the transpose of A. 

The preceding discussion shows in particular that if ^ is a linear transfor
mation of an n-dimensional vector space V into an m-dimensional vector space 
W, 

W == SiVy (2.30) 

if 7 = ( y i , . . . , ymV denotes the coordinate representation of w with respect to the 
basis {w^,..., w^}, if a = ( ^ i , . . . , a„)^ denotes the coordinate representation of v 
with respect to the basis {v\ . . . , v"}, and if A denotes the matrix of ^ with respect 
to the bases {v^ . . . , v"}, {w^ . . . , w"^}, then 

7 = Aa, 

or equivalently. 

= 1, . . . , m, 

(2.31) 

(2.32) 

which are alternative ways to write (2.28). 

Some important remarks 

1. Throughout this section we use, in the interests of clarity of presentation, low
ercase Greek letters to denote the coordinate representations of vectors [see 
(2.31)]. In the interests of simplicity, however, we will use common (Latin) low
ercase letters to denote vectors throughout the remainder of this book, whether 
they are coordinate representations of vectors or underlying objects (elements 
ofV). 

2. We note that if, in particular, V = R^, then v E.V and its coordinate represen
tation 7] with respect to the natural basis {̂ ^ . . . , ^^} of V will have the same 
form. 

*F. Some Properties of Matrices 
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The rank of a matrix 

We first consider the characterization of the rank of a hnear transformation 
in terms of its matrix representation. To this end, let ^ be a linear transforma
tion from a vector space V into a vector space W. It is easily shown that d- has 
rank r if and only if it is possible to choose a basis {v^ . . . , v"} for V and a basis 
{w^ . . . , w^} for W such that the matrix A of ^ with respect to these bases is of 
the form 
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A = 

rioo •• 
010 •• 

000 •• 
000 •• 

000 •• 

000 • 
000 • 

100 • 
000 • 

000 • 

•• oT 
•• 0 

•• ° 
•• 0 

•• 0 J 

> m = dim W. 

Y 
n = dim V 

More directly, if A is the matrix representation of ^ E L(V, W) with respect to 
some arbitrary bases {v^ . . . , v"} and {w^,..., w'"}, then (i) the rank of ^ is the num
ber of vectors in the largest possible linearly independent set of columns of A; and 
(ii) the rank of ^ is the number of vectors in the smallest possible set of columns of 
A that has the property that all columns not in it can be expressed as linear combi
nations of the columns in it. 

The above result enables us now to make the following definition: the rank of 
an mX n matrix A is the largest number of linearly independent columns of A. 

General properties of matrices 

Since matrices are representations of linear transformations on finite-dimensional 
vector spaces (in the sense defined in Subsection E of this section), it is reasonable 
to suspect that matrices inherit the properties of the transformations they represent. 
In the following, we address this issue. 

Let V and W be ^-dimensional and m-dimensional vector spaces over F, respec
tively, and let ^ and ^ be linear transformations of V into W. Let A = [atj] and 
B = [bij] be the matrix representation of si and 2 ,̂ respectively, with respect to the 
bases {v^ . . . , v"} in V and {w^ . . . , w^} in W. Using (2.2) and Definition 2.3, the 
reader can readily verify that the matrix of the linear transformation ^ + 2S (with 
respect to the above bases), is given by 

A + B = [atj] + [bij] = [atj + btj] = [dj] = C. (2.33) 

Also, using (2.3) and Definition 2.3, the reader can easily show that the matrix of 
a A, denoted by D = a A, is given as 

a A -= a[aij] = [aatj] = [dfj] = D. (2.34) 

From (2.33) we note that for two matrices A and B to be added, they must have the 
same number of rows and columns. When this is the case, we say that A and B are 
comparable matrices. Clearly, if A is an m X n matrix, then so is aA. 

Next, let U be an r-dimensional vector space, let si E L(K W), and let 2̂  G 
L{W, U). Let A be the matrix of d^ with respect to the basis {v^ . . . , v"} in V and 
with respect to the basis {w^,..., w^} in W. Let SS be the matrix of B with respect 
to the basis {w^ . . . , w^} in W and with respect to the basis {u^,.. .,u^}m U. The 
product mapping SS^ as defined by (2.6) is a linear transformation of V into U. By 
applying definitions, it is readily verified that the matrix of ^^ with respect to the 



bases {v^ .. .,v^}ofVand {u^,.. .,u^}of Uis given by 

C = [Cij] = BA, 

where Cij = ^ bikakj 

(2.35) 

(2.36) 
k=i 

for / = 1 , . . . , r, and j = I,.. .,n. Clearly, two matrices A and B can be multiplied to 
form the product BA if and only if the number of columns of B is equal to the number 
of rows of A. When this is true, we say that the matrices B and A are conformal 
matrices. 

As mentioned earlier, the properties of general transformations established in 
Subsection D hold of course in the case of their matrix representations as well. We 
summarize some of these in the following: 

1. Let A and BhemX n matrices, and let C be an n X r matrix; then 

(A + B)C = AC + BC. (2.37) 

2. Let A be an m X n matrix, and let B and ChtnXr matrices; then 

A{B + C) = AB + AC. (2.38) 

3. Let A be an m X n matrix, let 5 be an ^ X r matrix, and let C be an r X 5" matrix; 
then 

A{BC) = (AB)C (2.39) 

4. Let a, (3 E F , and let A be an m X n matrix; then 

(a + /3)A = aA + j8A. (2.40) 

5. Let a G F, and let A and BhQ mX n matrices; then 

a(A + B) = aA + aB. (2.41) 

6. Let a, (3 E: F, let A be an m X n matrix, and let 5 be an n X r matrix; then 

(aAXfiB) = (aPXAB). (2.42) 

7. Let A and Bbe mX n matrices; then 

A + B = B + A. (2.43) 

8. Let A, B, and ChtmXn matrices; then 

{A + B) + C = A + {B-^C). (2.44) 

Next, let 0 G L{V, W) be the zero transformation defined by (2.4). Then for any 
bases {v^ . . . , v"} and {w^ . . . , w^} for V and W, respectively, the zero transformation 
is represented by the m X n matrix 

Too ••• 0 
00 ••• 0 O = 

00 0 

(2.45) 

called the null matrix. Further, let 3 E: L(V, V) be the identity transformation de
fined by (2.12) and let {v\ . . . , v'̂ } be an arbitrary basis for V. Then the matrix 
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110 representation of the linear transformation 3" from V into V with respect to the basis 
Linear Systems {v\ • • •, v«} is given by 

' 1 0 0 ••• 0 

/ = 0 1 0 ••• 0 

0 0 0 ••• 1 

(2.46) 

called the n X n identity matrix. 

For any mX n matrix A we have that 

A^O = 0 + A = A, (2.47) 

and for any nX n matrix B we have 

BI = IB = B, (2.48) 
where / is the n X n identity matrix. 

If A = [uij] is a matrix representation of a linear transformation ^4, then it is 
easily verified that the matrix -A == ( - l )A = [-a/y] is the corresponding matrix 
representation of the linear transformation -s^. In this case it follows immediately 
that A -\- (-A) = O, where O denotes the null matrix. By convention we write that 
A + (-A) = A-A. 

Next, let A and Bhe nX n matrices. Then we have in general that 

AB 7̂  BA, (2.49) 

as was the case in (2.11). 
Further, let ^ G L(V, V), and assume that si is nonsingular with inverse ^ ~ ^ 

so that MM~^ = si~^si = ^. Now if A is the n X n matrix of si with respect to the 
basis {v^ . . . , v"} in V, then there is an n X ^ matrix B of M~^ with respect to the 
basis {v\ . . . , v'̂ } in y such that 

BA = AB = I. (2.50) 

We call B the inverse of A and we denote it by A~ ̂  Under the present circumstances 
we say that A~^ exists, or A has an inverse, or A is invertible, or A is nonsingular. If 
A"^ does not exist, we say that A is singular 

From corresponding properties given in Subsection D for arbitrary linear trans
formations, several properties of matrices are evident. In particular, for an n X n 
matrix, the following are equivalent: (i) rank A — n\ (ii) Aa = 0 implies a = 0; 
(iii) for every yo ^ F^, there is a unique ao E F^ such that yo = Aao; (iv) the 
columns of A are linearly independent; and (v) A~^ exists. 

In Subsection E it was shown that we can represent n linear equations by the 
matrix equation (2.32) 

y = Aa. (2.51) 

Now assume that A is nonsingular. If we premultiply both sides of this equation by 
A~^ we obtain 

a = A-^y, (2.52) 

the solution to Eq. (2.51). Thus, knowledge of the inverse of A enables us to solve 
the system of linear equations (2.51). 

Concerning inverses of matrices, the following facts are easily verified: (i) an 
nXn nonsingular matrix has one and only one inverse; (ii) if A and B are nonsingular 



nX n matrices, then (AB)~^ = B~^A~^', and (iii) if A and B diVQnX n matrices and 
if AB is nonsingular, then so are A and B. 

Next, we consider the principal properties of the transpose of matrices, which 
follow readily from definitions: (i) for any matrix A, (A^)^ = A; (ii) if A and B are 
conformal matrices, then (ABY = B^A^; (iii) if A is a nonsingular matrix, then 
(A^)"^ = (A~^)^', (iv) if A is an n X n matrix, then A^ is nonsingular if and only if 
A is nonsingular; (v) if A and B are comparable matrices, then (A + B)^ = A^ + B^; 
and (vi) if a G F and A is a matrix, then (aA)^ = aA^. 

Next, we let A he an n X n matrix, and we let m be a positive integer. As in 
(2.16), we define the nX n matrix A^ by 

A^ = /{'A 4 , 
"Y" 

m times 

and if A ^ exists, then as in (2.17) we define the nX n matrix A '̂  as 

A-^ = (A-'y l\m A •• -A" 

(2.53) 

(2.54) 
V 

m times 

A' 

As in the case of Eqs. (2.18) to (2.20), the usual laws of exponents follow from the 
above definitions. Specifically, if A is an n X n matrix and if r and s are positive 
integers, then 

A'--A' = A'^' = A'^' = A' • 

(Ay = A" = A'' = (A'Y, 

and if A" ' exists, then 

A' • A-' = A'-'. 

Consistent with this notation, we have 

(2.55) 
(2.56) 

(2.57) 

A' = A 

and l O ^ 

(2.58) 

(2.59) 

We are now once more in a position to consider functions of linear transformations, 
where in the present case the linear transformations are represented by matrices. For 
example, if /(A) is the polynomial in A given in (2.23), and if A is any nXn matrix, 
then by / (A) we mean 

/(A) = ao / + aiA + • • • + a^A^. (2.60) 

Finally, we noted earlier that, in general, linear transformations (and in particu
lar, matrices) do not commute [see (2.11) and (2.49)]. However, in the case of square 
matrices, the following facts are easily verified: let A, B, C denote nX n matrices; 
let O denote the nX n null matrix; and let / denote the n X n identity matrix. Then 
(i) O commutes with any A; (ii) A^ commutes with A^, where/? and q are positive 
integers; (iii) a I commutes with any A, where a E: F', and (iv) if A commutes with 
B and if A commutes with C, then A commutes with aB -\- pC, where a, (3 E F. 

*G. Determinants of Matrices 
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Definition of determinant 
In this section we recall and summarize some of the important properties of 

determinants of a matrix. To this end we let N = {1,2,.. .,n} and recall that a 



112 

Linear Systems 

permutation on A/̂  is a one-to-one mapping ofN onto itself. For example, if O" denotes 
a permutation on N, then we can represent it symbolically as 

(2.61) 
1 2--- n 

, n, and jr ^ jk whenever r ^ k. Henceforth, we represent where ji G A/̂  for / = 1, 
(7 more compactly as 

(y = JlJ2---jn-

Clearly, there are nl possible permutations on N. We let P{N) denote the set of all 
permutations on N, and we distinguish between odd and even permutations. Specif
ically, if there is an even number of pairs (/, k) such that / > k but / precedes k in O", 
then we say that a is even. Otherwise, a is said to be odd. Finally, we define the 
function sgn from P{N) into F by 

sgn (cj) +1, if (7 is even 

if a is odd 

forallcJGP(A^). 
As a specific example, foxN= {1 ,2 ,3} , there are six different permutations, 

even and odd, on N given in the following table: 

G 

123 
132 
213 
231 
312 
321 

Uuh) 
(1,2) 
(1,3) 
(2,1) 
(2,3) 
(3,1) 
(3,2) 

Uuh) 
(1,3) 
(1,2) 
(2,3) 
(2,1) 
(3,2) 
(3,1) 

U2J3) 

(2,3) 
(3,2) 
(1,3) 
(3,1) 
(1,2) 
(2,1) 

G is 
odd or even 

Even 
Odd 
Odd 
Even 
Even 
Odd 

sgn(G) 

- 1 

Now let A denote the nxn matrix given by 

'an 

ail 

an 
ail 

a\n 
ain 

ann. \_afii a^ii 

We form the product of n elements from A by taking one and only one element from 
each row and one and only one element from each column. We represent this product 
as 

^Ij l '^2J2 anj^^ 

where {jiji • • • jn) ^ ^ ( ^ ) - H is possible to find n\ such products, one for each a G 
P{N). We are now in a position to define the determinant of A, denoted by det{A), 
by the sum 

det{A) = ^ sgn{G) • aij^ • ay^ 
^njn^ 

(2.62) 

oePiN) 



where a = jvin- We frequently denote the determinant of A by 

det{A) = 

Cl\n 

Clin = \A[ (2.63) 

Properties of determinants 

We now enumerate some of the common properties of determinants. The proofs 
of these follow mostly from definitions. 

Let A and BhonXn matrices. Then (i) det (A^) = det (A); (ii) if all elements of 
a column (or row) of A are zero, then det (A) = 0; (iii) if the matrix B is the matrix 
obtained by multiplying every element in a column (or row) of A by a constant a, 
while all other columns of B are the same as those of A, then det(B) = a det{A)\ 
(iv) if JB is the same as A, except that two columns (or rows) are interchanged, then 
det(B) == -J^f (A); (v) if two columns (or rows) of A are identical, then J^^( A) = 0; 
and (vi) if the columns (or rows) of A are linearly dependent, then det (A) = 0. 

We now introduce some additional concepts for determinants. To this end, let 
A = [aij] be an /I X n matrix. If the /th row andjth column of A are deleted, the 
remaining (n - 1) rows and (n - 1) columns can be used to form another matrix Mij 
whose determinant is det (Mij). We call det {Mij) the minor of aij. If the diagonal 
elementsofM/y are diagonal elements of A, i.e., if / = j , then we speak of aprmc/pa/ 
minor of A. The cofactor of aij is defined as ( - ly^^det (Mij). 

As a specific example, if A is a 3 X 3 matrix, then 

det (A) = 
an ai2 au 
^21 ^22 Cl23 

^31 ^32 <^33 

the minor of element ^23 is 

and the cofactor of ^23 is 

det(M23) = an 
«31 

ai2 

CI31 

CTh (-1) a\\ a\2 
<23i (332 

Next, for an arbitrary nXn matrix A, let c/y denote the cofactor of aij, i, j = 
I,.. .,n.lt can be shown from definitions that the determinant of A is equal to the 
sum of the products of the elements of any column (or row) of A, each by its cofactor. 
Specifically, 

det (A) = ^ ^ijCij, j = \,.. .,n, 
i = \ 

or det (A) = ^^aijCij, i = 1,.. 

For example, if A is a 2 X 2 matrix, we have 

(2.64) 

(2.65) 

det (A) an a\2 
<^2i ^22 

- <2ll^22 " ^ 1 2 ^ 2 b 
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= an 
Cl22 

^32 

<^23 

(233 
- ^12 

(221 

^31 

^23 

<^33 
+ a\2> 

Cl2\ 

(331 

'^22 

^32 

and if A is a 3 X 3 matrix, we have 

k l l ^12 ^13 
det{A) = \a2i ^22 <̂ 23 

1̂ 31 ^32 ^33! 

= ancn + ^21^21 -^ cisic^i. 

We now consider a few additional useful properties of determinants. In particular 
from basic definitions it can be shown that if the ith row of an n X ^ matrix A consists 
of elements of the form an + a'-p ai2 + a[2,.. .,ain + a\^, i.e., if 

A = 

an 
<221 

(212 

<322 

then det(A) = 

(an + a'.^) 

an a\2 

<321 <322 

<3/l (2/2 

<2«1 ^ n 2 

((2,-2 + ^;2) 

<^/22 

^1« 

^2n 

(atn + (2;^) 

^2n 
an 
Cl2\ 

a\^ 

(^n\ 

a\2 
C122 

^a 

Cln2 

(^2n 

Next, if A and B axe n X n matrices, and if B is obtained from A by adding a 
constant a times any column (or row) to any other column (or row) of A, then it is 
easily shown that (i^r (A) = det(B). 

Further, if ctj denotes the cofactor of atj, i, j = 1 , . . . , n, for annX n matrix A, 
then it is easily shown that 

^atjCik =- 0 foxJT^k 
i = \ 

and ^^CLijCkj = 0 for / 7^ k. 

7 = 1 

(2.66) 

(2.67) 

We can combine (2.64) with (2.66) and (2.65) with (2.67) to obtain the relations 
n 

^atjCij^ = det(A)Sjk, j , k = \,...,n, (2.68) 
/ = i 

and ^at jCkj = det(A)81^, i, k = \,.. .,n, 
7 = 1 

(2.69) 

respectively, where 8mn denotes the Kronecker delta (i.e., 8mn = 1 when m = n and 
^mn = 0 Otherwise). 

An extremely useful result concerning determinants (which can be proved by 
using the definition of determinant and some of the properties enumerated above) 
states that the determinant of the product of two matrices is equal to the product of 
the determinants of the matrices. Thus, if A and B are nX n matrices, then 

det(AB) = det(A)det(B). (2.70) 



It is easily verified that for the n X n identity matrix / and for the n X n zero 
matrix O, we have det (I) = 1 and det (O) = 0. 

Finally, we can readily show that annX n matrix A is nonsingular if and only 
if det (A) ¥=0. 

We conclude this discussion by considering a means of determining the inverse, 
A~^ of a nonsingular nX n matrix. To this end, let c/y be the cofactor of atj, i, j = 
1, . . . , n, for the matrix A, and let C be the matrix formed by the cofactors of A, i.e., 
C = [cij]. The matrix C^ is called the (classical) adjoint of A, and is denoted by 
adj (A). It is easily verified that 

A • [adj (A)] = [adj (A)] • A - [det (A)] • /, 

from which it follows that 

As a specific case, consider 

1 
det (A) 

adj (A). 

A = 
0 1 1 
1 2 2 
1 - 1 0 

Then det (A) - - 1 , 

and 

adj (A) = 

A" 

2 
2 
3 

2 
2 
3 

- 1 
- 1 

1 

1 
1 

- 1 

0' 
1 

- 1 

0" 
- 1 

1 

(2.71) 

(2.72) 
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H. Solving Linear Algebraic Equations 

Now consider the linear system of equations given by 

Aa = y, (2.73) 

where A E R^^^ and y E. R^ are given and a G /?" is to be determined. By using 
the results of the preceding subsections, especially Subsection 2.2D, the following 
important results can readily be established. 

1. For a given y, a solution a of (2.73) exists (not necessarily unique) if and only if 
7 G 2^(A), or equivalently, if and only if 

p{[A,y^) = p{Ar (in A) 

2. A solution a of (2.73) exists for any y if and only if 

p(A) = m. (2.75) 

If (2.75) is satisfied, a solution of (2.73) can be found by using the relation 

a = A'^(AA^y^y. (2.76) 
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When in (2.73), p(A) = m = n, then A G 
unique solution of (2.76) is given by 

a = A~^y, 

j^nxn ^^^ jg nonsingular and the 

(2.77) 

3. Every solution a of (2.73) can be expressed as a sum 

a = ap-\- ah, (2.78) 

where ap is a specific solution of (2.73) and ah satisfies Aah = 0. This result 
allows us to span the space of all solutions of (2.73). Note that there are 

dim>f(A) = n- p{A) 

linearly independent solutions of the system of equations AjS = 0. 

EXAMPLE 2.7. Consider 

(2.79) 

Aa = 
0 
0 

.0 

0 
0 
0 

0" 
1 
0. 

r- (2.80) 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

k 

0 

It is easily verified that {(0, 1, 0)^} is a basis for S/l(A). Since a solution of (2.80) exists 
if and only if y G ̂ (A), y must be of the form y = (0, k,0), k G R. Note that 

p(A) = I = p([A, y]) = rank 

as expected. To determine all solutions of (2.80), we need to determine an a^ and an 
ah [see (2.78)]. In particular, ap = (0,0, Z:)̂  will do. To determine an, we consider 
AjS = 0. There are dim >r(A) = 2 linearly independent solutions of A/3 = 0. In partic
ular, {(1, 0, 0)^, (0, 1, 0)^} is a basis for M(A). Therefore, any solution of (2.80) can be 
expressed as 

ap -\- ah 

where ci, C2 are appropriately chosen real numbers. • 

We conclude by noting that an extensive discussion of determining solutions of 
the linear system of equations (2.73) is provided in the Appendix. 

0' 
0 

.k. 

+ 
T 01 
0 1 
.0 oj 

\ci 

l_<^2. 

I. Equivalence and Similarity 

From our previous discussion it is clear that a linear transformation 4̂ of a finite-
dimensional vector space V into a finite-dimensional vector space W can be repre
sented by means of different matrices, depending on the particular choice of bases in 
V and W. The choice of bases may in different cases result in matrices that are easy or 
hard to utilize. Many of the resulting "standard" forms of matrices, called canonical 
forms, arise because of practical considerations. Such canonical forms often exhibit 
inherent characteristics of the underlying transformation si. 

Throughout the present subsection, V and W are finite-dimensional vector spaces 
over the same field F, dim V = n, and dim W = m. 
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Our first aim will be to consider the change of bases in the coordinate repre- CHAPTER 2: 
sentation of vectors. Let {v^ . . . , v""} be a basis for V and let {v^ . . . , v'̂ } be a set of Response of 
vectors in V given by Linear Systems 

= ^Pn i = \,.. (2.81) 

where pij G F for all i, j = 1 , . . . , n. It is easily verified that the set {v^ . . . , v"} 
forms a basis for V if and only if the n X n matrix P = [pij] is nonsingular. We call 
P the matrix of the basis {v\ . . . , v"} with respect to the basis {v^ . . . , v"}. Note that 
the /th column of P is the coordinate representation of v' with respect to the basis 

Continuing the above discussion, let {v^ . . . , v"} and {v\ . . . , v'̂ } be two bases 
for y, and let P be the matrix of the basis {v^ . . . , v"} with respect to the basis 
{v^ . . . , v"}. Then it is easily shown that P~^ is the matrix of the basis {v^ . . . , v'̂ } 
with respect to the basis {v^ . . . , v"}. 

Next, let the sets of vectors {v^ . . . , v"}, {v^ . . . , v^}, and {v^ . . . , v^} be bases 
for V. If P is the matrix of the basis {v^ . . . , v"} with respect to the basis {v^ . . . , v"} 
and if Q is the matrix of the basis {v V • •, v"} with respect to the basis {v^ . . . , v'̂ }, 
then it is easily verified that PQ is the matrix of the basis {v^ . . . , v"} with respect to 
the basis {v^ . . . , v^}. 

Continuing further, let {v^ . . . , v"} and {v^ . . . , v"} be two bases for V and let 
P be the matrix of the basis {v^ . . . , v"} with respect to the basis {v^ . . . , v'̂ }. Let 
a ^ V and let a^ = ( a i , . . . , a„) denote the coordinate representation of a with 
respect to the basis {v^ . . . , v"} (i.e., a = XĴ = i cav^)- Let d^ = (di,..., dn) denote 
the coordinate representation of a with respect to the basis {v^ . . . , v"}. Then it is 
readily verified that 

Pd = a. 

R^ be given. Let 
= (1,0, Of, 2̂ ^ 

(0, 1, 0)^, e^ = (0,0,1)^. Clearly, the coordinate representation a of a with respect to 
the natural basis is (1, 2, 3)^. 

EXAMPLE 2.8. Let V = R^ md F = R, and let a = (1, 2, 3)^ ( 
{v\ v̂ , v-̂ } = {e^, e^, e^} denote the natural basis for R^, i.e., e^ 

Now let {v\ v̂ , v̂ } be another basis for R^, given by v̂  = (1, 0, 1)̂  
= (0, 1, l)'^. From the relation 

, v2 = (0, 1, 0)^, 

(1,0,1)^ = v̂  = 

= Pii 

P\\V^ + PllV^ + P3lV^ 

rii 
0 
0 

+ P21 
ro" 
1 
0 

+ P31 
roi 
0 
1 

we conclude that pn = 1, p2i = 0, and psi = 1. Similarly, from 

(0, 1, 0)^ = v'^ = pnV^ + P22V^ + P32V^ 

P\2 

\l~ 
0 
0 

+ Pll 
roi 
1 
0 

+ P32 
roi 
0 
1 
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we conclude that pu = 0, P22 = 1, and P32 = 0. Finally, from the relation 

(0,1,1)^ Pl3 

r i i 
0 
0 

+ P23 
roi 
1 
0 

+ P33 
roi 
0 
1 

we obtain that pu = 0, P23 = 1, and P33 = 1. 
The matrix P = [ptj] of the basis {v\ v̂ , v̂ } with respect to the basis {v^ v̂ , v̂ } is 

therefore determined to be 
ri 0 01 

p = \o 1 1 , 
[1 0 i j 

and the coordinate representation of a with respect to the basis {v^ v̂ , v̂ } is given by 
d = P~^a, or 

ri 0 01 
0 1 1 

.1 0 1, 

- 1 r 11 

r 
L: 

r 1 0 01 
1 1 - 1 

. - 1 0 oj 

3j 

rr 
2 

L3. 
= 

Ml 
0 
_2_ 

Change of bases: Matrix case 

Having addressed the relationship between the coordinate representations of a 
given vector with respect to different bases, we next consider the relationship be
tween the matrix representations of a given linear transformation relative to dif
ferent bases. To this end let ^ G L(V, W) and let {v^ . . . , v^} and {w^ . . . , w"^} be 
bases for V and W, respectively. Let A be the matrix of si with respect to the bases 
{v^ . . . , v"} and {w^,..., w"^}. Let {v^ . . . , v^} be another basis for V, and let the ma
trix of {v^ . . . , v'̂ } with respect to {v^ . . . , v'̂ } be P. Let {w^,..., w^] be another basis 
for W, and let Q be the matrix of {w^ . . . , w^} with respect to {vP̂  . . . , w^}. Let A 
be the matrix of ^ with respect to the bases {v^ . . . , v'̂ } and {w^ . . . , w^}. Then it is 
readily verified that 

A = QAR 

This result is depicted schematically in Fig. 2.1. 

(2.82) 

V-^ W 

V = PV 

Pt 

{v\ • • •. v"} 
V 

A 
—* 

A 

0) = Av 

\ Q 

cb = Qo) 
FIGURE 2.1 
Schematic diagram of the equivalence of 
two matrices 

Equivalence of matrices 

The preceding discussion motivates the following definition. 



DEFINITION 2.4. Anm X n matrix A is said to be equivalent to an m X ^ matrix A if 
there exists an m X m nonsingular matrix Q and an /i x ^ nonsingular matrix P such that 
(2.82) is true. If A is equivalent to A, we write A ~ A. • 

Thus, an m X ^ matrix A is equivalent to an m X n matrix A if and only if A and 
A can be interpreted as both being matrices of the same linear transformation 4̂ of 
a linear space V into a linear space W, but v^ith respect to possibly different choices 
of bases. 

It is clear that a matrix A is always equivalent to itself (i.e., A ~ A). Also, if a 
matrix A is equivalent to a matrix 5 , then clearly B is equivalent to A (i.e., if A ~ 5, 
then 5 — A). Furthermore, if A is equivalent to B and B is equivalent to a matrix C, 
then it is evident that A is equivalent to C (i.e., if A ~ 5 and B — C, then A ~ C). 
This shows that ~ is an equivalence relation. 

The reader can easily verify that every m X n matrix is equivalent to a matrix of 
the form 

} r = rank A 

"100 •• 
010 •• 

000 •• 
000 •• 

000 •• 

100 
000 

000 

•• 0 " 
•• 0 

•• 0 
•• 0 

•• 0 -

From this it follows that two mX n matrices A and B are equivalent if and only if 
they have the same rank, and furthermore, that A and A^ have the same rank. 

The definition of rank of a matrix that we used in Section 2.2 is sometimes called 
the column rank of a matrix. Sometimes, an analogous definition for row rank of a 
matrix is also used. The result given in the above paragraph shows that row rank of 
a matrix is equal to its column rank. 

Similarity of matrices 

Next, let V = W, let 5i e L{V, V), let {v^,..., v"} be a basis for V, and let A be 
the matrix of d. with respect to {v^ . . . , v"}. Let {v ' , . . . , v"} be another basis for V 
whose matrix with respect to {v^ . . . , v"} is P. Let A be the matrix of ai with respect 
to {v^ . . . , v"}. Then it follows immediately from (2.82) that 

(2.83) A = P'^AP. 

The meaning of this result is depicted schematically in Fig. 2.2. 
This discussion motivates the following definition. 

V 
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{v\...,v"} 

t P 

{v\...,v"} 

IP-' 
A FIGURE 2.2 

{v , . . . , v"} -^ {v ,..., v"} Schematic diagram of the similarity of two matrices 
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DEFINITION 2.5. knnXn matrix A is said to be similar to em nXn matrix A if there 
exists SinnX n nonsingular matrix P such that 

A = P-^AP. 

If A is similar to A, we write A -- A. We call P a similarity transformation. • 

It is easily verified that if A is similar to A [i.e., (2.83) is true], then A is similar 
to A, i.e., 

A = PAp-\ (2.84) 

In view of this, there is no ambiguity in saying "two matrices are similar," and we 
could just as well have used (2.84) [in place of (2.83)] to define similarity of matrices. 

To sum up, if two matrices A and A represent the same linear transformation 
d^ G L{V, y), possibly with respect to two different bases for V, then A and A are 
similar matrices. 

Since the similarity of two matrices is a special case of the equivalence of matri
ces, it follows that (i) a matrix A is similar to A; (ii) if A is similar to a matrix B, then 
B is similar to A; and (iii) if A is similar to B and B is similar to a matrix C, then A is 
similar to C. Therefore, the similarity relation of matrices is an equivalence relation. 

Now let A be an n X fz matrix that is similar to a matrix B. Then it is easily shown 
that A^ is similar to B^, where k denotes a positive integer, i.e., B^ = P~^A^P. This 
can be extended further by letting 

m 

i = 0 

ao + aiX + • • • + a^A" (2.85) 

and by verifying that 

f(p-'AP) = p-'f{A)P, (2.86) 

where a o , . . . , a^ E F. This shows that if B is similar to A, then f{B) is similar 
to /(A), where in fact the same similarity transformation P is involved. Further, if 
A is similar to A and if /(A) is as given in (2.85), then / (A) = O if and only if 
/ (A) == O. 

Next, let ̂ 4 G L(K V) and let A be the matrix of 4̂ with respect to a basis 
{v\ . . . , v"} in y. Let /(A) denote the polynomial given in (2.85) and let A be any 
matrix of si. Then it is readily verified that f{d) = 0 if and only if / (A) = O, 

We can use results such as the preceding to good advantage. For example, let A 
denote the diagonal matrix given by 

'Ai 0 0 ••• 0 0 
0 A2 0 ••• 0 0 

A = ' 

Then 

{Af = 

0 
0 

\x\ 
0 

0 

0 0 •• 
0 0 •• 

0 0 • 
Â  0 • 

0 0 • 
0 0 • 

• A„-i 
0 

0 
0 

0 

0 
An J 

0 
0 

0 
AS 



Now let /(A) be given by (2.85). Then 

f{A) = ao 

[l 0 ••• 
0 1 ••• 

0 0 ••• 
|_0 0 ••• 

"AY* 0 
0 A-

0 0 
. 0 0 

. . . 0 

. . . 0 

1 0 
0 1 

+ ai 

0 1 
0 

0 
0 

A"* 

Ai 
0 

0 • 
A2 • 

0 0 -
[0 0 • 

7(Ai) 
0 

0 
0 

•• A „ - i 

0 

0 
/(Ai) • 

0 
0 

0 
0 

0 
An 

+ ••• 

/(A„-i) 
0 

0 
0 

0 
/(A„) 

+ a„ 

Next, let ^ E L{V, V), let A be the matrix of si with respect to a basis {v^ . . . , v"} 
in y, and let A be the matrix of si with respect to another basis {v^ . . . , v'̂ } in V. Then 
it is easily verified that det (A) = del (A). From this it follows that for any two similar 
matrices A and B, we have det (A) = det (B). 

In view of these results, there is no ambiguity in defining the determinant of a 
linear transformation 6̂^ of a finite-dimensional vector space V into V as the deter
minant of any matrix A representing it, i.e., det(^) = det (A). 
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J. Eigenvalues and Eigenvectors 

Definitions 

Throughout this subsection, V denotes an n-dimensional vector space over a 
field F. 

Let ^ E L(V, V) and let us assume that there exist sets of vectors {v^ . . . , v"} 
and {v^ . . . , v"} that are bases for V such that 

V = 

v2 = 

= Aiv' 

= W 

v« = siv" = A„v", 

where Xi ^ F,i = I,..., n. If this is the case, then the matrix Aof d. with respect 
to the given bases is 

[Ai 0 

A = 

0 A„ 

This motivates the following result that is easily verified: for M G LiV, V) and A G 
F, the set of all v G V such that 

siv = Av (2.87) 



122 is a linear subspace of V. In fact, it is the null space of the linear transformation 
Linear Systems (^ ~~ ^^)^ where ^ is the identity element of L(V, V). Henceforth, we let 

JVTA = {v G y : ( ^ - Ai)v = 0}. (2.88) 

The above gives rise to several important concepts that we introduce in the fol
lowing definition. 

DEFINITION 2.6. A scalar A such that Kx [given in (2.88)] contains more than just the 
zero vector is called an eigenvalue of 4̂ (i.e., if there is a v T̂  0 such that siv = Av, then 
A is called an eigenvalue of si). When A is an eigenvalue of si, then each v T̂  0 in ĴTA 
is called an eigenvector of ^ corresponding to the eigenvalue A. The dimension of the 
linear subspace JVA is called the (geometric) multiplicity of the eigenvalue A. If JVA is of 
dimension one, then A is called a simple eigenvalue. The set of all eigenvalues of d^ is 
called the spectrum of si. • 

Other names for eigenvalue that are in use include proper value, characteris
tic value, latent value, or secular value. Similarly, other names for eigenvectors are 
proper vector or characteristic vector. The space Mx is called the Ath proper sub-
space of V. For matrices, we give the following corresponding definition. 

DEFINITION 2.7. Let A be an « X ̂  matrix whose elements belong to the field F. If 
there exists A E F and a nonzero vector a E F"^ such that 

Aa = Xa, (2.89) 

then A is called an eigenvalue of A and a is called an eigenvector of A corresponding to 
the eigenvalue A. • 

The connection between Definitions 2.6 and 2.7 is given in the following result 
that the reader can verify easily: let d^ E: L{V,V) and let A be the matrix of ^ with 
respect to the basis {v^ . . . , v"}. Then A is an eigenvalue of d^ if and only if A is an 
eigenvalue of A. Also, a G V is an eigenvector of si corresponding to A if and only 
if the coordinate representation of a with respect to the basis {v^ . . . , v"}, a, is an 
eigenvector of A corresponding to A. 

We note that if a (or a ) is an eigenvector of si (of A), then any nonzero multiple 
of a (of a) is also an eigenvector of si (of A). 

In the case of matrices, in place of (2.89), one can also consider the relationship 

aA = Xa, (2.90) 

where a denotes a 1 X n row vector. In this context, a. in (2.89) and a in (2.90) are 
referred to as a right eigenvector and a left eigenvector, respectively. Unless explic
itly stated, we will have in mind a right eigenvector when using the term eigenvector 
of a matrix. 

Now let si G L{V, V) and let A denote the matrix of si with respect to the basis 
{v^ . . . , v"} in y. Then it is easily shown that A E F is an eigenvalue of d^ (and hence, 
of A) if diViA only if det {si-X3>) = 0, orequivalently, if andonly if J^r(A-A/) = 0. 

Characteristic polynomial 

The above result enables us to determine the eigenvalues of d (or A) in a sys
tematic manner. So let us examine the equation 

det{si- X3) = 0 (2.91) 



or equivalently, the equation 

det{A- \I) = 0 

in terms of the parameter A. We first rewrite (2.92) as 

1(^11 - A) (212 

det(A-\I) = 
Clll (Cl22 - A) 

Clin 

^2n 

(2.92) 

(2.93) 

^nl ^n2 '" (^nn ~ A)| 

It is clear from (2.62) that the expansion of the determinant (2.93) yields a polyno
mial in A of degree n. For A to be an eigenvalue of si (or A) it must satisfy (2.91) 
[or (2.92)] and it must belong to F. Note that in general we have no assurance that 
the fzth-degree polynomial given by (2.92) has any roots in F. There is, however, a 
special class of fields for which this requirement is automatically satisfied: a field F 
is said to be algebraically closed if for every polynomial p(X) there is at least one 
A G F such that 

p{X) = 0. (2.94) 

Any A that satisfies (2.94) is said to be a root of the polynomial equation (2.94). 
In particular the field of complex numbers is algebraically closed, whereas the 

field of real numbers is not (e.g., consider the equation Â  + 1 = 0). There are other 
fields besides the field of complex numbers that are algebraically closed. However, 
since we will not require these, we will restrict ourselves to the field of complex 
numbers, C, whenever the algebraic closure property is required. When considering 
results that are valid for a vector space over an arbitrary field, we will, as before, 
make use of the symbol F, or make no reference to F at all. 

Summarizing the above discussion, we have the following result. Let ^ G 
L(V, V) and let A be the matrix of ^ with respect to the basis {v^ . . . , v"} in V. Then 
(i) det (^ - \3) = det (A - A/) is a polynomial of degree n in the parameter A, i.e., 
there exist scalars ao, a i , . . . , a„, depending on d^ (and therefore on A) such that 

det{d^ - X3) = det (A - A/) = ao + o^i^ + «2A^ + ••• + a^A'̂  (2.95) 

[note that ao = det (si) and an = (-l) '^]; (ii) the eigenvalues of ^ are precisely the 
roots of the equation 

det(M - A^) = det (A - A/) = ao + aiA + a2A^ + • • • + a^A'̂  = 0; (2.96) 

and (iii) M^ has, at most, n distinct eigenvalues. 
We call (2.95) the characteristic polynomial of si (or of A) and call (2.96) the 

characteristic equation ofd (or of A). 

An important remark concerning notation 

The above definition of characteristic polynomial is the one usually used in texts 
on linear algebra and matrix theory (refer, e.g., to some of the books on this subject 
cited at the end of this chapter). An alternative to the above definition is given by 
the expression 

a(A) - det(X3 -A) = det{XI - A). 

One of the reasons for using this convention is that this polynomial arises in a natural 
manner when solving systems of ordinary differential equations by operator methods 
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124 [e.g., system (LH)]. Since the reader may have many occasions to consult texts on 
Linear Systems linear algebra and matrix theory, we will employ in this section the definition given 

in (2.95). Throughout the remainder of this book, however, we will follow the con
vention used in linear systems texts by utilizing the expression det (A/ - A) for the 
characteristic polynomial. We note that because of the relationship 

det (A - XI) = {-If det {XI - AX 

either definition can be used to develop the results considered herein. Note that 
det (XI - A) is a monic polynomial, i.e., its leading coefficient equals 1. 

From the fundamental properties of polynomials over the field of complex num
bers, there now follows the next important result: if V is an n-dimensional vector 
space over C and if ^̂ i E LiV, V), then it is possible to write the characteristic poly
nomial of d^ in the form 

det (d - X3) = (Ai - A)^i(A2 - A)^^.. .(^^ _ x)'^p, (2.97) 

where Xu i = I,..., p, are the distinct roots of (2.96) (i.e.. A/ T̂  XJ, if / T̂  j). In 
(2.97), Mi is called the algebraic multiplicity of the root A/. The m/ are positive 
integers, and Sf=i ^/ = ^• 

The reader should make note of the distinction between the concept of algebraic 
multiplicity of Â , given above, and the (geometric) multiplicity of an eigenvalue A/, 
given earlier. In general these need not be the same, as will be seen later. 

The Cayley-Hamilton Theorem and appUcations 

We now state and prove a result that is very important in linear systems theory. 

THEOREM 2.1. (CAYLEY-HAMILTON THEOREM) Every square matrix satisfies 
its characteristic equation. More specifically, if A is an n X n matrix and p(X) = det (A -
XI) is the characteristic polynomial of A, then p(A) = O. 

Proof. Let the characteristic polynomial for A be p{X) = ao + aiX-\ h a„A" and let 
B{X) = [bij(X)] be the classical adjoint of (A - XI) (refer to Subsection 2.2G). Since the 
bij(X) are cofactors of the matrix A - A/, they are polynomials in A of degree not more 
than n-l. Thus, bij(X) = Ptjo + ptjiX + ••• + Ptj^n-DX^'-K Letting Bj, = Wtjk] for 
A: = 0, 1,..., n - 1, we have B(X) = BQ + XBi + " + A^~^5„-i. By (2.71), we have 
(A~XI)B(X) = [det(A-XI)]LThus,(A-XI)[Bo + XBi-h"' + X''-^Bn-i] = (ao+Q:iA+ 
• • • + anX^)I. Expanding the left-hand side of this equation and equating like powers of 
A, we have -Bni = oLnL AB^i - Bn-2 = 0Ln-\I,..., AB\ - Bo = ail, ABQ = a^I. 
Premultiplying the above matrix equations by A", A"~\ ... , A, /, respectively, we have 
-A^Bn-i - Qf„A«,A«5„-i-A"-i5„-2 = a„-iA"-i, . . . , A 2 B I - A 5 O = a^AAB^ = 
aol. Adding these matrix equations, we obtain O = a^I + aiA + • • • + anA"^ = p(A), 
which was to be shown. • 

As an immediate consequence of the Cayley-Hamilton Theorem, we have the 
following results: let A be an n X n matrix with characteristic polynomial given by 
(2.96). Then (i) A^ - ( - l )"+i[«o/ + ^lA + • • • + an-iA""-^]; and (ii) if/(A) is any 
polynomial in A, then there exist JSQ, jSi, . . . , /3„_i G F such that 

f(A) = /3o/ + iSiA + • • • + /3n-iA'~\ (2.98) 

Part (i) follows froir the Cayley-Hamilton Theorem and from the fact that 
an = (-1)". To prove part (ii), let /(A) be any polynomial in A and let p(X) denote 
the characteristic polynomial of A. From a result for polynomials (called the division 



algorithm), we know that there exist two unique polynomials g{X) and r(A) such that 

fil) = p{l)gil) + r{l), (2.99) 

where the degree of r(A) <n—l. Now since p(A) = O, we have that /(A) = r(A) 
and the result follows. 

Finally, we also note that if ^ G L(V,V) and if p(A) denotes the characteristic 
polynomial of ^ , then p ( ^ ) = ^. 

As a specific application of the Cayley-Hamilton Theorem, we evaluate the 
q7 [ l Ol 

matrix A ^ \ where A = L ^ . Since n = 2, we assume, in view of (2.98), 

that A^^ is of the form A^^ = JSQ/ + /3iA. The characteristic polynomial of A is 
p{X) = (1 — A) (2 — A) and the eigenvalues of A are Ai = 1 and X2 = 2. In the present 
case / ( A ) = A^^ and r(A) in (2.99) is r (A) = /3o + /3 iA . To determine /3o and /3i we 
use the fact that p (Ai ) = p{^2) = 0 to conclude that / ( A i ) = r(Ai) and / (A2) = r(A2). 
Therefore, we have that /3o + / 3 i = 1^^ = 1 and j8o + 2/3i = 2^^. Hence, j8i = 
2^^ - 1 and /3o = 2 - 2^^. Therefore, A^^ = (2 - 2^^)/ + (2^^ - 1)A, or A^^ = 

1 0 ] 
237-1 237j-

The Cayley-Hamilton Theorem can also be used to express matrix-valued power 
series (as well as other kinds of functions) as matrix polynomials of degree n— 1. 
Consider in particular the matrix exponential e^^ defined by 
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^At 1 
k=0 

A^ t G {—a,a). 

In view of the Cayley-Hamilton Theorem, we can write 

/(A) 

(2.100) 

^At 

i=0 
(2.101) 

In the following, we present a method to determine the coefficients ai{t) in (2.101) 
[or/3/in (2.98)]. 

In accordance with (2.97), let p(A) = det{A - XI) = Uf=i{^i - ^T' be the 
characteristic polynomial of A. Also, let /(A) and g(A) be two analytic functions. 
Now if 

/«(A,0=g«(A,0, / = 0 , . . . , m , - - l , / = l , . . . , p , (2.102) 

where f^^\Xi) = (( i7/^^0(^)U=Aplf=i m = n, then /(A) = g{A). To see this, we 
note that condition (2.102) written as ( / - g)^^^ (A/) = 0 impUes that /(A) - g{X) has 
p(A) as a factor, i.e., /(A) — g(A) = w(A)p(A) for some analytic function w(A). 
From the Cayley-Hamilton Theorem we have that p{A) = O and therefore /(A) — 
g{A) = 0. 

E X A M P L E 2.9. Let A 
-1 1 
-1 1 

and let /(A) = e^\f{X) = e^\ and g{X) = aiA+ 

OQ. The matrix A has an eigenvalue A = Ai = A2 = 0 with multiplicity m\ =2. Con
ditions (2.102) are given by /(Ai) = ^(Ai) = 1 and f^^\X\) = g^^\h) and imply that 
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In the final result of this section we let F = C, we let A be an n X n matrix of 
A G L(V; y), and we let det{A - A/) - det(A - \3) be given by (2.97). It is read
ily verified that (i) det(A) = [ l ^ . i ^J\ (ii) trace (A) = X^^iau = Z y = i m^Ay, 
(iii) if B is any matrix similar to A, then trace (B) = trace (A), and (iv) if /(A) 
denotes the polynomial /(A) = 7o + 7i A H \- 7mA^, then the roots of the charac
teristic polynomial of / (A) are / (A i ) , . . . , /(A^), and J^^ [/(A) - A/] = [/(Ai) -
Ar---[/(A;,)-An. 

K. Direct Sums of Linear Subspaces 

One of the important topics in matrix theory is the development of canonical forms, 
including the lower (upper) triangular form, the block diagonal form, and the Jordan 
canonical form of matrices. Before presenting these, we need to address additional 
topics which are of interest and importance to us in their own right. One of these 
concerns direct sums of linear subspaces and linear transformations defined on such 
sums. 

Let y be a linear space and let W and U be arbitrary subsets of V. The sum of 
sets W and U, denoted by W -\- U, is the set of all vectors in V that are of the form 
w + w, where w E. W and u E U. If in particular, W and U are linear subspaces 
of y, then it is easily shown that W -\- U is also a linear subspace. If W and U are 
linear subspaces of V, and ifWnU = {0} (the singleton set consisting of the null 
vector of V), then we say that W and U are disjoint. Note that this terminology is not 
consistent with that used in connection with sets. If W and U are linear subspaces of 
y, then it is easily verified that for every v E U + W, there exist unique elements 
w ELW and u E U such that v = u -\- wif and only ifUHW = {0}. 

The preceding discussion is readily extended to any number of linear subspaces 
of y and gives rise to the following concept. Let y i , . . . , y^ be linear subspaces of 
a vector space V. The sum yi + • • • + y^ is said to be a direct sum if for each v G 
Vi -\ + Vr there is a unique set v̂  G Vi, i = 1 , . . . , r, such that v = v̂  + • • • + v'*. 
Henceforth, we will denote the direct sum of y i , . . . , y^ by yi © • • • © y^. 

Now let y be the direct sum of linear spaces Vi and V2, i.e., y =̂  yi © V2, and 
let V = v̂  -h v^ be the unique representation of v G y, where v̂  G yi and v^ G y2. 
We say that the projection on Vi along V2 is the transformation defined by 

2^(v) = v^ (2.103) 

We can easily verify that (i) ^ G L(y y), (ii) 31(2 )̂ - Vu and (ii) J{{^) = V2. 
More generally, we can show that if 2P G L(V, V), then 2̂  is a projection on 9l(SP) 

along X(&) if and only if 2̂ 2P = ?P^ = ?P. This gives rise to the following concept: 
^ G L(V; V) is said to be idempotent if 2P̂  = 9 .̂ 

We can also verify easily that 2̂  is a projection on a linear subspace if and only 
if (Ĵ  - 2P) is a projection. If in particular 2P is the projection on Vi along V2, then 
(3 - ^) is the projection on V2 along Vi. 

In view of the preceding results, there is no ambiguity in simply saying a trans
formation 9̂  is a projection (rather than 9̂  is a projection on V\ along V2). We em-



phasize that if 2?̂  is a projection, then 

(2.104) 

L(K V), for This is not necessarily the case for arbitrary linear transformations ST 
in general, 9l(2r) and J^CJ) need not be disjoint. 

Next, let ST G L(V; y). A linear subspace W of V is said to be invariant under 
the linear transformation ST if w G W implies that ^w G W. From this definition 
it follows trivially that (i) V is invariant under ST, (ii) {0} is invariant under ST, (iii) 
2/1(9") is invariant under ST, and (iv) ^{'J) is invariant under ST. 

Next, let y be a linear space that is the direct sum of two linear subspaces W 
and U. If W and U are both invariant under a linear transformation ST, then ST is said 
to be reduced by W and U. It is readily verified, using definitions, that ST G L{V, V) 
is reduced by W and U if and only if ŜST = ST9̂ , where 9̂  is the projection on W 
along U. 

Next we consider briefly the matrix representation of projections. To this end, let 
V be an ^-dimensional vector space and let 9̂  G L( V, V). It is easily verified [using 
(2.104)] that if 9̂  is a projection, then there exists a basis {v^ . . . , v'̂ } for V such that 
the matrix P of 9̂  with respect to this basis is of the form 

(2.105) 

> r 

1 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

where r = dim 91(9^). 
We conclude with the following interesting result. Let V be a finite-dimensional 

vector space and let ^ G L{V, V). If W is a/^-dimensional invariant subspace of V 
and ifV = W®U, then there exists a basis for V such that the matrix A of ^̂ i with 
respect to this basis is of the form 

A = 

0 

M2 

122 

(2.106) 

where An is a. p X p matrix and the remaining submatrices are of appropriate di
mension. 

The canonical form (2.106) will be used in Chapter 3 in developing standard 
forms for uncontrollable and unobservable systems. 

L. Some Canonical Forms of Matrices 

In this subsection we investigate under which conditions a linear transformation of 
a vector space into itself can be represented by (i) a diagonal matrix, (ii) a block 
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128 diagonal matrix, (iii) a triangular matrix, and (iv) a companion matrix. We will also 
Linear Systems investigate when a linear transformation cannot be represented by a diagonal matrix. 

Throughout this subsection, V denotes an fz-dimensional vector space over a 
field F. 

Diagonal form 

We begin with the following fundamental result. Let Ai , . . . , A^ be the distinct 
eigenvalues of a linear transformation ^ G L(V, V) and let v̂  7̂  0 , . . . , v^ 7̂  0 be 
corresponding eigenvectors of si. Then it is easily shown that the set {v^ . . . , v^} is 
linearly independent. We note that if in particular ^ has n distinct eigenvalues, then 
the corresponding n eigenvectors span the linear space and, as such, form a basis 
forV. 

The above gives immediate rise to the next important result. Let si E L(V, V) 
and assume that the characteristic polynomial of si has n distinct roots, so that 

det (si - X3) = (Ai - A)(A2 - A)- • -(A^ - A), (2.107) 

where Ai , . . . , A„ are distinct eigenvalues. Then there exists a basis {v^ . . . , v'̂ } of V 
such that v̂  is an eigenvector corresponding to A/ for / = 1 , . . . , n. The matrix A of 
^ with respect to the basis {v^ . . . , v"} is 

[Ai 0 
A2 

A = 

0 Xn 

= diag{Ki,...,\n\ (2.108) 

In the same spirit as above, we can also easily establish the next result. Let 
si G L{V, V), and let A be the matrix of 6?̂  with respect to the basis {v^ . . . , v"}. If the 
characteristic polynomial det {si — \3) = ao + ^ i A H h a^A" has n distinct roots, 
Ai , . . . , \n, then A is similar to the matrix A of 4̂ with respect to the basis {v^ . . . , v^}, 
where A is given in (2.108). In this case there exists a nonsingular matrix P such that 

A = P'^AP. 

The matrix P is the matrix of the basis {v^. . . ,v"} with respect to the basis 
{v^ . . . , v"}, and P~^ is the matrix of the basis {v^ . . . , v^} with respect to the basis 
{v^ . . . , v"}. The matrix P can be constructed by letting its columns be eigenvectors 
of A corresponding to Ai , . . . , A„, respectively; that is, 

P = [^1 ,^2^,^,^^«]^ (2.109) 

where TT^ . . . , 77̂  are eigenvectors of A corresponding to the eigenvalues Ai , . . . , A„, 
respectively (verify this). 

The similarity transformation P given in (2.109) is called a modal matrix. If the 
conditions of the above result are satisfied and if, in particular, (2.108) holds, then 
we say that the matrix A has been diagonalized. 

As a specific case, let V be a two-dimensional vector space over the real num
bers, let si G L{V, V), and let {v^ v^} be a basis for V. Suppose the matrix A of 4̂ 

\-2 4l 
with respect to this basis is given by A = . . . The characteristic polynomial 

of ^ is p{X) = det(si - A^) = det{A - \I) = A^ + X-6 = (\- 2)(A + 3), and 
the eigenvalues of 62̂  are A1 = 2 and A2 = - 3 . 



Let 77 = (r/i, 772)^ denote the coordinate representation of v G V witli respect to 129 
tlie basis {v ,v }. To find eigenvectors corresponding to A/,/ = 1 , 2 , 
system of equations (A — A/) 77 = O. An easy computation yields 77̂  
77̂  = (4, — 1) as eigenvectors corresponding to Ai and A2, respectively. The diagonal 

we solve the 
= (1,1)^ and 

matrix A given in (2.108) is A 

(2.109) and its inverse P~^ are 

0 
0 The matrix P given in 
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[n\n" 

As expected, we have P AP 

{ v \ v^} C y with respect to which A represents 

'1 
1 

4" 
- 1 

"2 
0 -

5 

0" 
3 

P-

= 

1 _ 

"Ai 
0 

".2 
.2 

0 ' 
X2_ 

.8" 
- . 2 

• B y 

tion of V with respect to { v \ v^}, then 77 

By (2.81), the basis 

sz/ is given by v^ = Xj=i Pji ^^ = 
772)̂  is the coordinate representa-

P~^77 is the coordinate representation 
(r]i 

of V with respect to { v \ v^}. The vectors v \ v^ are of course eigenvectors of ^ 
corresponding to Ai and A2, respectively. 

When the algebraic multiplicity of one or more of the eigenvalues of a linear 
transformation is greater than one, then the linear transformation is said to have 
repeated eigenvalues. In this case it is not always possible to represent the lin
ear transformation by a diagonal matrix. However, from the preceding results of 
this section it should be clear that a linear transformation with repeated eigenval
ues can be represented by a diagonal matrix if the number of linearly independent 
eigenvectors corresponding to any eigenvalue is the same as the algebraic multi
plicity of the eigenvalue. We consider two specific cases to shed additional light 
on this. 

First, we consider the matrix 

1 
0 
0 

3 
4 
3 

- 2 
- 2 
- 1 

with characteristic equation det{A — XI) = (1—A)^(2 — A ) = 0 and eigenvalues 
Ai = 1 and A2 = 2. The algebraic multiplicity of Ai is two. Corresponding to Ai 
we can find two linearly independent eigenvectors (1,2,3)^ and (1,0,0)^, and cor
responding to A2 we have an eigenvector (1,1,1)^. Letting P denote a modal matrix, 
we obtain 

1 
2 
3 

1 1 
0 1 
0 1 

, P-' = 

A = P-^AP = 

0 
1 
0 

"1 0 
0 1 
0 0 

— 1 
- 2 

3 

0" 
0 
2 

1 
1 

- 2 

and 

In this example, dim ^ ^ = 2, which happens to be the same as the algebraic multi
plicity of Ai. For this reason, we were able to diagonalize A. 
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As a second example, consider the matrix 

2 
0 
0 

1 
2 
0 

- 2 
- 1 

1 

with characteristic equation det(A — XI) = (1—A)(2 — A)^ = 0 and eigenvalues 
Ai = 1 and X2 = 2. The algebraic multiplicity of X2 is two and an eigenvector cor
responding to Ai is (1,1,1)^. It is easily verified that any eigenvector corresponding 
to A2 must be of the form (vi, 0,0), Vi 7̂  0. We see that dim ^ ^ = 1, and thus, we 
are not able to determine a basis for the three-dimensional vector space V, which 
consists of eigenvectors. Consequently, we are unable to diagonalize A. 

Block diagonal form 

When a matrix cannot be diagonalized, we seek, for practical reasons, to rep
resent a linear trasformation by a matrix that is as nearly diagonal as possible. 
The next result provides the basis of representing linear transformations by such 
matrices, called block diagonal matrices. In Subsection O of this section we will 
consider the "simplest" type of block diagonal matrix, called the Jordan canonical 
form. 

We let V be an n-dimensional vector space and we let ^ G L(y, V). IfV is the 
direct sum of p linear subspaces, Vi,. . . , Vp, which are invariant under ^ , then it can 
be readily shown that there exists a basis for V such that the matrix representation for 
^ is in the block diagonal form given by 

Ui I 0 

A = 
Ai 

0 

(2.110) 

Moreover, A/ is a matrix representation of s^i, the restriction of ^ to Vi, / = 1, . . . , p. 
Also, 

p 

det[A)=Wdet{A^). (2.111) 
i=\ 

From the above it is clear that to carry out a block diagonalization of a matrix A, 
we need to find an appropriate set of invariant subspaces of V, and furthermore, we 
need to find a simple matrix representation on each of these subspaces. 

As a specific case for the above, let V be an n-dimensional vector space. If ^ G 
L(y, y) has n distinct eigenvalues Ai, . . . , A ,̂ and if we let ^ - = { v : ( ^ — Aj J^) v = 
0}, 7 = 1, . . . , n, then jVj is an invariant linear subspace under ^ and V = ^ 0 • • • 0 
JVn. For any v G JVJ, we have s^v = AyV, and hence, s^jV = A v for v G JVJ. A basis 
for ^j is any nonzero Vj G ̂ j. Thus, with respect to this basis, ^j is represented 
by the matrix Xj (in this case, simply a scalar). With respect to a basis of n linearly 
independent eigenvectors, { v \ . . . , v^}, ^ is represented by (2.108). 

Triangular form 

In addition to the diagonal form and the block diagonal form, there are many other 
useful forms of matrices to represent linear transformations on finite-dimensional 
vector spaces. One of these canonical forms involves triangular matrices with one of 



an 
0 

0 
0 

<3l2 

Cl22 

0 
0 

ai3 . 
(323 • 

0 . 
0 . 

ain 

Clin 

^n-l,n 

^nn 

an 
Cl2\ 

<^n-l,l 

^nl 

0 
a22 

Cln-1,2 

^n2 

0 
0 

Cln-1,3 ' • ' 

UnS 

the two forms given by 
0 " 
0 

or I 0 
0 

(2.112) 

We call the matrix on the left an upper triangular matrix and the matrix on the right 
a lower triangular matrix. 

Now let V be an n-dimensional vector space over C, and let ^ G L(V,V)At can 
be shown that there exists a basis for V such that ^ is represented by an upper (or 
by a lower) triangular matrix with respect to that basis. 

We note that if A is in triangular form, then 

det(A - A/) = (an - A)(a22 - A)- • -(ann - A), (2.113) 

i.e., the diagonal elements of A are in this case the eigenvalues of A. 

Companion form 

We conclude this subsection by considering a canonical form for real square 
matrices that arises frequently in systems theory, called companion form. As a mat
ter of fact, a given matrix A ^ R^^^ can be transformed via appropriate similarity 
transformations into four different forms of this type given by 

"0 
X 

/ 
X ' 

"x 
/ 

x' 
0 ' 

"x 
X 

/ 
0 ' 

"0 
/ 

x' 
X 

where the rows or columns denoted by (XX) are made up of the coefficients 
-ao, —ai,..., -an-i, determined by (-iydet(A - A/) = det(XI - A) = A'̂  + 
an-iX""-^ + • • • + ao, where / G 7^("-i)x("-i), and where the 0 denotes an (n - 1)-
dimensional column or row vector. For example, the matrix on the left, which is 
perhaps the most commonly used companion form, and which henceforth we will 
identify as A^, is given by 

Ac = 

0 
0 

0 
-ao 

1 
0 

0 
— Ui 

0 .. 
1 

0 .. 
- ( 3 2 • • 

0 
0 

1 
• " f l n - l 

In the following, we confine our discussion to this matrix. Similar treatments apply 
to the other three companion forms. 

Given A G R"-^"-, it can be shown that there exists a similarity transformation 
P that transforms A to the companion form Ac given above if and only if there ex
ists a vector b EL R^ such that the matrix % = [b, Ab,..., A^~^b] is of full rank n. 
Furthermore, P is given by 

P = 
qA 

n - l 
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^^^ where q is the nth row of ^ - ^ and 

1 
0 
0 

3 
4 
3 

- 2 
- 2 
- 1 
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A matrix A for which such a vector Z? exists is called cyclic. It can be shown that 
A is cyclic if and only if the geometric multiplicity of each of its n eigenvalues is 
one, or equivalently, if and only if the n eigenvalues of A are exactly the roots of 
its minimal polynomial (refer to Subsections M and O, which follow). Finally, if A/ 
is an eigenvalue of Ac (or of A), then it can be verified that (1, A/,.. . , Ap^)^ is a 
corresponding eigenvector. 

M. Minimal Polynomials 

One of our goals in this section is to develop the Jordan canonical form. To accom
plish this we first need to introduce and study minimal polynomials (which will be 
accomplished in the present subsection) and nilpotent operators (to be considered 
in Subsection N). Throughout this subsection, V denotes an n-dimensional vector 
space. 

For purposes of motivation, consider the matrix 

A = 

The characteristic polynomial of A is p(\) = (1 - A)^(2 - A), and we know from 
the Cayley-Hamilton Theorem that 

p(A) = O. (2.114) 

Now let us consider the polynomial m(A) = (1 - A)(2 - A) = 2 - 3A + A .̂ Then 

m(A) = 2/ - 3A + A^ - O. (2.115) 

Thus, matrix A satisfies (2.115), which is of lower degree than (2.114), the charac
teristic equation of A. 

More generally, it can be shown that for annX n matrix A there exists a unique 
polynomial m(A) such that (i) m(A) = O, (ii) m(A) is monic (i.e., if m is an nth-
degree polynomial in A, then the coefficient of A" is unity), and (iii) if m\X) is any 
other polynomial such that m\A) = O, then the degree of m(A) is less or equal to 
the degree of m'(A) [i.e., m(A) is of the lowest degree such that m(A) = O]. The 
polynomial m(A) is called the minimal polynomial of A. 

In the remainder of this section we let p(X) denote the characteristic polynomial 
of an n X n matrix A and we let m(A) denote the minimal polynomial of A. In what 
follows, we develop an explicit form for the minimal polynomial of A that makes it 
possible to determine it systematically. 

Let /(A) be any polynomial such that / (A) = O (e.g., the characteristic poly
nomial). Then it is easily shown that m(A) divides /(A) [i.e., there is a polynomial 
^(A) such that /(A) = ^(A)m(A)]. In particular, the minimal polynomial of A, m(A), 
divides the characteristic polynomial of A, p(X). Also, it can be shown that p(X) 
divides [m(A)]^ 



Next, let p(X) be given by 

p(X) = (Ai - ArHA2 - A r • • -(A^ - A r ^ (2.116) 

where mi , . . . , m̂^ are the algebraic multiplicities of the distinct eigenvalues Ai , . . . , 
\p of A, respectively. It can be shown that 

m(A) = (A - AO^KA - A2)^^---(A - A . r ^ (2.117) 

where 1 < /i/ < mt, i = \,..., p. 
The only unknowns left to determine the minimal polynomial of A are )Lti,..., 

fjip in (2.117). These can be determined in several ways. 
The next result is a direct consequence of (2.86). Let A be similar to A and 

let m(A) be the minimal polynomial of A. Then m(A) = m(A). This result, in turn, 
justifies the following definition. Let d^ G L{V, V). The minimal polynomial of si is 
the minimal polynomial of any matrix A that represents M. 

To develop the Jordan canonical form (for linear transformations with repeated 
eigenvalues), we need to consider several additional preliminary results that are im
portant in their own right. 

Let ^ G L(V; V) and let /(A) be any polynomial in A. Let M'f = {v : f(A)v = 
0}. It can be shown that Xf is an invariant linear subspace of V under ^ . In particular 
let Ai , . . . , Ap be the distinct eigenvalues of 4̂ G L(V, V) and for j = 1 , . . . , p, and 
for any positive integer q, let 

Xj = {v : ( ^ - Xj^)^v = 0}. (2.118) 

In view of the above result, it follows that Xj is an invariant linear subspace of V 
under ^ . 

Next, let ^ G L(V, V), let Vi and V2 be Hnear subspaces of V such that V = 
Vi 0 V2, and let ^ 1 be the restriction of 6?̂  to Vi. Let /(A) be any polynomial in A. 
It can be shown that if si is reduced by Vi and V2 then, for all v̂  G V\, f(sii)v^ = 
f(d)vK 

Next, let y be a vector space over ^ and let M G L(V,V). Let m(A) be the 
minimal polynomial of ^ as given in (2.117). Let ^(A) = (A - Ai)^i, let /z(A) = 
(A - A2)^2.. .(A - Ap)^/' if/? > 2, and let /z(A) = 1 if p = 1. Let 6̂ 1 be the restric
tion of si to jNff S i.e., div = siv for all v G >f/'\ Let J/t = {v G V : h(si)v = 0}. 
Using the preceding results, we can show that (i) V = X{^^ ®M, and (ii) (A - AO^^ 
is the minimal polynomial of ^ 1 . 

These make it possible to prove the next result, which is called the primary 
decomposition theorem for linear transformations and which we state next. 

Let V be an n-dimensional vector space over C, let Ai , . . . , A^ be the distinct 
eigenvalues ofsi^ L{V, V), let the characteristic and minimal polynomials of ^ be 

respectively. Let 

Vi = {v : 

k^p and m(A) = (A - AO^^ • • -(A - A.)^^ 

A -̂i)A '̂v = 0}, i = l...,p. (2.119) 

Then (i) Vi, i = 1,...,/? are invariant linear subspaces of V under si, (ii) V = 
Vi © • • • 0 Vp, (iii) (A - A/)^' is the minimal polynomial of sit, where ^i is the 
restriction of si to Vi, and (iv) dim Vi = mi, i = \,..., p. 
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of distinct eigenvalues of ^ . We will next consider a convenient representation for 
each of the diagonal submatrices A/. It may turn out that one or more of the subma-
trices A/ will be diagonal. The next result tells us specifically when ^ G L(y, V) is 
representable by a diagonal matrix. 

Let V be an n-dimensional vector space over C and let ^ G L(V,V). Let 
Ai,...,Ap,p < n, be the distinct eigenvalues of ^ . Then there exists a basis for 
V such that the matrix A of ^ with respect to this basis is diagonal if and only if the 
minimal polynomial for ^ is of the form 

m(A) = (A-Ai) (A-A2)- - - (A-Ap) . (2.120) 

N. Nilpotent Operators 

Let us now proceed by considering a representation for each of the ^- G L(Vi-, Vi) in 
the primary decomposition theorem presented in Subsection M so that the block diag
onal matrix representation of ^ G L(y, V) is as simple as possible. To accomplish 
this, we need to define and examine nilpotent operators. 

Let ^ G L(y, V). Then ^ is said to be nilpotent if there exists an integer q>Q 
such that ^^ = ^ . A nilpotent operator is said to be of index q if ^^ = ^ but 

Recall that the primary decomposition theorem enables us to write V = Vi 0 • • • 0 
Vp. Furthermore, the linear transformation (^- — Xi/) is nilpotent on Vi. If we let 
JVi = £^i — Xi/, then ^- = A / ^ + JVi. Now A / ^ is clearly represented by a diagonal 
matrix. However, the transformation jVi forces the matrix representation of ^- to be 
in general nondiagonal. Therefore, the next task is to seek a simple representation of 
the nilpotent operator jVi. 

In the next few results, which are concerned with properties of nilpotent opera
tors, we drop the subscript / for convenience. 

Let JV G L(W, W ) , where W is an m-dimensional vector space. It can be shown 
that if ^ is a nilpotent linear transformation of index q and if w G W is such that 
JV^~^W 7̂  0, then the vectors w, JVw^..., JV^~^w in W are linearly independent. 

Next, we examine the matrix representation of nilpotent transformations. 
Let W be a ^-dimensional vector space and let JV G L(W,W) be nilpotent of 

index q. Let w^ G W be such that JV^~^w^ ^ 0. It can be shown that the matrix N of 
^ with respect to the basis {^^ 

N-

is [J^i-

0 1 
0 0 

0 0 
0 0 

•VO, 

0 
1 

0 
0 

A'l-^w^,. 

0 . . . 
0 . . . 

0 . . . 
0 . . . 

.,Mp}^m^^ 

0 0 
0 0 

0 1 
0 0 

(2.121) 

The above result characterizes the matrix representation of a nilpotent linear trans
formation of index ^ on a ^-dimensional vector space. The next task is to determine 
the representation of a nilpotent operator of index 7 on a vector space of dimension 
m, where y < m. It is easily shown that we can dismiss the case y > m, i.e., if 
^ G L(W, W) is nilpotent of index 7, where dim W = m, then y<m. 



Now let W be an m-dimensional vector space, let J{ G L(W,W), let y be any 
positive integer, and let 

W^ = {w: J^w = 0}, dim Wi = h 

W2 = {w\ M^w = 0}, dim W2 = h 

Wy = {w: X^w = 0}, dim W^ = L. 

(2.122) 

Also, for any / such that 1 < / < 7, let {w^,..., w^} be a basis for W such that 
{w^,..., w^'} is a basis for Wi. It can be shown that (i) Wi C W2 C --- C Wy and 
(ii) {w^,..., w^'-i, Xw^^^^,..., Xw^^+^} is a linearly independent set of vectors in Wi. 

The next result, which is the principal result of this subsection, is a consequence 
of the above results. 

Let W be an m-dimensional vector space over C and let X ^ L(W, W) be nilpo-
tent of index 7. Let Wi = {w : J^w = 0},.. .,Wy = {w : Ji^w = 0}, and let // = 
dim Wi, i = 1 , . . . , 7. Then there exists a basis in W such that the matrix Â  of >r is 
of block diagonal form. 

A^ -

A î 0 

Nr 

where Ni = 

0 
0 

0 
0 

1 
0 

0 
0 

0 
1 

0 
0 

0 . 
0 . 

0 . 
0 . 

. 0 

. 0 

. 0 

. 0 

0 
0 

1 
0 

(2.123) 

(2.124) 

/ = 1 , . . . , r, where r == /i, Ni is a ki X ki matrix, 1 < fc^ < 7, and ki is determined 
in the following manner: there are 

ly - ly_i 7 X 7 matrices, 
2li - li+i - li-i i X / matrices, 
2 / 1 - / 2 1 x 1 matrices. 

/ = 2 , . . . , 7 - \, (2.125) 

The basis for W consists of strings of vectors of the form M^^ ^w^,..., w^ Ĵ ^̂  iŷ ;2̂  

.. .,w' \ . . .,K^' ^W^ ...,W\ 
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O. The Jordan Canonical Form 

The results of the preceding three subsections can be used to prove the next result, 
which yields the Jordan canonical form of matrices. 

Let Y be an /i-dimensional vector space over C and let ^ G L(V; V). Let the 
characteristic polynomial of 4̂ be p{K) = (Ai - X)^^ • • -(A^ - A)^^ and let the mini
mal polynomial of d be m(A) == (A - Ai)^i • • -(A - A^,)^^, where Ai , . . . , Ap are the 
distinct eigenvalues of 6 .̂ Let Vi = {v G V : (si-Ai3)^^v = 0}. Then (i) Vu...,Vp 
are invariant subspaces of y under 5i; (ii) y == y i © - - - © ^ ^ ; (iii)dim V/ = m/, / = 
\,..., p\ and (iv) there exists a basis for V such that the matrix Aof d^ with respect 
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A = 

"Ai 0 • 
0 A2 • 

0 0 • 

where A,- is an m, X m,- matrix of the form 

• 0 
• 0 

• Ap 

Ai - A// + Ni 

(2.126) 

(2.127) 

and where Ni is the matrix of the nilpotent operator {sit - A/^) of index [xi on V/ 
given by (2.123) and (2.124). 

Parts (i) to (iii) of the above result are restatements of the primary decomposition 
theorem. From this theorem we also know that (A - A/)^' is the minimal polynomial 
of sii, the restriction of d^ to Vi. Hence, if we let Mi = sii-Xi3, then ĴT/ is a nilpotent 
operator of index />t/ on Vi. We are thus able to represent Xi as shown in (2.124). 

A little extra work shows that the representation of ^ G L(V; V) by a matrix A 
of the form given in (2.126) and (2.127) is unique except for the order in which the 
block diagonals Ai, . , 

The matrix A of ^ 
canonical form ofd. 

,Ap appear in A. 
G L(K V) given by (2.126) and (2.127) is called the Jordan 

An example 

We conclude this section by considering a specific case. 
We let V = R^, we let {e^,..., ^^} be the natural basis for V, and we let, 

L(V, V) be represented by the matrix 

A -

with respect to {e^,..., e^}. We wish to determine the matrix A that represents si in 
the Jordan canonical form. 

We first determine that the characteristic polynomial of si is det (A - A/) = 
det(si - \3) = (1 - A)^. This indicates that Ai = 1 is the only distinct eigenvalue 
of d, having algebraic multiplicity m\ = 7. To find the minimal polynomial of si, 
we let >r = ^ - Ai^, where 3 is the identity operator in L{V,V). The representation 
of Ji with respect to the natural basis is 

1 
0 
2 
2 
0 
0 
1 

0 
1 
1 
0 
0 
0 

- 1 

- 1 
0 
2 

- 1 
0 
0 
0 

1 
0 

- 1 
2 
0 
0 
1 

1 
0 

- 1 
1 
1 
0 
2 

3 
0 

- 6 
3 
0 
1 
4 

0 
0 
0 
0 
0 
0 
1 

N = A-I = 

-2 
0 
2 

- 2 
0 
0 

- 1 

0 
0 
1 
0 
0 
0 

- 1 

- 1 
0 
1 

- 1 
0 
0 
0 

1 
0 

- 1 
1 
0 
0 
1 

1 
0 

- 1 
1 
0 
0 
2 

3 
0 

- 6 
3 
0 
0 
4 

0 
0 
0 
0 
0 
0 
0 



The minimal polynomial will be of the form m(A) = (X-iyK We need to determine 
the smallest vi such that m(A — A/) = m(N) = O. We first obtain 

'2 _ 

"0 
0 
0 
0 
0 
0 
0 

- 1 
0 
1 

-1 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

3 
0 

- 3 
3 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 

Next, we obtain N^ = 0, and therefore, ẑ i = 3 and Jvf is a nilpotent operator 
of index 3. We see that V = J{f [refer to (2.118) for the notation >ff]. We will 
now apply the results of Subsection F to obtain a representation for M in this 
space. 

We let Wi = {v : Xv = 0}, W2 = {v : J^^v = 0}, and W3 = {v : J{\ = 0}, 
and we observe that Â  has three linearly independent rows. This means that the 
rank of jf is 3, and therefore, dim(Wi) = h = 4. Similarly, the rank of X^ is 1 
(since N^ has one linearly independent row), and so dim (^2) = h = 6. Clearly, 
dim(W3) = h = 1. We conclude that }( will have a representation N of the form 
(2.123) with r = A. Each of the Nt will be of the form (2,124). There will be h-h = 
1 (3 X 3) matrix, Ik - h - h = 1 (2 X 2) matrix, and 2/i - fc - 2 (1 X 1) matri
ces [see (2.125)]. Hence, there is a basis for V such that >f may be represented by 
the matrix 

0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 0 0 0 0 

7 V = | 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
0 0 0 0 0 0 0 
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The corresponding basis will consist of strings of vectors of the form X'^v^, Xv^, v^ 
>fv ,̂ v^, v^, v^. 

We will represent the vectors v^v^, v-̂ , and v^ by 17^17 ,̂17 ,̂ and iq^, their 
coordinate representations, respectively, with respect to the natural basis {e^, e^, 
e^, e^, e^, e^, e^} in V. We begin by choosing v̂  G W3 such that v̂  ^ W2, 
i.e., we determine a iq^ such that N^rj^ = 0 but N^r]^ 9^ 0. The vector TJ^ = 
(0, 1, 0, 0, 0, 0, 0)^ will do. We see that Nr]^ = (0, 0, 1, 0, 0, 0, - 1 ) ^ and A^̂ ^̂  = 
( - 1 , 0, 1, - 1 , 0, 0, 0)^. Hence, Jiv^ E W2 but Xv^ ^ Wi and X^v^ G Wj. We see 
there will be only one string of length 3, and therefore we choose next v^ E W2 
such that v^ ^W\. Also, the pair {Jfv^ v^} must be linearly independent. The vector 
T/2 - (1, 0, 0, 0, 0, 0, 0)^ will do. Next, we have Nr]^ - ( -2 , 0, 2, - 2 , 0, 0, - 1 ) ^ , 
and therefore, Xv'^ E Wi. We complete the basis for V by selecting two more vec
tors, v ,̂ v"^ E Wi, such that {Ji^v^, M'v^, v^, v^} are linearly independent. The vectors 
7]^ = (0, 0, - 1 , - 2 , 1, 0, 0)^ and rŷ  = (1, 3, 1, 0, 0, 1, 0)^ will do. 

It now follows that the matrix P = [N^rj^, Nrj^, 17^ Nrj'^, 17̂ , 17̂ , r]"^] is the ma
trix of the new basis with respect to the natural basis. The reader can readily verify 
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thatA^ = P~^NP,whQYQ 

P = 

1 
0 
1 
1 
0 
0 
0 

0 
0 
1 
0 
0 
0 

- 1 

0 
1 
0 
0 
0 
0 
0 

-2 
0 
2 

- 2 
0 
0 

- 1 

1 
0 
0 
0 
0 
0 
0 

0 
0 

- 1 
- 2 

1 
0 
0 

1 
3 
1 
0 
0 
1 
0 

,p-' = 

0 
0 
0 
0 
1 
0 
0 

0 
0 
1 
0 
0 
0 
0 

2 
1 
0 

- 1 
0 
0 
0 

1 
1 
0 

- 1 
- 1 

0 
0 

4 
3 
0 

- 3 
- 2 

1 
0 

- 2 
- 1 
- 3 

1 
- 1 

0 
1 

2 
0 
0 

- 1 
0 
0 
0 

Finally, the Jordan canonical form for A is now given by A = Â  + / (recalling 
that the matrix representation for ^ is the same for any basis in V). Therefore, we 
have 

A = 

1 
0 
0 
0 
0 
0 
0 

1 
1 
0 
0 
0 
0 
0 

0 : 0 
1 i 0 
1 1 0 

o! 1 
O ' O 
0 0 
0 0 

0 
0 
0 
1 
1 
0 
0 

0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
1 

It is easily verified that A = P ^AP. In general it is more convenient as a check to 
show that PA = AP. 

2.3 
LINEAR HOMOGENEOUS AND 
NONHOMOGENEOUS EQUATIONS 

In this section we consider systems of linear homogeneous ordinary differential equa
tions 

X = A(t)x 

and linear nonhomogeneous ordinary differential equations 

X = A(t)x + ^(0. 

(LH) 

(LN) 

In Theorem 12.1 of Chapter 1 it was shown that these systems of equations, subject to 
initial conditions x(to) = XQ, possess unique solutions for every (to, XQ) E D, where 
D = {(t, x):t GJ = (a,b),xE R""} and where it is assumed that A G C(/, i?"^'") 
and g E C(J, R^), These solutions exist over the entire interval / = (a, b) and they 
depend continuously on the initial conditions. Typically, we will assume that / = 
(-00, 00). We note that (/)(0 = 0, for all r E / , is a solution of (LH), with (l)(to) = 0. 
We call this the trivial solution. As in Chapter 1 (refer to Section 1.13), we recall that 
the preceding statements are also true when A(t) and g(t) are piecewise continuous 
on / . 

In the sequel, we sometimes will encounter the case where A(t) = A is in Jordan 
canonical form that may have entries in the complex plane C. For this reason, we 
will allow D = {(t, x):t E J = (a,b\xE /?"(or x E C")} and A E C(J, JR"^ '̂̂ ) 

[or A E C(J, C^^^)], as needed. For the case of real vectors, the field of scalars for 



the X-space will be the field of real numbers {F = R), while for the case of complex 139 
vectors, the field of scalars for the x-space will be the field of complex numbers CHAPTER 2: 
(F = C). For the latter case, the theory concerning the existence and uniqueness of Response of 
solutions for (LH), as presented in Chapter 1, carries over and can be modified in the Linear Systems 
obvious way. 

A. The Fundamental Matrix 

Solution space 

We will require the following result. 

THEOREM 3.1. The set of solutions of (LH) on the interval / forms an ^-dimensional 
vector space. 

Proof, Let V denote the set of all solutions of (LH) on / . Let a i , a2 G F and 
let 01,02 G V. Then a i0i + 0(202 ^ V since {d/dt)[ai(l)i + 0(202] = a\{d/dt)(\)\{t) + 
a2{d/dt)(^2{t) = aiA(r)0i(r) + a2A(r)02(O = A(r)[ai0i(r) + 0(202(0] for ^^ ^ ^ J-
This shows that V is a linear subspace of/?". Hence, V is a vector space. 

To complete the proof of the theorem, we must show that V is of dimension n. To 
accomplish this, we must find n linearly independent solutions 0 i , . . . , 0„ that span V. To 
this end, we choose a set of n linearly independent vectors XQ,...,XQ in the 
^-dimensional x-space (i.e., in R"^ or C"). By the existence results in Chapter 1, if ô ^J^ 
then there exist n solutions 0 i , . . . , 0„ of (LH) such that 0i (̂ o) = -̂ O' • • •' ^«(^o) = -̂ 0- ^ ^ 
first show that these solutions are linearly independent. If on the contrary, these solu
tions are linearly dependent, there exist scalars a i , . . . , a„ G F, not all zero, such that 
E L i ^?0KO = 0 for all t G / . This implies in particular that ^4=1 oci^i{to) = E L i ^i^o ^ 
0. But this contradicts the assumption that {XQ, . . . ,XQ} is a linearly independent set. 
Therefore, the solutions 0 i , . . . , 0„ are linearly independent. 

To conclude the proof, we must show that the solutions 0 i , . . . , 0„ span V. Let 0 
be any solution of (LH) on the interval / such that 0(^o) = -̂ o- Then there exist unique 
scalars a i , . . . , a„ G F such that 

x o •• Z^^i^Qy 

since, by assumption, the vectors XQ, . . . ,XQ form a basis for the x-space. Now 
n 

is a solution of (LH) on / such that \j/{^o) = ^o- ^^t by the uniqueness results of 
Chapter 1 we have that „ 

Since 0 was chosen arbitrarily, it follows that the solutions 0 i , . . . , 0„ span V. • 

EXAMPLE 3.1. Let A (t) for (LH) be given by 

-1 e^n 
0 - 1 

Ait): (3.122) 

It is easily verified by direct substitution that 0i(O = (e \0) and (1)2 = {\e\e ^) 
are solutions oi {LH) onJ= (—00̂ 00) for the present case. Furthermore, it is easily 
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shown that (pi and (p2 [defined on / = (—^,^)] are hnearly independent (using, e.g., 
the method in Subsection 2.2B). In view of Theorem 3.1, the solutions of (LH) with 
A{t) specified by (3.1) form a two-dimensional vector space and {0i, ^2} is a basis for 
this solution space. Since {0i,02} spans this vector space, all solutions of (LH) 
with A{t) specified by (3.1) are of the form ^(t) = ai^i{t) + ^202(0 = {oc\e~^ + 
0̂ 2 '].\J e^, 0̂ 2̂  0 , where a i , 0̂ 2 G R. 

Fundamental matrix and properties 

Theorem 3.1 enables us to make the following definition. 

DEFINITION 3.1. A set of n linearly independent solutions of {LH) on / , {0 i , . . . , 0„}, 
is called di fundamental set of solutions of {LH), and ihQnxn matrix 

O=[0i ,02 , . . . ,0n] 

"011 012 ••• 01n 
021 022 ••• 02n 

Pnl (t>n2 

is called a. fundamental matrix of {LH). 

We note that there are infinitely many different fundamental sets of solutions of 
{LH) and, hence, infinitely many different fundamental matrices for {LH). We now 
study some of the basic properties of fundamental matrix. 

In the next result, X = [xij] denotes an n x n matrix, and the derivative ofX with 
respect to t is defined as X = [xij]. Let A{t) be the nx n matrix given in {LH). We 
call the system of n^ equations 

X=A{t)X (3.2) 

a matrix differential equation. 

THEOREM 3.2. A fundamental matrix O of {LH) satisfies the matrix equation (3.2) 
on the interval / . 

Proof, WehaveO=[0i ,02, . . . ,0n] = [A(O0i,A(O02,...,A(O0n]=A(O[0i,02,...,0n] 
= A{t)^. • 

The next result is cailcd Abel's formula. 

THEOREM 3.3. If O is a solution of the matrix equation (3.2) on an interval / and T 
is any point of / , then 

det 0{t) = det 0 ( T ) exp / trA{s)ds 

for every t e J. [tr A{s) = tr [aij{s)] denotes the trace of A{s), i.e., tr A{s) 

I"=i«;7(*)-] 



Proof, Let ^ = [(j^ijl Then ^tj = Zl=i atkit^kj^ Now 

dt 
[det<^(t)] = 

</>ii 

021 

</>nl 

f ••• 

<P 12 • 

022 . 

0n2 • 

+ 

011 
021 

0nl 

. . 01« 

. . 02n 

.. 0«n 

+ 

011 
021 

0nl 

012 . - . 01« 

022 • • • 02n 

0«2 • 0nn 

012 . 

022 • 

0n2 • 

. • 01n 

•• 02n 

• <Pnn 

021 022 

0nl 0-•n2 

011 012 

Y.l=iCl2k{t)4>k\ 2 ^ = 1 a2k(t)<Pk2 

031 032 

T.l^iaik{t)(j>kn{t) 
02n 

(t>nn 

01« 

• Y.l=iCl2k{t)4>kn 

4>'in 

0nl 0 ril 4>n 

+ 

011 

021 

012 

022 

01n 

02n 

0n-l , l 0«-l,2 . . . 0n-l,n 

\Y.l=\Clnk(t)4>kl Y.l=\Clnk{t)(f)k2 • • . YJ[=iClnk{t)(j>kn 

The first term in the above sum of determinants is unchanged if we subtract from the 
first row the quantity {an times the second row) + (̂ 13 times the third row) + \-{ain 
times the nth row). This yields 

011 
021 

0nl 

012 . 

022 . 

0n2 . 

. . 01n 

. . 02n 

.. 0«n 

zzz 

= i 

(2ii(O011 
021 

(knl 

ai 

2n(t)det<^(t). 

l(O012 . 

022 

0n2 

. a\ l(O01« 

02n 

(f>nn 

Repeating the above procedure for the remaining terms in the above sum of determinants, 
we have (d/dt)[det ^(t)] = an(t)det ^(t) + a22(t)det ^(t) + • • • + UnniOdet ^ (0 = 
[tr A(t)] det ^{t). This imphes that det <l>(0 = det ̂ (r) exp [{/ tr A{s) ds]. m 

Since in Theorem 3.3 r is arbitrary, it follows that either det 0 ( 0 7̂  0 for all 
t E J or det 0 ( 0 = 0 for each t ^ J. The next result provides a test on whether an 
nX n matrix 0 ( 0 is a fundamental matrix of {LH), 

THEOREM 3.4. A solution O of the matrix equation (3.2) is a fundamental matrix of 
{LH) if and only if its determinant is nonzero for alH E / . 
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Linear Systems $, (/)i,..., (/>„, form a hnearly independent set. Now let (/> be a nontrivial solution of 

{LH). Then by Theorem 3.1 there exist unique scalars a i , . . . , a„ E F, not all zero, such 
that (f) = 2 ; = ! oij4'j = ^^» where a^ = (ai,..., an). Let t = T G J. Then ^ ( T ) = 
<I>(T)(2, which is a system of n linear algebraic equations. By construction, this system of 
equations has a unique solution for any choice of (^(r). Therefore, det 0 ( T ) T̂  0. It now 
follows from Theorem 3.3 that det ^(t) ^ 0 for any t G / . 

Conversely, let ̂  be a solution of (3.2) and assume that det ^{f) T̂  0 for all ^ G / . 
Then the columns of <I> are linearly independent for all ? G / . Hence, ^ is a fundamental 
matrix of {LH). • 

It is emphasized that a matrix may have identically zero determinant over some 
interval, even though its columns are linearly independent. For example, the columns 
of the matrix 

0(0 = 

are linearly independent, yet det 4>(0 = 0 for all t G (-oo, oo). In accordance with 
Theorem 3.4, the above matrix cannot be a fundamental solution of the matrix equa
tion (3.2) for any continuous matrix A{f). 

EXAMPLE 3.2. Using the linearly independent solutions <p 1,4*2 given in Example 3.1, 
we obtain 

'1 t 
0 1 
0 0 

f 
t 
0 

0(0 2" 

0 e~ 
t G ( -00 , 00), 

as a fundamental matrix of {LH) with A{t) given by (3.1). It is easily verified that 
the matrix O satisfies the matrix equation O = AO. Furthermore, det 0 ( 0 = e~^^ ¥^ 
0,t G (-00,00), and det 0 ( 0 = det 0 (T)exp[ | / r r A{s)ds] = ^~^^exp[ | / -2 J^] = 
^-2r^-2(r-T) ^ ^-2t^ f ^ _̂Qô  00̂ ^ ̂ g expected. • 

THEOREMS.5. If O is a fundamental matrix of {LH) and if C is any nonsingular con
stant nXn matrix, then OC is also a fundamental matrix of {LH). Moreover, if ^ is any 
other fundamental matrix of {LH), then there exists a constant nX n nonsingular matrix 
P such that ^ = OP. 

Proof. For the matrix OC we have {d/dt){^C) = OC = [A(0O]C = A(0(OC), and 
therefore, OC is a solution of the matrix equation (3.2). Furthermore, since det 0 ( 0 ^ 0 
for ? G / and det C 7̂  0, it follows that det [O(0C] = [det ^{t)]{det C) 7̂  0, ^ G 7. By 
Theorem 3.4, OC is a fundamental matrix. 

Next, let '^ be any other fundamental matrix of {LH) and consider the prod
uct O'HO"^. [Notice that since det^{t) 7̂  0 for all t G 7, then O"H0 exists for all 
t G J.] Also, consider 00~^ = / , where / denotes the ^ X n identity matrix. Differ
entiating both sides, we obtain [(<i/J0O]O"^ -H O[(J/^0O"M = 0 or {d/dt)^~^ = 
- 0 - ^ ( ^ / ^ 0 0 1 0 - 1 . Therefore, we can compute {d/dt){^-^'¥) = <^~^[{d/dt)'i^] + 
[ ( J / J O O - ^ ^ = 0 - ^ ( 0 ^ - { O - i [ ( ^ / J 0 O ] O - i } ^ = O - i A ( 0 ^ - ( O - i A ( 0 O O - i ) ^ 
= 0-1 A ( 0 ^ - 0 -1 A ( 0 ^ = 0. Hence, O ' ^ ^ = P or ^ = OP. • 

EXAMPLES.3. It is easily verified that the system of equations 

XI = 5x, - 2x2 (33) 

X2 = 4Xl — X2 



has two linearly independent solutions given by 4>i(t) = {e^\ e^^Y, <̂ 2(0 ^ (̂ ^ 2^0^. 
and therefore, the matrix 

^(0 2e' (3.4) 

is a fundamental matrix of (3.3). 
Using Theorem 3.5 we can find the particular fundamental matrix "^ of (3.3) that 

satisfies the initial condition '^(0) = / by using 0(0 given in (3.4). We have '^(0) = 
/ = O(0)C or C = 0-1(0), and therefore, 

I I I I 
C = 

and ^(0 = OC = {2e^' -e') i-e^' -he') 
{2e^' - 2e') {-e^' + 2e') 
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B. The State Transition Matrix 

In Chapter 1 we used the Method of Successive Approximations (Theorem 10.9) to 
prove that for every {t^, XQ) G J X R^, 

X = A(t)x (LH) 

possesses a unique solution of the form 

(/)(/, to, Xo) = ^(t, to)Xo, 

such that (l)(to, to, xo) = xo, which exists for all t G J, where <E>(r, ô) is the state 
transition matrix (see Section 1.13). We derived an expression for ^(t, to) in series 
form, called the Peano-Baker series [see Eq. (13.3) of Chapter 1], and we showed 
that 0(r, ô) is the unique solution of the matrix differential equation 

^-^(t, to) = A(t)^(t, to\ (3.5) 

where 

dt 

^{to, to) = I for all t G / (3.6) 

We provide an alternative formulation of state transition matrix and we study 
some of the properties of such matrices. In the following definition, we use the natural 
basis {ei, e2,..., Cn) that was defined in Section 2.2. 

DEFINITIONS.2. A fundamental matrix O of (LH) whose columns are determined by 
the linearly independent solutions (^i,..., (/>„ with 

^ l ( ^ ) = ei, . ..,(f)n{tQ) = en. to E / , 

is called the state transition matrix O for (LH). Equivalently, if ^ is any fundamental 
matrix of (LH), then the matrix O determined by 

<t>(t, to) = ^ ( 0 ^ " k ^ ) for all t, to G /, 

is said to be the state transition matrix of(LH). • 

We note that the state transition matrix of (LH) is uniquely determined by 
the matrix A(t) and is independent of the particular choice of the fundamental 
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matrix. To show this, let ^ i and ^ 2 be two different fundamental matrices of 
(LH). Then by Theorem 3.5 there exists a constant n X n nonsingular matrix 
P such that ^ 2 = ^iP. Now by the definition of state transition matrix, we 
have3) (Uo) = ^ 2 ( 0 [ ^ 2 ( ^ ) ] - ' = %(t)PP-'[%(to)]-' = ^ i ( 0 [ ^ i a o ) ] " ^ This 
shows that ^(t, to) is independent of the fundamental matrix chosen. 

EXAMPLE 3.4. In Examples 3.1 and 3.2 we showed that for (LH) with A(t) given 
by (3.1), 

^(0 = 2^ 
0 

tG(- -X 

is a fundamental matrix. For this case, the state transition matrix ^(t, to) is com
puted as 

^(t,to) = ^(t)^-\to) 
0 

-t+3to 

0 

The reader should verify that this matrix satisfies Eqs. (3.5) and (3.6). 

Properties of the state transition matrix 

In the following, we summarize some of the properties of state transition matrix. 

THEOREM 3.6. Let ô ^ J, let (l>(to) = XQ, and let 0(^, ô) denote the state transition 
matrix for (LH) for all / E J. Then the following statements are true: 

(i) 0(f, 0̂) is the unique solution of the matrix equation (dldt)^(t, to) = A(t)^(t, to) 
with 0 ( ^ , to) = I,the nX n identity matrix, 

(ii) <l>(r, ̂ 0) is nonsingular for all ^ E / . 
(iii) For any t,a,TE / , we have (^(t, r) = ^(t, cr)^(cr, r) (semigroup property), 
(iv) [<t>(t, to)V^ = ^-\t, to) = <^(to, t) for all t, to E / . 
(v) The unique solution (/>(r, to, xo) of (LH), with (/)(^, ô, xo) 

by 
Xo specified, is given 

4>(t, to, Xo) = ^(t, to)xo for all t E /. (3.7) 

Proof 

(i) For any fundamental matrix of (LH), say, ^, we have, by definition, ^(t, to) = 
^ ( 0 ^ ~ H ^ ) , independent of the choice of "¥. Therefore, d^(t,to)ldt = 
^(t)'^-\to) = A(t)^(t)^-\to) = A(t)^(t,to)' Furthermore, ^(toJo) = 
^(to)^-\to) = L 

(ii) For any fundamental matrix of (LH) we have that det "^(t) 7̂  0 for all ^ E 7. There
fore, det ^(t, to) = det [^(0^~H^o)] = det 'i^(t)det'i^~\to) 7^ 0 for all t, to E / . 

(iii) For any fundamental matrix "^ of (LH) and for the state transition matrix O of (LH), 
wehave^(r ,T) = - ^ ( 0 ^ " ^ ^ ) = 'i^(t)^-\a)'¥(a)^~\T) = ^(t,a)<i>(a,r) for 
any t,a,TE. J. 

(iv) Let '^ be any fundamental matrix of (LH) and let O be the state transition matrix 
of (LH). Then [^(tJo)]'^ = WO^(^o)"M"^ = ^ ( ro )^"kO = 0 ( ^ , 0 for any 
t, to E 7. 

(v) By the results established in Chapter 1, we know that for every (̂ 0. ^0) ^ D, (LH) 
has a unique solution 0 (0 for all r E 7 with </)(?o) = XQ. To verify (3.7), we note 
that 4)(t) = [d^(t, to)/dt]xo = A(t)<^(t, to)xo = A(t)(l)(t). m 



EXAMPLE 3.5. Let x(̂ o) = (ai, a2)^. In view of Example 3.4, we have for (L//) given 
in Example 3.1, 

0 ^-(^-^o) 

and therefore, 

(/)(r, to, Xo) = 

(t>2(t, to, Xo) = e-^'-'^^a2. 

(3.8) 

(3.9) 
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We can verify the above example by simple integration. In doing so, we first 
obtain (̂ 2(̂ > >̂ -̂ o) by integrating both sides of i:2 "= ~-^2 and by using the initial 
condition X2(to) = CLI- Next, we obtain (piit, to, XQ) by integrating both sides of i i = 
-x\ + e^^cl)2(t, to, XQ) and using the initial condition (x\(to), ^2(^0))^ = (ai, ^2)^. 
Note that this procedure for solving an initial-value problem determined by (LH) is 
valid for any triangular matrix A(t). 

In Chapter 1 we pointed out that the state transition matrix ^(t, to) maps the 
solution (state) of (LH) at time to to the solution (state) of (LH) at time t. Since there 
is no restriction on t relative to to (i.e., we may have t < to,t = to, or t > to), we 
can "move forward or backward" in time. Indeed, given the solution (state) of (LH) 
at time t, we can solve the solution (state) of (LH) at time to- Thus, x(to) = xo = 
[^(t, to)V^(l>(t, to, Xo) = 0(^0, t)(l)(t, to, Xo). This "reversibility in time" is possible 
because ^~^(t, to) always exists. [In the case of discrete-time systems described 
by difference equations, this reversibility in time does in general not exist (refer 
to Section 2.7).] 

C. Nonhomogeneous Equations 

In Section 1.13, we proved the following result [refer to Eqs. (13.8) to (13.10)]. 

THEOREM 3.7. Let to E 7, let (to, Xo) E D, and let ^(t, to) denote the state transition 
matrix for (LH) for all r E / . Then the unique solution (/)(r, to, xo) of (LN) satisfying 
</>(̂ , to, Xo) = Xo is given by 

^(^, 0̂, ^o) = ^(t, to)xo + ^(t, v)8(v)dV' (3.10) 

As pointed out in Section 1.13, when xo = 0, (3.10) reduces to 

ct>(t,to,0) ̂  cl>p(t) = f ^(t,s)g(s)ds. (3.11) 
Jto 

and when xo # 0, but g(t) = 0, (3.10) reduces to 

ct)(t, to, Xo) = (l>h(t) = ^(t, to)xo. (3.12) 

and the solution of (LN) may be viewed as consisting of a component that is due 
to the initial data xo and another component that is due to the forcing term g(t). We 
recall that cffp is called a particular solution of the nonhomogeneous system (LN), 
while (f)h is called the homogeneous solution. 

There are of course other methods of solving (LN). For example, in the common 
approach to solving linear differential equations, all solutions (^(0 of i - A(t)x = 
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g{t) are assumed to be of the form 0(f) = ^^{t) + ^p{t), where 0/^(f) is the solution 
of the homogeneous equations x — A{t)x = 0 and ^p{t) is a particular solution. It is 
not difficult to see that 0/^(f) = 0(f, to)oc, where a eR^ is to be determined [compare 
to (3.12)]. Therefore, (p{t) = <^{t,to)a-\- (pp{t). The vector a is determined using 
the initial conditions on the solution (p{t) of x — A{t)x = g{t), namely, (p{to) = XQ. 
Substituting (j){to) = O(fo,^o)oj + 0p(fo), we obtain a = (j){to) - 0p(fo) = -̂ o - (t>p{to)' 
The solution to (LN) with 0(fo) = -̂ o is therefore given by 0(f) = 0/^(f) + ^p{t) = 
O(f,fo)[0(^o) - 0p(^o)] + 0p(O' or 

0 (O=O(f , fo )^o + [0p(O-^(^^o)0p(^o)] . (3.13) 

As expected, the "zero-state response of {LN)'' obtained by letting XQ = 0 in (3.10) 
and given in (3.11), is a particular solution ^p{t) ofx—A{t)x = g{t) with the property 
that 0p(fo) = 0- Furthermore, the "zero-input response of(LN)'' obtained by letting 
g(t) = 0 in (3.10), is the solution 0/^(f) ofx — A{t)x = 0. It follows that the variation 
of constants formula (3.10) is a special form of expression (3.13), corresponding to 
the chosen particular solution (pp{t)', for a different choice of (pp{t), a correspondingly 
different expression for the solution (p{t) is obtained. 

EXAMPLE3.6. In (LN), \QtxeR^,to = 0, and 

A(t). g(t)- 0 
X(0): 

The state transition matrix for A(f) has been determined in Example 3.4 as 

Using (3.12), we obtain 

(l)h{t,to,xo)=^{t,0)x{0) 

using (3.11), we have 

(i>p{t,tQ,XQ) = j ^(t,ri)g(ri)dri 

and using (3.10), we finally obtain 

(l)(t,to,Xo) = (l)h(t,to,Xo) + (l)p(t,to,Xo) = 

W-e-^) 

te 

'e-'{t-\) + y 

D. H o w to Determine O(f,fo) 

To solve {LN) or {LN) in closed form, we require an expression for the state tran
sition matrix O(f,fo)- We have seen in Example 3.5 that when A{t) is triangular, 
we can solve {LH) [and hence, O(f,fo)] by sequential integration of the individual 
differential equations. Eor the general case, however, closed-form determination of 
0( f ,fo) is not possible. 

In the following, we identify another important class of matrices A{t) for which 
a closed-from expression of 0(f, t^) exists. 

THEOREM 3.8. If for every T,̂  we have 

A(t) I A{r\)dr\\ = j A{n)dr\ 
JT \ \JT 

A(t), (3.14) 



then 
CO ^ 

'^(t,T) = eirMv)dv A ^ + y _L 

k=l 

A(r])d7] (3.15) 

Proof, We recall that the general term of the Peano-Baker series [see Eq. (13.3) in 
Chapter 1] is given by 

rt rsx 
A{si)\ A{S2)"' AySm) dSfn ClSfy, 'ds]. (3.16) 

We wish to show that under the present assumptions, expression (3.16) is equal to the 
expression 

1 

m! 
A(s) ds 

To verify (3.17), we will apply the identity 

A(r) A(s) ds dr = 
1 

m + 1 

|W+1 

A(s) ds 

(3.17) 

(3.18) 

repeatedly to (3.16). First, however, we verify the validity of (3.18). To accomplish this, 
we first observe that (3.18) is true for any fixed t = r. Differentiating the left-hand side 
of (3.18), we obtain 

[Air, I A(s)ds 
m 

dr = A(t) I A(s)ds d_ 
Jt 

Differentiating the right-hand side of (3.18), we have that 
-im+O 

(3.19) 

^\ 
dt 

1 
m + 1 

[ A{s)ds 

1 

m + 1 
A{t) A{si)ds2' 

A{sx)dsAA{i) I A{s^)ds^ 

A{Sni^{)ds 

A{Sm-^{)dSm^X + 

+ A{s\)ds\' A{Sm)dSm\A{t)\ = A(t) A(s) ds (3.20) 

where in the last step of (3.20), the assumption (3.14) has been used repeatedly. Using 
(3.19) and (3.20), we obtain (3.18). 

To complete the proof of the theorem, we apply (3.18) repeatedly to (3.16) to obtain 
(3.17), the general term of the Peano-Baker series (13.13) in Chapter 1. Indeed, we have 

A(si) A(s2y A(Sm-1) A(Sm) dSm dSm-1 dSm-2' " dSi 

A(Sm-2)^ r 
Sm-4 I 

A(Sm-3):^ 

A(si)r A(s2y 

= ^j'A(si)pA(s2y' 

= ••• = -^W A(s)ds 
ml [J^ 

which was to be shown. This completes the proof of the theorem. 

A(s) ds ds. 'm-2'-'dSi 

A(s) ds dStn-3'"dSi 

Ul 
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Furthermore, for A(t) = A, a constant matrix, (3.14) will always hold. The reader 
can readily verify that A(t) given in Example 3.1 also satisfies relation (3.14). 

We conclude by pointing out that for A G C[R, R''^''], (3.14) is true if and 
only if 

A(t)A(T) = A ( T ) A ( 0 (3.21) 

for all t and r. We ask the reader to verify the validity of this statement. 

2.4 
LINEAR SYSTEMS WITH CONSTANT COEFFICIENTS 

In this section we consider systems of linear, autonomous, homogeneous ordinary 
differential equations 

X =^ Ax (L) 

and systems of linear nonhomogeneous ordinary differential equations 

X = Ax + g(tl (4.1) 

where ;c G /?", A G i^^^", and g G C(R, R""). In the special case when A(t) = A, 
system (LH) reduces to system (L) and system (LN) reduces to system (4.1). Con
sequently, the results of Section 2.3 are applicable to (L) as well as to (LH) and to 
(4.1) as well as to (LN). However, because of the special nature of (L) and (4.1), 
more detailed information can be determined. 

A. Some Properties of e^^ 

Let D = {(t, x) \ t E. R,x Ei R^}. In view of the results of Section 1.13, it follows 
that for every (to, XQ) G D , the unique solution of (L) is given by 

(l)(t, to, Xo) = ^ + 2 A*(f - ^o)* 

. = 1 ^' 
Xo 

= *(f, to)xo = 0(r - to)xo = e^^'-'^ho, (4.2) 

where ^(t — to) = e^^^~^^^ denotes the state transition matrix for (L). [By writing 
^(ty to) = ^(t - to), we are using a slight abuse of notation.] 

In arriving at (4.2) we invoked Theorem 10.9 of Chapter 1 in Section 1.13, to 
show that the sequence {</)m}, where 

(̂ m(r, fo, ^o) = 
. = 1 ^' 

^0 - Sm(t - to)xo, (4.3) 

converges uniformly and absolutely as m ^ oo to the unique solution ct)(t, to, xo) of 
(L) given by (4.2) on compact subsets of R. In the process of arriving at this result, 
we also proved the following results. 



THEOREM4.1. Let A be a constant nX n matrix (which may be real or complex) and 149 
let Sfn(t) denote the partial sum of matrices defined by 

Sm(t) 
m . 

k=l k\ 
(4.4) 

Then each element of the matrix Sm(t) converges absolutely and uniformly on any finite 
t interval (-a, a), a > 0, SLS m ^ oo. Furthermore, Sm(t) = ASm-i(t) = Sm-i(t)A, and 
thus, the limit of Sm(t) SLS t ̂  oo is a C^ function on R. Moreover, this limit commutes 
with A. • 

In view of the above result, the following definition makes sense (see also Sec
tion 1.13). 

DEFINITION 4.1. Let A be a constant nX n matrix (which may be real or complex). 
We define e^^ to be the matrix 

°° fk 

e^^ = 1 + ̂  LA' (4.5) 
k=l k\ 

for any -co < ^ < oo, and we call e^^ a matrix exponential. 

We are now in a position to provide the following characterizations of e^^. 

THEOREM 4.2. Let / = RJQ ^ J, and let A be a given constant matrix for (L). Then 
(i) 0 ( 0 - e^^ is a fundamental matrix for all t < 

(ii) The state transition matrix for (L) is given by ^(t, to) 
<^(t - tol t G / . 

(iii) ^^ î̂ ^^2 = ^A(fi+f2) for all tu t2 G / . 
(iv) Ae"^' = e^'A for all t G / . 
(v) {e^')-^ = ^-^^ for alU G 7. 

Proof. By (4.5) and Theorem 4.1 we have that (d/dt)[e'^^] = hm^^oo ASm(t) = 
hm _̂̂ oo Sm(t)A = Ae^^ = e^^A. Therefore, 0 ( 0 = e^^ is a solution of the matrix equa
tion 6 = AO. Next, observe that 0(0) = /. It follows from Theorem 3.3 that J^^[^^^ = 
^tr(At) -̂  Q fQ^ ^Y[ t G R. Therefore, by Theorem 3.4 0 ( 0 = e^^ is a fundamental matrix 
for (L). We have proved parts (i) and (iv). 

To prove (iii), we note that in view of Theorem 3.6(iii), we have for any ti,t2 ^ R 
that 0(^1, t2) = 0(^1, 0)0(0, t2). By Theorem 3.6(i) we see that 0(f, to) solves (L) with 
^Oo, to) = 1' It was just proved that ^ ( 0 = ^̂ (̂ ~̂ o) is also a solution. By unique
ness, it follows that 0(r, to) = e^^^'^^K For t = ti, to = —t2, we therefore obtain 
eMti+t2) = ^(^f^^ _^2) =: (^(t^)i^(-t2)-\ and for t = tiJo = 0, we have O(fi,0) = 
e^h = ^{ti). Also, for ̂  = 0, ̂  = -^2, we obtain 0(0, -^2) = e^^^ = 0(-^2)~^. 
Therefore, ^̂ (̂ 1+̂ 2) = ^^^^^^2 for all ti, t2 G R. 

Finally, to prove (ii), we note that by (iii) we have 0(^, to) = ^̂ (̂ ~̂ o) = / + 
XI=i[(^ - to)'/k\]A'' = 0(f - to) is a fundamental matrix for (L) with O(^o, k) = L 
Therefore, it is a state transition matrix for (L). • 

We conclude this section by stating the solution of (4.1), 

(f){t, to, xo) = 0 ( r - to)xo + 0(^ - s)g(s) ds 

e^^'-'\g{s)ds 
to 

At e-^'g{s)ds, (4.6) 
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for all t Ei R.ln arriving at (4.6), we have used expression (13.8) of Chapter 1 and 
the fact that in the present case, 0(r, to) = ^̂ (̂ ~̂ o) 

B. How to Determine e At 

We begin by considering the specific case 

A = 
0 a 
0 0 

From (4.5) it follows immediately that 

e"^' = I ^tA = 1 at 
0 1 

As another example, we consider 

Ai 0 
0 A2 

(4.7) 

(4.8) 

(4.9) 

where Ai, A2 E R. Again, from (4.5) it follows that 

^At ^ 

0 

k 

k=l 
k\ 

oht 0 
0 e^^' 

(4.10) 

Unfortunately, in general it is much more difficult to evaluate the matrix expo
nential than the preceding examples suggest. In the following, we consider several 
methods of evaluating e^K 

The infinite series method 

In this case we evaluate the partial sum Sm{t) (see Theorem 4.1) 
m ^k 

SM-1 + Y.T^' 
k=l k\ 

for some fixed t, say, ti, and for m = 1, 2 , . . . until no significant changes occur in 
succeeding sums. This yields the matrix e^^^. This method works reasonably well if 
the smallest and largest eigenvalues of A are not widely separated. 

In the same spirit as above, we could use any of the vector differential solvers 
to solve X = Ax, using the natural basis for R^ as n linearly independent initial 
conditions [i.e., using as initial conditions the vectors ei = (1, 0 , . . . , 0)^, ^2 = 
(0 ,1 ,0 , . . . , 0)^, ...,en = (0 , . . . , 0,1)^] and observing that in view of (4.2), the 
resulting solutions are the columns of e^^ (with ô = 0). 

EXAMPLE 4.1. There are cases when the definition of e^^ (in series form) directly 
produces a closed-form expression. This occurs for example when A^ = 0 for some k. 
In particular, if all the eigenvalues of A are at the origin, then A^ = 0 for some A: < n. In 
this case, only a finite number of terms in (4.5) will be nonzero and e^^ can be evaluated 
in closed form. This was precisely the case in (4.7). • 



The similarity transformation method 

Let us consider the initial-value problem 

X = Ax, x(to) = xo, (4.11) 

let P be a real nXn nonsingular matrix, and consider the transformation x = Py, or 
equivalently, y = P~^x. Differentiating both sides with respect to t, we obtain y = 
p-^x = P~~^APy = Jy,y(to) = yo = P'^^o- The solution of the above equation 
is given by 

il^(t,to,yo) = e'^'-'^^p-^xo. 

Using (4.12) and x = Py, we obtain for the solution of (4.11) 

cl>(tJo.xo) = Pe^^'-'^^p-^xo. 

(4.12) 

(4.13) 

Now suppose that the similarity transformation P given above has been chosen 
in such a manner that 

/ = p-^AP (4.14) 

is in Jordan canonical form (see Subsection 2.20). We first consider the case when A 
has n linearly independent eigenvectors, say, v/, that correspond to the eigenvalues 
A/ (not necessarily distinct), / = 1 , . . . , n. (Necessary and sufficient conditions for 
this to be the case are given in Section 2.2. A sufficient condition for the eigenvectors 
Vi, i = 1 , . . . , ^, to be linearly independent is that the eigenvalues of A, Ai , . . . , A„, be 
distinct.) Then P can be chosen so that P = [vi,..., v„] and the matrix / = P~^AP 
assumes the form 

/ = 
0 

Using the power series representation 
00 

we immediately obtain the expression 

k=i 

0 

Afj 

(4.15) 

(4.16) 

Jt 

,Ai« 

0 ^A„r 

(4.17) 

Accordingly, the solution of the initial-value problem (4.11) is now given by 

rgAi(/-/o) 0 

(t)(t, to, Xo) = P 

0 g,A„(r-?o) 

P~'xo. (4.18) 

In the general case when A has repeated eigenvalues, it is no longer possible to 
diagonalize A (see Subsection 2.2L). However, we can generate n linearly indepen
dent vectors v i , . . . , v„ and an n X n similarity transformation P = [vi , . . . , v„] that 
takes A into the Jordan canonical form / = P~^AP. Here / is in the block diagonal 
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form given by 

/ = 

Jo 

0 

Ji 
(4.19) 

where Jo is a diagonal matrix with diagonal elements Ai , . . . , Â  (not necessarily 
distinct), and each 7,, / > 1, is an n, X m matrix of the form 

'h+i 1 0 . . . 0 

Ji = 

0 A k+i 1 

0 0 ... • 
0 0 0 . 

0 

1 
^k+i 

(4.20) 

where X^+i need not be different from A,t+; if i ^ 7» and where k + ni-\ h n̂  = n. 
Now since for any square block diagonal matrix 

c = 
0 

with Ci,i = I,..., I, square, we have that 

C' = 
cf 

0 

0 

it follows from the power series representation of e-^' that 

\gJot 0 

e'' = 
pJ\t 

oJ st 

(4.21) 

t E. R. As shown earlier, we have 

„Jot = 

Alt 

0 

0 
(4.22) 

For Ji, i = I,.. .,s,we have 

/,• = Xk+ili + Ni, (4.23) 

where 7, denotes the n, X n, identity matrix and Â , is the «, X n, nilpotent matrix 
given by 

[O 1 . . . Ol 

Ni 

: •• 1 

0 0 

(4.24) 



Since \k+iU and Nt commute, we have that 

^Jit ^ ^Xk+it^Nit^ (4.25) 

Repeated multiplication of Nt by itself results in Nf = 0 for all k^ ni. Therefore, 
the series defining e^^' terminates, resulting in 

fUi-l 

\ t . 

JJi o^k+it 0 1 

0 0 

(«,• - 1 ) ! 

{ni - 2)! 

1 

/ = 1 , . . . , 5. (4.26) 

It now follows that the solution of (4.11) is given by 

4>it, to, xo) = P 
0 

0 

0 
pJ\(t-to) 

0 
0 

(fJs{t-to) 

P'^xo. (4.27) 

EXAMPLE 4.2. In system (4.11), let A = 
-1 2 
0 1 

. The eigenvalues of A are A i = - 1 

and A2 = 1, and corresponding eigenvectors for A are given by vi = (1,0)^ and 

V2 = (1, 1)^, respectively. Then P = [vi, V2] = 

P-^AP = -1 2 
0 1 

^At = Pe-^'P-^ = 
1 1 
0 1 0 

1 1 

0 1 

0 

-1 0 
0 1 

1 1 

.0 1 

Ai 

,P~' = 
1 - 1 
0 1 

and / = 

0 
0 A2 

as expected. We obtain 

1 - 1 
0 1 0 

Suppose next that in (4.11) the matrix A is either in companion form or that it 
has been transformed into this form via some suitable similarity transformation P, 
so that A = Ac, where 

Ar = 

0 
0 

0 
-flO 

1 
0 

0 
-ai 

0 
1 

0 
- « 2 

0 
0 

1 

(4.28) 

Since in this case we have xt+i = Xi,i = 1 , . . . , n - 1, it should be clear that in the 
calculation of e"^^ we need to determine, via some method, only the first row of e^^. 
We demonstrate this by means of a specific example. 

EXAMPLE 4.3. In system (4.11), assume that A = Ac = , which is in com-
0 11 

L-2 -3J 
panion form. To demonstrate the above observation, let us compute e^^ by some other 
method, say, diagonalization. The eigenvalues of A are Ai = - 1 and A2 = - 2 , and a set 
of corresponding eigenvectors is given by vi = (1, - 1 ) ^ and V2 = (1, - 2 ) ^ . We obtain 
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P = [vi,V2] = ,P-' = and J = p-^ArP = 

i-2e-' + 2^-20 

, e 
At _ 2 1 

-1 - 1 

1 lip-̂  ^ IM ^ 
- 1 -2 jL0 ^-^'JL-l - 1 . 

We note that the second row of the above matrix is the derivative of the first row, as 
expected. • 

- 1 0 
0 - 2 

The Cayley-Hamilton Theorem method 

If a(A) = det(\I - A) is the characteristic polynomial of an n X n matrix A, 
then in viev^ of the Cayley-Hamilton Theorem, we have that a(A) = 0, i.e., every 
nXn matrix satisfies its characteristic equation (refer to Subsection 2.2J). Using this 
result, along with the series definition of the matrix exponential 6^^ it is easily shown 
that 

n-l 

e^' = ^ai{t)A\ 
i = 0 

[Refer to Subsection 2.2J for the details on how to determine the terms adt).] 

The Laplace transform method 

We assume that the reader is familiar with the basics of the (one-sided) Laplace 
transform. If / ( / ) = [fi(tl..., fn(t)f, where ft : [0,^)-^ R,i = I,..., n, and 
if each fi is Laplace transformable, then we define the Laplace transform of the 
vector/ componentwise, i.e., f{s) = [fi{s\ . ..,fn{s)Y, where fi{s) = X[Mt)] = 

We define the Laplace transform of a matrix C(t) = [cij(t)] similarly. Thus, 
if each ctj : [0, ̂ ) —> R and if each c/y is Laplace transformable, then the Laplace 
transform of C(0 is defined as C(5') = iE[cij(t)] = [i£cij(t)] = [cij(s)]. 

Laplace transforms of some of the common time signals are enumerated in Ta
ble 4.1. Also, in Table 4.2 we summarize some of the more important properties of 
the Laplace transform. In Table 4.1, 8(t) denotes the Dirac delta distribution (see 
Subsection 1.16C) and pit) represents the unit step function. 

Now consider once more the initial-value problem (4.11), letting to = 0, i.e.. 

X = Ax, x(0) = XQ. (4.29) 

TABLE 4.1 
Laplace transforms 

ma ^ 0) 
8(t) 
Pit) 
t^lk\ 
^-at 

fk^-at 

e~"̂  sin bt 
e~''^ cos bt 

fis) = Wit)] 

1 
1/s 
1/̂ +̂1 
l/(^ + a) 

Wis + af^^ 
bilis + af + /?2] 
is + a)l\_is + of-\-b'^] 



TABLE4.2 
Laplace transform properties 

Time differentiation 

Frequency shift 

Time shift 
Scahng 

Convolution 

Initial value 
Final value 

df{t)/dt 

d^f{t)/dt^ 

e--^f{t) 

f{t — a)p{t — a),a > 0 
f{t/a),a>0 

Jl>f(T)g(t-T)dT = f{t)*g{t) 

l im,^o+/W=/(0+) 
lim,^^/(f) 

*/(̂ )-/(o) 
,*/(,) _ [ / - i / ( 0 ) + . 

/> + «) 
e-"'f(s) 
af(as) 

fim^) 
linis^^ sf{sy 

lims^o sf{s)^'' 

.+fik- i)(0)] 

^ If the limit exists. 
•'"'• If sf{s) has no singularities on the imaginary axis or in the right half s plane. 

Taking the Laplace transform of both sides of i = Ax, and taking into account the 
initial condition x(0) = XQ, we obtain sx{s) —xo= Ax{s), or {sI—A)x{s) = XQ, or 

x{s) = {sI-A)-^xo. (4.30) 

It can be shown by analytic continuation that {si — A)~^ exists for all s, except at 
the eigenvalues of A. Taking the inverse Laplace transform of (4.30), we obtain the 
solution 

0 ( 0 = ^~^[{sI-A)-^]xo = O(f,0)jco = e^'xQ. (4.31) 

It follows from (4.29) and (4.31) that 6{s) = (sI-A)-^ and that 

O ( f , 0 ) = O ( f - 0 ) = O ( 0 = ^ " M ( ^ / - A ) - ^ ] = / ^ (4.32) 

Finally, note that when to ^ 0, we can immediately compute 0(f ,fo) = ^ ( ^ — ^o) = 

^ -1 2] 
0 1 

EXAMPLE 4.4. In (4.29), let A 

(sI-A)-
5 + 1 - 2 

0 s-l 

1 

. Then 

2 

5 + 1 ( 5 + l ) ( 5 - l ) 

0 

Using Table 4.1, we obtain if '^ [{si-A 

s-l 

1 1 1 

5 + 1 \S-l 5 + 1 

0 
1 

{e'-e-') 
0 

Before concluding this subsection, we briefly consider initial-value problems 
determined by (4.1), i.e., 

x=Ax^g{t), x{to)=xo. (4.33) 

We wish to apply the Laplace transform method discussed above in solving (4.33). 
To this end we assume ô = 0 and we take the Laplace transform of both sides of 
(4.33) to obtain sx{s) —XQ =AX{S) -\-g{s) or {si — A)x{s) =xo-\-g{s), or 

x{s) = {sI-A)-\^{sI-A)-^g{s) 

= ^{s)xo^^{s)g{s) 

^ ^h{s)^^p{s). (4.34) 
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Taking the inverse Laplace transform of both sides of (4.34) and using (4.6) 
with 0̂ = 0, we obtain 0 ( 0 = 0/z(O + </>p(0 = i^~^[(sl - A)~'^]xo + iE~^[(sI -
Ay^g(s)] = ^(t)xo + IQ ^(t ~ r])g(r])drj, where 0/^ denotes the homogeneous 
solution and (l)p is the particular solution, as expected. 

EXAMPLE4.5. Consider the initial-value problem given by 

Xi = — Xi + X2 

X2 = - 2 ^ 2 + U(t) 

with xi(0) = -I, X2(0) = 0, and 

u(t) = 

It is easily verified that in this case 

1 / 1 1 

for t > 0, 
for t < 0. 

s + 1 

0 

s +I s + 2 

1 
s -h2 

0 -It 

e ^ (e ^ — e 
0 e-' 

1 / 1 

0̂' 

5 + 1 

- 1 
0. 

1 

-e 
0 

0 

5 + 1 s + 2 

1 
s + 2 

1 
2 ' 2 ' 

2 2 ' 

-2t _ 

Ct>p{t) = 

and 0(0 = 0/,(O + 0p(O 
2e- + î -2 -̂

2 iJ ' ^ 2\5 + 2 s + 1 

2U 
1 / 1 
2 1^ + 2 

C. Modes and Asymptot ic Behavior of Time-Invariant Systems 

In this subsection we study the qualitative behavior of the solutions of linear, au
tonomous, homogeneous ordinary differential equations (L) by means of the modes 
of such systems, to be introduced shortly. Although we will not address the stabil
ity of systems in detail until Chapter 6, the results here will enable us to give some 
general stability characterizations for such systems. 

Modes: General case 

We begin by recalling that the unique solution of 

i: = Ax, (L) 

satisfying x(0) = JCQ, is given by 

(/>(r, 0, jco) = $(r , O)x(O) = 0(r , 0)xo = e'^'xQ. (4.35) 



We also recall that det(sl - A) = YlJ^i(s - KT\ where Ai , . . . , Â - denote the a 157 
distinct eigenvalues of A, where A/ with / = 1 , . . . , cr, is assumed to be repeated nt CHAPTER!: 

times (i.e., nt is the algebraic multiplicity of A/), and Xf^im = n. Response of 
To introduce the modes for (L), we must show that Linear Systems 

(T flj-l 

= 1 ^ = 0 

^At 

= J][Aioe^^' + Ante^^' + • • • + A,-(„,.- -ix^t (4.36) 

1 1 
where Afk = -^-z ^ j-r lim{[(s - XiT^sI - A)' i^im-i-k) }. (4.37) 

In (4.37), [ • ]̂ ^̂  denotes the /th derivative with respect to s. 
Equation (4.36) shows that e"^^ can be expressed as the sum of terms of the form 

Aikt^e^'\ where A/̂  E R^^^, We call Ai^t^e^'^ a mode of system (L). If an eigenvalue 
A/ is repeated nt times, there are nt modes, At^t^e^'^ k = 0, I,..., rii — \, in e^^ 
associated with A/. Accordingly, the solution (4.35) of (L) is determined by the n 
modes of (L) corresponding to the n eigenvalues of A and by the initial condition x(0). 
We note that by selecting x(0) appropriately, modes can be combined or eliminated 
[Aikx{Q) ^ 0], thus affecting the behavior of <^(t, 0, XQ). 

To verify (4.36) we recall that e^^ = i£~^[(sl - A)"^] and we make use of the 
partial fraction expansion method to determine the inverse Laplace transform. As in 
the scalar case, it can be shown that 

{si - A)-' = X ^(klAaXs - Xir^'^'\ (4.38) 
i = l k^O 

where the (klAfk) are the coefficients of the partial fractions (k\ is for scaling). It is 
known that these coefficients can be evaluated for each / by multiplying both sides 
of (4.38) by (s - \iY\ differentiating {nt - \ - k) times with respect to s, and then 
evaluating the resulting expression dXs — A/. This yields (4.37). Taking the inverse 
Laplace transform of (4.38) and using the fact that ie[^^^^^n = ^!(^-A/)"^^+^^ (refer 
to Table 4.1) results in (4.36). 

When all n eigenvalues kt of A are distinct, then cr = n, n/ = 1, / ^ 1 , . . . , n, 
and (4.36) reduces to the expression 

^At = Y.^ie M 

i = l 

where l im[ (^ -A/ ) ( ^ / -A) -^ ] . 

(4.39) 

(4.40) 

Expression (4.40) can also be derived directly, using a partial fraction expansion of 
(si - A)"^ given in (4.38) (verify this). 

EXAMPLE 4.6. For (L) we let A , for which the eigenvalue Ai 0 1] 
-4 -4J 

repeated twice, i.e., ni = 2. Applying (4.36) and (4.37), we obtain 

-2 is 

Aioe^^^ ^ Ante ht - 1 0 
0 1 

e-^^ + te 
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EXAMPLE 4.7. For (L) we let A = 

by (the complex conjugate pair) Ai = 
(4.39) and (4.40), we obtain 

0 
-1 
_i 

2 

for which the eigenvalues are given 

A^ = 
1 

Ai - A2 

A2 = 

Ai + 1 1 

A2 + 1 1 

+ j ( V3/2), A2 = - i - 7( V3/2). Applying 

1 .73 . 

-1 

^J~3 

_ 1 

-J 73 

- 1 
1 .73 

7̂  
-"2 + ^-2 

2 ^~2 

- 1 
1 7̂  
2 -̂  2 J 

[i.e., Ai = A2, where (• )* denotes the complex conjugate of (•)], and 

e^^ = Aie^^' + A2e^^' = Aie^^' + A\e^*i' 

= 2(Re Ai)(Re e^^') - 2(ImAi)(Ime^'') 

= 2e-^"^^' 2 

0 - : 

0 

1 
2J 

75 
COS -—t -

1 

273 
1 

[ 7̂  

1 • 

~7i 
1 

273. 

sinM.j 
\ / 

The last expression involves only real numbers, as expected, since A and e^^ are real 
matrices. • 

ri 01 
[0 i j 

peated twice, i.e., n\ = 2. Applying (4.36) and (4.37), we obtain 

EXAMPLE 4.8. For (L) we let A = for which the eigenvalue Ai = 1 is re-

Aioe^^^ + Aute^^^ 
1 0 
0 1 

e' + 
0 0 
0 0 

te' = Ie\ 

This example shows that not all modes of the system are necessarily present in e^K 
What is present depends in fact on the number and dimensions of the individual blocks 
of the Jordan canonical form of A corresponding to identical eigenvalues. To illustrate 

, where the two repeated eigenvalues Ai = 1 this further, we let for (L), A = 
0 1 

belong to the same Jordan block. Then e^ 
1 0 
0 1 

e' + 
0 1 
0 0 

te'. 

Stability of an equilibrium 

In Chapter 6 we will study the qualitative properties of linear dynamical sys
tems, including systems described by (L). This will be accomplished by studying 
the stability properties of such systems, or more specifically, the stability properties 
of an equilibrium of such systems. 

If 0(/ , 0, Xe) denotes the solution of system (L) with x(0) == Xe, then Xe is said 
to be an equilibrium of (L) if (j){t, 0, Xe) ^ Xe for all f > 0. Clearly, jc^ = 0 is an 
equilibrium of (L). In discussing the qualitative properties, it is often customary to 
speak, somewhat loosely, of the stability properties of system (L), rather than the 
stability properties of the equilibrium x^ = 0 of system (L). 



We will show in Chapter 6 that the following qualitative characterizations of 
system (L) are actually equivalent to more fundamental qualitative characterizations 
of the equilibrium Xe = 0 of system (L): 

1. The system (L) is said to be stable if all solutions of (L) are bounded for all t > 
0 [i.e., for any solution (f){t, 0, XQ) = (4>i{t, 0, XQ), ..., 4>n{h 0. -^o))^ of i^)^ there 
exist constants Mi, i = I,.. .,n (which in general will depend on the solution on 
hand) such that \(f)i{t, 0, xo)| < M/ for all t > 0]. 

2. The system (L) is said to be asymptotically stable if it is stable and if all so
lutions of (L) tend to the origin as t tends to infinity [i.e., for any solution 
4>{t, 0, XQ) = {4>\{t, 0, xo), . . . , (l)n{t, 0, xo)Y of (L), we have lim _̂̂ oo 4>i{t, 0, xo) = 
0,i = 1, . . . ,^]. 

3. The system (L) is said to be unstable if it is not stable. 

By inspecting the modes of (L) given by (4.36), (4.37) and (4.39), (4.40), the 
following stability criteria for system (L) are now evident: 

1. The system (L) is asymptotically stable if and only if all eigenvalues of A have 
negative real parts (i.e.. Re Xj <0, j = 1 , . . . , a). 

2. The system (L) is stable if and only if Re Â  < 0, j = 1 , . . . , a, and for all eigen
values with Re Xj = 0 having multiplicity HJ > I, it is true that 

lim [(s 

3. System (L) is unstable if and only if (2) is not true. 

k= I, 1. (4.41) 

We note in particular that if Re Xj = 0 and nj > 1, then there will be modes 
^jkl^y k = 0,.. .,nj - 1, that will yield terms in (4.36) whose norm will tend to 
infinity as ^ ^ oo, unless their coefficients are zero. This shows why the necessary 
and sufficient conditions for stability of (L) include condition (4.41). 

EXAMPLE 4.9. The systems in Examples 4.6 and 4.7 are asymptotically stable. A 

ro n system (L) with A 
[0 - 1 

0, A2 = - 1 . A system (L) with A 

is stable, since the eigenvalues of A above are Ai = 

- 1 01 
0 1 

is unstable since the eigenvalues of A are 

1,A2 -1. The system of Example 4.8 is also unstable. 

Modes: Distinct eigenvalue case 

When the eigenvalues A/ of A are distinct, there is an alternative way to (4.40) of 
computing the matrix coefficients A/, expressed in terms of the corresponding right 
and left eigenvectors of A. This method offers great insight in questions concerning 
the presence or absence of modes in the response of a system. Specifically, if A has 
n distinct eigenvalues Â , then 

^At -X^i M 

where Ai ViVi, 

(4.42) 

(4.43) 

where vi G R^ and {viY E R^ are right and left eigenvectors of A corresponding to 
the eigenvalue A/, respectively. 
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To prove the above assertions, we recall that (A/ / - A)v/ = 0 and v^A/ / - A) = 

O.lf Q= [vi , . . . , Vn], then the v/ are the rows of 

The matrix Q is of course nonsingular, since the eigenvalues A/, / = 1 , . . . , n, are 
by assumption distinct and since the corresponding eigenvectors are linearly inde
pendent. Notice that Qdiag[k\,.. .,Xn\ = ^Q and that diag[k\,..., A„]P = PA. 
Also, notice that v/Vj = 5/y, where 

1 when / = j , 
0 when / T̂  j . 8ij = 

We now have (^ / -A)-^ = [si-Qdiag [\u ,.., XnlQ'^T = Q[sl-diag[Xu ..., 
K]r'Q-' - Qdiag[(s-X,r\...,(s-Xnr']Q-' = Sf=iV,vK^-AO-i .Ifwe 
now take the inverse Laplace transform of the above expression, we obtain (4.42). 

If we choose the initial value x(0) for (L) to be cohnear with an eigenvector vj of 
A [i.e., x(0) = avj for some real a ¥= 0], then e^j^ is the only mode that will appear 
in the solution cf) of (L). This can easily be seen from our preceding discussion. In 
particular if x(0) = aVj, then (4.42) and (4.43) yield 

(/>(̂ , 0, x(0)) = e'^'xiO) = vivi40)^^^' + • • • + VnVnX(0)e 

since v/Vy = 1 when / = y, and v/Vy = 0 otherwise. 

r-1 1 

^"' - avie^J' (4.44) 

EXAMPLE 4.10. In (L) we let A = 

Ai = - 1 , A2 = 1 and Q = [vi,V2] 

0 1 

1 1 
0 2 

. The eigenvalues of A are given by 

M~ 1 -i 
0 

. Then e"^' 

v\V\e^^^ + V2V2e^'^^ = 1 -i 
0 0 

^Mfin particular we choose x(0) = avi = 

(a, 0)^, then (pit, 0, x(0)) = e^^x(0) = a(l, O^e'^ which contains only the mode cor
responding to the eigenvalue Ai = - 1 . Thus, for this particular choice of initial vector, 
the unstable behavior of the system is suppressed. • 

Remark 

We conclude our discussion of modes and asymptotic behavior by briefly con
sidering systems of linear, nonhomogeneous, ordinary differential equations (4.1) for 
the special case where g(t) = Bu{t), 

X = Ax^ Bu(t\ (4.45) 

where B G R^^^^ ^ - R ^ Rm ^^^ where it is assumed that the Laplace transform 
of u exists. Taking the Laplace transform of both sides of (4.45) and rearranging 
yields 

x{s) = (si - A)-'x(0) + (si - A)~'Bu(s). (4.46) 

By taking the inverse Laplace transform of (4.46), we see that the solution cf) is the 
sum of modes that correspond to the singularities or poles of (si - A)~ ̂  x(0) and (si -
A)~^Bu(s). If in particular (L) is asymptotically stable (i.e., for x = Ax, Re Xi < 



0, / = 1,.. .,n) and if u in (4.45) is bounded (i.e., there is an M such that 1̂ (̂01 < M 161 
for all r > 0, / = 1 , . . . , m), then it is easily seen that the solutions of (4.45) are CHAPTER 2: 
bounded as well. Thus, the fact that the system (L) is asymptotically stable has reper- Response of 
cussions on the asymptotic behavior of the solution of (4.45). Issues of this type will Linear Systems 
be addressed in greater detail in Chapter 6. 

*2.5 
LINEAR PERIODIC SYSTEMS 

We now consider linear homogeneous systems of first-order ordinary differential 
equations 

X = A(t)x, -co <t <oo^ (P) 

where A G C(R, /?"^") and 

A(t) = A(t + T), -00 < ^ < 00, (5.1) 

for some T > 0. We call (P) a. periodic system and T a. period for system (P). 
The principal result of this section involves the notion of the logarithm of a 

matrix, which we introduce in the following result. 

THEOREM 5.1. For every nonsingular matrix B there exists a matrix A, called a loga
rithm ofB, with the property that 

B. (5.2) 

The matrix A is not unique. 

Proof. Let B be similar to B. Then there exists a nonsingular matrix P such that 
P-^BP = B. Now if e^ = B, then we have B = PBP'^ = Pe^P'^ = e^^^~\ It 
follows that PAP'^ is also a logarithm of 5. Therefore, it suffices to prove the theorem 
when the matrix B is in suitable canonical form. 

Let Ai,..., Ayt denote the distinct eigenvalues of B with respective multiplicities 
ni,.. .,nk. Without loss of generality, we may assume that B is in the block diagonal 
form 

r^i 0 

B = 
0 Hj 

where Bj = Ay[/„. + (1/\J)NJIN''/ = OJ = h..., k. We note that Â  T̂  0, y = 
l,...,k, since B is nonsingular. Using the power series expansion log(l + x) = 
Z^p=i[(-iy^^/p]xP,\x\ < 1, we formally write Â  = logBj = /„.logAy + 

log[/,. + (l/\j)Nj] = InjlogXj + X;=d(-^y^'^PWAjy> since 7V7 = 0 we 
actually have 

Aj = /„̂ logA, + X L ^ / ^ T , j = i,„„k, (5.3) 

where we note that logA^ is defined, since Xj 7^ 0. Now recall that e'°8(i+j:) = I + x. 
Performing the same operations with matrices, we obtain the same terms and there 
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is no problem with convergence, since the series (5.3) for Aj = ^ogBj terminates. 
Accordingly, we obtain e^J = exp(Inj log\j)Qxp{Z.''J~^[(-l)P^^/p](Nj/Xj)P} = 
\j[Inj + (Nj/\j)] = Bj, j = 1,..., ^. If now we let 

A = 
0 

where Aj is defined in (5.3), we obtain 

.A ^ 

e^i 

0 

0 

e^k 0 Bk 

= B, 

which is the desired result. 
We conclude by noting that the matrix A is not unique, since for example, e^^^'^^^^ = 

^A^iTTj ^ ^A f̂ j. ̂ u integers k (where j = v -1 ) . • 

We are now in a position to state and prove one of the principal results of this 
section. 

THEOREM 5.2. Assume that (5.1) is true and that A E C{R, /?">̂ "). If <|)(0 is a funda
mental matrix for (P), then so is ^{t +T),t EL R . Furthermore, for every ^ there exists 
a nonsingular matrix P that is also periodic with period T and a constant nXn matrix R, 
such that 

^(0 = P{t)e'^. 

Proof. Let ^(0 = ^(? + T\t E R. Since i>(0 = A(t)^(t\ t E R, we have ^ ( 0 = 
4)(̂  + 7) = A(t + T)^(t + r ) = A{t)<i>(t + T),tE R. Therefore, ^ is also a solution 
of ^ = A(0^, A(t) = A{t + T\t E R. Furthermore, since ^{t + T) is nonsingular for 
all t E R/ii follows that ^ is a fundamental matrix for (P). Therefore, by Theorem 2.5, 
there exists a nonsingular matrix C such that ^{t + T) = ^{t)C, and by Theorem 5.1, 
there exists a constant matrix R such that e^^ = C. Therefore, 

^(t + T) = ^(t)e TR 

Defining P by 

P(t) = ^(0^ -tR 

(5.4) 

(5.5) 

and using (5.4) and (5.5), we now obtain P{t + T) = ^(r + T)e-^^-^^^^ = ^{t)e^^ X 
^-(t+T)R ^ (^(t)e-tR = p{t). Therefore, P{t) is nonsingular for dll t E R and it is 
periodic. • 

The above result allows us to conclude that the determination of a fundamental 
matrix O for system (P) over any time interval of length T leads at once to the 
determination o/O over (-oo, oo). To show this, assume that ^(t) is known only over 
the interval [̂ o. to> -^T], Since ^(t + T) = ^(t)C, we obtain by setting t = to,C = 
0(^)~iO(ro + T) and R = T~^ log C. It follows that P(t) - $(0^~^^ is now also 
known over [to, to -\- T]. However, P(t) is periodic over (-00,00). Therefore, 4>(0 is 
givenover (-00, 00) by $ ( 0 = P(t)e^^. 

Next, let 0 be any other fundamental matrix for (P) with A(t) = A(t + T). 
Then O = $ 5 for some constant nonsingular matrix S. Since ^(t + T) = ^(t)e^^, 



we have that ^(t + T)S = Mt)Se'^^, or 

(5.6) 

This shows that every fundamental matrix O of(P) determines a matrix Se^^S~^ 
that is similar to the matrix e^^. 

Conversely, let S be any constant nonsingular matrix. Then there exists a fun
damental matrix of (P) such that Eq. (5.6) holds. Therefore, even though $ does not 
determine R uniquely, the set of all fundamental matrices of (P), and hence of A, 
determines uniquely all parameters associated with e^^ that are invariant under a 
similarity transformation. In particular the set of all fundamental matrices of A deter
mines a unique set of eigenvalues of the matrix e^^, denoted by Ai , . . . , A„, that are 
called the Floquet multipliers associated with A. Note that none of these vanish, since 
nf=i A/ = dete^^ # 0. The eigenvalues of P are called the c/z^rac^^mr/c ̂ x/76>/î n/5'. 

Next, we let 2 be a constant nonsingular matrix that transforms R into its Jordan 
canonical form, i.e., / ^ Q~^RQ, where 

/ = 

Jo 0 
0 / i 

0 0 

Now let O = <i>Q and let P = PQ. In view of Theorem 5.2, we have that 

^ ( 0 - P{t)e'\ Pit) = Pit + T). 

Let the eigenvalues of R be denoted by p i , . . . , p^. Then 

(5.7) 

JJ 
0 e'^' 

0 0 

0 
0 

ptJs 
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where 

and 

jJi _ Jpq^i 

O^JO = 

' ^ 2 

0 1 t 

0 0 0 

e'P' 0 
0 e'P^ 

0 0 

(n - 1)! 
fn-2 

in - 2)! 

1 

0 
0 

e'Pi 

i = l,...,s, q + ^rt -= n. 
i=l 

Now A; = e^P'. Therefore, even though the p, are not uniquely determined, their 
real parts are. It follows from (5.7) that the columns 4>\>--->4>n of "J* are linearly 
independent solutions of {P). Let pi,..., p„ denote the periodic column vectors 
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of P. Then 

01 (0 = e^'^piit) 

hit) = e'P^p2(t) 

4>q{t) = e'P^Pqit) 

4>q+\{t) = e'P^-'pg+i(t) 

4>q+2(t) = e'P^-'(tPg+i(t) + Pq+2(t)) (5.8) 

^q-,n(t) = e''^-^ (^ - iyPq+l(t) + ••• + tpg+r,-l(t) + Pq+r,(t) 

4 - r , + l ( 0 = e'P^-^ Pn-rs + l(t\ 

4>n(t) otPq+s 
fVs-l 

(rs - 1)! 
Pn-rs + l(0 + • • • + tpn-\{t) + pnit) 

From (5.8) it is easy to see that when Re pt — at < 0, or equivalently, when 
|A/| < 1, there exists a A:, > 0 such that \h(t)\ < kie^'^^''^^^ -> 0 as f ^ oo. This shows 
that if the eigenvalues pu i = I,..., n, of R have negative real parts, then any norm 
of any solution of (P) tends to zero as ^ -^ -\-^ at an exponential rate. 

From (5.5), we can easily verify by direct computation that AP - P = PR. 
Accordingly, for the transformation 

X = Pit)y, (5.9) 

we obtain x = A(t)x = A(t)P(t)y = P(t)y + P(t)y = (d/dt)[P(t)y] or j = 
P~\t) X [A(t)P(t) - P(t)]y = p-\t)[P(t)R]y = Ry. In other words, the trans
formation (5.9) reduces the linear, homogeneous, periodic system (P) to the system 
y = Ry, a linear homogeneous system with constant coefficients. 

We conclude this section with a specific example. 

EXAMPLES.1. Consider the scalar system 

X = -(sin/ + 2)x (5.10) 

Then A(t) = -(sin/ + 2), and A(t) is periodic with period T = ITT. A fundamental 
matrix for (5.10) is given by 0(0 = exp(cosr - 1 - 2/) as can be verified by substi
tuting into the relation i>(0 = A(t)^(t). Letting t = 0 and T = ITT in (5.4), we obtain 
0(27r) - ^"^^ = 0(0)^^''^ = e^""^ or R = - 2 . The equivalence matrix P(t) is now 
given by (5.5) as P{t) = exp (cos t - l - 2t)e^^ = e^^^^~^, which is clearly periodic with 
period T = ITT. The given system (5.10) is transformed by P{t) into the system y = 
(^i-^«^0[(-l)(sin/ + 2)̂ '̂ °̂ -̂i + smte''''''-^]y = -(e^-^^'')(2e'''''-^)y = -2y = Ry. 

We will address some of the qualitative properties of periodic systems in further 
detail in Chapter 6. 



2.6 
STATE EQUATION AND INPUT-OUTPUT DESCRIPTION 
OF CONTINUOUS-TIME SYSTEMS 

This section consists of three subsections. Using the material of the preceeding sec
tions of this chapter, we first study the response of Hnear continuous-time systems. 
Next, we examine transfer functions of Unear time-invariant systems, given the state 
equations of such systems. Finally, we explore the equivalence of internal represen
tations of systems. 
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A. Response of Linear Continuous-Time Systems 

Returning now to Sections 1.1 and 1.14, we consider once more systems described 
by linear time-varying equations of the form 

X = A(t)x -h B(t)u 

y = C(t)x -h D(t)u, 

(6.1a) 

(6.1b) 

where A G C(R, R'"'"''), B G C(R, /?^>< )̂, C G C(R, RP''''\ D G C(R, RP"""^), and 
u : R-^ R^ is assumed to be continuous or piecewise continuous. We recall that 
in (6.1a) and (6.1b), x denotes the state vector, u denotes the system input, and y 
denotes the system output. From Section 1.14 we recall that for given initial condi
tions 0̂ ^ R> ^(to) = XQ E: R^ and for a given input u, the unique solution of (6.1a) 
is given by 

(l)(t, to, xo) = 0(r, to)xo + ^(t, s)Bis)u(s)ds (6.2) 

for t E: R, where O denotes the state transition matrix of A(0. Furthermore, by sub
stituting (6.2) into (6.1b), we obtain [as in (14.6) of Chapter 1], for all t G R, the 
total system response given by 

y(t) = C(t)^(t, to)xo + C(t) 0(^, s)B(s)u(s)ds + D(t)u(t). (6.3) 
Jto 

Recall that the total response (6.3) may be viewed as consisting of the sum of two 
components, the zero-input response given by the term 

il/(t, to, Xo, 0) = C(t)<^(t, to)xo (6.4) 

and the zero-state response given by the term 

p(t, to, 0, u) = C{t) ^{t, s)B(s)u(s)ds -h D(t)u(t). (6.5) 
Jto 

The cause of the former is the initial condition xo [and can be obtained from (6.3) 
by letting u(t) = 0], while for the latter the cause is the input u [and can be obtained 
by setting XQ = 0 in (6.3)]. 

The zero-state response can be used to introduce the impulse response of the 
system (6.1a), (6.1b). Returning to Subsection 1.16C, we recall that by using the 
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Dirac delta distribution S, we can rewrite (6.3) with XQ = 0 as 

y(t) = f [C(tmt, T)B(T) + D(t)8(t - T)]u(T)dT 
Jto 

= [ H(t,T)u(T)dT, (6.6) 
Jto 

where H(t, r) denotes the impulse response matrix of system (6.1a), (6.1b) given by 

[ C(t)<^(h T)B{T) + D{t)8{t - r), t^ T, 
H{t, T) 

[0, t< T. 
(6.7) 

When in (6.1a), (6.1b), A{t) = A, B(t) = B, C(t) = C, and D(t) = D, we obtain 
the time-invariant system 

X = Ax + Bu 

y = Cx -^ Du. 

We recall that in this case the solution of (6.8a) is given by 

(6.8a) 

(6.8b) 

(6.9) 

(6.10) 

the total response of system (6.8a), (6.8b) is given by 

y{t) = Ce'^^'-'^ho + C [ e^^'-'^Bu{s)ds + Du{t\ 

and the zero-state response of (6.8a), (6.8b) is given by ^(0 = /̂ [̂C^^^^~'̂ ^B+ 

D8(t - T)]u(T)dT - \l H{t,T)u{T)dT = 1̂  H(t - T)u(T)dT, where the impulse 
response matrix H of system (6.8a), (6.8b) is given by 

H(t -T) = 

or, as is more commonly written, 

H(t) = 

Ce^^'-^^B + D8(t - r), t^ r, 
0, t <T, 

Ce^'B + D8{t\ 
0, 

t> 0, 
^ < 0 . 

(6.11) 

(6.12) 

At this point it may be worthwhile to consider some specific cases. 

EXAMPLE 6.1. In (6.1a), (6.1b), let 
^2n 

A{t) = 
- 1 €' 

0 - 1 
B{t) = 

0 
C(0 = [e\ 1], D = 0 

and consider the case when t^ = 0, x(0) = (0, 1)^, u is the unit step function, and 
r > 0. Referring to Example 3.6, we obtain (p(t, to, XQ) = (f)h{t, t^, XQ) + (j)p{t, to, xo) = 

2 {e' - €-') te-' 

0 
with ^ = 0 and for ^ > 0. The total system response y(t) = 

C(t)x(t) is given by the sum of the zero-input response and the zero-state response, 
y(t, to, Xo, u) = il/(t, to, Xo, 0) + p(t, to, 0, u) = [\{e'^^ - 1) + e~^] + t,t> ^. Note that the 
zero-input response ip is due to the homogeneous part of the solution 4> (given by (f)h) 
while the zero-state response p is due to the particular solution of (/> (given by (/)p). 



EXAMPLE 6.2. In (6.8a), (6.8b), let A C = [0,1], D = 0 and [o o} ^ - [y 
consider the case when to = 0, x(0) = (1, - 1 )^ , u is the unit step, and t > 0. We can 
easily compute the solution of (6.8a) as 

n -̂ 1 
(/)( ,̂ to, Xo) = (t)h(t, to, Xo) + (l>p(t, to, Xo) = 

- 1 + 
^t^ 

with 0̂ = 0 and for ? > 0. The total system response y(t) = C(t)x(t) is given by the sum 
of the zero-input response and the zero-state response, y(t, to, xo, u) = il/(t, to, xo, 0) + 
p(t, to,0,u)=-l-\-t,t>0. • 

We note that when x(0) = 0, Example 6.1 (a time-varying system) and Exam
ple 6.2 (a time-invariant system) have identical output responses given by y(t) = t, 
r > 0, when u(t) is the unit step. [Is this true for any input u(t)l] 

EXAMPLE6.3. Consider the time-varying system given above in Example 6.1. In this 
case we have 0(?, T)B(T) = [e~\ 0]^, and the impulse response has the rather unusual 
form 

Hit, T) = 
C{t)^{t, T)B(T) = 1, t^ T, 

0, t<T. 

In other words, the response of this system to an impulse input, for zero initial conditions, 
is the unit step, and this is independent of the time r at which the impulse is applied! 
Note that in the present case the response to a step is a ramp t, as can easily be verified 
from (6.6) (see also Example 6.1). Therefore, this system behaves to the outside world, 
for zero initial conditions, as a time-invariant system. This is interesting; however, it is 
not a typical situation when dealing with time-varying systems. • 

EXAMPLE 6.4. Consider the time-invariant system given above in Example 6.2. It is 
easily verified that in the present case 

n 1̂ 
(^(t) = e^' = 

0 1 

Then H(t, r) = Ce'^^'-^'^B = I for t > r and H{t, r) = OfoYt< r. Thus, the response 
of this system to an impulse input for zero initial conditions is the unit step. Comparing 
this with the impulse response of the system given above, in Example 6.3, we note that 
they are identical. In other words, the behavior of these two systems to the outside world, 
one a time-varying system and the other a time-invariant system, is characterized by the 
same response to an impulse input, when the initial conditions are zeros. Indeed, in this 
case, both systems behave like a time-invariant system with H(t, r) = H(t - r, 0) = 
H(t, 0) = 1. Note, however, that when the initial conditions are not zero, the responses 
of these two systems are quite different. • 

The preceding two examples demonstrate, as one might expect, that external 
descriptions of finite-dimensional linear systems are not as complete as internal de
scriptions of such systems. Indeed, the utility of impulse responses is found in the 
fact that they represent the input-output relations of a system quite well, assuming 
that the system is at rest. To describe other dynamic behavior, one needs in general 
additional information [e.g., the initial state vector (or perhaps the past history of the 
system input since the last time instant when the system was at rest) as well as the 
internal structure of the system]. 

Internal descriptions, such as state-space representations, constitute more com
plete descriptions than external descriptions. However, the latter are simpler to apply 
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than the former. Both types of representations are useful. It is quite straightforward 
to obtain external descriptions of systems from internal descriptions, as was demon
strated in this section. The reverse process, however, is not quite as straightforward. 
The process of determining an internal system description from an external descrip
tion is called realization and will be addressed in Chapter 5. The principal issue in 
system realization is to obtain minimal order internal descriptions that model a given 
system, avoiding the generation of unnecessary dynamics. 

B. Transfer Functions 

Next, if as in (16.51) in Chapter 1, we take the Laplace transform of both sides of 
(6.12), we obtain the input-output relation 

y{s)=H{s)u{s). (6.13) 

We recall from Section 1.16 that H{s) is called the transfer function matrix of 
system (6.8a), (6.8b). We can evaluate this matrix in a straightforward manner by 
first taking the Laplace transform of both sides of (6.8a) and (6.8b) to obtain 

sx{s) -x (0 ) =Ax{s) +Bu{s) 

y{s) = Cx{s) +Du{s). 

Using (6.14) to solve foxx{s), we obtain 

x{s) = {sI-A)-^x(Qi) + {sI-A)-^Bu{s). 

Substituting (6.16) into (6.15) yields 

y{s) = C{sl-A)-^x{0) ^C{sI-A)-^Bu{s) +Du{s) 

and y{t) = ^~^y(s) = C/'jc(0) + C / e^^'-'^Bu(s)ds^Du(t), 
Jo 

as expected. 
If in (6.17) we let x(0) = 0, we obtain the Laplace transform of the zero-state 

response given by 

y{s) = [C{sI-A)-^B^D]u{s) 

= H{s)u{s), (6.19) 

where H{s) denotes the transfer function of system (6.8a), (6.8b), given by 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

H{s)=C{sI-A)-^B^D. (6.20) 

Recalling that ^[e^^] = O(^) = {si—A) ^ [refer to (4.32)], we could of course have 
obtained (6.20) directly by taking the Laplace transform of H{t) given in (6.12). 

EXAMPLE 6.5. In Example 6.2, let ô = 0 and x(0) = 0. Then 

H{s) = C{sI-A)-^B + D = [0,1] ' " 

^[0,1] 

r l 
s 

l 1 

1 

s 

and H{t) = ^ ^H{s) = 1 for ^ > 0, as expected (see Example 6.2). 



Next, as in Example 6.2, let x(0) = (1,-1)^ and let u be the unit step. Then y(s) = 
C(sl - A)-ix(O) + H(s)u(s) = [0, 1/̂ ](1, -1)^ + (l/s)(l/s) = -1/s + 1/s^ and y(t) = 
^~^[y(s)] = - 1 + ^ for / > 0, as expected (see Example 6.2). • 

We note that the eigenvalues of the matrix A in Example 6.5 are the roots of 
the equation det (si - A) = s'^ = 0, and are given by -̂i = 0, 2̂ = 0, while the 
transfer function H(s) in this example has only one pole (the zero of its denominator 
polynomial), located at the origin. It will be shown in Chapter 5 (on realization) that 
the poles of the transfer function H(s) (of a SISO system) are in general a subset 
of the eigenvalues of A. In Chapter 3 we will introduce and study two important 
system theoretic concepts, called controllability and observability. We will show in 
Chapter 5 that the eigenvalues of A are precisely the poles of the transfer function 
H(s) = C(sl - Ay^B + D if and only if the system (6.8a), (6.8b) is observable and 
controllable. This is demonstrated in the next example. 

EXAMPLE 6.6. In (6.8a), (6.8b), let A = 
0 

[-1 
r 

-2^ 
, 5 = 

0' 

w C = [-3,3], / ) = 0. 

The eigenvalues ofA are the roots of the equation J^r (5/-A) = s^ + 2s+l = (^+1)^ = 
0 given by ̂ i = - 1 , 5*2 = - 1 , and the transfer function of this SISO system is given by 

_ . . - 1 1 

H(s) = C(sl-A)-^B + D = [-3,3]^ s - 1 
1 ^ + 2 

= 3 [ - l , l ] 
1 

(S + 1)2 
5 + 2 1 
- 1 s 

3(s - 1) 
(S+ 1 ) 2 ' 

with poles (the zeros of the denominator polynomial) also given by si -1,^2 = - 1 . 
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and If in Example 6.6 we replace B = [0, 1]^ and D = 0 by B = 

D = [0, 0], then we have a multi-input system whose transfer function is given by 

' 3 ( ^ - 1 ) 3 
H(s) = 

(S+ 1)2^(^+1) 

The concepts of poles and zeros for MIMO systems (also called multivariable sys
tems) will be introduced in Chapter 4. The determination of the poles of such sys
tems is not as straightforward as in the case of SISO systems. It turns out that in 
the present case the poles of H(s) axe si = -1,S2 = - 1 , the same as the eigen
values of A. 

Before proceeding to our next topic, the equivalence of internal representations, 
an observation concerning the transfer function H(s) of system (6.8a), (6.8b), given 
by (6.20), H(s) = C(sl — A)~^B + D is in order. Since the numerator matrix poly
nomial of (si — A)"^ is of degree (n - 1) (refer to Subsection 2.1G), while its de
nominator polynomial, the characteristic polynomial a(s) of A, is of degree n, it is 
clear that 

\im H(s) = D, 

a real-valued mXn matrix, and in particular, when the ''direct link matrix" D in the 
output equation (6.8b) is zero, then 

l im^(^) = 0, 



170 the m X n matrix with zeros as its entries. In the former case (when D 7^ OorD = 0), 
Linear Systems ^(^) î  ^^^^ ^̂  ̂ ^ di proper transfer function, while in the latter case (when D = 0), 

H(s) is said to be a strictly proper transfer function. 
When discussing the realization of transfer functions by state-space descriptions 

(in Chapter 5), we will study the properties of transfer functions in greater detail. 
In this connection, we will also encounter systems that can be described by models 
corresponding to transfer functions H(s) that are not proper The differential equation 
representation of a differentiator (or an inductor) given by y(t) = (d/dt)u{t) is one 
such example. Indeed, in this case the system cannot be represented by Eqs. (6.8a), 
(6.8b) and the transfer function, given by H(s) = s is not proper. Such systems will 
be discussed in Chapter 7. 

C. Equivalence of Internal Representations 

In Subsection 2.4B it was shown that when a linear, autonomous, homogeneous 
system of first-order ordinary differential equations i = Ax is subjected to an ap
propriately chosen similarity transformation, the resulting set of equations may be 
considerably easier to use and may exhibit latent properties of the system of equa
tions. It is therefore natural that we consider a similar course of action in the case of 
the linear systems (6.1a), (6.1b) and (6.8a), (6.8b). 

We begin by considering (6.8a), (6.8b) first, letting 

X = Px, (6.21) 

where P is a real, nonsingular matrix (i.e., P is a similarity transformation). Consis
tent with what has been said thus far, we see that such transformations bring about 
a change of basis for the state space of system (6.8a), (6.8b). Application of (6.21) 
to this system will result, as will be seen, in a system description of the same form 
as (6.8a), (6.8b), but involving different state variables. We will say that the system 
(6.8a), (6.8b), and the system obtained by subjecting (6.8a), (6.8b) to the transforma
tion (6.21), constitute equivalent internal representations of an underlying system. 
We will show that equivalent internal representations (of the same system) possess 
identical external descriptions, as one would expect, by showing that they have 
identical impulse responses and transfer function matrices. In connection with this 
discussion, two important notions called zero-input equivalence and zero-state 
equivalence of a system will arise in a natural manner. 

If we differentiate both sides of (6.21), and if we apply x = P~^x to (6.8a), 
(6.8b), we obtain the equivalent internal representation of (6.8a), (6.8b) given by 

k =^ Ax + Bu (6.22a) 

y = Cx + Du, (6.22b) 

where A = PAP-\ B = PB, C = CP-\ D = D (6.23) 

and where x is given by (6.21). It is now easily verified that the system (6.8a), (6.8b) 
and the system (6.22a), (6.22b) have the same external representation. Recall that 
for (6.8a), (6.8b) and for (6.22a), (6.22b), we have for the impulse response 

H(t, T) ^ Hit - T, 0) = { ^'"""'^ + ^^(' - ^)' ; J ;> (6.24) 



and H{t, r) = H{t - r, 0) 
C^ia-T)^ + D8(t - T), 

0, 

Recalling from Subsection 2.4B [see Eq. (4.13)] that 
^A(r-T) ^ p^A(t-T)p-l 

t < T. 
(6.25) 

(6.26) 

weobtainfrom (6.23) to (6.25) that C^^~^^-^)B+DS(r-T) = CP-^Pe^^'-'^p-^PB^-
DS(t -T) = Ce^^^-'^^B + D8(t - r), which proves, in view of (6.24) and (6.25), that 

and this in turn shows that 

H(t, T) - H(t, T), 

His) = H(s\ 

(6.27) 

(6.28) 

This last relationship can also be verified by observing that^(^) == C(sl - A) ^ X 
B -{- D = CP-\sI - PAP-^)-^PB + D = CP-^P(sI - A)-^p-^PB + D = 
C(sl - A)-^B + D - H(s). 

Next, recall that in view of (6.10) we have for (6.8a), (6.8b) that 

y(t) = Ce^^'-'^^xo +\ Hit- T,0)u(T)dT 
J to 

= il/(t, to, XQ, 0) + p(t, to, 0, u) 

and for (6.22a), (6.22b) that 

y(t) = Ce^^'-'^ho + 

(6.29) 

H(t-T,0)u(T)dT 

= {{/(t, to, xo, 0) + p(t, to, 0, u), (6.30) 

where ifj and ^ denote the zero-input response of (6.8a), (6.8b) and (6.22a), (6.22b), 
respectively, while p and p denote the zero-state response of (6.8a), (6.8b) and 
(6.22a), (6.22b), respectively. The relations (6.29) and (6.30) give rise to the fol
lowing concepts: Two state-space representations are zero-state equivalent if they 
give rise to the same impulse response (the same external description). Also, two 
state-space representations are zero-input equivalent if for any initial state vector for 
one representation there exists an initial state vector for the second representation 
such that the zero-input responses for the two representations are identical. 

The following result is now clear: if two state-space representations are equiv
alent, then they are both zero-state and zero-input equivalent. They are clearly 
zero-state equivalent since H{t, r) ^ H{t, r). Also, in view of (6.29) and (6.30), 
we have Ce^^'-'^^xo = (CP-^)[Pe^^'-'^^p-^]xo = Ce'^^'-'^ho, where (6.26) was 
used. Therefore, the two state representations are also zero-input equivalent. 

The converse to the above result is in general not true, since there are repre
sentations that are both zero-state and zero-input equivalent, yet not equivalent. In 
Chapter 5, which deals with state-space realizations of transfer functions, we will 
consider this topic further. 

EXAMPLE 6.7. System (6.8a), (6.8b) with 
0 

-2 

1 

- 3 . 
B = 

0 

.1. 
C = [-1,-5], D = 1 
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has the transfer function 

H{s)=C{sI-A)-^B + D 

Using the similarity transformation 

- 5 ^ - 1 
5̂  + 35 + 2 

+ 1 
( . - 1 ) ^ 

(5+l ) (5 + 2) ' 

1 
- 1 

1" 
- 2 

- 1 
2 

- 1 
1" 

- 1 

yields the equivalent representation of the system given by 

PAP- B = PB- c = cp- ^[4,9], 

and D = D = 1. Note that the columns of P~^, given by [1, -1]^ and [1,-2]^, are 
eigenvectors of A corresponding to the eigenvalues Ai = —1,^2 = —2 of A, that is, P 
was chosen to diagonalize A. Notice that A is in companion form so that its characteristic 
polynomial is given by 5^ + 3^ + 2 = {s-\-1){s-\-2). Notice also that the eigenvectors 
given above are of the form [1,A;]^,/ = 1,2. The transfer function of the equivalent 
representation of the system is now given by 

1 

H(s) = C{sI-A)-^B + D = [4,0] 5 + 1 

0 

0 

1 

5 + 2. 

+ 1 

- 5 5 - 1 
(5+l ) (5 + 2) 

Finally, it is easily verified that e^' 

+ 1 = H(s). 

Pe^'p-K 

From the above discussion it should be clear that systems [of the form (6.8a), 
(6.8b)] described by equivalent representations have identical behavior to the outside 
world, since both their zero-input and zero-state responses are the same. Their states, 
however, are in general not identical, but are related by the transformation x{t) = 
Px{t). 

In the time-invariant case considered above, transformation P preserves the qual
itative properties of the equivalent representations of a system, since in particular, the 
eigenvalues of A and A are identical. 

Next, we consider time-varying systems, given by 

x=A{t)x + B{t)u (6.31a) 

y = C{t)x + D{t)u, (6.31b) 

where all symbols are defined as in (6.1a), (6.1b). Let P G C^{R^R^^^) and assume 
that P~^ (t) exists for dllt eR and is continuous. Let 

X = P(t)x. (6.32) 

T\\Qnx = P{t)x + P{t)x= [P{t)+P{t)A{t)]p-^{t)x + P{t)B{t)u=A{t)x + B{t)udind 
y = C{t)P~^{t)x + D{t)u = C{t)x + D{t)u. These relations motivate the following 
definition: the system 

x=A{t)x + B{t)u (6.33a) 

y = C{t)x + D{t)u, (6.33b) 



where x = P{t)x, P E C^{R, R^^^), and P ^ is assumed to exist and be continuous 
for all t G R, and where A(t) = [P(t)A(t) + P(t)]p-\tX Bit) = P(t)B(t), C(t) = 
C{t)P~^{t), bit) = D(t), is said to be equivalent to the system (6.31a), (6.31b). 

As in the time-invariant case, the relations between the state transition matrices 
^{t, to) and ^(t, to) for the systems of equations 

and 

X = A(t)x 

X = A(t)x, 

(6.34) 

(6.35) 

respectively, and the relations between the impulse responses H(t, r) and H(t, r) of 
(6.31a), (6.31b) and (6.33a), (6.33b), respectively, are easily established. Indeed, 
since the solutions of (6.34) and (6.35) are given by (pit, to, xo) = ^it, to)xo and 
4>it, to, Xo) = ^(t, to)xo, respectively, we have in view of (6.32) (assuming that 
P~^ exists for all t G R), P~\t)4>it, to, xo) = ^it, to)[P~\to)xo] or 4>it, to, xo) = 
Pit)^it, to)P~^ito)xo. Since the solutions of (6.34) and (6.35) are unique, we have 
that 

0(r,T) = Pit)<^it,T)p-\T) 

for all t,T ^R, 
Recalling that the columns of a fundamental matrix "^ of (6.34) and a funda

mental matrix # of (6.35) are linearly independent, it is not hard to show, using 
(6.32), that # ( 0 - P ( 0 ^ ( 0 for all t G R, 

Next, recalling that the impulse responses of the equivalent systems (6.31a), 
(6.31b) and (6.33a), (6.33b) are given by 

Hit, T) = 
Cit)^it, T)BiT) + Dit)8it - T ) , t^ T, 
0 r < T, 

and Hit, T) ^ J Cit)^it, T)BiT) + Dit)8it -T) t^ T, 
0 t<T, 

respectively, it is easily shown that 

Hit, T) = Hit, T). 

Indeed, we have that 

Hit, T) = Cit)^it, T)BiT) + Dit)8it - T) 

= Cit)p-\t)Pit)^it, T)p-\T)PiT)BiT) + Dit)8it - T) 

= Cit)^it, T)BiT) + Dit)8it - T) 

= Hit, T) 

for t > T. 
We conclude by noting that the notions of zero-state equivalence and zero-input 

equivalence introduced for time-invariant systems of the form (6.8a), (6.8b) carry 
over without changes for time-varying systems of the form (6.31a), (6.31b). Fur
thermore, identically to the time-invariant case, it can be shown that in the case 
of time-varying systems, if two state representations [such as (6.31a), (6.31b) and 
(6.33a), (6.33b)] are equivalent, then they are both zero-state and zero-input equiv
alent. The converse to this statement, however, is not true. 
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Lhi^Systems STATE EQUATION AND INPUT-OUTPUT DESCRIPTION 

OF DISCRETE-TIME SYSTEMS 

In this section, which consists of five subsections, we address the state equation and 
input-output description of Hnear discrete-time systems. In the first subsection we 
study the response of Hnear time-varying systems and linear time-invariant systems 
described by the difference equations (1.15.3a), (1.15.3b) [or (1.1.7a), (1.1.7b)] 
and (1.15.4a), (1.15.4b) [or (1.1.8a), (1.1.8b)], respectively. In the second subsec
tion we consider transfer functions for linear time-invariant systems, while in the 
third subsection we address the equivalence of the internal representations of time-
varying and time-invariant linear discrete-time systems [described by (1.15.3a), 
(1.15.3b) and (1.15.4a), (1.15.4b), respectively]. Some of the most important classes 
of discrete-time systems include linear sampled-data systems that we develop in the 
fourth subsection. In the final part of this section, we address modes and asymptotic 
behavior of linear time-invariant discrete-time systems. 

A. Response of Linear Discrete-Time Systems 

We now return to Section 1.15 to consider once again systems described by linear 
time-varying equations of the form 

x(k +1) = A(k)x(k) + B(k)u(k) (7.1a) 

y(k) = C(k)x(k) + D{k)u{k), (7.1b) 

where A:Z^ /?̂ ><̂ , B : Z-^ T^^^ ,̂ C : Z-^ RP""^, md D : Z ^ RP"""^. When 
A(k) = A,B(k) = B,C(k) = C, and/)(/:) = Z), we have systems described by linear 
time-invariant equations given by 

x(k + 1) = Ax(k) + Bu(k) (7.2a) 

y(k) = Cx(k) + Du(k). (7.2b) 

We recall that in (7.1a), (7.1b) and in (7.2a), (7.2b), x denotes the state vector, u de
notes the system input, and y denotes the system output. For given initial conditions 
ko E Z, x(ko) = Xk^ G R^ and for a given input w, both equations (7.1a) and (7.2a) 
possess unique solutions x(k) that are defined for all k > ô̂  and thus, the response 
y(k) for (7.1b) and for (7.2b) is also defined for all k > ko. 

Associated with (7.1a) is the linear homogeneous system of equations given 
by 

xik + 1) = A(k)xik). (7.3) 

We recall from Section 1.15 that the solution of the initial-value problem 

x(k+l) = A(k)x(k), x(ko) = Xk, (7.4) 

is given by 

x(k) = ^{k, ko)xk, = n Mj)xk,, k > ko, (7.5) 



where ^(k, ko) denotes the state transition matrix of (7.3) with 

^(h k) = I (7.6) 

[refer to (15.9) to (15.12) in Chapter 1]. 
Common properties of the state transition matrix (&(/:, / ) , such as for example 

the semigroup property given by 

^{k, /) = 0 ( ^ , m)<^(m, I), k> m> I, 

can quite easily be derived from (7.5), (7.6). We caution the reader, however, that not 
all the properties of the state transition matrix $(f, r ) for continuous-time systems 
X = A(t)x carry over to the discrete-time case (7.3). In particular we recall that if 
for the continuous-time case we have t > r, then future values of the state (p at time 
t can be obtained from past values of the state cf) at time r , and vice versa, from the 
relationships (/)(0 = ^(t, T)(f){T) and (/)(T) =̂  ^~^{t, r^t) = 0 ( T , 0</>(0. i-e., for 
continuous-time systems a principle of time reversibility exists. This principle is in 
general not true for system (7.3), unless A~^(k) exists for all k G Z. The reason for 
this lies in the fact that <i>(k, I) will not be nonsingular if A(k) is not nonsingular for 
a l U . 

Associated with (7.2a) is the linear, autonomous, homogeneous system of equa
tions given by 

x(k^ 1) = Axik). (7.7) 

From (7.5) it follows that the unique solutions of the initial-value problem 

x(k + 1) = Ax(k\ x(ko) = Xk^ (7.8) 

are given by 

xik) = ^{h ko)xk, = A^'-^'hk^, k ^ ko. (7.9) 

Ik (k^ + 1)1 
EXAMPLE 7.1. In (7.3), we let ^o = 0, and A(k) 

\(k - 1) (k- 1)2 + 1 

[2 5 

0 a)' Then ^(k, 0) 

A(k- 1)-"A(0) = 
0 a)'-' 

x(3) = A(2) • A(l) • A(0) • x(0) 
0 

If, for example, k = 3, then 

"0 
x(0) 

0 
x(0). Given 

x(0), we can now readily determine x(3). In view of the form A(0), we have for any 
To x l 

, that is to say, the first column of 0(^, 0) will always be ^ > 0, ^{h 0) 
0 

zero for any k. Clearly then, for any initial condition x(0) = 

\0] 
x(k) 

a E /?, we have 

for all k>0. 

EXAMPLE 7.2. In (7.5), let A = 
1 0 
0 0 

x(0) = 

ko ^ 0 for any a G R will map into the state x(l) 

reversibility will not apply. 

1 2 

a E: R. The initial state x(0) at 

. Accordingly, in this case time 

EXAMPLE 7.3. In (7.8), let A = 

1 

0 1 
. In view of (7.9) we have that A^̂  ô̂  = 

0 1 
k > ^0, i.e., A^̂  ô) = A when (k - ko) is odd, and 
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j^(k kQ) ^ /when(^-/:o)iseven. Therefore, given 0̂ = Oandx(O) thQnx(k) = 

Ax(0) ,k= 1,3,5, ...,andx(y^) - /x(0) , ^ = 2, 4, 6, . . . .A plot of the 

states x(k) = [xi(k), X2(k)]^ is given in Fig. 2.3. 

i W | 

2.OH 

1.0-

I x^ik) 

^ f T T f -̂̂  

—•- - • - —•- -•— 

1.0 

k 

0 1 2 3 4 5 6 7 8 — 0 1 2 3 4 5 6 7 8 ' 

FIGURE 2.3 
Plots of states for Example 7.3 

Continuing, we recall that the solutions of initial-value problems determined 
by linear nonhomogeneous systems (15.13) of Chapter 1 are given by expression 
(15.14). Utilizing (15.13), the solution of (7.1a) for given x(ko) and u(k) is given as 

x(k) = ^(k, ko)x(ko) + X ^(^> J + ^)B(jMjX k > ko, (7.10) 

This expression in turn can be used to determine [as in (15.17) and (15.18) of Chap
ter 1] the system response for system (7.1a), (7.1b) as 

y(k) = C(kmk, ko)x(ko) 
k-\ 

+ ^ C(k)<^(k j + l)B(j)u(j) + D{k)u{k), k > ko, 

y(ko) = C(ko)x(ko) + D{ko)u(ko). (7.11) 

Furthermore, for the time-invariant case (7.2a), (7.2b), we have for the system re
sponse the expression 

k-i 

y(k) = CA^^'-^'hiko) + ^ CA^-^J-'^^Bu(j) + Du(k), k > k^, 

y(ko) = Cx(ko) + Du(ko). 
(7.12) 

Since the system (7.2a), (7.2b) is time-invariant, we can let ^Q = 0 without loss of 
generality to obtain from (7.12) the expression 

k-i 

y(k) = CA^x(0) + ^ CA^-^J^^^Bu(j) + Du(kX k > 0. (7.13) 
j=o 

As in the continuous-time case, the total system response (7.11) may be viewed 
as consisting of two components, the zero-input response, given by 

il/(k) = C(k)^(k, kQ)x(kol k > ko, 



and the zero-state response, given by 

k-\ 

p(k) = X C(kmk, j + l)B(j)u(j) + D(kMkl k> k 

p(ko) D(ko)u(koX 

0. 

k = ko 
(7.14) 

Finally, in view of (16.20) of Chapter 1, we recall that the (discrete-time) unit 
impulse response matrix of system (7.1a), (7.1b) is given by 

r C(k)^(k, I + l)B(ll k>U 
H(kJ) = loikl k=l (7.15) 

[0, k<l 

and the unit impulse response matrix of system (7.2a), (7.2b) is given by 

H{kJ)^lD, k = h (7.16) 
[0, k<l, 

and in particular, when / = 0 (i.e., when the pulse is applied at time / = 0), 

(7.17) 
\ CA k- 'B, 

Hik,0) = { D, 
U 

EXAMPLE 7.4. In (7.2a), (7.2b), let 

A = 
0 1" 
0 - 1 . B = 

0 
1. ' 

k>0, 
k=^0. 
k<0. 

C^ = 
"11 
oj 

D = 0. 

We first determine A^ by using the Cay ley-Hamilton Theorem (Theorem 3.1 of Chap
ter 2). To this end we compute the eigenvalues of A as Ai = 0, A2 ^ - 1 , we let 
A^ = /(A), where f(s) = s^, and we let g(s) = ais + ao. Then /(Ai) == ̂ (Ai), or 
ao = 0 and /(A2) = gi^i), or (-1)^ = -ai + ao. Therefore, A^ = aiA + aol = 

-(-1) 
0 
0 

0, 1,2, 
( -1) ' 

8(k) 
0 

(-l)'-'p(k-l) 
(-l)'p(k) 

,k= 1,2, . . . ,or A^ 

, where Â  = /, and where p(k) denotes the unit step given by 

1, k^O, 
0, î  < 0. 

p(k) 

The above expression for A^ is now substituted into (7.12) to determine the response 
y(k) for /: > 0 for a given initial condition x(0) and a given input u(k), ̂  > 0. To deter
mine the unit impulse response, we note that H(k, 0) = 0 for ^ < 0 and k = 0. When 
k>0, H(h 0) = CA'^-^B = ( - l)^-^p(k - 2) for î  > 0 or H(K 0) = 0 for î  = 1 and 
H(k 0) = (-1)^-^ for ŷ  = 2, 3, . . . . • 
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B. The Transfer Function and the z-Transform 

We assume that the reader is familiar with the concept and properties of the one-sided 
z-transform of a real-valued sequence {f(k)}, given by 

t{f{k)} = f{z) = J^z-JfU). (7.18) 
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An important property of this transform, useful in solving difference equations, is 
given by the relation 

nf(k + i)} = ^z-^fu + i) = ^z O'-i) / ( ; ) 

.j=o 

= zmf(k)} - /(O)] = zf(z) - zf(0), (7.19) 

If we take the z-transform of both sides of Eq. (7.2a), we obtain, in view of (7.19), 
zx(z) - zx(0) = Ax(z) + Bu(z) or 

x(z) = (zl - AyhxiO) + (zl - Ay^Buizy (7.20) 

Next, by taking the z-transform of both sides of Eq. (7.2b), and by substituting (7.20) 
into the resulting expression, we obtain 

y(z) = C(zl - Arhx(0) + [C(zI - Ay^B + D]u{z). (7.21) 

The time sequence {y{k)} can be recovered from its one-sided z-transform y{z) by 
applying the inverse z-transform, denoted by 2E~^[};(z)]. 

In Table 7.1 we provide the one-sided z-transforms of some of the commonly 
used sequences, and in Table 7.2 we enumerate some of the more frequently en
countered properties of the one-sided z-transform. 

The transfer function matrix H(z) of system (7.2a), (7.2b) relates the z-transform 
of the output y to the z-transform of the input u under the assumption that ;IL:(0) = 0. 
We have 

where 

y(z) = H(z)u(zl 

H(z) = C(zl - Ay^B + D. 

(7.22) 

(7.23) 

To relate H(z) to the impulse response matrix H(k, /), we notice that ^{d(k -
/)} = z~K where 8 denotes the discrete-time impulse (or unit pulse or unit sample) 
defined in (16.5) of Chapter 1, i.e., 

8{k - I) 
1, 
0, 

k = U 
k¥^L 

(7.24) 

TABLE 7.1 
Some commonly used z-transforms 

{f(k)},k^^ 

8(k) 
Pik) 
k 

e 
a' 

(k + 1V 
[(imxk+iy '(k + 
acosak + bsinak 

DW / > 1 

f(z) = ^{f(k)} 

1 

1/(1-z-0 
z-V(l - z-')^ 
[z-'il + z-'Wil-z-'f 
1/(1-az-') 
1/(1-az-'f 
1/(1-az-'y^' 
[a + z~^(bsina - acosa)]/(l --Iz ^ cosa + z )̂ 



TABLE7.2 
Some properties of z-transforms 

Time shift 
—Advance 
Time shift 
—Delay 
Scahng 

Convolution 
Initial value 
Final value 

{/(*)},* > o 

f(k+l) 
fik + l) / > 1 

fik-l) 
f{k-l) l>\ 

km 
lT=om8(k-l) = 
/(/)with/(fc)=0 
\imi,^„f{k) 

m* 
k<l 

8(k) 

m 
zf{z)-zm 
z'fiz)-zlUz'-'fii--^) 
z-'f{z)+f(-l) 
z-'f{z) + l!i=iZ-'+'f{-i) 
Kz/a) 
-z{d/dz)fiz) 
f(zmz) 
\im,^„ z'fizY 
l im,^i( l-z- i) / (z) t t 

^ If the limit exists. 
- z ^ )f{z) has no singularities on or outside the unit circle. 
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• ' • t i f ( i - ^ - i ^ 

This implies that the z-transform of a unit pulse applied at time zero is ^ { 5 (^)} = 1. 
It is not difficult to see nov^ that {H{k, 0)} = ^~^ [y{z)], v^here y{z) = H{z)u{z) with 
u{z) = 1. This shows that 

^-\H{z)] = ^-\C{zJ-A)-^B + D\={H{k,Qi)}, (7.25) 

where the unit impulse response matrix H{k^ 0) is given by (1.11). 
The above result can also be derived directly by taking the z-transform of 

{H{k,0)} given in (7.17) (prove this). In particular, notice that the z-transform of 
{A^-^},k= 1,2,... is (zI-A)-^ since 

- 1 / -1 z \I 

• z-Hl-z-'A) 
-1 

z -A + z ^A 2A2 
+ •••) 

= {zI-A)-

Above, the matrix determined by the expression (1 — A)~^ 

(7.26) 

1 + A + A ^ + --- was 
used. It is easily shown that the corresponding series involving A converges. Notice 
also that ^{A^},k = 0,1,2, . . . is z{zl — A)~^. This fact can be used to show that the 
inverse z-transform of (7.21) yields the time response (7.13), as expected. 

We conclude this subsection with a specific example. 

EXAMPLE 7.5. In system (7.2a), (7.2b), we let 

C=[1,0], D = 0. 

To verify that ^ ^[z{zl — A) ^] = A ,̂ we compute 

z(zi-Ay -1 
z+1 

1 " 
z(z+l) 

1 
zTT . 

= 
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and 

or 

-'[z{zI-Ar'] U ^ 8(k) (-lY-'p(k-l) 
0 {-l)'p(k) 

A' = 

as expected from Example 7.4. 
Notice that 

-'[(zI-A)-'] 

1 
z z(z + 1) 

0 1 

1 0' 
0 1 
0 (-1)^-^ 
0 (-1)^ 

1 

when k = 0, 

when A: = 1, 2, . . . , 

z+l '' 
8(k - l)p(k - 1) 8(k - l)p(k - 1) - (-l)^-^p(k - 1) 

0 (-l)^-^p(k-l) 

and 

^-i [ (z / -A)- i ] h ^ 

"0 0 
.0 0. 

for 

0 - ( - l )^- i ' 
0 (-i)^-M 

and 

for yl = 2, 3 , . . . , 

1 0 
0 1 

for k = 1, 

which is equal to A^ /: > 0, delayed by one unit, i.e., it is equal to A^~^, k = 1,2,..., 
as expected. 

Next, we consider the system response with x(0) = 0 and u(k) = p(k). We 
have 

y(k) = ^-'[y(z)] = ^-'[C(zl - AT'B • u{z)] 

^"^ 1 
(z + l)(z - 1) z - 1 z+ 1 

= \[{i)'-'-{-iY-']p{k-i) 

_ r 0, ^ = 0, 

r 0, k = 0 
= lo, k= 1,3,5,..., 

[l, k = 2,A,6,.... 
Note that if jc(0) = 0 and M(^) = 6(/:), then 

y{k) = %-'[C{zI-A)-'B] iRl ^ 1 
z{z + 1) 

= 8{k-\)p{k-\)~{-\f-'p{k-\) 

^ I 0, ŷ  = 0,1, 

which is the unit impulse response of the system (refer to Example 7.4). 

C. Equivalence of Internal Representations 

Equivalent representations of linear discrete-time systems are defined in a manner 
analogous to the continuous-time case. 



For systems (7.1 a), (7. lb), we let ^o denote initial time, we let P(k) denote a real 
nX n matrix that is nonsingular for all k ^ ko, and we consider the transformation 
jc(^) = P(k)x(k). Substituting the above into (7.1a), (7.1b) yields the system 

where 

x(k + 1) = Aik)x(k) + B{k)u{k) 

y(k) = C(k)x(k) + D{k)u{k), 

A{k) = P(k + \)A(k)p-\k) 

B(k) = P(k + l}B{k) 

C(k) = C(k)p-^ 

D{k) = D{k). 

(7.27a) 

(7.27b) 

(7.28) 

We say that system (7.27a), (7.27b) is equivalent to system (7.1a), (7.1b) and we 
call P{k) an equivalence transformation matrix. 

If <i>(̂ , /) denotes the state transition matrix of (7.3) and ^{k, I) denotes the state 
transition matrix of 

then 

xik + 1) = Aik)x(k), 

Mk,l) = P{k)Mk,l)P~\l), 

as can be seen by observing that <J>( ,̂/) = A{k-\)---A{l) = 
1)]-••[/>(/ + 1)A(1)P-\1)] = P{k)^{k,l)p-\l). 

In a similar manner as above, it can also be shown that 

H{k, I) = H(k, I), 

(7.29) 

(7.30) 

[P(k)A(k-l)P-\k-

(7.31) 

where H(k, I) and H(k, I) denote the unit pulse response matrices of systems (7.1a), 
(7.1b) and (7.27a), (7.27b), respectively. [The reader should verify (7.31).] Thus, 
equivalent representations of linear discrete-time system (7.1a), (7.1b) give rise to 
the same unit pulse response matrix. Furthermore, zero-state equivalent representa
tions and zero-input equivalent representations are defined for system (7.1a), (7.1b) 
in a similar manner as in the case of linear continuous-time systems. 

Turning our attention now briefly to time-invariant systems (7.2a), (7.2b), we 
let P denote a real nonsingular nX n matrix and we define 

x{k) = Px(k). (7.32) 

Substituting (7.32) into (7.2a), (7.2b) yields the equivalent system representation 

x(k + 1) = Axik) + Bu(k) (7.33a) 

y(k) = Cx(k) + Du(k), (7.33b) 

where A = PAP- B = PB, c = cp- D = D. (7.34) 

We note that the terms in (7.34) are identical to corresponding terms obtained for the 
case of linear continuous-time systems. 

We conclude by noting that if H(z) and H(z) denote the transfer functions of the 
unit impulse response matrices of system (7.2a), (7.2b) and system (7.33a), (7.33b), 
respectively, then it is easily verified that H(z) =" H(z). 
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D. Sampled-Data Systems 

Discrete-time dynamical systems arise in a variety of ways in the modeling pro
cess. There are systems that are inherently defined only at discrete points in time, 
and there are representations of continuous-time systems at discrete points in time. 
Examples of the former include digital computers and devices (e.g., digital filters) 
where the behavior of interest of a system is adequately described by values of vari
ables at discrete-time instants (and what happens between the discrete instants of 
time is quite irrelevant to the problem on hand); inventory systems where only the 
inventory status at the end of each day (or month) is of interest; economic systems, 
such as banking, where, e.g., interests are calculated and added to savings accounts 
at discrete time intervals only, and so forth. Examples of the latter include simu
lations of continuous-time processes by means of digital computers, making use of 
difference equations that approximate the differential equations describing the pro
cess in question; feedback control systems that employ digital controllers and give 
rise to sampled-data systems (as discussed further in the following); and so forth. 

In providing a short discussion of sampled-data systems, we make use of the 
specific class of linear feedback control systems depicted in Fig. 2.4. This system 
may be viewed as an interconnection of a subsystem S\, called tht plant (the object 
to be controlled) and a subsystem ^2, called the digital controller. 

D/A 

i I 

u 

u{t) 

ik) 

x=A(t)x+ B{t)u 

y= C(t)x+ D(t)u 

w{l<+^) = F(k)w(k) + G{k) y(k) 

u{k) = H{k)w{k) + Q(k)y(k) 

y{t ) 

\ 

A/D 

yik) 

FIGURE 2.4 
Digital control system 

The plant is described by the equations 

X = A(t)x + B(t)u 

y = C(t)x + D(t)u, 

(7.34a) 

(7.34b) 

where all symbols in (7.34a), (7.34b) are defined as in (6.1a), (6.1b) and where we 
assume that ^ > ^ > 0. 

The subsystem ^2 accepts the continuous-time signal y{t) as its input and it 
produces the piecewise continuous-time signal u(t) as its output, where t ^ to. The 
continuous-time signal y is converted into a discrete-time signal {y(k)}, k> k{)> 
0, k, ko E Z, by means of an analog-to-digital (A/D) converter and is processed ac
cording to a control algorithm given by the difference equations 

w(k + 1) = F(k)w(k) + G(k)y(k) 

u(k) = H(k)w(k) + Q(k)y(k), 

(7.35a) 

(7.35b) 



where the w(k), y{k), u{k) are real vectors and the F{k), G{k), H{k), and Q{k) are 
real matrices with a consistent set of dimensions. Finally, the discrete-time signal 
{u{k)}, ^ > ^0 — 0. is converted into the continuous-time signal u by means of a 
digital-to-analog (D/A) converter. To simplify our discussion, we assume in the fol
lowing that 0̂ = t]^^. 

An (ideal) A/D converter is a device that has as input a continuous-time signal, 
in our case j , and as output a sequence of real numbers, in our case {y{k)}, k = 
k{), ko + \,..., determined by the relation 

y{k) = y(tk). (7.36) 

In other words, the (ideal) A/D converter is a device that samples an input sig
nal, in our case y(t), at times toJi,... producing the corresponding sequence 
{y(tol y(hl •' •}• 

A D/A converter is a device that has as input a discrete-time signal, in our case 
the sequence {u{k)}, k = ki^, k^ + \,..,, and as output a continuous-time signal, in 
our case w, determined by the relation 

u{t) = u(k), tk^ t < tk+h k = ko, ko -\- I,,... (7.37) 

In other words, the D/A converter is a device that keeps its output constant at the last 
value of the sequence entered. We also call such a device a zero-order hold. 

The system of Fig. 2.4, as described above, is an example of a sampled-data 
system, since it involves truly sampled data (i.e., sampled signals), making use of 
an ideal A/D converter. In practice the digital controller ^2 uses digital signals as 
variables. In the scalar case, such signals are represented by real-valued sequences 
whose numbers belong to a subset ofR consisting of a discrete set of points. (In the 
vector case, the previous statement applies to the components of the vector.) Specif
ically, in the present case, after the signal y{t) has been sampled, it must be quan
tized (or digitized) to yield a digital signal, since only such signals are representable 
in a digital computer. If a computer uses, e.g., 8-bit words, then we can represent 
2^ = 256 distinct levels for a variable, which determine the signal quantization. By 
way of a specific example, if we expect in the representation of a function a signal 
that varies from 9 to 25 volts, we may choose a 0.1-volt quantization step. Then 2.3 
and 2.4 volts are represented by two different numbers (quantization levels); how
ever, 2.315, 2.308, and 2.3 are all represented by the bit combination corresponding 
to 2.3. Quantization is an approximation, and for short wordlengths may lead to sig
nificant errors. Problems associated with quantization effects will not be addressed 
in this book. 

In addition to being a sampled-data system, the system represented by Eqs. 
(7.34) to (7.37) constitutes a hybrid system as well, since it involves descriptions 
given by ordinary differential equations and ordinary difference equations. The anal
ysis and synthesis of such systems can be simplified appreciably by replacing the 
description of subsystem Si (the plant) by a set of ordinary difference equations, 
valid only at discrete points in time t^, k = 0, 1, 2, [In terms of the blocks of 
Fig. 2.4, this corresponds to considering the plant Si, together with the D/A and A/D 
devices, to obtain a system with input U(k) and output y(k), as shown in Fig. 2.5.] 
To accomplish this, we invoke the variation of constants formula in (7.34a) to obtain 

x(t) = ^(tJkXh) + I ^(t,T)B{T)u(T)dT, (7.38) 
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u(k)^ 
D/A ^(0 x=A(t)x+ B(t)u 

y= C(t)x+ D(t)u 

y(t) A/D y(k) 

FIGURE 2.5 
System described by (7.40) and (7.43) 

where the notation ^{t,tk,x{tk)) = x{t) has been used. Since the input u{t) is the 
output of the zero-order hold device (the D/A converter), given by (131), we obtain 
from (7.38) the expression 

:^{tk+i)=^{tk+htk)x{tk)- / 0(f^+i,T)5(T)JT 
Jtj, 

u{tk). (7.39) 

Since x{k) = x{tk) and u{k) = u{tk), we obtain a discrete-time version of the state 
equation for the plant, given by 

x{k^l) =A{k)x{k)+B{k)u{k), (7.40) 

where 

^{tk+i,T)B{T)dT. 
(7.41) 

Next, we assume that the output of the plant is sampled at instants ?[ that do not 
necessarily coincide with the instants t^ at which the input to the plant is adjusted, 
and we assume that h <t'i^< f^+i. Then (7.34) and (7.38) yield 

y{t'k)=c{ti)^it'„tk)x{tk)- C(t',)f''0{tiT)B{T)d, 
Jth 

u{tk)+D{t'k)u{tk). (7.42) 

Defining y{k) = y{t'j^, we obtain from (7.42), 

y{k)=C{k)x{k) + D{k)u{k), 

where C{k) ^ C{t',)^{ify) 

D{k)^C{t',) f'^{t[,x)B{x)dx + D{t'^. 

(7.43) 

(7.44) 

Summarizing, (7.40) and (7.43) constitute a state-space representation, valid at 
discrete points in time, of the plant [given by (7.34a)] and including the A/D and 
D/A devices [given by (7.36) and (7.37); see Fig. 2.5]. Furthermore, the entire hybrid 
system of Fig. 2.4, valid at discrete points in time, can now be represented by Eqs. 
(7.40), (7.43), (7.35a), and (7.35b). 

We now turn briefly to the case of the time-invariant plant, where A{t) = 
A^B{t) = 5,C{t) = C, and D{t) = D, and we assume that f/.+i —tk = T and tj^ — tk = a 
for alU = 0,1,2, . . . . Then the expressions given in (7.40), (7.41), (7.43), and (7.44) 
assume the form 

x{k+l)=Ax{k)^Bu{k) 

y{k)=Cx{k)+Du{k), 

(7.45a) 

(7.45b) 



where A = €"",8 = „AT dT\B, 

C = Ce^" , D -^ij?"-dr \B + D. (7.46) 

If t[ = tk, or a = 0 , then C = C stnd D = D. 
In the preceding, T is called the sampling period and 1/T is called the sampling 

rate. Sampled-data systems are treated in great detail in texts dealing with digital 
control systems and with digital signal processing. 

EXAMPLE 7.6. In the control system of Fig. 2.4, let 

A = B = C = [1,0], D = 0, 

let T denote the sampling period, and assume that a = 0. The discrete-time state-space 
representation of the plant, preceded by a zero-order hold (D/A converter) and followed 
by a sampler [an (ideal) A/D converter], both sampling at a rate of 1/r, is given by 
x(k + 1) = Ax(k) + Bu(k\ y(k) = Cx{k\ where 

A = „AT -m A^ = 

B^[\ e^^dr\B = 

2 

T 

[1,0]. 

0 

c =^ c 

dr 

T = 

The transfer function (relating y to u) is given by 

H(z) = C(zl - Ay^B 

= [1,0] 

[1,0] 

z - 1 
0 

1 

1 
2 
T 

iz-l) 

0 

T^ (z + 1) 

(z - ly 
1 

7^ 
2 
T 

2 (z-ir 
The transfer function of the continuous-time system (continuous-time description of the 
plant) is determined to be H(s) = C(sl - A)~^B = IIs^, the double integrator. 

The behavior of the system between the discrete instants, t,tk — t < tk+i, can be 
determined by using (7.38), letting x(tk) = x{k) and u(tk) = u{k). • 

An interesting observation, useful when calculating A and B, is that both can be 

expressedintermsofas ingleser ies . In particular, A = e^^ = / -hrA-h(r^/2!)A^H-

• • • = / -h TA'i^iTX where ^ ( 7 ) = / + ( r /2!)A + {T^IV.)A^ -h • • • = X^-=o(T^ -

( j + l ) ! )AAThenJ5 - {\^ e^'dr)B = (Z^J=Q{TJ^^IU + iyW)B = T^(T)BAf 

^ ( r ) is determined first, then both A and B can easily be calculated. 
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EXAMPLE 7.7. In Example 7.6, ^(7) = I + TA 

\T^I2 

1 T 
0 1 

. Therefore, A = I + 

TA^iT) = 1 T 
0 1 

and B = 7^(7)5 = , as expected. 

E. Modes and Asymptotic Behavior of Time-Invariant Systems 

As in the case of continuous-time systems, we study in this subsection the qualitative 
behavior of the solutions of linear, autonomous, homogeneous ordinary difference 
equations 

x{k + 1) = Ax{k) (7.47) 

in terms of the modes of such systems, where A G R^^^ and x{k) G R^ for every 
k ^Z^. From before, the unique solution of (7.47) satisfying x(0) = XQ is given by 

(f>{k, 0, xo) = A^jco. (7.48) 

Let Ai , . . . , Ao-, denote the a distinct eigenvalues of A, where A/ with / = 1 , . . . , cr, 
is assumed to be repeated nt times so that Xr= i ^i = n. Then 

det(zI-A) = f](z-AO"^ (7.49) 
i = i 

To introduce the modes for (7.47), we first derive the expressions 

Â  = X 
/ = 1 

m-i 
AioXfp{k) + 2 Auk(k - ! ) • • • ( / : - / + l)\t^p(k - /) 

/ = i 

- X[^^o^'/^(^) + ^nfcAf-V(^ - 1) 
i = l 

where 

+ • • • + Ai^n,-i)k(k -l)'"(k-ni + 2)Af-^"^-iV(^ " m + 1)], 

1 1 
A.7 = \im{[(z-Xir(zI-Ar'] U(ni-l-l) }. 

(7.50) 

(7.51) 
II (Hi- l - / ) !z- .A, 

In (7.51), ['l̂ ^̂  denotes the ^th derivative with respect to z, and in (7.50), p(k) denotes 
the unit step [i.e., p(k) = 0 for fc < 0 and p(k) = 1 for fc > 0]. Note that if an 
eigenvalue Â  of A is zero, then (7.50) must be modified. In this case, 

fii-i 

^Aul\8(k-l) (7.52) 
/=o 

are the terms in (7.50) corresponding to the zero eigenvalue. 
To prove (7.50), (7.51), we proceed as in the proof of (4.36), (4.37). We recall 

that {A^} = '^'^[zizl - A)~^] and we use the partial fraction expansion method to 
determine the z-transform. In particular, as in the proof of (4.36), (4.37), we can 
readily verify that 

( = 1 / = 0 

(7.53) 



e-1 [z(z-AO-^'+'^] = 

where the An are given in (7.51). We now take the inverse z-transform of both sides 
of (7.53). We first notice that 

r'[z-\i - Xiz-'r^'-^'h = f(k - i)p(k - /) 
for k> I, 
otherwise. 
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f(k - I) 
0 

Referring to Tables 7.1 and 7.2 we note that f(k)p(k) = ^"^[(1 - XiZ'^y^^-^^^] = 
[l/n(k + 1) • • • (yfc + /)]Af for Ai # 0 and / ^ 1. Therefore, ^-^[llziz - A/)-^^+i)] = 
llf{k-l)p(k-l) = k(k-l)'"(k-l + l)Xf-Kl^ l .For/ = 0 , w e h a v e S - i [ ( l -
A/z"^)~^] = Af. This shows that (7.50) is true when A, # 0. Finally, if A, = 0, we 
note that ^-^[l\z~^] = l\8(k - /), which implies (7.52). 

Note that one can derive several alternative but equivalent expressions for (7.50) 
that correspond to different ways of determining the inverse z-transform of z(zl — 
A)~^ or of determining A^ via some other methods. 

In complete analogy with the continuous-time case, we call the terms 
Aiik(k - I)' "(k - I -\- l)Xf~^ the modes of the system (7.47). There are ni modes 
corresponding to the eigenvalues A/, / = 0 , . . . , n̂  - 1, and the system (7.47) has a 
total of/I modes. 

It is particularly interesting to study the matrix A^, k = 0,1,2,... using the Jor
dan canonical form of A, i.e., / = P~^AP, where the similarity transformation P 
is constructed by using the generalized eigenvectors of A. We recall once more that 
/ = diag[Ji,..., J(j\=diag [/j], where each rit X Ui block // corresponds to the 
eigenvalue A/ and where, in turn, Ji = diaglJn,..., ///.] with Jfj being smaller 
square blocks, the dimensions of which depend on the length of the chains of gen-
erahzed eigenvectors corresponding to Ji (refer to Subsections 2.3G and 2.4B). Let 
Jij denote a typical Jordan canonical form block. We shall investigate the matrix J^j, 
since A^ - p-^j'^P = P'^ diag[jfj]P. 

Let Jij = 

Xi 1 0 

0 A/ '•. 

0 0 
1 

A/ 

= A// + Â ,-, (7.54) 
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where Ni = 

0 1 
0 0 

0 0 

and where we assume that Jij is at X t matrix. Then 

(jijr = (A,-/ + NiY 

^ ( ^ - l ) v i - 2 ^ r 2 = Af/ + kXf-'^Ni + '^ ' ' , , ^'kf'-Nf + + kXiNf' + Nf. (7.55) 
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Now since Â^̂  = 0 for k ^ t, a. typical t X t Jordan block Jtj will generate 
terms that involve only the scalars Af, Af~^ . . . , Xf~^^~^\ Since the largest pos
sible block associated with the eigenvalue A/ is of dimension nt X ut, the expression 
of A^ in (7.50) should involve at most the terms Af, Xf~\ ..., Af"^''''^^ which it 
does. 

The above enables us to prove the following useful fact: given A^R^^^, there 
exists an integer k> 0 such that 

A^ = 0 (7.56) 

if and only if all the eigenvalues A/ of A are at the origin. Furthermore, the smallest k 
for which (7.56) holds is equal to the dimension of the largest block Jij of the Jordan 
canonical form of A. 

The second part of the above assertion follows readily from (7.55). We ask the 
reader to prove the first part of the assertion. 

We conclude by observing that when all n eigenvalues A/ of A are distinct, 
then 

n 

A* = ^ A / A f , y t> 0, (7.57) 
i = \ 

where A,- = lim[(z - A / ) ( z / - A r M - (7.58) 

If \i = 0, we use 8(k), the unit pulse, in place of Af in (7.57). This result is straight
forward, in view of (7.50), (7.51). 

0 n 
EXAMPLE 7.8. In (7.47) we let A = 

-'4 1 
The eigenvalues of A are Ai _ 1 

and therefore, rii = 2 and a = I. Applying (7.50), (7.51), we obtain 

Aio\'lp(k) + AnkX\-'p(k-l) 

1 0 
0 1 

r_ 1 
P(k) + 

1 

i 1 
4 2 

(k) 
k-i 

p(k - 1). 

EXAMPLE 7.9. In (7.47) we let A = 
-1 2 
0 1 

. The eigenvalues of A are A1 = - 1 , 

A2 = 1 (so that a = 2). Applying (7.57), (7.58), we obtain 

ik ^ AioAj + A20A2 k _ 1 - 1 
0 0 ( - 1 ) ' + 

0 1 
0 1 

k^O. 

Note that this same result was obtained by an entirely different method in Example 7.3. 

EXAMPLE 7.10. In (7.47) we let A = 
[0 1 

[0 - 1 

0, A2 = - 1 and o- = 2. Applying (7.57), (7.58), we obtain 

. The eigenvalues of A are Ai 

1 
Ai = l i m [ z ( z / - A ) - i ] = , ^ 

z + 1 1 
0 z 

A2 = lim ( z + D -
1 

and 

z(z + 1) 

A^ = Ai8(k) + A2(-lf = 

z + 1 1 
0 z 

1 1 
0 0 

8{k) + 

z = 0 

0 - 1 

0 1 

0 - 1 " 
0 1 

1 1 
0 0 

{-l)\k^ 0. 



As in the case of continuous-time systems described by (L), various notions 
of stability of an equilibrium for discrete-time systems described by linear, au
tonomous, homogeneous ordinary difference equations (7.47) will be studied in de
tail in Chapter 6. If 4>(k, 0, Xe) denotes the solution of system (7.47) with x(0) = Xe, 
then Xe is said to be an equilibrium of (7.47) if (pik, 0, Xe) = Xe for all k> 0. 
Clearly, Xe = 0 is an equilibrium of (7.47). In discussing the qualitative properties, 
it is customary to speak, somewhat informally, of the stability properties of (7.47), 
rather than the stability properties of the equilibrium x^ = 0 of system (7.47). 

The concepts of stability, asymptotic stability, and instability of system (7.47) 
are now defined in an identical manner done in Subsection 2.4C for system (L), 
except that in this case continuous time t{t E 7?+) is replaced by discrete time 
k{k G Z+). 

By inspecting the modes of system (7.47) [given by (7.50) and (7.51)], we can 
readily establish the following stability criteria: 

1. The system (7.47) is asymptotically stable if and only if all eigenvalues of A are 
within the unit circle of the complex plane (i.e., |Ay| < 1, j = 1 , . . . , a). 

2. The system (7.47) is stable if and only if |Aj| < 1, j = 1 , . . . , cr, and for all 
eigenvalues with \Xj\ = 1 having multiplicity rij > 1, it is true that 

lim [[z - XjTKzI - Ar^]^^J-^-^^] = 0 
z-^Aj 

for/ = l,..,,nj- 1. (7.59) 

3. The system (7.47) is unstable if and only if (2) is not true. 

EXAMPLE?.11. The system given in Example 7.8 is asymptotically stable. The system 
given in Example 7.9 is stable. In particular, note that the solution (j){k, 0, x(0)) = A x̂(O) 
for Example 7.9 is bounded. • 

When the eigenvalues A/ of A are distinct, then as in the continuous-time case 
[refer to (4.42), (4.43)] we can readily show that 
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A'=Y.^j4^J='^J^J^ ^ - 0 , (7.60) 

where the vy and Vj are right and left eigenvectors of A corresponding to Ay, respec
tively. If Ay = 0, we use 8{k), the unit pulse, in place of Â  in (7.60). 

In proving (7.60), we use the same approach as in the proof of (4.42), (4.43). We 
have A^ = Qdiag [\\,..., A^]g~^ where the columns of Q are the n right eigen
vectors and the rows of Q~^ are the n left eigenvectors of A. 

As in the continuous-time case [system (L)], the initial condition x(0) for system 
(7.47) can be selected to be colinear with the eigenvector vt to eliminate from the 
solution of (7.47) all modes except the ones involving Af. 

EXAMPLE 7.12. As in Example 7.9, we let A = 

1,A2 

. Corresponding to the eigen

values Ai = 
(1,1)^ VI = (1, 

- 1 21 
0 ij 

1, we have the right and left eigenvectors vi = (1, 0)^, V2 
1), andv2 = (0,1). Then 

V I V I A [ + V2V2A2 

"1 

0 

- 1 

0. 
(-1)^ + 

0 I 

0 1. 
(1)*, yfc> 0. 



190 Choose x(0) = a(l, 0)^ - avi with a 9^ 0. Then 

which contains only the mode associated with Ai = - 1 . 

Linear Systems 

We conclude the discussion of modes and asymptotic behavior by briefly con
sidering the state equation 

x(k + 1) = Ax(k) + Bu(k), (7.61) 

where x, u, A, and B are as defined in (7.2a). Taking the 2X-transform of both sides 
of (7.61) and rearranging yields 

x{z) = z(zl - Ar^x(0) + (zl - Ar^Bu(z). (7.62) 

By taking the inverse 2-transform of (7.62), we see that the solution cf) of (7.61) is 
the sum of modes that correspond to the singularities or poles of z(zl - A)~^x(0) 
and of (z/ - A)~^Bu{z). If in particular, system (7.47) is asymptotically stable [i.e., 
for x{k + 1) = Ax{k), all eigenvalues Â  of A are such that \Xj\ < \, j = \,.. .,n\ 
and if u{k) in (7.61) is bounded [i.e., there is an M such that \ui{k)\ < M for all 
k> 0,i = I,..., m], then it is easily seen that the solutions of (7.61) are bounded 
as well. 

2.8 
AN IMPORTANT COMMENT ON NOTATION 

For the most part Chapters 1 and 2 are concerned with the basic (qualitative) proper
ties of systems of first-order ordinary differential equations, such as, e.g., the system 
of equations given by 

X = Ax, (8.1) 

where x E. R^ and A G fi^xn^ ^^ ^^^ arguments and proofs to establish various prop
erties for such systems, we highlighted the solutions by using the (/)-notation. Thus, 
the unique solution of (8.1) for a given set of initial data (̂ Q, XQ) was written as 
^{t, to, XQ) with </)( ,̂ to, xo) = XQ. A similar notation was used in the case of the 
equation given by 

X = fit, X) (8.2) 

and the equations given by 

X = A(t)x + B(t)u (8.3a) 

y = C(t)x + D(t)u, (8.3b) 

where in (8.2) and in (8.3a), (8.3b) all symbols are defined as in (E) (see Chapter 1) 
and as in (6.1a), (6.1b) of this chapter, respectively. 

In the study of control systems such as system (8.3a), (8.3b), the center of atten
tion is usually the control input u and the resulting evolution of the system state in 
the state-space and the system output. In the development of control systems theory, 
the x-notation has been adopted to express the solutions of systems. Thus, the solution 



of (8.3a) is denoted by x(t) [or x(t, to, XQ) when to and XQ are to be emphasized] and 
the evolution of the system output y in (8.3b) is denoted by y(t). In all subsequent 
chapters, except Chapter 6, we will also follow this practice, employing the usual 
notation utilized in the control systems literature. In Chapter 6, which is concerned 
with the stability properties of systems, we will use the (/)-notation when studying 
the Lyapunov stability of an equilibrium [such as system (8.1)] and the x-notation 
when investigating the input-output properties of control systems [such as system 
(8.3a), (8.3b)]. 
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2.9 
SUMMARY 

In this chapter the response of linear systems to specific inputs (subject to partic
ular initial conditions) was studied in detail. State-space descriptions, as well as 
impulse (resp., unit pulse) response descriptions and transfer functions were used. 
Continuous-time, time-varying, and time-invariant systems characterized by state-
space descriptions were studied first. The time-invariant case was covered in a 
separate section (Section 2.4) to provide flexibility in the coverage of the material. 
Similarly, discrete-time systems were treated in a separate section (Section 2.7). 
Background material on linear algebra for the present and subsequent chapters was 
presented in Section 2.2. 

In greater detail, the solutions of the homogeneous state equation x = A(t)x 
were characterized first, using fundamental matrices and the state transition matrix 
0(/, to) in Section 2.3. The solutions of the nonhomogeneous state equations x = 
A(t)x + B(t)u were derived in the same section. 

For time-varying systems, the state transition matrix ^(t, to) can be determined 
in closed form only in special cases. One such case pertains to time-invariant sys
tems X = Ax, where 0(r, ô) = ^ (̂̂ -̂ o) Methods of determining the matrix expo
nential e^^ were addressed in Section 2.4. In addition, the asymptotic behavior and 
the stability of an equilibrium of linear time-invariant systems x = Ax (in terms of 
modes and eigenvalues) were also addressed in Section 2.4. Linear periodic systems 
X = A(t)x, A{t) = A{t + T),t ^ R, were treated in Section 2.5. 

Impulse response representations (resp., transfer function representations) of 
linear systems, in terms of state equation and output equation parameters were dis
cussed in Section 2.6. In addition, equivalence of state-space representations were 
treated in Section 2.6. 

Discrete-time systems represented by state-space descriptions and by the unit 
pulse response descriptions we addressed in Section 2.7. Results analogous to the 
continuous-time case were derived. Discrete-time systems arise frequently in the 
description of sampled-data systems. Such systems were briefly treated in Subsec
tion 2.7D. 

2.10 
NOTES 

As mentioned earlier in Chapter 1, standard references on linear algebra and matrix 
theory include Birkhoff and McLane [2], Halmos [7], and Gantmacher [6]. For more 



192 recent texts on this subject, refer to Strang [16] and Michel and Herget [10]. Our 
Linear Systems presentation in Section 2.2 is in the spirit of the coverage given in [10]. 

Our treatment of basic aspects of linear ordinary differential equations in Sec
tions 2.3, 2.4, and 2.5 follows along lines similar to the development of this subject 
given in Miller and Michel [11]. 

State-space and input-output representations of continuous-time systems and 
discrete-time systems, addressed in Sections 2.6 and 2.7, respectively, are covered 
in a variety of textbooks, including Kailath [9], Chen [4], Brockett [3], DeCarlo [5], 
Rugh [14], and others. For further material on sampled-data systems, refer to Astrom 
and Wittenmark [1] and to the early works on this subject that include Jury [8] and 
Ragazzini and Franklin [12]. 

Detailed treatments of the Laplace transform and the z-transform, discussed 
briefly in Sections 2.4 and 2.7, respectively, can be found in numerous texts on sig
nals and linear systems, control systems, and signal processing. 

The state representation of systems received wide acceptance in systems theory 
beginning in the late 1950s. This was primarily due to the work of R. E. Kalman 
and others in filtering theory and quadratic control theory and to the work of ap
plied mathematicians concerned with the stability theory of dynamical systems. For 
comments and extensive references on some of the early contributions in these ar
eas, refer to Kailath [9] and Sontag [15]. Of course, differential equations have been 
used to describe the dynamical behavior of artificial systems for many years. For 
example, in 1868 J. C. Maxwell presented a complete treatment of the behavior of 
devices that regulate the steam pressure in steam engines called flyball governors 
(Watt governors) to explain certain phenomena. 

The use of state-space representations in the systems and control area opened the 
way for the systematic study of systems with multi-inputs and multi-outputs. Since 
the 1960s an alternative description is also being used to characterize time-invariant 
MIMO control systems that involves usage of polynomial matrices or differential 
operators. Some of the original references on this approach include Rosenbrock [13] 
and Wolovich [17]. This method, which corresponds to system descriptions by means 
of higher order ordinary differential equations (rather than systems of first-order ordi
nary differential equations, as is the case in the state-space description) is addressed 
in Chapter 7. 
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2.12 
EXERCISES 

2.1. (a) Let {V,F) = (R^, R). Determine the representation of v = (1, 4, 0)^ with respect 
to the basis v̂  = (1, - 1 , 0)^, v^ = (1, 0, - 1 )^ , and v̂  = (0,1, 0)^. 

(b) Let V = F^ and let F be the field of rational functions. Determine the representa
tion of V = (̂s" + 2, 1/5, - 2 ) ^ with respect to the basis {v^ v ,̂ v^} given in (a). 

2.2. Find the relationship between the two bases {v\ v ,̂ v^} and {v^ v ,̂ v^} (i.e., find 
the matrix of {v^ v ,̂ v^} with respect to {v\ v ,̂ v^}), where v̂  = (2, 1,0)^, v^ = 
( 1 , 0 , - l ) ^ v 3 = ( l , 0 , 0 / , v i = ( l , 0 ,0 f ,v2 ^ (0 ,1 , -1 ) , and v̂  = (0,1,1). De
termine the representation of the vector ^2 = (0, 1,0)^ with respect to both of the 
above bases. 

2.3. Let a E: R he fixed. Show that the set of all vectors (x, ax)^, x E R, determines a 
vector space of dimension one over F = R, where vector addition and multiplication 
of vectors by scalars is defined in the usual manner. Determine a basis for this space. 

2.4. Show that the set of all real nX n matrices with the usual operation of matrix addition 
and the usual operation of multiplication of matrices by scalars constitutes a vector 
space over the reals [denoted by (/?"^", R)]. Determine the dimension and a basis for 
this space. Is the above statement still true if /?"^" is replaced by R^^^^ the set of 
real mX n matrices? Is the above statement still true if i?"^" is replaced by the set of 
nonsingular matrices? Justify your answers. 

2.5. Let v̂  = (s'^, s)^ and v^ = (1,1/^)^. Is the set {v\ v^} hnearly independent over the 
field of rational functions? Is it linearly independent over the field of real numbers? 

2.6. Determine the rank of the following matrices, carefully specifying the field: 

(a) 
J 

- 1 
(b) 

1 4 
7 0 

(c) 

s + 4 - 2 
^ 2 - 1 6 

0 2s+ 3 
s -s + 4 

(d) 
s+ 1 

where j 
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2.7. Let V and W be vector spaces over the same field F and let ^2/ : V ^ M̂  be a linear trans
formation. Show that if {^v^,..., ^v^} is a linearly independent set, then so is the set 
{ v \ . . . , v"}. Give an example to show that the converse of this statement is not true. 

2.8. Let V and W be vector spaces over the same field F and lot ^ :V ^W ho 3. linear 
transformation. Show that ^2/ is a one-to-one mapping if and only if J^{s^) = {0}. 

2.9. Let ^ = [5,A5,. . . ,A"-i5] and 

C 
CA 

CA"" 

where A G /?"><",5 G Ẑ ^̂ "̂', and C G /?̂ ><". 
(a) Prove that if 7]̂  G ^ ( ^ ) , then AT]^ G ^ ( ^ ) . (7]^ denotes the coordinate 

representation of a vector v̂  G /?" with respect to the natural basis {^1,..., ^„}.) 
(b) Prove that if 7]i G ^ ( ^ ) , then A7]i G ̂ ( ^ ) . 

The above shows that J^{^) and ^ ( ' ^ ) are invariant vector spaces under a transfor
mation s^ that is represented by the matrix A. 

2.10. Show that a b 

c d 

d 
-c a 

, where /S. = ad — bc^O. 

2.11. Determine the determinant, the (classical) adjoint, and the inverse of the matrix 

45+3 

3 s2 -2 

A 5 
O D 

2.12. Determine the matrix X in 

and Z) are nonsingular. Also, determine the matrix 

"A-i X 
O D-\ 

A O 

where it is assumed that A 

1 

C D 

2.13. (a) Show that J^r 
A O 
C Z) 

{detA){det D), where A and Z) are square matrices. 

Hint: For Z) nonsingular, use the identity 

(b) If A is nonsingular, show that 

A O 
C D 

A O 
O D 

I O 
D-^C I 

det 

Hint: Note that 
A B 
C D 

A B 
C D 

A O 
O I 

(detA)det(D-CA-^B). 

I A-^B 
C D 

and 
/ O 

-C I 
I A-^B 
C D 

\I A-^B 
[o D-CA-^B\ 

(c) In part (b), derive an expression for the case when it is known only that D is 
nonsingular. 

2.14. Show that (̂̂ 1+^2)̂  = e^i^e^^t if A1A2 = A2A1. 



2.15. Determine the characteristic and the minimal polynomials of the matrices 

1 1 0 0 
0 1 1 0 
0 0 1 0 
0 0 0 1 

1 1 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

A3 = 

Hint: These matrices are in Jordan canonical form. 

1 1 0 0 
0 1 0 0 
0 0 1 1 
0 0 0 1 

A4 = h 
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2.16. Determine the Jordan canonical form of the matrices 

Ax = 

"2 0 
1 2 

.2 0 

0' 
0 
2. 

A2 = 

"2 
1 

.0 

0 0" 
2 0 
1 2_ 

A3 = 

"2 
0 

.0 

0 0" 
2 0 
1 2_ 

2.17. Show that there exists a similarity transformation matrix P such that 

PAP-^ = Ar = 

if and only if there exists a vector b G R^ such that the rank of [b, Ab, 
i.e., p[/7,AZ?, ...,A"-iZ7] = n. 

0 
0 

0 
-ao 

1 
0 

0 
- a i 

0 •• 
1 

0 
-a2 •• 

0 
0 

1 

• -Oin-l 

^b] isn, 

2.18, 

2.19. 

Show that if A/ is an eigenvalue of the companion matrix Ac given in Exercise 2.17, 
then a corresponding eigenvector is v' = (1, A/,.. . , Af~^)^. 

Let A/ be an eigenvalue of a matrix A and let v' be a corresponding eigenvector. Let 
/(A) = S l = o ^k^^ be a polynomial with real coefficients. Show that /(A^) is an eigen
value of the matrix function / (A) = ^[==oOCkA^. Determine an eigenvector corre
sponding to /(A/). 

2.20. For the matrices 

Ai = 

"1 2 
0 0 

.0 0 

0" 
2 
1. 

and A2 = 

0 1 0 0 
0 0 1 0 
0 0 0 1 
0 0 0 0 

determine the matrices A}"", A^"", g^l^ and e^^\ t E /? 

2.21. Determine some bases for the range and null spaces of the matrices 

Ai = [1 0 1], Ao = 
ri 
0 

_i 

1] 
0 
0. 

and 
"3 
3 

.3 

2 
2 
2 

r 
1 
1. 

2.22. 

2.23. 

Determine all solutions of the equation Arj = v, where 
ro 1 1 2 -11 

A = 1 2 3 4 - 1 and 
[2 0 2 0 2J 

Let (j)x{t) = e~^ for ^ G [-1,1] and let 

^ G [ - 1 , 0 ] , 
<t>2{t) = 

t G [0, 1]. 
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2.24. 

2.25. 

2.26. 

Show that (̂ 1 and (/)2 are Hnearly independent over the field of the real numbers on 
[-1,1] , but not on [0,1]. 

Remark: This example illustrates the fact that linear independence of time func
tions over a time interval [a, b] does not necessarily imply linear independence over a 
time subinterval [a\b'] C [a, b]. 

Show that if two time functions (t)\(t), (f)2{t) are linearly independent over a field F on 
a time interval [a, b\ then they are linearly independent over F on any interval that 
contains [a, Z?]. Give a specific example. 

Prove that for A G C[R, /?«><«], (3.14) is true if and only if (3.21) is true for all 
t,T^R. 

Determine the state transition matrix ^{t, to) for (LH) with 

[0 01 
A(t) = 

t 0 

by (a) directly solving differential equations, (b) using the Peano-Baker series, and (c) 
using (3.15). 

2.27. 

2.28. 

Determine the state transition matrix ^{t, to) for {LH) with A{t) = 

mine in this case the solution for (LH) when x(l) = (1,1)^. 

/ 0 
1 t 

and deter-

Verify that (/>i(0 = (1/^^ - 1 / 0 ^ and <^2(0 = (2/t\ -llff are two solutions oi{LH) 
with 

4 2-

A(0 = 
0 

2.29, 

2.30. 

(a) Determine the state transition matrix ^(t, r) for this system. 
(b) Determine a solution (j) for this system that satisfies the initial conditions x(l) = 

Given is the system of first-order ordinary differential equations x = f-Ax, where A E 
^nxn ^^^ t Ei R. Determine the state transition matrix ^{t, to). Apply your answer to 

the specific case when t^A 2A ^ 0 
[2t^ -t\ 

Show that the two linear systems 

0 1 
2-t^ It 

and x(2) = t 1 
1 t 

x(̂ > ^ A2{t)x^^^ 

are equivalent state-space representations of the differential equation 

y - Ity - (2 - i')y = 0. 
(a) For which choice is it easier to compute the state transition matrix ^{t, toft For this 

case, compute ^{t, 0). 
(b) Determine the relation between x̂ ^̂  and y and between x^^^ and y. 

2.31. Using the Peano-Balcer series, show that when A(0 = A, then <l>(̂ , ^ ) = e^^^ ô). 



2.32. For {LH) with A{t) = determine lim^^oo (f){t, to, XQ) if x(0) = (0,1)^. This 
[ 0 - I j 

example shows that an attempt of trying to extend the concept of eigenvalue from a 
constant matrix A to a time-varying matrix A{t), for the purpose of characterizing the 
asymptotic behavior of time-varying systems (LH), will in general not work. 
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2.33. For the system 

X = A(t)x + B(t)u, (11.1) 

where all symbols are as defined in (6.1a), derive the variation of constants formula 
(3.10), using the change of variables z{t) = ^(to, t)x{t). 

2.34. For (11.1) with x(fo) = Xo, show under what conditions it is possible to determine M(r) 
so that (f){t, to, xo) = xo for all t > to. Use your result to find such u{t) for the particular 
case X = X + e~^u. 

2.35. Show that (d/dT)^(t, r) = -0 (^ , T)A(T) for all t,T^R. 

2.36. Determine the state transition matrix ^{t, to) for the system of equations x — 
e~^^Be^^x, where A E R^^^ and B G R^^^, Investigate the case when in particular 
AB = BA. 

2.37. The adjoint equation of (LH) is given by 

z -A(t)^z. (11.2) 

Let 0(r, to) and ^a(t, to) denote the state transition matrices of (LH) and its adjoint 
equation, respectively. Show that 0^(r, ô) = [^(to, t)V-

2.38. Consider the system described by 

A(t)x + B(t)u 

C(t)x, 

(11.3a) 

(11.3b) 

where all symbols are as in (6.1a), (6.1b) with D(t) = 0, and consider the adjoint equa
tion of (11.3a), (11.3b), given by 

z = -A(tfz + C(tYv 

w = B(tfz. 

(11.4a) 

(11.4b) 

(a) Let H(t, r) and Ha(t, r) denote the impulse response matrices of (11.3a), (11.3b) 
and (11.4a), (11.4b), respectively. Show that at the times when the impulse re
sponses are nonzero, they satisfy H(t, r) = Ha(r, tY. 

(b) If A(0 ^ A, B(t) ^ B, and C(t) ^ C, show that H(s) = -Ha(-sf, where H(s) 
and Ha(s) are the transfer matrices of (11.3a), (11.3b) and (11.4a), (11.4b), respec
tively. 

2.39. Show that if for (L//), 

A(t) = 
An(t) An(t) 

0 A22(0. 

where A\i(t), An(t), and A22(t) are submatrices of appropriate dimensions, then 

[C|>ll(^,^) Oi2(r,/o)l 
0 ^22(tjQ)\ 

^(t, to) 
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where ^uit) satisfies the matrix equation {d/dt)^ii(t,to) =Aii(t)^ii(t,to) and 
where the matrix ^uit^to) satisfies the equation {d/dt)^i2(t,to) =Aii(t) 
^n{t,to)+An{t)^22{t,to) with 012(^0,^0) = O. 

Use the above result to determine the state transition matrix 0(r, 0) for 

A(t) 

[1 
p 
[0 
1 
2 
0 
0 

- 1 
0 

4 
2 
0 

- 1 
- 1 

0 

e^n 
-ly 

10] 
0 

2] 

0" 
0 

- 2 

2.40. Compute e^^ for 

2.41. Given is the matrix 

(a) Determine e^\ using the different methods covered in this text. Discuss the 
advantages and disadvantages of these methods. 

(b) For system (L) let A be as given. Plot the components of the solution (p(t,to,xo) 
whenXQ = x(0) = (1,1,1)^ and XQ = x(0) = ( | , 1,0)^. Discuss the differences 
in these plots, if any. 

2.42. Show that for A: we have e^^ 
cos bt sinbt 

-sinbt cos bt 

2.43. Given is the system of equations 

withx(0) = ( l ,0)^and 

XI 
= 

- 1 0" 
0 1 .•^2. 

+ 
r 
1 

u{t)=p{t)-
ri, t 
\ 0 , e 

> 0 
elsewhere. 

Plot the components of the solution of (j). For different initial conditions x(0) 
{a,bY, investigate the changes in the asymptotic behavior of the solutions. 

2.44. The system (L) with A 
0 1 

-1 0 
is called the harmonic oscillator (refer to Chap

ter 1) because it has periodic solutions (\>{t) = (0i(^),02(O)^- Simultaneously, for 
the same values of t, plot (pi (t) along the horizontal axis and (p2(t) along the vertical 
axis in the X1-X2 plane to obtain a trajectory for this system for the specific initial 
condition x(0) =xo = (xi(0),X2(0))^ = (1,1)^. In plotting such trajectories, time t 
is viewed as a parameter, and arrows are used to indicate increasing time. When the 
horizontal axis corresponds to position and the vertical axis corresponds to velocity, 
the X1-X2 plane is called the phase plane and 0i,02 (resp. x\,X2) are called phase 
variables. 

2.45. There are various ways of obtaining the coefficients ai{t) given in (2.101). One of 
these was described in Subsection 2.2J. In the following, we present another method. 

We consider the relation {d/dt)e^^ = Ae^^ and we use (2.101) to obtain 
J n—\ n—2 

2ay(OA^"=A2ay(OA^" + a „ _ i ( 0 [ - K - i A " " ^ + --- + «iA + ao/)], 
dt 7=0 7=0 

(11.5) 



where the Cay ley-Hamilton Theorem was used. The coefficients ai(t) that satisfy 
this relation generate a matrix O = T.cCj(t)AJ that satisfies the equation O = AO. 
For O to equal e^\ we also require that 0(0) = Eaj(0)A^ = / (why?), 
(a) Show that the ccj{t) can be generated as solutions of the system of equations 

cco{t) 
ai{t) 

"0 0 
1 0 

0 0 1 

-ao 
—a\ 

-an-i 

cco{t) 
ai{t) 

(11.6) 

with ao(0) = l,aj(0) =OJ> 1. Also, show that the aj(t) generated via 
(11.6) are linearly independent, 

(b) Express the solution of the equation 

X =Ax-\-Bu, (11.7) 

where all symbols are as defined in (6.8a) and x(0) = XQ, in terms of aj(t). 
Also, show that for x(0) = XQ = 0,0(^,0,0) = 0(r) = JJ'jZQAJBwj{t), where 

Wj{t)=J^aj{t-T)u{T)dT. 

2.46. First, determine the solution (j) of 
XI 

= 
"0 1" 
1 0 

XI 

.•^2. 
withx(O) = (1,1)^. Next, 

determine the solution (j) of the above system for x(0) = a ( l , — l ) ^ , a e R,a 7^0, 
and discuss the properties of the two solutions. 

2.47. In Subsection 2.4C it is shown that when the n eigenvalues Xi of a real nxn matrix 
A are distinct, then e^^ = ̂ 4=1^1^^'^ where Â  = lims^^.[{s — Xi){sl — A)~^] = ViVi 
[refer to (4.39), (4.40), and (4.43)], where Vi,Vi are the right and left eigenvectors of 
A, respectively, corresponding to the eigenvalue Â . Show that (a) ELi^« ^ ^' where 
/ denotes the nxn identity matrix, (b) AAi = XiAi, (c) AiA = XiAi, (d) AiAj = dijAi, 
where 5ij = lif i = j and 5ij = 0 when iy^j. 

2.48. Show that two state-space representations {A,B,C,D} and {A,B,C,D} are zero-state 
equivalent if and only if CA^B = CA^B,k = 0,1 ,2 , . . . , and Z) = 5 . 

2.49. Find an equivalent time-invariant representation for the system described by the 
scalar differential equation x = sinltx. 

2.50. Consider the system 

x = Ax-\-Bu 

y = Cx, 

where all symbols are defined as in (6.8a), (6.8b) with D = 0. Let 

(11.7a) 

(11.7b) 

0 
3 
0 
0 

1 
0 
0 

- 2 

0 
0 
0 
0 

0 
2 
1 
0 

"0 
1 
0 
0 

0" 
0 
0 
1 

C = [1,0,1,0]. (11.8) 

(a) Find equivalent representations for system (11.7a), (11.7b), (11.8), given by 

x=Ax + Bu (11.9a) 

y = Cx, (11.9b) 
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2.51. 

2.54. 

2.55. 

where x = Px, when A is in (i) the Jordan canonical (or diagonal) form, and (ii) 
the companion form, 

(b) Determine the transfer function matrix for this system. 

Consider the system (11.7a), (11.7b) with B = 
(a) Let 

r - 1 1 0 " 
A = 0 - 1 0 

0 0 2 

0. 

and C = [1,1,1]. 

If possible, select x(0) in such a manner so that y(t) = te~\t > 0. 
(b) Determine conditions under which it is possible to assign y{t),t>0, using only 

the initial data x(0). 

2.52. Consider the system given by 

X2 
+ 0 

1 
7 

3'= [1,0] 

(a) Determine x(0) so that for u(t) = e~^\y{t) = ke~^\ where ^ is a real constant. 
Determine k for the present case. Notice that y{t) does not have any transient 
components. 

(b) Let u{t) = e^K Determine x(0) that will result in y{t) = ke^K Determine the 
conditions on a for this to be true. What is k in this case? 

2.53. Consider the system (11.7a), (11.7b) with 

0 
3 

-1 
1 

0" 
1 

1 
0 

, B = 

"0 
1 

0 
0 

0" 
0 

1 
0 

, c = 

(a) For x(0) = [1,1,1,1]^ and for u{t) = [1,1]^, ^ > 0, determine the solution 
(p(t,0,x(0)) and the output y(t) for this system and plot the components 
0 , (^O,x(O)) , /=l ,2 ,3 ,4and}; , (O, /=l ,2 . 

(b) Determine the transfer function matrix H{s) for this system. 

Consider the system 

x{k+l)=Ax{k)+Bu{k) 

y{k)=Cx{k), 

where all symbols are defined as in (7.2a), (7.2b) with Z) = 0. Let 

(11.10a) 

(11.10b) 

B C = [ l , l ] , 

and let x(0) = 0 and w(^) = 1, ^ > 0. 
(a) Determine {y{k)},k > 0, by working in the (i) time domain, and (ii) z-

transform domain, using the transfer function //(z). 
(b) If it is known that when u{k) = 0, then y(0) =y{\) = 1, can x(0) be uniquely 

determined? If your answer is affirmative, determine x(0). 

Consider y{z) = H{z)u{z) with transfer function H{z) = l / (z + 0.5). 
(a) Determine and plot the unit pulse response {h(k)}. 
(b) Determine and plot the unit step response. 



u(k) {i: 
(c) If 

^ = 1 , 2 , 

elsewhere, 

determine {y{k)} for k = 0,1,2,3, and 4 via (i) convolution, and (ii) the 
z-transform. Plot your answer. 

(d) For u{k) given in (c), determine y{k) as ^ ^ oo. 
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2.56. Consider the system (11.1 Oa) with x(0) = XQ and ^ > 0. Determine conditions under 
which there exists a sequence of inputs so that the state remains at XQ, i.e., so that 
x{k) = XQ for all ^ > 0. How is this input sequence determined? Apply your method 
to the specific case 

B- XQ 

2.57. For system (7.7) with x(0) = XQ and ^ > 0, it is desired to have the state go to the 
zero state for any initial condition XQ in at most n steps, i.e., we desire that x{k) = 0 
for any XQ = x(0) and for all k>n. 
(a) Derive conditions in terms of the eigenvalues of A under which the above is 

true. Determine the minimum number of steps under which the above behavior 
will be true. 

(b) For part (a), consider the specific cases 

0 1 0 
0 0 1 
0 0 0 

A2-
0 1 0 
0 0 0 
0 0 0 

, A3 
0 0 0 
0 0 1 
0 0 0 

Hint: Use the Jordan canonical form for A. Results of this type are important in 
dead-beat control, where it is desired that a system variable attain some desired 
value and settle at that value in a finite number of time steps. 

2.58. Consider the system representations given by 

-1 0 
0 - 2 

X(^+1) : x{k) + u(k), 

y{k) = [l,l]x{k) + u{k) 

and X(^+1) : 
0 1 

-2 - 3 
x{k) + u(k), 

y{k) = [l,0]x{k). 

Are these representations equivalent? Are they zero-input equivalent? 

2.59. For the Jordan block given by 

[Xi 1 0 ••• 0" 
0 A, 1 

0 0 ••• 
0 0 ••• 

0 
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where Jtj G R^^ 

'Af 

0 

0 

0 
0 

[, show that 

af-' 

Af 
0 

0 
0 

k{k - 1) 

Uf-i 

Af 

0 
0 

/:(fc-l)---a-f +2) ._(,_!) 

A* 

when ^ > ^ - 1. //m^; Use expression (7.55). 

2.60. Consider a continuous-time system described by the transfer function H{s) = 
4/(^2 + 25 + 2), i.e., })(5) = H(s)u(s). 
(a) Assume that the system is at rest and assume a unit step input, i.e., u(t) = 1, 

t > 0, u(t) = 0,t <0, Determine and plot y(t) for t > 0. 
(b) Obtain a discrete-time approximation for the above system by following these 

steps: (i) determine a realization of the form (11.7a), (11.7b) of H(s) (see Exer
cise 2.61); (ii) assuming a sampler and a zero-order hold with sampling period 7, 
use (7.46) to obtain a discrete-time system representation 

x(k +1) = Ax(k) + Bu(k) 

y(k) = Cx(k) + Du(k) 

(11.11a) 

(11.11b) 

and determine A, B, and C in terms of T. 
(c) For the unit step input, u(k) = 1 for /: > 0 and u(k) = 0 for /: < 0, determine and 

plot y(k), A: > 0, for different values of T, assuming the system is at rest. Compare 
y(k) with y(t) obtained in part (a). 

(d) Determine for (11.11 a) and (11.lib) the transfer function H(z) in terms of T. 
Note that H(z) = C(zl - Ay^B + D. It can be shown that H(z) = 
(1 - z~^M^-^[H(s)/sl^kT}. Verify this for the given H(s). 

2.61. Given a proper rational transfer function matrix H(s), the state-space representation 
{A, B, C, D} is called a realization of H(s) if H(s) = C(sl - Ay^B + D. Thus, the 
system (6.8a), (6.8b) is a realization of H(s) if its transfer function matrix is equal to 
H(s). Realizations of H(s) are studied at length in Chapter 5. When H(s) is scalar, it 
is straightforward to derive certain realizations, and in the following, we consider one 
such realization. 

Given a proper rational scalar transfer function H(s), let D = lim^^oo H(s) and let 

H,p(s) ^ H{s) - D 

a strictly proper rational function, 

(a) Let 

bn-lS'' + b\s + bo 

s^ + an-\s^ ^ + '" -\- a\s + ao 

0 
0 

0 
-ao 

1 
0 

0 
-ai 

0 •• 
1 

0 
-a2 " 

0 
0 

0 
• -Cln-2 

0 
0 

1 
~(^n-l_ 

B = 

0 
0 

0 
1 

C = [bo by bn-l] 



and show that {A,B,C,D} is indeed a reahzation of H{s). Also, show that {A = 203 
is a reahzation of H(^s) as well. These two state- CHAPTER 2: 

space representations are said to be in controller (companion) form and in observer Response of 
(companion) form, respectively (refer to Subsection 3.4D). Linear Systems 

(b) In particular find realizations in controller and observer form for (i) H{s) = \/s^, 
(ii) H{s) = (ol/{s^ + 2l^(OnS+(ol), and (iii) H{s) = {s+ 1)V(^ - 1)^-

2.62. Given are the systems 5*1 and 5*2 described by the equations 

X\=A\X\^B\U\ I X2=A2X2+B2U2 

y\ =C\x\+ D\ u\ \ y2= C2X2 + D2U2 
(^2), 

where all symbols are defined as in (6.8a), (6.8b) with an appropriate set of dimensions 
for all matrices and vectors. 
(a) Determine state-space representations for the following composite systems. 

(i) Systems connected in tandem or in series: 

u = u^ y = U2 

S2 
y2 = y 

FIGURE 2.6 
Two systems connected in series 

(ii) Systems connected in parallel: 

*J f 

u^ 

> 

U2 

S^ 

Sz 

yi 

f r s 
1 

y2 

FIGURE 2.7 
Two systems connected in parallel 

(iii) Systems connected in 3. feedback configuration: 

yi ô̂  
y2 

FIGURE 2.8 
Feedback configuration 

Hint: In each case, use 

U2 

as the state of the composite system. 

(b) If Hi(s) is the transfer function matrix of Si,i = 1 , 2 , determine the transfer func
tion matrix for each of the above composite systems in terms of the Hi{s),i = 1 , 2 . 
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2.63. Assume that H(s) is a p X m proper rational transfer function matrix. Expand H(s) in 
a Laurent series about the origin to obtain 

00 

H(s) = Ho+His'^ + ••• +HkS~^ + ••• = ^HkS'K 
k = 0 

The elements of the sequence {HQ, HI, ..., Hj,,...} are called the Markov parameters of 
the system. These parameters provide an alternative representation of the transfer func
tion matrix H(s) (why?), and they are useful in Realization Theory (refer to Chapter 5). 
(a) Show that the impulse response H(t, 0) can be expressed as 

H(t,0) == Ho8(t) + Y.Hk 
(k-l)\ 

In the following, we assume that the system in question is described by (6.8a), (6.8b). 
(b) Show that 

H(s) = D + C(sl - A)-^B = D + ^[CA^-^B}s~^, 

which shows that the elements of the sequence {D, CB, CAB,..., CA^ ^B,...} 
are the Markov parameters of the system, i.e., HQ = D and H^ = CA^~^B, 
)̂  = 1,2, . . . . 

(c) Show that 

H(s) = D+ -^C[Rn-is''-^ + • • • + i?i^ + Ro]B, 
a(s) 

where a(s) = s'^ + a„_i5"~^ + • • • + a\s + ao = det (si - A), the characteristic 
polynomial of A, and Rn-i = / , Rn-2 = ARn-i + a„ - i / = A + a „ - i / , . . . , Ro = 
A«-i +(2„_iA"-2 + . . . -^aiL 
Hint: WviiQ (si-A)-^ = [l/a(s)][adj (si - A)] = [l/a(s)][Rn-is^-^+ '" + Ris + 
RQ], and equate the coefficients of equal powers of s in the expression 

a(s)I = (si - AMn-is""'^ + '" -hRis-h Rol 

2.64. Given the transfer function of a system, suggest different methods to determine its 
Markov parameters. Apply these methods to the specific cases given by 

s 1 1 

H(s) = (s^ - l)/(s^ + 2 ^ + 1 ) and H(s) s+ 1 

0 

2.65. The frequency response matrix of a system described by its p X m transfer function 
matrix evaluated ats = jco, 

H(co) ^ H(s)l=j^, 

is a very useful means of characterizing a system, since typically it can be determined 
experimentally, and since control system specifications are frequently expressed in 
terms of the frequency responses of transfer functions. When the poles of H(s) have 
negative real parts, the system turns out to be bounded-input/bounded-output (BIBO) 
stable (refer to Chapter 6). Under these conditions, the frequency response H(co) has a 
clear physical meaning, and this fact can be used to determine H(a)) experimentally. 



(a) Consider a stable SISO system given by y{s) = H{s)u{s). Show that if u{t) = 
ksm{(Oot + (j)) with k constant, then y{t) at steady-state (i.e., after all transients 
have died out) is given by 

yss{t) = k\H{(Oo)\sm{(Oot + 0 + 0{(Oo)), 

where \H{Q))\ denotes the magnitude of //(co) and 6{Q)) = arg H{Q)) is the 
argument or phase of the complex quantity H{(o). 

From the above it follows that H{(o) completely characterizes the system 
response at steady-state (of a stable system) to a sinusoidal input. Since u{t) can 
be expressed in terms of a series of sinusoidal terms via a Fourier series, H{(o) 
characterizes the steady-state response of a stable system to any bounded input 
u{t). This physical interpretation does not apply when the system is not stable. 

(b) For the /? X m transfer function matrix H{s), consider the frequency response 
matrix H{(o) and extend the discussion of part (a) above to MIMO systems to 
give a physical interpretation of//(co). 
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2.66. Let A G /?"><" and B e /?"><'̂ . 
(a) Is it true that rank [B,AB,... ^A'^'^B] = rank [5,A5,. . . ,A"-i5,A"5]? Justify 

your answer. 
(b) Determine conditions under which rank [B,AB,.. .,A"^~^B] = rank [A5,. . . , 

A"~^5,A"5]. Hint: Use the Sylvester Rank Inequality, which relates the rank 
of the product of two matrices to the ranks of the individual matrices, 

rankX + rankY — n< rank(XY) < imn{rankX, rankY}, 

where X e /?̂ ><" and Y e /?"><'̂ . 

2.67. (Double integrator) (a) Plot the response of the double integrator of Example 7.6 to 
a unit step input. 
(b) Consider the discrete-time state-space representation of the double integrator of 

Example 7.6 for 7 = 0.5,1,5 sec and plot the unit step responses. 
(c) Compare your answers in (b) with your result in (a). 

2.68. (Economic model for national income) [D. G. Luenberger, Introduction to Dynamic 
Systems, Wiley, 1979.] A simple model describing the national income dynamics can 
be formulated in discrete times as follows. The national income y{k) in year k in terms 
of consumer expenditure c{k), private investment i{k), and government expenditure 
g{k) is assumed to be given by y{k) = c{k) + i{k) + g{k), where the interrelations 
between these quantities are specified by c (^+ 1) = ccy{k) and / (^+ 1) = ^[c{k — 
1) — c{k)\. The constant a is called the marginal propensity to consume, while /3 is a 
growth coefficient. Typically, 0 < a < 1 and /3 > 0. 

From these assumptions we obtain the difference equations c (^+ 1) = ac(^) + 
ai{k) -\- ag{k),i{k-\-1) = (Pa — P)c{k) -\-Pai{k) + /3ag{k), with discrete-time state-
space representation given by 

XI ( ^ + 1 ) 

X 2 ( ^ + l ) 
a a 

p{a-l) pa 

xi{k) 

X2{k) 
a 

pa 
u{k) 

y{k) = [\A] 
XI (k) 

X2{k) 
+ u{k), 

where x\ {k) = 
values (i) a = 

c{k),X2{k) = i{k), and u{k) = g{k). Let the parameters a,/3 take the 
0.75,/3 = 1 (ii) a = 0.75,/3 = 1.5, and (iii) a = 1.25,p = 1. 
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(a) Determine the eigenvalues of A for all cases and express x(k) when u = Oin terms 
of the initial conditions and the modes of the system. 

(b) Plot the states for /: > 0 when u(k) is the unit step and x(0) = [0, 0]^. Comment 
on your results. 

(c) Plot the states for/: > Owhenw = Oandx(O) = [5, 1]^. Comment on your results. 

2.69. (Spring mass system) Consider the spring mass system of Example 4.1 in Chapter 
1. For Ml = 1 kg, M2 = 1 kg, K = 0.091 N/m, Ki = 0 . 1 N/m, K2 = OA N/m, 
B = 0.0036 N sec/m, Bi = 0.05 N sec/m, and B2 = 0.05 N sec/m the state-space 
representation of the system in (4.2) of Chapter 1 assumes the form 

0 1 0 0 
-0.1910 -0.0536 0.0910 0.0036 

0 0 0 1 
0.0910 0.0036 -0.1910 -0.0536 

\xi 

\X2 

Us 
|_X4_ 

4-

"0 
1 
0 
0 

0] 
0 
0 

-ij 

r/r 
[/2. 

where xi = yi, X2 = yi 
A 

X3 = y2, and X4 = y2. 
(a) Determine the eigenvalues and eigenvectors of the matrix A of the system and 

express x(t) in terms of the modes and the initial conditions x(0) of the system, 
assuming that / i = /2 = 0. 

= f2 = 0 plot the states for t > 0. 

0] 

(b) Forx(O) - [1,0, 

(c) Let y = Cx with C = 

0.5, 0]^ and / i 

1 0 0 
0 1 0 

denote the output of the system. Determine 

the transfer function between y and u = [fi, fiV• 
(d) For zero initial conditions, fi(t) = 8(t) (the unit impulse), and f2(t) = 0, plot the 

states for r > 0 and comment on your results. 
(e) It is desirable to explore what happens when the mass ratio M2/M1 takes on dif

ferent values. For this, let M2 = OLM\ with Mi = 1 kg and a = 0.1, 0.5, 2, 5. All 
other parameter values remain the same. Repeat (a) to (d) for the different values 
of a and discuss your results. 

2.70. (RLC circuit) For the circuit ofExample 4.2 in Chapter 1, let/?i = 211, i?2 = l i ^ , 
Ci = 1 mF, C2 = 1 mF, and L - 0.5 H. 
(a) Determine the eigenvalues of A and express x{i) when v = 0 in terms of the initial 

conditions and the modes of the system. 
(b) Plot the states for ? > 0 when v - 0 and x(0) = [5, \, 0]^. Repeat for x(0) = 

[0, 0, 5]^ and comment on your results. 
(c) Compute the transfer function between y = [vi, V2, VB]^ and v. 
(d) Plot the states when the input v is the unit step and x(0) = [0, 0, 0]^. Comment on 

your results. 

2.71. (Armature voltage-controlled dc servomotor) Using a consistent set of units for 
the armature voltage-controlled dc servomotor in Example 4.3 of Chapter 1, let Ra = 
2, La = 0.5, J = I, B = I, KT = 2, and Ke = I. The state-space description of this 
system is given by (4.8) of Chapter 1, and here assumes the form 

ea, 

where xi = ^ is the shaft position, X2 = ^ is the angular velocity, X3 = ia is the ar
mature current, and the input w = ^̂  is the armature voltage. 
(a) Determine the eigenvalues and eigenvectors of A and express x{t) in terms of the 

modes and the initial conditions of the system when Ca = 0. 

Xi~ 

X2 

•^3_ 

= 
"0 
0 
.0 

1 
- 1 
- 2 

01 
2 

-4J 

\xi' 

\X2 

1x3. 

+ 
"0 
0 
.2 



(b) Plot the states for r > 0 when the input Ca is the unit step, and x(0) 
Comment on your results. 

[0, 0, 0]^ 

2.72 (Unit mass in an inverse square law force field) Consider Example 11.3 of Chapter 1 
where for a satellite, ro - 4.218709065 X 10^ m and COQ = 7.29219108 X 10~^ rad/sec. 
The linearized model about the orbit d{f) = COQ̂  + ^o is given by 

Xi 

Xl 

i s 
Xi\ 

— 

' 0 

3col 
0 

0 
^ 

1 

0 
0 

2CL)O 

^0 

0 

0 
0 

0 

0 1 

2ro(0o 
1 

0 
-• 

r -

\Xi 

U2 

Us 
X4 

+ 

"0 

1 
0 

0 

0 " 

0 
0 
1 

^0-' 

r̂ i 
[̂ 2 

where xi(t) = r{t) - ro, X2{t) = r{t), x^it) = 0(t), and ^4(0 - ^(0 - ^o-
(a) Determine the eigenvalues of A. Is the system asymptotically stable? Explain your 

answer. 
(b) Plot the states for x(0) = [100, 0,0,0]^ and zero input. Comment on your results. 
(c) Plot the states for wi(0 = 0, U2(t) = -land;\c(0) = 0. If the input represents force 

imposed on the satellite by friction, comment on your results. 

2.73. (Magnetic ball suspension system) Consider the magnetic ball suspension system of 
Exercise 1.21 in Chapter 1. It can be shown that under certain simplifying assumptions, 
a linearized model x = Ax + Bu, y = Cxof this system is given by 

R 

L 
0 

2Kieq 

0 

0 
Ui 

U3 
L-^BJ 

+ 

r l i 

z 
0 

.o_ 

y = [0,1,0] 

A typical set of parameters is Sgq = 0.01 m, ieq = 0.125 A, M = 0.01058 kg, K = 
6.5906 X 10-4 N m^/A^, R = 31.1 n , and L = 0.1097 H. 
(a) Determine the eigenvalues and a set of eigenvectors of A. 
(b) Compute the transfer function. 
(c) Plot the states for ^ > 0 if the ball is slightly higher than the equilibrium position, 

namely, if x(0) = [0, 0.0025, 0]^. Comment on your results. 

2.74. (Automobile suspension system) [M. L. James, G. M. Smith, and J. C. Wolford, Ap
plied Numerical Methods for Digital Computation, Harper & Row, 1985, p. 667.] Con
sider the spring mass system in Fig. 2.9, which describes part of the suspension system 
of an automobile. The data for this system are given as 

mi = \ X (mass of automobile) = 375 kg, 

m2 = mass of one wheel = 30 kg, 

ki = spring constant = 1500 N/m, 

k2 = linear spring constant of tire = 6500 N/m, 

c = damping constant of dashpot = 0, 375, 750, and 1125 N sec/m, 

xi = displacement of automobile body from equilibrium position m. 
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,,v 1 . 2nvt 
u(t)= - s in —— 

6 20 

FIGURE 2.9 
Model of an automobile suspension system 

X2 = displacement of wheel from equilibrium position m, 

V = velocity of car = 9, 18, 27 or 36m/sec. 

A linear model x = Ax-\-Bu for this system is given by 

0 

kl 

mi 

0 

h 
_ 1712 

1 

C 

m\ 

0 
c 

ni2 

0 

h 
m\ 

0 

k\ +^2 

1712 

0 ] 
c 

— 
m\ 
1 

1712] 

^ -, 
Xl 

^2 

X3 

X4 

+ 

r 0 1 

0 
0 
h 

Lm2^ 

u(t), 

where u{t) = ^ sin(27rv^/20) describes the profile of the roadway, 
(a) Determine the eigenvalues of A for all the above cases. 
(a) Plot the states for r > 0 when the input u{t) = ^ sin(27rvr/20) and x(0) = 

[0,0,0,0]^ for all the above cases. Comment on your results. 

2.75. (Building subjected to an earthquake) [M. L. James, G. M. Smith, and J. C. Wol-
ford. Applied Numerical Methods for Digital Computation, Harper & Row, 1985, 
p. 686.] A three-story building is modeled by a lumped mass system as shown in 
Fig. 2.10. For ground acceleration v, the differential equations of motion in terms of 
mass displacements [^1,^2,^3] relative to the ground are given in state-variable form 
x = Ax-\-Buhy 

XI 

X2 

X^ 

X4 

i s 
xe 

— 

0 

ki +^2 
m i 

0 

h. 
m2 

0 

0 

1 

2c 

m i 

0 

c 
m2 

0 

0 

0 

k2 

m i 

0 

^2 + ^3 

m2 

0 

k3 

ms 

0 

c 

mi 

1 

2c 
m2 

0 

c 

ms 

0 

0 

0 

h. 
m2 

0 

k3 

ms 

0 

0 

0 

c 
m2 

1 

c 

m3_ 

XI 

X2 

X3 

X\ 

X5 

X6 

+ 

0 
- 1 

0 
- 1 

0 
- 1 

w, 

where x\ = qi,X2 = qi,X3 = q2,M = q2,xs = q3,x^ = ^3, and u = V. Let k = 
3.5025 X lO^N/m, m = 1.0508 x 10^kg, and c = 4.2030 x lO^N sec/m. Investigate 



the dynamic response of the structure due to the ground acceleration ufoYT = 0.4,0.6, 
and 0.8 sec (see Fig. 2.10). In particular: 
(a) Plot the distortions 

[xi ,X2,X3,X4,X5,X6]^. 

If serious damage occurs when a distortion exceeds 0.08 m, will the given ground 
acceleration due to the earthquake cause serious damage to the building? 

(b) Repeat (a) for different values of the damping parameter c. In particular, let 
Qg^ = acoid, where a = 2,3,10, and repeat (a) for each value of a. Also, 
determine the eigenvalues of A for each a and comment on your results. 
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/C2 = 2/f 

1 gf = 10 m/sec^ 

4.0 

FIGURE 2.10 
A model for the dynamics of a three-story structure 

2.76. (Aircraft dynamics) [B. Friedland, Control System Design, An Introduction to State-
Space Methods, McGraw-Hill, 1986.] For purposes of control system design, aircraft 
dynamics are frequently linearized about some operating condition, called 3. flight re
gime,wh^YQ it is assumed that the aircraft velocity(Mach number)and attitude are con
stant. The control surfaces and engine thrust are set, or trimmed, to these conditions 
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and the control system is designed to maintain these conditions, i.e., to force perturba
tions (deviations) from these conditions to zero. 

It is customary to separate the longitudinal motion from the lateral motion, since 
in many cases the longitudinal and lateral dynamics are only lightly coupled. As a 
consequence of this the control system can be designed by considering each channel 
independently. 

The aerodynamic variables of interest are summarized in Table 12.1 and Fig. 2.11. 
The aircraft body axes are denoted by x,y, and z, with the origin fixed at some refer
ence point (typically the center of gravity of the aircraft). The positive directions of 
these axes are depicted in Fig. 2.11. Roll, pitch, and yaw motions constitute rotations 
about the x-, y-, and z-axes, respectively, using the following sign convention: looking 
at Fig. 2.11a we see that the pitch angle 6 increases with upward rotation in the side 
view shown; in Fig. 2.11c, which gives the top view of the aircraft, yaw angle if/ in
creases in the counterclockwise direction; and looking at Fig. 2.lid, which provides 
the front view of the aircraft, we see that roll angle (p increases in the counterclockwise 
direction. We let co^ = r,(x)y = q, and (o^ = p denote yaw rate, pitch rate, and roll 
rate, respectively. The velocity vector V is projected onto the body axes with w, v, and 
w being the projections onto the x-, y- and z-axes, respectively. The angle-of-attack a is 
the angle that the velocity vector makes with respect to the x-axis in the (positive) pitch 
direction, and the side-slip angle jS is the angle that it makes with respect to the x-axis 
in the (positive) yaw direction. Note that for small angles, a — w/u and ^ — vlu. 

The aircraft pitch motion is typically controlled by a control surface called the 
elevator, roll is controlled by a pair of ailerons, and yaw is controlled by a rudder. 

Aircraft longitudinal motion. As a specific example, consider the numerical data 
for an actual aircraft, the AFTI-16 (a modified version of the F-16 fighter) in the land
ing approach configuration (speed V = 139 mph). The components of the state-space 
equation x = Ax + Bu that describe the longitudinal motion of the aircraft are given 
by 

"xA ["-0.0507 -3.861 0 
i:21 -0.00117 -0.5164 1 
is ~ -0.000129 1.4168 -0.4932 
X4 0 0 1 

32.2] 

0 

0 

0 J 

r̂ i 
\x2 

Us 
1x4 

+ 

0 

- 0 . 0 7 1 7 

- 1 . 6 4 5 

0 

u, 

where the control input w = 5^ is the elevator angle and the state variables in the 
vector X = [Aw, a, q, 6]^ are the change in speed, angle of attack, pitch rate, and pitch, 
respectively. 

TABLE 12.1 
Aerodynamic variables 

Rates 

Positions 

Controls 

Lateral 

p: roll rate 
n yaw rate 

j8: side-slip angle 

0: roll angle 
ij/: yaw angle 
x: forward displacement 
y: cross-talk displacement 

8A : aileron deflection 
8R: rudder deflection 

Longitudinal 

a: angle of attack 
q: pitch rate 

Aw: change in speed 

9: pitch angle 
z: altitude 

8E : elevator deflection 



211 
CHAPTER 2 : 

Response of 
Linear Systems 

(a) Side view 

(b) Angle-of-attack a and 
side-slip angle 

Deflected 
aileron 

Deflected 
rudder 

(d) Front View 

FIGURE 2.11 
Aircraft dynamics 

The longitudinal modes of the aircraft are called short period and phugoid. The 
phugoid eigenvalues, which are a pair of complex conjugate eigenvalues close to the 
imaginary axis, cause the phugoid motion, which is a slow oscillation in altitude, 
(a) For the state-space model that describes the aircraft longitudinal motion, determine 

the eigenvalues and eigenvectors of A. Express x{t), when w = 0, in terms of the 
initial conditions and the modes of the system. 
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(b) Let the elevator deflection §£ be - 1 for t E [0, T] and zero afterward, where T 
may be taken to be the sampling period in your simulation. This corresponds to 
the maneuver made when the pilot pulls back on the stick to raise the nose of the 
airplane. (The minus sign conventionally represents pulling the stick back.) The 
elevator must be restored to its original position when the desired new climbing an
gle is reached or the plane will keep rotating. Plot the states for x(0) = [0, 0, 0, 0]^ 
and comment on your results. 

(c) Plot the states for x(0) = [0,0, 0,0]^, using a negative unit step as the elevator 
input. This happens when the elevator is reset to a new position in the hope of 
pitching the plane up and climbing. Comment on your results. 

(d) As a second example, consider the numerical data for a Boeing 747 jumbo jet flying 
near sea level at a speed of 190 mph. The state-space description x = Ax + Buoi 
the longitudinal motion is now given by 

-0.0188 11.5959 0 
-0.0007 -0.5357 1 
0.000048 -0.4944 -0.4935 

0 0 1 

32.21 
0 
0 

0 J 

Ui 
\x2 

Us 
X4 

+ 

0 
0 

-0.5632 
0 

(C. E. Rohrs, J. L. Melsa, and D. G. Schultz, Linear Control Systems, McGraw-
Hill, 1993, p. 92). Repeat (a) to (c) for the present case and discuss your answers 
in view of the corresponding results for the AFTI-16 fighter. 

Aircraft lateral motion. As a specific example consider the lateral motion of a 
fighter aircraft traveling at a certain speed and altitude with state-space description 
X = Ax + Bu given by 

Xi 

X2 

X3 

X4_ 

-0.746 
-12.9 

4,31 
0 

+ 

0.0012 
6.05 

-0.416 
0 

0.006 - D.999 
-0.746 0.387 

0.024 -0.174 
1 0 

O.OO92I 
0.952 

-1.76 

0 

[U2_ ' 

0.03690 
0 
0 

0 J 

Ui 
\x2 

\X3 

\X4 

where the control inputs [ui, U2V = [^A,^RV denote the aileron and rudder de
flections, respectively, and the state variables in the vector x = [/3, p, r, c^]^ are the 
side-slip angle, roll rate, yaw rate, and roll angle, respectively. 

(e) The eigenvalues for the aircraft lateral motion consist typically of two complex 
conjugate eigenvalues with relatively low damping, and two real eigenvalues. The 
modes caused by complex eigenvalues are called dutch-roll. One real eigenvalue, 
relatively far from the origin, defines a mode called roll subsidence, and a real 
eigenvalue near the origin defines the spiral mode. The spiral mode is sometimes 
unstable (spiral divergence). Find the modes for the aircraft lateral motion of the 
fighter. 

(f) Plot the states when x(0) = [0, 0, 0, 0]^, wi is the unit step and U2 = 0. Repeat for 
ui = 0 and U2 the unit step. Comment on your results. 

2.77. (Read/write head of a hard disk) [MATLAB Control System Toolbox User's Guide, 
The Math Works, Inc., 1993.] Using Newton's law, a simple model for the read/write 
head of a hard disk is described by the differential equation J6 + c0 + k0 = Kj /, where 
/ represents the inertia of the head assembly; c denotes the viscous damping coefficient 



0 
k 
J 

1] 
c 

"7-1 

Ui 
U2. + 

0 
Kj 

-T 

of the bearings; k is the return spring constant; Kj is the motor torque constant; 6, 9, and 
6 are the angular acceleration, angular velocity, and position of the head, respectively; 
and / is the input current. A state-space model x = Ax + Bu of this system is given by 

where xi ^ e,X2 = 0, and u = i. Let J = 0.01, c = 0.004, k = 10, and KT = 0.05. 
(a) Determine the eigenvalues of A. With w = 0, is the trivial solution x = 0 asymp

totically stable? Explain. 
(b) Plot the states for r > 0 when the input is the unit step and x(0) = [0, 0]^. 
(c) Let the plant be preceded by a zero-order hold (D/A converter) and followed by a 

sampler (an ideal A/D converter), both sampling at a rate of 1/7, where T = 5 ms. 
Derive the discrete-time state-space representation of the plant. Repeat (a) and (b) 
for the discrete-time system and comment on your results. 
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C H A P T E R 3 

Controllability, Observability, and Special Forms 

It is frequently desirable to determine an input that causes the states of a system 
to assume different values in finite time (e.g., to transfer the state vector from one 
specified vector value to another). Such is the case, for example, in satellite attitude 
control, where the satellite must change its orientation. This type of desirable prop
erty leads naturally to the concepts of state reachability and controllability, which 
will now be studied at length. 

Another desirable property of systems is the ability to determine the state from 
output measurements. Since it is frequently difficult or impossible to measure the 
state of a system directly (for example, internal temperatures and pressures in an 
internal combustion engine), it is extremely desirable to determine such states by 
observing the inputs and outputs of the system over some finite time interval. This 
leads to the concepts of state observability and constructibility, which will also be 
studied here. 

The principal goals of this chapter are to introduce and study in depth the system 
properties of controllability and observability (and of reachability and constructibil
ity) as well as special forms for the state-space system descriptions when a system is 
controllable or uncontrollable, and observable or unobservable. These special forms 
are very useful in the study of the relationships between state-space and input-output 
descriptions of a system. Note that controllability and observability play a central 
role when a given impulse response or a transfer function description is realized by 
means of a state-space description, as will be shown in Chapter 5. These special 
forms also provide insight into the mechanisms concerning capabilities and limita
tions of state controllers and state observers, as will be demonstrated in Chapter 4. 
The concepts of controllability and observability are central in the study of state feed
back controllers (resp., output controllers) and state observers. State controllability 
refers to the ability to manipulate the state by applying appropriate inputs (in par
ticular, by steering the state vector from one vector value to any other vector value in 
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finite time). It turns out that controllability is a necessary and sufficient condition for 215 
complete eigenvalue assignment in the system matrix A by means of state feedback. 
State observability refers to the ability to determine the initial state vector of the 
system from knowledge of the input and the corresponding output over time. State 
observability is a necessary and sufficient condition for the arbitrary eigenvalue as
signment in an asymptotic state estimator, or state observer that estimates the state 
of the system using input and output measurements. State feedback controllers and 
state observers are studied in Chapter 4. 

CHAPTERS: 

Controllability, 
Observability, 
and Special 
Forms 

3.1 
INTRODUCTION 

This chapter consists of two parts. In Part 1, consisting of Sections 3.2 and 3.3, 
the important concepts of state reachability (controllability) and observability (con-
structibility) are introduced. This is accomplished for continuous- and discrete-time 
systems that may be time-varying or time-invariant. In Part 2, consisting of Sections 
3.4 and 3.5, special forms for state-space representations are developed for control
lable or uncontrollable and observable or unobservable time-invariant (continuous-
and discrete-time) systems. In addition, the Smith-McMillan form of a transfer 
function matrix and the poles and zeros of a system are introduced and studied. 

In Subsection A of this section, the concepts of reachability and controllabil
ity and observability and constructibility are introduced, using discrete-time time-
invariant systems. In this way, significant insight into the concepts is gained early, 
together with a clear understanding of what these properties imply for a system. 
Discrete-time systems are selected for this exposition because the mathematical de
velopment is simple in this case, allowing us to concentrate on explaining concepts 
and their impUcations. The continuous-time case is treated in detail in Sections 3.2 
and 3.3. 

A. A Brief Introduction to Reachability and Observability 

Reachability and controllability are introduced first, for the case of discrete-time 
time-invariant systems, followed by observability and constructibility. Finally, du
ality is briefly discussed. 

1. Reachability and controllability 

The concepts of state reachability (or controllability-from-the-origin) and con
trollability (or controllability-to-the-origin) are introduced here and are discussed at 
length in Section 3.2. In the case of time-invariant systems, a state xi is called reach
able if there exists an input that transfers the state of the system x{t) from the zero 
state to xi in some finite time T. The definition of reachability for the discrete-time 
case is completely analogous. 

Figure 3.1 shows that different control inputs ui{t) and U2{t) may force the state 
of a continuous-time system to reach the value x\ from the origin at different finite 
times, following different paths. Note that reachability refers to the ability of the 



216 

Linear Systems 

FIGURE 3.1 
A reachable state xi 

system to reach xi from the origin in some finite time; it specifies neither the time it 
takes to achieve this nor the trajectory to be followed. A state XQ is called controllable 
if there exists an input that transfers the state from XQ to the zero state in some finite 
time T. See Fig. 3.2. The definition of controllability for the discrete-time case is 
completely analogous. 

Similar to reachability, controllability refers to the ability of a system to transfer 
the state from XQ to the zero state in finite time; it too specifies neither the time 
it takes to achieve the transfer nor the trajectory to be followed. We note that when 
particular types of trajectories to be followed are of interest, then one seeks particular 
control inputs that will achieve such transfers. This leads to various control problem 
formulations, including the Linear Quadratic (Optimal) Regulator (LQR). The LQR 
problem is discussed briefly in the next chapter. 

Section 3.2 shows that reachability always implies controllabiHty, but control
lability implies reachability only when the state transition matrix $ of the system 
is nonsingular. This is always true for continuous time systems, but it is true for 
discrete-time systems only when the matrix A of the system [or A(k) for certain val
ues of k] is nonsingular. If the system is state reachable, then there always exists an 
input that transfers any state XQ to any other state xi in finite time. 

FIGURE 3.2 
A controllable state XQ 



In the time-invariant case, a system is said to be reachable (or controllable-
from-the-origin) if and only if its controllability matrix ^ , 

% = [B,AB,...,A"-l5]G/^"><'^^ (1.1) 

has full row rank n, that is, rank % = n. The matrices A G R^^^ and B E R^^"^ 
determine either the continuous-time state equations 

X = Ax-\- Bu (1.2) 

or the discrete-time state equations 

x(k + 1) = Ax(k) + Bu(kl (1.3) 

fc > /̂ o "= 0. Alternatively, we say that the pair (A, B) is reachable. The matrix 
% should perhaps more appropriately be called the "reachability matrix" or the 
"controllability-from-the-origin matrix." The term "controllability matrix," how
ever, has been in use for some time and is expected to stay in use. Therefore, we 
shall call % the "controllability matrix," having in mind the "controllability-from-
the-origin matrix." 

We shall now discuss reachability and controllability for discrete-time time-
invariant systems (1.3). 

If the state x{k) in (1.3) is expressed in terms of the initial vector x(0), then (see 
Section 2.7) 

k-\ 

x(k) = A^x(0) + ^A^-^'^^^Bu{i) (1.4) 

for ^ > 0. It now follows that it is possible to transfer the state from some value 
x(0) = XQ to some xi in n steps, that is, x{n) = xi, if there exists an n-step input 
sequence {w(0), w(l) , . . . , u{n - 1)} which satisfies the equation 

where %n = [B, AB, 

Xi - A'^XQ = ^nUn, 

A^-i^] = ^ [see (1.1)] and 

Un = [u^(n - 1), u^(n - 2 ) , . . . , w^(0)]^ 

(1.5) 

(1.6) 

From the theory of linear algebraic equations, (1.5) has a solution Un if and only if 

xi - A'̂ jco E gi(^), (1.7) 

where 9l(^) = range (%). Note that it is not necessary to take more than n steps 
in the control sequence since if this transfer cannot be accomplished in n steps, it 
cannot be accomplished at all. This follows from the Cayley-Hamilton Theorem, in 
view of which it can be shown that 2/l(^^) = 2/l(^^) for k> n. Also note that 9l(^„) 
includes ^C^k) iox k < n [i.e., 9l(^„) D 9l(^y^), k < nl (See Exercise 3.1.) 

It is now easy to see that the system (1.3) or the pair {A,B) is reachable 
(controllable-from-the-origin), implying that any state xi can be reached from 
the zero state (XQ = 0) in finite time if and only if rank ^ = n, since in this case 
9l(^) = R^, the entire state space. Note that x\ G 9i{%) is the condition for a par
ticular state x\ to be reachable from the zero state. Since 2^(^) contains all such 
states, it is called the reachable subspace of the system. It is also clear from (1.5) 
that if the system is reachable, any state XQ can be transferred to any other state xi 
in n steps. In addition, the input that accomplishes this transfer is any solution Un of 
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(1.5). Finally, depending on xi and XQ, this transfer may be accomplished in fewer 
than n steps (see Section 3.2). 

EXAMPLE 1.1. Consider x(k + 1) = Ax(k) + Bu(k), where A 

Here the controllability (-from-the-origin) matrix ^ is ^ = [B,AB] = 

B 

with rank 

^ = 2. Therefore the system [or the pair (A, B)] is reachable, meaning that any state xi 
can be reached from the zero state in a finite number of steps by applying at most n 

inputs {u(0\ w(l) , . . . , u(n - 1)} (presently, n = 2). To see this, let xi - Then (1.5) 

implies that 
0 1 u(l) u(l) 

[u(0)\ 
b — a 

a 
Thus, the control 

[1 iJWO). 

M(0) = a,u{V) = b - a will transfer the state from the origin at A: = 0 to the state 

at ^ = 2. To verify this, we observe that x(l) = Ax(0) + Bu(0) = a = 

a 
b 

and 

x(2) = Ax(l) + Bu(l) + (b-a) 

Reachability of the system also implies that a state xi can be reached from any 

11 
other state xo in at most n = 2 steps. To illustrate this, let x(0) = 

plies that xi - A^XQ = L "~ L 

, which will drive the state from 

. Then (1.5) im-

b-a- 1 
a-2 

a — 2 
b~3 

1 

u(l) 
u(0) 

at /: = 0 to 

. Solving, 

at ^ = 2. 

u(l) 
w(0) 

Notice that in general the solution Un of (1.5) is not unique, i.e., there are many 
inputs which can accomplish the transfer from x(0) = XQ to x(n) = x\, each cor
responding to a particular state trajectory. In control problems, particular inputs are 
frequently selected that, in addition to transferring the state, satisfy additional crite
ria, such as, e.g., minimization of an appropriate performance index (optimal con
trol). This corresponds to selecting a particular trajectory that, e.g., may result in 
minimum dissipation of control energy. It is important to remember that reachability 
and controllability guarantee only the ability of a system to transfer an initial state to 
a final state by some control input action over a finite time interval. By themselves, 
reachability and controllability do not imply the capability of a system to follow some 
particular trajectory. 

A system [or the pair (A, 5 ) ] is controllable, or controllable-to-the-origin, when 
any state XQ can be driven to the zero state in a finite number of steps. From (1.5) 
we see that a system is controllable when A^XQ G 9 l (^) for any XQ. If rank A = n, 
a system is controllable when rank ^ = n, i.e., when the reachability condition is 
satisfied. In this case the nX mn matrix 

A-""^ = [A-''B,...,A-^B] (1.8) 

isofinterestandthesystemiscontrol lableifandonlyifranA:(A~^^) = rank% = n. 
If, however, rank A < n, then controllability does not imply reachability (see 
Section 3.2). 



EXAMPLE 1.2. The system in Example 1.1 is controllable (-to-the-origin). To see this, 219 

we let xi = 0 in (1.5) and write -A^XQ = 1 1 
1 2 

u(0)\ 
, where 

0 -11 
-I -i\ 

"0̂  
Oj 

la 

L̂ . 

Xo = 
a 

P. 
-b 

—a — b 

at ^ = 2. 

a 
b 

u(0) 

= [B,AB] 

From this we obtain 

, the input that will drive the state from 

u(l) 
u(0) 

1 r 
1 0 

a 

0 1 
1 1 

1 l]\a 
1 2 

at ^ = 0 to 

EXAMPLE 1.3. The system x(k + 1) = 0 is controllable since any state, say, x(0) = 

, can be transferred to the zero state in one step. In this system, however, the input 

u does not affect the state at all! This example shows that reachability is a more useful 
concept than controllability for discrete-time systems. • 

It should be pointed out that nothing has been said up to now about maintaining 
the desired system state after reaching it [refer to (1.5)]. Zeroing the input for k^ n, 
i.e., letting M(fe) = Oforfe> n, will not typically work, unless Axi = xi. In general 
a state starting at xi will remain at xi for all fc > n if and only if there exists an input 
u(k), k^ n, such that 

xi = Axi + Bu(k\ (1.9) 

^(B). Clearly, there are states for which this that is, if and only if (/ - A)xi 
condition may not be satisfied. 

2. Observability and constructibility 

In Section 3.3, definitions for state observability and constructibility are given, 
and appropriate tests for these concepts are derived. It is shown that observability al
ways implies constructibility, while constructibility implies observability only when 
the state transition matrix O of the system is nonsingular. Whereas this is always true 
for continuous-time systems, it is true for discrete-time systems only when the ma
trix A of the system [or when A(k) for particular values of k] is nonsingular. If a 
system is state observable, then its present state can be determined from knowledge 
of the present and future outputs and inputs. Constructibility refers to the ability to 
determine the present state from present and past outputs and inputs, and as such, it 
is of greater interest in applications. 

In the time-invariant case a system [or a pair (A, C)] is observable if and only if 
its observability matrix 0, where 

C 
CA 

CA n-l 

^f^pn> (1.10) 

has full column rank, i.e., rank € = n. The matrices A G R^^^ and C E RP^ 
given by the system description 

are 
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X — Ax + Bu, = Cx + Du (1.11) 
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Linear Systems ^(^ + 1) ^ ^^(y^) _p ^^^^^^ ^(^) ^ Cx(yt) + Du(k\ (1.12) 

with fe > /:o = 0. in the discrete-time case. 
We shall now briefly discuss observability and constructibility for the discrete-

time time-invariant case. As in the case of reachability and controllability, this dis
cussion will provide insight into the underlying concepts and clarify what these 
imply for a system. 

If the output in (1.12) is expressed in terms of the initial vector x(0), then 
k-i 

y(k) = CA^x(0) + ^ CA^-^'^^^Bu(i) + Du{k) (1.13) 
i = 0 

for A: > 0 (see Section 2.7). This implies that 

y(k) = CA^xo (1.14) 

for /: > 0, where 

y{k) = y(k) -
k-l 

i = 0 

^CA^'^'^^^Bu{i) + Du{k) 

for ^ > 0, 3;(0) = yiO) - Du{G), and XQ = x(0). In (1.14), XQ is to be determined 
assuming that the system parameters are given and the inputs and outputs are mea
sured. Note that if u(k) = 0 for /: ^ 0, then the problem is simplified since y(k) = 
y(k) and the output is generated only by the initial condition XQ. It is clear that the 
ability to determine XQ from output and input measurements depends only on the 
matrices A and C since the left-hand side of (1.14) is a known quantity. Now if 
^(0) = XQ is known, then all x(k), ^ > 0, can be determined by means of (1.4). To 
determine XQ, we apply (1.14) for ^ = 0,.. .,n - 1. Then 

Yo,n-l = ^nXo, (1.15) 

where ©̂  = [C^, (CA)^,..., (CA^-^)^]^ - 0 [as in (1.10)] and 

hn-i = [fm...,f(n-l)f. 
Now (1.15) always has a solution XQ, by construction. A system is observable 

if the solution XQ is unique, i.e., if it is the only initial condition that, together with 
the given input sequence, can generate the observed output sequence. From the the
ory of linear systems of equations, (1.15) has a unique solution XQ if and only if 
the null space of 0 consists of only the zero vector, i.e., null (0) = }((€) = {0}, or 
equivalently, if and only if the only x E R^ that satisfies 

€x = 0 (1.16) 

is the zero vector. This is true if and only if rank € = n. Thus, a system is observable 
if and only if rank€ = n. Any nonzero state vector x G R^ that satisfies (1.16) is 
said to be an unobservable state, and J{{€) is said to be the unobservable subspace. 
Note that any such x satisfies CA^x = 0 for fc = 0, 1 , . . . , n - 1. If rank€ < n, 
then all vectors XQ that sansfy (1.15) are given by XQ = xop + XQ/Z, where xop is a 
particular solution and XQU is any vector in }((€). Any of these state vectors, together 
with the given inputs, could have generated the measured outputs. 



0 1 
1 1 

and C = [0, 1]. Presently, 
C 

CA 
0 1 
1 1 

with rank 0 = 2. Therefore, 

the system [or the pair (A, C)] is observable. This means that x(0) can uniquely be 
determined from n = 2 output measurements (in the present cases, the input is zero). 

In fact, in view of (1.15), 

y{\) - KO)" 

yiP) 
J(l) 

0 1 
1 1 

^i(O) 

^2(0). or 
^i(O) 

^2(0)J 

-1 1 
1 0 

y(0) 

J d ) . 

EXAMPLE 1.5. Consider the system x{k + 1) = Ax{k), y{k) = Cx(k), where A = 

1 0 
1 1 

and C = [1,0]. Presently, 0 = 
C 

CA 
1 0 
1 0 

with rank 0 = 1 . Therefore, 

the system is not observable. Note that a basis for }((€) is which in view of 

(1.16) implies that all state vectors of the form R, are unobservable. Rela

tion (1.15) implies that 
y(0) 

LKDJ 
1 0 
1 0 

xi(0) 
X2(0)J 

. For a solution x(0) to exist, as it must. 

we have that y(0) = y(l) = a. Thus, this system will generate an identical output for 
k> 0. Accordingly, all x(0) that satisfy (1.15) and can generate this output are given by 

where c G R. _ 
xi(0)l 
.^2(0)J 

= 
a 
0. 

+ 
"0" 
c = 

a 
c 

To determine XQ from (1.15) it is not necessary to use more than n values for 221 
y(k), k = 0,.. .,n - I, ov to observe y(k) for more than n steps in the future. This CHAPTER3: 
is true because, in view of the Cayley-Hamilton Theorem, it can be shown that Controllability, 
J{(€n) = >r(0^) for k^ n. Note also that J{(€n) is included in Ji(€k) (JV'(O^) C Observability,' 
J<(€k)) for k < n. Therefore, in general, one has to observe the output for n steps and Special 
(see Exercise 3.1). Forms 

EXAMPLE 1.4. Consider the system x(k + 1) = Ax(k), y(k) = Cx(k), where A = 

In general, a system (1.12) [or a pair (A, C)] is constructible if the only vector 
X that satisfies x = A^x with Cx = 0 for every k > 0 is the zero vector. When A 
is nonsingular, this condition can be stated more simply, namely, that the system 
is constructible if the only vector x that satisfies CA~^x = 0 for every fe > 0 is 
the zero vector. Compare this with the condition CA^x = 0, k > 0, for x to be an 
unobservable state; or with the condition that a system is observable if the only vector 
X that satisfies CA^x = 0 for every /: > 0 is the zero vector. In view of (1.14), the 
above condition for a system to be constructible is the condition for the existence of 
a unique solution XQ when past outputs and inputs are used. This, of course, makes 
sense since constructibility refers to determining the present state from knowledge of 
past outputs and inputs. Therefore, when A is nonsingular the system is constructible 
if and only if the pnX n matrix 

CA-

CA-

(1.17) 

has full rank, since in this case the only x that satisfies CA '^x = 0 for every 
k ^ 0 is X = 0. Note that if the system is observable, then it is also constructible; 
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however, if it is constructible, then it is also observable only when A is nonsingular 
(see Section 3.3). 

EXAMPLE 1.6. Consider the (unobservable) system in Example 1.5. Since A is non-

singular, OA ^ = 
1 01 

.1 OJ 
r 1 0̂  
[-2 Ij 

1 0" 
.1 0_ 

Since rank OA ^ = 1 < 2, the system [or 

the pair (A, C)] is not constructible. This can also be seen from the relation CA ^x = 
0,k> 0, that has nonzero solutions x, since C = [1,0] = CA~^ = CA~^ = ••• = 

CA~^ for /: > 0, which implies that any x = , c ' 7? is a solution. 

3. Dual systems 

Consider the system described by 

X = Ax + Bu, 

where A G 7?"X^ B G R'''''^, C G RP''^ 
is defined as the system 

y = Cx^Du, (1.18) 

and D G 7^^^^. The dual system of (1.18) 

XD = ADXD + BDUD, yo = CDXD + DDUD. 

where AD = A^, BD = C^, CD = B^, and Do = D^. 

(1.19) 

LEMMA 1.1. System (1.18), denoted by {A, B, C, D}, is reachable (controllable) if and 
only if its dual {A ,̂ BD, CD, DO} in (1.19) is observable (constructible), and vice versa. 

Proof. System {A, 5, C, D] is reachable if and only if ̂  = [5, AB,..., A'^'^B] has full 
rank n, and its dual is observable if and only if 

B^ 
B^A^ 

\B^{A^Y-^\ 

has full rank n. Since 0^ = %, {A, B, C, D} is reachable if and only if {AD, ^D, CD, /^D} 
is observable. Similarly, {A, 5, C, D} is observable if and only if {AD, ^D> CD, DD} is 
reachable. Now {A, B, C, D] is controllable if and only if its dual is constructible, and 
vice versa; recall from Sections 3.2 and 3.3, a continuous-time system is controllable if 
and only if it is reachable; and is constructible if and only if it is observable. 

For the discrete-time time-invariant case, the dual system is again defined as 
AD = A^, BD = C^, CD = B^, and DD = D^. That such a system is reachable 
if and only if its dual is observable can be shown in exactly the same way as in 
the proof of Lemma 1.1. That such a system is controllable if and only if its dual 
is constructible when A is nonsingular is true because in this case the system is 
reachable if and only if it is controllable; and the same holds for observability and 
constructibility. The proof for the case when A is singular involves the controllable 
and unconstructible subspaces of a system and its dual. We omit the details. The 
reader is encouraged to complete this proof after studying Sections 3.2 and 3.3. 

In the time-varying case, the dual system is defined in a similar manner as 
given, taking transposes of matrices, and in addition, reversing time. This will not be 



discussed further here. We merely wish to point out that the mappings from the 223 
original system to the dual system are in this case of the form {A(a + t), B(a + t), CHAPTER 3: 
C(a + tl D(a + t)} -^ {A^(a - t), C^(a - t), B^(a - t), D^{a - 0}, where a is a Controllability, 
fixed real number. Thus, under this transformation we mirror the image of the graph Observability, 
of each function about a point a on the time axis and then take the transpose of each and Special 
matrix. Note that the mapping between the state transition matrices is of the form Forms 
^{a, a^-t)^ ^^{a-t,a). With this definition, it is now possible to establish results 
similar to Lemma 1.1 for the time-varying case. The proofs involve the Gramians 
defined in Sections 3.2 and 3.3. 

Figure 3.3 summarizes the relationships between reachability (observability) 
and controllability (constructibility) for continuous- and discrete-time systems. 

Reachability Dual Observability 

v V 

Controllability Dual Constructibility 

FIGURE 3.3 
In continuous-time systems reachability (observability) always 
implies and is implied by controllability (constructibility). In 
discrete-time systems reachability (observability) always implies 
but in general is not implied by controllability (constructibility). 

B. Chapter Description 

This chapter consists of an introduction and two parts. In Part 1, consisting of 
Sections 3.2 and 3.3, reachability and controllability, and observability and con
structibility, are introduced and studied. In Part 2, consisting of Sections 3.4 and 3.5, 
special forms for state-space representations of time-invariant systems are developed 
for controllable/uncontrollable, observable/unobservable (continuous- and discrete-
time) systems. In addition, the poles and zeros of a system are introduced and 
studied. 

In the introduction. Subsection 3.1 A, the concepts of reachability (or 
controllability-from-the-origin) and observability are introduced using discrete-
time time-invariant systems. The inputs that accomplish the desired transfers of a 
state are easily derived in terms of the controllability (-from-the-origin) matrix of a 
system. Conditions for reachability and observability are derived directly in terms 
of the controllability and observability matrices of the system. Similarly, controlla
bility (or controllability-to-the-origin) and constructibility are also introduced. State 
reachability and observability are related by duality. Dual systems and the dual 
notions of reachability (respectively, observability) and controllability (respectively, 
constructibility) are also discussed. 

In Section 3.2, reachabihty and controllability are discussed at length for both 
continuous- and discrete-time systems. In the continuous-time case, the inputs that 



224 accomplish the desirable state transfers are derived using the reachability (and the 
Linear Systems controllability) Gramian. Since with only minimal additional work one can treat the 

time-varying case as well, this is the approach pursued herein, i.e., both time-varying 
and time-invariant cases are studied. The time-invariant case is discussed separately 
and can be treated independently of the time-varying case. This adds significant flex
ibility to the coverage of the material in this chapter. Many criteria for reachability 
(controllability) are developed. It is shown that reachability implies controllability, 
and vice versa in the case of continuous-time systems. In discrete-time systems, al
though reachability implies controllability, controllability does not necessarily imply 
reachability. This is due to the lack of general time-reversibility in the case of differ
ence equations, as pointed out in Chapter 2. (Note that a detailed section summary 
is included at the beginning of Section 3.2.) 

Observability and constructibility are addressed in Section 3.3, in a manner 
analogous to the treatment of the dual concepts of reachability and controllability 
in Section 3.2. Both continuous- and discrete-time cases are considered. Observ
ability and constructibility Gramians are used to study these properties in the case 
of both time-varying and time-invariant continuous-time systems. Once more, the 
time-invariant case is treated separately and can be studied independently of the 
more general time-varying case. Observability always implies constructibility in 
both continuous- and discrete-time systems; however, constructibility always im
plies observability only in the case of continuous-time systems. This is due to the 
lack of general time-reversibility of difference equations. (Note that a detailed sec
tion summary is included at the beginning of Section 3.3.) 

In Section 3.4, similarity transformations are used to reduce the state-space rep
resentations of time-invariant systems to special forms. First, standard forms for 
uncontrollable and unobservable systems are developed. These lead to Kalman's 
Decomposition Theorem and to additional tests for controllability and observabil
ity that involve eigenvalues and eigenvectors of the system matrix A (in Subsec
tion B) and to relations between state-space and transfer matrix descriptions (in 
Subsection C). Controller and observer forms for controllable and observable sys
tems are derived next (in Subsection D). These forms are useful in state feedback 
control and in state observer design, discussed in Chapter 4. The Structure Theo
rem is introduced next. This result, which involves the controller (observer) forms 
and relates the state-space representations to the transfer function matrix of the sys
tem, is used in Chapter 5, where state-space reahzations of transfer functions are 
addressed. 

In Section 3.5, the poles of a system and of a transfer function matrix are in
troduced. There, the zeros of the system, the invariant zeros, the input and output 
decoupling zeros, and the transmission zeros, which are the zeros of the transfer 
function matrix, are also introduced. The Smith and Smith-McMillan forms of poly
nomial and rational matrices, respectively, are used to define poles and zeros. Utiliz
ing zeros, one can render certain eigenvalues (system poles) and their corresponding 
modes unobservable from the output, using state feedback. This leads to the solu
tion of several control problems, such as disturbance decoupling, model matching, 
and diagonal decoupling. The discussion of poles and zeros of a system {A, B, C, D} 
and of the corresponding transfer function matrix H(s) also helps to clarify the rela
tionship between internal (state-space) descriptions and external (transfer function 
matrix) descriptions. This is studied in greater detail in Chapter 5. 



C. Guidelines for the Reader 

Reachability, which is controllability-from-the-origin and controllability (-to-the-
origin), together with observability and construetibility are introduced in Subsection 
3.1 A using discrete-time time-invariant systems. Careful study of this introductory 
section leads to early and significant insight into these important system proper
ties, without requiring the mathematical sophistication needed in a careful study of 
these properties in the continuous-time case. Duality is also discussed in Subsec
tion 3.1 A. 

In Part 1, reachability and controllability, and observability and constmctibility 
are introduced in Sections 3.2 and 3.3, respectively, for continuous-time 
time-varying and time-invariant systems as well as for discrete-time systems. For 
convenience, detailed summaries of the results with reference to particular def
initions and theorems are included at the beginning of these sections. At a first 
reading, one may concentrate on the time-invariant continuous-time case discussed 
in Subsections 3.2B and 3.3B. (Recall that an introduction to the time-invariant 
discrete-time case was presented in Subsection 3.1 A.) The time-invariant case is 
developed in a self-contained manner in these sections, providing flexibility in cov
erage of the material. Note that in Corollary 2.12, in Subsection 3.2B, it is shown 
that the system is reachable if and only if the controllability matrix C has full rank. 
Theorem 2.13 provides an input u(t) that can accomplish the transfer of the state 
from a vector value XQ to another vector value xi, provided that such transfer is 
possible, while Theorem 2.17 gives additional tests for reachability. A relationship 
between reachability and controllability is established in Theorem 2.16. In an anal
ogous manner, in Corollary 3.8, in Subsection 3.3B, it is shown that a system is 
observable if and only if the observability matrix € has full rank. A relationship be
tween observability and constmctibility is given in Theorem 3.9, while in Theorem 
3.10 additional tests for observability are presented. A useful table of all Gramians 
used in this chapter is provided in the summary section (Section 3.6). 

In Part 2, special forms for state-space representations of continuous-time and 
discrete-time time-invariant systems are introduced. The standard forms for uncon
trollable and unobservable representations and the Kalman Decomposition Theorem 
are presented in Subsection 3.4A, and useful eigenvalue/eigenvector tests for con
trollability and observability are developed in Subsection 3.4B. The controller and 
observer forms and the Structure Theorem are discussed in Subsection 3.4D. At 
a first reading, one could study Subsections 3.4A and 3.4B and cover Subsection 
3.4D selectively, concentrating on deriving and using controller and observer forms 
rather than proofs and properties. Note that the controller and observer forms are 
used primarily in realization algorithms in Chapter 5, in a method to assign closed-
loop eigenvalues via state feedback in Chapter 4, and in Chapter 7, to gain insight 
into the relations between state-space and polynomial matrix representations of lin
ear time-invariant systems. Furthermore, the Structure Theorem discussed in this 
section introduces polynomial matrix fractional descriptions of the transfer func
tion matrix H(s). These descriptions are very useful in control problems and are 
discussed further in Chapter 7. In Section 3.5, the poles and zeros of a system are in
troduced using the Smith form of a polynomial matrix and the Smith-McMillan form 
of a transfer function matrix H(s). The pole and zero polynomials of H(s) are defined 
next. This gives rise to the McMillan degree of H(s) and to the order of a minimal 
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226 realization, discussed in Subsection 5.2C of Chapter 5. The study of poles and zeros 
Linear Systems offers significant insight into feedback control systems. At a first reading, Section 

3.5 may be omitted without loss of continuity. 

P A R T I 
CONTROLLABILITY AND OBSERVABILITY 

3.2 
REACHABILITY AND CONTROLLABILITY 

The objective here is to study the important properties of state controllability and 
reachability when a system is described by a state-space representation. In Sub
section 3.1 A, a brief introduction to these concepts for discrete-time time-invariant 
systems was given, where it was shown that a system is completely reachable if 
and only if the controllability (-from-the-origin) matrix ^ in (1.1) has full rank n 
{rank% = n). Furthermore, it was shown that the input sequence necessary to ac
complish the transfer can be determined directly from % by solving a system of 
linear algebraic equations. In a similar manner, we would like to derive tests for 
reachability and controllability and determine the necessary system inputs to ac
complish the state transfer for the continuous-time case. This is the main objective 
of this section. We note, however, that whereas the test for reachability in the time-
invariant case {rank ̂  = n) can be derived by a number of methods, the appropriate 
sequence of system inputs to use cannot easily be determined directly from ^ , as was 
the case for discrete-time systems. For this reason, we use an approach that utilizes 
ranges of maps, in particular, the range of an important nXn matrix—the reachabil
ity Gramian. The inputs that accomplish the desired state transfer can be determined 
directly from this matrix. However, once this is accomplished, we can develop all 
the results for the time-varying case as well, with hardly any additional work. This 
is the approach we will employ. The reader can skip the more general material, how
ever, starting with Definition 2.1, and concentrate on the time-invariant case starting 
with Definition 2.9, if so desired. The contents of this section are now presented in 
greater detail. 

Section description 

In this section, the concepts of reachability and controllability are introduced and 
discussed in detail for linear system state-space descriptions. This is accomplished 
for continuous- and discrete-time systems for both time-varying and time-invariant 
cases. 

Reachability for continuous-time systems is discussed first and the reachability 
Gramian Wr(to, ̂ i) is defined (in Definition 2.7). It is then shown (in Corollary 2.3) 
that the system is reachable at t\ if and only if Wr(to, t\) has full rank for some /Q — ̂ i • 
Reachability implies that it is possible to transfer the state from a value XQ to some 
value xi, and system inputs that accomplish this transfer are given in Theorem 2.4 
and Corollary 2.5. Controllability is discussed next and the controllability Gramian 
is defined (in Definition 2.8). It is shown (in Theorem 2.6) that a continuous-time 



system is reachable if and only if it is controllable. Two additional results (Theo
rems 2.8 and 2.9) provide further criteria for reachability and controllability. All 
these results are then applied to the continuous-time time-invariant case. The above 
material is presented in a manner that makes possible the study of time-invariant sys
tems, independent of the time-varying case. In Lemma 2.10, a relationship between 
the reachability Gramian Wr(0, T) and the controllability (-from-the-origin) matrix 
% = [B, AB,..., A'^'^B] is estabHshed. It is then shown in Corollary 2.12 that a 
system is reachable if and only if ^ has full rank n. A system input sequence that 
transfers the state from XQ to xi is derived in Theorem 2.13 and in Corollary 2.14. In 
Theorem 2.16 a relationship between reachability and controllability is established, 
and Theorem 2.17 provides additional tests for reachability. 

For discrete-time systems, in particular, discrete-time time-invariant systems, 
reachability and controllability are discussed next. Here, the controllability matrix 
% plays a predominant role. It is shown that when ^ has full rank, the system is 
reachable (Corollary 2.19), and input sequences that transfer the state to desired 
values are derived (Theorem 2.20 and Corollary 2.21). In Theorem 2.22 it is shown 
that reachability in the case of discrete-time systems always implies controllability. 
In contrast to the continuous-time case, the converse to this statement is generally 
not true. This is due to a lack of time reversibility in difference equations. When A 
is nonsingular, then controllability also implies reachability. Finally, in Definitions 
2.13 and 2.14 the reachability and controllability Gramians for the discrete-time case 
are defined for sake of completeness. 

227 
CHAPTERS: 

Controllability, 
Observability, 
and Special 
Forms 

A. Continuous-Time Time-Varying Systems 

We consider the state equation 

X = A{t)x + B{t)u, (2.1) 

where A{t) G R'''^'', B{t) G R^^^^ and u(t) G R"^ are defined and (piecewise) con
tinuous on some real open interval {a, b). The state at time t is given by 

x{t, to, XQ) ^ x{t) = ^{t, to)x(to) + 0(^, T)B(T)U(T) dr, (2.2) 
J to 

where ^(t, r) is the state transition matrix of the system, to, t G {a, b), and x(fo) = XQ 
denotes the initial state at initial time. 

In the time-invariant case. 

X = Ax + Bu, 

where A G /̂ >̂<", B G /̂ >̂<'̂ , (2.2) is still valid with 

^{t, T) = ^{t - T, 0) - exp [{t - T)A\ = e^^'-^\ 

(2.3) 

(2.4) 

We are interested in using the input to transfer the state from XQ to some other 
value x\ at some finite time ti > to, [i.e., x(ti) = xi]. Equation (2.2) assumes the 
form 

Xi = $(^1, ^o)̂ 0 + 0(^i, T)5(T)W(T)JT, (2.5) 



228 and clearly, there exists u(t), t E [/Q, h ] that satisfies (2.5) if and only if such transfer 
Linear Systems ^f ^^e state is possible. Rewriting (2.5) as 

ch 
jci - (5(^1, ro)xo = ^{ti, T)B{T)U{T) dr (2.6) 

and letting xi ^^ x\ - ^{h, to)XQ, we note that the u{t) that transfers the state from 
XQ at 0̂ to x\ at time t\ will also cause the state to reach x\ at ti, starting from the 
origin at to (i.e., x{to) = 0). 

For system (2.1), we introduce the following concept. 

DEFINITION 2.1. A State xi is reachable at time t\ if for some finite to < t\ there 
exists an input u{t\ t E [to, t\\ that transfers the state x{t) from the origin at ô, to x\ at 
time t\ [i.e., that transfers x(t) from x(tQ) = 0 to x(t\) = xi]. 

Thus, when xi is reachable at ti [with x(to) = 0], then in view of (2.5), there exists 
an input u such that 

xi = i' c^(ti,T)B(T)u(T)dr. (2.7) 

• 

We note that the times ti and to are important individually in the time-varying 
case only; in the time-invariant case, as is well known by now, ti - to is the important 
quantity, and typically ô is taken to be ro = 0 with ti = T,3. finite positive number. 

The set of all reachable states xi contains the origin and constitutes a linear sub-
space of the state space (X, R) = (R^, R) (verify this). This gives rise to the following. 

DEFINITION 2.2. The reachable at ti subspace R[^ of (2.1) is 

Rr^ = {set of all states x\ reachable at ^i}. • 

When the context is clear and there is no ambiguity, we will write Rr in place 
ofR',. 

DEFINITION 2.3. The system (2.1) is (completely state) reachable at ti if every state 
xi in the state-space is reachable at ti (i.e., Rr = R'^). In this case, we equivalently make 
reference to reachable pair (A(t), B(t)) atti. • 

A reachable state is sometimes also called controllable-from-the-origin. Addi
tionally, there are also states defined to be controllable-to-the-origin or simply con
trollable. In particular, we have the following notion. 

DEFINITION 2.4. A state XQ is controllable at time to if for some finite t\ > to there 
exists an input u(t\ t E [to, ti] that transfers the state x(t) from xo at ô to the origin at 
time ti [i.e., from x(to) = xo to x(ti) = 0]. • 

In view of (2.5), there exists an input u such that 

-^(tu to)Xo = f ' ^(h, T)B{T)u{T)dT, (2 .8) 
JtQ 

or by premultiplying by ^~^{t\, to) = ^(to, ti) (see Section 2.3), 

-xo = f ' 0(^0, T)B{T)u{r)dT, (2.9) 

where the semigroup property ^{to, t\)^{t\y r) = 0(^0, r) was used. 



Similar to the case of reachable states, the set of all controllable states includes 
the origin, and is a linear subspace Re of the state-space X (i.e.. Re C X). 

DEFINITION 2.5. The controllable at to subspace /?J? of (2.1) is 

R^c = {set of all states XQ controllable at ô}- • 

It is denoted by Re for convenience when there is no ambiguity. 

DEFINITION2.6. The system (2.1) is (completely state) controllable at to if every state 
xo in its state-space is controllable (i.e., if Re = R^). In this case, we equivalently make 
reference to controllable pair (A(t), B(t)) at ^. • 

Discussion 

Relation (2.7) shows that for x = A(t)x + B(t)u given in (2.1) and for given ti, 
the range of the integral map 

L = L(u, to, ti) = ^{t\, T)B{T)U{T) dr (2.10) 

with u{t), t E [̂ 0, ^i], and with t^ varying over all finite values Q̂ < ^i, is exactly 
the reachability subspace Rr, since a state x\ is reachable if there exists a t^ and u 
such that xi E 2/l(L). Notice that in view of (2.6), the input u which transfers the 
state from the origin at t^io x\ at t\ also transfers the state from XQ at t^io xi at 
t\, where xi = x\ — ^{t\, ^)xo. For fixed XQ, since {x\} spans the reachability sub-
space /^^\ this relation yields all states xi that can be reached from XQ in finite time 
t\ - to-

In Lemma 2.1, the range of L is shown to be equal to the range of a matrix, 
the reachability Gramian Wr(to, t\), which is rather easy to determine. In the time-
invariant case, it is also shown to be equal to the range of the controllability matrix 
%. Before proving these results, the relation between reachability (controllability-
from-the-origin) and controllability (controllability-to-the-origin) is discussed; the 
exact relation is proved in Theorem 2.6. 

In view of (2.7) and (2.8), a vector x is reachable (controllable-from-the-origin) 
at t\ if there exists a finite ô and u(t), t E [̂ o, ^i], so that x E 9l(L), where L is 
defined in (2.10), and it is controllable (-to-the-origin) at ô if 0(^i, to)x E Sl(L). It 
is shown later (Theorem 2.6) that the system (2.1), or the pair (A, B), is (completely 
state) reachable if and only if it is controllable. This is the reason why only one term 
is typically used in the literature when describing these properties for continuous-
time systems. For discrete-time systems, however, the situation is different. In this 
case, as will be shown later in this section, if the pair (A, B) is reachable, then it 
is also controllable, but not necessarily vice versa; that is, in the discrete-time case 
controllability does not necessarily imply reachability. Indeed, controllability im
plies reachability only when the state transition matrix ^(k, ko) has full rank, which 
is not always true in discrete-time systems. As discussed in Chapter 2, this is due 
to the lack of the "time reversibility" property. On the other hand, in the case of 
continuous-time systems, ^(t, r) is always nonsingular. In such systems, reachabil
ity implies that any state xi can be reached from any other state XQ in finite time 
ti - to. This property is sometimes used in the literature to define "controllability." 
An input that achieves this transfer is given later in Corollary 2.5. In the discrete-
time systems literature, the term that is typically used is "reachability"; however, for 
simplicity, the term "controllability" is sometimes also used, with some sacrifice of 
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230 accuracy. We will use both terms, reachability and controllability, with a warning to 

Linear Systems the reader when use of the term controllability (-from-the-origin) is made, instead of 
reachability. 

Now suppose there exists an input u which transfers the state of the system 
from x{to) = 0 to x{ti) = x i , that is, (2.7) is true. The integral in (2.7) is a map 
L = L{u,to,ti) defined in (2.10) that maps an input u{t) ^ R^ defined over [̂ ô î] 
to states xi ^ R^. We are interested in the range of L, ^ ( L ) since it contains all the 
states that can be reached from the origin, x{to) = 0, at time ti, by varying the input u. 
Note that L has infinite-dimensional domain, and therefore it is not easy to determine 
its range directly. In the following we show that ^ ( L ) is equal to the range of an 
important matrix, the reachability Gramian. 

DEFINITION 2.7. The reachability Gramian of the system x = A(t)x-\-B(t)u is the 
nxn matrix 

Wr{toA) = r O ( n , T ) 5 ( T ) 5 ^ ( T ) 0 ^ ( n , T ) J T , (2.11) 
Jto 

where 0(r, T) denotes the state transition matrix. • 

Note that Wr is symmetric and positive semidefinite for every ti > to; that is, 
Wr = W^ and Wr > 0 (show this). Now let to < ti be given. Then the following 
lemma can be shown. 

L E M M A 2.1. ^{L{u,to,ti)) =^{Wr{to,ti)). 

Proof, We first show that ^(W^) C ^ ( L ) . Let xi G ̂ (W^); that is, there exists 
7]i eR^ such that WrT]i =xi. Choose UI{T) = B^(T)^^{ti,T)rii. Then L{ui,to,ti) = 

Jl^ 0{ti,T)B{T)B^ {T)0^ {ti,T)dT\rii =Wrrii =xi. Therefore, xi G ̂ ( L ) , and since 

xi is arbitrary, it follows that ^{Wr) C ̂ ( L ) . 
We shall now show that ^ ( L ) C ^(Wr), which together with ^(Wr) C ^ ( L ) 

proves that ^ ( L ) = ^(W^). Let xi G ̂ ( L ) , i.e., there exists an input ui such that 
L{ui,to,ti) = xi. We assume that xi ^ ^(W^) and we shall show that this leads to a 
contradiction. This implies that the null space of W (̂̂ 0,̂ 1) is nonempty. Wr is symmet
ric, and so the range of Wr is the orthogonal complement of its null space (prove this). 
Thus for any u G ̂ {Wr) and v G yK(Wr), u^v = 0. Also, we may write xi = x^^ +x'/ 
with x[ G ̂ (Wr) and x'l G yK{Wr) (x'l ^ 0 since xx ^ ^(Wr)). Then there exists 
X2 G yK(Wr) such that X2x'( ^ 0, which implies X2X1 7̂  0. Now ^2 Wr(̂ 0,̂ 1 )-̂ 2 = 0 = 
Ho [4^(^ i ' ^ )^ (^) ] [xl^{tuT)B{T)fdT = g' II x^O(ri,T)5(T) 11̂  J T , which shows 
that^2 0(^1, T)B{T) = 0 for every T G [̂ 0,̂ 1]• This in turn implies that^2xi = X2L{u\) = 
Jl^[xl^{tuT)B{T)]ui{T)dT = 0, which is a contradiction since ^2X1 7̂  0. Therefore, 
XI G ̂ (Wr), which implies that ^ ( L ) C ^(Wr). • 

Lemma 2.1 shows that the set of all states that can be reached at time ti from 
the origin at some finite time to < ti, is given by ^(Wr{to,ti)), the range of the 
reachability Gramian. 

THEOREM 2.2. Consider the systemi = A(^)x + 5(^)w givenin (2.1). There exists an 
input u that transfers the state to xi at ti from the origin at some finite time 0̂ < 1̂ ̂  if 
and only if there exists finite time 0̂ < h so that 

XI e^{Wr{to,ti)). 



Furthermore, an appropriate u that will accomplish this transfer is given by 

u(t) = B^{t)^^{ti, t)j]i 

with 171 a solution of Writ^, ti)ri\ = xi and t G [to, ti]. 

(2.12) 

Proof, In view of Lemma 2.1 and the definition of L(u) in (2.10), the proof of the first 
part of the theorem is straightforward. To prove the second part of the theorem, note that 
(2.12) was used in the proof of Lemma 2.2 to accomplish the transfer to xi. • 

COROLLARY 2.3. The system x = A(t)x + B(t)u is (completely state) reachable at 
ti, or the pair (A(t), B(t)) is reachable at ti, if and only if there exists finite to < t\ such 
that 

rank Wr{to, t\) = n. (2.13) 

Proof. In view of Theorem 2.2, all states xi can be reached at ti if and only if for 
some to < h,^{Wr(toyt\)) = ^", the entire state space. This is true if and only if 
rank Wr{to, ti) = n for some finite ^ < ^1. • 

The following result is useful in accomplishing the transfer from a state XQ to 
another state x\ in some given finite time t\ -to. 

THEOREM 2.4. There exists an input u that transfers the state of the system x = 
A(t)x + B(t)u from xo at time to to xi at time ti > to if and only if 

Xi - ^(ti, to)Xo E ^(Writo, h)). 

Furthermore, such input is given by 

u(t) = B^(t)^'^(ti, t)r]i 

with 171 a solution of 

W'̂ (̂ o, ̂ i)'»7i = -̂ 1 -^{ti,to)xo' 

(2.14) 

(2.15) 

(2.16) 

Proof The proof is straightforward in view of Theorem 2.2 and the fact that there exists 
an input which transfers the state from xo at to to xi at t\ if and only if it transfers the 
state from the origin at to to xi = x\ - 0(fi, to)xo at t\ [see (2.6)]. • 

EXAMPLE 2.1. Consider i: = A(Ox + 5(0w, where A(0 = 
- 1 e^' 

0 - 1 
B{t) = 

0 
The state transition matrix was calculated in Example 3.4, Section 2.3 (of Chapter 2), 
to be 

^{U T ) 
O-it-T) i^z.^ W^' — e 

-a-r) 

7+3x1 

Here ^{t, T)B(T) 
0 

WritoJl) 

and the reachability Gramian of the system is 

to L 0 
dr = '(ti - to)e-^' 

0 

1 0' 

0_ 

It is clear that rankWr{toy ti) < 2 = /2 for any to < t\ and therefore the system 
is not reachable at t\. Note that since t\ is arbitrary, the system is not reachable at 
any finite time. However, the state can be transfered from the origin to a state 

\(X 
xi E ^{Wr{to, h)). In particular, in view of Theorem 2.2, let xi = I, a E R, 
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Linear Systems and solve Wr{to, ti)r]i = xi to obtain r/i = -to 

in view of (2.12), u(t) = [<^(ti,t)B{t)fr]i = [^"^i,0] 

where p G R arbitrary. Then, 

- ^ 0 

_e^h 

to 
-e^^ will 

drive the state from the origin at ô to xi at ti. To verify this, we note that x(ti) = 

\;'^{h,T)B{T)u{T)dT = 
0 -e'^ih -to) = , ,_. Notice that for the transfer 

t\ — to 
to be accomplished in a short period of time, t\ - to = e with e small, the required 
control magnitude can be quite large since uit) = (a/e)e^^. • 

The last observation in Example 2.1 points to two important aspects that we now 
elaborate on. 

First, we note that the faster the state of the system is required to move (the 
smaller the ti - to = e) and the further away the desired state x\ is (the larger the 
a ) , the larger the required control magnitude will be. This makes intuitive sense 
since it simply states that the more sudden and drastic the change in the state, the 
larger the required control force will be (think, e.g., of a simple mechanical spring 
system). 

Second, it is clear that the property of reachability (controllability) implies the 
ability to change the state of the system very fast indeed, paying for this of course 
in terms of increased control magnitude (see Example 2.1 and Exercise 3.12). In
tuitively, this is not always possible in the case of physical processes, where only 
limited control action is typically available. This points to some of the limitations of 
linear system models that do not include information about input saturation limits, 
nonlinear behavior, limitations of output sensors, and the like. 

EXAMPLE 2.2. Consider the system described by i = A(t)x + B(t)u, where A(t) = 

. The state transition matrix ^(?, T) is given in Example 2.1. 
-1 e^' 
0 - 1 

B(t) = 

Here 0(?, r)B(T) = 
-t+2T-\ 

and the reachability Gramian Wr(to, t\)is such that e~ 
the system is reachable at ti (show this). • 

The following result demonstrates the importance of reachability in determining 
an input u to transfer the state from any XQ to any x\ in finite time. 

COROLLARY 2.5. Let the system i: = A(t)x + B(t)u be (completely state) reachable 
at time t{, or let the pair (A(t), B(t)) be reachable at ti. Then there exists an input that 
will transfer any state xo at some finite time to < ti, to any state xi at time ti. Such input 
is given by 

u(t) = B^(t)^^(ti,t)W;\to,ti)[xi -<^(ti,to)xo] (2.17) 

fort E [^0,^1]. 

Proof, In view of Corollary 2.3, reachability implies that, given ti, rank Wr(to, ti) = n 
for some ô < t\ or that ^{Wr{to, t\)) = /?", the whole space, for some to. This implies 
that any vector xi - ^ ( ^ i , to)xo G ^(W;.(^, ^0), which in view of Theorem 2.2 and (2.12) 
implies that the input in (2.17) is an input which will accomplish this transfer. • 

There are many different control inputs u that can accomplish the state trans
fer from Xo at ^ = to to x\ at t = ti. It can be shown that the input u given by 



(2.17) accomplishes this transfer while expending a minimum amount of energy. 
In particular, among all the control inputs u(t) that will transfer the state from XQ 
at to to xi at t\, u(t) in (2.17) minimizes the cost functional J/^ ||W(T)|P J r , where 
\\u(t)\\ = [w^(Ow(0]^^^theEuchdean norm of u(t). 

We shall now establish a connection between controllability and reachabihty of 
the continuous-time system x = A(t)x + B(t)u. 

THEOREM 2.6. If the system x = A(t)x + B(t)u, or the pair (A(t), B(t)), is reachable 
at ti, then it is controllable at some ^ < ^i. Also, if it is controllable at ô, then it is 
reachable at some ti > to. 

Proof. It was shown in Corollary 2.3 that for reachability of (2.1) at ti, we must have 
rank Wr(to, ti) = n. A similar test for controllability can be derived in an identical man
ner. In particular, in view of (2.9), it is clear that the range of 

L = L{u,tQ,ti) = (^(to, T)B(T)U(T) dT (2.18) 

is of (present) interest [compare with L in (2.10) used to prove reachability]. A re
sult similar to Lemma 2.1 can now be established using an identical approach, namely, 
that ^(L(u, to, ti)) = '3i(Wc(to, ^i)), where Wdto, ti) is the controllability Gramian, de
fined next. • 
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DEFINITION2.8. The controllability Gramian of the system x 
nX n matrix 

A(t)x + B(t)u is the 

Wc(to,ti) ^(to, T)B{T)B^{T)^^{to, T)dT, (2.19) 

where ^{t, r) denotes the state transition matrix. 
Continuing the proof of Theorem 2.6, we note that it can be shown that the input 

uiit) = -B^(t)^^(toJ)vi (2.20) 

with 171 such that Wdto, 1̂)171 = ^0 satisfies L(wi, to, ti) = -XQ or relation (2.9). Thus, 
171(0 drives the state from xo at time to to the origin at time ti > to (compare with Theo
rem 2.2). As in Corollary 2.3 for the case of reachability, it can be shown in an analogous 
manner that the system is (completely state) controllable at to if and only if there exists 
ti > to so that 

rank Wdto, ti) = n. 

Next, we note that in view of the definitions of Wr and Wc, 

Wr(to,ti) = ^(tiJoWc(to,ti)^^(tuto)-

(2.21) 

(2.22) 

Since 0(ri, ô) is nonsingular for every to and t\, rank Wr(to, ti) = rank Wdto, ti) for 
every to and ti. Therefore, the system is reachable if and only if it is controllable. • 

EXAMPLE2.3. Consider the system x 
lability Gramian is given by 

A{t)x + B{t)u of Example 2.1. The control-

Wc{to,ti) 
to 0 

[e-'^0]dT = 
(ti-to)e-^'o 0 

0 0 

Compare this with the reachability Gramian of Example 2.1 and note that 4>(ri, to)) 

Wc(to,ti)<^^(ti,to) 
(ti - to)e-^'^+'o) 0 

0 0 
Wr(to, ti), as expected [see (2.22)]. 

^ ^ ( ^ 1 , ^ 0 ) = 
'dti 

0 
to) 



234 Before proceeding, we note that a relation similar to (2.17) can be derived using 
Linear Systems ^^^ Gramian Wdto, ti) and (2.20) in place of Wr(to, ti). In particular, an appropriate 

input that transfers the state from XQ at to to xi at ti is given by 

u(t) = -B^(t)^^(to, t)W;\to, ti)[xo - $ ( % h)xil (2.23) 

We ask the reader to show that this relation can also be derived from (2.17), using 
(2.22). 

Additional criteria for reachability and controllability 

First recall from Chapter 2 the definition of a set of linearly independent func
tions of time and consider in particular n complex-valued functions fi(t\ i = 
1, . . . , /i, where f^{t) G C^. Recall that the set of functions fi,i = 1 , . . . , n, is 
linearly dependent on a time interval [ti, 2̂] over the field of complex numbers C if 
there exist complex numbers at, i = \,.. .,n, not all zero, such that 

^ i / i ( 0 + • • * + ^nfn(t) = 0 for all t in [ti, ^2]; 

otherwise, the set of functions is said to be linearly independent on [ti, 2̂] over the 
field of complex numbers. 

It is possible to test linear independence using the Gram matrix of the func
tions fi. 

LEMMA 2.7. Let F(t) G C^"^ be a matrix with fi(t) G C^̂ "" in its /th row. Define the 
Gram matrix of fi(t), i = 1,..., ^, by 

W(tiJ2) = F{t)F\t)dt, (2.24) 

where ( • )* denotes the complex conjugate transpose. The set fi{t\ i = I,.. .,n,is lin
early independent on [ti, 2̂] over the field of complex numbers if and only if the Gram 
matrix W(ti, 2̂) is nonsingular, or equivalently, if and only if the Gram determinant 
det W{ti, t2) 7̂  0. 

Proof, {Necessity) Assume the set fi,i = I,..., n, is linearly independent but W{t\, 2̂) 
is singular. Then there exists some nonzero a ^ C^^"^ so that a W (̂ri, ti) = 0, from which 
aW(ti,t2)a* = l^[\aF(t))(aF(t)ydt = 0. Since (aF(t))(aF(t)y > 0 for all r, this im
plies that aF(t) = 0 for all t in [̂ 1, ^2], which is a contradiction. Therefore W(ti, 2̂) is 
nonsingular. 

(Sufficiency) Assume that W(ti, 2̂) is nonsingular but the set fi,i = 1,..., n, is 
linearly dependent. Then there exists some nonzero a ^ C^^^ so that aF(t) = 0. Then 
aW(ti, 2̂) = J/̂  aF(t)F*(t)dt = 0, which is a contradiction. Therefore the set fi, i = 
1,..., /t, is linearly independent. • 

We will use the above result to derive additional tests for reachability and con
trollability in this section and for observability and constructibility in the next sec
tion. In the following two theorems, we repeat some earlier results, for convenience. 

THEOREM 2.8. The system x = A(t)x + B(t)u is (completely state) reachable at ti 
(i) if and only if there exists finite ̂ 0 < ^1, such that 

rankWritoJi) = n, (2.25) 

),^l) ^ \,l'^(tuT)l 
equivalently, 
where Wr(to,ti) - j / ^ <I>(ri, T)5(T)B^(T)^^(ri, T)(iT, the reachability Gramian, or 



(ii) if and only if there exists finite ̂ o < ^i, such that the n rows of 

^{h, t)B{t) 

are Hnearly independent on [t^, t\\ over the field of complex numbers. 

(2.26) 

Proof. Part (i) was established in Corollary 2.3, while part (ii) is a direct consequence 
of the previous lemma and the definition of the reachability Gramian. • 

Similar results can be derived for controllability. Specifically, we have the fol
lowing result. 

THEOREM 2.9. The system x = A(t)x + B(t)u is (completely state) controllable at to 
(i) if and only if there exist finite ti > to such that 

rank Wdto, ti) = n, (2.27) 

where Wc(^, ti) = j^^^ 0(^0, T)5(T)5^(T)0^(^ , T) (ir, the controllability Gramian, 
or equivalently, 

(ii) if and only if there exists finite ti > to such that the n rows of 

0(^, t)B(t) (2.28) 

are linearly independent on [̂ o, ̂ i] over the field of complex numbers. 

Proof, The proof is analogous to the proof for Theorem 2.8. • 

Notice that premultiplication of $ ( ^ , t)B(t) by the nonsingular matrix 0(?i, ô) 
yields $(fi, t)B(t) [refer to (2.26) in the reachability theorem; compare with (2.22)]. 
This can be used to prove in an alternative way the result of Theorem 2.6, that reach
ability (controllability-from-the-origin) implies and is implied by controllability 
(-to-the-origin), in the case of continuous-time systems (show this). 
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B. Continuous-Time Time-Invariant Systems 

We shall now apply the results developed above to time-invariant systems x = 
Ax + Bu given in (2.3). In this case, the state transition matrix <tf(t, r) is explic
itly known and is given by ^(t, r) = ^̂ (̂ ~'̂ ) in (2.4). Because of time invariance, 
the difference t\ - to = T, rather than the individual times Q̂ and ti, plays an im
portant role. Accordingly, for the time-invariant case we can always take ô "̂  0 and 
ti = T. This practice will be adopted in the following. 

The definitions of reachability, Definitions 2.1 to 2.3, and controllability, Def
initions 2.4 to 2.6, are certainly also valid in the time-invariant case. We repeat 
them here for convenience, specializing them to the the system x = Ax-\- Bu given 
in (2.3). 

DEFINITION 2.9. (i)A State xi is reachable if there exists an input u{t), t E [0, T], 
that transfers the state x{t) from the origin at r = 0 to ;ci in some finite time T. 

(ii) The set of all reachable states Rr is the reachable subspace of the system i: = 
Ax + Bu, or of the pair (A, B). 

(iii) The system x = Ax + Bu, or the pair {A, B) is {completely state) reachable if 
every state is reachable, i.e., if Rr = R^. • 

DEFINITION 2.10. (i)A State xo is controllable if there exists an input u(t), t G [0, T], 
that transfers the state x(t) from xo ̂ tt = 0 to the origin in some finite time T. 
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Linear Systems system i = Ax + Bu, or of the pair (A, 5) . 

(iii) The system i = Ax+Bu, or the pair (A, 5) , is {completely state) controllable 
if every state is controllable, i.e., if Re = R^. • 

DEFINITION 2.11. The n X n reachability Gramian of the time-invariant system 
x= Ax-\-Bu is 

Wr{0, T) ^ r e^^-'^^BB^e^^-'^'^'dT. (2.29) 
Jo g 

Note that Wr is symmetric and positive semidefinite for every T > 0, i.e., W^ = 
Wj and Wr > 0 (shovv^ this). Let the n x mn controllability (-from-the-origin) matrix 
(or more precisely, the reachability matrix) be 

^ = [ 5 , A 5 , . . . , A ^ - ^ 5 ] , (2.30) 

and recall that ^ vv̂ as also defined in Section 3.L 
It is now shovv^n that in the time-invariant case the range of Wr(0, T) , denoted 

by ^ ( W r ( 0 , r ) ) , is independent of T, i.e., it is the same for any finite T{> 0), 
and in particular, it is equal to the range of the controllability matrix ^. Thus, the 
reachable subspace Rr of a system is given by the range of ^,^(^), or the range of 
Wr{0, T),^{Wr{0, r ) ) , for some finite (and therefore for any) T>0. 

LEMMA 2.10. ^ (W, (0 , r ) ) = ^ ( ^ ) for every T > 0. 

Proof, We first show that ^(Wr) C ^ ( ^ ) for some T > 0. Let xi e ^{Wr) for 
some r > 0. In view of Lemma 2.1, xi G ^ ( L ) , i.e., there exists ui such that 
L(wi,0,r) = /Q {Qxp[(T — T)A]}Bui{T)dT = xi. Using the series definition exp[A^] = 

f^{iT-Tf/kl)ui{T)dT\ Er=o(^ /^-M ' -̂ 1 ^^^ t)e written as xi = Yk=o'^^ or, in 

view of the Cay ley-Hamilton Theorem, xi = 2^~Q A^5ay^(r), where ak{T) is appropri
ately defined. This imphes thatxi G ^ ( ^ ) . Since xi is arbitrary, ^{Wr) C ^ ( ^ ) . 

We shall now show that ^ ( ^ ) C^{Wr).LQtxi G ^ ( ^ ) , i.e., there exists 7] i eR"""^ 
such that ^ r | i = xi. Assume that xi ^ ^(W^) for some 7 > 0. We shall show that 
this leads to a contradiction. This implies that the null space of Wr is nonempty. 
Wr is symmetric, and so the range of Wr is the orthogonal complement of its null 
space (prove this). Thus for any u e ^(Wr) and v G yK{Wr),u^v = 0. Also, we may 
write XI = x[ +x' / with x[ G ^{Wr) and x'l G ^ ( W , ) (x'l ^ 0 since xi ^ ^(Wr)). 
Then there exists X2 G yl^{Wr) such that X2x'( ^ 0, which implies X2X1 7̂  0. Next, 
consider xlWr{0,T)x2 = 0 = /o^[x^{exp[(r - T)A]}5][x^{exp[(r - T)A]}B]^dT = 
JQ \\xl{Qxp[{T - T)A]}B\\ldT, which shows that x^exp[(r - T)A]B = 0 for every 
T G [0, r ] . Taking derivatives of both sides with respect to T and evaluating at T = T, 
we obtain x^B = -x^AB = --- = {-ifx^A^B = 0 for every ^ > 0. Thus, x^A^B = 0 
for every ^ > 0, and therefore, ^2X1 = X2^r\\ = 0, which is a contradiction since 
x^xi y^ 0. Therefore, xi G ^(W^), which implies that ^ ( ^ ) C ^(W^). This, together 
with ^(Wr) C ^ ( ^ ) , shows that ^{Wr) = ^ ( ^ ) . • 

Lemma 2.10 shovv ŝ that given the time-invariant system x = Ax-\-Bu, if x(0) = 
0, then the set of all states that can be reached in finite time, i.e., the reachability 
subspace Rr is given by ^(^), the range of the controllability matrix, or equivalently, 
by ^ ( W r ( 0 , r ) ) , the range of the reachability Gramian, vv^here T > 0 is any finite 
time. 



EXAMPLE 2.4. For the system i: = Ax + Bu v^iih A = 
0 1 
0 0 

andB 

1 t 
0 1 

and e^^B = . The reachability Gramian is ^^^(0, T) = 

, we have 

T -T 

1 

[T - T,l]dT = 
(T -rf T - 7 

T -T 1 
dr = . Since det W,(0,7) = 

^ r ^ 7̂  0 for any T > 0, ra^/: W,(0, T) = ^ and (A, 5) is reachable. Note that % 12 

[5, AB] = 

If B --

0 1 
1 0 

1 
0 

and that ^(WM T)) = S?l(^) = R^, as expected (Lemma 2.10). 

instead of 

able. In this case e^^B = 

Notice again that 

1 0 
0 0 

T 0 
0 0 

then ^ = [B, AB] 

and the reachability matrix is Wr(0, T) = \^ 

= ^(Wr(0, T)) for every T > 0. 

and (A, B) is not reach-

T 1 0 
0 0 

dr = 

THEOREM 2.11. Consider the system x = Ax -\- Bu and let x(0) = 0. There exists 
input u that transfers the state to xi in finite time if and only if xi G S/l(^), or equivalently, 
if and only if 

xi G ^(Wr(0, T)) 

for some finite (and therefore for any) T. Thus, the reachable subspace Rr = S/l(^) = 
^(Wr{0, T)). Furthermore, an appropriate u that will accomplish this transfer in time T 
is given by 

(2.31) u(t) = ^ V ^ ^ - ^ i 

with r/i such that Wr(0, T)r]i = xi and t G [0, T]. 

Proof. Apply Theorem 2.2 to the time-invariant case and then use Lemma 2.10. • 

Note that in (2.31) no restrictions are imposed on time T, other than that T be 
finite. T can be as small as we wish, i.e., the transfer can be accomplished in a very 
short time indeed. 

COROLLARY 2.12. The system x = Ax + Bu, or the pair (A, 5), is (completely state) 
reachable, if and only if 

rank"^ = n, (2.32) 

or equivalently, if and only if 

rankWr(0,T) = n (2.33) 

for some finite (and therefore for any) T. 

Proof, Apply Corollary 2.3 to the time-invariant case and use Lemma 2.10. • 

THEOREM2.13. There exists input u that transfers the state of the system x = Ax+Bu 
from XQio x\ in some finite time T if and only if 

XX - e^^XQ G m.{%), 

or equivalently, if and only if 

xi - e^^XQ G ^{WXO, T)). 

(2.34) 

(2.35) 
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Such input is given by 

u(t) = B^e^^^^-'^i]i (2.36) 

with t E [0, r ] , where r/i is a solution of 

Wrifi, T)7]i = xi- e^^XQ. (2.37) 

Proof, Apply Theorem 2.4 to the time-invariant case and use Lemma 2.10. • 

The above leads to the next result, which establishes the importance of reacha
bility in determining an input u to transfer the state from any XQ to any xi in finite 
time. 

COROLLARY 2.14. Let the system i: ^ Ax + 5M be (completely state) reachable, or 
the pair (A, B) be reachable. Then there exists an input that will transfer any state XQ to 
any other state x\ in some finite time T. Such input is given by 

u{t) = B^e^^^^-'^W;\0,T)[xi - e^^x^-] (2.38) 

for r e [0, r ] . 

Proof, This result is the time-invariant version of Corollary 2.5. In view of Corollary 
2.12, reachability implies that ra^y^W;-(0,r) = ^ for some T or that 2?l(W (̂0, T)) = /?", 
the whole state space. This implies that any vector xi - e^-^xo E '3i(Wr(0, T)) that, in 
view of Theorem 2.13, implies that the input in (2.38) is an input which will accomplish 
this transfer. • 

There are many different control inputs u that can accomplish the transfer from 
xo to xi in time T. It can be shown that the input u given by (2.38) accomplishes 
this transfer while expending a minimum amount of energy; in fact, u minimizes the 
cost functional j ^ ||W(T)|P J r , where \\u(t)\\ = [u^(t)u(t)y^^ denotes the Euclidean 
norm of u(t). 

EXAMPLE 2.5. The system x = Ax + Bu with A 
0 1 
0 0 

and 5 is reachable 

(see Example 2.4). A control input u(t) that will transfer any state XQ to any other state 
Xi in some finite time T is given by (see Corollary 2.14 and Example 2.4) 

u(t) = B^e'^'^^^-'^W;\0, T)[xi 

12 

= [T-t, 1] 6 
J2 
4 

Xi 

XQ] 

Xo 

j2 J 

EXAMPLE 2.6. For the (scalar) system x = -ax + bu, determine u(t) that will transfer 
the state from x(0) = XQ to the origin in T sec; i.e., x{T) = 0. 

We shall apply Corollary 2.14. The reachability Gramian is Wr(0, T) = 

~^''^]. Note [see (2.41) below] that the controllability Gramian is Wc(0, T) -[1 

2a 
[e' 1]. Now in view of (2.38), we have 



^(0 = be-^^-'^'' 
2a 
FT 

2a e-^'^ 

b 1 
2a 

-laT 

-2aT 

e'^XQ 

[-e-^'^x^] 

1 
b ^2«r _ I 

^"'Xo. 

To verify that this u{t) accompHshes the desired transfer, we compute x{t) = ^^^xo + 

''e^^'-^^Bu(T)dT = e- XQ + Jo e-'''e''^bu{r)dT = e'^\x^ + JQ e'^'b X 

2a 1 
dr = e 

^2at , 

1 -
1 

XQ. Note that x{T) = 0, as desired, and 

also that x(0) = XQ. The above expression shovv̂ s also that for t > T, the state does 
not remain at the origin. An important point to notice here is that as T ^ 0, the control 
magnitude \u\^ oo. Thus, although it is (theoretically) possible to accomplish the desired 
transfer instantaneously, this will require infinite control magnitude. In general, the faster 
the transfer, the larger the control magnitude required. • 

We shall novŝ  establish the relationship between reachability and controllability 
for the continuous-time time-invariant systems (2.3). 

Applying (2.8) to the time-invariant case, XQ is controllable v\^hen there exists 
u(t), t G [0, Tl so that 

-e^^XQ = 

or when e^^xo £ ^(Wr(0, T)), or equivalently, in view of Lemma 2.1, when 

e^^XQ G 2/l(^) (2.39) 

for some finite T. Recall that xi is reachable when 

XX G 3l (^) . (2.40) 

We require the following technical result. 

LEMMA 2.15. If X E ^{%), then Ax G S/l(^); i.e., the reachable subspace Rr = ^{%) 
is an A-invariant subspace. 

Proof, If X G S^(^), this means that there exists a vector a such that [B, AB,..., 
A«-i5]a - X. Then Ax = [AB, A^B,..., A"5]a. In view of the Cay ley-Hamilton The
orem, A" can be expressed as a linear combination of A"~^ . . . , A, / , which implies that 
Ax = %fi for some appropriate vector jS. Therefore, Ax G S^(^). • 

THEOREM 2.16. Consider the system x = Ax + Bu. 
(i) A state x is reachable if and only if it is controllable, 

(ii) Re = Rr. 
(iii) The system (2.3), or the pair (A, B), is (completely state) reachable if and only 

if it is (completely state) controllable. 

Proof, (i)Letxbe reachable; that is, xG2?l(^).Premultiplyxby^^^ = X1=o(T^/kl)A^ 
and notice that in view of Lemma 2.15, Ax, A^x,..., A^x G 2?l(^). Therefore, e^^ x G 
2/l(^) for any T, which, in view of (2.39), implies that x is also controllable. If now x is 
controllable, i.e., e^^x G ^ ( ^ ) , then premultiplying by e~^^, the vector e~^^ [e^^x) = 
X will also be in ^(%). Therefore, x is also reachable. Note that the second part of (i), 
that controllabihty implies reachability, is true because the inverse {e^'^Y^ = e~^^ does 
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240 exist. This is in contrast to the discrete-time case where the state transition matrix 4>(/c, 0) 
Linear Systems ^̂  nonsingular if and only if A is nonsingular [nonreversibihty of time in discrete-time 

systems (see Section 2.7)]. 
Parts (ii) and (iii) of the theorem follow directly from (i). • 

The reachability Gramian for the time-invariant case, Wr(0, T), was defined in 
(2.29). Similarly, in view of Definition 2.8, we make the following definition. 

DEFINITION2.12. The controllability Gramian in the time-invariant case is the nXn 
matrix 

rT 
Wc(0,T)^\ e-^'BB^e-^^'dr. (2.41) 

Jo 
• 

We note that 

which can be verified directly [see also (2.22)]. 
As was done in the time-varying case above, we now introduce a number of 

additional tests for reachability and controllability of time-invariant systems. Some 
earlier results are also repeated here for convenience. 

THEOREM 2.17. The system x = Ax + Bu'\^ reachable (controllable-from-the-origin) 
(i) if and only if 

rank Wr(fi, T) = n for some finite T > 0, 
rT 

where WM T) = e^^-''^^BB^ e^'^'^^^^ dr, (2.42) 

the reachability Gramian, or 
(ii) if and only if the n rows of 

(2.43) 

are linearly independent on [0, ̂ ) over the field of complex numbers, or alter
natively, if and only if the n rows of 

{sI-Ay^B (2.44) 

are linearly independent over the field of complex numbers, or 
(iii) if and only if 

rank% = n, (2.45) 

where % = [B,A,B,..., A"~^B], the controllability matrix, or 
(iv) if and only if 

rank [sil - A,B] = n (2.46) 

for all complex numbers st, or alternatively, for si, i = \,.. .,n, the eigenval
ues of A. 

Proof, Parts (i) and (iii) were proved in Corollary 2.9. 
In part (ii), rank W (̂0, T) = n implies and is implied by the linear independence of 

the n rows of e^^'^^^B on [0, T] over the field of complex numbers, in view of Lemma 2.7, 
or by the linear independence of the n rows of e^^B, where t = T -t, on [0, T]. Therefore 
the system is reachable if and only if the n rows of e'^^B are linearly independent on [0, oo) 
over the field of complex numbers. Note that the time interval can be taken to be [0, ^) 
since in [0, 7], T can be taken to be any finite positive real number. To prove the second 



part of (ii), recall that ^{e^^B) = (si — A)~^B and that the Laplace transform is a 
one-to-one linear operator. 

Part (iv) will be proved later in this chapter, in Corollary 4.6. • 

Results for controllability that are in the spirit of those given in Theorem 2.17 
can also be established. The reader is asked to do so. This is of course not surprising 
since it vv̂ as shovv^n (in Theorem 2.16) that reachability implies and is implied by 
controllability. Therefore, the criteria developed in the theorem for reachability are 
typically used to test the controllability of a system. 

EXAMPLE 2.7. For the system x = Ax-\- Bu, where A 
0 1 
0 0 

and 5 : 

Example 2.4), we shall verify Theorem 2.17. The system is reachable since 

(as in 

(i) the reachability Gramian Wr(0,7): 

for any 7 > 0, or since 

\T^ \T^-

2^ 

has rankWr{0,T) •• 

(ii) e^^B • has rows that are linearly independent on [0,oo) over the field 

of complex numbers (since ai -1 -\- a2 - I = 0, where ai and a2 are complex 
numbers implies that ai = a2 = 0). Similarly, the rows of {si — A)~^B = 
lA^l 
^ are linearly independent over the field of complex numbers. Also, 

smce 
(iii) rank ^ — rank \B^AB\ — rank 

(iv) rank [5;7 —A,5] = rank 

eigenvalues of A. 

0 1 
1 0 

- 1 0 
Si 1 

: n, or 

2 = n for Si = 0,i = 1,2, the 

If 5 in place of 

(i) WriOJ) T 0 
0 0 

then 

(see Example 2.4) with rank Wr{0,T) = I <2 = n, and 

(ii) e^^B • and {sI-A)-^B • 
\/s 
0 

, neither of which has rows that are 

linearly independent over the complex numbers. Also, 

(iii) rank' 
1 0 
0 0 

(iv) rank [sil — A,B\ = rank 

I <2 = n, and 

- 1 1 
I <2 = n for Si = 0. 

Si OJ 

Based on any of the above tests, it is concluded that the system is not reachable. 
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C. Discrete-Time Systems 

The response of discrete-time systems was studied in Section 2.7 of Chapter 2. We 
consider systems described by equations of the form 



242 x(k + 1) - A(k)x(k) + B(kMkl k ^ ko, (2.47) 

Linear Systems ^j^^j,^ ^^^^ ^ j^nxn^ 5(^) ^ ^nxm^ ĵ̂ ĵ ̂ ^^ ^^^^^ ^^^^ ^ ^m ^^^ defined for it ^ ko. 

The state x(fe) for k> kois given by 
y t - l 

4 ^ ) = ^(k ko)x(ko) + ^ ^(k i + l)B{i)u{i), (2.48) 
/ = ^ , 

where the state transition matrix ^{k, ko) is given by ^(k, ko) = A(k - 1) X 
A(k - 2)'' 'A(ko) for k > ko, and O(^o. ko) = L 

In the time-invariant case we have 

x{k+\) = Ax{k) + Bu{k\ k ^ ko, (2.49) 

where A G /̂ '̂ X" and B E /?">< .̂ The state x(yfc) of (2.49) is given by (2.48) with 

^{k, ko) = A^-^', k ^ ko. (2.50) 

Let the state at time ko be XQ. For the state at some time ki > ko to assume the 
value xi, an input u must exist that satisfies 

xi = 3>(A:i, ^o)^o + ^ ^(kh i + l)B(i)u(i), (2.51) 

Reachability and controllability are defined for discrete-time systems in a com
pletely analogous fashion as in the continuous-time case. The mathematical develop
ment, however, involves summations instead of integrals and is easier to deal with. 
The time-varying case can be developed in a manner similar to the time-invariant 
case. For this reason, the discrete-time time-varying case will not be developed 
presently. Instead, we shall concentrate on the time-invariant case. Note that some of 
the results given below for the discrete-time time-invariant case have already been 
presented in Section 3.1, Introduction. 

Discrete-time time-invariant systems 

For the time-invariant system x(k + 1) == Ax(k) + Bu(k) given in (2.49), the 
elapsed time fei-/co is of central interest, and we therefore take ^0 = Oandfei = K. 
Recalling that ^{k, 0) = A^, we rewrite (2.51) as 

xi = A^xo + ^A^-^'^^^Bu{i) (2.52) 
/=o 

when ^ > 0, or 

XX = A^XO + '^KUK, (2.53) 

where %K = [B, AB,..., A^-^B] (2.54) 

and UK = [u^{K - \), u^(K - 2 ) , . . . , u^(0)f. (2.55) 

The definitions of reachable state xi, reachable sub space Rr, and a system being 
{completely state) reachable, or the pair (A, B) being reachable, are the same as in 
the continuous-time case (see Definition 2.9, and use integer K in place of real time 
T). Similarly, the definitions of controllable state XQ, controllable subspace Re, and 



a system being (completely state) controllable, or the pair {A, B) being controllable 
are similar to the corresponding concepts given in Definition 2.10 for the case of 
continuous-time systems. 

To determine the finite input sequence for discrete-time systems that will accom
plish a desired state transfer, if such a sequence exists, one does not have to define 
matrices comparable to the reachability Gramian Wr, as in the case for continuous-
time systems. In particular, we have the following result. 

THEOREM 2.18. Consider the system x{k + V) = Ax{k) + Bu{k) given in (2.39) and 
let x(0) = 0. There exists input u that transfers the state to xi in finite time if and 
only if 

xx E ^{%). 

In this case, xi is reachable and Rr = S^(^). An appropriate input sequence {u{k)}, k = 
0,... , w - 1, that accompHshes this transfer in n steps is determined by Un = [u^(n -
l),u^(n - 2),..., w^(0)]^, a solufion to the equation 

"^Un = xi. (2.56) 

Henceforth, with an abuse of language, we will refer to Un as a control sequence when, 
in fact, we actually have in mind {u(k)}. 

Proof, In view of (2.52), xi can be reached from the origin in K steps if and only if 
xi = ^KUK has a solution UK, or if and only if x\ E ^(^K)- Furthermore, all input 
sequences that accomplish this are solutions to the equation x\ = ^RUK- For x\ to be 
reachable we must have xi E ^(^K) for some finite K. This range, however, cannot 
increase beyond the range of ^„ = % i.e., ^("^K) = S (̂̂ n) for K > n. This follows 
from the Cayley-Hamilton Theorem, which implies that any vector x in ^(^A:) , K > n, 
can be expressed as a linear combination of B, AB,..., A^~^B. Therefore, x E S?l(̂ „). 
It is of course possible to have x\ E ^{%K) with ^ < n for a particular x\\ how
ever, in this case xi E S^(^„) since %K is a subset of ^„. Thus, xi is reachable if and 
only if it is in the range of ^„ = %. Clearly, any t/„ that accomplishes the transfer 
satisfies (2.56). • 

As pointed out in the above proof, for given x\ we may have x\ E ^(^K) for 
some K < n.\n this case the transfer can be accomplished in fewer than n steps, and 
appropriate inputs are obtained by solving the equation ^KUK = ^i-

COROLLARY 2.19. The system x(k + 1) = Ax(k) + Bu(k) given in (2.49) is (com
pletely state) reachable, or the pair (A, B) is reachable, if and only if 

rank'^ = n. (2.51) 

Proof, Apply Theorem 2.18, noting that S/l(̂ ) = Rr = /?" if and only if rank ^ = n. 
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THEOREM 2.20. There exists an input u that transfers the state of the system 
x(k + 1) = Ax(k) + Bu(k) given in (2.49) from XQ to x\ in some finite number of 
steps K, if and only if 

xi - A^xo E m.C^Kl (2.58) 

Such input sequence UK = [u^(K -l),u^(K-2),..., u^(0)]^ is determined by solving 
the equation 

"^KUK = xi-A^xo. (2.59) 

Proof The proof follows directly from (2.53). • 
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The above theorem leads to the following result that establishes the importance 
of reachability in determining u to transfer the state from any XQ to any xi in a finite 
number of steps. 

COROLLARY2.21. Let the sy Stem x(^+1) = Ax(^) + 5w(^) given in (2.49) be (com
pletely state) reachable, or the pair (A, B) be reachable. Then there exists an input se
quence to transfer the state from any XQ to any x\ in a finite number of steps. Such input 
is determined by solving Eq. (2.60). 

Proof, Consider (2.54). Since (A, B) is reachable, r<2n^^„ = rank% = nandS/l(^) = 
R^. Then 

%Un = XX -A"xo (2.60) 

always has a solution Un = [u^(n - 1 ) , . . . , w^(0)]^ for any XQ and xi. This input se
quence transfers the state from XQ to xi in n steps. • 

Note that, in view of Theorem 2.20, for a particular XQ and xi, the state transfer 
may be accomplished in K < n steps, using (2.59). 

EXAMPLE 2.8. Consider the system in Example 1.1, namely, x(k + 1) = Ax(k) + 

5M(^),whereA = 
0 1 
1 1 

and 5 = .SincQ rank^ = rank[B,AB] = rank 
0 1 
1 1 

2 = n, the system is reachable, and any state XQ can be transferred to any other state 

xi in 2 steps. Let xi = 

1 1 
1 2 or 

u(l) 
u(0) 

,Xo = 

-1 1 
1 0 

. Then (2.60) implies that 

0 1 
1 1 

ao 

bo} 

0 1 
1 1 

b-l-bo 
a- ao - bo 

u(l) 
u(0) 

This agrees 

with the results obtained in Example 1.1. In view of (2.59), if Xi and XQ are chosen so that 

xi - Axo 
0 1 
1 1 

a- bo 
b- ao- bo. 

is in the 2/1(^0 - ^(B) = span 

then the state transfer can be achieved in one step. For example, if xi = and 

Xo thenBu(0) = u(0) = xi - Axo = implies that the transfer from xo to 

xi can be accomplished in this case in 1 < 2 = fz steps with u(0) = 2. 

EXAMPLE 2.9. Consider the system x(k + 1) = Ax(k) + Bu(k) with A 
0 1 
0 0 

and 

B = . Since ^ = [B, AB] 
0 1 
1 0 

has full rank, there exists an input sequence that 

will transfer the state from any x{0) = xo to any x(n) = xi (in n steps), given by (2.60), 

U2 = 
U{1) 

Lw(0)J \xi - A^xo) = 
0 1 
1 0 

(xi - Xo). Compare this with Example 2.5, 

where the continuous-time system had the same system parameters A and B. • 

We shall now establish the relationship between reachability and controllability 
for the discrete-time time-invariant systems x(k + 1) = Ax(k) + Bu(k) given in 
(2.49). 

Consider (2.51). The state XQ is controllable if it can be steered to the origin 
xi = 0 in a finite number of steps K. That is, XQ is controllable if and only if 

A^xo = %KUK (2.61) 



for some K, or when 

for some K. Recall that x\ is reachable when 
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(2.62) 

(2.63) 

THEOREM 2.22. Consider the system x{k + 1) = Ax{k) + Bu{k) given in (2.49). 
(i) If state X is reachable, then it is controllable, 

(ii) RrdRc-
(iii) If the system is (completely state) reachable, or the pair (A, B) is reachable, 

then the system is also (completely state) controllable, or the pair (A, B) is 
controllable. 

Furthermore, if A is nonsingular, then relations (i) and (iii) become if and only if 
statements, since controllability also implies reachability, and relation (ii) becomes an 
equality, i.e., Re = Rr. 

Proof, (i) If X is reachable, then x G S/l(^). In view of Lemma 2.14, S/l(̂ ) is an A-
invariant subspace and so A"x G S/l(^), which in view of (2.61) implies that x is also 
controllable. Since x is an arbitrary vector in Rr, this implies (ii). If S (̂̂ ) = /?", the 
whole state space, then A^x for any x is in S/l(̂ ) and so any vector x is also controllable. 
Thus, reachability implies controllability. Now, if A is nonsingular, then A~" exists. If x 
is controllable, i.e., A^x G 2?l(^), then x G ^(^) , i.e., x is also reachable. This can be 
seen by noting that A~" can be written as a power series in terms of A, which in view of 
Lemma 2.15, implies that A~"(A"jc) = ;c is also in ^(%). • 

Matrix A being nonsingular is the necessary and sufficient condition for the state 
transition matrix 0(/:, ^o) to be nonsingular (see Section 2.8), which in turn is the 
condition for "time reversibility'' in discrete-time systems. Recall that reversibility 
in time may not be present in such systems since 0(^, ^o) may be singular. In contrast 
to this, in continuous-time systems, ^(t, to) is always nonsingular. This causes differ
ences in behavior between continuous- and discrete-time systems and implies that 
in discrete-time systems controllability may not imply reachability (see Theorem 
2.22). Note that, in view of Theorem 2.16, in the case of continuous-time systems, 
it is not only reachability which always implies controllability, but also vice versa, 
controllability always implies reachability. 

In the following, we introduce the discrete-time reachability and controllabil
ity Gramians for system (2.49). These are defined in a manner analogous to the 
continuous-time case. 
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DEFINITION2.13. The reachability Gramian is defined by 
K-l 

Wr(0, K) = ^ A^-^^-'^^BB^(A^f-^'^^\ (2.64) 
/=o 

It is not difficult to verify that W,(0, K) = Xf~o A'BB^{A^j = "^K^- • 

LEMMA 2.23. ^{%) = ^(Wr(0, K)) for every K ^ n. 

Proof, This result can be established in a way similar to the proof of the corresponding 
result in the continuous-time case (Lemma 2.7). The details are left to the reader. • 

When a system is reachable, the input sequence that transfers XQ aX k = 0 to 
x\a.tk = K can be determined in terms of the reachability Gramian. In particular, let 
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rank % = n = rank Wr{^, K) for K > n, and notice that the relation 

UK = '^KW;\0, K)(xi - A^xo) (2.65) 

satisfies (2.59) since W,(0, K) = ^ / ^ ^ J . 

DEFINITION2.14. The controllability Gramian is defined as 

Wc{^, K) = ^ A'^'^^^BB^(A^y^'^^\ (2.66) 

We note that WdO, K) is well defined only when A is nonsingular. The reacha
bility and controllability Gramians are related by 

Wr{0,K) = A^WMK)(A^f, (2.67) 

as can easily be verified. 
When A is nonsingular, the input that will transfer the state from XQ at /: = 0 to 

xi = Oinn steps can be determined using (2.60). In particular, one needs to solve 

[A-^'^Wn = [A-''B,...,A-^B]Un = xo (2.68) 

for Un = [u^(n-1),..., w^(0)]^. Note that XQ is controllable if and only if -A^XQ G 
g/l(^), or if and only if XQ G gi(A~"^) for A nonsingular. 

Clearly, in the case of controllability (and under the assumption that A is non-
singular), the matrix A~^% is of interest, instead of ^ [see also (1.18)]. In particular, 
a system is controllable if and only if ranfc (A~'^^) = rank% = n. 

EXAMPLE 2.10. Consider the system x(k + 1) = Ax(k) + Bu(k), where A = 
1 1 
0 1 

and 5 . Since ra^^^ = rank[B, AB] = rank 
1 1 
0 0 

= \ <2 = n, this system 

is not (completely) reachable (controllable-from-the-origin). All reachable states are of 

the form a , where a E R since is a basis for the 2?l(^) = Rf, the reachability 

subspace. The reachability Gramian for i^ = n = 2isWX0, 2) = BB^ + (AB)(AB) T _ 

1 0" 

0 0 
+ 

1 0 

0 0 

'2 0' 

0 0 
Note that a basis for ^(Wr(0, 2)), is and S?l(^) = 

^(Wr(0, 2)), which verifies Lemma 2.23. 

In view of (2.62) and the Cay ley-Hamilton Theorem, all controllable states XQ sat

isfy A^xo E 9l(^); i.e., all controllable states are of the form <̂  L , where a G R. This 

verifies Theorem 2.22 for the case when A is nonsingular. Note that presently Rr = Re 

EXAMPLE 2.11. Consider the system x{k + 1) = Ax(k) + Bu{k), where A 
0 1 
0 0 

and 5 
1 0 
0 0 

SincQ rank ̂  = rank[B,AB] = rank 

is not (completely) reachable. All reachable states are of the form a 

is a basis for ^(^) = Ry, the reachability subspace. 

= 1 < 2 == ^, the system 

where a E: R 

smce 



To determine the controllable subspace R^ consider (2.62) for K = n/m view of 
the Cay ley-Hamilton Theorem. Note that A~^% cannot be used in the present case, since 

A is singular. Since A^XQ = Xo G S/l(^), any state XQ will be a controllable 

state, i.e., the system is (completely) controllable and Re = R^. This verifies Theorem 
2.22 and illustrates that controllability does not in general imply reachability. 

Note that (2.60) can be used to determine the control sequence that will drive any 
state xo to the origin (xi = 0). In particular, 

^f/„ = 
u(l) 
u(0) 

= -A^XQ. 

Therefore, w(0) - a and w(l) = 0, where a E /? will drive any state to the origin. To 

verify this, we consider x(l) 

x(2) = Ax(l) + Bu(l) --

Ax(0) + Bu(0) 

X02 + Oi 

0 

0 

0 < 

0 = 

Xoi 

•^02. 

X02 + ex 

0 
and 
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3.3 
OBSERVABILITY AND CONSTRUCTIBILITY 

In applications, the state of a system is frequently required but not accessible. Un
der such conditions, the question arises whether it is possible to determine the state 
by observing the response of a system to some input over some period of time. It 
turns out that the answer to this question is affirmative if the system is observable. 
Observability refers to the ability of determining the present state x(to) from knowl
edge of future system outputs, y(t), and system inputs, u(t), t ^ to. Constructibil-
ity refers to the ability of determining the present state x(fo) from knowledge of 
past system outputs, y{t), and system inputs, u{t), t ^ to. Observability was briefly 
addressed in Section 3.1. In this section this concept is formally defined and the 
(present) state is explicitly determined from input and output measurements. As in 
Section 3.2 (dealing with reachability and controllability), the reader can concentrate 
on the time-invariant case, starting with Definition 3.9, if so desired, and omit the 
more general material (dealing with time-varying systems) that starts with Defini
tion 3.1. 

Section description 

In this section, observability and constructibility are introduced and discussed 
in detail for given linear system state-space descriptions. This is accomplished for 
continuous and discrete-time systems and for both time-varying and time-invariant 
cases. 

Observability in continuous-time systems is addressed first with introduction 
of the observability Gramian Wo(to, ti) (Definition 3.4). It is shown (Corollary 3.2) 
that a system is observable at to if Wo(to, ti) has full rank for some ti > to, and 
furthermore, if the system is observable, how an initial state can be determined. Ob
servability refers to the ability to determine the current state of a system from future 
system outputs (and inputs). Constructibility, which refers to the ability of determin
ing the current state of a system from past system outputs (and inputs), is addressed 
next with the introduction of the constructibility Gramian (Definition 3.8). It is shown 



248 (Theorem 3.3) that a continuous-time system is observable if and only if it is con-
Linear Systems structible. Next, additional tests for observability and constmctibility are obtained 

(Theorem 3.4). All these results are then applied in the study of the continuous-time 
time-invariant case. The material is arranged in such a manner that the continuous-
time time-invariant systems can be studied independently of the time-varying case. 
The relation between the observability Gramian Wo(0, T) and the observability ma
trix 0 = [C^, {CAf,..., (CA""^)^]^ is estabhshed next (Lemma 3.6). It is then 
shown (Corollary 3.8) that a system is observable if and only if 0 has full rank n. 
Next, the relation between observability and constmctibility is established (Theorem 
3.9). Finally, additional tests for observability are derived (Theorem 3.10). 

A discussion of observability and constmctibility for discrete-time systems with 
particular emphasis on time-invariant systems is presented next. It is shown that a 
system is observable if the observability matrix 0 has full rank (Corollary 3.12), and 
for this case, an expression for the initial state XQ is given as a function of future out
puts (and inputs). A similar result involving the observability Gramian Wo{0, K) 
in place of 0 is also established (Corollary 3.14). Next, it is shown that observ
ability in discrete-time systems always implies constmctibility. In contrast to the 
continuous-time case, the converse of the above statement is generally not true. This 
is due to the lack of time reversibility in difference equations. When A is nonsingular, 
then constmctibility also implies observability. Finally, the constmctibility Gramian 
Wcnd^y K) is also introduced (Definition 3.16). 

A. Continuous-Time Time-Varying Systems 

We consider systems described by equations of the form 

X = A(t)x + B(t)u, y = C{t)x -H D{t)u, (3.1) 

where A{t) G iR^^^ B{t) G R''''^, C{t) E 7?̂ ><̂  D{t) G /?^>< ,̂ and u{t) G R^ are 
defined and (piecewise) continuous on some real open interval {a, b). It was shown 
in Chapter 2 that the output y{t) is given by 

y{t) = C(t)^(t, to)x(to) + 
t 

C(t)<i^(t, T)B{T)U(T) dr + D(t)u(t) (3.2) 
Jto 

for to, t G {a, h), where ^{t, r) denotes the state transition matrix. This can be writ
ten as 

y{t) - C{tmu to)xo, (3.3) 

where j ( 0 = y(t) ^ C(t)<i>(t, r)B(r)u(T)dT + D{t)u(t) andxo = x(ro)-Wewill 

find it convenient to first give the definition of an unobservable state. 

DEFINITIONS.1. A State X is unobservable at time to if the zero-input response of the 
system is zero for every t > to, i.e., if 

C(t)(^(t, to)x = 0 for every t > to. (3.4) 
• 

DEFINITION 3.2. The unobservable at to subspace R^^ of (3.1) is 

R^^ = { set of all unobservable at ô states x}. • 

When the context is clear and there is no ambiguity, we will write Ro in place 
ofR'l 



DEFINITION 3.3. The system (3.1) is {completely state) observable at ^ , or the pair 
(A(0, C{t)) is observable at ^ , if the only state x G /?" that is unobservable at fo is the 
zero state, jc = 0, i.e., if R^^ = {0}. • 

We will show later that observability depends only on the pair (A(t), C(t)). Ac
cording to Definition 3.1, a nonzero unobservable state x cannot be distinguished 
from the zero state if only the (future) outputs are known; that is, an unobservable 
state cannot be determined uniquely from knowledge of the inputs and outputs of 
the system. This can be seen from (3.3), where for the unobservable states x at 
^0. y(t) = 0 for r ^ to. This implies that the states x, which together with the in
put u(t) produce the output y(t), cannot be distinguished from the zero state, since 
they both produce the same output. 

In a manner analogous to the development of reachability in Section 3.2, we 
make the following definition. 

DEFINITION 3.4. The observability Gramian of the system (3.1) is the n X ri matrix 

Wo{to,tx)= <D^(T,^)C^(T)C(T)CD(T,^O)^T. 
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(3.5) 

Note that Wo is symmetric and positive semidefinite for every ti > to, i.e., Wo = 
W j and Wo^ 0 (show this). 

THEOREM 3.1. A State X is unobservable at to if and only if 

xGX(Wo(to.ti)) 

for every t\ > ^o, where J{(-) denotes the null space of a map. 

(3.6) 

Proof. If X is unobservable, then (3.4) is satisfied. Postmultiply (3.5) by x to obtain 
Wo(to, ti)x = 0 for every ti > to, i.e., x G }((Wo(to, ti)) for every î > to. Conversely, 
let X be in the null space of Wo. Then x'^Wo(to, ti)x = |̂ ^̂  | | C ( T ) ^ ( T , ro)x|p dr = 0 for 
every ti > to. This implies that (3.4) is true, or that the state x is unobservable. • 

-1 e^^ 
0 - 1 

and C(t) = [0, e~^]. The state transition matrix in this case is (see Example 2.1 in this 

EXAMPLE 3.1. Consider the system i: = A(t)x, y = C(0^, where A(0 = 

and C(0 
chapter) 

0(r, r) = 
^-(t-r) i^^t+T _ ^-r+Sr-) 

0 
e 

Then C(T)^(T, to) = [0, e ^̂ +̂ 0] and the observability Gramian is given by 

WoitoJi) = ^2^0 

to 

0 
, - 2 T 

[0,e~^']dT 

0 0 
0 ^-4^ 

dr 
0 0 
0 ^-4/1 _ ^-4to 

It is clear that this system is not observable, since rank Woito, ti) = I <2 = n.ln view 

0 
of Theorem 3.1, all unobservable states are given by , where a E R. 

Notice that };(0 = C(t)^(t,to)xo = [0, e-^^^'o]xo = 0 for JCQ = , that is, none 

of the (unobservable) states can be distinguished from the zero state. 
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COROLLARY 3.2. The system (3.1) is {completely state) observable at to, or the pair 
(A(t), C(t)) is observable at to, if and only if there exists a finite ti > to such that 

rankWoitoJi) = n. (3.7) 

If the system is observable, the state xo at to is given by 

fh 
Xo = W^\to,ti) C D ^ ( T , ^ O ) C ^ ( T ) K T ) ^ T 

0̂ 

(3.8) 

Proof, The system is observable if and only if the only vector x that satisfies (3.6) is the 
zero vector. This is true if and only if there exists (at least one) finite time ti for which the 
null space of Wo(to, ti) contains only the zero vector, or if and only if (3.7) is satisfied. To 
determine the state XQ at to, given the output and input values over [̂ o. ^i], premultiply 
(3.3) by (^^(t, to)C'^(t) and integrate over [to, ti]. Then, in view of (3.5), 

Woito, h)xo = r CD (̂T, fo)C^(T)KT) Jr. (3.9) 

When the system is observable, (3.9) has the unique solution (3.8). • 

It is clear that if the state at some time to is found, then the state x(t) for 
r ^ 0̂ is easily determined, given u(t), t > to, via the variation of constants form
ula (2.2). 

We mention here that alternative methods to (3.8) to determine the state of a 
system when the system is observable are given in the next chapter (in Section 4.3 
on state estimation). 

EXAMPLE 3.2 For the scalar system x = a{t)x,y = c{t)x, where a{t) = - 1 and 
c{t) = e\ we have <b{t, r) = "̂(̂ ~̂ > and C{T)^(J, to) = e^e'^'"'^^^ = e^^. The observ
ability Gramian in this case is Woito, î) = //^ e'^^^ dr = e'^^^it\ - to), which implies 
that the system is observable at ô since rankWoito, t\) = 1 = w for any t\ y^ to. 
Suppose now that the observed output is y(t) = y(t) = ae^^ fort > to. Then xo 
can be determined using (3.8), Xo = [e-^'^/(ti - to)][\,l'e\ae')dT] = a. Indeed, 
y(t) = c(t)^(t, to)a = ae^o, as observed. • 

Observability utilizes future output measurements to determine the present 
state. In contructibility, past output measurements are used to accomplish this. Con-
structibility is defined below and its relation to observability is established. 

DEFINITION 3.5. A State X is unconstructible at time t\ if for every finite time t ^ t\, 
the zero-input response of the system is zero for all t, i.e., 

C{t)^{t, ti)x = 0 for every t < ^i. (3.10) 

DEFINITION3.6. The unconstructible at t\ sub space S^^ of (3.1) is 

(3^^ = {set of all states x unconstructible at ^i}. • 

It is denoted in the following by R^, for convenience, when there is no ambi
guity. 



DEFINITION3.7. The system (3.1) is {completely state) constructible at t\, or the pair 
(A(0, C{t)) is constructible at ti, if the only state x G R" that is unconstructible at to is 
X = 0, i .e . , i f /?^ = {0}. • 

THEOREM 3.3. If the system (3.1), or the pair (A(0, C(0), is observable at ^ , then it 
is constructible at some ti > ^ ; if it is constructible at ti, then it is observable at some 
to^ ti. 

It was shown in Corollary 3.2 that the system is observable at ô if and only if 
rank Wo(to, t\) = n for some ti > to. Similar results can be established for constructibil-
ity. We will require the following concept. 

DEFINITION 3.8. The constructibUity Gramian of (3.1) is the n X n matrix 

Wcn{to,tl) ^^(r , ti)C^{T)C{T)^{T, tOdr. (3.11) 

Proof of Theorem 3.3. A similar result as Theorem 3.1, but for unconstructible state x, 
can be derived. Next, using a proof similar to the proof of Corollary 3.2, it can be shown 
that the system is constructible at ti if and only if there exists finite to < ti such that 

rank Wcn(to> ti) = n. (3.12) 
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Note that 

WoitoJl) = ^\tiJoWcn(to>tO<^(thtol (3.13) 

which implies that rank Wo(to, ti) = rank Wcn(to, h) for every to and ^i. Note that 
^(ti, to) is nonsingular for every to and ti. • 

EXAMPLE 3.3. (i) Consider the system x = A{t)x, y 
constructibility Gramian is 

C{t)x of Example 3.1. The 

Wcnito, h) = 
0 

0 
0 

[0,e -2T + t] ]dT 

4 

Compare this with the observabiUty Gramian of Example 3.1 and note that 

^HhJoWcn(to,h)^ituto) = -\e^'' 

as expected [see (3.13)]. Presently, 

C{t)^{t,ti)x = [0,e -2t+t^i 

0 
Wo(to,til 

0 

for every t ^ ti implies, in view of Definition 3.5, that all unreconstructible states (at ^i) 

are of the form , a G /?. Note that they are identical to the unobservable states (see 

Example 3.1). 
(ii) For the scalar system x = -x,y = e^ of Example 3.2, the constructibility 

Gramian is Wcn(to, h) = e^^^iti - to) and ^^(^i, to)Wcn(to, ^1)^(^1, to) = -̂(̂ 1-̂ 0)̂ 2̂ 1 >< 
(ti - ro)e~(̂ i~^o) = e^^^iti - ô) = Wo(to, ti), as expected in view of (3.13). • 

We shall now use Lemma 2.7 in Section 3.2 to develop additional tests for ob
servability and constructibility. These are analogous to corresponding results that we 
established for reachability and controllability (Theorems 2.8 and 2.9). 



252 THEOREM 3.4. The system i = A(t)x+B(t)u, y = C(0-^+/)(Ow is (completely state) 
Lh^^Systems observable at ô 

(i) if and only if there exists a finite ti > to such that 

rankWo(to,ti) = n, (3.14) 

where Wo{tQ,t\) = \^^^^ <^^(T,to)C'^(T)C(T)^(TJo)dT is the observability 
Gramian, or equivalently, 

(ii) if and only if there exists finite ti > to such that the n columns of 

C(t)^(tJo) (3.15) 

are linearly independent on [to, ti] over the field of complex numbers. 

Proof. Part (i) was shown in Corollary 3.2 and part (ii) is a consequence of Lemma 2.7 
(compare with the corresponding Theorem 2.8 for reachability). • 

Similar results can be derived for constructibility. In particular, we have the 
following result. 

THEOREM 3.5. The system x = A(t)x + B(t)u, y = C(t)x + D(t)u is (completely 
state) constructible at ti 

(i) if and only if there exists finite to < t\ such that 

rankWcn{to,t\) = n, (3.16) 

where WcnitoJi) = ^^^^ ^^(rJi)C'^(r)C(r)^(T,ti)dT, the constructibility 
Gramian, or equivalently, 

(ii) if and only if there exists finite to < ti, such that the n columns of 

C(tmt,ti) (3.17) 

are linearly independent on [to, ti] over the field of complex numbers. 

Proof, The proof is analogous to the proof of the corresponding results on observability. 
• 

Note that postmultiplication of C(0^(^, ^i) by the nonsingular matrix ^(ti, to) 
yields C(t)^(t, to) in (ii) of Theorem 3.4 [compare with (3.13)]. This shows again 
the result given in Theorem 3.3 that observability implies and is implied by con
structibility, in the case of continuous-time systems. 

B. Continuous-Time Time-Invariant Systems 

We shall now study observability and constructibility for time-invariant systems de
scribed by equations of the form 

x = Ax-^Bu, y = Cx + Du, (3.18) 

where A G /̂ ^^^^ B E T^^^ ,̂ C G /?̂ ><^ D G 7̂ >̂<̂ , and u(t) G R"^ is (piecewise) 
continuous. As was shown in Chapter 2, the output of this system is given by 

rt 
y(t) = Ce'^'xiO) + Ce^^'-'^Bu{7)dT + Du{t). (3.19) 

0 

We recall once more that in the present case <I>(r, r) = ^(t - r, 0) = 
exp [A{t - T)] and that initial time can always be taken to be to = 0. We will find 



it convenient to rewrite (3.19) as 

m 
whcvcy{t) = y{t)- \J^Ce^^'-^^Bu{T)dT^Du{t) 

: C / % , (3.20) 

andxo =x(0). 

DEFINITION 3.9. A state x is unobservable if the zero-input response of the system 
(3.18) is zero for every ^ > 0, i.e., if 

-- 0 for every ^ > 0. (3.21) 

The set of all unobservable states, x,R^, is called the unobservable subspace of 
(3.18). System (3.18) is (completely state) observable, or the pair (A,C) is observable, 
if the only state x e R^ that is unobservable is x = 0, i.e., if R^ = {0}. 

Definition 3.9 states that a state is unobservable precisely when it cannot be dis
tinguished as an initial condition at time 0 from the initial condition x(0) = 0. This is 
because in this case the output is the same as if the initial condition were the zero vector. 

DEFINITION 3.10. The observability Gramian of system (3.18) is \hQnxn matrix 

Wo(0, T)^ [ e""^ ^C Ce^^dT. (3.22) Vo{()J)= I e^^'C^Ce^'dT. 
Jo 

We note that Wo is symmetric and positive semidefinite for every T > 0, i.e., 
^o = ^J and Wo>0 (show this). Recall that the pnxn observability matrix 

C 

^ : 
CA 

CA n-\ 

(3.23) 

was defined in Section 3.1. 
We now show that the null space of ^ ^ ( 0 , 7 ) , denoted by ^ ( ^ ^ ( 0 , 7 ) ) , is 

independent of T, i.e., it is the same for any T > 0, and in particular, it is equal 
to the null space of the observability matrix 0'. Thus, the unobservable subspace RQ 
of the system is given by the null space of ^ , ^ ( ^ ) , or the null space of Wo(0, T) , 
^ ( W o ( 0 , r ) ) for some finite (and therefore for all) T > 0. 

LEMMA3.6. J/{0) = ^(Wo(0,T)) for every 7 > 0. 

Proof, If X G ^ ( ^ ) , then ^x = 0. Thus, CA^x = 0 for all 0 < ^ < n - 1, which is 
also true for every ^ > n — 1, in view of the Cay ley-Hamilton Theorem. Then Ce^^x = 
C[E^=o(^^/^-Mi-^ = 0 for every finite t. Therefore, in view of (3.22) ^^^(0, T)x = 0 for 
every 7 > 0, i.e., x G yK{Wo{0, T)) for every 7 > 0. Now letx G yK{Wo{0, T)) for some 
r > 0, so that x^ W{0, T)x = f^ ̂0 II Ce^^x f dT = 0, or Ce^'x = 0 for every t G [0, T]. 
Taking derivatives of the last equation with respect to t and evaluating at ^ = 0, we 
obtain Cx = CAx = • • • = CA^x = 0 for every ^ > 0. Therefore, CA^x = 0 for every 
^ > 0 , i.e., ^x = O o r x G ^ ( ^ ) . • 

THEOREM 3.7. A State X is unobservable if and only if 

X G ^ ( ^ ) , 

or equivalently, if and only if 

xe^(Wo{0,T)) 

(3.24) 

(3.25) 
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254 for some finite (and therefore for all) T > 0. Thus, the unobservable subspace Ro = 

L h ^ S y s t e m s ^ ( ^ ) = ^ ( ^ o ( 0 , T)) for some T >0. 

Proof, If X is unobservable, (3.21) is satisfied. Taking derivatives with respect to t and 
evaluating at ^ = 0, we obtain Cx = CAx = ••• = CA^x = 0 for ^ > 0 or CA^x = 0 for 
every ^ > 0. Therefore, ^x = 0 and (3.24) is satisfied. Assume now that ^x = 0, i.e., 
CA^x = O f o r O < ^ < n — 1 , which is also true for every ^ > n — 1, in view of the Cay ley-
Hamilton Theorem. Then Ce^^x = C[Y^^Q{t^/k\)A']x = 0 for every finite t, i.e., (3.21) 
is satisfied and x is unobservable. Therefore, x is unobservable if and only if (3.24) is 
satisfied. In view of Lemma 3.6, (3.25) follows. • 

Clearly, x is observable if and only if ^ x 7̂  0 or ^ ^ ( 0 , T)x ^ 0 for some T > 0. 

COROLLARY 3.8. The system (3.19) is (completely state) observable, or the pair 
(A, C) is observable, if and only if 

rank ^ = n, (3.26) 

or equivalently, if and only if 

rankWo{0,T)=n (3.27) 

for some finite (and therefore for all) 7 > 0. If the system is observable, the state XQ at 
^ = 0 is given by 

xo = W-\OJ) 
Jo 

(3.28) 

Proof, The system is observable if and only if the only vector that satisfies (3.20) or 
(3.21) is the zero vector. This is true if and only if the null space is empty, i.e., if and 
only if (3.26) or (3.27) are true. To determine the state XQ at ^ = 0, given the output and 
input values over some interval [0,7], we premultiply (3.20) by e^ ^C^ and integrate 
over [0, T] to obtain 

Wo{0,T)xo= [ /''C^y{T)dT, (3.29) 
Jo 

in view of (3.22). When the system is observable, (3.29) has the unique solution (3.28). 

• 

Note that T > 0, the time span over which the input and output are observed, is 
arbitrary. Intuitively, one would expect in practice to have difficulties in evaluating 
XQ accurately when T is small, using any numerical method. Note that for very small 
r , |Wo(0,r) | can be very small, which can lead to numerical difficulties in solving 
(3.29). Compare this with the analogous case for reachability, where small T leads 
in general to large values in control action. 

It is clear that if the state at some time t^ is determined, then the state x{t) at any 
subsequent time is easily determined, given w(f), f > fo, via the variation of constants 
formula (3.2), where 0(f, T) = exp[A(f - T ) ] . 

Alternative methods to (3.29) to determine the state of the system when the 
system is observable are provided in the next chapter, in Section 4.3. 

EXAMPLE 3.4. (i) Consider the system x = Ax,y = Cx, where A 
0 1 
0 0 

and 

C=[1 ,0 ] . Here e^' 
1 t 
0 1 

and Ce^^ = [l,t]. The observability Gramian is then 



Wo(0,T) = \n \[lT]dT = \^ 
1 T 
T T 

dr 
\rp2 

3 ^ 

NoticQih2itdetWo(0,T) 

j ^ r^ 7̂  0 for any T > 0, i.e., ra^^ W^(0, T) = 2 = fz for any T > 0, and there
fore (Corollary 3.8), the system is observable. Alternatively, note that the observabil

ity matrix 0 = 

M(Wo(0, T)) = 

(ii)If A = 

C 
CA 

0 
0 

0 1 
0 0 

1 0 
0 1 

and rank€ = 2 = n. Clearly, in this case J{(€) 

, which verifies Lemma 3.6. 

, as before, but C = [0, 1], in place of [1, 0], then Ce^^ = [0, 1] 

and the observability Gramian is WoiO, T) = [0,1] J T -
0 0 
0 T 

We have 

rank Wo(0,T) = I < 2 = n and the system is not completely observable. In view 
of Theorem 3.7, all unobservable states x E XiWoiO, T)) and are therefore of the form 

,a E^ R. Alternatively, the observability matrix 0 = 

jvr(O) = >r(Wo(o, T)) 

c 
CA 

0 1 
0 0 

Note that 

span 

Observability utilizes future output measurements to determine the present state. 
In (re)constructibility, past output measurements are used. Constructibility is defined 
in the following, and its relation to observability is determined. 

DEFlNITlON3.il . A State x is unconstructible if the zero-input response of the system 
(3.18) is zero for all t < 0, i.e., 

Ce^'x = 0 for every ^ < 0. (3.30) 

The set of all unconstructible states x, R^, is called the unconstructible subspace of 
(3.18). The system (3.18) is (completely state) {re)constructible, or the pair (A, C) 
is (re)constructible, if the only state x E /?" that is unconstructible is ;c = 0, i.e., 
Ren = {0}. 

We shall now establish a relationship between observability and constructibility for 
the continuous-time time-invariant systems (3.18). Recall that x is unobservable if and 
only if 

Ce'^'x = 0 for every t > 0. (3.31) 

THEOREM 3.9. Consider the system x = Ax + Bu, y = Cx + Du given in (3.18). 

(i) A state x is unobservable if and only if it is unconstructible. 
(ii) Ro = R^. 

(iii) The system, or the pair (A, C), is (completely state) observable if and only if 
it is (completely state) (re)constructible. 

Proof, (i) If X is unobservable, then Ce^^x = 0 for every t > 0. Taking deriva
tives with respect to t and evaluating ai t = 0, we obtain Cx = CAx = "• = 
CA^x = 0 for A: > 0 or CA^'x = 0 for every /: > 0. This, in view of Ce^^x = 
^"l=Q(t^/k\)CA^x, implies thai Ce^^x = 0 for every r < 0, i.e., x is unconstructible. The 
converse is proved in a similar manner. Parts (ii) and (iii) of the theorem follow directly 
from (i). • 

The observability Gramian for the time-invariant case, Wo(0, T), was defined in 
(3.22). In view of (3.11), we make the following definition. 
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DEFINITION 3.12. The constructibUity Gramian of system (3.18) is ih^nXn matrix 

W,,(0, T) ,AHr~T)^T^^A(r-T)^^^ (3.32) 

Note that 

Wo(0,T) = e^"^Wcn{0,T)e AT (3.33) 

as can be verified directly [see also (3.13)]. 
As in the time-varying case above, we now introduce a number of additional 

criteria for observability. 

THEOREM 3.10. The system x = Ax + Bu, y = Cx + Dui^ observable 

(i) if and only if 

rank W^(0, T) = n (3.34) 

for some finite T > 0, where Wo(0, T) = \Q e^^'^C^Ce^' dr, the observabil
ity Gramian, or 

(ii) if and only if the n columns of 

Ce"^' (3.35) 

are linearly independent on [0, oo) over the field of complex numbers, or alter
natively, if and only if the n columns of 

C(sl - A)-^ 

are linearly independent over the field of complex numbers, or 
(iii) if and only if 

where 0 -

C 
CA 

CA n - l 

rank € = n, 

the observability matrix, or 

(3.36) 

(3.37) 

(iv) if and only if 

rank 
Sil - A 

C 
(3.38) 

for all complex numbers 5/, or alternatively, for all eigenvalues of A. 

Proof. The proof of this theorem is completely analogous to the (dual) results on reach
ability (Theorem 2.17) and is omitted. • 

Similar results as those given in Theorem 3.10 can be derived for constructibil-
ity, and the reader is encouraged to state and prove these for the cases (i) and (ii). 
This is of course not surprising, since it was shown (in Theorem 3.9) that observ
ability implies and is implied by constructibility. Accordingly, the tests developed 
in the theorem for observability are typically also used to test for constructibility. 

EXAMPLE 3.5. Consider the system x = Ax, y = Cx, where A = 
0 0 

andC 

[1, 0], as in Example 3.4(i). We shall verify (i) to (iv) of Theorem 3.10 for this case. 



(i) For the observability Gramian, Wo (0, r ) = 
i T 2 
2^ 

2^ we have rank Wo(0, T) 

= 2 = nfor any T > 0. 
(ii) The columns of Ce^^ = [l,t] are linearly independent on [0, oo) over the field 

of complex numbers, since ai • I + a2-1 = 0 implies that the complex num
bers ai and a2 must both be zero. Similarly, the columns of C{sl — A)~^ = 
[1/5, \ls^] are linearly independent over the field of complex numbers. 

(iii) rank€ 

(iv) rank 

values of A. 

Consider again A = 

} = rank 
r c' 
[cA_ 

= rank 

Sil - A] 

C J 
= rank 

"1 0' 

.0 1. 
'Si - 1 " 

0 Si 

.1 0. 
= 

0 1 
0 0 

= 2 = n. 

= 2 = n for Si = 0, / = 1, 2, the eigen-

butC = [0, 1] [in place of [1,0], as in Example 3.4(ii)]. 

The system is not observable for the reasons given below. 

(i) Wo(0, T) = with rank Wo{0, T) = l< 2 = n. 

(ii) Ce^^ = [0,1] and its columns are not linearly independent. Similarly, the 
columns of C(sl — A)~^ = [0, l/s] are not linearly independent. 

(iii) rank€ = rank C 
CA 

= rank 

(iv) rank 

of A. 

Sil - A 

C = rank 

0 1 
0 0 
-1 

1<2 = n. 

= I < 2 = n for Si = 0, an eigenvalue 
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C. Discrete-Time Systems 

We consider systems described by equations of the form 

x(k + 1) = A(k)x(k) + B(k)u(k\ y(k) = C(k)x(k) + D(k)u(k\ (3.39) 

where A(k) G /('"^^ B(k) G /̂ "^" ,̂ C(k) G i?̂ ><^ D(k) G RP"""^, and the input 
u(k) G R"^ are defined for k ^ ko (see Section 2.7). The output y(k) for ^ > ^Q 
is given by 

k-\ 

y(k) = C(k)^(k ko)x(ko) + ^ C(k)^(k, i + l)B(i)u(i) + D(k)u(kl (3.40) 
i = ko 

where the state transition matrix ^(k, ko) is given by ^(k, ko) = A(k — l)A(k — 2) 
. . . A(ko) for k > ko, and <P(ko, ko) = I. 

In the time-invariant case, (3.39) assumes the form 

x{k +1) = Ax(k) + Bu(kl y(k) = Cx(k) + Du(k), k ^ ko, (3.41) 

where A G iR"><̂  C G jR^^^, C G /^^x^ D G RP"""^, and (3.40) is still valid with the 
state transition matrix 0(fc, ko) given in this case by 

^(k, ko) = A^-^o, k ^ ko. (3.42) 
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mine the state from knowledge of current and future outputs and inputs, while con-
structibility refers to the ability to determine the state from knowledge of current 
and past outputs and inputs. In discrete-time systems, the time-varying case can be 
developed in a manner analogous to the time-invariant case and will therefore not be 
developed here. Instead, we shall concentrate on the time-invariant case. Note that 
some of the following results have already been presented in Section 3.1. 

Discrete-time time-invariant systems 

Consider the time-invariant system (3.41) and the expression for its output y(k), 
given in (3.40). Without loss of generality, we take ^o = 0. Then 

k-i 
y(k) = CA^x{0) + ^ CA^-^'^^'^Buii) + Du{k) (3.43) 

/=o 

for yfe > 0 and j(0) = CJC(O) + Dw(0). Rewrite (3.43) as 

y{k) = CA^xo (3.44) 

for ^ > 0, where y{k) = y(k) XfZo CA^-^'+^^Bu(i) -h Du(k) for fc > 0 and 

y(0) = y(0) - Du(Ol and XQ = x(0). 

DEFINITION 3.13. A State x is unobservable if the zero-input response of system 
(3.41) is zero for all ^ > 0, i.e., if 

CA^x = 0 for every ŷ  > 0. (3.45) 

The set of all unobservable states x, Ro, is called the unobservable subspace of (3.41). 
The system (3.41) is {completely state) obse^able, or the pair (A, C) is observable, if the 
only state x E /?" that is unobservable is x = 0, i.e., if Ro = {0}. • 

The pnX n observability matrix 0 was defined in (3.23). Let J{(G) denote the 
null space of 0. 

THEOREM3.il. A State X is unobservable if and only if 

X E K(€X (3.46) 

i.e., the unobservable subspace Ro = M(€). 

Proof. If X E Jvr(O), then Ox = 0 or CA^x = O f o r O < ^ < n - l . This statement is 
also true fork>n- 1, in view of the Cay ley-Hamilton Theorem. Therefore, (3.45) is 
satisfied and x is unobservable. Conversely, if x is unobservable, then (3.45) is satisfied 
and €x = 0. • 

Clearly, x is observable if and only if €x ¥" 0. 

COROLLARY 3.12. The system (3.41) is (completely state) observable, or the pair 
(A, C) is observable, if and only if 

rank€ = n. (3.47) 



(3.48) 

If the system is observable, the state XQ at ̂  = 0 can be determined as the unique solution 
of 

where 

l'0.«-l = b ^ ( 0 ) , / ( l ) , . . . , / ( « - l ) ] ^ 6 / ? ' ' « , 

t/o.«-i = [M^(0),M^(l) , . . . ,«^(n-l)]^ €/?"•", 

and Mfi is the pn x mn matrix given by 

D 0 
CB D 

Mn--

CA^'-^B CA^'-^B 

0 
0 

D 
•• CB 

0" 
0 

D 

Proof, The system is observable if and only if the only vector that satisfies (3.45) is the 
zero vector. This is true if and only if ^ ( ^ ) = {0}, or if (3.47) is true. To determine 
the state XQ, apply (3.43) for ^ = 0 , 1 , . . . , n — 1, and rearrange in a form of a system of 
linear equations to obtain (3.48). • 

The matrix M^ defined above has the special structure of a ToepUtz matrix. Note 
that a matrix T is Toeplitz if its (/, 7)th entry depends on the value i — j ' , that is, T is 
"constant along the diagonals." 

Similarly to the continuous-time case, we now define the observability Gramian. 

DEFINITION 3.14. The observability Gramian of the system (3.41) is iho nxn matrix 

(3.49) 
^ - 1 

i=o 

If ^k = [C^, (CA)^ , . . . , (CA^-i)^]^ (with ^n = ^ ) , then 

Wo{0,K) = ^^^K- (3.50) 

The following result is apparent. 

LEMMA 3.13. ^ ( ^ ) = ^(Wo(0,K)) for every K>n. 

Proof, The proof is left as an exercise for the reader. • 

COROLLARY 3.14. The system (3.41) is (completely state) observable, or the pair 
(A, C) is observable, if and only if 

rankWo{0,K)=n (3.51) 

for some (and consequently for all) K > n. If the system is observable, the state XQ at 
^ = 0 is given by 

xo = W-\0,K)^^[Yo,K-i -MkUo,K-i]. (3.52) 

where K >n. 

Proof Statement (3.51) is a direct consequence of Corollary 3.12 and Lemma 3.13. To 
obtain (3.52), rewrite (3.48) in terms of K, premultiply by ^^ , and use relation (3.50). 
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EXAMPLE 3.6. Consider the system in Example 1.4, x{k + 1) = Ax{k),y{k) = 

' and C = [0,1]. The observability Gramian Wo{0,K) Cx(k), where A = 
1 1 

foYK = n = 2is given by (3.49), Wo(0,2) = Xi^o(A^yC^CA^ 

ro 11 
.1 iJ 

rô  
[i. 10, IJ ro r 

.1 1. — 
rô  
.1. [0,1] + 

ni 
i_ [1,1] 

0 0 
0 1 + 

1 1 
ll 1 

ro 1 
Ll 1 

well (see Example 1.4). Notice also that rank Wo(0, K) = 2 for every K > 2 and that 

of full rank. Therefore, the system is observable. Note that 0 = 

[0, 1] + 

, which is 

is of full rank as 

1 1 
1 2 

[refer to (3.50)] W^(0, 2) 
"1 1 
1 2 = 

"0 1 
1 1 

T r 
0 1 
1 1 

0^0. The unique vector x(0) 

can be determined from y(0) and yil) using (3.52) to obtain 

xi(0) 
^2(0)J 

= w; Ho, 2)0^ 3̂ (0) 

3 (̂1) 
3̂ (1) - 3̂ (0) 

This is the same as the result obtained in Example 1.4, using an alternative approach. 

Constructibility refers to the ability to determine uniquely the state x{0) from 
knowledge of current and past outputs and inputs. This is in contrast to observability, 
which utilizes future outputs and inputs. The easiest way to define constructibility is 
by the use of (3.44), where x(0) = XQ is to be determined from past data y{k), A: < 0. 
Note, however, that for fc < 0, A^ may not exist; in fact, it exists only when A is non-
singular. To avoid making restrictive assumptions, we shall define unconstructible 
states in a slightly different way than anticipated. Unfortunately, this definition is not 
very transparent. It turns out that by using this definition, an unconstructible state 
can be related to an unobservable state in a manner analogous to the way a control
lable state was related to a reachable state in Section 3.2 (see also the discussion of 
duality in Section 3.1). 

DEFINITION 3.15. A State X is unconstructible if for every ^ > 0 there exists x i 
such that 

/?« 

= Ak A'x, Cx = 0. (3.53) 

The set of all unconstructible states, R^, is called the unconstructible subspace. The 
system (3.41) is (completely state) constructible, or the pair (A, C) is constructible, if 
the only state x E /?" that is unconstructible is x = 0, i.e., if R^ = {0}. • 

Note that if A is nonsingular, then (3.53) simply states that x is unconstructible if 
CA~^x = 0 for every k> 0 (compare this with Definition 3.13 of an unobservable 
state). 

The results that can be derived for constructibility are simply dual to the results 
on controllability. They are presented briefly below, but first, a technical result must 
be established. 

LEMMA 3.15. If X E M'(€) then Ax 
J{(€) is an A-invariant subspace. 

>r(0), i.e., the unobservable subspace Ro = 

Proof, Let x E >r(0), so that Ox = 0. Then CA^x = O f o r O < / : < n - l . This state
ment is also true for k> n — 1, in view of the Cayley-Hamilton Theorem. Therefore, 
OAx = 0, i.e.. Ax E M{p). • 



THEOREM 3.16. Consider the systemx(^+1): 
given in (3.41). 

--Ax{k)+Bu{k),y{k)=Cx{k)+Du{k) 261 

(i) If a state x is unconstructible, then it is unobservable. 

(ii) RcnCRo. 

(iii) If the system is (completely state) observable, or the pair (A, C) is observable, 
then the system is also (completely state) constructible, or the pair {A,C) is 
constructible. 

If A is nonsingular, then relations (i) and (iii) are if and only if statements. In this 
case, constructibility also implies observability. Furthermore, in this case, (ii) becomes 
an equality, i.e., Rcw = Ro-

Proof, This theorem is dual to Theorem 2.22, which relates reachability and control
lability in the discrete-time case. To verify (i), assume that x satisfies (3.53) and 
premultiply by C to obtain Cx = CA^x for every ^ > 0. Note that Cx = 0 since for 
k = 0^ x = x, and Cx = 0. Therefore, CA^x = 0 for every ^ > 0, i.e., x G ^ ( ^ ) . In 
view of Lemma 3.15, x = A^x G ./K(^), and thus, x is unobservable. Since x is arbitrary, 
we have also verified (ii). When the system is observable, Ro = {0}, which in view 
of (ii), implies that Ren = {0} or that the system is constructible. This proves (iii). 
Alternatively, one could also prove this directly: assume that the system is observable 
but not constructible. Then there exist x,x 7̂  0, which satisfy (3.53). As above, this 
implies that x G ./K(^), which is a contradiction since the system is observable. 

Consider now the case when A is nonsingular and let x be unobservable. Then, 
in view of Lemma 3.15, x = A~^x is also in ^ ( ^ ) , i.e., Cx = 0. Therefore, x = A^x 
is unconstructible, in view of Definition 3.15. This implies also that R^ C Ren, and 
therefore, Ro = RCE, which proves that in the present case constructibility also implies 
observability. • 

EXAMPLE 3.7. Consider the system in Example 1.5, x{k+l)= Ax{k),y{k) = Cx{k), 

where A and C = [1,0]. As shown in Example 1.5, rank^ = rank 

1 <2 = n, i.e., the system is not observable. All unobservable states are of the form 
[Ol 

a where a ^ R since m is a basis for yK{^) = Ro, the unobservable sub-

space. The observability Gramian foYK = n = 2is Wo(0,2) = C^C + (CA)^(CA) 
1 0 
0 0 + 

1 0 
0 0 

2 0 
0 0 

. Note that a basis for yK(Wo(0,2)) is {[:]} and 

^ ( ^ ) = J^{Wo{0,2)). This verifies Lemma 3.13. 
In Example 1.6 it was shown that all the states x that satisfy CA~^x = 0 for every 

,a e R. This verifies ^ > 0, i.e., all the unconstructible states, are given by a 

Theorem 3.16 (i) and (ii) for the case when A is nonsingular. 

EXAMPLE 3.8. Consider the system x(k+ 1) = Ax(k),y(k) = Cx{k), where A 
0 0 
1 0 

1 0 
0 0 

and C = [1,0]. The observability matrix 

fore, the system is not observable. In fact, all states of the form a 

states since 

is of rank 1, and there-

I are unobservable 

< > is a basis for J^{^). 

5ck consti 

singular. Cx = [l,0]x = 0 implies x 

To check constructibility, the defining relations (3.53) must be used since A is 

Substituting into x = A^x, we obtain 
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for k = 0,x = X, and x = 0 for fc > 1. Therefore, the only unconstructible state is 
X = 0, which imphes that the system is constructible (although it is unobservable). 
This means that the initial state x(0) can be uniquely determined from past measure-

rxi(o)i _ ments. In fact, from x{k + 1) = Ax{k) and y{k) = Cx{k), we obtain x(0) 

and y ( - l ) = C x ( - l ) = [1,0] 
x i ( - l ) 
X2(-l). 

0 
xi ( - iy 

XI ( -1) 
X2(-l). 

X2(0)J 

= x i ( - l ) . 

Therefore, x(0) 
0 

y ( - l ) 

DEFINITION 3.16. The constructibility Gramian is defined as 

(3.54) 

We note that Wc^(0,^) is well defined only when A is nonsingular. The observ
ability and constructibility Gramians are related by 

Wo(0,K) = {A^)^Wcn{0,K)A^, (3.55) 

as can easily be verified. 
When A is nonsingular, the state XQ at ^ = 0 can be determined from past outputs 

and inputs in the following manner. We consider (3.44) and note that in this case 

y{k) = CA ĵco 

is valid for ^ < 0 as well. This implies that 

-l,-n "Xo 

'CA-""' 

CA-' 

Xo (3.56) 

with Y-i^-n = [ j^(—n),. . . , j ^ (—1)]^ . Equation (3.56) must be solved for XQ. 
Clearly, in the case of constructibility (and under the assumption that A is non-
singular), the matrix ^A~^ is of interest instead of ^ [compare this with the 
dual results in (2.66)]. In particular, the system is constructible if and only if 
rank {^A~'^) = rank ^ = n. 

EXAMPLE 3.9. Consider the system in Examples 1.4 and 3.6, namely, x (^+ 1) = 
[0 ll 

Ax{k),y{k) = Cx{k), where A 
1 1 

and C = [0,1]. Since A is nonsingular, to 

check constructibility we consider ^A 
CA-^ 
CA-' 

, which has full rank. 

Therefore, the system is constructible (as expected), since it is observable. To determine 

x(0), in view of (3.56), we note that 

which 

} ' ( - 2 ) 
ffA-^x{Q) 

XI (0) 

X2(0) 
, from 

XI (0) 

X2(0), 

namely, (A^)^Wc„(0,2)A 

}'(-2) 
1 
1 

}'(-2) 
K-l)+K-2) . It is also easy to verify (3.55), 

= W,(0,2). • 
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In this section, important special forms for the state-space description of time-
invariant systems are presented. These forms are obtained by means of similarity 
transformations and are designed to reveal those features of a system that are re
lated to the properties of controllability and observability. In Subsection A, special 
state-space forms that display the controllable (observable) part of a system and 
that separate this part from the uncontrollable (unobservable) part are presented. 
These forms, referred to as the standard forms for uncontrollable and unobservable 
systems, are very useful in establishing a number of results. In particular, these 
forms are used in Subsection B to derive alternative tests for controllability and ob
servability, and in Subsection C to relate state-space and input-output descriptions. 
(Additionally, these forms are further used in Chapters 4 and 5.) In Subsection D, 
the controller and observer state-space forms are introduced. These are useful in the 
study of state feedback and state estimators (to be addressed in Chapter 4), and in 
state-space realizations (to be addressed in Chapter 5). 

A. Standard Forms for Uncontrollable and Unobservable Systems 

We consider time-invariant systems described by equations of the form 

X = Ax + Bu, y = Cx + Du, (4.1) 

where A £ R""^", B G T?"̂ ™, C £ RP^", and D £ RP^"". It was shown earlier in this 
chapter that this system is state reachable or controllable-from-the-origin if and only 
if the n X mn controllability matrix 

% = [B,AB,...,A''-^B] (4.2) 

has full row rank n, i.e., rank % = n. Recall that 9l(^) = Rr is the reachable 
subspace, which contains all the state vectors that can be reached from the zero 
vector in finite time by applying an appropriate input. If the system is reachable 
(or controllable-from-the-origin), then it is also controllable (or controllable-to-the-
origin), and vice versa (see Section 3.2). 

It was also shown earlier in this chapter that system (4.1) is state observable if 
and only if the pnX n observability matrix 

C 
CA 

CA n-\ 

(4.3) 

has full column rank, i.e., rank € = n. Recall that J{(€) = RQ is the unobservable 
subspace that contains all the states that cannot be determined uniquely from input 
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Similar results were also derived for discrete-time time-invariant systems de
scribed by equations of the form 

x(k +1) = Ax(k) + Bu(kl y(k) = Cx(k) + Du(k) (4.4) 

in Sections 3.1, 3.2, and 3.3. Again, rank % = n and rank 0 = n are the necessary 
and sufficient conditions for state reachability and observability, respectively. Reach
ability always implies controllability and observability always implies constructibil-
ity, as in the continuous-time case. However, in the discrete-time case, controllability 
does not necessarily imply reachability and constructibility does not imply observ
ability, unless A is nonsingular. 

Next, we will address standard forms for unreachable and unobservable sys
tems both for the continuous-time and the discrete-time time-invariant cases. These 
forms will be referred to as standard forms for uncontrollable systems, rather than 
unreachable systems, and standard forms for unobservable systems, respectively. 
This is to conform with the established terminology in the literature, where the term 
"controllable" is used instead of "reachable," perhaps because of emphasis on the 
continuous-time case. It should be noted, however, that by the term controllable in 
this section we mean controllable-from-the-origin, i.e., reachable. 

1. Standard form for uncontrollable systems 

If the system (4.1) [or (4.4)] is not completely controllable (-from-the-origin), 
then it is possible to "separate" the controllable part of the system by means of an 
appropriate similarity transformation. This amounts to changing the basis of the state 
space (see Section 2.2) so that all the vectors in the controllable (-from-the-origin) 
or reachable subspace Rr have certain structure. In particular, let rank ^ = nr < n, 
i.e., the pair (A, B) is not controllable. This implies that the subspace Rr = 2/l(^) 
has dimension n^. Let {vi, V2,..., v„J be a basis for Rr. These n^ vectors can be, 
for example, any nr linearly independent columns of ^ . Define the nX n similarity 
transformation matrix 

Q= [Vl,V2,...,Vn,,Qn-n^ (4.5) 

where the nX (n - nr) matrix Qn-nr contains n - nr linearly independent vectors 
chosen so that Q is nonsingular. There are many such choices. We are now in a 
position to prove the following result. 

LEMMA 4.1. For (A, B) uncontrollable, there is a nonsingular matrix Q such that 

A = Q-'AQ = Ai An 
0 A2 

and B = Q'^B = (4.6) 

where Ai E R'^rXnr^ ^i G R'^rX'^^ and the pair (Ai, Bi) is controllable. The pair (A, B) is 
in the standard form for uncontrollable systems. 

Proof We need to show that 

AQ = A[Vi, . . . , Vn,, Qn-nr] = l^h • • •, V„,, Qn-nr] = QA. 
0 A2. 

Since the subspace Rr is A-invariant (see Lemma 2.15 in this chapter), Av/ G Rr, 
which can be written as a linear combination of only the nr vectors in a basis of Rr. Thus, 



Ai in A is an rir X rir matrix, and the (n — rir) X rir matrix below it in A is a zero matrix. 
Similarly, we also need to show that 

B = [vi,...,v„,, Q„-„J 0 -QB. 

But this is true for similar reasons: the columns of 5 are in the range of'̂  or in Rr. 

The n X nm controllability matrix '^ of (A, B) is 

^ = [B,AB,...,A"-'B] = 
0 0 

Ar'Bi 
0 

(4.7) 

which clearly has ranfcC = rank[Bi,AiBi,... 
that 

A"{''^Bi,...,A"^-^Bi] = n,.Note 

(4.8) 

The range of ^ is the controllable (-from-the-origin) subspace of (A, B). It contains 
vectorsonlyoftheform[a^, 0]^, wherea G JR"̂  Since dim S/l(^) = rank% = rir, 
every vector of the form [a^, 0]^ is a controllable (state) vector. In other words, 
the similarity transformation has changed the basis of /?" in such a manner that all 
controllable (-from-the-origin) vectors, expressed in terms of this new basis, have 
this very particular structure of zeros in the last n — rir entries. 

Given system (4.1) [or (4.4)], if a new state x(t) is taken to be x(t) = Q~^x(t), 
then 

k = Ax + Bu, y = Cx + bu, (4.9) 

where A = Q~^AQ,B = Q~^B,C = CQ, and D = D constitutes an equivalent 
representation (see Chapter 2). For Q as in Lemma 4.1, we obtain 

Xi 

X2 0 
An 
Ai. 

u,y = [Ci, C2] + Du, (4.10) 

where x = {x[, X2] with xi G R^' and where (Ai, ^ i ) is controllable. The matrix 
C = [Ci, C2] does not have any particular structure. This representation is called a 
standard form for the uncontrollable system. The state equation can now be writ
ten as 

X\ ^ A i^ i + BiW + A12X2, X2 = A2X2, (4.11) 

which shows that the input u does not affect the trajectory component X2(t) at all, 
and therefore, X2{t) is determined only by the value of its initial vector. The input u 
certainly affects xi (t). Note also that the trajectory component xi (t) is also influenced 
by X2(t). In fact. 

xi(t) = ^^i^Jci(O) + e'^'^'~^^Biu(T)dT + oMit-T. -^Ane^^'dr X2(0). (4.12) 

The nr eigenvalues of Ai and the corresponding modes are called controllable 
eigenvalues and controllable modes of the pair (A, B) or of system (4.1) [or of (4.4)]. 
The n- nr eigenvalues of A2 and the corresponding modes are called the uncontrol
lable eigenvalues and uncontrollable modes, respectively. 

It is interesting to observe that in the zero-state response of the system (zero 
initial conditions) the uncontrollable modes are completely absent. In particular. 
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in the solution x(t) = e^^x(0) + \Q e^^^ ^'^Bu{T)dr of x = Ax + Bu, given x(0), 
notice that 

eMt-r)^ ^ [Qe^(^-^^Q-'][QB] = Q 
0 

(show this), where Ai [from (4.6)] contains only the controllable eigenvalues. There
fore, the input u(t) cannot directly influence the uncontrollable modes. Note, how
ever, that the uncontrollable modes do appear in the zero-input response e^^x(0). The 
same observations can be made for discrete-time systems (4.4), where the quantity 
A^B is of interest (show this). 

ro - 1 11 
EXAMPLE 4.1. Given A = 1 - 2 1 

LO 1 - i j 
tern (4.1) to the standard form (4.6). Here 

and 5 = 
"1 0" 
1 1 

.1 2. 
we wish to reduce sys-

% = [B, AB, A^B] 
1 

1 

1 

0 : 

1 : 

2 : 

1 

0 

- 1 

: 0 

: 0 

: 0 

- 1 

0 

1 

and rank % = nr'=2<3 = n. Thus, the subspace Ry = S?l(̂ ) has dimension rir = 2, 
and a basis {vi, V2} can be found by taking two linearly independent columns of ^, say, 
the first two, to obtain 

[Vl,V2, Gl] = 

1 0 

1 1 

1 2 

0 

0 

1 

The third column of Q was selected so that Q is nonsingular. Note that the first two 
columns of Q could have been the first and third columns of ^ instead, or any other two 
linearly independent vectors obtained as a linear combination of the columns in %. For 
the above choice for Q we have. 

A = Q-'AQ = 
1 

- 1 
1 

0 
1 

- 2 

0 

0 

0 
1 

- 2 

- 1 
- 1 

4 

1 

- 1 

01 
0 
ij 
11 
0 
2] 

To - 1 1] 
1 - 2 1 

[0 1 -ij 
ri 0 01 
1 1 0 

[1 2 i_ 

ri 0 0" 
1 1 0 

[1 2 1. 

B= Q-^B = 

0 

1 0 
-1 1 
1 - 2 

: 1 

: 0 

: -2_ 

Ai 

.0 

: An 

: M_ 

01 

0 
ij 

n 
1 
1 

0] 
1 
2^ 

= 

" 1 

0 

0 

0 ' 

1 

0 J 

[B11 

= 
0 

where (Ai, Bi) is controllable [verify this and show that ^ = Q ^^, i.e., verify (4.8)]. 



The matrix A has three eigenvalues at 0 , - 1 , - 2 . It is clear from (A, B) that 
the eigenvalues 0 , -1 are controllable (in Ai), while - 2 is an uncontrollable eigen
value (in A2). • 

2. Standard form for unobservable systems 

The standard form for an unobservable system can be derived in a similar way 
as the standard form of uncontrollable systems. If the system (4.1) [or (4.4)] is not 
completely state observable, then it is possible to "separate" the unobservable part 
of the system by means of a similarity transformation. This amounts to changing the 
basis of the state space so that all the vectors in the unobservable subspace Ro have 
a certain structure. 

As in the preceding discussion concerning systems or pairs (A, B) that are not 
completely controllable, we shall presently select a similarity transformation Q to 
reduce a pair (A, C), which is not completely observable, to a particular form. This 
can be accomplished in two ways. The simplest way is to invoke duality and work 
with the pair (AD = A^,Bo = C^), which is not controllable (refer to the discussion 
of dual systems in Section 3.1). If Lemma 4.1 is applied, then 

AD = Q'DADQD = 
AD\ 

0 
ADU 

AD2 
BD - QD BD -

BDI 
0 

where (Aoi, Boi) is controllable. 
Taking the dual again, we obtain the pair (A, C), which has the desired proper

ties. In particular, 

A = A'^ = QhAUQor' = QoMGhr' = 
' A^ 

A^ 
^D12 

0 

A^ 
^D2 

(4.13) 

c = Bi = BUQlr' = c(Qir 1 _ [B: IvOl 
where (A^p Bj^^) is completely observable by duality (see Theorem 1.1). 

EXAMPLE 4.2. Given A = we wish to reduce 
0 1 0] 

-1 - 2 1 andC = 
1 1 - i j 

system (4.1) to the standard form (4.13). To accomplish this, let AD = A^ and BD = C^ • 
Notice that the pair (Ao, Bo) is precisely the pair (A, B) of Example 4.1. • 

A pair (A, C) can of course also be reduced directly to the standard form for 
unobservable systems. This is accomplished in the following. 

Consider the system (4.1) [or (4.4)] and the observability matrix 0 in (4.3). Let 
rank € = rio < n, i.e., the pair (A, C) is not completely observable. This implies that 
the unobservable subspace Ro = J^(€) has dimension n - HQ. Let {vi, . . . , v„-„J be 
a basis for 7?̂  and define an n X n similarity transformation matrix Q as 

Q = [Qno,Vi,...,Vn-nol (4.14) 

where the n^irio matrix Qn^ contains UQ linearly independent vectors chosen so that 
Q is nonsingular. Clearly, there are many such choices. 

LEMMA 4.2. For (A, C) unobservable, there is a nonsingular matrix Q such that 
\Ai 0 
U21 A2 

A = Q-'AQ = and C = CQ = [Ci, 0], (4.15) 
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where Ai G /?«̂ «̂«, Ci E T^̂ ^̂ ^ and the pair (Ai, d ) is observable. The pair (A, C) is 
in the standard form for unobservahle systems. 

Proof We need to show that 

A21 

0 
A2. = eA. 

Since the unobservahle subspace Ro is A-invariant (see Lemma 3.15), Av/ E T̂ ,̂ which 
can be written as a linear combination of only the n- rio vectors in a basis of Ro. Thus, 
A2 in A is an (n ~ rio) X (n - Ho) matrix, and the rio X (n - rio) matrix above it in A is a 
zero matrix. Similarly, we also need to show that 

CQ = C[Q,„vi,...,v,_„J = [Ci,0] = C. 

This is true since Cvi = 0. • 

The pnX n observability matrix 0 of (A, C) is 

C 
CA 

CA n-\ 

Ci 
CiAi 

C,A\-' 

(4.16) 

which clearly has 

rank€ = rank 

Ci 
CiAi 

«o-i CiA 

ciAr 

= ^« 

Note that 

= €Q, (4.17) 

The null space of © is the unobservable subspace of (A, C). It contains vectors only 
of the form [0, a'^f, where a G /^"""o. Since dim >f(d) = n- rank € = n - no, 
every vector of the form [0, a^ ]^ is an unobservable (state) vector. In other words, 
the similarity transformation has changed the basis of R'^ in such a manner that all 
unobservable vectors expressed in terms of this new basis have this very particular 
structure—zeros in the first no entries. 

For Q chosen as in Lemma 4.2 and (4.9), it assumes the form 

Ai 
A21 

0 
A2 

Bi 
Bi 

u,y = [Ci, 0] + Du, (4.18) 

where x = [x[, x^Y with xi G 7?"̂  and where {A\, C\) is observable. The matrix 
B = [BJ, B^]^ does not have any particular form. This representation is called a 
standard form for the unobservable system. 

The no eigenvalues of Ai and the corresponding modes are called observable 
eigenvalues and observable modes of the pair (A, C) or of the system (4.1) [or of 
(4.4)]. The n - no eigenvalues of A2 and the corresponding modes are called unob
servable eigenvalues and unobservable modes, respectively. 



Notice that the trajectory component x(t), which is observed via the output 3;, 
is not influenced at all by X2, the trajectory of which is determined primarily by the 
eigenvalues of A2. 

The unobservable modes of the system are completely absent from the output. 
In particular, given x = Ax -\- Bu, y = Cx with initial state x(0), we have 
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y{t) 
Jo 

and Ce"^' = [CQ-^][Qe^'Q-^] = [Cie'^^',0]Q-^ (show this), where Ai [from 
(4.15)] contains only the observable eigenvalues. Therefore, the unobservable modes 
cannot be seen by observing the output. The same observations can be made for 
discrete-time systems where the quantity CA^ is of interest (show this). 

EXAMPLE 4.3. Given A = \ ^ ^ | and C = [1, 1], we wish to reduce system 
2 -3J 

(4.1) to the standard form (4.15). To accomplish this, we compute 0 = 

, which has rank € = rio = 1 < 2 = n. Therefore, the unobservj 

space Ro = M(€) has dimension n - Uo = 1. In view of (4.14), 

0 : 1 

1 : - i j 
where vi = [1, -1]^ is a basis for Ro, and Qi was chosen so that Q is nonsingular. Then 

Q = [Qhvi] = 

A = Q-'AQ 1 1 
1 0 

"0 
1 

Ai 

A21 

1 
-1 

0 
A2, 

C= CQ= [1,1] [1,0] = [Ci,0], 

where (Ai, Ci) is observable [show this and verify that 6 = €Q, i.e., verify (4.17)]. 
The matrix A has two eigenvalues at - 1 , - 2 . It is clear from (A, C) that the eigen

value - 2 is observable (in Ai), while - 1 is an unobservable eigenvalue (in A2). • 

3. Kalman's Decomposition Theorem 

Lemmas 4.1 and 4.2 can be combined to obtain an equivalent representation of 
(4.1) where the reachable and observable parts of this system can readily be iden
tified. To this end, we consider system (4.9) again and proceed, in the following, to 
construct the nX n required similarity transformation matrix Q. 

As before, we let rir denote the dimension of the controllable (-from-the-origin) 
subspace 7?r i-e., ^r = dim Rr = dim9l(^) = ran^^. The dimension of the unob
servable subspace/?^ = >r(0)isgivenby n^ = n-rankG = n-n^.Let/ i^^bethe 

dimension of the subspace Rro = Rr(^ Ro that contains all the state vectors x E R^ 
that are controllable but unobservable. We choose 
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Q = [Vl, . . . , Vn,-nro + h . • . , Vnr^ QN, Vi, . . . , V^ , -« , J , (4.19) 
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where the rir vectors in {v i , . . . , v^^} form a basis for Rr. The last riro vectors 
{^nr-nro+ii"'i^nr} ii^ the basis for Rr dire chosen so that they form a basis for 
Rro = Rr^Ro' The Ho — Uro = {n — HQ — Uro) vcctors { v i , . . . , Vn^-Tiro) ^^^ Selected so 
that when taken together with the rird vectors {v^^_^^-+i,..., V^^} they form a basis 
for Ro, the unobservable subspace. The remaining N = n— {fir + rio — Uro) columns 
in Q^ are simply selected so that Q is nonsingular. 

The following theorem is called the Canonical Structure Theorem or Kalman's 
Decomposition Theorem. 

THEOREM 4.3. For (A,5) uncontrollable and {A,C) unobservable, 
nonsingular matrix Q such that 

A = Or^AQ = 

All 0 Al3 0 " 

A21 A22 A23 A24 
0 0 A33 0 

0 0 

C = Ce=[Ci ,0 ,C3,0] , 

where 

(i) (A„5,)with 

Ac^ 

A43 A44_ 

"All 0 " 

A21 A22_ 

B = Q-'B = 

'B{ 
B2 
0 

0 

1 

and Be = 
B{ 

there is a 

(4.20) 

(ii) 

is controllable (-from-the-origin), where A^ G R^'^^',Bc G R^^^^, 
{Ao,Co) with 

\An Ai31 
0 A33 

and Co = [Ci,C3] 

is observable, where Ag G R^o><no ^^^ Q ^ j^pxno ^j^^^ where the dimensions 

of the matrices Aij.Bi, and Cj are 

A l l : {nr - Uro) X {rir - Uro), A22 : Uro X Uro, 

A33 : {n-{nr + no-nro)) x {n - {ur + no - firo)), A44 : {fio-firo) x {fio-firo), 
B\ : {fir — firo) X m, B2 '. Uro X m, 
Ci : px(nr-nro), C3 : p x (n-(rir + no-nro)), 

(iii) the triple (Ai 1, 5 i , Ci) is such that (Ai 1,5i) is controllable (from-the-origin) 
and (Aii,Ci) is observable. 

Proof, For details of the proof, refer to [8] and to R. E. Kalman, "On the Computa
tion of the Reachable/Observable Canonical Form," SI AM J. Control and Optimization, 
Vol. 20, No. 2, pp. 258-260, 1982, where further classifications to [8] and an updated 
method of selecting Q are given. • 

The similarity transformation (4.19) has altered the basis of the state space in 
such a manner that the vectors in the controllable (-from-the-origin) subspace Rr, 
the vectors in the unobservable subspace RQ, and the vectors in the subspace 
Rro^Ro all have specific forms. To see this, we construct the controllability matrix 
C = [ 5 , . . . ,A^~^5] whose range is the controllable (-from-the-origin or reachable) 
subspace and the observability matrix S = [ C ^ , . . . , (CA^~^)^]^, whose null space is 
the unobservable subspace. Then, all controllable states are of the form [^^,^2 ,0 ,0 ]^ , 
all the unobservable ones have the structure [0,^2 ,0 ,^4 ]^ , while states of the form 
[0,^2 ,0 ,0 ]^ characterize Rro, i.e., they are controllable but unobservable. 



Similarly to the previous two lemmas, the eigenvalues of A, or of A, are the 
eigenvalues of An, A22, A33, and A44, i.e., 

|A/ - A\ = |A/ - A\ = \XI - AiillA/ - A22IIA/ - A33IIA/ - A44I. (4.21) 

If in particular we consider the representation {A, B, C, D} given in (4.9), where 
Q was selected as in the canonical structure theorem given above, then 

-1 

An 0 Ai3 
A21 A22 A23 

0 0 A33 
[ 0 0 A43 

y = [Ci.0,C3,0] 

Xl 

X2 

0 1 
A24 

0 
A44J 

pi 
U2 
p3 
[x4 

+ 

r^ii 
B2 
0 
0 

+ Dw. (4.22) 

This shows that the trajectory components corresponding to X3 and X4 are not affected 
by the input u. The modes associated with the eigenvalues of A33 and A44 determine 
the trajectory components for X3 and f 4 (compare this with the results in Lemma 4.1). 
Similarly to Lemma 4.2, the trajectory components for X2 and X4 cannot be observed 
from y, and are determined by the eigenvalues of A22 and A44. The following is now 
apparent (see also Fig. 3.4): 

The eigenvalues of 

All are controllable and observable, 
A22 are controllable and unobservable, 
A33 are uncontrollable and observable, 
A44 are uncontrollable and unobservable. 
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CO 

I 

FIGURE 3.4 
Canonical decomposition (c and c 
denote controllable and uncontrollable, 
respectively). The connections of the 
c/c and 0/0 parts of the system to the 
input and output are emphasized. 
Note that the impulse response 
(transfer function) of the system, 
which is an input-output description 
only, represents the part of the 
system that is both controllable 
and observable (see Section 3.4C). 
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, 5 = 

"1 0" 
1 1 

.1 2_ 
, and C = [0,1, 0], we wish to reduce system 

EXAMPLE 4.4. Given 

ro - 1 1 
A - 1 - 2 1 

[o 1 - 1 
(4.1) to the canonical structure (or Kalman decomposition) form (4.20). The appropriate 
transformation matrix Q is given by (4.19). The matrix ^ was found in Example 4.1 and 

C 
CA 

A basis for R^ = >r(0) is {(1, 0, -1)^}. Note that rir = Zrio = 1, and riro = 1- There
fore, 

Q = [Vl, V2, QN] 

is an appropriate similarity matrix (check that det Q ¥- 0). We compute 

0 
1 
2 

1 
- 2 

4 

0 
1 

- 2 

1 

1 

1 

1 

0 

- 1 

0 

0 

1 

A = Q-'AQ 
0 
1 
1 

1 
- 1 
- 2 

01 
0 
ij 

ro 
1 

[o 

1 
2 
1 

11 
1 

- i j 

- 1 

1 1 0 
1 0 0 
1 - 1 1 

All 0 Ai3 

A21 A22 A23 

0 0 A33 

^ n-^n = 
0 
1 
1 

1 
- 1 
- 2 

and 

B = Q-'B 

C = CQ = [0, 1, 0] 

01 
0 

ij 

ri 0' 
1 1 

Ll 2 . 

= 

" 1 

0 

0 

1 ' 

- 1 

0 

= 
Bi' 

B2 
. 0 . 

1 1 0 
1 0 0 
1 - 1 1 

[1,0,0] = [Ci,0,C3]. 

The eigenvalue 0 (in An) is controllable and observable, the eigenvalue - 1 (in A22) 
is controllable and unobservable, and the eigenvalue - 2 (in A33) is uncontrollable and 
observable. There are no eigenvalues that are both uncontrollable and unobservable. • 

B. Eigenvalue/Eigenvector Tests for Controllability and Observability 

There are tests for controllability (-from-the-origin) and observability for both 
continuous- and discrete-time time invariant systems that involve the eigenvalues 
and eigenvectors of A. Some of these criteria are called PBH tests, after the initials 
of the codiscoverers (Popov-Belevitch-Hautus) of these tests. These tests are useful 
in theoretical analysis, and in addition, they are also attractive as computational 
tools. 



THEOREM 4.4. (i) The pair (A, B) is uncontrollable if and only if there exists a 1 X ̂  
(in general) complex vector vt # 0 such that 

v / [A/ / -A ,5 ] = 0, (4.23) 

where A/ is some complex scalar. 
(ii) The pair (A, C) is unobservable if and only if there exists annX I (in general) 

complex vector v/ T̂  0 such that 

[A// - A] 

C 
0, (4.24) 

where A/ is some complex scalar. 

Proof, Only part (i) will be considered since (ii) can be proved using a similar argument, 
or directly, by duality arguments. 

(Sufficiency) Assume that (4.23) is satisfied. In view of v/A = A/V/ and ViB = 0, 
ViAB = XiViB = 0, and vtA^B = 0, ^ = 0, 1, 2 , . . . . Therefore, Vi% = Vi[B, AB,..., 
A^~^B] = 0, which shows that (A, B) is not completely controllable. 

(Necessity) Let (A, B) be uncontrollable and assume without loss of generality the 
standard form for A and B given in Lemma 4.1. We will show that there exist A/ and v/ so 
that (4.23) holds. Let Aj be an uncontrollable eigenvalue and let v/ = [0, a] , a^ G C"~"% 
where a(XiI - A2) = 0, i.e., a is a left eigenvector of A2 corresponding to A/. Then 
v/[A,/ -A,B] = [0, a(\il - A2), 0] = 0, i.e., (4.23) is satisfied. • 

COROLLARY 4.5. (i) The pair (A, B) is controllable if and only if no left eigenvector 
of A is orthogonal to all the columns of B. 

(ii) The pair (A, C) is observable if and only if no right eigenvector of A is orthogonal 
to all the rows of C. 

Proof, The proof follows directly from Theorem 4.4. • 

COROLLARY 4.6. (i) A/ is an uncontrollable eigenvalue of (A, B) if and only if there 
exists a 1 X /I (in general) complex vector v/ 7^ 0 that satisfies (4.23). 

(ii) A/ is an unobservable eigenvalue of (A, C) if and only if there exists an /i X 1 
(in general) complex vector v, 7̂  0 that satisfies (4.24). 

Proof Only part (i) will be considered, since part (ii) can be proved using a similar 
argument or directly, by duality arguments. 

(Sufficiency) Assume that (4.23) is satisfied. Now v/[A// - A, B] = 0, in view of 
the sufficiency proof of Theorem 4.4, implies that v/^ = v/[5, AB,..., A^'^B] = 0. 
Therefore, (A, B) is not controllable. Without loss of generality, assume that (A, B) is 
in the standard form of Lemma 4.1. In this case the controllability matrix has the form 
(4.7) with its top nr rows linearly independent and its lower n - nr rows being zero. 
Therefore, in view of Vj^ = 0, v/ has the form v/ = [0, a\ for some a E C"~"^ Now 
v/(A// - A) = 0 implies that a (A// - A2) = 0, which shows that A/ is an eigenvalue of 
A2, i.e., it is an uncontrollable eigenvalue. 

(Necessity) Let A/ be an uncontrollable eigenvalue of (A, B). Assume without loss of 
generality that the pair (A, B) is in the standard form of Lemma 4.1. Then v/ = [0, a ], where 
a i s s u c h t h a t a ( A / / - A2) = 0 (see the proof of Theorem 4.4), satisfies v/(A//- A) = 0. 

Also, ViB = [0, a] 
0 

= 0. So (4.23) is satisfied. 

EXAMPLE 4.5. Given are A = 

Example 4.4. The matrix A has three eigenvalues, Ai = 0, A2 

0 
1 
0 

- 1 
- 2 

1 

1 
1 

- 1 
,B = 

"1 0' 
1 1 

.1 2. 

, and C = [0,1, 0], as in 

^ - 1 , and A3 = - 2 , with 
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corresponding right eigenvectors vi = [1,1,1]^, V2 = [1,0, - 1 ] ^ , V3 = [1,1, - 1 ] ^ and 
with left eigenvectors vi = [^,0, ^],V2 = [1, ~ 1 , 0], and V3 = [-^, 1, - 5 ] , respec
tively. 

In view of Corollary 4.6, viB = [1,1] 7̂  0 implies that Ai = 0 is controllable. This 
is because vi is the only nonzero vector (within a multiplication by a nonzero scalar) 
that satisfies vi(Ai/ - A) = 0, and so Vi5 7̂  0 impUes that the only 1 x 3 vector a that 
satisfies a[\il - A, B] = 0 is the zero vector, which in turn imphes that Ai is controllable 
in view of (i) of Lemma 4.6. For similar reasons Cvi = 1 7̂  0 imphes that Ai = 0 is 
observable; see (ii) of Lemma 4.6. Similarly, V2B = [0, - 1 ] 7̂  0 implies that A2 = - 1 
is controllable, and Cv2 = 0 implies that A2 = - 1 is unobservable. Also, v^^B = [0, 0] 
implies that A3 = - 2 is uncontrollable, and CV3 = 1 7̂  0 implies that A3 = - 2 is 
observable. 

These results agree with the results derived in Example 4.4. • 

COROLLARY 4.7. (RANK TESTS), (ia) The pair (A, B) is controllable if and only if 

rank [A/ - A, 5] = n 

for all complex numbers A, or for all n eigenvalues A/ of A. 
(ib) Xi is an uncontrollable eigenvalue of A if and only if 

rank [A// - A, 5] < n. 

(iia) The pair (A, C) is observable if and only if 

rank 
XI - A 

C 

for all complex numbers A, or for all n eigenvalues A/. 
(iib) Xi is an unobservable eigenvalue of A if and only if 

\XiI - A] 
rank 

C < n. 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

Proof. The proofs follow in a straightforward manner from Theorem 4.4. Notice that 
the only values of A that can possibly reduce the rank of [XI - A, B] are the eigenvalues 
ofA. • 

EXAMPLE 4.6. If in Example 4.5 the eigenvalues Ai, A2, A3 of A are known, but the 
corresponding eigenvectors are not, consider the system matrix 

P(s) = 
si - A B 

-C 0 

s 1 - 1 

- 1 s + 2 - 1 

0 - 1 s+\ 

1 0 

1 1 

1 2 

and determine rank [XJ - A, B] and rank 

- 1 

Xil - A 
C 

rank 
si - A 

C 
= rank 

5 = ^2 

- 1 1 
- 1 1 

0 - 1 
0 1 

0 0 0 

. Notice that 

= 2<3 = n 

and rank [si — A, B]s=x^ = rank 
- 2 
- 1 

0 

2 - 1 
0 - 1 

-1 - 1 
= 2<3 = n. 



In view of Corollary 4.7, A2 = - 1 is unobservable and A3 = - 2 is uncontrollable. 
Verify that these are the only uncontrollable and unobservable eigenvalues by apply
ing the rank tests of Corollary 4.7. Compare these results with the results in Example 4.5. 

EXAMPLE 4.7. Let A and B with A 1 the eigenvalues 

of A. We would like to determine which of the eigenvalues are uncontrollable. Note 
that (A, B) is in the standard form for uncontrollable systems of Lemma 4.1, namely. 

Ai 

0 
An 
Ai, 

. We know by inspection that the eigenvalue A2 = 1 of A2, is uncon

trollable. Presently, [A// - A, B] and for V2 = [0, 1], V2[A2/ U z - l - 1 11 
[ 0 A, - 1 oj 

A, B] = [0, 0], which in view of Theorem 4.4 and Corollary 4.6, imphes that A2 = 1 is 
an uncontrollable eigenvalue and that V2 = [0, 1] is the corresponding left eigenvector. 
Note that V2 is of the form [0, a], as discussed in the proof of Theorem 4.4. The other 
eigenvalue, Ai = 1, is controllable. It is the eigenvalue of Ai = 1, where (Ai, Bi) is 
controllable. Note that the corresponding eigenvector to the controllable eigenvalue is 
vi = [0,1], the same as V2- Therefore, when using the eigenvalue/eigenvector tests, one 
can detect in the present example only that at least one of the multiple eigenvalues is 
uncontrollable; this test is unable to detect that the other eigenvalue is controllable. This 
situation arises when there are multiple eigenvalues, in which case care should be taken 
when using the eigenvalue/eigenvector tests. When the eigenvalues are distinct, then 
each of them can specifically be identified as being controllable or uncontrollable by the 

eigenvalue/eigenvector test. For another example, try A = 1 0" 

0 1. 
and 5 = 

1' 

0. 
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C. Relating State-Space and Input-Output Descriptions 

The system x = Ax-^ Bu, y = Cx-^ Du given in (4.1) has pX m transfer function 
matrix 

H(s) = C(sl - A)-^B + D = C(sl - Ay^B + A (4.29) 

where {A, B, C, D} is the equivalent representation given in (4.9) (see also Sections 
2.5 and 2.6). Consider now the Kalman Decomposition Theorem and the represen
tation (4.22). We wish to investigate which of the submatrices A/y, Bi, Cj determine 
H(s) and which do not. The inverse of si - A can be determined by repeated appli
cation of the formulas 

§ - 1 

and 

0 8 

la 0" 
[y 8 

- 1 

- 1 

a 
0 

a 

ya 
- 1 

0 (4.30) 

where a, (5, 7, 8 are matrices, with a and 8 square and nonsingular. It turns out 
(verify) that 

H{s) = Ci(sl - Aii)"iJ5i + A (4.31) 

that is, the only part of the system that determines the external description is 
{All, Bi, Ci, D}, the subsystem that is both controllable and observable [see The
orem 4.3(iii)]. Analogous results exist in the time domain. Specifically, taking the 
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inverse Laplace transform of both sides in (4.29), the impulse response of the system 
for r > 0 is derived as (see Chapter 2) 

H{t, 0) = de^'^'Bi + D8{t), (4.32) 

which depends only on the controllable and observable parts of the system, as ex
pected. 

Similar results exist for discrete-time systems described by (4.4). For such sys
tems, the transfer function matrix H{z) and the pulse response H{k, 0) (see Chap
ter 2) are given by 

Cx{zI-Axi)-^Bi+D 

and 

H{z) 

H{k, 0) 
D, 

k>0, 
k = 0, 

(4.33) 

(4.34) 

These depend only on the part of the system that is both controllable and observable, 
as in the continuous-time case. 

EXAMPLE 4.8. For the system x = Ax + Bu, y = Cx, where A, B, C are as in Exam
ples 4.4 and 4.5, we have i/(5) = C{sI-A)-^B = Ci(sI-An)~^Bi = (1)(1/^)[1,1] = 
[l/s, l/s]. Notice that only the controllable and observable eigenvalue of A, Ai = 0 
(in All), appears in the transfer function as a pole. All other eigenvalues (A2 = - 1 , 
A3 = - 2 ) cancel out. • 

EXAMPLE 4.9. The circuit depicted in Fig. 3.5 is described by the state-space equa
tions 

1 

i(t) = 

(RiC) 

0 

1 

Ri 
1 

0 

L 

Xi(t) 

MO 

Xi(t) 

X2(t) 

1 

(RiC) 

1 
v(0 

where the voltage v(t) and current i(t) are the input and output variables of the system, 
xi(t) is the voltage across the capacitor, and X2(t) is the current through the inductor. We 
have i(s) = H(s)v(s) with the transfer function given by 

His) = C(sl - AT^B + D = (^'.C-L)s^(R,-R2) ^ 1 
^ ^ ^ ^ (Ls + R2){R\Cs + Ri) Ri 

The eigenvalues of A are Ai = -l/(RiC) and A2 
[A// - A 

rank [A// —A,B] = rank 
C 

-R2IL. Note that in general 

= 2 = n, i.e., the system is controllable and 

/•(O ^2(0 

^i(0 
v{t) 

FIGURE 3.5 



observable, unless the relation R1R2C = Lis satisfied. In this case Ai 
and the system matrix P(s) assumes the form 

A2 -Ri/L 

P(s) = 
si - A B 

-C D 
= 

'^T ^ 
0 . + ^ 

-k -
In the following, assume that R1R2C = Lis satisfied. 

(i) Let Ri 7^ R2 and take 

L̂ h V2I — 
R2 Ri 
.1 1 . ' 

- rvi IM1~^ — 
i<2 -

Ri-
L 
1 
1 
1 

~Ri 

1 -R, 

1 R2. 

to be the linearly independent right and left eigenvectors corresponding to the eigen
values Ai = A2 = -R2IL. The eigenvectors could have been any two linearly indepen
dent vectors since XJ - A = 0. They were chosen as above because they also have 
the property that V2^ = 0 and Cv2 = 0, which in view of Theorem 4.4, implies that 
A2 = -R2IL is both uncontrollable and unobservable. The eigenvalue Ai = -R2IL is 

r D D 1 
both controllable and observable since it can be seen using 2 = K ^\x.o reduce the 

representation to the canonical structure form (Kalman Decomposition Theorem) (verify 
this). The transfer function is in this case given by 

{s + RxlL){s + R2IL) s + RilL 
His) 

Ri(s + R2/L)(s + R2/L) Ri(s + R2/Ly 

that is, only the controllable and observable eigenvalue appears as a pole in H(s), as 
expected. 

(ii) Let Ri = R2 = R and take 

Lvi, V2J [Vl,V2] ^ = 

In this case viB = 0 and Cv2 = 0. Thus, one of the eigenvalues, Ai = -RIL, is un
controllable (but can be shown to be observable) and the other eigenvalue, A2 = -RIL, 
is unobservable (but can be shown to be controllable). In the present case, none of the 
eigenvalues appear in the transfer function. In fact. 

His) = 1. 

as can readily be verified. Thus, in this case the network behaves as a constant resistance 
network. 

At this point it should be made clear that the modes that are uncontrollable and/or 
unobservable from certain inputs and outputs do not actually disappear; they are sim
ply invisible from certain vantage points under certain conditions. (The voltages and 
currents of this network in the case of constant resistance [H{s) = l/R] are studied in 
Exercise 3.26.) • 

1 0 0 
EXAMPLE 4.10. Consider the system i = Ax+Bu,y = Cx where A 0 - 2 0 

0 0 - 1 

B = and C = [1, 1,0]. Using the eigenvalue/eigenvector test it can be shown 
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(verify this) that the three eigenvalues of A (resp., the three modes of A) are Ai = 1 (resp., 
e^), which is controllable and observable, A2 = - 2 (resp., e'^^), which is uncontrollable 
and observable, and A3 = - 1 (resp., e^^), which is controllable and unobservable. 

The response due to the initial condition x(0) and the input u(t) is 

and 

x(t) = e'''xiO)+ \ e''^'-^^Bu(T)dT 

KO = C^ '̂x(O) + Ce^^'~^^Bu(T)dr 

0 " 
0 

,-t 

ft 
x(0) + 

Jo 

- e«-T) -

0 
_e-('--\ 

U{T) dr 

= [e\e~^\Q]x{0)+\ e^'''h(T)dT. 

Notice that only controllable modes appear in e^^B [resp., only controllable eigenvalues 
appear in (si - A)~^5], only observable modes appear in Ce^^ [resp., only observable 
eigenvalues appear in C(5/ - A) ~ ̂  ], and only modes that are both controllable and observ
able appear in Ce^^B [resp., only eigenvalues which are both controllable and observable 
appear in C{sl - A)~^B = H{s)]. 

For the discrete-time case, refer to Exercise 3.17d. • 

D. Controller and Observer Forms 

It has been seen several times in this book that equivalent representations of systems 

= Ax + Bu, y = Cx + Du, 

given by the equations 

X = Ax + Bu, y = Cx + Du, 

(4.35) 

(4.36) 

where x = Px,A = PAP-\ B = PB,C = CP-\ and D = D, may offer advan
tages over the original representation when P (or Q = P~^) is chosen in an appro
priate manner. This is the case when P (or Q) is such that the new basis of the state 
space (see Section 2.2) provides a natural setting for the properties of interest. As 
a specific case, refer for example to Subsection 3.4A, where Q (and the new ba
sis) was chosen so that the controllable and uncontrollable parts of the system were 
separated. The same results of course apply to discrete-time systems (4.4). This sub
section shows how to select Q when (A, B) is controllable [or (A, C) is observable] 
to obtain the controller and observer forms. These special forms are very useful, 
especially when studying state-feedback control (and state observers) discussed in 
Chapter 4 and in realizations discussed in Chapter 5. These special forms are also 
very useful in establishing a quick way to shift between state-space representations 
and another very useful class of equivalent internal representations, the polynomial 
matrix representations studied in Chapter 7. 

Controller forms are considered first. Observer forms can of course be obtained 
directly in a similar manner as the controller forms, or they may be obtained by 
duality. This is addressed in the latter part of this section. 



1. Controller forms 

The controller form is a particular system representation where both matrices 
(A, B) have certain special structure. Since in this case A is in the companion form 
(see Section 2.2 in Chapter 2) the controller form is sometimes also referred to as 
the controllable companion form. Consider the system 

X = Ax-\- Bu, y = Cx-\- Du, (4.37) 

where A G /?^x^ B G R'''''^, C G 7?^>'̂  and D G RP"""^ and let (A, B) be control
lable (-from-the-origin). Then ran ̂ ^ = n, where 

% = [B,AB,...,A''~^Bl 

Assume that 

(4.38) 

rank B = m ^ n. (4.39) 

Under these assumptions, r a n ^ ^ = n and rank B = m. We will show how to obtain 
an equivalent pair (A, B) in controller form, first for the single-input case (m = 1) 
and then for the multi-input case (m > 1). Before this is accomplished, we discuss 
two special cases that do not satisfy the above assumptions that rank B = m and 
that (A, B) is controllable. 

1. If the m columns of 5 are not linearly independent (rankB = r < m), then there 
exists an m X m nonsingular matrix K (or equivently, there exist elementary col
umn operations) so that BK = [Br, 0], where the r columns of Br are linearly in
dependent (ran ̂  5^ = r). Note that i = Ax + Bu = Ax + {BK){K~^u) = Ax^-

[Br, 0] 
Ur 

Uyyi—y 
= Ax + BrUr, which clearly shows that when rankB = r < m the 

same input action to the system can be accomplished by only r inputs, instead of 
m inputs, and there is a redundancy of inputs, which in control problems clearly 
implies that a reconsideration of the input choices is in order. The pair (A, Br), 
which is controllable when (A, B) is controllable (show this), can now be reduced 
to controller form, using the method developed below. 

2. When (A, B) is not completely controllable, then a two-step approach can be 
taken. First, the controllable part is isolated (see Subsection 3.4A) and then is re
duced to the controller form, using the methods of this section. In particular, con
sider the system x = Ax + Bu with A G R"^^"", B G î ^X'", and rankB = m. Let 
rank [B, AB,..., A^~^B] = nr < n. Then there exists a transformation Pi such 

that PiAP- Ai 
0 

Al2 
A2 

and PiB = where Ai G P^^^^^^ Bi G P'^^^'^, 

and (Ai,Bi) is controllable (Subsection 3.4A). Since (Ai, Bi) is controllable, 
there exists a transformation P2 such that P2A1P2 ^ = Mc, and P2B1 = Bic, 
where Aic, Bic is in controller form, defined below. Combining, we obtain 

PAp-' = 

and 

-1 ^ 

"B = 

Ale 
0 

Bic 
0 

PiAn 
A2 _ 

(4.40) 
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[where Axc ^ R'^'^'^'.Bic G R'^rxm^ ^^^ (Aic,Bic) is controllable], which is in 
controller form. Note that 

P2 0 
0 / Pi- (4.41) 

Single-input case (m = 1). The representation {Ac^Bc^Cc^Dc} in controller 

form is given by Ac A = PAP-^ and Bc= B = PB with 

0 

-oco 

0 
-ai 

1 
-OCn-l 

Br (4.42) 

where the coefficients ai dire the coefficients of the characteristic polynomial a{s) of 
A, that is, 

a{s)= det {si - A) = s"" ^ an-is""'^ ^ h^i^ + ao- (4.43) 

Note that Q = C = CP~^ and Dc = D do not have any particular structure. The 
structure of (Ac,Be) is very useful (in control problems) and the representation 
{Ac^Bc^Cc^Dc} shall be referred to as the controller form of the system. The sim
ilarity transformation matrix P is obtained as follows. The controllability matrix 

^ = [B^AB,... ,A^ ^5] is in this case minxn nonsingular matrix and ^ 

where q is the nth row of ^ and x indicates the remaining entries of "^ . Then 

qA 

qA n-\ 

(4.44) 

To show that PAP~^ = Ac and PB = Be given in (4.42), note first that qA'~^B = 0, 
/ = 1,.. . , n - 1, and qA^'-^B = 1. This can be verified from the definition of q, which 
implies that q^ = [0,0,... , 1] (verify this). Now 

P ^ = P[5,A5,...,A^"^5] 

"0 
0 

1 

0 •• 
0 •• 

1 
X 

1 

X 

r 
X 

X 

• ^ c - (4.45) 

which imphes that | P ^ | = | P | | ^ | 7̂  0 or that |P| ^ 0. Therefore, P quaUfies as 
a similarity transformation matrix. In view of (4.45), PB = [0,0, . . . , ! ]^ = Be. 
Furthermore, 

qA 

AcP 
n-l qA 

qA^ 

PA. (4.46) 



where in the last row of A^P, the relation - X/^=o ^/^^ ^ ^ " was used [which is 
the Cay ley-Hamilton Theorem, namely, a(A) = 0]. 

EXAMPLE4.il. Let A = 
1 
0 
0 

0 
1 
0 

0" 
0 

- 2 . 
and B = 

" 1" 
- 1 

1. 
Since n = 3 and 

l̂ -/ - A| = (̂  + 1)(5' - l)(s + 2) = s^ +2s^ - s -2, {Ac, Be} in controller form is given 

by A, = 
0 1 0 
0 0 1 
2 1 - 2 

and Br = 

The transformadon matrix P that reduces (A, B) to (Ac = PAP ^,Bc = PB) is now 
derived. We have 

, 1 - 1 n 
= [B, AB, A^B] = -1 - 1 

1 - 2 

and -1 _ 

1 - I 

2 2 

The third (the nth) row of^ ^ is q = [- ^, - ^, ^], and therefore, 

P ^ qA 
qA^ 

1 
2 

i 
L 2 

i 
3 
2 
3 

4 
3 J 

It can now easily be verified that Ac = PAP ^ or 

AcP = PA, 

and that Be = P5. [Verify that P^ = %c is given by (4.45) and also compare with 
Exercise 3.23, which explicitly derives ^cJ • 
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An alternative form to (4.42) is 

Aci = 

-Oin-\ 
1 

-ax - a o 
0 0 

^cl -

0 ••• 1 0 

which is obtained if the similarity transformation matrix is taken to be 

r^A^-i" 

A 
P^ = 

qA 

(4.47) 

(4.48) 

i.e., by reversing the order of the rows of P in (4.44). The reader should verify this 
(see Exercise 3.25). 
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In the above, Ac is a companion matrix of the form 

0 
X 

/ 
X or 

'x 
/ 

x" 
0 and Br 

has the form [0 0 . . . 1]^ or [1 0 . . . 0]^, respectively. These representations are 
very useful when studying pole assignment via state feedback control law and are 
used in the next chapter. 

A companion matrix could also be of the form 
"0 
/ 

x' 
X 

or 'x 
X 

0" 
/ 

(see Section 

2.2) with the coefficients -[ao,..., c^n-iV in the last or the first column. It is shown 
here, for completeness, how to determine controller forms where Ac are such com
panion matrices. In particular, if 

G2 = Pi^ = [B,AB,... ,A"-^5] = 

then Ac2 

Also, if 

then Ac3 

= Qi'^Qi 

- Q^'AQ^ 

= 

"0 ••• 
1 ••• 

0 ••• 

Q3 = P3' 

= 

- a „ - i 

- a o 

0 
0 

1 

= 

1 

0 
0 

- a o 

[ A " ~ ' B , 

. . . 0" 

. . . 1 

. . . 0 

Bc2 

• .,Bl 

Bc3 

= Q2'B = 

= Q^'B = 

'1 
0 

0 

"0 

0 
1 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

(Ac, Be) in (4.50) and (4.52) are also in controller canonical or controllable com
panion form. (The reader is encouraged to verify these expressions. See also Exer
cise 3.25.) We also note that if the structures of Ac and Be are specified, then P is 
uniquely determined (see Exercise 3.24). That is, given (A^ Be) in any of the above 
four controllable companion forms, P is readily uniquely determined in each case 
by P = ^ ^ " ^ assuming that P also satisfies PA^B ^ A^Bc (in view of Exercise 
3.24), which it does in the above four cases. If different Be are desirable, then an ap
propriate P can be found by the same formula. Note that ^ denotes the controllability 
matrix of (Ac, Be). 

EXAMPLE 4.12. Let A = and 5 = 
r -1 0 0 

0 1 0 
0 0 - 2 

temative controller forms can be derived for different P. In particular, if 

\qA^ 

(i)P = P, = \ qA 

L q J 

in Example 4.11), then 

, as in Example 4.11. AI-

1 1 
2 6 

4-1 
3 

1 1 2 
2 6 3 

1 1 1 
2 6 3-1 

- 2 1 2" 
1 0 0 
0 1 0_ 

, 

as in (4.48) {%^ ', and q were found 

Be 



as in (4.47). Note that in the present 

Bel = PiB. 

(ii) 22 = ^ = 
" 1 - 1 r 
- 1 - 1 - 1 

. 1 - 2 4. 

Ac2 = 

"0 0 
1 0 

.0 1 -

as in (4.50). 

(iii)e3 = [A^B,AB,B] = 

Ac3 = 

" 1 
- 1 

4 

"-2 
1 
2 

as in (4.52). Note that gsA^s = 
- 1 
- 1 

. - 8 

, as in 

2" 
1 

-2. 
> 

- 1 
- 1 
- 2 

1 
0 
0 

1 
- 1 

4 

case AciPi = 

- ] 1 
6 

8 
3 

1 1 4 
2 6 3 
1 1 2 

- 2 6 3 

(4.49). Then 

Bc2 = Q2'B = 

1] 
- 1 

1. 

0" 
1 
0. 

ri] 
0 

LOJ 

, as in (4.51). Then 

Bc3 -

- 1 " 
- 1 
- 2_ 

roi 
0 

[ij 
, 

= AGs, Q3Bc3 = 

r 1" 
- 1 

L 1 . 
= 

PiA, 
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Multi-input case (m > I). In this case the n X mn matrix % given in (4.38) 
is not square, and there are typically many sets of n columns of % that are linearly 
independent (rank% = n). Depending on which columns are chosen and in what 
order, different controller forms (controllable companion forms) are derived. Note 
that in the case when m = 1, four different controller forms were derived, even 
though there was only one set of n linearly independent columns. In the present case 
there are many more such choices. The form that will be used most often in the 
following is a generalization of (A^ Be) given in (4.42), and this is the form that will 
be derived first. Other forms will be discussed as well. 

Let A = PAP~^ and B = PB, where P is constructed as follows: consider 

= [bu ,,.,bm, Ah,, . . ., Abn,, . . ., A^-'b,, . . ., A^-'bml (4.53) 

where the bi,.. .,bm are the m columns of 5. Select, starting from the left and moving 
to the right, the first n independent columns {rank % = n). Reorder these columns 
by taking first Z?i, Ab\, A^bi, etc., until all columns involving bi have been taken; 
then take Z?2, Ab2, etc., and lastly, take bm, Abm, etc., to obtain 

% = [bi,Abi,...,Af''-^bi,...,bm,-.^,Af^^-^bml (4.54) 

an n X ^ matrix. The integer ixi denotes the number of columns involving bi in the 
set of the first n linearly independent columns found in % when moving from left to 
right. 

DEFINITION 4.1. The m integers /Xj, / = 1,..., m, are the controllability indices of 
the system, and ^x = max fxt is called the controllability index of the system. Note that 
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To illustrate the significance of ^i, note that an alternative but equivalent defini
tion for IX is that /x is the minimum integer k such that 

rank[B,AB,...,A''''B] = n. (4.56) 

Taking this view, one keeps adding blocks B, AB, A^B, etc., until n independent 
columns appear (from left to right) for the first time. It is then not difficult to see that 
/x = max fjLi. Alternatively, jm can be defined as the least integer such that 

rank [B, AB,..., A^'^B] = rank [B, AB,..., A^B]. (4.57) 

Notice that in (4.54) all columns of B are always present since rank B = m. 
This implies also that /uLi > 1 for all /. Notice further that if A^bi is present, then 
A^~^bi must also be present in (4.54). For if it were not, i.e., if it were dependent 
on the previous columns in % and had been eliminated, then A^bt would also have 
been dependent (write A^'^bi as a linear combination of previous columns in ^ and 
premultiply by A to show this). Column A^^'bi is of course dependent on the previous 
ones. This relation can be expressed explicitly as 

m mmiixuixj) i-\ 

A^'bt =X X ^iJkA'-'bj + X ^ij^^'bj (4.58) 
y - i k=i 7 = 1 

Note that the first sum in (4.58) indicates the dependence of A^'bi on the linearly 
independent columns in B, AB,.. .,A^''^B, while the second sum shows the de
pendence on the independent columns in Af^'B to the left of A^'bi (aijk and pij are 
appropriate reals). 

Now define 
k 

a^ = XfJiu k = l,...,m, (4.59) 
/ = i 

i.e., cTi == fjLi, cr2 = ^ll + fJi2y..., o"^ = /xi + • • • + t̂m — ^' Also, consider %~^ 
and let q^, where q^ G R^, k = 1 , . . . , m, denote its akth row, i.e., 

^ - 1 = [X, 

Next, define 

x,qY:-- :X, X, qlV. (4.60) 

p^ 

qiA 

qmA 

(4.61) 

[qmAf^' i - i 



It can now be shown that PAP ^ = Ac and PB = B^ with 

Ac = [Aijl i,j = 1 , . . . , m, 

0 

AH = I 

Aij 

and Be = 

0 
X X 

0 

0 
X X 

Bi 
B2 

f J L i - l 

X 

Rf^iXf^i^ i = j^ 

Bi = 

0 

R^^^'^J, i # j , 

0 0 

0 1 X X 

J^^.,xm^ (4.62) 

where the 1 in the last row of Bi occurs at the /th column location, / = 1 , . . . , m, 
and X denotes nonfixed entries. Note that Q = CP~^ does not have any particular 
structure. The expression (4.62) is a very useful form (in control problems) and shall 
be referred to as the controller form of the system. The derivation of this result is 
discussed below. First, examples are given to illustrate the procedure involved, and 
then some alternative expressions and properties are also discussed. 

285 

CHAPTER 3 : 

Controllability, 
Observability, 
and Special 
Forms 

EXAMPLE 4.13. Given are A G R'''^'' and B E R""^"^ with (A, B) controllable and with 
rank B = m. Let n = 4 and m = 2. Then there must be two controllability indices ii\ 
and 1X2 such that n = 4 = Sf= i î / = Mi + M2- Under these conditions, there are three 
possibilities: 

(i) fii = 2, /X2 = 2, 

Ar = 
All An 

A21 A22. 

(ii) /xi = 1, /X2 = 3, 

X 

Ac = 

0 1 

X X 

0 0 

X X 

: 0 

: X 

: 0 

: X 

0 

X 

1 

X 

X X X 

0 1 0 

0 0 1 

X X X 

Br = 

Br = 

Bi] 
Bi. 

0 
1 

0 
0 

0 
X 

0 
1 

" 1 

0 
0 
0 

X ' 

0 
0 
1 
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(iii) ixx = 3, /X.2 = 1, 

Ac 

1 0 

0 1 

X X 

X X 

Br = 

"0 
0 
1 

0 

0 " 
0 
X 

1 

It is possible to write Ac, Be in a systematic and perhaps more transparent way. 
In particular, notice that Ac, Be in (4.62) can be expressed as 

Ac — Ac + t>cAyi B, — Jjctjfyi, (4.63) 

where Ac ^ blockdiag [An, A22,.... Amm\ with 

[o 

An = 
0 
0 0-

//..-I 

•0 

Be = block diag R^^^'K i = \,..,,m 

and Am G R^^^ and Bm G R^^^ are some appropriate matrices with ^ ^ ^ ^ /x/ = n. 
Note that the matrices Ac, Be are completely determined by the m controllability in
dices iJLi, i = 1 , . . . , m (they are in fact in the so-called Brunovski canonical form— 
see the discussion following Lemma 4.8). The matrices Am and Bm consist of the 
(Tith, (T2th,.. . , cr^th rows of A^ (entries denoted by X) and the same rows ofBc, re
spectively. Note that Am and Bm is that part of the controllable system x = Ax + Bu 
that can be altered by linear state feedback u = Fx + Gv, a fact that will be used 
extensively in the next chapter. 

EXAMPLE 4.14. Let A = 

troller form (4.62), consider 

1 0 
0 1 
2 - 1 

and B = 
"0 r 
1 1 

.0 0. 
. To determine the con-

= [B,AB,A^B] 

= [bx,h2, Abu Ab2, A^bx, A^b2\ = 
1 
0 
2 

where rank^ = 3 = n, i.e., (A, B) is controllable. Searching from left to right, the first 
three columns of ^ are selected since they are linearly independent. Then 

ro 1 1" 
^ = [bi, Abi, Z72] - 1 0 1 

lo 2 OJ 

and the controllability indices are ^ci 
jjii + iJi2 = 3 = n, and 

2 and ^2 = 1- Also, ai = /JLI = 2 and (T2 

" - 1 

0 

1 

1 

0 

0 

1 
2 
1 
2 
1 
2 



Notice that q\ = [0, 0, \] and q2 = [1, 0, - 1 ] , the second and third rows of ^ \ respec-

ro 0 

tively. In view of (4.61), P = 

PAP~ 

q\A 

L qi 

0 

2 

1 

1 -
2 
1 
2 
1 
2-J 

,P~' = 

1 0 1" 
1 1 0 

.2 0 0. 
and Ar = 

*c = PB = 
B{ 

B2\ 
— 

0 
1 

0 

0 ' 
1 

1 

One can also verify (4.63) quite easily. We have 

Ar + BrAvy 

0 0 

: 0 

: 0 

: 0 

+ 

0 
1 

0 

o] 
0 

1 J 

- 1 
0 

and 

0 
1 

0 

o" 
1 

1 

BcBtr 

"o 
1 

0 

ol 
0 

1 J 

ri 1" 
[o 1. 

It is interesting to note that in this example, the given pair (A, B) could have already 
been in controller form if B were different, but A the same. For example, consider the 
following three cases: 

1. A = B = 

' 1 

0 
0 

X 

0 
1 

^x = \, 1X2 = 2 , 

2. A 

3. A = 

0 

0 

0 

1 

0 

2 

0 

1 

- 1 

0 
1 

0 

o' 
X 

1 

/xi = 2, ^1 = 1, 

0 1 0 
0 0 1 
0 2 - 1 

B = /^i 

Note that case 3 is the single-input case (4.42). • 

Several results involving the controllability indices of (A, B) are now presented. 
First, it is shown that the controllability indices /x/ of a system, defined in Defini
tion 4 .1 , do not change under similarity transformations [for if they were changing, 
then (Ac, Be) might have different controllability indices from the original (A, B)]. 
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288 In particular, let x = Ax -\- Buhe given, where (A, B) is controllable, and consider 
Linear Systems x = Ax -i- Bu, where A = PAP~^, B = PB, x = Px, and P is nonsingular. 

LEMMA 4.8. The controllability indices of (A, B) are identical to the controllability 
indices of A = PAP-\ B = PB. 

Proof. We have ^ = [B, AB,..., A^-^B] = p-^[B, AB,..., A^'^B] = p-^^. To de
termine the controllability indices /JLI of (A, B), the first n linearly independent columns 
of ̂  are taken, working from left to right. It is clear that the corresponding n columns of 
^ will also be linearly independent, since they are the n columns of ^, each premulti-
plied by P. Furthermore, as one checks linear dependence of columns in ^, from left to 
right, if a column is dependent on the previous ones, then the corresponding column in 
^ will also be dependent on the previous ones in ^ (show this). Therefore, the linearly 
independent columns generated by this left to right search are exactly the same in ̂  and 
^, and therefore, the controllability indices are identical. • 

Note that the controllability indices of (A, BG), where G is nonsingular, are 
equal to the controllability indices /x/ of (A, B) within reordering (see Exercise 3.20). 
Note also that when linear state feedback u = Fx -\- Gv with |G| T̂  0 is applied to 
X = Ax -^ Bu (see Exercise 3.21), then the controllability indices of (A + BF, BG) 
are equal to the controllability indices of (A, B), i.e., the controllability indices are 
invariant under linear state feedback. These results can be summarized as follows. 

Given (A, B) controllable, then (P(A + BGF)p-\ PBG) will have the same 
controllability indices, within reordering, for any P, F, and G (\P\ T̂  0, \G\ T^ 0) of 
appropriate dimensions. In other words, the controllability indices are invariant un
der similarity and input transformations P and G, and state feedback F [or similarity 
transformation P and state feedback (F, G)]. Furthermore, it can be shown that if 
two pairs (A/, Bt), i = \, 2, have the same indices, then there must exist P, G, and F 
such that Ai = P(A2+ ^2GF)P"^ and 5i = PB2G. This in fdidhXh^ completeness 
property, which together with the invariance property implies that the controllabil
ity indices {/x/} constitute a set of complete invariants for (A, B) under operations 
P, G, and F, Using (4.63), it is not difficult to see that given any (A2, B2) with con
trollability indices {/x/}, there exist_P, G, F such that Ai = P(A2 + B2GF)P~^ and 
Bi = PB2G are exactly equal to Ac = Ai, Be = B\. The pair {Ac, Be) is unique, 
and since any controllable pair (A, B) with controllability indices { t̂/} can be re
duced to (Ac, Be) by these operations, {Ac, Be) is a canonical form of such (A, B) 
under these operations. The pair {Ac, Be) is called the Brunovsky canonical form. It 
should also be mentioned here that the {jUi} are the right Kronecker indices of the 
pencil [si - Ac, Be]. (Recall that [si - Ac, Be] = s[I, 0] - [Ac, -Be] = sE - A, 
a matrix form called a linear matrix pencil.) The derivation of A^, Be in (4.62) is 
discussed next. 

The exact structure of Ac and Be depends on the selection of the n linearly in
dependent columns in % and on the choice of the equivalence transformation matrix 
P. The n linearly independent columns in ^ were selected by a search from left to 
right; if a column was found dependent on previous ones, then it was dropped. The 
dependence relation is given in (4.58). This relation, together with the expression 
for P given in (4.61), are central in the derivation of A^, Be. 

In view of ^ - ^ ^ = / , 

qt^ - qi[bi,Ab,,...,Af'^-'bu-.-.A^^~'bi,...,bm.....A^--'b^] ^^^^^ 

- [0 , . . . , 0, 1, 0 , . . . , 0], i = l,...,m, 



where the 1 occurs at the cr^th column. These relations can be written as 

qtA^'^bi = 0 ^ = 1 , . . . , /x/ - 1, and qiA^^-'bi - I, 
(4.65) 

where / = 1 , . . . , m, and j = 1 , . . . , m. In view of (4.64), (4.65), and the dependence 
relations (4.58), it can be shown that P^ is nonsingular, which in view of the fact that 
1̂ 1 7̂  0 implies that \P\ T^ 0 as well, i.e., P qualifies as a similarity transformation. 
We note that the proof of this result is rather involved (see Section 3.7, Notes, for 
appropriate references). In view of the relationship PA = AcP, it is now not difficult 
to see that n - m rows of Ac will contain fixed zeros and ones, as in (4.62). The 
(m) (Tith, cr2th , . . . , cr^th rows of Ac that are denoted by Am in (4.63) are given by 

^rn — 

qiA^' 

qmAf^^ 

P-\ (4.66) 

where Ac = Ac + Be Am. Similarly, in view of the equality Be = PB and (4.63), it 
is not difficult to see that n - m rows of Be must be zero. The (m) remaining crith, 
0-2th,. . . , amth rows of Be that are denoted by Bm in (4.63) are given by 

qiA^'-^ 

Bm — 

qmA^^ 

B, (4.67) 

where Be = BcB The matrix Bm in (4.67) is, in fact, an upper triangular matrix 
with ones on the diagonal. This result follows from the special form of P^ that was 
used above to show that P is nonsingular. 

At this point it may perhaps be beneficial to examine a special case that is not 
only interesting but will also provide some indication of the type of proof required to 
establish these results. In particular, it will be shown that when jui < ^l2 — * *' — 
fjLm, the upper triangular matrix Bm in (4.67) is in fact diagonal. 
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LEMMA 4.9. If/Xi < ^l2 
diagonal, i.e., Bm = Im-

fjLm, then Bm in (4.67) is diagonal with ones on the 

Proof, The matrix Bm in (4.67) is upper triangular. When, in addition, /xi < )Li2 ^ 
••• < fjLm. then qiAf^^-^B - ^iA^i-i[Z?i, Z?2, • •-, W = [1, 0 , . . . , 0], in viewof (4.65); 
in particular, qiA^^~^bi = 1 and q\Af^^~^b2 = 0 since q\A^~^b2 = 0, k = 1 , . . . , JLXI, 
and /xi < ^l2. Similar statements hold for the columns bs, b^, ...ybm- The proof for 
^2^^2-15^.. . , qmA^^'^'^B is completely analogous. • 

Note that if different relations among the controllability indices /x^ exist, then 
different entries of Bm (above the diagonal) will be zero. 

EXAMPLE 4.15. We wish to reduce A = 

form. Note that A and B are almost the same as in Example 4.14; however, presently, 

0 
0 
0 

1 
0 
2 

0" 
1 

- 1 _ 
andB = 

1 r 
0 1 

_0 0. 
to controller 

Ml 1 < 2 = /X2, as will be seen. We have % = [B, AB, A^B] = [bu bi, Abu 
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1 1 0 1 
0 1 0 0 
0 0 0 2 

. Searching from left to right, the first three linearly in

dependent columns are bi, b2, Ab2 and ^ = [bi, b2, Ab2] = 

conclude that jLii = 1, fjL2 = 2,ai = 1, and 0-2 = 3. We compute 

Note that qi = [1, - 1 , - ^] and ^2 = [0, 0, ^ ] , the first and third rows of ^ ~ \ respec

tively. Then 

1 1 1" 
0 1 0 
0 0 2. 

pute^^i -

, from which we 

[1 -1 -^1 
0 1 0 

.0 0 | . 

p = 
qi ' 
qi 

qiA. 
-

"1 
0 
.0 

- 1 
0 
1 

"1 
0 
.0 

2 r 
1 1 
2 0. 

and 

Ac = PAP-^ 

A21 ^22 

•1 0 

0 

2 

c = PB = 
Bi] 

52J 
= 

" 1 

0 
0 

0 " 

0 
1 

Presently, (4.67) yields 5^ qi 
qiA 

B and equals I2, as expected in view of the above 

lemma (JJLI < 1^2)- In general, Bm is an upper triangular matrix. 
For the present example, we ask the reader to also verify relations (4.65), determine 

Am by (4.66), and compare these with the above results. • 

In the case of single-input systems, m = 1, ^tl = n, and P in (4.61) is exactly 
the transformation matrix given in (4.44) (verify this). In the case m = 1, if the order 
of rows in P is reversed and P i in (4.48) is used instead, then an alternative controller 
form is obtained, shown in (4.47). Similar results apply when m> 1: if the order of 
the rows of P in (4.61) is reversed within the fit X n blocks, then 

Pi 

qi 

(4.68) 

in which case Ad = P\AP^ ^,Bc^ = P\, and B are given by 

Aci = [Aijl ij - 1 , . . . , m, 



Aii = 

X X 

V,-i 

X 

0 /?M,XM,̂  j = j^ 

Aij = 

and Bel = 

X 

0 

0 

"fii 

X 

0 
R^^iX^^j^ i ^ j^ 

Bi = 

0 ••• 0 1 X ••• X 
0 ••• 0 0 0 ••• 0 

0 0 0 0 0 

J^t^i (4.69) 

where the 1 on the first row of Hi occurs at the iih (i = 1 , . . . , m) location and X 
denotes nonfixed entries. These formulas are similar to (4.62) and can be derived in 
a completely analogous fashion. 

As in the case m = I [see (4.49) to (4.52)], the columns of P~^ can also be 
selected to be n linearly independent columns of ^ , in which case A = PAP~^ and 
B = PB will be in alternative controller forms. There are many ways of selecting 
these n linearly independent columns of the n X nm matrix ^ , as was discussed 
before. For example, one may search ^ from left to right as above, or one may check 
bi, Abi,.. .,b2, Ab2,... for linear independence. The controller forms resulting in 
this way are generahzations of (4.50) and (4.52). These forms are not as useful to us 
and are omitted here. 

Structure theorem—controllable version. The transfer function matrix H{s) 
of the system x = Ax + Bu, y = Cx + Duis given by H(s) = C(sl - Ay^B + D. 
If (A, B) is in controller form (4.62), then H{s) can alternatively be characterized 
by the Structure Theorem stated in Theorem 4.10. This result is very useful in the 
realization of systems, addressed in Chapter 5 and in the study of state feedback in 
the next chapter. 

Let A = Ac = Ac + Be Am and B = Be = BcBm, as in (4.63), with | 5 ^ | T̂  0 
and let C = Q and D = Dc. Define 

A W ^ 

vf^l 

e ^ 2 

S(s) = block diag 

1 
s 

/ — 1, . . . , m 

(4.70) 

Note that S{s) is an n X m polynomial matrix (n = Xf^i i^O. i-^., a matrix with 
polynomials as entries. Now define the m X m polynomial matrix D(s) and the /? X m 
polynomial matrix N(s) by 

D(s) ^ B-'[A(s) - AmS(s)l N(s) ^ CcS(s) + DeD(s). 

The following is the controllable version of the Structure Theorem. 

(4.71) 
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THEOREM 4.10. H(s) = N(s)D~\s), where N(s) and D(s) are defined in (4.71). 

Proof, First, note that 

(si - Ac)S(s) = BcD{s). (4.72) 

To see this, we write BcD{s) = BcBmB;;^^[A(s) - AmS(s)] = BcA(s) - BcAmS(s) and 
(si - Ac)S(s) = sS(s) - (Ac + BcAm)S(s) = (si - Ac)S(s) - BcAmS(s) = BcA(s) -
BcAmS(sXwhichpro\ts (4.72). NowH(s) = Cc(sl- AcT^Bc + Dc = CcS(s)D-\s) + 
Dc = [CcS(s) + DcD(s)]D-\s) = N(s)D-\s). • 

EXAMPLE 4.16. Let Ar = 
0 1 0 
2 - 1 0 
1 0 0. 

2 - 1 
1 0 

Here /JLI = 2, iui2 = I and A^ = 

ri 01 
S(s) = \s 0 , and 

LO i j 
D(s) = B-'[A(s)-A,nS(s)] = 

"1.0 IJL - 1 
Now Cc = [0,1,1], and Dc = [0, 0], 

N(s) = CcS(s) + DcD(s) = [s, 1], 

and Be = 

0" 
0. y Bm — \ 

ro 01 
1 1 

[o 1. 

1 11 
0 i j ' 

1 
.0 I J [ L O S^ 

's^ + s - I 
- 1 

—s 
s 

, as in Example 4.14. 

r̂ ^ 0 
.ThenA(5) = r^ 

0 s 

-s + 2 0 
1 0 

and H(s) = [s,l] 
5 ^ + 5 - 1 -

- 1 
-s 

S 

- 1 

= [s, 1] 

= - j ^ - [ 5 ^ + 1,2^^ + 5 - 1 ] 
s(s^ + 5 - 2 ) 

= Cc(sl - AcY^Bc + Dc. 

EXAMPLE 4.17. Let Ac = 
"0 1 0 
0 0 1 
2 1 - 2 

s s 
2 [I s^ + s - l\ s(s^ + 5 - 2 ) 

1 

Be = Cc = [0,1,0], 

and Dc = 0 (see Example 4.11). In the present case we have A^ = [2,1, - 2 ] , B^ = 1, 
A(5) = s\S(s) = [l,5,52]^,and 

D(s) = 1 . [5^ - [2,1, -2] [1 , 5, s^f] = 5̂  + 2 5 ^ - 5 - 2 , N(s) = 5. 

Then 

H(s) = N(s)D-\s) 
+ 2 5 ^ - 5 - 2 

= Cc(sl - AcT^Bc + Dc. 

2. Observer forms 

Consider the system x = Ax + Bu, y = Cx -\- Du given in (4.1) and assume 
that (A, C) is observable, i.e., rankG = n, where 

C 
CA 

(4.73) 

CA' n-\ 



Also, assume that the p X n matrix C has a full row rank p, i.e., 

rankC = p ^ n. (4.74) 

Presently, it is of interest to determine a transformation matrix P so that the 
equivalent system representation {A ,̂ Bo, Co, Do} with 

PAP~\ Bo = PB, Co = CP~\ Ao Do = D (4.75) 

will have {Ao, Co) in an observer form (defined below). As will become clear 
in the following, these forms are dual to the controller forms previously dis
cussed and can be derived by taking advantage of this fact. In particular, let 
A ^ A^ ,B = C^ [(A, B) is controllable] and determine a nonsingular transforma
tion P so that Ac = PAP~^, Be = PB are in controller form given in (4.62). Then 
Ao = A^ and Co = B^ is in observer form. In fact the equivalent representation in 
this case is given by (4.75), where P = (P^)~^ (show this). 

It will be demonstrated in the following how to obtain observer forms directly, 
in a way that parallels the approach described for controller forms. This is done for 
the sake of completeness and to define the observability indices. Our presentation 
will be rather brief. The approach of using duality just given can be used in each 
case to verify the results. 

We first note that if rank C = r < /?, an approach analogous to the case when 
rank B < m can be followed, as above. The fact that the rows of C are not linearly 
independent means that the same information can be extracted from only r outputs, 
and therefore, the choice for the outputs should perhaps be reconsidered. Now if 
(A, C) is unobservable, one may use two steps to first isolate the observable part and 
then reduce it to the observer form, in an analogous way to the uncontrollable case 
previously given. 

Single-output case (p = I). Let 

p - i = (2 A [q^Aq,...,A''-^q], 

where q is the ^th column in 0~^ Then 

An = 

0 -ao 
0 -ai 

1 -OCn-\ 

Co = [0, . . . ,0,1L 

(4.76) 

(4.77) 

where the at denote the coefficients of the characteristic polynomial a(s) = 
det(sI-A) = ^^ + a:„-i^'^"i + - - -+a i^ + ao.HereA^ = PAP'^ = Q~^AQXo = 
CP' ^ = CQ, and the desired result can be established by using a proof that is com
pletely analogous to the proof in determining the (dual) controller form presented 
earlier in this section. Note that Bo = PB does not have any particular structure. 
The representation {Ao, Bo, Co, Do} will be referred to as the observer form of the 
system. 

Reversing the order of columns in P~ ̂  given in (4.76) or selecting P to be exactly 
0, or to be equal to the matrix obtained after the order of the columns in 0 has been 
reversed, leads to alternative observer forms in a manner analogous to the controller 
form case. We leave it to the reader to investigate these possibilities further. 
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Linear Systems EXAMPLE 4.18. Let A 
-1 0 0 
0 1 0 
0 0 - 2 

and C = [1, -1,1]. To derive the ob

server form (4.77), we could use duality, by defining A = A^, B = C^, and deriving 
the controller form of A, B, i.e., by following the procedure outlined above. This is left to 
the reader as an exercise. We note that the A, B are exactly the matrices given in Exam
ples 4.11 and 4.12. In the following the observer form is derived directly. In particular, 
we have 

and in view of (4.76), 

c 
CA 
CA\ 

= 

" 1 - 1 1" 
- 1 - 1 - 2 

. 1 - 1 4. 
, 

.76), 

Q = p - i = [q^Aq^A^q] = 

0-1 = 

r 1 
2 
1 
6 

1 
L 3 

1 - 1 
2 

1 1 
3 2 

.-1 0 

1 1 1 
2 2 

1 1 
6 6 

2 4 
3 3 J 

1 
2 

1 
6 

1 
3 

Note that q = I I 
6' 3 , the last column of 0"^. Then 

Ao = Q-'AQ = 
0 2 
0 1 
1 - 2 

and Co = CQ = [0, 0,1], 

where l̂ -/ - A| = s^ + 2s - s - 2 = s^ -{- a2S^ + ais + ao. Hence, 

GA. = 

i i 
2 
i 
6 = AQ. 

Multi-output case (p > 1). Consider 

C 
CA 

CA « - i 

ci 

ciA 

CpA 

ciA « - i 

LCpA'^-

(4.78) 

where c\,.. .,Cp denote thep rows of C, and select the first n linearly independent 
rows in 0, moving from the top to bottom (rank € = n). Next, reorder the selected 
rows by first taking all rows involving ci, then C2, etc., to obtain 



c\A 

ciA v^-l 

(4.79) 

Sin n X n matrix. The integer Vi denotes the number of rows involving c/ in the set 
of the first n Unearly independent rows found in 0 when moving from top to bottom. 

DEFINITION 4.2. The/? integers vt, i = 1,..., p, are the observability indices of the 
system, and v = max Vi is called the observability index of the system. Note that 

Y^Vi = n and pv ^ n. (4.80) 
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When rankC = p, then ^/ > 1. Now define 
k 

d-k =^Pi k = I, A (4.81) 
/ - I 

i.e., (Ti = 1̂ 1, (T2 = v\ -}- V2y' "y^p = v\ + '" -\- Vp = n. Consider 0 ^ and let 
qk E R^, k = 1 , . . . , /?, represent its or^th column, i.e., 

g- i = [X--- X^il X ••• Xg2|**-| X ••• X qpl (4.82) 

Define 

P-' = Q= [qi,...,A-^-'q,,...,qp,.,,,A^p-'qpl (4.83) 

ThenA^ = PAP'^ = Q-^AQmdCo = CP~^ = CQ are given by 

Ao = [Aijl i,j=\,..., p, 

An = 

0 ••• 0 X 

X 

/^^^•^^/ = 7, Aij = 

ro •• 

0 X 

0 X 

/^^'•><^^/#y, 

and Co - [Cl, C2, . . . , Cp], Ci — 

0 0 

0 0 
0 1 
0 X 

0 X 

J^p-XVi (4.84) 

where the 1 on the last column of C/ occurs at the /th-row location (/ = \,..., p) 
and X denotes nonfixed entries. Note that the matrix BQ = PB = Q~^B does not 
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have any particular structure. Equation (4.84) is a very useful form (in the observer 
problem) and shall be referred to as the observer form of the system. 

Analogous to (4.63), we express AQ and Co as 

/\.o ^o ' ^p^O) ^o ^p^oy 

where Ao = blockdiag [A\, A2,..., Ap\ with A/ = 
0 •• 

0 

(4.85) 

RVi^^Vi^ C^ = 

= 1 , . . . , ;?), and Ap G T?"^^, and Cp G RP'^P are block diag {[0,...,0,lY e 7?^s/ 
appropriate matrices (Xf= 1 ^/ = ^). Note that AQ, CO are completely determined by 
the/? observability indices '̂/, / = I,..., p, and A^ and Cp contain this information 
in the o-ith,..., or^th columns of Ao and in the same columns of Co, respectively. 
Note also that Ap is that part of the observable system i = Ax + Bu, y = Cx^- Du 
that can be altered by the gain of a state observer. This is discussed further in the 
next chapter. 

Results that are in the spirit of Lemmas 4.8 and 4.9 also exist and can be es
tablished directly in a completely analogous way or by duality. The same is true for 
proving that Q in (4.83) is nonsingular and that Ao and Co in (4.84) have their par
ticular structure. Furthermore, by reversing the order of the columns of P~^ in (4.83) 
or by selecting the columns of P directly from 0, one can derive alternative observer 
forms. These are dual to the controller forms discussed before. 

ro 0 01 
EXAMPLE 4.19. Given A = 1 0 2 

LO 1 - i j 
these to observer form. This can be accomplished using duality, i.e., by first reducing 
A = A^, 5 = C^ to controller form. Note that A, B are the matrices used in Example 
4.14, and therefore, the desired answer is easily obtained. Presently, we shall follow the 
direct algorithm described above. We have 

C 
CA 
CA^ 

Searching from top to bottom, the first three linearly independent rows are ci, C2, c\A, 
and 

andC = 
"0 1 0" 

1 1 0_ 
we wish to reduce 

0 
1 
1 
1 
0 
0 

1 
1 
0 
0 
2 
2 

0 
0 
2 
2 

- 2 
- 2 

' ci ' 

c\A 

. C2 . 

= 
"0 1 0" 
1 0 2 

.1 1 0. 

Note that the observability indices are ẑ i = 2, ẑ2 = lando-i == 2,0-2 = 3. We compute 

Then, Q = [qi, Aqi, ^2] 

r 
0 
1 
2 J 

= 
"X 0 1" 
X 0 0 

L ^ 2 2 ^ 

a n d g - i = 
T 1 2" 
0 1 0 

.1 0 0. 
. Therefore, 



Ao = Q-'AQ = 

All All, 

0 2 

1 - 1 

0 

Co = CQ = [Ci : Ci\ = 

We can also verify (4.85), namely, 

0 1 : 0 

0 1 : 1 

Ao 

and 

Co = 

0 2 

1 - 1 

0 0 

0 1 : 

0 1 : 

— Ao + ApC^o 

0 

1 

0 

0 

0 

0 

0 

0 

0 

+ 
" 2 11 
- 1 0 

0 Oj 

ro 1 0' 
[o 0 1. 

^ p^o 
1 0 
1 1 

0 1 0 
0 0 1 

Structure Theorem—observable version. The transfer function matrix H{s) of 
systemi = Ax + Bu,y = Cx + Duisgiytnhy H{s) = C(sI-A)~^B-^D,lf(A,C) 
is in the observer form, given in (4.84), then H(s) can alternatively be characterized 
by the Structure Theorem stated in Theorem 4.11. This result will be very useful in 
the realization of systems, addressed in Chapter 5 and also in the study of observers 
in the next chapter. 

Let A = Ao = Ao + ApCo and C = Co = CpCo as in (4.85) v^ith \Cp\ # 0, let 
B = Bo and D = Do, and define 

A(^) = diag [̂ ^S s''^ . . . , s^'p], S(s) = block diag ([1, ^ , . . . , s""^'^], / = 1,..., p). 
(4.86) 

Note that S{s) is a p X n polynomial matrix, where n = ^f^^vi. Now define the 
pX p polynomial matrix D(s) and the p X m polynomial matrix N(s) as 

D(s) ^ [Ms) - S(s)Ap]Cp N(s) = S(s)Bo + D(s)Do. (4.87) 

The following result is the observable version of the Structure Theorem. It is the 
dual of Theorem 4.10 and can therefore be proved using duality arguments. The 
proof given is direct. 

THEOREM4.il. H{s) = D~H^)^('y), where 7V(5), 6(5) are defined in (4.87). 

Proof, First we note that 

b{s)Co = S(s){sl - Aol (4.88) 

To see this, write D(5)Co = [A(s)-S(s)Ap]C-^CpCo = A(5)C -̂5 (̂>y)A^Co, and also, 
S(s)(sl - Ao) = S(s)s - S(s)(Ao + ApCo) = S(s)(sl - Ao) - S(s)ApCo = A(^)C. -
S(s)ApCo, which proves (4.88). We now obtain H{s) = Co{sI - Ao)~'^Bo + Do = 
D-\s)S(s)Bo + Do = D~\s)[S(s)Bo + D(s)Do] = D-\s)N(s), • 
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Linear Systems EXAMPLE 4.20. Consider A^ = 

4.19. Here ẑ i = 2, 1̂2 = I, Ms) = 

0 2 
1 - 1 
0 0 

s^ 0 
0 s 

and Co = 

, and S{s) = 

[A(s) - S(s)Ap]C-' 
0 s 

-s + 2 i 
0 0 

1 0 
-1 1 

s"- + s-
0 

1 5 0 
0 0 1 

- 2 - 1 

2 1 
-1 0 
0 0. 

1 0 
- 1 1 

0 1 0 
0 1 1 

1 s 0 
0 0 1 

1 0 
1 1 

1-1 

of Example 

. Then D{s) = 

's^ 01 
0 s 

's'^ + s - \ -1 

Now if Bo = [0, 1, 1]^, Do = 0, and A (̂̂ ) = S(s)Bo + D(s)Do = [s, if, then H(s) = 
D-\s)N(s) = {l/[s(s^ + s- 2)]}[s^ + h2s^ + s- If = Co(sI - AoT^Bo + Do. • 

3.5 
P O L E S A N D Z E R O S 

In this section the poles and zeros of a time-invariant system are defined and dis
cussed. The primary reason for considering poles and zeros of a system at this time 
is that poles and zeros are related to the (controllable and observable, resp., uncon
trollable and unobservable) eigenvalues of A. These relationships shed light on the 
eigenvalue cancellation mechanisms encountered when input-output relations, such 
as transfer functions, are formed. These relationships also provide greater insight 
into the realization theory addressed later in this book. Furthermore, the relationships 
between uncontrollable or unobservable eigenvalues, decoupling zeros, and cancel
lations in the transfer function matrix to be discussed below, provide also insight into 
how state feedback can alter system behavior. State feedback will be studied later in 
Chapter 4. 

In the following development, the fmio^ poles of a transfer function matrix H(s) 
[or H(z)] are defined first (for the definition of poles at infinity, refer to Exercise 
3.36). It should be noted here that the eigenvalues of A are sometimes called poles of 
the system {A, B, C, D}. To avoid confusion, we shall use the complete itrxn. poles of 
H(s), when necessary. The zeros of a system are defined using internal descriptions 
(state-space representations). 

Smith and Smith-McMillan forms 

To define the poles of H(s), we shall first introduce the Smith form of a polyno
mial matrix P(s) and the Smith-McMillan form of a rational matrix H(s). 

The Smith form Sp(s) of a p X m polynomial matrix P(s) (in which the entries 
are polynomials in s) is defined as (see also Subsection 7.2C of Chapter 7) 

Sp(s) = 
'A(s) 

0 
(5.1) 

with A(^) = diag [ei(s),..., er(s)], where r = rank P(s). The unique monic poly
nomials €i(s) (polynomials with leading coefficient equal to one) are the invariant 
factors of P(s). It can be shown that ei(s) divides e/+i(5'), / = 1 , . . . , r - 1. Note that 



€i(s) can be determined by 

ei(s) = 
Di(s) 

i = 1, . . . , r , 

where Di(s) is the monic greatest common divisor of all the nonzero /th-order minors 
of P(s) with Do(s) = 1. The Di(s) are the determinantal divisors of ^(5"). A matrix 
P{s) can be reduced to Smith form by elementary row and column operations (see 
Subsections 7.2B and C in Chapter 7). This ensures that the properties of interest 
are preserved when P{s) is reduced to its (unique) Smith form. In particular, we are 
interested here in the invariant factors ei{s) of P{s) that can be determined directly 
from the determinantal divisors Di{s) without having to reduce P{s) to its Smith form 
via elementary operations. 

Consider now a /? X m rational matrix H{s). Let d{s) be the monic least common 
denominator of all nonzero entries and write 

H{s) 
1 

Ks) N{s), (5.2) 

where N{s) is a polynomial matrix. Let SN{S) = diag [ni(s\ . . . , nr(s), Op-r,m-r] be 
the Smith form of N(s), where r = rank N(s) = rank H(s). Divide each nds) of 
SN(S) by d(s), cancelling all common factors to obtain the Smith-McMillan form of 
H(s), 

SMH(S) = 
'A(s) 0 

0 0 
(5.3) 

with A(s) = diag [e\(s)/ilji(s),.. .,er(s)/il/r(s)], where r = rank H(s). Note that 
ei(s) divides ei+i(s), i = \,2,.. .,r ~ I, and if/i+iis) divides iptis), i = \,2,..., 
r- 1. 
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Given a. pX m rational matrix H(s), its characteristic polynomial or pole poly
nomial, PH(S), is defined as 

PH(S) = il/i(sy"il/r(s\ (5.4) 

where the i///, / = 1 , . . . , r, are the denominators of the Smith-McMillan form of 
H(s). It can be shown that PH(S) is the monic least common denominator of all 
nonzero minors of H(s). 

DEFINITION 5.1. The poles ofH(s) are the roots of the pole polynomial PH(S). • 

Note that the monic least common denominator of all nonzero first-order minors 
(entries) of H(s) is called the minimal polynomial of H(s) and is denoted by mnis). 
The mH(s) divides PH(S) and when the roots of PH(S) [poles of H(s)] are distinct, 
J^H(S) = PH(S), since the additional roots in PH(S) are repeated roots of mnis). 

It is important to note that when the minors of H(s) [of order 1,2, . . . , min (p, m)] 
are formed by taking the determinants of all square submatrices of dimension 1 x 1 , 
2 x 2 , etc., all cancellations of common factors between numerator and denominator 
polynomials should be carried out. 

In the scalar case, p = m = 1, Definition 5.1 reduces to the well-known def
inition of poles of a transfer function H(s), since in this case there is only one 
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EXAMPLE 5.1. Let H(s) 

minor (of order 1), H(s), and the poles are the roots of the denominator polynomial of 
H{s). Notice that in the present case it is assumed that all the possible cancellations 
have taken place in the transfer function of a system. Here PH(S) = mnis), that is, 
the pole or characteristic polynomial equals the minimal polynomial of H(s). Thus, 
PH(S) = ^H(S) are equal to the (monic) denominator of 77(5'). 

[l/[^(^ + 1)] 1/̂  1 1 ^, . ^ , 
' ^ ^ ^ / 9 • The nonzero minors of order 

0 0 l/s^j 

1 are the nonzero entries. The least common denominator is 5'̂ (̂  + 1) = mnis), the 
minimal polynomial of H(s). The nonzero minors of order 2 are l/[s^(s +1)] and 1/̂ -̂  
(taking columns 1 and 3, and 2 and 3, respectively). The least common denominator of 
all minors (of order 1 and 2) is s^(s + 1) = PH(S), the characteristic polynomial of H(s). 
The poles are {0, 0, 0, -1}. Note that mnis) is a factor of PH(S) and the additional root at 
5 = 0 in PH(S) is a repeated pole. 

To obtain the Smith-McMillan form of H(s), write 

H(s) 1 
sHs + 1) 

s(s + 1) 
0 

s\s + 1) 
(s + 1) 

1 
d(i) 

N(sl 

where d(s) = s^(s + 1) = fnnis) [see (5.2)]. The Smith form of N(s) is 

SN(S) = 
1 0 0 
0 s{s + 1) 0 

since Do = I, Di == I, D2 = s{s -\- I) [the determinantal divisors of A (̂5)], and ni = 
DJDQ = l,n2 = D2/D1 = s(s + 1), the invariant factors of N(s). Dividing by d(s), we 
obtain the Smith-McMillan form of H(s), 

1 

SMH(S) = 

el 

h 
0 

0 

51 
i//2 

sHs + 1) 

0 

0 

1 

0 

0 

Note that 1/̂2 divides ij/i and ei divides €2. Now the characteristic or pole polynomial of 
H{s) is PH(S) = il^iil^i = s^(s -\- 1) and the poles are {0, 0, 0,-1}, as expected. • 

EXAMPLE 5.2. Let H(s) = 
1 

s + 2 
If a 7^ 1, then the second-order minor is 

1̂ (̂ )1 = (1 - a)/(s + 2)^. The least common denominator of this nonzero second-order 
minor \H(s)\ and of all the entries of H(s) (the first-order minors) is (s + 2)̂  = PH(S), 

i.e., the poles are at {-2, -2}. Also, mnis) = s + 2. 
Now if a = 1, then there are only first-order nonzero minors (\H(s)\ = 0). In 

this case PH(S) = mnis) = S + 2, which is quite different from the case when a 7̂  1. 
Presently, there is only one pole at - 2 . The reader should verify these results, using the 
Smith-McMillan form of H(s). m 

In view of Subsection 3.4.C, it is clear that all the poles of H(s) are roots of 
l^/ - All |, that is, they are some or all of the controllable and observable eigenvalues 
of the system. In fact, as will be shown in Chapter 5, the poles of H(s) are exactly 
the controllable and observable eigenvalues of the system (in An) and no factors of 
l̂ -/ - All I in H(s) cancel. 

In general, for the set of poles of H(s) and the eigenvalues of A, we have 

{poles of H(s)} C {eigenvalues of A} (5.5) 

with equality holding when all the eigenvalues of A are controllable and observable 
eigenvalues of the system. Similar results hold for discrete-time systems and H(z). 



EXAMPLE 5.3. Consider A ,B = 
1 0" 
1 1 

.1 2. 
and C = [0, 1, 0] (refer 

ro - 1 11 
1 - 2 1 

[o 1 -ij 
to Example 4.6 in Section 3.5). Then the transfer function H(s) = [l/s, l/s]. H(s) has 
only one pole, î = 0(PH(S) = s), and Ai = 0, is the only controllable and observable 
eigenvalue. The other two eigenvalues of A, A2 = - 1 , A3 = - 2 , that are not both con
trollable and observable, do not appear as poles of H(s). • 

EXAMPLE 5.4. Recall the circuit in Example 4.9 in Section 3.4. If R1R2C ¥^ L, then 
{poles of//(5')} = {eigenvalues of A at Ai = -\I{R\C) and A2 = -R^II^. In this case, 
both eigenvalues are controllable and observable. Now if R1R2C = L with Ri 7^ R2, 
then H(s) has only one pole, î = -R2IL, since in this case only one eigenvalue Ai = 
-R2/L is controllable and observable. The other eigenvalue A2 at the same location 
-R2IL is uncontrollable and unobservable. Now if R\R2C = L with Ri = R2 = R, 
then one of the eigenvalues becomes uncontrollable and the other (also at -RIL) be
comes unobservable. In this case H{s) has no finite poles {H{s) = \IR). • 
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Zeros 

In a scalar transfer function H{s) the roots of the denominator polynomial are 
the poles, and the roots of its numerator polynomial are the zeros of H{s). As was 
discussed, iht poles ofH{s) are some or all of the eigenvalues of A (the eigenvalues 
of A are sometimes also cdlXtd poles of the system {A, B, C, D}). In particular, it v^as 
shown in Subsection 3.4.C that the uncontrollable and/or unobservable eigenvalues 
of A can never be poles of H(s). In Chapter 5 it is shown that only those eigenvalues 
of A that are both controllable and observable appear as poles of the transfer function 
H(s). Along similar lines, the zeros ofH(s) (to be defined later) are some or all of the 
characteristic values of another matrix, the system matrix P(s). These characteristic 
values are called the zeros of the system {A, B, C, D]. 

The zeros of a system for both the continuous- and discrete-time case are de
fined and discussed next. We consider now only finite zeros. For the case of zeros at 
infinity, refer to the exercises. 

Let the system matrix (also called Rosenbrock's system matrix) of {A, B, C, D] 
be 

P{s)^ 
si - A 

-C 

Note that in view of the system equations x 

P(s) -x(s) 
U(s) 

B 
D 

Ax + Bu, y 

0 

(5.6) 

Cx + Du, we have 

where x(s) denotes the Laplace transform of x(t). 
Let r = rank P(s) [note that n ^ r ^ min (p-\-n,m-\- n)] and consider all those 

rth-order nonzero minors of P(s) that are formed by taking the first n rows and n 
columns of P(s), i.e., all rows and columns of 5'/ - A, and then adding appropriate 
r - n rows (of [-C, D]) and columns (of [B^, D^Y). The zero polynomial of the 
system {A, B, C, Z)}, zp{s), is defined as the monic greatest common divisor of all 
these minors. 

DEFINITION5.2. The zeros of the system {A, B, C, D} or the system zeros are the roots 
of the zero polynomial of the system, zp(s). • 
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In particular, consider the (p + n) x (m + n) system matrix P{s) and let 

Sp{s) 
'A{s) 0" 
0 0 

A(^) = diag[ei (^),..., e^(^)], (5.7) 

be its Smith form. The invariant zero polynomial of the system {A, 5, C, D} is defined 
as 

Z^p{s) = ei{s)e2{s)---er{s) (5.8) 

and its roots are the invariant zeros of the system. It can be shown that the monic 
greatest common divisor of all the highest order nonzero minors of P(^) equals Zp{s). 

In general, 

{zeros of the system} D {invariant zeros of the system}. 

When p = m with det P{s) ^ 0, then the zeros of the system coincide with the 
invariant zeros. 

Now consider the nx {m-\-n) matrix [si — A,B] and determine its n invariant 
factors e/(^) and its Smith form. The product of its invariant factors is a polynomial, 
the roots of which are the input-decoupling zeros of the system {A,5,C,D}. Note 
that this polynomial equals the monic greatest common divisor of all the highest 
order nonzero minors (of order n) of [si — A,B]. Similarly, consider the {p-\-n) xn 

\sl — A\ 

matrix ^ and its invariant polynomials, the roots of which define the output-
decoupling zeros of the system {A,5,C,D}. 

Using the above definitions it is not difficult to show that the input-decoupling 
zeros of the system are eigenvalues of A and also zeros of the system {A,5,C,D} 
(show this). In addition note that if A/ is such an input-decoupling zero, then 
rank [A// —A,5] < n, and therefore, there exists a 1 x n vector v/ ^ 0 such that 
v/[A// —A,5] = 0. This, however, implies that A/ is an uncontrollable eigenvalue of A 
(and Vi is the corresponding left eigenvector), in view of Subsection 3.4B. Conversely, 
it can be shown that an uncontrollable eigenvalue is an input-decoupling zero. There
fore, the input-decoupling zeros of the system {A,5,C,D} are the uncontrollable 
eigenvalues of A. Similarly, it can be shown that the output-decoupling zeros of the 
system {A,5,C,D} are the unobservable eigenvalues of A. They are also zeros of the 
system, as can easily be seen from the definitions. 

There are eigenvalues of A that are both uncontrollable and unobservable. These 
can be determined using the left and right corresponding eigenvector test or by the 
Canonical Structure Theorem (Kalman Decomposition Theorem) (see Subsections 
3.4A and B). These uncontrollable and unobservable eigenvalues of A are zeros of the 
system that are both input- and output-decoupling zeros and are called input-output 
decoupling zeros. These input-output decoupling zeros can also be defined directly 
from P{s) given in (5.6); however, care should be taken in the case of repeated zeros. 

If the zeros of a system are determined and the zeros that are input- and/or 
output-decoupling zeros are removed, then the zeros that remain are the zeros of 
H{s) and can be found directly from the transfer function II{s). In particular, if the 
Smith-McMillan form of H{s) is given by (5.3), then 

ZH{S) =ei{s)e2{s)"'er{s) (5.9) 



is the zero polynomial of H(s) and its roots are the zeros of H(s). These are also 
called the transmission zeros of the system. 

DEFINITION 5.3. The zeros of H(s) or the transmission zeros of the system are the 
roots of the zero polynomial of H(s), ZH(S)' • 

The relationship between the zeros of the system and the zeros of H(s) can easily 
be determined using the identity 

P(s) = 
si -A B 

-C D 
si -A 

-C 
(si - A)-

H(s) 
'B 

for the case when P(s) is square and nonsingular. Note that in the present case 
|P(^)| = 1̂ / - A||//(5')|. It is also possible to obtain this result using the special struc
ture of the matrices in the special form of Subsection 3.4A. In this case, the invariant 
zeros of the system [the roots of IPC "̂)]], which are equal here to the zeros of the sys
tem, are the zeros of H(s) [the roots of |//(^)|] and those eigenvalues of A that are 
not both controllable and observable [the ones that do not cancel in \sl - A\\H(s)\], 

Note that the zero polynomial of H(s), ZH(S), equals the monic greatest common 
divisor of the numerators of all the highest order nonzero minors in H(s) after all 
their denominators have been set equal to PH(S), the characteristic polynomial of 
H{s). In the scalar case (p = m = I) our definition of the zeros of H{s) reduces to 
the well-known definition of zeros, namely, the roots of the numerator polynomial 
of H(s). 

EXAMPLE 5.5. Consider H(s) of Example 5.1. From the Smith-McMillan form of 
H(s), we obtain the zero polynomial ZH(S) = 1, and H(s) has no (finite) zeros. Alterna
tively, the highest order nonzero minors are l/[s^(s + 1)] and l/s^ = (s + l)/[s^(s +1)] 
and the greatest common divisor of the numerators is ZH(S) = 1. 

r s 

EXAMPLE 5.6. We wish to determine the zeros of H(s) = 

The first-order minors are the entries of H(s), namely, 

s+ 1 1 

s+ 1 
1 

0 

s+ 1 
s+ 1 

1 s + 1 
and 

there is only one second-order minor 

s + I' s + I' s^ 

Then PH(S) = s^(s + 1), 
s + I s^ s' 

the least common denominator, is the characteristic polynomial. Next, write the highest 
(second-) order minor as -

s 
s(s + 1) _ s(s + 1) 
sKs + 1) " PH(S) 

and note that s(s + 1) is the 

zero polynomial of H(s), ZH(S), and the zeros of H(s) are {0, -1}. It is worth noting that 
the poles and zeros of H(s) are at the same locations. This may happen only when H(s) 
is a matrix. 

If the Smith-McMillan form of H(s) is to be used, write H(s) 

's' 

U' 
Do 

0 
(s + If 

= l,Di --

—--N(s). The Smith form of N(s) is now 
d(s) 

sHs + 1) 
0 

S\S + 1)2 since 

1 and ^2 = D2/D\ 
l,D2 = -̂̂ (̂ +1)2 with invariant factors of A/̂ (5') given by ^1 = DI/DQ = 

s^(s+lf. Therefore, the Smith-McMillan form (5.3) of H{s) is 

SMH(S) = 

1 
s\s + 1) 

0 

0 

s(s + 1) 
i J 

r ^ l 

^l 

0 

0 1 

^2 

IA2-I 
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The zero polynomial is then ZH(S) = e\e2 = s(s + 1) and the zeros of H(s) are {0, -1}, 
as expected. Also, the pole polynomial is PH(S) = i//ii/̂ 2 = s^{s + 1) and the poles are 
{0,0,-1}. • 

EXAMPLE 5.7. We wish to determine the zeros of H(s) 

second-order minors are 
1 1 

s+ 1 
1 

s+ 1 

0 
1 

0 

5+ 1 

1 
s 

The 

and the characteristic polynomial is PH(S) 
s' s + I' s(s + I) 

s^(s + 1). Rewriting the highest (second-) order minors as s(s + \)IPH{S), s^lpnis), and 
SIPH{S), the greatest common divisor of the numerators is s, i.e., the zero polynomial of 
H{s) is ZH{.S) = s. Thus, there is only one zero of H(s) located at 0. Alternatively, note 
that the Smith-McMillan form is 

1 

SMH(S) 
sHs + 1) 

0 

0 

Relations between poles, zeros, and eigenvalues of A 

Consider the system x = Ax -\- Bu, y = Cx -\- Du and its transfer function 
matrix H(s) = C(sl -A)~^B-\-D. Summarizing the above discussion, the following 
relations can be shown to be true. 

1. We have the set relationship 

{zeros of the system} = {zeros of H{s)} 

U {input-decoupling zeros} U {output-decoupling zeros} 

- {input-output decoupling zeros}. (5.10) 

Note that the invariant zeros of the system contain all the zeros of H(s) (trans
mission zeros), but not all the decoupling zeros (see Example 5.8). When P(s) is 
square and nonsingular, the zeros of the system are exactly the invariant zeros 
of the system. Also, in the case when {A, B, C, D} is controllable and observable, 
the zeros of the system, the invariant zeros, and the transmission zeros [zeros of 
H(s)] all coincide. 

2. We have the set relationship 

{eigenvalues of A (or poles of the system)} = {poles of H(s)} 

U {uncontrollable eigenvalues of A} U {unobservable eigenvalues of A} 

- {both uncontrollable and unobservable eigenvalues of A}. (5.11) 

3. We have the set relationships 

{input-decoupling zeros} = {uncontrollable eigenvalues of A}, 

{output-decoupling zeros} = {unobservable eigenvalue of A}, 

and {input-output decoupling zeros} = {eigenvalues of A that are both 

uncontrollable and unobservable}. 

(5.12) 



4. When the system {A, B, C, D} is controllable and observable, then 

{zeros of the system} = {zeros of H(s)} 

and {eigenvalues of A (or poles of the system)} = {poles of H(s)}. (5.13) 

Note that the eigenvalues of A (the poles of the system) can be defined as the roots 
of the invariant factors of ^/ - A in P(s) given in (5.6). 

EXAMPLE 5.8. Consider the system {A, B, C} of Example 5.3. Let 

P(s) = 
si - A B 

-C D 

s 

-1 

0 

1 

^ + 2 

- 1 

- 1 

- 1 

s+ 1 

1 

1 

1 

0 

1 

2 

0 -1 0 0 0 

There are two fourth-order minors that include all columns of ^/ - A obtained by 
taking columns 1, 2, 3, 4 and columns 1, 2, 3, 5 of P{s)\ they are {s + \){s + 2) and 
{s + \){s + 2) (verify this). The zero polynomial of the system is zp = {s+ l){s + 2) and 
the zeros of the system are {-1, - 2 } . To determine the input-decoupling zeros, consider 
all the third-order minors of [si - A, 5] . The greatest common divisor is 5* + 2 (verify this), 

\sl — Al 
which implies that the input-decoupling zeros are {-2}. Similarly, consider and 

show that 5 -t- 1 is the greatest common divisor of all the third-order minors and that the 
output-decoupling zeros are {-1}. The transfer function for this example was found in 
Example5.3 tobe//(>y) = [I/5, 1/^]. The zero polynomial of//(i-) is z//(^) = land there 
are no zeros of H{s). Notice that there are no input-output decoupling zeros. It is now 
clear that relation (5.10) holds. 

The controllable (resp., uncontrollable) and the observable (resp., unobservable) 
eigenvalues of A (poles of the system) have been found in Examples 4.4 and 4.5 in 
Section 3.4. Compare these results to show that (5.12) holds. The poles of H(s) are {0}. 
Verify that (5.11) holds. 

One could work with the Smith form of the matrices of interest and the Smith-
McMillan form of H(s). In particular, it can be shown (do so) that the Smith form of 

"1 0 « '̂  0^ ^1 0 0 0 01 
I, of [si - A, B] is ' P(s) is 

0 1 
0 0 
0 0 

0 
0 

s + 2 

0 
s + 2 

of 
si -A 

-C 

"1 0 

0 1 
0 0 

0 0 

0 

0 
s + 1 

0 

, and of [si -

n o 0 
-A] is 0 1 0 

0 0 ^r^ -1-1){ 
. Also, it can be shown that 

the Smith-McMillan form of H(s) is 

SMH(S) = -,o 

It is straightforward to verify the above results. Note that in the present case the invariant 
zero polynomial is Zp(s) = s + 2 and there is only one invariant zero at - 2 . • 

EXAMPLES.9. Consider the circuit of Example 5.4 and of Example 4.9 in this chapter 
and the system matrix P(s) for the case when R1R2C = L given by 
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P(s) = 
si -A B 

-C D 

s + R2 
L 

0 

0 

s + R2 

R2 

L 

1 

Ri ^ ' Ri 

(i) First, let Ri ¥^ R2. To determine the zeros of the system, consider \P{s)\ = 
{\IR\){s + R\IL){s + R2IL), which impHes that the zeros of the system are {—R\IL, 
-R2IL}. Consider now all second-order (nonzero) minors of [si - A,B], namely, {s + 
R2/Lf. (l/LXs + R2/L), and -(R2/L)(s + R2/LX from which we see that {~R2/L} is the 
input-decoupling zero. Similarly, we also see that {-7^2/̂ } is the output-decoupling zero. 
Therefore, {-R2/L} is the input-output decoupling zero. Compare this with the results in 
Example 5.4 to verify (5.13). 

(ii) When Ri = R2 = R, then \P(s)\ = (l/R)(s + RILf, which impHes that the 
zeros of the system are at {-R/L, -R/L}. Proceeding as in (i), it can readily be shown 
that {—R/L} is the input-decoupling zero and {—R/L} is the output-decoupling zero. To 
determine which are the input-output decoupling zeros, one needs additional information 
to the zero location. This information can be provided by the left and right eigenvectors 
of the two zeros at -R/L to determine that there is no input-output decoupling zero in 
this case (see Example 4.9). 

In both cases (i) and (ii), H(s) has been derived in Example 4.9 of Section 3.4. 
Verify relation (5.10). • 

Zero directions and pole-zero cancellations 

There are characteristic vectors or zero directions, associated with each invariant 
and decoupling zero of the system {A, B, C, Z)}, just as there are characteristic vectors 
or eigenvectors, associated with each eigenvalue of A (pole of the system). 

Consider the system matrix P(A) given in (5.6) at 5* = A. If A is an invariant 
zero of the system, then there exist nonzero vectors v̂  and v̂  associated with A such 
that 

P(A)v, = 0, v,P(A) = 0. (5.14) 

This is so because if A is an invariant zero of the system, then ranii P(X) < 
rank P(s) < min(^ -\- p,n -\- m), and therefore the columns (resp., the rows) are 
linearly dependent. Here rank P(s) denotes the number of linearly independent 
columns or rows over the field of rational functions in s [it is called normal rank of 
P(s)]; rank P(A) is the rank of P(A) over the field of complex numbers. 

The vector v̂  is called an invariant zero direction or a zero direction corre

sponding to A. A physical interpretation of this is as follows. Let v̂  = 

let 
-u 

, that is. 

XI - A B 
-C D 

(5.15) 

r..,^t and assume that the system is at rest at ^ = 0. If an input of the form w(0 = ue 
0, is applied, and if A is not a pole of the system, then it will produce a state of the 
form x{t) = xe^^ and an output 

yit) - 0, r > 0. 
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erty of zeros. This property is a generahzation of the blocking property of zeros orig- CHAPTER 3: 
inally expressed in terms of the transfer function and its zeros for a SISO system. Controllability, 

For decoupling zeros, it is quite easy to see what the corresponding directions Observability, 
will be. In particular, if A is an input-decoupling zero, then there exists a nonzero and Special 
vector V such that v[A/ - A, B] = 0, which implies that Forms 

\XI - A B ] 

-c D\ 
v,PW = [v,0] [0,0]. (5.16) 

It is clear that the vector v is the left eigenvector of A corresponding to A, which 
is also an eigenvalue of A. This, in fact, determines the exact relationship (location 
and corresponding directions) between input-decoupling zeros and uncontrollable 
eigenvalues. 

Similar results can be derived for the output-decoupling zeros. In fact if A is an 
[A/ — AI 

output-decoupling zero, then there exists a nonzero vector v so that 
which implies that 

-C 

^(A)v, = 
XI -A 

-C 

v - 0 , 

(5.17) 

It is clear that the vector v is the right eigenvector of A corresponding to A, which is 
also an eigenvalue of A. This provides the exact relation between output-decoupling 
zeros and unobservable eigenvalues. 

Consider now an input-decoupling zero A and the corresponding direction [v, 0]. 
As was shown above A, v are an (uncontrollable) eigenvalue and its corresponding 
left eigenvector, respectively. Let v be the corresponding right eigenvector to A. If 
\I — A] 

_ ^ V = 0, then A is also an unobservable eigenvalue and an output-decoupling 

zero. In particular, A is an input-output decoupling zero and also an eigenvalue that 
is both uncontrollable and unobservable. The vectors [v, 0] and [v^, 0]^ are the di
rections associated with such zero. 

In general the directions v̂  and v̂  in (5.14) associated with the invariant zeros do 
not have any particular form [v̂  = [v, 0] in (5.16) for the case of an input-decoupling 
zero]. When the rank of P(s) is full, that is, 

rank P(s) = n -{- min (p, m), (5.18) 

the direction that corresponds to the invariant zero at A can be taken to be v̂  [where 
P{X)Vz = 0] when min (;?, m) = m, andv^ [where V2P(A) = 0], when min (/?, m) = 
p. Note that when min (p, m) = p < m, there are nonzero vectors satisfying 
P{K)Vz = 0 with A not necessarily being an invariant zero of the system. This situa
tion becomes accentuated, i.e., (5.14) is satisfied for values of A that are not necessar
ily zeros of the system, when rank P(s) < n-\-mm {p, m). This phenomenon is unique 
to MIMO 
systems. 

In the MIMO case it is possible for a /? X m transfer function H{s) to have poles 
and zeros at the same location (see Example 5.10). This is impossible in the scalar 
case, where H{s) is a 1X1 matrix, since in this case common factors in the numerator 
and denominator will cancel in the process of forming H{s). In state-space terms, this 
result can be expressed as follows. 



308 LEMMA 5.1. In the SISO case, if A is both a zero of the system and an eigenvalue of 
Linear Svstems "̂  ̂ ^̂  P^̂ ^ ^̂  ^̂ ^ system), then A must be an input- and/or output-decoupling zero (un

controllable and/or unobservable eigenvalue). This is not necessarily true in the MIMO 
case. 

Proof, Assume that A is not an input- and/or output-decoupling zero, or equivalently, 
that all eigenvalues of A are controllable and observable. Then all eigenvalues of A will 
be poles of H{s) and all zeros of the system will be zeros of H{s). This is not possible, 
however, since by definition the numerator and denominator of H{s) cannot have a com
mon factor [presently, {s - A)]. Therefore, A must be an input- and/or output-decoupling 
zero. • 

0 s 
I s 

EXAMPLE 5.10. For H{s) 
s+ 1 

1 ^ + 1 
the poles and zeros were determined 

-s + I s^ 
in Example 5.6 to be {poles of H{s)} = {0, 0, -1} and {zeros of H(s)} = {0, -1}. Note 
that in this case the poles and zeros are at the same locations, 0 and - 1 . • 

We conclude by noting that, as will be shown in Section 4.2 of Chapter 4, one can 
arbitrarily assign values to the controllable eigenvalues, and to a certain extent, one 
can alter their corresponding eigenvectors, using linear state feedback. In the scalar 
case, assigning a closed-loop eigenvalue at an open-loop zero location guarantees 
that the eigenvalue will become unobservable (linear state feedback does not alter 
controllability) and will not appear in the transfer function (refer to Exercises 4.6 and 
4.7 in Chapter 4). In the MIMO case, the eigenvectors of the closed-loop eigenvalues 
must also be assigned appropriately for the eigenvalues to become unobservable and 
cancel out when forming the transfer function matrix (see Exercise 4.19 in Chap
ter 4). 

3.6 
SUMMARY 

In this chapter the system properties of reachability (or controllability-from-the-
origin) and controllability (-to-the-origin), together with the dual properties of ob
servability and constructibility, respectively, were developed. These concepts were 
introduced using discrete-time time-invariant systems (Subsection 3.1 A) and were 
further developed in Part 1 of the chapter (Sections 3.2 and 3.3). 

In Section 3.2, the reachability Gramian of a continuous-time system was used 
to derive inputs that transfer the state of the system from one desirable vector value 
to another. This was accomplished for both time-varying and time-invariant systems. 
The time-invariant case was developed in Subsection 3.2B, so that it may be studied 
independently. It was shown that for continuous-time systems, reachability implies 
controllability, and vice-versa; however, for discrete-time systems, although reacha
bility always implies controllability, controllability may not imply reachability (un
less A has full rank). Analogous results were developed in Section 3.3 regarding 
observability and constructibility. 

In Part 2, Section 3.4, useful special forms for (continuous-time and discrete-
time) state-space descriptions of time-invariant systems were developed. The 
standard forms for uncontrollable (resp., unobservable) systems lead to better un
derstanding of the relationships between state-space and transfer function descrip
tions of systems. The controller and observer forms provide important structural 
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tion matrices and in feedback control. Polynomial matrix fractional descriptions of CHAPTER 3: 
transfer matrices were also introduced, by the structure theorem. Finally, poles and Controllability, 
zeros of systems were addressed, in Section 3.5. They were introduced using the Observability, 
Smith form of polynomial matrices and the Smith-McMillan form of transfer func- and Special 
tion matrices. Forms 

The reachability (controllability) and observability (constructibility) Gramians 
played an important role in this chapter. These are now summarized, for convenience. 

Summary of Gramians Introduced in This Chapter 

Reachability Gramians 

rh 
A . Wr(to,tl)= ^{ti,T)B{T)B^{T)^{ti,T)dT. 

J to 

B. WM T) = f e^^-'^^BB^e^^~'^^' dr. 
Jo 
K-l K-\ 

C. Wr{0,K) = ^A^-^'^^^BB^(A^f-^'+^^ = ^A'BB^(A^y. 
1 = 0 

ControUabihty Gramians 

A . Wc(toJl)= ^{tQ,T)B{T)B^{T)^^{tQ,T)dT. 
Jto 
rT 

B. WMT)=^ e-'^^BB^e-'^^^dr. 
Jo 
K-l 

C. WM K) = ^ A-~^'^^^BB^{A^)-^'^^\ \A\ T̂  0. 
/ =o 

Observabihty Gramians 

A. W,(ro, h)= V ^\T, ro)C (̂T)C(T)c&(T, ro) d7. 
Jto 

B. Wo(0,T)=l e^^'C^Ce^'dr. 
Jo 
K-\ 

C. Wo{0,K) = ^(A^yC^CA\ 
i = 0 

Constructibility Gramians 

A. Wcnito, tl)= \' 0^(T, ^ I ) C ^ ( T ) C ( T ) 0 ( T , ti)dT. 
Jto 

B. Wcn(0,T)= l' e^'^'-^^C^Ce^^'-^Ur. 
Jo 

C. Wcn(0, K) = ^(A^)"^^'+^^C^CA-^^+^\ \A\ 7̂  0. 

(2.11) 

(2.29) 

(2.64) 

(2.19) 

(2.41) 

(2.66) 

(3.5) 

(3.22) 

(3.49) 

(3.11) 

(3.32) 

(3.54) 
i=o 
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Linear Systems 
A. i: = A(t)x + B(t)u, y = Cx(t) + D(t)u. 

B. X = Ax -\- Bu, y = Cx -\- Du. 

C. x(k + I) = Ax(k) + Bu(k\ y(k) = Cx(k) + Du(k), respectively. 

In B and C the controllability and observability matrices are, respectively, 

^ - [B,AB,.,.,A''-^Bl € = [C^ , (CA/ , . . . ,(CA^~i)^]^. 

Note that reachability is the dual concept to observability and controllability is 

dual to (re)constructibility. 

3.7 
NOTES 

The concept of controllability was first encountered as a technical condition in cer
tain optimal control problems and also in the so-called finite-settling-time design 
problem for discrete-time systems (see Kalman [6]). In the latter, an input must be 
found that returns the state XQ to the origin as quickly as possible. Manipulating 
the input to assign particular values to the initial state in (analog-computer) simu
lations was not an issue since the individual capacitors could initially be charged 
independently. Also, observability was not an issue in simulations due to the partic
ular system structures that were used (corresponding, e.g., to observer forms). The 
current definitions for controllability and observability and the recognition of the du
ality between them were worked out by Kalman in 1959-1960 (see Kalman [9] for 
historical comments) and were presented by Kalman in [7]. The significance of real
izations that were both controllable and observable (see Chapter 5) was established 
later in Gilbert [3], Kalman [8], and Popov [12]. For further information regarding 
these historical issues, consult Kailath [5] and the original sources. Note that [5] has 
extensive references up to the late seventies with emphasis on the time-invariant 
case and a rather complete set of original references together with historical remarks 
for the period where the foundations of the state-space system theory were set, in the 
late fifties and sixties. 

Special state-space forms for controllable and observable systems obtained by 
similarity transformations are discussed at length in Kailath [5] (refer also to the 
discussion on various canonical forms). Wolovich [19] discusses the algorithms for 
controller and observer forms and introduces the Structure Theorems. The controller 
form is based on results by Luenberger [11] (see also Popov [13]). A detailed deriva
tion of the controller form can also be found in Rugh [16]. 

Original sources for the Canonical Structure Theorem include Kalman [8] and 
Gilbert [3]. 

The eigenvector and rank tests for controllability and observability are called 
PBH tests in Kailath [5]. Original sources for these include Popov [14], Belevich 
[1], and Hautus [4]. Consult also Rosenbrock [15], and for the case when A can be 
diagonalized via a similarity transformation, see Gilbert [3]. Note that in the eigen
value/eigenvector tests presented herein the uncontrollable (unobservable) eigen
values are also explicitly identified, which represents a modification of the above 
original results. 



The Brunovsky canonical form is developed in Brunovsky [2]. 311 
The fact that the controllability indices appear in the work of Kronecker was CHAPTER 3: 

recognized by Rosenbrock [15] and Kalman [10]. Controllability, 
For an extensive introductory discussion and a formal definition of canonical Observability, 

forms, see Kailath [5]. Note that certain special forms exist for time-varying systems and Special 
as well, but they are not considered here. Forms 

Multivariable zeros have an interesting history. For a review, see Schrader and 
Sain [17] and the references therein. Refer also to Vardulakis [18]. 
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3.9 
EXERCISES 

3.1. (a) Let %k = [B, AB,..., A^'^B], where A^R 

^ (^^ ) = ^{%n) for k>n, and 

"><«,igG/?"^'".Showthat 

k) C ^{%n) for k<n. 
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(b) Let 0^ = [C^, (CAf,..., (CA'^-^ff, where A E R^''^ C E /?^^^ Show that 

J{(€k) D M'(€n) for k<n. 

A srT 

M{^k) = >r(0„) for k> n, and 

3.2. Consider the state equation x = Ax + Bu, where 

0 1 0 0 

A 
3w2 

0 
0 

0 
0 

—2w 

0 
0 
0 

2w 
1 
0 

B = 

0 
1 

0 
0 

o' 
0 

0 
1 

which was obtained by linearizing the nonlinear equations of motion of an orbiting satel
lite about a steady-state solution. In the state x = [xi, X2, ^3, ^4]^, xi is the differential 
radius, while X3 is the differential angle. In the input vector u = [i/i, U2V, u\ is the 
radial thrust and 1/2 is the tangential thrust. 

(a) Is this system controllable from ullf y = yi is the system observable 

from yl 
(b) Can the system be controlled if the radial thruster fails? What if the tangential 

thruster fails? 
(c) Is the system observable from yi only? From y2 only? 

3.3. Consider the state equation 
i 0 

0 - 1 

(a) lfx(0) = 

(b) For x{0) 

derive an input that will drive the state to in T sec. 

5 
- 5 

, plot u(t), xi(t), X2(t) for T = 1, 2, and 5 sec. Comment on the 

magnitude of the input in your results. 

3.4. Consider the state equation x(/:+l) = 
"1 1 0" 
0 1 0 

.0 0 1_ 
x{k) + 

0' 
1 

. 1 . 
u(k),y(k) = 

1 1 0 
0 1 0 

x{k). 

(a) Is x^ reachable? If yes, what is the minimum number of steps required to 

transfer the state from the zero state to x̂  ? What inputs do you need? 
(b) Determine all states that are reachable. 
(c) Determine all states that are unobservable. 
(d) If i: = Ax + Bu is given with A, B as in (a), what is the minimum time required to 

transfer the state from the zero state to x^l What is an appropriate u(t)? 

3.5. Output reachability (controllability) can be defined in a manner analogous to state reach
ability (controllability). In particular, a system will be called output reachable if there 
exists an input that transfers the output from some yo to any ̂ î in finite time. 

Consider now a discrete-time time-invariant system x{k + 1) = Ax(k) + Bu(k), 
y(k) = Cx(k) + Du(k) with A E /?">'^ B E /?"^^, C E 7?^^", and D E RP'''^. Recall 
that 

k-i 
y(k) = CA^x(O) + ^ CA^-^'-'^^Buii) + Du(k). 

(a) Show that the system {A, B, C, D} is output reachable if and only if 

rank [D, CB, CAB,..., CA'^'^B] = p. 



Note that this rank condition is also the condition for output reachabihty for 
continuous-time time-invariant systems x=Ax + Bu,y = Cx + Du. 

It should be noted that, in general, state reachabihty is neither necessary nor 
sufficient for output reachabihty. Notice for example that if rank D = p then the 
system is output reachable, 

(b) Let D = 0. Show that if (A,5) is (state) reachable, then {A,B,C,D} is output 
reachable if and only if rank C = p. 

3.8. 

C = [1,1,0], and D = 0. 
n 0 0] 11 

(c) L e t A = 0 - 2 0 , 5 = 0 
[o 0 -ij [î  

(i) Is the system output reachable? Is it state reachable? 
(ii) Let x(0) = 0. Determine an appropriate input sequence to transfer the 

output to yi = 3 in minimum time. Repeat for x(0) = [1,-1,2] . 

3.6. (a) Given x = Ax-^Bu,y = Cx^Du, show that this system is output reachable if 
and only if the rows of the /? x m transfer matrix H{s) are linearly indepen
dent over the field of complex numbers. In view of this result, is the system 

His) 

1 1 

5 + 2 
s 

output reachable? 

(b) Similarly, for discrete-time systems, the system is output reachable if and only 
if the rows of the transfer function matrix H{z) are hnearly independent over 
the field of complex numbers. Consider now the system of Exercise 3.5 and 

determine if it is output reachable. 

3.7. Show that the circuit depicted in Fig. 3.6 with input u and output y is neither state 
reachable nor observable but is output reachable. 

"O 
T 

y 

1 FIGURE 3.6 
Circuit for Exercise 3.7 

A system x = Ax-^Bu,y = Cx + Du is called output function controllable if there 
exists an input u{t),t G [0,oo), that will cause the output y{t) to follow a prescribed 
trajectory for 0 < ^ < ^o, assuming that the system is at rest at ^ = 0. It is easiest to 
derive a test for output function controUabihty in terms of the /? x m transfer function 
matrix H{s), and this is the approach taken in the following. We say that the m x /? 
rational matrix HR(S) is a right inverse ofH{s) if 

H{s)HR{s)=Ip. 

(a) Show that the right inverse HR{S) exists if and only if rank H{s) = p. Hint: In 
the sufficiency proof, select///? = H^{HH^)-\ the (right) pseudoinverse of//. 

(b) Show that the system is output function controllable if and only if H{s) has a 
right inverse HR{S). Hint: Consider y = Hu. In the necessity proof, show that if 
rank H <p then the system may not be output function controllable. 

Input function observability is the dual to output function controUabihty. 
Here, the left inverse ofH(s),HL{s), is of interest and is defined by 

HL{s)H(s)=Im.. 
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(c) Show that the left inverse Hi{s) of H{s) exists if and only if rankH(s) = m. Hint: 
This is the dual result to part (a). 

\s + I l l 
and characterize all inputs u(t) that will cause the system (d) Let H(s) = 

s s _ 
(at rest at r = 0) to exactly follow a step, _y(̂ ) 1/^. 

Part (d) points to a variety of questions that may arise when inverses are consid
ered, including: Is HR(S) proper? Is it unique? Is it stable? What is the minimum degree 
possible? 

3.9. Consider the system x = Ax-\- Bu, y = Cx. Show that output function controllability 
implies output controllability (-from-the-origin, or reachability). 

1 1 
0 1 

x(k) + u(k), y(k) ~ x(k), and assume zero initial 3.10. Given 4 ^ + 1 ) = 

conditions. 

(a) Is there a sequence of inputs {w(0), u(l),...} that transfers the output from ^(0) 
0' 

W 
to 0' 

w in finite time? If the answer is yes, determine such a sequence. 

(b) Characterize all outputs that can be reached from the zero output iy{0) = 

one step. 

m 

3.11. Consider the state equation x(t) = 
0 0 
0 1 

x(t) + 
1 

u(t). 

(a) Show that it is controllable at any ô E (-00,00). 

(b) Suppose we are interested only in X2(t) \x(t) = 
xiit) 

xiit) = X2{t) + e~^u{t). 

Consider, therefore. 

Is it possible to determine u{t) so that the state X2it) is transferred from X20 at ^ = ^ 
[•̂ 2(̂ 0) = -̂ 20] to the zero state at some t = t\ [̂ 2(̂ 1) = 0] and then stay there? If 
the answer is yes, find such a u{t). 

(c) In (b), let ^ = 0 and study the effects of the sizes of t\ and XQ on the magnitude of 
u{t). 

(d) For the system in (b), determine, if possible, a u{t) so that the state is transferred 
from xo at ^ = 0̂ to x̂  at ^ = t\ and then stay there. 

3.12. Let F{t) E C"^'^ be a matrix with fi{t) in its /th row. Let f^ G C{R, ^ ^ ) . It was shown 
that the set fi{t), i = 1 , . . . , n, is linearly independent on [ti, 2̂] over the field of com
plex numbers if and only if the Gram matrix W(ti, 2̂) is nonsingular (see Lemma 2.7). 
If the fi(t), i = 1 , . . . , n, have continuous derivatives up to order (n - 1), then it can 
be shown that they are linearly independent if for some 0̂ ^ [h, h]^ 

rank[F(to),F^'\to),...,F^''-'\to)] = n. 

If fi(t), i = \, ...,n, are analytic on [t\, ^2], then they are linearly independent if and 
only if for any fixed to E [̂ 1, ^2], 

rank [Fit^), F^'\tol..., F^^'-'Xtol...] = n. 

(a) The above results can be used to derive alternative tests for controllability. In par
ticular, consider the state equation 

X = A(t)x + B(t)u, 



where A(t) E /?"^" and B(t) E /?"^'^ have continuous derivatives up to order 
(n - 1). Then it can be shown that (A(t), B{t)) is controllable at time ^ if there 
exists finite î > ^ such that 

rank[Mo{t\),M\{ti), ...,Mn-\{t\)] = n, 

where the Mk{t) G /?"^" are defined by 

M,+i(0 = -A{t)Mk{t)+j^Mk{t), 0, 1, . . ., /2 - 1, 

't 1 0" 
0 t 0 
0 0 2̂ 

.B{t) = 
"0" 
1 

. 1 . 

with Mo(0 = B{t). 

(i) Prove this result. 

(ii) Show that the system i: = A{t)x + B{i)uW\i\\A{t) = 

is controllable at any tQ. 

(b) The results for linear independence of vectors fi(t),i = 1 , . . . , n, can also be used 
to derive conditions for certain specialized types of controllability. In particular, 
given X = A(t)x + B(t)u as in (a), a system is called differentially controllable 
at to, when the transfer from any x(to) = xo to xi can be accomplished in an 
arbitrarily small interval of time. Note that this may lead to large input magni
tudes. It can be shown that when A(0, B{t) are analytic on (-oo, ^), the system 
is differentially controllable at every t E (-00,00), if and only if for any fixed 
0̂ G ( -00 , 00), 

rank [Mo(to), Mi(to),..., Mn-i(to), . . . ] = «. 

The system is instantaneously controllable, if and only if for allt G (-00, 00), 

rank [Mo(t),..., M„_i(0] = n. 

In this case the transfer of the states can be achieved instantaneously at any time 
by using inputs that include 6-functions and their derivatives up to order of n - 1. 
Note that in general instantaneous controllability implies differential controllabil
ity, which in turn, implies controllability. In the case when A(t), Bit) are analytic 
on (-00, 00), as above, then if {A{t), B(t)) is controllable at some point, it is differ
entially controllable at every t G (-00, 00). 

Show that in the time-invariant case x = Ax + Bu, controllability of (A, B) 
always implies both differential and instantaneous controllability; i.e., if a state 
transfer is possible at all, it can be achieved in an arbitrarily small time inter
val or even instantaneously if the 5-function and its derivatives are used. For 
the latter case, see T. Kailath, Linear Systems, Prentice-Hall, 1980, for further 
details. 

Remark: In controllability, the transfer of the state occurs in finite time, but the 
time interval may be very large. In differential controllability, the transfer of the 
state is possible in arbitrarily small intervals of time; however, this may lead to very 
large input magnitudes (see Example 2.1). When the system x = A{t)x + B(t)u 
is uniformly controllable, the transfer of the states can be achieved in some finite 
time interval using an input with magnitude not arbitrarily large. Note that uniform 
controllability implies controllability. Uniform controllability is useful in optimal 
control theory. For additional discussion on differential and uniform controllabil
ity, see C. T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, 
1984, and the references cited therein. Note that dual results also exist for differ
ential, instantaneous, and uniform observability. 
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Linear Systems 3.13. Suppose that for the system x{k + 1) 

known that y{^) = y{l) = y{2) = 

about the initial condition x(0)? 

1 1 0 
0 1 0 
0 0 1 

x{k\ y(k) x(k) it is 

. Based on this information, what can be said 

3.14. (a) Consider the system x = Ax + Bu, y = Cx + Du, where (A, C) is assumed to be 
observable. Express x(t) as a function of y(tX u(t) and their derivatives. Hint: Write 
y(tX y^^\tl..., /^-i>(0 in terms of x(t) and u(t), u^^\t),..., u^^-^\t) (x(t) G /?"). 

(b) Given the system x = Ax + Bu, y = Cx + Du with (A, C) observable. Determine 
x(0) in terms of y(t), u{t) and their derivatives up to order n - \. Note that in 
general this is not a practical way of determining x(0), since this method requires 
differentiation of signals, which is very susceptible to measurement noise. 

(c) Consider the system x{k + 1) = Ax{k) + Bu(k), y(k) = Cx(k) + Du(k), where 
(A, C) is observable. Express x(k) as a function of y(k), y(k + I),..., y(k + n - 1) 
and u{k), u(k+ 1 ) , . . . , y(k + n- 1). Hint: Express y(k),..., y(k + n- 1) in terms of 
x(k) and u(k), u(k-\-1),..., u(k+n-1) [x(k) G i?"]. Note the relation to expression 
(3.48) in Section 3.3. 

3.15. Write software programs to implement the algorithms of Section 3.4. In particular: 
(a) Given the pair (A, B), where A G /?"><", B G 7?"^'" with 

rank [B, AB,..., A""^5] = nr < n, 

reduce this pair to the standard uncontrollable form 

A = PAP-^ = 
Ai 
0 

An 
B = PB 

where (Ai, Bi) is controllable and Ai G /?«'̂ x«^ Bi G R^rXm^ 
(b) Given the controllable pair (A, B), where A G /?"><", 5 G i?^^'^ with ran^ 5 = m, 

reduce this pair to the controller form Ac = PAP'^, Be = PB. 

3.16. Determine the uncontrollable modes of each pair (A, B) given below by 
(a) reducing (A, 5), using a similarity transformation, 
(b) using eigenvalue/eigenvector criteria. 

A = 
1 
0 
0 

0 0" 
- 1 0 

0 2. 
,B = 

"1 0" 
0 1 
.0 0_ 

and A = 

0 0 1 
0 0 1 
0 0 0 
0 0 0 

o" 
0 
0 

- 1 

,B = 

0 r 
0 0 
1 0 
0 0 

3.17. Consider the system x = Ax + Bu, y = Cx + Du. 
(a) Show that only controllable modes appear in e^^B, and therefore in the zero-state 

response of the state. 
(b) Show that only observable modes appear in Ce^\ and therefore, in the zero-input 

response of the system. 
(c) Show that only modes that are both controllable and observable appear in Ce^^B, 

and therefore, in the impulse response and the transfer function matrix of the sys
tem. 
Consider next the system x{k + 1) = Ax{k) + Bu(k), y(k) - Cx(k) + Du(k). 

(d) Show that only controllable modes appear in A^B, only observable modes in CA^, 
and only modes thrt are both controllable and observable appear in CA^B [that is, 
inHiz)]. 



(e) Let A = 
0 
2 
0 

0" 
0 

- 1 . 
, B = 

1" 
0 

. 1 . 
C - [1, 1, 0], and D - 0. Verify the results 

obtained in (d). Compare these with Example 4.10. 

3.18. Reduce the pair 

A = 

0 
3 
1 
1 

0 
0 
1 
0 

1 
- 3 

4 
- 1 

0 
1 

- 1 
0 

B = 

0 
1 
0 
0 

0 
0 
1 
0 

into controller form Ac = PAP \ Be = PB. What is the similarity transformation 
matrix in this case? What are the controllability indices? 

3.19. Let A = Ac + BcAmmdB = 5^5^, where the A^^c are as in (4.63) with A^ G T?'"̂ "̂, 
Bm G /?^x^, and \Bm\ ̂  0. Show that (A, B) is reachable with controllabihty indices 
juii. Hint: Use the eigenvalue test to show that (A, B) is reachable. Use state feedback to 
simplify (A, B) (see Exercise 3.21) and show that the /Xi are the controllability indices. 
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3.20. 

3.21. 

Show that the controllability indices of the state equation x = Ax-\-BGv, where |G| T̂  0 
and (A, B) is reachable, with A G /?«x", B G R^^^^^ are the same as the controllabil
ity indices of x = Ax + Bu, within reordering. Hint: Write %k = [BG, ABC,..., 
A^-^BG] = [5, A 5 , . . . , A^~^B] • [block diag G]=%k' [block diag G] and show that 
the number of linearly dependent columns in A^5G that occur while searching from 
left to right in %n is the same as the corresponding number in %n-

Consider the state equation x = Ax + Bu, where A G /?"> "̂, B G R"^"^ with (A, B) 
reachable. Let the linear state-feedback control law be w = F ^ + Gv, F G /^'^x^, G G 
f^mxm ^'^^^ 1̂ 1 ^ Q 3how that 

(a) (A + BF, BG) is reachable. 
(b) The controllability indices of (A + BF, B) are identical to those of (A, B). 
(c) The controllability indices of (A + BF, BG) are equal to the controllability indices 

of (A, B) within reordering. Hint: Use the eigenvalue test to show (a). To show (b), 
use the controller forms in Section 3.4. 

3.22. Show that if (A, B) is controllable (-from-the-origin), where A G /?"^^ and B G i?"^^, 
and rank B = m, then rank A > n — m. 

3.23. Consider 

0 0 

Show that 

1 

-OLn~l} 

[ 5 „ A , 5 „ . . . , A r ' 5 c ] 

Br = 

0 0 0 
0 0 0 

0 
1 

1 

c\ 

0 0 1 ••• c„-3 
0 1 Ci ••• Cn-2 

1 Ci C2 ••• Cn-l 
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where Q = -Zf=oQ;„-,-

^ 
Oil 

-1 

O^n-l 

1 

OL3 

1 

0 

, 7 1 - 1 , with Co = 1. Also, show that 

•• an-i 1 
1 01 

3.24. Given A G Z^^^ ,̂ and B G /e^^ '̂", let ra/zy^ % = n, where ^ = [5, AB,..., A^^i^]. 
Consider i G /?^>'^ B G i?'̂ ^̂ ^ with rank % = n, where ^ = [B,AB,..., A'^'^B], and 
assume that P G Z?" '̂' with det P 7^ 0 exists such that 

Show that ^ = P 5 and A = PAP'K Hint: Show that (PA - AP)^ = 0. 

3.25. Show that the matrices Ac == PAP~\ Be = P 5 are 
(a) given by (4.47) if P is given by (4.48), 
(b) given by (4.50) if 2 ( = P '^) is given by (4.49), 
(c) given by (4.52) if e ( = p-^) is given by (4.51). 

3.26. In the circuit of Example 4.9, let R1R2C = L and Ri = R2 = R. Determine x(t) = 
[xi{t), X2(t)Y and i{t) for unit step input voltage, v(0, and initial conditions x(0) = 
[a, b]^. Comment on your results. 

3.27. Consider the pair (A, b), where A G T?"̂ '̂ , b G R'\ Show that if more than one lin
early independent eigenvector can be associated with a single eigenvalue, then (A, b) 
is uncontrollable. Hint: Use the eigenvector test. Let vi, V2 be linearly independent left 
eigenvectors associated with eigenvalue Ai = A2 = A. Notice that if vib = a i and 
vib = 0L2, then {a7^v\ - a^^V2)b = 0. 

ro - 1 1 
3.28. (a) Consider the state equation x = Ax + Bu, x(0) = XQ, where A = 

andB = 
ri 
1 

.1 

01 
1 
2. 

. Determine x{t) as a function of u(t) and XQ, and verify that the 

uncontrollable modes do not appear in the zero-state response, but do appear in the 
zero-input response (see Example 4.1). 

(b) Consider the state equation x(k + 1) = Ax(k) + Bu(k) and ^(0) = XQ, where 
A and B are as in (a). Demonstrate for this case results corresponding to (a). 
In (a) and (b), determine x(t) and x(k) for unit step inputs and x(0) = [1,1, 1]^. 

3.29. (a) Consider the system i = Ax+Bu,y = Cxwithx(O) = xo, where A 

B = 

•2 -3J 

and C = [1, 1]. Determine y(t) as a function of u(t) and XQ, and verify 

that the unobservable modes do not appear in the output (see Example 4.3). 
(b) Consider the system x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) with x(0) = XQ, 

where A, B, and C are as in (a). Demonstrate for this case results which correspond 
to (a). 
In (a) and (b), determine and plot y(t) and y(k) for unit step inputs and x(0) = 0. 

3.30. Consider the system x(k + 1) == Ax(k) + Bu(k), y(k) = Cx(k), where 

A = 

1 

0 

0 

0 
1 
2 

0 

0 

0 
_ 1 

1 

B C = [1,1,0]. 



Determine the eigenvalues that are uncontrollable and/or unobservable. Determine 
x(k), y(k) for /: > 0, given x(0) and u(k), k > 0, and show that only controllable 
eigenvalues (resp., modes) appear in A^B, only observable ones appear in CA^, and 
only eigenvalues (resp., modes) that are both controllable and observable appear in 
CA^B[mH{z)l 

3.31. For the system x = Ax + Bu, y = Cx, consider the corresponding sampled-data sys
tem x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k), where 

A = e^ B = 'dr B, and c = a 
(a) Let the continuous-time system {A, B, C] be controllable (observable) and assume 

it is a SISO system. Show that {A, B, C} is controllable (observable) if and only if 
the sampling period T is such that 

2'Trk 
Im (Xi - Xj) 7̂  ~^^' where /: = ±1, ± 2 , . . . whenever 7?̂  (A/ - Xj) 0, 

where {AJ are the eigenvalues of A. Hint: Use the PBH test. Also, consult Appen
dix D of C. T. Chen, Linear System Theory and Design. Holt, Rinehart, and Win
ston, 1984. 

(b) Apply the results of (a) to the double integrator—Example 7.6 in Chapter 2— 

where A 
0 1 
0 0 

, B = C = [1,0], and also to A 
0 I 

[-1 oj 
, B = 

0 

U\ 
C = [1, 0]. Determine the values of T that preserve controllability (observability). 

3.32. Given is the system x 
1 
0 
0 

0 
- 1 

0 
x + 

"1 0~ 

0 1 
LO OJ 

^, y = 
ri 1 0] 
1 0 0 

(a) Determine the uncontrollable and the unobservable eigenvalues (if any). 
(b) What is the impulse response of this system? What is its transfer function matrix? 
(c) Is the system asymptotically stable? 

3.33. Consider the system x(k + 1) = x(k) + u(k), y(k) = [I, 3]x(k). Suppose 

that it is known that for zero input, y(0) 
If yes, find x(0) and verify your answer. 

3.34. Given is the transfer function matrix H(s) 

1 and _y(l) = 1. Can x(0) be determined? 

0 

s + 1 
s + 2 

0 
(a) Determine the Smith-McMillan form of H(s) and its characteristic (pole) polyno

mial and minimal polynomial. What are the poles of H(s)7 
(b) Determine the zero polynomial of H(s). What are the zeros of H(s)l 

c2 

3.35. Let H(s) = 

1 

s^ 

s+ 1 

(a) Determine the Smith-McMillan form of H(s) and its characteristic (pole) polyno
mial and minimal polynomial. What are the poles of H(s)7 

(b) Determine the zero polynomial of H(s). What are the zeros of H(s)l 

3.36. A rational function matrix R(s) may have, in addition to finite poles and zeros, poles 
and zeros at infinity (s = oo). To study the poles and zeros at infinity, the bilinear 
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transformation 

s = 
biw + 

aiw + ao 

with ai 7̂  0, biao - h^ax y^ 0 may be used, where b\lai is not a finite pole or zero of 
R{s). This transformation maps the point s = b\la\ iow = ^ and the point of interest, 
5- = 00, to w = -aja\. The rational matrix R{\v) is now obtained as 

R{w) = R 
1\W • 

aiw -\- ao 

and the finite poles and zeros of R(w) are determined. The poles and zeros at w = 
-ao/a\ are the poles and zeros of R(s) at 5* = oo. Note that frequently a good choice for 
the bilinear transformation is ^ = 1/w, that is, bi = 0, bo = 1 and ai = I, ao = 0. 
(a) Determine the poles and zeros at infinity of 

Ri(s) = 
1 

s+ r 
Riis) Rsis) = 

1 
s+ 1 

Note that a rational matrix may have both poles and zeros at infinity, 
(b) Show that if R(s) has a pole at 5" = oo, then it is not proper (lim^^oo R(s) • -). 

3.37. Determine the poles and zeros at infinity of the transfer functions in Examples 5.1,5.2, 
5.6, and 5.7. 

3.38. (Spring mass system) Consider the spring mass given in Exercise 2.69 in Chapter 2. 
(a) Is the system controllable from [/i, / i]^? If yes, reduce (A, B) to controller form. 
(b) Is the system controllable from input fi only? Is it controllable from /2 only? Dis

cuss your answers. 
ri 0 0 01 
0 1 0 0 

(c) Let y = Cx with C = Is the system observable from j ? If yes. 

reduce (A, C) to observer form. 

3.39. (Aircraft dynamics) Consider the state-space description of the lateral motion of an 
aircraft in Exercise 2.76 in Chapter 2. 
(a) Is the system controllable from [8A, 8R]^7 If yes, reduce (A, B) to controller form. 
(b) Is the system controllable using only the ailerons? Is the system controllable using 

only the rudder? Discuss your answers. 
ro 1 0 01 
[o 0 1 oj 

reduce (A, C) to observer form. 

(c) Let y = Cx with C = Is the system observable from yl If yes. 
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State Feedback and State Observers 

Feedback is a fundamental mechanism arising in nature and is present in many nat
ural processes. Feedback is also common in manufactured systems and is essential 
in automatic control of dynamic processes with uncertainties in their model descrip
tions and their interactions with the environment. When feedback is used, the actual 
values of system variables are sensed, fed back, and used to control the system. 
Hence, a control law decision process is based not only on predictions about the 
system behavior derived from a process model (as in open-loop control), but also 
on information about the actual behavior (closed-loop feedback control). A common 
example of an automatic feedback control system is the cruise control system in an 
automobile, which maintains the speed of the automobile at a certain desired value 
within acceptable tolerances. 

In this chapter feedback is introduced, and the problem of pole or eigenvalue 
assignment by means of state feedback is discussed at length in Section 4.2. It is 
possible to arbitrarily assign all closed-loop eigenvalues by linear static state feed
back if and only if the system is completely controllable. This relation to controlla
bility is, in fact, the motivation for introducing state feedback at this point. Feedback 
control is considered again in Chapter 7, where polynomial matrix descriptions are 
introduced. 

In the study of state feedback it is assumed that it is possible to measure the 
values of the states using appropriate sensors. Frequently, however, it may be either 
impossible or impractical to obtain measurements for all states. It is therefore desir
able to be able to estimate the states from measurements of input and output variables 
that are typically available. In addition to feedback control problems, there are many 
other problems where knowledge of the state vector is desirable since such knowl
edge contains useful information about the system. This is the case, for example, 
in navigation systems. State observers that asymptotically estimate the states from 
input and output measurements over time are also studied in this chapter. 

State estimation is related to observability in an analogous way that state feed
back control is related to controllability. The duality between controllability and 
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observability makes it possible to easily solve the estimation problem once the 
control problem has been solved, and vice versa. In this chapter, full-order and 
reduced-order asymptotic estimators, also called observers, are discussed at length in 
Section 4.3. Finally, state feedback static controllers and state dynamic observers are 
combined to form dynamic output feedback controllers. Such controllers are studied 
in Section 4.4, using both state-space and transfer function matrix descriptions. 

4.1 
INTRODUCTION 

A. A Brief Introduction to State Feedback Controllers 
and State Observers 

In the following discussion, state feedback and state estimation are introduced for 
continuous- and discrete-time time-varying and time-invariant systems. 

We consider systems described by equations of the form 

i: = A{t)x + B{t)u, y = C(t)x + D(t)u, (1.1) 

where t G (a, b), some real open interval, and A(t) G R''^'', B{t) G W'^'^^ C(t) G 
j^pxn^ £)(r) G RP^^^ and u(t) G R"^ are (piecewise) continuous in t on (a, b) (see 
Chapter 2). 

Let the input u be determined by a time-varying linear, state feedback control 
law of the form 

u = F{t)x + r, (1.2) 

where F{t) G R^^^ is (piecewise) continuous in f G {a, b), the elements of F(t) 
represent time-dependent gains, and r(t) G R^ is an external input (see Fig. 4.1). 
Substituting into (1.1), the state-space description of the compensated or closed-
loop system is given by is given by 

X = [A(0 + B(t)F(t)]x + B(t)r 

y - [C(0 + D(t)F(t)]x + D(t)r (1.3) 

We seek to select F(t) so that the closed-loop system has certain desirable qualita
tive properties. For example, we may wish the closed-loop system to be stable. (For 
definitions of stability in the time-varying case, refer to Chapter 6.) Stability can be 
achieved under appropriate assumptions involving certain types of controllability. 
One way of determining such stabilizing F(t) is to use results from the optimal Lin
ear Quadratic Regulator (LQR) theory, which in fact yields the "best" F(t) in some 

+T 
System 

FIGURE 4.1 
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stabilization of linear time-invariant systems, however, is discussed at great length state Feedback 
in Section 4.2. and State 

In the time-invariant case we consider systems described by equations of the Observers 
form 

X = Ax + Bu, y = Cx + Du, 

where A E /?^x^ B G /̂ ^X"̂ , C G J?̂ ><̂  and D G RP"""^. Let 

u = Fx + r 

(1.4) 

(1.5) 

represent the linear time-invariant or static state feedback control law. The compen
sated or closed-loop system is then given by the equations 

i - (A + BF)x + Br, y = (C -\- DF)x + Dr (1.6) 

In control design, the gain matrix F is selected so that the closed-loop system (1.6) 
has desired behavior. In this chapter we are particularly interested in selecting F to 
stabilize the system, and we will concentrate on the eigenvalue assignment prob
lem. In particular, it is shown in the next section that the controllable eigenvalues 
of the system [i.e., of the pair (A + BF, B)] can be assigned (or shifted) to arbi
trary locations, and therefore, can be assigned to locations that guarantee stable 
behavior. 

In view of the results developed in the previous chapter, the central role played 
by controllability in feedback stabilization is most easily seen in the time-invariant 
case. Recall that controllability reflects the ability of an input to transfer the state 
of a system to any desirable (state) value. It was shown in Section 3.4 that given 
a time-invariant system {A, B, C, D}, there exists a transformation so that the con
trollable part of the state space can easily be recognized. In other words, there ex
ists a basis for the state space, so that all controllable states have representations 
of the form [x[, 0^]^ and the uncontrollable state representations are of the form 
[x[, X2V, where X2 = A2X2, i.e., X2 is independent of u (see Subsection 3.4A). The 
eigenvalues of A2 are in this case the uncontrollable eigenvalues that correspond to 
the uncontrollable modes of the system. Since u has no effect on X2, it is reasonable 
to conjecture that the state feedback control law (which in fact, is a particular choice 
for u) will not at all affect the eigenvalues of A2, for if it did, it would also affect X2. 
This conjecture turns out to be true and will formally be shown in the next section. 
The controllable states can now arbitrarily be shifted, using u. This in turn means that 
the controllable eigenvalues can be arbitrarily shifted, using w, or more correctly, by 
appropriately selecting u in xi = AiXi -\- Biu -^ A12X2, xi may be made to behave 
as if the eigenvalues of Ai were arbitrarily shifted. This is true because if there were 
restrictions on the location of the eigenvalues, then the state would not be able to 
be shifted arbitrarily, which is a contradiction. It turns out that linear state feedback 
control provides such u, and therefore, it can arbitrarily shift all the eigenvalues of 
a system. This will formally be shown in Section 4.2. A stabilizing state feedback 
matrix F may also be determined as the solution to an optimal control problem, the 
Linear Quadratic Regulator (LQR) problem. This is briefly addressed at the end of 
Section 4.2. 
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We will also consider time-varying discrete-time systems, described by equa
tions of the form 

x{k + 1) = A{k)x{k) + B{k)u{k), y(k) = C(k)x(k) + D{k)u{k) (1.7) 

with linear, discrete-time, time-varying state-feedback control law given by 

u{k) = F(k)x(k) + r(k), (1.8) 

In this case, the closed-loop system is given by 

x(k + 1) = [A(k) -h B(k)F(k)]x(k) + B(k)r(k) 

y(k) = [C(k) + D(k)F(k)]x(k) + Dik)r(k). (1.9) 

Also, we will consider time-invariant discrete-time systems described by 

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k) (1.10) 

with linear, discrete-time, time-invariant state-feedback control law (time-invariant) 
given by 

u{k) = Fx(k) + r(k\ 

In this case the closed-loop system assumes the form 

x(k + 1) - [A + BF]x(k) + Br(k) 

y(k) = [C + DF]x(k) + Dr(k). 

(1.11) 

(1.12) 

As in the continuous-time case, stabilization is emphasized in this chapter, and cor
responding results are developed. 

In (continuous-time) state-space system representations, if the value of the state 
at time to, x(to), is known, then the input u(t), t > ^ , uniquely determines x(t) and 
y(t) for t ^ to. Since knowledge of the initial value of the state is of such importance, 
methods of determining (estimating) x(to) from input and output measurements have 
been devised (see Fig. 4.2). 

Methods of estimating the initial value of the state, x(0), in time-invariant 
systems are addressed in Section 4.3. In particular, full- and reduced-order state 
observers are designed that asymptotically estimate the state. Since controllability 
(-from-the-origin, or reachability) was the key property in state feedback control, 
the dual property of observabihty, studied in Section 3.3, is the key attribute in state 
estimation. Recall that observability refers to the ability of determining the state 
from measurements of the output and input over a finite time interval. (See, for 
instance. Corollary 3.8 in Chapter 3, where the initial state is determined using the 
observability Gramian of the system.) Furthermore, since the solution to the optimal 

u 
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\ , * 

y 

FIGURE 4.2 
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F], a dual optimal estimation problem can be defined, the solution of which provides CHAPTER 4: 
optimal state-observer gain matrices [K(t) or K]. Corresponding discrete-time results state Feedback 
on state estimation are also discussed. In addition, in Section 4.4, state feedback and State 
control laws and state estimation are combined to derive a dynamic-observer based Observers 
controller that receives feedback information, not from the state, but from the outputs 
of the system to be controlled. These are typically more accessible. 

B. Chapter Description 

In this chapter state feedback controllers and asymptotic state estimators, also called 
state observers, are introduced and studied. The contents of the chapter were out
lined and briefly discussed in the previous subsection (Subsection 4.1 A). A detailed 
summary follows. 

A brief introduction to state feedback controllers and state observers for 
continuous-time and discrete-time systems is given in Subsection 4.1 A. 

In Section 4.2, state feedback control is studied. Our development focuses on 
time-invariant systems. First, the need for feedback is demonstrated by a discus
sion of open- and closed-loop control laws, and their differences when uncertainties 
are present in the system model and its environment. The stabilization of sys
tems is emphasized. This leads, in the time-invariant case, to the eigenvalue (or 
pole) assignment problem, which is studied next at length. The flexibility offered 
in the multi-input case in the choice of the state feedback gains to accomplish 
control goals, in addition to pole assignment, is stressed. A number of pole as
signment methods are introduced, including the eigenvalue/eigenvector assignment 
method; an additional, historically important method is presented in Exercise 4.2. 
It is pointed out that stabilization can also be achieved by an optimal control for
mulation, such as the Linear Quadratic Regulator (LQR), which leads to a stabi
lizing state feedback control law while attaining additional control goals as well. 
The LQR problem is briefly discussed for both the continuous- and discrete-time 
cases. 

In Section 4.3, full-order, full-state, and partial-state observers for continuous-
and discrete-time systems are studied. Also, reduced-order and optimal observers 
are addressed. In the discrete-time case, current state estimators are also introduced. 
Optimal Linear Quadratic Gaussian (LQG) estimators are briefly discussed. The 
duality of the state feedback and the state observer problems is emphasized. It is 
pointed out that the main factor that limits the magnitude of the gains in observers is 
noise. This is in contrast to the limiting factor in the magnitude of the control gains, 
which is limitations of the control actuators and of the linear model used to describe 
the system. 

In Section 4.4, dynamic state observers are used, together with static state 
feedback controllers, to derive dynamic output controllers.' The Separation Prin
ciple is discussed and the degradation of performance in state feedback control 
when an observer is used to estimate the state is explained. The analysis is ac
complished in both state-space and transfer function frameworks. Furthermore, 
additional output controller configurations are also derived in terms of state-space 
representations. 
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In this chapter, Unear state feedback controllers and linear state observers for linear 
time-invariant systems are studied. Subsection 4,IB describes the contents of the 
chapter. 

At a first reading, one can cover selected topics from the material on state feed
back and state observers in Sections 4.2 and 4.3, respectively. Regarding Section 4.2 
on state feedback, after studying the issues associated with open- and closed-loop 
control in Subsection 4.2A, one could concentrate on eigenvalue assignment using 
linear state feedback. In particular, one could study Theorem 2.1 in Subsection 4.2B, 
which shows that only the controllable eigenvalues can be arbitrarily assigned via 
state feedback; then one could study the methodologies to assign desired eigenval
ues (and in part, the corresponding eigenvectors as well). Regarding Section 4.3 on 
state observers, at a first reading one could concentrate only on full-order full-state 
observers for continuous-time systems in Subsection 4.3A. Then one could study 
dynamic output feedback controllers that are based on state observers in Section 4.4. 
The degradation of performance when an observer is used to estimate the state in a 
state feedback controller is also discussed in that section. 

4.2 
LINEAR STATE FEEDBACK 

A. Continuous-Time Systems 

We consider linear, time-invariant, continuous-time systems described by equations 
of the form 

x = Ax + Bu, y = Cx + Du, (2.1) 

where A G /?"><^ B G /e'^x^, C G /^^x^ and D G /?^>< .̂ 

DEFINITION 2.1. The linear, time-invariant, state feedback control law is defined by 

u = Fx + r, (2.2) 

where F G R^^^ is a gain matrix and r{t) G R^ is an extemal input vector. • 

Note that r{t) is an external input, also called a command or reference input 
(see Fig. 4.1). It is used to provide an input to the compensated closed-loop system 
and is omitted when such input is not necessary in a given discussion [r{t) = 0]. 
This is the case, e.g., when the Lyapunov stability of a system is studied. Note 
that the vector r(t) in (2.2) has the same dimension as u(t). If a different number 
of inputs is desired, then an input transformation map may be used to accomplish 
this. 

The compensated closed-loop system of Fig. 4.1 is described by the equations 

i = (A + BF)x + Br 

y = {C + DF)x + Dr, (2.3) 

which were determined by substituting u = Fx ^- r into the description of the un
compensated open-loop system (2.1). 



The state feedback gain matrix F affects the closed-loop system behavior. This 
is accomplished by altering the dynamic effects of the matrices A and C of (2.1). In 
fact, the main influence of Fis exercised through the matrix A, resulting in the matrix 
A + BF of the closed-loop system. The matrix F affects the eigenvalues of A + BF, 
and therefore, the modes of the closed-loop system. The effects of F can also be 
thought of as restricting the choices for w (= Fx for r = 0) so that for appropriate F, 
certain properties, such as asymptotic Lyapunov stability, of the equilibrium x = 0 
are obtained. 

Open- and closed-loop control 

The linear state feedback control law (2.2) can be expressed in terms of the 
initial state x(0) = XQ. In particular, working with Laplace transforms, we obtain 
u = Fx-^f = F[(^/-A)~^xo + (^/-A)~^Bw]-t-f, inviewof ^-x-xo = Ax + Bu, 
derived from x = Ax + Bu. Collecting terms, we have [/ - F{sl - A)~^B^u = 
F(sl - A)~^xo + r. This yields 

u = F[sl - (A + BF)r^xo + [/ - F(sl - Ay^BV^r, (2.4) 

where the matrix identities [/ - F(sl - A)-^Br^F(sI - A)"^ = F(sl - Ay^[I -
BF(sI - A)-i]- i ^ F[sl - (A + BF)]-^ have been used. 

Expression (2.4) is an open-loop (feedforward) control law, expressed in the 
Laplace transform domain. It is phrased in terms of the initial conditions x(0) = XQ, 
and if it is applied to the open-loop system (2.1), it generates exactly the same control 
action u(t) for r > 0 as the state feedback u = Fx -\- r in (2.2). It can readily be 
verified that the descriptions of the compensated system are exactly the same when 
either control expressions, (2.2) or (2.4), are used (verify this). In practice, however, 
these two control laws hardly behave the same, as explained in the following. 

First, notice that in the open-loop scheme (2.4) the initial conditions XQ are as
sumed to be known exactly. It is also assumed that the plant parameters in A and B 
are known exactly. If there are uncertainties in the data, this control law may fail 
miserably, even when the differences are small, since it is based on incorrect infor
mation without any way of knowing that these data are not valid. In contrast to the 
above, the feedback law (2.2) does not require knowledge of XQ. Moreover, it re
ceives feedback information from x(t) and adjusts u(t) to reflect the current system 
parameters, and consequently, is more robust to parameter variations. Of course the 
feedback control law (2.2) will also fail when the parameter variations are too large. 
In fact, the area of robust control relates feedback control law designs to bounds 
on the uncertainties (due to possible changes) and aims to derive the best design 
possible under the circumstances. 

The point we wish to emphasize here is that although open- and closed-loop 
control laws may appear to produce identical effects, typically they do not, the rea
son being that the mathematical system models used are not sufficiently accurate, 
by necessity or design. Feedback control and closed-loop control are preferred to 
accommodate ever-present modeling uncertainties in the plant and the environment. 

The purpose of controlling a system is to achieve certain control goals. Examples 
include tracking a given trajectory, regulating the state so that it returns to the origin 
if it is disturbed, and stabilizing a system. Stabilization is discussed at length in this 
chapter. Regulation and tracking, together with other control problems, are briefly 
discussed in Chapter 7, where output feedback compensation, in addition to state 
feedback compensation, is used. 
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tains all the information about the past history of a system that is needed to uniquely 
determine the future system behavior, given the input. We observe that the state feed
back control law considered presently is linear, resulting in a closed-loop system that 
is also linear. Nonlinear state feedback control laws are of course also possible. No
tice that when a time-invariant system is considered, the state feedback is typically 
static, unless there is no choice (as in certain optimal control problems), resulting 
in a closed-loop system that is also time-invariant. These comments justify to a cer
tain extent the choice of linear, time-invariant, state feedback control to compensate 
linear time-invariant systems. 

The problem of stabilizing a system by using state feedback is considered next. 

Stabilization 

The problem we wish to consider now is to determine a state feedback control 
law (2.2) having the property that the resulting compensated closed-loop system 
has an equilibrium x = 0 that is asymptotically stable (in the sense of Lyapunov) 
when r = 0. (For a discussion of asymptotic stability, refer to Chapters 2 and 6.) In 
particular, we wish to determine a matrix F G R^^^ so that the system 

i: = (A + BF)x, (2.5) 

where A G R^^^midB E 7?'̂ '̂̂ , has equilibrium x = 0 that is asymptotically stable. 
Note that (2.5) was obtained from (2.3) by letting r = 0. 

One method of deriving such stabilizing F is by formulating the problem as an 
optimal control problem, e.g., as the Linear Quadratic Regulator (LQR) problem. 
This is discussed at the end of this section. We point out that an LQR formulation 
can also be used to derive stabilizing gains F(t) in the time-varying case so that the 
equilibrium x = 0 of the system x = [A(t) + B(t)F(t)]x is asymptotically stable. 
However, this will not be pursued here. 

Alternatively, in view of Chapter 2 (and Chapter 6), the equilibrium x = 0 of 
(2.5) is asymptotically stable if and only if the eigenvalues A/ of A + BF satisfy 
Re A/ < 0, / = 1 , . . . , n. Therefore, the stabilization problem for the time-invariant 
case reduces to the problem of selecting F in such a manner that the eigenvalues of 
A + BF are shifted into desired locations. This will be studied in the following sub
section. Note that stabilization is only one of the control objectives, although a most 
important one, that can be achieved by shifting eigenvalues. Since the eigenvalues 
of a linear system determine its qualitative dynamic behavior (refer to the discus
sion of modes in Chapter 2), one can attain a number of control goals by shifting 
of eigenvalues, in addition to stability. Control system design via eigenvalue (pole) 
assignment is a topic that is addressed in detail in a number of control books. 

B. Eigenvalue Assignment 

Consider again the closed-loop system i = (A + BF)x given in (2.5). We shall show 
that if (A, B) is fully controllable (-from-the-origin, or reachable), all eigenvalues of 
A + BF can be arbitrarily assigned by appropriately selecting F. In other words, "the 
eigenvalues of the original system can arbitrarily be changed in this case." This last 



statement, commonly used in the literature, is rather confusing: The eigenvalues 
of a given system x = Ax + Bu, are not physically changed by the use of feed
back. They are the same as they used to be before the introduction of feedback. 
Instead, the feedback law u = Fx ~\- r, r = 0, generates an input u(t) that, when 
fed back to the system, makes it behave as if the eigenvalues of the system were at 
different locations [i.e., the input u(t) makes it behave as a different system, the 
behavior of which is, we hope, more desirable than the behavior of the original 
system]. 

THEOREM2.1. GivenA G /?"><" and5 G Z?" '̂", there exists F G /?""><" such that then 
eigenvalues of A + BF can be assigned to arbitrary, real or complex conjugate, locations 
if and only if (A, B) is controllable (-from-the-origin, or reachable). 

Proof. (Necessity) Suppose that the eigenvalues of A + BF have been arbitrarily as
signed and assume that (A, B) in (2.1) is not fully controllable. We shall show that this 
leads to a contradiction. Since (A, B) is not fully controllable, in view of the results in 
Section 3.4 in Chapter 3, there exists a similarity transformation that will separate the 
controllable part from the uncontrollable part in (2.5). In particular, there exists a non-
singular matrix Q such that 

Q-\A + BF)Q = Q-'AQ + (Q-'B)(FQ) = 
Ai 
0 

An 
Ai. 

{F,,F2\ 

Ai + BiFi 
0 

Ai2 + BxF2 
A2 

(2.6) 
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where [Fi, F2] = FQ and {A\,Bi) is controllable. The eigenvalues of A + BF are the 
same as the eigenvalues of Q~^{A + BF)Q, which implies that A + BF has certain 
fixed eigenvalues, the eigenvalues of A2, that cannot be shifted via F. These are the 
uncontrollable eigenvalues of the system. Therefore, the eigenvalues of A + BF have 
not been arbitrarily assigned, which is a contradiction. Thus, (A, B) is fully control
lable. 

(Sufficiency) Let (A, B) be fully controllable. Then by using any of the eigenvalue 
assignment algorithms presented later in this section, all the eigenvalues of A + BF can 
be arbitrarily assigned. • 

LEMMA 2.2. The uncontrollable eigenvalues of (A, B) cannot be shifted via state feed
back. 

Proof See the necessity part of the proof of Theorem 2.1. Note that the uncontrollable 
eigenvalues are the eigenvalues of A2. • 

EXAMPLE 2.1. Consider the uncontrollable pair (A, 5), where A = 
0 - 2 
1 - 3 

, B = 

. This pair can be transformed to a standard form for uncontrollable systems, namely, 

A = 
-2 1 
0 - 1 

B = , from which it can easily be seen that - 1 is the uncontrollable 

eigenvalue, while - 2 is the controllable eigenvalue (see also Example 4.3 in Chapter 3). 

NowifF = [f,f2lihendet(sI-(A + BF)) = det\ \~ ^\ ]_~^^\ 
L - 1 - Jl S + 3- f2_ 

s(-f\ -f2 + 3) + (-f-f2 + 2) = (s+ l)(s + ( - / i - /2 + 2)). Clearly, the uncontrollable 
eigenvalue - 1 cannot be shifted via state feedback. The controllable eigenvalue - 2 can 
be shifted arbitrarily to (f + /s - 2) by F = [/i, /2]. • 
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It is now quite clear that a given system (2.1) can be made asymptotically stable 
via the state feedback control law (2.2) only when all the uncontrollable eigenvalues 
of (A, B) are already in the open left part of the s-plane. This is so because state 
feedback can alter only the controllable eigenvalues. 

DEFINITION 2.2. The pair (A, B) is called stabilizable if all its uncontrollable eigen
values are stable. • 

Before presenting methods to select F for eigenvalue assignment, it is of interest 
to examine how the linear feedback control law u = Fx + r given in (2.2) affects 
controllability and observability. We write 

si -{A + BF) B 
-{C + DF) D 

si-A B\ 

- c D\ 
\ ^ ^ 
[-F I 

(2.7) 

and note that 

rank [A/ - (A + BF), B] = rank [XI - A, B] 

for all complex A (show this). Thus, if (A, B) is controllable, then so is (A + BF, B) 
for any F. Further, notice that in view of 

%F = [B, (A + BF)B, (A + BFfB,..., (A + BF^'^ ^ 

= [B,AB,A^B,...,A''~'B] 

'B] 

I FB F(A + BF)B 
0 / FB 

I (2.8) 

gi(^/r) = ^([B, AB,..., A^-i^]) = S/l(^) (why?). This shows that F does not alter 
the controllability subspace of the system (see Section 3.2.). This in turn proves the 
following lemma. 

LE M M A 2.3. The controllability subspaces of x 
are the same for any F. 

Ax + Bu and i: = (A + BF)x + Br 

Although the controllability of the system is not altered by linear state feedback 
u == Fx + r, this is not true for the observability property. Note that the observability 
of the closed-loop system (2.3) depends on the matrices (A + BF) and (C + DF), and 
it is possible to select F to make certain eigenvalues unobservable from the output. In 
fact this mechanism is quite common and is used in several control design methods. 
It is also possible to make observable certain eigenvalues of the open-loop system 
that were unobservable; for an example see Example 2.8 below. 

Several methods are now presented to select F so to arbitrarily assign the closed-
loop eigenvalues. 

Methods for eigenvalue assignment by state feedback 

In view of Theorem 2.1, the eigenvalue assignment problem can now be stated 
as follows. Given a controllable pair (A, B), determine F to assign the n eigenvalues 
of A + BF to arbitrary real and/or complex conjugate locations. This problem is also 
known as the pole assignment problem, where by the term "pole" is meant a "pole 
of the system" (or an eigenvalue of the "A" matrix). This is to be distinguished from 
the "poles of the transfer function" (see Section 3.5 for the appropriate definitions). 
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det [si - (A + BF)} are also real. This imposes the restriction that the complex roots CHAPTER 4: 
of this polynomial must appear in conjugate pairs. Also, note that if (A, B) is not state Feedback 
fully controllable, then (2.6) can be used together with the methods described a little and State 
later, to assign all the controllable eigenvalues; the uncontrollable ones will remain Observers 
fixed (see Theorem 2.1 and Lemma 2.2). 

It is assumed in the following that B has full column rank, i.e.. 

rank B = m. (2.9) 

This means that the system x = Ax + Bu has m independent inputs. If rank B = 
r < m, this would imply that one could achieve the same result by manipulating only 
r inputs (instead of m > r). To assign eigenvalues in this case, one can proceed by 
writing 

A + J5F - A + (BM)(M-^F) = A + [5i, 0] A + 5iFi , (2.10) 

where M is chosen so that BM = [Bi, 0] with Bi G T?"̂ '* and rank Bi = r. Then 
Fi G R^^^ can be determined to assign the eigenvalues of A + BiFi, using any one 
of the methods presented next. Note that (A, B) is controllable implies that (A, Bi) 
is controllable (why?). The state feedback matrix F is given in this case by 

F = M (2.11) 

where F2 G R(^-^)^n is arbitrary. 

/ . Direct method. Let F = [fij], i = 1 , . . . , m, j = \,.. .,n, and express the 
coefficients of the characteristic polynomial of A + BF in terms of fij, i.e., 

det {si - (A + BF)) = s- + gn-iifiX'' + • • • + goifijl 

Now if the roots of the polynomial 

(^d(s) = ^" + dn-lS"" ^ + • • • + Ji^ + Jo 

are the n desired eigenvalues, then the fij, i = \,.. .,m, j = 1, 
termined so that 

gk(fij) = dk, A: = 0, 1, . . . , n - 1. 

, n, must be de-

(2.12) 

In general, (2.12) constitutes a nonlinear system of algebraic equations; how
ever, it is linear in the single-input case, m = \. The main difficulty in this method 
is not so much in deriving a numerical solution for the nonlinear system of equations, 
but in carrying out the symbolic manipulations needed to determine the coefficients 
g]^ in terms of the ftj in (2.12). This difficulty usually restricts this method to the 
simplest cases, with n = 2 or 3 and m = 1 or 2 being typical. 

EXAMPLE 2.2. For A [B we have det (si - A) = s(s - 5/2), and 

therefore, the eigenvalues of A are 0 and | . We wish to determine F so that the eigen
values of A + BF are at - 1 ± 7. 
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IfF = [fu f2lihQndet(sI-(A + BF)) = det 

- 1 
- 1 

s-2 [fl,f2]] = 

det = s^ + s{-l - fi - f2) + f\ - Ifi. The desired eigen-s-\-fi - 1 - / 2 
- l - / i s-2-f2_ 

values are the roots of the polynomial 

aM = (̂  - (-1 + Ms - (-1 - j)) ^ s^ + 2s + 2. 

Equating coefficients, one obtains -\ — fi - fi = 2, fi - \f2 = 2, a. linear system 
of equations. Note that it is linear because m = 1. In general one must solve a set of 
nonlinear algebraic equations. We have 

F = [fuf2] = [-l-'i] 
as the appropriate state feedback matrix. • 

2. The use of controller forms. Given that the pair (A, B) is controllable, there 
exists an equivalence transformation matrix P so that the pair (Ac = PAP~^,Bc = 
PB) is in controller form (see Section 3.4). The matrices A + BF and P(A + 
BF)P~^ = PAP~^ + PBFP-^ = Ac -^ BcFc have the same eigenvalues, and the 
problem is to determine Fc so that Ac + BcFc has desired eigenvalues. This problem 
is easier to solve than the original one because of the special structures of Ac and 
Be. Once Fc has been determined, then the original feedback matrix F is given by 

FrP (2.13) 

We shall noŵ  assume that (A, B) has already been reduced to (A^, Be) and describe 
methods of deriving Fc for eigenvalue assignment. 

Consider first the single-input case (m = 1). We let 

Fc - [fo> " -y fn-l]' 

In view^ of Section 3.4, since A^ Be are in controller form, v ê have 

AcF = Ac + BcFc 

0 1 

(2.14) 

0 0 
-ao -ax 

0 

0 0 
-(<^o - /o) - ( « i - / i ) 

0 

1 
Oin-\ 

+ 

"o" 

0 
1 

[/O. •••> fn-\\ 

-{pin-\ - fn-\) 

(2.15) 

where a/, / = 0 , . . . , n - 1, are the coefficients of the characteristic polynomial of 
Ac, i.e., 

det{sl - Ac) = s"" + an-is""'^ + • • • 4- a:i^ + ao- (2.16) 

Notice that ACF is also in companion form and its characteristic polynomial can be 
written directly as 

det{sl - ACF) = S- + {dn-i ~ fn-Ds""-' + ' ' ' + (CQ " /Q). (2.17) 



If the desired eigenvalues are the roots of the polynomial 

aais) = s"" + dn-is""-^ + • • • + ^o, (2.18) 

then by equating coefficients, fi,i = 0, 1 , . . . , n - 1, must satisfy the relations dt = 
at - fiJ = 0,1,.. .,n - 1, from which we obtain 

«/ - di. fi 0,...,n-h (2.19) 

Alternatively, note that there exists a matrix A^ in companion form, the charac
teristic polynomial of which is (2.18). An alternative way of deriving (2.19) is then 
to set AcF = Ac + BcFc = A^, from which we obtain 

Fc = B-'[A.-Aml (2.20) 

where Bm = 1, Aj^ = [-do,..., -d^-i] and Am = [-OCQ, ..., - a „ - i ] . Therefore, 
Bm, Aj^ , and A^ are the nth rows of B^ A^, and A^, respectively (see Section 3.4). 
Relationship (2.20), which is an alternative formula to (2.19), has the advantage that 
it is in a form that can be generalized to the multi-input case. 

EXAMPLE2.3. Consider the matrices A B = of Example 2.2. Deter

mine F so that the eigenvalues of A + BF are - 1 ± j , i.e., so that they are the roots of 
the polynomial ad(s) = s^ + 2s + 2. 

To reduce (A, B) into the controller form, let 

^ - [B, AB] = 
1 3 

1 3 
and^ -1 _ 3 

- 1 

from which P 

and 
qA 

- 2 
[see (4.44) in Chapter 3]. Then P'^ = 

- 1 
i 
2 

Ar = PAP-^ = Br = 

Thus, Am = [0, f ] and B^ = I. Now Aj = 
1 

- 2 
and Ad^ = [ - 2 , - 2 ] since the 

characteristic polynomial of A^ is ^̂  + 2^ + 2 = ad(s). Applying (2.20), we obtain that 

Fc = B-'[Ad^-Am] = [ - 2 , - | ] 

and F = FcP = [-2, 2J 

r 2 
3 

1 
- 3 

2 1 
3 

2 
3-

[- - y ] assigns the eigenvalues of the 

closed-loop system at - 1 ± j . This is the same result as the one obtained by the direct 
method given in Example 2.2, If ad(s) = s^ + dis + do, then Aĵ ^ = [-do, -d\\ Fc = 
B-J{Ad^ - Am] = [-^0, -dx - 5/2], and 

F = FcP = \[2do-di -2do - 2di - 5]. 

In general the larger the difference between the coefficients of ad{s) and Q:(5'), (A^^ -Am), 
the larger the gains in F. This is as expected, since larger changes require in general larger 
control action. • 

Note that (2.20) can also be derived using (4.63) of Section 3.4 in Chapter 3. To 
see this, write 

AcF = Ac + BcFc = (Ac + BcAm) + {BcBm)Fc = A, + 5 , ( A ^ + BmFd 
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334 where A^ Be are defined in (4.63). Selecting Aj = A^ + BcAd^ and requiring ACF = 
Linear Systems Aj implies 

Bc[Am + BfnFc] = BcAd^, 

from which A^ + 5m^c = ^dm^ which in turn implies (2.20). 
After Fc has been found, to determine F so that A + BF has desired eigenvalues, 

one should use F = FcP given in (2.13). Note that P, which reduces (A, B) to the 
controller form, has a specific form in this case [see (4.44) of Section 3.4]. Combining 
these results, it is possible to derive a formula for the eigenvalue assigning F in terms 
of the original pair (A, B) and the coefficients of the desired polynomial a^is). In 
particular, the 1 X n matrix F that assigns the n eigenvalues of A + BF at the roots 
of a^is) is given by 

F = -el%-^aM\ (2.21) 

where Cn = [0 , . . . , 0, 1]^ G R"" and ^ = [5, A 5 , . . . , A^'-^B] is the controllability 
matrix. Relation (2.21) is known as Ackermann's formula and its validity will be 
verified shortly. 

Notice that the F that assigns the n eigenvalues of A + BF is unique when m = 
1. This is not difficult to see from the preceding. In particular, notice that Fc = 
[foy' "y fn-\\ is uniquely determined by (2.19) and that the transformation matrix P 
is also unique in this case (m = 1) and is in fact given by (4.44) in Section 3.4. 

Verification of Ackermann's Formula 

Given (A ,̂ Be) in controller form, it was shown that the matrix 

Fc = [o^Q - do,. ..,an-\ - dn-\\ = 5^^[Aj^ - Ajn] 

assigns the eigenvalues of Ac + BcFc to the desired locations, the roots of a^is) given 
in (2.18). The matrix Fc is related to Fby F = FcP, where Ac = PAP-\ Be = PB, 
and P = ^c^~^ and where ^ and %c are the controllability matrices of (A, B) and 
(Ac, Be), respectively. These relations will now be combined to derive Ackermann's 
formula. 

First, note that if (2.21) were used for a given pair (Ac, Be) in controller form, 
then 

Fc = -el%-^aMc\ (2.22) 

We now show that this Fc assigns the n eigenvalues at the desired locations. In doing 
so, we note that aj(Ac) = A^ + ^„_iA"~^ + • • • + d\Ac + d(^l, which in view of 
the Cayley-Hamilton Theorem [namely, a{Ae) = A^ + a„_iA^"^ H V aol = 0] 
assumes the form 

n-l 

otd(Ac) = ^(di - ai)A[, 
i = 0 

since A^ = -ZfJo^ /AJ , . Also note that ef^c = e^ or that ^J^^~^ = e\. Now 
~el%-^ad{Ac) = -el{{do - ao)I + ••• + (d^-i - a^-M^^) = [ao-do,..., 
oin-\ - dn-i] = Fe of (2.20), that is, (2.22) is verified. Note that the last relation 
was derived using the fact that 

ejAc = el, {e\ Ac) Ac = el Ac = 4 , . . . , ^f A^ '̂̂  = e^. 



from which -e^^do - ao)I H + {dn-i - an-i)A^ ]̂ = (ô o - <io)̂ f + {oci -
di)el H h {an-i - dn-i)el = [ao - dQ,,ai - J i , . . . , a^_ i - dn-i]. In view of 
(2.22), we now have 

F = FcP=-el^-'aMc)P 

which is Ackermann's formula, (2.21). • 

EX AMPLE 2.4. To the system of Example 2.3 we apply (2.21) and obtain 

-el^t 

-[0,1] 

'ad{A) 

2 
2 

L 3 

I] 
3J 

"17 
4 
9 
2 

-1] 
2 
3J 

9 
2 

11 

/ 

( 

W il 2 
1 2 

2 

+ 2 
• 1 

2 
1 

- [ 1 13] 
~ L 6 ' 3 J' 

1" 
2 + 2 

"1 
0 

0" 
1 

2 2 
" 3 ' 3 

which is identical to the F found in Example 2.3. • 

Now consider the multi-input case (m > 1). We proceed in a way completely 
analogous to the single-input case. 

Assume that Ac and Be are in the controller form, (4.62), given in Section 3.4. 
Notice that ACF = A^ + BcFc is also in (controller) companion form with identical 
block structure as A(̂  for any FQ. In fact, the pair {AQF^BQ) has the same controllability 
indices /i/,/ = 1,.. . ,m, as {Ac^Bc). This was shown in Section 3.4 of Chapter 3 and 
can also be seen directly, using (4.63), since 

Ac + BcFc — {Ac + BcAm) + {BcBm)Fc — Ac + Bc{Am + BmFc), (2.23) 

where Ac and Be are defined in (4.63). We can now select an n x n matrix Aj with 
desired characteristic polynomial 

det{sI — Ad) = OJj(̂ ) =^^ + J^_i^^ -Jo, (2.24) 

and in companion form, having the same block structure as ACF or A^, that is, Aj = 
Ac+BcAd^. Now if AcF = Aj, then in view of (2.23), Bc{Am+BmFc) = BcA^^. From 
this it follows that 

F,=B-'[A^„-A^], (2.25) 

where Bm^A^^, and A^ are the m Gjth rows of 5c,Aj, and A^, respectively, and Gj = 

E/=i l^iij = ^i---i^' Note that this is a generalization of (2.20) of the single-input 
case. 

We shall now show how to select an n x n matrix A j in multivariable companion 
form to have the desired characteristic polynomial. 

One choice is 
" 0 1 ••• 0 

Ad 
0 

-Jo 
0 

-di 
1 

-dn-l 
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the characteristic polynomial of which is a^{s). In this case the m x n matrix A^^ is 
given by 

' 0 ••• 0 1 ••• 0 ••• 0 

^d^ 
0 

-do 
0 0 0 

-dn-1 

where the ith row, / = l , . . . , m — l , i s zero everywhere except at the (7/ + 1 column 
location, where it is one. 

Another choice is to select Aj = [Aij],iJ = 1 , . . . ,m, with Aij = 0 for / ^ 7, 
i.e., 

[All 0 ••• 0 

0 A22 ••• 0 
Ad-

0 0 

noting that det {si — A^) = det {si — An)"- det {sI — Amm). Then 

"0 1 ••• 0" 

A, 

where the last row is selected so that det {si—An) has desired roots. The disadvantage 
of this selection is that it may impose unnecessary restrictions on the number of real 
eigenvalues assigned. For example, if n = 4,m = 2 and the dimensions of A n and 
A22, which are equal to the controllability indices, are di=3 and d2 = l, then two of 
the eigenvalues must be real (why?). 

There are of course other selections for A j , and the reader is encouraged to come 
up with additional choices. A point that should be quite clear by now is that Fc (or 
F) is not unique in the present case, since different Fc can be derived for differ
ent Aj^ , all assigning the eigenvalues at the same desired locations. In the single-
input case, Fc is unique, as was shown. Therefore, the following result has been 
shown. 

LEMMA 2.4. Let (A,5) be controllable and suppose that n desired real and complex 
conjugate eigenvalues for A + BF have been selected. The state feedback matrix F that 
assigns all eigenvalues of A + BF to desired locations is not unique in the multi-input 
case (m > 1). It is unique in the single-input case m= I. • 

EXAMPLE 2.5. Consider the controllable pair (A, 5) , where 

0 1 
0 0 
0 2 

and 
"0 
1 
0 

r 
1 
0 



It was shown in Example 4.14 of Chapter 3, that this pair can be reduced to its controller 
form 

PAP-
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0 1 
2 - 1 
1 0 

P = 

"0 

0 

.1 

0' 
0 
0. 

0 

1 

0 

Be 

11 
2 

1 
2 

1 
2 J 

= PB = 
'0 0" 
1 1 

.0 1. 

where 

Suppose we desire to assign the eigenvalues of A + BF to the locations {-2, - 1 ± j}, 
i.e., at the roots of the polynomial ad(s) = (s + 2)(s'^ + 2s + 2) = s^ + As^ + 65' + 4. A 
choice for Ad is 

Adi = 

and F, ci 

0 
0 

-4 -

B-^Ad 

1 
0 

0 
1 

- 4 . 

A J 

leading to A^^. = 

1 -
.0 

ively, 

Ad2 = 

-11 

ij 
r-2 
L-5 

" 0 
- 2 -

( 3 

1 
- 6 

1 1 
0 1 

r 
- 4 

0 
. -4 

0 
-6 

0 
- 6 

1 
-4 

7 
- 6 

1 0 
-2 0 
0 - 2 

and 5 ; ^ [ A . , - A J 

, from which Ad ^ 

'1 -11 

0 Ij 

r-4 
[-1 

= 
' - 2 

0 

- 1 0" 
0 - 2 

- 2 
0 

0' 
-2_ 

-1 2 
0 - 2 

Both Fi = FciP = 
5 1 -

-4 - 6 

eigenvalues of A + 5 F to the locations { 

and F2 = FciP = 
2 

- 2 
assign the 

2 , - l ± j } . 
The reader should plot the states of the equation x = {A + BF)x for F = Fi and 

F = F2 when x(0) = [1, 1, 1]^, and should comment on the differences between the 
trajectories. • 

Relation (2.25) gives all feedback matrices, Fc (or F = FcP), that assign the n 
eigenvalues of A^ + BcFc (or A + BF) to desired locations. The freedom in selecting 
such Fc is expressed in terms of the different A j , all in companion form, with A^ = 
[Aij] and A/y of dimensions fit X fij, which have the same characteristic polynomial. 
Deciding which one of all the possible matrices A^ to select, so that in addition 
to eigenvalue assignment other objectives can be achieved, is not apparent. This 
flexibility in selecting F can also be expressed in terms of other parameters, where 
both eigenvalue and eigenvector assignment are discussed, as will now be shown. 

3. Assigning eigenvalues and eigenvectors. Suppose now that F was selected 
so that A + BF has a desired eigenvalue Sj with corresponding eigenvector v^. Then 
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[sjl — (A + BF)]Vj = 0, which can be written as 

[Sjl-A,B] 
-Fvj_ 

0. (2.26) 

To determine an F that assigns Sj as a closed-loop eigenvalue, one could first deter
mine a basis for the right kernel (null space) of [sjI — A^B], i.e., one could determine 

a basis 
Mj 

-Di 
such that 

[Sjl-A,B] 
Mj 

0. (2.27) 

Note that the dimension of this basis is (n + m)-rank [sjl —A,B] = {n + m)—n = m, 
where rank [sjl —A,B] = n since the pair {A^B) is controllable. Since it is a basis, 
there exists a nonzero m x 1 vector Uj so that 

Combining the relations —DjUj 

Mj-
aj = 

_-Fvj_ 

—FVj and Mjaj --

FMjaj = DjUj. 

Vj, one obtains 

(2.28) 

(2.29) 

This is the relation that F must satisfy for Sj to be a closed-loop eigenvalue. The 
nonzero m x 1 vector aj can be chosen arbitrarily. Note that Mjaj = Vj is the eigen
vector corresponding to Sj. Note also that aj represents the flexibility one has in 
selecting the corresponding eigenvector, in addition to assigning an eigenvalue. The 
nxl eigenvector Vj cannot be arbitrarily assigned; rather, the m x 1 vector aj can be 
(almost) arbitrarily selected. These mild conditions on aj are stated next as a theorem. 

THEOREM 2.5. The pair (sj, Vj) is an (eigenvalue, eigenvector)-pair of A + BF if and 
Mj 

only if F satisfies (2.29) for some nonzero vector Uj such that Vj = MjUj with 

a basis of the null space of [sjl —A,B\ as in (2.27). 

Proof, Necessity has been shown. To prove sufficiency, postmultiply Sjl — (A+5F) by 
Mjaj and use (2.29) to obtain (sjI — A)Mjaj —BDjaj = 0 in view of (2.27). Thus, 

[sjI-{A + BF)]Mjaj = 0. 

which implies that Sj is an eigenvalue of A + BF and MjUj = Vj is the corresponding 
eigenvector. • 

If relation (2.29) is written for n desired eigenvalues Sj, where the aj are selected 
so that the corresponding eigenvectors Vj = Mjaj are linearly independent, then 

FV = W, (2.30) 

where V = [Mi^ i , . . . ,M^a^] and W = [Di^ i , . . .^Dnan] uniquely specify F as the 
solution to these n linearly independent equations. When Sj are distinct, it is always 
possible to select aj so that V has full rank; in fact almost any set of nonzero aj suf
fices. When Sj have repeated values it may still be possible under certain conditions 
to select aj so that Mjaj are linearly independent; however in general, for multiple 
eigenvalues, (2.30) needs to be modified, and the details for this can be found in the 
literature (e.g., [16]). 



It can be shown that for distinct eigenvalues Sj, the n vectors Mjaj, j = 1,.. .,n, 
are Hnearly independent for almost any nonzero aj. For further discussion on this, 
see the remarks following Example 2.6 and Subsection A.4, on Interpolation, in 
the Appendix. Also note that if Sj+i = s*, the complex conjugate of Sj, then the 
corresponding eigenvector V/+1 = v* = ^)^)' 

Relation (2.30) clearly shows that the F that assigns all n closed-loop eigenval
ues is not unique (see also Lemma 2.4). All such F are parameterized by the vec
tors aj that in turn characterize the corresponding eigenvectors. If the corresponding 
eigenvectors have been decided upon—of course within the set of possible eigen
vectors Vj = MjUj—then F is uniquely specified. Note that in the single-input case, 
(2.29) becomes FMj = Dj, where Vj = Mj. In this case, F is unique. 
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EXAMPLE 2.6. Consider the controllable pair (A, B) of Example 2.5 given by 

0 
0 
0 

1 
0 
2 

0 
1 

- 1 

ro 
1 

.0 

11 
1 
0. 

Again, it is desired to assign the eigenvalues of A + BF at - 2 , - 1 ± j . Let -̂i = -2,S2 = 
-I + j and S3 = -I - j . Then, in view of (2.27), 

Ml] 
= 

1 
- 1 

2 

- 1 
1 

r 
0 
0 

- 2 
2_ 

' 
M2 

-D2. 
= 

J 
2 

2 + J 
1 

1 
0 
0 

-1 + 7 
1 - J 

and 
M3 

-D3 
Ml 

, the complex conjugate, since S3 

Each eigenvector v̂  = Miai, i = 1, 2, 3, is a linear combination of the columns of 
Mi. Note that V3 = V2. If we select the eigenvectors to be 

'1 1 r 
y = [vi, V2, V3] = 0 j 

0 2 

I.e., ai = a2 , and a3 

1 1 

0 j -
0 2 

then (2.30) implies that 

-2-j 
- 1 

from which we have 

'^rj 
-2-j 

- 1 
-2 + J 

- 1 

4y 
0 
0 

-2 + j 
- 1 

0 
2 

- 2 

- 2 / 
j 
j . 

2 - 1 - 2 
- 2 0 ^ 

This matrix F is such that A + BF has the desired eigenvalues and eigenvectors (verify 
this). • 
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Remarks 

At this point, several comments are in order. 

1. In Example 2.6, if the eigenvectors were chosen to be the eigenvectors of A + BFi 
(instead of A + BF2) of Example 2.5, then from FV = W it follows that F would 
have been Fi (instead of F2). 

2. When st = ^ * ^ j , then the corresponding eigenvectors are also complex conju
gates, i.e., Vi = v*^j. In this case we obtain from (2.30) that 

FV = Fl.., ViR + pii, ViR - jvii,...] 

= [..., WiR + jwii, WiR - jwii, ...] = W. 

Although these calculations could be performed over the complex numbers (as 
was done in the example), this is not necessary, since postmultiplication of 
FV = Why 

-J', 

+ 7 

shows that the above equation FV = W is equivalent to 

Fl.., ViR, Vii,...] = [..., WiR, Wii,...], 

3. The bases 

which involves only reals. 

-Dj\' 
and the calculations can be simplified if the controller form of the pair (A, B) is 

U j = 1, • • •, n, in (2.27) can be determined in an alternative way 

ons can be simplified if tl 

known. In particular, note that [si - A,B]\ 
D{s) 

= 0, where the n X m ma

trix S(s) is given by S(s) = block diag [1, >y,..., 5^'"^] and the ĉ̂ , / = 1 , . . . , m, 
are the controllability indices of (A, B). Also, the m X m matrix D{s) is given by 
D{s) = B^^ [diag [s^^\ ..., s^"'] - AmS{s)l Note that S{s) and D{s) were defined 
in the Structure Theorem (controllable version) in Chapter 3 (Subsection 3.4D). 
It was shown there that {si - Ac)S{s) = BcD(s), from which it follows that (si -
A)P~^S(s) = BD(s), where P is a similarity transformation matrix that reduces 
(A, B) to the controller form (Ac = PAP-\ Be = PB). Since P~^S(s) and D(s) 
are right coprime polynomial matrices (see Section 7.2 of Chapter 7), we have 

rank 
D(sj) 

= m for any Sj, and therefore, 
P-'S{Sj) 

D(sj) 
qualifies as a basis 

for the null space of the matrix [sjl - A, B](P = I when A, B are in controller 



form, i.e., A = Ac and B = Be.) We note that this approach is discussed further 
in Subsection A.4 of the Appendix. 

Returning to Example 2.6, the controller form of (A, B) was found in Exam
ple 2.5 using 
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and 

Then 

M{s) 
-Dis) 

+ s- 1 
- 1 

1 
s + 1 

2 

-(-$2 + 5 - 1 ) 

-s 
s 

1 
0 
0 

s 
-s 

Ml] 
-Di\ 

' Mi-2) 
-Di-2)_ 

1 
- 1 

2 

- 1 
1 

r 0 
0 

- 2 
2_ 

and 
Ms 

M2 

-£>2 

Mi-l + j) 
-D(-l + j) 

J 
2 

2 + j 
1 

1 
0 
0 

1 + ; 
1 - 7 

which are precisely the bases used in the example. 

will assign the desired values 

4. If in Example 2.6 the only requirement were that ( '̂i, vi) = ( -2 , (1, 0, 0)^), then 

F(h 0, Of = (2, - 2 f , i.e., any F = \l {'^ ^}' 
L^/22 723. 

to an eigenvalue of A + BF and its corresponding eigenvector. 
5. All possible eigenvectors vi and V2(v3 = v^) in Example 2.6 are given by 

/I 
and V2 = M2a2 v\ = M\a\ = 

1 1] 
- 1 0 

2 Oj 

|- -, 
an 

[ai2_ 
ail + JC131 

[a22 + JC132 

where the atj are such that the set {vi, V2, V3} is linearly independent (i.e., 
y = [vi, V2, V3] is nonsingular) but otherwise arbitrary. Note that in this case (sj 
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C. The Linear Quadratic Regulator (LQR): Continuous-Time Case 

A linear state feedback control law that is optimal in some sense can be determined 
as a solution to the so-called Linear Quadratic Regulator (LQR) problem (more re
cently, also called the H2 optimal control problem). The LQR problem has been 
studied extensively, and the interested reader should consult the extensive literature 
on optimal control for additional information on the subject. In the following, we 
give a brief outline of certain central results of this topic to emphasize the fact that 
the state feedback gain F can be determined to satisfy, in an optimal fashion, re
quirements other than eigenvalue assignment, discussed above. The LQR problem 
has been studied for the time-varying and time-invariant cases. Presently, we will 
concentrate on the time-invariant optimal regulator problem. 

Consider the time-invariant linear system given by 

X = Ax-\- Bu, z = Mx, (2.31) 

where the vector z(t) represents the variables to be regulated—to be driven to zero. 
We wish to determine u{t), t ^ 0, which minimizes the quadratic cost 

J(u) = [z' (t)Qz(t) + u' (t)Ru(t)] dt (2.32) 
Jo 

for any initial state x{0). The weighting matrices Q, R are real, symmetric, and pos
itive definite, i.e., Q = Q^, R = R^, and Q> 0, R > 0. This is the most common 
version of the LQR problem. The term z^Qz = x^ {M^ QM)x is nonnegative, and 
minimizing its integral forces z{t) to approach zero as t goes to infinity. The matrix 
M^QM is in general positive semidefinite, which allows some of the states to be 
treated as "do not care" states. The term u^Ru with R > 0 is always positive for 
w 7̂  0, and minimizing its integral forces u(t) to remain small. The relative "size" 
of Q and R enforces tradeoffs between the size of the control action and the speed of 
response. 

Assume that (A, B, Q^'^^M) is controllable (-from-the-origin) and observable. It 
turns out that the solution w*(0 to this optimal control problem can be expressed in 
state feedback form, which is independent of the initial condition x(0). In particular, 
the optimal control w* is given by 

u{t) - F*x(0 = -R~^B^Plx{t\ (2.33) 

where P* denotes the symmetric positive-definite solution of the algebraic Riccati 
equation 

A^Pc + PcA - PcBR'^B^Pc + M^QM = 0. (2.34) 

This equation may have more than one solution, but only one that is positive-definite 
(see Example 2.7). It can be shown that w*(0 "= F*x(t) is a stabilizing feedback 
control law and that the minimum cost is given by Jniin = /(w*) = x^(0)P*x(0), 

The assumptions that (A, B, Q^'^^M) are controllable and observable may be 
relaxed somewhat. If (A, B, Q^'-^M) is stabilizable and detectable, then the uncon-



trollable and unobservable eigenvalues, respectively, are stable, and P* is the unique, 
symmetric, but now positive-semidefinite solution of the algebraic Riccati equation. 
The matrix F* is still a stabilizing gain but it is understood that the uncontrollable 
and unobservable (but stable) eigenvalues will not be affected by F*. 

Note that if the time interval of interest in the evaluation of the cost goes from 
0 to 1̂ < 00, instead of 0 to oo, that is, if 

J(u) = [z^(t)Qz(t) + u^(t)Ru(t)] dt, 

then the optimal control law is time-varying and is given by 

u{t) = -R~^B^P\t)x{t), Q^t^ti, 

(2.35) 

(2.36) 

where P*(0 is the unique, symmetric, and positive-semidefinite solution of the Ric
cati equation, which is a matrix differential equation of the form 
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- — P{t) = A^P(t) + P(t)A - P(t)BR-^B^P(t) + M^QM, 
dt 

(2.37) 

where P(ti) = 0. It is interesting to note that if (A, B, Q^'^M) is stabilizable and 
detectable (or controllable and observable), then the solution to this problem as ti —> 
00 approaches the steady-state value P* given by the algebraic Riccati equation; that 
is, when ti^ ^ the optimal control policy is the time-invariant control law (2.33), 
which is much easier to implement than time-varying control policies. 

EXAMPLE 2.7. Consider the system described by the equations i = Ax+Bu,y = Cx, 

where A "0 r 
0 0. 

,B = 
"0" 

.1_ 
C = [1, 0]. Then (A, B, C) is controllable and observable 

and C{sl -A) ^B = \ls^. We wish to determine the optimal control M*(0, ^ ^ 0, which 
minimizes the performance index 

J = (/(O + pu^iO) dt, 

where p is positive and real. Then R = p> 0, zit) = y(t), M = C, and Q 
the present case the algebraic Riccati equation (2.34) assumes the form 

A^Pc + PcA - PcBR-^B^Pc + M^QM 

1 > 0. In 

0 0 
1 0 

0 0 
1 0 

Pr + Pr 

Pi 

P2 

Pi 

P3 

0 0 
0 0 

1 
0 

Pi 

IP2 

p 

P2 

P3. 

[0 l]Pc + 

1 Pi 

PIP2 

Oj 
[10] 

P2] 
P3\ 

ro 0] 
[0 ij 

\pi 

[P2 
P2 
P3 

where Pr = 
Pi P2 

IP2 P3j 

1 

= P^. This implies that 

1 
:PI = 0. ~-P2 + 1 = 0 , pi - -P2P3 = 0, 2p2 

P P P 
Now Pc is positive definite if and only if pi > 0 and p\p3 — p\> 0. The first equation 
above implies that p2 = ± J^. However, the third equation, which yields p\ = 2pp2, 



344 

Linear Systems 
implies that pi = + yp. Then p\ = 2p J~p and p^ = ± 2p J^. The second equation 

yields pi = {\lp)p2P?> and implies that only p^ = + lip J~p is acceptable, since we 

must have p\ > 0 for P^ to be positive definite. Note that pi > 0 and P3-p\ = 2p-p = 
p > 0, which shows that 

> 

VP J^P/P. 

is the positive definite solution of the algebraic Riccati equation. The optimal control law 
is now given by 

u\t) = F*x(t) = -R'^B^PlxQ) = - - [ 0 , IjPXO. 

The eigenvalues of the compensated system, i.e., the eigenvalues of A + BF*, can now be 
determined for different p. Also, the corresponding u*(t) and y{t) for given x(0) can be 
plotted. As p increases, the control energy expended to drive the output to zero is forced 
to decrease. The reader is asked to verify this by plotting u*(t) and y(t) for different 
values of p when x(0) = [1, 1]^. Also, the reader is asked to plot the eigenvalues of 
A + BF* as a function of p and to comment on the results. • 

It should be pointed out that the locations of the closed-loop eigenvalues, as 
the weights Q and R vary, have been studied extensively. Briefly, for the single-
input case and for Q = ql and R = r in (2.32), it can be shown that the opti
mal closed-loop eigenvalues are the stable zeros of 1 + (q/r)H^(-s)H(s), where 
H(s) = M(sl - Ay^B. As q/r varies from zero (no state weighting) to infinity 
(no control weighting), the optimal closed-loop eigenvalues move from the sta
ble poles of H'^(-s)H(s) to the stable zeros of H'^(-s)H(s). Note that the stable 
poles of H^(-s)H(s) are the stable poles of H(s) and the stable reflections of its 
unstable poles with respect to the imaginary axis in the complex plane, while its 
stable zeros are the stable zeros of H(s) and the stable reflections of its unstable 
zeros. 

The solution of the LQR problem relies on solving the Riccati equation. A num
ber of numerically stable algorithms exist for solving the algebraic Riccati equation. 
The reader is encouraged to consult the literature for computer software packages 
that implement these methods. A rather straightforward method for determining P* 
is to use the Hamiltonian matrix given by 

H^ 
A -BR-^B^ 

-M^QM -A^ 
(2.38) 

Let [V\, V2V denote the n eigenvectors of H that correspond to the n stable 
[Re (A) < 0] eigenvalues. Note that of the 2n eigenvalues of H, n are stable and 
are the mirror images reflected on the imaginary axis of its n unstable eigenvalues. 
When (A, B, Q^''^M) is controllable and observable, then H has no eigenvalues on 
the imaginary axis [Re (A) = 0]. In this case the n stable eigenvalues of H are in 
fact the closed-loop eigenvalues of the optimally controlled system, and the solution 
to the algebraic Riccati equation is then given by 

P* = V^V^K (2.39) 



Note that in this case the matrix Vi consists of the n eigenvectors of A + i5F*, since 
for Ai a stable eigenvalue of H, and vi the corresponding (first) column of Vi, we 
have 

[Ai/ - (A + 5F*)]vi = [Ai/ - A + BR-^B^ V2yr^]vi 

where the fact that 
Vi 

[Ai/,0] 

0 X 

0 X 

0 X 

0 X 

{A,-BR-'B''[ 

Vx vi 

Vi'v, 

are eigenvectors of H was used. It is worth reflecting for a 

moment on the relationship between (2.39) and (2.30). The optimal control F derived 
by (2.39) is in the class of F derived by (2.30). 
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D. Input-Output Relations 

It is useful to derive the input-output relations for a closed-loop system that is com
pensated by linear state feedback, and several are derived in this subsection. Given 
the uncompensated or open-loop system x = Ax + Bu, y = Cx + Du, with initial 
conditions x(0) = XQ, we have 

y(s) = C(sl - Ay^xo + H(s)u(sl (2.40) 

where the open-loop transfer function H(s) = C(sI—A)~^B-\-D. Under the feedback 
control law u = Fx -\- r, the compensated closed-loop system is described by the 
equations x = (A + BF)x -h 5r, j = (C + DF)x + Dr, from which we obtain 

y{s) = (C + DF)[sI - (A + BF)r^xo + HF(s)r{sl (2.41) 

where the closed-loop transfer function Hf(s) is given by 

HF(S) = ( C + DF)[sI - (A + BF)Y^B -f- D. 

Alternative expressions for HF{S) can be derived rather easily by substituting (2.4), 
namely, 

u{s) = F[sl - (A + BF)r^xo + [/ - F(sl - Ay^Br^r(sl 

into (2.40). This corresponds to working with an open-loop control law that nomi
nally produces the same results when applied to the system [see the discussion on 
open- and closed-loop control that follows (2.4)]. Substituting, we obtain 

y{s) = [C(sl - A)"i + H(s)F[sI - (A -t- BF)r^]xo 

+ H(s)[I - F(sl - Ay^Br^r(s). (2.42) 
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HF(S) = (C + DF)[sI - (A + BF)r^B + D 

= [C(sl - Ay^B + D][I - F(sl - Ay^B]-^ 

= H(s)[I - F(sl - Ay^Br^^ (2.43) 

The last relation points out the fact that y(s) = HF(s)r(s) can be obtained from 
y(s) = H(s)u(s) using the open-loop control u(s) = [/ - F{sl - Ay^B]~^r(s). 

Relation (2.43) can easily be derived in an alternative manner, using fractional 
matrix descriptions for the transfer function, introduced in Section 3.4 (see the Struc
ture Theorem). In particular, the transfer function H{s) of the open-loop system 
{A, B, C, D} is given by 

H(s) - N(s)D-\s\ 

where A (̂̂ ) = CS(s) + DD{s) with S(s) and D(s) satisfying (si - A)S(s) = BD(s) 
(refer to the proof of the controllable version of the Structure Theorem given in Sec
tion 3.4). Notice that it has been assumed, without loss of generality, that the pair 
(A, B) is in controller form. 

Similarly, the transfer function HF(S) of the compensated system {A+BF, B,C+ 
DF, D] is given by 

HF{S) = NF(S)D^\S\ 

where NF(S) = (C + DF)S(s) + DDF(S) with S(s) and DF(S) satisfying [si - (A + 
BF)]S(s) = BDF(S). This relation implies that (si - A)S(s) = B[DF(S) + FS(s)l 
from which we obtain DF(S) + FS(s) = D(s). Then NF(S) = CS(s) + D[FS(s) + 
DF(S)] = CS(s) + DD(s) = N(s\ that is, 

HF(S) = N(s)Dp\s\ (2.44) 

where DF(S) = D(s) - FS(s). The full justification of the validity of these expres
sions will be given in Subsection 7.4B of Chapter 7, where feedback systems de
scribed in terms of polynomial matrix representations are addressed. 

Note that / - F(sl - Ay ^B in (2A3) is the transfer function of the system 
{A,B, - F , / } and can be expressed as D/7(5')D"^(^), where D/7(^) = -FS(s)+ID(s). 
LetM(^) = (Z)/7(^)^~k^))"^. Then (2.44) assumes the form 

HF(S) = N(s)Dp\s) = (N(s)D-\s))(D(s)D^\s)) = H(s)M(s). (2.45) 

Note that relation HF(S) = N(s)D^^(s) also shows that the zeros of H(s) [in 
N(s), see also Subsection 7.3B] are invariant under linear state feedback; they can 
be changed only via cancellations with poles. Also observe that M(s) = D(s)Df^(s) 
is the transfer function of the system {A + BF, B, F, I] (show this). This implies that 
HF(S) in (2.43) can also be written as 

HF(S) = H(s)[F(sI - (A + BF)y^B + / ] , 

a result that could also be shown directly using matrix identities. 

EXAMPLE 2.8. Consider the system x = Ax + Bu, y = Cx, where 

and B =^ Be 
0 
2 
1 

1 
- 1 

0 

0 
0 
0 

ro 
1 

.0 

0] 
1 
1. 



as in Example 2.5, and let C = Q = [1, 1, 0]. Hf(s) will now be determined. In view 
of the Structure Theorem developed in Section 3.4, the transfer function is given by 
H(s) = N(s)D-\sX where 

N(s) = CcS(s) = [1,1,0] 
n 
s 

0 

01 
0 
1. 

= [̂  + 1,0], 

and D{s)=^ B-'[A{s)-AmS(s)] = 
1 1 
0 1 

s^ 0 
0 s 

"2 
1 

- 1 01 
0 Oj 

ri 01" 
\s 0 
Lo i j . 

1 - 1 
0 1 

s^ -\-s-2 0 
- 1 s 

s^ + s- I 

Then 

H{s) = N(s)D-'is) = [s+ 1,0] 
s'^ + s- 1 

- 1 

[s + 1, 0] 

1 

s s 
1 s^ + S-1 3̂ + 52 - 25 

[5(5+1), 5(5+1)] = - ^ ± i - [ l , l ] . 

I fF , = 
3 7 5 

- 5 - 6 - 4 

D^(5) = Z)(5) - FcS(s) = 

s(s^ + 5 - 2 ) ' ' ' ' ' ' ' 52 + 5 - 2 

(which is Fci of Example 2.5), then 

5̂  + 5 — 1 —5 
- 1 

3 
- 5 

7 
- 6 

51 
-4j 

ri 0" 
5 0 

Lo 1 . 
52 - 65 - 4 - 5 - 5 

65 + 4 5 + 4 

Note that detDpis) = 5̂  + 452 + 65 + 4 = (5 + 2)(52 + 25 + 2) with roots - 2 , - 1 ± 7, 
as expected. Now 

HF{S) = N{s)D}\s) = [5 + 1,0] 
5 + 4 5 + 5 

-65 - 4 5 2 - 6 5 - 4 
1 

(5 + 2)(52 + 25 + 2) 

5 + 1 
(5 + 2)(52 + 25 + 2) 

[5 + 4, 5 + 5]. 

Note that the zeros of H{s) and Hp{s) are identical, located at - 1 . Then Hpis) -
H(s)M(s), where 

M(s) = D(s)Dp\s) = 
52 + 5 - 1 5 + 4 5 + 5 

- 6 5 - 4 5 2 - 6 5 - 4 
1 

53 +452 + 65 + 4 

5̂  + I I 5 2 + 7 5 - 4 1252 + 8 5 - 5 
-652 - 55 - 4 6 5 2 - 5 5 - 5 

1 
53 +452 + 65 + 4 

= [I~F,(sI-Acr'Bc]-K 

Note that the open-loop uncompensated system is unobservable, with 0 being the unob-
servable eigenvalue (why?), while the closed-loop system is observable, i.e., the control 
law changed the observability of the system. • 
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Linear state feedback control for discrete-time systems is defined in a way that is 
analogous to the continuous-time case. The definitions are included here for purposes 
of completeness. 

We consider a linear, time-invariant, discrete-time system described by equa
tions of the form 

x(k + 1) - Ax(k) + Bu(kl y(k) = Cx(k) + Du(k), (2.46) 

where A G /?"><^ B E Z^^^ ,̂ C G /?̂ ><^ D G 7?^x^, and k > ko, with k ^ ko = 0 
being typical (see Section 2.7). 

DEFINITION2.3. The linear (discrete-time, time-invariant) state feedback control law 
is defined by 

u(k) = Fx(k) + r(k), (2.47) 

where F G T?'"̂ " is a gain matrix and r(k) G R^ is the external input vector. • 

This definition is similar to Definition 2.1 for the continuous-time case. The 
compensated closed-loop system is now given by 

x(k + 1) - (A 4- BF)x(k) + Br(k) 

y(k) = (C + DF)x(k) + Dr(kl (2.48) 

In view of Section 2.7 of Chapter 2, the system x(k + 1) = (A + BF)x(k) is 
asymptotically stable if and only if the eigenvalues of A + BF satisfy |A/| < 1, i.e., if 
they lie strictly within the unit disc of the complex plane. The stabilization problem 
for the time-invariant case therefore becomes a problem of shifting the eigenvalues 
of A + BF, which is precisely the problem studied before for the continuous-time 
case. Theorem 2.1 and Lemmas 2.2 and 2.3 apply without change, and the methods 
developed before for eigenvalue assignment can be used here as well. The only dif
ference in this case is the location of the desired eigenvalues: they are assigned to 
be within the unit circle to achieve stability. We will not repeat here the details for 
these results. 

Input-output relations for discrete-time systems, which are in the spirit of the 
results developed in the preceding subsection for continuous-time systems, can be 
derived in a similar fashion, this time making use of the z-transform of x(k + 1) = 
Ax(k) + Bu(k), x(0) = XQ to obtain 

x(z) = z(zl - Ay^xo + (zl - Ar^Bu(z). (2.49) 

[Compare expression (2.49) with x(^) = (si- A)~^xo-^(sI-A)~^Bu(s).] The reader 
is asked to derive formulas for the discrete-time case that are analogs to expressions 
(2.40) to (2.45) for the continuous-time case. 

F. The Linear Quadratic Regulator (LQR): Discrete-Time Case 

The formulation of the LQR problem in the discrete-time case is analogous to the 
continuous-time LQR problem. Consider the time-invariant linear system 

x(k + i) = Ax(k) + Bu(kl z(k) = Mx(k\ (2.50) 



where the vector z(t) represents the variables to be regulated. The LQR problem 
is to determine a control sequence {u*(k)}, /: > 0, which minimizes the cost func
tion 

J(u) = ^[z^(k)Qz(k) + u^(k)Ru(k)] (2.51) 
k = 0 

for any initial state x(0), where the weighting matrices Q and R are real symmetric 
and positive definite. 

Assume that (A, B, Q^'^M) is reachable and observable. Then the solution to the 
LQR problem is given by the linear state feedback control law 

u{k) = F*x(^) - -[R + B^PlBr^B^PlAx(k), (2.52) 

where P* is the unique, symmetric, and positive-definite solution of the (discrete-
time) algebraic Riccati equation, given by 

Pc = A'^lPc - PcB[R + B^PcBr^B^PM + M^QM. (2.53) 

Theminimum valueof/is/(w*) = /min = x^(0)P*x(0). 
As in the continuous-time case, it can be shown that the solution P* can be 

determined from the eigenvectors of the Hamiltonian matrix, which in this case 
is 

H 
A + BR-^B^A-^M^QM 

-A-^M^QM 
-BR-^B^A-^ 

A-^ 
(2.54) 

where it is assumed that A~^ exists. Variations of the above method that relax this 
assumption exist and can be found in the literature. Let [V\, Vj]^ be n eigenvec
tors corresponding to the n stable (|A| < 1) eigenvalues of H. Note that out of the 
In eigenvalues of //, n of them are stable (i.e., within the unit circle) and are the 
reciprocals of the remaining n unstable eigenvalues (located outside the unit circle). 
When (A, B, Q^'^M) is controllable (-from-the-origin) and observable, then if has no 
eigenvalues on the unit circle (|A| = 1). In fact the n stable eigenvalues of// are in 
this case the closed-loop eigenvalues of the optimally controlled system. 

The solution to the algebraic Riccati equation is given by 

-1 
K - ^2vr (2.55) 

As in the continuous-time case, we note that Vi consists of the n eigenvectors of 
A + 5F* (show this). 

EXAMPLE 2.9. We consider the system x{k + 1) = Ax{k) + Bu{k), y(k) = Cx(k), 

where A = 
"0 1" 

.0 0̂  
,B = 

"0" 

.1_ 
C = [1, 0] and we wish to determine the optimal control 

sequence {u*(k)}, /: > 0, that minimizes the performance index 

J(u) = Y.(y\k) + puHk)), 
k = 0 

where p > 0. In (2.51), z(k) = y(k), M = C,Q = 1, and /? = p. The reader is asked to 
determine u'^k) given in (2.52) by solving the discrete-time algebraic Riccati equation 
(2.53) in a manner analogous to the solution in Example 2.7 (for the continuous-time 
algebraic Riccati equation). • 
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4.3 
LINEAR STATE OBSERVERS 

Since the states of a system contain a great deal of useful information, there are many 
applications where knowledge of the state vector over some time interval is desir
able. It may be possible to measure states of a system by appropriately positioned 
sensors. This was in fact assumed in the previous section, where the state values were 
multiplied by appropriate gains and then fed back to the system in the state feedback 
control law. Frequently, however, it may be either impossible or simply impractical 
to obtain measurements for all states. In particular, some of the states may not be 
available for measurement at all (as in the case, for example, with temperatures and 
pressures in inaccessible parts of a jet engine). There are also cases where it may 
be impractical to obtain state measurements from otherwise available states because 
of economic reasons (e.g., some of the sensors may be too expensive) or because of 
technical reasons (e.g., the environment may be too noisy for any useful measure
ments). Thus, there is a need to be able to estimate the values of the state of a system 
from available measurements, typically outputs and inputs (see Fig. 4.3). 

Given the system parameters A, B, C, D and the values of the inputs and outputs 
over a time interval, it is possible to estimate the state when the system is observable. 
This problem, a problem in state estimation, is discussed in this section. In particu
lar, we will address at length the so-called full-order and reduced-order asymptotic 
estimators, which are also called full-order and reduced-order observers. 

u 
[A, B, C, D} 

y 

1 f 
state observer 

• ̂  FIGURE 4.3 

A. Full-Order Observers: Continuous-Time Systems 

We consider systems described by equations of the form 

X = Ax + Bu, y = Cx + Du, 

where A G /̂ "><^ B G T^^^ ,̂ C G RP'''' and D G RP'''^. 

(3.1) 

Full-state observers: The identity observer 

An estimator of the full state x(t) can be constructed in the following manner. 
We consider the system 

'x = Ax + Bu^K(y- yl (3.2) 



^ A 
where y = Cx -\- Du. Note that (3.2) can be written as 

'x = {A- KC)x +{B- KD, K] (3.3) 

which clearly reveals the role of u and y (see Fig. 4.4). The error between the ac
tual state x{t) and the estimated state x{t), e(t) = x(t) - x(t), is governed by the 
differential equation 

e(t) = x(t) - jc(t) = [Ax + Bu] - [Ax + Bu + KC(x - x)] 

or e(t) = [A- KC]e(tl 

Solving (3.4), we obtain 

e(t) = exp [(A 

(3.4) 

KC)t]e(0). (3.5) 

Now if the eigenvalues of A - KC are in the left half-plane, then e(t) -> 0 as ^ ^ 
00, independently of the initial condition ^(0) = x(0) - x(0). This asymptotic state 
estimator is known as the Luenberger observer. 
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Li 
B-KD 

:§>-
Ht) 

A-KC 
FIGURE 4.4 

LEMMA 3.1. There exists K E R'^^P SO that the eigenvalues of A - KC are assigned 
to arbitrary real or complex conjugate locations if and only if (A, C) is observable. 

Proof, The eigenvalues of (A - KCY = A^ - C^K^ are arbitrarily assigned via K^ if 
and only if the pair (A ,̂ C^) is controllable (see Theorem 2.1 of the previous section), 
or equivalently, if and only if the pair (A, C) is observable. • 

If (A, C) is not observable, but the unobservable eigenvalues are stable, i.e., 
(A, C) is detectable, then the error e{t) will still tend to zero asymptotically. How
ever, the unobservable eigenvalues will appear in this case as eigenvalues of A - KC 
(show this), and they may affect the speed of the response of the estimator in an unde
sirable way. For example, if the unobservable eigenvalues are stable but are located 
close to the imaginary axis, then their corresponding modes will tend to dominate 
the response, most likely resulting in a state estimator that converges too slowly to 
the actual value of the state. 

Where should the eigenvalues of A - KC be located? This problem is dual to 
the problem of closed-loop eigenvalue placement via state feedback and is equally 
difficult to resolve. On one hand, the observer must estimate the state sufficiently 
fast, which implies that the eigenvalues should be placed sufficiently far from the 
imaginary axis so that the error e{t) will tend to zero sufficiently fast. On the other 
hand, this requirement may result in a high gain K, which tends to amplify exist-
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ized by an algorithm and is typically implemented by means of a digital computer. 
Therefore, gains of any size can easily be introduced. Compare this situation with 
the limiting factors in the control case, which is imposed by the magnitude of the 
required control action (and the limits of the corresponding actuator). Typically, the 
faster the compensated system, the larger the required control magnitude. 

One may of course balance the trade-offs between speed of response of the es
timator and effects of noise by formulating an optimal estimation problem to derive 
the best K. For this, one commonly assumes certain probabilistic properties for the 
process. Typically, the measurement noise and the initial condition of the plant are 
assumed to be Gaussian random variables, and one tries to minimize a quadratic per
formance index. This problem is typically referred to as the Linear Quadratic Gaus
sian (LQG) estimation problem. This optimal estimation or filtering problem can be 
seen to be the dual of the quadratic optimal control problem of the previous section, a 
fact that will be exploited in deriving its solution. Note that the well-known Kalman 
filter is such an estimator. In the following, we shall briefly discuss the optimal esti
mation problem. First, however, we shall address the following related issues. 

1. Is it possible to take ^ = Ointheestimator (3.2)? Such a choice would eliminate 
the information contained in the term y — y from the estimator, which would now 
be of the form 

X = A i + Bu. (3.6) 

In this case the estimator would operate without receiving any information on 
how accurate the estimate x actually is. The error e{t) = x(t) — x(t) would go to 
zero only when A is stable. There is no mechanism to affect the speed by which 
x(t) would approach x(t) in this case, and this is undesirable. One could perhaps 
determine x(0), using the methods in Section 3.3 of Chapter 3, assuming that the 
system is observable. Then, by setting x(0) = x(0), presumably x(t) = x(t) for 
all t > 0, in view of (3.6). This of course is not practical for several reasons. First, 
the calculated x(0) is never exactly equal to the actual x(0), which implies that 
^(0) would be nonzero. Therefore, the method would rely again on A being stable, 
as before, with the advantage here that ^(0) would be small in some sense and 
so e(t) -> 0 faster. Second, this scheme assumes that sufficient data have been 
collected in advance to determine (an approximation to) x(0) and to initialize the 
estimator, which may not be possible. Third, it is assumed that this initialization 
process is repeated whenever the estimator is restarted, which may be impractical. 

2. If derivatives of the inputs and outputs are available, then the state x(t) may 
be determined directly (see Exercise 3.14 in Chapter 3). The estimate x(t) is 
in this case produced instantaneously from the values of the inputs and outputs 
and their derivatives. Under these circumstances, x(t) is the output of a static 
state estimator, as opposed to the above dynamic state estimator, which leads 
to a state estimate x(t) that only approaches the actual state x(t) asymptotically 
as r -^ 00 [e(t) = x(t) - x(t) -^ 0 as r ^ oo]. Unfortunately, this approach is in 
general not viable since noise present in the measurements of u(t) and y(t) makes 
accurate calculations of the derivatives problematic, and since errors in u(t), y(t) 



and their derivatives are not smoothed by the algebraic equations of the static es
timator (as opposed to the smoothing effects introduced by integration in dynamic 
systems). It follows that in this case the state estimates may be erroneous. 

M P L E 3.1. Consider the observable 

A = 
"0 1 0̂  
0 0 1 
.0 2 - 1 _ 

pair 

' C = = [1,0,0]. 

We wish to assign the eigenvalues of A - ^ C in a manner that enables us to design 
a full-order/full-state asymptotic observer. Let the desired characteristic polynomial be 
a J (5*) = s^ + dis^ + d\s + do and consider 

AD ^ AT ^ 
0 
1 
0 

0 
0 
1 

0 
2 

- 1 
and Bn = C T _ 

To reduce (AD, BD) to controller form, we consider 

% 

Then P = UAD 
IqAl 

from which we obtain 

AD, = PADP~ 

[BD,ADBD,AIBD] 

ro 0 1" 
0 1 - 1 

Ll - 1 3. 

= 
"1 0 0" 
0 1 0 
.0 0 1. 

= ^ 

and P-^ = 
-2 1 1 
1 1 0 
1 0 0 

0 1 
0 0 
0 2 

and BD, = PBE 

The state feedback is then given by FD, = B^^[Ad^ - Am] = [-do, -di - 2, -d2 + I] 
and FD = FDCP = [~d2 + I, d2 — d\ — 3, d\ — do — 3d2 + 5]. Then 

K = -Fl = [d2 -hdi-d2 + 3, do-di+ M2 - 5]^ 

assigns the eigenvalues of A - KC at the roots of 0Ld{s) = s^ + d2S^ + d\s + do. Note 
that the same result could also have been derived using the direct method for eigenvalue 
assignment, using |^/ - (A - (^0, h, fe)^C)| = ad{s). Also, the result could have been 
derived using the observable version of Ackermann's formula, namely, 

K = -Fl= ad(A)€~'en, 

where FD = -el^^^ad(AD) from (2.21). Note that the given system has eigenvalues 
at 0,1, - 2 and is therefore unstable. The observer derived in this case will be used in the 
next section (Example 4.1) in combination with state feedback to stabilize the system 
X = Ax + Bu, y = Cx, where 

0 
0 
0 

1 
0 
2 

0' 
1 

- 1 . 
B = 

"0 1 
1 1 

.0 0 
and C = [1, 0, 0] 

(see Example 2.5), using only output measurements. 

EXAMPLE 3.2. Consider the system i: = Ax,y = Cx, where A = andC = 

[0,1], and where (A, C) is in observer form. It is easy to show that K = [do- 2, d\-2Y 
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354 assigns the eigenvalues of A - KC at the roots of s^ + d\s + d^. To verify this, note that 

det{sI-{A-KC)) = det\ 
Linear Systems s 0 

0 s 
0 -do 
.1 -d\\ 

s + d\s + d{). 

The error e{t) = x(t) - x(t) is governed by the equation e(t) = (A - KC)e(t) given in 
(3.4). Noting that the eigenvalues of A are - 1 ± j , select different sets of eigenvalues 
for the observer and plot the states x(t), x(t) and the error e(t) for x(0) = [2, 2]^ and 
x(0) = [0, 0]^. The further away the eigenvalues of the observer are selected from the 
imaginary axis (with negative real parts), the larger the gains in K will become and the 
faster x(t) -^ x(t) (verify this). • 

Partial or linear functional state observers 
The state estimator studied above is a full-state estimator or observer, i.e., x(t) 

is an estimate of the full-state vector x(t). There are cases where only part of the 
state vector, or a linear combination of the states, is of interest. In control problems, 
for example, Fx(t) is used and fed back, instead of Fx(t), where F is an m X ^ state 
feedback gain matrix (see also Section 4.4). An interesting question that arises at 
this point is: is it possible to estimate directly a linear combination of the state, say, 
Tx, where T E R^'^^^ h^ nl This problem is considered next. 

We consider the system 

z = Az + Bu + Ky, (3.7) 

where A G R^^"", B G /^^x^, and K G R^'^P are to be determined. The error equation 
is given by 

^ = Tx- z = TAx + TBu - Az- Bu- K{Cx + Du) 

= Ae + {TA - AT - KC)x + {TB - KD - B)u. 

Now if 

B = TB- KD (3.8) 

and r . A, and K satisfy 

TA- AT = KC, (3.9) 

then e = Ae. If in addition, A is stable, then e{t) -^ 0 as t ^ oo and z(t) will ap
proach Tx(t) asymptotically. A key issue is clearly the existence (and calculation) 
of appropriate solutions of (3.9). This has been studied extensively in the literature 
(see for example O'Reilly [18]). Here we simply wish to point to a special case of 
(3.9), namely, the case of the identity observer (T = I) or of the full-state estimator: 
T = I and A = A - KC, where for (A, C) observable, there always exists K that 
renders A stable, as was shown above. 

Note that in general a solution (A, K) of (3.9) with A stable may not exist, i.e., 
there may not exist an observer (3.7) of order n(A G R^^^) to estimate n linear func
tions of the state, Tx (T G R^^^). It is possible, however, to decouple the order of 
the observer from the number of linear functions of the state to be estimated, in the 
following manner. 

Let w = Tx, w ^ R^, and consider 

z = Az-^ Bu-\- Ky 

w = Tx{y-Du) + T2Z, (3.10) 



where z G i?^ A G R'""', B G i^'^^, K 
f G W"" and write 

G i?'̂ ^̂ ,̂ Ti G /?̂ ><̂ , and 72 G R^""'. Let 

z - r i = Az + 5w + i^(Cx + Du) - r(A;c + 5w) 

=^ Az + (KC - tA)x + {B-fB + KD)u. 

Now if B = TB - KD mdKC - TA = -AT, where A is stable, then z-fx = 
A(z - tx) or z - t x = e^\z(0) - fx(0)), i.e., z(t) -^ fx(t). We are interested, 
however, in estimates of w = Tx. Consider therefore w — w = [TiCx + Tiifx + 
e^\z{Qi) - fx(0))] -Tx = {TiC + T2f - T)x + T2e^\z{0) - fx(0)). Now if T -
TiC + T2f, then w-w = T2e^\z{^) - fx(0)) and w(t) -^ w(t) = Tx{t\ since A 
is stable. 

Therefore, an observer (3.10) of w = Tx, T G R^^^ of order r exists if there 
exist f G T?''̂ ", Ti G /?"><̂  T2 G /?"><^ and ^ G i?̂ ><̂  such that for A stable. 

TA - AT - /TC and TiC + 727 = 7. (3.11) 

We thus have B = TB — KD, We note that it can be shown that for (A, C) detectable 
and r sufficiently large, there will always exist a solution. An example is the case 
when 7 = / a n d r = ^ - p . This is the case of the reduced-order observer discussed 
next, in Subsection B. 

Another simple case of interest is when 7 is a row vector {n = 1). In this case it 
can be shown (Luenberger [14]) that an observer of order î  - 1 [î  is the observability 
index of (A, C)] can always be constructed with its eigenvalues freely assignable, 
which will asymptotically estimate the linear function of the state, Tx. In general it 
can be shown that an observer of order h{v - 1) can be constructed that will asymp
totically estimate Tx. Note that the problem of determining an observer of Tx of 
minimum order is a very difficult problem, except in special cases. 

B. Reduced-Order Observers: Continuous-Time Systems 
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Suppose thatp states, out of the n state, can be measured directly. This information 
can then be used to reduce the order of the full-state estimator from nton-p. Similar 
results are true for the estimator of a linear function of the state, but this problem will 
not be addressed here. To determine a full-state estimator of order n-p, first consider 
the case when C = [Ip, 0]. In particular, let 

(3.12) 

where z = xi represents the p measured states. Therefore, only X2(t) G R^ ^ is to 
be estimated. The system whose state is to be estimated is now given by 

Xi 

z 

= 

= 

"All 
A21 

[lp,0] 

An 
A22. 

Xil 

X2y 

Ixi 

[X2_ 
+ 

X2 = A22X2 + [A2b B2] 

— ^22-^2 + Bu, (3.13) 
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where B == [A21, B2] and u = is a known signal. Also, 

^ A . 
y = xi 

Anxi - Biu = A12X2, (3.14) 

where y is known. An estimator for X2 can now be constructed. In particular, in view 
of (3.2), we have that the system 

X2 = A22X2 + Bu + K(y - A12X2) 

= (A22 - KAn)x2 + (A21Z + B2U) + m - Anz - Biu) (3.15) 

is an asymptotic state estimator for X2. Note that the error e satisfies the equation 

^ = i:2 - ^2 = (A22 - KAx2)e, (3.16) 

and if (A22, A12) is observable, then the eigenvalues of A22 - ^Ai2 can be arbitrarily 
assigned making use of K. It can be shown that if the pair (A = [Aij\ C = [Ip, 0]) 
is observable, then (A22. A12) is also observable (prove this using the eigenvalue 
observability test of Section 3.4 of Chapter 3). System (3.15) is an estimator of order 

z 
n- p, and therefore the estimate of the entire state x is 

X2 
. To avoid using z = xi 

in y given by (3.14), one could use X2 = w + Kz and obtain from (3.15) an estimator 
in terms of w, z, and u. In particular, 

w = (A22 - KAn)w + [(A22 - KAn)K + A21 - KAix\z + [B2 - KBi]u. (3.17) 

Then w is an estimate of X2 - Kz, and of course w + ^ z is an estimate for X2 (verify 
this). 

In the above derivation, it was assumed for simplicity that a part of the state 
xi, is measured directly, i.e., C = [Ip, 0]. One could also derive a reduced-order 
estimator for the system 

X = Ax + Bu, y = Cx. 

\c 
To see this, let rank C = p and define a similarity transformation matrix P = \^ 

where C is such that P is nonsingular. Then 

k = Ax + Bu,y = Cx = [Ip, 0]x, (3.18) 

where x = Px,A = PAP'K B = PB, and C = CP'^ = [Ip, 0] (show this). The 
transformed system is now in an appropriate form for an estimator of order n -

p to be derived, using the procedure discussed above. The estimate of x is 

and the estimate of the original state x is P 

where w satisfies (3.17) with z = y, [Atj] = A = PAP ^ and 

The interested reader should verify this result. 

. In particular, X2 = w + Ky, 

B = PB. Bi 
B2 

EXAMPLE 3.3. Consider the system x 

ro 
[i. 

order asymptotic state estimator. 

0 - 2 
1 - 2 

B = 

Ax + Bu, y = Cx, where A = 

, and C = [0, 1]. We wish to design a reduced n- p = n- I = 2- I = first-



The similarity transformation matrix P 

X = PxdindA = PAP~^ = 
"0 1 
1 0 

0 - 2 
1 - 2 

C 
C. 

"0 1 
1 0 

"0 1 
.1 0 
- 2 1 
- 2 0 

leads to (3.18), where 

B = PB = and 

C = CP ^ = [1,0]. The system {A, B, C} is now in an appropriate form for use of 

(3.17). We have A 

the form 

All An 

[A21 A22, 

- 2 1 
- 2 0 

,B L and (3.17) assumes 

w = (-K)w + [-K^ + (-2) - K(-2)]y + (-K)u, 

a system observer of order 1. 
For K = -10 we have w = lOw - I22y + lOw, and w + Ky = w - lOy is an 

estimate for X2. Therefore, y 
w - lOy 

is an estimate of x, and 

y 0 1 
1 0 [w — lOy 

is an estimate of x(t) for the original system. 

y 
w - lOy 

w - lOy 

y 
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C. Optimal State Estimation: Continuous-Time Systems 

The gain K in the estimator (3.2) above can be determined so that it is optimal in 
an appropriate sense. This is discussed very briefly in the following. The interested 
reader should consult the extensive literature on filtering theory for additional infor
mation, in particular, the literature on the Kalman-Bucy filter. 

In addressing optimal state estimation, noise with certain statistical properties 
is introduced in the model and an appropriate cost functional is set up that is then 
minimized. In the following, we shall introduce some of the key equations of the 
Kalman-Bucy filter and we will point out the duality between the optimal control 
and estimation problems. We concentrate on the time-invariant case, although, as in 
the LQR control problem discussed earlier, more general results for the time-varying 
case do exist. 

We consider the linear time-invariant system 

X = Ax + Bu + Tw, y = Cx + V, (3.19) 

where w and v represent process and measurement noise terms. Both w and v are 
assumed to be white, zero-mean Gaussian stochastic processes, i.e., they are uncor-
related in time and have expected values £[w] = 0 and £[v] = 0. Let 

E[ww^] = W, E[vv^] = V (3.20) 

denote their covariances, where W and V are real, symmetric, and positive definite 
matrices, i.e., W = W^, W > 0, and V = V^, V > 0. Assume that the noise pro
cesses w and V are independent, i.e., E[wv^] = 0. Also assume that the initial state 
;c(0) of the plant is a Gaussian random variable of known mean, E[x(0)] = XQ, and 
known covariance, E[(x(0) - jco)(-^(0) ~ -^o)^] = PeO- Assume also that x(0) is in
dependent of w and v. Note that all these are typical assumptions made in practice. 

Consider now the estimator (3.2), namely, 

X = Ax + Bu + K(y - Cx) = (A - KC)x + Bu + Ky, (3.21) 
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and let (A, F W^̂ ,̂ C) be controllable (-from-the-origin) and observable. It turns out 
that the error covariance E[(x - x){x - x)^] is minimized when the filter gain is 
given by 

K* = PlC^V-\ (3.22) 

where P* denotes the symmetric, positive definite solution of the quadratic (dual) 
algebraic Riccati equation 

P,A^ + APe - PeC^V'^CP, + TWT^ 0. (3.23) 

Note that P*, which is in fact the minimum error covariance, is the positive semidef-
inite solution of the above Riccati equation if (A, TW^'^, C) is stabilizable and de
tectable. The optimal estimator is asymptotically stable. 

The above algebraic Riccati equation is the dual to the Riccati equation given 
in (2.34) for optimal control and can be obtained from (2.34) making use of the 
substitutions 

A^,B C^,M and R V,Q^W. (3.24) 

Clearly, methods that are analogous to the ones developed by solving the control Ric
cati equation (2.34) may be applied to solve the Riccati equation (3.21) in filtering. 
These methods are not discussed here. 

ro 01 
EXAMPLE 3.4 Consider the system i = Ax,y = CJC, whereA = 1 0 X = [0, 1], 

and let T = ,V = p > 0,W = 1. We wish to derive the optimal filter K* 

P*C'^V~^ given in (3.22). In this case, the Riccati equation (3.23) is precisely the 
Riccati equation of the control problem given in Example 2.7. The solution of this 
equation was determined to be 

P: 

We note that this was expected, since our example was chosen to satisfy (3.24). There
fore, 

r = P: 
1 

i j p 
Jp 

J^p 

D. Full-Order Observers: Discrete-Time Systems 

We consider described by equations of the form 

x{k + 1) = Ax{k) + Bu{k), y = Cx{k) + Du(k), (3.25) 

where A G 7̂ '̂ ><̂  B G i?̂ ><'̂ , C G RP"""^, and D G RP"""^. 

The construction of state estimators for discrete-time systems is mostly analo
gous to the continuous-time case, and the results that we established above for such 
systems are valid in here as well, subject to obvious adjustments and modifications. 
There are, however, some notable differences. For example, in discrete-time systems 
it is possible to construct a state estimator that converges to the true value of the state 
in finite time, instead of infinite time as in the case of asymptotic state estimators. 



This is the estimator known as the deadbeat observer. Furthermore, in discrete-time 
systems it is possible to talk about current state estimators, in addition to prediction 
state estimators. In what follows, a brief description of the results that are analogous 
to the continuous-time case are given. Current estimators and deadbeat observers 
that are unique to the discrete-time case are discussed at greater length. 

Full-state observers: The identity observer 

As in the continuous-time case, following (3.2) we consider systems described 
by equations of the form 

x{k + 1) = Ax{k) + Bu{k) + K[y{k) - y{k)l (3.26) 

where y{k) = Cx(k) -h Dx{k). This can also be written as 

x{k + 1) = (A - KC)x(k) + [5 - KD, K] 
u(k) 

(3.27) 

It can be shown that the error e(k) = x(k) - x(k) obeys the equation e(k + 1) == 
(A - KC)e(k). Therefore, if the eigenvalues of A - KC are inside the open unit disc of 
the complex plane, then e(k) ^ 0 as /: —> oo. There exists K so that the eigenvalues 
of A - KC can be arbitrarily assigned if and only if the pair (A, C) is observable (see 
Lemma 3.1). 

The discussion following Lemma 3.1 for the case when (A, C) is not completely 
observable, although detectable, is still valid. Also, the remarks on appropriate lo
cations for the eigenvalues of A - KC and noise being the limiting factor in state 
estimators are also valid in the present case. Note that the latter point should seriously 
be considered when deciding whether or not to use the deadbeat observer described 
next. 

To balance the trade-offs between speed of the estimator response and noise 
amplification, one may formulate an optimal estimation problem as was done in 
the continuous-time case, the Linear Quadratic Gaussian (LQG) design being a 
common formulation. The Kalman filter (discrete-time case) which is based on the 
"current estimator" described below is such a quadratic estimator. The LQG opti
mal estimation problem can be seen to be the dual of the quadratic optimal control 
problem discussed in the previous section. As in the continuous-time case, optimal 
estimation in the discrete-time case will be discussed only briefly in the following. 
First, however, several other related issues are addressed. 

Deadbeat observer. If the pair (A, C) is observable, it is possible to select K so 
that all the eigenvalues of A - KC are at the origin. In this case e{k) = x(k)- x{k) = 
(A - KC)^e(0) = 0, for some k^ n\ i.e., the error will be identically zero within at 
most n steps. The minimum value of k for which (A - KC)^ = 0 depends on the size 
of the largest block on the diagonal of the Jordan canonical form of A - KC. (Refer 
to the discussion on the modes of discrete-time systems in Section 2.7 of Chapter 2.) 

EXAMPLE 3.5. Consider the system x(^ + 1) = Ax(k), y(k) = CJC(^), where 

A = C p 1 
0 1 
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is in observer form. We wish to design a deadbeat observer. It is rather easy to show 
(compare with Example 2.5) that 

K 

which was determined by taking the dual AD = A^,BD = C^ in controller form, using 
FD = B;,'[Ad^ - Am] and K = -F^ 

The matrix Aj consists of the second and third columns of a matrix A^ = 

" 
Aj -

am 

' 2 11" 
- 1 0 

0 Oj. 

r-1 
[ 1 

0" 
- 1 

0 X 

1 X 

0 X 

in observer (companion) form with all its eigenvalues at 0. For Aĵ  

"0 0 0" 
1 0 0 

.0 1 0_ 
, we have 

Ki = 1 
ro 0' 

p 0 
Li 0. 

-
" 2 1 
- 1 0 

0 0 

-1 0 
1 - 1 

1 1 
-1 0 
-1 0 

and for Â 2 ^ , we obtain 

K2 
1 

-1 
0 

Note that A - /^iC = A^ A 2 _ and Al 0, and A - K2C = A^^, and 

Ai 0. Therefore, for the observer gain Ki the error e(k) in the deadbeat observer 
will become zero in n = 3 steps since e(3) = (A - KiC)^e(0) = 0. For the observer 
gain K2, the error e(k) in the deadbeat observer will become zero in2 < n steps, since 
e(2) = (A - K2C)^e(0) = 0. The reader should determine the Jordan canonical forms 
of Ad^ and Â ^ ̂ ^^ verify that the dimension of the largest block on the diagonal is 3 and 
2, respectively. • 

The comments in the discussion following Lemma 3.1 on taking ^ = 0 are 
valid in the discrete-time case as well. Also, the approach of determining the state 
instantaneously in the continuous-time case, using the derivatives of the input and 
output, corresponds in the discrete-time case to determining the state from current 
and future input and output values (see Exercise 3.14 in Chapter 3). This approach 
was in fact used to determine x(0) when studying observability in Section 3.3. The 
disadvantage of this method is that it requires future measurements to calculate the 
current state. This issue of using future or past measurements to determine the cur
rent state is elaborated upon next. 

Current estimator 

The estimator (3.26) is called 3. prediction estimator. The state estimate x(k) 
is based on measurements up to and including y(/: - 1). It is often of interest in 



applications to determine the state estimate x(k) based on measurements up to and 361 
including y(k). This may seem rather odd at first; however, if the computation time CHAPTER 4: 
required to calculate x(k) is short compared to the sample period in a sampled-data state Feedback 
system, then it is certainly possible practically to determine the estimate x(k) before and State 
x(k + 1) and y(k + 1) are generated by the system. If this state estimate, which is Observers 
based on current measurements of y(k), is to be used to control the system, then the 
unavoidable computational delays should be taken into consideration. 

Now let x(k) denote the current state estimate based on measurements up 
through y(k). Consider the current estimator 

where 

x(k) = x(k) + Kc(y(k) - Cx{k)), 

x(k) = Ax(k - 1) + Bu(k - 1), 

(3.28) 

(3.29) 

i.e., x(k) denotes the estimate based on model prediction from the previous time 
estimate, x(k - 1). Note that in (3.28), the error is y(k) - y(k), where y(k) = Cx(k) 
(D = 0), for simplicity. 

Combining the above, we obtain 

\u(k - 1)1 
x(k) = (I - KcC)Ax(k - 1) + [(/ - KcC)B, -Kc] 

y(k) 
(3.30) 

The relation to the prediction estimator (3.26) can be seen by substituting (3.28) into 
(3.29) to obtain 

x(k + 1) = Ax(k) + Bu(k) + AKc[y(k) - Cx(k)l (3.31) 

Comparison with the prediction estimator (3.26) (with D = 0) shows that if 

K - AKc, (3.32) 

then (3.31) is indeed the prediction estimator, and the estimate x(k) used in the cur
rent estimator (3.28) is indeed the prediction state estimate. In view of this, we expect 
to obtain for the error e(k) = x(k) - x(k) the difference equation 

e(k + 1) = (A - AKcC)e(k) (3.33) 

(show this). To determine the error e{k) = x{k) - x(k) we note that e{k) = 
e(k) - (x(k) - x(k)). Equation (3.28) now implies that x(k) - x(k) = KcCe(k). 
Therefore, 

e(k) = (I-KcC)e(kl (3.34) 

This establishes the relationship between errors in current and prediction estimators. 
Premultiplying (3.31) by / - KcC (assuming |/ - KcC\ ¥- 0), we obtain 

e(k^ 1) - {A-KcCA)e(k\ (3.35) 

which is the current estimator error equation. The gain Kc is chosen so that the eigen
values of A - KcC A are within the open unit disc of the complex plane. The pair 
(A, CA) must be observable for arbitrary eigenvalue assignment. Note that the two 
error equations (3.33) and (3.35) have identical eigenvalues (show this). 

EXAMPLE 3.6. Consider the system x{k + 1) = Ax(^), y{]i) = Cx(k), where A = 
0 -21 
1 

C = [0, 1], which is in observer form (see also Example 3.2). We wish to 
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design a current estimator. In view of the error equation (3.35), we consider 

det{sl - (A - KcCA)) = det 

= det 

l\s 0" 
| o s_ 

_ / 
I 
"0 -2" 
.1 - 2 . 

s + ko 2 - Iko ] 
ki - 1 s + 2-2y^iJ 

po 
Ui. 

[1 - 2 ] 

= / + 5(2 - 2ŷ i + ko) + (2 - 2ŷ i) 

= 5̂  + dis -\- do = ad(s), 

a desired polynomial, from which Kc = [ko, ki]^ = [di - do, \{2 - Jo)]^- Note that 
AKc = [do -2,di - 2f = K, found in Example 3.2, as noted in (3.32). 

The current estimator (3.30) is now given by x{k) = {A - KcCA)x{k - 1) -
KcCBu(k - 1) + Kcy(kl or 

x(k) — ko — 2 + 2ko 
I - ki -2 + 2ki_ 

x(k - 1) + y(k). 

Partial or linear functional state observers 

The problem of estimating a linear function of the state, Tx{k), T E R^^^^ where 
ft ^ n, using a prediction estimator, is completely analogous to the continuous-time 
case and w îll therefore not be discussed further here. 

E. Reduced-Order Observers: Discrete-Time Systems 

It is possible to estimate the full state x(k) using an estimator of order n- p, where 
p = rank C. If a prediction estimator is used for that part of the state that needs to 
be estimated, then the problem in the discrete-time case is completely analogous to 
the continuous-time case, discussed before. We will omit the details. 

F. Optimal State Estimation: Discrete-Time Systems 

The formulation of the Kalman filtering problem in discrete-time is analogous to the 
continuous-time case. 

Consider the linear time-invariant system given by 

x{k + 1) = Ax{k) + Bu{k) + Tw{k\ y(k) = Cx(k) + v, (3.36) 

where the process and measurement noises w, v are white, zero-mean Gaussian 
stochastic processes, i.e., they are uncorrected in time with £'[vv] = 0, andjE'[v] == 0. 
Let the covariances be given by 

E[ww^] = W, E[vv^] = V, (3.37) 

where W = W^, W > 0 and V = V^, V > 0. Assume that w, v are independent, 
that the initial state x{0) is Gaussian of known mean {E[x{0)\ = XQ), that E[(x(0) — 
xo)(x(0) - XQ)^] = Peo, and that x(0) is independent ofw and v. 

Consider now the current estimator (3.26), namely, 

x(k) = x(k) + Kc[y(k) - Cx(k)l 

where x(k) = Ax(k - 1) + Bu(k - 1), and x(k) denotes the prior estimate of the 
state at the time of a measurement. 



It turns out that the state error covariance is minimized when the filter gain is 

Kl = PlC^(CPlC^ + V)~\ (3.38) 

where P* is the unique, symmetric, positive definite solution of the Riccati equation 

Pe - A[Pe - PeC^iCPeC^ + W^CPeU^ + TWT^. (3 .39) 

It is assumed here that (A, FW^^ ,̂ C) is reachable and observable. This algebraic 
Riccati equation is the dual to the Riccati equation (2.53) that arose in the discrete-
time LQR problem and can be obtained by substituting 

A^,B C^,M and R-^ V,Q W. (3.40) 

It is clear that, as in the case of the LQR problem, the solution of the algebraic Riccati 
equation can be determined using the eigenvectors of the (dual) Hamiltonian. 

The filter derived above is called the discrete-time Kalman filter. It is based 
on the current estimator (3.28). Note that AKc yields the gain K of the prediction 
estimator [see (3.32)]. 

4.4 
OBSERVER-BASED DYNAMIC CONTROLLERS 

State estimates, derived by the methods described in the previous section, may be 
used in state feedback control laws to compensate given systems. This section ad
dresses that topic. 

In Section 4.2, the linear state feedback control law was introduced. There it 
was implicitly assumed that the state vector x{t) is available for measurement. The 
values of the states x{t) for t > t^ were fed back and used to generate a control input 
in accordance with the relation u{t) = Fx(t) + r(t). There are cases, however, when 
it may be either impossible or impractical to measure the states directly. This has 
provided the motivation to develop methods for estimating the states. Some of these 
methods were considered in Section 4.3. A natural question that arises at this time 
is the following: what would happen to system performance if, in the control law 
u = Fx-\-r, the state estimate x were used in place of x as in Fig. 4.5? How much, if 
any, would the compensated system response deteriorate? What are the difficulties in 
designing such estimator- (observer-) based linear state feedback controllers? These 
questions are addressed in this section. Note that observer-based controllers of the 
type described in the following are widely used. 
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In the remainder of this section we will concentrate primarily on full-state/ 
full-order observers and (static) linear state feedback, as applied to linear time-
invariant systems. The analysis of partial-state and/or reduced-order observers with 
static or dynamic state feedback is analogous; however, it is more complex. Such 
control schemes are not considered at this point. Instead, they will be discussed in 
the exercise section (Exercise 4.8). In this section, continuous-time systems are ad
dressed. The analysis of observer-based output controllers in the discrete-time case 
is completely analogous and will be omitted. 

A. State-Space Analysis 

We consider systems described by equations of the form 

x = Ax-\-Bu, y = Cx + Du, (4.1) 

where A E i?"^ '̂̂ , B G T̂ ^̂ ^̂ , C G î ^̂ ^̂ , and D G RP'^'^. For such systems, we de
termine an estimate x{t) G R^ of the state x{t) via the (full-state/full-order) state 
observer (3.2) given by 

= Ax^Bu-\- K(y - y) 

= (A- KC)x + [J5 - KD, K] 

= X, 

u 

(4.2) 

where y = Cx + Du. We now compensate the system by state feedback using the 
control law 

u = Fx + r, (4.3) 

where x is the output of the state estimator and we wish to analyze the behavior of 
the compensated system. To this end we first eliminate y in (4.2) to obtain 

X = {A- KC)x + KCx + Bu, 

The state equations of the compensated system are then given by 

X = Ax-^ BFx + Br 

k = KCx + (A-KC + BF)x + Br, 

and the output equation assumes the form 

y = Cx + DFx + Dr, 

(4.4) 

(4.5) 

(4.6) 

X 

X 
= 

A 
KC A 

y = [QDF] 
X 

X 

BF 1 
KC + BF\ 

\x 
IX 

+ B 
B 

+ Dr, 

where u was eliminated from (4.1) and (4.4), using (4.3). Rewriting in matrix form, 
we have 

(4.7) 

which is a representation of the compensated closed-loop system. Note that (4.7) con
stitutes a 2Azth-order system. Its properties are more easily studied if an appropriate 



similarity transformation is used to simplify the representation. Such a transforma
tion is given by 

X 

X 
= 

7 01 
/ -l\ 

\x 
[x = 

X 

e PK = (4.8) 

where the error e(t) = xit) - x(t). Then the equivalent representation is 

X 

e 

y 

= 

= 

A + BF -BF 
0 A-KC 

[C + DF, -DF] 
x\ 

\x 
[e 

+ 

+ Dr, 

B 
0 

(4.9) 

It is now quite clear that the closed-loop system is not fully controllable with respect 
to r (explain this in view of Subsection 3.4A). In fact, e{t) does not depend on r at all. 
This is of course as it should be, since the error e{t) = x(t) - x(t) should converge 
to zero independently of the externally applied input r. 

The closed-loop eigenvalues are the roots of the polynomial 

\sln - (A + BF)\\sIn - (A - KC)\. (4.10) 

Recall that the roots of \sln - (A + BF)\ are the eigenvalues of A + BF that can 
arbitrarily be assigned via F provided that the pair (A, B) is controllable. These are 
in fact the closed-loop eigenvalues of the system when the state x is available and 
the linear state feedback control law u = Fx-\- ris used (see Section 4.2). The roots 
of |^/„ - (A - KC)\ are the eigenvalues of (A - KC) that can arbitrarily be assigned 
via K provided that the pair (A, C) is observable. These are the eigenvalues of the 
estimator (4.2). 

The above discussion points out that the design of the control law (4.3) can be 
carried out independently of the design of the estimator (4.2). This is referred to as 
the Separation Property and is generally not true for more complex systems. The 
separation property indicates that the linear state feedback control law may be de
signed as if the state x were available and the eigenvalues of A + BF are assigned at 
appropriate locations. The feedback matrix F can also be determined by solving an 
optimal control problem (LQR). If state measurements are not available for feedback, 
a state estimator is employed. The eigenvalues of a full-state/full-order estimator are 
given by the eigenvalues of A - KC. These are typically assigned so that the error 
e(t) = x(t) - x(t) becomes adequately small in a short period of time. For this, the 
eigenvalues of A - KC are (empirically) taken to be about 6 to 10 times further away 
from the imaginary axis (in the complex plane, for continuous-time systems) than 
the eigenvalues of A + BF. The behavior of the closed-loop system should be verified 
since the above is only a rule of thumb. (Refer to any good book on control for further 
discussion—see Section 4.6, Notes.) The estimator gain K may also be determined 
by solving an optimal estimation problem (the Kalman filter). In fact, under the as
sumption of Gaussian noise and initial conditions given earlier (see Section 4.3), F 
and i^ can be found by solving, respectively, optimal control and estimation problems 
with quadratic performance criteria. In particular, the deterministic LQR problem is 
first solved to determine the optimal control gain F*, and then the stochastic Kalman 
filtering problem is solved to determine the optimal filter gain i^*. The separation 
property (i.e.. Separation Theorem—see any optimal control textbook) guaran
tees that the overall (state estimate feedback) Linear Quadratic Gaussian (LQG) 
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control design is optimal in the sense that the control law w*(0 = F''x{t) minimizes 
the quadratic performance index E[\^{z^Qz + u^Ru) dt]. As was discussed in pre
vious sections, the gain matrices F* and K* are evaluated in the following manner. 

Consider 

X = Ax-\- Bu-l-Tw, y = Cx-\-v,z = Mx (4.11) 

with E[ww^] = W > 0 and E[vv'^] = V > 0 and with Q > 0, R > 0 denoting the 
matrix weights in the performance index E[\^(z^Qx + u^Ru) dt]. Assume that both 
(A, B, Q^'^M) and (A, TW^''^, C) are controllable and observable. Then the optimal 
control law is given by 

u{t) = F'^m = -R-^B^Pim, (4.12) 

where P* > 0 is the solution of the algebraic Riccati equation (2.34) given by 

A^Pc + PcA - PcBR-^B^Pc + M^QM = 0. (4.13) 

The estimate x is generated by the optimal estimator 

k = Ax^ Bu + K\y - Cx), (4.14) 

where ^* = Plc^y- (4.15) 

in which P* > 0 is the solution to the dual algebraic Riccati equation (3.21) given 
by 

PeA^ + APe - PeC^V'^CPe + TWT^ = 0. (4 .16) 

Designing observer-based dynamic controllers by the LQG control design 
method has been quite successful, especially when the plant model is accurately 
known. In this approach the weight matrices Q, R and the covariance matrices W, V 
are used as design parameters. Unfortunately, this method does not necessarily lead 
to robust designs when uncertainties are present. This has led to an enhancement of 
this method, called the LQR/LTR (Loop Transfer Recovery) method, where the de
sign parameters W and V are selected (iteratively) so that the robustness properties 
of the LQR design are recovered (refer to Section 4.6). 

Finally, as was mentioned, the discrete-time case is analogous to the continuous-
time case and its discussion will be omitted. 

EXAMPLE 4.1. Consider the system x = Ax + Bu, y = Cx, where 

0 1 0 
0 0 1 
0 2 - 1 

ro 
1 

.0 

11 
1 
0. 

C = [1, 0, 0]. 

This is a controllable and observable but unstable system with eigenvalues of A equal 
to 0, -2 , 1. A linear state feedback control u = Fx -\- r was derived in Example 2.5 to 
assign the eigenvalues of A + BF at -2 , - 1 ± j . An appropriate F to accomplish this 
was shown to be 

F = 
2 - 1 - 2 

- 2 0 \ 

If the state x(t) is not available for measurement, then an estimate x(t) is used instead, 
i.e., the control law u = Fx + r is employed. In Example 3.1, a full-order/full-state 



observer, given by 

X = (A- KC)x + [B, K^ 

was derived [see (3.3)] with the eigenvalues of A - KC determined as the roots of the 
polynomial ad{s) = s^ + d2S^ + dis + do. It was shown that the (unique) K is in this 
case 

K = [d2~ 1, Ji - ^2 + 3, do-di+ 3d2 - 5]^, 

and the observer is given by 

1 -d2 
-di +d2-3 

_-do + di - 3^2 + 5 

1 
0 
2 

0" 
1 

- 1 . 
x + 

0 1 d2-l 
1 1 ^ 1 - ^ 2 + 3 
0 0 do-di+ 3d2 - 5 

Using the estimate x in place of the control state x in the feedback control law causes 
some deterioration in the behavior of the system. This deterioration can be studied experi
mentally. (See the next subsection for analytical results.) To this end, let the eigenvalues 
of the observer be at, say, -10 , -10 , - 10 , let x(0) = [1, 1, 1]^ and x(0) = [0, 0, 0]^, 
plot x(t), x(t), and e(t) = x(t) — x(t), and compare these with the corresponding plots of 
Example 2.5, where no observer was used. Repeat the above with observer eigenvalues 
closer to the eigenvalues of A + BF (say, at - 2 , - 1 ± j) and also further away. In general 
the faster the observer, the faster e(t) -^ 0, and the smaller the deterioration of response; 
however, in this case care should be taken if noise is present in the system. • 

B. Transfer Function Analysis 
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For the compensated system (4.9) [or (4.7)], the closed-loop transfer function T(s) 
between y and r is given by 

3;(^) = T(s)r(s) = [(C + DF)[sI - (A + BF)Y^B + D]r{s), (4.17) 

where y{s) and r{s) denote the Laplace transforms of y{t) and r (0 , respectively. The 
function T{s) was found from (4.9), using the fact that the uncontrollable part of the 
system does not appear in the transfer function (see Section 3.4). Note that T{s) is 
the transfer function of {A + BF, B,C + DF, D], i.e., T{s) is precisely the transfer 
function of the closed-loop system Hp{s) when no state estimation is present (see 
Section 4.2). Therefore, the compensated system behaves to the outside world as 
if there were no estimator present. Note that this statement is true only after suffi
cient time has elapsed from the initial time, allowing the transients to become negli
gible. (Recall what the transfer function represents in a system.) Specifically, taking 
Laplace transforms in (4.9) and solving, we obtain 

(A + BF)]-^BF[sI - (A - KC)]-^] \x(0) 
[si - (A-h BF)]-^ \\e(0) 

= 
[si -(A + BF)] 

0 

+ 

Ks) = [C 

-1 _ 

[si -(A + BF)]-^B 
0 

+ DF, -DF] 
Ms)] 
_e(s)\ 

-[si 

ris) 

+ Dris). (4.18) 
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- [(C + DF)[sI - (A + BF)r^BF[sI - (A 

+ DF[sI - (A + BF)r^]e(0) + T(s)r{s\ 

KC)y 

(4.19) 

which indicates the effects of the estimator on the input-output behavior of the 
closed-loop system. Notice how the initial conditions for the error ^(0) = x(0) - x(0) 
influence the response. Specifically, when ^(0) T̂  0, its effect can be viewed as a 
disturbance that will become negligible at steady state. The speed by which the ef
fect of ^(0) on y will diminish depends on the location of the eigenvalues of A + BF 
and A - KC, as can be easily seen from relation (4.19). 

Two-input controller 

In the following, we will find it of interest to view the observer-based controller 
discussed previously as a one-vector output (u) and a two-vector input (y and r) 
controller. In particular, from x = (A - KC)x -\- (B - KD)u + Ky given in (4.2) 
and u = Fx -\- r given in (4.3), we obtain the equations 

X = {A-KC + BF - KDF)x + [K,B- KD] 

u = Fx + r. (4.20) 

This is the description of the (nth order) controller shown in Fig. 4.5. The state x is 
of course the state of the estimator and the transfer function between u and y, r is 
given by 

u(s) = F[sl -{A-KC + BF - KDF)Y^Ky{s) 

+ [F[sl -{A- KC + BF ~ KDF)Y\B - KD) 4- I]r{s\ (4.21) 

If we are interested only in "loop properties," then r can be taken to be zero, in which 
case (4.21) (for r = 0) yields the output feedback compensator, which accomplishes 
the same control objectives (that are typically only "loop properties") as the original 
observer-based controller. This fact is used in the LQG/LTR design approach. When 
r 7̂  0, (4.21) is not appropriate for the realization of the controller since the transfer 
function from r, which must be outside the loop, may be unstable. Note that an ex
pression for this controller that leads to a realization of a stable closed-loop system 
is given by 

u{s) = [F[sl -{A-KC + BF - KDF)Y^[K, B - KD] -I- [0, /]] 
r(s) 

(4.22) 

(see Fig. 4.6). This was also derived from (4.20). The stability of general two-input 
controllers (with two degrees of freedom) is discussed at length in Section 7.4D of 
Chapter 7. 

r 
Controller 

u 
System y 

FIGURE 4.6 
Two-input controller 



At this point, we find it of interest to determine the relationship of the observer-
based controller and the conventional one-and-two block controller configurations of 
Fig. 4.7. Here, the requirement is to maintain the same transfer functions between in
puts y and r and output u. (For further discussion of stability and attainable response 
maps in systems controlled by output feedback controllers, refer to Section 7.4 of 
Chapter 7.) We proceed by considering once more (4.2) and (4.3) and by writing 

u(s) = F[sl - (A - KC)r\B - KD)u(s) 

+ F[sl - (A - KC)r^Ky(s) + r(s) = Guu(s) + Gyy(s) + r(s). 

This yields 

u(s) = (I- Gur'[Gyy(s) + r(s)] (4.23) 

(see Fig. 4.7). Notice that 

Gy = F[sl - (A - KOr^K, (4.24) 

i.e., the controller in the feedback path is stable (why?). The matrix (/ - Gu)~^ is 
not necessarily stable; however, it is inside the loop and the internal stability of the 
compensated system is preserved. Comparing with (4.21), we obtain 

(/ - GJ~ i = F[sl -{A-KC + BF - KDF)Y\B - KD) + /. (4.25) 

Also, as expected, we have 

(/ - GuT^Gy = F[sl -{A-KC^-BF - KDF)Y^K (4.26) 

(show this). These relations could have been derived directly as well by the use of 
matrix identities; however, such derivation is quite involved. 
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EXAMPLE 4.2. For the system x = Ax + Bu, y = Cx with A = B = 

and C = [0, 1] we have H(s) = C(sl - A)-^B = s/(s^ + 2s + 2). In Example 3.2, it 
was shown that the gain matrix K = [do - 2, di - 2]^ assigns the eigenvalues of the 
asymptotic observer (of A - KC) at the roots of s^ + dis + do. In fact si - (A- KC) = 

s do 
-1 s + di_ 

eigenvalues of the closed-loop system (of A + BF) at the roots of ^̂  + ^i^ + ao. Indeed, 
s 2 

. It is straightforward to show that F = [\ao — 1,2 — ai\ will assign the 

si -{A + BF) 
kao s -\- a\ 

. Now in (4.23) we have 

Gy{s) = F(sI-(A-KC))-^K 

s((do - 2)(iao - 1) + (di - 2)(2 - aQ) + ((do - d,){ao - 2) + {do - 2)(2 - a,)) 
s^ + dis + do 
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(1 - G„)-' = ''+d,s + do _ 

s^ + s(di + a\ - 2) + haodo 

4.5 
SUMMARY 

In this chapter, Hnear state feedback controllers and state observers were studied with 
an emphasis on time-invariant, continuous-time, and discrete-time systems (Sec
tions 4.2 and 4.3). State feedback controllers and state observers were then combined 
(in Section 4.4) to develop observer-based dynamic output feedback controllers. We 
note that output feedback controllers are studied further in Chapter 7. 

Linear state feedback was studied in Section 4.2. First, the need for feedback 
was explained by discussing open- and closed-loop control in the presence of uncer
tainties. System stabilization was then addressed which for the time-invariant case 
leads to the eigenvalue or pole assignment problem. It was pointed out that an op
timal control formulation, such as the Linear Quadratic Regulator (LQR) problem, 
will also lead to stable closed-loop control systems while attaining additional con
trol goals as well. Furthermore, the LQR problem formulation can also be used in 
the time-varying case. The eigenvalue assignment problem was studied at length by 
introducing several such methods. Analogous results for the discrete-time case were 
established in Subsections 4.2E and 4.2F. 

In Section 4.3, full-order observers for the entire state or for a linear function 
of the state were presented. Reduced-order observers and optimal observers were 
also addressed in Subsections 4.3B and 4.3C, respectively. The duality between the 
state feedback controller and state observer problems was explored and emphasized. 
Analogous results for the discrete-time case were also described. Current state esti
mators were introduced and developed in Subsection 4.3D. 

In Section 4.4, state observers, together with state feedback controllers were used 
to derive dynamic output feedback controllers and the Separation Principle was dis
cussed. The degradation of performance in state feedback control when an observer 
is used to estimate the state was explained. An analysis of the closed-loop system 
was carried out, using both state-space and transfer function matrix descriptions. 

4.6 
NOTES 

The fact that if a system is (state) controllable, then all its eigenvalues can arbitrarily 
be assigned by means of linear state feedback has been known since the 1960s. 
Original sources include Rissanen [19], Popov [17], and Wonham [23]. (See also 
remarks in Kailath [10], pp. 187, 195.) 

The present approach for eigenvalue assignment via linear state feedback, using 
the controller form, follows the development in Wolovich [22]. Ackermann's formula 
first appeared in Ackermann [1]. 

The development of the eigenvector formulas for the feedback matrix that assign 
all the closed-loop eigenvalues and (in part) the corresponding eigenvectors follows 



Moore [16]. The corresponding development that uses (A, B) in controller (compan
ion) form and polynomial matrix descriptions follows Antsaklis [3]. Related results 
on static output feedback and on polynomial and rational matrix interpolation can be 
found in Antsaklis and Wolovich [4] and Antsaklis and Gao [5]. Note that the flexi
bility in assigning the eigenvalues via state feedback in the multi-input case can be 
used to assign the invariant polynomials of si - {A -\r BF)\ conditions for this are 
given by Rosenbrock [20]. 

The Linear Quadratic Regulator (LQR) problem and the Linear Quadratic Gaus
sian (LQG) problem have been studied extensively, particularly in the 1960s and 
early 1970s. Sources for these topics include the books by Anderson and Moore [2], 
Kwakemaak and Sivan [11], Lewis [12], and Dorato et al. [9]. Early optimal control 
sources include Athans and Falb [6], and Bryson and Ho [8]. A very powerful idea 
in optimal control is the Principle of Optimality, Bellman [7], which can be stated 
as follows: "An optimal trajectory has the property that at any intermediate point, 
no matter how it was reached, the remaining part of a trajectory must coincide with 
an optimal trajectory, computed from the intermediate point as the initial point". For 
historical remarks on this topic, refer, e.g., to Kailath [10], pp. 240-241. 

The most influential work on state observers is the work of Luenberger. Although 
the asymptotic observer presented here is generally attributed to him, Luenberger's 
Ph.D. thesis work in 1963 was closer to the reduced-order observer presented above. 
Original sources on state observers include Luenberger [13], [14], and [15]. For an 
extensive overview of observers, refer to the book by O'Reilly [18]. 

When linear quadratic optimal controllers and observers are combined in con
trol design, a procedure called LQG/LTR (Loop Transfer Recovery) is used to en
hance the robustness properties of the closed loop system. For a treatment of this 
procedure, see Stein and Athans [21] and contemporary textbooks on multivariable 
control. 
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4.8 
EXERCISES 

4.1. Consider the system x = Ax + Bu, where A 

with u = Ex. 

-0.01 
0 

0 
-0.02 

and B 

1 1 
0.25 0.75J 

(a) Verify that the three different state feedback matrices given by 

-1.1 -3 .7 
0 0 

0 
-1.1 

0 
1.2333 

-0.1 
0 

0 
-0 .1 

all assign the closed-loop eigenvalues at the same locations, namely, at —0.1025 ± 
jO.04944. Note that in the first control law (Fi) only the first input is used, while 
in the second law (F2) only the second input is used. For all three cases plot x(t) = 
[xi(t), X2(t)]^ when x(0) = [0, 1]^ and comment on your results. This example 
demonstrates how different the responses can be for different designs even though 
the eigenvalues of the compensated system are at the same locations, 

(b) Use the eigenvalue/eigenvector assignment method to characterize all F that assign 
the closed-loop eigenvalues at -0.1025 ± 70.04944. Show how to select the free 
parameters to obtain Fi, F2, and F3 above. What are the closed-loop eigenvectors 
in these cases? 

4.2. For the system x = Ax -\- Bu with A E /̂ "><" and B E 7?"^"", where (A, B) is control
lable and m > I, choose u = Fx dis the feedback control law. It is possible to assign 
all eigenvalues of A + BE by first reducing this problem to the case of eigenvalue as
signment for single-input systems (m = 1). This is accomplished by first reducing the 
system to a single-input controllable system. We proceed as follows. 



Let F = g ' f, where g G R^ and / ^ G i?" are vectors to be selected. Let g be 
chosen such that (A, 5^) is controllable. Then/ in 

A + 5 F = A + ( 5 g ) / 

can be viewed as the state feedback gain vector for a single-input controllable system 
(A, Bg), and any of the single-input eigenvalue assignment methods can be used to 
select/ so that the closed-loop eigenvalues are at desired locations. 

The only question that remains to be addressed is whether there exists g such that 
(A, Bg) is controllable. It can be shown that if (A, B) is controllable and A is cyclic, 
then almost any g G R^ will make (A, Bg) controllable. (A matrix A is cyclic if and 
only if its characteristic and minimal polynomials are equal.) In the case when A is not 
cyclic, it can be shown that if (A, B, C) is controllable and observable, then for almost 
any real output feedback gain matrix //, A + BHC is cyclic. So initially, by an almost 
arbitrary choice of H or F = HC, the matrix A is made cyclic, and then by employing 
a g, (A, Bg) is made controllable. The state feedback vector ga in / is then selected so 
that the eigenvalues are at desired locations. 

Note that F = gf is always a rank one matrix, and this restriction on F reduces 
the applicability of the method when requirements in addition to eigenvalue assignment 
are to be met. 

For the present approach, see W. M. Wonham, "On Pole Assignment in Multi-
Input Controllable Linear Systems," IEEE Trans. Autom. Control, Vol. AC-12, 
pp. 660-665, December 1967, and F. M. Brasch and J. B. Pearson, "Pole Place
ment Using Dynamic Compensators," IEEE Trans. Autom. Control, Vol. AC-15, pp. 
34-43, February 1970. For a discussion of cyclicity of matrices see Chapter 2, and 
also P. J. Antsaklis, "Cyclicity and Controllability in Linear Time-Invariant Systems," 
IEEE Trans. Autom. Control, Vol. AC-23, pp. 745-746, August 1978. 
(a) For A, B as in Exercise 4.4, use the method described above to determine F so that the 

closed-loop eigenvalues are at —1 ± jand—2 ± /Comment on your choice for ^. 

(b) For A and B 
0 11 

,1 ij 
eigenvalues are at - 1 . 

characterize all g such that the closed-loop 
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4.3. Consider the system x(k + 1) 

A = 

Ax(k) • 

4 0 

- 1 0 
0 1 

Bu(k), where 

B = 
' 0 

1 
. - 1 

0" 
0 
1. 

Determine a linear state feedback control law u(k) = Fx{k) such that all the eigen
values of A + BE are located at the origin. To accomplish this, use 
(a) reduction to a single-input controllable system, 
(b) the controller form of (A, B), 
(c) det (zl - (A + BF)) and the resulting nonlinear system of equations. 

In each case, plot x(k) with x(0) = [1, 1, 1]^ and comment on your results. In how 
many steps does your compensated system go to the zero state? 

4.4. For the system x = Ax + Bu, where 

[O 1 0 ' l 
0 
0 
0 

o" 
0 
0 
1 

determine F so that the eigenvalues of A + BF are at -
different methods to choose F as you can. 

-1 ± J and - 2 ± / Use as many 
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4.5. Consider the system x = Ax + Bu, where 

0 
2 
1 
0 
2 
0 

0 
1 
0 
0 

- 1 
0 

- 6 
0 
6 
0 
0 

- 2 

3 
- 1 
- 2 

0 
2 
0 

- 1 
- 1 

1 
0 
1 

- 1 

r 0 
- 1 

0 
0 
1 
0 

r 
- 2 
- 1 

0 
2 
0 

B = 

(a) Show that - 1 is an uncontrollable eigenvalue. 
(b) For the control law u = Fx, determine F so that the controllable eigenvalues of 

A + BF are 

- . l , - . 2 , - l ± j , - 2 . 

4.6. Consider the SISO system Xc = AcXc + BcU,y = CcXc + DcU, where {Ac, Be) is in 
controller form with 

0 1 ••• 0 1 [01 

Ac = Be = Cc = [Co, Ci, . . ., Cn-ll 
0 0 ••• 1 

l-ao -ai ••• -an-ij 

and let w = FcX + r = [/o, / i , . . . , fn-i]x + r be the linear state feedback control law. 
Use the Structure Theorem of Chapter 3 to show that the open-loop transfer function is 

H(s) = Cc{sI-Ac)-'Bc + Dc 

_ n{s)^ 
d(s) 

-is-
n-l • • • + CiS + Co 

s^ + an-is^ ^ + • • • + ais + ao 
+ Dc 

and the closed-loop transfer function is 

HF(S) = (Cc + DcFc)[sI - (Ac + BcFc)]-'Bc + Dc 

_ (Cn-l + Dcfn-l)s''-' + • • • + (CiS + Dcfx)s + (CQ + Z ) , / o ) 

s^ + (a„-i /„_!>«-! + ••• + ( « ! - / i > + (ao - /o) 
-hD, 

^ F W 

Observe that state feedback does not change the numerator n(s) of the transfer func
tion, but it can arbitrarily assign any desired (monic) denominator polynomial dF(s) = 
d(s)-Fells, . Thus, state feedback does not (directly) alter the zeros of 
H(s), but it can arbitrarily assign the poles of H(s). Note that these results generalize 
to the MIMO case [see (2.44)]. 

4.7. Consider the system x = Ax + Bu,y = Cx, where 
ro 1 01 [01 

A = \o 0 1 , B = 
1 0 - i j 

C = [1, 2, 0]. 

(a) Determine an appropriate linear state feedback control law u = Fx + Gr(G E R) 
so that the closed-loop transfer function is equal to a given desired transfer function 

^ - W = s^ + \s + 2-

We note that this is an example of model matching, i.e., compensating a given sys
tem so that it matches the input-output behavior of a desired model. In the present 



case, state feedback is used; however, output feedback is more common in model 
matching. 

(b) Is the compensated system in (a) controllable? Is it observable? Explain your an
swers. 

(c) Repeat (a) and (b) by assuming that the state is not available for measurement. 
Design an appropriate state observer, if possible. 

4.8. Consider the nth order system x = Ax + Bu, y = Cx -\- Du. 
(a) Let z = Az + Ky + [FB - KD]u, A E R^'^^, be an asymptotic estimator of the 

linear function of the state, Fx, where F G R^^"- is the desired state feedback gain. 
Consider the control law u = z + r and determine the representation and properties 
of the closed-loop system. 

(b) Consider a reduced-order observer of order n - p (as in Subsection 4.3B) and the 
control law u = Fx + r. Determine the representation and properties of the closed-
loop system. 
Hint: The analysis is analogous to the full-state observer case given in Section 4.4. 
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4.9. Design an observer for the oscillatory system i ( 0 = v{t),v{t) = -COQX(0, using mea
surements of the velocity v. Place both observer poles at 5* = -COQ. 

4.10. Consider the undamped harmonic oscillator xi(t) = X2(t), X2(t) = -(olxi(t) + u(t). 
Using an observation of velocity y = X2, design an observer/state feedback compen
sator to control the position xi. Place the state feedback controller poles at ^ = —(Oo± 
j(x)o and both observer poles a.ts= -COQ. Plot x(t) for x(0) = [1, 1]-̂  and COQ = 2. 

4.11. A servomotor that drives a load is described by the equation (d^O/dt^) + (dOldt) = w, 
where 6 is the shaft position (output) and u is the applied voltage. Choose u so that 6 
and (dO/dt) will go to zero exponentially (when their initial values are not zero). To 
accomplish this, proceed as follows. 
(a) Derive a state-space representation of the servomotor. 
(b) Determine linear state feedback, u = Fx + r, so that both closed-loop 

eigenvalues are at - 1 . Such F is actually optimal since it minimizes J = 
IQW^ + (dO/dtf + u^] dt (show this). 

(c) Since only 9 and u are available for measurement, design an asymptotic state esti
mator (with eigenvalues at, say, - 3 ) and use the state estimate x in the linear state 
feedback control law. Write the transfer function and the state-space description of 
the overall system and comment on stability, controllability, and observability. 

(d) Plot 0 and dSldt in (b) and (c) for r = 0 and initial conditions equal to [1,1]^. 
(e) Repeat (c) and (d), using a reduced-order observer of order 1. 

4.12. Consider the LQR problem for the system x = Ax + Bu, where (A, B) is controllable 
and the performance index is given by 

J{u) = \ e^'''[x^(t)Qx(t)-\-u^(t)Ru(t)]dt, 
Jo 

where a G /?, a > 0 and g > 0, /? > 0. 
(a) Show that u* that minimizes J(u) is a fixed control law with constant gains on 

the states, even though the weighting matrices Q = e^^^Q, R = e^^^R are time 
varying. Derive the algebraic Riccati matrix equation that characterizes this control 
law. 

(b) The performance index given above has been used to solve the question of relative 
stability. In the light of your solution, how do you explain this? 

Hint: Reformulate the problem in terms of the transformed variables x = e^^x. 
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4.13. Consider the system x -- x + u and the performance indices / i , J2 given by 

/»oo /»oo 

Ji= {x\+X2 + u^)dt and J2= (900ix\+X2) + u^)dt. 
Jo Jo 

Determine the optimal control laws that minimize 7i and J2. In each case plot u{t), 
xi{t),X2{t) for x(0) = [1,1]^ and comment on your results. 

4.14. Consider the discrete-time system x{k-\-l) =Ax{k) -\-Bu{k),y{k) = C{k)x{k), where 

1x2 
2^ C=[1 ,0 ] 

and where T is the sampling period. This is a sampled-data system obtained from (the 

double integrator) A .B and C = [1,0] via a zero-order hold and an 

ideal sampler, both of period T (see Chapter 2). 
Consider the cost functional J{u) = Yk=o(y^(^) + 2w^(^))- This represents 

(2.51) with z{k) = y{k),M = C,Q = 1, and R = 2. Determine the control sequence 
{u*{k)},k>0, that minimizes the cost functional, as a function of T. Compare your 
results with Examples 2.7 and 2.9. 

4.15. Consider the system x = 

(a) Use state feedback u 

0 1 
1 0 
= Fx 

x + u,y= [l,0]x. 

to assign"the eigenvalues of A+ BF at —0.5zbj0.5. 
Plot x(t) = [xi(t),X2{t)]'^ for the open- and closed-loop system with x(0) = 
[-0.6,0.4]^. 

(b) Design an identity observer with eigenvalues at — a ± y, where a > 0. What is the 
observer gain K in this case? 

(c) Use the state estimate x from (b) in the linear feedback control law u = Fx, where 
F was found in (a). Derive the state-space description of the closed-loop system. 
If w = Fx + r, what is the transfer function between y and r? 

(d) For x(0) = [-0.6,0.4]^ and x(0) = [0,0]^ plot x\t),x{t),y{t) and u{t) of the 
closed-loop system obtained in (c) and comment on your results. Use a = 1,2,5, 
and 10 and comment on the effects on the system response. 

Remark: This exercise illustrates the deterioration of system response when state 
observers are used to generate the state estimate that is used in the feedback control 
law. 

4.16. Consider the system 

X(^+1) : --Ax{k)+Bu{k)+Eq{k), y{k)=Cx{k), 

where q{k) G R^ is some disturbance vector. It is desirable to completely eliminate 
the effects of q(k) on the output y{k). This can happen only when E satisfies certain 
conditions. Presently, it is assumed that q{k) is an arbitrary r x 1 vector. 
(a) Express the required conditions on E in terms of the observability matrix of the 

system. 

(b) If A = ,C = [1,1], characterize all E that satisfy these conditions. 

(c) Suppose E eR^^^,C eRP^^, and q{k) is a step, and let the objective be to asymp
totically reduce the effects of q on the output. Note that this specification is not as 
strict as in (a), and in general it is more easily satisfied. Use z-transforms to derive 
conditions for this to happen. 
Hint: Express the conditions in terms of poles and zeros of {A, E,C}. 



4.17. Consider the system {A, B, C, D} given hy x = Ax + Bu, y = Cx + Du, where A G 
i?'̂ ><«, B e R^^'P, C G 7?̂ ><̂  D G RP^'P, and detD # 0. 

(a) ShowthatjA,^, C, 5} = {A - BD~^C,BD-\ -D'^Q D~^} is the inverse system 
of{A,B,C,D},i.e., 

C(5/ - A)~^5 + D = H(s)-\ 

where //(i-) = CĈ */ - A) ~ ̂  5 + D is the transfer function matrix of {A, B, C, D). Ver
ify this result using a state-space representation of the system H{s) = 
(s^ + l)/(^2 + 2). 

(b) It is possible to show (a) using results involving state feedback. In particular, let 
(A, B) be controllable, let u = Fx+Gr, and choose the linear state feedback control 
gain matrices (F,G) so that / /F ,GW = (C+ DF)(sI-(A +BF)y^BG + DG = L 
Note that this choice for F makes all eigenvalues unobservable. Use this result to 
prove (a). Hint: It can be shown using matrix identities that HF,G(S) = H(s) X 
[I-F(sI~A)-^C]-^G = H(s)[I+ F(sI-(A+ BF))-^B]G [see (2A3) to (2A5)]. 

Suppose now that det D = 0, but there exists a diagonal polynomial matrix 

X(s) = diag(pi(s)), i = I,..., p, 

with pi{s) monic stable polynomials of degree fi such that 

\imX{s)H{s) = D, 

where det D 9^ 0. 
(c) Show that a realization of X(s)H(s) is x = Ax + Bu, y = Cx + Du, i.e., the A, B 

are the same as above and C, D are some new matrices. 
(d) Determine a control law u = Fx + Gr that when applied to the system {A, B, C, D} 

yields 

HP,G{S) = X-\sl 

a diagonal transfer function matrix with stable poles at the zeros of Pi(s). Note that 
this is the problem of diagonal decoupling via state feedback with stability (see 
below and refer to Subsection 7.4D and the Notes of Chapter 7; see also Exercise 
4.20). In view of the hint in (b), determine a matrix HR{S) SO that H(S)HR(S) = 
X-\s). 

The diagonal decoupling problem via state feedback is to determine a control 
law u = Fx -\- Gr that when applied to the system {A, B, C, D] yields a closed-
loop transfer function HF,G(S) that is diagonal and nonsingular. The conditions for 
existence of solutions can be expressed as follows: let X(s) be the diagonal ma
trix X(s) = diag [5^], where the nonnegative integers {f} are so that all rows of 
lim^^oo X(s)H(s) are constant and nonzero and let 

\imX(s)H(s) = B\ 

Then the system can be diagonally decoupled via state feedback if and only if 
rank B* = p. The integers {f} are called the decoupling indices of the system. 
(Note that 5* = D.) It can be shown that the p X p matrix 5* can also be con
structed from {A, B, C, D} as follows: if the /th row of D is nonzero, this becomes 
the /th row of B*. Otherwise, if f is the lowest integer, for which the /th row 
of CA^i'^B is nonzero, then this row becomes the /th row of B*. 

(e) Consider the system {A, B, C} of Exercise 4.20 and determine whether it can 
be diagonally decoupled via state feedback. Use both the state space matrices 
A, B, C and the transfer function H(s) and verify that they result to the same 
matrix B*. 
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4.18. Consider the system {A, B, C, D} given by x = Ax + Bu, y = Cx + Du with 
detD ^ 0, where (A, B) is controllable and (A, C) is observable. If {A, B, C, D} = 
{A - BD~^C, BD~^, -D'^C, D'^} is its inverse system, show that the zeros of 
{A, B, C, D} are thepoles of {A, 5, C, 5} . Also, show that the poles of {A, B, C, D} are 
the zeros of {A, 5, C, 5} . 

0 0 
0 0 

B = 
1 0 
0 1 

c = 1 0 
1 2 

D = 
1 0 
0 1 

4.19. Consider the system x = Ax + Bu, y = Cx + Du, where 

A = 

Let u = Fx + rbea. linear state feedback control law. 
(a) Determine F so that the eigenvalues of A + BF are - 1 , - 2 and are unobservable 

from y. What is the closed loop transfer function Hf(s)(y = Hpf) in this case? 
Hint: Select the eigenvalues and eigenvectors of A + BF. 

(b) Using the Structure Theorem of Chapter 3, verify that N{s)D~^{s) 
-s+ 1 

5 + 1 0 
1 5 + 2 

5 0 
0 s 

0 

5 + 2 
= H(s) = C(sl ~ A)-^B + D. 

Express your results in (a) as//(5)M(5) = iN(s)D-\s))(D(s)D^\s)) = N(s)Dp\s) 
Hf(s) (see Subsection 4.2D). 

4.20. Consider the system x = Ax + Bu, y = Cx, where 

Note that 

Is it possible to determine the pair (F, G)mu = Fx + Gr so that 

5 + 1 

HFAS) 

r 0 1 0] 
0 0 0 

. - 1 0 1. 

H{s) = N{s: 

B = 

)D-\s) = \ 

ro 0] 
1 0 

Lo 1. 

5 + 1 
1 

c = 

0 1 
- 1 [1 5 

f l 
1 1 

.1 0 

0 
- 1 

- 1 

0 
- 1 

(5 + 2)(5 + 3) 

0 
5 + IJ 

If your answer is yes, determine such a pair (F, G). 
Note that if it is required that Hf^cis) be diagonal with poles at any stable locations, 

then this is the problem of diagonal decoupling via state feedback. 

Hint: Write H(s) = \ f. H(s) and work with H(s) to determine (F, G) so 

that Hf^cis) is diagonal with poles at desired locations. 

4.21. Consider the controllable and observable SISO system x = Ax + Bu,y = Cx with 
H(s) = C(sl - A)~^B. 
(a) If A is not an eigenvalue of A, show that there exists an initial state XQ such that 

the response to u(t) = e^\ r > 0, is y{t) = H{X)e^\ t > 0. What happens if A is a 
zero of//(5)? 

(b) Assume that A has distinct eigenvalues. Let A be an eigenvalue of A and show that 
there exists an initial state XQ such that with "no input" {u{t) = 0), y{t) = ke^\ t > 
0, for some k B R. 



4.22. 

4.23. 

4.24. 

4.25. 

4.26. 

For the discrete-time case, derive expressions that correspond to formulas (2.40) to 
(2.45) of Subsection 4.2D. 

Consider the controllable and observable SISO system x = Ax-\-bu-\- bw,y = ex, 
where w is a constant unknown disturbance modelled by w = 0. If an estimate of 
w,w is available, then we may attempt to cancel out the disturbance by selecting 
u = —w. For this, consider w to be an additional state for the original system and 
determine an observer for this augmented system. 
(a) Show that the augmented system is observable if and only if 5 = 0 is not a zero 

of the system [or of H{s) =c{sl—A)~^b]. Hint: Use the eigenvalue criterion for 
observability. 

(b) Assume that {A,b,c} is stable (or has been stabilized) and select the gain of 
the observer to be K^ = [0,^], where k e R. Show that the compensator u = 
—w, which asymptotically cancels out the constant disturbance, is an integral 

feedback compensator. 
(c) Consider the original system H{s) = c{sl —A)~^b and use the results of Sub

section 4.4B to design an output compensator that compensates for the above 
constant disturbance. For simplicity assume that H{s) is stable. Hint: There 
must be a pole ais = 0. Note that the conditions in (a) must be satisfied. 

Show that {A + BHC,B,C} is controllable and observable for any H G RP"" 
only if {A,B,C} is controllable and observable. 

if and 

Consider the system 

2 

x{k+l)= I 0 
0 

x{k) + 
"1 0" 
0 1 
0 0 

u{k),y{k)-
0 
0 

x{k). 

Is it possible to determine a linear state feedback law u{k) = Fx{k) + r{k) so that 
the eigenvalues of A-\-BF remain at exactly the same locations while {A-\-BF,B, C} 
becomes observable? If the answer is affirmative, determine such F. 

Static, or constant output feedback u = Hy-\-r,H G R'^^P^ can be used to compensate 
a system X = Ax-\-Bu, y = Cx, where A e R^^^,C e R^^^ and assign the eigenvalues 
of A + BHC of the closed-loop system i = (A + BHC)x -\-Br, y = Cx. In contrast to 
state feedback compensation, in general the closed-loop eigenvalues cannot be ar
bitrarily assigned using H even when {A,B,C} is controllable and observable. It can 
be shown that one can arbitrarily assign "almost always" at least min {m-\-p — l,n) 
eigenvalues using / / ; note that when p = m = 1, only one eigenvalue can be 
arbitrarily assigned using H. To illustrate, 
(a) Let A,B be as in Exercise 4.1, let C = [1,1], and determine H so that the 

eigenvalues of A + BHC are at -0.1025 ± y 0.04944. 
(b) Let A,B be as in Exercise 4.3, let C = [1,0,1], and determine H so that the 

eigenvalues of A-\-BHC are all at zero. 
(c) For an example (of a "nongenetic" case) where fewer than p-\-m—l eigenval

ues can be arbitrarily assigned, consider 

A = 

"0 1 0 0" 
0 0 0 0 
0 0 1 0 
0 0 0 0 

1 

and show that only 2 < p-\-m 
aeR. 

"0 
1 
0 
0 

0" 
0 
0 
1 

c 
0 
1 

1 = 3 eigenvalues can be assigned to i^ /a^ 
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Remark: When only some of the n eigenvalues are assigned, as was the case when 
using constant output feedback, care should be taken to guarantee that the remaining 
eigenvalues will also be stable, since H will typically shift all eigenvalues. 

4.27. (Inverted pendulum) Consider the inverted pendulum described in Exercise 1.20 of 
Chapter 1. The linearized state-space model x 
friction is zero is given by 

Ax + Bu(dibouiy = 0) assuming the 

Xi 

X2 

X3 
= 

"0 

1 

0 

.0 

g , ^8 
L ML 

0 
mg 
M 

0 

0 

0 

0 

1 

0] 

0 

0 

oj 

r̂ i 
\X2 

1x4 

+ 

r 1 

ML 
0 
1 

M 
0 

0 
1 
0 
0 

11 
0 

- 1 
0 

0 
0 
0 
1 

ol 
0 

0 

OJ 

\xi 

\x2 

Us 
\M 

+ 

- l " 
0 

1 
0 

u, 

where xi — 6, X2 = 9, X3 = s, X4 = s, and u = îi, the force applied to the cart. Let 
L = 1 m, m = 0.1 kg, M = 1 kg, and ^ = 10 m/sec^ to obtain 

Xi 

X2 

X3 

X4 

(a) Determine the eigenvalues and eigenvectors of A. 
(b) Plot the states when x(0) = [0.01, 0, 0,0]^. Repeat for zero initial conditions and 

u the unit step. Comment on your results. 
(c) Determine the linear state feedback control law u = Fx + r so thai the closed-loop 

system eigenvalues are at -10 , - 3 , - 1 , and -0 .5 . 
(d) Use the LQR formulation to determine a stabilizing linear state feedback control 

law u = Fx + r. Comment on your choices for the weights. 
(e) Letx(O)^ = [0.5, 0, 0, 0]. Repeat (b) for the closed-loop system derived in (c) and (d). 

4.28. (Armature voltage-controlled dc servomotor) Consider the armature voltage-
controlled dc servomotor of Exercise 2.71 in Chapter 2. Let y = xi. 
(a) Design a full-order state observer with eigenvalues at - 5 , - 1 , and -0 .5 to derive 

an estimate x(t) of the state x(t). For x(Of = [77/6, 0,0], x(Of = [0,0, 0] plot the 
error e(t) = x(t) - x(t) for r > 0 and comment on your results. 

(b) Assume that the system is driven by a zero-mean Gaussian, white-noise w and 
the measurement noise v is also zero-mean Gaussian, white noise, where w and v 
are uncorrected in time with covariances W = 10"^ and V = 10~^, respectively. 
The state-space description of the system is now x = Ax + Bu + Fw, y = Cx + v, 
where F = [1,1, 0]^. Design an optimal observer and compare with (a). 

4.29. (Automobile suspension system) Consider the automobile suspension system of Ex
ercise 2.74 in Chapter 2. Assume that the state-space description of the system is i: = 
Ax + Bu + Tw,y = Cx + v with A, B from Exercise 2.74, C = [0,0, 1, 0], and F = 
[ - 1 , 0, 0, 0]"^. Both process noise w and measurement noise v are assumed to be uncor-
related, zero-mean Gaussian, stochastic processes with covariances W = Ix 10""̂  and 
V = 10~^, respectively. Let the damping constant c = 750 N sec/m and the velocity 
of the car V = 18 m/sec. 
(a) Design an optimal LQG observer-based dynamic controller. Comment on your 

choice of the weights. 
(b) Using the controller from (a), plot the states x(t) and the control input u(t) fort ^ 0 

when x(0) = [1, 0, 0, 0]^, w = 0, v = 0, and the reference input of the system is 
r(t) = I sin(27rvr/20). 



4.30. (Aircraft dynamics) Consider the systems describing the aircraft dynamics in Exer
cise 2.76 in Chapter 2. 

(a) For the state-space representation of the longitudinal motion of the fighter AFTI-
16, design a linear state feedback control law u = Fx + r so that the closed-loop 
system eigenvalues are at -1.25 ± 7*2.2651 and -0.01 ± j0.095. 

(b) Let y = Cx with C = [0,0, 1, 0]. Design a full-order state observer with eigen
values at 0, -0 .421, -0.587, and - 1 . 

(c) Let the system be compensated via the state feedback control law u = Fx + r, 
where x is the output of the state estimator. Derive the state-space representation 
and the transfer function between y and r of the compensated system. Is the system 
fully controllable from r? Explain. 

(d) Use the LQR formulation to determine a stabilizing linear state feedback control 
law u = Fx + r. Comment on your choices for the weights. 

(e) Assume that process noise w and measurement noise v are present and that both 
are uncorrelated, zero-mean Gaussian, stochastic processes with covariances W = 
10""̂  and V = 10~^, respectively. Let T = [0, 1, 1, 0]^ and design an optimal ob
server. 

(f) Design an optimal LQG observer-based dynamic controller and determine the 
eigenvalues of the closed-loop system. Discuss your answer in view of the results 
in (c). 
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4.31. (Chemical reaction process) [C. E. Rohrs, J. M. Melsa, and D. G. Schultz, Linear 
Control Systems, McGraw-Hill, 1993, p. 70.] Consider the process depicted schemat
ically in Fig. 4.8. A reaction tank of volume V = 5, 000 gallons accepts a feed of 
reactant that contains a substance A in concentration CA,O- The feed enters at a rate of 
F gallons per hour and at a temperature TQ. In the tank some of the reactant A is turned 
into the desired product B. The output product is removed from the tank at the same 
rate that the feed enters the tank. The mixture in the tank has a uniform concentration 
of A, CA and a uniform temperature T. 

Temperature 

Product 

FIGURE 4.8 
Chemical reaction process 
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The temperature of the water in the jacket is assumed uniform at Tj. The temperature 
of the water flowing into the jacket is TIQ. The system is controlled by measuring the 
temperature T in the tank and controlling the flow of the water in the jacket Fj by 
activating a valve. 

The equations describing the evolution of CA, T, and Tj are 

CA 

t 

CA,Q • 

To-

V 
r-y^iCA^~^^2/n 

-T-hhCAC-^^^'^^-hiT-Tj) 

TJ = TT'^J'^ ' 
yj V 

-TJ + k5(T - TJ), 

where CA,O = 0.5, TQ = 70°F, Tj^o = 70°F, and k\, k2, fe, k4, ks are appropriate con
stants. 

A linearized state-space model x = Ax + Bu, y = Cx around the equilibrium 
point CA = 0.245, f = 140, fj = 93.3 is given by 

2.13 X 10-4 
2.9 
6.5 

'xi 

X2 

> 3 . 

= 

'-1.1 - 2 
696 

0 

y = [0,1,0] 
'xi' 

X2 

. •^3 . 

0 1 
2.4 
-19.5J 

pr 
U2 
L-^3. 

+ 
" 0 " 

0 
.-0.16_ 

where x\ = 8CA, X2 = ST, X3 = STj, and u = 8Fj. 
(a) Determine the eigenvalues and eigenvectors of A. Is the system asymptotically 

stable? Explain. 
(b) Let the input be the unit step indicating that the cooling flow is increased and 

held at the new value. Plot the states for /̂  > 0 assuming zero initial conditions 
(equilibrium values). 

(c) Plot the states for f > 0 for zero input but with an initial concentration of substance 
A slightly larger than the equilibrium value, namely, x(0) = [0.1, 0, 0]^. 

(d) Determine the linear state feedback control law u = Fx + r so that the closed-loop 
system eigenvalues are at - 5 , - 1 0 , and - 1 0 . 

(e) Use the LQR formulation to derive a stabilizing linear state feedback control law 
u = Fx + r. Comment on your choices of the weights. 

(f) Repeat (b) and (c) for the closed-loop system derived in (c) and (d). 

4.32. (Economic model for national income) Consider the economic model for national 
income in Exercise 2.68 in Chapter 2. 
(a) In which cases, (i), (ii), or (iii), is the system reachable? 
(b) For case (i), design a linear state feedback control law to place both eigenvalues 

at zero. This corresponds to a strategy for government spending that will return 
deviations in consumer expenditure and private investment to zero. 

4.33. (Read/write head of a hard disk) Consider the discrete-time model of the read/write 
head of a hard disk described in Exercise 2.77 of Chapter 2. 
(a) Find a linear state feedback control law to assign both eigenvalues at zero. Plot the 

response of the discrete-time closed-loop system to a unit step and comment on 
your results. 

(b) Let y(k) = 6(k) be the position of the head at time k. Design an appropriate ob
server of the state and use it together with the control law determined in (a). Plot 
the response to a unit step and compare your results to the results in (a). 



C H A P T E R S 

Realization Theory and Algorithms 

When a linear system is described by an internal description it is straightforward 
to derive its external description. In particular, given a state-space description for 
a linear system, the impulse response, and also the transfer function in the case of 
time-invariant systems, were readily expressed in terms of the state-space coefficient 
matrices in previous chapters. In this chapter the inverse problem is being addressed: 
given an external description of a linear system, specifically, its transfer function or 
its impulse response, determine an internal, state-space description for the system 
that generates the given transfer function. This is the problem of system realiza
tion. The name reflects the fact that if a (continuous-time) state-space description is 
known, an operational amplifier circuit can be built in a straightforward manner to 
realize (actually simulate) the system response. 

The ability of reaUzing systems that exhibit desired input-output behavior is very 
important in applications. In the design of a system (such as a controller or a filter), 
the desired system behavior is frequently specified in terms of its transfer function, 
which is typically obtained by some desired frequency response. One must then 
implement a system by hardware or software that exhibits the desired input-output 
behavior described by the transfer function. This in effect corresponds to building a 
system by combining typically less complex systems in parallel, feedback, or cas
cade configurations. In terms of block diagrams, this corresponds to building a sys
tem by combining simpler blocks. There are of course many ways, an infinite number 
in fact, of realizing a given transfer function. Presently, we are interested in realiza
tions that contain the least possible number of energy or memory storage elements, 
i.e., in realizations of least order (in terms of differential or difference equations). 
To accomplish this, the concepts of controllability and observability play a central 
role. Indeed, it turns out that realizations of transfer functions of least order are both 
controllable and observable. The theory of realizations presented in this chapter 
also sheds light on the behavior of systems that are built by interconnecting several 
other systems, as for example, in feedback control systems. In such systems, possible 
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(see also Subsections 7.3B and 7.3C in Chapter 7). 

5.1 
INTRODUCTION 

The goal of this chapter is to introduce the theory of realization, to establish fun
damental existence and minimality results, and to develop several realization al
gorithms. The emphasis is on time-invariant, continuous-time, and discrete-time 
systems. In what follows, we first provide a glimpse of the contents of this chapter. 
This is followed by some guidelines for the reader. 

A. Chapter Description 

In Section 5.2, the problem of system realization is introduced, both for continuous-
time and discrete-time systems. State-space realizations of impulse and pulse re
sponses for time-varying and time-invariant systems and of transfer functions (in 
the case of time-invariant systems) are discussed. 

In Section 5.3, the existence of state-space realizations is considered first, and 
results are presented for both time-varying and time-invariant cases. The remainder 
of our development of realization theory and algorithms in this chapter concentrates 
primarily on time-invariant, continuous-time, and discrete-time systems. Minimal 
or irreducible realizations are discussed. For the time-invariant case it is shown that 
a state-space realization is irreducible if and only if it is both controllable and ob
servable. Also, it is shown that if two realizations are minimal, then they must be 
equivalent. The order of minimal realizations is considered next, and it is shown that 
it can be determined directly from a given transfer function matrix without first find
ing a realization. This is accomplished by use of the pole polynomial of the transfer 
function that determines its McMillan degree and also by use of the Hankel matrix of 
the Markov parameters of a system. In addition, it is shown that in any minimal real
ization, the pole polynomial of the transfer function is the characteristic polynomial 
of the matrix A. 

In Section 5.4, a number of realization algorithms are presented. The use of dual
ity in obtaining realizations is also highlighted. Algorithms for obtaining realizations 
in controller and observer form are introduced. The SISO case is treated first in the 
interest of clarity. Realizations with the matrix A in diagonal or block companion 
form are also derived. Finally, singular-value decomposition is used to obtain trans
fer function realizations, such as balanced realizations, in a computationally efficient 
manner. 

B. Guidelines for the Reader 

In this chapter state-space realizations of input-output descriptions, which are pri
marily in transfer function matrix form, are developed. In the present treatment, 



fundamental results are emphasized. We point out that realization theory is among 
the first important principal topics studied in system theory. Existence and minimal
ity results of state-space realizations are established and several realization algo
rithms are developed. We note that detailed summaries of the contents of the sections 
are given at the beginning of Sections 5.3 and 5.4. 

Existence of time-invariant state-space realizations of a transfer function matrix 
H(s) is addressed in Subsection 5.3A, Theorem 3.3, while minimality is fully ex
plored in two results, Theorems 3.9 and 3.10 in Subsection 5.3B. It is useful to be 
able to determine the order of a minimal realization directly from H(s) and this is 
discussed in Subsection 5.3C; we note that the pole polynomial of H{s) introduced 
in Section 3.5 of Chapter 3 is required in one of the approaches presented. In Section 
5.4, several realization algorithms are developed. The use of duality in realizations 
is emphasized in Subsection 5.4A. 

At a first reading, the reader may concentrate on minimality of realizations in 
Subsection 5.3B and on the order of minimal realizations in Subsection 5.3C; then 
study one or two realization algorithms, e.g., the one that leads to a realization with 
A diagonal in Subsection 5.4C, and to a realization with A, B in controller form in 
Subsection 5.4B. It is also important to study Subsection 5.4A on realizations us
ing duality. If realization algorithms with good numerical properties are of primary 
interest, then the reader should concentrate on Subsection 5.4E, where realizations 
using singular-value decomposition are presented. 
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5.2 
STATE-SPACE REALIZATIONS OF EXTERNAL DESCRIPTIONS 

In this section, state-space realizations of impulse responses for time-varying and 
time-invariant systems and of transfer functions for time-invariant systems are in
troduced. Continuous-time systems are discussed first in Subsection 5.2A, followed 
by discrete-time systems in Subsection 5.2B. 

A. Continuous-Time Systems 

Before formally defining the problem of system realization, we first review some of 
the relations that were derived in Chapter 2. 

We consider a system described by equations of the form 

X = A(t)x + B(t)u, y = C{t)x + D{t)u, (2.1) 

where A{t) E T̂ ^̂ ^̂  B{t) G R'''''^, C{t) G i^^^", and D{t) G /^^^^ are continuous 
matrices over some open time interval {a, b). The response of this system is given 
by 

y{t) = C{t)(S^{t,tQ)xo + H{t,T)u{T)dT, (2.2) 

where ^{t, to) is the nX n state transition matrix of i: = A(t)x, x(to) = XQ (the ini
tial condition), and H(t, r) is the p X m impulse response matrix of this system, given 
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by 

H{t,T) = 
C(t)^(t, T)B(T) + D(t)8(t - T), for t > r, 

0, for t < T. 

In the time-invariant case, (2.1) assumes the form 

X = Ax + Bu, y = Cx + Du, 

and the system response is in this case given by 

y(t) = Ce^^xo + H(t, T)u(r) dr, 

(2.3) 

(2.4) 

(2.5) 

where, without loss of generality, ô was taken to be zero. The impulse response is 
now given by the expression 

H{t, T) 
Ce^^'-^^B + DS(t - T), for t ^ r, 

0, for t < T. 
(2.6) 

Recall that the time invariance of system (2.4) implies that H(t, r) = H(t - r, 0), and 
therefore, r, which is the time at which a unit impulse input is applied to the system, 
can be taken to equal zero (r = 0), without loss of generality, to yield H(t, 0). The 
transfer function matrix of the system is the (one-sided) Laplace transform of H(t, 0), 
namely. 

H(s) = iE[H(t, 0)] = C(sl - A)~^B -h D. (2.7) 

Let {A(0, B(t), C{t\ D(t)} denote the system description (2.1) and let H(t, r) be 
a /? X m matrix with real functions of arguments t and r as entries. 

DEFINITION 2.1. A realization ofH(t, r) is any set{A(0, B(t\ C{t), D{t)}, the impulse 
response of which is H{t, r). That is, {A{t\ B(t\ C(t\ D(t)} is a reahzation of H(t, r) if 
(2.3) is satisfied. (See Fig. 5.1.) • 

u{t) 
B{t) + ^7^ '^^\ \ 

+ 

U(fo) 

J 
n 

\ A{t) 

x{t) 

D{t) 

C{t) 

+ 

ys>^ 

FIGURE 5.1 
Block diagram reahzation of {A(t\ B{t), C{t), D(t)} 

Note that it is not necessary that any given pX m matrix H(t, r) be the impulse 
response to some system of the form (2.1). The conditions on H(t, r) under which a 
realization {A(t), B{t), C{t), D(t)} exists are given in the next section. 



In the time-invariant case, a realization is commonly defined in terms of the 
transfer function matrix. We let {A, B, C, D] denote the system description given in 
(2.4) and we let H{s) be a p X m matrix with entries that are functions of s. 

DEFINITION 2.2. A realization of H{s) is any set {A, B, C, D}, the transfer function 
matrix of which is H{s), i.e., {A, B, C, D] is a realization of H{s) if (2.7) is satisfied. • 

As will be shown in the next section, given H{s), a condition for a realiza
tion {A, B, C, D} of H{s) to exist is that all entries in H{s) are proper, rational func
tions. 

Alternative conditions under which a given set {A, B, C, D] is a realization of 
some H{s) can easily be derived. To this end, we expand ^(5") in a Laurent series to 
obtain 

H{s) - //o + ^ 1 ^ " + ^2^~ + (2.8) 

DEFINITION 2.3. The terms Hu i = 0,1, 2, 
the system. 

in (2.8) are the Markov parameters of 

The Markov parameters can be determined by the formulas 

HQ = lim H(sl Hi = lim s(H(s) - HQI 

H2 = lim s^(H(s) -Ho- His'^l 
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and so forth. Recall that relations involving the Markov parameters were alluded to 
earlier in Exercise 2.63 of Chapter 2. 

THEOREM 2.1. The set {A, B, C, D) is a realization of ^(^) if and only if 

if0 - ^ and Hi = CA^'^B, i = 12,.... 

Proof, H(s) = D + C(sl - Ay^B = D + Cs'^I - s'^Ay^B = D+ 

(2.9) 

Cs-'{Y.U{s-'Am = D + Y.U[CA^-'B]s-
(2.8). 

, from which (2.9) is derived in view of 

By definition, the impulse response description of a linear system contains no 
information about the initial conditions, or the initial energy stored in the system. 
In fact, H{t, T) is determined by assuming that the system is at rest before r, the 
time when the impulse input 8{t - T) is applied. It is therefore apparent that dif
ferent state-space realizations of H{t, r) will yield the same zero-state response, 
while their zero-input response, which depends on initial conditions, can be quite 
different. 

Note that if a realization of a given H{t, r) exists, then there are infinitely many 
realizations. Given {A{t), B(t), C{t), D(t)}, a realization of H(t, r), other realizations 
with the same dimension n of the state vector can readily be generated by means of 
equivalence transformations. Recall from Chapter 2 that equivalent representations 
generate the same impulse response. To illustrate, in Example 3.1 of Section 5.3, the 

system i: - P(t)N(t)u(t) mdy(t) = M(t)P~\t)x(t) with N(t) = ' 
-t 

and M(t) 

[t, 1] is a realization of H(t, r) = t - r for any P(t) such that P ^(t) and P(t) exist 
and are continuous. 



388 B. Discrete-Time Systems 
Linear Systems 

The problem of realization in the discrete-time case is defined as in the continuous-
time case: given an external description, either the unit pulse [(discrete) impulse] 
response H{k, €), or in the time-invariant case, typically the transfer function ma
trix H{z) (see Chapter 2), determine an internal state-space description, the pulse 
response of which is the given H{k, £). 

The realization theory in the discrete-time case essentially parallels the 
continuous-time case. There are of course certain notable differences because in 
the present case the realizations are difference equations instead of differential 
equations. We point to these differences in the subsequent sections. 

Some of the relations derived in Section 2.7 of Chapter 2 will be recalled next. 
We consider systems described by equations of the form 

x(k + 1) - A(k)x(k) + B(k)u(k\ y(k) = C(k)x(k) + D(k)u(k), (2.10) 

where A(k) G 7?"><", B(k) G Ĵ ^X'̂ , C(k) G /?^x^ and D(k) G RP'''^, The response 
of this system is given by the expression 

k-i 
y(k) = C(k)<i>(k ko)xQ + ^ H(k i)u{i), k > k^, (2.11) 

where ^{k, ko) denotes the n X n state transition matrix of the system x(k + 1) = 
A(k)x(kX x(ko) = xo is the initial condition, and H(k, i) is the p X m pulse response 
matrix given by 

H(k i) = < 

C(k)<^(k, i + l)B{i\ k > /, 

D(k), k = /, (2.12) 

0, k< i. 

The state transition matrix can readily be determined to be 

{ A{k- l)A(fc-2)---A(€), yt>€, 
^{k,^ = \ (2.13) 

[ /, k = t 
In the time-invariant case, (2.10) assumes the form 

x{k + 1) - Ax{k) + Bu{k), y(k) = Cx(k) + Du(kl (2.14) 

and the system response of (2.14) is given by 

k-l 

y(k) = CA^xo + X ^ ( ^ ' *̂)"(̂ *)̂  ^ ^ 0, (2.15) 

where, without loss of generality, ^o was taken to be zero. The pulse response is now 
given by 

(2.16) Hik, i) = < 

CA'' 

D, 

0, 

-(i+i)B, k> i, 

k = /, 

k< i. 



Recall that since the system (2.14) is time-invariant, H{k, i) = H(k - i, 0) and /, 
the time the pulse input is applied, can be taken to be zero, to yield H(k,0) as the 
external system description. The transfer function matrix for (2.14) is now the (one
sided) z-transform of H(k, 0). We have. 

H(z) = %{H{k, 0)} = C(zl - Ay^B + D. (2.17) 

Now let {A{k), B(k), C(k), D(k)} denote the system description (2.10) and let 
H(k, /) be a /7 X m matrix with real function entries of arguments k and / defined for 
k^ /. 

DEFINITION 2.4. A realization of H(k, i) is any set of matrices {A(k), B(k), C(k), 
D(k)}, the pulse response of which is H(k, i). • 

Let H(z) be a /? X m matrix with functions of z as entries. 

DEFINITION 2.5. A realization of H{z) is any set {A, B, C, D], the transfer function 
matrix of which is H{z). • 

A result that is analogous to Theorem 2.1 is also valid in the discrete-time case 
[with H{s) replaced by H{z)\ (show this). The remarks following Theorem 2.1 con
cerning the zero-state response of a system and the uniqueness of realizations are also 
valid in the present case. Thus, all realizations of the pulse response or the transfer 
function will yield the same zero-state response, while their zero-input response, 
which depends on initial conditions, can be quite different. Also, if a realization of 
H{k, i) or H{z) exists, then there exists an infinite number of realizations (show this). 

5.3 
EXISTENCE AND MINIMALITY OF REALIZATIONS 
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In this section the existence and minimality of internal state-space realizations of a 
given external description are determined. 

The existence of realizations is examined first. Given 3. p X m matrix H(t, r), 
conditions under which this matrix is the impulse response of a linear system de
scribed by equations of the form i: = A(t)x + B(t)u,y = C(0^ + ^ ( 0 ^ are given in 
Theorem 3.1. Theorem 3.2 provides the corresponding result for time-invariant sys
tems. For such systems, H(s) is typically given in place of H(t, r), and conditions 
for H(s) to be the transfer function matrix of a system described by equations of the 
form X = Ax + Bu, y = Cx -\- Du are given in Theorem 3.3. It is shown that such 
realizations exist if and only if H(s) is a matrix of rational functions with the prop
erty that lims-^oo H(s) is finite. The corresponding results for discrete-time systems 
are then developed and presented in Theorems 3.5, 3.6, and 3.7. 

Realizations of least order, also called minimal or irreducible realizations, are 
of interest to us since they realize a system, using the least number of dynamical 
elements (minimum number of elements with memory). The main emphasis in this 
section is on time-invariant systems and realizations of transfer function matrices 
H(s). The principal results are given in Theorems 3.9 and 3.10, where it is shown 
that minimal realizations are controllable (-from-the-origin) and observable and 
that all minimal realizations of H(s) are equivalent representations. The order of 
any minimal realization can be determined directly without first determining a min
imal realization, and this can be accomplished by using the characteristic polynomial 



390 and the degree of H(s) (Theorem 3.11) or from the rank of a Hankel matrix (Theorem 
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well with no substantial changes. This is discussed at the end of the section. 

A. Existence of Realizations 

Continuous-time systems 

Let the /? X m matrix H(t, r) with t,T E (a, b) be given. A realization of H(t, r) 
was defined in the previous section as an internal description of the form (2.1) de
noted by {A{t), B{t), C{t), D(t)}, the impulse response of which is H(t, r). 

THEOREM 3.1. H(t, T) is realizable as the impulse response of a system described by 
(2.1) if and only if H(t, r) can be decomposed into the form 

H(t, T) = M(t)N(T) + D(t)8(t - r) (3.1) 

for r > T, where M, A'', and D SLYQ p X n, n X m, and p X m matrices, respectively, with 
continuous real-valued entries and with n finite. 

Proof. (Sufficiency) Assume the decomposition (3.1) is true and consider the realization 
{0, A (̂0, M(t\ D(t)}, which yields the system x = N(t)u(tX y(t) = M(t)x(t) + D(t)u(t). 
The state transition matrix is ̂ (t, T) = /, since the homogeneous equation is in this case 
X = A(t)x = 0. Applying (2.3), we obtain as the impulse response, H(t, r) = M(t) • / • 
N(T) + D(t)8(t - r) for t > r, and H(t, T) = Ofovt < r, which equals H(t, r). 

(Necessity) Let (2.1) be a realization of H(t, r). Then (2.3) is true, and in view 
of the identity <!>(/, r) = <|)(/, (T)^((7, T), H(t, r) can be written for r > r as H(t, r) = 
[C(t)<^(t, a)][<i>(a, T)B(T)] + D(t)8(t - T) = M(t)N(T) + D(t)8(t - r), where M(t) = 
C(t)(!?(t, a) and N(r) = (t>(a, T)B(T) (a fixed). Therefore, the decomposition (3.1) is 
necessary. • 

Since the matrices in (2.1) are taken to be continuous, we require in Theorem 
3.1 that M(t), N(t), and D(t) be continuous, although this restriction is not necessary. 

n 
EXAMPLE 3.1. Let H(t, T) = t - T, t > T. Then H(t, r) = [t, 1] 

1 

= M(t)N(T). 

Therefore, x 
-t 

u(t), y(t) = [t, l]x(t) is a reahzation. 

EXAMPLE 3.2. Let H(t, r) = l/(t - T). In this case a decomposition of the form (3.1) 
does not exist, and therefore, H(t, r) does not have a realization of the form (2.1). • 

If a system is time-invariant and is described by (2.4), its impulse response is 
given by (2.6). The following result establishes necessary and sufficient conditions 
for the existence of time-invariant realizations. 

THEOREM 3.2. H(t, T) is realizable as the impulse response of a system described by 
(2.4) if and only if H(t, r) can be decomposed for ^ > r into the form 

H(t, T) = M(t)N(T) + D(t)8(t - T), (3.2) 

where M(t) and N(t) are differentiable and 

H(t, T) = H(t - T, 0). (3.3) 

The first part of this result is identical to Theorem 3.1. For time invariance, we require 
in addition relation (3.3) and differentiability. 



Proof, {Necessity) Let (2.4) be a realization. Then in view of (2.6), H{t, r) = H(t -
T,0) = Ce^^'-'^B + D8{t - r) = {Ce^'Xe'^-'B) + Dd{t - r). Let M(t) = 
Ce^\ N(T) = e'^^B, and note that both M(t) and N(t) are differentiable. 

(Sufficiency) The proof of this part is much more involved. The complete proof 
can be found, for example, in Brockett [1], p. 99. In the following, we give an outline 
of the proof (a proof by construction). First, it can be shown that given H(t, r) with 
decomposion (3.1), a realization of the form x = N(t)u(t\ y(t) = M(t)x(t) + D(t)u(t) 
can be found where n, the dimension of the state vector, is the smallest possible. Note that 
this system is controllable and observable. Now define W(to, ti) = j / ^ N(a)N^(a)da 
and Wi(to, h) = j^^^ [(d/da)N(a)] N^(a)da. Then, using H(t, r) = H(t - T, 0), it can 
be shown that {A, B, C, D) - {-Wi(tQ, h)W~\tQ, h), N(0), M(0), D} is a realization of 
H(t, T). Note that W~H^> ^i) exists because {0, N{t), M{t), D] was taken to be of minimal 
dimension. Therefore, this system is controllable. • 

EXAMPLE 3.3. Consider again H{t, r) = t - T given in Example 3.1, where a time-
varying realization was derived. This H(t, r) certainly satisfies the conditions of Theo
rem 3.2, and thus, a time-invariant realization x = Ax + Bu, y = Cx + Du also exists. 
Unfortunately, the proof of Theorem 3.2 does not provide us with a means of deriving 
such realizations. In general it is easier to consider the Laplace transform of H(t, r) and 
use the algorithms that we will develop in Section 5.4 to show that a time-invariant re

alization of H(t, T) = t - T is given by i: = 

and also see Example 3.4.) 

"0 1 
.0 0. 

X + 
"0" 
1. 

u, y = [1, 0]x. (Verify this 

In the remainder of this chapter we shall concentrate primarily on time-invariant 
realizations of impulse responses. In fact we shall assume that the system transfer 
function matrix H(s), which is the Laplace transform of the impulse response, 
is given and we shall introduce methods for deriving realizations directly from 
H(s). 

Given a pX m matrix H(s), the following result establishes necessary and suf
ficient conditions for the existence of time-invariant realizations. 

THEOREM 3.3. H(s) is reahzable as the transfer function matrix of a time-invariant 
system described by (2.4) if and only if H(s) is a matrix of rational functions and satisfies 

\im H(s) < CO, 

i.e., if and only if H(s) is a. proper rational matrix. 

(3.4) 

Proof (Necessity) If the system x = Ax -\- Bu, y = Cx + Du is Si reahzation of H(s), 
then C(sl - A)~^B -\- D = H(s), which shows that H(s) must be a rational matrix. Fur
thermore, 

\im H(s) = D, (3.5) 

which is a real finite matrix. 
(Sufficiency) lfH(s) is a proper rational matrix, then any of the algorithms discussed 

in the next section can be applied to derive a realization. • 

EXAMPLE 3.4. Loi H(s) = l/s^,(y(s) = //(^)w(^)), which is the transfer function of 
the double integrator. Then, using the controller form realization algorithm of Section 

5.4, a realization of H(s) is given by i: = 
"0 1" 

.0 0. 
X + 

0 

1. 
u,y = [1,0]x. Notice that 
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^-^[H(s)] = ^-^[l/s^] = t = H(t, 0), the same as in Examples 3.1 and 3.3. 
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Theorem 3.3 can be used to show what types of entries are required for H{t, 0) 
for it to be reaUzable as a Hnear time-invariant continuous-time system of the form 
given in (2.4). In particular, H{t, 0) = X~^[H{sy\ and the fact that all entries of H{s) 
are proper rational functions (Theorem 3.3) implies the next result. 

COROLLARY 3.4. A pX m matrix H{i){H{t, 0)) is realizable as the impulse response 
of a system described by equations of the form (2.4) if and only if all entries of H{t) are 
sums of terms of the form at^e^^ and I38(t), where a, /3 are real numbers, k is an integer 
(k > 0), and A is a complex scalar. 

Proof. The proof is left as an exercise for the reader. (Refer to Chapter 2, Subsection 
2.4B for a review of Laplace transforms. Also, refer to the discussion of modes and 
asymptotic behavior of a system in that chapter.) • 

EXAMPLE 3.5. Let H(t) = W + e~^ + ^(0. e% In view of the above corollary, H{t) 
is realizable as the impulse response of a system described by (2.4). In fact, H{s) = 

and the system i: = Ax + Bu,y = Cx + DwwithA = ^{H(t)} = 

r - 1 2" 
L 0 i_ 

,B 

's^ + 2s-l 1 " 
^ 2 - 1 ' s - l 

= 
"2 1 
.1 1. 

,C = [l ,C = [1,0], D = [1, 0] is a reahzation (verify this). Comparing 

with Theorem 3.2, we write 

H(t -T,0) = [e'- + e-^'-^^ + 8(t - T), e'-'] 

[e-\ e' - e-n 

M(t)N(T) + D(t)8(t 

e^ + e~ + [ l , 0 ]5 ( r -T ) 

T) , 

which shows that the given H{t) [resp. H{t, 0)] is indeed realizable by a system described 
by (2.4). Actually, in this case M{t) and N{T) were chosen so that M{t) = Ce^^ and 

0 e' 
N(T) = e ^^B, where e^^ (verify this). 

Discrete-time systems 

Results for the existence of realizations of discrete-time systems that are anal
ogous to the continuous-time case can also be established. In the following result, 
which corresponds to Theorem 3.1, H(k, i), k > /, denotes a. p X m matrix. 

THEOREM 3.5. H(k,i)is realizable as the pulse response of a system described by 
(2.10) if and only if H(k, i) can be decomposed into the form 

H(k, i) 
M(k)N(i), 

D(k), 

k> /, 

k = i. 
(3.6) 

Proof, {Sufficiency) We consider the reahzation {/, N{k), M(k), D(k)}, i.e., x(k + 1) = 
x(k) + N(k)u(k) and y(k) = M(k)x(k) + D(k)u(k). In this case, ^(k, ^ = I,k> t 
Applying (2.12), it is immediately verified that the pulse response of this system is the 
given H(k, i). 

{Necessity) For any realization (2.10), C(k)<^(k,i + l)B(i) = C(k)A(k - 1 ) . . . 
A(i + l)B(i) = C(k)A(k - l)...A(a)A(a - l)...A(i + l)B(i) = (C(k)^(k,a)) X 
(0(o-, / + l)B(i)) = M(k)N(i), i < a ^ k, which in view of (2.10), implies (3.6). • 

The discrete-time system result corresponding to Theorem 3.2 for time-invariant 
systems is considered next. 



THEOREM 3.6. H(kJ) is realizable as the pulse response of a system described by 
(2.14) if and only if H(k, i) can be decomposed as in (3.6), and 

H(k, i) = H(k - i, 0). (3.7) 

Proof, (Necessity) This part of the proof is the same as the necessity proof of the previous 
theorem. Also, in view of (2.16), it is clear that H(k, i) = H(k - i, 0). 

(Sufficiency) Let H(k, i) satisfy (3.6) and (3.7). The proof is by construction, consid
ering a least-order realization x(k + 1) = x(k) + N(k)u(k), y(k) = M(k)x(k) + D(k)u(k) 
and proceeding along similar lines as in the proof of Theorem 3.2. • 

EXAMPLE 3.6. Let H(k, i) = k- /, k > /. Here H(k, i) = [k, 1] = M(k)N(i), 

k > /, and H(k, i) = 0 = D(k), k = i. In view of Theorem 3.5, there exists a realiza
tion, the pulse response of which is the given H(k, i). A particular reahzation is given 

1 
by the system equations x(k + 1) = x(k) + 

-k 
u(k), y(k) = [k, l]x(k) (see the proof 

of Theorem 3.5). (Verify this.) This is of course a time-varying reahzation. However, 
here H(k, i) = H(k - i, 0), which in view of Theorem 3.6, implies that a time-invariant 
realization also exists. Such a realization is x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k), 

where A B = C = [0, 1]. [Verify that in the present case H(k, 0) = 

zl(z - If CA^ ^B,k> 0.] This realization was determined using H(z) = ^H(k, 0) 
and the controller form realization algorithm in Subsection 5.4B. • 

Given apXm matrix H(z), the next theorem establishes necessary and sufficient 
conditions for time-invariant realizations. This result corresponds to Theorem 3.3 for 
the continuous-time case. Notice that the conditions in these results are identical. 

THEOREM 3.7. H(z) is realizable as the transfer function matrix of a time-invariant 
system described by (2.14) if and only if H(z) is a matrix of rational functions and sat
isfies the condition that 

lim H(z) < 00. 

Proof Similar to the proof of Theorem 3.3. 

(3.8) 

COROLLARY 3.8. A pX m matrix H(k) [resp., H(k, 0)], A: > 0, is realizable as the 
pulse response of a system described by (2.14) if and only if all entries of H(k) are sums 
of polynomial terms of the form a\^, I3k(k — 1)- • -(A: - € + 1)A^~ ,̂ and y, where a, p, 
y denote real numbers, k, £ are nonnegative integers, and A is a complex scalar. 

Proof The details of the proof are left to the reader. Note that H(k, 0) = ^-^[H(z)\ 
where in view of Theorem 3.7, all the entries of H(z) are proper rational functions. Refer 
to Section 2.7 of Chapter 2 for a review of z-transforms and a discussion of the modes 
and the asymptotic behavior of discrete-time systems. • 

EXAMPLE 3.7. Let H(z) = zl(z - 1)^. In view of Theorem 3.7, H(z) is realizable as 
the transfer function of a system described by (2.14). Such a realization is given by 

x(k +1) = Ax(k) + Bu(k), y(k) = Cx(k) + Du(k), with A = Ic = -1 2r-[i: 
[0,1], D = 0 (refer to Example 3.6). Note that in this case, H(k, 0) = ^-^[H(z)] = 
k, k> 0, which, in view of Corollary 3.8, imphes that H(k, 0) = kis realizable as the 
pulse response of a system described by (2.14). Such a reahzation is given above. • 
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Linear Systems 
As was discussed in Section 5.2, realizations of an impulse response H{t, r) can be 
expected to generate only the zero-state response of a system, since the external 
description H{t, r) has, by definition, no information about the initial conditions and 
the zero-input response of the system. 

A second important point to take note of is the fact that if a realization of a given 
H(t, T) exists, then there exist an infinite number of realizations. It was pointed out 
that if (2.1), denoted by {A{t\ B(t), C{t\ D{t)}, is a reaUzation of the /? X m matrix 
H{t, T), then realizations of the same order n, i.e., of the same dimension n of the 
state vector, can readily be generated by an equivalence transformation. Recall that 
in Subsection 2.6C of Chapter 2 it was shown that equivalent state-space (inter
nal) representations generate identical impulse responses (external representations). 
There are, of course, other ways of generating alternative realizations. In particular, 
if (2.1) is a reahzation of H(t, r), then, for example, the system 

X = A{t)x + B(t)u, y = C(t)x + D(t)u 

z = F(t)z + G(t)u 

is also a realization. This was accomplished by adding to (2.1) a state equation 
z = F(t)z + G(t)u that does not affect the system output. The dimension ofF, dim F, 
and consequently the order of the realization, n + dim F, can be larger than any given 
finite number. In other words, there may be no upper bound to the order of the real
izations of a given H(t, r). There exists, however, a lower bound, and a realization 
of such lowest order is called a least-order minimal or irreducible realization. 

DEFINITION 3.1. A realization 

X = A(t)x + B(t)u, y = C(t)x + D(t)u (3.10) 

of the impulse response H(t, r) of least order n (A(t) E /?"><") is called a least order, or 
a minimal order, or an irreducible realization of H(t, r). • 

If the given impulse response H(t, r) satisfies the conditions of Theorem 3.2, 
so that a time-invariant realization exists, then one usually talks about minimal or 
irreducible realizations of tho p X m transfer function matrix H{s) = i£[H(t, 0)], 
and this is the case on which we shall concentrate in the remainder of this chapter. It 
should be noted that results corresponding to Theorems 3.9 and 3.10 exist for time-
varying systems as well. The interested reader is encouraged to consult, for instance, 
Brockett [1] for such results. Briefly, as will be shown for the time-invariant case, 
system (3.10) is a minimal realization of H(t, r) if and only if the representation is 
controllable (-from-the-origin or reachable) and observable. Note that in this chapter 
the term controllable is used in place of reachable, to conform with accepted use in 
the literature. By controllability we will really mean controllability-from-the-origin 
or reachability. This distinction is not important in continuous-time systems, but it 
is important in discrete-time systems. 

DEFINITION 3.2. A realization 

x = Ax + Bu, y = Cx + Du (3.11) 

of the transfer function matrix H{s) of least order n{A G /?«><«) is called a least-order, or 
a minimal, or an irreducible realization ofH{s). • 



Theorems 3.9 and 3.10 completely solve the minimal realization problem. The 
first of these results shows that a realization is minimal if and only if it is control
lable (-from-the-origin or reachable) and observable, while the second result shows 
that if a minimal realization has been found, then all other minimal realizations 
can be obtained from the determined realization, using equivalence of representa
tions. 

Controllability (-from-the-origin, or reachabihty) and observabiHty play an im
portant role in the minimality of realizations. This is to be expected, since these 
properties, as was discussed at length in Chapter 3, characterize the strength of the 
connections between input and state, and between state and output, respectively. 
Therefore, it is reasonable to expect that they will play a significant role in the re
lation between internal and external descriptions of systems. Indeed, it was shown 
in Subsection 3.4C that only that part of a system that is both controllable and ob
servable appears in H(s). In other words, H(s) contains no information about the 
uncontrollable and/or unobservable parts of the system. To illustrate this, consider 
the following specific case. 
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EXAMPLE 3.8. 

(i) {A = 

(ii) {A = 

(iii) {A = 

(iv) {A = 

Le t / 

"0 1 
.1 0. 

"0 1 

.1 0. 

t( s) = 

,B = 

,B = 

"1 0 " 
P - 1 . 

-IB = 

1/ 

"0 
.1 

is + 1). Four different re 

IC = [-HID = 0}. 

- 1 
1. 

,B = 

ic 

0 
1 

1 

, C = [0, 1], D = 0}. 

, C = [0, 1], D = 0}. 

,D = 0}. 

The eigenvalue +1 that in (i) is unobservable, in (ii) is uncontrollable, and in (iii) is both 
uncontrollable and unobservable does not appear in H(s) at all. Realization (iv), which 
is of order 1, is a minimal realization. It is controllable and observable. • 

THEOREM 3.9. An /2-dimensional realization {A, B, C, D} of H(s) is minimal (irre
ducible, of least order) if and only if it is both controllable and observable. 

Proof, (Necessity) Assume that {A, B, C, D} is a minimal realization but is not both con
trollable and observable. Then, using Kalman's Canonical Decomposition of Subsection 
3.4A, one may find another realization of lower dimension that is both controllable and 
observable. This contradicts the assumption that {A, B, C, D) is a minimal realization. 
Therefore, it must be both controllable and observable. 

{Sufficiency) Assume that the realization {A, B, C, D} is controllable and observable, 
but there exists another realization, say, {A, B, C, D} of order n < n. Since they are both 
realizations of H{s), or of the impulse response H{t, 0), then 

Ce^'B + D8{t) = Ce^'B + D8(t) (3.12) 

for all r > 0. Clearly, D = D = \ims-^ccH(s). Using the power series expansion of the 
exponential and equating coefficients of the same power of t, we obtain 

CA^B = CA^B, k = 0,1,2,. (3.13) 

i.e., the Markov parameters of the two representations are the same (see Theorem 2.1 in 
Section 5.2). Let 

%n = [B, AB,..., A'^-^B] E Ẑ ^̂ '̂"", 
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C 
CA 

CA n-l 

r: Dpnxn (3.14) 

Then the pn x mn matrix product ^n^n assumes the form 

• CA^'-^B 
CA^'B 

CB 
CAB 

CA^'-^B 

CB 
CAB 

CA'^-^B 

CAB 
CA^B 

CA^'B 

CAB 
CA^B 

CA'^B 

CA^^'-^B 

CA^'-^B 
CA^'B 

CA^^'-^B 

(3.15) 

In view of Sylvester's rank inequality, which relates the rank of the product of two 
matrices to the rank of its factors, we have 

rank 0^ + rank ^n — ^^ rank {^n^n) ^ rnin {rank ^„, rank ^n) (3.16) 

and we obtain that rank dn = ^ci^k "^n = ^, ^^^^ {^n^'^n) = ^- This result, however, con
tradicts our assumptions, since n = rank {dn'^n) ^ min(ran^ dn.rank ' ^ ) < n because 
n is the order of {A,5, C ,5} . Therefore, n<n. Hence, n cannot be less than n and they 
can only be equal. Thus, n = n and {A,B,C,D} is indeed a minimal realization. • 

Theorem 3.9 suggests the following procedure to realize H{s). First, we obtain a 
controllable (observable) realization ofH{s). Next, using a similarity transformation, 
we obtain an observable standard form to separate the observable from the unob-
servable parts (controllable from the uncontrollable parts), using the approach of 
Subsection 3.4A. Finally, we take the observable (controllable) part that will also be 
controllable (observable) as the minimal realization. We shall use this procedure in 
the next section. 

Is the minimal realization unique? The answer to this question is of course no 
since we know that equivalent representations, which are of the same order, give 
the same transfer function matrix. The following theorem shows how to obtain all 
minimal realizations of H{s). 

THEOREM 3.10. Let {A,B,C,D} and {A,5,C,5} be realizations of H(s). If 
{A,B,C,D} is a minimal realization, then {A,B,C,D} is also a minimal realization 
if and only if the two realizations are equivalent, i.e., if and only if D = D and there 
exists a nonsingular matrix P such that 

c = cp- (3.17) 

(3.18) 

A = PAP-\ B = PB, and 

Furthermore, if P exists, it is given by 

P = ^ ^ ( ^ ^ ^ ) - i or P = 

Proof, (Sufficiency) Let the realizations be equivalent. Since {A,B,C,D} is minimal, 
it is controllable and observable and its equivalent representation {A,B,C,D} is also 
controllable and observable, and therefore, minimal. Alternatively, since equivalence 
preserves the dimension of A, the equivalent realization {A,5,C,5} is also minimal. 



{Necessity) Suppose {A, B, C, D] is also minimal. We shall show that it is equivalent 
to {A, B, C, D}. Since they are both realizations of H{s), they satisfy D = D and 

CA^B = CA^B, k = 0,1,2.. (3.19) 

as was shown in the proof of Theorem 3.9. Here, both realizations are minimal, and 
therefore, they are both of the same order n and are both controllable and observable. 

Define ^ = ^„ and 0 = ©„, as in (3.14). Then, in view of (3.15), 0^ = 0^ and 
premultiplying by 0^, we obtain 0^0^ = 0^0^. Using Sylvester's inequality, we obtain 
rank 0^6 = n, and therefore, 

% = [(O^O)"^©^©]^ = P%, (3.20) 

where P = (O^©)'̂ ©^© G 7?"><\ Note that rank P = n since rank ©̂ © is also equal 
to n, as can be seen from rank ©^©^ = n and from Sylvester's inequaUty. Therefore, 
P qualifies as a similarity transformation. Similarly, ©^ = ©^ implies that ©^^^ = 

(3.21) 

, and 

0 = ©[^^^(^^^)-i] = ©P, 

where P = %%^{%%^y^ G T?"̂ '̂  with rank P = n. Note that P = 
P. To show that P is the equivalence transformation given in (3.17), we note that 
©A^ = ©A^ from (3.15). Premultiplying by ©̂  and postmultiplying by ^^, we obtain 
PA = AF, in view of (3.20) and (3.21). To show that PB = fiandC = CP, we simply 
use the relations P^ = % and © = ©P, respectively. • 
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C. The Order of Minimal Realizations 

In the next subsection algorithms to derive minimal realizations of H{s) are devel
oped. One could ask the question whether the order of a minimal realization of H(s) 
can be determined directly, without having to actually derive a minimal realization. 
The answer to this question is yes, and in the following we will show how this can 
be accomplished. When deriving realizations, it is of advantage to know at the out
set what the order of a minimal realization ought to be, since in this way erroneous 
results can be avoided by cross checking the validity of the results. 

Determination via the characteristic or pole polynomial of H(s) 

The characteristic polynomial (or pole polynomial), PH(S), of a transfer func
tion matrix H(s) was defined in Section 3.5 using the Smith-McMillan form of H(s). 
The polynomial PH(S) is equal to the monic least common denominator of all nonzero 
minors of H(s). The minimal polynomial of a transfer function matrix H(s), mnis), 
was defined as the monic least common denominator of all nonzero first-order minors 
(entries) of H(s). 

DEFINITION 3.3. The McMillan degree of H(s) is the degree of PH(S). • 

The number of poles in H(s), which are defined as the zeros of PH(S) in Defini
tion 5.1 in Section 3.5, is equal to the McMillan degree of H{s). The degree of H{s) 
is in fact the order of any minimal realization of H(s), as the following result shows. 

THEOREM 3.11. Let {A, 5, C, D} be a minimal realization of H(s). Then the charac
teristic polynomial of H(s\ PH{S), is equal to the characteristic polynomial of A, a{s) = 
\sl - A|, i.e., PH{S) = a(s). Therefore, the McMillan degree of H(s) equals the order of 
any minimal realization. 
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Proof. The proof outlined here is based in part on results that will be established in Sec
tions 7.2 and 7.3 of Chapter 7. (The reader may wish to postpone reading the proof until 
Sections 7.2 and 7.3 have been covered.) First, we note that '\fH{s) = N(s)D(s)~^ with 
N(s), D(s) right coprime polynomial matrices, then the characteristic or pole polynomial 
of H(s) is given by pnis) = k det D(s), where the real k is such that k det D(s) is 
monic. This can be seen, for example, by reducing H(s) to its Smith-McMillan form 
[see (5.3) in Chapter 3]. We have. 

Ui(s)H(s)U2(s) = SMH(S) 

diagi-j^,..., -^) 0 

^p—r,m—r 

(ei,...,€r) 

0 

diag{ijJx,...,\lJr) 

= N,{s)D-\s\ 

where r = rank H(s) and Ui, U2 are unimodular matrices. Then H = (U^^Ns) X 
(U2Ds)~^ = A^D~\whereMZ)arerightcoprime. Notethat A:(î /̂ Z)(5) = iAi^2***^r = 
PH(S), by definition. Now this is true for any right coprime factorization since these are 
related by unimodular postmultiplication (see Subsection 7.3A in Chapter 7). 

The controllable and observable realization {A, B, C, D} is now equivalent to any 
other controllable and observable realization of the form Dz = u,y = Nz with D, N 
right coprime (see Subsection 7.3A). This implies that 15"/ - A| = k\D{s% since such 
equivalence relation preserves the system eigenvalues. Note that the same result can 
be derived using the Structure Theorem of Chapter 3 (show this). Therefore, the pole 
polynomial of H{s) is given by PH{S) = \sl ~ A\. • 

It can also be shown that the minimal polynomial ofH{s), mnis), is equal to the 
minimal polynomial of A, am(s), where {A, B, C, D] is any controllable and observ
able realization of H(s). This is illustrated in the following example. 

[1/^ 2/s^ 
0 -\/s\ 

EXAMPLE 3.9. LQI H(s) = . The first-order minors, the entries of H(s), 

have denominators s, s, and s and therefore, mnis) = s. The only second-order minor is 
- l/s^ and PH(S) = s^ with deg PH{S) = 2. Therefore, the order of a minimal realization 

is 2. Such a realization is given hy x = Ax + Bu and y = Cx with A = L A,B = 
0 0 

"1 
.0 

2" 
- 1 . 

,c = "1 0" 
0 1_ 

It can be verified first that this system is a realization of H(s) and 

then we verify that it is controllable and observable, and therefore, minimal. Notice that 
the characteristic polynomial of A is a(s) = s^ = PH{S) and its minimal polynomial is 
a^{s) = s = rriHis). • 

The above example also shows that when H{s) is expressed as a polynomial 
matrix N{s) divided by a polynomial, i.e., H{s) = (l/mH(s))N(s), then the roots of 
niH are not necessarily the eigenvalues of a minimal realization of H{s). They are in 
general a subset of those eigenvalues, since the minimal polynomial always divides 
the characteristic polynomial. In the case when H(s) is a scalar, however, the roots 
of rriH = PH are the eigenvalues of any minimal realization of H(s), as the next 
example shows. 



EXAMPLE 3.10. Let H(s) = n(s)/d(s) be a scalar proper rational function. Applying 
Definition 5.1 of Section 3.5, we obtain PH(S) = rnnis) = d(s) and the order of a mini
mal realization is deg PH(S) = degd(s). Thus, given H(s) = l/(s^ + 3^ + 2), we know 
that a minimal realization is of second order since deg (s^ + 3^ + 2) = 2. A minimal 

reahzation in controller form is given by A B C = [1,0]. No

tice that the minimal polynomial of A is am(s) = a(s) = s^ + 3s + 2, the characteristic 
polynomial of A, which is equal to d(s) = PH(S) = rnnis), as expected. • 

The observations in Example 3.10 can be formalized as the following result. 

COROLLARY 3.12. Let H(s) = n(s)/d(s) be a scalar proper rational function. If 
{A, B, C, D} is a minimal realization of H(s), then 

kd(s) = a(s) = ani(s\ (3.22) 

where a(s) = det (si — A) and a^is) are the characteristic and minimal polynomials of 
A, respectively, and A: is a real scalar so that kd(s) is a monic polynomial. 

Proof, The characteristic and minimal polynomials of H{s), pnis), and mnis) are by 
definition equal to d(s) in the scalar case. Applying Theorem 3.11 proves the result. • 

Determination via the Hankel matrix 

There is an alternative way of determining the order of a minimal realization of 
H(s). This is accomplished via the Hankel matrix, associated with H(s). 

Given H(s), we express H(s) as a Laurent series expansion to obtain 

H(s) ^ Ho + H(s) = Ho+ His-^ + H2S~^ + H^^s'^ + • • •, (3.23) 

where H{s) is strictly proper and the real pXm matrices HQ, / / i , . . . are the Markov 
parameters of the system. They can be determined by the formulas 

Ho = limH(s), 

Hi = lims(H(s)-Ho\ 
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H2 = lim s\H(s) -Ho- His~'l 

and so forth. 

DEFINITION 3.4. The Hankel matrix MHH, j) of order (/, j) corresponding to the 
(Markov parameter) sequence H\, H2,... is defined as the ip X jm matrix given by 

MH(iJ) = 

Hi H2 
H2 H3 

Hi Hi+i 

Hj+i 

Hi+j-i\ 

(3.24) 

THEOREM 3.13. The order of a minimal realization of H(s) is the rank of Mnir, r), 
where r is the degree of the least common denominator of the entries of H(s), i.e., r = 
degmnis). 

Proof, Let {A, B, C, D] be any realization of H{s) of order n. The Markov parameters 
satisfy the relationships 

Hi = CA'-^B, / = 1,2,..., (3.25) 
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(refer to Exercise 2.63 in Chapter 2). Therefore, the Hankel matrix Mnir, r) can be writ
ten as 

Mnir, r) 

C 
CA 

[B,AB,...,A'-^Bl 026) 

Using Sylvester's Inequahty, we have rank Mnir, r) < n, since the common dimension 
in the product given by (3.26) is n. This imphes that any reaHzation of H(s) is of order 
higher than or equal to rank Mnin r). We now must show that there exists a realiza
tion of order exactly equal to rank Mnir, r), where r is the degree of the least common 
denominator of the entries of H{s). Let {A, B, C} be given by 

A = 

0„ 

-dolp 
^p 

-dil^ Up 

0„ 

^p 

-dr-\Ip 

B = 

Hi 

H2 

Hr 

and C = Up, 0, ,0], 

where A E RP'^'P^ B E RP''''^, and C G RP^'P' with mnis) =^ s' + dr-is''^ -h ••• -h 

d\s + d{), the minimal polynomial of H{s). We have that {A, B, C) is an observable re
alization of H{s) (see Section 5.4). Furthermore, note that |^/ - A| = (mH(s))P. Now 

C 

rankMH{r,r) = rank 

C 
CA 

CA'-^ 

CA 

CA' 

[B,..., A'-^B] = rank [B,..., A'-^B]. This is true be-

= Ipr, as can easily be seen from above. Note now that mniA) = 0. 

This is true since (m//(A))^ = 0, in view of the Cay ley-Hamilton Theorem. There
fore, A\ i > r, can be expressed as a linear combination of /, A , . . . , A'""^ which im
plies that rank Mnin r) = rank[B, ...,A'-^B] - rank [ 5 , . . . , AP^'^BI Therefore, the 
rank of the controllability matrix of the above realization is equal to rank Mnir, r). 
Hence, if {A, B, C} is reduced by means of a transformation to a standard uncontrollable 

form 
Ai 

0 
An 
Ai. 

[Ci, C2] \ (see Subsection 3.4A) with (Ai, Bi) controllable, then 

{Ai, Bi, Ci} will be a controllable and observable (minimal) realization of H(s) of order 
equal to rankMnir, r), since this is the rank of the controllablity matrix of (A, B) and the 
dimension of Ai. • 

EXAMPLE 3.11. Let 

H{s) = 

1 
s+ 1 

- 1 
s+ 1 

1 

{s + l){s + 2) s + 2 

Here the minimal polynomial is muis) = (s+l)(s + 2), and therefore, r = deg mnis) 
2. The Hankel matrix M//(r, r) is then 

Mnir, r) = MH(2, 2) 
Hi H2 

H2 H3 



an r/7 X rm = 4 X 4 matrix, and 

and 

H\ = \im sH(s) = lim 
S^ 00 s^ °° 

Is 
s+ 1 

s 
{s + 1)(̂  + 2) ^ + 2 

5+ 1 
—s 

1 2 
0 1 

Similarly, H^ = 

H2 = lim 
5->oo 

= lim 
5—»oo 

= lim 

1 2 
3 4 

.No> 

y^(i/(5) - His-

r .2 

- . 2 

[(s+ l)(s + 2) 

-s 
s+ 1 

[(s+ l)(^ + 2) 

N 

') 

2s' o 

s^ 
s + 2 

-2s -
s+ 1 
-2s 

s + 2. 

= 

rank MH (2, 2) = rank 

1 
0 
1 
1 

2 
1 

- 2 
- 2 

- 1 
- 1 

1 
3 

- 2 
- 2 

2 
4 

= 3, 

which is the order of any minimal realization, in view of Theorem 3.12. The reader 
should verify this result, using Theorem 3.11. • 

EXAMPLE 3.12. Consider the transfer function matrix H(s) = 

Example 3.9. Here r = degmnis) 

MH(1 I) = HI = lim^-^oo sH(s) = 

Ills 21s 
LO - 1 / ^ 

Example 3.9. Here r = degmnis) = degs = 1. Now, the Hankel matrix Mnir, r) 
n 2 
[0 - 1 

minimal realization of H(s). This agrees with the results in Example 3.9. 

as m 

. Its rank is 2, which is the order of a 

401 
CHAPTERS: 

Realization 
Theory and 
Algorithms 

D. Minimality of Realizations: Discrete-Time Systems 

All definitions and theorems given thus far in this section for the continuous-time 
case, apply directly to the discrete-time case with no substantial changes. Thus, mini
mal or irreducible realizations are defined as in Definitions 3.1 and 3.2, where H(k, i) 
and H{z) should be used in place of H{t, r) and H(s), respectively. The main crite
ria for establishing minimality are given by results that are essentially the same as 
Theorems 3.9 and 3.10. The McMillan degree of H(z) is as defined in Definition 
3.3, while results that are essentially the same as Theorems 3.11 and 3.13 provide a 
means of determining the order of the minimal realizations. 
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not surprising since we are concentrating here on the time-invariant cases for which 
the transfer function matrices have the same forms: H(s) = C(sl - A)~^B + D and 
H(z) = C(zl - A)~^B + D. Accordingly, the results on how to generate 4-tuples 
{A, B, C, D] to satisfy these relations are of course the same. The realization algo
rithms developed in Section 5.4 apply directly to the discrete-time case as well, since 
they are algorithms for time-invariant realizations of transfer matrices. The differ
ences in the realization theory between continuous- and discrete-time systems arise 
primarily in the time-varying case (compare Theorems 3.1 and 3.5, for example). 
However, these differences are rather insignificant. 

5.4 
REALIZATION ALGORITHMS 

In this section, algorithms for generating time-invariant state-space realizations 
of external system descriptions are introduced. In particular, it is assumed that a 
proper rational matrix H{s) of dimensions p X m is given for which a state-space 
reahzation {A, B, C, D} of H{s) given by i = Ax + Bu, y = Cx + Du such that 
C{sl - A)~^B -\- D = H(s) has been derived (see Theorem 3.3). This problem is 
equivalent to realizing H(t, 0) = 5£~^[H(s)], A brief outline of the contents of this 
section follows. 

Realizations of H(s) can often be derived in an easier manner if duality is used, 
and this is demonstrated first in this section. Realizations of minimal order are both 
controllable and observable, as was shown in the previous section. To derive a min
imal reahzation of H(s), one typically derives a realization that is controllable (ob
servable) and then extracts the part that is also observable (controllable), using the 
methods of Subsection 3.4A of Chapter 3. This involves in general a two-step pro
cedure. However, in certain cases a minimal realization can be derived in one step, 
as for example, when H(s) is a scalar transfer function. Algorithms for realizations 
in a controller/observer form are discussed first. In the interest of clarity, the SISO 
case is presented separately, thus providing an introduction to the general MIMO 
case. Realization algorithms, where A is diagonal or in block companion form, are 
introduced next. Finally, balanced realizations are addressed. 

It is not difficult to see that the above algorithms can also be used to derive 
realizations described by equations of the form x(k + 1) = Ax(k) + Bu{k), y{k) = 
Cx(k) + Du(k) of transfer function matrices H(z) for discrete-time time-invariant 
systems. Accordingly, the discrete-time case will not be treated separately in this 
section. 

A. Realizations Using Duality 

If the system described by the equations x = Ax-\- Bu, y = Cx + Du is a realization 
of if (^), then 

H{s) = C(sl - AY^B + D. (4.1) 



If H(s) = H^{s), then x = Ax + Bu dind y = Cx + Du, where A =- A^,B = 
C^, C = B^, and D = D^, is a reahzation of H(s) since in view of (4.1), 

H(s) = H^(s) 

= B^{sl- A^y^C^ +D^ 

= C(sl -Ay^B + D. (4.2) 

The representation {A, B, C, D] is the dual representation to {A, B, C, D}, and 
if {A, B, C, D} is controllable (observable), then {A, B, C, D} is observable (con
trollable) (see Chapter 3). In other words, if a controllable (observable) real
ization {A, B, C, D} of the p X m transfer function matrix H{s) is known, then 
an observable (controllable) realization of the m X /> transfer function matrix 
H{s) = H^(s) can be derived immediately: it is the dual representation, namely, 
{A, B, C, D} = {A^, C^, B^, D^}. This fact is used to advantage in deriving realiza
tions in the MIMO case, since obtaining first a realization of H^(s) instead of H(s) 
and then using duality, leads sometimes to simpler, lower order, realizations. 

Duality is very useful in realizations of symmetric transfer functions, which 
have the property that H(s) = H^(s), as, e.g., in the case of SISO systems where 
H(s) is a scalar. Under these conditions, if {A, B, C, D} is a controllable (observable) 
realization of H(s), then {A^, C^, B^, D^} is an observable (controllable) realization 
of the same H{s). Note that in this case, 

H{s) = C(sl - Ay^B + D = H^{s) - B^{sl - A^y^C^ -h D^. 

In realization algorithms of MIMO systems, a realization that is either control
lable or observable is typically obtained first. Next, this realization is reduced to a 
minimal one by extracting the part of the system that is both controllable and ob
servable, using the methods of Subsection 3.4A. Dual representations may simplify 
this process considerably. In the following, we summarize the process of deriving 
minimal realizations for the reader's convenience. 

Given a proper rational p X m transfer function matrix H(s), with 
lims-^ooH(s) < 00 (see Theorem 3.3), we consider the strictly proper part H(s) = 
H(s) - lirris-^a:, H(s) = H(s) - D [noting that working with H(s) instead of H(s) is 
optional]. 

1. If a realization algorithm leading to a controllable reahzation is used, then the 
following steps are taken, 

H(s) -^ (H(s) = H^(s)) -^ {A, B, C}-> {A = A^, B = C^,C = B^l (4.3a) 

where {A, B, C] is a controllable realization of H{s) and {A, B, C} is an observable 
realization of H(s). 

2. To obtain a minimal realization. 

{A, B, C} 
0 

An 
A2 

[Ci, C2] (4.3b) 

where {A, B, C} is an observable realization of H(s) obtained from step (1), and 
(Ai, Bi) is controllable (derived by using the method of Subsection 3.4A), then 
{Ai, Bi, Ci} is a controllable and observable, and therefore, a minimal realization 
of H(s), and furthermore, {Ai, Bi, Ci, D} is a minimal realization of H{s). 
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B. Realizations in Controller/Observer Form 

We shall first consider realizations of scalar transfer functions H(s). 

Single-input/single-output (SISO) systems (p = m = 1) 

Let 

n(s) bnS^ + • • • + bis + Z?o 
H{s) = 

d(s) s^ + an-\s^ 1 + • • • + a\s + UQ 
(4.4) 

where n{s) and (̂5*) are prime polynomials. This is the general form of a proper 
transfer function of (McMillan) degree n. Note that if the leading coefficient in the 
numerator n{s) is zero, i.e., bn = 0, then H(s) is strictly proper. Also, recall that 

or 
7 2 - 1 

bnu^""^ + '" + biu^'^ + bou, (4.5a) (1) 

d{q)y{t) = {q"" + an-iq"" ' + •••+ ^ i ^ + ao)y{t) 

= (bnq^ + -"bxq + bo)u(t) = n(q)u(t), (4.5b) 

where q = d/dt, the differential operator. This is the corresponding nth-order dif
ferential equation that directly gives rise to the map y(s) = H(s)u(s) if the Laplace 
transform of both sides is taken, assuming that all variables and their derivatives are 
zero 3tt = 0. 

Controller form realizations 

Given n(s) and d(s), we proceed as follows to derive a realization in controller 
form. 

1. Determine C j G R"" and Dc ^ R so that 

n(s) = CcS(s) + Dcd(sX (4.6) 

where S(s) = [l,s,..., s^~^]^ is an n X 1 vector of polynomials. Equation (4.6) 
implies that 

Dc = limH(s) = bn. (4.7) 

Then n(s) — bnd(s) is in general a polynomial of degree n- I, which shows that 
a real vector Q that satisfies (4.6) always exists. 

If bn = 0, i.e., if H(s) is strictly proper, then from (4.6) we obtain Q = 
[bo,..., bn-i], i.e., Cc consists of the coefficients of the n- I degree numerator. 

If bn # 0, then (4.6) implies that the entries of Q are a combination of the 
coefficients bt and a/. In particular, 

Cc = [bo - bnao, bi - bnUi,..., Z?„_i - Z?«a„-i]. 

2. A realization of H(s) in controller form is given by the equations 

(4.8) 

yi'C -^^C "^ C JJ Q Id' 

0 

0 
- f lo 

1 

0 

0 

-a„-\ 

Xc + 

y = CcXc + DcU. (4.9) 



The n states of the reaUzation in (4.9) are related by 

-^/+i = Xj or X, i + i 
.(0 1, 

n-l 

and -aoxi -aoxi ^atXi^i^u 
i=\ 

It can now be shown that xi satisfies the relationship 

d{q)xi{t) = u{t), y{t) = n{q)xi{t), 

n—1, 

n-\ 

i=l 

.(i) 

(4.10) 

where q = d/dt, the differential operator. In particular, note that d{q)xi{t) 
1...W » ^ » u(t) because Xn = — E/Lo ^iH ~^ 

In) > - l ) 

-d{q)xi Sn) x^\ which in 

view of Xn = -^i"^ derived from Xn = x\' ^\ implies that —d{q)xi + w = 0. The 
relation y{t) = n{q)xi {t) can easily be verified by multiplying both sides ofn{q) = 
CcS{q) -\-Dcd{q) given in (4.6) by xi. 

LEMMA 4.1. The representation (4.9) is a minimal realization of H(s) given in (4.4). 

Proof, We must first show that (4.9) is indeed a realization, i.e., that it satisfies (4.1). 
This is of course true in view of the Structure Theorem in Subsection 3.4D of Chapter 3. 
Presently, this will be shown directly, using (4.10). 

Relation d{q)x\{t) = u{t) implies that x\{s) = (d(s))~^u(s). This yields for 
the state that x(s) = [xi(s),...,Xn(s)]'^ = [l,s,...,s''~^]'^xi(s) = S(s)(d(s))~^i2(s). 
However, we also have x{s) = {si — Ac)~^Bcu{s). Therefore, 

{sI-Ac)S{s)=Bcd{s). (4.11) 

Now CcisI-Ac)-^Bc+Dc =CcS{s){d{s))-^+Dc = (QSis) + Dcd{s)){d{s))-^ = 
n{s)/d{s) =H{s), i.e., (4.9) is indeed a realization. 

System (4.9) is of order n, and is therefore, a minimal, controllable, and observable 
realization. This is because the degree of H{s) is n, which in view of Theorem 3.11, is 
the order of any minimal realization. Controllability and observability can also be estab
lished directly by forming the controllability and observability matrices. The reader is 
encouraged to pursue this approach. • 

According to Definition 3.3 given in Section 5.3, the McMillan degree of a ratio
nal scalar transfer function H{s) = n{s)/d{s) is n only when n{s) and d{s) are prime 
polynomials; if they are not, all cancellations must first take place before the degree 
can be determined. If n{s) and d{s) are not prime, then the above algorithm will yield 
a realization that is not observable. Notice that realization (4.9) is always control
lable, since it is in controller form. This can also be seen directly from the expression 

ro 0 ••• 1" 

[5c,Ac5c,. . . ,A^ Be 
1 
X 

(4.12) 

which is of full rank. The realization (4.9) is observable if and only if the polynomials 
d{s) and n{s) are prime. 

In Fig. 5.2 a block realization diagram of the form (4.9) for a second-order 
transfer function is shown. Note that the state xi{t) and X2{t) are taken to be the 
voltages at the outputs of the integrators. This is common when realizing transfer 
functions using analog computer circuits. 
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u . ^ . 

^ 

_b2_ 

Efi 

X2 

* 

b-\ — b23-\ 

LU 

lifi 

'̂i bo - ^231 + 
+ 

FIGURE 5.2 

Block realization of H(s) in controller form of the system 

0 
-ao 

» = 

1 1 
-ai\ \x2 

+ 0 
1 

b2S^ + bis + bo 
.2 + ais-\-ao 

w,y = [bo-b2ao,bi - M l ] -\-b2U; 

Observer form realizations 

Given the transfer function (4.4), the nth-order realization in observer form is 
given by 

XQ ^ /\QXQ -\-IJQU 

0 • 
1 

0 • 

• 0 
0 

• 1 

-ao 
—ai 

—Cln-l 

^0 + 

bo - bnao 
bi - bnai 

bn-l -K^n-1 

y = CoXo + DoU = [0,0,... , 0, l]xo + bnU. (4.13) 

This realization was derived by taking the dual of realization (4.9). Notice that A^ = 
Al,Bo=Cl,Co=Bl, midDo=Dl. 

LEMMA 4.2. The representation (4.13) is a minimal realization of H{s) given in (4.4). 

Proof, Note that the observer form realization {Ao,Bo,Co,Do} described by (4.13) is 
the dual of the controller form realization {Ac,Bc,Cc,Dc} described by (4.9), used in 
Lemma 4.1. • 

The realization (4.13) can also be derived directly from H{s), using defining 
relations similar to (4.6). In particular. Bo and Do can be determined from the 
expression 

n{s)=S{s)Bo^d{s)Do, (4.14) 

where 5(^) = [1,^,. . . , ^ ^ ~ ^ ] . 
It can be shown (by taking transposes) that the corresponding relation to (4.11) 

is now given by 
S{s){sI-Ao)=d{s)Co (4.15) 

and that 
d{q)z{t) = n{q)u{t),y{t) = z{t) (4.16) 

corresponds to (4.10). 



Figure 5.3 depicts a block realization diagram of the form (4.13) for a second-
order transfer function. 

FIGURE 5.3 
Block realization of H(s) in observer form of the system 

Xi 

X2_ 

H{s 

= 

) = 

0 -^o] 
1 -ai\ 

b2S^ + bx 

\x{ 
U2. 
5 + 

+ 
bo-
Pi-

- b2ao 

- bzai 
u.y = [0,1] + b2U\ 
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EXAMPLE 4.1. We wish to derive a minimal realization for the transfer function 
H{s) = (s^ + s - l)/(s^ -\- 2s'^ - s - 2). Consider a reahzation {A^ Be, Cc, Dc}, where 
(Ac, Be) is in controller form. In view of (4.6) to (4.9), Dc = lims^oo H(s) = 1 and 
n(s) = s^ -\- s — 1 = CcS(s) + Dcd(s), from which we have CcS(s) = (s^ + s — I) -
(s^ + 2s^ - s -2) = -2s^ + 2^ + 1 = [1, 2, -2][1 , s, s^f. Therefore, a realization of 
H{s) is Xc = AcXc + BcU, y = CcXc + DcU, where 

Ac = 

0 
0 
2 

1 
0 
1 

0" 
1 

-2 
Be = 

ro 
0 
1 

Cc = [1 ,2 , -2] , Dc 

This is a minimal realization (verify this). 
Instead of solving n(s) = CcS(s) + Dcd(s) for Cc as was done above, it is possible 

to derive Q by inspection after H(s) is written as 

H(s) = H(s) + l im^(^) = H(s) + Dc, (4.17) 

where H(s) is now strictly proper. Notice that if H(s) is given by (4.4), then Dc = bn 
and 

H(s) 
Cn-lS'' + ••• + Ci5 + Co 

• Un-is^ 1 + ••• + ais + ao 
(4.18) 

where in fact, c/ = hi - bnUi, i = 0 , . . . , /t - 1. The realization {Ac, Be, Cc) of H(s) has 
(Ac, Be) precisely the same as before; however, Cc can now be written directly as 

Cc = [Co, Ci, ...,Cn~ll (4.19) 

i.e., given H(s) there are three ways of determining Q : (i) using formula (4.8), (ii) solv
ing CcS(s) — n(s) — Dcd(s) as in (4.6), and (iii) calculating H(s) = H(s) - lim^̂ ôo H(s). 
The reader should verify that in this example, (i) and (iii) yield the same Q = [1, 2, - 2 ] 
as in method (ii). 

Suppose now that it is of interest to determine a minimal reahzation {Ao, Bo, Co, Do}, 
where (Ao, Co) is in observer form. This can be accomplished in ways completely 
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analogous to the methods used to derive realizations in controller form. Alternatively, 
one could use duality directly and show that 

AQ — A„ — 

Co = Bl = [0,0,1], 

0 
1 
0 

0 
0 
1 

2 
1 

- 2 
Bo - Cc -

Do = Di = I 

is a minimal realization, where the pair (A^, Co) is in observer form. • 

EXAMPLE 4.2. Consider now the transfer function H(s) = (s^ - l)/(s^ +2s^ - s - 2), 
where the numerator is n(s) = ^̂  - 1 instead of -̂̂  + s - 1, as in Example 4.1. We wish 
to derive a minimal realization of H(s). Using the same procedure as in the previous 
example, it is not difficult to derive the realization 

Ac 

0 
0 
2 

1 
0 
1 

0̂  
1 

- 2 
Be = 

ro 
0 
1 

Cc = [1,1, - 2 ] , Dc 

This realization is controllable, since (A^ Be) is in controller form (see Exercise 5.11); 
however, it is not observable, since rank € = 2 < 3 = n, where 0 denotes the observ
ability matrix given by 

Cc ' 

C-c-^c 

QA?. 
= 

r 1 
- 4 
10 

1 
- 1 

1 

- 2 
5 

-11 

(show this). Therefore, the above is not a minimal realization. This has occurred be
cause the numerator and denominator of H(s) are not prime polynomials, i.e., ^ - 1 is 
a common factor. Thus, strictly speaking, the H(s) given above is not a transfer func
tion, since it is assumed that in a transfer function all cancellations of common factors 
have taken place. (See also the discussion following Lemma 4.1.) Correspondingly, if 
the algorithm for deriving an observer form would be applied to the present case, the re
alization {Ao, Bo, Co, Do] would be an observable realization, but not a controllable one, 
and would therefore not be a minimal realization. 

To obtain a minimal realization of the above transfer function H{s), one could either 
extract the part of the controllable realization {Ac, Be, Cc, Dc) that is also observable, or 
simply cancel the factor 5 - 1 in H{s) and apply the algorithm again. The former approach 
of reducing a controllable realization will be illustrated when discussing the MIMO case. 
The latter approach is perhaps the easiest one to apply in the present case. We have 

His) = 
1 s^ + s + \ -2s- 1 

2̂ 2 s^ + 3s + 2 s^ + 3s-\-2 
+ 1, 

and a minimal realization of this is then determined as 

0 1 
-2 - 3 . 

The reader should verify this. 

Be Cc [ - 1 , - 2 ] , Dc 

Multi-Input-Multi-Output (MIMO) Systems (pm > 1) 

Let Si(p X m) proper rational matrix H(s) be given with lim^^oo H(s) < oo (see 
Theorem 3.3). We now present alogrithms to obtain realizations {Ac, Be, Cc, Dc} of 
H(s) in controller form and realizations {Ao, Bo, Co, Do} of H(s) in observer form. 



Minimal realizations can then be obtained by separating the observable (controllable) 
part of the controllable (observable) realization. 

Controller form realizations 

Consider a transfer function matrix H{s) = [nij{s)/dij{s)],i = l , . . . ,p ,7 = 
1, . . . , m, and let ij (s) denote the (monic) least common denominator of all entries 
in the jth column of H{s). The ij{s) is the least degree polynomial divisible by all 
dij {s)J= 1, . . . , p. Then H{s) can be written as 

H{s)=Nis)D-\s), 

a ratio of two polynomial matrices, where N{s) = [nij{s)] and D{s) = 
diag[ii{s),.. .,im{s)]. Note that nij{s)/ij{s) = nij{s)/dij{s) for / = 1, 
j = 1, . . . , m. Let dj = deg ij (s) and assume that dj >1. Define 

(4.20) 

, p, and all 

4i 

and 

A(^) = diag (y 

S{s) = block diag 

\ s'lj-' 

(4.21) 

/ 

and note that S{s) ism\n(= E7=i ^j) ^^ polynomial matrix. Write 

D{s) = DhA{s) + DiS{s) (4.22) 

and note that D^ is the highest column degree coefficient matrix of D{s). Here D{s) 
is diagonal with monic polynomial entries, and therefore, D/̂  = Im- If. for exam-

[3^2 j^ ^ 2s] 
pie, D{s) = \ ^ , then the highest column degree coefficient matrix D^ = 

2s 

, and DiS{s) given in (4.22) accounts for the remaining lower column degree 

terms in D{s), with D^ being a matrix of coefficients. 
Observe that \Dh\ 7̂  0, and define the mxm and mxn matrices 

-Dn'Di (4.23) 

(4.24) 

(4.25) 

respectively. Also, determine Cc and Dc such that 

N{s)=CcS{s)^DcD{s), 

and note that 
Dc = lim H{s). 

We have H{s) = N{s)D-^ (s) = CcS{s)D-^ (s) +Dc with CcS{s)D-^ {s) being strictly 
proper (show this). Therefore, only Cc needs to be determined from (4.24). 

A controllable realization of H{s) in controller form is now given by the equa
tions 

Here Cc and Dc were defined in (4.24) and (4.25), respectively. 

^c-^mi Be — BcByy (4.26) 
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where Ac = block diag [Ai, A2. . . , A^] with 

^j = \' Id, 

0 0 . . . 0 

j^djXdj 

Be = block diag G R'^J, j = I.. ., m 

and Am, Bm were defined in (4.23). Note that if dj = /JLJ, j = 1 , . . . , m, the control-
labiHty indices, then (4.26) is precisely the relation (4.63) given in Section 3.4. 

LEMMA 4.3. The system {Ac, Be, Cc, Dc} is an w( = 2 J.. 1 ^;)-th-order controllable re
alization of H(s) with (Ac, Be) in controller form. 

Proof. First, to show that {Ac, Be, Cc, Dc} is a realization of H(s), we note that in view 
of the Structure Theorem given in Subsection 3.4D, we have Cdsl - Ae)~^Be + Dc = 
N(s)D(s)-\whQYQ 

D(s) ^ B;,'[A(S) - AmS(s)l N(s) ^ CeS(s) + DcD(s). 

However, 5(5) = D(s)mdN(s) = A (̂5),in view of (4.22) to (4.24). Therefore, Q ( 5 / -
AcT^Bc + De = N{s)D-\s) = //(5), in view of (4.20). 

It is now shown that (Ac, Be) is controllable. We write 

[si Ac, Be] = [sl -Ac- BcAm, BcB^] 
I 0 

= [si - Ac, Be] 
Brr 

(4.27) 

and notice that rank [sjl - Ac, Be] = n for any complex Sj. This is so because of the 
special form of A ,̂ Be. (This is, in fact, the Brunovski canonical form.) Now since \Bm\ ^ 
0, Sylvester's Rank Inequality implies that rank [sjl - Ac, Be] = n for any complex Sj, 
which in view of Subsection 3.4B, implies that {Ac, Be) is controllable. In addition, since 
Bm = Im^ it follows that (Ac, Be) is of the form (4.69) given in Subsection 3.4D. With 
dj = )LiJ, the pair (Ac, 5c) is in controller form. • 

An alternative way of determining Q is to first write H(s) in the form 

H(s) = H(s) + lim H(s) = H(s) + Dc (4.28) 

where H(s) = H(s) - Dc is strictly proper. Now applying the above algorithm to 
H(s), one obtains H(s) = N(s)D~^(s), where D(s) is precisely equal to the ex
pression given in (4.20). We note, however, that N(s) is different. In fact, N(s) = 
N(s) - DcD(s). The matrix Q is now found to be of the form 

A (̂̂ ) - CcS(sl (4.29) 

Note that this is a generalization of the scalar case discussed in Example 4.1 [see 
(4.17) to (4.19)]. 

In the above algorithm the assumption that dj > 1 for all j = 1 , . . . , m, was 
made. If for some 7, dj = 0, this would mean that the jth column of H(s) will be 
a real m X 1 vector that will be equal to the jth column of Dc [recall that Dc = 



lim -̂̂ oo H(s)]. The strictly proper H(s) in (4.28) will then have its jth column equal 
to zero, and this zero column can be generated by a realization where theyth column 
of Be is set to zero. Therefore, the zero column (thejth column) of H{s) is ignored 
in this case and the algorithm is applied to obtain a controllable realization. A zero 
column is then added to Be. (See Example 4.4.) 

Finally, we note that given H(s) = N(s)D~^{s) with A (̂̂ ), D(s) not necessarily 
from (4.20), the above algorithm leads to a controllable realization if dj = column 
degrees of D(s), provided that D^, the highest column degree coefficient matrix is 
nonsingular (\Dh\ # 0). This, in fact, means that D(s) is column proper (see Sub
section 7.2B). The resulting pair (Ac, Be) is in controllable, companion form but not 
necessarily in controller form, since Bm = D^^ is not necessarily upper triangular 
with ones on the diagonal. (See Example 4.5.) 

Observer form realizations 

These realizations are dual to the controller form realizations and can be obtained 
by duality arguments [see (4.2) and Example 4.3]. In the following, observer form 
realizations are obtained directly for completeness of exposition. 

We consider the transfer function matrix H{s) = [nij{s)ldij{s)\ i = 1 , . . . , p, 
j = 1 , . . . , m, and let £i{s) be the (monic) least common denominator of all entries 
in the /th row of H(s). Then H(s) can be written as 

H(s) = D'\s)N(s\ (4.30) 

where N(s) = [nij(s)] and D(s) = diag [ti{s\ . ..Jp{s)l Note that nij{s)l'ii{s) = 
nij(s)/dij(s) for 7 = 1 , . . . , m, and all / = 1 , . . . , p. 

Let di = deg (((s), assume that Ĵ - > 1, define 

A(^) = diag ( / s . . . , / ^ ) , S(s) = block diag ([I, ^ , . . . , / ~ ^ ] , / = 1, 
(4.31) 

and note that S(s) is a p X n (= Xf= i di) polynomial matrix. Now, write 

D(s) = Ms)Dh + S(s)De (4.32) 

and note that Dh is the highest row degree coefficient matrix of D(s). Note that D(s) 
is diagonal, with entries monic polynomials, so that Dh = Ip, the pX p identity ma-

\3s^ + 1 2^1 
2s 

trix. If, for example, D(s) = , then the highest row degree coefficient 

matrix is Du and S(s)D^ in (4.32) accounts for the remaining lower row 

degree terms of D(s), with D^ a matrix of coefficients. 

Observe that \Dh\ y^ 0; in fact Dh = Ip. Define the p X p and nX p matrices 

Cp = Dh^ and Ap = -DeDh\ (4.33) 

respectively. Also, determine Bo and Do such that 

N(s) = S(s)Bo + D(s)Do. (4.34) 

Note that 

Do = lim H(s\ (4.35) 
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An observable realization of H(s) in observer form is now given by 

Xo = AQXO + BQU, y — CQXO + DQU, 

where Bo and Do were defined in (4.34) and (4.35), respectively, and 

where Ao = block diag [Ai, A2, . . . , Ap\ with 

(4.36) 

Ai = 

0 . . . 0 0 
0 

^di-\ 
0 

j^diXdi 

Co = block diag ([0,.. .,0,1] E R^^^\ i = 1,..., p), and Ap, Cp is defined in 
(4.33). Note that (4.36) is exactly relation (4.85) of Section 3.4 if di = vt, i = 
1,...,/?, the observability indices. 

LEMMA 4.4. The system {Ao, Bo, Co, Do} is an n (= 2f=i <iJ)th-order observable re
alization of H{s) with (Ao, Co) in observer form. 

Proof, This is the dual result to Lemma 4.3. The proof is completely analogous and is 
omitted. • 

We conclude by noting that results dual to the results discussed after Lemma 
4.3 are also valid here, i.e., results involving (i) a strictly proper H(s), (ii) an H(s) 
with di = 0 for some row /, and (iii) H(s) = D~^(s)N(s), where D(s), N{s) are not 
necessarily determined using (4.30) (refer to the following examples). The reader is 
encouraged to explicitly state these results. 

EXAMPLE 4.3 . Let H(s) = 
S^ + I S + I 

. We wish to derive a minimal realization 

for H(s). To this end we consider realizations {Ac, Be, Cc, Dc), where {Ac, Be) is in con
troller form. Here €1(5) = s^, €2(5) = s^, and H{s) can therefore be written in the form 
(4.20) as 

H{s) = N{s)D~\s) = {s^ -^\,s+ 1] 

Here di = 2,d2 = 3 and A(s) 
0 

, S(s) 1 ^ 0 0 0 
0 0 I s s^ 

. Note that n = 

di + d2 = 5, and therefore, the realization will be of order 5. Write D{s) = DhA(s)-\-
ro 0 0 0 01 
0 0 0 0 0 DeS(s), and note that Dh = h, D^ = 

and 

. Therefore, in view of (4.23), 

Bm — 
1 0 
0 1 

Am = -DP = 
0 0 0 0 0 
0 0 0 0 0 

Here Dc = lims^oo H(s) = [1, 0] and (4.24) implies that CcS(s) = N(s) - DcD(s) = 
[s^ + 1, 5 + 1] - [s^, 0] - [l,s + 1] from which we have Q = [1, 0, 1, 1, 0]. A control
lable realization in controller form is therefore given by x - AcXc + BcU and y = 
^~^ C C -^-^C 9 
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Ac = 

Cc 

0 1 

0 0 

0 0 

0 0 

0 0 

[1, 0,1,1, 0], 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

and 

0 

0 

0 

1 

0 

I 

Be 

' 0 
1 

0 
0 
0 

0 " 
0 

0 
0 
1 

= [1,0]. 
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Note that the characteristic (pole) polynomial of H{s) is s'^ and the McMillan degree 
of H{s) is 3. The order of any minimal reaUzation of H{s) is therefore 3 (see Theorem 
3.11). This implies that the controllable fifth-order realization derived above cannot be 
observable [verify that (A ,̂ Cc) is not observable]. To derive a minimal realization, the 
observable part of the system [Ac, Be, Cc, Dc) needs to be extracted, using the method 
described in Subsection 3.4A. In particular, a transformation matrix P needs to be deter
mined so that 

A = PAcP -1 _ Ai 0 
A21 A2, 

and C = CcP~ [Ci,0], 

where (Ai, Ci) is observable. If B = PBc , then {Ai, 5i , Ci, Di} is a minimal 

realization of H{s). To reduce (Ac, Cc) to such standard form for unobservable systems, 
we let AD = AJ, BD = C j , and Co - B^ and we reduce (AD, BD) to a standard form 
for uncontrollable systems. Here the controllability matrix is 

1 0 0 0 0 
0 1 0 0 0 
1 0 0 0 0 
1 1 0 0 0 
0 1 1 0 0 

Pj)^ are taken to be the Note that rank ^ ^ = 3. Now if the first three columns of QD 
first three linearly independent columns of ^ D , while the rest are chosen so that \QD\ ¥= 0 
(see Subsection 3.4A), then 

QD = 

and QD'-

1 
0 
1 
1 
0 

0 
0 
0 
0 
1 

0 
1 
0 
1 
1 

—; 

- ] 

0 
0 
0 
0 
1 

0 
0 
1 
0 
0 

0 
0 
0 
1 
0 

1 
0 
0 
0 
0 

1 
0 
0 

- 1 
- 1 

0 
0 
1 
0 
0 
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This implies that 

AD = QDAUQD = 
ADI ADU 

[ 0 AD2 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

- 1 

- 1 

- 1 

1 

- 1 

1 

1 

BD — QD ^D — 
BDI 

_BDI\ 

' 1 • 

0 
0 

0 
0 

CD — CDQD -
0 1 0 0 0 
0 1 1 0 0 

Then 

A = 
Ai 0 

.A21 A2. 
^ AT ^ 

0 

0 

0 

1 

1 

1 

0 

0 

0 

1 

0 

1 

0 

0 

- 1 

0 

0 

0 

- 1 

1 

0 

0 

0 

- 1 

1 

B = Cl = 

"0 
1 
0 

0 
0 

0 " 
1 
1 

0 
0 

C = Bl = [Ci, 0] = [1,0, 0,: 0,0]. 

Clearly, A = A^, C = B j is in standard form. Therefore, a controllable and observable 
realization, which is a minimal realization, is given by Xco = Aco^co + BcoU and y = 
Cco^co + J^coU, where 

0 
0 
0 

1 0" 
0 1 
0 Oj 

Bco -

"0 
1 

.0 

0 
1 
1 

Ceo = [1,0,0], Dc [1,0]. 

A minimal realization could also have been derived directly in the present case 
if a realization {A ,̂ Bo, Co, Do} of H(s), where (Ao, Bo) is in observer form, had been 
considered first, as is shown next. Notice that the McMillan degree of H(s) is 3, and 
therefore, any realization of order higher than 3 will not be minimal. Here, however, the 
degree of the least common denominator of the (only) row is 3, and therefore, it is known 
in advance that the realization in observer form, which is of order three, will be minimal. 

A realization {Ao, Bo, Co, Do} of H(s) in observer form can also be derived by con
sidering H^(s) and deriving a realization in controller form. Presently, {Ao, Bo, Co, Do} 



is derived directly. In particular, we write H(s) = JD ^(s)N(s) = (s^) ^[s(s^ + 1), 
s + 1]. Then di = 3[= deg \{s) = deg s \ and A ^ = s^,S{s) = [l,s,s^l Then 
D(s) = s^ = Ms)Dh + S(s)Di implies that Dh = 1 and De = [0, 0, 0]^. In view of 
(4.33), we have 

Cp = 1, Ap = [0,0, 0 ] ^ 

Do = liiRs^^ H(s) = [1,0], and (4.34) implies that S(s)Bo = N(s) - D(s)Do = 

[s(s^ + 1), 5 + 1] - [s^, 0] = [s,s -\- 1], from which we have Bo 
0 1 0 

. An 
[1 1 OJ 

observable realization of H(s) is the system x = AoXo + BoU, y = CoXo + DoU, where 

Ao = 

with (Ao, Co) in observer form (see Lemma 4.4). This realization is minimal since it is 
of order 3, which is the McMillan degree of H(s). (The reader should verify this.) Note 
how much easier it was to derive a minimal realization, using the second approach. • 

0 0 01 
1 0 0 
0 1 0 

Bo = 
ro r 
1 1 
0 0 

Co = [0,0,1], Do = [1,0] 

EXAMPLE 4.4. Let H(s) = s + 1 
1 
s 

. We wish to derive a minimal realization. 

Here €1(5) = s(s+I) with di = 2and€2(^) = lwith(i2 = 0. In view of the discussion 

2 
[0 1 

following Lemma 4.3, we let Dc = lims^o,H(s) 
0 0 

2 ] 

and H(s) 

s+ 1 
1 

s+ 1 
1 

s 

and determine a minimal real We now consider the transfer function H(s) 
ization. 

Note that the McMillan degree of H(s) is 2, and therefore, any realization of order 2 
will be minimal. Minimal realizations are now derived using two alternative approaches: 

1. Via a controller form realization. Here £\(s) = s(s + 1), Ji = 2 , and H(s) = 
" 2s 
5 + 1 

[s(s + l)]-i = N(s)D-\s). Then A(s) = s^ and S(s) = [hsf, D(s) 

s(s + 1) - Is^ + [0, 1][1,5 
0 2 
1 1 

-[0,1]. Also, Cc 

DhA(s) + D^S(s). Therefore, B^r, 

, which follows from N(s) 

1 and Am = 

CcS(s). Then a minimal realization for H(s) is Ac = 

" 2s 
.5+ 1 

ro 1] 
0 - i j ' 

1 ro 21 
1 1 

Be = 
ro] 
.ij' 

rr 
[s 

Cc 

0 2 
1 1 

Adding a zero column to 5^, a minimal realization of H(s) is now derived as 

A = B = 
0 0 
1 0 c = 

0 2 
1 1 

D = 
0 1 
0 0 

We ask the reader to verify that by adding a zero column to B^ controllability is 
preserved. 

2. Via an observer form realization. We consider H (s) = [2/(s +1) , l/s] and derive a 

realization in controller form. In particular, ^i = s + I, £2 = s, H^(s) = 
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[2,1] 

[2,1] 

s+l 0 
0 s 

5 + 1 0 ^ 
0 s 

1 0 
0 0 

1 0 

0 1 
1 0" 
0 0 

,di = d2 = I, A(s) = 

1 0 
0 1 

s 0 
0 s 

1 0 
0 0 

s 0 
0 s 

1 0 
0 1 

, and S(s) = 
1 0 
0 1 

. Then D(s) = 

= DhA{s) + DiS(s)mdB^ = 
1 0 
0 1 

Also, Cc = [2, 1], from which we obtain A (̂̂ ) = [2, 1] = 

= CcS(s). Therefore, a minimal realization {A, B, C} of H^(s) is 

1 0 
0 1 

- 1 0 
0 0 

, [2, 1] [. The dual of this is a minimal realization of H(s), 

namely, Ao = 

tion of H(s) is 

r - 1 0 
0 0 

EXAMPLE 4.5. Let 
1 

,Bo , and Co 
1 0 
0 1 

. Therefore, a minimal realiza-

H(s) = 

B = 

1 

2 0 
1 0 

C = 
1 0 
0 1 

D = 
0 1 
0 0 

2̂ + 1 ^ 2 + 1 s+ 1 0 
S 5̂  + 1 

N(s)D'\s). 
\l s - l 
\s 0 

0 I 
^ s+ 1 

We wish to derive a minimal realization based on the given factorization N(s), D{s). 
Since the McMillan degree of H(s) is 3 (show this), any realization of order 3 will be 
minimal. Note that in the present case di = I and J2 = 2, the degrees of the first and 

second columns of D(s), respectively. Then A(^) 
0 

,S(s) 
1 0 0 
0 1 s 

, and 

D(s) = 
1 0 
1 1 

0 
0 + 

1 0 0 
0 1 0 

0 s' 

= DhA(s) + D^S(s). Here \Dh\ # 0, 
1 0 01 
0 1 ^J 

and therefore, the algorithm above still applies. Note that Dh is not in upper triangular 
form with ones on the diagonal, and therefore, the resulting controllable realization will 
not be in controller form; A^ however, will be in companion form. Let B^ = Dj^^ = 

1 0 
- 1 1 

, A , -D-,'D, 

N(s) = CcS(s) + DcD{s) = 

A minimal realization is now given by 

- 1 
1 

= 

0 0" 
- 1 0. 

1 - 1 
. - 1 0 

and 

11 

OJ 

ri 0" 
0 1 

LO S_ 

+ 
"0 01 

.1 OJ 
s+l 0 

s s^ + I 

Ac = 

Cc 

0 0 

0 

- 1 

-1 r 
0 0 

, Be -

1 

0 
- 1 

0" 

0 
1 

Dc = 
0 0 
1 0 

Verify this. 



C. Realizations with Matrix A Diagonal 

When the roots of the minimal polynomial mnis) of H(s) are distinct, there is a 
realization algorithm due to Gilbert [2] that provides a minimal realization of H(s) 
with A diagonal. Let 

mnis) = / + dr-is'' '-{-'"+dis -^ do (4.37) 

be the (monic) least common denominator of all nonzero entries of the p X m matrix 
H(s) which in view of Section 3.5, is the minimal polynomial of H(s). We assume 
that its r roots A/ are distinct and we write 

i = i 

(4.38) 

Note that the pole polynomial of H(s\ PH(S), will have repeated roots (poles) if 
PH(S) ¥= mnis) (see Section 3.5 and Example 4.6). We now consider the strictly 
proper matrix H(s) = H(s) - lims-^oo H(s) = H(s) - D and expand it into partial 
fractions to obtain 

H(s) 
1 

rriHis) 
N(s) ±7^^.''- (4.39) 

! = 1 

The pX m residue matrices R, can be found from the relation 

Ri = lim(s - \i)H(s). (4.40) 

We write 

Ri = CiBi, / - l , . . . , r , (4.41) 

where C/ is a /? X pi and Bi is a p/ X m matrix with p/ = rank Ri < min (p, m). 
Note that the above expression is always possible. Indeed, there is a systematic pro
cedure of generating it, namely, by obtaining an LU decomposition of Ri (refer to 
the Appendix). Then 

All Upi 

A2/; P2 

C = [Ci ,C2, . . . ,C,] , 

is a minimal realization of order n = X L 

^rlpr. 

D = 

) 

lim/ 

B = 

i(s) 

Bi 
B2 

Br 

(4.42) 

I Pi 

LEMMA 4.5. Representation (4.42) is a minimal realization of H(s). 

Proof, It can be verified directly that C(sl - A)~^B + D = H(s), i.e., that (4.42) is a 
realization of H(s).To verify controllability, we write 

B2 
= [B^AB, 'B] = 

Br 

X\Im Aj Im 

Xrlm> '•• 
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The second matrix in the product is a block Vandermonde matrix of dimensions mr X 
mn. It can be shown that this matrix has full rank mr since all A/ are assumed to be 
distinct. Also note that the (n = %pi) X mr matrix block diag [Bi\ has rank equal to 
2/̂ =1 rank Bt = 2[=i P/ = n ^ mr. Now, in view of Sylvester's Rank Inequality, as 
applied to the above matrix product, we have n + mr - mr ^ rank ̂  < min (n, mr), 
from which rank % = n. Therefore, {A, B, C, D} is controllable. Observability is shown 
in a similar way. Therefore, representation (4.42) is minimal. • 

EXAMPLE 4.6. Let 

H(s) = 

Is+l s(s+l)i 

Herem/zW = ^(5+1) with roots Ai = 0, A2 = - 1 distinct. We write//(5) = (l/s)Ri + 

[l/(s + l)]/?2, where Ri = lims^o sH(s) = lim^^o 
1 

2s 
s+ 1 

0 
1 

s+l\ 
— 

n 01 
0 1 .Ri 

\ims^-i(s-\-l)H(s) = lim^ L 5 - » - l 
0 0 
2 - 1 

, pi = rank Ri = 2, and p2 = 

rank R2 = I, i.e., the order of a minimal realization is n = pi + p2 = 3. We now write 

Ri = 

Ri 

1 0 
0 1 

0 
2 -

1 0 
0 1 

1 0 
0 1 

= C,B, 

Then 

A = 

C 

A1/2 01 
0 A2J 

_ 

[Ci, C2] = 

ro 
0 

[0 
ri 0 
[0 1 

0 
0 

0 

01 
1 

01 
0 

- i j 

[2 - 1] = C2B2. 

B = 
« 1 

kJ = 
n 
0 
.2 

01 

1 
- 1 . 

is a minimal realization with A diagonal (show this). Note that the characteristic polyno
mial of H{s) is PH{S) = s'^(s +1), and therefore, the McMillan degree, which is equal 
to the order of any minimal realization, is 3, as expected. • 

D. Realizations with Matrix A in Block Companion Form 

The realizations derived using the algorithms described below are in general either 
controllable or observable and of order mr or pr, where r is the degree of the minimal 
polynomial of ^(.s*). Most often it is also necessary to use the methods of Subsec
tion 3.4A to reduce these realizations to the standard forms for unobservable or un
controllable systems and in this way derive minimal realizations. 



Using the numerator polynomial matrix 

Consider a proper pxm matrix H{s) and let 

mnis) -dr-lS r-l -dis^do 

be its minimal polynomial, as in (4.37). The polynomial mnis) is the monic least 
common denominator of all entries of H{s). 

Let Nh{s) = mH{s)H{s) be a polynomial matrix and write 

N}y{s) = CbcSb{s) ^Dbcmnis), (4.43) 

where St{s) = [Im^slm^ ...^s^~^Im]. Note that Dj^c = lim^^ooH(^), and therefore, 
C}jc is the only unknown in (4.43). A solution Q^ always exists since the highest 
possible degree in N}y{s) — Df^c^nis) is r — 1 because H{s) is proper. Expres
sion (4.43) is analogous to (4.24). In addition, we can also write mnis) = s^ — 

. . , y -dQ,...,-dr-i][\,s, 

mH{s)Im 

r-UT , from which we have 

= S^im — [—dolm^ • • • , —dr-lIm\Sb{s)^ (4.44) 

which corresponds to D{s) in (4.22). 
A controllable realization in block controllable companion form is given by x --

Ai,cX + Bi,cU^y = ChcS -\-DfycU with Q^ and Df^c specified in (4.43) and 

A be 

o„ 

-dolm -d\Im 

0„ 

-dr-]Ir l^m 

B, be • 

0. 

(4.45) 

Note that if the strictly proper matrix H{s) = H{s) — lim^^ooH(^) = H{s) — D^c 
is used, then 

Nt{s) ^ mH{s)H{s) = Rr-is'-^ + • • • +/^o, 

where /^/, / = 0 , . . . , r — 1, are real pxm coefficient matrices. It is now not difficult to 
see that in this case 

Q , = [/^o,/^i,. . . ,/^r-i]. (4.46) 

The realization {A/̂ c? ̂ /?C5 Qc? ^/?c} in (4.45) is of order mr and is a direct generaliza
tion of the SISO realization (4.9) to the MIMO case. In general it is only controllable 
but not observable. It is also observable when m = 1, and therefore, it is minimal 
for m = 1. This is true because of Theorem 3.11 and the fact that in this case 
r = deg mH{s) = deg PH{S), the McMillan degree of H{s). 

L E M M A 4.6. The representation (4.45) is a controllable realization of H(s). 

Proof, The proof is similar to the proof of Lemma 4.1. First to show that (4.45) is a real
ization, we consider the rmxm matrix X{s) = [X[ (s),. ..,Xj^{s)]'^ = {si — Ai,c)~^Bi,c. 
Then sX —A^cX = B^c and sXi = Xi^i,/ = 1,...,r — 1, or X^+i = s^Xi,i= 1,...,r — 1. 
Also, sXf — [—dQlm,---,—dr-\Im\X = Im, which implies, in view of X^+i = s^Xi, 
that mH{s)X\ = I^. Thus, Xi = {mH{s))~^s^~^Im,i = 1, . . . ,r, and in view of X{s) = 
{sI-Abc)-^Bbc, 

{sI-Abc)Sb{s)=BbcmH{s), (4.47) 
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which is of course analogous to (4.11). (Refer also to the algorithm for the controller form 
realization in the MIMO case and the Structure Theorem in Subsection 3.4D, where a 
similar relation is valid.) Note that \sl — A^J = (mnis))^ (show this). To show that 
(Ab^, Bbc) is controllable, we observe that 

[Bbc, AbcBbc, He Bbc .,Air'Bbc] = 

Om 0 , 

X X 

(4.48) 

which has full rank mr, since the first mr columns are linearly independent. 

We may also easily obtain an observable realization of H{s) using duality. In 
particular 

Abo = 

On 

LOP 

0, 
0„ 

In 

Cbo = [0/7. 

-dolp 
-d\Ip 

-dr-llpj 

Bbo 
Ri 

R r - l 

(4.49) 

Dbo = lim H(s) 

is an observable realization of order pr (use duality arguments to prove this). 
In both of the above cases of controllable realization {Abo Bbc, Cbo Dbc} or ob

servable realization {Abo, Bbo, Cbo, Dbo}, the methods of Subsection 3.4A may be 
used to obtain minimal realizations [see (4.3b)]. 

EXAMPLE 4.7. Let 

H(s) 

. 5 + 1 5(5-+ 1). 

as in Example 4.6. We wish to determine an observable realization with A in block com
panion form. To this end, duality will be used and the procedure described by (4.3a) will 
be followed. 

In this case we have mnis) = s^ + s = s^ + dis + do, from which we conclude 
that r = 2, Ji = 1, and Jo = 0. Note that H(s) is stricdy proper. Let H(s) = H^(s) = 

1 
s(s + 1) 

s + 1 2s 
0 1 

= Nb(s)(mH(s)) ^ and write 

Nb(s) = 
1 2 
0 0 s + 

1 0 
0 1 

= Ris + /?o. (4.50) 

Then a controllable realization of H(s) is given by 

Ahr = 
O2 h 

-doh -dih. 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

- 1 

0 

0 

1 

0 

- 1 

Bbc — 
[Ol 

[h\ 

"0 
0 

1 
0 

0" 
0 

0 
1 



Cbc — [̂ 0> ^ l ] 
1 0 : 1 2 

0 1 : 0 0 

and an observable realization of H(s) is given by 
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Abo — ^Z?c 

0 

0 

1 

0 

0 : 

0 : 

0 : 

1 : 

0 0 

0 0 

- 1 0 

0 - 1 

Bbo — Cz?c 

" 1 
0 

1 
_2 

0 " 
1 

0 
0 

Cbo - Bi — ^bc 
0 0 

0 0 

1 0 

0 1 

Note that the system {Abo^ Bboy Cbo) is not controllable. We ask the reader to use the 
procedure shown in (4.3b) to obtain a minimal realization. The order of any minimal 
realization is 3 (why?). • 

Using the Hankel Matrix 

We consider a proper p X m transfer function matrix H(s) and let 

r - l muis) = s^ + dr-is^ + • • • + dis + do 

be its minimal polynomial, as in (4.37). We write 

H{s) = HQ+ His-^ + H2S~^ + • • •, 

where the Hi are the Markov parameters of the system. Let 

A = 

(4.51) 

Op 

Op 
-dolp 

Ip . . 

0 , . . 
-dilp .. 

• 0 , 

• ip 
• -~dr-llp_ 

B = 

Hi 

H2 

Hr 

(4.52) 

C = [lp,{)p,...,Opl D = Ho. 

LEMMA 4.7. The representation (4.52) is an observable realization of H(s). 

Proof, To show that (4.52) is a realization, we note that {A, B, C, D} is a realization of 
H{s) if and only if D = HQ and CA^~^B = ///, / = 1, 2 , . . . (prove this, referring to 
Exercise 2.63). Here 

(4.53) 

C 
CA 

ICA'-^ 

and therefore, CA^'^B = Hi, i = 1 , . . . , r. To show that this is also true for / = r + 1 , . . . , 
a relationship between Hi and di is required. In particular, we let H{s) = H{s) - HQ and 
we write 
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mH(s)H(s) = (s' + dr-is' + '" +dis + doXHis ^ +H2S ^ + • • •) 

'+Ro 

Equating coefficients of equal powers of s, we obtain 

.r-2 . 

Hi 

H2 

Rr-ly 

Rr-2 ~ dr-\H\, 

(4.54) 

(4.55) 

and 

s '. Hr = RQ ~ dr-iHf-i — • • • — d\Hiy 

Hr+i = —dr-\Hr+i-\ — ••• — d{)Hi, i = 1, 2, , 

Using the above relations, it can be shown that CA^~^B = Hi fori = 1, 2, Now, 
in view of (4.53), the observability matrix has rank pr, which is equal to the order of the 
system. Therefore, the system is observable. • 

We can now use duality arguments to show that 

A = 

'Om •• 

^m 

% .. 

c = m,H2, 

is a controllable realization. 

EXAMPLE 4.8. Let 

. Om 

. On, 

• Im 

....Hrl 

H(s) = 

-dolm 
-dllm 

—dr-\Im_ 

D = 

- 1 

5' 

2 

, 

-H^ 

0 

1 

B = 
(4.56) 

L̂  + l ^(5 + 1) 

as in Example 4.7. We wish to determine an observable realization. Here muis) = 
s^ + s = 5'̂  + (ii5 + (io.fromwhichr = 2, Ji = l,anddo - 0. Let//(5) = /fo+^i^~^ + 
H^s'^ + • • •. The Markov parameters can be found directly from //Q = lim ŷ̂ oo H{s) = 

^ ^^ H2 = lims-..o s\H(s) - (Ho + His-')) = 0, Hi = lims-.^s(H(s) -Ho) 
0 0 

-2 1 

2 0 
and so forth, or from (4.55) since /?o, • • • > ^r- i are already known from Ex 

ample 4.7 (after the transpose is taken). We have Hi = Ri = 

1 0 
0 1 

diHi = 

1,2,...; that is, 

n 0 
[2 0. 

ro 0 
[2 - 1 . 

reahzation (4.52) is given by 

0 0 
-2 1 

[2 0 

-diH2+i - doHi = 

,H2 — RQ — 

—Hi+i, i = , and H2+i 

= -H2 = H3 = -H4 = Hs = •••. Therefore, an observable 

A = 
O2 

-doh 
h 

-dih. 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

-1 0 

0 - 1 

B = 
\Hi] 
[H2\ 

1 
2 

0 
-2 

0" 
0 

0 
1 



C = [/2,02] = 1 0 

0 1 

0 0 

0 0 
D = 

ro 01 
0 0 

This realization is not controllable, since a minimal realization is of order 3. We ask the 
reader to use Theorem 3.13 to show this. • 
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E. Realizations Using Singular-Value Decomposition 

Internally balanced realizations 

Given a proper p X m matrix H(s), we let r denote the degree of its minimal 
polynomial mnis), we write 

H(s) = Ho^His-^ +/ / : 2^-^ + . . . 

to obtain the Markov parameters Hi, and we define 

\Hi . . . Hr 

T ^ Mnir, r) 

Hr H 2r-\ 

f' A 
Ht H, 

H, r+l 

r+1 

H2r 

(4.57) 

where Mnir, r) is the Hankel matrix (see Definition 3.4) and T, f are real matrices 
of dimension rp X rm. 

Using singular-value decomposition (see the Appendix), we write 

T = K s 0 
0 0 

(4.58) 

where X = diag [Ai, . . . , A„] £ R"^" with n = rank T = rank Muir, r), which 
in view of Theorem 3.13 is the order of a minimal reahzation of H(s). The A, with 
Ai s A2 ^ • • • > A„ > 0 are the singular values of T, i.e., the nonzero eigenvalues 
of T^T. Furthermore, KK^ = K^K = Ipr and LL^ = L^L = I,nr- We write 

T = K,XU =[K,X"^[X"^LA=VU, (4.59) 

where Ki denotes the first n columns of K, L\ denotes the first n rows of L, K\K\ = 
In, and LiL[ = /„. Also, V G R'P'''' and U E R^''''^. 

We let V^ and Lf^ denote pseudoinverses of V and U, respectively (see Ap
pendix), i.e., 

V = ^-"^Kl and ^̂ + - ^^^-"^ 

where V^V = In and UU^ = In. Now define 

U^ = L [ S - (4.60) 

A = V^fu^, B = UIL ^p,pr V, D = Ho. (4.61) 

where 4,^ = Uh ^e-kl k < ^, i.e., Ik^^ is a fc X € matrix with its first k columns de
termining an identity matrix and the remaining (- k columns being equal to zero. 
Thus, B is defined as the first m columns of C/, and C is defined as the first/? rows of 
V. Note that A G 7?"X^ B G Ẑ ^̂ '̂", C G T^^^", and D G RP'''^, 

LEMMA 4.8. The representation (4.61) is a minimal reahzation of H(s). 



424 Proof, It can be shown that CA^'^B = Hi, i = 1, 2, . . . (see also the proof of Lemma 
Linear Systems 4.7). Thus, {A, B, C, D} is a reahzation. We note that V and U are the observabiHty and 

controllabihty matrices, respectively, and that both are of full rank n. Therefore, the 
reahzation is minimal. Furthermore, we notice that V'^V = UU^ = 2 . Realizations of 
this type are called internally balanced realizations. • 

The term internally balanced emphasizes the fact that realizations of this type 
are "as much controllable as they are observable," since their controllability and 
observability Gramians are equal and diagonal (see Exercise 5.20). Using such rep
resentations, it is possible to construct reasonable reduced-order models of systems 
by deleting that part of the state space that is "least controllable" and therefore "least 
observable" in accordance with some criterion. In fact, the realization procedure de
scribed can be used to obtain a reduced-order model for a given system. Specifically, 
if the system is to be approximated by a ^-dimensional model with q < n, then the 
reduced-order model can be obtained from 

T = Kqdiag[Xi,...,\q\Lq, (4.62) 

where Kq denotes the first q columns of K in (4.58), and Lq denotes the first q rows 
ofL. 

5.5 
SUMMARY 

The theory of state-space realizations of input-output descriptions given by impulse 
responses, and the time-invariant case by transfer function descriptions, were studied 
in this chapter. 

In Section 5.2 the problem of state-space realizations of input-output descrip
tions was defined and the existence of such realizations was addressed. In Sub
section 5.3A time-varying and time-invariant continuous-time and discrete-time 
systems were considered. Subsequently, the focus was on time-invariant systems 
and transfer function matrix descriptions H{s). The minimality of realizations of 
H{s) was studied in Subsection 5.3C, culminating in two results, Theorem 3.9 and 
Theorem 3.10, where it was first shown that a realization is minimal if and only if 
it is controllable and observable, and next, that if a realization is minimal, all other 
minimal realizations of a given H{s) can be found via similarity transformations. In 
Subsection 5.3C it was shown how to determine the order of minimal realizations 
directly from H{s). Several realization algorithms were presented in Section 5.4, 
and the role of duality was emphasized in Section 5.4A. 

5.6 
NOTES 

A clear understanding of the relationship between external and internal descrip
tions of systems is one of the principal contributions of systems theory. This topic 
was developed in the early sixties with original contributions by Gilbert [2] and 
Kalman [4]. 

The role of controllability and observability in minimal realizations is due to 
Kalman [4]. See also Kalman, Falb, and Arbib [5]. 



The first realization method for MIMO systems is attributed to Gilbert [2]. It 425 
was developed for systems where the matrix A can be taken to be diagonal. This CHAPTER 5: 
method is presented in this chapter. For extensive historical comments concerning Realization 
this topic, see Kailath [3]. Theory and 

Additional information concerning realizations for the time-varying case can be Algorithms 
found, for example, in Brockett [1], Silverman [9], Kamen [6], Rugh [8], and the 
literature cited in these references. 

Balanced realizations were introduced in Moore [7]. 
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5.8 
EXERCISES 

5.1. Given the transfer function matrix 

H{s) 

s- 1 
s 

0 5+ 1 

s-2 
s + 2 

0 

determine the McMillan degree of H{s) and find a minimal realization for H{s). Verify 
your results. 

5.2. Consider the transfer function matrix 

H{s) 
\s- 1 1 
s+\ s^ - \ 

1 0 

(a) Determine the pole polynomial and the McMillan degree of II{s), using both the 
Smith-McMillan form and the Hankel matrix. 
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(b) Determine an observable realization of H(s). 
(c) Determine a minimal realization of H(s). 

1 1 
Hint: Obtain realizations for 

s + 1 s^ 1 

5.3. Consider the transfer function matrix H(s) 
(s + 1)(-^ + 5) s 

(s - l)(s^ -9)' s-1 
for H(s) a minimal realization in controller form. 

and determine 

5.4. Consider the transfer function matrix 

-3s^ -6s-2 

His) = I (̂  + 1)̂  
s 

(S + 1)3 

3 ^ - 1 1 
(s - 2)(s + 1)3 (s - 2)(s + 1)2 

s s 
(s-2)(s+ 1)3 ( ^ - 2 ) ( ^ + 1)2 J 

(a) Determine the pole polynomial of H(s) and the McMillan degree of H(s). 
(b) Determine a minimal realization of H(s) in observer form. 

5.5. Consider the scalar proper rational transfer function//(>s')[})(5') = //(5')M(^)], and assume 

-. Note that this can be done when the that H(s) can be written as H(s) = 2 L i -
s - Ai 

poles A/, / = 1 , . . . , w, are distinct (see Subsection 5.4C on realizations with A in diag
onal form). 

(a) Show that H(s) can be realized as the sum or the parallel combination of realizations 

of terms in the form —^-—; i.e., H(s) is realized by the system represented in the 
block diagram of Fig. 5.4, where r/ = QZ?/, / = 1 , . . . , n, with cj G /?", bi E /?", 

, and q = didt denotes the integrator circuit shown in Fig. 5.5. Note that with 
q- Xi 

this realization of H{s) has advantages with respect to sensitivity to parameter vari 
ations. 

"' 

1 

(7-X1 
<=1 

^ 
1 

q-K 
^n 

FIGURE 5.4 
Block diagram of the system in Example 5.5a 

c 
Vr 

T̂ 
1 

")"" 
) I 

^ i 
FIGURE 5.5 
Block diagram of an integrator 



(b) Show that when poles are repeated, as, e.g., in the transfer function 

H(s) = -"TT + + ;r, then a parallel realization is as shown in the 
(5+1)2 ^ + 1 5 + 2 ^ 

block diagram given in Fig. 5.6. 
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u 1 

q+^ 

1 

qr+2 

1 

(7+1 

W 

\ J 
FIGURE 5.6 
Block diagram of the system in Example 5.5b 
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(c) When there are complex conjugate poles, as, e.g., in the transfer function H(s) 
as + b 

J, then H(s) can be written as H(s) 
al{s + c) (b - ac)/(s + cf 

(S + C)2 + ^2^—-^-^-- ^ --^-^ I + (j2/(^ + c)2) •' 1 + (dVis + C)2) 
and can be realized as indicated in the block diagram given in Fig. 5.7. 

^ k 

i 

1 
q + c 

d^ 

" 

1 
g + c 

^ 

a 

b- ac 1 k/ 

1 
• c^ 

FIGURE 5.7 
Block diagrams of the system in Exercise 5.5c 

Note that in addition to sum or parallel realizations discussed in (a) to (c), there 
5 + 1 

are also product or cascade realizations where, for example, H(s) 

is realized as 
5 + 1 1 
5 + 2 5 + 3 

5.6. Consider the transfer function 

1 5 + 1 
5 + 2 5 + 3 ' 

(5 + 2)(5 + 3) 

H(s) = 

5 + 3 
5 + 1 

5 

•5 + 3 5 + 1 -
(a) Determine the pole polynomial of H(s) and the McMillan degree of H(s). 
(b) Determine a minimal realization {A, B, C, D] of H(s), where A is a diagonal matrix. 

5.7. Consider a system described by equations of the form 
0 

[0 AIJL^IJ 

Xi 

Bi\ 

y = [Ci, Ci] , where Ai is the Jordan block associated with the eigenvalue A, and Ai 
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is the complex conjugate of Ai associated with A. Show that the similarity transformation 

can be used to reduce the representation given above matrix P given by P = . . 

to one that involves only real system parameters, namely, 

Xi 

X2\ 

ReAi 
-ImAi 

Im A\ 
ReAi 

2 Re Bi 
-llmBi 

y = [ReCi, ImCi\ 

Note that this is a way of obtaining representations involving only real coefficients from 
realizations with A in diagonal or in Jordan form that may contain complex numbers. 

5.8. Determine an observable reaHzation oiH{s) given in Exercise 5.1, where the matrix A 
is in block companion form, by using 
(a) the numerator polynomial matrix, 
(b) the Hankel matrix. 

s + 2 
5.9. Show that if the system {A, B, C, D} reaHzes H{s) = -^—;r and \sl - A\ = s^ + 

s^ + 2s -\- \ 
2 ^ + 1 , then (A, B) must be controllable and (A, C) must be observable. Hint: Use 
Theorem 3.11. 

5.10. Show that if the system {A, B, C, D] realizes the transfer function matrix H{s) and 
1̂ / - A| = mnis), the monic least common denominator of the entries of H(s), then 
{A, B, C, D} is a minimal realization of H(s). Can one always find a realization of ^(^) 
that satisfies this property? Hint: Use Theorem 3.11. 

5.11. Consider a scalar proper rational transfer function H(s) = n(s)/d(s), and let x = 
AcXc + BcU, y = CcXc + DcU be a realization of H(s) in controller form (see Subsec
tion 5.4B). 
(a) Show that the realization {A ,̂ B^ Cc, Dc} is always controllable. 
(b) Show that {Ac, Be, Cc, Dc] is observable if and only if n{s) and d{s) do not have 

any factors in common, i.e., they are prime polynomials. 
(c) State the dual results to (a) and (b) involving a realization in observer form. 

5.12. Consider 3. p X m proper rational transfer function matrix H(s) and the algorithm that 
leads to a reaHzation {Ac, Be, Cc, Dc} of H(s) = N(s)D(s)~^ in controller form [see 
(4.22) and (4.24)]. 

(a) Show that (Ac, Cc) is observable if and only if rank ' ' 
N(\)\ 

= m for any A complex 

scalar. Hint: Use the eigenvalue/eigenvector tests for observability. Note that this 
rank condition is a necessary and sufficient condition for N(s) and D(s) to be right 
coprime (see Theorem 2.4 in Subsection 7.2D). 

(b) State the dual result to (a) that involves a realization in observer form {Ao, Bo, 
Co, Do) of His) = D-\s)N(s). 

^ - i^ X rr^ X ^(S) S'^ - S + 1 

5.13. Let H(s) = ^ K = -^ z T 
d(s) 5̂ - 4̂ + s^ 

+ s- 1 
. Determine a realization in controller 

form. Is your realization minimal? Explain your answer. Hint: Use the results of Exer
cise 5.11. 



5.14. For the transfer function H(s) = 
s+ 1 

,find 
2̂ + 2 ' 

(a) an uncontrollable realization, 
(b) an unobservable realization, 
(c) an uncontrollable and unobservable realization, 
(d) a minimal realization. 
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5.15. Find minimal discrete-time state-space realizations of the transfer function matrix 
-z + 2 1 

H(z) = 
z + 1 

z 

z + 3 

z + 1 
- z + 1 z + 2-

using all the realization methods described in this chapter. 

5.16. Given is the system depicted in the block diagram of Fig. 5.8, where H(s) = 
s^ + 1 

— — —. Determine a minimal state-space representation for the closed-
{s + 1)(^ + 2){s + 3) F F 
loop system, using two approaches. In particular: 

^ 
: ^ L 

u 
His) y 

FIGURE 5.8 
Block diagram of the system in 
Exercise 5.16 

(a) First, determine a state-space realization for H(s), and then, determine a minimal 
state-space representation for the closed-loop system. 

(b) First, find the closed-loop transfer function, and then, determine a minimal state-
space representation for the closed-loop system. 

Compare the two approaches. 

5.17. Consider the system depicted in the block diagram of Fig. 5.9, where H(s) = 
s + I k 

— — and G(s) = with k,a EL R. Presently, H{s) could be viewed as the 
^(^ + 3) s + a 
system to be controlled and G{s) could be regarded as a feedback controller. 

r^ ". V 
- J t 

H{s) 

G(s) 

y 

FIGURE 5.9 
Block diagram of the system 
in Exercise 5.17 

(a) Obtain a state-space representation of the closed-loop system by 
(i) first, determining realizations for H{s) and G{s) and then combining them; 

(ii) first, determining Hds), the closed-loop transfer function. 
(b) Are there any choices for the parameters k and a for which your closed-loop state-

space representation is uncontrollable and unobservable? If your answer is yes, 
specify. 

5.18. For H{s) as in Exercises 5.1, 5.2, and 5.3, determine internally balanced minimal real
izations, using singular-value decomposition. 
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5.19. Let 
1 

2̂ + 1 

5̂  + 1 
^4 

5̂  + 1 

7T3 
5̂  + 1 

3̂ + 25+1 

1 

5 + 2 

3̂ + 1 

H{s) 

be a transfer function matrix. 
(a) Find a minimal realization for H(s) in controller form. 
(b) Find an internally balanced minimal realization for H{s). 

5.20. Consider the controllable (-from-the-origin) and observable system given by i = 
Ax-\-Bu, y = Cx-\- Du and its equivalent representation x = Ax-\-Bu, y = Cx-\- Du, 
where A = PAP-\ B = PB,C = CP~\ and D = D. Let Wr and Wo denote the 
reachability and observability Gramians, respectively. 
(a) Show that Wr = PWrP* and Wo = {p-^yWoP~\ where P* denotes the complex 

conjugate transpose of P. Note that P* = P^ when only real coefficients in the 
system equations are involved. 

Using singular-value decomposition (refer to the Appendix), write 

Wr = Ur^rV; and Wo = Uo^oV;, 

/, and E = diag (Ei,E2,.. . ,S„) with E/ the singular where WU =I,VV 
values of W. Define 

H=iY}J'yu:Ur{Y}J').. 
and using singular-value decomposition, write 

'-1J VHVH = ^' Prove the following: 
, l / 2 x - l 

= 1. 

where U^UH 

(b) IfP = Pin = y / / (E; /^ )">; , thenW;=/ ,W^, : 

(c) If P = Pout = Ufj(E^) V,*, then Wr = ^]i,Wo-

(d) If P = Pib = Pin^ll^ = ^]i^Pouu then Wr = Wo= S//. Note that the equivalent 
representations {A,B,C,D} in (b), (c), and (d) are called, respectively, input-
normal, output-normal, and internally balanced representations. 

5.21. Show that the representation (4.61) in Section 5.4 is internally balanced, in view of 
Exercise 5.20(d). 

5.22. Consider the transfer function H{s) 

realization for H{s). 

5.23. Transform the system 

" -1 
0 
1 

4^3 + 35+1 
and determine a minimal 

2 
1 
0 

- 2 " 
1 

- 1 
x + 

"2" 
0 
1 

u, };=[l , l ,0]x 

into Xc = AcXc -\-BcU, y = CcXc, an equivalent representation in controller form uti
lizing the following two methods: 
(a) Use of a similarity transformation. 
(b) Determination of the transfer function H{s) and use of a realization algorithm. 



5.24. Consider the two system 5*1 and 5*2 in series as depicted in the block diagram 
given in Fig. 5.10. Suppose that 5*1 is described by yi{s) = Hi{s)Ui{s), where 

^i('^) ^ ^ + 1' ^^^ similarly, that 5*2 is described by 3̂ 2('̂ ) = ti2(s)u2(s), where 
5 + 2 

U2{s)=yi{s) and7/2(5) = ——-. 
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^1 
1 

1 

V 

1 

l _ 

^1 

y, =u^ 
^2 

" ~ i ^ 
>2 

* 

FIGURE 5.10 
Block diagram of the 
system in Exercise 5.24 

(a) Determine controllable and observable state-space descriptions for the individual 
subsystems 5*1 and 5*2. 

(b) Determine a state-space representation for the entire system S, using your answer 
in (a). 

(c) Is the state-space description of S in (b) controllable? Is it observable? What is 
the transfer function H{s) of 5*? 

5.25. Consider a system described by 

1 

( 5 + 1 ) 2 

0 

2 

5 + 1 
^1(5) 

U2{s) 

(a) What is the order of a controllable and observable realization of this system? 

(b) If we consider such a realization, is the resulting system controllable from the 
input W2? Is it observable from the output yi ? Explain your answers. 

5.26. Consider the system described by H{s) 

5 - 1 

1 

5 + 2 

5 - ( l + e) 

(^(5) = C{s)f{s)) connected in series (e G /?). 

(y(s) =H(s)u(s)) and C(5) 

(a) Derive minimal state-space realizations for H{s) and C{s) and determine a 
(second-order) state-space description for the system y{s) = H{s)C{s)f{s). 

(b) Let e = 0 and discuss the implications regarding the overall transfer function and 
your state-space representations in (a). Is the overall system now controllable, 
observable, asymptotically stable? Are the poles of the overall transfer function 
stable? [That is, is the overall system BIBO stable? (See Chapter 6.)] Plot the 
states and the output for some nonzero initial condition and a unit step input and 
comment on your results. 

(c) In practice, if H{s) is a given system to be controlled and C{s) is a controller, 
it is unlikely that e will be exactly equal to zero and therefore the situation in 
(a), rather than (b), will arise. In view of this, comment on whether open-loop 
stabilization can be used in practice. Carefully explain your reasoning. 



CHAPTER 6 

Stability 

Dynamical systems, either occurring in nature or manufactured, usually function 
in some specified mode. The most common such modes are operating points that 
frequently turn out to be equilibria. 

In this chapter we will concern ourselves primarily with the qualitative behavior 
of equilibria. Most of the time, we will be interested in the asymptotic stability of 
an equilibrium (operating point), which means that when the state of a given system 
is displaced (disturbed) from its desired operating value (equilibrium), the expecta
tion is that the state will return to the equilibrium. For example, in the case of an 
automobile under cruise control, traveling at the desired constant speed of 50 mph 
(which determines the operating point, or equilibrium condition), perturbations due 
to hill climbing (hill descending), will result in decreasing (increasing) speeds. In a 
properly designed cruise control system, it is expected that the car will return to its 
desired operating speed of 50 mph. 

Another qualitative characterization of dynamical systems is the expectation that 
bounded system inputs will result in bounded system outputs, and that small changes 
in inputs will result in small changes in outputs. System properties of this type are 
referred to as input-output stability. Such properties are important, for example, in 
tracking systems, where the output of the system is expected to follow a desired 
input. Frequently, it is possible to establish a connection between the input-output 
stability properties and the Lyapunov stability properties of an equilibrium. In the 
case of linear systems, this connection is well understood. 

6.1 
INTRODUCTION 

In this chapter we present a brief introduction to stability theory. We are concerned 
primarily with linear systems and systems that are a consequence of linearizations 
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dimensional continuous-time systems and finite-dimensional discrete-time systems CHAPTER 6 
described by systems of first-order ordinary differential equations and systems of Stability 
first-order ordinary difference equations, respectively. We will consider both internal 
descriptions and external descriptions of systems. For the former, we present results 
for various types of Lyapunov stability of an equilibrium (under assumptions of no 
external inputs), while for the latter we develop results for input-output stability 
(under assumptions of zero initial conditions). We also present results that connect 
these two stability types. By considering both Lyapunov stability and input-output 
stability, we are frequently able to conduct a more complete qualitative analysis of 
a system than can be accomplished by applying only one type of stability analysis. 

Recall that in Subsections 2.4C and 2.7E we have already encountered stability 
properties of an equilibrium for time-invariant, continuous-time, and discrete-time 
systems, respectively. 

A. Chapter Description 

This chapter is organized into three parts. In Part 1 (Sections 6.3 through 6.8) we 
address the Lyapunov stability of an equilibrium, in Part 2 (Section 6.9) we con
sider input-output stability, and in Part 3 (Section 6.10), we treat both Lyapunov 
stability and input-output stability of (time-invariant) discrete-time systems. Part 1 
is preceded by Section 6.2, which contains some background material from linear 
algebra. 

In Section 6.2 we provide additional background in linear algebra dealing with 
bilinear functional and congruence, Euclidean vector spaces, and linear transfor
mations on Euclidean vector spaces. This material constitutes a continuation of the 
material presented in Subsections I.IOA and I.IOB and Section 2.2, and the notation 
used in those sections will also be employed in the second section of this chapter. 

In Section 6.3 we introduce the concept of equilibrium of dynamical systems de
scribed by systems of first-order ordinary differential equations, and in Section 6.4 
we give definitions of various types of stability in the sense of Lyapunov (including 
stability, uniform stability, asymptotic stability, uniform asymptotic stability, expo
nential stability, and instability). 

In Section 6.5 we establish conditions for the various Lyapunov stability and 
instability types enumerated in Section 6.4 for linear systems {LH), (L), and (P), 
Most of these results are phrased in terms of the properties of the state transition 
matrix for such systems. 

In Section 6.6 we state and prove necessary and sufficient conditions for the 
exponential stability of the equilibrium of nth-order ordinary differential equations 
with constant coefficients and systems of linear first-order ordinary differential equa
tions (L). These involve geometric criteria (the interlacing theorem) and algebraic 
criteria (the Routh-Hurwitz criterion). 

In Section 6.7 we introduce the Second Method of Lyapunov, also called the 
Direct Method of Lyapunov, to establish necessary and sufficient conditions for var
ious Lyapunov stability types of an equilibrium for linear systems (L). These results, 
which are phrased in terms of the system parameters [coefficients of the matrix A 
for system (L)], give rise to the Lyapunov matrix equation. 
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the stabihty properties of their hnearizations. 
In Section 6.9 we estabhsh necessary and sufficient conditions for the input-

output stabihty (more precisely, for the uniform bounded input/bounded output 
stability) of continuous-time, linear, time-varying systems, and linear, time-invariant 
systems. These results involve the system impulse response matrix. In this section 
we also establish a connection between the bounded input/bounded output stability 
of linear systems and the exponential stability of an equilibrium of linear systems. 

The stability results presented in Sections 6.3 through and including Section 6.9 
pertain to continuous-time systems. In Section 6.10 we present analogous stability 
results for discrete time systems; however, in the interests of economy, we confine 
ourselves in this section to time-invariant systems. Also, to give the reader a glimpse 
into the qualitative theory of dynamical systems described by nonlinear equations, 
we present in this section Lyapunov stability results for finite-dimensional dynamical 
systems described by systems of nonlinear first-order ordinary difference equations. 

We conclude the chapter with comments concerning some of the existing lit
erature dealing with the present topic. As in all the other chapters, problems are 
provided at the end of the chapter to further clarify the subject at hand. 

B. Guidelines for the Reader 

In a first reading, the background material on linear algebra, given in Section 6.2, 
can be reviewed rather quickly, as needed. 

In a first course on linear systems, the reader needs to acquire familiarity with 
the notion of an equilibrium (Section 6.3) and various stability concepts of an 
equilibrium (Section 6.4). Such a course may be confined to studying the stability 
properties of an equilibrium for time-invariant systems (L) (refer to Theorem 5.6 in 
Section 6.5). This may be followed by coverage of Section 6.7, where the principal 
Lyapunov stability results for time invariant systems (L) are established in terms 
of the properties of the Matrix Lyapunov Equation. In a first reading. Section 6.8 
should also be covered in its entirety, where conditions are established that enable 
one to deduce the stability properties of a time-invariant nonlinear system (A) from 
the hnearization of (A). 

The reader should concentrate on the input-output stability results for linear, 
time-invariant, continuous-time systems given in Theorems 9.4 and 9.5 in a first 
course on linear systems. 

Finally, in a first reading, the reader may consider some or all of the counter
parts of the above results for the case of linear, time-invariant, discrete-time systems 
developed in Section 6.10. 

6.2 
MATHEMATICAL BACKGROUND MATERIAL 

In this section we provide additional background material from linear algebra and 
matrix theory. As in previous sections where we present such material, we assume 
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bilinear functionals and congruence, in the second subsection we present material on 
Euclidean vector spaces, and in the third subsection we address some issues dealing 
with linear transformations on Euclidean spaces. 

A. Bilinear Functionals and Congruence 

We consider here the representation of bilinear functionals on real finite-dimensional 
vector spaces. Throughout this subsection, V is assumed to be an /i-dimensional vec
tor space over the field of real numbers R. 

We define a bilinear functional on V as a mapping f : V X V -^ R having the 
properties 

f(av^ + jSv^ w) = af(v\ w) + )8/(v^ w) (2.1) 

/(v, yw^ + 8w^) = yf(v, w^) + 8f(v, w^) (2.2) 

for all a, I3,y,d G R and for all v^ v ,̂ w^, w^ in Y. A direct consequence of this 
definition is the more general property 

for all aj, ^^ G R and v ,̂ w^ ^ V, j = 1 , . . . , r,-and k = 1 , . . . , ^. 
Now let {v^ . . . , v"} be a basis for the vector space V and let 

fij = f(y\vJ), i,j = l , . . . , n . (2.3) 

The matrix F = [ftj^ is called the matrix of the bilinear functional f with respect to 

The characterization of bihnear functionals on real finite-dimensional vector 
spaces is given in the following result, which is a direct consequence of the above 
definitions and the properties of bases: l e t / be a bilinear functional on V and let 
{v^ . . . , v"} be a basis for V. Let F be the matrix of the bilinear functional/ with 
respect to the basis {v^ . . . , v'̂ }. If x and y are arbitrary vectors in V, and if ^ and 7] 
are their coordinate representations with respect to the basis {v^ . . . , v"}, then 

f{x, y) = eFv = XJlM^^J' (2.4) 
/ - I 7 = 1 

Conversely, if we are given any nX n matrix F, we can use (2.4) to define the 
bilinear functional/ whose matrix with respect to the given basis {v^ . . . , v"} is, in 
turn, F again. In general it therefore follows that on finite-dimensional vector spaces, 
bilinear functionals correspond in a one-to-one fashion to matrices. The particular 
one-to-one correspondence depends on the particular basis chosen. 

A bilinear functional/ on V is said to be symmetric if f(x, y) = f(y, x) for all 
x,yGV and skew symmetric if f(x, y) = — f{y, x) for all x, y E V. 
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functional with respect to {v^ . . . , v'̂ }. Then 

1. / is symmetric if and only if F = F^. 
2. f is skew symmetric if and only if F = -F^. 
3. For every bilinear functional/, there exists a unique symmetric bilinear func

tional / i and a unique skew symmetric bilinear functional fz such that 

/ = / i + fi. (2.5) 

We call / i the symmetric part off and /2 the skew symmetric part of/. 

The above result motivates the following definitions: an n X n matrix F is said 
to ht symmetricif F = F^ dind skew symmetric if F = —F^. 

Using definitions, the following result is easily established: l e t / be a bilinear 
functional on V and let / and /2 be the symmetric and skew symmetric parts of/, 
respectively. Then 

/i(v,w) = ^[/(v,w) + /(w,v)] (2.6) 

and /2(v, w) = \ [/(v, w) - f{w, v)] (2.7) 

for all V, w G V. 
Next, we define the quadratic form induced by a bilinear functional/ on V as 

f(y) = /(^^ v) for all V E y. It is easily verified that in terms of matrices we have 

fix) = fF^ = ^JlfiMp (2-8) 

where ^ denotes the coordinate representation of x with respect to the basis 
{v^. . . ,v"} . 

For quadratic forms we have the following result: l e t / and g be bilinear func
tional on V. The quadratic forms induced b y / and g are equal if and only iff and 
g have the same symmetric part. In other words, / (v) = g(v) for all v E V if and 
only if 

k [/(v, w) + /(w, V)] = i [g(v, w) + g(w^ V)] (2.9) 

for all v,w EiV. From this result we can conclude that when treating quadratic func
tional, it suffices to work with symmetric bilinear functionals. 

It is also easily verified from definitions that a bilinear functional/ on a vector 
space V is skew symmetric if and only if /(v, v) = 0 for all v G V. 

Next, le t / be a bilinear functional on a vector space V, let {v\ . . . , v'̂ } be a basis 
for y, and let Fbe the matrix off with respect to this basis. Let {v^ . . . , v'̂ } be another 
basis whose matrix with respect to {v^ . . . , v'̂ } is P. It can readily be verified that the 
matrix F off with respect to the basis {v^ . . . , v"} is given by 

F = P^FP. (2.10) 

This result gives rise to the following concept: annX n matrix F is said to be 
congruent to an nXn matrix F if there exists a nonsingular matrix P such that (2.10) 
holds. We express congruence of two matrices F, F by writing F--F.lt is easily 
shown that ~ is reflexive, symmetric, and transitive, and as such it is an equivalence 
relation. 



For practical reasons we are interested in determining the simplest matrix con
gruent to a given matrix, or what amounts to the same thing, the most convenient 
basis to use in expressing a given bilinear functional. If, in particular, we confine 
our interests to quadratic functional, then it suffices, as observed earlier, to consider 
symmetric bilinear functionals. The following result, called Sylvester's Theorem, ad
dresses this issue. The proof of this result is rather lengthy, and the interested reader 
should consult one of the references on linear algebra cited at the end of this chapter 
for details. 

Le t / be any symmetric bilinear functional on a real n-dimensional vector space 
V. Then there exists a basis {v^,...,v^}ofV such that the matrix of/ with respect 
to this basis is of the form 
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1 

- 1 

\n. (2.11) 

0 

The integers r and p in this matrix are uniquely determined by the bilinear form. 
Sylvester's Theorem allows the following classification of symmetric bilinear 

functionals: the integer r in (2.11) is called the rank of the symmetric bilinear func
tional/, the integer p is called the index of/, and n is called the order off. The 
integer s = 2p-r (i.e., the number of + I's minus the number of - 1 's) is called the 
signature of/. 

A bilinear functional / on a vector space V is said to be positive (or positive 
semidefinite) if /(v, v) > 0 for all v E V and strictly positive (or positive definite) 
if /(v, v) > 0 for all V 7̂  0, V G y [note that /(v, v) = 0 for v = 0]. It is readily 
verified that a symmetric bilinear functional is strictly positive if and only \i p = 
r = n in (2.11) and positive if and only if p = r. 

Finally, we say that a bilinear functional/ is negative (or negative semidefinite) 
if - / is positive and strictly negative (or negative definite) if - / is strictly positive. 
Also, a bilinear functional/ is said to be indefinite if in (2.11) r > /? > 0. 

B. Euclidean Vector Spaces 

As in the preceding subsection, we assume throughout this subsection that Visa real 
vector space. 

A bilinear functional / defined on V is said to be an inner product if (i) / is 
symmetric and (ii) / is strictly positive. A real vector space V on which an inner 
product is defined is called a real inner product space, and a real finite-dimensional 
vector space on which an inner product is defined is called a Euclidean space. 

Since we will always be concerned with a given bilinear functional on V, we will 
write (v, w) in place of f(v, w) to denote the inner product of v and w. Accordingly, 
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Linear Systems ^ (v, v) > 0 for all v 7̂  0 and (v, v) = 0 when v = 0. 
2. (v, w) = (w, v) for all v, w e V. 
3. (av + ^w, u) = a(v, u) + ^{w, u) for all u,v,w ^V and all a, (3 ^ R. 
4. (w, av + j8w) = a(M, v) + J8(M, W) for all u,v,w G V and all a, (3 G R. 

In the following we enumerate several results on Euclidean spaces, all of which 
are easily proved: 

1. The inner product (v, w) = 0 for all v E F if and only if w = 0. 
2. Let ^ G L(V, V), Then (v, ^w) = 0 for all v^wGVif and only if ^ = 0. 
3. Let ^ , gS G L(K V). If (v, siw) = (v, ^w) for all v, w G V, then ^ = ^. 
4. Let A G /^"x^ If ^^AT; = 0 for all ^, r̂  G 7?^ then A = 0. 

We now define the function 

||v|| = (v,v)^/2 (2.12) 

for all V G y. It is easily verified (using definitions and the properties of bilinear 
functionals) that this function satisfies the axioms of a norm (refer to Subsection 
I.IOB), i.e., for all v, w in V and for all scalars a, the following hold: 

L ||v|| > 0 for all V 7̂  0 and ||v|| = 0 when v = 0. 
2. ||a:v|| = |«| • ||v||, where \a\ denotes the absolute value of the scalar a. 
3. ||v + w\\ < ||v|| + ||w||. 

In the usual proof of 3, use is made of the Schwarz Inequality, which states that 

\{y,w)\ < IMI'IMI (2.13) 

for all V, w G V, and 

|(v, w)| = ||v|| • IHI 

if and only if v and w are linearly dependent. 
Another result for Euclidean spaces that is easily proved is the parallelogram 

law, which asserts that for all v,w G V, the equality 

||v + wf + ||v - w|p = 2||v|p + 2|Hp. (2.14) 

Before proceeding, we recall that a vector space V on which a norm is defined 
is called a normed linear space. It is therefore clear that Euclidean vector spaces are 
normed linear spaces with norm defined by (2.12) (refer to Subsection l.lOB). We 
also recall that any norm can be used to define a distance function, called a metric, 
on a normed vector space by letting 

d{u,v) = \\u-v\\ (2.15) 

for all w, V G V (refer to Subsection l.lOB). Using thepropertiesofnorm, it is readily 
verified that for all w, v, w G V, it is true that 

1. d(u, v) = d(v, u). 
2. d{u, v) > 0 and d{u, v) = 0 if and only if w == v. 
3. d{u, v) < d{u, w) + d{w, v). 
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with the distance function, is then called a metric space. It is thus clear that Euclidean Stabihty 
vector spaces are metric spaces as well. 

The concept of inner product enables us to introduce the notion of orthogonality: 
two vectors v,w ^V are said to be orthogonal (to one another) if (v, w) = 0. This 
is usually written as v ± w. 

With the aid of the above concept we can immediately establish the famous 
Pythagorean Theorem: for v, w G V, if v _L w, then ||v + w|p = ||v|p + ||w|p. 

A vector v E V is said to be a unit vector if ||v|| = 1. Let w T̂  0, and let u = 
(l/||w||)w. Then the norm of u is ||w|| = (l/||w||)||w|| ^ 1, i.e., w is a unit vector. We 
call the process of generating a unit vector from an arbitrary nonzero vector w nor
malizing the vector w. 

Now let {w^,..., w^} be an arbitrary basis for V and let F = [fij] denote the 
matrix of the inner product with respect to this basis, i.e., fij = (w^ w^) for all / and 
j . More specifically, F denotes the matrix of the bilinear functional/ that is used in 
determining the inner product on V with respect to the indicated basis. Let ^ and rj 
denote the coordinate representation of vectors x and y, respectively, with respect to 
{w^ . . . , w""}. Then we have by (2.4), 

(X, y) = ^Fv = V^F^ = XXfiJ^J^i' (2.16) 

Now by Sylvester's Theorem [see (2.11) and the discussion following that theo
rem], since the inner product is symmetric and strictly positive, there exists a basis 
{v^ .. .yV^} for V such that the matrix of the inner product with respect to this basis 
is the nX n identity matrix /, i.e., 

' 0, if / 7̂  J, 
1 . . . . (2.17) 
1, lii = J. 

(v\vJ) = Sij = 

This motivates the following definition: if {v\ . . . , v"} is a basis for V such that 
(v ,̂ v^) = 0 for all / T̂  J , i.e., if v̂  J_ v̂  for all / T̂  j , then {v^ . . . , v'̂ } is called an 
orthogonal basis. If in addition, (v^ v^ = 1, i.e., ||v |̂| = 1 for all /, then {v^ . . . , v"} 
is said to be an orthonormal basis for V [thus, {v^ . . . , v"} is orthonormal if and only 
if{v\vJ)^8ijl 

Using the properties of inner product and the definitions of orthogonal and or
thonormal bases, we can easily establish several useful results: 

1. Let {v^ . . . , v^} be an orthonormal basis for V. Let x and y be arbitrary vectors in 
y, and let the coordinate representation of x and y with respect to this basis be 
^^ = (^1, ...,^n) and 7]^ = (171,..., 7]n), respectively. Then 

(x,y) = ev = V^^ =X^iVi (2.18) 

and ll̂ ll = (e^f^ = 7^f + - - - + e (2.19) 

2. Let {v^ . . . , v^} be an orthonormal basis for V and let x be an arbitrary vector. The 
coordinates of x with respect to {v^ . . . , v"} are given by the formula 

^. = (x,v'), i = l...,n. (2.20) 
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. = ( ^ v ' + - + i ^ v « . (2.21) 
Linear Systems /^ ^l\ /^ ^n\ 

4. {ParsevaVs identity) Let {v^ . . . , v"} be an orthogonal basis for V. Then for any 
x,y ^V, we have 

(„) = X ^ ^ . (2.22) 

5. Suppose that x^,..., x^ are mutually orthogonal nonzero vectors in V, i.e., x̂  ± 
;c ,̂ / ^ 7. Then x^ . . . , x^ are linearly independent. 

6. A set of k nonzero mutually orthogonal vectors is a basis for V if and only if 
k = dimV = n. 

7. For V there exist not more than n mutually orthonormal vectors (called a com
plete orthonormal set of vectors). 

8. {Gram-Schmidtprocess) Let {w^,..., w"} be an arbitrary basis for V. Set 

1 1 1 M 

^ ^ ^ ^ n i l 

(2.23) 

« - i 

V == i i — 

Then {v^ . . . , v^} is an orthonormal basis for V. 
9. If v^ . . . , v ,̂ k < n, are mutually orthogonal nonzero vectors in V, then we can 

find a set of vectors v̂ "*"̂  . . . , v^ such that the set {v\ . . . , v"} forms a basis 
forV. 

10. {BesseVs inequality) If {w^ . . . , w^} is an arbitrary set of mutually orthonormal 
vectors in V, then 

k 

^ |(w, wOP ^ IMP (2.24) 
/ = i 

for all w E.V. Moreover, the vector 
k 

u = w — ^_^(w, w^)w^ 

is orthogonal to each w\i = 1 , . . . , k. 
11. Let ]¥ be a linear subspace of V, and let 

W^ = {v^V :(v,w) = 0 for all w G W}. (2.25) 

(i) Let {w^,..., w^} span W. Then v G W-̂  if and only if v ± w^ for j = 
l, . . . ,yt. 

(ii) W^ is a linear subspace of V. 
(iii) ^ = dimV = dimT^ 4- dimW^. 
(iv) (W^)-^ = W. 
(v) V = WeW^. 
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{u,v) = (u\v^) + (u^,v^) (2.26) 

and ||M|| = V||wi|P + \\uY. (2.27) 

We conclude this subsection with the following definition: let W be a linear sub-
space of V. The subspace W^ defined in (2.25) is called the orthogonal complement 
ofW, 

C. Linear Transformations on Euclidean Vector Spaces 

In this subsection we consider some of the properties of three important classes of 
linear transformations defined on Euclidean spaces: orthogonal transformations, ad
joint transformations, and self-adjoint transformations. Unless otherwise explicitly 
stated, V will denote an n-dimensional Euclidean vector space. 

Let {v^. . . ,v"} be an orthonormal basis for V, let v̂  = ^1=\ PjiV^,i = 
1, . . . , /2, and let P denote the matrix determined by the real scalars pij. The fol
lowing question arises: when is the set {v^ . . . , v"} also an orthonormal basis for VI 
To determine the desired properties of P, we consider 

(v^ vO = ( X Pki^'^ S PuA = X PkiPiM. v^ (2.28) 
\k=i 1 = 1 J k,i 

So that {v\ v^) = 0 for / T̂  j and (v^ v^) = 1 for i = j , we require that 
n n 

{v\vJ) = X PkiPijSki = ^PkiPkj = Sij, (2.29) 

k,i = i k=i 

i.e., we require that 

P^P = I, (2.30) 
where, as usual, / denotes the n X n identity matrix. 

The above discussion is summarized in the following result: let {v^ . . . , v"} be 
an orthonormal basis for V and let v̂  = X}= i Pji^jy i = \,.. .,n. Then {v^ . . . , v"} 
is an orthonormal basis for V if and only if P^ = P~^. This result, in turn, gives rise 
to the concept of orthogonal matrix. Thus, a matrix P G R^^^ such that P^ = P~^, 
i.e., such that P^P = P~^P = / , is called an orthogonal matrix. 

It is not difficult to show that if P is an orthogonal matrix, then either det P = \ 
or det P = -I. Also, if P and Qsire nX n orthogonal matrices, then so is PQ. 

The nomenclature used in the next definition will become clear shortly. We say 
that a linear transformation si from V into V is an orthogonal linear transformation 
if (^v, siw) = (v, w) for all v,w G V. 

We now enumerate several properties of orthogonal transformations. The proofs 
of these statements are straightforward. 

1. Let si G L(V, V). Then ^ is orthogonal if and only if \\siv\\ = \\v\\ for all v G V. 
[Note that if si is an orthogonal linear transformation, then v _L w for all v, w G V 
if and only if siv 1 siw since (v, w) = 0 if and only if (^v, siw) = 0.] 

Stability 
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Linear Systems 3. Let {v^ . . . , v"} be an orthonormal basis for V. Let ^ G L(V, V), and let A be the 

matrix of ^ with respect to this basis. Then M^ is orthogonal if and only if A is 
orthogonal. 

4. Let d e L(V, V). If si is orthogonal, then det d = ± 1 . 
5. Let si,^ E. L(V, V). If M and 2̂  are orthogonal linear transformations, then 64SS 

is also an orthogonal linear transformation. 

The next result enables us to introduce adjoint linear transformations in a nat
ural manner. Let ^ G L{V, V) and define g : V X V -^ Rby g(v, w) = (v, ̂ w) for 
all v,w GV. Then g is a bilinear functional on V, Moreover, if {v^ . . . , v'̂ } is an or
thonormal basis for V, then the matrix of g with respect to this basis, denoted by G, 
is the matrix of ^ with respect to {v^ . . . , v"}. Conversely, given an arbitrary bilinear 
functional g defined on V, there exists a unique linear transformation ^ G L(V, V) 
such that (v, ̂ w) = g(v, w) for all v,w E. V, 

It should be noted that the correspondence between bilinear functionals and lin
ear transformations determined by the relation (v, ̂ w) = g(v, w) for all v, w G V 
does not depend on the particular basis chosen for V; however, it does depend on the 
way the inner product is chosen for V at the outset. 

Now let ^ G L(V, V), set g(v, w) = (v, ̂ w), and let h(v, w) = g(w, v) = 
(w, ̂ v) = (^v, w). By the result given above, there exists a unique linear trans
formation, denote it by ^*, such that h(v, w) = (v, Ww) for all v,w G V. We call the 
hnear transformation ^* G L(V, V) the adjoint of^. We have the following results: 

1. For each ^ G L(V, V), there is a unique «* G L(V, V) such that (v,^*w) = 
(^v, w) for all V, w G y. 

2. Let {v\ . . . , v^} be an orthonormal basis for V, and let G be the matrix of the Hnear 
transformation ^ G L(V, V) with respect to this basis. Let G* be the matrix of ^* 
with respect to {v^ . . . , v"}. Then G* = G^. 

The above results allow the following equivalent definition of the adjoint linear 
transformation: let ^ G L(V, V). The adjoint transformation, ^*, is defined by the 
formula 

(v,^*w) = (^v,w) (2.31) 

for all v,w EV. 
In the following, we enumerate some of the elementary properties of the adjoint 

of linear transformations. The proofs of these assertions follow readily from defini
tions. 

Let ^ , gS G L(V, V), let d*, 9̂ * denote their respective adjoints, and let a be a 
real scalar. Then 

1. (^y = M. 
2. (^ + my - 64* + m\ 
3. (asiT = aM\ 
4. (̂ SS)* = a*^*. 
5. ^* = S>, where ^ denotes the identity transformation. 
6. ©* = 0, where 0 denotes the null transformation. 
7. ^ is nonsingular if and only if ^4* is nonsingular. 
8. I f^ is nonsingular, then (6^*)-^ = (si-^. 
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thogonal if and only if 6̂ * = si~^. Furthermore, si is orthogonal if and only if si~^ Stability 
is orthogonal, and si~^ is orthogonal if and only if si* is orthogonal. 

Using adjoints, we now introduce two additional important types of linear trans
formations. Let si E L(V, V). Then si is said to be self-adjoint if si* = si, and it is 
said to be skew-adjoint if si* = -^. Some of the properties of such transformations 
are as follows. 

1. Let si E L(V, V), let {v^ . . . , v'̂ } be an orthonormal basis for V, and let A be the 
matrix of si with respect to this basis. The following are equivalent: 

(i) si is self-adjoint, 
(ii) ^ is symmetric, 

(iii) (^v, w) = (v, siw) for all v,w E. V. 
2. Let si E L(V, V), let {v\ . . . , v'̂ } be an orthonormal basis for V, and let A be the 

matrix of si with respect to this basis. The following are equivalent: 
(i) ^ is skew-adjoint, 

(ii) si is skew-symmetric, 
(iii) (^v, w) = -(v, siw) for all v, w E V. 

The next result follows from part (iii) of the above result. Let ^ E L(V, V), let 
{v^ . . . , v'̂ } be an orthonormal basis for V, and let A be the matrix of si with respect 
to this basis. The following are equivalent: 

(i) si is skew-symmetric, 
(ii) (v, siv) = 0 for all v E V. 

(iii) ^ v 1 V for all v E V. 

The following result enables one to represent arbitrary linear transformations 
as the sum of self-adjoint and skew-adjoint transformations. Let si E L(V, V). Then 
there exist unique ^di, ^2 ^ L(V,V) such that ^ = sii + ^2, where ^i is self-
adjoint and si2 is skew-adjoint. This has the direct consequence that every real nXn 
matrix can be written in one and only one way as the sum of a symmetric and skew-
symmetric matrix. 

The next result is applicable to real as well as complex vector spaces. (We will 
state it for complex spaces.) 

Let y be a complex vector space. Then the eigenvalues of a real symmetric ma
trix A are all real. If all eigenvalues of A are positive (negative), then A is called po^-
itive (negative) definite. If all eigenvalues of A are nonnegative (nonpositive), then A 
is cailod positive (negative) semidefinite. If A has positive and negative eigenvalues, 
then A is said to be indefinite. 

Next, let A be the matrix of a linear transformation d^ E L(V,V) with respect to 
some basis. If A is symmetric, then as indicated above, all its eigenvalues are real. In 
this case d- is self-adjoint and all its eigenvalues are also real; in fact, the eigenvalues 
of si and A are identical. Thus, there exist unique real scalars Ki,..., \p, p ^ n, such 
that 

det (si - X3) = det (A - XI) = (Ai - A)^i(A2 " A)'^^... (A;, - A)'^^ (2.32) 

We summarize the above observations in the following. Let si E L(V, V). If si 
is self-adjoint, then si has at least one eigenvalue. Furthermore, all eigenvalues of si 
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are real and there exist unique real numbers Ai , . . . , A ,̂ /? < n, such that Eq. (2.32) 
holds. 

As in Eq. (3.17) of Chapter 2, we say that in (2.32) the eigenvalues A/, / = 
1 , . . . , p < n, have algebraic multiplicities mi, i = 1 , . . . , /?, respectively. 

Next, we examine some of the properties of the eigenvalues and eigenvectors of 
self-adjoint linear transformations. The proofs of these assertions are straightforward 
and follow mostly from definitions. 

Let si G L(V, V) be a self-adjoint transformation, and let Xi,..., Xp, p ^ n, de
note the distinct eigenvalues of ^4. If v̂  is an eigenvector for A/ and if v̂  is an eigen
vector for \j, then v' J_ v̂  for all i y^ j . 

Now let ^ G L(V, V) and let A/ be an eigenvalue of ^ . Recall that Xi denotes 
the null space of the linear transformation d- - A/^, i.e.. 

Xi = {vGV :(d- A/Ĵ )v = 0}. (2.33) 

Recall also that Mi is a linear subspace of V. From the last result given above, the 
following result follows immediately. 

Let d G L(V, V) be a self-adjoint transformation and let A/ and Â  be eigenval
ues of 5i. If A/ 7̂  Ay, then Mi 1 Mj. 

The proof of the next result is somewhat lengthy and involved. The reader should 
consult the references on linear algebra cited at the end of this chapter for details. 

Let si G L(V, V) be a self-adjoint transformation, and let Ai , . . . , A ,̂ p < n, de
note the distinct eigenvalues of si. Then 

dim V = n = dim^Ti + dim>r2 + . . . + dim^Tp. 

The next two results are direct consequences of the above result. 

(2.34) 

1. Let ^ G L(V, V). If d is self-adjoint, then 
(i) there exists an orthonormal basis in V such that the matrix of si with respect 

to this basis is diagonal; 
(ii) for each eigenvalue A/ of si we have dim>f/ = algebraic multiplicity of A/. 

We note that in the above theorem, the matrix A of the linear transfor
mation si with respect to the chosen orthonormal basis in V is given by 

A = 

A2 

A2 
(2.35) 

2. Let A be a real nX n symmetric matrix. Then there exists an orthogonal matrix 
P such that the matrix A defined by 
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For symmetric bilinear functionals defined on Euclidean vector spaces, we have 
the following result. Let f(v, w) be a symmetric bilinear functional on V. Then there 
exists an orthonormal basis for V such that the matrix of/ with respect to this basis 
is diagonal. 

For quadratic forms, the following useful result is easily proved. 
Let f(x) be a quadratic form defined on V. Then there exists an orthonormal 

basis for V such that if ^^ = (^i, . . . , ^„) is the coordinate representation of x with 
respect to this basis, then f(x) = ai^f-\ h a„^^ for some real scalars o^i,..., a„. 

The final result of this section, which we state next, is called the Spectral Theo
rem for self-adjoint linear transformations. For the proof of this result, the interested 
reader should consult one of the references on linear algebra cited at the end of this 
chapter. Before stating this theorem, we recall that a transformation 2P G L(y, V) is 
a projection on a linear subspace of V if and only if 2̂ ^ = 2?* (refer to Subsection 
2.2K). Also, for any projection SP, T = 91(2 )̂ 0 >r(S?>), where 2/l(2P) is the range of 
2̂  and M{^) is the null space of 2̂  (refer to Subsection 2.2K). Furthermore, we call 
2̂  an orthogonal projection if 2/1(9̂ ) 1 >r(2^). 

The Spectral Theorem for self-adjoint linear transformations: let ^ E L{V, V) 
be a self-adjoint transformation, let Ai , . . . , A^ denote the distinct eigenvalues of si, 
and let Mi be the null space oi d^ - Xi3. For each / = 1 , . . . , p, let ^t denote the 
projection on Xi along JV"-̂ . Then 

1. ^i is an orthogonal projection for each / = 1 , . . . , /?. 
2. ?Pi?Pj = 0 for / 7̂  J, i,j = 1 , . . . , p, 
3. Xy^^i Sy" = 3, where 3" ^ L(V,V) denotes the identity transformation. 

4. ^ = S ; . i A # ; . 

PARTI 
LYAPUNOV STABILITY 

6.3 
THE CONCEPT OF AN EQUILIBRIUM 

In this section we concern ourselves with systems of first-order ordinary differential 
equations (£"), i.e., 

X = fit, x\ (E) 

where x G R^. When discussing global results, we shall assume that f : R^ XR^ ^ 
R^, while when considering local results, we may assume that f : R^ X B(h) -> R^ 
for some h> O.On some occasions, we may assume that t G R, rather than t ^ R^. 
Unless otherwise stated, we shall assume that for every (to, XQ), to G R'^, the initial-
value problem 

X = fit, x), xito) = xo il) 
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that (/) has these properties. 

DEFINITION 3.1. A point Xe E R^ is called an equilibrium point of (E), or simply an 
equilibrium of (E) (at time f G R^), if 

fit, Xe) = 0 

for all t> t. m 

We note that if Xe is an equilibrium of (£") at f, then it is also an equilibrium at 
all T ^ f. We also note that in the case of autonomous systems 

X = fix), (A) 

and in the case of T-periodic systems 

X = fit, X), fit, X) = fit + T, X), iP) 

a point Xe E R^ is an equilibrium at some time f if and only if it is an equilibrium 
at all times. [Refer to Chapter 1 for the definitions of symbols in (A) and (P).] We 
further note that if Xe is an equilibrium at f of (£"), then the transformation s = t - t 
yields 

dx r. ~ ^ 

and Xe is an equilibrium at 5" = 0 of this system. Accordingly, we will henceforth 
assume that f = 0 in Definition 3.1 and we will not mention f again. Furthermore, 
we note that for any to > 0, 

(f)it, to, Xe) = Xe for all t > to, 

i.e., the equilibrium Xe is a unique solution of iE) with initial data given by 
(/)(^, to, Xe) = Xe. 

We will call an equilibrium point Xe of iE) an isolated equilibrium point if there 
is an r > 0 such that Bixe, r) C R^ contains no equilibrium point of iE) other than Xe 
itself. [Recall that Bixe, r) = {x E. R^ : \\x - Xe\\ < r}, where || • || denotes some norm 
defined on R^.] Unless stated otherwise, we will assume throughout this chapter that 
a given equilibrium point is an isolated equilibrium. Also, we will usually assume 
that in a given discussion, unless otherwise stated, the equilibrium of interest is lo
cated at the origin of R^. This assumption can be made without loss of generality by 
noting that if Xg T̂  0 is an equilibrium point of (£*), i.e., fit, Xe) = 0 for all t ^ 0, 
then by letting w = x - Xe,we obtain the transformed system 

w = Fit,w) (3.1) 

with Fit, 0) = 0 for all t > 0, where 

Fit, w) = fit, w + Xe). (3.2) 

Since (3.2) establishes a one-to-one correspondence between the solutions of iE) 
and (3.1), we may assume henceforth that the equilibrium of interest for iE) is lo
cated at the origin. This equilibrium, x = 0, will be referred to as the trivial solution 
of iE). 
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EXAMPLES.1. In Example 4.4 in Chapter 1 we considered the simple pendulum given 
in Fig. 1.7. Letting xi = x and X2 = i in Eq. (4.12) of Chapter 1, we obtain the system 
of equations 

Xi = X2 

X2 = -/csinxi, (3.3) 

where ^ > 0 is a constant. Physically, the pendulum has two isolated equilibrium points: 
one where the mass M is located vertically at the bottom of the figure (i.e., at 6 o'clock) 
and the other where the mass is located vertically at the top of the figure (i.e., at 12 
o'clock). The model of this pendulum, however, described by Eq. (3.3), has count-
ably infinitely many isolated equilibrium points which are located in R^ at the points 
(7Tn,0f,n = 0, ±1 , ± 2 , . . . . • 

EXAMPLE 3.2. The linear homogeneous system of ordinary differential equations 

X = A(t)x (LH) 

has a unique equilibrium that is at the origin if A(to) is nonsingular for all to ^ 0. [Refer 
to Chapter 1 for the definitions of symbols in (LH).] m 

EXAMPLE 3.3. The linear, autonomous, homogenous system of ordinary differential 
equations 

X = Ax (L) 

has a unique equilibrium that is at the origin if and only if A is nonsingular. Otherwise, (L) 
has nondenumerably many equilibria. [Refer to Chapter 1 for the definitions of symbols 
in (L).] • 

EXAMPLE 3.4. Assume that for the autonomous system of ordinary differential equa
tions, 

X = fix), {A) 

f is continuously differentiable with respect to all of its arguments, and let 

J{Xe) 
dx 

(X) 

where dfldx denotes the n X « Jacobian matrix defined by 

dx dXj 

If f{Xe) = 0 and J(Xe) is nonsingular, then Xe is an isolated equilibrium of (A). 

EXAMPLE 3.5. The system of ordinary differential equations given by 

xi = k + sin(xi + X2) + xi 

X2 = k + sin(xi + X2) — xi, 

with k> I, has no equilibrium points at all. 

CHAPTER 6: 

Stability 

6.4 
QUALITATIVE C H A R A C T E R I Z A T I O N S O F A N E Q U I L I B R I U M 

In this section we consider several qualitative characterizations that are of fundamen
tal importance in systems theory. These characterizations are concerned with various 
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types of stability properties of an equilibrium and are referred to in the literature as 
Lyapunov stability. 

Throughout this section, we consider systems of equations (£"), 

X = f(t, x), (E) 

and we assume that (E) possesses an isolated equilibrium at the origin. We thus have 
fit, 0) = 0 for all t > 0. 

DEFINITION 4.1. The equilibrium ;c = 0 of (E) is said to be stable if for every e > 0 
and any ô ̂  R^ there exists a 8(6, to) > 0 such that 

whenever 

||(/)(̂ , 0̂, -̂0)11 < ^ for all t > to 

Ikoll < 5(6, to). 

(4.1) 

(4.2) 

In Definition 4.1, || • || denotes any one of the equivalent norms on R^, and (as 
in Chapters 1 and 2) (/)(̂ , to, XQ) denotes the solution of (E) with initial condition XQ 
at initial time to. The notation 8(e, to) indicates that 8 depends on the choice of to 
and e. If in particular it is true that 8 is independent of ^o, i-^-, S = 8(e), then the 
equilibrium x = 0 of (E) is said to be uniformly stable. 

In words, Definition 4.1 states that by choosing the initial points in a sufficiently 
small spherical neighborhood, when the equilibrium x = 0 of (E) is stable, we can 
force the graph of the solution for t ^ toto lie entirely inside a given cylinder. This 
is depicted in Fig. 6.1 for the case x G R^. 

We note that if the equilibrium x = 0 of (E) satisfies condition (4.1) for a single 
initial condition ô when (4.2) is true, then it will also satisfy this condition at every 
initial time t^ > to, where a different value of 8 may be required. To see this, we 
note that the solution (l)(t, to, xo) determines a mapping g of B(8(€, to)) (at t = to) 
onto g(B{8(€, to))) (at t ^ t' > to) that contains the origin by assigning for every 
Xo E B{8{e, to)) one and only one xo = (p(t\ to, xo) E g(B(8(€, to)). By reversing 
time, cj) determines a mapping of g(B(8(6, to)) onto B(8(e, to)), which is the inverse 
of ^, denoted by ^~^ Since cf) is continuous with respect to t, to, and xo, then g and 
g~^ are also continuous. Since 5(S(6, ^o)) is a neighborhood (an open set), then so 
is g(B(8(e, to)) (refer, e.g., to [16], pp. 320-321). This neighborhood contains in its 
interior a spherical neighborhood centered at the origin and with a radius §'. If we 
choose X'Q E B(8'), then (4.1) implies that \\(t)(t, t', X'Q)\\ < e for all t > t^. This argu-

FIGURE 6.1 
Stability of an equilibrium 

• V " 

\ ^ . • 
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DEFINITION 4.2. The equilibrium x = 0 of (E) is said to be asymptotically stable if Stability 
(i) it is stable, 

(ii) for every ^ ^ 0 there exists an i7(^) > 0 such that lim?_oo (l>(t, to, xo) = 0 when
ever ||xo|| < rj. m 

The set of all XQ G J^" such that (pit, to, XQ) ^ 0 as ^ -> oo for some ô — 0 is 
called the domain of attraction of the equilibrium x = 0 of (E) (at to). Also, if for 
(E) condition (ii) is true, then the equilibrium x = 0 is said to be attractive (at to). 

DEFINITION4.3. The equilibrium x = 0 of (E) is said to be uniformly asymptotically 
stable if 
(i) it is uniformly stable, 

(ii) there is a 5o > 0 such that for every e > 0 and for any to G R'^, there exists a r(e) > 
0, independent of to, such that \\(t)(t, to, xo)\\ < e for all ? > ^ + T{e) whenever ||xo|| < 
5o. • 

Condition (ii) in Definition 4.3 can be paraphrased by saying that there exists a 
So > 0 such that 

lim (j){t + to, to, xo) = 0 

uniformly in (̂ o, xo) for ^ ^ 0 and for ||xoi| < SQ. In words, this condition states that 
by choosing the initial points xo in a sufficiently small spherical neighborhood at 
t = to, WQ can force the graph of the solution to lie inside a given cylinder for all 
t > to -^ Tie). This is depicted in Fig. 6.2 for the case x E R^. 

In linear systems theory, we are especially interested in the following special 
case of uniform asymptotic stability. 

0̂ + m) 

FIGURE 6.2 
Attractivity of an equilibrium 

DEFINITION 4.4. The equilibrium x = 0 of (E) is exponentially stable if there exists 
an a > 0, and for every e > 0, there exists a 6(e) > 0, such that 

U(t, to, xo)\\ < e -̂" '̂-̂ o) for all t > ô 

whenever \\xo\\ < 6(e) and ^ > 0. • 

Figure 6.3 shows the behavior of a solution in the vicinity of an exponentially 
stable equilibrium x = 0. 
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FIGURE 6.3 
An exponentially stable equilibrium 

DEFINITION 4.5. The equilibrium ;t = 0 of {E) is unstable if it is not stable. In this 
case, there exists a ^ > 0, an e > 0, and a sequence X;„ ̂  0 of initial points and a 
sequence {r̂ } such that ||(/)(̂ o + m̂, ô. -̂ m)!! — ^ for all m, ^̂  — 0. • 

If X = 0 is an unstable equilibrium of (£"), then it still can happen that all the 
solutions tend to zero with increasing t. This indicates that instability and attractivity 
of an equilibrium are compatible concepts. We note that the equilibrium x = 0 of {E) 
is necessarily unstable if every neighborhood of the origin contains initial conditions 
corresponding to unbounded solutions (i.e., solutions whose norm grows to infinity 
on a sequence tm-^ °°)- However, it can happen that a system (E) with unstable 
equilibrium x = 0 may have only bounded solutions. 

The concepts that we have considered thus far pertain to local properties of an 
equilibrium. In the following, we consider global characterizations of an equilibrium. 

DEFINITION 4.6. The equilibrium x = 0 of {E) is asymptotically stable in the large 
if it is stable and if every solution of {E) tends to zero as r -> oo. • 

When the equilibrium x = 0 of (E) is asymptotically stable in the large, its 
domain of attraction is all of R^. Note that in this case, x = 0 is the only equilibrium 
of(£). 

DEFINITION 4.7. The equilibrium x = 0 of iE) is uniformly asymptotically stable in 
the large if 

(i) it is uniformly stable, 
(ii) for any a > 0 and any 6 > 0, and to G R'^, there exists T(e, a) > 0, independent 

of to, such that if ||xo|| < a, then \\(f)(t, to, xo)|| < e for all t ^ to + T{e, a). • 

DEFINITION 4.8. The equilibrium x = 0 of {E) is exponentially stable in the large if 
there exists a > 0 and for any /3 > 0, there exists ^(j8) > 0 such that 

U{t, to, xo)|| < k(P)\\xo\\e-''^'-''^ for all t > to 

whenever II xo 11 < (3. • 

We conclude this section with a few specific cases. 
The scalar differential equation 

X = 0 (4.3) 



has for any initial condition x(0) = XQ the solution <p(t, 0, XQ) = XQ, i.e., all solutions 451 
are equilibria of (4.3). The trivial solution is stable; in fact it is uniformly stable. CHAPTER 6: 
However, it is not asymptotically stable. Stability 

The scalar differential equation 

X = ax (4.4) 

has for every x(0) == XQ the solution (/)(r, 0, XQ) = xoe^^andx = 0 is the only equi
librium of (4.4). If (3 > 0, this equilibrium is unstable, and when a < 0, this equilib
rium is exponentially stable in the large. 

The scalar differential equation 

i = {j=^} (4.5) 
has for every x(to) = XQ, Ô ^ 0, a unique solution of the form 

0(r, to, xo) - (1 + ^o)̂ o I ^-^Tj j (4.6) 

and X = 0 is the only equilibrium of (4.5). This equilibrium is uniformly stable and 
asymptotically stable in the large, but it is not uniformly asymptotically stable. 

As mentioned earlier, a system 

X = fit, X) (E) 

can have all solutions approaching an equilibrium, say, x = 0, without this equilib
rium being asymptotically stable. An example of this type of behavior is given by 
the nonlinear system of equations 

Xi 

^2 = 

x\{X2 — Xi) + x\ 

{x\ -h xl)[\ + {x\ + X̂ )2] 

x]{x2 - 2xi) 
{x\ + xl)[\+{x\ + xl)^] 

For a detailed discussion of this system, refer to Hahn [7], cited at the end of this 
chapter. 

Before proceeding any further, a few comments are in order concerning the rea
sons for considering equilibria and their stability properties as well as other types of 
stability that we will encounter. To this end we consider linear time-varying systems 
described by the equations 

X - A{t)x + B{t)u (4.7a) 

y = C(t)x + D(t)u (4.7b) 

and linear time-invariant systems given by 

X = Ax + Bu (4.8a) 

y = Cx + Du, (4.8b) 

where all symbols in (4.7) and (4.8) are defined as in Eqs. (6.1) and (6.8) of Chap
ter 2, respectively. The usual qualitative analysis of such systems involves two con
cepts, internal stability and input-output stability. 



452 In the case of internal stability, the output equations (4.7b) and (4.8b) play no 
Linear Systems ^̂ ^̂  whatsoever, the system input u is assumed to be identically zero, and the focus 

of the analysis is concerned with the qualitative behavior of the solutions of linear 
time-varying systems 

X - A{t)x (LH) 

or linear time-invariant systems 

X = Ax (L) 

near the equilibrium x = 0. This is accomplished by making use of the various types 
of Lyapunov stability concepts introduced in this section. In other words, internal 
stability of systems (4.7) and (4.8) concerns the Lyapunov stability of the equilibrium 
X = 0 of systems (LH) and (L), respectively. 

In the case of input-output stability, we view systems as operators determined 
by (4.7) or (4.8) that relate outputs y to inputs u and the focus of the analysis is 
concerned with qualitative relations between system inputs and system outputs. We 
will address this type of stability in Section 9 of this chapter. 

6.5 
LYAPUNOV STABILITY OF LINEAR SYSTEMS 

In this section we first study the stability properties of the equilibrium x = 0 of 
linear autonomous homogeneous systems 

X = Ax, t^ 0, (L) 

and linear homogeneous systems 

X = A{t)x, t> tQ>0, {LH) 

where A{t) is assumed to be continuous. Recall that x = 0 is always an equilibrium 
of (L) and {LH) and that x = 0 is the only equilibrium of {LH) if A{t) is nonsingular 
for all t>Q. Recall also that the solution of {LH) for x(^) = XQ is of the form 

^{t, to, xo) - ^{t, to)xo, t > to, 

where O denotes the state transition matrix of A{t) and that the solution of (L) for 
x{to) = Xo is given by 

(l){t, to, Xo) = ^{t, to)Xo = ^{t - to, 0)X0 

^ 0(r - to)xo = e^^'-'^^xo, 

where in the preceding equation, a slight abuse of notation has been used. 
We first consider some of the basic properties of system {LH). 

THEOREMS.1. The equilibrium jc = 0 of {LH) is stable if and only if the solutions of 
{LH) are bounded, i.e., if and only if 

sup||0(r,^)||^ k{to)<^, 

where ||0(r, ro)|| denotes the matrix norm induced by the vector norm used on /?", and 
k{tQ) denotes a constant that may depend on the choice of to. 



Proof, Assume that the equiUbrium x = 0 of {LH) is stable. Then for any ô — 0 and 
for e = 1 there is a 5 = 5(1, ̂ ) > 0 such that ||(^(r, t^, XQ% < 1 for all t > t^ and all XQ 
with ||xo|| ^ 6. In this case 

U{t, to, xo)\\ = \\^(h to)xo\\ = 

Ikoll 

c^(t, to){xo8) 

Ikoll 
w 
8 

< 

for all ;co ^ 0 and all t ^ to. Using the definition of matrix norm [refer to (10.17) in 
Chapter 1] it follows that 

\\^(tJo)\\^S-\ t^to. 

We have proved that if the equilibrium x = 0 of {LH) is stable, then the solutions of 
{LH) are bounded. 

Conversely, suppose that all solutions (^{t, to, xo) = 0(r, ô)-̂ o are bounded. Let 
{ei,..., en} denote the natural basis for ^-space and let ||(/)(̂ , to, ej)\\ < (Sj for all t > ô-
Then for any vector xo = X'/=i <^7 ;̂ we have that 

U{t. to, xo)\\ = y^ aj(f){t,to,ej) 
7 = 1 7 = 1 

k\\xo\\ < (max jS;)X 1̂7-1 
^ ; = i 

for some constant ^ > 0 for ^ > ô- For given e > 0, we choose 8 = elk. Thus, if ||xo|| < 
6, then ||(^( ,̂ to, xo)|| < ^||^o|| < ^ for all t > to- We have proved that if the solutions of 
{LH) are bounded, then the equilibrium x = 0 of {LH) is stable. • 

THEOREM 5.2. The equilibrium x = 0 of {LH) is uniformly stable if and only if 

sup ^(^o) = sup(sup||0(r, ko <oo. 

The proof of this theorem is very similar to the proof of Theorem 5.1 and is left 
as an exercise. 

EXAMPLES.1. We consider the system given by 

0 e~' 

with x{0) = Xo. We transform (5.1) by means of the relation x = Py, where 

(5.1) 

P = 
1 1 
0 1 

p i = 

and obtain the equivalent system 

J i 

LJ2j 0 
(5.2) 

with y{0) = yo = P~^xo. System (5.2) has the solution (//(r, 0, jo) = "^{t, 0)}^o, where 

^(r, 0) 
^1/2(1-^-^0 

0 

0 
g(l - . -0 

Thesolutionfor(5.1)isobtainedas(/>(r,0, Xo) = 0(r, 0)xo, where ^(r, 0) = P'^{t,0)P~\ 
From this we obtain for ô ^ 0, 4){t, to, xo) = ^{t, to)xo, where 
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^(t, to) 0 Je~'0-e-^) 

Now 

lim^itJo) = 
^l/2e"2^0 ^e~^0 __ ^l/le'^^O 

0 
(5.3) 

We conclude that limy^^oolimr^oo||4)(^, ^o)|| < oo, and therefore (since ||(|>(r, ro)|| ^ 

y Xlj=i\ct>ij(tJo)\^ < Xlj=i\cl>ij(^>to)\l that sup,^^^(sup,^J^(tJo)\\) < ^ . There
fore, the equihbrium x = 0 of system (5.1) is stable by Theorem 5.1 and uniformly 
stable by Theorem 5.2. • 

THEOREM 5.3. The following statements are equivalent. 

(i) The equilibrium x = 0 of (LH) is asymptotically stable, 
(ii) The equilibrium x = 0 of (LH) is asymptotically stable in the large, 

(iii) lim,_oo||c|>(r,ro)|| = 0. 

Proof, Assume that statement (i) is true. Then there is an 17(̂ 0) > 0 such that when 
||xo|| ^ vOo)^ then (̂ (̂ , to, xo) -> 0 as ? -> 00. But then we have for any xo ^ 0 that 

(f){t,tQ,Xo) = Mt,tQ,y]{tQ) 
• ^ 0 

Ikoli 
0 

as r —> CO. It follows that statement (ii) is true. 
Next, assume that statement (ii) is true and fix 0̂ ^ 0. For any 6 > 0 there must exist 

a Tie) > 0 such that for all t ^ to + T(e) we have that \\(l)(t, to, xo)\\ = \\^(t, to)xo\\ < e. 
To see this, let {e^ . . . , ^„} be the natural basis for R^. Thus, for some fixed constant 
^ > 0, if xo = ( a i , . . . , a«)^ and if ||xo|| ^ 1, then xo = 2 " = i (^jej and 2y==i \o^j\ — 
k. For each J there is a Tj{e) such that \\<^{t, to)ej\\ < elk and ^ > 0̂ + Tj{e). Define 
T{e) = max {Tj{e) : j = I,.. .,n}. For ||xo|| ^ 1 and t ^ to + T(e), we have that 

ll^(^,^)^o|| ^aj<^(tJo)ej 
7 = 1 

1'"̂ -
By the definition of the matrix norm [see (10.17) of Chapter 1], this means that 
||0(r, ^) | | < 6 for f > 0̂ + T(e). Therefore, statement (iii) is true. 

Finally, assume that statement (iii) is true. Then \\^(t, to)\\ is bounded in t for all 
t > to. By Theorem 5.1, the equihbrium x = 0 is stable. To prove asymptotic stability, 
fix ro > 0 and e > 0. If ||xo|| < r](to) = 1, then Uit, to, xo)|| < ||^(^, ^) | | ||xo|| ^ 0 as 
t -^ CO, Therefore, statement (i) is true. This completes the proof. • 

EXAMPLE 5.2. The equilibrium x = 0 of system (5.1) given in Example 5.1 is stable 
but it is not asymptotically stable since lim^^oo ||^(^, ^) | | 7̂  0 [see Eq. (5.3)]. • 

EXAMPLE5.3. The solution of the system 

-e^'x, x(to) = Xo (5.4) 

is (/)(?, to, Xo) = ^(t, to)xo, where 

^(t, to) = e' ,(l/2)(e2^0-e20 

Since lim -̂̂  00 ^(^, 0̂) = 0, it follows that the equilibrium x = Oof system (5.4) is asymp
totically stable (in the large). • 

THEOREM 5.4. The equilibrium x = 0 of ilM) is uniformly asymptotically stable if 
and only if it is exponentially stable. 



Proof, The exponential stability of the equilibrium x = 0 implies the uniform asymp
totic stability of the equilibrium x = 0 of systems {E) in general, and hence, for systems 
(L//) in particular. 

Conversely, assume that the equilibrium x = 0 of {LH) is uniformly asymptotically 
stable. Then there is a 6 > 0 and a 7 > 0 such that if ||xo|| ^ 5, then 

\\^{t + to + T, to)xo\\ < ^ 

for all t, to > 0. This implies that 

||cD(/ + /o + r,ro)||< i ifr,ro^O. (5.5) 

From Theorem 3.6 (iii) of Chapter 2 we have that (^(t, r) = <[>(r, o-)0(a-, r) for any t, cr, 
and T. Therefore, 

\\^(t + to + 2T, to)\\ = \\^(t + to + 2Tj + to + T)^{t + to + T, to)\\ ^ | , 

in view of (5.5). By induction, we obtain for tJo — O that 

\\^(t + to + nT, to)\\ ^ T\ 

Now let a = (\n2)/T. Then (5.6) implies that for 0 < ^ < T we have that 

Uit + to + nT, to, xo)\\ < 2||xo||2-(«+i> = 2||xo|k-"^"^^^^ 

< 2||;co|k-"̂ ^̂ '̂ ^>, 

which proves the result. 

EXAMPLE 5.4. For system (5.4) given in Example 5.3 we have 

U(tJo.xo)\\ = |c/>(Uo,xo)| = \xoe^"^^^'''e-^"'^^''\ 

(5.6) 

< \xo\e^"^^'"''e- r > ?o > 0, 

since e^^ > 2t. Therefore, the equilibrium x = 0 of system (5.4) is uniformly asymptot
ically stable in the large, and exponentially stable in the large. • 

Even though the preceding results require know^ledge of the state transition ma
trix $(r, ro) of {LH), they are quite useful in the qualitative analysis of linear systems. 
In view of the above results, we can state the following equivalent definitions. The 
equilibrium x = 0 of {LH) is stable if and only if for any ^ ^ 0 there exists a finite 
positive constant y = y{to) (which in general depends on ô) such that for any XQ, 
the corresponding solution satisfies the inequality 

U{tJo.xo)\\^ y{to)\\xol t^ to. 

Also, the equilibrium x = 0 of {LH) is uniformly stable if and only if there exists a 
finite positive constant y (independent of to), such that for any to and JCQ, the corre
sponding solution satisfies the inequality 

U{t,to,xo)\\^ rllxoll, t^ to. 
Furthermore, in view of the above results, if the equilibrium x = 0 of {LH) is asymp
totically stable, then in fact it must be globally asymptotically stable, and if it is uni
formly asymptotically stable in the large, then in fact it must be exponentially stable 
(in the large). In this case there exist finite constants y > 1 and A > 0 such that 

\mto>xo)\\^ye-^^'-'^^\\xo\\ 

for r > /o > 0 and xo E R"". 
The results in the next theorem, which are important in their own right, will be 

required later. 
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456 THEOREMS.5. Let A be bounded on ( - oo, oo). Then any one of the following statements 
Linear Systems ^̂  equivalent to the exponential stability of the origin x = 0 of {LH): 

(i) \;^mt,to)\?dt^ cifox^wh^to. 
(ii) \;^mtjo)\\dt^ c2fox^\\h^ to. 

(iii) \;^\\^{h,T)fdT^C^foX^\\h^to. 

(iv) \;^mh,T)\\dT^ C,for2i\\h^to. 

(The constants ci are independent of ^ or h, and || • || denotes a matrix norm induced 
by any one of the equivalent vector norms on /?".) 

Proof, If the equilibrium x = 0 of {LH) is exponentially stable, then there exist con
stants y > 0, A > 0 (independent of to) such that \\^{t, ro)|| ^ y^-^(^-^o), t > t^. Substi
tuting this estimate into (i) to (iv) and evaluating the integrals yields ci = C3 = y^l{2K) 
andc2 = C4 = y/A. Therefore, if the equilibrium X = 0 of (L//) is exponentially stable, 
then the integrals (i) to (iv) are bounded. 

We now prove the converse statements by considering each case individually. 
(a) Assume that the bound c\ in (i) exists. Since A is bounded, there exists an a > 0 

such that 

||ci>(Uo)|| = ||A(Ocl>(Uo)||^ | |A(0| | | |^a^) | | 

< a\\^{t, to)\\, t > 0̂. 

Therefore, 

||cD(ri, ^o)^^(^b 0̂) - /|| 

[6(r, tof^it, to) + ^{t, tof(^{t, to)] dt\\ 
to 

' \\^{t, to)^^(t, to) + (D(̂ , to)^i(t, to)\\dt 

\\\[A{t)^(t, to)n mt, to)\\ + mt, to)^ IIA(O^( ,̂ to)\\}dt 
rh 

< 2a ||0(r, to)fdt < 2aci, t > to. 
J to 

Using the triangle inequality of norms yields 

mti, to)^^(tu to)\\ = mtu to)^^(tu to)-i+1\\ 
< ||<D(̂ i, to)^^(tu to) - I\\ + ||/|| ^ 2aci + 1, ti^ to. 

This shows that ||^(ri, ^) | | is itself bounded for ti > ^ by a constant Li. 
To determine an exponential bound for ||0(f, ^o)|| we note that 

mt,to)fdT= i'mt,T)^(TJo)fdT 
tQ J to 

mt, r t • mr, toifdr < Lf f' ||<I.(T, to)fdr 
to Jto 

^ LW 

Noting that the integrand on the left side does not depend on r, we obtain 

{t - to)\\^{t, to)f < L\ci, t > 0̂. 

Let ^ = ^ -f- 7 and let T = AL\ci. Then 

mto + Tjo)\\^ i 



Repeating the above procedure, we obtain 

and in general we have 

110̂ 0 +2r,ro)N ^ 5 

||<D(̂  + nT, to)\\ < 

Proceeding now as in the proof of Theorem 5.4, it follows that ||<l>(̂ , ^) | | is exponentially 
bounded. 

(b) As in (a), but using ^{t\, to) instead of 4>(ri, to)^(^(ti, to), and using the inequality 
||i>(r, ^) | | < a||0(f, ^o)||, we obtain 

llcD î, ro) - / | | = \\r^{tJo)dt\\ 

rh 
f'||(i>(Uo)||^^^c.f'||0(Uo)||^^ 

Jto JtQ 

< Q;C2, h > ho

using the inequality property of norms, we have 

||c|>(ri, 0̂)11 = ||^(ri, to)-I + I\\ ^ mh, to) - I\\ + ||/|| 

< ac2 + 1. 

Using this estimate, we now obtain 

llcDfe to)fdt < (ac2 + 1) f'' | |Oa to)\\dt 
JtQ JtQ 

< (aC2 + l)C2. 

This shows that (ii) implies (i), and therefore, it follows that ||0(/, /o)|| is exponentially 
bounded. 

(c) The proof of this part follows the proof of (i) with some modifications. Since A is 
bounded there exists a > 0 such that ||A(0|| ^ « for all t. From Exercise 2.35 in Chapter 
2, we have 

^-^(t, T) = -(D(?, T)A(T), 

and therefore. 

dr 

^^(t,T) = | | -OaT)A(T) | |< a\\^(t,T)\ 

Then 

•^(ti,to)'^^(hJo)\\ Mtu rf ^{ti, T) + ^(^1, rf ^{h, T) dr 

As in (a), we now obtain 

||/ - ^(^1, tof^ty, to)\\ ^ 2ac3, ti > to. 

Using the triangle inequality, we obtain 

mt,, to)^^{ti, to)\\ ^ mtx, to)^^{t,, to) -1\\ + ii/ii 
< 2Q:C3 + 1. 

This shows that ||0(^, ^) | | is bounded for all ^ > ro by a constant L3 that is independent 
of rand 0̂-
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Linear Systems u ^ ,.\\^u. ..M|2 ^ f'licT... ..M|2 
J to 

to J to 

3 < L n ||cD(ri,T)|pjT<L3C3 
0̂ 

Therefore, we have 

from which we obtain, letting T = 4L3C3, 

11̂ 0̂ + 7,^0)11^ h 

and more generally, we obtain 

mto + nT,to)\\^{kJ^ 

Again, as in part (a), we conclude that O is exponentially bounded. 
(d) Assume that (iv) is satisfied. Then as in (b), we can show that (iv) implies (iii), 

which in turn implies that <I> is exponentially bounded. We obtain 

110(̂ 1, ô) - /|| < ac4, t > to, 

where a is defined as before and C4 is given in (iv). From this we can conclude that 
\\^(ti, to)\\ is bounded for all 1̂ > 0̂ by a:c4 + 1. This in turn yields the inequality 

['' \\^(t, rtdr < (ac4 + 1) f' mtu r)\\dT 
Jto JtQ 

< (ac4 + 1)C4. 

From this it follows that (iv) implies (iii). This concludes the proof of the theorem. • 

We now turn our attention to linear, autonomous, and homogeneous systems 
given by 

X = Ax, r > 0, (L) 

referring to the discussion in Subsection 2.4A [refer to Eqs. (4.11) to (4.27) in Chap
ter 2] concerning the use of the Jordan canonical form to compute exp (At). We let 
J = P~^AP and defi[ne x = Py. Then (L) yields 

y = p-^APy = Jy. (5.7) 

It is easily verified (the reader is asked to do so in the Exercises section) that the 
equilibrium jc = 0 of (L) is stable (resp., asymptotically stable or unstable) if and 
only if y = 0 of (5.7) is stable (resp., asymptotically stable or unstable). In view of 
this, we can assume without loss of generality that the matrix A in (L) is in Jordan 
canonical form, given by 

A = diag [Jo> Ji,' -, Js\y 

where /Q = diag [Ai, . . . , A ]̂ and Jk = )^k+iU + M 

for the Jordan blocks Ji,.. .,Js. 



As in (4.21), (4.22), (4.26) and (4.27) of Chapter 2, we have 

where 

and 

oAt ^ 

(?Jof 

0 

0 

o^st 

„Atn 

^•fit = g^k+it 

e-"" = diagle"",..., e"'''] 

1 t 

0 1 t 

tm-i 

2 ••• ( « , - l ) ! 

{rii - 2)! 

0 0 0 1 

(5.8) 

(5.9) 

for / = 1 , . . . , s. 
Now suppose that Re kt < j8 for all / = 1 , . . . , k. Then it is clear that 

\imt-,oo (ll̂ -̂ ô ll/̂ ^O < °°̂  where ||^^°^|| is the matrix norm induced by one of the 
equivalent vector norms defined on R^. We write this as \\e-^^% = €(e^^). Similarly, 
if jS = Re Xk+i, then for any e > 0 we have that ||̂ "̂ ^̂ || = ©(r^^-^^^O = €(e^^^^^'). 

From the foregoing it is now clear that \\e^^\\ ^ K for some ^ > 0 if and only 
if all eigenvalues of A have nonpositive real parts, and the eigenvalues with zero 
real part occur in the Jordan form only in JQ and not in any of the Jordan blocks 
J I, 1 < / < 5-. Hence, by Theorems 5.1 and 5.2, the equilibrium x = 0 of (L) is 
under these conditions stable, in fact uniformly stable. 

Now suppose that all eigenvalues of A have negative real parts. From the pre
ceding discussion it is clear that there is a constant ^ > 0 and an a > 0 such that 
ll̂ ^̂ ll < Ke-""', and therefore, Uit, to, xo)|| < Ke-''^'-'^^xo\\ for alW > ro > 0 and 
for all xo ^ R'^. It follows that the equilibrium x = 0 is uniformly asymptotically 
stable in the large, in fact exponentially stable in the large. Conversely, assume that 
there is an eigenvalue A/ with nonnegative real part. Then either one term in (5.8) 
does not tend to zero, or else a term in (5.9) is unbounded at ^ ^ oo. In either case, 
^^^x(0) will not tend to zero when the initial condition x(0) = XQ is properly chosen. 
Hence, the equilibrium x = 0 of (L) cannot be asymptotically stable (and hence, it 
cannot be exponentially stable). 

Summarizing the above, we have proved the following result. 

THEOREM 5.6. The equihbrium x = Oof (L) is stable, in fact uniformly stable, if and 
only if all eigenvalues of A have nonpositive real parts, and every eigenvalue with zero 
real part has an associated Jordan block of order one. The equilibrium x = 0 of (L) is 
uniformly asymptotically stable in the large, in fact exponentially stable in the large, if 
and only if all eigenvalues of A have negative real parts. • 

A direct consequence of the above result is that the equilibrium x = 0 of (L) is 
unstable if and only if at least one of the eigenvalues of A has either positive real 
part or has zero real part that is associated with a Jordan block of order greater than 
one. 

At this point, it may be appropriate to take note of certain conventions concern
ing matrices that are used in the literature. It should be noted that some of these are 
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not entirely consistent with the terminology used in Theorem 5.6. Specifically, a real 
nXn matrix A is called stable or a Hurwitz matrix if all its eigenvalues have negative 
real parts. If at least one of the eigenvalues has positive real part, then A is called 
unstable. A matrix A, which is neither stable nor unstable, is called critical, and the 
eigenvalues with zero real parts are called critical eigenvalues. 

We conclude our discussion concerning the stability of (L) by noting that the 
results given above can also be obtained by directly using the facts established in 
Subsection 2.4C, concerning modes and asymptotic behavior of time-invariant sys
tems. 

EXAMPLE 5.5. We consider the system (L) with 

A 0 1 
-1 0 

The eigenvalues of A are Ai, A2 = ±j. According to Theorem 5.6, the equilibrium x = 0 
of this system is stable. This can also be verified by computing the solution of this system 
for a given set of initial data x(0)^ = (xi(0), X2(0)), 

(j)i(t,0,xo) = xi(0)cosr + X2(0)sin^ 

4>2(t, 0, XQ) = -xi(0)smt + jC2(0)cosr, 

r > 0, and then applying Definition 4.1. • 

EXAMPLE 5.6. We consider the system (L) with 

ro n 
A = 0 0 

The eigenvalues of A are Ai = 0, A2 = 0. According to Theorem 5.6, the equilibrium 
X = 0 of this system is unstable. This can also be verified by computing the solution of 
this system for a given set of initial data x(0)^ = (xi(0), ̂ 2(0)), 

(l)l(t, 0, Xo) = Xi(0) + X2(0)t 

(f>2it, 0, Xo) = X2(0), 

^ > 0, and then applying Definition 4.5. (Note that in this example, the entire xi-axis 
consists of equilibria.) • 

EXAMPLE 5.7. We consider the system (L) with 
^ [2.8 9.6] 

[9.6 -2.8j* 
The eigenvalues of A are Ai, A2 = ±10. According to Theorem 5.6, the equilibrium 
X = 0 of this system is unstable. • 

EXAMPLE 5.8. We consider the system (L) with 

[-1 -2\-
The eigenvalues of A are Ai, A2 = - 1 , - 2 . According to Theorem 5.6, the equilibrium 
X = 0 of this system is exponentially stable. • 

Next, we consider linear periodic systems given by 

X = A(t)x, A(t) = A(t + Tl (P) 

where A(t) is a continuous real matrix for all f G (-00, 00). We recall from Section 
2.5 of Chapter 2 that if 0(^, 0̂) is the state transition matrix for (P), then there exists 



a constant nX n matrix R and a nonsingular nX n matrix "^(t, to) such that 

^(t, to) = nt, to) exp [R(t - to)l (5.10) 

where ^(? + T, to) = "i^it, to) 

for all t E (-00, oo). Now according to the discussion at the end of Section 2.5 of 
Chapter 2, the change of variables x = '^(t, to)y transforms (P) to the system 

y = Ry^ (5.11) 

where R is given in (5.10). Since ^(t, to) is nonsingular, it is clear that the equilib
rium X = 0 of (P) is uniformly stable (resp., uniformly asymptotically stable) if and 
only if the equilibrium j == 0 of system (5.11) is uniformly stable (resp., uniformly 
asymptotically stable). Now by applying Theorem 5.6 to system (5.11) we obtain 
the following result. 

THEOREM 5.7. The cquiHbrium x = 0 of (P) is uniformly stable if and only if all 
eigenvalues of the matrix R [given in (5.10)] have nonpositive real parts, and every 
eigenvalue with zero real part has an associated Jordan block of order one. The equi
librium X = 0 of (P) is uniformly asymptotically stable in the large if and only if all 
eigenvalues of R have negative real parts. • 

6.6 
SOME GEOMETRIC AND ALGEBRAIC STABILITY CRITERIA 
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In this section we concern ourselves with nth-order linear homogeneous ordinary 
differential equations of the form 

aox^""^ + axx^""-^^ + • -h an-ix^^"^ -h anX = 0, ao 7^0, (6.1) 

where the coefficients ao,.. .,an are all real numbers. We recall from Chapter 1 that 
(6.1) is equivalent to the system of first-order ordinary differential equations 

X = Ax, 

where in (6.2) A denotes the companion matrix given by 

A = 

(6.2) 

0 
0 

On 

ao 

1 
0 

_ a „ - i 

ao 

0 
1 

_ ' ^ " - 2 

flo 

0 
0 

fll 

flO 

(6.3) 

To determine whether the equilibrium x = 0 of (6.3) is asymptotically stable, 
it suffices to determine if all the eigenvalues of A have negative real parts, or what 
amounts to the same thing, if the roots of the polynomial 

/(A) = aoX"" + (21A"""̂  -h • • • + (2^-1 A -h an (6.4) 

all have negative real parts. To see this, we must show that the eigenvalues of A 
coincide with the roots of the polynomial f(s). This is most easily accomplished 
by induction. For the first-order case k = 1, we have A = -ajao and therefore 
det(\I\ - A) ^ A -h aJao, h = I, and so the assertion is true foYk= 1. Next, 
assume that the assertion is true for k = n - I. Then 
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det{XIn - A) = 
0 

- 1 
A 

0 
- 1 

0 
0 

0 
0 

0 0 A - 1 
02 A + fli 

flO ao 

= Xdet(Xln-\ - Ai) + (-1> 

ao 

n+l "n 

ao 

ao 

-1 
A 
0 

0 
- 1 

A 

0 
0 

-1 

0 
0 
0 

0 0 

where Ai = 

0 
0 

a„-i 

flO 

1 
0 

_an-2 

ao 

0 
1 

an-3 

ao 

0 
0 

ai 

flo 

and In, In-\ denote the n X /i and {n- \)X {n- 1) identity matrices. Therefore, 

det(\In - A) = Xdet(\In-i - Ai) + — 
ao 

= A" + ^ A " - i + 
ao 

A+ — 
ao ao 

0 

is equivalent to /(A) = 0. 
Analogously to matrices, we now make the following definitions. An nth-order 

polynomial /(A) with real coefficients [such as (6.4)] is called stable if all zeros of 
/(A) have negative real parts, it is called unstable if at least one of the zeros of /(A) 
has a positive real part, and it is called critical if /(A) is neither stable nor unstable. 
Also, a stable polynomial is called a Hurwitz polynomial. 

In view of the above, the stability problem for nth-order differential equations 
with constant coefficients has now been reduced to a purely algebraic problem of de
termining whether the zeros of a polynomial [such as (6.4)] all have negative (resp., 
nonpositive) real parts. In case zeros with vanishing real parts exist, it is further 
necessary to determine their multiplicity. 

In the following, we first present some graphical criteria that enable us to de
termine the stability of a polynomial (6.4), without determining its roots explicitly. 
These results, which are important in their own right, are then used to arrive at some 
algebraic criteria to determine the stability of a polynomial (6.4). 

A. Some Graphical Criteria 

In establishing our first result we assume that the polynomial f(s) [given by (6.4)] 
has p zeros in the right half of the ^--plane and (n - p) zeros in the left half of the 
^--plane, and we assume that there shall be no zeros on the imaginary axis. We let C 
denote the counterclockwise contour formed by a semicircle C with radius r and cen-



tered at the origin, together with its diameter on the imaginary axis, and we choose 463 
r so large that the p zeros of f(s) in the right half of the ^-plane lie in the interior CHAPTER 6: 
of the circle. We now recall from a well-known result from the elementary theory of Stability 
functions of a complex variable (called Cauchy's integration formula) that 

P= ^ ' l ^ T T ^ ^ = ^ 8 c In f(sl (6.5) 
277-J )c f{s) 27TJ 

where 5- is a complex variable, j = ^-l, f'(s) denotes the derivative off with 
respect to s, \(^[f'(s)/f(s)] ds denotes the integral of f'(s)/f(s) along the contour C, 
and 8c In f(s) represents the increment of In f(s) along the contour C. Let Sq In f(s) 
denote the increment of ln/(^) along the semicircular arc C with s = re^"^. For s 
on C we have 

f{s) = aor'^^^'"^(l + 0(r"^)) 

and ln/(^) = Inao + ^ Inr + njcf) + 0(r"^). 

Hence, 

8c>lnf(s) = njl^^'^ 

= niTJ + ©(r"^). 

Letting r ^ oo and using (6.5), we conclude that 

-n^^j + hs—: ]8i In f(s) 
277 j \27rj 

= ^ + 2 : ^5 / In / ( ^ ) , (6.6) 

where S/ In f(s) denotes the increment of the logarithm of f(s) along the imaginary 
axis / from -oo to +oo. To determine this increment, we let s = jo) and let 

f(s) = f(jay) ^ Ri(o)eJ'(^^ ^ U{co) + jVico), (6.7) 

and we consider R, 6 as polar coordinates and U, V as coordinates in the complex 
plane. As the real parameter co (the real frequency w) ranges from +00 to -00, the 
points f(jo)) in (6.7) describe the frequency response or frequency plot for f(s). 
Since/(s-) has real coefficents, we must have 7?(CL)) = R(-a)) and 0((o) = -6(-(o). 
It therefore suffices to consider the part of the response curve belonging to the posi
tive values of the parameter 0;. It follows from (6.6) that 

n _ ^(00) _ 1 

2 ~V~ ~ 2 
6(00) 

(6.8) 

where (̂00) is the limit to which the polar angle 6(a)) = tan~^[V(o))/U((o)] of the 
frequency response diagram tends as co becomes unbounded. Since U(co) and V((o) 
are polynomials of different degrees, \V(CO)/U((JO)\ will tend to either zero or infinity. 
In either case, in view of (6.8), (̂00) must be an integral multiple of 77/2. Now when 
in particular p = 0, then by necessity we have that 6(00) = n(7r/2). This yields the 
following result. 

THEOREM 6.1. (LEONHARD-MIKHAILOV STABILITY CRITERION) The poly
nomial f(s) has only zeros with negative real parts if and only if its frequency response 
diagram f(jco), 0 < co < 00, passes through exactly n quadrants in the positive sense. • 
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(a) Frequency response plot 
for f{s) stable (n = 6) 

(b) Frequency response plot 
for f{s) unstable (n = 6) 

FIGURE 6.4 
Frequency response plot for f(s) stable (n 6) 

In Fig. 6.4 we depict the frequency response plots of a stable and an unstable 
polynomial. 

Next, since f(s) has real coefficients, there are real polynomials f\ and /2 such 
that 

fijco) ^ Moj^) 4- j(of2(co^\ (6.9) 

If n = 2k, then deg fi(u) = k and deg f2(u) = k - I, and if n = 2k -{- 1, then 
deg f\{u) = k and deg f2(u) = k. To the zeros uik, i = 1, 2 and k = 1, 2, 3 , . . . of 
the polynomials fi(u), /2(w), respectively, correspond those values of co^ at which 
the frequency response diagram intersects the axes. In the case of stability, these 
values ofcx)^ must be real and increasing, i.e., the zeros ui^ must be positive and 
alternate. 

0 < Wii < U2\ < Ui2 < U22 < '" (6.10) 

since otherwise the response curve f{jco) will not make the proper number of turns at 
the appropriate locations. These considerations lead to the interlacing of the roots u\k 
with the roots U2k, k = 1, 2, 3 , . . . , which is sometimes called the gap and position 
criterion. In Fig. 6.5 we depict typical situations for stability and instability (in terms 
of the variables U and V). 

We summarize the above in the following result. 

u, V k u, V k 

CO r 
(a) Stable case 

FIGURE 6.5 

(a) Unstable case 



THEOREM 6.2. (GAP AND POSITION STABILITY CRITERION) The polynomial 465 
f(s) has only zeros with negative real parts if and only if the zeros of the polynomials CHAPTER 6* 
defined in (6.9) are real and satisfy the inequalities (6.10). • Stability 

The frequency response plot f(j(o) is unbounded and hence can never be dis
played completely. We therefore frequently make use of the reciprocal frequency 
response diagram, i.e., the response diagram of the function l/f(jo)). Such a plot 
approaches zero asymptotically, and in case of stability, it rotates exactly through n 
quadrants in the negative sense. In applications of Theorem 6.1, the entire plot is not 
needed. It can be shown that it suffices to consider the interval 0 < w < CDQ̂  where 

(OQ = 1 + 3 max\p\\. (6.11) 

We will not pursue the details concerning the proof of this assertion. 

B. Some Algebraic Criteria 

In the next results, we develop the Routh-Hurwitz criterion, which yields necessary 
and sufficient conditions for f(s) to be a Hurwitz polynomial. To accomplish this, 
we will make use of Theorem 6.2. We begin by establishing a set of necessary con
ditions. 

THEOREM 6.3. For 

f(s) = aos"" + ais'"''^ + • • • + an-is + <2„ (6.12) 

to be a Hurwitz polynomial it is necessary that the inequalities 

^ > 0 , ^ > 0 , . . . , ^ > 0 (6.13) 
Go UQ ao 

hold. 

Proof, Let si,.. .,SnhQ the zeros of (6.12), and in particular, let s'j be the real roots and 
s'l the complex roots. Then 

f(s) = aoYlis - s'j)Yl(s - s'l) 
j k 

= aoYlis - s'j)Yl(s^ - {2Res'l)s + |4f). 
j k 

If all the numbers s'j and Re s'l are negative, then we can obtain only positive coefficients 
for the powers of s when we multiply the product out to obtain f{s). • 

Without loss of generality, we assume in the following that ao > 0. In the next 
result, we will require the Routh array: 

c\Q = ao, C20 = <32 C30 = a4, C40 = as,... 

Cii = ai, C21 = as, C31 = as, C41 = aj,... 
ao 

ri = —, C12 = a2- r2fl3, C22 = a^ - r2as, 3̂32 = ^6 - ^2<37,... 
ax 
Cll 

r^ = , Ci3 = C21 - r3C22, C23 = C31 - r3C32, C33 = C41 - r3C42, . . . 
cn 

<^1,/-1 
Cij = Ci+ij-2 - rjCi+ij-i, i=l,2,..., J = 2, 3 , . 

C\n = an 



466 Note that if n = 2m, we have 

Linear Systems ^ ^ ^ _ ^ ^ ^ _ ^ ^ ^ ^ _ ^ . — n 

and if n = 2m - 1, we have 

The above array terminates after {n—\) steps in case all the numbers ctj are different 
from zero. The last line defines ci„. 

In addition to the inequalities (6.13), we shall require the inequalities given by 

C\\ > 0, Ci2 > 0, . . ., Cin > 0. (6.14) 

THEOREM 6.4. (ROUTH-HURWITZ STABILITY CRITERION) The polynomial 
f{s) given in (6.12) is a Hurwitz polynomial if and only if the inequalities (6.13) and 
(6.14) hold. 

Proof, First we assume that the degree of f{s) is even by letting n = 2m. We define the 
polynomials 

hi(s) = i [ / (^ ) + f(-s)l h2(s) = l [ / (^ ) - f(-s)l (6.15) 

Applying the Euclidean algorithm to determine the greatest common divisor of hi (s) and 
h2(s), we obtain 

hi(s) = r2sh2(s) — hsis) 

h2(s) = r!^sh3(s) - h^is) (6.16) 

where the linear factors arising in the division have no constant term and the remainders 
have been written with negative signs. It is readily verified that the constants r[ in (6.16) 
are related to the constants r/ in the Routh array by the expression r- = ( - 1)V/. 

Next, we define a sequence of polynomials given by 

h2i-i{s) = g2i-i(s^X h2i{s) ^ sg2i{sh i = \,,.,,m. (6.17) 

From (6.16) and (6.17) we obtain the recursion formulas given by 

gii+iiz) = r2iZg2i(z) - g2i-i(z) 

g2i+2(z) = r2i+ig2i+i(z) - g2i(z). (6.18) 

The first two members of this sequence are given by 

gi(z) = aoz^ + a2Z^-i + '"+a2m 

giiz) = aiz""-' + a^f"-^ + ••• + a2m-x. (6.19) 

We can readily verify that the above two polynomials agree with the polynomials / i and 
/2 given in (6.9), except for sign. In fact, we have 

fi{u) = gi{-u) i = 1,2. (6.20) 

We are now in a position to construct the Routh array of a polynomial f{s) by utiliz
ing the coefficients of the sequence of polynomials gi{z)- If in the process of doing so we 
encounter a zero row (i.e., an identically vanishing polynomial, say, gi), then h\ and /z2 
[and thus, f{s) and f{-s)\ have a common divisor. In this case f{s) possesses a divisor 
of the form s^ + a. and is not a Hurwitz polynomial. 

Next, we assume that the hypotheses of this theorem are satisfied [i.e., (6.13) and 
(6.14) hold]. Applying definitions, we can readily verify that the numbers r[ have alter-
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and that the degrees of these polynomials are given by 

m,m— \,m — 1, m — 2, m — 2 , . . . , 1, 1, 0. (6.22) 

Next, for fixed z, -oo < z < oo, we consider the sequence of numbers given by 

gl{z),g2{z\...,g2m{z). (6.23) 

Note that the last term gimiz) is a constant for all z. Let W{z) denote the number of sign 
changes in this sequence. When z > 0 and is very large, then the signs of the gi in (6.23) 
correspond to the signs of the leading coefficients of these polynomials. When - z > 0 
and is very large, then the signs of gi in (6.23) will alternate. It now follows that the 
difference W{-^) — W{+^) is always equal to m. Thus, as z varies from -oo to +°o, 
m sign changes in the sequence (6.23) will disappear. Such a disappearance can occur 
only at a zero of g\{z), since if z passes through a zero, say, z', of gi{z), \ < i < 2m, no 
disappearance in the number of sign changes occurs, because by (6.18), sgngi-\{z') ^ 
sgn gi+i. We conclude that gi{z) has exactly m real zeros, and since by hypothesis all its 
coefficients are positive, no positive zeros can occur. 

A similar argument as above shows that g2 has exactly (m - I) negative zeros. 
Now, since in the sequence (6.23) the largest possible number of disappearances of sign 
changes occurs (as z is varied from -oo to +oo), a disappearance in sign change must 
actually occur each time z passes through a zero of ^i . This, however, is possible only 
if g2 in turn changes sign between every two zeros of ^ i ; otherwise there would be an 
additional change of signs in the sequence (6.23). It follows that the zeros of g2 separate 
the zeros of ̂ i (the zeros of g2 are interlaced with the zeros of ^i). Now, in view of (6.20), 
the above statement concerning the zeros of ̂ i and g2 is equivalent to the inequahty 
(6.10); thus. Theorem 6.2 applies. Therefore, condition (6.14) is sufficient for f{s) to 
be a Hurwitz polynomial. It is also a necessary condition, since otherwise the count of 
the sign changes in the sequence (6.23) is too small and the hypotheses of Theorem 6.2 
are not satisfied, i.e., either ^i has too few zeros or the polynomial does not satisfy con
dition (6.10). 

To complete the proof, we assume next that n = 2m + 1, i.e., n is odd. In this case 
we interchange the definitions of hi(s) and h2(s) given in (6.16), and we let 

h2i+l(s) = Sg2i + \(S^\ h2i(s) = g2i(s'^y 

The degrees of the polynomials gi formed in this manner are m, m, m - 1 , m - 1 , . . . , 1, 1, 0. 
Following a similar procedure as before, we show that the polynomials gi(z) and g2(z) 
each have m negative zeros and that Theorem 6.2 applies. This concludes the proof. • 

EXAMPLE6.1. We apply the Routh-Hurwitz criterion (Theorem 6.4) to the polynomial 

f(s) = (s + 2)(s + 1 - j)(s + 1 + j)(s + 1) 

= / + 5^^ + 10^2 + 10^ + 4. (6.24) 

For this polynomial 

/ 
s^ 
s^ 

s' 

s' 

we form the Routh array and obtain 

1 10 4 
5 10 0 

i ( 5 - 1 0 - 1 - 1 0 ) = 8 1 ( 5 - 4 - 0 ) = 4 0 

| ( 8 - 1 0 - 5 - 4 ) = 7.5 i ( 8 - 0 - 5 - 0 ) = 0 0 

7 ^ [ ( 7 . 5 ) - 4 - 8 - 0 ] = 4 0 0 
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Lh^i^Systems polynomial. • 

EXAMPLE6.2. We apply the Routh-Hurwitz criterion (Theorem 6.4) to the polynomial 

f(s) = (s + 2)(s + 1 - j)(s + 1 + jXs - 1) 

= / + 3^̂  + 2s^ -2s-4. (6.25) 

We note that condition (6.13) is violated, and therefore, the polynomial (6.25) is not a 
Hurwitz polynomial. Condition (6.14) is also not satisfied. To see this, we form the Routh 
array for (6.25), given as 

/ I 2 - 4 
s^ 3 - 2 0 
s^ i (3-2 + 2 ) = f i [ 3 . ( - 4 ) - 0 ] = - 4 0. 

s' i [ f •(-2)-(-4)-3] = f 0 0 
s' i [ f •(-4)-0] = -4 • 

6.7 
THE MATRIX LYAPUNOV EQUATION 

In Section 6.6 we established a variety of stability results that require explicit knowl
edge of the solutions of (L) or (LH). We also derived some geometric and algebraic 
stability criteria for (L) when the matrix A is in companion form that do not require 
explicit knowledge of solutions, but instead, are deduced directly from the parame
ters of A. 

In this section we will develop stability criteria for (L) with arbitrary matrix 
A. In doing so, we will employ Lyapunov's Second Method (also called Lyapunov's 
Direct Method) for the case of linear systems (L). This method utilizes auxiliary 
real-valued functions v(x), called Lyapunov functions, that may be viewed as "gen
eralized energy functions'' or "generalized distance functions'' (from the equilibrium 
X = 0), and the stability properties are then deduced directly from the properties of 
v{x) and its time derivative v(x), evaluated along the solutions of (L). 

A logical choice of Lyapunov function is v(x) = x^x = ||x|p, which represents 
the square of the Euclidean distance of the state from the equilibrium x = 0 of (L). 
The stability properties of the equilibrium are then determined by examining the 
properties of v(x), the time derivative of v(x) along the solutions of (L), 

X = Ax. (L) 

This derivative can be determined without explicitly solving for the solutions of (L) 
by noting that 

v(x) = xF X + x^ X = (Ax)^x + x^(Ax) 

= Jc^(A^ + A)x. 

If the matrix A is such that v(x) is negative for all x T^ 0, then it is reasonable to 
expect that the distance of the state of (L) from x = 0 will decrease with increasing 
time, and that the state will therefore tend to the equilibrium x = 0 of (L) with 
increasing time t. 

It turns out that the Lyapunov function used in the above discussion is not suffi
ciently flexible. In the following we will employ as a "generalized distance function" 



the quadratic form given by 

v(x) = X Px, P\ (7.1) 

where P is a real nXn matrix. The time derivative of v{x) along the solutions of (L) 
is determined as 

I.e., 

where 

v{x) = x^Px + x^Px = x^A^Px + x^PAx 

= x^{A^P + PA)x, 

V = x^Cx, 

C = A^P + PA. 

(7.2) 

(7.3) 

Note that C is real and C^ = C. The system of equations given in (7.3) is called the 
Lyapunov Matrix Equation. 

We recall from Section 6.2 that since P is real and symmetric, all its eigen
values are real. Also, we recall that P is said to be positive definite (resp., positive 
semidefinite) if all its eigenvalues are positive (resp., nonnegative), and it is called 
indefinite if P has eigenvalues of opposite sign. The definitions of negative definite 
and negative semidefinite (for P) are similarly defined. Furthermore, we recall that 
thQ function v(x) given in (7.1) is said to be positive definite, positive semidefinite, 
indefinite, and so forth, if P has the corresponding definiteness properties (refer to 
Section 6.2). 

Instead of solving for the eigenvalues of a real symmetric matrix to determine its 
definiteness properties, there are more efficient and direct methods of accomplishing 
this. We now digress to discuss some of these. 

Let G = [gij] be a real nX n matrix (not necessarily symmetric). Referring to 
Subsection 2.2G, we recall that the minors of G are the matrix itself and the matrix 
obtained by removing successively a row and a column. The principal minors of 
G are G itself and the matrices obtained by successively removing an ith row and 
an ith column, and the leading principal minors of G are G itself and the minors 
obtained by successively removing the last row and the last column. For example, if 
G = [gij] G R^^^, then the principal minors are 

[gnl 
gn 
821 

_g3l 

gn 
_g3l 

gn 
gii 

g32 

gl3 

g33_ 

gu] 
g23 

^33 J 
> gn 

g2l 

g22 g23 

[g32 ^33. 

gl2 

g22_ 

[g22l [g33l 

The first three matrices above are the leading principal minors of G. On the other 
hand, the matrix 

g21 g22 

_g3l g32 

is a minor but not a principal minor. 
The following results, due to Sylvester, allow efficient determination of the def

initeness properties of a real, symmetric matrix. 

PROPOSITION 7.1. (i) A real symmetricmatrix P = [pij] G R''^''is positive definite 
if and only if the determinants of its leading principal minors are positive, i.e., if and 
only if 
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Pn > 0, det >0,...,detP>0. \Pn Pul 

[Pl2 Pll] 

(ii) A real symmetric matrix P is positive semidefinite if and only if the determinants of 
all its principal minors are nonnegative. • 

Still digressing, we consider next the quadratic form 

v(w) = w^Gw, G = G^, 

where G G R^^^, Referring to Subsection 6.2C [in particular, Eqs. (2.35) and 
(2.36)], there exists an orthogonal matrix Q such that the matrix P defined by 

P = Q-^GQ = Q^GQ 

is diagonal. Therefore, if we let w = Qx, then 

v(2;c) = v{x) = x^Q^GQx = x^Px, 

where P is in the form given in Eq. (2.35), i.e.. 

0 

A2 

From this, we immediately obtain the following useful result. 

PROPOSITION 7.2. Let P = P^ G R''^'', let \M(P) and A^(P) denote the largest and 
smallest eigenvalues of P, respectively, and let || • || denote the Euclidean norm. Then 

A^(P)||x|p < v(x) = x^Px < \M(P)\\xf (7.4) 

for all X E R\ 

Let ci = \m(P) and C2 = ^M(P)' Clearly, v(x) is positive definite if and only 
if C2 ^ ci > 0, v(x) is positive semidefinite if and only if C2 ^ ci > 0, v(x) is 
indefinite if and only if C2 > 0, ci < 0, and so forth. 

We are now in a position to prove several results. 

THEOREM 7.1. The equilibrium x = 0 of (L) is uniformly stable if there exists a real, 
symmetric, and positive definite nX n matrix P such that the matrix C given in (7.3) is 
negative semidefinite. 

Proof. Along any solution (/)(r, to, XQ) = (f)(t) of (L) with (/>(̂ , ô, XQ) = (^(^) 
have 

xo, we 

ct>(tfPct>(t) 
d 

xlPxo + I ^(j>{y]fP(i>{r])dr] = x^Pxo + (fy{r]f C(j>{'r])dri 
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for all t > to > 0, and there exist C2 ^ ci > 0 such that 

ciwmf ^ m^pm < xiPxo < c2iixoip 
for all ^ > ^ . It follows that 

||<̂ (ONgj Nl 
for a l l r > ^ > 0 and for any XQ G R^. Therefore, the equilibrium x = 0 of (L) is uni
formly stable (refer to Sections 6.4 and 6.5). • 

EXAMPLE 7 .1 . For the system given in Example 5.5 we choose P = I, and we com
pute 

C = A^P + PA = A ^ + A = 0. 

According to Theorem 7.1, the equilibrium x = 0 of this system is stable (as expected 
from Example 5.5). • 

THEOREM 7.2. The equilibrium x = 0 of (L) is exponentially stable in the large if 
there exists a real, symmetric, and positive definite nX n matrix P such that the matrix 
C given in (7.3) is negative definite. 

Proof, We let (f){t, to, xo) = cf>(t) denote an arbitrary solution of (L) with (/>(^) = ;co. In 
view of the hypotheses of the theorem, there exist constants C2 ^ ci > 0 and C3 > C4 > 
0 such that 

and -C3\\m\? ^ v(0(O) = m ^ c m ^ -C4\\m\? 
for all / > ^ > 0 and for any ;co e /?". Then 

v(m) = j^im^pm] ^ (-^Am^pm 

- | ) v ( c ^ ( 0 ) 

for alU > ^ > 0. This implies, after multiplication by the appropriate integrating factor, 
and integrating from to to t, that 

V((/>(0) = (f)(tf P(t>{t) < xJPX0^~^'4/c2)a-%) 

or ciWmf ^ m'^Pm ^ C2\\xo\fe-^'^''^^^'-'^^ 
I \l/2 

or | | c / > ( 0 | | < ^ ||xo|k-^^/^^^^4/c2)a-^o), t^to^^. 

This inequality holds for all xo E R^ and for any to ^ 0. Therefore, the equilibrium 
X = 0 of (L) is exponentially stable in the large (refer to Sections 6.4 and 6.5). • 

In Fig. 6.6 we provide an interpretation of Theorem 7.2 for the two-dimensional 
case {n ^ 7). The curves Q , called level curves, depict loci where v{x) is constant, 
i.e., Ci = {x G R^ \ v(x) = x^Px = Ci}, i = 0, 1, 2, 3, When the hypotheses 
of Theorem 7.2 are satisfied, trajectories determined by (L) penetrate level curves 
corresponding to decreasing values of c/ as t increases, tending to the origin as t 
becomes arbitrarily large. 
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C2 = {xeR^:v{x) = C:i} 

\ 
Ci =[xeR^: v{x) = c-]} 

Co = {xe R^ : v(x) = Co = 0} | C2 = {x€H^ : v(x) = C2} 

0 = CQ< C-\ < C2 < C3 • • " 

to<t^ < f2 < ^3 • • • 

V(X) = C3 ' - f c 
v{x) = C2 -""̂  

\/(x) = ci - ^ 

>̂ 1 

^^N^^^Vl ^ ^ 
— ^ - ^ 2 

FIGURE 6.6 
Asymptotic stability 

EXAMPLE 7.2. For the system given in Example 5.8, we choose 

^ n 0 
0 0.5 

and we compute the matrix 

C = A^P + PA = 
-2 0 
0 - 2 

According to Theorem 7.2, the equilibrium x = 0 of this system is exponentially stable 
in the large (as expected from Example 5.8). • 

THEOREM 7.3. The equilibrium x = 0 of (L) is unstable if there exists a real, sym
metric nX n matrix P that is either negative definite or indefinite such that the matrix C 
given in (7.3) is negative definite. 

Proof, We first assume that P is indefinite. Then P possesses eigenvalues of either sign, 
and every neighborhood of the origin contains points where the function 
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is positive and negative. Consider the neighborhood 

B{e) = {x e /?^ : \\x\\ < e}, 

where || • || denotes the EucHdean norm, and let 

G = {x e B{e) : v(x) < 0}. 

On the boundary of G we have either ||x|| = e or v{x) = 0. In particular, note that the 
origin x = 0 is on the boundary of G. Now, since the matrix C is negative definite, there 
exist constants C3 > Q > 0 such that 

-csll^lp < x^Cx = v(x) < -QII^IP 

for all X E /̂ ". Let (t)(t, to, XQ) = (i){t) and let xo = (/>(̂ ) G G. Then v(xo) = -(3 < 0. 
The solution (f){t) starting at JCQ must leave the set G. To see this, note that as long 
as (f){t) E G, v((/)(0) ^ - « since v(x) < 0 in G. Let -c = sup {v(x) : x ^ G and 
v(x) < -fl}. 

Then c > 0 and 

v{(f){t)) = v(xo) + v((t)(s))ds < -(2 - C(i5 

= —a — (t — to)c, t > tQ. 

This inequality shows that 4>{t) must escape the set G (in finite time) because v{x) is 
bounded from below on G. But (f){t) cannot leave G through the surface determined by 
v{x) = 0 since v((/)(0) ^ -a . Hence, it must leave G through the sphere determined by 
||x|| = 6. Since the above argument holds for arbitrarily small 6 > 0, it follows that the 
origin x = 0 of (L) is unstable. 

Next, we assume that P is negative definite. Then G as defined is all of B(e), The 
proof proceeds as above. • 

The proof of Theorem 7.3 shows that for e > 0 sufficiently small when P is 
negative definite, all solutions (pit) of (L) v^ith initial conditions XQ E B(e) w îll tend 
aw ây from the origin. This constitutes a severe case of instability, called complete 
instability. 

EXAMPLE 7.3. For the system given in Example 5.7, we choose 

0.28 -0.961 
P = 

and we compute the matrix 

-0.96 0.28 

C = A^P + PA = 
-20 0 

0 -20 

The eigenvalues of P are ±1. According to Theorem 7.3, the equilibrium x = 0 of this 
system is unstable (as expected from Example 5.7). • 

In applying the results derived thus far in this section, we start by choosing 
(guessing) a matrix P having certain desired properties. Next, we solve for the 
matrix C, using Eq. (7.3). If C possesses certain desired properties (i.e., it is neg
ative definite), we draw appropriate conclusions by applying one of the preceding 
theorems of this section; if not, we need to choose another matrix P. This points to the 

Stability 
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to construct Lyapunov functions of the form v(x) = x^Px in a systematic manner. 
In doing so, one first chooses the matrix C in (7.3) (having desired properties), and 
then one solves (7.3) for P. Conclusions are then drawn by applying the appropri
ate results of this section. In applying this construction procedure, we need to know 
conditions under which (7.3) possesses a (unique) solution P for a given C. We will 
address this topic next. 

We consider the quadratic form 

v(x) = x^Px, P = P^, (7.5) 

and the time derivative of v(x) along the solutions of (L), given by 

v(x) = x^Cx, C = C^, (7.6) 

where C = A^P + PA (1.1) 

and where all symbols are as defined in (7.1) to (7.3). Our objective is to determine 
the as yet unknown matrix P in such a way that v(x) becomes a preassigned negative 
definite quadratic form, i.e., in such a way that C is a preassigned negative definite 
matrix. 

Equation (7.7) constitutes a system of n(n + l)/2 linear equations. We need to 
determine under what conditions we can solve for the n(n + l)/2 elements, pik, given 
C and A. To this end, we choose a similarity transformation Q such that 

QAQ-^ = A, (7.8) 

or equivalently, 

A = Q-^AQ, (7.9) 

where A is similar to A and 2 is a real nX n nonsingular matrix. From (7.9) and 
(7.7) we obtain 

(AfiQ-^PQ-^ + (Q'VPQ'^A = (Q-VCQ~^ (7.10) 

or (A/Q ^QA = C, P = (Q~VPQ~\ C = {Q-^fCQ'K (7.11) 

In (7.11), P and C are subjected to a congruence transformation and P and C have 
the same definiteness properties as P and C, respectively. Since every real nX n 
matrix can be triangularized (refer to Subsection 2.2L), we can choose Q in such a 
fashion that A == [dij] is triangular, i.e., dtj = 0 for / > j . Note that in this case 
the eigenvalues of A, Ai , . . . , A„, appear in the main diagonal of A. To simplify our 
notation, we rewrite (7.11) in the form (7.7) by dropping the bars, i.e., 

A^P^-PA = C, C = C^, (7.12) 

2indwe assume that A = [aij] has been triangularized, i.e., atj = 0 f o r / > j . Since 
the eigenvalues Ai , . . . , A„ appear in the diagonal of A, we can rewrite (7.12) as 

2Xipn = cii 

^2iPii + (Ai + X2)pn = ci2 

(7.13) 
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the matrix P can be determined (uniquely) if and only if its determinant is not zero. 
This is true when all eigenvalues of A are nonzero and no two of them are such that 
\i + Xj = 0. This condition is not affected by a similarity transformation and is 
therefore also valid for the original system of equations (7.7). 

We summarize the above discussion in the following lemma. 

LEMMA 7.1. Let A E /?"^" and let Ai,..., A„ denote the (not necessarily distinct) 
eigenvalues of A. Then (7.12) has a unique solution for P corresponding to each C E 
/?«><« if and only if 

A, 7^ a A, + Ay 7̂  0 for all /, ;. (7.15) 
• 

To construct v(x), we must still check the definiteness of P. This can be done in 
a purely algebraic way; however, in the present case it is much easier to apply the 
results of this section and argue as follows: 

1. If all eigenvalues of A have negative real parts [or equivalently, if the equilib
rium jc = 0 of (L) is exponentially stable in the large], and if C in (7.7) is neg
ative definite, then P = P^ must be positive definite. To prove this assertion, 
we choose for (L) the function v given in (7.5) with v along the solutions of (L) 
given by (7.6) and (7.7). For purposes of contradiction we assume that P is not 
positive definite. Then there exists XQ T^ 0 such that V(JCO) = :̂ o ^^o — 0. For 
the solution (pit) with 4>(to) = XQ, V((/)(0) is monotone decreasing with increas
ing t, since v((/)(0) — 0. Also, since v(0|r=^o "̂  ^QQ^O < 0, it follows that for 
t > to, v((f)(t)) < v(x(to)) = v(jco) ^ 0. Since by assumption all the eigenval
ues of A have negative real parts, we know that the equilibrium JC = 0 of (L) 
is uniformly asymptotically stable. Thus, lim -̂̂ oo v((/)(0) = 0, which leads to a 
contradiction. Thus, P must be positive definite. 

2. If at least one of the eigenvalues of A has positive real part and no real part of 
any eigenvalue of A is zero and if (7.15) is satisfied, and if C in (7.7) is negative 
definite, then P cannot be positive definite; otherwise we could apply Theorem 7.2 
to come up with a contradiction. If in particular the real parts of all eigenvalues 
of A are positive, then P must be negative definite. [Note that in this case the 
equilibrium JC = 0 of (L) is completely unstable.] 

Now suppose that at least one of the eigenvalues of A has positive real part, and 
suppose that any one of the two conditions or both conditions given in (7.15) are 
not satisfied. Then we cannot construct v(x) given in (7.5) in the manner described 
above (i.e., we cannot determine P in the manner described above). In this case we 
form a matrix Ai = A - 81, where / denotes the ^ X n identity matrix and 8 is 
chosen so that A\ has as many eigenvalues with positive real part as A, but none of 
the conditions in (7.15) are violated. Then the equation 

A\P + PAi = C, 

with C negative definite, can be solved for P, and P is then clearly not positive defi
nite. The derivative of the function v(x) = x^Px is a quadratic form whose matrix 
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which is negative definite for a sufficiently small 8. The function v(x) constructed 
in this way now satisfies the hypotheses of Theorem 7.3 for system x = Ax. 

Summarizing the above discussion, we have the following result. 

THEOREM 7.4. If all the eigenvalues of the matrix A have negative real parts, or if at 
least one eigenvalue has a positive real part, then there exists a Lyapunov function of the 
form 

v(x) = x^Px, P = P^, 

whose derivative along the solutions of (L) is definite (i.e., it is either negative definite 
or positive definite). • 

EXAMPLE 7.4. We consider the system (L) with 

0 11 
-1 oj' 

The eigenvalues of A are Ai, A2 = ±j and therefore condition (7.15) is violated. Ac
cording to Lemma 7.1, the Lyapunov matrix equation 

A^P + PA = C 

does not possess a unique solution for a given C. We now verify this for two specific 
cases. 

(i) When C = 0, we obtain 

"0 
1 

-1 ] 
OJ [pn 

Pn 
P22. 

+ Pn 
.Pn 

P12I 
Pii] [-1 0. = -2p\2 

.Pn - P22 

0 0 
0 0. ' 

Pn - P22 

2/712 

OT pi2 = 0 and pu = ^22- Therefore, for any a E: R, the matrix P = al is d. solution of 
the Lyapunov matrix equation. In other words, for C = 0, the Lyapunov matrix equation 
has in this example denumerably many solutions, 

(ii) When C = -21, we obtain 

-2/712 

Pn - P22 

Pn - P22 

2/712 

- 2 0 
0 - 2 

or Pn = P22 and pu = 1 and pu = - 1 , which is impossible. Therefore, for C 
the Lyapunov matrix equation has in this example no solutions at all. 

-2/, 

It turns out that if all the eigenvalues of matrix A have negative real parts, then 
we can compute P in (7.7) explicitly. 

THEOREM 7.5. If all eigenvalues of a real n X n matrix A have negative real parts, 
then for each matrix C E /?"><", the unique solution of (7.7) is given by 

/ •CO 

(7.16) 
Jo 

Proof, If all eigenvalues of A have negative real parts, then (7.15) is satisfied and there
fore (7.7) has a unique solution for every C E R^^f^, To verify that (7.16) is indeed this 
solution, we first note that the right-hand side of (7.16) is well defined, since all eigen
values of A have negative real parts. Substituting the right-hand side of (7.16) for P into 
(7.7), we obtain 
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0 at 

= e^X-Oe""' = C, 
10 

which proves the theorem. 

6.8 
LINEARIZATION 

In this section we consider nonlinear, finite-dimensional, continuous-time dynamical 
systems described by equations of the form 

w = f(w\ (A) 

where / G C^(R^, R^). We assume that w = 0 is an equilibrium of (A). In accor
dance with Subsection 1.11 A, we linearize system (A) about the origin to obtain 

x = Ax + F(x), (8.1) 

X G R^, where F G C(R^, R^) and where A denotes the Jacobian of f(w) evaluated 
at w = 0, given by 

A = ^ ( 0 ) , (8.2) 
dw 

and where F(x) = o(\\x\\) as ||;c|| ^ 0. (8.3) 

Associated with (8.1) is the linearization of (A), given by 

y = Ay, (L) 

In the following, we use the results of Section 6.7 to establish criteria that allow 
us to deduce the stability properties of the equilibrium w = 0 of the nonlinear system 
(A) from the stability properties of the equilibrium y = Oof the linear system (L). 

THEOREM 8.1. Let A G R''^'' be a Hurwitz matrix, let F G C(/?", R""), and assume 
that (8.3) holds. Then the equilibrium x = 0 of (8.1) [and hence, of (A)] is exponentially 
stable. 

Proof. Theorem 7.4 applies to (L) since all the eigenvalues of A have negative real 
parts. In view of that theorem (and the comments following Lemma 7.1), there exists a 
symmetric, real, positive definite nX n matrix P such that 

PA + A^P = C, (8.4) 

where C is negative definite. Consider the Lyapunov function 

v{x) = x^Px. (8.5) 

The derivative of v with respect to t along the solutions of (8.1) is given by 

v(x) = x^Px + x^Px 

= {Ax + F{x)fPx + x^P{Ax + F{x)) 

= x^Cx + 2x^PF(x). (8.6) 
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X e B{d) = {xeR'^ :\\x\\< d}. Therefore, for all x G B{d) we obtain, in view of (8.6), 
the estimate 

v(x)<3r | |x | |2-27 | |x | |2 = 7||x||2. (8.7) 

Now, let a = minn̂ -̂n̂ ^ v(x). Then a > 0 (since P is positive definite). Take A G 
(0, a ) , and let 

C^={xe B{5) = {xeR'': \\x\\ < 5} : v(x) < A}. (8.8) 

Then C^ C B{5). [This can be shown by contradiction. Suppose that C^ is not entirely 
inside B{5). Then there is a point xeC^ that lies on the boundary of 5(5) . At this point, 
v(x) > a > A. We have thus arrived at a contradiction.] The set C^ has the property that 
any solution of (8.1) starting inC^ ait = to will stay in Q for ^H ̂  > 0̂ ̂  0- To see this, 
we let (l){t,to,xo) = 0(r) and we recall that v(x) < 7 | |x |p ,7< 0,x G B{d) D Q - Then 
v(0(O) < 0 implies that v{^{t)) < v(xo) < A for all ^ > ô > 0. Therefore, ^{t) G Q 
for all t>to>0. 

We now proceed in a similar manner as in the proof of Theorem 7.1 to complete 
this proof. In doing so, we first obtain the estimate 

v((|)(0)<(^^)v((|)(0), (8.9) 

where 7 is given in (8.7) and C2 is determined by the relation 

ci\\xf < v{x)=x^Px<C2\\xf. (8.10) 

Following now in an identical manner as was done in the proof of Theorem 7.1, we have 

m)\\<(-] ||xo|k^/'(^/^^)(^-^°\ t>to>0, (8.11) 

whenever XQ G 5 ( / ) , where / has been chosen sufficiently small so that B(r') C C^. 
This proves that the equilibrium x = 0 of (8.1) is exponentially stable. • 

It is important to recognize that Theorem 8.1 is a local result that yields sufficient 
conditions for the exponential stability of the equilibrium x = 0 of (8.1); it does not 
yield conditions for exponential stability in the large. The proof of Theorem 8.1, 
however, enables us to determine an estimate of the domain of attraction of the 
equilibrium x = 0 of (A), involving the following steps: 

1. Determine an equilibrium, x^, of (A) and transform (A) to a new system that 
translates Xe to the origin x = 0 (refer to Section 6.3). 

2. Linearize (A) about the origin and determine F(x),A, and the eigenvalues of A. 
3. If all eigenvalues of A have negative real parts, choose a negative definite matrix 

C and solve the Lyapunov matrix equation 

C=A^P^PA. 

4. Determine the Lyapunov function 

v{x) =x^Px. 

5. Compute the derivative of V along the solutions of (8.1), given by 

v{x)=x^Cx^2x^PF{x). 

6. Determine 5 > 0 such that v(jc) < 0 for all x G B{d) - {0}. 
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CA = {x G B!" : v(x) < A}. 

8. Cxyi is a subset of the domain of attraction of the equiUbrium x = 0 of (8.1), and 
hence, of (A). 

The above procedure may be repeated for different choices of matrix C given 
in step (3), resulting in different matrices P/ , which in turn may result in different 
estimates for the domain of attraction, C\ , / G A, where A is an index set. The 
union of the sets C\^ = Di, D = U/D/, is also a subset of the domain of attraction 
of the equilibrium x = 0 of (A). 

THEOREM 8.2. Assume that A is a real nX n matrix that has at least one eigenvalue 
with positive real part. Let F E C(/?", /?''), and assume that (8.3) holds. Then the equi
librium X = 0 of (8.1) [and hence, of (A)] is unstable. 

Proof, We use Theorem 7.4 to choose a real, symmetric n X n matrix P such that the 
matrix PA + A^P = C is negative definite. The matrix P is not positive definite, or even 
positive semidefinite (refer to the comments following Lemma 7.1). Hence, the function 
v(x) = x^ Px is negative at some points arbitrarily close to the origin. The derivative 
of v(x) with respect to t along the solutions of (8.1) is given by (8.6). As in the proof 
of Theorem 8.1, we can choose a y < 0 such that x^Cx < 3711x11̂  for all x E P", and 
in view of (8.3) we can choose a 5 > 0 such that ||PF(x)|| < y\\x\\ for all x E B(8). 
Therefore, for all x E B(8), we obtain that 

Hx) ^ 3r||x|p - 2r||x|p = rll^lp. 

Now let 

G = {xE B(8) : v(x) < 0}. 

The boundary of G is made up of points where either v(x) = 0 or where ||x|| = 8. Note 
in particular that the equilibrium x = 0 of (8.1) is in the boundary of G. Now following 
an identical procedure as in the proof of Theorem 7.3, we show that any solution (/)(0 of 
(8.1) with 4>(to) = XQ E: G must escape G in finite time through the surface determined 
by Ikll = 8. Since the above argument holds for arbitrarily small 5 > 0, it follows that 
the origin x = 0 of (8.1) is unstable. • 

Before concluding this section, we consider a few specific cases. 

EXAMPLES.1. The Lienard Equation is given by 

w + g{w)w + w = 0, (8.12) 

where g E C^(R, R) with ^(0) > 0. Letting xi = w and X2 = w, we obtain 

(8.13) 
X2 = - X i - g{Xi)X2. 

Let x^ 
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Then 

Xi = X2 

X2 = - X i - g(Xi)X2. 

(xi, X2), f{xf = (/i(x), /2(x)), and let 

7(0) = A = 

X = A^ 

"1^(0) 1^(0)" 
dxi dX2 

1^(0) 1^(0) 
_dX\ dX2 

: + [/(x) - Ax] = 

= 

Ax 

0 1 • 

- 1 - ^ ( 0 ) . 

+ F(x\ 
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where F(x) 

0 
l[^(0) - g(Xi)]X2\ 

The origin x = 0 is clearly an equilibrium of (8.12) and hence of (8.13). The eigenvalues 
of A are given by 

Ai, A2 = 
JgW 

and therefore, A is a Hurwitz matrix. Also, (8.3) holds. Therefore, all the conditions of 
Theorem 8.1 are satisfied. We conclude that the equilibrium x = 0 of (8.13) is exponen
tially stable. • 

EXAMPLE 8.2. We consider the system given by 

X\ = -Xi + X\{x\ + x\) 

X2 = -X2 + X2(xj + x\). 
(8.14) 

The origin is clearly an equilibrium of (8.14). Also, the system is already in the form 
(8.1) with 

- 1 0 
0 - 1 

F{x) = 
\x\{x\ + X2)l 
[x2{x\ + xl)y 

and condition (8.3) is clearly satisfied. The eigenvalues of A are Ai = - 1 , A2 = - 1 . 
Therefore, all conditions of Theorem 8.1 are satisfied and we conclude that the equilib
rium x^ = (xi, X2) = 0 is exponentially stable; however, we cannot conclude that this 
equilibrium is exponentially stable in the large. Accordingly, we seek to determine an 
estimate for the domain of attraction of this equilibrium. 

We choose C = -I (where / G R^^^ denotes the identity matrix) and we solve the 
matrix equation A^P + PA = C to obtain P = (1/2)/, and therefore, 

V(xi, X2) = x^Px = \(x] + xl). 

Along the solutions of (8.14) we obtain 

v(xi, X2) = x^Cx + 2x^PF(x) 

= -(x^ + xj) + (xi + xjf. 

Clearly, v(xi, X2) < 0 when (xi, X2) ^ (0, 0) and Xj + ^2 < 1. In the language of the 
proof of Theorem 8.1, we can therefore choose 8 = 1. 

Now let 

Ci/2 = {xeR^: v(xi, X2) = \(x1 + x\) < i}. 

R^:xj + 
•- 0 of sys-

• 

EXAMPLES.3. The differential equation governing the motion of a pendulum is given by 

Then clearly. Cm C B(8X 8 = 1, in fact Cm = B(8). Therefore, the set {x 1 
X2 < 1} is a subset of the domain of attraction of the equilibrium (xi, X2)̂  
tem(8.14). 

6 -\- asinO = 0, 

where a > 0 is a constant (refer to Chapter 1). Letting 6 
the system description 

(8.15) 

xi and 6 = X2, we obtain 

Xi = X2 

X2 = -asinxi. 

The points x̂ .̂ ^ = (0, 0)^ and xf^ = (77, 0)^ are equilibria of (8.16). 

(8.16) 



(i) Linearizing (8.16) about the equilibrium x^^\ we put (8.16) into the form (8.1) 481 
with 

A = 
0 1 

-a 0 

The eigenvalues of A are Ai, A2 = ±7 V^. Therefore, the results of this section (Theo
rem 8.1 and 8.2) are not applicable in the present case. 

(ii) In (8.16), we let y\ ~ x\ - TT and 3̂2 = ^2- Then (8.16) assumes the form 

yi 

-(2sin(yi + 77). 
(8.17) 

The point (3̂ 1, 3̂ 2)̂  = (0,0)^ is clearly an equilibrium of system (8.17). Linearizing 
about this equilibrium, we put (8.17) into the form (8.1), where 

A = 
0 1 
a 0 

F(yh yi) = 
0 

-a(sin(3;i +77) + yO. 

The eigenvalues of A are Ai, A2 = a, -a. All conditions of Theorem 8.2 are satisfied and 
we conclude that the equilibrium xf^ = (TT, 0)^ of system (8.16) is unstable. • 
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We now turn our attention to systems described by the state equations 

X = A(t)x + B(t)u 

y = C(t)x + D(t)u, 
(9.1) 

where A G C(R, T '̂̂ '̂̂ ), B G C(R, 7^"^^), C G C(K R^'"''), and D G C(R, RP"""^) 

[resp., A G C{R^, i?"^ '̂̂ ), B G C{R^, R'"'"'^), C G C{R+, RP""""), and D G C(R^, 
RP^^)]. In the preceding sections of this chapter we investigated the internal stability 
properties of system (9.1) by studying the Lyapunov stability of the trivial solution 
of the associated system 

w = A(t)w. (LH) 

In this approach, system inputs and system outputs played no role. To account for 
these, we now consider the external stability properties of system (9.1), called 
input-output stability: every bounded input of a system should produce a bounded 
output. More specifically, in the present context, we say that system (9.1) is bounded-
input/bounded-output (BIBO) stable if for all to and zero initial conditions at f = to, 
every bounded input defined on [to, ^) gives rise to a bounded response on [to, 0°). 

A bounded matrix D(t) does not affect the BIBO stability of (9.1), while an 
unbounded D(t) will give rise to an unbounded response to an appropriate constant 
input. Accordingly, we will consider without any loss of generality the case where 
D(t) = 0, i.e., throughout this section we will concern ourselves with systems de
scribed by equations of the form 
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We will find it useful to use a more restrictive concept of input-output stability 

in establishing various results: we will say that the system (9.2) is uniformly BIBO 
stable if there exists a constant k> Q that is independent of ^ , such that for all ^ 
the conditions 

X{tQ) = 0 

||w(0|| ^ 1 , t^ to, 

imply that ||j(Oli — k for all t > to. (The symbol || • || denotes the Euclidean norm.) 
It turns out that for the class of problems considered herein, BIBO stability and 

uniform BIBO stability amount to the same concepts. (We will not, however, prove 
this assertion here.) Accordingly, we will phrase all subsequent results in terms of 
uniform BIBO stability, rather than BIBO stability. These results will involve the 
impulse response matrix of (9.2) given by 

Har) = f^«*(''-)^(->' ^;^' (9.3) 
[ U, t < T, 

and the controllability and observability Gramian given, respectively, by 

W(to, ^i) - 0 ( % t)B(t)B^(t)^^(to, t)dt (9.4) 
J/o 
ch 

and M(% ^i) = ^{t, tof C{tf C{t)^{t, to) dt, (9.5) 

In these results we will establish sufficient conditions for uniform BIBO stability of 
(9.2) and also necessary and sufficient conditions for uniform BIBO stability of (9.2). 
Furthermore, we will present results that make a connection between the uniform 
BIBO stability of (9.2) and the Lyapunov exponential stability of the equilibrium 
w = 0 of (LH). In view of the latter results, we will usually assume that to ^ 0. 

At the end of this section we will also present specialized stability results for the 
time-invariant systems described by equations of the form 

X = Ax + Bu 
(9.6) 

y ^ Cx, 

where A G Ẑ '̂ ^̂ ", B E Ẑ ^̂ '̂̂ , and C G RP''''. Associated with system (9.6) is the 
free system described by equations of the form 

P = Ap, (L) 

Recall that for system (9.6) the impulse response matrix is given by 

H(t) = Ce'^'B, t > 0, 

= 0, / < 0, (9.7) 

and the transfer function matrix is given by 

H(s) = C(sl -A)-^B. (9.8) 

THEOREM 9.1. The system (9.2) is uniformly BIBO stable if and only if there exists a 
finite constant L > 0 such that for all t and to, with t > to, 



\\H{t,T)\\dr£L. (9.9) 

The first part of the proof of Theorem 9.1 (sufficiency) is straightforward. In
deed, if ||M(r)|| < 1 for all t^tQ and if (9.9) is true, then we have for all f ^ fo that 

lb(Oll = Hit, T)U{T) dr 
to 

< \\H(t,T)u(T)\\dr 
Jto 
rt 

\\H(t,T)\\\\u(T)\\dT 
I 

< \ \\H(t,T)\\dT^L. 
Jto 

Therefore, system (9.2) is uniformly BIBO stable. 
In proving the second part of Theorem 9.1 (necessity), we simplify matters by 

first considering in (9.2) the single-variable case (n = 1) with the input-output de
scription given by 

y(t) = h(t,T)u(r)dT. (9.10) 

For purposes of contradiction, we assume that the system is BIBO stable, but no 
finite L exists such that (9.9) is satisfied. Another way of stating this is that for every 
finite L, there exist to = to(L) and ti = ^i(L), ti > to, such that 

\h(tuT)\dr> L. 
to 

We now choose in particular the input given by 
r + 1 if/z(^,T)>0, 

u(t) = \ 0 ifh(t,r) = 0, (9.11) 
[ - 1 ifh(t,T)<0, 

to ̂  t ^ ti. Clearly, \u(t)\ < 1 for all t ^ to. The output of the system att = ti due 
to the above input, however, is 

rti rti 

y(ti) = h{ti, T)U{T)dr = \h{ti,T)\dT > L, 
Jto Jto 

which contradicts the assumption that the system is BIBO stable. 
The above can now be extended to the multivariable case. In doing so, we apply 

the single-variable result to every possible pair of input and output vector compo
nents, we make use of the fact that the sum of a finite number of bounded sums 
will be bounded, and we recall that a vector is bounded if and only if each of its 
components is bounded. We leave the details to the reader. 

In the preceding argument we made the tacit assumption that u is continuous, 
or piecewise continuous. However, our particular choice of u may involve nonde-
numerably many switchings (discontinuities) over a given finite-time interval. In 
such cases, u is no longer piecewise continuous; however, it is measurable (in the 
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484 Lebesgue sense). This generalization can be handled, though in a broader mathemat-
Linear Systems i^al setting that we do not wish to pursue here. The interested reader may want to 

refer, e.g., to the books by Desoer and Vidyasagar [5], Michel and Miller [17], and 
Vidyasagar [25] and the papers by Sandberg [21] to [23] and Zames [26], [27] for 
further details. 

From Theorem 9.1 and from (9.7) it follows readily that a necessary and suffi
cient condition for the uniform BIBO stability of system (9.6) is the condition 

\\H(t)\\dt<^. (9.12) 
Jo 

COROLLARY 9.1. Assumc that the equilibrium w = 0 of (L^) is exponentially stable 
and suppose there exist constants ^ > 0 and y > 0 such that for all t, \\B{t)\\ < j8 and 
||C(0|| ^ 7- Then system (9.2) is uniformly BIBO stable. 

Proof, Under the hypotheses of the corollary, we have 

H{t,T)dTl < [ \\H(t,T)\\dT 
^0 II -'^0 

= f' \\C(t)^(t, T)B(T)\\dT < 7i8 f' ||cD(̂ , T)|| Jr. 

Since the equilibrium w = 0 of (LH) is exponentially stable, there exist 6 > 0, A > 0 
such that ||0(r, T)|| < 8e~^^^~^\ t > r. Therefore, 

\\H{t,T)\\dT^ [ ypde-^^'-'-Ur 
to JtQ 

ySp A 

A 
for all T, t with r > r. It now follows from Theorem 9.1 that system (9.2) is uniformly 
BIBO stable. • 

As indicated earlier, we seek to establish a connection between the uniform 
BIBO stability of (9.2) and the exponential stability of the trivial solution of (LH). 
We will accomplish this by means of an intermediate result for systems described 
by equations of the form 

X = A(t)x + B(t)u 
^' ^'' (9.13) 

y = X. 

Before stating and proving the next result, we recall that if 5 G R^^^^ J E R^^^ 
are symmetric, then the notation S > 0 signifies that S is positive definite, and the 
notation S > T indicates that the matrix S - T is positive definite, i.e., S - T > 0. 
Also, if Q(t) = Q(tf G C(R, /̂ "><"), the condition that there is a constant r] > 0 
such that Q(t) > 17/ for all ^ E i? is equivalent to the statement that z^Q(t)z ^ r]\\z\\^ 
for all f E /? and all z E R"". 

Next, suppose that there is a constant a > 0 such that ||A(0|| ^ oc for all t ^ R, 
and let $(^, r) denote the state transition matrix of (LH). In the proof of the next 
result we will require the estimate 

||(I)(r,T)||< ^"^ k - T | < 8. (9.14) 

To obtain this estimate we let (f)(t, r, ^) = 0(0 denote the solution of (LH) with 
(/)(T) == ^, and we compute 
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for all t > T. Letting ||(^(0|F = v{t), we have 

— < lav, V(T) = ll^lp, 

which yields 

or mt ^ e-^'-^m ^ e-'\U 

which in turn yields (9.14). The case when r > n s treated similarly. 

THEOREM 9.2. Suppose that there exist positive constants a, /3, e, and 8 such that for 
all t, \\A{t)\\ < a, \\B{t)\\ < j8, and ^(^0, ô, +5) ^ e/, where / denotes the n X w identity 
matrix and W(-) denotes the controllability Gramian given in (9.4). Then the system 
(9.13) is uniformly BIBO stable if and only if the trivial solution of {LH) is exponentially 
stable. 

Proof, Under the above hypotheses, it follows from Corollary 9.1 that if the trivial so
lution of {LH) is exponentially stable, then system (9.13) is uniformly BIBO stable. 

Conversely, assume that the system (9.13) is uniformly BIBO stable and assume 
that the hypotheses of the theorem are satisfied with the given constants a, /3, 6, and e. 
The assumption W(^, t^ + 8)> el ensures that W~^{tQ, to + 8) exists, is bounded, and 
is independent of ô- We now consider 

/ = [ [(I>(T, r])B(r])Bir]Y^(T, r]f d7]W\T - 8, r). (9.15) 
Jr-8 

Since B(r]) is bounded and since ^ ( r , r]) is bounded over |T - r/l < 5, there exists a 
constant c > 0 such that 

||5(r/)^cI)(T, r])'^W~\T - 8, T)|| < c. (9.16) 

Premultiplying (9.15) by ^(t, r) and using the bound (9.16) and the properties of norms, 
we obtain 

| | cDaT) | |<c f ' m,rj)B(rj)\\dri. (9.17) 
JT-8 

Since system (9.13) is uniformly BIBO stable, there exists a /: > 0 such that 

mt,r])B(v)\\dri<k (9.18) 
Jt-n8 

for all positive integers n, where k is independent of n and t. From (9.18) it follows that 

m.V)B(v)\\dv = f mt,v)B(ri)\\d7]+[ \\^(t,7])B(rj)\\drj 

t-nd Jt-S Jt-28 
rt-n8+8 

+ •••+ \\^(t,r))B{'n)\\dy)<k. (9.19) 
Jt-n8 

From (9.17) to (9.19) it follows that 
c-^W^it, Oil + c-^W^iU t - 8)\\ + •" + c-^W^it, t-n8 + 5)11 

\\^{t,y))B{y])\\d7)<k. 
t-n8 
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or \\^{t, Oil + l l^a t - 5)11 + • • • + \\^{t, t-nd + 5)11 + "• <ck. 

To complete the proof, we must show that \[^ \\^{t, y]% drj is finite. We will accom
plish this by showing that |_^g ||^(^, 17)11 drj is finite for any positive integer. To this end 
we observe that for any n, t given, there exists a positive integer m such that 

||a>(/, T/)|Mr7 < f \m,7j)\\drj. 
-n8 Jt—m8 

If we apply the Mean Value Theorem for Integrals to 

f | |cDar;)||Jr^= f mt,v)\\d7i+C 110^77)11^7, 
Jt-m8 Jt~8 Jt-28 

rt-(m-l)8 

+ •••+ mt,v)\\dv> 
Jt-m8 

we obtain for fjt ^ [t - id, t - (i - 1)5], / = 1 , . . . , m, that 

||(Da 77)11̂ 7, < [ 110^77)11^7, 
-nS Jt-m8 

< 5[||oa 77011 + l|oa 772)11 + • • • + iioa 77̂)111 

Now invoking Theorem 5.5(iv) of this chapter, we conclude that the equilibrium w = 0 
of (LH) is exponentially stable. • 

THEOREM 9.3. Suppose that there exist positive constants a, jS, and y such that 
||A(0|| ^ «, IÎ Wll — P^ and ||C(0|| ^ y for all t and assume that there exist positive con
stants e 1, 62, 5i, and 52 such that for all to, W(to, ô + ^i) — ^ i^ and M(to, to + 82) ^ 62/, 
where M(') denotes the observability Gramian given in (9.5). Then the system (9.2) is 
uniformly BIBO stable if and only if the equilibrium w = 0 of (LH) is exponentially 
stable. 

Proof, Uniform exponential stability of the trivial solution of (LH) and the hypotheses 
of this theorem imply the uniform BIBO stabiHty of system (9.2) by Corollary 9.1. To 
complete the proof, we show that the hypotheses of the theorem and the BIBO stability 
of system (9.2) imply the exponential stability of the equilibrium w = 0 of (LH). 

To set up a contradiction, assume that uniform BIBO stability of system (9.2) does 
not imply exponential stability of the trivial solution of (LH). Then by Theorem 9.2, it 
must not imply uniform BIBO stability of system (9.13). For if there is no bound on the 
state, then there can be no bound on the output. To see this, let w = 0 on ^ < r < r + 5 
and obtain 

t+8 rt+8 

|b(T)|pdr = xitf[\ <Dft rfdryCirmt, r)dr]x{t) 
Jt 

= x(tfM(t, t + 8)x(t) < max d\\y(T)f, 
t<T<t + 8 

and therefore, 

max ||>;(T)f > d-'\\x(t)f\,^AM(t, t + 5)], 
t<T<t + 8 

where Amin[^(^, t + 5)1 denotes the smallest eigenvalue of M(t, t + 5). Thus, if the state 
X is not bounded for all bounded w, then y will also not be bounded. This shows that the 
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EXAMPLE 9.1. We consider the system described by the scalar equations 

1 . 
X + U 

^^^' (9.20) 
y = X. 

This system is clearly controllable and observable. The zero-input response of this sys
tem is determined by the differential equation 

• ^ Jw, w(to) = xo, to > 0. (9.21) 

It is easily verified that the solution of (9.21) is given by 

ct>(t,to,xo)= \ ^ ^ o (9.22) 

[refer to Eqs. (4.5) and (4.6)]. The origin w = 0 is the only equilibrium of (9.21), and as 
seen from (9.22), this equilibrium is uniformly stable and asymptotically stable; how
ever, it is not uniformly asymptotically stable, and hence, it is not exponentially stable. 

The state transition matrix of system (9.21) is given by 

1'(Uo) = y ^ . 

With ^ = 0 and bounded input u(t) = 1, / > 0, the zero-state response of system (9.20) 
is 

r t r ^ 1 _(_ /T-

y(t,to>xo)= ^(t,T)u(T)dT = T-r-dr 
Jo Jo ^ + ^ 

= ^ . (9.23) 

Summarizing, even though the zero input response of system (9.20) tends to zero 
as ^ -^ 00, the hypotheses of Theorem 9.3 are not satisfied since this decay is not ex
ponential and uniform [i.e., the origin w = 0 of (9.21) is not exponentially stable]. In 
accordance with Theorem 9.3, we cannot expect the zero-state response of system (9.18) 
to be bounded for arbitrary bounded inputs. This is evident from expression (9.23). • 

Next, we consider in particular the time-invariant system (9.6). For this system 
it is easily verified that Theorem 9.3 reduces to the following appealing result that 
connects the uniform BIBO stability of system (9.6) and the exponential stability of 
the trivial solution of (L). 

THEOREM 9.4. Assume that the time-invariant system (9.6) is controllable and ob
servable. Then system (9.6) is uniformly BIBO stable if and only if the trivial solution 
of (L) is exponentially stable. • 

EXAMPLE9.2. Consider the system 

0 1 

.1 0. 

X = Ax + Bu 

y = Cx, 

B = 
0 

.1. ' where "̂  " i o r ^ " i r ^ = ^^ - H -

The eigenvalues of A are A i = 1, A2 = - 1 , and therefore the equilibrium w 
of the system w = Aw is unstable. The state transition matrix of this system is 
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0(^, 0) = 

and the impulse response of the system is 

H{t) = COaO)5 = -e-\ 

Thus, even though the equihbrium w = 0 of w = Aw is unstable, the system is uni
formly BIBO stable. The reason for this is that the system is not observable, as is verified 
by noting that 

C 
CA 

1 - 1 
- 1 1 

which is singular. Thus, the hypotheses of Theorem 9.4 are not valid, with the conse
quence that the unstable mode of the system is not observable at the system output. • 

EXAMPLE9.3. We no w consider the system 

X = Ax ^- Bu 

y = Cx, 

where A and B are as in Example 9.2 and 

C = [\ 2]. 

The eigenvalues and the state transition matrix of this system are identical to those 
of the system given in Example 9.2. This system is both controllable and observable, 
and the impulse response is 

H{t) =\e'- \e-\ 

Since the system is controllable and observable and since the equilibrium w = 0 of 
the system w = Aw is unstable, it follows from Theorem 9.4 that the system cannot be 
uniformly BIBO stable. This can be verified directly by inspecting H(t) above. • 

Next, we recall that a complex number Sp is a pole of H(s) = [hij(s)] if for 
some pair (/, j), we have \hij(sp)\ = oo (refer to the definition of pole in Section 3.5). 
If each entry of H(s) has only poles with negative real values, then, as shown in 
Chapter 2, each entry of H(t) = [hij(t)] has a sum of exponentials with exponents 
with real part negative. It follows that the integral 

\\H(t)\\dt 
0 

is finite, and any realization of H(s) will result in a system that is uniformly BIBO 
stable. 

Now conversely, if 
r 00 

\\H(t)\\dt 
0 

is finite, then the exponential terms in any entry of H(t) must have negative real 
parts. But then every entry of H(s) has poles whose real parts are negative. 

We have proved the following result. 

THEOREM 9.5. The time invariant system (9.6) is uniformly BIBO stable if and only 
if all poles of the transfer function H(s) given in (9.8) have only poles with negative real 
parts. • 
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6.10 
DISCRETE-TIME SYSTEMS 

In this section we address the Lyapunov stability of an equilibrium of discrete-time 
systems (internal stability) and the input-output stability of discrete-time systems 
(external stability). We could establish results for discrete-time systems that are anal
ogous to practically all the stability results that we presented for continuous-time 
systems. Rather than follow such a plan, we will instead first develop Lyapunov 
stability results for nonlinear discrete-time systems and then apply these to obtain 
results for Hnear systems. This will broaden the reader's horizon by providing a 
glimpse into the qualitative analysis of dynamical systems described by nonlinear 
ordinary difference equations. In the Exercise section we ask the reader to imitate 
these results in establishing Lyapunov stability results for dynamical systems de
scribed by nonlinear ordinary differential equations. To keep our presentation simple 
and manageable, we will confine ourselves throughout this section to time-invariant 
systems. Among other issues, this approach will allow us to avoid most of the issues 
involving uniformity. 

This section is organized into seven subsections. In the first subsection we pro
vide essential preliminary material. In the second we establish results for the stabil
ity, instability, asymptotic stability, and global asymptotic stability of an equilibrium 
and boundedness of solutions of systems described by autonomous ordinary differ
ence equations. These results are utilized in the third and fifth subsections to arrive 
at stability results of an equilibrium for linear time-invariant systems described by 
ordinary difference equations. In the fourth subsection we briefly address a result for 
discrete-time systems, called the Schur-Cohn criterion, which is in the same spirit 
as the Routh-Hurwitz criterion is for continuous-time systems. The results of the 
second and fifth subsections are used to develop Lyapunov stability results for Hn-
earizations of nonlinear systems described by ordinary difference equations in the 
sixth subsection. In the last subsection we present results for the input-output stabil
ity of time-invariant discrete-time systems. 

A. Preliminaries 

We concern ourselves here with finite-dimensional discrete-time systems described 
by difference equations of the form 

x(k -\-l) = Ax(k) + Bu(k) 

y(k) = Cx{k), 
(10.1) 

where A G /̂ '̂ X", B G W''''^, C G /?̂ ><^ k ^ k^, and k, ko^Z+. Since (10.1) is 
time-invariant, we will assume without loss of generahty that ko = 0, and thus, 
X : Z+ -> 7?^ J : Z+ -> RP, and w : Z+ ^ R"^. 

The internal dynamics of (10.1) under conditions of no input are described by 
equations of the form 
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^ Such equations may arise in the modehng process, or they may be the consequence 
of the hnearization of nonlinear systems described by equations of the form 

x(k + 1) = g(x(k)), (10.3) 

where g : R^ -> R^. For example, if ^ E C^{R^, R^), then in linearizing (10.3) 
about, e.g., x = 0, we obtain 

x(k + 1) = Ax(k) + f(x(k)\ (10.4) 

where A = (df/dx)(x)\^^Q and where f : R^ ^ R^ is o(\\x\\) as a norm of x (e.g., 
the Euclidean norm) approaches zero. Recall that this means that given e > 0, there 
is a S > 0 such that \\f(x)\\ < e||x|| for all ||x|| < 8. 

As in Section 6.9, we will study the external qualitative properties of system 
(10.1) by means of the BIBO stability of such systems. Since we are dealing with 
time-invariant systems, we will not have to address any issues of uniformity. Con
sistent with the definition of input-output stability of continuous-time systems, we 
will say that the system (10.1) is BIBO stable if there exists a constant L > 0 such 
that the conditions 

jc(0) - 0 

\\u{k)\\ < 1, yt > 0, 

imply that \\y{k)\\ < L for all fc > 0. 
We will study the internal qualitative properties of system (10.1) by studying 

the Lyapunov stability properties of an equilibrium of (10.2). We will accomplish 
this in a more general context by studying the stability properties of an equilibrium 
of system (10.3). 

Since system (10.3) is time-invariant, we will assume without loss of generality 
that ko = 0. As in Chapters 1 and 2, we will denote for a given set of initial data 
x(0) = XQ the solution of (10.3) by (p^k, XQ). When XQ is understood or of no im
portance, we will frequently write (/)(fc) in place of (/)(A:, XQ). Recall that for system 
(10.3) [as well as systems (10.1), (10.2), and (10.4)], there are no particular difficul
ties concerning the existence and uniqueness of solutions, and furthermore, as long 
as g in (10.3) is continuous, the solutions will be continuous with respect to initial 
data. Recall also that in contrast to systems described by ordinary differential equa
tions, the solutions of systems described by ordinary difference equations [such as 
(10.3)] exist in general only in the forward direction of time (k > 0). 

We say that Xe E R^ is an equilibrium of system (10.3) if cl)(k, Xe) = Xe for all 
/: > 0, or equivalently, 

g{Xe) = Xe. (10.5) 

As in the continuous-time case, we will assume without loss of generality that the 
equilibrium of interest will be the origin, i.e., Xe = 0. If this is not the case, then we 
can always transform (similarly as in the continuous-time case) system (10.3) into 
a system of equations that have an equilibrium at the origin. Also, as in the case of 
continuous-time systems, we will generally assume that the equilibrium of (10.3) 
under study is an isolated equilibrium. 
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has two equihbria, one dX Xe\ = 0 and another at Xg2 = 2. • 

EXAMPLE10.2 . The system described by the equations 

xi{k + 1) = ^lik) 

X2(k + 1) = -^i(^) 

has an equiUbrium at xf = (0, 0). • 

Throughout this section we will assume that the function g in (10.3) is continu
ous, or if required, continuously differentiable. The various definitions of Lyapunov 
stability of the equilibrium x == 0 of system (10.3) are essentially identical to the 
corresponding definitions of Lyapunov stability of an equilibrium of continuous-time 
systems described by ordinary differential equations, replacing ^ G /?+ by ^ G Z+. 
Since system (10.3) is time-invariant, we will not have to explicitly address the is
sue of uniformity in these definitions. We will concern ourselves with stability, in
stability, asymptotic stability, and asymptotic stability in the large of the equilibrium 
X = Oof (10.3). 

We say that the equilibrium x == 0 of (10.3) is stable if for every e > 0 there 
exists 3. 8 = S(e) > 0 such that \\4>(k, xo)\\ < e for all /: ^ 0 whenever ||xo|| < 8. 
If the equilibrium x = 0 of (10.3) is not stable, it is said to be unstable. We say 
that the equilibrium x = 0 of (10.3) is asymptotically stable if (i) it is stable, and 
(ii) there exists an 17 > 0 such that if ||xo|| < 17, then lim^̂ ôo ||</)(̂ , xo)|| = 0. If the 
equilibrium x = 0 satisfies property (ii), it is said to be attractive, and we call the 
set of all XQ G R^ for which x = 0 is attractive the domain of attraction of this 
equilibrium. If x = 0 is asymptotically stable and if its domain of attraction is all of 
R^, then it is said to be asymptotically stable in the large or globally asymptotically 
stable. Finally, we say that a solution of (10.3) through XQ is bounded provided there 
is a constant M such that ||(/)(/:, xo)|| ^ M for all ^ > 0. 

In establishing results for the various stability concepts enumerated above, we 
will make use of auxiliary functions v G C{R^, R), called Lyapunov functions. We 
define the first forward difference ofv along the solutions (9/(10.3) as 

Dv{x) = v(g(x)) - v(x). (10.6) 

To see that this definition makes sense, note that along any solution (/)(^) of (10.3) 
we have 

v[ct,(k + 1)] - v[cl>(k)] = v[g{cl>(k))] - vmk)] ^^Q ̂ ^ 

= Dvmk)] 

for all fc > 0. Note that in evaluating the first forward difference of v along the 
solutions of (10.3), we need not know explicitly the solution (/>(/:) of (10.3). 

We will require several characterizations of the Lyapunov functions. We say that 
a function v G C(R^, R) is positive definite if v(0) = 0 and if v(x) > 0 for all x G 
B{j]) - {0} for some ry > 0. [Recall that B{j]) = {x G /?" : ||x|| < ry}.] The function 
V is negative definite if - v is positive definite. A function v G C{R^, R) is said to be 
positive semidefinite if v(0) = 0 and if v(x) > 0 for all x G ^(17), and it is said to be 
negative semidefinite if - v is positive semidefinite. A positive definite function v is 
said to be radially unbounded if v(x) > 0 for all x G 7?" - {0} and if limiiĵ iuoo v(x) = 
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B. Lyapunov Stability of an Equilibrium 

In establishing various Lyapunov stability results of the equilibrium x = 0 of system 
(10.3), we will find it useful to employ a preliminary result that is important in its 
own right. To present this result, we require some additional concepts given in the 
following. 

We say that a subset A C 7̂ " is positively invariant [with respect to system 
(10.3)] if g{A) C A, where g{A) = {y E. R"" \ y = g{x) for some x G A}. Thus, if 
X EL A, then g{x) G A. 

EXAMPLE 10.3. It is clear that any set consisting of an equilibrium solution of (10.3) 
is positively invariant. Also, the set {^{k, XQ), k E Z^} [where 4> is the solution of (10.3), 
with (/)(/co) = ^o], which is called i\\Qpositive orbit of XQ for (10.3), is positively invari
ant. In particular, for arbitrary initial conditions x(0)^ == (^i(O), ^2(0)), the system given 
in Example 10.2 has iho periodic solution with period 4 and positive orbit given by the 
set 

A = {(xi(0), X2(0))̂ , (X2(0), -xmV, (-xm, -^2(0))^, (-X2(0), xmYl 

and in general we have (f)(k, XQ) = (t)(k -\- 3, xo\ k = 0, 1, 2, 3, The set A is clearly 
positively invariant. • 

Next, consider a specific solution (/)(/:, XQ) for system (10.3). A point y E R"^ is 
called Si positive limit point of 4>{k, XQ) if there is a subsequence {hi} of the sequence 
{k}, /: > 0, such that (f){ki, XQ) -^ y. The set of all positive limit points of (f){k, XQ) is 
called the positive limit set (o(xo) of (/)(/:, XQ), or simply the co-limit set. 

Before stating and proving our first result, which is a preliminary result, we 
recall that a sequence {x^} C R^ is said to approach a set A C R^, if d(x^, A) = 
inf {||x̂  - y\\ : y E A} approaches zero as fc ̂  oo [d(x, y) denotes the distance func
tion defined in Subsection I.IOC]. 

THEOREM 10.1. If the solution (t)(k, XQ) of (10.3) is bounded for all k E Z+, then 
(o(xo) is a nonempty, compact, positively invariant set. Furthermore, (t)(k, XQ) -^ w(jco) 
as /: ^ 00. 

Proof, The complement of (O(XQ) is open, and therefore, the set (w(xo) is closed. Since 
4>(k, XQ) is bounded, ||(̂ (/:, xo)|| ^ M for some fixed M. Therefore, (o(xo) is bounded 
and IIJII < M for all y E (O(XQ). Thus, (JO(XO) is compact. Since (f>(k, XQ) is bounded, the 
Bolzano-Weierstrass Theorem guarantees the existence of at least one limit point, and 
therefore, (x)(xo) is not empty (refer to Subsection 1.5A). 

Next, let y E co(xo) so that (/)(A:/, XQ) -^ y as / ^ OO. Since the function g in (10.3) 
is continuous, it follows that (l)(ki + I, XQ) = g{4^{ki, XQ)) -^ g{y) or g{y) E O){XQ). The 
set O){XQ) is positively invariant [with respect to system (10.3)]. Also, d{(j){k, XQ), CL>) 
is bounded since both (j){k, XQ) and w(xo) are bounded. To set up a contradiction, 
assume that d{(f){k, XQ), O){XQ)) does not converge to zero. Then there is a subse
quence [ki] such that (/)(/:/, XQ) -> y and d((p(ki, XQ), (î (xo)) -> a > 0. But then y E 
ct)(xo), d{(j){ku XQ), (I>{XQ)) < d{(f)(ku XQ), y) -^ 0, and therefore, d(<p(ki, XQ), CO(XO)) -^ 
0, which is a contradiction. • 

We are now in a position to state and prove several Lyapunov stability results 
for system (10.3). 
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positive definite function v such that Dv is negative semidefinite. CHAPTER 6-

Proof, We take r/ > 0 so small that v(x) > 0 for all x E 5(7]) - {0} and Dv(x) < 0 for all Stability 
X E 5(77) [recall that Birf) = {x ^ R^ \ ||x|| < r/}]. Let e > 0 be given. There is no loss 
of generality in choosing 0 < e < 17. Let m = min {v(x) : \\x\\ = e}. Then m is positive 
since we are taking the minimum of a positive continuous function over a compact set. 
Let G = {x B R^ : v(x) < mil}, which may consist of several disjoint connected sets 
called connected components of G. Let Go denote the connected component of G that 
contains the origin x = 0. Then both G and Go are open sets. Now if XQ E GO, then 
DV{XQ) < 0 and so v(^(xo)) ^ V{XQ) < m/2, and therefore, g^xo) E G. Since XQ and 
the origin x = 0 are both in the same component of G, then so are ^(0) = 0 and g(xo). 
Therefore, Go is an open positively invariant set containing x = 0 and contained in B{e). 
Since v is continuous there is a 5 > 0 such that B{b) C Go. Therefore, if xo E B{d), 
then Xo E Go and ^(xo) E Go C B{e). This shows that the equilibrium x = 0 of system 
(10.3) is stable. • 

EXAMPLE 10.4. For the system given in Example 10.2 we choose the function 
v(xi, X2) = x\ + x\. Then 

Dv(xi, X2) = v(g(xi, X2)) - v(xi, X2) 

= (xif + (-xif - xj- xl = 0. 

Therefore, by Theorem 10.2 the equiUbrium x = 0 of the system is stable. • 

By using a similar argument as in the proof of Theorem 10.2 we can prove the 
boundedness result given below. We will not present the details of the proof. 

THEOREMIO.3. Ifvis radially unbounded and Dv(x) < 0 on the set where ||x|| > M 
(M is some constant), then all solutions of system (10.3) are bounded. • 

EXAMPLE 10.5. For the system given in Example 10.2 we choose the radially un
bounded function v(xi, X2) = x̂  + X2. As shown in Example 10.4, Dv{x\, X2) ^ 0 for 
all X E /?^. It follows from Theorem 10.3 that all the solutions of the system are bounded. 

• 

By definition, the equilibrium x = 0 of system (10.3) is asymptotically stable 
if it is stable and attractive. Theorem 10.2 provides a set of sufficient conditions 
for the stability of the trivial solution of system (10.3). In the next result, known as 
LaSalle 's Theorem or the Invariance Principle, we present a method that enables us 
to determine the attractivity of a set. If this set consists only of the equilibrium x: = 0, 
this result yields a method of determining the attractivity of the trivial solution x = Q 
of system (10.3). 

Let V E C{R'', R) and let v(x) - c. In the following, we let v~^{c) = {x B R"" : 
v(x) = c}. 

THEOREM 10.4. Let V E C(/?", R) and let G C R"". Assume that (i) Dv(x) < 0 for all 
X G G, and (ii) the solution 4>(k, XQ) of (10.3) is in G for all A: > 0 and is bounded for 
all ^ > 0. Then there is a number c such that (/)( ,̂ xo) ^ M Pi v~^(c), where M is the 
largest positively invariant set contained in the set E = {x G R'^ : Dv(x) = 0} D G. 

Proof. Since (f)(k, XQ) is bounded and in G, it follows that co(xo) 7̂  0 , CL)(XO) C G, 
and (/)(/:, xo) tends to a>(xo). Now v{(j){k, XQ)) is nonincreasing with increasing k and 
bounded from below. Therefore, v(4>(k, XQ)) -> c. If y G CL)(XO), there is subsequence 
{ki} of the sequence {k} such that (/>(/:/, xo) -^ y and therefore v{(f)(ki, xo)) -> v{y) or 
v(y) = c. Therefore, V{(X){XQ)) = c [i.e., v(y) = c for all y E a;(xo)] or ^(xo) C v~^(c). 
Since v(6o(xo)) = c and a;(xo) is positively invariant, it follows that Dv(o;(xo)) = 0 [i.e.. 
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Linear Systems G fl v^^c). Since co(xo) is positively invariant, it now follows that a)(xo) CM. • 

The next results, which are direct consequences of Theorems 10.2, 10.3, and 
10.4, were originally established by Lyapunov. 

COROLLARY 10.1. The equilibrium x = 0 of (10.3) is asymptotically stable if there 
exists a positive definite function v such that Dv is negative definite. 

Proof. Since Dv is negative definite and v is positive definite, it follows from Theorem 
10.2 that the equilibrium x = 0 is stable. From the proof of that theorem there is an 
arbitrarily small neighborhood Go of the origin that is positively invariant. We can make 
Go so small that v(x) > 0 and v(x) < 0 for all x G Go - {0}. So, given any xo G Go it 
follows from the invariance principle (Theorem 10.4) that (pik, XQ) tends to the largest 
invariant set in Go H {Dv(x) = 0} = {x = 0} since Dv is negative definite. Therefore, 
the equilibrium x = 0 is asymptotically stable. • 

COROLLARY 10.2. The equilibrium x == 0 of (10.3) is asymptotically stable in the 
large (or globally asymptotically stable) if there exists a positive definite function v that 
is radially unbounded and if Dv is negative definite on R"", i.e., Z)v(O) = 0 and Z)v(x) < 0 
for all X 7̂  0. • 

Proof, From Theorem 10.3 all solutions of system (10.3) are bounded. The proof now 
follows by modifying the proof of Corollary 10.1 in the obvious way. • 

EXAMPLE 10.6. Consider the system described by the equations 

ax2(k) 
xi(k+ 1) = 

X2(k + 1) = 

1 + xi(y^)2 

bxi(k) 

1 + X2(k)^' 

where it is assumed that a^ < I and b^ < I. We choose a Lyapunov function v{x\, X2) = 
x\ + x\ that is positive definite and radially unbounded. Along the solutions of this 
system we compute the first forward difference as 

^ v t e , . . ) = ^ ^ + ̂ ^ - ( x ? + 4) 

(1 + x\y 2\2 1 Xo + 
b^ 1 

(1 + 4> 2\2 

< {a^ -\)xl + (b^ - l)x?. 

Since by assumption a^ < I and Z?̂  < 1, it follows that Dv(xi, X2) < 0 for all x^ = 
(xi, X2) 7̂  0 and Dv(xi, X2) = 0 when x = 0. It follows from Theorem 10.3 that all so
lutions of the system are bounded, and from Corollary 10.2 it follows that the equilibrium 
X = 0 of the system is globally asymptotically stable. • 

EXAMPLE 10.7. We reconsider the system given in Example 10.6 under the assump
tion that a^ ^ I and Z?̂  < 1, but a^ + b'^ 7^ 2. Without loss of generality we consider the 
case a^ < 1 and b^ = 1. As in Example 10.6, we again choose v(xi, X2) = x̂  + x^, and 
from the computations in that example we see that 

Dv(xu X2) < (a^ - \)x\ + Q? - \)x\ 

= {a^ - \)x\ < 0, (xi, X2)̂  G R^. 

It still follows from Theorem 10.3 that all solutions of the system are bounded. 



Since Dv(xi, X2) is not negative definite, but negative semidefinite, we cannot apply 495 
Corollary 10.2 to establish the asymptotic stability of the equilibrium x = 0. So let us try CHAPTER 6* 
to use Theorems 10.2 and 10.4 to accomplish this. From the former we conclude that the stabilitv 
equilibrium is stable. Using the notation of Theorem 10.4 we note that E = {(xi, 0)^}, 
which is the xi-axis. Now g((xi, OY) = (0, bxiY = (0, xi)^ [where g(') is defined in 
(10.3)], and therefore, the only invariant subset of (E) is the set consisting of the origin. 
All conditions of Theorem 10.4 are satisfied (with G = R^), and we conclude that the 
equilibrium x = 0 of the system is globally asymptotically stable. • 

THEOREM10.5. Let Dv be positive definite and assume that in every neighborhood of 
the origin there is x such that v(x) > 0. Then the equilibrium x = 0 of system (10.3) is 
unstable. [Alternatively, let Dv be negative definite and assume that in every neighbor
hood of the origin there is x such that v(x) < 0. Then the equilibrium x = 0 of system 
(10.3) is unstable.] 

Proof, To set up a contradiction, assume that x = 0 is stable. Choose e > 0 so small so 
that Dv{x) > 0 for all x G B{e) - {0}, and choose 6 > 0 so small so that if XQ G B(8) 
then 4>{k, XQ) G B{e) for all ^ > 0. By hypothesis there is a point XQ G B{3) such that 
v(xo) > 0- Since (j){k, XQ) is bounded and remains in 5(e), the solution (f){k, XQ) will 
tend to its Hmit set {x G /?" : Dv{x) = 0} Pi B{e) = {0}. Since (/)(/:, XQ) -^ 0, we have 
v((l)(k XQ)) -» v(0) = 0. But Dv((l)(k, xo)) > 0 and therefore v((/)(̂ , XQ)) > 0, and thus 
v(4>(k, Xo)) ^ v(cl)(k-l, Xo)) > ••• > v(xo) > 0. We have thus arrived at a contradiction 
that proves the theorem. • 

EXAMPLE 10.8. The system described by the equation 

x(k +1) = 2x(k) 

has an equilibrium x = 0. The function v(x) = x̂  is positive definite, and along the 
solutions of this system we have Z)v(x) = 4x^-x^ = 3x^, which is also positive definite. 
The conditions of Theorem 10.5 are satisfied and the equilibrium x = 0 of the system is 
unstable. • 

C. Linear Systems 

In proving some of the results of this section, we require a result for system (10.2) that 
is analogous to Theorem 3.1 of Chapter 2. As in the proof of that theorem, we note 
that the linear combination of solutions of system (10.2) is also a solution of system 
(10.2), and hence, the set of solutions {4>: Z^ XR^ -^ R^} constitutes a vector space 
(over F = Ror F = C). The dimension of this vector space is n. To show this, we 
choose a set of linearly independent vectors XQ, ..., XQ in the n-dimensional x-space 
(R^ or C^) and we show, in an identical manner as in the proof of Theorem 3.1 of 
Chapter 2, that the set of solutions (/)(fc, XQ), i = 1 , . . . , n, is linearly independent and 
spans the set of solutions of system (10.2). (We ask the reader in the Exercise section 
to provide the details of the proof of the above assertions.) This yields the following 
result. 

THEOREM 10.6. The set of solutions of system (10.2) over the time interval Z+ forms 
an ^-dimensional vector space. • 

Incidentally, if in particular we choose (/)( ,̂ e^), i = I,.. .,n, where e\ i = 
1, . . . , n, denotes the natural basis for R^, and if we let ^{k, yto = 0) = 0(A;) = 
[ct){k, e^),..., (pik, e")], then it is easily verified that the n X n matrix 0(A:) satisfies 
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the matrix equation 

ci>(k + 1) - A^(k\ c|)(0) = / 

and that (5(fc) = A^,k^ 0 [i.e., 3>(/:) is the state transition matrix for system (10.2)]. 

THEOREM 10.7. The equiHbrium x = 0 of system (10.2) is stable if and only if the 
solutions of (10.2) are bounded. 

Proof. Assume that the equilibrium x = 0 of (10.2) is stable. Then for 6 = 1 there is a 
8 >0 such that \\cl)(k, xo)\\ < 1 for all ^ > 0 and all ||jco|| < 6. In this case 

U(k, xo)\\ = WA'xoW = 
A^XQS 

m\\ 
M 

8 
< 8 

for all xo 7̂  0 and all k > 0. Using the definition of matrix norm [refer to (10.17) of 
Chapter 1] it follows that ||A^|| < 8~\ A: > 0. We have proved that if the equilibrium 
X = 0 of (10.2) is stable, then the solutions of (10.2) are bounded. 

Conversely, suppose that all solutions (j6(/:, XQ) = A'^XQ are bounded. Let{^\ . . . , ^"} 
denote the natural basis for ^-space and let \\(p(k, e^)\\ < jBj for all k > 0. Then for any 
vector XQ = S"=i cty^^ we have that 

ll^(^,xo)|| ^^aj(f)(k, e^) 
7 = 1 

c\\m 

Xk-|i8;^(max^,.)Xl^il 
7 = 1 ^ 7 = 1 

0, 

for some constant c. For given 6 > 0, we choose 8 = elc. Then, if ||xo|| < 8, we have 
\^{k, xo)|| < c||xo|| < 6 for all /: > 0. We have proved that if the solutions of (10.2) are 
bounded, then the equilibrium x = 0 of (10.2) is stable. • 

THEOREM 10.8. The following statements are equivalent: 
(i) The equilibrium x = 0 of (10.2) is asymptotically stable. 

(ii) The equilibrium x = 0 of (10.2) is asymptotically stable in the large, 
(iii) lim^^oo | |Ai = 0. 

Froof Assume that statement (i) is true. Then there is anry > 0 such that when ||xo|| ^ 
17, then ^{k, XQ) -> 0 as /: -^ 00. But then we have for any XQ ^ 0 that 

(^{k, xo) = A^xo 
17x0 

Ikoll 
Ikoll 

0 as /: ^ 00. 

It follows that statement (ii) is true. 
Next, assume that statement (ii) is true. Then for any e > 0 there must exist a 

K = K{e) such that for ?^k> K we have that \^{k, xo)|| = ||A^xo|| < 6. To see this, 
let {̂ ^ . . . , ^"} be the natural basis for R^. Thus, for a fixed constant c > 0, if XQ = 
(a\,..., anf andif ||xo|| ^ l,thenxo 
is a Kj - Kj{e) such that \A^e^ 
j = 1 , . . . , n}. For ||xo| 

2:;.i«y^^'and2:;=iK 
<6/cfory^> TTy. Define TT 

< 1 and k > K we have that 

ji -^ c. For eachy there 

K(€) = max {Kj(e) : 

l l ^ ' ^ o l l = 
7 = 1 7 = 1 

By the definition of matrix norm [see (10.17) of Chapter 1], this means that ||A^|| < e for 
k> K. Therefore, statement (iii) is true. 

Finally, assume that statement (iii) is true. Then ||A^|| is bounded for all /c > 0. By 
Theorem 10.7, the equilibrium x = 0 is stable. To prove asymptotic stability, fix e > 0. 



If llxoll < 77 = 1, then \\(t)(k, xo)\\ < \\A^\\ \\xo\\ ^ 0 as ŷ  ^ 00. Therefore, statement (i) is 497 
true. This completes the proof. • 

To arrive at the next result, we make reference to the results of Subsection 2.7E. 
Specifically, by inspecting the expressions for the modes of system (10.2) given in 
(7.50) and (7.51) of Chapter 2, or by utilizing the Jordan canonical form of A [refer 
to (7.54) and (7.55) of Chapter 2], the following result is evident. 

THEOREM 10.9. (i) The equilibrium x = 0 of system (10.2) is asymptotically stable 
if and only if all eigenvalues of A are within the unit circle of the complex plane (i.e., if 
Ai , . . . , A„ denote the eigenvalues of A, then \Xj\ < I, j = 1 , . . . , ^). In this case we say 
that the matrix A is Schur stable, or simply, the matrix A is stable. 

(ii) The equilibrium x = 0 of system (10.2) is stable if and only if \Xj\ < 1, j = 
1,.. .,n, and for each eigenvalue with |Aj| = 1 having multiplicity rij > 1, it is true that 

}^^S^^^'-'^^"'^''-^^"^\='^ h...,nj- 1. 

(iii) The equilibrium x = 0 of system (10.2) is unstable if and only if the conditions 
in (ii) above are not true. • 

Alternatively, it is evident that the equilibrium x = 0 of system (10.2) is stable 
if and only if all eigenvalues of A are within or on the unit circle of the complex 
plane, and every eigenvalue that is on the unit circle has an associated Jordan block 
of order 1. 

EXAMPLE 10.9. (i) For the system in Example 10.2 we have 

0 11 
A -

- 1 0 

The eigenvalues of A are Ai, A2 = ± v - 1 - According to Theorem 10.9, the equilibrium 
x = 0 of the system is stable, and according to Theorem 10.7 the matrix A^ is bounded 
for all k^O. 

(ii) For system (10.2) let 

0 
-1 

The eigenvalues of A are Ai, A2 = ±1/V2. According to Theorem 10.9, the equilib
rium X = 0 of the system is asymptotically stable, and according to Theorem 10.8, 
lim^^^ooA^ = 0. 

(iii) For system (10.2) let 

A 

The eigenvalues of A are Ai, A2 = ± V3/2. According to Theorem 10.9, the equilibrium 
X = 0 of the system is unstable, and according to Theorem 10.7, the matrix A^ is not 
bounded with increasing k. 

(iv) For system (10.2) let 

A = 
1 1 
0 1 

The matrix A is a Jordan block of order 2 for the eigenvalue A = 1. Accordingly, the 
equilibrium x = 0 of the system is unstable (refer to the remark following Theorem 
10.9) and the matrix A^ is unbounded with increasing k. • 

CHAPTER 6: 

Stability 
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D. The Schur-Cohn Criterion 

In this section we present a method, called the Schur-Cohn criterion, that enables us 
to determine whether or not the roots of a polynomial with real coefficients given by 

+ • • • + ^0, an > 0, (10.8) 

lie inside of the unit circle in the complex plane by examining the polynomial coef
ficients, rather than solving for the roots. This method provides us with an efficient 
means of studying the stability of the equilibrium x = 0 of system (10.2) by apply
ing it to the characteristic polynomial of the matrix A. The Schur-Cohn criterion is 
in the same spirit [for discrete-time systems (10.2)] as the Routh-Hurwitz criterion 
[for continuous-time systems (L)]. In presenting this criterion, we will require the 
concept of inners of a square matrix A, defined as the matrix itself, and all the ma
trices obtained by omitting successively the first and last rows and the first and last 
columns. In the following, we depict the inners for a matrix A E R^^^ and a matrix 
A G i?6x^: 

A = 

A matrix is said to be positive innerwise if the determinants of all of its inners 
are positive. 

THEOREM 10.10. (SCHUR-COHN CRITERION) A neccssary and sufficient condi
tion that the polynomial (10.8) with real coefficients has all its roots inside the unit circle 
in the complex plane is that 

(i) p(l) > 0 and ( - 1)V(-1) > 0, 
(ii) the following (n — I) X (n — 1) matrices are both positive innerwise: 

an 

«21 

^31 

(241 

Cl5l 

an 

1 Cl22 

1 ^32 

1 ^42 

«52 

cin 

«23 

1 (233 

(243 

«53 

<2i4 

<324 

(234 

CI44 

^54 

^25 

<335 

(245 

ass. 

(211 

<321 

(231 

(241 

asi 

(261 

an 

ail 

<332 

^42 

asi 
L 

(262 

ai3 

^23 

«33 

<^43 

<353 

^63 

ai4 

(224 

^34 

(244 

asA 

(264 

(215 

^25 

^35 

(245 

ciss 

aes 

(216 

^26 

<^36 

(246 

(256 

^66 

Cln-l 

as 
(32 

0 

as Cln~\ 

0 

0 
Cln. 

0 

0 
(30 a i 

0 

(3o 

(31 

^ n - 1 

(3o 

(31 

(3^n-l 

(10.9) 

We will not present a proof of Theorem 10.10. The interested reader should 
consult Jury [91 cited in the reference section for a proof of this result. 

EXAMPLE 10.10. For the 2 X 2 matrix 

A = 

the characteristic polynomial is given by 

(311 

CI2I 

an 
ail. 

p(\) = A^ + (3iA + (3o. 



We have p(l) = I + ai + ao, p(-l) = 1 - ai + ao, and Af = 1 ± (̂ o > 0. Therefore, 
the roots of p(X) he within the unit circle of the complex plane if and only if |ao| < 1 
and |ai| < 1 + ao. • 

EXAMPLElO.il. For the 3 X 3 matrix 

an 
dii 

.asi 

an 
«22 

^32 

a i 3 

<223 

<^33 

the characteristic polynomial is given by 

p(X) = Â  + (22 Â  + ai\ + ao. 

We have p(l) = 1 + 2̂ + ai + <3o, -p(-l) = I - a2 + ai ao, and 

det{^^) = 1 
a2 ± ao 1 

-ao 
±ai 

> 0 . 

Therefore, the roots of p(X) lie within the unit circle of the complex plane if and only if 
Wo + a2\ < I + ai and \ai - aoa2\ < I - al. • 
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E. The Matrix Lyapunov Equation 

In this subsection we apply the Lyapunov theorems of Subsection B to obtain another 
characterization of stable matrices. This gives rise to the Lyapunov matrix equation. 

Returning to system (10.2) we choose as a Lyapunov function 

v(x) = x^Bx, B = B^, (10.10) 

and we evaluate the first forward difference of v along the solutions of (10.2) as 

v{x{k + 1)) - v{x{k)) = x(k + lfBx(k + 1) - x(kfBx(k) 

= x{kfA^BAx{k) - x{kfBx{k) 

= x{kf{A^BA - B)x(k\ 

and therefore, 

where 

Dv(x) = x^{A^BA - B)x = x^Cx, 

A^BA -B = Q C^ = C. (10.11) 

Invocation of Theorem 10.2, Corollary 10.2, and Theorem 10.5, readily leads to the 
following results. 

THEOREM 10.11. (i) The equilibrium x = 0 of system (10.2) is stable if there exists 
a real, symmetric, and positive definite matrix B such that the matrix C given in (10.11) 
is negative semidefinite. 

(ii) The equilibrium x = 0 of system (10.2) is asymptotically stable in the large 
if there exists a real, symmetric, and positive definite matrix B such that the matrix C 
given in (10.11) is negative definite. 

(iii) The equilibrium ;\f = 0 of system (10.2) is unstable if there exists a real, sym
metric matrix B that is either negative definite or indefinite such that the matrix C given 
in (10.11) is negative definite. • 

In applying Theorem 10.11, we start by choosing (guessing) a matrix B having 
certain desired properties and we then solve for the matrix C, using equation (10.11). 
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we need to choose another matrix B. This approach is not very satisfactory, and in the 
following we will derive results that will allow us (as in the case of continuous-time 
systems) to construct Lyapunov functions of the form v{x) = x^Bx in a system
atic manner. In doing so, we first choose a matrix C in (10.11) that is either nega
tive definite or positive definite, and then we solve (10.11) for 5. Conclusions are 
then made by applying Theorem 10.11. In applying this construction procedure, we 
need to know conditions under which (10.11) possesses a (unique) solution B for 
any definite (i.e., positive or negative definite) matrix C. We will address this issue 
next. 

We first show that if A is stable, i.e., if all eigenvalues of matrix A [in system 
(10.2)] are inside the unit circle of the complex plane, then we can compute B in 
(10.11) explicitly. To show this, we assume that in (10.11) C is a given matrix and 
that A is stable. Then 

(A^)^+i5A^+i - {A^fBA^ = (A^fCA^ 

and summing from ^ = 0 to / yields 
/ 

A^BA -B + {A^fBA^ - A^BA + B = ^{A^fCA^ 
k = 0 

I 

or (A^y^^BA^^^ -B== ^(A^)^CA^. 
k = 0 

Letting / ^ oô  we obtain 

B = -^(A^)^CA\ (10.12) 
k = 0 

It is easy to verify that (10.12) is a solution of (10.11). We have 

- A ^ ^(A^)^CA^ 
k = 0 

A + ^(A^)^CA^ - C 
k = 0 

or -A^CA + C - (A^fCA^ + A^CA - (A^fCA^ + (A^fCA^ = C. 

Therefore (10.12) is a solution of (10.11). Furthermore, if C is negative definite, then 
B is positive definite. 

Combining the above with Theorem lO.ll(ii) we have the following result: 

THEOREM 10.12. If there is a positive definite and symmetric matrix B and a neg
ative definite and symmetric matrix C satisfying (10.11), then the matrix A is stable. 
Conversely, if A is stable, then, given any symmetric matrix C, Eq. (10.11) has a unique 
solution, and if C is negative definite then B is positive definite. • 

Next, we determine conditions under which the system of equations (10.11) has 
a (unique) solution B = B^ E R^^^ for a given matrix C = C^ E: R^^^, To accom
plish this, we consider the more general equation 

A1XA2-X = C, (10.13) 

where A\ E R"^^^^ A^ G R""^"", and X and C are m X n matrices. 
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Proof, We need to show that the condition on Ai and A2 is equivalent to the condition 
that A1XA2 = X implies X ^ 0. Once we have proved that A1XA2 = X has the unique 
solution X = 0, then it can be shown that (10.13) has a unique solution for every C, 
since (10.13) is a linear equation. 

Assume first that the condition on Ai and A2 is satisfied. Now A1XA2 = X implies 
that A\~^XA\~^ = X and 

A{X = A\XA\~^ for ŷ  > 7 > 0. 

Now for a polynomial of degree k, 
k 

7 = 0 

we define the polynomial of degree k, 

/(A) = X î̂ '"'' = ̂ '/̂ fT\ 
7 = 0 

from which it follows that 

p{A,)X = A\Xp\A2l 

Now let (/)/(A) be the characteristic polynomial of A/, / = 1, 2. Since (f)\ (A) and (/>2(A) are 
relatively prime, there are polynomials p{\) and (̂A) such that 

p{\)cj>,{K) + q{k)cf>l{K) = 1. 

Now define (j>{X) = q(X)(f)l(X) and note that (/)*(A) = *̂(A)(/)2(A). It follows that 
(/)*(A2) = 0 and (p(Ai) = I. From this it follows that A1XA2 = X impUes X = 0. 

To prove the converse, we assume that A is an eigenvalue of Ai and A~̂  is an 
eigenvalue of A2 (and hence, is also an eigenvalue of A^). Let Aix^ = Xx^ and 
A^x^ = X'^x^, x^ ¥^ 0, and x^ 7̂  0. Define X = {x\x\ xlx\ . . . , JC^X )̂. Then X 7̂  0 
and A1XA2 = X. • 

To construct v{x) by using Lemma 10.1, we must still check the definiteness of 
B. To accomplish this, we utilize Theorem 10.11. 

1. If all eigenvalues of A [for system (10.2)] are inside the unit circle of the complex 
plane, then no reciprocal of an eigenvalue of A is an eigenvalue, and Lemma 10.1 
gives another way of showing that Eq. (10.11) has a unique solution B for each 
C if A is stable. If C is negative definite, then B is positive definite. This can be 
shown as was done for the case of linear ordinary differential equations. 

2. If at least one of the eigenvalues of A is outside the unit circle of the complex 
plane and if no reciprocal of an eigenvalue of A is an eigenvalue, and if C in 
(10.11) is negative definite, then B cannot be positive definite; otherwise we could 
apply Theorem lO.ll(iii) to come up with a contradiction. If in particular, all 
eigenvalues of A are outside the unit circle of the complex plane, then B must be 
negative definite. [In this case the equilibrium of (10.2) is completely unstable.} 

Now suppose that at least one of the eigenvalues of A is outside of the unit 
circle in the complex plane and suppose that the conditions of Lemma 10.1 are vio
lated (i.e., an eigenvalue of A is the reciprocal of an eigenvalue of A). Then we cannot 
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construct v(x) given in (10.10) in the manner described above (i.e., we cannot de
termine B in the manner described above). To overcome this difficulty, we form in 
this case the matrix 

Ao = (1 + lir"'A, (10.14) 

and we choose |j8| arbitrarily small and in such a manner so that AQ has no eigen
values on the unit circle and has the same number of eigenvalues outside of the unit 
circle of the complex plane as matrix A. Then AQ satisfies the conditions of Lemma 
10.1. For every given C = C^ ^ R^^^ we can now solve the equation 

AlBAo B = C (10.15) 

to obtain a unique matrix B. We use this matrix to form the Lyapunov function 
(10.10). Now since A = (1 + /3)̂ ^^Ao, the first forward difference Dv(x) of the Lya
punov function v(x) = x^Bx along the solutions of (10.2) yields 

Dv{x) = X'^IAIBAQ - B + [5AIBAO]X 

= x^{C + I3AIBAO)X = x^Cx, (10.16) 

where C is given in (10.15). It now follows that if C is negative definite (positive 
definite), then we can choose |jS| sufficiently small so that C will also be negative 
definite (positive definite). 

Summarizing the above discussion, we have proved the following result. 

THEOREM 10.13. If all the eigenvalues of the matrix A are within the unit circle of 
the complex plane, or if at least one eigenvalue is outside the unit circle of the complex 
plane, then there exists a Lyapunov function of the form v{x) = x^Bx, B = B^, whose 
first forward difference along the solutions of system (10.2) is definite (i.e., it is either 
negative definite or positive definite). • 

We conclude this subsection with some specific examples. 

EXAMPLE 10.12. (i) For system (10.2) let 

0 n 
A = •1 0 

Let B = I, which is positive definite. From (10.11) we obtain 

C = A^A - I ro 
1 

-11 

o| 
r 0 1 
[-1 0 

1 0 
0 1 

0 0 
0 0 

It follows from Theorem lO.ll(i) that the equilibrium x = 0 of this system is stable. 
This is the same conclusion that was made in Example 10.9. 

(ii) For system (10.2) let 

A = 

Choose 

which is positive definite. From (10.11) we obtain 

A^BA - B = 0 
1 

L 2 

-11 
oj 

r̂  01 
3 ^ 0 ^ L^ 3 J 

r 0 
[-1 

n 
2 

oJ 
r̂  0" 

3 ^ 
0 ^ 

L^ 3 -

-1 
[ 0 

0" 
- i j 



which is negative definite. It follows from Theorem 10.1 l(ii) that the equilibrium x = 0 
of this system is asymptotically stable in the large. This is the same conclusion that was 
made in Example 10.9(ii). 

(iii) For system (10.2) let 

Choose 

A = 

C = 

- 3 
0 - i 

0 

-1 0 
0 - 1 

which is negative definite. From (10.11) we obtain 

C = A^BA -B = 

\bn m22-bn) 
[ \bn {\bn - b22). 

which yields 

0 
1 

L 2 

- 1 
0 

-3^ 
0̂  

0] 
- i j 

pll 
[b\2 

' 

bn'] 
Z722J 

[ 0 
L-3 

n 
2 
0. 

bn 
bu 

bn 
b22. 

B = 
-8 0 
0 - 1 

which is also negative definite. It follows from Theorem 10.11 (iii) that the equilibrium 
X = 0 of this system is unstable. This conclusion is consistent with the conclusion made 
in Example 10.9(iii). 

(iv) For system (10.2) let 

I 1 
0 3 

The eigenvalues of A are Ai = | and A2 = 3. According to Lemma 10.1, for a given C, 
Eq. (10.13) does not have a unique solution in this case since Ai = I/A2. For purposes 
of illustration we choose C = - / . Then 

1̂ 11 
^bn 

-I = A'^BA - B 

1̂ 11 
bn + €>bi2 + 8^22. 

.1 3j 
[^11 bn] 

[bl2 ^22] 

- 1 0 
0 -- 1 . 

H 1^ 
[0 3. = bn 

bn 
bn 
b22. 

which shows that for C = - / , Eq. (10.13) does not have any solution (for B) at all. 
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In this subsection we determine conditions under which the stability properties of 
the equilibrium w = 0 of the linear system 

w(k+ 1) = Aw(k) (10.17) 

determine the stability properties of the equilibrium x = 0 of the nonlinear system 

x(k + 1) = Ax(k) + f(x(k)) (10.18) 

under the assumption that f(x) = o(\\x\\) as ||x|| -^ 0 (i.e., given e > 0 there exists 
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THEOREM 10.14. Assumethat/ G C(R'', R"") and thai f(x) is o(\\x\\)sis\\x\\ -» 0. (i)If 
A is stable (i.e., all the eigenvalues of A are within the unit circle of the complex plane), 
then the equilibrium x = 0 of system (10.18) is asymptotically stable, (ii) If at least 
one eigenvalue of A is outside the unit circle of the complex plane, then the equilibrium 
X = 0 of system (10.18) is unstable. 

Proof, (i) Assume that A is stable. Then for any negative definite matrix C, the equation 

A^BA -B = C 

has a unique positive definite solution B. Let 

v(x) — x^Bx. 

Along the solutions of (10.18) we compute the first forward difference Dv(x) as 

Dv(x) = x^Cx + 2x^A^Bf(x) + v(/(x)). 

This allows us to estimate [since f(x) is 6>(||x||) as ||x|| -^ 0] 

Dv(x) < AM(C) |WP + 2||x|| ||A|| \\B\\ \\f(x)\\ + v(/(x)) 

< AM(C)||X|P + 2||A|| \\B\\e\\xf + AM(5)6^||X|P (10.19) 

= [AM(C) + 2||A|| \\B\\e + XM(B)e^\xf = y||x|p 

for all X E B(8) and for some 6 > 0, where AM(C) < 0, XM(B) > 0 denote the largest 
eigenvalues of C and B, respectively. We can make e as small as desired by choosing 
8 sufficiently small, resulting in y < 0. Therefore, Dv(x) is negative definite and the 
equilibrium x = 0 of system (10.18) is asymptotically stable. 

(ii) Assume that A has at least one eigenvalue outside the unit circle of the complex 
plane. Following the procedure given in proving Theorem 10.13 [refer to Eqs. (10.14) to 
(10.16)] we construct a Lyapunov function v(x) = x^Bx whose first forward difference 
along the solutions of (10.17) is given by Dv(x) = x^Cx [refer to (10.16)]. We choose 
C to be negative definite. Then B is indefinite, and in every neighborhood of the origin 
there are x G R^ such that v(x) = x^Bx < 0. 

Next, we evaluate the first forward difference of v along the solutions of (10.18) to 
obtain [identically as in (10.19)], 

Dv(x) < [AM(C) + 2||A|| \\B\\€ + AM(B)6^]||X|P = y\\xf 

for all X G B(8) for some 6 > 0, where C is defined by (10.14) to (10.16). As in the 
proof of part (i), we can force e to be as small as desired by choosing 8 sufficiently 
small, resulting again in y < 0. Therefore, Dv(x) is negative definite. It follows from 
Theorem 10.5 that the equilibrium x = 0 of (10.18) is unstable. • 

Before concluding this subsection, we consider some specific examples. 

EXAMPLE 10.13. (i) Consider the system 

Xi(k+l) = -{X2(k) + Xi(kf + X2(kf 

X2(k + 1) = -xi(k) + xi(kf + X2{kf. 

Using the notation of (10.18) we have 

A = 
0 - 1 

-1 0 
f{M, X2) 
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From Example 10.9(ii) [and Example 10.12(ii)] it follows that the equilibrium w = 
0 of (10.21) is asymptotically stable. Furthermore, in the present case f(x) = o(\\x\\) as 
\\x\\ -> 0, Therefore, in view of Theorem 10.14, the equilibrium x = 0 of system (10.20) 
is asymptotically stable. 

(ii) Consider the system 

Xi(/:+ 1) = -^X2(k) + xi(kf + X2(kf 

X2(k + 1) = -3x1 (ŷ ) + xt(k) - X2{k)\ 

Using the notation of (10.17) and (10.18), we have in the present case 

A = 
0 i 

2 

3 0. 
/ ( • ^ b - ^ 2 ) 

X-\ T" X 9 

Since A is unstable [refer to Example 10.12(iii) and Example 10.9(iii)] and since f{x) = 
o(\\x\\) as ||x|| -> 0, it follows from Theorem 10.14 that the equilibrium x = 0 of system 
(10.22) is unstable. • 

G. Input-Output Stability 

We conclude this chapter by considering the input-output stability of discrete-time 
systems described by equations of the form 

x(k + 1) - Ax(k) + Bu(k) 
(10.23) 

y(k) - Cx(kl 

where all matrices and vectors are defined as in (10.1). Throughout this subsection 
we will assume that ^0 = 0. -^(0) = 0, and ^ > 0. 

As in the continuous-time case, we say that system (10.23) is BIBO stable if 
there exists a constant c > 0 such that the conditions 

x(0) = 0 

\\u(k)\\ < 1, k^O, 

imply that ||3;(^)|| < c for all fc > 0. 
The results that we will present involve the impulse response matrix of (10.23) 

given by 

fCA^-^B, k>0, 
H(k) = (10.24) 

[ 0 , yk < 0, 

and the transfer function matrix given by 

H(z) = C{zl- AY^B. (10.25) 

Recall that 

n 

y(n) = ^H(n- k)u{k). (10.26) 
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p{k + 1) - Ap{k), (10.27) 

THEOREM 10.15. The system (10.23) is BIBO stable if and only if there exists a con
stant L > 0 such that for all n > 0, 

X 11̂ (̂ )11 ^L. (10.28) 

As in the continous-time case, the first part of the proof of Theorem 10.15 (suf
ficiency) is straightforward. Specifically, if ||w(fe)|| < 1 for all /: > 0 and if (10.28) 
is true, then we have for all n > 0, 

\\y{n)\\ = \\^H(n - k)u(k)\\ ^J^\\H(n - kMk)\\ 

Therefore, system (10.23) is BIBO stable. 
In proving the second part of Theorem 10.15 (necessity), we simplify matters 

by first considering in (10.23) the single-variable case (n = 1) with the system de
scription given by 

t 

y(t) = ^h(t- k)u{k), t > 0. (10.29) 
k = 0 

For purposes of contradiction, we assume that the system is BIBO stable, but no finite 
L exists such that (10.28) is satisfied. Another way of expressing the last assumption 
is that for any finite L, there exists t = ki(L) = ki such that 

^1 

^ \h(ki ~ k)\ > L. 
k = 0 

We now choose in particular the input u given by 

+ 1 if h(t- k)>0, 

u(k) = ^ 0 ifh(t-k) = 0, 

[-1 ifh(t- k)<0, 

0 < k ^ ki. Clearly, \u(k)\ < 1 for all k ^ 0. The output of the system ait =^ ki 
due to the above input, however, is 

y(ki) = ^ h(ki - k)u(k) = ^ \h(ki - k)\ > L, 

which contradicts the assumption that the system is BIBO stable. 



The above can now be extended to the multivariable case. In doing so we apply 
the single-variable result to every possible pair of input and output vector compo
nents, we make use of the fact that the sum of a finite number of bounded sums will 
be bounded, and we note that a vector is bounded if and only if each of its components 
is bounded. We leave the details to the reader. 

Next, we establish a connection between the asymptotic stability of the equilib
rium p = 0 of system (10.27) and the BIBO stability of system (10.23). First, we note 
that the asymptotic stability of the equilibrium x = 0 of system (10.27) implies the 
BIBO stability of system (10.23) since the sum 

<l\\c\ 
k=l 

\k-l\ B 

is finite. 
The main task in proving the converse to the above statement is to show that 

controllability and observability of system (10.23) and the finiteness of the sum 
Er=i IIC'A^"^^!! imply the finiteness of the sum S^Li ||^^~^ ||- ^^ ^̂ ^ ^^ assume that 
the system (10.23) is BIBO stable. Then, since 

\\yik)\ 
7=0 

k-l 

< y \\CA''-^J+^^B\\ 
— .^ II I 

we must have that the power series 
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y \\CA^-^B\\ 
X-u II II 

k=\ 

is finite (i.e., absolutely convergent), and this implies that 
limCA^"^5 = 0. 

From (10.30) we can conclude that 

lim CAA^-^B = lim CA^'^AB = lim CA^B = 0, 

(10.30) 

and repeating, we arrive at 

lim{CA^)A^-\A'B) = 0 , ^,r = 0 , 1 , . . . , n - 1. 

We can write this as 

lim 

C 
CA 

CA n-\ 

A^-^[5,A5,-- ,A^-^5]=0. (10.31) 

If we now assume that (10.23) is controllable (from-the-origin) and observable, then 
we can select n linearly independent columns of the controllability matrix to form an 
invertible n x n matrix W and n linearly independent rows of the observability matrix 
to form an invertible n x n matrix M. Using (10.31) we conclude that 

l imMA^-V = 0 (10.32) 
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M-'[limMA^-^w]w-^ = limA^-^ = 0. (10.33) 

From (10.33) we can conclude that the equilibrium j:? = 0 of (10.27) is asymptoti
cally stable. To prove this assertion we assume to the contrary that j:? = 0 of (10.27) 
is not asymptotically stable. This implies that A has an eigenvalue A with |A| > 1. We 
assume the case when A is real and leave the case when A is complex as an exercise 
for the reader. Let ry be an eigenvector associated with A (which must be real). Then 
A^T] = X^rj,k> 0. If 17 = XQ denotes an initial condition, then the corresponding 
solution of (10.27) is given by x{k) = A^T] = X^TJ, fc > 0, which does not go to 
zero as ^ —> 00, i.e., limŷ _,oo A^~^ 7^ 0, which contradicts (10.33). {Note: The above 
proof solves Exercise 6.31 for the case where the eigenvalues are real.) 

We have thus arrived at the following result. 

THEOREM 10.16. Assume that system (10.23) is controllable and observable. Then 
system (10.23) is BIBO stable if and only if the equilibrium /? = 0 of system (10.27) is 
asymptotically stable. • 

Next, we recall that a complex number Zp is dipole of H(z) = [hjiz)] if for 
some (/, j) we have \hij(zp)\ = ^ (refer to Section 3.5 for the definition of a pole). 
If each entry of H(z) has only poles with modulus (magnitude) less than 1, then, as 
shown in Chapter 2, each entry of H(k) = [hij(k)] consists of a sum of converging 
terms. It follows that under these conditions the sum 

00 

k = 0 

is finite, and any realization of H(z) will result in a system that is BIBO stable. 
Conversely, if 

00 

k = 0 

is finite, then the terms in every entry of H(k) must be convergent. But then every 
entry of ^(z) has poles whose modulus is within the unit circle of the complex plane. 
We have proved the final result of this section. 

THEOREM 10.17. The time-invariant system (10.23) is BIBO stable if and only if the 
poles of the transfer function 

H(z) = C(zI-A)-^B 

are within the unit circle of the complex plane. • 

6.11 
SUMMARY 

In this chapter we first addressed the stability of an equilibrium of continuous-time 
finite-dimensional systems (Part 1). In doing so, we first introduced the concept of 
equilibrium and defined several types of stability in the sense of Lyapunov (Sections 
6.3 and 6.4). Next, we established several stability conditions of an equilibrium for 
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ear time-invariant systems L in terms of eigenvalues (Section 6.5). In Section 6.6 CHAPTER 6: 
we established several geometric and algebraic stability criteria for nth-order, lin- Stability 
ear, time-invariant systems [including the Leonhard-Mikhailov stability criterion 
(Theorem 6.1), the gap and position stability criterion (also called the interlacing 
stability criterion) (Theorem 6.2), and the Routh-Hurwitz criterion (Theorem 6.4)]. 
Next, we established various stability conditions for linear time-invariant systems 
that are phrased in terms of the Lyapunov Matrix Equation for system (L) (Section 
6.7). In Section 6.8 we established conditions under which the asymptotic stability 
and the instability of an equilibrium for a nonlinear time-invariant system (A) can 
be deduced from the linearization of (A). 

Then in Part 2 we addressed the input-output stability of time-varying and time-
invariant linear, continuous-time, and finite-dimensional systems (Section 6.9). For 
such systems we established several conditions for bounded input bounded output 
stability (BIBO stability) and we related some of these to the stabiHty properties of 
an equilbrium. 

The chapter concluded with Part 3 (Section 6.10), where we addressed the 
Lyapunov stability and the input-output stability of (time-invariant) systems. For 
such systems, we established results that are analogous to the stability results of 
continuous-time systems considered in Parts 1 and 2. [Among other topics, we dis
cussed in Subsection 6.10D the Schur-Cohn criterion (which is analogous to the 
Routh-Hurwitz criterion for continuous-time systems), and in Subsection 6.10E 
we established stability criteria involving the Lyapunov Matrix Equation for the 
discrete-time case.] 

6.12 
NOTES 

The initial contributions to stability theory that took place toward the end of the last 
century are primarily due to physicists and mathematicians (Lyapunov [14]), while 
input-output stability is the brainchild of electrical engineers (Sandberg [21] to [23], 
Zames [26], [27]). Sources with extensive coverage of Lyapunov stability theory 
include, e.g., Hahn [7], Khalil [11], LaSalle [12], LaSalle andLefschetz [13], Michel 
and Miller [17], Michel and Wang [18], Miller and Michel [19], and Vidyasagar [25]. 
Input-output stability is addressed in great detail in Desoer and Vidyasagar [5] and 
Vidyasagar [25]. For a survey that traces many of the important developments of 
stability in feedback control, refer to Michel [15]. 

In the context of linear systems, nice sources on both Lyapunov stability and 
input-output stability can be found in numerous texts, including Brockett [2], Chen 
[3], DeCarlo [4], Kailath [10], and Rugh [20]. In developing our presentation, we 
found the texts by Brockett [2], Hahn [7], LaSalle [12], Miller and Michel [19], 
and Rugh [20] especially helpful. For a proof of the Schur-Cohn criterion, and other 
related results, refer to the elegant book by Jury [9]. 

The background material summarized in the second section is developed in most 
standard linear algebra texts, including the classic books by Birkhoff and MacLane 
[1], Gantmacher [6], and Halmos [8]. For more recent references on this subject, 
refer, e.g., to the books by Michel and Herget [16] and Strang [24]. 
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E X E R C I S E S CHAPTER 6: 

6.1. Determine the set of equilibrium points of a system described by the differential equa
tions 

Xi = Xi - X2 + X3 

X2 = 2xi + 3X2 + -̂ 3 

^3 = 3JCI + 2X2 + 2X3. 

6.2. Determine the set of equilibria of a system described by the differential equations 

Xi = X2 

^2 = S 
xi sin — , when xi T̂  0, 

0, when xi = 0. 

6.3. Determine the equilibrium points and their stability properties of a system described by 
the ordinary differential equation 

x = x(x-l) (14.1) 

by solving (14.1) and then applying the definitions of stability, uniform stability, asymp
totic stability, etc. 

6.4. Determine the set of equilibria and their stability properties of a system described by the 

ordinary differential equation 

X = (cost)x (14.2) 

by solving (14.2) and then applying the definitions of stability, uniform stability, asymp
totic stability, etc. 

6.5. Determine the set of equilibria and their stability properties of a system described by the 
ordinary differential equation 

X = (4tsmt-2t)x (14.3) 

by solving (14.3) and then applying the definitions of stability, uniform stability, asymp
totic stability, etc. 

6.6. Determine the state transition matrix ^(t, to) of the system 

Xi' 

X2_ 

-t 
_{2t - t) 

0 1 
-2t\ 

U\ 
[x2 

Use Theorems 5.1 to 5.4 to determine the stability properties of the trivial solution of 
this system. 

6.7. Show that the second-degree polynomial 

f{s) = s^ + 2as + b 

is a Hurwitz polynomial if and only if a> 0 and Z? > 0 by (i) solving the equation 
f{s) = 0, and (ii) using the Routh-Hurwitz criterion (Theorem 6.4). 

6.8. Determine whether the third-degree polynomial 

f(s) = s^ + 3s^ + 3s + 2 

StabiHty 



512 is a Hurwitz polynomial by (i) solving the equation f(s) = 0, (ii) applying Theorem 
Linear Systems ^•^' ^̂ ^̂ ^ ^PP^yi^g Theorem 6.2, and (iv) applying Theorem 6.4. 

6.9. Let A G C[/?+, /?"><"] and x G 7?" and consider 

X = A(t)x. (LH) 

Show that the equilibrium x^ = 0 of (LH) is uniformly stable if there exists a 2 G 
C^ [/?+, Z?̂ """] such that 2 ( 0 = [Q(t)f for all r and if there exist constants C2 > ci > 0 
such that 

cil < 2 (0 < C2/, r G R, (14.4) 

and such that 

[A(0]^2(0 + Q(t)A(t) + m < 0, t^R, (14.5) 

where / is the fz X ^ identity matrix. Hint: The proof of this assertion is similar to the 
proof of Theorem 7.1. 

6.10. Show that the equilibrium Xg = 0 of {LH) is exponentially stable if there exists a 2 ^ 
C^/?^,^' ' ' ' ' '] such that 2 ( 0 = [2(01^ for alU and if there exist constants C2 > ci > 0 
and C3 > 0 such that (14.4) holds and such that 

[A(0]^2(0 + Qit)A{t) + 2 ( 0 ^ -C3I, t G R. (14.6) 

Hint: The proof of this assertion is similar to the proof of Theorem 7.2. 

6.11. Assume that the equilibrium Xg = 0 of {LH) is exponentially stable and that there exists 
a constant a> 0 such that ||A(0|| ^ a for all t G R, Show that the matrix given by 

2 ( 0 -̂  j [a)(T,0]'^O(T,0^T (14.7) 

satisfies the hypotheses of the result given in Exercise 10. Hint: The proof of this as
sertion is similar to the proof of Theorem 7.5. 

6.12. For {LH) let A^(0 and AM(0 denote the smallest and largest eigenvalues of A{t) + 
[A{t)]^ at r G /?, respectively. Let (/)(̂ , ô, XQ) denote the unique solution of {LH) for the 
initial data x{to) = XQ = (^{t^, to, x). Show that for any XQ G R^ and any ô G R, the 
unique solution of {LH) satisfies the estimate, 

11̂ 1̂1̂ (1/2)1,; A„(.).x ^ ||̂ (^^ ^̂^ ^̂ 1̂1 ^ ||^^||^o/2)(,; A,(.)..^ ^ ̂  ^̂^ ^j4 ĝ  

//mL- Let v(r, 0̂, XQ) = [4>{t, to, xo)V[(l){t, to, xo)] = \\(l){t, to, xo)p, evaluate v{t, to, xo), 
and then estabHsh (14.8). 

6.13. Use Exercise 6.12 to show that the equilibrium Xg = 0 of {LH) is uniformly stable if 
there exists a constant c such that 

ft 

XM{T)dT^c (14.9) 

for all t, a such that t > a, where AM(0 denotes the largest eigenvalue of A{t) + 
[A{t)Y, t G R. Hint: Use (14.8) and the definition of uniform stabihty. 

6.14. Use Exercise 6.12 to show that the equilibrium Xg = 0 of (LH) is exponentially stable 
if there exist constants e > 0, a; > 0 such that 

XM{T)dT < -a{t - (7) + 6 (14.10) 

for all t, a such that t > a. Hint. Use (14.8) and the definition of exponential stabihty. 
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V(XJ) = x'^Q(t)x, (14.11) CHAPTER6: 

where xGR^'.Qe C^[R, /?"><«], Q(t) = [2(01^, and Q(t) ^ kl,k> 0, for all t e R. Stability 
Evaluate the derivative of v with respect to t, along the solutions of {LH), to obtain 

ViLH){x, t) = x^[[A(0]^G(0 + Q(t)A(t) + Q(t)]x. (14.12) 

Assume that there is a quadratic form w(x) = x^Wx < 0, where W'^ = W G 7?«x«, 
such that 

V(LH)(x,t)^ W(X) (14.13) 

for all (x, t) G G X R, where G is a closed and bounded subset of /?". Let 

E = { x E G : w(jc) = 0} (14.14) 

and assume that for (LH), \\A(t)\\ is bounded on R. Prove that any solution of (LH) that 
remains in G for all ^ > fo — 0 approaches £" as ^ ^ oo. 

6.16. Consider the system 

X + a(t)x + X = 0, 

which by letting xi = x and X2 - x can be written as 

Xi = X2 

X2 = -a(t)X2 - Xi. 

Assume that a G C[R, R^] and that there are constants ci, C2 such that 0 < ci < 
a(t) ^ C2 for all t G R. Let v(x) = x\-\r x\. First, show that all solutions of this system 
are bounded. Next, use the results of Exercise 6.15 to show that ^2it, to, -̂ o) -> 0 as 

6.17. Assume that for system {LH) there exists a quadratic function of the form v(jc, 0 = 
x^Q(t)x, where Q(t) = [Q(t)f G C^[R, 7?"''"] and Q(t) > cl for some c > 0, such 
that V(LH)(x, t) < x^Wx, where W = W'^ G R""^"" is negative definite. Show that if v 
is negative for some {x, t), then the equilibrium Xg = 0 of system {LH) is unstable. 
Hint. The proof of this assertion follows along similar lines as the proof of Theorem 
7.3. 

6.18. It is shown that if the equilibrium Xe = 0 of system {LH) is exponentially stable, then 
there exists a function v that satisfies the requirements of the result given in Exercise 
6.10, i.e., the present result is a converse theorem to the result given in Exercise 6.10. 

In system {LH), let A be bounded for all ^ G /?, let L = L^ G C^[R, /?"><"] and 
assume that L is bounded for all t G R. Show that the integral 

Q{t)= f ma,t)VL{a)^{(T,t)da 

exists for all t G R. Show that the derivative of the function 

v{xj) = x^Q{t)x (14.15) 

with respect to t along the solutions of {LH) is given by 

y(LH){xj) = -X^L{t)x. 

Next, show that if L{t) > c^I, C3 > 0, for all t G R, then there exist constants C2 ^ 
Cl > 0 such that for all t G R, 

c i / < Q{t)^ C2I, (14.16) 

where / G /?"^" denotes the identity matrix. 
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Note that the above result constitutes a generalization to Theorem 7.5 for time-
invariant systems (L). 

6.19. Apply Proposition 7.1 to determine the definiteness properties of the matrix A given 
by 

A = 
1 
2 
1 

2 
5 

- 1 

1 
- 1 
10 

6.20. Use Theorem 7.3 to prove that the trivial solution of the system 

3 4 
2 1 

is unstable. 

6.21. Determine the equilibrium points of a system described by the differential equation 

X = -X + x^ 

and determine the stability properties of the equilibrium points, if applicable, by using 
Theorem 8.1 or 8.2. 

6.22. The system described by the differential equations 

Xi = X2 + Xi(xj + xl) 

Xi + X2{x\ + x\) 
(14.17) 

has an equilibrium at the origin x^ = {x\, X2) = (0, 0). Show that the trivial solution 
of the linearization of system (14.17) is stable. Prove that the equilibrium x = 0 of 
system (14.17) is unstable. (This example shows that the assumptions on the matrix A 
in Theorems 8.1 and 8.2 are absolutely essential.) 

6.23. Prove that the system given by 

'xx' 

M. 
'yi 

J2J 

0] 
-2t\ 

sin^l 

cos^J 

\xi 

U\ 
[X2_ 

+ uit) 
{It -1) 

cost 
sint -

is BIBO stable. 

6.24. Use Theorem 9.3 to analyze the stability properties of the system given by 

i: = Ax + Bu 

y = Cx 

A 
1 

1 

0 

- 1 
B = 

1 

- 1 
C = [0, 1]. 

6.25. Determine all equilibrium points for the discrete-time systems given by 

(a) xi(k+ 1) - X2(k) + \xi(k)\ 

X2(k+ 1) = -Xi(k) + \x2(k)\ 



(b) Xi(k+ 1) = Xi(k)X2(k) - 1 

X2(k + 1) = 2xi(^)jC2(^) + 1. 

6.26. Consider the discrete-time system given by 

x(k-{- 1) - sat[Ax(k)] (14.18) 

where for 0 = (Oi,..., OnV e /?", sat6 = [satOi,..., satdnV. and 

r 1, ^/ > 1, 
5<2^^/ = 

- 1 , Oi < 1. 

(a) For A G /?"^" arbitrary, use Theorem 10.1 to analyze system (14.18). 
(b) Imposing various restrictions on the locations of the eigenvalues of A in the com

plex plane, use as many results of this chapter as you can to analyze the stability 
properties of the trivial solution of system (14.18). 

6.27. Determine the stability properties of the trivial solution of the discrete-time system 
given by the equations 

with 6 fixed. 

'xx{k+ 1)" 
Mk +1). 

cos 0 sin ^ 1 
- s i n ^ cosOj 

\xx{k) 
[x2{k) 
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6.28. Analyze the stability of the equilibrium x = 0 of the system described by the scalar-
valued difference equation 

x{k +1) = sin[x(^)]. 

6.29 Analyze the stability of the equilibrium x = 0 of the system described by the difference 
equations 

Xx{k + 1) = Xx{k) + X2{k){Xi{kf -h X2{kf^ 

X2(k + 1) = X2(k) - xi(k)[xi(kf + X2(kfl 

6.30. Determine a basis of the solution space of the system 

xi(k+ 1) 
X2(k + 1)J 

0 1 
-6 5 

xi(k) 

[X2(k), 

Use your answer in analyzing the stability of the trivial solution of this system. 

6.31. Let A E /?"^". Prove that part (iii) of Theorem 10.8 is equivalent to the statement that 
all eigenvalues of A have modulus less than 1, i.e., 

lim | |Ai = 0 

if and only if for any eigenvalue A of A, it is true that |A| < 1. 

6.32. Use Theorem 10.7 to show that the equilibrium x = 0 of the system 

x(k) 

is unstable. 

x(k + 1) = 

1 
0 

0 

1 
1 

0 

1 . 
1 . 

0 . 

. 1 

. 1 

. 1 
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6.33. (a) Use Theorem 10.9 to determine the stability of the equilibrium x = 0 of the system 

"1 1 - 2 1 
x(k -\-l) = 0 1 3 

0 9 - 1 
x(k). 

(b) Use Theorem 10.9 to determine the stabiHty of the equilibrium x = 0 of the system 

ri 0 -21 
x(k+l) = \o 1 slxik). 

[o 9 - i j 

6.34. Apply the Schur-Cohn criterion (Theorem 10.10) in analyzing the stability of the trivial 
solution of the system given by the equations 

xi(y^+l)] r -0 .5 0 0.5irxi(^) 
X2(k+ 1) = 0.5 0 0 \\x2(k) 

U3(/^+l)J I. 0 -0.5 0JU3W, 
6.35. Apply Theorems 7.2 and 10.11 to show that if the equilibrium x = 0 (x E. /?") of 

the system 

x(k +1) = e^x(k) 

is asymptotically stable, then the equilibrium x = 0 of the system 

X = Ax 

is also asymptotically stable. 

6.36. Apply Theorem 10.11 to show that the trivial solution of the system given by 

xi(k+ 1) 
[X2(k + 1)J [2 Oj [X2(k) 

0 2 xi(k) 

is unstable. 

6.37. Determine the stability of the equilibrium x = 0 of the scalar-valued system given by 

x(k+ I) = ^x(k) + f sin jc(^). 

6.38. Analyze the stability properties of the discrete-time system given by 

x(k+ I) = x(k) + ^u(k) 

y(k) = '^x(k) 

where x, y, and u are scalar-valued variables. Is this system BIBO stable? Can Theorem 
10.16 be applied in the analysis of this system? 
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Polynomial Matrix Descriptions 
and Matrix Fractional 
Descriptions of Systems 

In this chapter, representations of linear time-invariant systems based on polynomial 
matrices, called Polynomial Matrix Description (PMD) or Differential (Difference) 
Operator Representation (DOR) are introduced. Such representations arise natu
rally when differential (or difference) equations of order higher than one are used 
to describe the behavior of systems, and the differential (or difference) operator is 
introduced to represent the operation of differentiation (or of time-shift). Polyno
mial matrices in place of polynomials are involved since this approach is typically 
used to describe MIMO systems. Note that state-space system descriptions involve 
only first-order differential (or difference) equations, and as such, PMDs include the 
state-space descriptions as special cases. 

A rational function matrix can be written as a ratio or fraction of two polynomial 
matrices or of two rational matrices. If the transfer function matrix of a system is ex
pressed as a fraction of two polynomial or rational matrices, this leads to a Matrix 
Fraction(al) Description (MFD) of the system. The MFDs that involve polynomial 
matrices, called polynomial MFDs, can be viewed as representations of internal real
izations of the transfer function matrix, i.e., as system PMDs of special form. These 
polynomial fractional descriptions (PMFD) help establish the relationship between 
internal and external system representations in a clear and transparent manner. This 
can be used to advantage, for example, in the study of feedback control problems, 
leading to clearer understanding of the phenomena that occur when systems are in
terconnected in feedback configurations. The MFDs that involve ratios of rational 
matrices, in particular, ratios of proper and stable rational matrices, offer convenient 
characterizations of transfer functions in feedback control problems. 
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518 MFDs that involve ratios of polynomial matrices and ratios of proper and stable 
Linear Systems rational matrices are essential in parameterizing all stabilizing feedback controllers. 

Appropriate selection of the parameters guarantees that a closed-loop system is not 
only stable but will also satisfy additional control criteria. This is precisely the ap
proach taken in optimal control methods, such as //°°-optimal control. Parameter-
izations of all stabilizing feedback controllers are studied extensively in Part 2 of 
this chapter. We note that extensions of MFDs are also useful in linear time-varying 
systems and in nonlinear systems. These extensions are not addressed here. 

In addition to the importance of MFDs in characterizing all stabilizing con
trollers, and in //°°-optimal control, PMFDs and PMDs have been used in other con
trol design methodologies as well (e.g., self-tuning control). The use of PMFDs in 
feedback control leads in a natural way to the polynomial Diophantine matrix equa
tion that is central in control design when PMDs are used and that directly leads to the 
characterization of all stabilizing controllers. The Diophantine Equation is studied 
at length in Part 1 of this chapter. Finally, PMDs are generalizations of state-space 
descriptions, and the use of PMDs to characterize the behavior of systems offers 
additional insight and flexibility. These issues are also explored in Part 1 of this 
chapter. 

7.1 
INTRODUCTION 

In this chapter. Polynomial Matrix Descriptions (PMDs) and Matrix Fractional De
scriptions (MFDs) are used to study properties such as controllability, observability, 
and stability, primarily of interconnected systems, and to conveniently characterize 
all stabilizing feedback controllers. These system descriptions are important in feed
back control system analysis and design and are the key to developing control design 
theories such as H'^-opiimal control. 

The development of the material in this chapter is concerned only with 
continuous-time systems; however, completely analogous results are valid for 
discrete-time systems and can easily be obtained by obvious modifications. 

In the following, PMDs and MFDs are first introduced by an illustrative exam
ple. Next, the contents of the chapter are briefly described and some guidelines for 
the reader are provided. 

An important comment on notation 

In this chapter we will be dealing with matrices with entries that are polynomials 
in s or q, denoted by, e.g., D(s) or D(q). For simplicity of notation we frequently omit 
the argument 5* or ^ and we write D to denote the polynomial matrix on hand. When 
ambiguity may arise, or when it is important to stress the fact that the matrix in 
question is a polynomial matrix, the argument will be included. 

A. A Brief Introduction to Polynomial and Fractional Descriptions 

The PMD and the MFD of a linear time-invariant system are introduced via a simple 
motivating example. 



EXAMPLE 1.1. 
by 

In the ordinary differential equation representation of a system given 519 

yi(t) + yi(t) + yiit) = uiit) + ui(t) 

yi(t) + Ht) + 2y2(t) = U2(t) 
(1.1) 

yi(t\ yiit) and ui(t), U2(t) denote, respectively, outputs and inputs of interest. We assume 
that appropriate initial conditions for the w/(r), yi(t) and their derivatives at r = 0 are 
given. 

By changing variables, one can express (1.1) by an equivalent set of first-order 
ordinary differential equations, in the sense that this set of equations will generate all 
solutions of (1.1), using appropriate initial conditions and the same inputs. To this end, 
let 

xi = yi - U2, X2 = yi, 

Then (1.1) can be written as 

X = Ax + Bu, 

lxi(t) 

X3 yi + y i - U2. 

y = Cx + Du, 

(1.2) 

(1.3) 

where x{t) = 

A = 
0 0 
1 0 
0 2 

X2(t) 

X3(t)\ 

- 1 
0 

- 2 

u{t) = 

B = 

Ui(t) 

U2(t) 

1 
0 
0 

y(t) = 

- 1 
1 

- 2 

yi(t) 
yiit). 

and 

C = 
1 

- 1 
D = 

with initial conditions x(0) calculated by using (1.2). 
More directly, however, system (1.1) can be represented by 

where 

P(q) 

P(q)z(t) = Q{q)u{t), 

zx{t) 

y{t) = R{q)z{t) + W{q)u{t), 

Z{t) = 

2 + 1 1 
q q + 2 

Z2(t)\ 
, U(t) = 

Q(q)-

Ui(t) 

uiit) 

q 
q 

y{t) = 

R(q) 

yi(t) 

yiit). 

I 
0 

and 

W(q) 

(1.4) 

with q = didt, the differential operator. The variables zi{t), ziif) are called/7(2r^/(2/ state 
variables, z(t) denotes iht partial state of the system description (1.4), and u{t) and y{t) 
denote the input and output vectors, respectively. • 

Polynomial matrix descriptions (PMD) 

Representation (1.4), also denoted as {P{q), Q{q), R{q), W{q)}, is an example of 
a PMD of a system. Note that the state-space description (1.3) is a special case of 
(1.4). To see this, v^rite (1.3) as 

{ql - A)x{t) = Bu{t\ y(t) = Cx(t) + Du(t), (1.5) 

Clearly, description {ql - A, B, C, D] given in (1.5) is a special case of the general 
PMD {P{q), Q(q\ R(q\ W(q)} with 

P(q) = ql-A, Q(q) = B, R{q) = C, ^{q) = D. (1.6) 

The above example points to the fact that a PMD of a system can be derived 
in a natural way from differential (or difference) equations that involve variables 
that are directly connected to physical quantities. By this approach, it is frequently 
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520 possible to study the behavior of physical variables directly without having to 
Linear Systems transform the system to a state-space description. The latter may involve (state) 

variables that are quite removed from the physical phenomena they represent, thus 
losing physical insight when studying a given problem. The price to pay for this 
additional insight is that one has to deal with differential (or difference) equations of 
order greater than 1. This typically adds computational burdens. We note that certain 
special forms of PMDs, namely, the polynomial MFD, are easier to deal with than 
general forms. However, a change of variables may again be necessary to obtain 
such forms. 

Consider a general PMD of a system given by 

P{q)z{t) = Q(q)u(t\ y(t) = R(q)z(t) + W(qMt) (1.7) 

withP(^) G Rlgy^'K Q(q) G Riq]^'''^ and R(q) G RlqV^'K W(q) G /?[^]^X'^, where 
Rlq^^^ denotes the set of / X / matrices with entries that are real polynomials in q. 
The transfer function matrix H(s) of (1.7) can be determined by taking the Laplace 
transform of both sides of the equation assuming zero initial conditions (z(0) = 
^(0) = . . . = 0, u(0) = u(0) = '" = 0). Then 

H(s) = R(s)p-\s)Q(s) + W(s). (1.8) 

For the special case of state-space representations, [see (1.6)]; H(s) in (1.8) assumes 
the well-known expression H(s) = C(sl — Ay^B + D. For the study of the relation
ship between external and internal descriptions, (1.8) is not particularly convenient. 
Indeed, it appears that it is as difficult to investigate the relationship between H{s) 
and PMDs as it was to study the relationship between H{s) and state-space descrip
tions. There are, however, special cases of (1.8) that are very convenient to use in this 
regard. In particular, as will be shown in Section 7.3, if the system is controllable, 
then there exists a representation equivalent to (1.7) that is of the form 

DM)Zcit) = u{t), yit) = NM)Zc{t\ (1.9) 

where Ddq) G R[qY''''^ and Nc{q) G Riq^"^. Representation (1.9) is obtained by 
letting Q{q) = I^ and W(q) = 0 in (1.7). It is common to use D and N instead of P 
and R, in view of 

H(s) = Nc(s)Dc(sr\ (1.10) 

where Nds) and Dds) represent the matrix numerator and matrix demonimator of 
the transfer function, respectively. Similarly, if the system is observable, there exists 
a representation equivalent to (1.7) that is of the form 

Do(q)Zo(t) = No(q)u(t), y(t) = ZoU), (1.11) 

where Do{q) G R[q\P^P and A^ (̂̂ ) G RiqY^"^. Representation (1.11) is obtained 
by letting R{q) - Ip and W{q) = 0 in (1.7) with P{q) - Do{q) and Q{q) = No{q)-
Here, 

H{s) = D-\s)No{s\ (1.12) 

Note that (1.10) and (1.12) are generalizations to the MIMO case of the SISO sys
tem expression H{s) = n(s)/d(s). In the same manner as H(s) = n(s)/d(s) can be 
derived from the differential equation d(q)y(t) = n(q)u(t), (1.12) can be derived 
from (1.11), usually written as i)o(^)};(0 = No(q)u(t). 



Returning now to (1.3) in the example, notice that the system is observable (state 
observable from the output y). Therefore, the system in this case can be represented 
by a description of the form {Do, No, h, 0}. In fact (1.4) is such a description, where 

Do and No are equal to P and Q, respectively, i.e., Do(q) = 

No(q) = 

H(s) 

q^+ 1 

1 q 
[O q 

. The transfer function matrix 

C{sl- Ay^B + D 

"0 1 Ol 
0 - 1 ij 

' s 0 1 " 
- 1 ^ 0 

0 - 2 s + 1 

D-\s)No{s) = 

1 
^3 + 2^2 + 2 

52 + 1 1 " 
5 5 + 2 

\s + 2 - 1 1 
[ -s s^ + ij 

- 1 r 

- 1 

ri s 
[0 s 

"1 
0 
0 

"1 
0 

= 

is, given by 

- 1 
1 

-2_ 

s 
s 

+ 
"0 0" 
0 1 

1 
S' + 2^ 2 + 2 -s 

1 
q + 2 

, and 

s{s + 1) 
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Matrix fractional descriptions (MFDs) of system transfer matrices 

A given pXm proper, rational transfer function matrix H{s) of a system can be 
represented as 

H{s) = NR(S)D^\S) = DI\S)NL(S), (1.13) 

whevQ NR(S) E Rlsy'^.DRis) E R[sr'''^ mdNiis) E RlsV'^.DUs) E RISVP. 

The pairs {NR(S), DR(S)} and {DL(S), NL(S)} are called Polynomial Matrix Fractional 
Descriptions (PMFDs) of the system transfer matrix with {NR(S\ DR(S)} termed a 
right Fractional Description and {DL(S), NL(S)} a left Fractional Description. Notice 
that in view of (1.10), the right Polynomial Matrix Fractional Description (rPMFD) 
corresponds to the controllable PMD given in (1.9). That is, {DR, Im, NR, 0}, or 

DR(q)zR(t) = u(t), y(t) = NR(q)zR(t) (1.14) 

is a controllable PMD of the system with transfer function H(s). The subscript c was 
used in (1.9) and (1.10) to emphasize the fact that Nc, Dc originated from an internal 
description that was controllable. In (1.13) and (1.14), the subscript R is used to 
emphasize that {NR, DR} is a right fraction representation of the external description 
H(s). 

Similarly, in view of (1.12), the left Polynomial Matrix Fractional Description 
(IPMFD) corresponds to the observable PMD given in (1.11). That is, {DL, NL, Ip, 0}, 
or 

DL(q)ZL(t) = NdqMt), y(t) = ZLO) (1.15) 

is an observable PMD of the system with transfer function H(s). Comments analo
gous to the ones made above concerning controllable and right fractional descriptions 
(subscripts c and R) can also be made here concerning the subscripts o and L. 

An MFD of a transfer function may not consist necessarily of ratios of polyno
mial matrices. In particular, given a /? X m proper transfer function matrix H(s), one 
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H(s) = NR(S)D^\S) = DI\S)NL(S\ (1.16) 

where NR, DR, DU NL are proper and stable rational matrices. To illustrate, in the 
example considered above, H{s) can be written as 

H{s) 
1 

s^ + 2̂ 2 + 2 

'\{S + 1)2 
[ 0 s 

5 + 2 
-s 

0 
+ 2 

-1 

s{s + 1) 
S{S^ - 5 + 1 ) 

?2 + 1 1 
s + 2 

\s + 1)2 
0 

0 
5 + 2 

52 + 1 

(5 + 1)2 
5" 

1 

L ^ + 2 

{S + 1)2 

1 

1 
(^ + 1)2 

0 
{S + 1)2 

^ + 2 J 

= DI\S)NL{S). 

Note that Di{s) and A^L(^) are proper and stable rational matrices. 
Such representations of proper transfer functions offer certain advantages when 

designing feedback control systems. They are discussed further in this chapter in 
Part 2, Subsection 7.4D. 

B. Chapter Description 

This chapter consists of two principal parts. In Part 1, the emphasis is on properties of 
systems described by PMDs. First, background on polynomial matrices is provided 
in Section 7.2, and the Diophantine Equation is studied at length in Subsection 7.2E. 
Equivalence of representations and system properties are addressed in Section 7.3. 
Properties of systems consisting of subsystems interconnected in parallel, in series 
(cascade), and in feedback configurations are investigated in Subsection 7.3C. In 
Part 2, Section 7.4, feedback control systems are studied with emphasis placed on 
parameterizing all stabilizing feedback controllers. Further details follow. 

In Section 7.2, polynomial matrices and their properties are studied, and special 
forms for polynomial matrices, which are useful in subsequent developments, are 
introduced. In particular, polynomial matrices in column reduced, triangular, Her-
mite, and Smith form are defined, and algorithms to obtain such forms by pre- and 
postmultiplication by unimodular matrices are given in Subsections 7.2B and 7.2C. 
Coprimeness of polynomial matrices is related to controllability and observability of 
PMDs and is studied in Subsection 7.2D. The Diophantine Equation, which plays a 
central role in feedback control, is studied at length in Subsection 7.2E, and methods 
for deriving particular solutions are given. 

PMDs of systems are addressed throughout Section 7.3. Controllability, observ
ability, and stability are revisited in Subsection 7.3B. Also, PMD realizations of 
transfer function matrices are studied and realization algorithms are developed. The 
relationships among different PMDs and state-space descriptions of a system are ex
plored in Subsection 7.3A, using equivalence of representations. The properties of 
systems consisting of interconnected subsystems are best explored using PMDs, and 
this is accomplished in Subsection 7.3C. 



Feedback control systems are studied in Section 7.4 using PMDs and MFDs with 
emphasis on stabilizing controllers. All stabilizing controllers are parameterized us
ing PMDs, in Subsection 7.4A, and proper and stable MFDs in Subsection 7.4C. 
State feedback controllers and state observers, important in the development involv
ing MFDs, are discussed in Subsection 7.4B. The relationships among all feedback 
controller parameterizations discussed herein are derived and fully explained. The 
complete theory of parameterizing all stabilizing feedback controllers is developed 
in this section. 

Two degrees of freedom controllers, their stability properties, and their param
eterizations are explored in Subsection 7.4D. Several implementations of such con
trollers are introduced and their limitations are addressed. Finally, several control 
problems such as the model matching problem, the diagonal decoupling problem, 
and the static decoupling problem are formulated and briefly discussed. 
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C. Guidelines for the Reader 

As with every chapter of this book, this chapter can be approached at different levels. 
If the characterization of all proper stabilizing feedback controllers using proper and 
stable MFDs, which arises in optimal control problems, is of primary interest, then 
the reader should focus on Subsection 7.4C. For better understanding of such MFDs 
of systems and of polynomial MFDs and their use in the study of systems, the reader 
at first reading should study selected topics from all sections of this chapter. In the 
following, the material that should be covered at first reading is described. 

The reader should first study coprimeness of polynomial matrices in Subsection 
7.2D with emphasis on the tests for coprimeness (Theorem 2.4). To determine a 
greatest common divisor of polynomial matrices, one needs the algorithms given in 
Subsection 7.2D. All solutions of the Diophantine matrix equation are derived in 
Theorem 2.15 of Subsection 7.2E with particular solutions obtained in Lemma 2.14. 

The study of equivalence representations in Subsection 7.3A leads to insight 
concerning the relationships between different PMDs and state-space descriptions 
of a system. Tests for controllability, observability, and stability are given in Theo
rems 3.4,3.5, and 3.6 of Subsection 7.3B. Feedback configurations of interconnected 
systems are studied in Subsection 7.3C. Here the closed-loop descriptions are also 
derived, which are then used in Section 7.4 to study the class of stabilizing feedback 
controllers. 

All stabilizing controllers are expressed in terms of PMDs in Theorem 4.1 of 
Subsection 7.4A. Different parameters are introduced in Theorems 4.2 and 4.3, and 
Corollaries 4.5, 4.6, and 4.9. To fully understand proper and stable MFDs of sys
tems, one needs to study state feedback controllers and state observers in terms of 
PMDs. This is accomplished in Subsection 7.4B. All proper stabilizing controllers 
are parameterized (using proper and stable MFDs) in Theorem 4.13 given in Sub
section 7.4C and also in Theorem 4.16. The exact relationship between such MFDs 
and internal descriptions is provided by Theorem 4.20. 

Two degrees of freedom controllers that offer advantages concerning attainable 
system responses are studied in Subsection 7.4D. Theorem 4.21 is the principal sta
bility theorem with all stabilizing controllers being parameterized in Theorem 4.22. 
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Finally, several control problems are formulated. 

PARTI 
ANALYSIS OF SYSTEMS 

7.2 
BACKGROUND MATERIAL ON POLYNOMIAL MATRICES 

Let R[s]P^^ denote the set of p X m matrices with entries that are polynomials in s 
with real coefficients. If P(s) G R[sy^^, then P(s) will be called a. p X m polyno
mial matrix. Frequently, it will be necessary to determine the rank of P(s), which is 
defined as the maximum number of linearly independent rows (or columns) of P(s) 
over the field of rational functions. The rank of a polynomial matrix is discussed in 
Subsection A. In Subsection B, unimodular matrices are introduced and transforma
tions of polynomial matrices to column and row reduced form are discussed. Hermite 
and Smith canonical forms are addressed in Subsection C, and in Subsection D the 
important concept of coprimeness of polynomial matrices is studied. In Subsection 
E the linear Diophantine Equation is examined. 

A. Rank and Linear Independence 

The linear independence of a set of vectors in a vector space, defined in Chapter 2, 
is recalled here for convenience. Let (V, F) denote a vector space V over the field F, 
and let v/ G K / == 1,..., /c. The set of vectors {vi,..., Vyt} is F-linearly dependent, 
i. e., it is linearly dependent over the field F, if there exists a set {ai,..., â ĵof scalars 
in F with at T̂  0 for at least one /, such that 

a\v\ + fl2V2 + • • • + akVk = Oy. (2.1) 

The set of vectors {vi,..., v̂ }̂ is linearly independent over the field F if (2.1) implies 
that ai = 0 for each / = 1,..., k. 

Linear dependence of p X 1 polynomial vectors pi(s) G R[sy is defined sim
ilarly. This warrants some explanation. Let R[s] be the ring of polynomials with 
coefficients in R (see Subsection 7.2E) and let R(s) be the field of rational fractions 
over R[s] (called the field of rational functions), i.e., 

R(s) = {t(s)\t(s) = ^ , with n,dG R[sl d ^ 0}. 
d(s) 

Note that if p(s) G R[s], it can always be considered as being divided by 1, in which 
case p(s)/l is a scalar in the field of rational fractions over R[s]. Thus, a polyno
mial vector pi(s) G R[S]P may be viewed as a special case of a rational vector, i.e., 
Pi(s) G R(sy, whose elements are in the field of rational fractions. Now consider the 
polynomial vectors pi(s) G R[sy, i = I,..., k. The set of vectors {pi(s),..., Pk(s)} 
is said to be R(s)-lmQ2ir\y dependent, (i.e., linearly dependent over the field of 



rational functions), if there exists a set {ai(s),..., a^is)} of rational functions, (i.e., 
ai{s) G R{s), i = I,.. .,k) with ai{s) ¥' 0 for at least one /, such that 

ax{s)px{s) + ••• + ak{s)p^{s) - 0 G R{sy. (2.2) 

This set of vectors is linearly independent over R(s) if (2.2) implies that aiis) = 0 
for each / = 1,..., k. 

EXAMPLE 2.1. LQipiis) = r '^^\,P2(s) 

(s + l)/(s + 3), a2(s) = -I satisfy (2.2) since 

's + 3 
0 

s+ 1 
0 

. Note that a 1(5') 

ai(s)pi(s) + a2(s)p2(s) 
s+ 1 
s + 3 

s + 3 
0 + ( -1) 

's+ 1 
0 

Therefore, the set {p\(s), P2(s)} is linearly dependent over the field of rational functions. 
It is of interest to notice that {p\(s), p2(s)} is linearly independent over the field of 

reals. In particular, if ai, a2 are restricted to be reals then (2.2) implies that ai = a2 = 
0 (verify this). This stresses the importance of the particular field over which linear 
independence is considered (refer to Section 2.2 of Chapter 2). • 

It is not difficult to see that if the set {pi (s),..., Pk(s)} is linearly dependent, then 
(2.2) is also satisfied for some polynomials ai(s). To see this, simply multiply both 
sides of (2.2) by the least common multiple of the denominators of the rational func
tions ^1(5"),..., ak(s). This implies that linear dependence over R(s) can be tested 
merely by searching for polynomials ai(s) E R[s], not all zero, satisfying (2.2). To 
illustrate, consider: 

EXAMPLE 2.2. In Example 2.1, {pi(s), p2(s)} is linearly dependent over R(s) since 

(^+1) 
s + 3' 

0 
+ (-(s + 3)) 

's+ 1 
0 

DEFINITION 2.1. The normal rank of a polynomial matrix P(s) G /?[5]^^'" is the max
imum number of linearly independent rows (or columns) over the field of rational func
tions R(s). • 

r̂  + 1 ^ + 31 
0 0 

EXAMPLE 2.3. (i) rankPi(s) = rank = 1, and (ii) rankP2{s) = 

rank s 
s + 1 

1 
s+ 1 

2. 

It can be shown that the (normal) rank of P{s) is also equal to the order of the 
largest order nonzero minor of P{s). 

EXAMPLE 2.4. (i) P\{s) in Example 2.3 does not have a second-order nonzero minor, 
since det P\{s) = 0, and therefore its rank is less than 2. The entries are the first-order 
minors and since nonzero entries exist, rankPi(s) = 1. 

(ii) P2(s) in Example 2.3 has a second-order nonzero minor since det P2(s) 
1 ^ 0 . Therefore, rank P(s) = 2. 

^ c 2 . 

Notice that if ^ = 1 or - 1 , then det P2(l) = det P2(-1) = 0. This is true be
cause in this case, P2(l) [or P2(-1)] has only one linearly independent column (over 
the field of reals R) and rank P ( l ) = 1. Since this loss of rank (from 2 to 1) occurred 
for only special values of s, rank P(s) defined above is referred to as the normal rank 
of P(s), instead of just the rank of P(s), when there is ambiguity. Note that unless 
otherwise stated, the linear dependence of rows or columns of a matrix, considered 
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for rank evaluation, is taken over the smallest field that contains the entries of the 
matrix. 

B. Unimodular and Column (Row) Reduced Matrices 

A polynomial matrix U(s) G R[sy^^ is called unimodular (or /?[5-]-unimodular) if 
there exists a U(s) G R[SY^P such that U(s)U(s) = I p. This is the same as saying 
that U~^(s) = U(s) exists and is a polynomial matrix. Equivalently, U(s) is unimod
ular if det U(s) = a G R,a7^0. 

It can be shown that every unimodular matrix is a matrix representation of a 
finite number of successive elementary row and column operations. The elementary 
row and column operations on any polynomial matrix P{s) E R[sY^^ consist of the 

1. interchange of any two rows (or columns) of P{s), 
2. multiplication of any row (or column) of P{s) by a nonzero real a G 7?, a: 7̂  0 (a 

unit in R[sY), 
3. addition to any row (or column) of P{s) of a multiple by a nonzero polynomial 

p{s) of another row (or column). 

These elementary row (and column) operations can be performed by multiply
ing P{s) on the left (right), [i.e., by pre-(post-) multiplying P{s)\, by elementary 
unimodular matrices. These elementary unimodular matrices are obtained by per
forming the elementary operations (1) to (3) on the identity matrix /. As mentioned 
above, it can be shown that every unimodular matrix may be represented as the prod
uct of a finite number of elementary unimodular matrices. 

EXAMPLE 2.5. The interchanging of rows 1 and 3 in a specific example is accom
plished, e.g., as shown: 

UL{S)P{S) = 

"0 
0 

_1 

0 
1 
0 

11 
0 

oj 

1 
s + 1 

0 

0 
1 

^ + 2 

0 
s+ 1 

1 

^ + 2 
1 
0 

Also, addition to the second column of the third column multiplied by 5" in a specific 
example is accomplished, e.g., as shown: 

P(S)UR(S) = 

1 
5+ 1 

0 

0 
1 

s + 2 

s~\ 
0 
i j 

ri 0 0" 
0 1 0 

LO s 1. 
= 

1 
s+ 1 

0 
1 

2s + 2 

Let the degree of a polynomial (row or column) vector be the degree of the 
highest degree entry and let deg^. (P) [deg^. (P)] denote the degree of the /th row 
(jth column) of P(s). Also let Cr(P) [Cc(P)] be the highest row degree (column 
degree) coefficient matrix of P(s), defined as the real matrix with entries that are the 
coefficients of the highest degree s terms in each row (column) of P(s). 

We note that P(s) G RlsY^"^ can be written as 

P(s) diag (s'^'i, s'^'-2 ̂  

Cc(P)diag(s'^ 

S--p)Cr(P) + Pr(s) 

) + Pc(sl '^,S^'2, . . .,S^' (2.3) 

wheredn = deg^. (P), i = 1,..., p, anddcj 
Pc(s) appropriate polynomial matrices. 

deg^. (P), j = 1 , . . . , m, with Pr(s), 



EXAMPLE 2.6. Let P(s) = 

's+l 3̂ 2 + 21 
s 1 

[5^ + 3 s^ + 5 , 
2,deg^2(P) ^ 1' ^^^ ^^^r3 (^) ^ ^' while the column degrees are deg^i(P) = 2 

. The row degrees are deg^^ (P) 

and J^^c2 (P) ^ 3- The highest row degree coefficient matrix of P(s) is Cr(P) 

and the highest column degree coefficient matrix is CdP) = 

0 

ro 
1 

.0 

3] 
0 
1_ 

P(s) 0 
0 0 

0 
0 

Sdr3 

Cr + Pr{s) 

Cc 0 + Pc(s) 

0 0 
0 0 
1 1 

0 s 0 
0 0 3̂ 

0 

0 0 
0 0 
1 1 

0 3 
1 0 
0 1 

+ 

We have 

s+l 2 
0 1 

s^ + 3 5 

s + 1 3̂ 2 + 1 
s 1 
3 5 
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P(s) is row (column) proper, also called row {column) reduced, if Cr{P) [CdP)] 
has full rank. 

EXAMPLE 2.7. P{s) in Example 2.6 is row proper since rankCr = 2 but not column 
proper since rank Cp = I <2. • 

Consider now the first two rows of ^(5") in Example 2.6 and note that 

det 
s + 1 3s^ + 2 

s 1 
= ( - 3 ) / 

= det 
0 3 
1 0 

s+ 1 

^(dri +dr2) _̂  lower degree terms . 

This illustrates the following result that can be derived from (2.3): any highest order 
minor of P{s) E 7̂  [5']^^'" is a polynomial of degree equal to the sum of the degrees 
of the rows {p > m) or of the columns (;? < m), with leading coefficient equal to 
the corresponding minor of Cr{P) or of CdP), respectively. For the case when P(s) 
is square, this immediately implies that 

detP(s) = detCdP)s^^'^ + lower degree terms 

= detCdP)s^^'^ + lower degree terms. (2.4) 

Clearly then, P{s) G R[sY^^^ is row (column) proper if and only if ^i^^ {det P{s)) ^ 
X dr,{deg{det{P{s)) = Z dcj). (Show this.) Note that if P{s) G R[S]P'''^ is not of 
full rank it can be neither a column nor a row proper matrix. 

Equation (2.3) leads to useful polynomial matrix representations given by 

P{s) = diag [s'^'i^Cr + block diag [l,s,, 

= block diag [1, ^ , . . . , s^'i]Pr 

•.s'^^i-^]Cr 

and P{s) = Cc diag [/^^ ] + Cc block diag [[1, s,,,,, s'^'j ^ ] 

= Pcblockdiag{[\,s,...,s'^'jfl 

(2.5a) 

(2.5b) 
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P(s) 
s + 1 

s 
s^ + 3 

3s^ + 2" 
1 

s^ +5 j 
= 

s' 
0 
0 

0 01 
s 0 

0 ^^J 

ro 3" 
1 0 

LO ij 
+ 

1 5 0 0 0 
0 0 1 0 0 
0 0 0 1 5 

01 
0 

^ ' J 

r 1 
1 

0 

3 
0 
[ 1 

2 1 
0 

1 

5 
0 
0_ 

1 

0 

0 

2 

s s^ 
0 0 

0 0 

: 0 0 

: 1 s 

: 0 0 

0 0 0 

0 0 0 

1 s s' 

0 

0 

'̂J 

r 1 
1 
0 

0 
1 

3 
0 
1 
N 

21 
0 
3 

1 
0 

5 
0 
0 
1 _ 

Similarly, a representation in terms of column degrees can be obtained using (2.5b). • 

P{s) can also be expressed as a matrix polynomial of the form 

P{s) = Pks^ + Pk-is"-' + "' + Pis + Po, (2.6) 

where Pi G RP^^, A square polynomial matrix is called regular if rankP^ = m. 
Note that if P(s) is regular, then it is both row and column proper. 

EXAMPLE 2.9. P(5) of Example 2.8 can be written as P(5) = P3S^ + P2S^-\-Pis + Po = 

s+ 1 

s^ + 3 

3̂ 2 + 2 
1 = 

ro 01 
0 0 
0 1 

3̂ + 
ro 3" 
0 1 
1 0 

s^ + 
ri 0" 
1 0 
0 0 

s + 
ri 21 
0 1 
3 5 

Reduction to a row (column) proper polynomial matrix 

Given P(s) G Rlsy^'^ of full rank, there exists a unimodular matrix UL(S) such 
that UL(S)P(S) is row proper. 

This is shown here by using a constructive proof. At each step of the algorithm 
below, the degree of a row (the highest degree row) is reduced by at least one, using 
elementary row operations. Since the matrix is of full rank, the algorithm will stop 
after a finite number of steps. 

Algorithm 

Let drf = degj.. (P), i = \,..., p. 

(i) Ohi2im diag[s^^i]Cr{P). 
(ii) Determine/? monomials pi{s) such that 

{p,,,..,Pp)diag[s'^qCr{P) = Q. 



Take pk = I. This is accomplished by dividing all monomials by the lowest 
degree (nonzero) monomial, assumed here to be the /cth one. 

(iii) Premultiply P(s) by 

"1 0 ••• 0 ••• 0 

Ux(s) = Pi Pi 

0 0 0 

Pp 

1 

kih row. 

(iv) Stop if U\P is row proper. Otherwise, set P = U\P\ repeat the steps. 
To determine the appropriate unimodular matrix UL{S) directly, so that UL(S)P(S) 

is row proper, one may decide on the necessary row operations based on P(s) 
(as in the algorithm above), but apply these to [P(s\ Ip]. Then UL(S)[P(S), Ip] = 
[P(s), UL(S)], where P(s) is the row proper matrix and UL(S) can be read off directly 
from the resulting matrix. 

EXAMPLE 2.10. Fov P(s) = 
's+ 1 

s 

s 
s^ + 2 
s + 2 

, the row degrees are dr^ = I, dr^ = 2, 

dr, - 1, and rankCr(P) = rank = 1 < 2, and thus, P(s) is not row proper. 

The algorithm is now applied. We have 

(i) diag [s'^i][Cr(P)] = 

(nl(ni)Ui(s) = 

(iw)UiP = 

's 0 01 
0 s 

.0 C 

" 1 0 0" 
-s 1 0 

. 0 0 1 . 

's + 1 s ' 
-s 2 
s s + 2. 

, ai 

2 0 

) ̂ J 

ri 1" 
1 1 

Li 1. 
= 

' s 
s^ 
_s 

' 

idCriUiP) = 
' 1 
- 1 

1 

s ' 
s^ 
s _ 

11 
0 , 

ij 
which is of full rank. Thus, 

ULP. where UL U\, is row proper. • 

Note that a unimodular matrix UL such that ULP is row proper is not unique. In 
[I 0 - 1 

fact, in Example 2.10, another choice for UL could have been Ui = 

since U\P = 
- 2 

s^ + 2 
s + 2 

with CriUiP) = 
"1 
1 
1 

- 2 " 
1 
1 

, which is of full rank, and 

therefore, Ui P is row proper. 
It is possible to reduce a polynomial matrix to a row proper polynomial ma

trix using elementary column operations (in place of elementary row operations). 
In particular, given P(s) G R[sy^^ of full rank, there exists a unimodular matrix 
UR(S) such that P(S)UR(S) is row proper. Such a UR(S) is determined, for example, 
by the algorithm described in Subsection 7.2C, which reduces a matrix to a lower 
left Hermite form. Other algorithms to accomplish this can also be derived. 

529 
CHAPTER?: 

Polynomial 
Matrix 
Descriptions 
and Matrix 
Fractional 
Descriptions 
of Systems 



530 

Linear Systems 

EXAMPLE 2.11. Consider P(s) of Example 2.10 and apply the algorithm of Subsection 
7.2C to reduce P(s) to lower left Hermite form. Take P(sY and determine U^(s) such 
that U^P^ is reduced to upper right Hermite form. Then 

P{s) 

which is row proper. 

1 01 
. -1 Ij 

n —s 
1. = P(s) 

1 -si 
-I s+l\ 

= P(S)UR(S) = 

' 1 
- 2 

. -2 

0 
s^ + 2s + 2 

3s+ 2 

Similar results for reducing a polynomial matrix to a column proper polyno
mial matrix can easily be derived. Given P(s) E R[sy^^ of full rank, there exists 
a unimodular matrix UR(S) such that P(S)UR(S) is column proper. [Take P(sy and 
apply steps (i) to (iii) of the above algorithm.] Also, there exists a unimodular ma
trix UL(S) such that UL(S)P(S) is column proper. [Use the algorithm to reduce P(s) 
to upper right Hermite form described in Subsection 7.2C.] Finally, we note that if 
P(s) E R[sy^^ has full rank, there exist unimodular matrices UL and UR such that 
ULPUR is both row and column proper. One such example is when UL and UR are 
chosen so that ULPUR is in Smith form (see Subsection 7.2C). 

Proper rational matrices 

Recall that a rational matrix H(s) E R(sy^^ is called proper if 

limH(s) = D, DGRP'''^ 
5—»oo 

and if D = 0, then H(s) is called strictly proper Frequently, H(s) is expressed as 

H(s) = N(s)D-\sl 

where A (̂̂ ) and Z)(^) are polynomial matrices (A (̂̂ ) E RlsV"^ Sind D(s) E Rls]"^"""^), 
The pair {N(s), D(s)} can be viewed as an rPMFD of a system described by a transfer 
function matrix H{s). It is of interest to relate the propemess of the rational matrix 
H(s) to the (column) degrees of N{s) and D(s). Note that when N(s) and D(s) are 
polynomials, it is easily seen that H(s) is strictly proper (is proper) if and only if 
degN(s) < degD(s) [if and only if degN(s) < degD(s)]. In the matrix case, sim
ilar necessary and sufficient conditions, given in Lemma 2.2, exist only when D(s) 
is column reduced. Necessary conditions for propemess are given in Lemma 2.1. 
Completely analogous results to Lemmas 2.1 and 2.2 hold for left factorizations of 
H(s) = D-\s)N(s) as well 

LEMMA 2.1. Let H(s) be a proper (or strictly proper) rational matrix and let H(s) = 
N(s)D(s)-\ Then deg^.N(s) < deg^.D(s) [or deg^.N(s) < deg^.D(s)] for j = 
1,.... m. 

Proof. N(s) = //(5)D(^) and for the yth column of A (̂̂ ), 
m 

^O'W = ^Hik(s)dkj(s\ i = I,. • A 
^=1 

where nij(s) denotes the ith element in the jih column of N(s). Since every element 
Hik(s) of H(s) is strictly proper (or proper), all entries nij(s) must have degrees less than 
(or less than or equal to) the degree of the highest degree polynomial in the jih column 
of D(s). • 



The converse to the above result is not always true. For example, let 

N{s) = [l,s] and D(s) = 
s^ + \ 
s+l IJ 

where deg^^ Nis) = 0 < deg^^ D{s) = 2 and deg^^ N(s) = 1 = deg^^ D(s). Here 

Nis)D-\s) = {\,s] 1 - 5 
? - 1 2̂ + 1 

1 
1 -s 

2 
-s^ — s 

1 
1 - ^ ^ 1 - ^ 

which is not proper. Notice that D{s) is not column reduced. When D{s) is column 
reduced (column proper) the conditions of the above lemma are sufficient as well, 
as the following result shows. 

LEMMA 2.2. Let H{s) = N(s)D~\s) with D(s) column reduced. Then H(s) is proper 
if and only if 

deg N(s) < deg,^ D(s), j= I ., m. 

H(s) is strictly proper if and only if deg^. N(s) < deg^. D(s), j = 1,..., m. 

Proof, Necessity was shown in the previous lemma. To show sufficiency, notice that 
by applying Cramer's rule for the inverse to solve H(s)D(s) = N(s), we have hij(s) = 
[det D^J(sydet D(s)], where D^J(s) is the matrix obtained by replacing the jth row of D(^) 
by the /th row of N(s). In view of (2.3), D(s) can be written as D(s) = Cc(D) diag [s ""J ] + 
Dc(s), j = 1,..., m, where dcj = deg^. D{s\ CdD) is the highest column degree coef
ficient matrix of D(sX and deg^. D^s) < dc.. Similarly, D'^{s) = Cc(D'J) diag [ A ] + 
&-^(s), where Cc(D^^) is the same as CdD), except for the 7th row, which may or may 
not be zero since each entry of the jth row of N(s) is of lower than or equal degree of the 
corresponding entry of the jih row of D(s). Since D(s) is column proper, det CdD) ¥" 0, 
and in view of (2.4), degdetD(s) = X%idj while degdetD'ds) < YJ]=idj. There
fore, hij{s) is proper. It is strictly proper when deg^. N(s) < deg^. D(s) for j = 
1,..., m. • 

EXAMPLE 2.12. H(s) = N(s)D~\s),whQrQ 

\s + l - 1 
D(s) = and A ^ ( ^ ) = 

ais + aQ 

CiS + CQ d\S -\r do 

is proper for any values of the parameters since D(s) is column reduced and deg^. N(s) < 
deg^. D(s), j = 1, 2. H(s) is strictly proper only when ai = bi = ci = di = 0. • 

Let H{s) = D-\s)N(s), where D{s) G R[syp and N(s) G Rlsy"^. Com
pletely analogous results to Lemmas 2.1 and 2.2 hold also for the left factoriza
tion matrices. In particular, if H(s) is proper (strictly proper), then deg^. N(s) < 
deg^. D(s) [deg^. N(s) < deg^.. D(s)] for / = 1 , . . . , /? (see Lemma 2.1). When D(s) 
is row reduced, then the conditions are necessary and sufficient (see Lemma 2.2). 

C. Hermite and Smith Forms 
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By elementary row and column operations, a polynomial matrix P(s) can be reduced 
to the Hermite form or the Smith form. These special forms are studied in this sub
section, together with algorithms to reduce P(s) to such forms. 
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Hermite form 

Given P(s) G R[sY^^ with p > m, there exists a unimodular matrix UL(S) such 
that UL(S)P(S) is an upper (right) triangular matrix of the form 

UL(S)P(S) 
Pm(s) 

0 

" X 
0 

0 

0 

0 

X 
X 

0 

0 

0 

•• X 
•• X 

X 

•• 0 

•• 0 

(2.7) 

where Pm(s) G R[s]^^^. When p > m^ r = rankP(s), the last p - r rows are 
identically zero. In column J, 1 < j < r, the diagonal element is monic and of higher 
degree than any (nonzero) element above it. If the diagonal element is one, then all 
elements above it are zero. No particular form is assumed by the remaining m - r 
columns in the top r rows. This is the (upper triangular) column Hermite form. Note 
that if P(s) is of full rank, then UL(S)P(S) is column proper. By postmultiplication 
by a unimodular matrix UR(S), it is possible to obtain the row Hermite form of P(s) 
when p < m. To accomplish this, simply determine UL(S) in such a manner that 
UL(S)P^(S) is in column Hermite form, and take (UL(s)P^(s)y = P(s)Ul(s) = 
P(S)UR(S), which is in row Hermite form. 

The following algorithm reduces P(s) G R[sy^^, p > m, to (upper triangular) 
column Hermite form by elementary row operations [premultiplication by UL(S)]. 

This algorithm can also be used to constructively prove our desired result, that there 
exists a unimodular matrix UL(S) such that UL(S)P(S) (p > m) is in column Hermite 
form. 

The algorithm is based on polynomial division. Given any two polynomials 
a(s), b(s), b(s) # 0, there exist unique polynomials q(s), r(s) such that a(s) = 
q(s)b(s) + r(s) [q(s) is the quotient and r(s) is the remainder], where either r(s) = 0 
or deg r(s) < deg b{s). 

By row interchange, transfer to the (1, 1) position the lowest degree element in 
the first column and call this element pn. Every other element pn in this column 
can be expressed by polynomial division, as a multiple of pn plus a remainder term 
of lower degree than pu, i.e.. 

qnPn + ni, where deg rn < degp\\. (2.8) 

By elementary row operations, the appropriate multiple of j^n can be subtracted from 
each entry of column 1 leaving only remainders rn of lower degree than pi\. Repeat 
the above steps until all entries in the first column below (1, 1) are zero and note that 
the (1, 1) entry can always be taken to be a monic polynomial. 

Consider next the second column and position (2, 2) while temporarily ignoring 
the first row. Repeat the above procedure to make all the entries below the (2, 2) entry 
equal to zero. If the (1, 2) entry does not have lower degree than the (2, 2) entry, use 
polynomial division and row operations to replace the (1, 2) entry by a polynomial 
of lower degree than the (2, 2) entry. If the (2, 2) entry is a nonzero constant, use row 
operations to make the (1, 2) entry equal to zero. Continuing this procedure with the 
third, fourth, and higher columns results in the desired Hermite form. 



EXAMPLE 2.13. 533 

P(s) = 

s(s + 2) 0 
0 (S+ 1)2 

(s + l)(s + 2) 5 + 1 
0 s(s + 1) 

Ui 

s(s + 2) 0 
0 (s+ 1)2 

5 + 2 5 + 1 
0 5(5 + 1) 

U2 

5 + 2 5 + 1 
0 (5 + 1)2 

5(5 + 2) 0 
0 S(S + 1) 

U3 

5 + 2 5 + 1 
0 (5 + 1)2 
0 -s(s + 1) 
0 s(s + 1) 

^4 

5 + 2 
0 
0 
0 

5 + 1 

(s + 1)2 
5 + 1 
5 + 1 

^ 5 

5 + 2 5 + 1 
0 5 + 1 
0 (5 + 1)2 
0 5 + 1 

t/6 

where 

5 + 2 
0 
0 
0 

5 + r 
5 + 1 

0 
0 

Uj 

"5 + 2 
0 

0 
0 

L(5) = U,U6'"Ui 

1 - 1 0 
0 1 0 
0 0 1 
0 0 0 

5 -

0 
f 1 

0 
0 

0] 
0 
0 

ij 

ri 
0 
0 

[0 

= UL(S)P(S), 

0 0 
1 0 

- ( 5 + 1 ) 1 
- 1 0 

0" 
0 
0 
1 

' 1 0 0 0 
0 1 0 0 

- 1 0 1 0 
0 0 0 1 

- (5 + 2) - 1 
5 + 1 1 

- ( 5 + 1)2 - 5 

- ( 5 + I ) 0 

5 + 1 
- 5 

S(S + 1) 
5 

Notice that P{s) has full rank and UL{S)P(S) here is column proper. • 

Note that to determine UL(S) directly, one may decide on the necessary op
erations based on P(s), but apply these elementary row operations to [P(s),Ip]. 
Then UL(S)[P(S), Ip] = [Hp(s), UL(S)], where Hp(s) is the column Hermite form of 
P(s), (p > m). Also, note that if the algorithm is applied to ^(5") G R[S]P^^, where 
p ^ m, then 

UL(S)P(S) = [Pi(s\P2(s)] = 

X X 

0 X 

0 0 

X 

X 

X 

X 

X 

X 

(2.9) 

where P i (5) G Ris^P. 

Smith form 

Given P(s) G R[sy^^ with rankP(s) = r, there exist unimodular matrices 
UL(S) and UR(S) such that 

UL(S)P(S)UR(S) = Sp(s), (2.10) 

where Sp(s) = 
K{s) 0 

0 0 
A(^) = diag{ei{s),.,.,er{s)). 
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Each ei(s), i = 1 , . . . , r, is a unique monic polynomial satisfying ei(s) \ ei+i(s), i = 
1, . . . , r - 1, where P2(s)\pi(s) means that there exists a polynomial P3(s) such that 
Pi(s) = P2(s)p3(s), that is, €i(s) divides ei+i(s). Sp(s) is the Smith form ofP{s) and 
the ei{s), i = 1 , . . . , r, are the invariant polynomials of P{s). It can be shown that 

etis) = 
Di(s) 

Di-i(sy 
1, . . . , r , (2.11) 

where Di(s) is the monic greatest common divisor of all the nonzero zth order mi
nors of P(s). Note that Do(s) = 1 and Di(s) are the determinantal divisors of P(s). 
The Smith form Sp(s) of a matrix P{s) is unique, however, UL(S), UR(S) such that 
UL(S)P(S)UR(S) = 5'p(5') are not unique. 

EXAMPLE 2.14. P(s) = with rankP(s) = r = 2. Here 

s(s + 2) 0 
0 (s+ 1)2 I 

I (s + 1)(̂  + 2) ^ + 1 
0 s(s + 1)J 

Do = hDi = hD2 = (s + l)(s + 2), and ei = DI/DQ = 1, €2 = D2/D1 = 

(s + l)(s + 2). Therefore, the Smith form of P(s) is 

Sp(s) 
AW 

0 

1 0 
0 (s+ l)(s + 2) 

The invariant factors 6/ of a matrix are not affected by row and column ele
mentary operations. This follows from the fact that the determinantal divisors Dt are 
not affected by elementary operations (refer to the Binet-Cauchy formula in Exer
cise 7.3). In view of this, the following result can now be easily established: given 
Pi(s)> Piis) ^ R[s]P^^, there exist unimodular matrices Ui(s), U2(s) such that 

U,(S)PI(S)U2(S) = P2{S) 

if and only if Pi(s), P2(s) have the same Smith form. 
The following algorithm reduces P(s) E R[sy^"^ to its unique Smith form Sp(s) 

and determines UL(S), UR(S) such that UL(S)P(S)UR(S) = Sp(s). The algorithm can 
be used to constructively prove that the Smith form of a matrix exists. 

Using row and column elementary operations, transfer the element of least de
gree in the matrix P(s) to the (1, 1) position. By elementary row operations, make all 
entries in the first column below (1, 1) equal to zero (refer to the algorithm for the 
column Hermite form). Next, by column operations, make all entries in the first row 
zero except (1, 1). If nonzero entries have reappeared in the first column, repeat the 
above steps until all entries in the first column and row are zero except for the (1, 1) 
entry. [Show that at each iteration the degree of the (1, 1) element is reduced, and 
thus the algorithm is finite.] 

If the (1, 1) element does not divide every other entry in the matrix, use polyno
mial division and row and column interchanges to bring a lower degree element to 
the (1, 1) position. Repeat the above steps until all other elements in the first column 
and row are zero and the (1, 1) entry divides every other entry in the matrix, that is. 



eiis) 0 
0 

0 
Ei(s) 

where 61(5') divides all entries ofEi(s). Repeat the above steps on Ei(s) and on other 
such terms, if necessary to obtain the Smith form of P(s). 

Two polynomial matrices Pi(s), P2(s) E R[sy^^ are said to be equivalent if 
there exist unimodular matrices U\{s), U2(s) such that 

Ui(s)Pi(s)U2(s) = P2(S\ (2.12) 

Recall that, as was mentioned earlier, (2.12) is satisfied if and only if Pi (s) and P2(s) 
have the same Smith form. 

The Smith form of P{s) is a canonical form for the relation (2.12) on R[sy^^. To 
see this, we first recall the definition of relation and equivalence relation: a relation p 
in a set X is any subset of X X X and p is an equivalence relation if and only if it 
satisfies the following axioms: 

1. xpx-reflexivity (every x G X is equivalent to itself). 
2. {xpy) =̂  (3;px)-symmetry {x is equivalent to y implies that y is equivalent to x). 
3. {xpy) and {ypz) =̂  (xpz)-transitivity {x is equivalent to y and y is equivalent to 

z imply that x is equivalent to z). 

The relation p described by U1P1U2 = P2 in (2.12), (i.e., P1PP2), satisfies 
the above axioms (verify this) and therefore it is an equivalence relation. The p-
equivalence class or the "orbit" of a fixed P(s) G RlsY^'^ is denoted by [P(s)]p. 
The Smith form Sp(s) of P(s) is a canonical form for p on R[sY^^. 
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D. Coprimeness and Common Divisors 

Coprimeness of polynomial matrices is one of the most important concepts in the 
polynomial matrix representation of systems since it is directly related to controlla
bility and observability (see Subsection 7.3B). 

A polynomial g(s) is a common divisor (cd) of polynomials pi(sX P2(s) if and 
only if there exist polynomials pi(s), p2(s) such that 

Pi(s) = pi(s)g(s), p2(s) = p2(s)g(s), (2.13) 

The highest degree cd of pi(^), P2(s), g'^is), is a greatest common divisor (gcd) 
of pi(s), P2{s). It is unique within multiplication by a nonzero real number. Alter
natively, g*(5') is a gcd of pi{s), P2(s) if and only if any cd (̂̂ 5") of pi(s), P2(s) is a 
divisor of g'^is) as well, that is. 

g^'is) = m(s)g(s) (2.14) 

with m(s) a polynomial. The polynomials pi(s), P2{s) are coprime (cp) if and only 
if a gcd g^'is) is a nonzero real. 

The above can be extended to matrices. In this case, both right divisors and left 
divisors must be defined, since in general, two polynomial matrices do not commute. 
Note that one may talk about right or left divisors of polynomial matrices only when 
the matrices have the same number of columns or rows, respectively. 
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An mx m matrix GR{S) is a common right divisor (crd) of the pi x m poly
nomial matrix Pi{s) and the p2Xm matrix P2{s) if there exist polynomial matrices 
PiR{s),P2R{s)sothsit 

PI{S)=PIR{S)GR{S), P2{S)=P2R{S)GR{S). (2.15) 

Similarly, a. p x p polynomial matrix GL{S) is a common left divisor (eld) of the 
pxmi polynomial matrix Pi {s) and the pxm2 matrix P2{s), if there exist polynomial 
matrices PIL{S)^P2L{S) SO that 

Px{s) = GL{S)PIL{S), P2{S) = GL{s)P2ds). (2.16) 

Also G^{s) is a greatest common right divisor (gcrd) of Pi{s) and P2{s) if and only 
if any crd GR{S) is an rd of G^(^). Similarly, G£(^) is a greatest common left divisor 
(geld) of A [s) and P2{s) if and only if any eld GL{S) is an Id of G£(^). That is. 

GI{S)=M{S)GR{S), Gl{s) = GL{S)N{S) (2.17) 

with M{s) and N{s) polynomial matrices and GR{S) and Gi{s) any crd and eld of 
Pi {s), P2 ('^), respectively. 

Alternatively, it can be shown that any crd G\{s) of Pi{s) and P2{s) [or a eld 
G£(^) of A('^) and P2{s)] with determinant of the highest degree possible is a gcrd 
(geld) of the matrices. It is unique within a premultiplication (postmultiplication) by 
a unimodular matrix. Here it is assumed that GR{S) is nonsingular. Note that if rank 

Piis) 
: m [a (pi + P 2 ) X mmatrix], which is a typical case in polynomial matrix 

system descriptions, then rank GR{S) = m, that is, GR{S) is nonsingular. Notice also 

\Piis)\ 
that if rank GR{S) < m, then in view of Sylvester's Rank Inequality, rank 

Piis) 
< m 

as well. 
The polynomial matrices Pi (s) and P2 (s) are right coprime (re) if and only if a 

gcrd G^{s) is a unimodular matrix. Similarly, Pi{s) and P2{s) are left coprime (Ic) if 
and only if a geld G2{s) is a unimodular matrix. 

E X A M P L E 2.15. Let Pi 

Two distinct crds are GR^ = 

5(5 + 2) 0 

0 ( 5 + 1 ) 2 

0 

A gcrd is G^ 

s 
0 

5 + 1 

0 

5 ( 5 + 2 ) 

0 

(5+l ) (5 + 2) 
0 

5 + 2 0 

0 5 + 1 

0 

5 + 1 

0 
5 + 1 

1 
5 

5 + 2 0 

0 1 

and GR^ 

GR. 

and P2 = 

5 + 2 

0 

• ( 5 + l ) ( 5 + 2) 5 + 1 • 

0 5 ( 5 + 1 ) 

0 
( 5 + 1 ) 2 

5 + 2 5 + 1 

0 5 ( 5 + 1 ) 

G/?2 

GR^ 
1 0 
0 5 + 1 

GR^. NOW, 
- » * — 1 

5 + 1 

1 
5 

where Pf̂  and P2j^ are re. Note that a geld of Pi and P2 is 



G; = 
0 

s+ 1 
Both G^ and Gl were determined using an algorithm to derive 
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the Hermite form of as will be described later in this section. 

\s(s + 2) 
L 0 
's + 2 0 

0 1. 

0 
s+ 1. 

and P2 = 
(s + 1)(̂  + 2) 1 

0 s 

with detGl = (s + 2). 

It can be shown that two square p X p nonsingular polynomial matrices with 
determinants that are prime polynomials are both re and Ic. The converse of this is not 
true, that is, two re polynomial matrices do not necessarily have prime determinant 
polynomials. A case in point is Example 2.15, where P j ^ and PJ^ are re; however, 
detP\j^ = detP2R = s(s + 1). 

Left and right coprimeness of two polynomial matrices (provided that the ma
trices are compatible) are quite distinct properties. For example, two matrices can 
be Ic but not re, and vice versa (refer to the following example). 

EXAMPLE 2.16. Pi = | ^ . J and P2 = I ^ I are Ic but not 

re since a gcrd is G^ 

Finally, we note that all the above definitions apply also to more than two poly
nomial matrices. To see this, replace in all definitions P i , P2 by P i , P2, • . . , P^. This 
is not surprising in view of the fact that the p\X m matrix P\{s) and the p2 X m 
matrix P2(s) consist of pi and p2 rows, respectively, each of which can be viewed 
as a 1 X m polynomial matrix; that is, instead of, e.g., the coprimeness of P i and P2, 
one could speak of the coprimeness of the (pi + P2) rows of P i and P2. 

How to determine a greatest common right divisor (gcrd) 

LEMMA 2.3. Let Pi(s) e /?M^i><^ and P2(s) e R[S]P^'''^ with pi + P2 ^ m. Let the 
unimodular matrix U(s) be such that 

U(s) 

Then G^(^) is a gcrd of Pi(^), P2(s). 

Proof. Let 

Piis) 0 
(2.18) 

U = 
X Y 

-Pi Pi 
(2.19) 

withX G RisT""^^, y e R[sT''P\ P2 G RWP\2indPi G PM^><^2, where^ = (pi + 
P2) - m. Note that X, Y and P2, Pi are Ic pairs. If they were not, then det U 7^ a, 3. 
nonzero real number. Similarly, X, P2 and Y, Pi are re pairs. Let 

[/-' (2.20) \Pi -Y] 

vh ^\' 
where Pi e RW^'^"', P^ G RisY^^"" are re and X G R[s]P2'"i, Y G RisV^'^'' are re. 
Equation (2.18) implies that 

f/-' 
0 

Pi 
1P2 

Gl, 

i.e., G^ is a crd of Pi, Pi- Equation (2.18) implies also that 

XPi + YP2 = G^. 

(2.21) 

(2.22) 
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This relationship shows that any crd GR of Pi, P2 will also be an rd of G\. This can 
be seen directly by expressing (2.22) as MGR = G*j^, where Af is a polynomial matrix. 
Thus, G^ is a crd of Pi, P2 with the property that any crd GR of Pi, P2 is an rd of G^. 
This impHes that G^ is a gcrd of Pi, P2. • 

EXAMPLE 2.17. Let Pi = 

Then 

's(s + 2) 0 
. 0 (s + 1)^ 

U Pi X 

-Pi 

s + 2 
0 

Y 

Pi} 
Pi 

IP2I 

-(s + 2) 

s+ 1 

-(s+lf 

-(s + 1) 

,P2 

-1 

1 

(s + l)(s + 2) ^ + 1 ' 
0 s(s + 1) 

—s 

0 

s+ 1 

-s 

s(s + 1) 

s 

0 

0 

0 

- 1 

Pi 
P2} 

0 
s+ 1 

0 
0 

In view of Lemma 2.3, G^ = 

G -

5 + 2 0 
0 s-hl 

is a gcrd (see also Example 2.15). 

Note that to derive (2.18) and thus determine a gcrd G^ of P i and P2, one could 
use the algorithm that was developed above, in Subsection 7.2C (or a variation of 
this algorithm) to obtain the Hermite form. Finally, note also that if the Smith form 

of Pi 
Pi 

is known, i.e., UL PI 

PI 
UR = SP = 

diaglEi] 0 
0 0 

Pi 

, then (diag [e/], 0) t /^ ^ is 

a gcrd of P i and P2 in view of Lemma 2.3. When rank 
Pi 

= m, which is the case 

of interest in systems, then a gcrd of P i and P2 is diag [6/]L^^ ^. 

Criteria for coprimeness 

There are several ways of testing the coprimeness of two polynomial matrices, 
as shown in the following theorem. 

THEOREM 2.4. Let Pi E R[sV^'''^ and P2 G P[5]^2xm with pi + p2 ^ m. The fol
lowing statements are equivalent: 

(i) Pi and P2 are re. 
(ii) A gcrd of Pi and P2 is unimodular. 

(iii) There exist polynomial matrices X G R[S]'^^P^ and Y G R[S]'^^P^ such that 

XPl + FP2 = Im. (2.23) 

(iv) The Smith form of 

(v) rank PliSi) 
PliSi). 

m for any complex number Si. 

constitutes m columns of a unimodular matrix. 



Proof, Statements (i) and (ii) are equivalent by definition. Assume now that (iii) is true. 
Then (2.23) impUes that any crd of Pi and P2 must be an rd of Im, which is of course 
a crd of Pi and P2. Therefore, in view of the definition of a gcrd, Im is a gcrd (see also 
proof of Lemma 2.3) and so (ii) is true. To show that (ii) also implies (iii), determine a 
gcrd GJ as in the Lenrnia 2.3 and note that GJ is unimodular. Premultiplying (2.22) by 

we obtain (2.23). 
To show (iv), recall that a gcrd of Pi and P2 can be determined from the Smith form 

Px' 
of 

P2 
as GJ = (diag [£/], 0)t/^ ^ (refer to the discussion following Example 2.17). It is 

now clear that a gcrd will be unimodular if and only if the Smith form of 

(iv) and (ii) are equivalent). To show (v), consider (2.18) and note that rank 

IS (i.e.. r/1 
LOJ 

\Pl(Si)] ^ 
[Piisi)! 

rank GJ(5'/). The only Si that can reduce the rank are the zeros of the determinant of GJ. 
Such Si do not exist if and only if detG]^ = a, a nonzero real number, i.e., if and only 
if G^ is unimodular. Therefore (v) implies and is implied by (ii). Part (vi) was shown in 
the proof of Lemma 2.3. • 

EXAMPLE 2.18. (i) The polynomial matrices Pi = 
0 

^ + 1 
P2 = 

s+ 1 
0 

(see also Example 2.15) are re in view of the following relations. To use condition (ii) 
of Theorem 2.4, let 

U Pi 
Pil 

-(s + 2) 

s+ 1 

-(s + If 

-(s + 1) 

- 1 

1 

—s 

0 

s+ 1 

s(s + 1) 

\PI 

[Pl. 
= 

' 1 
0 

0 
0 

0" 
1 

0 
0 

= 
. 0 . 

Then G^ = h, which is unimodular. Applying condition (iii), XPi + FP2 = 
" (̂  + 2) -11 p + 1 0" 

s+1 l | ^ I -^ 0 
/ 2 . 

To use (iv), note that the invariant polynomials of 

h form is then 
0 

Pi 
areei = e2 = 1; the Smith 

that may reduce the rank of 

. To use condition (v), note that presently, the only complex values st 

~Pl(Si)] 

P2(Si)\ 
are those for which detP\{Si) or detP2(si) = 0, 

i.e., 1̂ = 0 and S2 = - 1 . For these values we have rank 

and rank 'Pl(S2) 

Piisi). 
= rank 

' - 1 
0 
0 
0 

0" 
0 
1 

- 1 

'PliSl) 
Piisi). 

= rank 

0 0 
0 1 
1 1 
0 0 

= 2 

= 2, i.e., both are of full rank. 

Note that if the criteria for coprimeness given in Theorem 2.4 are used for a 
pair P i , P2 that is not re, then (ii) will provide a gcrd G^ of P i , ^2- The other tests 
provide only partial information about G^. In particular, applying (iv), one obtains 
the Smith form of G^ (show this), while (v) will give information about the zeros of 
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540 THEOREM 2.5. Let Pi G RlsV""^ and P2 ^ RisV"^^ with mi + m2 > p. The fol-
Linear Systems lowing statements are equivalent: 

(i) Pi and P2 are Ic. 
(ii) A geld of Pi and P2 is unimodular. 

(iii) There exist polynomial matrices X G R[S]'^I^P and Y G R[S]'^^^P such that 

PiX + P2Y = Ip. (2.24) 

(iv) The Smith form of [Pi, P2] is [/, 0]. 
(v) rank [Pife), P2(si)] = p for any complex number si. 

(vi) [Pi, P2] are p rows of a unimodular matrix. 

Proof. The proof is completely analogous to the proof of Theorem 2.4 and is omitted. 

E. The Diophantine Equation 

The linear Diophantine Equation of interest to us is of the form 

X(s)D(s) + Y(s)N(s) = Q(sl (DIO) 

where D(s), N(s), and Q(s) are given polynomial matrices and X(s), Y(s) are to be 
determined. This equation will be studied in detail in this subsection. First, par
ticular solutions of the Diophantine Equation are derived. Next, all solutions are 
conveniently parameterized. These parameterizations are used later in this chapter 
(in Section 7.4) to characterize all stabilizing linear feedback controllers of a linear 
time-invariant system. This subsection is concluded with some historical remarks. 

In greater detail, solutions of the polynomial Diophantine Equation of low de
gree are derived in Lemma 2.6, using the Division Theorem for polynomials, and in 
Lemma 2.8, using the Sylvester Matrix of two polynomials. Corresponding results 
for the polynomial matrix Diophantine Equation are derived in Lemma 2.12, using 
the Division Theorem and in Lemma 2.14, using the Eliminant Matrix. All solutions 
of the Diophantine Equation are parameterized in Theorem 2.15. 

The polynomial case 

Given coprime polynomials d{s) and n(s), it was shown in Theorem 2.4 that 
there exist polynomials x{s) and y{s) such that 

x(s)d(s) + y(s)n(s) = 1. (2.25) 

It can be shown that x(s) and y(s) are unique when certain restrictions are imposed 
on their degrees. In particular, the following result is true. 

LEMMA 2.6. Let d(s) and n(s) be coprime polynomials. Then there exist unique poly
nomials x(s) and 5̂ (̂ ) that satisfy 

x(s)d(s) + yisMs) = 1 (2.26) 

with deg y(s) < deg d(s) [or deg x(s) < deg n(s)]. (2.27) 

Proof. In view of Theorem 2.4, d(s) and n(s) are coprime if and only if there exist poly
nomials x(s) and y(s) such that x(s)d(s) + y(s)n(s) = 1. The basic Division Theorem 
for polynomials can now be used to obtain polynomial solutions of lower degree. In par
ticular, there exists a unique quotient polynomial q(s) and a unique remainder polynomial 



r{s) such that 

y(s) = q(s)d(s) + r(s) with deg r(s) < deg d(s). 

Now define 

y(s) = r(s) = y(s) - q(s)d(s), x(s) = x(s) + q(s)n(s), (2.28) 

where degy(s) < degd{s). Then x{s)d{s) + y{s)n{s) = x(s)d(s) + y(s)n(s) + 
[q(s)n(s)d(s)-q(s)d(s)n(s)] = x(s)d(s) + y(s)n(s) = I. Also note that deg [x(s)d(s)] = 
deg [I - y(s)n(s)] < deg[d(s)n(s)], so that deg x(s) < degn(s). To prove uniqueness, 
suppose there exists another pair x(sX y(s) that satisfies the lemma. Then 

[x{s) - x{s)]dis) + [>̂ (̂ ) - y(s)]n(s) = 0, 

which imphes that 

[ x W - x W ] = -[y(s) 
d{s) 

Since deg [y{s) - y{s)\ < deg d(s) and the left-hand side is a polynomial, this rela
tion implies that d(s) and n(s) must have a common factor that contradicts the assumption 
that d(s) and n(s) are coprime. Therefore, x(s) and y(s) are unique. Note that the proof of 
the lemma when in (2.27) deg x(s) < deg n(s) (for the part in parentheses) is completely 
analogous. In this case, let x(s)d(s) + y(s)n(s) = 1 and divide x(s) by n(s). • 

Given coprime polynomials d(s) and n(s), one way of determining x(s) and y(s) 
that satisfy the above lemma is to follow the procedure outlined in its proof. In par
ticular, x(s) and y(s) that satisfy (2.25) are determined first, and then polynomial 
division is used to reduce their degrees, if necessary. 

The following example illustrates this procedure. 

EXAMPLE 2.19. Let d(s) = s(s - 1) and n(s) = s 
x(s)d(s) + y(s)n(s) = \s[s(s-l)]-l(s^ + s + 2)[s-2] = 

2, which are coprime. Let 
k(s'- ^)-Us^-s^-4) = 1. 

Us^ + s + 2) = q(s)d(s) + r(s) = (-\)[s(s - 1)] + [-\{s + 1)], from Then y{s) • ^ 
which we obtain 

yi^s) = r{s) = -\{s+ 1) and x{s) = x(s) + q(s)n(s) = ^s + (-\)(s - 2) = ^ 

Note that x(s)d(s) + y(s)n(s) = ^[s(s - 1)] + (-\(s + l))ls - 2] = 1 and degy(s) = 
1 < degd{s) = 2 [degx(s) = 0< degn(s) = 1]. 

The polynomials x(s) and y(s) can also be determined using the Sylvester Matrix 
of the polynomials d(s) and n(s), which in fact provides an alternative way of testing the 
coprimeness of d(s) and n(s). The Sylvester Matrix of d(s) and n(s) is now introduced. 

Consider the polynomials, 

d(s) = dnS"" + dn-lS''^^ + '" + diS + do, dn^O 

n(s) — riynS^ + nyn-\s^~^ + • • • + n\s -\- n^, m < n. 

The Sylvester Matrix of the polynomials d{s), n(s) is defined as 

(2.29) 

S(d, n) = 

dn 
0 

0 

^m 

0 

dn-l 

dn 

0 

rim-i 

^m 

dn-2 ' 

dn-l 

0 

nm-2 ' 

nm-\ ' 

" dl 

•• d2 

" 0 

•• no 

•' nx 

do 
dx 

dn 
0 
no 

0 
do 

dn-l 

0 
0 

0 
0 

dn-2 ' 
0 
0 

•• 0 
•• 0 

•• do 
•• 0 
•• 0 

0 0 0 0 nm-i no 

(2.30) 
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where the block that contains the coefficients of d(s) has m rows and the one that contains 
the coefficients of n(s) has n rows. The coefficients are arranged so that there art n + m 
c o l u m n s , i .e . , S(d, n) E Rin+m)X{n+m)^ 

The determinant of S{d, n) is known as the Sylvester Resultant or Resultant of the 
polynomials d{s) and n{s). Note that the matrix S{dy n) is sometimes^eferre4ta^s the 
Eliminant Matrix of the polynomials d{s), n(s). • 

THEOREM2.7. The polynomials d(s) and n(s) are coprime if and only if det S{d, n) 7^ 
0, that is, if and only if their resultant is nonzero. 

Proof, (Necessity) Suppose that d{s) and n{s) are coprime but their resultant is zero. 
This implies that there exists a nonzero vector a, a^ G /?""+" such that aS{d, n) = OOY 
such that 

aS{d, n) 

^n+m-l 

^n+m-2 

S 

1 J 

= a 

's'^-^disY 

sd(s) 
d(s) 

s^'-^nis) 

sn(s) 
. n(s) J 

= [ai(s),a2(s)] 
d(s) 
n(s)^ 

= 0, 

where 0:1(5) = a i anda2W = «2 with [01,0:2] = a. Note that both oiC ŷ) 

and 0:2(5) are nonzero since otherwise either n(s) or d(s) would be zero and therefore 
n(s) and d(s) would not be coprime. Write d(s)/n(s) = -a2(s)/ai(s). Since deg02(5) < 
degd(s) and degai(s) < degn(s), it follows that d(s) and n(s) must have a common 
factor. Therefore, d(s) and n(s) are not coprime, which is a contradiction. Thus, S(d, n) 
has full rank, or detS(d, n) # 0. 

(Sufficiency) Assume that detS{d, n) ^ 0. Take a = [0 , . . . , 0, l]S(d, n)'^ and 
let 0:1(5) = o:i[5'"~^ . . . , 5, 1]^, 02(5) = 02[5'^~^ .. . ,5, 1]^, where [ai, 02] = a. Then 
0:1(5)^(5) + 0:2(5)^^) = o:5(J,^)[5"+^-i,5"+'^-2, . . . , 5 , 1]^ = 1, which implies, in 
view of Theorem 2.4, that d(s) and n(s) are coprime. • 

Remarks 

(i) Theorem 2.7 is attributed to Sylvester (1840). 
(ii) A useful relation, used in the proof of Theorem 2.7, is 

s'^-^dis)] 

S(d, n) 

^n+m-\ 

^n+m—2 

sn(s) 
n(s) 

where d(s) and n(s) are given in (2.29) and S(d, n) is defined in (2.30). 

sd{s) 
d(s) 

(2.31) 



(iii) It is possible to arrange the coefficients in S{d, n) in several different ways, 
recalling that elementary row and column operations leave the rank of 
S{d, n) unchanged. For example, forn = 3, m = 2, 

(a) 

^3 
0 
«2 

0 
0 

di 
d3 
n\ 
«2 

0 

d\ 
d2 
no 
n\ 
ni 

do 0" 
d\ do 
0 0 
no 0 

n \ no J 

(c) 

, 

do di 
0 do 
no ni 
0 no 
0 0 

(b) 

d^ ^2 

0 d3 
0 0 
0 n2 

_n2 ni 

d2 d3 0" 

di d2 d3 
n2 0 0 
ni n2 0 

no n 1 n2 

dx 
d2 
n2 
ni 
no 

do 
d\ 
ni 
no 
0 

0 
do 
no 
0 
0 

are all nonsingular if and only if d(s) and n(s) are coprime. The matrix in 
(a) is the Sylvester Matrix as defined in (2.30). The matrices in (b) and (c) 
are variations of the Sylvester Matrix found in the literature, 

(iv) By adding zero coefficients in n(s), it can always be assumed that the poly
nomials d(s) and n(s) have equal degrees (m = n) when using the test pro
vided by Theorem 2.7. This leads yet to another variation of the Sylvester 
Matrix of two polynomials of dimension 2n X 2n. 

Using the procedure followed in the sufficiency proof of Theorem 2.7, it is 
straightforward to derive the unique polynomials x(s) and y(s) that satisfy (2.26) 
and (2.27) of Lemma 2.6. This is illustrated in the next example. 

EXAMPLE2.20. Lti d(s) = s(s-l) midn(s) = ^ -2 , which are coprime as in Example 
2.19. In this case the Sylvester Matrix or the eliminant of d(s) and n(s) in (2.30) is 

n - 1 01 
S(d, n) = \l -2 0 and the resultant is detS{d, n) = 2 T̂  0, as expected, since 

LO 1 - 2 J 
d{s) and n{s) are coprime polynomials. In view of the sufficiency proof of Theorem 2.7, 

[4 - 2 0 
let a = [ai,a2\ = [0,0,l]S(d, n)'^ = [0,0,1] 

x(s) = ai(s) = ^,y(s) = a2(s) 

determined in Example 2.19. 

[ i i , - i j .Then 

- ^(5 +1), which also is the answer 

Using the Sylvester Matrix of coprime polynomials enables one in fact to deter
mine solutions to the more general Diophantine Equation 

x(s)d(s) + y(s)n(s) 

as the following lemma shows. 

q(sl (2.32) 

LEMMA 2.8. Let d(s) and n(s) be coprime polynomials with degd{s) = n and 
degn{s) = m ^ n given by (2.29). Let q(s) be a polynomial of degree n + m - 1. 
Then there exist unique polynomials x{s) and y{s) that satisfy 

with 

x{s)d{s) + y{s)n{s) = q(s) 

f x(s) < m and deg y(s) < n. 

(2.33) 

(2.34) 
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Proof, The proof is constructive. Let x{s) = [x^-i,. • •, xi, xo][s'^ ^,.. .,s,l]^, let 
y(s) = [yn-h-",yhyo][s''~K...,s,lV,2indwntQx(s)d(s) + y(s)n(s) = [x^ - i , . . . , XQ, 
yn-h . •., yo][s'^~^d(s),..., sd(s), d{s), s^'-^nis),..., sn{s), n{s)Y = [Xm-h • • •, -̂ o, 
yn-u . . . , yo]S(d, n) [s-^^-\ . . . , ,̂ 1]^ = q(s) = [qn^^-i, • . . , ^i, q^Ms^^^'K •. •, ,̂ 1 ] ^ 
where relation (2.31) was used. This equality is now satisfied if and only if 

[Xm-\, ...,XQ,yn-\,..., yQ\S{d, u) - [qn+m-\, - ", q\, <?o] (2.35) 

is satisfied. Since S{d, n) is nonsingular, Eq. (2.35) has a unique solution that determines 
unique x{s) and y{s) that satisfy relations (2.33) and (2.34). • 

EXAMPLE 2.21. Consider d{s) = s{s - 1) and n{s) = s - 2, which are coprime 
as in Examples 2.19 and 2.20. Let q(s) = q2S^ + qis + qo be an arbitrary second-
degree polynomial (n + m - I = 2 + 1 - 1 =2). Relation (2.35) yields in this 

= [q2, qi, qo]^ from which we obtain [XQ, yi,yo] = case [xo,yi,yo] 

\[q2,q\,qo\ 

"1 - 1 0" 
1 - 2 0 

.0 1 - 2 . 
'4 - 2 0' 
2 - 2 0 
.1 - 1 - 1 , 

= [2q2 + ^1 + ^0, -qi q\ - hqo, -\qo\ and 

x{s) = XQ = 2q2 + q\ \qo 

y(s) = [yi, yo] = (-\qo) + {-qi - q\- \qQ)s. 

For q{s) + 2 ^ + 1 , x{s) = | , and y(s) = - \ - Is. • 

COROLLARY 2.9. Let d(s) and n(s) be coprime polynomials with degd(s) = n and 
deg n(s) < n. Let q(s) be a polynomial with deg q(s) < 2n- I. Then there exist unique 
polynomials x(s) and y(s) that satisfy the relation 

x(s)d(s) + y(s)n(s) = q{s) (2.36) 

with deg x{s) < n and deg y{s) < n. (2.37) 

Proof, The proof is similar to the proof of Lemma 2.8, where in place of S{d, n) E 
(̂n+m)x(n+m)̂  the 2n X 2n Sylvester Matrix S{d, n) of d{s) = dnS"" + • • • + Ji^ + JQ, 

(i„ 7̂  0 and n{s) = rinS^ + --- + nis + HQ is used. Zero coefficients are added in n(s) if 
necessary. Note that S(d, n) is exactly S(d, n) of (2.30) with m = n. This leads to the 
relation 

{Xn-\, ...,XQ, yn-\,..., y()\S{d, n) = [qm-i, • • •, ^b ^oL (2.38) 

which is the equation corresponding to (2.35). Since d{s) and n{s) are coprime, S{d, n) 
is nonsingular and the x{s) and y{s) that satisfy (2.38) are unique. • 

EXAMPLE 2.22. As in Example 2.21, consider d{s) = s{s — \) = s^ - s and n{s) = 
2 = O'S^ -\-s- 2, which are coprime. Then (2.38) implies that 

Ti - 1 0 ol 
0 1 - 1 0 

p 1 - 2 0 
0 0 1 - 2 

[xi, xo, yi, yo] = [qs, qi. qi, qol 

where (̂5-) = ^3^^ + 2̂-ŷ  + ^i^ + ^o is a third-degree polynomial ( 2 ^ - 1 = 2 .2 -1 = 3). 

It can easily be seen that one could equivalently solve xi = qs and [XQ, yi, yo] X 
"1 - 1 01 

= [qi + q-iy qu qo] (compare with Example 2.21), from which we obtain 0 
- 2 



x(s) = [xi, xo] 

y(s) = [yu yo] 

= qss + [2(q2 + ^3) + ^1 + ^qo] 

= [-(qi + qs) - qi- \qQ\s + (-5^0). 

Note that for q^ = 0, this solution is precisely the solution of Example 2.21. • 

The polynomial matrix case 

Similar results as in the preceding can be shown for polynomial matrices. First 
the Division Theorem for polynomial matrices is established. 

THEOREM 2.10. Let D{s) E R[sT^'^ be nonsingular. Then for any A (̂̂ ) G RisY^"^ 
there exist unique polynomial matrices Q{s), R(s) such that 

N(s) = Q(s)D(s) + R(s) (2.39) 

with R(s)D(s) ^ strictly proper, or with deg^. R(s) < deg^. D(s), j = 1 , . . . , m, when 
D(s) is column reduced. 

Proof. Let H(s) = N(s)D~^(s) be a rational matrix. By polynomial division in each en
try, decompose this matrix uniquely into H(s) = Hsp(s) + P(s), where Hsp(s) is a strictly 
proper rational matrix and P(s) is a polynomial matrix. Then N(s) = H(s)D(s) = 
P(s)D(s) + R(s), where R(s) = Hsp(s)D(s). Then R(s) is a polynomial matrix (since it 
is equal to N(s) - P(s)D(s)), and by definition, R(s)D~^(s) = Hsp(s) is strictly proper. 
Note that when D(s) is column reduced, then in view of Lemma 2.2, R(s)D~^(s) is 
strictly proper if and only if deg^. R(s) < deg^. D(s), j = 1 , . . . , m. We shall now 
verify uniqueness of Q(s) and R(s) directly; it also follows from the construction. 
Suppose there are two pairs such that Q(s)D(s) + R(s) = Q(s)D(s) + R(s). Then 
Q(s) ~ Q(s) = [R(s) — R(s)]D~^(s). Since the left-hand side is a polynomial matrix 
and the right-hand side is a strictly proper rational or zero matrix, this equality can hold 
only when both sides are zero, i.e., Q(s) = Q(s) and R(s) = R(s). • 

As expected, the following result also holds. 

THEOREM 2.11. Let D(s) G R[sY^P be nonsingular. Then for any N(s) G RlsY^"" 
there exist unique polynomial matrices Q(s), R(s) such that 

N(s) = D(s)Q{s) + R(s) (2.40) 

with D~^(s)R(s) strictly proper, or with deg^. R(s) < deg^. D(s), i = 1,..., p, when D(s) 
is row reduced. 

Proof. The proof of this result is completely analogous to the proof of Theorem 2.10. • 

Given re polynomial matrices D(s) G R[s]^^^ and A^(^) G R[sy^"^ it was 
shown in Theorem 2.4 that there exist polynomial matrices X(s) and Y(s) such 
that 

Let 

X(s)D(s) + Y(s)N(s) = Im. 

H(s) = N(s)D-\s) = D-\s)N(s) 

(2.41) 

(2.42) 

be proper, where D(s) G R[sy^P and N(s) G R[sy^^ are Ic with D(s) row reduced. 
Let V be the highest degree of the polynomial entries in D(s) and denote this as 
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p = degD(s). (2.43) 
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We point out that it can be shown that v is the observabihty index of the system 
His) = N{s)D-\s) = D-\s)N{s). 

LEMMA 2.12. Given D{s) G RisT^"^ and N{s) E RisY^"^ that are coprime, there exist 
polynomial matrices X{s) and Y{s) that satisfy 

such that 

X{s)D{s) + Y{s)N{s) 

deg Y(s) < V. 

(2.44) 

Proof, This result can also be established by using the eliminant of N{s) and D{s) to be 
introduced in Lemma 2.14. In the present proof, use is made of the Division Theorem for 
polynomial matrices (Theorem 2.10). Let X{s) E Risf'''^ and Y{s) E R[SY'''P satisfy 
(2.41). There exist unique polynomial matrices Q{s) E R[ST^P and R{s) E RisT'^P 
such that Y{s) = Q{s)D{s) + R{s) with R{s)D'^{s) strictly proper, where b{s) is row 
reduced and satisfies (2.42). Now define Y{s) = R(s) = Y(s) - Q(s)D(s) and X(s) = 
X(s) + Q(s)N(s). Then X(s)D(s) + Y(s)N(s) = X{s)D(s) + Y(s)N(s) + [Q(s)N(s)D(s) -
Q(s)D(s)N(s)] = X(s)D(s) + Y(s)N(s) = /^. Note also that, in view of Lemma 2.1, 
if R(s)D'^(s) is strictly proper, then the column degrees of R(s) are less than v, i.e., 
deg Y(s) < V. In addition, note that from X{s)D{s) = Im - Y(s)N(s) it follows that 
deg,. (X(s)D(s)) = deg,. (/^ - Y(s)N(s)) <v + deg,. N(s\ j = l,...,m. • 

Remarks 
(i) When D(s) is row proper, then n = deg\D(s)\ = sum of the row de

grees of D(s) < pp, that is, v ^ n/p. If D(s) is not row proper, then 
n = deg \D(s)\ < sum of the rows degrees of D(s) and degD(s) can be 
large. 

(ii) In the polynomial case we have that v = n and Lemma 2.12 reduces to 
Lemma 2.6. 

(iii) Using the Eliminant Matrix of the re polynomial matrices A (̂̂ ) and D(s), 
where D(s) is column proper, it will be shown (in Lemma 2.14) that (2.44) 
has a solution with both deg Y(s) < v and degX{s) < v. 

The Eliminant Matrix 
Consider the polynomial matrices N{s) E R[sy^'^ and D{s) E RisY"^"^ with 

D{s) column proper. Let deg^.N(s) < deg^.D(s) = dj, j = 1 , . . . , m, and assume 
that dj > I, j = 1 , . . . , m. The Eliminant Matrix Me of N(s) and D(s) is a general
ization of the Sylvester Matrix, or of the Eliminant of two polynomials, introduced in 
(2.30), and is defined in an analogous manner (see also Remarks following Theorem 
2.7). In particular, we write 

A (̂̂ ) 
sN(s) 

D(s) 
sD(s) 

e^- l D(s) 

= MekSek(s) = Mek block diag 

^dj + k-\ 

(2.45) 



for some integer k, where M^k G RKp+rn)x{j^dj+mk)^ ^^^^ ^^^^ f^^ ^ > {ldj)/p,Mek 
will have as many as or more rows than columns. Let ^ = V be the least integer k 
that minimizes (^dj + mk) — rank M^k, or equivalently (as can be shown), let ̂  = V 
denote the observability index of the system {DJ^N}, or of its equivalent state-space 
description (refer to the discussion on equivalence of representations in Subsection 
7.3A). 

The Eliminant Matrix of N{s) and D{s) is defined as the v{p + m) x{n + mv) 
matrix 

Me=Mev, 

where n = ^dj = deg det D{s), since D{s) is column proper. Note that the observ
ability index v satisfies v > n/p, and therefore, Me has as many as or more rows than 
columns. The following result is a generalization of Theorem 2.7 (which involved 
the Sylvester Matrix of two polynomials) to polynomial matrices. 

THEOREM 2.13. The polynomial matrices N{s) and D{s) given above are re if and 
only if their eliminant matrix M^ has full column rank, i.e., if and only if 

rank Me = n + mv. (2.46) 

Proof, The proof is omitted. For a proof of this theorem, refer to Wolovich [36]. • 
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Remarks 
(i) The Eliminant Matrix Me becomes a Sylvester Matrix when applied to 

polynomials. In particular, for d{s) 
n^s^ -\-n2S^ -\-nis-\-no^p = m= l,/i = 

n{s) 
sn{s) 

= ^3^^ + d2S^ 
di=v = 3, 

d{s) 
sd{s) 
s^d{s)\ 

•MeSeis) 

"no 
0 
0 
do 
0 
.0 

n\ 
no 
0 
di 
do 
0 

n2 
ni 

no 
di 
di 
do 

m 
ni 

n\ 
d3 

di 
di 

0 

m 
ni 
0 
d3 
di 

0" 
0 
"3 

0 
0 

d3. 

-\-dis-\-do and n{s) 
this is true where 

1 

(ii) 
See also Remarks following Theorem 2.7. 
It can be shown that 

rankMek = rankMey, ^ > V, 

i.e., the rank of Mek is the maximum possible when k is equal to the 
observability index of the system. This is a consequence of the alternative 
definition for v previously given. 

The Eliminant Matrix can be used to determine solutions of the Diophantine 
Equation 

X{s)D{s)^Y{s)N{s) = Q{s). (2.47) 

The Diophantine Equation is further discussed later in this subsection. 

LEMMA 2.14. Consider the re polynomial matrices N(s) e R[S]P'''^,D(S) e R[s]'^'''^. 
Let D{s) be column proper, and assume deg^.N{s) < deg^.D{s) = dj,dj > lj = 

1,...,m [note that H{s) = N{s)D-^ (s) is proper]. Let Q{s) G Rls]^"""^ with 

deg,.Q{s)<dj + v-l, (2.48) 
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where v is the observabiHty index of the system {D, I, N, O}. Then there exist X(s) 
R[s]qxm and Y(s) G R[s]^''P that satisfy the equation 

X(s)D(s) + Y(s)N(s) = Q(s) 

with degX(s) < v ~ I, degY(s) < v - I, 

where degX(s) denotes the highest polynomial degree in the entries of X(s). 

Proof. The proof is by construction. Let 

In. 

(2.49) 

X(s) = Xo+Xis + '-'+X^-is""^ = [Xo,Xu ...,X,-i] 
Sim 

3 Iffi 

(2.50) 

and Y(s) = Fo + Fi5 + • • • + F.-i^""^ = [YQ, F I , . . . , F , - i ] 
sin 

S^'-^In 

(2.51) 

Then Y(s)N(s) + X(s)D(s) = [YQ, F ^ Yp-i,Xo,Xi,.. .,Xj,-\] 

N(s) 
sN(s) 

D(s) 
sD(s) 

[Fo,. . . , F^-i, Zo , . . . , X^,-i]MeSe(s) = Q(s) = QSe(s), in view of the definition of the 
eliminant matrix Me and the assumptions on the column degrees of Q(s) in (2.48). 
Therefore, (2.49) is satisfied with X(s) and Y(s) given in (2.50) and (2.51) if and only if 

[Fo, . . . ,F ,_ i ,Xo, . . . ,X,_i ]M, = Q (2.52) 

is satisfied, where M, G R^(p+m)x(n+mv) ^^^ Q ^ j^qx(n+mv) ^^^^ ^ ^ ^"J^i^j = 
degdetD(s). Since N(s) and D(s) are re, it follows from Theorem 2.13 that rank Me = 
n + mv, i.e., Me has full column rank. This implies that a solution to (2.52) exists for 
arbitrary Q. Therefore, solutions X(s) and Y{s) of (2.49) with degX(s) ^ v - I and 
deg Y(s) < ẑ  - 1 always exist. • 

Remark 

When N(s) and D(s) are polynomials, Lemma 2.14 reduces to Corollary 2.9 
(with n(^)/(i(5*) proper). In this case, v = di = n = deg(detD(s)). 

EXAMPLE 2.23. The polynomial matrices N(s) = 
s+l 0 

1 1 
,D(s) 

0 
-s + 1 

are re since rank 2 for A = 0 and A = 1, the roots of detD(s). D(s) is col-
rA (̂A) 
LD(A). 

umn proper with deg^ D(s) = d\ = 2, deg D(s) = di = \, n = d\ -\- d2 = 3, while 
deg^^ N(s) = 1 < Ji = 2 and deg^^ N(s) = 0 < d2 = I, p = m = 2. To construct the 
Eliminant Matrix of N(s) and D(s), we note that n/p = | , and therefore, we let A: = 2 



be an initial value. Then 

N(s) 
sN(s) 
D(s) 
sD{s) 

MelSe: 

1 
1 

1 
0 

0 
0 

0 
0 

0 
1 

0 
0 

0 
0 

0 
1 

1 
1 

0 
0 

1 
0 

1 
0 

0 
0 

0 
0 

0 
0 

0 
1 

0 
1 

0 
- 1 

0 
0 

0 
0 

0 
0 

0 0 
1 - 1 

ri 
s 

\s^ 

r' 
0 
0 

[o 

01 
0 
0 
0 
1 
s 

s^\ 

Note thai rank Me2 = 1 = ẑ + m^, which is full column rank. Therefore, ẑ  = 2 and the 
EHminant Matrix of N(s) and D(s) is Me = Mei- The fact that rank Me = 1 also verifies 
that N{s) and D{s) are re. 

We consider the Diophantine Equation (2.49) next, 
(i) First, we let Q{s) = [s^ + 1, s^], which satisfies (2.48), and we write Q(s) = 

I s s^ s^ 0 0 0 
0 0 0 0 1 5 2̂ . Then Eq. (2.52) QSe(s) = [1, 0, 0, 1, 0, 0, 1] 

assumes the form 

[Yo, Yi,Xo,Xi]Me = Q = [l 0, 0, 1, 0, 0, 1], 

which is an algebraic system of linear equations with 8 unknowns and 7 linearly 
independent equations that have more than one solution. One such solution is 
given by [70,1^1,^0,^1] = [I 0 , - 1 , 1, 1, 0, 1, - 1 ] , which, in view of (2.50) 
and (2.51), implies that 

X(s) = Xo + Xis = [1, 0] + [1, -l]s = [s+l, -s] 

Y(s) - Fo + Yis = [1, 0] + [ -1 , 1]^ = [1 - s,s] 

is a solution to the Diophantine Equation with degX(s) = I = v 
degY(s) = \ = v - \ . 

and we write Q{s) = QSeis) = 

1 and 

(ii) Next, we let Q(s) = ^ 

1 0 0 0 : 0 0 0 

0 0 0 0 : 1 0 0 

assumes the form 

1 s 
0 0 0 0 

0 0 
1 s 

Then Eq. (2.52) 

[Yo,YuXo,Xi]Me = Q = 
1 0 0 0 0 0 0 
0 0 0 0 1 0 0 
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A solution of this equation is [FQ, FI , XQ, Xi ] = 

This implies that 

1 0 ] ro 0 
-1 oJ"^Lo 0 

1 01 r - 1 0 ' 

1 0 - 1 0 1 0 0 0 
- 1 1 1 0 - 1 0 0 0 

X(s) = Xo+ Xis 

Y(s) = Yo + Yis 
- 1 1 + 1 0 

1 0 
- 1 0 

1 -s 0 
- 1 +s 1 

is a solution of the Diophantine Equation with deg X(s) = 0 < z ^ - l = 1 and 
degY(s) = \ = v-\. • 
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In the preceding development, it was shown how to derive particular solutions 
of the Diophantine Equation, given coprime polynomials and polynomial matrices. 
In the following, conditions for existence of solutions are derived and all solutions 
of the Diophantine Equation are conveniently parameterized. 

THEOREM 2.15. Consider nonzero polynomial matrices D(s) G RlsY^^"^ and N(s) G 
R[s]P2Xm with pi+ p2^ m, let GR(S) G /?[^]^^^ be a gcrd of D(s) and A (̂̂ ), and let 
Q(s) G R[sY'''^. The Diophantine Equation 

X(s)D(s) + Y(s)N(s) = Q(s) (2.53) 

has polynomial matrix solutions X(s) G R[SY^P^ and Y(s) G R[S]^^P^ if and only if 
GR(S) is an rd of Q(s). If GR(S) is an rd of Q(s), then (2.53) has infinitely many polynomial 
matrix solutions. If X(^) = Xo(s) and Y(s) = FQ(5) is one such solution, then all solutions 
of (2.53) are given by 

X(s) = Xo(s) - K(s)Nds) 

Y(s) = Yo(s) + K(s)Ddsl 

(2.54a) 

(2.54b) 

where K(s) G Ris]^""' and where NL(S) G RIS^^P^, DL G RISY^'P^, r = (pi + P2) - m 
are Ic and satisfy NL(S)D(S) + DL(S)N(S) = 0, i.e., [-NL(S), DL(S)] is a minimal basis 

of the left kernel of 
N(s), 

Proof, If there exist X and Y that satisfy (2.53), then (XDR + YNR)GR = Q, which 
implies that QG^ ̂  must be a polynomial matrix. Thus, GR is an rd of Q that is a necessary 
condition for solutions of (2.53) to exist. To show that this also constitutes a sufficient 
condition, assume that GR is an rd of Q, i.e., Q = QRGR for some polynomial matrix 
QR, and recall that there exist polynomial matrices X G RisY'^P^ Y G RISY'^P^ such 
that 

XD + YN (2.55) 

The proof of this result is constructive and is based on the algorithm to determine a gcrd of 
D and N, using the Euclidean algorithm. (Refer to Subsection 7.2D, where it is shown that 

U 
X 

-NL 

Y GR 

0 
(2.55) by QR, we now obtain (QRX)D + (QRY)N = QRGR 

XQD + YoN = Q, 

, where [/ is a unimodular matrix.) Premultiplying 

a or 

(2.56) 

i.e., GR being an rd of Q is also a sufficient condition for the existence of solutions of 
(2.53). If (2.56) is satisfied, then 

(Xo - KNL)D + (Fo + KbL)N = XoD + YoN = Q, 

and therefore, (2.53) has infinitely many solutions, among them the infinitely many given 
by (2.54). It remains to be shown that every solution of (2.53) can be put into the form 
(2.54). Suppose that X and Y satisfy (2.53). Subtracting (2.56) from (2.53), we obtain 
(X - Xo)D + (Y- Yo)N = 0, or 

LQiNi^RisY''^' and^L 

[X - Xo, F - Fo] 

RlsY^'P^, r = (pi 

D 

= 0. 

0. 

m be relatively Ic and such that 



Then [-NL, DL] is a minimum basis of the left kernel of . (A discussion of polynomial 

bases of vector spaces will be given shortly.) This implies that there exists some K E 
Rls]^""' so that 

[X-Xo.Y-Yo] = K[-NL,DLI 

which is (2.54). Thus, every solution of (2.53) can be written in the form of (2.54). • 

Remarks 

(i) If Z)-i exists, thenin the proof of Theorem2.15,(X-Xo)D + (F-7o)A^ = 0 
implies that Z - Z o = -(Y-Yo)ND-^ = - (F-Fo)^Z^^z. , where A L̂ and 
DL are Ic. Since X - XQISSL polynomial matrix, this implies that Y - YQ = 
i'̂ DL for some iT, where X-Xo = -^A^L-Thus, when i)~^ exists, the above 
results can be derived without directly using the concept of minimum basis 

\D] 
of the left kernel of 

Â  
(ii) In the theory of systems and control, the Diophantine Equation is of great 

use, particularly for the case when D~^ exists and ND~^ is a proper ratio
nal matrix. In this case solutions of the Diophantine Equation with special 
properties are of interest, particularly solutions where X~^ exists a n d Z ' ^ F 
is a proper rational matrix (see Subsections 7.4A, 7.4B, and 7.4C). Such 
solutions, satisfying particular properties, may also be determined via poly
nomial matrix interpolation (see the Appendix for theory and examples). It 
will be shown later in this chapter that the Diophantine Equation is central 
in the study of systems wherever feedback is used. 

Rings, modules, and polynomial bases of rational vector spaces 

Now some useful concepts from algebra are briefly reviewed. In particular, rings 
of polynomials, of proper rational functions, and of proper and stable rational func
tions are briefly discussed, together with modules and polynomial bases of rational 
vector spaces. 

Consider the set of polynomials R[s] in s with real coefficients, together with 
the usual operations of addition, +, and multiplication, •, of polynomials. Then 
(R[s], +, •) is a ring, since all the axioms of a ring are satisfied. These axioms are 
the same as the axioms of a field (see Section 1.10 of Chapter 1), except for axiom 
(vii), which assumes existence of the multiplicative inverse in a field. Indeed, if 
p(s) G R[s] then l/p(s) ^ R[s], since in general l/p(s) is a rational function but not 
a polynomial. Another example of a ring is the set of integers, taken together with 
the usual operations of addition and multiplication on integers. 

We note that R[s] is a Euclidean ring, i.e., (i) for a{s), b(s) G R[s] such that 
a(s)b(s) 7̂  0,deg[a(s)b(s)] > dega{s)\ and (ii) for every a{s),b{s) G R[s^ with 
b{s) ¥- 0, there exist (̂5-), r{s) G R\s\ such that a(s) = b(s)q(s) + r(s), where either 
r(s) = 0 or deg r(s) < deg b(s) (polynomial division). If R{s) is the field of rational 
fractions over R[s], called the field of rational functions (see Subsection 1.2A), then 
R[s] C R{s) and R{s) is also a Euclidean ring. Note that the units of R{s] are those 
polynomials p{s) for which there exist a p\s) G R[s] such that p(s)p'(s) = 1, the 
unity element of R[s], i.e., the units of R[s] are the nonzero elements of R. 

Another Euclidean ring of interest is the set of proper rational functions, taken 
together with the operations of addition and multiplication. A proper rational function 
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poles in the stable region of the ^--plane) is also a Euclidean ring. In this case, if t{s) 
is a unit then t{s) and t~^{s) are proper and stable rational functions. 

Polynomial bases of rational vector spaces are discussed next. Recall that if 
Pi{s) G R[s], then it may always be viewed as being divided by 1, in which case 
Pi{s) = Pi(s)/1 E R(s), the field of rational functions. Thus, a polynomial vector 
p(s) E R[s]P may be viewed as a special case of a rational vector p(s) E R(sy. 

Now let H(s) E R(sy^^, assume that rankH(s) = m, and consider the rational 
vector space spanned by the columns hj(s) E R(sy, j = 1 , . . . , m, of H(s) and de
note this space by Y(s). Thus, the vectors in Y(s) are generated by H(s)a{s), where 
a(s) = [ai(s),..., ap(s)]^, cxj(s) E R(s). The matrix H(s) is a basis for Y(s) and 
if T(s) E Ris)"^"""^ and rankT(s) = m, then H(s) = H(s)T(s) is also a basis for 
Y(s). Consider a right polynomial MFD of H(sl H(s) = B(s)A~\s), where B(s) E 
R[sy^^ and A(s) E R[s]^^^ are not necessarily coprime. Note that rankB(s) = m 
and B(s) is a polynomial basis of the rational vector space Y(s). Consider now the 
set M of all polynomial vectors h(s) E R[sy that can be written as linear combina
tions over the ring R[s] of the columns bj(s) E R[S]P, j = 1 , . . . , m, of B(s). The 
set M is 3. free R[s]-module and 5(^) is a basis of M. The dimension of M is <i/m 
M = rankB(s) = m. If the p rows of B(s) are re, then the free 7?[5']-module M* 
generated by the columns of B(s) is called the maximal module contained in Y{s) 
and coincides with the set of all polynomial vectors contained in the rational vec
tor space Y{s) [i.e., any polynomial vector in Y{s) can be expressed as B(s)p(s), for 
some p(s) E R[s]^]. Note that if U(s) E R[s]^^^ is any unimodular matrix, then 
B{s) = B(s)U(s) is another basis for M, and U(s) can be chosen to reduce B{s) to 
a column proper (reduced) form, if so desired. A minimal basis of a rational vector 
space Y(s) is defined as a polynomial basis B(s) of Y(s) with all its rows re, i.e., 
if B(s) E R[s]P^^ is a minimal basis of 7(5*), then any polynomial vector in Y(s) 
can be expressed as B(s)p(s) for some polynomial vector p(s) E R[s]"^, Note that 
a minimal basis 5(5*) is sometimes defined in the literature to be column proper as 
well. 

Summarizing, given H(s) E R(sy^^ and rankH(s) = m ^ p, a minimal 
polynomial basis for the rational vector space spanned by the columns of H(s) 
can be found as follows: write H(s) = B(s)A~^(s), where B(s) E R[S]P^^ and 
A(s) E R[s]^^^ are not necessarily coprime. Let GR(S) E R[S]^^"^ be a gcrd of the 
p rows of 5(5') and write B(s) = B(S)GR(S). Then B(s) is a minimal basis. To reduce 
B(s) to column proper form, consider a unimodular matrix U(s) E /^[^J'^^'^ such 
that 5(5') = 5(5)6^(^) is column proper (see Subsection 7.2B.) 

Historical remarks on the Diophantine Equation 

If n, d are two nonzero integers and the integer g is their gcd, then there exist 
integers x, y so that xd -\- yn = g (see also Lemma 2.3). This result was known to 
the fourth century B.C. Greek mathematician Euclid. 

The Diophantine Equation xd-^yn = q given above, where d, n, and q are spec
ified and solutions x, y are to be determined, is one of the equations in more than 
one indeterminants introduced by Diophantus of Alexandria, who lived around A.D. 
250. It is in fact called a linear Diophantine Equation or a Diophantine Equation of 
first-order. Diophantus, who introduced letter symbols for quantities in mathematical 



problems, is considered to be one of the greatest mathematicians. His treatise on alge
bra, considered to be the first ever, is called "API0MHTIKA" and consists of seven 
books, six of which have survived. Diophantus worked with equations involving in
tegers. An example of a specific case of the Diophantine Equation is 3x-\-2y = 4, the 
general solution of which is given byx = 2-2k,y = - 1 + 3^ with k equal to any 
integer (see Theorem 2.15). In this case, the particular solution XQ = 2, yo = -I 
was used. The parameterization of all solutions in this convenient form appears to 
be a later development, the work of Hindu mathematicians in the fifth century A.D., 
apparently of Aryabhata. It is worth mentioning at this point that another class of 
famous Diophantine Equations is x^ + y^ = z^, where x, y, z, and n are integers. 
When n = 2, then x = 3,y = 4, and z == 5 is a solution since 3^ + 4^ = 5^. Solu
tions for integer n greater than 2 do not appear to exist. In fact, the famous Fermafs 
last theorem (c. 1637) states that no solution exists for ^ > 3. Fermat wrote on the 
margin of his copy of the works of Diophantus, referring to this theorem, "I have 
discovered a truly remarkable proof which this margin is too small to contain." In 
spite of attempts over the next centuries by mathematicians like Euler, Legendre, 
and many others, this result has not yet been proved in its generality, although a re
cent proof (1994) shows great promise of being completely correct. It is, however, 
known to be true for n up to tens of thousands, using computer methods. 

Diophantus worked with integers. However, integers and polynomials obey sim
ilar rules (they are both rings), and therefore, all results of interest on the linear Dio
phantine Equation, xd -\- yn = q that were developed for integers can readily be 
written for polynomials, and this is what was done in Subsection 7.2E. These results 
for the polynomial Diophantine Equation were pointed out in the books by Gant-
macher and McDuffee (refer to the bibliography at the end of the chapter). In view 
of this, it is not surprising that solutions of linear Diophantine Equations involving 
elements other than integers or polynomials, but still members of rings, can be stud
ied and expressed in a completely analogous manner. In fact, Diophantine Equations 
with elements that are polynomials in z~^ and (s -f- a)~^ were studied in the systems 
and control literature in the 1970s by Kucera and Pernebo, among others. Later, in 
1980, Desoer et al. clearly pointed this fact out in the systems and control literature, 
namely, that the solutions of the linear Diophantine Equation, when the equation 
involves elements of rings other than integers or polynomials, are analogous to the 
integer and polynomial cases. They also addressed conditions on system descriptions 
under which such Diophantine Equations may appear. 

It will be shown in Subsection 7.3C how the linear Diophantine Equation is of 
fundamental importance in the study of feedback systems. It should be noted here 
that when q = 1, the Diophantine Equation is sometimes referred to as the Bezout 
identity (see, e.g., Kailath [21]). For the role played by the Diophantine Equation in 
control, the reader should also refer to the survey paper by Kucera [24]. For further 
details, refer to Sections 7.6 and 7.7, Notes and References, respectively. 
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7.3 
SYSTEMS REPRESENTED BY POLYNOMIAL 
MATRIX DESCRIPTIONS 

We consider system representations of the form 

P(q)z(t) = Q(q)u(tl yit) = R(q)z(t) + W(qMt) (3.1) 
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with P{q) G R[q]^''\ Q{q) G R[qY'''^, R{q) G R[q]P''K and W{q) G R[q]P'''^, wliere 
R[qy^^ denotes tlie set of / x / matrices whose entries are polynomials in q with real 
coefficients {q = (d/dt) the differential operator) and we assume that det P{q) ^ 0 
and that u{t) is sufficiently differentiable. We also assume that the set of homo
geneous differential equations P{q)z{t) = 0 is "well formed," that is, for all initial 
values of z(-) and its derivatives at f = 0 the solution does not contain impulsive 
behavior at f = 0. (This is true if and only if P~^{q) is a proper rational matrix, 
which is true for example when P{q) is column or row reduced (for further details 
refer, e.g., to Section 3.3 of [9])). Such representations, called system Polynomial 
Matrix Descriptions (PMD), were introduced in Section 7.1. 

In this section, equivalence of system representations is discussed first, in Sub
section A. This notion of equivalence establishes relations not only between poly
nomial representations, but also with state-space representations, which are in fact 
a special case of PMDs (see Section 7.1). Equivalence of PMDs preserves certain 
system properties, including controllability, observability, and stability, that are the 
topics of discussion in Subsection B, together with polynomial matrix realizations of 
transfer function matrices. In Subsection C, Polynomial Matrix Fractional Descrip
tions (PMFDs) are employed to study properties of interconnected systems. 

A. Equivalence of System Representations 

Consider the PMDs 

Pi{q)zi{t) = Qi{q)u{t), 

y{t)=Ri{q)zi{t)+Wi{q)u{t), 1,2, 
(3.2) 

w\\QXQPi{q)eR[q]^'''^',Qi{q)eR[qy''''^,Ri{q)eR[q]P''^\ and W,-(̂ ) G/̂ [̂ ]̂ >̂  

DEFINITION 3.1. The representations {Pi, gi,/?i,\^i} and {P2,22,^2,^2} in (3.2) 
are called equivalent if there exist polynomial matrices M ^ R[q\^^^^^ ,N ^ R[q\^^^^^ ,X ^ 
RW^K and Y G P[̂ ]̂ 2xm ^^^^ ^^^^ 

(3.3) 

with (M, P2) Ic and (Pi, Â ) re. • 

The equivalence of the representations {P/,2/,/^/,W^},/ = 1,2, or of the corre
sponding system matrices ^1,^2, where 

'M 
X 

0" 

h. 
Pi 

- ^ 1 

Gi 
Wi 

Pi 

-R2 

Qi 
W2 

'N 
0 

-Y' 

^m 

Pi Qi 
-Ri Wi 

€R[s] {li+p)^{li+m) (3.4) 

is sometimes referred to as Fuhrmann's System Equivalence (FSE). This equivalence 
relation will be denoted by pf, or simply p . It can be shown that (3.3) with its 
associated conditions given in Definition 3.1 defines an equivalence relation p on the 
set of matrices S with p, m fixed, \P\ ^ 0, and / any positive integer (see the discussion 
of equivalence relations at the end of Subsection 7.2C). The polynomial matrix S 
defined in (3.4) for system {P, g, P, W} is called Rosenbrock's System Matrix of the 
system Pz = Qu^y = Pz + Wu. 



EXAMPLE 3.1. Consider the representations (1.3) and (1.4) in Section 7.1 and let 
Pi = qI-A,Qi = B,Ri = C,Wx = D given in (1.3), and let P2 = P, Q2 = Q> R2 = 

[0 1 ' 
0 - 1 

R^W2 = W given in (1.4). If Â  = C = 

andX = 

0" 
1, 

,M = 1 q 0" 
0 0 q_ 

D 

0 0 
0 1. 
1 ^ 0 ^^ + 1 
0 0 ^ q 

0 0 
0 0 

1 
Q + 2 

then (3.3) is satisfied (verify this). Note that (M, P2) = 

are Ic, while (Pi, N) are re, as can be verified by apply

ing, for example, the rank test for coprimeness of Theorem 2.4(v) to (M, P2) above 

q 0 1 

and to 

-1 
0 

0 
' + 2 

. These representations satisfy all the conditions of 

0 1 0 
0 - 1 1 

Definition 3.1, and are therefore, equivalent (or Fuhrmann system equivalent). • 

There is an alternative definition of system equivalence, sometimes referred to as 
strict system equivalence or Rosenbrock's System Equivalence (RSE). Subsequently, 
PR will denote this equivalence relation. It is defined as follows. 

The representations given in (3.2) are called strict system equivalent if there 
exist unimodular polynomial matrices M,N ^ R[q\^^^ and polynomial matrices 
X G Riq^^, Y G Riqf"^ with m = deg |P/|, k > max(ni, ^2), such that 

M 
0 

h-h 0 

Pi 

0 -R2 : W2 

0 

Pi 

0 

Q2 

0 

Gi 

Wi 
(3.5) 

N 
h, k> h 

Relation (3.5) is in general easier to use than (3.3), since the matrices M, Â , 
M 
X 

0 

and are all unimodular. 
\N -Y 

The following theorem establishes that the preceding two definitions of system 
equivalence [i.e., Fuhrmann's (FSE) (3.3) and Rosenbrock's (RSE) (3.5)] are, in fact 
equivalent. Note that it was for this reason that in Definition 3.1, which is in fact the 
definition of FSE, only the term "equivalent" was used. 

THEOREM 3.1. Consider the representations given in (3.2). If they are Fuhrmann's 
System Equivalent (FSE) [satisfying (3.3)], i.e., {Pi, Qi, Rx, WI}PF{P2, Qi, Ri, W2}, 
then they are Rosenbrock's System Equivalent (RSE) [satisfying (3.5)], i.e., 
{Ph Qh Rh WI}PR{P2, Q2, Ri, W2\ and vice versa. 
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Proof, If the representations are FSE, then MPi = P2N and -X 

Pi 

Y 
M 

-N X 
Pi Y 

I 0 
0 / 

, where [-X,Y] and were chosen so that the block matrices are unimodular. 

This can always be done since (P2, M) are Ic and (Pi, N) are re. [See also the discussion 
on doubly coprime factorizations of a transfer function in (4.18) of Subsection 7.4A.] It 
can now be seen that 

-X Y 

P2 M 

-R2 X 

0 P2 

0 -R2 

0 

0 

W2 

0 

Pi 

~Ri 

0 

Gi 

-X YPi 

h. N 

YQi 

Y 

(3.6) 

Observe that \ 
.0 

xl 
Ĵ 

\-x 
U/, 

YPi 
N _ 

"0 

A 
W 
N. 

which implies that the second block 

matrix in the left-hand side is unimodular. Therefore, FSE ^ RSE of the representations. 
To show the converse, suppose that (3.5) is satisfied. Partitioning, we can write 

Mil Mu 

M21 M22 

Xi X2 

h-i, 0 

0 P2 

0 - ^ 2 

where M22, N22 ^ ^[^l^^x^i. Then 

0 

0 

Qi 

0 

Pi 

-Ri 

Nil N12 

N21 N22 

0 

Wi 
(3.7) 

M22 0 Pi Qi 
-Ri Wi 

W2 L 0 

Pi 

-Ri 

-Yi 

-Y2 

Qi 

W2\ 

'N22 
0 

-Y2 

Im 
(3.8) 

It turns out that (M22, P2) are Ic and (Pi, N22) are re. This can be shown as follows. 

Consider the unimodular matrices M = 
Mil 

1P2N21 

M12 

M22. 
andA^ = 

Nil 

N21 

MnPi 

N22 J 
where 

the relations M12P1 = Â i2, M21 = P2N21 from (3.7) were used. Now if (P2, M22) were 
not Ic, then they would have a nonunimodular common left divisor that would have 
caused M not to be unimodular. Therefore, they are Ic. Similarly, Â  is unimodular implies 
that (Pi, N22) is re. This shows that (3.8) is indeed the defining relation for FSE, and 
therefore RSE => FSE of the representations. • 



In the following we enumerate some of the important properties of FSE and 557 
RSE. 

THEOREM 3.2. Assume that the representations (3.2) are equivalent, i.e., they are FSE 
or RSE. Then the following are invariants of the equivalence relation p = pF = PR-

(i) deg\Pi\ = nj = 1,2. 

(ii) The nonunity invariant polynomials (in the Smith form) of P/, [Pi, Qi\ Pi 
-Ri 

and 

Si, i = 1, 2. 
(iii) The transfer function matrix//,(^) = Ri(s)P;^(s)Qi(s) + Wi(s),i = 1,2. 

Proof, Recall from Section 7.2 that two polynomial matrices Mi, M2 E R[qy^^ have 
the same Smith form if and only if there exist unimodular matrices Ui, U2 such that 
UiMi = M2U2. In this case Mi, M2 are called equivalent polynomial matrices. To show 

(i), note from (3.5) that M 
0 

0 

Pi 0 
0 

Pi 
N, where M, N are unimodular. 

Therefore, Pi and P2 must have the same nonunity invariant polynomials (note that 
Pi, P2 may have different dimensions), which implies that |Pi| = a\P2l where a is 
some nonzero real number (show this). Clearly then, deg \Pi \ = deg IP2I. 

To verify (ii), note that in (3.5), 

fore, the extended system matrices 

M 
X 

0 
and 

Se, = 
h-ii 

0 
0 

^1 
^€2 ~ 

lk-l2 

0 

are unimodular, and there-

0 
^2, 

with Si, i = 1, 2, defined in (3.4), have the same Smith form. Thus, ^1 and ^2 have the 
same nonunity invariant polynomials. In a similar manner, (3.5) implies that 

M 
0 

0 

Pi 

0 

Qi 0 

0 

Pi 

0 

Qi 

which shows that [Pi, Qi] and [P2, Q2] have the same nonunity invariant polynomials. 

Similarly, Pi 
-Ri 

and Pi 

-Ri 
have the same nonunity invariant polynomials. 

Finally, to show (iii), we write, in view of (3.5) 

Hi RiPi'Qi + Wi = [0, Pi] + Wi 

7 0 
0 P2 

= [0, R2W + X 

= [0, P2 

= [0, P2] 

= [0, P2] 

= [0, P2] i 

0 
Pi 

I 0 
0 Pi 

-1 

M + X 

M + 

+ Wi 

+ Wi 

0 

GiJ 

7 0 
0 P2 

7 0 
0 P2 

+ Wi 

+ [W2 + [0P2]?] 

/ 0 
0 P2 

+ W2 = RiP2^Qi + W2 = H2. 
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In the above derivations the following relations, which can directly be seen from 
(3.5), were used: 

M 
7 0 

0 ^ 1 . 

M 
0 

Qi. 

7 0" 
0 P2_ 

— — 

^ 
N, 

I 0 
0 P2_ f + 

"0 ' 
.Q2_ 

I 0 
0 Pi 

+ [0, - /? i ] = [0, -R2\N, 

+ Wi = -{Id,-R2\Y +W2. 

Now consider the representations (3.2) and notice that they can be written as 

0 
SM) 

Ziit) 
-u(t) 

Piiq) Qiiq) 
-Riiq) Wiiq) 

Zi(t) 
-uit) -y(0. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

in the following manner. 

tain 
M 0 

\ Pi Q2] 
[-R 2 W2J 

\ Px Qx 
[~Rx Wi 

'Nzi + Yu\' 
— u J 

Postmultiplying both sides of (3.3) by 1 

[ —M 
= 

M 0 
X lp\ 

Pi Qi 
-R2 W2_ 
r 0 ' 
[-y. 

r "̂ 1 
0 ' 

-y. 

\—u 

T 

or 

' Pi Qi\ 
Ri W2J 

-u'Y 

\ ^A 
\_—u \ 

i = 1, 2, where Si(q) is Rosenbrock's System Matrix given in (3.4). If these repre
sentations are equivalent, then the relation between the states zi and Z2 can be found 

we ob-

There-

fore, 

Z2(t) = N(q)zi(t) + Y(q)u(t) (3.14) 

is a possible relation between the partial states. To obtain the inverse relation, we 
could express z\ as a function of Z2 by considering (3.3) and selecting X, Y, X, Y so 
that 

(3.15) 

are unimodular polynomial matrices. Note that this is always possible, since MP\ = 
P2N with (M, P2) Ic and {Pi, N) re (see also the proof of Theorem 3.1). Now in view 
of (3.15), Eq. (3.3) implies that 

-x 
.Pi 

Y^ 
M\ 

\-N X 
[Px Y. 

I 0" 
0 / 

"-A^ X] 
Pi Y\ 

\-X 

[Pl 
f 
M 

Px 
-Rx 

Qx] 
WiJ 

\X 

[0 
-E 
^m 

x 0] 
F h\ 

Pl Qi 
-R2 W2 

(3.16) 

where £• = YQx-XYandF = i ?2^-XF. This relation was of course expected, due 
to the symmetry property of the equivalue relation pp. Postmultiplying both sides of 
(3.16) by [z\y -u^]^ and proceeding similarly as before, we can now show that 

Zi(t) = X{q)z2(t) ^ EiqMt). (3.17) 

Equations (3.14) and (3.17) determine an invertible mapping that relates the states 
of the equivalent representations (3.13). It can be shown that if (3.14) and (3.17) 
hold for some polynomial matrices Â , Y X, E, then the representations in (3.13) are 
equivalent. 



Polynomial Matrix Fractional Descriptions (PMFDs) 

Next, we consider the right Polynomial Matrix Fractional Descriptions 
(rPMFDs) given by 

Di{q)zi{t) = u{t), y{t) - Ni{q)Zi{t\ i = 1,2. (3.18) 

THEOREM 3.3. The rPMFDs given in (3.18) are equivalent if and only if there exists 
a unimodular matrix U such that 

U. 

Proof, Suppose that (3.19) is true. Rewrite it as 

0 
D2 

-N2 0 

(3.19) 

(3.20) 

and note that this is a relation of the form (3.3). Therefore, the representations {Di, I, Ni}, 
{D2, /, N2} are equivalent. Conversely, suppose that (3.3) is true, i.e., 

M 
X 

01 
Imi 

\ ^' 
l-Ni 

Im 
0_ 

D2 

-N2 
Im] 
oj 

\^ 
[0 

-Y' 

Im. 

with (M, 7)2) Ic and (Di, TV) rc. Then M = Im-D2Y and MDi = Z)2iV from which it fol
lows that Di = D2(N + YDi) = D2U.A\so,XDi -Ni = -N2NmdX = A^2i'which 
imply that Â i = Â2(Â  + YDi) = N2U. From Di = D2U and the fact that degDi = 
degD2, it now follows that U is unimodular • 

The reader should verify that in this case, the relations between the states (3.14) 
and (3.17) are given by Z2 = Uzi andzi = t/-iz2, i.e., Â  = u,Y = 0,X = U-\ 
mdE = 0. 

A similar result is true for IPMFDs given by 

Di(q)zi(t) = NiiqMt), y(t) = Zi{t\ 1,2. (3.21) 

Specifically, the IPMFDs given in (3.21) are equivalent if and only if there exists a 
unimodular matrix U such that 

[Di,Ni] = U[D2,N2l (3.22) 

The proof of this result is completely analogous to the proof of Theorem 3.3 and is 
omitted. 

State-space descriptions 

We now consider the state-space representations given by 

Xiit) = AiXiit) + Biu{t), y(t) = CiXi + Di{q)u{t), i = 1, 2, (3.23) 

Q 0 
0 In\ 

\qln - Ay 

[ -Ci 
By 

Di(q)_ 

qln -A2 B2 \ 
- C 2 D2{q)\ 

\Q 0 
[0 /„ 

and we assume that these are related by a similarity transformation, i.e., there is a 
g ^ ^ n x « |g| ^ 0 , such that 

(3.24) 

Clearly, this is a relation of the form (3.3) with M = N = Q 2ind X = Y ^ 0. 
Therefore, {Ai, Bi, Ci, Di(q)}, {A2, B2, C2, D2(q)} are equivalent in the Fuhrmann 
or Rosenbrock sense. The converse is also true. In particular, if two state-space 
representations are equivalent in the sense of Definition 3.1, then they are related 
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(3.17) are given by X2 = Qxi and xi = Q~^X2, i.e., N = Q,Y = 0,X = Q-\ 
and E = 0. Note that the state-space representations considered in (3.23) are more 
general than the state representations of previous chapters, since the term D{q)u{t) 
may contain derivatives of the input. In fact it can be shown that every PMD 
{P{q), Q(q), R(q), W(q)} in (3.1) is equivalent to a state-space description of the 
form {A, B, C, D(q)} (see, e.g.. Section 2.2 of [30]). Note that a state-space descrip
tion of the form {A, B, C, D) that is equivalent to a given PMD as in (3.1) exists only 
when that PMD has a proper transfer function H{s). 

Now recall the relation between a state-space realization {Ac, Be, Cc, Dc] in 
controller form of the transfer function matrix H{s) and the corresponding rPMFD 
{DR, I, NR}. Specifically, (see Subsection 3.4D of Chapter 3 and the Structure The
orem), we have 

H{s) = NR(S)DR\S) 

with NR(S) = CcS(s) + DCDR(SI (SI - Ac)S(s) = BCDR(SI (3.25) 

where the n X m matrix S(s) = blockdiag [(1, s,..., s^^~^)^\ with dt, i = 1 , . . . , m, 
the controllability indices of (Ac, Be) or the dimensions of the subblocks in the con
troller form (Ac, Be). 

The representations DR(q)z(t) = u(t), y(t) = NR(q)z(t) and xdt) = Acx(t) + 
Bcu{t), y(t) = Ccx(t) + Dcu(t) are equivalent since 

(3.26) 

with (Be, ql - Ac) Ic and (DR(q), S(q)) re (show that this is true). Verify that in 
this case the relation between the states given by Eq. (3.14) is ^^(0 = S(q)z(t), and 
determine the relation between the states given by Eq. (3.17) for this case. We note 
that (3.25) can be written as 

NR(S) = CS(s) + DDR(S\ (SI - A)S(s) = BDR(SI (3.27) 

where A = Q~^AcQ,B = Q~^Bc,C = CcQ,D = Dc with \Q\ ¥^ 0 and S(s) = 
Q~^S(s). Equation (3.27) relates NR(S) and DR(S) to a controllable realization of 
H(s) that is not necessarily in controller form. The matrix 2 is a similarity transfor
mation matrix. 

Completely analogous results exist for a state-space realization {Ao, Bo, Co, Do} 
in observer form and the corresponding IPMFD {DL, NL, Ip}-

Finally, note that the above results involving the Structure Theorem are also 
valid after the obvious modifications, when the state-space description is of the more 
general form {A, B, C, D(q)}. 

B. Controllability, Observability, Stability, and Realizations 

Consider now the PMD 

P(q)z(t) = Q(q)u(t), y(t) = R(q)z(t) + W(q)u(t\ (3.28) 

where P((^) E Riql^^'K Q(q) G R[q]^'''^, R(q) E R[qy\ 2indW(q) G /?[g]^x^.The 

Be 0 
Dc Ip\ 

DRiq) Im 
y-NRiq) 0 

ql - Ac 
-Cc 

Bc\ 
Dc\ 

\Siq) 
[ 0 

0 
^m 



important system properties of controllability, observability, and asymptotic stabil
ity can be developed directly in a manner similar to that in earlier chapters, us
ing state-space descriptions. However, instead of reintroducing these properties, we 
shall concentrate on establishing criteria for (3.28) to be controllable, observable, 
and asymptotically stable. 

Assume that the PMD given in (3.28) is equivalent, in the sense of Definition 
3.1 and (3.3), to some state-space representation 

x(t) = Ax(t) + Bu(t\ y(t) = Cx{t) + Du{t\ (3.29) 

where A G /^'^x^ B G R'''''^, C G 7^^x^ and D G T^^^^. That is, for the discussion 
that follows, we restrict the PMD in (3.28), at least initially, to the class of PMD that 
is equivalent to state-space descriptions {A, B, C, D] that have been studied exten
sively throughout this book. For the more general case of (3.28) being equivalent to 
state-space descriptions of the form {A, B, C, D(q)}, refer to the remarks following 
Theorem 3.6. 

Controllability 

Recall from Section 3.2 of Chapter 3 that {A, B, C, D} is controllable if and 
only if 

1. rank [sil - A,B] = n for any st complex number. 
2. The Smith form of [si - A, B] is [/, 0]. 

Now if {A, B, C, D} in (3.29) is controllable, then in the equivalent description 
[P, Q, R, W} given in (3.28), the Smith form of [P, Q] will be [/, 0] and rank [P(si\ 
Qisi)] = I for any complex number Sj, in view of Theorem 3.2(ii). Notice that these 
conditions are precisely the conditions for P, Q to be Ic polynomial matrices (see 
Theorem 2.5 in Section 7.2). These observations give rise to the following concept 
and result. 

DEFINITION 3.2. The representation {P, Q, R, W} given in (3.28) is said to be con
trollable if its equivalent state-space representation {A, B, C, D} given in (3.29) is state 
controllable. 

THEOREM 3.4. The following statements are equivalent: 

(i) {P, e, R, W} is controllable. 
(ii) The Smith form of [P, Q] is [/, 0]. 

(iii) rank [P(si), Q(si)] = I for any complex number Sf. 
(iv) P, garelc. 

Proof, Parts (ii) and (iii) follow from the fact that (A, B) is controllable if and only if 
the Smith form of [ql - A, B] is [/, 0], or equivalendy, rank [siI - A, B] = n for any 
complex number (see Section 3.2 of Chapter 3), and from Theorem 3.2(ii) in this section. 
In particular the Smith form of [P, Q] in (ii) is [/, 0] if and only if the Smith form of 
[ql — A, B] is [/, 0], in view of Theorem 3.2(ii). This in turn is true if and only if (A, B) 
is controllable, which is equivalent to (i) by definition. So (ii) is true if and only if (i) is 
tme. Similarly, one can show that (iii) is true if and only if (i) is true. Part (iv) follows 
easily from (ii) or (iii), in view of Theorem 2.4 in Section 7.2. • 

Remarks 

1. From the above results it follows that (A, B) is controllable if and only if ^/ - A 
and B are Ic polynomial matrices. 
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2. If P, Q are not Ic, then the Smith form of [P, Q] is [A, 0], where A = diag [6/] ¥= 
I. It can easily be shown that if GL is a geld of [P, Q] = GL[P, Q ] , then the 
Smith form of GL is A. The roots of the invariant polynomials €( of [P, Q] or of 
GL are the uncontrollable eigenvalues of the system. 

3. Similar tests as the eigenvalue/eigenvector tests of Subsection 3.4B of Chapter 
3 can also be developed for the representation {P, Q, R, W}. 

4. The rPMFD, {DR, Im, NR}, is clearly controllable since DR and / are Ic. This 
fact justifies the alternative notation {Dc, /, Nc} for an rPMFD when the con
trollability of the representation is emphasized; here Dc = DR and Â^ = NR 
are viewed as matrices of an internal system representation. Note that the 
term rPMFD stresses the relation to the transfer function H(s) = NR(S)D^^(S), 

where NR and DR are intrepreted as the numerator and denominator of a transfer 
function, respectively. 

Observability 

Observability can be introduced in a manner completely analogous to controlla
bility. This leads to the following concept and result. 

DEFINITION 3.3. The representation {P, Q, P, W} given in (3.28) is said to be observ
able if its equivalent state-space representation {A, B, C, D} given in (3.29) is state ob
servable. • 

THEOREM3.5. The following statements are equivalent: 

(i) {P, 2, P, W} is observable. 

(ii) the Smith form of 

\P(Si) 

[R(Si)\ 
(iv) P, R are re. 

(iii) rank = / for any complex number st. 

Proof, The proofs of these results are completely analogous to the proof of Theorem 3.4 
and are therefore omitted. • 

Remarks 

. From the above results it follows that (A, C) is observable if and only if ql - A 
and C are re polynomial matrices. 

2. If P, R are not re, then the Smith form of IS 

It can easily be shown that if GR is a gcrd of 

, where A = diag [e^] T̂  / . 

GR, then the Smith 

form of GL is A. The roots of the invariant polynomials 6/ of or of GR are 

the unobservable eigenvalues of the system. 
3. Similar tests as the eigenvalue/eigenvector tests of Subsection 3.4B of Chapter 

3 can also be developed for the representation {P, Q, R, W}. 
4. The IPMFD, {DL, NL, Ip}, is clearly observable since DL and Ip are re. This 

fact justifies the alternative notation {Do, No, Ip} for an IPMFD when the ob
servability of the representation is emphasized; here Do = DR and Â ^ = NR 
are viewed as matrices of an internal system representation. Note that the 
term IPMFD stresses the relation to the transfer function H(s) = DI^(S)NL(S), 

where NL and DL are interpreted as the numerator and denominator of a transfer 
function, respectively. 



Stability 

DEFINITION 3.4. The representation {P,Q,R,W} given in (3.28) is said to be asymp
totically stable if for its equivalent state-space representation {A,B,C,D} given in 
(3.29) the equihbrium x = 0 of the free system i = Ax is asymptotically stable. • 

THEOREM 3.6. The representation {P,Q,R,W} is asymptotically stable if and only 
if Re ?ii <0,i = 1,..., n, where Xi,i= 1,..., n, are the roots of det P{s)\ the Xi are the 
eigenvalues or poles of the system. 

Proof, In view of Theorem 3.2(ii), det {si — A) = a det P{s) for some nonzero a ^ R. 
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At this point it is of interest to briefly discuss controllability, observability, and 
stability for the more general case, when the PMD in (3.28) is equivalent to a state-
space representation of the fonnx{t) =Ax{t) +Bu{t)^y{t) = Cx{t) +D{q)u{t) instead 
of (3.29). First, note that the concepts of state controllability and observability in 
state-space descriptions of the form {A,5,C,D(^)} are completely analogous to the 
{A,5,C,D} case. Furthermore, the criteria for controllability and observability are 
exactly the same for the above cases, and they depend only on (A,5) and {A^C), 
respectively. In yiow of this, it can be shovv̂ n that Definitions 3.2 and 3.3 and Theo
rems 3.4 and 3.5 for controllability and observability, respectively, are valid for the 
more general PMD. For similar reasons. Definition 3.4 and Theorem 3.6 on asymp
totic stability are valid for the general PMD (3.28). Hovv̂ ever, care should be exer
cised vv̂ hen discussing input-output stability of a system {A,5,C,D(^)} or of their 
equivalent descriptions of the form (3.28), but this topic vv̂ ill not be addressed here. 
For an extended discussion of controllability, observability, and stability of systems 
described by a general PMD (3.28), refer to Chapter 3 of [9] and Chapter 6 of [33]. 

It is of interest to note that equivalent representations not only have exactly the 
same eigenvalues, but also the same invariant zeros, decoupling zeros, and trans
mission zeros (see Section 3.5 of Chapter 3 for the definitions of zeros and also the 
discussion belovv )̂. These assertions follovv̂  directly from Theorem 3.2. 

Poles and zeros 

In the follovv îng, wt vv̂ ill find it useful to first recall the definitions of poles 
and zeros introduced in Section 3.5 of Chapter 3 and to shovv̂  how these apply to 
PMDs. To this end, consider the representation in (3.28) vv̂ ith transfer function matrix 
H{s)=R{s)p-\s)Q{s)+W{s). 

Let the Smith-McMillan form of H{s) be given by 

SMH{S) = 

v^here A(^) = diag — — , • • • , — — 

\\l/l{s) \l/r{s) 
1, and \i/i^i{s) divides \l/i{s)J • 

0 0 
(3.30) 

,r = rank H{s),ei{s) divides e/+i(^),/ 

1, . . . , r — 1, and 1/A/+1 (s) divides i/A/(̂ ), / = 1, . . . , r — 1 [see (5.3) in Chapter 3]. Then 
the poles ofH(s) are the roots of the characteristic or pole polynomial PH{S) ofH(s) 
defined as 

PH{s) = XI/i{s)---XI/r{s). (3.31) 

Note that PH{S) is the monic least common denominator of all nonzero minors of 
H{s). 



564 

Linear Systems 

It is straightforward to show that 

{poles oiH(s)} C {roots of detP(s)}. (3.32) 

The roots of det P are the eigenvalues or the poles of the system {P, Q, R, W} and 
are equal to the eigenvalues of A in any equivalent state-space representation {A, B, 
C, D]. Relation (3.32) becomes an equality when the system is controllable and ob
servable, since in this case the poles of//are exactly those eigenvalues of the system 
that are both controllable and observable. 

Comidtr iht system matrix or RosenbrockMatrix of \htvepr:QS&rA&iion{P, Q, R, W}, 

Sis) = 
-Ris) 

Q(s) 
Wis) 

(3.33) 

and an equivalent state-space representation {A, B, C, D} given in (3.29). In view of 
(3.5), we have 

M 0 
X I p^ 

h-i 0 

0 P 

0 -R 

0 

Q 

w 

h-n 0 

0 si -A 

0 - C 

: o] 
: B 

: D\ 

\N 
[0 

-Y 
^m 

(3.34) 

where M,N E. R[s^^^^ are unimodular and k > max {deg \P\, n) (see (3.5)). 
The zeros of {P, Q, R, W} can now be defined in a manner completely analogous 

to the way they were defined for state-space representations. Following the develop 
\sl - A B~ 

ment in Section 3.5, let fc = nandr = rank 
-C D 

, where n 

n,m-\- n). Consider all those rth-order nonzero minors of Se{s) = 

r < min(p + 

0 
that \h-i 

[ 0 S{s) 
are formed by taking the first n rows and n columns of Se{s). The zero polynomial 
of the system {P, Q, R, W}, Zs(s), is defined as the monic gcd of all those minors. The 
roots of Zs(s) are the zeros of the system {P, Q, R, W}. The reader is encouraged to 
show that this definition is consistent with the definitions given in Section 3.5. 

The invariant zeros of the system are the roots of the invariant zero polynomial 
that is the product of all the invariant factors of S{s). The input-decoupling/output-
decoupling and the input-output decoupling zeros of {P, Q, R, W} can be defined 
in a manner completely analogous to the state-space case. For example, the roots 
of the product of all invariant factors of [P(s), Q(s)] are the input-decoupling zeros 
of the system; they are also the uncontrollable eigenvalues of the system. Note that 
the input-decoupling zeros are the roots of detGiis), where GL{S) is a geld of all 
the columns of {P{s), Q{s)\ = GL(S)[P(S), Q(S)]. Similar results hold for the output-
decoupling zeros. 

The zeros ofH(s), also called the transmission zeros of the system, are defined 
as the roots of the zero polynomial ofH(s), 

ZH(S) = ei{s)...6r(s\ (3.35) 

where the 6/ are the numerator polynomials in the Smith-McMillan form of H(s) 
given in (3.30). When {P, Q, R, W} is controllable and observable the zeros of the 
system, the invariant zeros, and the transmission zeros coincide. 



Consider the representation DRZR = u,y = NRZR with DR G R[S]^^^ and 
NR E R[sy^^ and notice that in this case the Rosenbrock Matrix (3.33) can be 
reduced via elementary column operations to the form 

' DR I] 
_-NR 0\ 

r / 0] 
[-DR I\ 

\0 I 
[l 0 

0 /] 
r^R oj 

ro /" 
[/ 0 

7 
0 

0 
-NR 

In view of the fact that the invariant factors of S do not change under elementary 
matrix operations, it is clear that the nonunity invariant factors of S are the nonunity 
invariant factors of NR. Therefore, the invariant zero polynomial of the system equals 
the product of all invariant factors of NR and its roots are the invariant zeros of 
the system. Note that when rankNR = p ^ m, the invariant zeros of the system 
are the roots of detGi, where GL is the geld of all the columns of NR, i.e., NR = 
GLNR. When Â ^̂ , DR are re, the system is controllable and observable. In this case it 
can be shown that the zeros ofH {= NRD^^), also called the transmission zeros of 
the system, are equal to the invariant zeros (and to the system zeros of {DR, I, NR}) 
and can be determined from NR. In fact the zero polynomial of the system, Zs(s), 
equals ZH(S), the zero polynomial of H, which equals ei(s)... er(s), the product of 
the invariant factor of NR, i.e.. 

Zs(s) = ZH(S) = ei(s)...er(s). 

The pole polynomial of H(s) is 

PH(S) = kdetDR(s), 

where k G R. 

(3.36) 

(3.37) 

Realization theory and algorithms 

A representation {P, Q, R, W} is a realization of a rational function H{s) if the 
transfer function of {P, Q, R, W) is H{s), i.e., if 

R{s)p-\s)Q{s) + Vî (̂ ) = H(s). (3.38) 

The realization theory for PMDs is analogous to the theory for state-space descrip
tions, developed in Chapter 5. Results concerning existence and minimality can be 
developed in the obvious way, using the results on equivalence of representations 
developed in Subsection 7.3A and the above results on controllability and observ
ability. The following theorems provide results that correspond to Theorems 3.9, 
3.10, and 3.11 of Section 5.3 of Chapter 5. The reader is encouraged to give full 
proofs of these results. 

THEOREM 3.7. A realization {P, Q, R, W} of H(s) of order n = deg |P| is minimal 
(irreducible, of least order) if and only if it is both controllable and observable. 

Proof The proof is left as an exercise. • 

THEOREM 3.8. Let{P, Q, R, W}md{P_, Q, R, W} be realizations of//(^). If {P, Q, R, W} 
is a minimal realization, then {P, g, R, W} is also a minimal realization if and only if the 
two realizations are equivalent. 

Proof. The proof is left as an exercise. • 

THEOREM 3.9. Let {P, Q, R, W} be a minimal realization of H(s). Then the character
istic polynomial of H(s), PH{S), is equal to detP(s) within a multiplication by a nonzero 
real number, i.Q., PH(S) = kdet P(s). Therefore, the McMillan degree of//(^) equals the 
order of any minimal realization. 

565 
CHAPTER?: 

Polynomial 
Matrix 
Descriptions 
and Matrix 
Fractional 
Descriptions 
of Systems 



566 Proof, To prove this result, refer to the proof of Theorem 3.11 in Chapter 5 and use the 
Linear Svstems results on equivalence given in Subsection 7.3A. • 

Realization algorithms 

It is rather straightforward to derive a realization of H in PMD form. In fact real
izations in right (left) PMFD form were derived in Chapter 5 as a step toward deter
mining a state-space realization in controller (observer) form (see Subsections 5.4B 
and 5.4D). However, these realizations, of the form {DR, Im, NR} and {DL, Ni, Ip], 
are typically not of minimal order, i.e., they are not controllable and observable. This 
implies that the controllable realization {DR, Im, NR}, for example, is not observable, 
i.e., DR, NR are not re. Similarly, the observable realization {DL, NL, Ip} is not con
trollable, i.e., DL, NL are not Ic. To obtain a minimal realization, a gcrd must be ex
tracted from DR, NR, and similarly, a geld must be extracted from DL, NL. This leads 
to the following realization algorithm that results in a minimal realization {D, Im, N} 
ofH. A minimal realization of the form {D, N, Ip} is obtained in an analogous (dual) 
manner. 

Consider H(s) = [nij(s)/dij(s)], i = I,..., p, j = 1 , . . . , m, and let lj(s) be the 
(monic) least common denominator of all entries in the jth column of H(s). Note 
that lj(s) is the (monic) least degree polynomial divisible by all dij(s), i = 1 , . . . , p. 
Then His) can be written as 

H{s) = NR(S)DR\S), (3.39) 

where NR(S) = [nij(s)] and DR(S) = diag(li(s),..., lm(s)). Note that nij/lj(s) = 
nij{s)ldij{s) for / = I,..., p, and all j = I,..., m. Now 

DR(q)ZR(t) = u(t), y(t) = NR(q)zR(t) (3.40) 

is a controllable realization of H(s). If DR, NR are re, it is observable as well, and 
therefore, minimal. If DR and NR are not re, let GR be a gcrd and let D = DRG^^ 
andA^ = NRG^\ Thm 

D(q)z(t) - u(t), y(t) = N(q)z(t) (3.41) 

is a controllable and observable, and therefore, minimal realization of H(s) since 
D, I and D, N are Ic and re polynomial matrix pairs, respectively. Note that ND~ ^ = 
(NRG^'XDRG^')-' = (NRG^'XGRD-^') = NRD-^' = H. 

There is a dual algorithm which extracts an IPMFD resulting in 

H{s) = DI\S)NL{S), (3.42) 

which corresponds to an observable realization of H{s), given by 

DL(q)ZL(t) = NL(qMt), y(t) = ZL(t\ (3.43) 

The details of this procedure are completely analogous to the procedure that led to 
(3.39). If DL, NL are not Ic, let GL be a geld and let D - G^^DL and N = G^^NL. 

Then a controllable and observable, and therefore, minimal, realization of H(s) is 
given by 

D{q)z(t) = N(qMt), y(t) = z(t\ (3.44) 

In Subsection 5.4B, a controllable state-space realization that is equivalent to 
(3.40) was obtained first using the controllable version of the Structure Theorem. 
Next, the unobservable part of this state-space realization was separated and a con-



trollable, observable, and minimal realization was extracted (see Example 4.3 in 
Subsection 5.4B). This minimal state-space realization is of course equivalent to the 
realization (3.41), which is in PMFD form. It is possible to extract an equivalent 
minimal state-space realization directly from (3.41). However, to use the convenient 
Structure Theorem, typically D has to be reduced first to a column proper form, i.e., 
(3.41) must be reduced to 

D{q)z{t) = u{t), y{t) = N(q)z(t\ (3.45) 

where D = DU is column proper, N = NU, and f/ is a unimodular matrix. Analo
gous results are valid for PMFD and realizations (3.42) through (3.44). 

The following example illustrates the realization algorithms. 

s^ + 1 ^ + 1 
c3 EXAMPLE 3.2. We wish to derive a minimal realization for H(s) 

' s^ s 
Note that this is the same H(s) as in Example 4.3 in Section 5.4B, where minimal state 
space realizations were derived. The reader is encouraged to compare those results with 
the realizations derived below. We shall begin with a controllable realization. In view 

s^ 0" ^ 
n c3 of (3.39) s^Ji and H = NRD-J, [s^ + 1, ^ + 1] . Therefore, 

J^RZR = u and y = NRZR constitute a controllable realization. This realization is not 

observable since rank 
DR(S) 

NR(S), 
= rank 

ro 
0 

_i 

01 
0 
1. 

1 < m = 2, i.e., DR and NR are 

not re. 
Another way of determining that DR and NR are not re would have been to observe 

that deg det D(s) = 5 = order of the realization {DR, /, NR}. NOW the McMillan degree 
of i/, which is easily derived in the present case, is 3. Therefore, the order of any minimal 
realization for this example is 3. Since {DR, I, NR} is of order 5 and is controllable, it 
cannot be observable, i.e., DR and NR cannot be re. 

We shall now extract a gcrd from DR and NR, using the procedure described in 
Subsection 7.2D. We have 

DR 

NR, 
0 

0 
c3 

S^ + 1 5 + 1 

0 
c3 

S+ 1 

c3 

S 

0 5-

Li 5 + 1. 
1 s+V 
0 s^ 
0 s^ J 

—> 
"1 5 + 1 
5̂  0 
.0 5̂  

"1 5 + r 
0 s^ 

.0 0 J 

Therefore, GR = 
1 5 + 1 

0 52 
is a gcrd. We now determine D = DRGJ^^ and Â  = 

NRG^^, using DR = 
0 

_0 5^ 

1 ,5+ 1] = [5^ + 1, - ( 5 + 1)] 

52 - ( 5 + 1) 

0 5 
1 S+\ 

1 5 + 1 
= DGR and NR = [s^ + 

{DR,I,NR} = 

0 s' 

^ - ( ^ + 1 ) 

0 s' 

NGR, and we verify that they are re. Then 

1 0 
0 1 

,[q^ + h-(q+\)] 

is a minimal realization of H(s). 
To determine a minimal state-space realization from Dz = u and y = Nz using 

equivalence of representations, if so desired, we notice that D is already in column 
proper form. Using the Structure Theorem, and the notation used in Examples 4.3 
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and 4.5 in Subsection 5.4B, we obtain D(s) 

1 0 
I u u — J 11 + 

-(s + 1) 
s 

1 - 1 
0 1 

s^ 0 
0 s 

0 0 - 1 
0 0 0 

s 0 
0 1 

. Therefore, B^ = D,^ = 

= DhA(s) + DiS(s) = 

and Am = 
1 1 
0 1 

-Du'Di = 
0 0 1 
0 0 0 

Also, Dc = lim,^oc//W = [1,0] and A (̂̂ ) = [s^ + 1, -{s + 

"1 0^ 
s 0 

.0 IJ 

+ [1,0] 1)] = CcS(s) + DcD(s) = [1,0,0] 

mal state-space realization of H(s) is given by 

{Ac, Be, Cc, Dc} = 

-(s+l) 
s 

Therefore, a mini-

"0 1 0" 
0 0 1 

.0 0 Oj 

, 
"0 0" 
1 1 

.0 1_ 

, [1 ,0 ,0 ] , [1 ,0 ]^ 

Note that this realization is precisely the minimal realization derived in Example 4.3 in 
Subsection 5.4B. This will not occur in general, as can be seen if for example a slightly 
different GR is used. The realization {Ac, Be, Cc, Dc} determined here is in controller 
form, since D^ was an upper triangular matrix with ones on the diagonal. In general, Dh 
will just be nonsingular, since D(s) will be column proper, and therefore, the resulting 
controllable realization will not be in controller form, since Be will not be of the appro
priate form. This point was also discussed in Subsection 5.4B and illustrated in Example 
4.5 in that subsection. 

Alternatively, given //, we shall first derive an observable realization. In view of 
(3.42), 

H = DI^NL = (s^y^[s(s^ + 1),^ + 1]. 

Here Di^(q) and Niiq) are Ic and therefore D(q)z(t) = N(q)u(t) and y(t) = z(t) with 
D(q) = Di{q) and A (̂̂ ) = Niiq) is controllable and observable, and is therefore, a min
imal realization. Note that the order of this realization is deg det DL{S) = 3, which equals 
the McMillan degree ofH{s). In Example 4.3 in Subsection 5.4B a minimal state-space 
realization in observer form was derived from D{q) and A^(^). • 

C. Interconnected Systems 

Interconnected systems, connected in parallel, in series, and in feedback configura
tions, are studied in this subsection. Polynomial matrix and transfer function matrix 
descriptions of interconnected systems are derived, and controllability, observabil
ity, and stability questions are addressed. It is shown that particular interconnections 
may introduce uncontrollable, unobservable, or unstable modes into a system. Feed
back configurations, as well as series interconnections, are of particular importance 
in the control of systems. Feedback control systems are studied at length in the next 
section. 

Systems connected in parallel 

Consider systems S\ and ^2 connected in parallel as shown in Fig. 7.1 and let 

Pi{q)ziit) = Qi(q)um yi(t) = Ri(q)zi(t) + Wi(q)ui(t) (3.46) 

and P2(q)z2(t) = Q2(q)u2(t\ y2(t) = R2(q)z2it) + ^2 (^ )^2(0 (3.47) 

be representations (PMDs) for S] and ^2, respectively. Since u(t) = u\{t) = U2(t) 



FIGURE 7.1. 
Systems connected in parallel 
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and y(t) = yi(t) + y2(t), the overall system description is given by 

Pi(q) 
0 

0 
Piiq) 

Zi(q) 

Z2(q)\ 
Qi(q) 
Qiiq). 

u(t), 

y(t) = [R,(q),R2(q)] 
zi(t) 
ziit) 

(3.48) 
+ [WM) + ^2mu{t\ 

If the systems ^i and S2 are described by the state-space representations i/ = Atxi + 
BiUu yi = CiXi + DiUu i = 1, 2, then the overall system state-space description is 
given by 

i i ] _ \AI 01 r^i 
X2\ [ 0 A2J [^2. 

Bi 

Bi 

y = [Ci, C2] 

(3.49) 

+ [Di -h D2]u. 

If Hi(s), H2(s) are the transfer function matrices of 5i and ^2, respectively, then the 
overall transfer function can be found from y(s) = yi(s) + y2(s) = Hi(s)ui(s) -h 
H2(s)u2(s) = [Hi(s) + H2(s)]u(s)toht 

H(s) = Hi(s) + H2(s\ (3.50) 

Now if both Hi(s) and H2(s) are proper, then H(s) is also proper. 
The stability, controllability, and observability of the overall system S repre

sented by Pz = Qu, y = Rz+ Wu in (3.48) will now be examined briefly. In view 
of |P| = |Pi| IP2I it is clear that the overall system is internally stable if and only if 
each of the systems 5*1 and ^2 is internally stable. Also, if both Si and S2 are BIBO 
stable, i.e., all poles in Hi and in H2 have strictly negative real parts, then the overall 
system is also BIBO stable. The converse is also true, i.e., if the overall system S is 
BIBO stable, then so are Si and S2. This can be seen from Fig. 7.1 since if, say, ^i 
were not BIBO stable, then neither would S. Next, this result is also shown using 
alternative arguments. 

All uncontrollable or unobservable eigenvalues of Si and ^2 will be uncontrol
lable or unobservable eigenvalues of the overall system S. To see this, consider 

Pi 0 Qi 
0 P2 Q2 

and let Gi, G2 be gelds of [Pi, Qi\ and [P2, Q2], respectively. Then 

(3.51) 

Gi 0 
0 G2 IS an 
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Id of the matrix (rows) in (3.51), i.e., the uncontrollable eigenvalues of 5i and ^2 will 
be uncontrollable eigenvalues of the overall system. Similarly, it can be shown that 
the unobservable eigenvalues of Si and 52 will be unobservable eigenvalues of the 
overall system. Note that the overall system S may have additional uncontrollable 
and unobservable eigenvalues, as is now shown. It is easier to show this when 5i 
and 52 are controllable and observable. Assume then that 

and 

DMziit) = uiit), 

D2iq)Z2it) = U2(t), 

yiit) = Ni(q)zi{t) 

yiit) = N2(q)Z2(t) 

(3.52) 

(3.53) 

are descriptions for 5i and 52, with//i (5) = Ni(s)D^^^(s)andH2(s) = N2(s)D2^(s). 
Let Diiq),D2iq) 
then described by 

Di(q) 0 
0 D2iq) 

mq]"""" and Ni(q),N2{q) e R[qV'"". The overall system is 

zi(0 
Z2(t) 

uitx y{t) = miqiN2m zi(t) 
Z2(t), 

(3.54) 

Note that 
0 

0 
£»2 

Di 
0 

-D2 
0 

/ 0 0] 
10 / 0 
[0 -D2 l\ 

plex value A rank[Di(X), -D2(A)] < m, i.e., there are fewer than m linearly in

dependent columns in [ A (A),-D2(A)], then ran^t P^^^^^ -^2(A) /„ 
which impHes that A is an uncontrollable eigenvalue of the overall system. If G 
is a geld of [Di, -D2], then A is a root of detG and it is an eigenvalue that is 
common in both systems Si and S2. Note that the uncontrollable eigenvalues in 
G cancel mH = Hi+H2= NiD^^ + A^2^2 ^ = (^1 + A^2^2 ^^O^F^ = (Â i + 

Now if for some com-

< 2m, 

A^2^2 ^ i ) ^ r ' where D^^Di = (GD2)~^GDi = D^'D Completely analogous 
results can be shown concerning the unobservable eigenvalues by considering the 
representations 

and 

Di(q)zi(t) = Ni(q)ui(tl 

D2(q)z2(t) = N2(q)u2(tl 

yi(t) = Zi(t) 

y2(t) - Z2(t) 

(3.55) 

(3.56) 

with Hi(s) == D^^(s)Ni(s) and H2(s) = D2^(s)N2(s), The unobservable eigenval
ues cancel in Di(s)D2^(s) (show this). 

In view of the above it can be seen that if all the poles of H have negative real 
parts, then all the poles of both Hi and H2 also have negative real parts, since possible 
additional poles of Hi and H2 are in the same locations as some of the poles of H. 
Therefore, if S is BIBO stable so are both 5i and ^̂ 2. 

Systems connected in series (or in cascade or in tandem) 

Consider systems ^i and S2 connected in series, as shown in Fig. 7.2 and let 

Pi(q)zi(t) = Qi(q)ui(t), yi(t) = Ri(q)zi(t) + Wi(q)ui(t) (3.57) 

be a polynomial matrix representation for Si and 

P2(q)z2(t) - 22(^)^2(0. yiit) = R2(q)z2(t) + ^2(^)^2(0 (3.58) 

be a representation for ^2. Here U2(t) = yi(t). To derive the overall system descrip
tion, consider ^2^2 = Q2U2 = G2J1 = 62(^1^1 + Wiui) and Pizi = Qiui and 
also y2 = R2Z2 + W2U2 = R2Z2 + W2yi = R2Z2 + ^2(^1^1 + WiwOand j i = 



^1 
Si 

Vi t/2 
^ 2 1 ^̂  

FIGURE 7.2. 
Systems connected in series 

RiZ\ + WiMl. Then 

Pi 0 
-QiRi Pi 

yi = WtPx, /?2] 

(3.59) 

If an external input r2 is introduced as in Fig. 7.3, that is, M2 = Ji + ''2» then P2^2 = 
22^2 = Qi{y\ + ^2) = QiiRiZi + Wi^O + 22^2 and y2 = R2Z2 + ^2^2 = ^̂ 2̂ 2 + 
W2(yi + r2) = /̂ 2Z2 + ^2(^1^1 + WiUi) + ^2^2. 

In this case a more complete description of the two systems in series with inputs 
wi, r2 and outputs y2, yi is given by 

Pi 0 
-22^1 P2 

\zi 

[Z2_ 

\yi 
[y2. 

= 

\ «2i 
[22^1 

Ri 
W2R1 

0] 
2 2 J 

0] 
Ril 

lui 
U2. 

\zi] 
U2J 

+ 

(3.60) 
Wi 0 

\W2WI W2 

If the systems Si, S2 are described by the state-space representations xt = Atxt 4-
CiUi, yi = CiXi + DiUi, i = 1, 2, then it can be shown similarly that the overall sys
tem state-space description is given by 

(3.61) 

If Hi {s), H2(s) are the transfer function matrices of 5i and ^2, then the overall transfer 
function };2(̂ ) = H(s)ui(s)is 

Xi 

hi 
J 2 . 

= 

= 

B2C1 

Ci 
D2C1 

0] 
A2J 

0] 
C2J 

Ixi 
[X2_ 

Ixi 
[X2_ 

+ 

+ 

Bi 
B2D1 

' D, 
P2D1 

0] 
Bil 
0" 

JO2J 

«il 
7 2 J 

\ui 

U2. 

His) = H2(s)Hi(s). (3.62) 

It can be shown that if both Hi and H2 are proper, then H is also proper. Note that 
poles of Hi and H2 may cancel in the product H2H1, and any cancellation implies 
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that there are uncontrollable/unobservable eigenvalues in the overall system internal 
description. This is discussed further next. 

The stability, controllability, and observability of the overall system S described 
by Pz = Qu, y = Rz+ Wu, and given in (3.60) will now be examined. In view of 
I P| = I Pi 11P21 it is clear that the overall system is internally stable if and only if each 
of the subsystems Si and ^2 is stable. If both 5*1 and S2 are BIBO stable, i.e., if all 
poles in Hi and H2 have strictly negative real parts, then the overall system is also 
BIBO stable. The converse is not necessarily true since cancellations may take place 
in the product H2H1, i.e., the unstable poles of Hi and H2 may cancel in H2H1 = H, 
thus leading to a BIBO stable system where Si and/or ^2 might not be BIBO stable. 

Concerning controllability and observabiHty of (3.60), we make several obser
vations: 

1. All eigenvalues of Pi are uncontrollable from r2 and all eigenvalues of P2 are 
unobservable from yi. This is of course as expected, since Fig. 7.3 reveals that 
the input r2 does not affect system 5*1 at all, and observation of the output yi 
will not reveal any information about system 5*2. 

2. All uncontrollable eigenvalues of ^i and 5*2 are uncontrollable from ui. This 
is true because any geld of [Pi, Qi] and any geld of [P2, Q2] are elds of 
~ Pi 0 Qi ~ 
-Q2R1 P2 Q2W1 

Finally, all unobservable eigenvalues of Si and ^2 are unobservable from 

(show this). 

y2. This is true because any gcrd of 

(show this). 

Pi 
^1 

and any gcrd of P2 are crds of 

Pl 
-Q2RI 
W2RI 

0 
P2 
R2 

It should be noted that other uncontrollable and/or unobservable eigenvalues 
may exist. These correspond to poles of Hi and Hj cancelling in the product H2H1 
and can be found from representation (3.60) using, say, the eigenvalue tests for con
trollability and observability. It is of interest to determine these additional uncon
trollable and unobservable eigenvalues directly from the PMFD of Si and 52. To 
simplify the analysis, we first assume that both Si and 52 are controllable and ob
servable. Let 

Di(q)zi(t) = uiit), yiit) = Ni(q)zi(t) (3.63) 

be a description for 5i, with Hi{s) = Ni{s)D]^^{s), and let 

D2(q)Z2it) = U2{t), y2(t) = N2iq)Z2(t) (3.64) 

be a description for 52, with H2(s) = N2is)D2\s). Let Di(q) £ Riqr""", Ni(q) G 
Rlqy'"" and Diiq) E R[q]P''P, N2(q) G RlqY^'P and recall that yi and U2 have the 
same dimensions (yi = U2). In this case description (3.60) becomes 

Di 0 
-A^i D2 

I 0 
0 / 0 

0 
N2 

(3.65) 

Di 0 / 
[-Ni D2 0 

Using elementary column operations corresponding to postmultiplication by a uni-
0 0 /" 

The uncontrollable eigenvalues from ui are the roots of a geld of 

3stmultip] 

, a geld of which is given modular matrix, this matrix is reduced to 
-Ni £>2 0 



by , where GL is a geld of [-A/̂ i, Di]- Thus, all the uncontrollable eigen-/ 0 
0 GL\ 

values of the overall system are the roots of the determinant of a geld of [-iVi, Di]. 
Note that these are poles of//2 cancelling in the product H2H\ = N2D2^N\D^^, in 
D2^N\, or equivalently, in H2N\. 

The unobservable eigenvalues may be obtained similarly, using the representa
tions 

and 

DM)zi{t) = Ni{q)ui(t), 

D2(q)Z2(t) = N2{q)u2{t), 

yxit) = zi(t) 

yiit) = ziit) 

(3.66) 

(3.67) 

with Hi(s) = Dl\s)Ni(s) and H2(s) 
in this case 

D2 ^(s)N2(s)- Description (3.60) becomes 

(3.68) Di 

-N2 
0 

Dil 
\zi 

U2. 
Ni 

N2 
Ol 

Â 2j 
\ui 

V2_ ' 
y\ 

J2. 

/ Ol 
0 l\ 

\z\ 
L̂ 2 

The unobservable eigenvalues from y2 are the roots of a gcrd of 
Dx 0 

-N2 62 
0 / 

ing elementary row operations, corresponding to premultiplication by a unimodular 
Dx 0" 

-N2 0 
0 / 

matrix, this matrix is reduced to , a gcrd of which is given by 

. Us-

GR 0 
0 / 

where GR is a gcrd of Dx 
-N2 

. Thus, the unobservable eigenvalues of the overall sys-

. Note that these are poles of Dx 
-N2 

tem are the roots of the determinant of a gcrd of 

Hx cancelling in the product //2//1 = D2^N2D\^Nx-> in N2D^^, or equivalently, in 
NiHx. 

Systems connected in feedback configuration 

Consider systems ^i and ^2 connected in a feedback configuration as shown in 
Fig. 7.4A, or equivalently, as in Fig. 7.4B. 
Let 

Pi(q)zi(t) = Qx(q)ux(t), yx(t) = Rx(q)zx(t) + Wx(q)ux(t) (3.69) 

and P2(q)z2(t) = 62(^)^2(0, J2(0 = R2(q)z2(t) + ^2(^)^2(0 (3.70) 

be polynomial matrix representations of 5*1 and ^2, respectively. Since 

ui(t) - y2(t) + rx(t), (3.71) 

U2(t) = yi(t) + r2(tl (3.72) 

where rx and r2 are external inputs, the dimensions of the vector inputs and outputs, 
ux and j2 and also U2 and j i , must be the same, i.e., ux, y2 ^ R^ and U2, yx ^ ^^• 
To derive the overall system description, we consider yx = i^iZi + WxUx = ^iZi + 
^1(3^2 + n) = Rxzx + Wx(R2Z2 + W2U2) + Wxrx = RxZx + WXR2Z2 + WxW2(yx + 
^2) + Wxrx, from which we obtain 
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''^ 

- ^ 
• > ! 

^1 
Si 

S2 

yi 

., J 
L 
( J H '^ FIGURE 7.4A 

Feedback configuration 

'L.. -̂ 0^ + 

S2 

+ 

1̂ 

-^H(>- Sl 
yi 

FIGURE 7.4B 
Feedback configuration 

Similarly, we have yi = R2Z2 + W2U2 = R2Z2 + ^2(^1 + ^2) = R2Z2 + ^2(^1^1 + 
Wiui) + W2r2 = R2Z2 + W2RiZ\ + ^2^1(3^2 + n ) + ^2^2 . from which we obtain 

(/ - W2Wi)y2 = R2Z2 + W2R1Z1 + W2Wiri + W2r2. 

LEMMA 3.10. det(I - W1W2) = det(I - W2W1). 

Proof, det(I - W1W2) = det \ 

(3.74) 

= det 1 

= det 1 

= det { 

I 0 
.0 I-WxW2_ 

I 01 
-Wx l\ 

I -W2I 
0 / J 

r / 

r / 

) 

W2I 
/ J 

W2] 
I J 

\i -W2 

r / 0' 
[-Wi / . 

= det 
I --W2WI 

0 
0" 
/ . 

= det(I -W2W1) 

Now assume that det(I - W1W2) = det(I - W2W1) ¥^ 0. If Mi = (/ -

^ 1 ^ 2 ) ' ^ and M2 = {I - ^ 2 ^ 1 ) - ^ then (3.73) and (3.74) imply that yi = 

[MiRi,MiWiR2] 

[M2W2Wi,M2W2\ 

Z\ 
Z2 

r\ 

r2 

+ [MiWi,MiWiW2] a n d j 2 = [M21^2^!. ^ 2 ^ 2 ] + 

. Now Piz\ = Q\ux = Qi(y2 + n ) and P2Z2 = Q2U2 = 

62(^1 + ^2), where y\ and j2 are as above. Then the closed loop is described by 

Pi - Q1M2W2RX -Q1M2R2 
-Q2M1R1 P2 - Q2M1W1R2 

Q1M2 Q1M2W2 
Q2M1W1 Q2M1 

MiRi 

M2W2R1 
M1W1R2 

M2R2 + 
MxWi M1W1W2 

M2W2W1 M2W2 
(3.75) 

where the identity / + (/ - W i ^ 2 ) ' ^ V^i^2 = (/ - ^ 1 ^ 2 ) " ^ was used 



^ 1 

- 6 2 ^ 1 
-QxRi] 

Pi \ 
Ui 
1.̂ 2. 

Qi 

[o 
0 

Qil 
n 

['•2. ^ 
y\ 

J 2 . 
Ri 

[o 
0 

R2\ 
Ui 
[zi 

At this point it is of interest to point out that when Wi = 0,W2 = 0, then the 
closed-loop description (3.75) is simplified to the PMD 

(3.76) 

Note that given system descriptions (3.69) and (3.70), it is always possible to obtain 
equivalent representations with Wi ^ 0 and W2 = 0. Assuming this is the case, 
(3.76) is a general description for the closed-loop system, and the condition for the 
closed-loop system to be well defined is that 

^1 -Q1R2] 
-Q2R1 Pi 

del 7^0. (3.77) 

If this condition is not satisfied, then the closed-loop system cannot be described by 
the polynomial matrix representations discussed in this chapter. 

If the systems ^i and S2 are described by the state-space representations ki = 
AiXi + BiUi, yt = CfXi + DiUi, i = 1, 2, then in view of (3.75), the closed-loop sys
tem state-space description is 

Xi 

U2J 
J l 

[3^2] 

^ Ai + B1M2D2C1 
B2M1C1 

B1M2C2 
A2 + B2M1D1C2 

MiCi 
M2D2C1 

M1D1C2 
M2C2 + M2D2D1 

B1M2 
B2M1D1 

M1D1D2 
M2D2 

B1M2D2 
B2M1 

(3.78) 

where Mi = (I - DiD2)~^ and M2 = (I - D2DiyK It is assumed that det(I -
D1D2) = det(I - D2Di)y^0. 

It is not difficult to see that in the case of state-space representations, the con
ditions for the closed-loop system state-space representation to be well defined is 
det(I - D1D2) ^ 0. When Di = 0 and D2 = 0, then (3.78) simplifies to 

(3.79) 

EXAMPLE 3.3. Let 5*1 and ^2 be described by zi = u\,y\ = qz\ Sindqzi ~ ^2,y2 = 
Z2, i.e., {Pi, Gi, Ru Wi} - {1, 1, q, 0} and {P2, Q2, Ri, W2} = {q, 1, 1, 0}. These systems 
have transfer functions H\{s) = s and H2{s) = l/s, i.e., an ideal inductance Si is con
nected via feedback to an ideal capacitance S2. Then (3.76) assumes the form 

Xi 

y\ 
J 2 . 

= 
Ai B1C2 

B2C1 A2 _ 

Ci 0 ] 
0 C2J 

Ui\ 
U2J 

[X2_ 
+ Bi 

0 
0] 

B2\ 

' 1 

-q 

-1] 
q \ 

\zi 

U2. 
> i " 

yi. 

\ 01 

0 i j 

q 01 

P Ij 

r̂ i 
U'2_ 

\z\ 
U2. 

Since det 
1 -1 

-q q 
0, this does not constitute a well-defined closed-loop descrip

tion. It is of interest to note that Si cannot be described by a state-space description of 
the form {Ai, Bi, Ci, Di] since its transfer function Hi{s) = sh not proper. • 

EXAMPLE 3.4. Consider systems ^i and S2 connected in a feedback configuration 
s + \ s + 2 

with//i(^) = —-̂ -̂  and//2(5') = and consider the realizations 
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[Pi, Qh R\, Wx] = {q + Zq+1,1, 0} and {P2, Qi, Ri, W2} = {q+\,q+ 2,1, 0}. Then 
(3.76) becomes 

q + 2 

-(q + 2) 
(q + 1)1 
q+ I \ 

\zi 

U2. 
> i " 

J2. 

'q+ 1 0 1 
_ 0 q + 2\ 
"1 01 
0 ij 

\zi~ 

U2. 

r̂ i 
L^2. 

Since det = 0, the present example is not a well-defined poly-
q + 2 - ( ^ + 1 ) 1 

-(q + 2) q+l \ 
nomial matrix system description. It is of interest to note that here state-space realizations 

ofH\ and H2 exist. Let H\ = + I, H2 = 7 + 1, and consider the state-space 
s + 2 s -\- I 

realizations {Ai, Bi, Ci, Di} = {-2, - 1 , 1, 1} and {A2, B2, C2, D2} = {-1, 1, 1, 1}. Here 
I - D1D2 = 0, and therefore, a state-space reahzation of the closed-loop system does 
not exist, as expected. • 

EXAMPLE 3.5. Consider systems 5*1 and S2 in a feedback configuration with Hi(s) = 

and//2(^) = 1 and consider the realizations {Pi, Qi, Ri, Wi} = {q+l, q, 1, 0} and 

[Pi, Qi, Ri, W2} = {1, 1, 1, 0}. Then (3.76) becomes 

q+ 1 
- 1 

-q\ 
1 J 

ki 
U2. 
> i ' 

J2. 

q 01 
[0 Ij 
"1 01 
[0 ij 

In 
[ri 
\zi 

[z2 

Since det 
+ 1 -q 

- 1 1 
for the closed-loop system. Note that the transfer function matrix of the closed-loop sys-

= 1 7̂  0, this is a well-defined polynomial matrix description 

tem is H(s) , which is not proper whereas 
1 01 p + 1 -s^ \s 0]\s s 
0 ijL - 1 1J [0 ij ~ [̂  ^ + 1 

Hi and H2 were both proper. 
If the realizations to be considered are {Pi, g i . Pi, W\} = {q + 1 , -1 , 1, 1} and 

{P2, Qi, Ri, W2] = {1, 0, 0, 1}, then 1 - WiTy2 = 1 - 1 • 1 = 0 and no representation 
of the form (3.75) can be derived. This stresses the point that the conditions for the 
PMD of the closed-loop system to be well defined are given by (3.77), since the condi
tion det (I - W\W2) y^ 0 may lead to erroneous results. Note that det (I - W1W2) = 0 
does not necessarily imply that a well-defined polynomial matrix representation for the 
closed-loop system does not exist. 

Nowif state-space realizations of ^i(>s) = - + lmidH2(s) = 1 are considered, 
s + I 

namely, {Ai, Pi, Ci, D^} = {-1, 1, - 1 , 1} and {A2, P2, C2, D2} = {0, 0, 0, 1}, then 1 -
D1D2 = I - I ' I = 0, i.e., a state-space description of the closed-loop does not exist. 
This is to be expected since the closed-loop transfer function is nonproper and as such 
cannot be represented by a state-space realization {A, B, C, D}. • 

Next, let Hi(s) and H2(s) be the transfer function matrices of S\ and ^2, i.e., 
yi{s) = Hi(s)iii(s)sindy2(s) = 7^2W^2W-In view of wi = })2 + n a n d w 2 = j^i + 
r2, we have yi = H\U\ = H\{y2 + n ) = H1H2U2 + / ^ i n = H\H2y\ + HiH2f2 + 
H\ f\, or 

(I-HiH2)yi = H,H2r2 + H,n. (3.80) 



Also, y2 = H2U2 = HziSi + h) = H2H1U1 + H2r2 = H2Hiy2 + / ? 2 ^ i n + ^2^2, 
or 

{I-H2Hx)y2 = H2H,h+H2h. (3.81) 

Assume that det{I - H1H2) = det{I - H2H1) ¥= 0. Note that the proof of the fact 
that the determinants are equal is completely analogous to the proof of Lemma 3.10. 
Then 

(/ 
( / -

- / / l i /2) - ' / / l 
H2H\) H2H\ 

(/ 
(/ 

H\H2) H1H2 
-H2Hi)-'H2 

tin Hn 
H21 ^22 

(3.82) 

The significance of the assumption det(I - H1H2) # 0 can be seen as follows. 
Let Dizi = Niu\y y\ = z\ and D2Z2 = ^2, 3̂2 = ^2Z2 be representations of the 
systems ^i and 52. As will be shown, the closed-loop system description in this 
case is given by (D1D2 - NiN2)Z2 = A^i^i + 5 i r 2 and yi = D2Z2 ~ ^2 and y2 = 
N2Z2- Now note that / - H1H2 = I - D\^NxN2D:^^ = p\\DxD2 - NxN2)D:^\ 
which implies that det (/ - H1H2) 7̂  0 if and only if det {D1D2 - N1N2) ¥^ 0, i.e., if 
det(l - H\H2) = 0, then the closed-loop system cannot be described by the poly
nomial matrix representations discussed in this chapter. Thus, the assumption that 
det (I - H1H2) 7̂  0 is essential for the closed-loop system to be well defined. 

EXAMPLE 3.6. Consider Hi{s) = 2 and H2(s) = 1/s as in Example 3.3. Clearly, 1 -
H1H2 = 0, which implies that the closed-loop system is not well defined. This agrees 
with the result of Example 3.3, where it was shown that a PMD of the closed-loop system 
does not exist. • 

5 + 1 5 + 2 
EXAMPLE 3.7. Consider Hi(s) = ^,/i^2 = 7 as in Example 3.4. Here 1 -

5 + 2 5 + 1 
H1H2 = 0 and the closed-loop system is not well defined, which agrees with the results 
in Example 3.4. • 

EXAMPLE 3.8. Consider Hi(s) = 7 , ^ 2 ^ = 1 as in Example 3.5. Here 1 -
5 + 1 

H1H2 = —-rr ^ ^' ^^^ therefore, the closed-loop system is well defined. Relation 
5 + 1 

(3.82) in this case assumes the form 

'yi' = 
5 5 1 

5 5 + l J 

a nonproper transfer function that is the transfer function matrix H(s) derived in Example 
3.5. • 

Now consider systems Si and 5*2 with proper transfer function matrices Hi(s) 
SindH2(s),3ndlQtXi = AiXi + BiUuyi = CtXi^-DiUui = 1, 2, be their state-space 
representations. 

LEMMA 3.11. If det(I - D1D2) 7^ 0, then det(I - Hi(s)H2(s)) 7^ 0. Furthermore, in 
this case / - Hi(s)H2(s) is biproper [i.e., both / - H\{s)H2{s) and (/ - Hi(s)H2(s))~^ 
are proper rational matrices]. 

Proof, It is not difficult to see that I -Hi (5)7/2(5) = I-D1D2 + (strictly proper terms), 
which implies that det (I - D1D2) is the coefficient of the highest degree 5 term in 
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the numerator of det{I — Hi(s)H2(s)). Then if det(I — D1D2) 7̂  0, we have det(I -
Hi(s)H2(s)) ̂  0. Furthermore, 

nm(/ - Hi(s)H2(s)) = I- D1D2, (3.83) 

which impHes that when det{I - D1D2) ^ 0, then / - Hi(s)H2(s) is a biproper rational 
matrix, i.e., I - H1H2 and (/ - H\H2y^ are proper. • 

In Lemma 3.11, we have used the fact that a proper rational matrix H{s) 
has a proper inverse, e.g., H~^{s) proper, if and only if detD 7̂  0, where D = 
lim^^oo H(s). This result is based on Lemma 3.12 and Corollary 3.13. 

LEMMA 3.12. Consider H(s) G R(S)P^P, which can be expressed uniquely as H(s) = 
H(s) + Q(s), using polynomial division, where H(s) G R(sy^P is strictly proper and 
Q(s) G R[sy^P. Then H~^(s) is proper if and only if Q~^(s) exists and is proper. 

Proof, The proof is left to the reader as an exercise. • 

COROLLARY 3.13. If H(s) G R(s)P^P is proper, then H~\s) is proper if and only if 
detD # 0, where lim,_oo//(5) = D G RP^'P. 

Proof, D = Q(s) of the above lemma. • 

Note that det(I - Hi(s)H2(s)) 7̂  0 does not necessarily imply that det(I -

D1D2) 7̂  0. To see this, recall that in Examples 3.5 and 3.8, Hi = ^ ^ ^, H2 = 1, 

and 1 - H1H2 = 1 -
1 

s+ 1 

, ¥= 0. However, in any state-space realization 

Di = l,D2 — 1, and 1 - D1D2 = 0. In other words, when Hi(s) and H2(s) are 
proper, the condition det(I - D1D2) = det(I - D2D1) ¥- 0 implies that det{l -
Hi(s)H2(s)) = det(I - H2(s)Hi(s)) 7̂  0, or that a closed-loop representation in 
state-space form exists. When det(I - Hi(s)H2(s)) # 0, a polynomial matrix rep
resentation for the closed-loop system exists, but it is not necessarily in state-space 
form, i.e., det(I — D1D2) is not necessarily nonzero. 

LEMMA 3.14. Let//i(5), i/2W be proper with Di = \mis-^o,H\{s\D2 = lim -̂̂ ooi/aW 
and assume that (/ - Hi{s)H2{s)y^ exists. Then Hn{s) = (/ - Hi{s)H2{s)y'^Hi{s) is 
proper if and only if det (I - D1D2) 7̂  0. 

Proof If det (I - D1D2) 7̂  0, then in view of Lemma 3.11, / - Hi(s)H2(s) is biproper 
and Hu(s) is then proper. If Hii(s) is proper, then Hu(s)H2(s) and / + Hii(s)H2(s) are 
proptv.But(I-Hi(s)H2(s)y^ = I+ (I - Hi(s)H2(s)y^Hi(s)H2(s) = I + Hn(s)H2(sX 
and therefore, (/ - Hi(s)H2(s)y^ is proper or / - Hi(s)H2(s) is biproper. This implies, 
in view of Corollary 3.13, that det(I - D1D2) 7̂  0. • 

Similarly, it can be shown that all the rational matrices in (3.82), namely. 

yi 

h. 
Hn tin 
H21 H22\ 

\h 
U2. 

Ul - HiH2y^Hi (/ - HiH2y^HiH2] 
(I-H2Hi)H2Hi (I-H2Hiy^H2 J 

In 
U2 

are proper if and only if det (I — D1D2) 7̂  0. This result can also be seen from the 
following system theoretic argument: The rational matrices in (3.82) exist and are 
proper if and only if there exists a state-space representation of the closed-loop sys
tem. This will happen if and only if det (/ - D1D2) 7̂  0, in view of the assumptions 
in (3.78). 

In the following it is assumed that det {I - Hi(s)H2(s)) # 0, that is, the closed-
loop system is well defined. 



Controllability and observability 

Controllability and observability of closed-loop systems are studied next. In 
view of the representation (3.76), the following is evident: 

\GiL 0 
0 G2L\ 

1. If GIL is a geld of Pi, Qi and G2L is a geld of P2, Q2, then IS a 

eld of Pi 
-Q2R1 

-Q1R2 
Pi 

Qi 
0 

0 
22 

Thus, all uncontrollable eigenvalues of 

^1 in Gil are uncontrollable eigenvalues of the closed-loop system from ri, 

or r2, or . Also, all uncontrollable eigenvalues of 52 in G2L are uncontrol

lable eigenvalues of the closed-loop system from ri or r2, or . There may be 

additional uncontrollable eigenvalues in the closed-loop system, and these are 
studied below. 

\GiR 0 2. If GiR is a gcrd of Pi, Ri and G2R is a gcrd of P2, R2, then IS a 

crd of Pi 
-Q2R1 

-Q1R2 
P2 

Ri 
0 

0 
R2 

0 G2R\ 

That is, all unobservable eigenvalues of 

Si in GiR are unobservable eigenvalues of the closed-loop system from j i , or 

J2, or 
yi 

LJ2 
. Also, all unobservable eigenvalues of ^2 in G2R are unobservable 

eigenvalues of the closed-loop system from j i , or y2, or . There may be 

additional unobservable eigenvalues in the closed-loop system, and these are 
studied below. 

Controllability and observabiHty can of course be studied directly from 
the PMDs and (3.76) as was done above. However, further insight is gained if 
the additional uncontrollable and unobservable eigenvalues are determined from the 
PMFDs of ^i and ^2. For simplicity, assume that both ^i and ^2 are controllable and 
observable and consider the following representations: 

For system 5i: 

(la) Di(q)zi(t) = ui(t), yiit) = Ni(q)zi{t) 

or (lb) Di(q)zi(t) - Ni(q)ui(t), yi(t) = zi(t), 

where (Di(q), Ni(q)) are re and 0i{q), Ni(q)) are Ic. 
For system 5*2: 

(2a) D2(q)z2(t) = U2(t), j2(0 = N2(q)z2(t) 

or (2b) D2(q)z2(t) = N2(q)u2(t\ J2(0 = Ut\ 

where {D2{q), N2{q)) are re and (D2(q), N2{q)) are Ic. 
In view of the connections 

(3.84) 

(3.85) 

(3.86) 

(3.87) 

(3.88) uiit) = y2(t) + ri(t), U2(t) = yi(t) + r2(t) 

the closed-loop feedback system of Fig. 7.4 can now be characterized as follows [see 
also (3.76)]: 

1. Using descriptions (la) and (2a), Eqs. (3.84) and (3.86), we have 

(3.89) £>i 
Ni 

-Ni] 
£>2j 

\z\ 
U2. 

/ Ol 
0 /J 

In 
Vl. ' 

y\ 
yi. 

Ni 
0 

Ol 
Nil 

n 
U2 
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2. Using descriptions (lb) and (2b), we have 

3. Using descriptions (lb) and (2a), we have 

A îl 
D2J 

\z\ 
[h. 

'Ni 
0 

ol 
A^2j 

['•1 
l.''2. ' 

yi 
y2. 

I ol 
0 i\ 

\zi 
U2. 

-I 
NxN2\ 
D2 \ 

\zi 

U2. 
"A î 
0 

Ol 
l\ 

\n 
L'"2_ ' 

yi 
72. 

7 0] 
0 7V2J 

r̂ i 
[^2_ 

(3.90) 

(3.91) 

Also,_D2Z2 = M2 = >'i + r2 = Dj WiMi + r2 = £)j Wi()'2 + '"1) + r2 = 
D~[^N\{N2Z2 + n ) + ^2 and yi = M2 — r2 = D2Z2 "" ^2, from which we obtain 

(D1D2 - NiN2)z2 = [Ni,Di] 
D2 
N2 Z2 + n 

(3.92) 

4. Using descriptions (la) and (2b), we have 

Dx -11 
_-A^2A^i JO2J 

\z\ 
U2. 

= 
I 
0 

0 
A^2j V2. ' [y2. 

= 1 0 
Ol 
l\ 

\zi 

[Z2. 
(3.93) 

Also,^Z)izi = ui = y2 + n = D2^N2U2 -^ n = ^2 ^^2(^1 + ^2) + n = 
£^2^N2(NiZi + r2) + n and 3̂2 = ^1 "" n = Dizi — n , from which we obtain 

{I )2£>l - N2Ni)Zl = [ D2, A^2] 
nl 
/2J ' .3'2j 

= 
'Ni' 
Pi zi + 

0 
/ 

Ol 
oj 

(3.94) 

The preceding descriptions of the closed-loop system are of course equivalent. This 
can be proved directly, using the definition of equivalent representations discussed 
in Subsection 7.3A. Therefore, these descriptions have the same uncontrollable and 
unobservable modes. In the following analysis we shall carefully select different 
representations to study different properties in order to secure additional insight. 
The reader is encouraged to derive similar results, using different representations. It 
is stressed that in the following, both S\ and 5*2 are assumed to be controllable and 
observable. The uncontrollability and unobservability discussed below is due to the 
feedback interconnection only. As was previously shown, there will in general be 
additional uncontrollable and unobservable eigenvalues in a closed-loop system if 
S\ and S2 are uncontrollable and/or unobservable. 

To study controllability, consider the representation (3.89) in (1). It is clear from 

the matrices -N2 
D2 

and that the eigenvalues that are uncontrollable 

from ri will be the roots of the determinant of a geld of[—Ni,D2\, and the eigen
values that are uncontrollable from r2 will be the roots of a geld of [D\, -A^2]- The 

closed-loop system is controllable from 
^2 

Clearly, all possible eigenvalues that 

are uncontrollable from r\ are eigenvalues of ^2. These are the poles of//2 =̂  ^2^2 ^ 
that cancel in the product H2N1 or, as can be shown, they are the poles of H2 that 



cancel in 
/ 

H2 
H\. Similarly, all possible eigenvalues that are uncontrollable from r2 

are eigenvalues ofS\. These are the poles ofH\ = NiD^^ that cancel in the product 

H1N2 or, as can be shown, they are the poles of Hi that cancel in 
Hi 
I 

Ho 

To study observability, consider the representation (3.90) in (2). It is clear 

from the matrices 
Di -Ni 

and that the eigenvalues that are unobserv-

able from ŷi will be the roots of the determinant of a gcrd of 
D2 

, and the eigen

values that are unobservable from y2 will be the roots of the determinant of a gcrd of 

Di 
-N2 

. The closed-loop system is observable from . Clearly, all possible eigen

values that are unobservable from yi are eigenvalues of S2. These are the poles of 
H2 = D2^N2 that cancel in the product N1H2, or as can be shown, they are the poles 
of H2 that cancel in Hi [I, H2\- Similarly, all possible eigenvalues that are unobserv
able from y2 are eigenvalues of ^ i . These are the poles of Hi = D^^Ni that cancel 
in the product N2H1, or as can be shown, they are the poles of Hi that cancel in 
H2[Hi,Il 
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Summary, The poles of H2 that cancel in H2N1 (or in 
/ 

Hi 
Hi) are the eigen

values that are uncontrollable from r i ; the poles of H2 that cancel in N1H2 (or in 
HiU, H2\) are the eigenvalues that are unobservable from yi. The poles of Hi that 

\Hi' 
cancel in H1N2 (or in H2) are the eigenvalues that are uncontrollable from r2\ 

the poles of Hi that cancel in N2H1 (or in H2[Hi, / ] ) are the eigenvalues that are 
unobservable from j 2 ' 

The above results may also be expressed in the following convenient way, 
which, however, should be used only when the poles of Hi are distinct from the 
poles of H2, to avoid confusion. In the product H2H1, the poles of H2 that cancel 
are the eigenvalues that are uncontrollable from r i ; the poles of Hi that cancel are 
the eigenvalues that are unobservable from ^2- In the product H1H2 the poles of ^ i 
that cancel are the eigenvalues that are uncontrollable from r2; the poles of H2 that 
cancel are the eigenvalues that are unobservable from yi. 

EXAMPLE 3.9. Consider systems Si and S2 connected in the feedback configuration 
^ + 1 

of Fig. 7.4 and let S\ and ^2 be described by the transfer functions Hi(s) = - , and 
s - I 

Hiis) = —,—. For the closed loop to be well defined, we must have 1 - H1H2 = 

1 -

s + b 
s + I ais + ao (1 — ai)s^ + (b — ai — ao — l)s — (b -\- ao) 

s - I s + b 

a\ = l,ao = -l,andZ? = l,//2 

{s - \){s + b) 

^-^mdl-HiH2 
^ + 1 

7̂  0. Note that for 

1 -1 = 0 . Therefore, these 

values are not allowed for the parameters if the closed-loop system is to be represented 
by a PMD. If state-space descriptions are to be used, let Di = \ims-^o=Hi(s) = 1 
and D2 = lims^ooH2(s) = a\, from which we have 1 - D1D2 = 1 - ^1 7̂  0 for the 
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closed-loop system to be characterized by a state-space description [and also, in view 
of Lemma 3.14, for the transfer functions in (3.82) to be proper]. Let us assume that 
ai 7̂  1. 

The uncontrollable and unobservable eigenvalues can be determined from a PMD 
such as (3.92). Alternatively, in view of the discussion just preceding this example, we 
conclude the following, (i) The eigenvalues that are uncontrollable from ri are the poles 

of H2 that cancel in H2N1 = ais + ao 
s + b 

{s + 1), i.e., there is an eigenvalue that is uncon

trollable from r\ (at - 1 ) only when b = \. If this is the case, - 1 is also an eigenvalue 
^ + 1 

that is unobservable from y\. (ii) The poles of Hi that cancel in H\ N2 = r (ais + UQ) 

are the eigenvalues that are uncontrollable from r2, i.e., there is an eigenvalue that is un
controllable from r2 (at -1-1) only when ao/ai = - 1 . If this is the case, -1-1 is also an 
eigenvalue that is unobservable from j2- • 

Stability 

The closed-loop feedback system is internally stable if and only if all its eigenval
ues have strictly negative real parts. The closed-loop eigenvalues can be determined 
from the closed-loop descriptions derived above. If, for example, (3.76) is con-

\ Pi -Q1R2 
[-Q2R1 Pi 

Since any uncontrollable or unobservable eigenvalues of S\ and '̂2 is also an 
uncontrollable or unobservable eigenvalue of the closed-loop system, it is clear 
that for internal stability, both ^i and 5*2 should be stabilizable and detectable, 
i.e., any uncontrollable or unobservable eigenvalues of 5*1 and ^2 should have neg
ative real parts. This is a necessary condition for stability. We shall nov^ concen
trate on the descriptions (3.87) to (3.94) in (1) through (4). First, recall the identities 

sidered, then the closed-loop eigenvalues are the roots of det 

det 
A D 
C B 

= det(A)det(B - CA'^D) = det(B)det(A - DB'^C), (3.95) 

v^here in the first expression it v^as assumed that det {A) ^ 0 and in the second 
expression it was assumed that det(B) 7̂  0. The proof of this result is imme-

diate from the matrix identities 

[/ -Dfi - ' l 
[0 / J 

\A D 
[c B 

I 0] 
-CA-^ l\ 

A-DB-^C 0 
C B 

\A D 
[c B = 

D 
B-CA-^D and 

Now consider the polynomial matrices -N2 
D2 -N2 D2 

, (D1D2 -

N1N2), and {D2D1 - N2N1) from the closed-loop descriptions in (1), (2), (3), and 
(4). Then 

det 
£>! -N2 

-Ni £>2 
= det(Di) det{D2 - NiD^^N2) 

= det(Di)det(D2 - Dx^N\N2) 

= det(Di) det01^) det0iD2 - N1N2) 

= aidet(DiD2 - N1N2), (3.96) 



where at is a nonzero real number. Also 

det 
-N2 
D2 = det(D2) det(Di - 7V2^2 ^M) 

= det(D2) det(Di - D2^N2Ni) 

= det(D2) det 02^) det(D2Di - N2N1) 

= a2 det 02^1 - N2N1I (3.97) 

where 0:2 is a nonzero real number. 
Similarly, 

det 
-N2 D2 

= didet02Di - N2Ni\ 

where di = det(Di) det(D^ )̂ is a nonzero real number, and 

det 
-N2 Di 

= d2det(DiD2 - N1N2I 

(3.98) 

(3.99) 

where ($2 "= det 02) det(D2^) is a nonzero real number. These computations ver
ify that the equivalent representations given by (1), (2), (3), and (4) have identical 
eigenvalues. 

The following theorem presents conditions for the internal stability of the feed
back system of Fig. 7.4. These conditions are useful in a variety of circumstances. 
Assume that the systems Si and 52 are controllable and observable and that they are 
described by (3.84) to (3.87) with transfer function matrices given by 

and 

Hi = NiDi^ = Di^Ni 

H2 = N2D2^ = D2^N2 

(3.100) 

(3.101) 

where the {Nt, Di) are re and the {Nt, Di) are Ic for / = 1,2. Let a 1 (s) and a2(s) be the 
pole (characteristic) polynomials ofHi(s) and H2(s), respectively. Note that ai(s) = 
kidet(Di(s)) = kidet0i(s)), i = 1, 2, for some nonzero real numbers ki, ki. Con
sider the feedback system in Fig. 7.4. 

THEOREMS.15. The following statements are equivalent: 

(i) The closed-loop feedback system in Fig. 7.4 is internally stable, 
(ii) The polynomial 

(a) det 

(b) det 

Di 

Ni 

bx 
Ni 

-N2 

Di. 

-Ni' 

O2. 

or 

or 

(c) det0iD2 -NiN2),ov 
(d) det02Di -N2N1) 
is Hurwitz; i.e., its roots have strictly negative real parts, 

(iii) The polynomial 

ai(s)a2(s)det(I - Hi(s)H2(s)) == ai(s)a2(s)det(I - H2(s)Hi(s)) (3.102) 

is a Hurwitz polynomial. 
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iv) T he poles of 

ill 

Ml. 

I -H2 

-Hi I 

-1 
1̂ 

72. 

{I-H2H1)-' H2(I-HiH2r'] 

Hi(I-H2Hir {I-HIH2V J 
\ri 

U2 

(3.103) 

are stable, i.e., they have negative real parts. 
(v) The poles of 

'y\ 

yi. 

'-H2 I 

. I -Hi_ 

-1 "0 

L^l 

(I-HiH2r'Hi 

{I-H2H1)- 'H2H1 

H2] 
0 J 

\ri 

L^2_ 

(I-HiH2r'HiH2] 

(/ - H2H1) H2 J 

\ri 

ih 

(3.104) 

are stable. 

Proof. It was shown previously in (3.96) to (3.98) that all the determinants in (ii) are 
equal within some nonzero constants, i.e., they have the same roots. These roots are the 
eigenvalues of the closed-loop feedback system [recall that the representations (3.89) 
to (3.94) are all equivalent]. The feedback system is internally stable if and only if its 
eigenvalues have negative real parts. This shows that (ii) is true if and only if (i) is true. 

Toshow( i i i ) , l e tD^ = D1D2- NiN2 2indwvitQ det (I - H1H2) = det(D^\DiD2-
NiN2)D2^) = det(D^^) det(D2^) det(Dk). Since ai(s) = kidet(Di(s)) and a2(s) = 
k2 det (D2(s)), where ki, k2 are nonzero real numbers, it follows that, ai(s)a2(s) det (/ -
Hi(s)H2(s)) = ki /c2 det(Dk), which is a polynomial, the roots of which are the closed-
loop eigenvalues. Note also that det (I - H1H2) = det (I - H2H1). Since the roots of 
(3.102) are exactly the closed-loop eigenvalues, (iii) is true if and only if (i) is true. 

To show (iv) we write 

/ 

-Hi 

H2 

I 

D2 0 " 

0 6 1 ^ 

- 1 r 

[ 
Di -N2 

-Ni D2_ 

6 2 -7^2" 
-Ni Di_ 

\Di 0 " 

[0 D2_ 

-1 
(3.105) 

and we notice that these are coprime polynomial matrix factorizations (show this). The 

are the roots of J^H I poles of 
/ 

-Hi 

-H2 

I 

Di -N2 

-Ni D2 
that are precisely the closed-

loop eigenvalues. Note that the poles are also equal to the roots of det [ | 

[see (ii) above] since det 
Di -Ni 

-N2 D2 

0 / 
/ 0 

D2 -N2 

-Ni Di 

bi -Ni 

N2 D2 

0 / 
/ 0 

D2 -N2 

-Ni Di 

So (iv) is true if and only if (i) is true since the poles in (3.103) are exactly the eigenvalues 
of the closed-loop system. 

To show (v), we note that 

of (iv) above implies that 

yi' 

y2_ 
= 

"0 n lui 

1 ^ 2 . 
- ~riT 

, which in view of the proof 

'yi = 

= 

0 nl 
I ojl 
0 / i r 
/ oj^ 

/ 
-Hi 

I 

-Hi 

-H2 

I 

-H2] 

I 

I 

0 

ro 
[HI 

0 
/ 

H2] 

0 

/ 
-Hi 

-H2 

I 



"0 
/ 
"0 
_/ 

/] 
oj 

/] 
OJ 

D2 -N2 

62 -N2 

- 1 

-1 

D2 0 ] 
. 0 bi\ 

"0 N2\ 

Nx 0 J 

\b. 
[0 

\r\ 
Vh. 

0 ' 
Di. 

-1 "0 
.A^i 

A^2l 
0 J 

\r\ 
ih. 

or 
'yi 

.h. 

"0 /I 
J oj 

To / ] 
1 / OJ 

" A -A^if 
, - / ! / 2 62J 

[ 61 - ^ i l 
L-Â 2 ^2] 

^\Ni 01 
[0 7V2J 

Tn 
ih 

[0 /] 
[/ oJ 

• 1 - 1 "0 
Ni 

-1 

' 

Ni] 
0 J 

\r\ 
ih. 

(3.106) 

which is an Ic factorization. This of course is the expression for the transfer function that 
could have been derived directly from the internal description in (3.90). Similarly, from 
(3.89) it can be shown that 

- 1 I 

(3.107) yi 
0 

0 
N2j 

Di 

-Ni 

-N2 

D2\ 

which is an re factorization. Clearly, the poles of the transfer function matrix in (3.104) 

are precisely the closed-loop eigenvalues, which implies that that relates and 

(v) is true if and only if (i) is true. • 

Remarks 

1. Parts (iv) and (v) of Theorem 3.15 can also be shown to be true by using the 
following brief argument. It was shown that the feedback system is controllable 

from and observable from . Also, it can easily be shown that the system 

is observable from . Therefore, the poles of the transfer function from 

or to are precisely the eigenvalues of the closed-loop system, which 

must have negative real parts for internal stability. 
2. It is important to consider all four entries in the transfer function (3.104) be

tween 

and [or in (3.103) between and ] when considering inter

nal stability. Note that the eigenvalues that are uncontrollable from r\ or r2 will 
not appear in the first or the second column of the transfer matrix, respectively. 
Similarly, the eigenvalues that are unobservable from y\ or j2 will not appear 
in the first or the second row of the transfer matrix, respectively. Therefore, 
consideration of the poles of some of the entries may lead only to erroneous 
results, since possible uncontrollable or unobservable modes may be omitted 
from consideration, and these may lead to instabilities. 

3. Write 

(/ - HiH2y^ = D2(DiD2 - NiN2y^Di 

and 

If 

and 

( / - -H2Hi)-^ = DiiD2Di-N 

Dk = D1D2 - N1N2 

Dk = D2D1 - N2NU 

(3.108) 

(3.109) 

(3.110) 

(3.111) 
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then (/ - 7/1//2)" ' = D2D-'Du (I - H2H1) 

D2Dl^Ni NiDl^N2 

N2Dl^Nx DiDl^N2 

-- DiDl^D2, and 

NiD-^D2 NiDl^N2 
[N2D-^Ni N2D^^Di\ 

(3.112) 

Note that the first column above can be written as 
D2 
N2 

D^^N\, and possible can

cellations may only occur between D^ and A î since the D2 
N2, 

are re. In view of the 

representation (3.92), these are precisely the eigenvalues of the closed-loop sys
tem that are uncontrollable from r i . Similar results can be derived by considering 
the second column. These results agree with the comments made in Remark (2) 
above. Similarly, consider the first row NiDl^[D2,N2\. Since the [^2> A 2̂] are 
Ic, possible cancellations may occur only between Ni and D^, which in view of 
representation (3.94) are precisely the eigenvalues of the closed-loop system that 
are unobservable from y. Analogous results can be established by considering the 
second row N2Dl^{N\, D\\. 

Finally, we note that 

N2D DiD 
^-1 

D^D l ^ r ^ 2 
D2D-'Ni D2D-'Di 

(3.113) 

from which similar results concerning uncontrollable and unobservable eigenval
ues can easily be derived. 

4. The roots of each of the polynomials in (ii) of Theorem 3.15 are equal to the roots 
of the polynomials in (iii) and are equal to the poles of the transfer functions in 
(iv) and in (v). They are exactly the eigenvalues of the closed-loop system. 

5. The open-loop characteristic polynomial of the feedback system is a\{s)a2{s). 
The closed-loop characteristic polynomial is a monic polynomial, aci{s), with 
roots the closed-loop eigenvalues, i.e., it is equal to any of the polynomials in (ii) 
within a multiplication by a nonzero real number. Then, relation (3.102) implies, 
in view of (4), that the determinant of the return difference matrix [I—Hi (s)H2(s)] 
is the ratio of the closed-loop characteristic polynomial over the open-loop char
acteristic polynomial within a multiplication by a nonzero real number 

EXAMPLE 3.10. Consider the feedback configuration of Fig. 7.4 with Hi = 

Ho = 
ais + ao 

s + b 

s + 1 

s- r 
the transfer functions of systems Si and 5*2, respectively. Let ai 7^ I 

so that the loop is well defined in terms of state-space representations (and all transfer 
functions are proper). (See Example 3.9.) 

All polynomials in (ii) of Theorem 3.15 are equal within a multiplication by a 
nonzero real number, to the closed-loop characteristic polynomial given by aci(s) = 
9 b — ai — ao — I b + ao ^, . , . , , ^̂  . , . , „ 

s + s - . This polynomial must be a Hurwitz polynomial for 
I — ai I — ai 

internal stability. If ai(^) = s — I and a 2(5) = s + bsiVt the pole polynomials of Hi and 
H2, then the polynomial in (iii) is given by ai(s)a2(s)(l - Hi(s)H2(s)) = (1 - ai)s^ + 
(b — ai - ao - l)s - (b -\- ao) = (I — ai)aci(s), which implies that the return difference 

1 - Hi(s)H2(s) 

(s - m + b) 
a{s) 

(1 - ai) 

with a(s) = 

-. Note that (1 - H1//2)" (1 - H2Hir 
ai(s)a2(a) 

(1 - ai)aci(s), and the transfer function matrix in (iv) of 



Theorem 3.15 is given by 
(s - l)(s -\- b) (s ~ l)(ais + ao) 

a(s) 
(s + 1)(^ + b) 

a(s) 
(s - l)(s + b) 

a{s) a{s) 

The polynomial a{s) has a factor s + \ when b = I. Notice that a(-l) 
when b = 1. If this is the case (b = 1), then 

-s - I (s - l)(ais + ao)-

2-2b = 0 

a(s) 
s+ 1 

a(s) 
s- 1 

a(s) a(s) 

where a(s) = (s + l)d(^). Notice that three out of four transfer functions do not contain 
the pole at - 1 in d(s). Recall that when b = 1, - 1 is an eigenvalue that is uncon
trollable from ri, and it cancels in certain transfer functions, as expected (see Example 
3.9). Similar results can be derived when ao/ai = -I. This illustrates the necessity for 
considering all the transfer functions between wi, W2 and ri, r2 when studying internal 
stability of the feedback system. Similar results can be derived when considering the 
transfer functions between j i , y2 and ri, r2 in (v). • 

COROLLARY 3.16. The closed-loop feedback system in Fig. 7.4 is internally stable if 
and only if 

(i) Djf i[(/ - H2Hi)-\ H2(I - HiH2)-^] is stable, or 

(ii) D2^[Hi(I - H2Hi)-\ (I - HiH2y^] is stable, or 

(I-H2H1)-' 
(iii) 

(iv) 

[Hi(I - H2H1)-' 

H2(I - H1H2)-' 
(I - H,H2)-' 

D2 ̂  is stable, or 

D^ ^ is stable. 

Proof. The above expressions originate from rows and columns of the transfer func

tion matrix between and . In view of (3.113), expression (i) is equal to 

D\^DiDl^[D2, N2\ = D^^[D2, A 2̂], the poles of which are precisely the roots of detDk, 
the closed-loop eigenvalues, since the pair (D2, N2) is Ic. Similar arguments hold for (ii), 
(iii) and (iv). • 

It is of interest to point out that expression (i) of the corollary is precisely the 

transfer function between the partial state z\ and the input , in view of (3.103) 

and Dizi = u\. Expression (ii) corresponds to the transfer function between zi and 

. Notice that \ir\ = = = (i-H2Hir' 
(I-HiH2)-'Hi //2^2 + 

\l-H2Hi)-'H2 
{I-H,H2)-' Hxh 

from (3.104). Since H2 = ^ 2 ^^2 is an Ic factorization, the transfer function from 

to r2 is stable if and only if expression (iii) is stable. A similar argument holds zi\ 

for (iv). 
The following result can be proved in a completely analogous manner to the 

proof of the above corollary. 
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COROLLARY 3.17. The closed-loop feedback system in Fig. 7.4 is internally stable if 
and only if 

(i) DfH/ - H2Hi)-^D2^ is stable, or 
(ii) D^^I - HiH2T^b^^ is stable. • 

Note that expression (i) in the corollary is stable if and only if the transfer func

tion between z\ and is stable. To see this, note that u\ = (I - HjHi) ^ n , from 

whichzi = Df^wi = [ Z ) j ~ H / - ^ 2 ^ i ) " ^ 2 ] ^ 2 n . N o w D 2 r i = D2U1 - D2y2 = 

D2U1 - N2U2 = [D2, -N2\ , i . e . ,£ i - [D-,\l-H2Hi)-'D^'W2,-N2} 

Since the pair (62, N2) is Ic, this transfer function is stable if and only if expres
sion (i) is stable. Similarly, U2 = (I - H\H2)~^r2^ from which £2 = [^2 H^ ~ 

HiH2r'D^']Dir2 = [D^\I - HiH2r'D^'][-Ni,D,] , which is stable if 

and only if expression (ii) is stable, since (-A^i, Di) is an Ic pair of polynomial 
matrices. 

EXAMPLES.11. Consider again the systems described by Hi (s) = 

a\s + ao 
s + b 

s+ 1 
s- 1 

and 7/2 W = 

, as in Example 3.10. The expressions in Corollary 3.16 are given by 

(i) 

(ii) 

(iii) 

(iv) 

1 

s- 1 

1 
s + b 

{s - \){s + b) (s- l)(ais + ao) 

a(s) ' a(s) 

(s + l)(s + b) (s- l)(s + b) 

1 
a(s) 

[s + b, ais + ^o], 

a(s) 

(s - l)(s + b) 

a(s) 

(s + l)(s + b) 

a{s) 

(s - l)(ais + ap) 

a{s) 
(s - 1)(^ + b) 

a(s) 

a(s) a(s) 
[s+hs- 1], 

1 

s + b 

s- 1 
s+ 1 

1 
a(s)' 

1 ais + ao 
1 I s + b \ a(s) 

1 

Clearly, the monic pole polynomial of each of the transfer functions in (i) to (iv) is 
a(s) 9 (b - ai — ao - I) (b + ao) , ^ , 

= s + s - — = cici(s), the closed-loop characteristic 
I — ai 1 — a\ \ — a\ 

polynomial. This is so even when Z? = 1 or aolai = - 1 (see Example 3.9), in which 
case there are uncontrollable/unobservable eigenvalues. Notice that s + b and a\s + ao 
are coprime by the definition of H2(s). 

Similarly, the expressions in Corollary 3.17 are given by 

(i) 

(ii) 

1 (s - l)(s + b) 1 
s — I a(s) s + b 

1 (s - l)(s + b) 1 
s + b a(s) 
as expected. 

s- 1 

1 
a(s) 

1 
a(s)' 



PART 2 
SYNTHESIS OF CONTROL SYSTEMS 

7.4 
FEEDBACK CONTROL SYSTEMS 

In this section, feedback systems are studied further with an emphasis on stabiHz-
ing feedback controllers. In particular, it is shown how all the stabilizing feedback 
controllers can be conveniently parameterized. These parameterizations are very im
portant in control since they are fundamental in methodologies such as the optimal 
/7°°-approach to control design. Our development of the subject at hand builds upon 
the controllability, observability, and particularly, the internal stability results intro
duced in Section 7.3, as well as on the Diophantine Equation results of Subsection 
7.2E. First, in Subsection 7.4A all stabilizing feedback controllers are parameter
ized, using PMDs. A number of different parameterizations are introduced and dis
cussed at length. State feedback and state estimation, using PMDs, are introduced 
in Subsection 7.4B and are then used in Subsection 7.4C, where all stabilizing feed
back controllers are parameterized, using proper and stable MFDs. Two degrees of 
freedom feedback controllers offer additional capabilities in control design and are 
discussed in Subsection 7.4D. Control problems are also described in this subsection. 
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A. Stabilizing Feedback Controllers 

Now consider systems Si and ^2 connected in the feedback configuration shown in 
Fig. 7.4, or equivalently, in Fig. 7.5. Given S\, it is shown in this section how to pa
rameterize all systems ^2 so that the closed-loop feedback system is internally stable. 
Thus, if 5*1, called the plant, is a given system to be controlled, then ^2 is viewed as 
the feedback controller that is to be designed. Here we provide the parameterizations 
of all stabilizing feedback controllers. 

^^O 

3̂2 

S^ yi 

Or FIGURE 7.5A 
Feedback configuration 

/-2 +^ -N. ^2 , Q ^ 
'^ 

>H Si 
yi 

FIGURE 7.5B 
Feedback configuration 



590 Several parameters will be used to parameterize all stabilizing systems S2. The 
Linear Systems results are based on PMDs of the systems S\ and 5*2 and of the closed-loop sys

tem, in particular, PMFDs. Parameterizations are introduced, using first the polyno
mial matrix parameters (1) D^, N^ and D^, Nk and then the stable rational parameter 
(2) K = NkDl^ = D^^TV^. These parameters are very convenient in characterizing 
stability, but cumbersome when propemess of the transfer function H2 of 5*2 is to 
be guaranteed. The rational proper and stable parameters (3) Qi and Q2 are intro
duced next. These are very convenient when properness of H2 is to be guaranteed, 
but cumbersome when characterizing stability, except in special cases, e.g., when 
Hi is stable. The stable parameters (4) Su and 521 that are the comparison sen
sitivity matrices of the feedback loop will also be used. These can be employed to 
conveniently parameterize all stabilizing H2 controllers only in special cases, for ex
ample, when / / f ^ exists. Parameters (5) X2 and X2, which are closely related to Q2, 
will also be introduced and discussed. The results based on X2 in the case of SISO 
systems reduce to well-known classical control results. Finally, rational parameters 
(6) Li, L2 are introduced to help in providing alternative proofs for the results that 
involve the previously introduced parameters. These results provide a link with pa
rameterizations of all stabilizing controllers using proper and stable factorizations. 
Such parameterizations are addressed in Subsection 7.4C. 

The distinguishing characteristics of our approach of the parameterizations of all 
stabilizing feedback systems S2 (of all stabilizing controllers) is that they are based 
on internal representations, which were developed at length earlier in this book. This 
approach builds upon previous results and provides significant insight that allows the 
introduction of several parameters that are useful in different circumstances. This 
approach also makes it possible to easily select the exact locations and number of 
the desired stable closed-loop eigenvalues. Utilizing the development of this section, 
a parameterization that uses proper and stable MFDs and involves a proper and stable 
parameter K' is introduced in Subsection 7.4C. The parameter K' is closely related 
to the stable rational parameter K used in the approach enumerated above. This type 
of parameterization is useful in certain control design methods such as optimal //°°-
control design. 

In the following, the term "stable system 5" is taken to mean that the eigen
values of the internal description of system S have strictly negative real parts (in 
the continuous-time case), i.e., the system S is internally stable. Note that when the 
transfer functions in (3.103) and (3.104) of the feedback system S are proper, internal 
stability of S implies BIBO stability of the feedback system, since the poles of the 
various transfer functions are a subset of the closed-loop eigenvalues (see Section 
7.3 and Chapter 6). 

Feedback systems 

The feedback system of Fig. 7.5 was studied at length in Subsection 7.3C. Recall 
that if 

Pi(q)Zi(t) = Qi(q)uiit) 

ytit) = Ri(q)Zi(t), i =12, 

are polynomial matrix descriptions of Si and '̂2, then the closed-loop system is given 
by (3.76), i.e.. 



Pi 
-QiRi 

QIR2] 
P2 J [Z2j 

yi 
'J2_ 

= 

= 

Qx 
0 

^1 
0 

0] 

ol 
R2\ 

U2_ 

\zi\ 

[Z2\ 

(4.2) 

where the relations 

Mi(0 = nCO + nit), mit) = yiit) + nit) (4.3) 

have been used. Based on this description, it was shown that for the closed-loop 
eigenvalues to be stable (to have strictly negative real parts), it is necessary for 5i 
and ^2 to be stabilizable and detectable. This is so because the uncontrollable and 
unobservable eigenvalues of both S\ and ^2 will also be uncontrollable and unob-
servable eigenvalues of the closed-loop system. 

Now assume that S\ and ^2 are controllable and observable, and let system S\ 
be described by 

or 

(la) 

(lb) 

Dx{q)Zi{t) = ui(t),yiit) = Niiq)ziit) 

Di(q)zi(t) = Ni(q)ui(t), yiit) = zi(t), 

(4.4) 

(4.5) 

where the pair {D\{q), N\{q)) is re and the pair (D\iq), Ni{q)) is Ic. Let Hi{s) = 
Ni{s)D^^{s) = D'[^(s)Niis) be the transfer function matrix of S'l. Next, let system 
52 be described by 

or 

(2a) 

(2b) 

D2(q)z2{t) = U2(t), yiit) = N2iq)z2(t) 

D2(q)Z2{t) = N2(q)u2(t), y2{t) = Mt), 

(4.6) 

(4.7) 

where the pair {D2{q), N2{q)) is re and the pair {D2{q), N2(q)) is Ic. Let H2is) = 
N2(s)D^Hs) D2 ^(s)N2(s) be the transfer function matrix of S2. Recall from Sub
section 7.3C [see (3.89) to (3.94)] that the closed-loop system descriptions are in this 
case as follows: 

1. Using descriptions (la) and (2a), we have 

Di 

(4.8) 

A^2l 

D2\ 

\zi 

U2. 

\yi 
[y2. 

7 ol 
0 i\ 

\n 
U2 

'Ni 0 ] 
0 / ̂ 2} 

\zi 

L^2. 
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2. Using descriptions (lb) and (2b), we obtain 

-N2 
Ni] 
D2J 

\zi 

[Z2. 

\yi 
y2. 

'Ni 
0 

7 
0 

ol 
A^2j 

Ol 
/J 

[zi 
LZ2 

['"' 
[''2. 

-| 
(4.9) 
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3. Using descriptions (lb) and (2a), we have 

(D1D2 - NiN2)Z2 = [Ni,Di] 

D2 
N2 

Z2 + (4.10) 

4. Using descriptions (la) and (2b), we obtain 

{D2D1 - N2Nl)Zl = 02, N2] 

zi + 
0 0 

- / 0 (4.11) 

These descriptions of the closed-loop system are all equivalent and the polynomials 

det -N2 
det 

-N2 
-Ni 
D2 

det{DiD2-NiN2), and det(D2Di - N2N1) 

are all equal within multiplication of nonzero scalars. Their roots are the closed-loop 
eigenvalues (see Theorem 3.15). 

Parameterizations of all stabilizing systems S2 

The six parameterizations of all stabilizing systems ^2 previously mentioned are 
now introduced and discussed at length. 

1. Parameters Dt, N^ and Dj^, N^. Consider now the closed-loop description 
given in (4) above and let 

D2D1 - N2N1 = Dk (4.12) 

where D^ is some desired polynomial matrix so that the roots of detD^ are stable 
(have negative real parts). If Z)i, A î, D^ are assumed to be given and D2, -N2 
that satisfy (4.12) are to be determined, then this equation is seen to be a polynomial 
matrix linear Diophantine equation. Such equations were studied in Subsection 7.2E. 
In view of Theorem 2.15 of Chapter 7, Eq. (4.12) has a solution for any Dj^ (of 
appropriate dimension) since the pair (Di, A î) is re. All solutions of the Diophantine 
Equation (4.12) can be parameterized as follows [see (2.54)]: 

D2 = DkX, - N^N, 

-N2 = DkYi + NkDi 

or [D2,-N2] = [Dk,Nk] 
Xx 

(4.13a) 

(4.13b) 

(4.14) 

where X\, Y\ satisfy X\D\ -\- Y\N\ = / , the pair {Ni,D\) is Ic and is such that 
—N\D\ + D\N\ = 0, and N^ is an arbitrary polynomial matrix of appropriate di-

\Dx 
mensions. Note that {D^Xi, D]J^\\ is a particular solution of {D2, -A^2] 

^ 1 
= D,. 



For the system D2Z2 = N2U2, J2 = Z2 to be well defined, we must have detD2 = 
det (Dj^Xi — NkNi) 7̂  0, i.e., Nk (and D^) must be such that this condition is satisfied. 

Similar results can be derived using the closed-loop description given in (3). Let 

D1D2 - N1N2 = Dk, (4.15) 

where D^ is some desired polynomial matrix so that the roots of det D^ are stable. In 
view of Theorem 2.15, all solutions of the Diophantine Equation (4.15) are given by 

D2 = XiDk - NiNk 

-N2 = YiDk + DrNk 

or 
N2 
D2_ 

Di 
Ni 

-Yi\ 

Xi\ 
\-Nk 
[Dk 

(4.16a) 

(4.16b) 

(4.17) 

where Xi, Yi satisfy DiXi + A^i7i = / , the pair (Ni,Di) is re and is such that 
—DiN\ + NiD\ = 0, and Nk is an arbitrary polynomial matrix of appropriate di

mensions. Note that XiDk 
YiDk 

is a particular solution of [Di, Ni] D2 
-N2 

= Dk. For 

the system D2Z2 =" ^2, j2 = ^̂ 2̂ 2 to be well defined, we must have detD2 = 
det{XiDk - NiNk) 7^ 0, i.e., Nk (and Dk) must be such that this condition is sat
isfied. 

The preceding two sets of parameterizations for '̂2 are of course related. A con
venient way of presenting the above results in a unified way is to use the doubly 
coprime factorizations of H\. To this end, assume that the descriptions (4.4) and 
(4.5) for system Si satisfy 

UU-' = 
Xi Fi 
Â i A J 

£»! 
[A^I 

- I ' l 
^ i . 

/ 0 
0 / 

(4.18) 

where U is 3. unimodular matrix (i.e., det U is a. nonzero real number) and the 
X\, Yi,Xi, Yi are appropriate matrices. Factorizations of Hi = NiD^^ = D^^Ni 
that satisfy (4.18) are called doubly coprime factorizations of Hi. Such factoriza
tions always exist (see, e.g., [21], [1]). In particular, in Theorem 2 of [1] it is shown 
that if the relations XiDi + FiA î - / , DiXi + Nifi = I and -NiDi -f- DiNi = 0 
are satisfied, then (4.18) is satisfied for Di, A î, Di, Ni, Xi, Yi and [Xi, Yi] = 
[Xi, Yi] -h ^[-A^i, Di], where S = XiYi - YiXi, i.e., any Ic and re factorizations 
of Hi with associated matrices can be adjusted so that they are doubly coprime. 

If Di, Ni and Di, Ni are doubly coprime factorizations and satisfy (4.18), then 
the solutions of the Diophantine Equations in (4.14) and (4.17) can be written as 

[D2.-N2] = [Dk,Nk\U 

and 

from which it follows that 

and 

N2 
D2 

= U - 1 -Nk 

[Dk,Nk] = [D2,-N2]U-' 

= u\ -Nk 
Dk 

N2 
D2 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

593 

CHAPTER 7 : 

Polynomial 
Matrix 
Descriptions 
and Matrix 
Fractional 
Descriptions 
of Systems 



594 Xhe relation between D^, N^ and D^, N^ is now clear, namely, 

Linear Systems -DuNk + NkDk = 0. (4.23) 

THEOREM 4.1. Assume that the system Si is controllable and observable and is de
scribed by the PMD (or PMFD) as (i) DiZi = u\, y\ = N\Z\ given in (4.4), or by (ii) 
b\z\ = N\u\y y\ = zi given in (4.5). Let the pair (Di,Ni) and the pair (Di,Ni) be 
doubly coprime factorizations of the transfer function matrix//i (5) = MDj"^ = D^^Ni 
[i.e., (4.18) is satisfied]. Then all the controllable and observable systems S2 with the 
property that the closed-loop feedback system eigenvalues are stable (i.e., have strictly 
negative real parts) are described by 

(i) D2Z2 = N2U2, y2 = Z2, (4.24) 

where D2 = DkXi - NkNi and N2 = -{DkYi + A^^^i) with Xi, Fi, A î, 5 i given in 
(4.18) [see also (4.19)] and the parameters D^ and Nk are selected arbitrarily under 
the conditions that D^^ exists and is stable, and the pair {Dky Nk) is Ic and is such that 
det(DkXi -NkNi)y^O. 

Equivalently, all stabilizing ^2 can be described by 

(ii) D2Z2 = W2, yi = N2Z2> (4.25) 

where D2 = XiDk - NiNj, and N2 = -{Y\Dk + î iA^ )̂ with Xu ? i , Nu Di given in 
(4.18) [see also (4.20)] and the parameters Dk and Â^̂  are selected arbitrarily under 
the conditions that D^^ exists and is stable, and the pair (Dk, Nk) is re and is such that 
det(XiDk-NiNk)7^0. 

Furthermore, the closed-loop eigenvalues are precisely the roots of detbk or of 
detDk. In addition, the transfer function matrix of 5*2 is given by 

H2 = -0kX,-NkN,)-\DkY,+Nkb,) 

= -{Y,Dk + DiNk)(X,Dk - NiNk)-\ (4.26) 

Proof, The closed-loop description in case (i) is given by (4.11) in method (4) above 
and in case (ii) it is given by (4.10) in method (3). As was shown in Subsection 7.2E, 
(4.19) and (4.20) are parameterizations of all solutions of the Diophantine Equa
tions b2Di - N2N1 = Dk [in (4.10)] and D1D2 - N1N2 = Dk [in (4.11)], respec
tively. The fact that 5^^ (or D^^) exists and is stable guarantees that the closed 
loop is well defined and all of its eigenvalues, which are the poles of D^^ (or of 
D^i), will be stable. The condition det(bkXi - NkNi) ¥^ 0 [or det{XiDk - NiNk) ¥^ 
0] guarantees that detb2 7̂  0 [or detD2 ¥^ 0], and therefore, the PMD for ^2 in 
(4.10) is well defined. Finally, note that the pair 0k,Nk) is Ic if and only if the 
pair 02, N2) is Ic as can be seen from 02, -N2] = 0k,NkW given in (4.19), 
where U is unimodular. This then implies that the description 02, N2> 1} for S2 is 
both controllable and observable. Similarly, the pair (Dk,Nk) is re guarantees that 
{D2,1, N2} with D2 and N2 given in (4.20) is also a controllable and observable descrip
tion for 5*2. • 

2. Parameter K. In place of the polynomial matrix parameters Dk, N^ or Z)^, 
Nk, it is possible to use a single parameter, a stable rational matrix K. This is shown 
next in Theorem 4.2. 

THEOREM 4.2. Assume that the system Si is controllable and observable and is de
scribed by its transfer function matrix 

Hi = NiD^^ = b^^Ni, (4.27) 

where the pairs (A î, Z)i), 0i, Ni) are doubly coprime factorizations satisfying (4.18). 
Then all the controllable and observable systems S2 with the property that the closed-
loop feedback system eigenvalues are stable (i.e., they have strictly negative real parts) 
are described by the transfer function matrix 



H2 = -(Xi - KNir\Y, + KDi) 

= -(Fi + D,K)(Xi - NiKr\ (4.28) 

where the parameter K is an arbitrary rational matrix that is stable and is such that 
det{X\ - KN\) # 0 or det(Xi — NiK) 7̂  0. Furthermore, the poles of ^ are precisely 
the closed-loop eigenvalues. 

Proof, This is in fact a corollary to Theorem 4.1. It is called a theorem here since it was 
historically one of the first results established in this area. The parameter K is called the 
Youla parameter (see Section 7.6). 

In Theorem 4.1, descriptions for H2 were given in (4.26) in terms of the parameters 
Dk, Nk and Dk, Nk. Now, in view of -DuNk + N^Dk = 0, given in (4.23), we have 

D-,'Nk = NkDl' = K, (4.29) 

a stable rational matrix. Since the pair (D^, N^) is Ic and the pair {Nk, Dk) is re, they 
are coprime factorizations for K. Therefore, H2 in (4.28) can be written as the H2 of 
(4.26) given in the previous theorem, from which the controllable and observable internal 
descriptions for S2 in (4.24) and (4.25) can immediately be derived. Conversely, (4.28) 
can immediately be derived from (4.26), using (4.29). Note that the poles of K are the 
roots of det Dk or det Dk that are the closed-loop eigenvalues. • 

EXAMPLE 4.1. Consider//i = 
s+ 1 
s- 1 

. Here Â i = Â i = 5 + 1 and Di = Di = 5 - 1 . 

These are doubly coprime factorizations (a trivial case) since (4.18) is satisfied. We have 

uu-
Xi 

-Ni 

s + 

Di 

-s + 

-Yi 

Xi 

-{s +1) s - \ 

s - 1 -{-s + |) 
s+l s+ \ 

In view of (4.26) and (4.28), all stabilizing controllers H2 are then given by 

H2 
{-s+l)dk^{s-\)nk _ _{-s+l) + {s-l)K 

{s + \)dk -{s+ \)nk 

where K = rik/dk, any stable rational function. 

EXAMPLE 4.2. Consider//i(5") = ' 

1 - 1 

(5 + i ) - (5 + 1)K ' 

[1,0] 
-(s + 1) 

1 
= NiD-, 1 _ 

[1, s+l] = Di Wi, which are coprime polynomial MFDs. Relation (4.18) is given by 

uu-^ = 
Xi 

-Ni 

1 

5 i 
D, - F i 

Xi 

s+ 1 

s'^ + s + 1 

- 1 ~(s+l) 

-s^ + l 

0 

'2 -(S + 1) 

1 

-(s + 1) 

0 0 : 1 

All stabilizing controllers may then be determined by applying (4.26) or (4.28). 
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We shall now express the transfer functions between 

terms of the parameters D^, N^ or D/., N^ or K. 
Recall that [see (3.103) and (3.104)] 

yi 
J2. 

or 
U2 

and 
/ 2 _ 

m 

and 

\y\ 

Ui 

U2 

= 

= 

(I - HIHJT' 
(I-H2Hi)-'H2Hi 

(I-HxH2r'HiH2 
(I-H2Hi)-'H2 

Hid - H2Hir' 
H2(I 

HiH2r' 

(4.30) 

(4.31) 

It is not difficult to see, in view of (4.26) and (4.28), that ( / - i ? i / / 2 ) " ' =D2D^^Di = 
(XiDk - NiNk)Dl^Di = (Xi - NiK)Du and (/ - //z^/i)"^ = £>i-D^'^2 = 

DiiXi - KNi). Also, (/ - HxH2)-^Hi = D2Dl^Nx = 
(Xi - NiK)Nx = Hiil - H2Hi)-^ = NiDl^D2 = 

NxDl\DkXi - NkNx) = NxiXx - KNx), and (/ - H2Hx)-^H2 = Z^ID^'JVJ = 

Dxbl\bkXx-NkNx) 
(XiDk - NxNk)D7'Nx 

-DxiYx + KDx) = H2(I - HxH2)-' = N2Dl'Dx = 
- ( f i + DxK)bx. Note that (/ - HiH2)-^HxH2 = 

, 'N2 = -NxDl\DkYx + A^^^i) = -A^i(Fi + KDx). 

-DxDl'{DkYx+NkDx) = 
-{YxDu + DxNk)Dl'Dx = 
Hx{I - H2Hxr^H2 = Nxb 
To express (/ - HxH2)~^HxH2 in terms of D^, N^ we write it as D2D^^NxH2 = 
-{XxDk-NxNk)Dl'Nx{YxDk + DxNu)0txDu-NxNkr^ = -{Xx-NxK)Nx{Yx + 
DxK){Xi — NxK)~^, which is not as simple as the expression given in terms of 
bk,Nk. 

Similarly, (/-772^i)-iH2Hi = H2{I-HxH2)-^Hx = A 2̂£>̂ 'A î = -(?i£>*+ 
DxNk)Dl'Nx - (F i + DxK)Nx. To express (/ - / /2ffi)~'^2^i in terms of 

= -DxiYx + Di,jV<;,wewriteitasDiD^i7^2/^i = -DxDl^{DkYx+Nkbx)NxD:^^ 
KDx)NxDiK 

It is straightforward to express the transfer functions (4.30) and (4.31) in terms 
of the parameter ^ , in view of A" = N^D^^ = D^'iV^. In particular, we have 

J 2 . 

U2 

= 

= 

(Xi -NiK)Ni 
- ( f 1 + DxK)Nx 

(I-H2NxD^')-
(Xx -NxK)Nx 

-(Xx - NxK)NxH2 
-{Yx + DxK)Dx 

-{Yx 
{Xx-

+ DxK)Dx 
- NxK)Dx 

(4.32) 

(4.33) 

These expressions were derived from the previous expressions given that involve 
Dj^ and N^. The right factorization of H2 in (4.28) is to be considered in these ex
pressions. Similarly, 

U2 

^ 

= 

NxiXx -KNx) 
-DxiYx + KDx)NxD7 

-NxiYx +KDx) 
-DxiYx + KDx) 

DxiXx-KNx) -DxiYx + KDx) 
NxiXx-KNx) il - b^^NxH2)-^ 

(4.34) 

(4.35) 

which were derived from the previous expressions involving D^ and N^. The left 

factorization of H2 in (4.28) is to be considered in entry (2, 2) of the to 



transfer function. These expressions for the transfer functions in terms of K can of 
course be combined in order to use the most convenient parameterizations. 

3. Parameters Q\ and Q2. Recall from Subsection 7.3C the relations (3.103) 
and (3.104) given by 

(4.36) 

and 

= 

= 

= 

-H2 I 
I -Hi 

- 1 "0 

til 
(I-HiH2r'Hi 

(I-H2H,r'H2H, 

I -H2 
-til I 

- 1 

H2] 

0 J U2_ 

(I-H,H2r'H,H2] 
(I-H2H,r'H2 J 

In 
U2_ 

(I-H2H1)-' H2{I-HiH2r' 
Hi{I-H2Hir' (I-H,H2r' 

(4.37) 

We shall now express the transfer function matrices in terms of some important pa
rameters. To this end, define 

Qi = / / i ( / - H2Hi)-' = (/ - H,H2)-'H, 

and note that 

Q2 ^ H2Q - HxH2)-' = (/ - H2H,)-'H2 

Hi = Qxil + //2Q1)-' = (/ + QiH2)-'Qi 

H2 = & ( / + HiQ2)-' ={I + Q2H,)-'Q2. 

(4.38) 

(4.39) 

(4.40) 

(4.41) 

It is not difficult to see that QxH2 = H1Q2 and Q2H1 = H2Q1 from Q1H2 = 
(I - H\H2r^HxH2 = Hi(I - H2Hi)-^H2 = H1Q2, and similarly for Q2HX. Also 
note that 

(/ - //1//2)"' = / + HiQ2 = / + QiH2 

(I - H2Hx)-^ = / + H2Q1 = / + 22^1, 

(4.42) 

(4.43) 

from which by postmultiplying the first relation by Hi and the second by H2, we 
obtain Qi = (/ + HiQ2)Hi = Hi(I ^ Q2H1) and 62 = (/ + H2Qi)H2 = H2(I + 
Q1H2). In view of these relations, it is now straightforward to write 

yi 
[y2_ 

Ui 

U2 

= Q\ Q1H2 
H2Q1 (I + H2Qi)H2 

I + H2Q1 (/ + H2Qi)H2 
Qi 1 + Q1H2 

(4.44) 

(4.45) 

Note that (4.44) and (4.45) are useful when H2 is given, in which case they depend 
only on the parameter g i . In this case Hi is given by (4.40). It is not difficult to see 
that Qi is the transfer function matrix between yi or U2 and ri. Similarly, 

\yi 

[h. 
- ̂  -
Ui 
^ U2 — 

Hi(I + Q2Hi) H1Q2 
QiHi Q2 

I + Q2H1 Q2 
Hi(I^Q2Hi) I + H1Q2 

(4.46) 

(4.47) 
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Expressions (4.46) and (4.47) are useful when H\ is given, in which case the transfer 
functions depend only on the parameter Q2. In this case H2 is given by (4.41). Q2 is 
the transfer function matrix between J2 or wi and r2. 

If the given transfer function H2 or Hi is proper, then it is straightforward 
to guarantee properness of all other transfer functions by appropriately select
ing the parameter Qi or Q2. In particular, given that Hi is proper, let a proper 
Q2 be such that (I -\- HiQ2)~^ exists. Then, in view of Lemma 3.14 in Sub
section 7.3C, H2 = Q2{J + HiQ2)~^ given in (4.41) is proper if and only if 
det{I + (lim5^oo//i)(lim5^oo22)) ^ 0. If this is true, then all the transfer func
tions in (4.46) and (4.47) will be proper. This implies that if the given Hi is strictly 
proper then any proper Q2 will guarantee that the above transfer functions exist and 
are proper. If Hi is not strictly proper, i.e., (lim^^oo//i 7̂  0), then care should be 
taken in the selection of a proper Q2; if in this case it is possible to select Q2 strictly 
proper, then H2 will be (strictly) proper for any g2- Similar results are valid when 
H2 is given and Qi is selected. 

In Theorem 4.3 we assume that Hi is given and the parameter Q2 is to be chosen 
to guarantee internal stability. Such a situation arises when Hi represents the given 
plant and H2 is the stabilizing controller to be designed. It should be noted that (as 
was shown in Subsection 7.3C), if the given system ^i is not controllable and ob
servable, all its uncontrollable and unobservable eigenvalues will appear as uncon

trollable from and unobservable from or eigenvalues in the closed-loop 

system. Therefore, for stability it is necessary to assume that Si is stabilizable and 
detectable. Here, working with Hi, any possible uncontrollable and unobservable 
parts of Si are ignored. Exactly analogous results exist for the parameter Qi when 
H2 is given. 

Consider the feedback system of Fig. 7.5 and assume that Si is controllable and 
observable with transfer function matrix Hi. 

THEOREM 4.3. Given//i, let 

H2 = G2(/ + //lG2)" (4.48) 

where the rational matrix Q2 is such that (/ + HiQ2)~^ exists. Then the eigenvalues of 
the closed-loop feedback system will be stable (i.e., they will have negative real parts) 
if and only if Q2 is selected so that 

(i) the poles of Hi(I + Q2H1), H1Q2, Q2H1, and Q2 are stable, or 
(ii) the poles of Df^/ + 22^1, G2] are stable, or 

\ 2̂  1 (iii) the poles of b^ ^ are stable. 

Furthermore, the eigenvalues of the closed-loop system are precisely the poles in (i) 
or (ii) or (iii). In addition, if Hi is proper, then H2 and the transfer matrices in (4.36) and 
(4.37) are proper if and only if Q2 is proper and det (I + (lim^̂ oo //^(lim^^oo Q2)) ^ 0. 

Proof, The expressions in (i) are precisely the entries of the transfer matrix between 

and given in (4.46), the poles of which are the closed-loop eigenvalues (see 

Theorem 3.15 in Subsection 7.3C). The expressions in (ii) and (iii) come from Corollary 
3.16, where it was shown that the poles in these expressions are exactly the closed-
loop eigenvalues. The statement about properness was proved above, just before the 
theorem. • 



Remarks 

1. It is not difficult to see that this theorem characterizes all H2 that lead to a feed
back system with stable eigenvalues. When Hi is proper it also characterizes 
all proper stabilizing H2. 

2. The eigenvalues of the closed-loop system are the poles of the expressions in 
conditions (i) or (ii) or (iii). These will be poles of Q2, but also stable poles of 
H\, depending on the choice for Q2. 

3. It is easy to select Q2 so that H2 in (4.48) is proper (when H\ is proper). Also, it 
is not difficult to select Q2 so that the stability conditions are satisfied. However, 
to conveniently characterize all Q2 that satisfy the stability conditions (i), (ii), 
or (iii) is not straightforward, unless special conditions apply. This is the case 
for example when Hi is stable, as in Corollary 4.4. 

4. For further discussion of the relation between propemess and stability in a sys
tem described by a PMD, refer to Chapter 6 of [331 and also [9]. 

COROLLARY 4.4. Given // i , assume that its poles are stable. Let H2 be given by 
(4.48), where the rational matrix Q2 is such that (/ + HiQ2)~^ exists. The eigen
values of the closed-loop feedback system will be stable (i.e., will have negative 
real parts) if and only if Q2 is stable. In addition, if Hi is proper, then H2 and all 
the transfer matrices in (4.36) and (4.37) are proper if and only if Q2 is proper and 
det{I + (lim,_oo//i)(lim,_oo Q2)) ^ 0. 

Proof, When the poles of H\ are stable (i.e., have negative real parts), then the condi
tions (i) or (ii) or (iii) of Theorem 4.3 are true if and only if the poles of Q2 are stable. • 

Corollary 4.4 greatly simplifies the conditions on Q2. However, it is valid only 
when Hi has stable poles. The result in this corollary was pointed out by Zames in 
[38], where it was used to introduce the //°°-framework of optimal control system 
design. 
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4. Parameters Sn and 821- At this point it is of interest to introduce the matri

ces 

S12 = (I- HiH2r\ and 52i = (I - / / 2 ^ i ) ' \ (4.49) 

which are of importance in control system design. They are the companion sensitiv
ity matrices of the feedback loop. Su is also the transfer function between U2 and 
r2, while ^21 is the transfer function between ui and ri. Note that Q2 = H2{I -
HiH2r^ = H2S12 = S21H2 and Qi = Hi(I - i/2//i)"^ = H1S21 = SnHi, Also, 
H1Q2 = S12 - /, 22^1 = ^21 - / and Q1H2 = S12 -1, H2Q1 = S21 - L Now con
sider Theorem 4.3 and note that 

H2 = Q2S 12 ^2"/22 (4.50) 

and that the conditions (ii) and (iii) can be written as D. ^[821, Q2] and 22 
^12 

DI 

which must be stable in order to have stable closed-loop eigenvalues. This implies 
that a necessary condition for stable closed-loop eigenvalues is that all unstable poles 
of Hi must appear as zeros of 821 and of 812. 

In general it is not possible to parameterize all stabilizing controllers in terms 
of only 812 or 821, but this can be accomplished under certain assumptions on Hi. In 
particular, we have the following result. 
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or H2 = 52-/(^21 - I)H[' = S2i'[(S2i - I)N{']Du (4.52) 

where 1̂2 or ̂ 21 are rational matrices such that S^2 ^^^ 2̂1̂  exist. Then the eigenvalues 
of the closed-loop feedback system will be stable if and only if 

(i) S12 is such that the poles of H;\Sn-I) 
^12 

D^' are stable, 

(ii) ^21 is such that the poles of Z)f̂  [521, (52]- / ) / / f^] = [Dl^S2u D^\S2i - I)N;^Di] 
are stable. 

Proof. The proof of this result follows directly from Theorem 4.3. • 

It is clear from (i) of Corollary 4.5 that all the unstable zeros of ^ i must cancel 
with zeros of 5*12 — / , which is the transfer function between yi and r2 [it equals 
(/ - H\H2)~^H\H2\. Also all the unstable poles of Hi must cancel with zeros ofSn. 
From (ii) a similar result follows for '̂21 - / , which is the transfer function between 
j2 and ri [it equals (/ - / / 2 ^ i ) ~ ^ ^ 2 ^ i ] and for 821 [see Exercise 7.23(c) and (d)]. 

5. Parameters X2 and X2' Alternative parameters, closely related to Q2, may 
be used in Theorem 4.3. To this end, let 

X2 = Di^Q2, and X2 = Q2Di\ (4.53) 

COROLLARY 4.6. Given//i , let 

H2 = DiX2(I + NiX2r^ = [(/ + X2Ni)D^^]-^X2, (4.54) 

where the rational matrix X2 is such that (/ + A îX2)~^ exists. The eigenvalues of the 
closed-loop feedback system will be stable (i.e., will have negative real parts) if and 
only if X2 is selected so that the poles of 

[iI + X2N,)D^\X2] (4.55) 

are stable. Furthermore, these poles are precisely the eigenvalues of the closed-loop sys
tem. In addition, if Hi is proper, then H2 and all the transfer matrices in (4.36) and (4.37) 
are proper if and only if D1X2 is proper and det (I + (lim -̂̂ oo Hi)(\ims^o, D1X2)) 7̂  0. 

Proof. Assume that the poles in (ii) of Theorem 4.3 are stable. Then, in view of Q2 = 
Z)iZ2,Dfi[/ + G2^bG2] = Dl^lI + DiX2NiD;\DiX2] = [{I + X2Ni)D^\X2]^\so 
has stable poles. Conversely, if (4.55) has stable poles, then D]^^[I + Q2H1, Q2] also has 
(the same) stable poles, where Q2 was selected to be Q2 = D1X2. The remainder of the 
corollary follows easily in view of Theorem 4.3. 

Note that X2 can be seen to be the transfer function between z\ and r2, since Q2 
is the transfer function between ui = Dizi and r2 and Q2 = D1X2. Also N1X2 = 
H1Q2 = (I - HiH2Y^H\H2 is the transfer function matrix between y\ and r2. It 
should be pointed out that contrary to Corollary 4.4, the result in Corollary 4.6 is 
valid for Hi unstable as well [7]. In a completely analogous manner, it can easily be 
shown that the following result is true. 

COROLLARY 4.7. Given//i , let 

H2 = (1 + X2Ni)-^X2bi - X2[b-,\I + NxX2)r\ (4.56) 



where the rational matrix X2 is such that (/ + X2N\Y^ exists. The eigenvalues of the 
closed-loop feedback system will be stable (i.e., will have negative real parts) if and 
only if X2 is selected so that the poles of 

X2 
D^\l + NiX2). 

(4.57) 

are stable. Furthermore, these poles are precisely the eigenvalues of the closed-loop sys
tem. In addition, if Hi is proper, then H2 and all the transfer matrices in (4.36) and (4.37) 
are proper if and only if ^2^1 is proper and det (/ + (lim _̂>oo X2Di)(\ims^oo Hi)) 7̂  0. 
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EXAMPLE 4.3. Consider Hi = 
s-h 1 
s- 1 

of Example 4.1. In view of Theorem 4.3, all 

stabilizing controllers H2 are given by î 2 = G2 1 + 

&^,a 

s+ 1 
where 

1 
1-H 

is stable. If Q2 = n/d, then — stable implies that n 
Id 

{s - \)n, and d is stable. Also, 
1 {s - \)d + (5 - \)n{s + 1 ) d + n{s+ 1) 

stable 
^ - 1 d{s-\) {s- \)d 

implies that d{\) + n{\)2 = 0 and d is stable. Therefore, for stability Q2 = nid with d 
stable, and n = {s - l)n, d{l) + n{\)l = 0. 

In view of Corollary 4.6, all stabilizing controllers H2 are given by H2 = (̂  -1) [1 + 

^2(^+1)]"^^2, where 1 +X2(S+ 1)-
1 

,X2 is stable. If X2 = n/d, then d is stable. 

and^(l) + /i(l)2 = 0 for internal stability. Note that ^2 = n/d = D1X2 = {s-l)X2 = 
(s - l)nld. m 

1 -̂ + ^ 
c2' c2 

- r [ l , 5 + l] = Dr^TVi, whichis an 

by H2 = Q2(l + HiQ2)~\ where the poles of 

EXAMPLE 4.4. Consider Hi(5) 
is"- s-

Ic polynomial MFD. In view of Theorem 4.3, all stabilizing controllers H2 are given 
22 

1 + ^^162 

, then Q2D^^ stable implies that ni = s^fii, ^2 = s^h2 and d is stable. Now (1 + 

un^f^-\ s^ + rii + {s + l)n2 1 1 + m + (̂  + l)/22 HiQ2)Di - ^^ ^ = - ^ 

conditions on fii and «2. 

EXAMPLE 4.5. Consider Hi = 

5 f ^ are stable. If Q2 

stable imposes additional 

1 
-. This system is stable and therefore Corol

lary 4.4 applies. All stabilizing controllers H2 are given by H2 = ^2(1 + ^ 1 6 2 ) ^ = 

n ({s + \)d + {s- \)n^~^ 
d 

5 + r 
Dllei 

n(s + 1) -, where Q2 n/d is stable. 
(s+l)d ) {s+l)d + {s-\)n 

Furthermore, if Q2 is proper with lim -̂̂ oo Q2(^) ^ - 1 , then H2 will be proper. Note 

that in view of Theorem 4.3, the closed-loop eigenvalues will be the poles of 1 

(5 + 1) + (5 - \)n n 
{s+\)d 'd\ (s+l)^d 

1 
s+ 1 

-[(s+ l)d + (s- l)n,(s+ l)nl 

Relations among parameters. It is now straightforward to derive relations 
among the parameters Q2 and Qi; X2 and X2; D^, N^, and D^, Nk', K\ and also 512 
and 521- In particular, in view of (4.32) to (4.35), we have 
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= -(YiDk + D,Nk)Dl^bx = ~Dxbl\bkYi + NuDi) 

= - ( f 1 + DiK)bi = -£>i(Fi + KDi). (4.58) 

Also, 

Qi = Hid - H2H1)-' = (/ - H,H2r'Hi 

= NiDl^b2 = D2Dl^Ni 

= Nibl\bkX, - N„Ni) = (XiDk - NiNk)D-k^Ni 

= NiiXi -KNi) = (Xi - NiK)Ni. (4.59) 

The parameters Q2 are used when the system Si is assumed to be given. We have 

K = -D-[\Q2 + Yrb,)bi' = -D\\Q2 + D,Y{)b\\ (4.60) 

Next, we note that in view of (4.49) and (4.50), we have 

5i2 = / + HxQ2 = / + Nxbl^N2 = / - Nibl\bkYx + A^2^i) 

= / - A^i(yi + Kbx) 

and 521 = / + Q2H1 = 1 + N2D^^Ni = I - (YiDk + DxNk)Dl^bi 

= / - (fi + DxK)bx. 

(4.61) 

(4.62) 

From (4.53) it now follows that Q2 = D1X2 = X2D1, from which the parameters 
X2 and X2 can be expressed as 

X2 = - ( 7 1 + Kbi) and X2 = - ( ? i + DiK). (4.63) 

The expressions of H2 in terms of the parameters are now summarized: 

H2 = -0kXi - NkNi)-\bkYi + Nkbi) = - ( f , £ ) , + DiNk)iXiDk - T^XN^Y' 

= -(Xi - KNxr\Yx + Kbx) = - ( F i + £>ii^)(^i - ^xKT^ 

= (/ + Q2Hxr'Q2 = [DfH/ + e2Hi)]-uor'Q2] 
= Qiii + HxQi)-^ = [e25r>][(/ + i?ie2)5ri]-' 
= 52-/22 = [D-x'S2xr\D-x'Q2\ = Q2Sx^ = [Q2b-x'}[Sx2b~x'T' 

= [(/ + X2Nx)Dx^r'X2 = MbxHl + NiX2)r\ (4.64) 

6. Parameters Lx, La and Lx, L2. Expressions (4.64) that describe H2 as a ratio 
of rational matrices can also be derived in an alternative way, using a theorem that 
we establish next. This result also provides a link between the development of this 
subsection and the descriptions of all stabilizing controllers using proper and stable 
factorizations given in Subsection 7.4C. 

Consider the feedback system of Fig. 7.5 and assume that 5i is controllable and 
observable. The following constitutes one of the principal results of this section. 

THEOREM 4.8. Let the transfer function matrix of the system Si be Hi with Hi = 
NiD^^iHi = D^^Ni) being a coprime polynomial matrix factorization. If H2 is the 
transfer function of ^2, then the eigenvalues of the closed-loop feedback system are sta
ble if and only if H2 can be written as 



//2 = L^^U (H2 = L1L2 ^), (4.65) 

where the L2, L\ (Li, L2) are stable rational matrices with detL2 # 0 {detLi # 0), which 
satisfy 

L2D1 -LiNi = I 01L2 -NiLi = I). (4.66) 

Furthermore, if 

[L2,Li] = D-,'[D2,N2] DZ (4.67) 

are coprime polynomial matrix factorizations, then the closed-loop description is given 
by 

DkZ = 02, N2] 

D,z = [Ni, bi] 

72. 

In 

' 
yi 

J 2 . 

y\ 

Pi. 

D2 

N2_ 

z + 

z + 

0 01 
. - / oj 

0 - / I 
.0 0 J 

In 
1̂ 2. 

(4.68) 

Proof, The proof of the parts in parentheses will not be shown since it follows the proof 
given below in a completely analogous manner. Let [Li, L2] be stable with detL2 9^ 0 
and satisfying (4.65) and (4.66) and write an Ic polynomial matrix factorization as in 
(4.67). Then D2D1 - N2N1 = D^, where D^^ exists and is stable. Furthermore, the 
pair 02, N2) is Ic [since any eld of the pair (D2, Â 2) would be an Id of Dk] and ^2 ^ 
exists. Therefore, the closed-loop system with//2 = ^2^^! "̂  62^/^2is well defined. Its 
internal description is given in (4.68) [see also (4.11)], and the closed-loop eigenvalues 
are the stable roots of detbk. 

Now let H2 = 62^ N2 be an Ic polynomial factorization and note that the closed-loop 
system is given by (4.68), where Dk = D2D1 - N2N. Assume that D^^ is stable. Define 
[L2, Li] = bl^02, N2] and note the D^ and 02, Â 2] are Ic since the pair 02, N2) is Ic 
Then H2 = ^2 ^^1 where L2 and Li are stable with L2D1 LiNi = / . 

In view of the above theorem, all stabilizing H2 are given by (4.65), v^here the 
stable rational matrices L2, Li (Li, L2) span all solutions of the Diophantine Equa
tion given in (4.66). There are different ways of parameterizing all stable solutions 
L2, Li (L2, Li) of (4.66) with det L2 7^ 0 (det L2 ¥" 0), each one leading to a different 
parameterization of all stabilizing H^. In fact, in this way one may generate the pa-
rameterizations developed above, thus providing alternative proofs for those results. 
This is shown in the next corollary. 

COROLLARY 4.9. All Stabilizing H2 are given in the following. 

(i) ^ 2 ~ ^ 2 ^ 1 {H2 = L1L2'), (4.69) 

where the L2, Li (Li, L2) are stable with detL2 7̂  0 (detL2 7̂  0) and L2D1 - L\N\ = / 

0\L2 — N\Li = / ) . The closed-loop eigenvalues are the poles of [L2, ̂ i ] (L 
VLMJ 

(ii) H2 = -(Xi - KNir'iYi + KDO [H2 = -(Yi + DiK)(Xi - NiKy'l 
(4.70) 

where i^ is any stable matrix such that J^r(Zi - î A î) # 0[det(Xi-NiK) ¥^ 0].TheZi, 

Fi ,Xi,Fi satisfy t / t / -1 _ r ^i 
[-Af, 

Yx\ 
61J 

pi 
[iV, 

- ^ I 

Xlj 
[7 01 
0 / . 

, where f/ is a unimodular 
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matrix. The closed-loop eigenvalues are the poles of 

[Xi - KNi, Yi + KDi] 

or equivalently, the poles of K. 

Xi - NiK 

(iii) H2 = [D-,\I + Q2H,)r'[D-,'Q2] = (/ + QiH^r'Qi 

where Q2 is such that 

[D-,\I + Q2H,),D-,'Q2] Qib'x' 
{I + H,Q2)b-, 

(4.71) 

(4.72) 

(4.73) 

is stable and det{I + Q2H1) 7̂  0 (det(I + H1Q2) ^ 0). The closed-loop eigenvalues are 
the poles of (4.73). 

(iv) H2 = [D^'S2i]-'[D^'Q2] (H2 = [Q2b^'][Si2b^']-'), (4.74) 

where 5*21 (Su) and Q2 are such that 

[D^'S2uD^'Q2] 

is stable with ^̂ 5̂*21 7^ 0 (detSu ^ 0) and '̂21 
closed-loop eigenvalues are the poles of (4.75). 

(V) H2 = [(I + X2Ni)D^'r'X2 

where X2 (X2) is such that 

[(I + X2Ni)D^\X2] 

W 
Qib-,' 

VSnb-,\ (4.75) 

Q2H2 = HSn-HiQ2 = / ) . The 

(H2 = X2[b-,\I + N,X2)r'), (4.76) 

X2 
b^\l + NiX2)\ 

(4.77) 

is stable and det(I + ^ 2 ^ ) 7̂  0 (det(I + N1X2) 7^ 0). The closed-loop eigenvalues are 
the poles of (4.77). 

Proof. The proof is straightforward in view of Theorem 4.8. Part (i) follows directly 
from Theorem 4.8. To show (ii), note that [Xi - KNi]Di - [-(Fi + KDiWi = I for 
any K (compare with Theorem 4.2). To show (iii), note that [Z)f ^7 + Q2Hi)]Di -
[D^^Q2]Ni = / for any Q2 (compare with Theorem 4.3). To show (iv), note that 
[D^^S2i]Di - [D^^Q2]Ni = / if and only if S21 - Q2H1 = 1. To show (v), note that 
[(/ + X2Ni)Dl^^]Di - [X2\Ni = I for any X2 (compare with Corollaries 4.6 and 4.7). 
What has not been shown yet is that all stabilizing H2 can be expressed by, say, (4.70) 
in (ii). This can be accomplished in a manner analogous to the proof of the theorem. In 
particular, any stabilizing H2 = 02^N2, where the pair (D2,iV2) is Ic, that gives rise 
to a closed-loop description (4.68) implies that bl^[D2, -N2] = [Xi - KNi, - (F i + 

Xi Yi] 
KDi)] = [I,K] 

-Ni D i j 
= [/, K]U, where U is a. unimodular matrix. Therefore, 

from [/, K] = b}^^ 02, —N2W ^ it follows that a stable K can be determined uniquely. 

Similarly, in (iii), the relation D ' ^ ^ i , Â 2] = D^^[I + Q2H1, Q2] = D^^[I, Q] 
I 

Hi 
determines uniquely a stable Q2 = Dibj^^N2' The details are left to the reader. These 
results were of course also shown in Theorems 4.2 and 4.3, using alternative approaches. 



Remarks 

In Theorem 4.8 and Corollary 4.9, H\ may or may not be proper. Also, the sta
bilizing H2 may or may not be proper. Thus, the above results characterize all sta
bilizing H2, both proper and not proper. It is frequently desirable to restrict H\ and 
H2 to be proper rational matrices. The problem of interest then is to determine all 
proper stabilizing H2, given a proper Hi. Note that this problem has already been 
addressed previously in this section using the parameter Q2, and it will be studied at 
length in Subsection 7.4C. 

We conclude by summarizing the relations among the parameters used in this 
subsection. Note that the relations for all parameters, except Li, L2 and L2, L\, were 
derived in (4.58) to (4.64). The relations to L2, Li can easily be obtained in view of 
Corollary 4.9. These relations are summarized as: 

D^'S2i =(I + X2Ni)D^' 

and 

Also, 

L2 

u 

L2 

Xi-KNi = D\\l + Q2Hx) = 

-{Y,+KD,) = D-,'Q2 = X2. 

Xi - NyK = (1 + HiQ2)Di' - SnDi' = D^^I + N1X2) 

and Li = -(Y,^D,K) = Q2D-,' =X2. 

(4.78) 

(4.79) 

EXAMPLE 4.6. Consider//i = s+ 1 In view of Corollary 4.9, all stabilizing control

lers are given by H2 = L2^L\, where the L2, L\ are stable and satisfy L2D1 -L\N\ = /. 
Now in view of (4.78) and (4.79), L2 = (/ + X2Ni)D\^ and Lx = X2. All ap

propriate X2, however, were characterized in Example 4.3 to be X2 = hid with d 
stable and d{l) + n{l)2 = 0. Therefore, all appropriate L2, L\ are given by L2 = 
d + h(s + I) I d ~ ^ 1 , . ,1 i ~ . 1 , , ~̂  

; = -7, ^1 = -:, where d is stable and n is such that d + n{s + \) = 
d s - I d d 

(s- l)(i, i.e.,/2(1) = -^d(l). • 

B. State Feedback and State Estimation 

State feedback and state estimation are studied in this subsection, using PMFDs of 
systems. Our current development, which offers additional insight, parallels that 
given in Chapter 4, where state-space descriptions were used. The study of state 
feedback and state estimation, using PMFDs, however, is important in its own 
right. An additional reason for discussing state feedback and state observers at this 
point is to provide the necessary background needed to connect the parameteriza-
tions of all stabilizing controllers using proper and stable factorizations with the 
internal descriptions (PMDs or PMFDs) of systems. This is accomplished in Sub
section 7.4C. 
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State feedback 

State feedback control laws are closely related to the state-space representations 
of systems. Recall from Chapter 4 that given 

X = Ax + Bu, y = Cx -^ Du (4.80) 
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with A G /̂ "><^ B G /̂ ">< ,̂ C G iR^x^ and D G 7?̂ ><̂ , the hnear state feedback 
control law is defined by 

u = Fx + Gr, (4.81) 

where F G /^^^^ and G G i^'^x^ with G nonsingular. Frequently, G - / . Then the 
closed-loop system description is given by 

i: = (A + BF)x + BGr, y = {C + DF)x + DGr (4.82) 

ql -A-BF BG 
- ( C + £>7̂ ) DG 

/̂ - ^ 5l 
- c D\ 

\ ^ ^ 
[-F G 

and the closed-loop eigenvalues are the zeros of det [ql - (A + BF)]. In view of the 
relation 

(4.83) 

it is not difficult to see that any geld of [ql - A, B\ will be an Id of ^/ - A - BF 
for any F. This implies that for complete eigenvalue assignment, ql — A and B must 
be left coprime, i.e., (A, B) must be completely controllable, which is a well-known 
result (see Chapter 4). Also, for stability, (A, 5) must be a stabilizable pair. Note that 
any geld of \_ql - A, 5] will be an Id of \ql - A- BF, BG] for any F and G. Since 
here G is taken to be nonsingular, [ql - A, B] and [ql - A- BF, BG] have the same 
geld, i.e., the open- and closed-loop systems have precisely the same uncontrollable 
eigenvalues. When G is singular, the closed-loop system may have additional uncon
trollable modes (show this). Although F does not affect the uncontrollable modes of 
the system, it may alter its unobservable modes. For example, in an SISO control
lable and observable system, it is possible to select F so that some of the closed-loop 
eigenvalues are at the same location as the finite zeros, and therefore, they become 
unobservable. This corresponds to pole/zero cancellations in the closed-loop transfer 
function. The closed-loop unobservable eigenvalues can also be studied by means 
of relation (4.83) and the gcrd of the pair (ql - A- BF,-C - DF), 

The effects of state feedback control laws can conveniently be studied using 
polynomial matrix descriptions. In particular, assume that the state-space represen
tation (4.80) is controllable and in controller form [A^ Be, Cc, Dc) (see Chapter 3). 
An equivalent PMFD is then given by 

Dc(q)Zc(t) = u(t), y(t) = Nc(q)Zc(t) 

with Dciq) G R[q]'^'''^ and A^̂ (̂ ) G R[q]P'''^, where 

Be 
Dc 

0 

^PA 

Dciq) Im 
-NAq) 0 . 

ql - Ac 
-Cc 

Be] 
Del 

\Sciq) 
[ 0 

(4.84) 

(4.85) 

with the pair (B^ ql - Ac) being Ic and the pair (Ddq), Sdq)) being re [see (3.26)]. 
The matrix Sdq) = blockdiag[(1, q,..., ^^'~^)^] is an n X m matrix with J/, / = 
1 , . . . , m, the controllability indices of {A ,̂ Be, Ce, Dc). Note that the above relations 
can be written as 

{ql - Ac)Se{q) = BcDc(q), Ndq) = CcSdq) + DcDdq), (4.86) 

which were derived via the Structure Theorem in Subsection 3.4D. Note that the 
states are related by xdt) = Sc(q)Zc(t). When the state feedback control law 

u(t) = FcXeit) + Gr{t) = FeSe(q)Zc(t) + Gr(t) - Fe(q)Zc(t) + Gr(t) (4.87) 



is applied, the closed-loop system state-space representation is {Ac + BcFc, BcG, 
Cc + DcFc, DcG} and the polynomial matrix description is 

Dp{q)Zc{t) = 

where Dj.(^) ^ Ddq) - Fdq) = 
resentations are equivalent since 

Be 0 
Dc Ip\ 

\Dc(q) - FcSciq) G 
[ -Nc(q) 0_ 

ql - Ac- BcFc 
^c J-^c^ c 

BcG] 
DCG\ 

\Sc(q) 
[ 0 

Gr(t\ y(t) = NF(q)zM (4.88) 

: Dciq) - FcSc(q) and Npiq) = Ndql These rep-

0 

(4.89) 

where the pair (Be, ql — Ac - BcFc) is Ic and the pair (Ddq) - FcSdq), Sdq)) is re 
(see Subsection 7.3 A). Note that (ql -Ac- BcFc)Sc(q) = Bc[Dc(q) - FcSc(q)] and 
NF(q) = (Cc + DcFc)Sc(q) + Dc[Dc(q)-FcSc(q)] = CcSc(q) +DcDc(q) = Nc(q\ 
i.e., the numerator Nc(q) is invariant under state feedback. Note that Nc(q) contains 
the zeros of the system (see Subsection 7.3B). 

Now assume that the state-space representation in (4.80) is controllable but 
not necessarily in controller form, and let A = Q~^AcQ, B = Q~^Bc, C = CcQ, 
D = Dc with Q a similarity transformation matrix. Relations (4.86) then assume 
the form 

Nc(q) = CS(q) + DDc(q\ (4.90) (ql - A)S(q) = BDc(q), 

where S(q) = Q-^Sc(q). Then 

Dc(q)Zc(t) = u(t\ y(t) = Nc(q)Zc(t) (4.91) 

is an equivalent polynomial matrix description and now x(t) = S(q)zc(t). Note that 
deg^. S(q) = deg^. Sc(q) = di, i = 1 , . . . , m, which are the controllability indices of 
the system. The linear state feedback control law is then given by 

u(t) = Fx(t) + Gr(t) = FS(q)zc(t) + Gr(t) = Fc(q)Zc(t) + Gr(tl (4.92) 

Wenowhave (^ / -A-5F)S (^ ) - B[Dc(q)-FS(q)\dindNc(q) = (C + DF)S(q) + 
D[Dc(q) - FS(q)] = CS(q) + DDc(q\ 

In view of the above, it can be seen that linear state feedback can be equivalently 
defined for the case of (controllable) polynomial matrix right fractional descriptions 
as shown in the following. Given 

D(q)z(t) - u(t), y(t) = N(q)z(tl (4.93) 

where D(q) is column reduced, define the linear state-feedback control law by 

u(t) = F(q)z(t) + Gr(t), (4.94) 

/^M^x^, G E 7?^x^, detG 7̂  0. The where deg^. F(q) < deg^. D(q) with F(q) 
closed-loop system is then described by 

DF(q)z(t) = Gr(t\ y(t) = NF(q)z(t), (4.95) 

where DF(q) = D(q) - F(q), NF(q) = N(q). The F(q) = FcSc(q) can be chosen 
to arbitrarily assign the polynomial entries of D(q), up to and including the terms 
of degrees J/ - 1 in the /th column of D(q), i ^ 1 , . . . , m. In fact, recall from 
the development in Chapter 3 (Theorem 4.10—the Structure Theorem) that D(q) — 
F(q) = D(q)-FcSc(q) = B'^ldiagiq^q-AmSc(q)]-FcSc(q) = B^^[diag[q^q-
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Now consider the closed-loop state-space representation (4.82). As was dis
cussed in Chapter 4, the closed-loop transfer function can be written as 

HF,G{^) = [(C + DF)[sI - (A + BF)]-^B + D]G 

= [C(sl - A)-^B + D][F[sI - (A + BF)Y^B + /]G 

= H(s)He(s). (4.96) 

Here H(s) is the open-loop transfer function, and He(s) represents the transfer func
tion of a system that, if connected in series with the given system, will apparently 
produce the same overall transfer function as the feedback system. Recall that this 
issue was addressed at length in Chapter 4. If the PMD (4.93) is used, then the 
closed-loop transfer function is given by 

HF,G(S) = NF(S)DF\S)G = N(s)D^\s)G 

= [N(s)D-\s)][D(s)D^\s)]G = H(s)He(s). (4.97) 

It is not difficult to verify that the system {Dpiq), Im, D{q), 0} is equivalent to the 
system {A + BF, B, F, Im}, both of which have the same transfer function He(s) (show 
this). 

Relation (4.97) also impHes that 

H(s) = N(s)D'\s) = HF,G(S)H;\S) 

= [N(s)D^\s)G][D(s)D^\s)G]-\ (4.98) 

Note that both HF,G and He are proper and stable (H(s) is proper). Furthermore, H~^ 
is also proper. Thus, HF,G and He are proper and stable factors in the MFD 

H(s) = HF,G(S)H;\S). (4.99) 

This is further discussed in the next subsection, where it is shown how all proper 
and stable right MFDs can be generated by means of state feedback. The left proper 
and stable MFDs can be generated from observers of the partial state. Observers of 
the state are examined next. 

State observers 

State observers were discussed at length in Chapter 4. Here we wish to present 
additional material concerning observers in terms of PMDs. 

Consider the plant S and the observer Sob of Fig. 7.6 and let the plant S be de
scribed by (4.93), where D(q) G R[qr'''^ and N(q) G Rlq^"^, As was discussed 
above, when D(q) is column reduced, the linear state feedback control law can be 
defined by u(t) = F(q)z(t) -h r(t), where deg^. F < deg^. D,i = 1 , . . . , m. Then the 

+ 

^ 
J 

u 1 1 
*• o 

' H ^ob r ' 

w 

y 

FIGURE 7.6 
Plant and observer 



closed-loop system is represented by 

[D{q) - F{q)Ut) = r(t\ y(t) == N(q)z(t). (4.100) 

When the state is not readily available, then a state observer for Fz may be used. Let 
the observer Sob be described by 

Q(q)Zob(t)=^ [K(qlH(q)] 

W(0 = Zob(t), 

u{t) 

(4.101) 

where Q{q) E R[qT'''^. K(q) G Riq^'"'^, and H(q) G R[qr''P. Note that in Fig. 
7.6 u(t) == w(t) + r(t). Assume now that the observer polynomial matrices Q, K, and 
H satisfy the relation 

K(q)D(q) + H(q)N(q) = Q(q)F(q), 

where Q'^ and Q~^[K, H] are proper and stable (F G Rlq^'"'^). 

(4.102) 

Recall that Q~^ 
proper is needed for Q(q)Zob(t) = 0 to be a "well-formed" set of differential equa
tions so as to avoid impulsive behavior at ^ = 0. Note that if Q is, say, row or column 
proper, then Q~^ is proper. The rational function Q~^[K, H] is the transfer function 
of the observer. Then w = Zob = Q~^[Ku + Hy] = Q~^[KD + HN]z = Fz, i.e., 
Zob is a candidate for estimating a function F(q)z(t) of the partial state z(t). To show 
this, consider the closed-loop internal description 

D(q) -Im 
-Q(q)F(q) Q(q) 

y(t) = [N(qlO] 

\ z(t) • 

[Zob(t). 

),0] 
_Zol 

Um 
[0_ 

r(t) 

(4.103) 

derived by using u = Dz = w + r = Zob -^ ^ and Qzob 

HN)z = QFz, and consider the unimodular transformation 

Ku + Hy = (KD + 

Im 
[-F(q) 

0 z(t) 
Zob(t). 

z(t) 
Zob - F(q)z(t) 

Z(t) 
e(t) 

. Then the closed-loop system description becomes 

D(q)-Fiq) -I 
0 Q(q)\ 

Z(t) 
e(t) 

r(t) 

(4.104) 

y(t) = [N(q\0] 
zit) 
e{t)_ 

First, note that the closed-loop eigenvalues are the roots of detiP - F)detQ, 
and therefore, the closed-loop system is stable if and only if all the roots of both 
detiP - F) and detQ have negative real parts. The roots of det{D - F) are of 
course the closed-loop eigenvalues under state feedback when there is no observer, 
while the roots of det Q are the observer eigenvalues that are taken to be stable. 
Note that in view of Q(q)e(t) = 0, where Q~^(q) is proper and stable, the error 
^(0 =" ZobO) - F(q)z(t) = w(t) - F(q)z(t) will go to zero as t goes to infinity, and 
therefore, the output w(t) of the observer will asymptotically approach the function of 
the state F(q)z(t). This will happen independently of r(t). Note that the roots of det Q 
are uncontrollable from r as can easily be seen, using, e.g., the eigenvalue test for 
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controllability. As expected, these uncontrollable eigenvalues cancel in the closed-
loop transfer function matrix given by 

-1 

ms),o] 
D(s)-F{s) 

0 
--N{s)[D{s)-F{s)]- (4.105) 

In other words, after the transients caused by initial conditions have died out (see 
Chapter 4), the system behaves to the outside world as though an observer were not 
present. The observer in (4.101) was introduced in Wolovich [36]. 

For an observer (4.101) to exist, K,H, and Q must satisfy the Diophantine 
Equation KD + HN = QF given in (4.102), where QT^ and Q~^[K^H] are proper 
and stable to ensure causality. Note that if Dp = D — F, then F = D — Df and 
KD + HN = Q{D-DF), or {Q-K)D + {-H)N = QDp, which implies that 

[Q-\Q-K)][DD-p'] + [-Q-'H][ND-p']=L (4.106) 

The pair (g ^{Q — K)^—Q ^H) is a proper and stable solution of the equation XD + 
YN = /, where D = DD^^ and N = ND^^ are proper and stable. This equation is 
important in the parameterization of all stabilizing feedback controllers when using 
the ring of proper and stable rational functions, discussed in the next subsection. 

It is possible to implement the observer discussed above in an alternative manner. 
In particular, u = w^r = Q~^Ku^Q~^Hy + r impUes that ( / - Q~^K)u = QT^Hy + 
r,oxu = {I-Q-^K)-\Q-^Hy + r),ox 

u = {Q-K)-^Q{Q-^Hy + r). (4.107) 

This corresponds to the configuration in Fig. 7.7. 

o {Q-K)-^Q 

Q-'H 

FIGURE 7.7 
Observer-based controller implementation 

Note that the feedback path controller Q~^H is always stable, while the con
troller in the feedforward path is biproper (i.e., it along with its inverse is proper) 
but not necessarily stable. If the external input r is of no interest, then take r = 0, in 
which case we have , 

u={Q-K)-^Hy. (4.108) 
This corresponds to the configuration depicted in Fig. 7.8. 

c 
i 

^ " 
J i 

S 

ff^ IX\ -1 U 
(f ̂  — T\j r 7 

y 

FIGURE 7.8 
Observer-based controller implementation when r --



It is of interest to compare these results with the corresponding state-space re
sults in Chapter 4. In particular, consider the state-space plant representation (4.80) 
and assume that it is controllable and observable. Now comparing Fig. 7.7 with Fig. 
4.7 of Chapter 4, we obtain, in view of (4.25) and (4.24) of Chapter 4, the relations 
(Q(s)-K(s))-'Q(s) = (I - Q-\s)K(s)r' = (I - Gu(s))-' = F[sI-{A-KC + 
BF - KDF)r\B - KD) -h / , Q-\s)H{s) = Gy(s) = F[sl - (A - KC)]-^K and 
Q-\s)K(s) = Guis) = F[sI-(A-KC)]-\B-KDXA\so,(Q(s)-K{s)r^H(s) = 
(/ - Gu(s))~^Gy(s) = F[sl -{A-KC-\-BF- KDF)T^K (see Fig. 7.8). It is there
fore clear that the two degrees of freedom controller in Fig. 4.7 of Chapter 4 is a 
special case (of order n) of the controller in Fig. 7.7. 

EXAMPLE 4.7. Consider (̂5*) given in Example 4.2 of Chapter 4. In 

view of the above, it is not difficult to see that the results developed in Example 4.2 can 
also be derived if we let 2(5) = s^ + d\s + d{),F{s) = (2-ai)s + (2-ao) = [^ao-l,2-

2] 
s(2 - ai) - do(^ao - 1), and H{s) = s{{do - 2)(^ao -

di)(ao - 2) + (do - 2)(s - ai)X which satisfy (4.102). 

a i = FS(sl K(s) 

1) + (di - 2)(2 - ai)) + ((do 
Verify this. • 

Finally, it remains to be shown that polynomial matrices K, H, and Q, which 
satisfy (4.102) with Q~^ and g"^[^ , / / ] proper and stable, exist. Here deg^.F < 
deg^. D, where D is assumed to be column reduced and the N, D are assumed to be 
re. The system S is assumed to be controllable and observable. That such K, H, and Q 
exist will not be shown here. This is shown in Wolovich [36], where an algorithm is 
given that is based on the Eliminant Matrix ofD and N (see Subsection 7.2E, Theo
rem 2.13, and Lemma 2.14) to select an appropriate row reduced Q and to determine 
K and H. Note that (4.102) can also be solved by using other methodologies, such as 
polynomial matrix interpolation (see the Appendix). 

C. Stabilizing Feedback Controllers Using Proper and Stable MFDs 

Now consider systems ^i and ^2 connected in a feedback configuration as shown 
in Fig. 7.5. Let system ^i be controllable and observable and let it be described by 
its transfer function matrix Hi. In Subsection 7.4A, all systems ^2 that internally 
stabilize the closed-loop feedback system were parametrically characterized. In that 
development Hi was not necessarily proper, and the stabilizing H2 as well as the 
closed-loop system transfer function were not necessarily proper either. Recall that 
a system is said to be internally stable when all its eigenvalues, which are the roots 
of its characteristic polynomial, have strictly negative real parts. Polynomial matrix 
descriptions that can easily handle the case of nonproper transfer functions were 
used to derive the results in Subsection 7.4A, and the case of proper Hi and H2 was 
handled by restricting the parameters used to characterize all stabilizing controllers. 

Here we concentrate exclusively on the case of proper Hi and parametrically 
characterize all proper H2 that internally stabilize the closed-loop system. For this, 
proper and stable MFDs of Hi and H2 are used. These are now described. 

Consider H(s) G R(sy^^ to be proper, i.e., \ims-^ooH(s) < 00, and write the 
MFD as 
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where the N'(s) andD'(s) are proper and stable rational matrices that we denote here as 
A '̂(̂ ) ^ RH^^'^mdD'is) G /?H^>^"'; that is, they are matrices with elements in/?^oo, 
the set of all proper and stable rational functions with real coefficients. For instance, 

if H(s) 
s- 1 

" 5 - 1 1 
_(S+ 1)2 J 

Is-2' 
[s + l_ 

(s - 2)(s + 1) 
1 

then H(s) 
s- 1 

(s + 2)(s + 3) 

are examples of proper and stable MFDs. 

(s - 2)(s + 1) 
(s + 2)(s + 3) 

A pair (N\ D') G RHo, is called right coprime (re) in RHoo if there exists a pair 
(X', Y') G RHoo such that 

X'D' + Y'N' = L (4.110) 

This is a Diophantine Equation over the ring of proper and stable rational functions. 
It is also called a Bezout identity. 

Let H = N'D'-^ and write (4.110) as X' + Y'H - WK Since the left-hand 
side is proper, D'~^ is also proper, i.e., in the MFD given by H = N'D'~^, where 
the pair (N', D') is re, D' is biproper (D' and D'~^ are both proper). 

Note that X'~^, where X' satisfies (4.110), does not necessarily exist. If, how
ever, H is strictly proper [lim^^oo H{s) = 0], then lim^^oo X'{s) = lim5_>oo D'{sy^ is 
a nonzero real matrix, and in this case X'~^ exists and is proper, i.e., in this case X' 
is biproper. 

When the Diophantine Equation (4.110) is used to characterize all stabilizing 
controllers, it is often desirable to have solutions {X', Y'), where X' is biproper. This 
is always possible. Clearly, when H is strictly proper, this is automatically true, as 
was shown. When H is not strictly proper, however, care should be exercised in the 
selection of the solutions of (4.110). 

LEMMA 4.10. luoXH = N[D'\^ = A^2 '̂2^ be rc factorizations. Then 

U', (4.111) 

where U',U' RHoo 

Proof, Given the two re factorizations, let f/' = D\ D2 and note that A'̂2 = ^^'2 ^ 
N[D\^D'2 = N[U'.NowX!^D'2 + Y!^N^ = (X!^D[ + Y!^N[)U' = /, from which f/'-̂  = 
X^D; + r̂ A ĵ, i.e., U'-^ E RHoo. Similarly, X[D[ + Y[N[ = I implies that 
U' E RHoo. m 

Remarks 

1. A matrix U\ as given above, with U' and f/'~̂  G RHoo is a unit in the ring 
RHoo (refer to the discussion on rings and modules in Subsection 7.2E). 

2. If// is also stable, i.e., if H E RHoo, then H = HI~^ is an re factorization. If 
now H = N'D'~^ in any re proper and stable MFD, then in view of Lemma 
4.11, / - D'U\ i.e., D' and D'-^ G RHoo. 

EXAMPLE 4.8. Let 7/ 
1 

(s-2)(s-\- 1) Us+ 1)2/U+ 1 
1 

= A^'D'-^HereA^' 

and D' are re since X'D' + Y'N' = 
5 + 1 / \5 + 1 

+ (9) 
s- 1 

(S + 1)2 
1. In view of 



Lemma 4.10, all U ' •• 

s-1 

s-\ 
t/', where t/ ' , t/ '-i G/?//oo are also re 

factorizations of//. Here, U\s) = a{s)/b{s), where a{s) and b{s) are prime Hurwitz 
polynomials of the same degree n and n can be arbitrarily large, but finite. • 

The above example illustrates that when N' ^D' ^ RHoo dire re in RHoo, they may 
have common factors that include common poles and zeros; however, these possible 
common poles and zeros have to be stable. Note that any common right divisor G^ of 
an re pair N^,D^ G RHoo must satisfy G^ G^~^ G RHoo. Contrast this with the case of 
two re polynomial matrices. 

Analogous results hold for Ic proper and stable MFDs of H = b'~^N' with 
b'^N' ^ RHoo, where the Diophantine Equation 

b'X'+N'f = 1 (4.112) 
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is satisfied for some X, F G RHoo. In this case the result corresponding to Lemma 4.10 
U'[b\,N[] with tJ', tJ'-^ GRHoo whenH - -&-^ Ni=b'-^Nl are becomes [52,^/^1 

Ic MFDs. 
As in the polynomial case, doubly coprime factorizations in RHoo of a transfer 

function matrix Hi = N[D'-^ = b'-^N[, where D[,N[ G RHoo and b[,N[ G RHoo 
are important in obtaining parametric characterizations of all stabilizing controllers. 
Assume therefore that 

u'u'-
X[ Y[ D\ -n 

N[ XI 
I 0 
0 / 

(4.113) 

where U^ is unimodular in RHoo, i.Q.,U'^U'~^ G RHoo. Also, assume that X[^X[ have 
been selected so that det X[ ^ 0 and det X[ ^ 0. 

To see how such relations can be derived [compare with the discussion following 
(4.18) in Subsection 7.4A], assume that some X'^^Y^ and Y^^X'^ have been found that 
satisfy X ^ D ; XN[ : / and b[X'^ -N[n- I. Note then that 

-N[ D' 
D[ D'S',-?;, 
N' N'Sl -K 

I 0 
0 / 

(4.114) 

whereS', 4 x'X-YX- Let {X[,Y[) = {X',X) and (Z( , -? / ) = {NS'.+X'.^iys', -
Fj) to obtain (4.113). It can be shown that matrices are indeed unimodular. 

Internal stability 

Consider now the feedback system in Fig. 7.5 and let Hi and H2 be the transfer 
function matrices of Si and ^2, respectively, that are assumed to be controllable and 
observable. Internal stability of a system can be defined in a variety of equivalent 
ways in terms of the internal description of the system. For example in this chapter, 
polynomial matrix internal descriptions were used, and the system was considered as 
internally stable when its eigenvalues were stable, i.e., they had strictly negative real 
parts. In Theorem 3.15 in Subsection 7.3C, it is shown that the closed-loop feedback 

system is internally stable if and only if the transfer function between and 
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I 

and 

/ 
-Hi 

n 

-1-1 

have stable poles, i.e., if and only if the poles of 
/ 

-Hi 
-H2 
I 

I 

or 

0 
Hi 

Hi 
0 

, respectively, are stable. 

In this subsection we shall regard the feedback system to be internally stable 
when 

1-1 

^RH^, (4.115) 
/ -H2 

-Hi I 

i.e., when all the transfer function matrices in (4.115) are proper and stable. In this 
way, internal stability can be checked without necessarily involving internal descrip
tions of 5i and ^2. This approach to stability has advantages since it can be extended 
to systems other than linear time-invariant systems. 

THEOREM 4.11. Leti / i = A ;̂Z)V^ = D'i^N[ mdH2 = D'^^N^ = N^D'^^ be dou
bly coprime MFDs in RHoo. Then the closed-loop feedback system is internally stable if 
and only if 

D ^ D ; -N2N[ = U' (4.116) 

or if and only if 

D[D2-N{Ni = U', (4.117) 

where U', U'~^ G RHa. and U', U''^ G RHo.. 

Proof, Consider//i = N[D'^\H2 = D'2 ̂ ^2 ^nd assume that (4.116) is satisfied. We 

have/ = D'2^N2N[D\^ + 6 2 ^ ^ ' ^ T ^ which implies that 

/ 
-Hi 

and 
/ 

-Hi 

-H2 
I 

-H2 
I 

D'2U' -D'^'N^ 
-N[D'-,' 

D'l u'-^b'2^ 
0 

U'-^D'2^N': 
(4.118) 

which is proper and stable, since both factors in the right-hand side are proper and stable. 
Therefore, if (4.116) is satisfied, the closed-loop feedback system is internally stable. 
Similarly, it can be shown that if Hi = b'\^N[, H2 = Nl^D'^^ and (4.117) is satisfied, 
then the closed-loop feedback system is internally stable. 

The converse will now be established, namely, if the feedback system is inter
nally stable, then (4.116) is satisfied. The proof that (4.117) is also true is completely 
analogous. Let Hi = N[D']^^ be re and H2 = ^ '̂2 ̂ Â 2 ^^ ^̂  MFDs in RHo., and let 
D ^ D ; - N^N[ = U' with U' some matrix in RH^. Recalling (3.103) or (4.37), we have 

'-' r (I-H2H1)-' {I'H2Hi)-'H2 
~ [Hi(I-H2Hir 

I 
-Hi 

-H2 
I I + Hi(I-HiH2r^H: 2 j 

(4.119) 

where the identities ( / -^1/^2)"^ = I + (I ~ HiH2)-^HiH2and(I - HiH2r^HiH2 = 
Hi{I - H2Hi)~^H2 were used. It is not difficult to see [compare also with (3.113)] that 

(4.120) 

/ 
-Hi 

-H2 
I 

- 1 

= 

'D[U' -'D'2 D[U"^N^ 

N[U'-^D'2 I + N[U'-^N2. 

"0 0" 

0 / . + 
[N[\ 

U'-'[D'2,N^l 



Assume now that the system is internally stable, i.e., / -H2 

I 
e RHoo. Then, 

since D[, N[ are re and D2, N2 are Ic, (7 Ms in RHo,. To see this, premultiply 

U'~^[D2,N2l which is in RHa., by [D^,-A^^] G RH^, and postmultiply 

b y I -N: 
e RHo.. These operations leave the matrix in RHoo. Therefore, 

RH^ 

COROLLARY 4.12. Let//i = N{D'l^ = D'f̂ TVJ be doubly coprime MFDs in/?//oo, 
i.e., (4.113) is satisfied. Then the closed-loop feedback system is internally stable if and 
only if H2 has an Ic MFD in RHa,, H2 = D'2^N'2, such that 

D'2D[ -N'2N[ = /, (4.121) 

or if and only if H2 has an re MFD in RHoo, H2 = A/̂ 2̂ '2 '̂ ^^^^ that 

D[D'2-N[N2 = I. (4.122) 

Proof. The proof is straightforward, in view of Theorem 4.11 and Lemma 4.10. • 

Parameterizations of all stabilizing controllers 

Several parameterizations of all proper stabilizing controllers are now con-
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sidered. 

Parameter K' 

THEOREM 4.13. Let//i = N[D'\^ = D'f Â̂ j be doubly coprime MFDs in/?//oo that 
satisfy (4.113). Then all H2 that internally stabilize the closed-loop feedback system are 
given by 

H2 = -(X[ - K'N[)~\Y[ + K'D[) = - ( ? ; + D[K')(X[ - N[K')-\ (4.123) 

where K' G RHoo is such that {X[ - K'N[)~^ [or (Xi - N[K')~^] exists and is proper. 

Proof. It can be shown that all solutions of 62^1 ~ 2̂A î = I are given by 

x[ rr 
[D'2, -N^] U.K'] 

-N[ D[\ 
(4.124) 

where K' E RHoo. The proof of this result is similar to the proof of the corresponding 
result for the polynomial matrix Diophantine Equation in Subsection 7.2E and is omitted 
(see also Subsection 7.4A). Similarly, all solutions of D[D2 - N[N2 = / are given by 

(4.125) 

where K' E RHoo. The result then follows directly from Corollary 4.12. 

The above theorem is a generalization of the Youla parameterization of Theorem 
4.2 over the ring of proper and stable rational functions. Generalizations of the Youla 
parameterization over rings other than the polynomial ring were introduced in Desoer 
et al. [11]; for a detailed treatment see also Vidyasagar [34]. 

It is interesting to note that in view^ of (4.113), H2 in (4.123) can be written as 
follows. Assume that X^^ and Xf^ exist. Then 
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H2 = -(Y[ + X'^\l - Y[N[)K')(Xi - N[K')-^ 

= -[Y[X\\X[ - N[K') + X\^K'](Xi - N[KT^ 

= -Y[X\' - X'i'K'iXi - N{K'r' = H20 + H2a, (4.126) 

i.e., any stabilizing controller H2 can be viewed as the sum of an initial stabiliz
ing controller H20 = -Y[X'^^ and an additional controller H2a that depends on ^ ' . 
When K' = 0, then H2a is zero. 

/ -H2\ 
-Hi I 

In view of (4.120), the poles of 
1-1 

, which are the closed-loop 

eigenvalues, are the poles of 

/ 

D[ 
U'~\D2, N2I Similarly, since 

H2 
I 

-1 

= 

I + N^U 

I 0 
0 0 

+ U'-\N[,D[l (4.127) 

where Hi = D ' f ' ^ i i^ ^^ ^"'l ^ 2 = A^2^'2 ' is re, and both are MFDs in RHo. with 
U' and U', f/'"' G /?/ /„, it follows that the eigenvalues of the D[D'^ - N[NL, 

closed-loop feedback system are the poles of 
forward to prove the following result. 

N'2 
D' 

U'~^[N[, D[]. It is now straight-

LEMMA4.15. Given//i = N[D\^ = 5 ' f ^ ^ j , doubly coprime MFDs in 7?//oo, if ^2 
is given by (4.123), the closed-loop eigenvalues are the poles of 

or of 

[/, K'] 
x: Y[ 

-N[ D[\[0 -I 
0 

-K' 
I [N[,D[] x: 

[X[ - Y[] -

[N[,D[]-

K'[N[,D[] (4.128) 

K'[N[,D[l (4.129) 

Proof. Note that D'2D[-N^N[ = (X[-K'N[)D[+(Y[+K'D[)Ni = X[D[+Y[Ni = 
I = U', which in view of the above discussion, directly implies the lemma. • 

Therefore, in view of Lemma 4.15, when the parameterization for H2 of The

orem 4.13 is used, the closed-loop eigenvalues are in general the poles of 

[-N[ D[ 

m , of 

, andof / i : ' . 

EXAMPLE 4.9. Let Hi = 
1 fs-l\-i 

1 i-l- lVs+ 1 
NID'J' = I r ' 1 

s + a/ s + a 
D\ N[ with a > 0, which are doubly coprime factorizations. Note that 

(s + 5)(s + a) 

X'l Y[ 
-N[ D[ N'l 

-Y[ 

x: 

s-\-3 
s + 2 

1 
s -\- a 

^ + 5-1 
^ + 2 
^ - 1 

s -\- a-^ 

s- 1 
s+ 1 

1 
s+ 1 

(s + 1)(^ + 2) 

(s + 3)(^ + a) 

(s + l)(s + 2) 

1 0 
0 1 

If all stabilizing H2 are parametrically characterized by means of (4.123), then in view 

of Lemma 4.15, the closed-loop eigenvalues are in general the poles of 

-1, the poles of 
X[ Y[ 

-N[ D[ 

that are at 

that are at - 2 and -a, and the poles of K'. Also, H2 in this 



case is given by 

H2 = 

where K' G RHoo. 

. + 5 ^ ^ , . - l 
s_±2 

(s + 5)(s + 1) 

s + al _ (5 + 1)(^ + 2) V̂  + 1 
1 

1 '̂ 

s + 3 
s + 2 

K'\ 
1 

s + a 

{s + 3)(5 + a) 
{s + 1)(5 + 2) V5 + ITK 

Note that it is possible to select -m so that the poles of X[ and Y[ are 
1 ^ i J 

those of - Â { and D[. In the above example, this is the case when a = 2. This is also 
the case when these quantities are expressed in terms of a state-space realization of 
Hi, as is shown later in this subsection. 

It is always possible of course to select K' so as to minimize the number of 
the closed-loop eigenvalues. This corresponds to minimizing the McMillan degree 
(number of poles) of/ /2- This follows from the fact that any proper stabilizing con
troller can be expressed as (4.123) for appropriate K'. If for example H\ can be 
stabilized by means of a real static H2, then a ^ ' E RHo, exists for this to happen. 
In this case the number of closed-loop eigenvalues is equal to the number of poles 
of Hi. It is not easy, however, to find such K' unless for example X[ = I and Y[ is 
real, in which case ^ ' = 0 a n d H 2 = ^ j -

In view of Lemma 4.15, it is recommended that the number of poles in 1̂ 
and in [-A^{, D['\ be taken to be the minimum possible, which is the number of 
poles in Hi. Also, the number of poles in [X[, Y[] should be taken to be low. This is 
accomplished in a systematic way in the following, using state-space descriptions. 

If the desired stabilizing H2 is known, then the appropriate K' that will modify 
the initial //20 ^ X''[^Y[,io yield the desired H2, can be calculated from (4.122) as 

K' = -{Y[+X[H2){D[-N[H2r\ 

EXAMPLE 4.10. In the above example 7/2 = 
stabilizing H2. Then for a = 1, we have 

(4.130) 

-(/? + 1), Z? > 0 characterizes all static 

K' = 
s+5 5 + 3 

s + 2 

-bs-

s + 2 

3/7 + 2 
8 + 2 

which will yield the desired H2 = 
at -b, as can easily be verified. 

( ^ + 1 ) 

s + b 
s+ 1 

5 - 1 b+l 

5 + 1 
1 (s + l)(bs + 3 /7-2) 

(s + 2)(s + b) ' 

-{b -\- 1). The closed-loop eigenvalue is in this case 

Parameters Q2, X'2 
Parameters other than K' can also be used to parametrically characterize all 

stabilizing H2. These parameters were introduced in Subsection 7.4A, and in the 
following these results are modified to accommodate the MFDs in RHoo. 

THEOREM 4.16. Let Hi = N[D\ = D':[^N[ be doubly coprime MFDs in RHoo that 
satisfy (4.113). Then all H2 that internally stabihze the closed-loop system are given by 
(i) 7/2 = (/ + Q2Hi)-'Q2 = [D'-,\I + Q2Hi)r'[D'-,'Q2-\ 

= [{I + X'2N'i)D'-,']-'X'^, (4.131) 
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where Q2 is such that U\^\l + 22^1, G2] ^ ^^00 and (/ + QiHiY^ exists and is proper; 
or where Z2 is such that [(/ + X'^N'^~^U\^, X'^ E RHo. and (/ + X'jN'^~^ exists and is 
proper. Or by 

(ii) //2 = Qiil^H^QiY' = [Q2D'-,'W + H,Q2)D'-,'r 

where Q2 is such that 

where X2 is such that 

X'2[D'-,\l + N[X'2)r' 

Qi 
1 + H1Q2 

X', 

VD'-,\I + N[X'2) 

(4.132) 

D'l^ E RHoo and (/ + Hi ^2)"^ exists and is proper; or 

E RHo, and {I + N[X'2)~^ exists and is proper. 

Proof, First, notice the similarity of the results in this theorem and in Theorem 4.3 and 
Corollary 4.6 in Subsection 7.4A. To verify (i) directly, note that if H2 = ^ '2 ^^2' ^^ 
solutions of b2D[ - A^2^| = / are given by 

[b'2, N!2\ = [(/ + X!2N[)D'i\ X^] E RH^ (4.133) 

where X2 E RHoo is a parameter that we set equal to N2- Then in view of Corollary 4.12, 
the result in (i) that involves X2 follows directly. Notice that (/ + X2N[)D']^^ is biproper, 
and therefore, H2 in (4.131) is proper. Now if Q2 = D[X2, then the results involving Q2 
also follow. Note that Q2 E RHo,. Part (ii) can be verified in an analogous manner. Here 
Qi = X'2D[. • 

In view of Lemma 4.15 and the discussion preceding it, the next result follows 
readily. 

LEMMA 4.17. Let Hi = N[D'\^ = D'l^N[ be doubly coprime. If H2 is given by 
(4.131), then the closed-loop eigenvalues are the poles of 

[D'i\l + Q2Hi\D'i'Q2] U + QiHu Qi] 

[(I + X^N[)D'i\X^l (4.134) 

If ^2 is given by (4.132), then the closed-loop eigenvalues are the poles of 

Qib'^' 
[Nib[] = Qi 

1 + H1Q2 
[Hi, I] 

X'2 

D'-,\I-VN[X'2). 
[N[,b[l (4.135) 

Proof, The proof of this result is straightforward, in view of Lemma 4.15 and the dis
cussion preceding it. • 

An interesting case is when Hi is stable, as the following corollary shows. 

COROLLARY 4.18. Let ^1 E RHo.. Then all H2 that internally stabilize the closed-
loop feedback system are given by 

H2 = (I - K'HiY^K' = K'(I - HiK')-\ (4.136) 

where K' E RH^ such that (/ - K'Hi) ^ [or (/ - H^K') ]̂ exists and is proper. Further
more, the closed-loop eigenvalues are the poles of 

\[IK'] 
I 

-Hi 
0 

(4.137) 



Proof, Note that in this case (4.113) can be written as 
/ 

-H, 
01 
l\ 

\I 
[HX 

0' 
/. 

I 0' 
0 / . 

for 

the doubly coprime MFD/fi = Hil'^ = / -^/ / i . Then (4.123) of Theorem 4.13 reduces 
to expression (4.136) for H2. The closed-loop eigenvalues are then given by the poles of 
(4.137), in view of Lemma 4.15. • 

Compare this corollary with Theorem 4.16, where H2 is expressed in terms of 
Q2. In this case it is clear that K' = -Q2. Note that K' E RH00 suffices to guarantee 
stability. 

MFDs and internal representations 

Consider^ = N'D'~^ = D'"^A^', a doubly coprime factorization in î ii/oo, i.e., 
(4.113) is satisfied. It is possible to express all proper and stable matrices in (4.113) 
in terms of the matrices of a state-space realization of the transfer function matrix 
H{s). In particular, we have the following result. 

LEMMA 4.19. Let {A, 5, CyD} be a stabilizable and detectable realization of H{s), 

i.e., H{s) = C{sl - A)-^B + D, which is also denoted by H(s) = 
C D 

and with 

(A, B) stabilizable and (A, C) detectable. Let F be a state feedback gain matrix such that 
all the eigenvalues of A -f- BF have negative real parts, and let K be an observer gain 
matrix such that all the eigenvalues of A - A'C have negative real parts. Define 

U' X' y 
-N' b' 

and U' = 
D' 
N' -r 

X' 

A-KC 

-F 

-C 

A + BF 

F 

C + DF 

/ - I / 

B- KD K 

-D 

B K 

(4.138) 

/ 

D 

(4.139) 

Then (4.113) holds and// = N'D'-'^ = /)'"iA^'are coprime factorizations of/̂ . 

Proof. Relation (4.113) can be shown to be true by direct computation and is left to 
the reader to verify. Clearly, U\ U' G RHoo. That Â ', D' and D', N' are coprime is a 
direct consequence of (4.113). That N'D' 
computation and is left to the reader. 

= D' ^N' = H can be shown by direct 

In view of Lemma 4.19, U' and U' 

U' = 

andt/ ' = 
D' 
N' 

Y' 

-r 
X' 

-F 
-C 

E RHoo in (4.113) can be expressed as 

/ Ol 
[si - (A - KC)Y'[B - KD, K] + -D I\ 

(4.140) 

F 
C ^DF 

- I r [sI-(A-^BF)r'[B,K] + 

(4.141) 
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These formulas can be used as follows. A stabilizable and detectable realization 
{A, B, C, D] of H{s) is first determined, and appropriate F and K are found so that 
A + BF and A-KC have eigenvalues with negative real parts. Then U^ and t/'"^ are 
calculated from (4.140) and (4.141). Note that appropriate state feedback gain matri
ces F and observer gain matrices K can be determined, using the methods discussed 
in Chapter 4. The matrices F and K may be determined for example by solving 
appropriate optimal linear quadratic control and filtering problems. All proper sta
bilizing controllers//2 = A^2^'2^ ^ D'2 ^^2 ^f theplant/i/i are then characterized 
as in Theorem 4.13. 

It can now be shown, in view of Lemma 4.19, that all stabilizing controllers are 
described by 

k = {A + BF - K(C + DF))x -V Ky + {B - KD)ri 

u = Fx + ri,r2 = y-{C + DF)x - Dri, n = K'{q)r2, (4.142) 

which can be rewritten as 

k = Ax + Bu + K(y - (Cx + Du)) 

u = Fx + K'{q){y - {Cx + Du)\ (4.143) 

Thus, every stabilizing controller is a combination of an asymptotic (full-state/full-
order) estimator or observer and a stabilizing state feedback, plus K'(q)r2 with r2 = 
y - (Cx + Du), the output "error" (see Fig. 7.9). 

Let 

H = N'D'-^ = D'~^N' (4.144) 

be coprime factorizations in RHoo, where N', D', N', D' G RHoo. Also, let 

H = ND-^ = D-^N (4.145) 

be polynomial matrix coprime factorizations. The relation of proper and stable MFDs 
of H(s) to internal PMDs of the system is established in the next result. 

FIGURE 7.9 
A state-space representation of all stabilizing controllers 



THEOREM 4.20. (i) The pair {N',D') e RHoo defines an re factorization of H{s) as 
in (4.144) if and only if there exists a rational matrix n with n, n~^ stable and DYl 
biproper such that 

n. (4.146) 

Furthermore, if only n is stable and DYl is proper, then (N^D^) is a right factorization 
but it is not necessarily coprime. 

(ii) Similarly, the pair (N^,&) G RHoo defines an Ic factorization of H(s) in RHoo 
as in (4.144) if and only if there exists a rational matrix fl with fl, fl~^ stable and YID 
biproper such that 

[N',D'] =U[N,D]. (4.147) 
Furthermore, if only n is stable and YID is proper, then {N\&) is a left factorization 
but it is not necessarily coprime. 

Proof, The proof of this result can be found in Antsaklis [4] and will not be repeated 
here. • 

An interesting implication of Theorem 4.20 is the following: let H = ND~^ be 
a right PMFD and let D be column proper; Dz = u,y = Nz is di controllable PMD. 
Following the development in Subsection 7.4B, define the linear state feedback con
trol law by (4.94), as w = F{q)z + Gr, det G 7̂  0, where deg^.F{q) < dQg^.D{q). The 
closed-loop system is then Dpz = Gr^y = Nz given in (4.95), where Dp = D — F. 
Now in view of Theorem 4.20, the relation 

D^'G (4.148) 

defines re proper and stable factorizations of H, when {DJ^N} is detectable. If the 
pair (N^D) is re, then Yl = D^^G. In fact, it is shown in Antsaklis [4] that all re 
factorizations in RHoo may be obtained by means of (4.148), i.e., by using linear 
state feedback on controllable and detectable realizations of H. It is interesting to 
note that if {A,5,C,D} is an equivalent state-space representation to {DJ^N} with 

(F, G) the corresponding state feedback gain matrices. F 
C + DF 

[sI-{A-

BF)]-^BG G. This expression is the same as (4.141), when G = 1. Simi

lar results can be derived for the Ic factorizations {N^,&) that are related to state 
observers. 

As an application of (4.148), consider Theorem 4.8 and Corollary 4.12, where 
it is shown that if the given plant Hi = NiD^^ = N[D'^^ where Ni^Di are re poly
nomial matrices and A (̂, D\ are proper and stable matrices, then H2 is a stabilizing 
controller if and only if it can be written as H2 = L^^Li, where L2D1 — LiNi = 
/ (Theorem 4.8), or if and only if H2 can be written as H2 = ^2"^^/^' where 

Â (Â ( = / (Corollary 4.12). Assuming that Di is column proper, then in view D^,D[ 
of (4.148), the last relation can be written as [(D^^G)5^]Di - [{Dp^G)N^]Ni 
and therefore, the relation between L2,Li and D21N2 ^^ gi^^i^ by 

/, 

G-^DF 
\L2\ 
\LI\ 

(4.149) 
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622 ^ - 1 
EXAMPLE 4.11. Let H(s) = 1-^^^. TV = A^̂  , where N = s - I md D = 

Linear Systems . ^.. .. ^^ 2)(5 + 1) 
^ (s - 2)(^ + 1). 

(i) If n = , \ , , , then Â ' = NU, D' = DU, and X'D' + Y'N' = ^-^ ^-^ + 
s- 1 

(s + 1> 
L 

® If n = , ; t ; , , , then X'D' + FW = j ^ ' ^ ^ ^ ^j • ^ ^ ^ ^ ^ + 
(5 + 1)2(5' + 3) (5 + 1)(^ + 2) (5 + 1)(^ + 3) 

o(^ + 3) (s - 1)(̂  + 2) ^ 
(̂  + 2) (̂  + 1)2(̂  + 3) 

Notice that in both (i) and (ii), 11, H"^ are stable and DU is biproper as required by 
Theorem 4.20. • 

The X-approach 

Given the transfer function H(s), instead of obtaining proper and stable factor
izations to characterize all proper stabilizing controllers via a Diophantine Equa
tion over the ring of proper and stable rational functions, the transformation A = 
l/(s -\- a),a> 0, may be used. Then one works with a Diophantine Equation that 
involves polynomial matrices in A. This transformation maps the stable region 
in the s-plane into a "stable" region in the A-plane and the point ^ = oo to the 
point A = 0 (see Pernebo [29] for a detailed discussion). This approach corre
sponds to working with proper and stable factorizations of H,N', and D' with all 
the poles of A '̂ and D' at -a and requires only polynomial matrix manipulations 
[here H = (l/(^ + a)")/ in Theorem 4.20]. Recall that a rational R(s) is proper 
(there are no poles at s = ^) if and only if R[(l - Xa)/X] has no pole at A == 0. 
Therefore, for proper stabilizing controllers, solutions of appropriate polynomial 
Diophantine Equations are sought where the denominator Z)2(A) of the stabilizing 
controller H2 has no A factors in det D2W, i.e., ^2^ '^) has no poles at A == 0. 
Note that in this case, all the poles of the solutions of the corresponding proper and 
stable Diophantine Equation will also be at -a, and stabilizing controllers obtained 
by this method tend to assign multiple closed-loop eigenvalues at -a. As an il
lustration, consider H(s) = (s - l)/[(s - 2){s +1) ] (see the example above) and 
let A - l/(^ + 1). Then H(X) = (I - 2A)A/(1 - 3A). The polynomial Diophantine 
Equation in A is solved to obtain ZD + M = (-6A + 1)(1 - 3A) + 9(1 - 2A)A = 1. 
The corresponding (proper and stable) Diophantine Equation is obtained if we let 
A = l/(^ + 1) in X, A Y, N. Then the Z', D', Y', N' of case (i) of the above example 
are derived. If the controller u = Cy + r with C{s) = -9(s + l)/(s - 5) is used, all 
three closed-loop eigenvalues will be at - 1 . [C(s) = C(A) = -X'^Y"^ with A = 
l/(s + 1).] 

D. Two Degrees of Freedom Controllers 

Consider the two degrees of freedom controller Sc in the feedback configuration of 
Fig. 7.10. Here SH represents the system to be controlled and is described by its 
transfer function matrix H(s) so that 

y(s) = H(s)u(s), (4.150) 



The two degrees of freedom controller 5c is described by its transfer function matrix 
C(s) in 

u(s) = C(s) 
m 
r(s). 

[Cy(s\ Cr(s)] (4.151) 

Since the controller Sc generates the input u to SH by processing independently y, 
the output of SH, and r, the external input, it is called a two degrees of freedom 
controller. 

In the following, we shall assume that / / is a proper transfer function and shall 
determine proper controller transfer functions C that internally stabilize the feedback 
system in Fig. 7.10. The restriction that H and C are proper may easily be removed, 
if so desired. Note that in the development in Subsection 7.4C we assumed proper 
transfer functions in the feedback loop, while the development in Subsection 7.4A 
applies to nonproper transfer functions as well. 
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FIGURE 7.10 
Two degrees of freedom controller Sc 

Internal stability 

THEOREM 4.21. Given is the proper transfer function H of SH, and the proper trans
fer function C of Sc in (4.151), where det(I - CyH) T̂  0. The closed-loop system in 
Fig. 7.10 is internally stable if and only if 

(i) u = Cyy internally stabilizes the system y = Hit, 
(ii) Cr is such that the rational matrix 

M = {I -CyHY^Cr (4.152) 

(w = Mr) satisfies D ^M = X, a stable rational matrix, where Cy satisfies (i) and H 
ND~^ is a right coprime polynomial matrix factorization. 

Proof, Consider controllable and observable PMDs for SH, given by 

and for Sc, given by 

Dz = u, 

DcZc = [Ny,Nr] 

y = Nz, 

U = Zc. 

(4.153) 

(4.154) 

where the N, D are re and the Dc, [Ny, Nr] are Ic polynomial matrices. The closed-loop 
system is then described by 

{bcD - NyN)z = Nrr, y = Nz (4.155) 

and is internally stable if the roots of det Do, where Do = DcD - NyN, have strictly 
negative real parts. 

(Necessity) Assume that the closed-loop system is internally stable, i.e., D~^ is 
stable. Since Cy = D~^Ny is not necessarily an Ic polynomial factorization, write 
[Dc,Ny] = GdDcy,Ncy],'^^^reGLis2igcldofthQpaiY0c,Ny).ThenDcyD-NcyN = 
Gl^Do = bk, where D^ is a polynomial matrix with D^^ stable; note also that G^^ is 
stable. Hence, u = Cyy = D'^^Ncyy internally stabiUzes y = Hu = ND'^u, i.e., part 
(i) of the theorem is true. To show that (ii) is true, we write M = (I - CyH)~^Cr = 



624 Dbl^Dcy0-^Nr) = Db^^Gl^Nr = DX, where X = D'^Nr is a stable rational ma-
Linear Systems ^^ -̂ ^^^^ shows that (ii) is also necessary. 

(Sufficiency) Let C satisfy (i) and (ii) of the theorem. If C = D~^[Ny, Nf] is an Ic 
polynomial MFD and GL is a geld of the pair (5c, Ny) then [Dc, Ny] = GiVDcy, Ncy] is 
true for some Ic matrices Dcy and Ncy(Cy = D^^Ncy)- Because (i) is satisfied, DcyD -
NcyN = D;t, where D^Ms stable. Premultiplying by GL we obtain Dc/)-A^̂ A/̂  = GLDJ,. 

Now if G^^ is stable, then 5~^ where Do = DcD - NyN = GiDk, will be stable since 
6^1 is stable. To show this, write D'^M = D-\l - CyUy^Cr = D^^Dcy0~^Nr) = 
b^^Gl^Nr and note that this is stable, in view of (ii). Observe now that the GL, Nr are 
Ic; if they were not, then C = b~^[Ny, Nr] would not be a coprime factorization. In this 
case no unstable cancellations take place in D^^G^^Nr 0^^ is stable), and therefore, if 
D~^M is stable, then {GLDkY^ = b~^ is stable or the closed-loop system is internally 
stable. • 

Remarks 

(1) It is straightforward to show the same results, using proper and stable factor
izations of H given by 

H = N'D'-\ (4.156) 

where the pair (N', D') G RHoo and (A '̂, D') is re, and of 

C = &;'[N;,N^I (4.157) 

where the pair 0'^, [N!^, N;.]) G RHOO and (D^, [Â ,̂ TV/]) is Ic. The proof is com
pletely analogous and is left to the reader. The only change in the theorem will 
be in part (ii) which will now read: 

(ii) Cr is such that the rational matrix M = (I - CyH)~^Cr satisfies 
D'-^M = X' G RH^, where Cy satisfies (i) and H = N'D'-^ is an re MFD in 
RHoo. 

(2) Theorem 4.21 separates the role of Cy, the feedback part of C, from the role of 
Cr, in achieving internal stability. Clearly, if only feedback action is considered, 
then only part (i) of the theorem is of interest; and if open-loop control is desired, 
then Cy = 0 and (i) implies that for internal stability H must be stable and 
Cr = M must satisfy part (ii). In (ii) the parameter M = DX appears naturally 
and in (i) the way is open to use any desired feedback parameterizations. 

In view of Theorem 4.21, it is straightforward to parametrically character
ize all internally stabilizing controllers C In the theorem it is clearly stated [Part 
(i)] that Cy must be a stabilizing controller. Therefore, any parametric charac
terization of the ones developed in the previous subsections can be used for Cy. 
Also, 
Cr is expressed in terms of D~^M = X (or D' M ^ X'). 

THEOREM 4.22. Given that }) = //w is proper with// = ND~^ = D"̂ A^ doubly co-

prime polynomial MFDs, all internally stabilizing proper controllers C in w = CK are 

given by: 

(i) C = (1 + QHr^[Q,M] = [(/ + LN)D-^]-^[L,Xl (4.158) 

where Q = DL and M = DX are proper with L, X and D'^I + QH) = (/ + LN)D-^ 
stable, so that (/ + QH)~^ exists and is proper; or 

(ii) C = (Xi - KN)-\-{X2 + Kb), XI (4.159) 



where K and X are stable so that {X\ — KN\) ^ exists and C is proper. Also, X\ and X2 625 

are determined from UU 
' Xi 

-N 
X2\ 
D\ 

ID 
[N 

-X2 

^ 1 . 

I 0" 
0 / 

with U unimodular. 

lfH= N'D'-^ = D'-^N' are doubly coprime MFDs in RHoo, then all stabilizing 
proper C are given by 

(iii) C = {X[-K'N')-\-{X!^ + K'D'),X% (4.160) 

where K',X' e RH^o so that {X[ -K'N')'^ exists and is proper. Also, U'U'-^ = 

\ ^1 
-N' 

X',] 
& 

D' 
N' 

-xn 
K 

7 
0 

0" 
/ 

with U'U'-^ eRK 

(iv) c = (/+e//)-i[e,M]: [(/ + LW)Z) ' - l ] - l [L^r ] (4.161) 

where Q = D'L'.M = D'X' e RH^o with L^X' and D'-^{I + QH) 
RHoo so that {I + QH)~^ or {I + LlN')-^ exists and is proper. 

{I + L'N')D'- e 

Proof, In view of part (i) in Theorem 4.21, Cy of C = [Cy, Q] can be expressed in terms 
of any parameterization of all stabilizing feedback controllers developed in Subsections 
7.4A and 7.4C. Cr can then be expressed as Cr = {I — CyH)M with Cy given from above 
and M = DX with X any stable rational matrix. 

If Cy = {I + QH)-^Q with D-^[I + QH,Q] stable (see Theorem 4.3) or Cy = 
[{I + LN)D-^]-^L with [{I + LN)D-\L] stable (see Corollary 4.6), part (i) of the 
theorem follows. Notice that Cr = (I- CyH)M = (/ + QH)-^M = [{I + LN)D-^]-^X 
since Q = DL and M = DX. Similarly, if Cy = -{Xi- KN)'^ {X2 + KD) with K stable 
(see Theorem 4.2), then C, = {Xi - KNy^D'^M = {Xi - KN)-^X and part (ii) of the 
theorem follows. 

For part (iii), express Cy in terms of K' G RHoo, as in Theorem 4.13, and use X' G 
RHoo in part (ii) of Theorem 4.21, as in remarks following (4.157). Part (iv) follows 
from Theorem 4.16 of Subsection 7.4C. • 

Response maps 

It is straightforward to express the maps between signals of interest of Fig. 7.10 

in terms of the parameters in Theorem 4.22. For instance u = C - [C-y,C^ 

CyHu+Crr, from which we have u = {I — CyH)~^Crr = Mr. (In the following we will 
use the symbols u^y^ r, etc., instead of w, j , r, etc., for convenience.) If expressions (iv) 
of Theorem 4.22 are used, then 

u = D'X'r, and y = Hu=N'D'-^D'X'r = N'X'r, (4.162) 

in view of {I — CyH)~^ = D'{I+ L'N')D'~^. Similar results can be derived using the 
other parameterizations in Theorem 4.22. To determine expressions for other maps 
of interest in control systems, consider Fig. 7.11, where du and dy are assumed to 
be disturbances at the input and output of the plant H, respectively, and 77 denotes 

\y + dy + vi\ 
measurement noise. Then, u = [C3;,Cr] du, from which we have 

{I-CyH)-^[Crr + Cydy+Cy^+du] diXidy = Hu = H{l-CyU)-^[Crr + Cydy 
CyVi+du]. 

Then, in view of (4.161) in Theorem 4.22, we obtain 
u = D'X'r + D'Lldy + D'L'I] +D\I + L'N')D'-^du 

= Mr + Qdy + Qri+Sidu (4.163) 
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ô  
FIGURE7.il 
Two degrees of freedom control configuration 

and y = N'X'r + N'L'dy + N'L'r] + A^'(/ + L'N')D'~^du 

= Tr + (So - I)dy + HQT] + HSidu. (4.164) 

Notice that Q = (I - CyHy^Cy = D'L' is the transfer function between u and dy 
or 7]. Also, 

Si = (I - CyHY^ = D'(I + L'N')D / - I I + QH (4.165) 

is the transfer function between u and du. The matrix St is called the input compari
son sensitivity matrix. Notice also that yo = y -^ dy = Tr-\- Sody + HQrf + HSidu\ 
i.e., 

So = {I- HCy) -1 _ I^HQ (4.166) 

is the transfer function between yo and dy. The matrix So is called the output compar
ison sensitivity matrix. The sensitivity matrices St and So are important quantities 
in control design. Now 

HQ = So- N'L' = I (4.167) 

s ince/ /g = H(I-CyH)-^Cy HCyil-HCy)-^ = -I + il-HCyT^ = -J + So. .yL±) ^y L±^yyL ±±^yj 

where So and HQ are the transfer functions from yo to dy and T;, respectively. Equa
tion (4.167) states that disturbance attenuation (or sensitivity reduction) and noise 
attenuation cannot occur over the same frequency range (show this). This is a fun
damental limitation of the feedback loop and occurs also in two degrees of freedom 
control systems. Similarly, we note that 

Si -QH = I. 

We now summarize some of the relations discussed above: 

(4.168) 

T = H(I - CyHY'Cr = HM = NX, 

M = (I -CyHy^Cr DX, 

Q = (I-CyHy^Cy = DL, 

So = {I-HCyY^ = I + HQ, 

Si = (I- CyHy^ = I + QH, 

{y = Tr) 

(u = Mr) 

(u = Qdy) 

{yo = Sody) 

(u = Sidu). 

The input-output maps attainable from r, using an internally stable two degrees 
of freedom configuration, can be characterized directly. In particular consider the 



two maps described by 

(4.169) 

i.e., the command/output map T and the command/input map M. Let H = ND ^ be 
an re polynomial MFD. 

THEOREM 4.23. The Stable rational function matrices T and M are realizable with in
ternal stability by means of a two degrees of freedom control configuration [that satisfies 
(4.169)] if and only if there exists stable X so that 

X (4.170) 

Proof, (Necessity) Assume that T and M in (4.169) are realizable with internal stability 
Then in view of Theorem 4.20, X = Z)"^M is stable. Also, 3; = Hu = (ND'^)(Mr) = 
NXr. 

(Sufficiency) Let (4.170) be satisfied. If X is stable then T and M are stable. Also, 
note that T = HM. We now show that in this case a controller configuration exists to 
implement these maps (see Fig. 7.12). Note that u = Mr + Cy(fr -\- y) = [Cy, M + 

r-y] 
, from which we obtain 

\_r\ 
u = (I + CyH)-\M + Cyf)r. (4.171) 

CyT] 

HM this relation implies that u = 
HMr = Tr. Furthermore, Cy is a 

stabilizing feedback controller, and the system is internally stable since t and M are 
stable. • 

Now if M = M and T = T, then in view of T 
(I + CyH)-\l + CyH)Mr = Mr and y = Hu 
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FIGURE 7.12 
Feedback realization of (T, M) 

Note that other internally stable controller configurations to attain these maps are 
possible. (The realization of both response maps T and M, instead of only T as in the 
case of the Model Matching Problem, makes the convenient formation in Theorem 
4.24 possible. The realization of both T and M is sometimes referred to as the Total 
Synthesis Problem; see [7], [8] and the references therein.) 

The results of Theorem 4.23 can be expressed in terms of H = N'D'~^, re 
MFDs in RHoo. In particular, we have the following result. 

THEOREM4.24. T,M EL RHOO are realizable with internal stability by means of a two 
degrees of freedom control configuration [that satisfies (4.169)] if and only if there exists 
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X' E RH^ so that 

\X'. (4.172) 

Proof. The proof is completely analogous to the proof of Theorem 4.23 and is omitted. 

It is now clear that given any desirable response maps r such that 

N' 

D' 
X\ where X' G RHo^, the pair (T, M) can be realized with internal sta

bility by using for instance a controller (4.161), C = [(/ + L'N')D'-T^[L',X% 
where [(/ + L'N')D'~^, L'] G RH^^ and X' is given above, as can easily be veri
fied. It is clear that there are many C that realize such T and M and they are all 
parameterized via the parameter L' E RHoo that, for internal stability, must satisfy 
the condition (/ + L'N')D'~^ E RHoo. Other parameterizations such as K' can also be 
used. In other words, the maps T, M can be realized by a variety of configurations, 
each with different feedback properties. 

Remark 

In a two degrees of freedom feedback control configuration, all admissible re
sponses from r under condition of internal stability are characterized in terms of the 
parameters X (or M), while all response maps from disturbance and noise inputs 
that describe feedback properties of the system can be characterized in terms of pa
rameters such as ^ or 2 or L. This is the fundamental property of two degrees of 
freedom control systems: it is possible to attain the response maps from r indepen
dently from feedback properties such as response to disturbances and sensitivity to 
plant parameter variations. 

EXAMPLE 4.12. We consider H(s) = 
(s - m + 2) 

and wish to characterize all 
(s - 2)2 

proper and stable transfer functions T(s) that can be realized by means of some control 

configuration with internal stability. Let H(s) = 
1 (s - 2f 

{s + 2)2 
N'D"^ be an 

1 

s + 2\ 

Then in view of Theorem 4.24, all such T must satisfy N' 'T = 

T ^ X' G RHoo. Therefore, any proper T with a zero at +1 can be realized via 

re MFD in RH 
s + 2 

a two degrees of freedom feedback controller with internal stability. 
Now if a single degree of freedom controller must be used, the class of realizable 

T(s) under internal stability is restricted. In particular, if the unity feedback configuration 
{/; Gff, 1} in Fig. 7.15 is used, then all proper and stable T that are realizable under 

[s - I' 
internal stability are again given by T N'X' 

s + 2 
X\ where X' = L' E RH^ 

1 + r 
s- 1 (s + 2)2 

(s - 2)2 
E RHoo, i.e., 

^ (s-2fp(s) 

[see (4.184)] and in addition (/ + X W ) ^ ' , ̂  • ^̂  , 
\5 + 2 

X' = Hx/dx is proper and stable and should also satisfy (s+2)dx + (s 
for some polynomial p(s). 

This illustrates the restrictions imposed by the unity feedback controller, as opposed 
to a two degrees of freedom controller. Notice that these additional restrictions are im
posed because the given plant has unstable poles. • 

It is not difficult to prove the following result. 



THEOREM4.25. T,M,SG RHOO are realizable with internal stability by a two degrees 
of freedom control configuration that satisfies (4.169) and (4.167) [S = S^ see Fig. 7.11 
and (4.163), (4.164)] if and only if there exist X', L G RH^ so that 

(4.173) 
r r i 
M 

_S _ 

= 
[N' 
D' 
.0 

0] 
0 

A^'J 

\X'' 
+ 

ro] 
0 
./_ 

where (/ + L'N')D'-^ G RHoo, Similarly, T, M, Q 
there exist X',L' G RHo, so that 

RHoo are realizable if and only if 

T' 
M 
Q\ 

= 
[N' 
D' 
.0 

0 
0 

D' 
(4.174) 

where (/ + L'N')D'-^ G RH^o. 

Proof, The proof is straightforward in view of Theorem 4.24. Note that S ox Q are se
lected in such a manner that the feedback loop has desirable feedback characteristics 
that are expressed in terms of these maps. • 

Controller implementations 

The controller C = [Cy, Cr] may be implemented, for example, as a system 
Sc as shown in Fig. 7.10 and described by (4.154), or as shown in Fig. 7.12 with 
C = [Cy, M + CyT], where Cy stabilizes H and T, M are desired stable maps that 
relate r to j and r to u, i.e., y = Tr and u = Mr, There are also alternative ways 
of implementing a stabilizing controller C. In the following, the common control 
configuration of Fig. 7.13 is briefly discussed. It will be denoted by {R; Gff, Gf^}. 

The {R\ Gff, Gfb} Configuration 

Note that since 

U = [Cy, Cr] (4.175) - [GffGfb, GffRIl 

{R; Gff, Gfb) is a two degrees of freedom control configuration that is as general 
as the ones discussed 
MFD in 7̂ 7̂ 00 and let 
as the ones discussed before. To see this, let C = [Cy, Cr\ = D'c ^i^r ^r l be an Ic 

R = N;., Gff = D Gft = N;. (4.176) 

Note that R and G/^ are always stable; also, G^j exists and is stable. Assume now 
that C was chosen so that 

D'D' - N'N' = U', (4.177) 
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where U', U' E RHa,. Then the system in Fig. 7.13 with R, Gff, and Gft given 
in (4.176) is internally stable, as is shown in the following. 

In view of Theorem 4.21, the feedback system is stable if and only if (i) Cy = 
GffGfb = D'c'^Ny internally stabilizes H, and (ii) X' = D'-^M = D'-\l -
GffGfbHy^GffR G RHoo. It can be shown that (4.177) implies (i). Note that 
any possible cancellation in the product GffGft>, between D'c~^ and Ny, will in
volve only stable poles; this can easily be shown, using (4.177). The cancelled 
stable poles will be uncontrollable or unobservable eigenvalues in the closed-
loop system. In addition X' = D'-\l - GffGfbHy^GffR = D'-^[D'(D'^D' -
N!^N'y^D'c]£>'c^N;. = U'^N'r E RHoo. Therefore, the control configuration 
{R;Gff, Gfb} = {Nl\D'-^,N'y} with (4.177) satisfied is internally stable. In view 
of this result and Theorem 4.22, Gff, Gft,, and R may also be selected as 

R = X\ Gff = [(/ + L'N')D'-^] 1-1-1 
Ub L' (4.178) 

WiihX', L,{I + L'N')D'-^ E J?//oo and J^r(/ + L W ) ^ 0, w h e r e r = D'-^Mand 
L' = D'-^Q, Now if X' and L' satisfy (4.173) or (4.174) of Theorem 4.25, desired 
command responses T, M and disturbance responses S ox Q are achieved under in
ternal stability. Note that Gff, Gfb, and R may also be selected as 

-1 R = X', Gff = (X[ - K'N'y , Gfb = -(X^ + K'N'), (4.179) 

where X',K' G RHoo. 
We shall now briefly discuss some special cases of the {R; Gff, Gfb} control 

configuration, which are quite common in practice. Note that the configurations be
low are simpler; however, they restrict the choices of attainable response maps and 
so the flexibility offered to the control designer is reduced when using these config
urations. 

/ . The {/; Gff, Gfb} controller. In this case u = [Cy, Cr] 

[GffGfb, Gff] , that is. 

Cv CrG r^fb-

In view of (4.161) given in Theorem 4.22, this implies that 

L' = X'G fb> 

(4.180) 

(4.181) 

or that the choice for the parameters L' and X' is not completely independent as in the 
{R; Gff, Gfb} case. The L' and X' must of course satisfy L', X' and (/ + L'N')D'-^ E 
RHa,. In addition in this case L' and X' must be such that a proper solution Gfb of 
(4.181) exists and no unstable poles cancel in X'Gfb. Note that these poles will can
cel in the product Gff Gfb and will lead to an unstable system. Since L' and X' are 

o 
FIGURE 7.14 
The {/; Off, Gfb} controller 



both stable, we will require that (4.181) have a solution Gfb ^ RHoo. This implies 
that if for example X'~^ exists, then X' and L' must be such that X'~^L' G RHoo, 
i.e., X' and L' have the same unstable zeros and L' is "more proper" than X'. This 
provides some guidelines about the conditions that X' and L' must satisfy. Also, 

Gff = [(I -hL'N')D'-T X'. (4.182) 

It should be noted that the state feedback law implemented by a dynamic ob
server can be represented as an {/; Gff, Gfb} controller (see Subsection 7.4B, Fig. 
7.8). 

2. The {/; Gff, 1} controller, A special case of (i) is the unity feedback control 

configuration. Here u = [Cy, Cr] ; I.e., 

(4.183) 
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FIGURE 7.15 
The {/; G//, /} controller 

which in view of (4.161) implies that 

X' = L'. (4.184) 

In this case the responses between y or u and r (characterized by X') cannot be 
designed independently of feedback properties such as sensitivity (characterized by 
L'). This is a single degree of freedom controller and is used primarily to attain 
feedback control specifications. 

3, The {R\Gff,I} controller. Here w - [C ;̂, C,] 

Cr — CyR. 

In view of (4.161) given in Theorem 4.22, this implies that 

X' = L'R. 

[Gff, GffR] ; I.e., 

(4.185) 

(4.186) 

The L' and X' must satisfy L', X', (I + L'N')D'-^ e RHoo. In addition they must be 
such that (4.186) has a solution R G RHoo. Note that R stable is necessary for internal 

R 
^ 

Gff 
u 

H 
y 

FIGURE 7.16 
The {R; Off, 1} controller 
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stability. The reader should refer to the discussion in (1) above for the implications 
of such assumptions on X' and L'. Also, 

Off = [{I + L'N')D'-^Y^L'. 

4, The {R\ I, Gft,} controller. In this case 

U = [Cy, Cr] = [Gfb,R] 

(4.187) 

(4.188) 

r 
R tr^ 

•? % 

1 ^ H 
y 

FIGURE 7.17 
The {R; /, Gft} controller 

For internal stability, R must be stable. In view of (4.161) given in Theorem 4.22, 
this implies the requirement [(/ + VN')D'~^]~'^X' G RHoo, in addition to L', X', (I + 
L'N')D~^ E RHoo, which imposes significant additional restrictions on L'. Here 

[Gfb,R] = [(I + L'N')D'-T'[L\X'l (4.189) 

5. The {1,1, Gfh} controller. This is a special case of (4), a single degree of 
freedom case, where R = I. Here R = I implies that 

X' = (/ + L'N')D'-\ 

or that X' and L' must satisfy additionally the relation 

D'X' - L'N' = I, 

(4.190) 

(4.191) 

a (skew) Diophantine Equation. This is in addition to the condition that L', X', (I + 
L'N')D-^ G RHoo. 

~\ 
J i 

G * 

1 U 
H 

y 

FIGURE 7.18 
The {/; /, G/b} controller 

Control problems 

In control problems, design specifications typically include requirements for in
ternal stability or pole placement, low sensitivity to parameter variations, distur
bance attenuation, and noise reduction. Also, requirements such as model matching, 
diagonal decoupling, static decoupling, regulation, and tracking are included in the 
specifications. 



Internal stability has of course been a central theme throughout the book, and 
in this section all stabilizing controllers were parameterized. Pole placement was 
studied in Chapter 4, using state feedback, and output feedback via the Diophantine 
Equation was addressed earlier in Chapter 7. Sensitivity and disturbance/noise reduc
tion are treated by appropriately selecting the feedback controller Cy. Methodologies 
to accomplish these control goals, frequently in an optimal way, are developed in 
many control books. It should be noted that many important design approaches such 
as the Hoo-optimal control design method, are based on the parameterizations of all 
feedback stabilizing controllers discussed earlier. In particular an appropriate or opti
mal controller is selected by restricting the parameters used, so that additional control 
goals are accomplished optimally, while guaranteeing internal stability in the loop. 

Our development of the theory of two degrees of freedom controllers can be used 
directly to study model matching and decoupling, and a brief outline of this approach 
is now given. Note that this does not, by any means, constitute a complete treatment 
of these important control problems, but rather, an illustration of the methodologies 
introduced in this section. 

In the model matching problem, the transfer function of the plant H{s){y = Hu) 
and a desired transfer function T{s){y = Tr) are given and a transfer function 
M{s)(u = Mr) is sought so that 

T{s)=H{s)M{s). (4.192) 

Typically, H{s) is proper, and the proper and stable T{s) is to be obtained from H{s) 
using a controller under the condition of internal stability. Therefore, M{s) can in 
general not be implemented as an open-loop controller, but rather, as a two degrees 
of freedom controller. In view of Theorem 4.24 (or Theorem 4.23), if H = N'D'~^ is 
an re MFD in RHoo, then the pair {T,M) can be realized with internal stability if and 

only if there exists X^ G RHoo so that X\ Note that an M that satisfies 

(4.192) must first be selected (there may be an infinite number of solutions M). In 
the case when det H{s) 7̂  0, T can be realized with internal stability by means of a 
two degrees of freedom control configuration if and only if N^~^T =X' ^ RHoo (see 
Example 4.12). In this case M = D'X'. Now if the model matching is to be achieved 
by a more restricted control configuration, then additional conditions are imposed 
on T for this to happen, which are expressed in terms of X' (see for instance Exam
ple 4.12 for the case of the unity feedback configuration and Exercises 7.23, 7.26). 

In the problem of diagonal decoupling, T{s) in (4.192) is not completely speci
fied, but is required to be diagonal, proper, and stable. In this problem the first input 
affects only the first output, the second input affects only the second output, and so 
forth. \f H{s)~^ exists, then diagonal decoupling under internal stability via a two 
degrees of freedom control configuration is possible if and only if 

N'-^T =N'-^ 

•ni_ 

di 

Clyn J 

X' G RHo. (4.193) 

where H = N'D'-^ is an re MFD in RH^. and T{s) = diag [ni{s)/di{s)],i = 
l , . . . ,m. It is clear that if H{s) has only stable zeros, then no additional 
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where d{s) is a Hurwitz polynomial. 

634 restrictions are imposed on T{s). Relation (4.193) implies restrictions on the zeros 
Linear Systems ^^ ^i^^) when H{s) has unstable zeros. 

It is straightforward to show that if diagonal decoupling is to be accomplished 
by means of more restricted control configurations, then additional restrictions will 
be imposed on T{s) via X'. (See Exercise 7.25 and Exercise 4.17, 4.20 of Chapter 4 
for the case of diagonal decoupling via linear state feedback.) 

The problem of diagonal decoupling has a long and interesting history and a very 
rich literature. The original solution of the problem involved linear state feedback 
and state-space descriptions and is due to Falb and Wolovich [12]. For an approach 
involving PMDs and the transfer function matrix, see Williams and Antsaklis [35]. 
Other types of decoupling, such as block, dynamic, and static, are also treated there. 

A problem closely related to diagonal decoupling is that of the inverse of H{s). 
In this case, T{s) = I. There is also a very rich literature on this problem and the 
interested reader is encouraged to find out more about it. A starting point could be 
Williams and Antsaklis [35]. (See also Exercises 4.17, 4.18 in Chapter 4.) 

In the problem of static decoupling, T(s) E RHa, is square and also satis
fies r(0) = A, a real nonsingular diagonal matrix. An example of such T(s) 

r ̂ 2 +1 s(s^ + 2) ] 
[s(s + 2) s^ ^3s+ I 

Note that if T(0) = A, then a step change in the first input r will affect only 
the first output in y at steady-state, and so forth. Here y = Tr = T(l/s) and 
lims^osT(l/s) = T(0) = A, which is diagonal and nonsingular. For this to happen, 
with internal stability when H(s) is nonsingular (see Theorem 4.24), we must have 
N' T = X' G RHoo, from which can be seen that static decoupling is possible if 
and only if H{s) does not have zeros at 5* = 0. If this is the case and if in addition H{s) 
is stable, static decoupling can be achieved with just a precompensation by a real 
gain matrix G, where G = H-\Qi)K. In this case T{s) = H{s)G = H{s)H~\0)A, 
from which T(0) = A. 

7.5 
SUMMARY 

In this chapter alternatives to state-space descriptions were introduced and used to 
further study the behavior of linear time-invariant systems and to study in depth 
structural properties of feedback control systems. 

In Part 1, the properties of systems described by Polynomial Matrix Descriptions 
(PMDs) were explored in Section 7.3 and background on polynomial matrices was 
provided in Section 7.2. The Diophantine Equation, which plays an important role 
in feedback systems, was studied at length in Subsection 7.2E. 

An in-depth study of the theory of parameterizations of all stabilizing controllers 
with emphasis on PMDs was undertaken in Part 2, Subsection 7.4A, and the param
eterizations of all proper stabilizing controllers in terms of proper and stable Matrix 
Fraction Descriptions (MFDs) were derived in Subsection 7.4C. State feedback and 
state estimation using PMDs were studied in Subsection 7.4B. Finally, control sys
tems with two degrees of freedom controllers were explored in Subsection 7.4D, 
with an emphasis on stability, parameterizations of all stabilizing controllers, and 
attainable response maps. 



7.6 
NOTES 

Two books that are original sources on the use of polynomial matrix descriptions 
in systems and control are Rosenbrock [30] and Wolovich [36]. In the former, what 
is now called Rosenbrock's Matrix is employed and relations to state-space descrip
tions are emphasized. In the latter, what are now called Polynomial Matrix Fractional 
Descriptions (PMFDs) are emphasized, and the relation to state space is accom
plished primarily by using controller forms and the Structure Theorem, which was 
presented in Chapter 3. Good general sources for the polynomial matrix description 
approach also include the books by Vardulakis [33], Kailath [21], and Chen [10]. 

Basic references for the material on polynomial matrices discussed in Section 
7.2 are the books by MacDuffee [25] and Gantmacher [14]. These books also in
clude material on the Diophantine Equation discussed in Subsection 7.2E. Addi
tional sources for the properties of polynomial matrices that we found useful include 
Wolovich [36], Vardulakis [33], and Kailath [21]. 

A key concept in our development of polynomial descriptions for the study of 
systems is the notion of equivalence of representations, discussed in Subsection 
7.3A, since it establishes not only relations between polynomial descriptions but 
also between polynomial and state-space representations. Original sources for this 
include Rosenbrock [30] and Fuhrmann [13]. See also Pernebo [28] and the com
ments by Rosenbrock in [31 ] and [32], noting that the definition of equivalence given 
by Wolovich [36] was shown by Pernebo in [28] to be the same as strict system equiv
alence. Additional material on this topic can be found in Kailath [21], Wolovich [36], 
and Vardulakis [33]. A good source for the study of feedback systems using PMDs 
and MFDs is the book by Callier and Desoer [9]. 

The development of the properties of interconnected systems, addressed in Sub
section 7.3C, which include controllability, observability, and stability of systems in 
parallel, in series, and in feedback configurations is based primarily on the approach 
taken in Antsaklis and Sain [8], Antsaklis [2] and [3], and Gonzalez and Antsaklis 
[18]. 

Parameterizations of all stabilizing controllers are of course very important in 
control theory today. Historically, their development appears to have evolved in the 
following manner (see also the historical remarks on the Diophantine Equation in 
Subsection 7.2E): Youla et al. [37] introduced the K parameterization (as in Theorem 
4.2) in 1976 and used it in the Wiener-Hopf design of optimal controllers. This work 
is considered to be the seminal contribution in this area. The proofs of the results on 
the parameterizations in Youla et al. [37] involve transfer functions and their charac
teristic polynomials. Neither the Diophantine Equation nor PMDs of the system are 
used (explicitly). It should be recalled that in the middle 1970s most of the control 
results in the literature concerning MIMO systems involved state-space descriptions 
and a few employed transfer function matrices. The PMD descriptions of systems 
presented in the books by Rosenbrock [30] and Wolovich [36] were only begin
ning to make some impact. A version of the linear Diophantine Equation, namely, 
AX ^-YB = C polynomial in z~^ was used in control design by Kucera in work re
ported in 1974 and 1975. In that work, parameterizations of all stabilizing controllers 
were implicit, in the sense that the stabilizing controllers were expressed in terms 
of the general solution of the Diophantine Equation, which in turn can be described 
parametrically. Explicit parameterizations were reported in Kucera [23]. In Antsaklis 
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way. In Desoer et al. [11] parameterizations K' of all stabilizing controllers using co-
prime MFDs in rings other than polynomial rings (including the ring of proper and 
stable rational functions) were derived. It should also be noted that proper and stable 
MFDs had apparently been used earlier by Vidyasagar. In Zames [38], a parame
terization Q of all stabilizing controllers, but only for stable plants, was introduced 
and used in //oo-optimal control design. (Similar parameterizations were also used 
elsewhere, but apparently not to characterize all stabilizing controllers; for example, 
they were used in the design of the closed-loop transfer function in control systems 
and in sensitivity studies in the 50s and 60s, and also in the "internal model con
trol" studies in chemical process control in the 80s.) A parameterization X of all 
stabilizing controllers (where X is closely related to the attainable response in an 
error feedback control system), valid for unstable plants as well, was introduced in 
Antsaklis and Sain [7]. Parameterizations involving proper and stable MFDs were 
further developed in the 80s in connection with optimal control design methodolo
gies, such as ii/oo-optimal control, and connections to state-space approaches were 
derived. Two degrees of freedom controllers were also studied, and the limitations 
of the different control configurations became better understood. By now, MFDs and 
PMDs have become important system representations and their study is essential, if 
optimal control design methodologies are to be well understood. 

In Subsection 7.4A, the discussion of parameters N^, D^, and K (Theorems 4.1 
and 4.2) follows Antsaklis [1]. The material for the parameter X2 (Corollary 4.6) fol
lows Antsaklis and Sain [7], where X2 was introduced in connection with the error 
feedback control configuration. Q2 was used in Zames [38] for stable systems (Corol
lary 4.4); however. Theorem 4.3 is valid for unstable systems as well. The discussion 
of the parameters Sn and Li, L2 follows Antsaklis and Sain [8], and Antsaklis [3]. 
Subsection 7.4B is based on Wolovich [36] and Antsaklis [2] and [3]. 

The results on proper and stable MFDs in Subsection 7.4C and their use in pa
rameterizing all proper stabilizing controllers are due to Desoer et al. [11]. The de
velopment in Subsection 7.4C was based on Vidyasagar [34], Antsaklis [3], Green 
and Limebeer [20], and Maciejowski [26]. The development of the relations between 
MFDs in RHoo and PMDs of a system follows AntsakHs [4], and Nett et al. [27]; see 
also Khargonekar and Sontag [22]. The A-approach was developed in Pernebo [29]. 

The material on two degrees of freedom controllers in Subsection 7.4D is based 
on Antsaklis [3], Antsaklis and Gonzalez [6], and Gonzalez and Antsaklis [16], [17], 
[18], [19]; a good source for this topic is also Vidyasagar [34]. Note that the main 
stability theorem (Theorem 4.21) first appeared in Antsaklis [3] and Antsaklis and 
Gonzalez [6]. For additional material on model matching and decoupling, consult 
Chen [10], Kailath [21], Falb and Wolovich [12], Williams and AntsakUs [35], and 
the extensive list of references therein. 
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7.8 
EXERCISES 

7.1. Given a polynomial matrix P{s) G R[sY^^ with rankP(s) = mm(p, m), write a com
puter program to reduce P(s) to a row proper (row reduced) matrix via row elementary 
operations and to derive the corresponding unimodular matrix UL(S). Use your computer 
algorithm to verify the results of Example 2.10. Hint: Apply the algorithm to [P(s), Ip] 
so that in UL(S)[P(S), Ip] = [P(s), UL(S)], P(S) is in row proper form and UL(S) is the 
appropriate unimodular matrix. 

7.2. Given a polynomial matrix P(s) G RlsV^"^ with p > m, write a computer program to 
reduce P(s) to column Hermite form and to derive the corresponding unimodular matrix 
UL(S). Use your computer algorithm to verify the results of Example 2.13. Hint: Apply 
the algorithm to [P(s), Ip] so that in UL(S)[P{S), Ip] = [P(s), UL(S)1 P(S) is in Hermite 
form and UL(S) is the appropriate unimodular matrix. 

7.3. Consider A G R^^^ and let IAI// '"'!^ , be the r X r minor formed by selecting r rows 
I \{ki,...,kr} -̂  ^ 

denoted by {ii,..., ir}, and r columns of A, denoted by {^i,... Z:̂ }, where r < min(m, n). 
Let B G R'^^P and consider the minors of the product AB. These can be determined using 

\An\iH'-M ^ ^ I . |{'l.-.^r} |^|{/i,...,/r} 



7.4. 

where {/i,..., Ir} denotes all possible sets of r integers among the n columns of A 
and n rows of 5, with r < mm{m,n,p). This formula for the minors of the product 
of matrices is known as the Binet-Cauchy formula. 
(a) \iA^R^^^,B^R^^^, with m<n, determine an expression for detAB. 
(b) Show that if A and B are both square, then det AB = det A det B = det BA. 
(c) Suppose that Pi {s) and Piis), polynomial matrices of the same dimensions, are 

related by P\{s) = U{s)P2{s)V{s), where U{s) and V{s) are also polynomial 
matrices. Show that the (monic) gcd of all j x j minors of P2('^), i-e., the deter-
minantal divisor Dj{s) of P2{s), divides the gcd of all j x j minors of Pi (5), i.e., 
the corresponding determinantal divisor of Pi {s). 

(d) \iU{s) and y (5) (in (c)) are unimodular, show that all the determinantal divisors 
Dj{s), and therefore, all the invariant factors ej{s) of P\{s) and Piis), are the 
same. That is, the invariant factors of a matrix are not affected by row and 
column elementary operations. This also shows that if Pi (5) = U(s)P2(s)V(s) 
with U{s) and V{s) unimodular, then Pi{s) and P2{s) have precisely the same 
Smith form. It is straightforward to also show the opposite, i.e., if Pi (s) and 
P2{s) have the same Smith form, then there exist unimodular matrices U{s) and 
V{s) such that Pi (s) = U{s)P2{s)V{s) (see Subsection 7.2C). 

Given a polynomial matrix P{s) e R[S]P^^ with p > m, write a computer program 
to determine a gcrd G^{s) of all the rows of P{s) and to derive the corresponding 
unimodular matrix U{s). Use your computer program to determine a gcrd and a geld 
of the matrices Pi{s) and P2{s) of Example 2.15. Hint: Determine a unimodular 

0 
matrix U{s) such that U{s)P{s) . Apply your algorithm to [P(s), Ip] so 

that U{s)[P{s),Ip 
G%{s) 

0 
U{s) 

7.5. Consider the polynomial matrices P{s) -
s^ + s 

- . 2 - 1 
R{s)- s 

-s-l 

(a) Are they re? If they are not, find a greatest common right divisor (gcrd). 
(b) Are they Ic? If they are not, find a geld. 

7.6. (a) Show that two square and nonsingular polynomial matrices, the determinants of 
which are coprime polynomials, are both re and Ic. Hint: Assume they are not, 
say, re and then use the determinants of their gcrd to arrive at a contradiction, 

(b) Show that the opposite is not true, i.e., two re (Ic) polynomial matrices do not 
necessarily have determinants that are coprime polynomials. 

7.7. (a) Show that if (the nonsingular) G^̂  (s) and G^̂  (s) are both gcrds of Pi and P2, 
then there exists a unimodular matrix UR{S) such that G^ (s) = UR{S)G^ (S). 

(b) Similarly, show that if the nonsingular G^ (s) and G|^ (s) are both gelds of 
Pi and P2, then there exists a unimodular matrix UL{S) such that G£ (5) = 
GI,{S)UL{S). 

7.8. Show that v defined in (2.43) is indeed the observability index of the system. 

7.9. Let P{s) = P„5" + P„_i5"-i + • • • +Po be a matrix polynomial with Pi e P"><" and let 
A G P"><". Show that 
(a) P{s) = Qr{s){sl-A) +Rr withRr = P„A" + P„_iA"-i + • 
(b) P{s) = {sI-A)Qi{s)+Ri withRi =A"P„+A"-ip„_i + • 

•+Po, 
•+Po. 
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Hint: Qr{s) = PnS^'^ + (P„A + P„_i)5"-^ + • • • + {PnA^'^ + • • • +P i ) . 
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7.10. Let P(s) be a polynomial matrix of full column rank and let y(s) be a given polynomial 
vector. Show that the equation P(s)x(s) = y(s) will have a polynomial solution x(s) for 
any y(s) if and only if the columns of P(s) are Ic, or equivalently, if and only if P(A) has 
full column rank for any complex number A. 

7.11. Let P(s) = PdS^ + Pd-is"^'^ + • • • + Po ^ R[s]P'''^ and let Pe(s) = block diag (I^,..., 
Imy P(s)) with d blocks on the diagonal. It can be shown that by means of elementary 
row and column operations, Pe(s) can be transformed to a (linear) matrix pencil sE - A. 
In particular, 

Pe(s) = U(s)(sE - A)V(s), 

where E and A are real matrices given by 

E = block diag(Pd, Im, • •> Im) 

-Pd-i •" -Pi -Po 
/ ••• 0 0 

A = • 

0 ••• / 0 

and U(s) and V(s) are unimodular matrices given by 

y(s) 

I si s^-'l 

si 
I 

U(s) = 
0 

Bi(s) 
-I 

Bd-i(s) 

with Bi+i(s) = sBi(s) + Prf-o+i), / - 1 , . . . , J - 2, and Bi(s) = sPd + Pd-i- Note 
that P(s) and sE - A have the same nonunity invariant polynomials. Let P(s) = 

s^ -\- s —s 
1 

and obtain the equivalent matrix pencil sE - A. 

7.12. Let {DR, I, NR} and {DL, NL, I] be minimal realizations of H(s), where H(s) •-
DI^NL with {NR,PR) re and (PL,NL) Ic and related by 

^ NRDI' = 

X 
NL 

Fl 
DL\ 

\DR 

[NR 
-Y 

X 
I 0 
0 / 

where U is unimodular, i.e., they are doubly co-

prime factorizations of H(s). Show that these realizations are equivalent representations. 

Hint: 

and also, 

NL 0 
0 / 

Y 0 
X I 

DR I 
-NR 0 

DL NL 

I 0 

DL 

-I 

DR 

-NR 

NL 

0 

/ 
0 

NR 0 
0 / 

Y -X 

0 / 

7.13. Consider P{q)z{t) = Q{q)u{t) and y{t) = R(q)z(t) + W(q)u(t), where 

\q -q q -

[-q-2 0 

\2q^ + q + 2 Iq 

P{q) = 

R(q) = -q-2 0 

Q(q) = 

W(q) = 

q - 1 -2q + 2 
1 3q 

1 3q + 4 
1 -3q 

with q = d/dt. 
(a) Is this system representation controllable? Is it observable? 
(b) Find the transfer function matrix//(>y)(y(5') = H(s)u(s)). 



(c) Determine an equivalent state-space representation x = Ax + Bu, y = Cx + Du 
and repeat (a) and (b) for this representation. 

7.14. Use system theoretic arguments to show that two polynomials d{s) = s"^ + dn-is""'^ + 
\-dis -\-do and n(s) = n„_i5'"~^ + nn-2S^~^ + \- nis -\- no art coprime if and only 

if 

rank 

where Ar = 

0 
0 

0 
-do 

1 
0 

0 
-di 

0 
1 

0 

-d2 

Cc 

CcAT' 

0 
0 

1 

-dn-\ 

= n, 

a n d Q = [no, n\,..., nn-\\. 

7.15. Consider the transfer function H{s) s 
s+ 1 

Determine a minimal real

ization in 
(a) Polynomial Matrix Fractional Description (PMFD) form, 
(b) State-Space Description (SSD) form. 

7.16. In the following, assume that a PMD, [P, Q, R, W}, realizes an invertible mXm transfer 
function matrix H. 
(a) Show that the system matrix for H~^ is given by 

P Q 

-R W 

0 Im 

0 

0 

Hint: Note thaiSdz^, -w^, - / ] ^ = [0,0, -u'^f when Pz = Qu,y = Rz + Wu. 
(b) Show that the following system matrix can also be used to characterize / / ~ \ 

SM — 

R 

P 

-W 

Q 

0 0 

(c) Let detW ^ 0. Show that H'^ = RP'^Q -H W, where W = W'K Q = QW'K 
R = -W-^R, mdP = P + QW-^R. 
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7.17. Consider the system Dz = u, y = Nz, where D = 
0 

0 
andA^ = [s^ -ls+ 1]. 

(a) Determine an equivalent state-space representation. 
(b) Is the system controllable? Is it observable? Determine all uncontrollable and/or 

unobservable eigenvalues, if any. 
(c) Determine the invariant and the transmission zeros of the system. 
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7.18. Consider the series connection depicted in Fig. 7.2 and the PMFDs for ^i and ^2, given 
in (3.63), (3.64) and (3.66), (3.67). 
(a) Show that the system S is controllable if and only if 

(i) (A î, D2) is Ic, or 
(ii) (5iZ)2,M)islc, or 

(iii) (N2Ni,D2)is\c, 
(b) Determine similar conditions [as in (a)] for S to be observable. 

7.19. Consider the parallel connection depicted in Fig. 7.1 and the PMFDs for ^i and S2 given 
in (3.52), (3,53) and (3.55), (3.66), Derive conditions for controllability and observabil
ity of S analogous to the ones derived for the series connection in Exercise 7.18. 

7.20. Consider the double integrator//i = l/s'^. 
(a) Characterize all stabilizing controllers H2 for Hi using all the methods developed 

in Subsections 7.4A and 7.4C. 
(b) Characterize all proper stabilizing controllers H2 for Hi of order 1. 

7.21. Consider the double integrator//i = l/s^. 
(a) Derive a minimal state-space realization for Hi and use Lemma 4.19 to derive dou

bly coprime factorizations in RHoo. 
(b) Use the polynomial Diophantine Equations (4.102) and (4.106) to derive factoriza

tions in RHoo. 

7.22. Consider// 
s^ + I s+1 

(a) Derive a minimal state-space realization {A, B, C, D} and use Lemma 4.19 and The
orem 4.13 to parameterize all stabilizing controllers H2. 

(b) Derive a stabilizing controller H2 of order 3 by appropriately selecting K'. What 
are the closed-loop eigenvalues in this case? Comment on your results. 
Hint: A minimal state-space realization was derived in Example 3.2. The eigenval
ues of A + BF and A - KC are stable, but otherwise arbitrary. Note that some of 
these eigenvalues become closed-loop eigenvalues. 

7.23. Consider the unity feedback (error feedback) control system depicted in Fig. 7.19, where 
H and C are the transfer function matrices of the plant and controller, respectively. 

r + ^ ^ e 

a 

FIGURE 7.19 

Assume that (/ + HC) ^ exists, 
(a) Verify the relations 

y = {1 + HCy^HCr + {I + HCT^d ^ Tr-\-Sd 

u = (1 + CHY^Cr - (/ + CHY^Cd = Mr - Md. 



(b) 

Compare these with relations (4.163) to (4.168) for the two degrees of freedom 
controller u = Cyy + Gr . Note here that u = -Cy + Cr, and therefore, Cy = 
- C and Cr = C. Hence, for the error feedback system of Fig. 7.19, the relations 
following (4.168) assume the forms 

M = (/ + CHY^C = DX = -Q = -DL 

T = H(I + CHY^C = (/ + HCY^HC = HM = NX 

So =^ (1 + HCY^ = I + HQ = I - HM =- I-T 

Si = (/ + CHY^ = I + QH = I - MH. 

(i) Let H = ND~^ be an re polynomial factorization. Show that all stabilizing 
controllers are given by 

C = [(/ - XN)D-^T^X, 

where [{I-XN)D~^, X] is stable and (I-XNY^ exists. Hint: Apply Theorem 
4.22 to the error feedback case, 

(ii) If H is proper and H = N'D' is an re MFD in RH^, show that all proper 
stabilizing controllers are given by 

C = [(/ - X'N')D' \'X\ 

v - l where [(/ - X'N')D' \ X'] G RH^ and (/ - X'N'Y^ exists and it is proper. 
Hint: Apply Theorem 4.22 to the error feedback case. 

(c) Assume that H is proper and H~^ exists, i.e., H is square and nonsingular. Let 
H = ND~^ be an re polynomial MFD. If T is the closed-loop transfer function 
between y and r, show that the system will be internally stable if and only if 

[N-\I-T)H,N~^T] 

is stable. Assume that T ^ I for the loop to be well defined. Note that if T is proper, 
then 

C = H-^T(I-TY^ 

is proper if and only if H~^T is proper and I - T is biproper. 
(d) Assume that in (c) H and T are SISO transfer functions. Let H = n/d. Show that 

the closed-loop system will be stable if and only if 

(1 - T)d -1 _ Sd- and Tn-

are stable, i.e., if and only if the sensitivity matrix has as zeros all the unstable poles 
of the plant and the closed-loop transfer function has as zeros all the unstable zeros 
of the plant. 

Remark: Note that this is a result known in the classical control literature (refer 
to J. R. Ragazzini and G. F. Franklin, Sampled Data Control Systems, McGraw-Hill, 
1958). It is derived here by specializing the more general MIMO case results to the 
SISO case. 

5 - 1 
(e) Given His) = ^rrz —, characterize all scalar proper transfer functions T 

that can be realized via the error feedback configuration shown in Fig. 7.19, under 
internal stability. For comparison purposes, characterize all T that can be realized 
via a two degrees of freedom controller and comment on your results. In both cases, 
comment on the location and number of the closed-loop eigenvalues. Hint: Use 
Theorems 4.22 and 4.24. 
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7.24. Consider/^W 

(s - l)(s + 2) 
and characterize all proper and stable transfer func-

(s - 2)2 
tions T(s) that can be realized via linear state feedback under internal stability. Hint: 
From Subsection 7.4B, note that T NDp^G and consider Theorem 4.23. 

7.25. Consider// = 

1 
s+ 1 

1 
5 + 3 

1 
L^H- 1 5 + l-J 

(a) Derive an re MFD in RHo., H = N'D'~ 

(b) Let T 

r ^ l 

^1 

0 

0 1 
ni 

^2-i 

and characterize all diagonal T that can be realized under in

ternal stability via a two degrees of freedom control configuration, 
(c) Repeat (b) for a unity feedback configuration {/; G//, /} (see Fig. 7.15). 

7.26. In the model matching problem, the transfer function matrices H E RP^^{S) of the plant 
and T G RP'^'^is) of the model must be found so that T = HM [see (4.192)]. M is to 
be realized via a feedback control configuration under internal stability. Here we are 
interested in the model matching problem via linear state feedback. For this, let H = 
ND~^ an re polynomial factorization with D column reduced. Then Dz = u, y = Nz is 
a minimal realization of H. Let the state-feedback control law be defined by u = Fz + 
Gr, where F G Rlsr"""^, G G /?̂ ><^ with detG y^O and deg^. F < deg^. D. To allow 

additional flexibility, let r = Kv,K ^ R"^""^. Note that (see Subsection 7.4C) HF,GK = 
NDp^GK = (ND-^)(DDp^GK) = {ND-^){D{G-^DF)-^K] = HM. 

In view of the above, solve the model matching problem via linear state feedback, 
determine F, G, and K, and comment on your results when 

(a) H 

(b) H 

(c) H = 

{s + \){s + 2) 
2^2 - 3^ + 2 ' 

^ 0 
s 
1 -̂  + 2 
s 

s + 2 
s+ 1 

1 
L5+ 1 

T 
5 + 1 
s + 2 

T = h 

s 

S + 3-] 

s + 2 

0 

s+ 1 
5 + 4 

- 2 

.(5 + 2)(5 + 4)J 

//mr.' The model matching problem via linear state feedback is not difficult to solve when 
p = mmdrankH = m, in view of (G-^D^)"^/^ = D'^M = D'^H-^T = N'^T. 



APPENDIX 

Numerical Considerations 

A.l 
INTRODUCTION 

To compute the rank of the controllabiHty matrix [B, AB,..., A^~^B\ or the eigen
values of A, or the zeros of the system {A, B, C, D], typically requires use of a digital 
computer. When this is the case, one must deal with selection of an algorithm and 
interpret numerical results. In doing so, two issues arise that play important roles in 
numerical computations using a computer, namely, the numerical stability or insta
bility of the computational method used, and how well or ill conditioned iht problem 
is numerically. 

An example of a problem that can be ill conditioned is the problem of calculat
ing the roots of a polynomial, given its coefficients. This is so because for certain 
polynomials, small variations in the values of the coefficients, introduced, say, via 
round-off errors, can lead to great changes in the roots of the polynomial. That is 
to say, the roots of a polynomial can be very sensitive to changes in its coefficients. 
Note that ill conditioning is a property of the problem to be solved and depends on 
neither the floating-point system used in the computer nor on the particular algorithm 
being implemented. 

A computational method is numerically stable if it yields a solution that is near 
the true solution of a problem with slightly changed data. An example of a numer
ically unstable method to compute the roots of ax^ + Ibx + c = 0 is the formula 
{-b ± JQP- — ac))la that for certain parameters a, b, c may give erroneous results 
in finite arithmetic. This instability is due to subtraction of two approximately equal 
large numbers in the numerator when b^ » ac. Note that the roots may be calcu
lated in a numerically stable way, using the mathematically equivalent, but numeri
cally very different, expression c/(-b^ J(b^ - ac)). 
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646 We would of course always like to use numerically stable methods and we would 
APPENDIX: prefer to have well-conditioned problems. In the following section, we briefly discuss 
Numerical the problem of solving a set of algebraic equations given by Ax = b. We will show 
Considerations that a measure of how ill conditioned a given problem is, is the size of the condition 

number (to be defined) of the matrix A. There are many algorithms to numerically 
solve Ax = b, and we will briefly discuss numerically stable ones. 

Conditioning of a problem and numerical stability of a method are key issues 
in the area of numerical analysis. Our aim in this appendix is to make the reader 
aware that, depending on the problem, the numerical considerations in the calcu
lation of a solution may be nontrivial. These issues are discussed at length in many 
textbooks on numerical analysis. Examples of good books in this area include, Golub 
and Van Loan [6] and Stewart [9], where matrix computations are emphasized. Also, 
see Petkov et al. [8] and Patel et al. [7] for computational methods with emphasis 
on system and control problems. For background on the theory of algorithms, on 
optimization algorithms, and their numerical properties, see Bazaran et al. [2] and 
Bertsekas and Tsitsiklis [3]. 

In Section 2 we present methods for solving linear algebraic equations. Singular 
values and singular-value decompositions are discussed in Section 3. In Section 4, 
an approach for solving polynomial matrix and rational matrix equations based on 
polynomial matrix interpolation is presented. 

A.2 
SOLVING LINEAR ALGEBRAIC EQUATIONS 

Consider the set of linear algebraic equations given by 

Ax = b, (2.1) 

where A E R^^^, Its solution is important in many engineering problems. It is of 
interest to know the effects of small variations of A and b to the solution x of this 
system of equations. Note that such variations may be introduced for example by 
rounding errors when calculating a solution or by noisy data. 

Condition number 

Let A E R^^^ be nonsingular. If A is known exactly and b has some uncertainty 
AZ?, associated with it, then A{x + Ax) = b + Afo. It can then be shown that the 
variation in the solution x is bounded by 

llAxll 
cond (A) 

\m\ 
(2.2) 

denotes any vector norm (and consistent matrix norm) and cond (A) de-
^ ||A||||A-i||. Note that 

where | 
notes the condition number of A, where cond (A) 

cond{A) 
(Tn .(A) 

.(AY 
(2.3) 

where crjnax(^), and o-mm(A) are the maximum and minimum singular values of 
A, respectively (see next section). From the property of matrix norms, ||AA~^|| < 



||A||||A~^||, it follows that cond(A) > 1. This also follows from the expression in
volving singular values. If cond{A) is small, then A is said to be well conditioned 
with respect to the problem of solving Hnear equations. If cond{A) is large, then 
A is /// conditioned with respect to the problem of solving linear equations. In this 
case the relative uncertainty in the solution (||Ax||/||x||) can be many times the rela
tive uncertainty in &(||AZ?||/||Z7||). This is of course undesirable. Similar results can be 
derived when variations in both b and A are considered, i.e., when b and A become 
Z? -h AZ? and A + AA. Note that the conditioning of A, and of the given problem, is 
independent of the algorithm used to determine a solution. 

The condition number of A provides a measure of the distance of A to the set of 
singular (reduced rank) matrices. In particular, if ||AA|| is the norm of the smallest 
perturbation AA such that A + AA is singular, and is denoted by d{A), then (iA/||A|| = 
l/cond (A). Thus, a large condition number indicates a short distance to a singularity, 
and it should not be surprising that this implies great sensitivity of the numerical 
solution xof Ax = bio variations in the problem data. 

The condition number of A plays a similar role in the case when A is not square. 
It can be determined in terms of the singular values of A defined in the next section. 

Computational methods 

The system of equations Ax = b is easily solved if A has some special form, 
(e.g., if it is diagonal or triangular). Using the method of Gaussian elimination, any 
nonsingular matrix A can be reduced to an upper triangular matrix U. These opera
tions can be represented by premultiplication of A by a sequence of lower triangular 
matrices. It can then be shown that A can be represented as 

A = m (2.4) 

where L is a lower triangular matrix with all diagonal elements equal to 1 and U is 
an upper triangular matrix. The solution of Ax = b is then reduced to the solution 
of two systems of equations with triangular matrices, Ly = b and Ux = y. This 
method of solving Ax = bis based on the decomposition (2.4) of A, which is called 
the LU decomposition of A. 

If A is a symmetric positive definite matrix, then it may be represented as 

A = U^U, (2.5) 

where U is an upper triangular matrix. This is known as the Cholesky decomposition 
of a positive definite matrix. It can be obtained using a variant of Gaussian ehmi-
nation. Note that this method requires half of the operations necessary for Gaussian 
elimination on an arbitrary nonsingular matrix A, since A is symmetric. 

Now consider the system of equations Ax = b, where A G j^^nxn^ ^^^ j ^ ^ 
rank A = n(^ m). Then 

A = Q = [Qh Qi\ = QiR. (2.6) 

where Q is an orthogonal matrix (Q^ = Q~^) and R G R^^^ is an upper triangular 
matrix of full rank n. Expression (2.6) is called the QR decomposition of A. When 
rank A = r, the QR decomposition of A is expressed as 

AP = Q 
Ri R2 
0 0 
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648 where Q is orthogonal, Ri G R^^^ is nonsingular and upper triangular, and P is a 
APPENDIX: permutation matrix that represents the moving of the columns during the reduction 
Numerical (in Q^AP). 
Considerations Q R decomposition can be used to determine solutions of Ax = b. In particular, 

consider A G R^^^ with rank A = n(< m) and assume that a solution exists. First, 
r D I 

determine the 2/^ decomposition ofA given in (2.6). Then 2^Ax = Q^box\ 0 
X = 

Q^b (since Q^ = Q'^) or Rx = c. Solve this system of equations, where R is tri
angular and c = [In, 0]Q^b. In the general case when rank (A) = r < mm(n, m), 
determine the QR decomposition of A (2.7) and assume that a solution exists. The 

\R^\c-R2y)] 
y 

c = [In OJG^Z?, where y G R"^'' is solutions are given by x = P\ 
arbitrary. 

A related problem is the linear least squares problem where a solution x of the 
system of equations Ax = bis to be found that minimizes \\b - Ax\\2. This is a more 
general problem than simply solving Ax = b, since solving it provides the "best" 
solution in the above sense, even when an exact solution does not exist. The least 
squares problem is discussed further in the next section. 

A.3 
SINGULAR VALUES AND SINGULAR-VALUE DECOMPOSITION 

The singular values of a matrix and the Singular Value Decomposition Theorem 
play a significant role in a number of problems of interest in the area of systems and 
control, from the computation of solutions of linear systems of equations, to compu
tations of the norm of transfer matrices at specified frequencies, to model reduction, 
and so forth. In the following we provide a brief description of some basic results 
and introduce some terminology. 

Consider A E %^^^ and let A* = A^, the complex conjugate transpose of A. 
A G "̂><^ is said to be Hermitian if A* = A. If A G /^^x^ then A* = A^, and if 
A = A^, thenA is ^jmm^mc. A G ^"^'^ is wn/^ryif A* = A~^ In this case A*A = 
AA"" = 4 . If A G /^'^xnhenA* = A^andif A^ = A'^, i.e., if A^A = AA^ = In, 
then A is orthogonal (refer to Section 6.2). 

Singular values 

Let A G ^^^ '̂̂  and consider AA'' G ^ ^ x ^ . Let A/, / = 1 , . . . , m, denote the 
eigenvalues of AA'', and note that these are all real and nonnegative numbers. As
sume that Ai > A2 ^ ---A^ > ••• > A;„. Note that if r === rank A === rankiAA''), 
then Ai > A2 ^ • • • ^ Â  > 0 and A^+i = • • • = A^ = 0. The singular values at 
of A are the positive square roots of A/, / = 1 , . . . , min(m, n). In fact, the nonzero 
singular values of A are 

A/2 
CTi = (KY / = 1, . > r. (3.1) 

where r = rank A, while the remaining (min(m, n) - r) of the singular values are 
zero. Note that cri > 0*2 ^ • • • ^ cr̂  > 0, and cr^+i = (ĵ +2 = " ^ o-mm{m,n) = 
0. The singular values could have also been found as the square roots of the eigen
values of A* A G %''^'' (instead of AA* G ^"^x^). To see this, consider the following 
result. 



LEMMA 3.1. Letm n. Then 

AA*| = A'̂ -"|A/„ - A*A|, (3.2) 

i.e., all eigenvalues of A*A are eigenvalues of AA* which also has m - n additional 
eigenvalues at zero. Thus, AA* E '̂w><̂  and A*A E ^"^^ have precisely the same r 
nonzero eigenvalues (r = rank A); their remaining eigenvalues, (m - r) for AA* and 
(n — r) for A*A, are all at zero. Therefore, either AA* or A*A can be used to determine 
the r nonzero singular values of A. All remaining singular values are zero. 

Proof of the lemma. The proof is based on Schur's formula for determinants. In partic
ular, we have 

\X^'^J A I 

^''^ = \J^ A\ 
= \X'^'aX-'^W\\In-A*A\ 
= A(̂ -«)/2 . |A/„ - A*A|, 

where Schur's formula was applied to the (1,1) block of the matrix. If it is applied to the 
(2, 2) block, then 

D(A) = Â «-̂ V2 . |A/^ - AA*|. 

Equating (3.3) and (3.4), we obtain |A/^ - AA*| = A^-"|A/„ 

|o 0 0 

|Ai/^/^||Ai/2/,-A*A-i/^/^A| 
(3.3) 

(3.4) 

A*A|, which is (3.2). • 

EXAMPLE 3.1 E R^''\ Here rank A = r = 1, A^AA*) 

- Ar 

= A. 
"4 
2 

.0 

2 
1 
0 

0" 
0 
0_ 

= {5,0}, and Ai = 5, A2 = 0. Also, A/(A*A) = 

and Ai = 5, A2 = 0, and A3 = 0. The 

only nonzero singular value is ori = J~\i = + V5. The remaining singular values are 
zero. • 

There is an important relation between the singular values of A and its induced 
Hilbert or 2-norm, also called the spectral norm ||A||2 = \\A\\s, In particular, 

l|A||2(- ,) = sup \\Ax\\2 = max{(AKA*A))i/2} = a(A), 
M2 = l 

(3.5) 

where &(A) denotes the largest singular value of A. Using the inequalities that are 
axiomatically true for induced norms (see Subsection I.IOB), it is possible to estab
lish relations between singular values of various matrices that are useful in MIMO 
control design. The significance of the singular values of a gain matrix A(ja)) is 
discussed later in this section. 

There is an interesting relation between the eigenvalues and the singular values 
of a (square) matrix. Let A/, / = 1 , . . . , n, denote the eigenvalues of A E R^^^^ let 
A(A) = min/ |A/|, and let A(A) = max/ |A/|. Then 

a(A) < A(A) < A(A) < &(A). (3.6) 

Note that the ratio a(A)/a(A), i.e., the ratio of the largest and smallest singular 
values of A, is called the condition number of A, and is denoted by cond{A). This is 
a very useful measure of how well conditioned a system of linear algebraic equations 
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Numerical a nonsquare matrix is from losing rank. This is accomplished by examining how 
Considerations close to zero a(A) is. In contrast, the eigenvalues of a square matrix are not a good 

indicator of how far the matrix is from being singular, and a typical example in the 
literature to illustrate this point is an n X n lower triangular matrix A with - I's on 
the diagonal and H-l's everywhere else. In this case, a(A) behaves as 1/2" and the 
matrix is nearly singular for large n while all of its eigenvalues are at - 1 . In fact, it 
can be shown that adding 1/2""^ to every element in the first column of A results in 
an exactly singular matrix (try it for n = 2). 

Singular-value decomposition 
Let A E ^^^^ with rank A = r < min(m, n). Let A* = A^, the complex con

jugate transpose of A. 

THEOREM 3.1. There exist unitary matrices U G ̂ '"^'^ and V E ^"^"^ such that 

A = UXV\ (3.7) 

^ r • ^rX{n-r) 

where 2 = : with Sr = diag(ai, (72,.. .,crr) E R^^^ se-

LO(m-r)Xr • ^(m-r)X(n-r)i 

lected so that o-i > 0-2 ^ • • • > o"̂  > 0. 

Proof. For the proof, see for example, Golub and Van Loan [6] and Patel et al. [7]. • 

Let U = [Uu U2] with Ui E ^'"^^ U2 E ^^^(^-') and V = [Vi, V2] with 

Vi E '̂̂ ^^^ V2 E ^"XC"-'-). Then 

A = f/SV* = UiXrVl (3.8) 

Since U and V are unitary, we have 

and 

Note that the columns of Ui and Vi determine orthonormal bases for 2/l(A) and 
9l(A*), respectively. Now 

u*u = 

v*v = 
-y*-

[Ul,U2] =Im,U\U, =Ir 

[Vi, V2] = /„. VlVx = /,. 

(3.9) 

(3.10) 

IjT* AA"" = (UiXrVDiVarUl) = UiXjUl (3.11) 

from which we have 

AA*[/i = Ui^jUlUi = UiXl (3.12) 

If Ui, i = 1 , . . . , r, is the ith column of C/i, i.e., Ui = [u\, U2,..., Ur], then 

AA*Ui = ajui, i = l,...,r. (3.13) 



This shows thattheo"? are thernonzeroeigenvaluesofAA*,i.e.,CT/, / = 1 , . . . , r,are 
the nonzero singular values of A. Furthermore, M/, / = 1 , . . . , r, are the eigenvectors 
of AA* corresponding to cr?. They are the left singular vectors of A. Note that the ut 
are orthonormal vectors (in view of UIU\ = /r). Similarly, 

A'^A = (Vi^rUlXUiXrVl) = ViXjVl 

from which we obtain 

A*AVi = ViS^Vt^i = Vill 

If v„ / = 1 , . . . , r, is the /th column of Vi, i.e., V\ = [vi, V2,. 

A*Avi = crjvi, i = 1,2,..., r. 

(3.14) 

(3.15) 

Vr], then 

(3.16) 

The vectors v/ are the eigenvectors of A*A corresponding to the eigenvalues a*?. They 
are the right singular vectors of A. Note that the vt are orthonormal vectors (in view 
0fVlVi=Ir), 

The singular values are unique, while the singular vectors are not. To see this, 
consider 

Vi = VidiagieJ^O and f/i = Uidiagie'^^^ 

Their columns are also singular vectors of A (show this). 
Note also that A = t/iSrVj implies that 

A = ^diUiv]. (3.17) 
/ = i 

The significance of the singular values of a gain matrix A{jo)) is now briefly dis
cussed. This is useful in the control theory of MIMO systems. Consider the relation 
between signals y and v, given by j = Av. Then 

or 

max I * = max MHb = ^ (^ ) 
IHl2^o||v||2 IMb^o ||v||2 

. m a x \\y\\2 = m a x ||Av||2 = &(A), 
IM|2 = 1 IH|2 = 1 

(3.18) 

Thus, cr(A) yields the maximum amplification, in energy terms (2-norm), when the 
transformation A operates on a signal v. Similarly, 

,,min Ibib = min ||Av||2 = cr(A). 
IH|2 = 1 ||v||2 = l 

Therefore, 

QL(A) 
llAvlb 
IMb 

(T(A), 

(3.19) 

(3.20) 

where ||v||2 T̂  0. Thus the gain (energy amplification) is bounded from above 
and below by d-(A) and gi(A), respectively. The exact value depends on the direction 
of V. 
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To determine the particular directions of vectors v for which these (max and 
min) gains are achieved, consider (3.17) and write 

Av = ^ aiUiv]v. (3.21) 

Notice that |v*v| < ||v/||||v|| = ||v||, since ||v/|| = 1, with equality holding only when 
V = avi,a E ^ . Therefore, to maximize, consider v along the singular value 
directions vt and let v = avi with |a| = 1 so that ||v|| = 1. Then in view of 
v]vj = 0, / # 7, and v]vj = I, i = j , we have that y = Av = aAvi = aaiUi and 
\y\i = \\Av\\2 = cTi, since ||w/||2 = 1. Thus, the maximum possible gain is cri, i.e., 
max ||j||2 = max ||Av||2 = ai(= (T(A)), as was shown above. This maximum gain 
hh = 1 llvlb = 1 
occurs when v is along the right singular vector vi. Then Av - Av\ — a\U\ = y 
in view of (3.17), i.e., the projection is along the left singular vector u\, also of the 
same singular value a\. Similarly, for the minimum gain we have ar = ^(A) = 
min ||j||2 = min ||Av||2, in which case Av = Avr = (TfUr = y. 

IMb = 1 Iklb = 1 
Additional interesting properties include 

gi(A) = 9l(f/i) = span{ui,..., ŵ } 

J{(A) = 91(^2) = span{vr+u • •., v j , 

(3.22) 

(3.23) 

where U = [MI, .. Ur, Ur+h '",Um\ = [Ui, U2] and V = [v i , . . . , Vr, v^+1,.. 

Least squares problem 

Consider now the least squares problem where a solution x to the system of 
linear equations Ax = b is to be determined that minimizes \\b - Ax||2. Write 
min \\b - Ax\\l = mm(b - Axf{b - Ax) = mm(x^A^Ax - 2b^Ax + b'^b). Then 

X X X 

Vjcix'^A'^Ax - Ib^Ax + b^b) = IPJAx ~ IPJb = 0 impUes that the x that mini
mizes \\b — Ax\\2 is a solution of 

A^AJC = A^b. (3.24) 

Rewrite this as ViX^.Vjx = (UiXrViVb = Vi%Ulb in view of (3.14) and 
(3.8). Now X = ViX~^Ufb is a solution. To see this, substitute and note that 
VjVi = Ir. In view of the fact that X(A'^A) = J{(A) = ^(¥2) = span{vr+h • • •, 
v„}, the complete solution is given by 

x^ - ViX;^Ujb-^V2W 

for some w E R"^~^. Since Vi^'^Ujb is orthogonal to V2W for all w, 

xo = ViX^Ulb 

is the optimal solution that minimizes ||fc - Ax||2 (prove this). 
The Moore-Penrose pseudoinverse of A E R^^^ can be shown to be 

(3.25) 

(3.26) 

A* = ViS.-'f/ 1 • (3.27) 



It was seen that x = A ̂ Z? is the solution to the least squares problem. Furthermore, 
it can be shown that this pseudoinverse minimizes \\AA^ - Imllf, where \\A\\F de
notes the Frobenius norm of A that is equal to the square root of trace[AA^] — 
YJ^^ihiAA^) = Xr=i^^(^)- It is of interest to note that the Moore-Penrose 
pseudoinverse of A is defined as the unique matrix that satisfies the conditions (i) 
AA+A = A, (ii) A+AA+ = A+, (iii) (AA+f = AA+, and (iv) (A+Af = A+A. 

Note that if rank A = m ^ n, then it can be shown that A+ = A'^(AA^y^; this 
is in fact the right inverse of A, since A(A^(AA^y^) = Im- Similarly, if rank A = 
n^ m, then A+ = (A'^Ay^A'^, the left inverse of A, since ((A'^Ay^A'^)A = In-

Singular values and singular-value decomposition are discussed in a number of 
references. See for example Golub and Van Loan [6], Patel et al. [7], Petkov et al. 
[8],andDeCarlo[4]. 
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A.4 
SOLVING POLYNOMIAL AND RATIONAL MATRIX EQUATIONS 
USING INTERPOLATION METHODS 

Many system and control problems can be formulated in terms of matrix equations 
where polynomial or rational solutions with specific properties are of interest. It is 
known that equations involving just polynomials can be solved by either equating co
efficients of equal power of the indeterminate s, or equivalently, by using the values 
obtained when appropriate values for s are substituted in the given polynomials. In 
the latter case one uses results from the classical theory of polynomial interpolation. 
Similarly, one may solve polynomial matrix equations using the theory of polyno
mial matrix interpolation. This approach has significant advantages. Full details can 
be found in AntsakHs and Gao [1] (see also Gao and AntsakHs [51). 

First, some required results from the theory of polynomial and rational matrix 
interpolation are briefly summarized. These are then used to determine solutions of 
polynomial and rational matrix equations. 

Polynomial matrix interpolation 

Consider first the polynomial case. The following is a fundamental result of the 
theory of polynomial interpolation: given / distinct complex scalars Sj, j = 1 , . . . , /, 
and / corresponding complex values bj, there exists a unique polynomial q(s) of 
degree / - 1 for which 

q(sj) = bj, j = 1 , . . . , /. (4.1) 

Thus, an nth-degree polynomial (̂.s*) can be uniquely represented by the / = n 4- 1 
interpolation (points or doublets or) pairs (sj, bj), j = 1 , . . . , /. 

The polynomial matrix interpolation theory deals with interpolation in the matrix 
case. In the following we cite a basic result upon which the solution to the polynomial 
matrix interpolation problem rests. 

Let S(s) = block diag([1, s,..., s^']^), where thedt, i = 1 , . . . , m, are nonneg-
ative integers. Let aj ^ 0 and bj denote m X 1 and p X I complex vectors, respec
tively, and let Sj be complex scalars. 

THEOREM 4.1. Given interpolation triplets (sj, aj, bj), j = 1,..., I (i.e., interpolation 
points), and nonnegative integers dt with / = Sjl ^di + m such that the (Xjl^dt + m)xl 
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matrix 
Si ^ [S(si)au...,S(si)ai] (4.2) 

has full rank, there exists a unique p X m polynomial matrix Q(s), with /th-column 
degree equal to J/, / = 1,..., m, for which 

Q(sj)aj = bj, j = h...J. (4.3) 

Proof. Since the column degrees of Q(s) are J/, Q(s) can be written as 

Q(s) = QS(s), (4.4) 

where the /? X (X/11 di + m) matrix 2 contains the coefficients of the polynomial entries. 
Substituting into (4.3), Q must satisfy 

QSi = Bu (4.5) 

where Bi = [b\, ...,bi\. Since Si is nonsingular, g, and therefore Q{s), are uniquely 
determined. • 

It should be noted that when/? = m =^ l a n d J i = l-l = n, the above theorem 
reduces to the Polynomial Interpolation Theorem. In that case, for Uj = 1, Si reduces 
to a Vandermonde Matrix that is nonsingular if and only if Sj, j = 1 , . . . /, are distinct 
(show this). 

EXAMPLE 4.1. Let Q(s) b e a l x 2 = /?Xm polynomial matrix and let the follow
ing / = 3 interpolation points {(Sj, aj, bj), j = 1, 2, 3} be specified: {(-1, [1,0]^, 0), 
(0, [-1, 1]^, 0), (1, [0, 1]^, 1)}. In view of Theorem 4.1, Q(s) is uniquely specified when 
Ji and (̂ 2 are chosen so that / = 3 = Xdi + m = {d\+d2) + 2,Qxd\+d2 = 1, assuming 
that ^3 has full rank. Clearly, there is more than one choice for d\ and ^2- The resulting 
Q{s) depends on the particular choice for the column degrees df. 

(i) LetJi = lmdd2 = 0.Then S(s) = block diag([hsf, I) and (4.5) becomes: 

QS3 = Q[S(si)au S(s2)a2, S(s3)a3] = 

= [0, 0, 1] = 53, 

--Q 

' 1 
- 1 

0 

- 1 
0 
1 

0 
0 
1 

from which we obtain g = [1, 1, 1] and Q{s) = QS(s) = [̂  + 1, 1]. 
(ii) Let di = 0 and J2 = 1- Then S(s) = blockdiag(\, [hsf) and (4.5) yields 

Q = [0, 0, 1], from which we have Q(s) = [0, s], which is clearly different from (i). • 

Rational matrix interpolation 

Similar to the polynomial matrix case, the problem here is to represent a p X m 
rational matrix H(s) by interpolation triplets or points (sj, aj, bj), j = 1 , . . . , /, 
which satisfies 

Hisj)aj = bj, j = \,...,l, (4.6) 

where the Sj are complex scalars and the aj ¥= 0 and bj are complex m X 1 and p X 1 
vectors, respectively. 

It can be shown that the rational matrix interpolation problem reduces to a special 
case of polynomial matrix interpolation. To see this, we write H{s) = D~^{s)N{s), 
where D{s) and N{s) are pX p and pX m polynomial matrices, respectively. Then 
(4.6) can be written as N(sj)aj = D{sj)bj, or as 

VN{sj), -D{sj)] 
bj 

= Q{sj)cj = 0, ;• = l,...,l, (4.7) 



i.e., the rational matrix interpolation problem for a p X m rational matrix H(s) can 
be viewed as a polynomial interpolation problem for SL pX (p -\- m) polynomial ma
trix Q{s) = [N{s\ -D{s)\ with interpolation points {sj, Cj, 0) = (sj, [aj, b^jf, 0), 
j = 1 , . . . , /. There is also the additional constraint that D~^(s) exists. 
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Solution of matrix equations 

In this segment, polynomial matrix equations of the form M(s)L(s) = Q(s) are 
considered. The main result is Theorem 4.2, which essentially states that all solu
tions M(s) of degree r can be derived by solving Eq. (4.16). In this way, all solutions 
of degree r of the polynomial equation, if they exist, are parameterized. The Dio-
phantine Equation is an important special case and is examined at length. It is also 
shown that Theorem 4.2 can be applied to solve rational matrix equations of the form 
M(s)L(s) - Q(s), 

Consider the equation 

M{s)L(s) = Q(sl (4.8) 

where L(s) and Q(s) are given t X m and kx m polynomial matrices, respectively. 
We wish to determine thQ kX t polynomial matrix solutions M(s) when they exist. 

First consider the left-hand side of Eq. (4.8). Let 

M(s) = Mo + • • • + Mrs' (4.9) 

and let di = deg^^ [L{s)\, i = 1 , . . . , m, denote the column degrees of L{s), If 

Q{s) ^ M(s)L(s\ (4.10) 

then deg^i [Q(s)] = di + r for i = 1 , . . . , m. According to the Polynomial Matrix In
terpolation Theorem, Theorem 4.1, the matrix Q(s) can be uniquely specified, using 
^T=\(^i + r) -h m = ^f=\di + m{r + 1) interpolation points. Therefore, consider / 
interpolation points {sj, Uj, bj), j = 1 , . . . , /, where 

Z - 2 r . i J / + m( r+ 1). (4.11) 

Let Sr(s) = block diag ([1, ^ , . . . , Z'+H^) and assume that the &Jlidi -h m(r +1)) X / 
matrix 

Sri = [Sr(si)ai,...,Sr(si)ai] (4.12) 

has full rank, i.e., the assumptions in Theorem 4.1 are satisfied. Note that for distinct 
Sj, Sri will have full column rank for almost any set of nonzero aj. Now in view of 
Theorem 4.1, the matrix Q(s) that satisfies 

;• = h...J, (4.13) Q(sj)aj = bj, 

is uniquely specified, given these / interpolation points (sj, aj, bj). To solve (4.8), 
these interpolation points must be appropriately chosen so that the equation 
Q(s) (= M(s)L(s)) = Q(s) is satisfied. 

We write (4.8) as 

MLris) = Q(s), (4.14) 

where M = [MQ, . . . , M^] and Uis) = [L'^(s),..., s''L'^(s)f are k X t(r + 1) and 
f(r + 1) X m matrices, respectively. Let s = sj and postmultiply by aj, j = 1 , . . . , /. 
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Note that Sj and Uj, j = 1 , . . . , /, must be such that Sri has full rank. Define 

j = 1 , . . . , / , bj = Q{sj)aj, 

and combine the above equations to obtain 

MLri = Bu 

where L /̂ == [L^(^i)ai,..., L^(5'/)a/] and5/ = [^i,.. 
matrices, respectively. 

THEOREM 4.2. Given L{s) and Q{s) in (4.8), let dt 
select r to satisfy 

(4.15) 

(4.16) 

,bi\2irtt{r+ l)XlandkXl 

degci [L{sy\, i = 1,..., m, and 

degci [Q(s)] < di + r. 1, (4.17) 

Then a solution M(^) 
of (4.16) exists. 

M[/, si,..., s^lY of degree r exists if and only if a solution M 

It is not difficult to show that solving (4.16) is equivalent to solving 

.,/ , (4.18) 

j = 1 , . . . , / . (4.19) 

^i^j^j = bp j = h. 
A 

where Cj = L(sj)aj, bj = Q(sj)aj, 

The M(s) that satisfy (4.18) are obtained by solving 

MSri = Bu 

where Sri "= [Sr(si)ci,..., Sr(si)ci] has dimensions t(r + 1) X /, and Sr(s) 
. . . , 5'''/]^ has dimensions t(r -\- I) X t, and Bi = [b\ 
Solving (4.20) is an alternative to solving (4.16). 

(4.20) 

[/, si, 
, bi\ has dimensions kx I. 

Constraints on solutions. When there are more unknowns than equations [t{r +1) and 
/ = Sjl i<̂ / + ̂ {r +1), respectively] in (4.16), this freedom can be exploited so that M{s) 
satisfies additional constraints. In particular, k = t(r+\)-l additional linear constraints, 
expressed in terms of the coefficients of M{s) (in M), can in general be satisfied. The 
equations describing the constraints can be used to augment Eqs. (4.16). In this case the 
equations to be solved become 

MiLruC] = [Bi,Dl (4.21) 

where MC = D represents the k linear constraints imposed on the coefficients M, and 
C and D are matrices (real or complex) with k columns each. • 

The Diophantine Equation 

An important case of (4.8) is the Diophantine Equation 

X(s)D(s) + Y(s)N(s) = Q(sl (4.22) 

where the polynomial matrices D(s), N{s), and Q(s) are given and X(s), Y(s) are to 
be determined. Note that if 

M(s) = [X(s\ Y(s)l L{s) = 
D(s) 
N(s) 

(4.23) 

then it is immediately clear that the Diophantine Equation is a polynomial equa
tion of the form (4.8) and all previous results apply. Theorem 4.2 guarantees that 



all solutions of (4.22) of degree r are determined by solving (4.16). In systems 657 
and control theory, the Diophantine Equation that is used involves a matrix L{s) = APPENDIX: 

[D^{s), N^{s)Y, which has rather specific properties. These are exploited to solve Numerical 
the Diophantine Equation and to derive conditions for existence of solutions of (4.22) Considerations 
of degree r. It can be shown that the following result is true. 

THEOREM 4.3. Let r satisfy 

deg.i [Q{s)\ < di + r, i = 1,..., m, and r • 1, (4.24) 

where v is the observability index of the system {D, /, N, 0}. Then the Diophantine Equa
tion (4.22) has solutions of degree r that can be determined by solving (4.16) [or (4.20)]. 

EXAMPLE 4.2. Let 

D(s) = s-2 0 
0 s+ 1 ;v(^) = 

s-\ 0 
1 1 

and Qis) 1 0 
0 1 

We have di = di = 1, degd Q(s) = 0, / = 1, 2, and / = 2 + 2(r + 1). 
For r = I Sj = -2 , - 1 , 0, 1, 2, 3, and 

0 
1 ' 

1 
3 ' 

0 
- 1 ' 

- 1 
3 ' 

- 1 
1 ' 

1 
- 1 

A solution is given by 

M(s) = [X(s), Y(s)] 
-S 5 + 1 
0 - i . + i 

Solving rational matrix equations 

Now let us consider the rational matrix equation 

M(s)L(s) = Q{s\ (4.25) 

where L{s) and Q{s) are given t X m and k X m rational matrices, respectively. The 
polynomial matrix interpolation theory developed above can be used to solve this 
equation and determine the rational matrix solutions M(s) of dimension kx t. Let 
M(s) = D~^(s)N(s) be a polynomial fraction form of M(s) that is to be determined. 
Then (4.25) can be written as 

[A (̂̂ ), -D(s)] 

Note that one could equivalently solve 

[A (̂̂ ), -D(s)] 

L(s) 

Lp(s) 

= 0. 

= 0, 

(4.26) 

(4.27) 

where [Lp(s)^, Qp(s)^]^ = [L(s)^, Q(sW(t>(s) is a polynomial matrix with (l)(s) the 
least common denominator of all entries of L(s) and Q(s). In general, (l)(s) may be 
any matrix denominator in a right fractional representation of [L(s)^, QisW- The 
problem to be solved is now of the form (4.8), a polynomial matrix equation, where 
L(s) = [Lp(sf, Qp(sfV and Q(s) = 0. Therefore, all solutions [A (̂̂ ), -D(s)] of 
degree r can be determined by solving (4.16) or (4.20). Let s = Sj and postmultiply 
(4.27) by aj, j = 1 , . . . , /, with aj and / chosen properly. Define 
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\Lp(s)] 
[QP(S)\ 

1 , . . . , / . (4.28) 

The problem now is to determine a polynomial matrix [N(s), -D(s)] that satisfies 

[N(sj\ -D(sj)]cj = 0, J = 1 , . . . , /. (4.29) 

Note that restrictions on the solutions can easily be imposed to guarantee that D~^(s) 
exists and/or that M(s) = D~^(s)N(s) is proper. Additional constraints can be added 
so that the solution satisfies additional specifications [see (4.21)]. 

Pole placement 

Output feedback. All proper output controllers of degree r (of order mr) that 
assign all the closed-loop eigenvalues to arbitrary locations are characterized in a 
convenient way using interpolation results. 

Given N(s)D~^(s) = H(s), which is assumed to be proper, we are interested in 
solutions [X(s), Y{s)] of dimensions m X (p + m) of the Diophantine Equation where 
only the roots of \Q(s)\ are specified. Furthermore, X~^(s)Y(s) = C(s) should exist 
and be proper since it represents the controller. Here the equation to be solved is 

(X(sj)D(sj) + Y(sj)N(sj))aj = 0 , y = 1 , . . . , /, (4.30) 

orMLri = 0(1 = l.Jl^di + mr).Thus,thQ%^^^di + mrrootsof\X(s)D(s) + Y(s)N(s)\ 
are to be assigned the values Sj, j = 1 , . . . /. Note the difference between the problem 
studied earlier, where Q(s) is known, and the problem studied here, where only the 
roots of \Q(s)\ (or of |G('̂ )I within multiplication by some nonzero real scalar) are 
given. In the present case, the vectors aj can be viewed as design parameters and can 
be selected almost arbitrarily to satisfy requirements in addition to pole assignment. 
Note that this design approach is rather well known in the state feedback case, as 
is discussed later in this section (see also Chapter 4). The following result can be 
shown. 

THEOREM 4.4. Let r > v - 1. Then (X(s), Y(s)) exists such that all the n + mr zeros 
of \X{s)D{s) + Y{s)N{s)\ are arbitrarily assigned and X~^{s)Y{s) is proper. • 

EXAMPLE 4.3. Let D{s) = and Â (̂ ) = s- 1 
1 

with n = Is-2 0 
L 0 s+l\ 

deg \D(s)\ = 2. In this case there are deg \X(s)D(s) + F(5')A (̂5)| = n + mr = 2 + 2r 
closed-loop poles to be assigned. Note that r > ^ ' - l = l - l = 0 . 

(i) For r = 0 and {(sp ajX j = 1, 2} = {(-1, [1, 0]^), (-2, [0,1]^)}, a solution of 
MLri = Ois 

M = 

-3 0 
1 2 

which For this case, M = M(s) = [X(sX Y(s)] and C(s) = X-\s)Y(s) = ^ 
is a static output controller. 

(ii) For r = 1, and {(sj,aj)J = 1,...,4} = {(-1, [1,0]^), (-2, [0, If, (-3, 
-1,0]^), (-4, [0,-1]^)}, a solution of MLri = 0 is given by [X(s\Y(s)] = 
s-1 - 1 12 5+1] 

5 + 4 - 6 5 + 4 
. Note that C{s) = X{s) ^ Y{s) exists and is proper. 

State feedback. Let A, B, and F he n X n, n X m, and m X n real matri
ces, respectively. Note that 1̂ / - (A + BF)\ = \sl - A\ • |/„ - {si - A)~^BF\ = 



1̂ / - A\ ' \lm — F(sl - Ay^B]. Now if the desired closed-loop eigenvalues Sj are 
different from the eigenvalues of A, then F will assign all n desired closed-loop 
eigenvalues Sj if and only if 

F[(sjl - Ay^Baj] = Uj, j = l...,n. (4.31) 

The m X 1 vectors aj are selected so that (sjl — A)~^Baj, j = 1,,. .,n, are linearly 
independent vectors. Alternatively, one could approach the problem as follows (see 
also Subsection 4.2B of Chapter 4). Let M(s) and D(s) be re polynomial matrices of 
dimensions nX m and mX m, respectively, such that (si - A)~^B = M(s)D~^(s). 
An internal representation equivalent to x = Ax -^ Bu in polynomial matrix form is 
Dz = u with X = Mz (see Subsection 7.3A of Chapter 7). The eigenvalue assign
ment problem now is to assign all the roots of \D(s) - FM(s)l or to determine F so 
that 

FM(sj)aj = D{sj)aj, J = h (4.32) 

Note that this formulation does not require that Sj be different from the eigen
values of A as in (4.31). The m X 1 vectors aj are selected so that M(sj)aj, j = 
1, . . . , ^, are independent. Note that M(sj) has the same column rank as S(sj) = 
block diag([l, Sj,..., sj'~^]^), where dt are the controllability indices of (A, 5). 
Therefore, it is possible to select aj so that M(sj)aj, j = I,.. .,n, are independent, 
even when the Sj are repeated. In general there is great flexibility in selecting the 
nonzero vectors aj. For example when the Sj are distinct, which is a very common 
case, the aj can be selected almost arbitrarily. For all the appropriate choices of aj 
[M(sj)aj, j = 1,.. .,n, linearly independent], the n eigenvalues of the closed-loop 
system will be at the desired locations Sj, j = \,.. .,n. Different aj correspond to 
different F, which results in general in different closed-loop behavior. 

The exact relation of the eigenvectors to the aj can be determined by [sjl -
{A + BF)\M{sj)aj = (sjI-A)M(sj)aj-BFM(sj)aj = BD(sj)aj-BD(sj)aj = 0. 
Therefore, M(sj)aj = Vj are the closed-loop eigenvectors corresponding to Sj. 

One may select aj in (4.32) to impose constraints on the gains fij in F. For 
example, one may select aj so that a column of F is zero (take the corresponding 
row of all aj to be nonzero), or so that an element of F is zero. Alternatively, one 
may select aj so that additional design goals are attained. 

Note that this approach for eigenvalue/eigenvector assignment by state feedback 
has also been discussed in Subsection 4.2B of Chapter 4. For further details, see 
Antsaklis and Gao [1]. 
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See also Matrix 
Column reduced, 526 

See also Polynomial matrices 
Column vector, 107 

See also Matrix 
Command input, 326 

See also Input; Reference input 
Common divisor, 535 
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Coordinate representation, 100 
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Coprime, 535, 593 
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Critical, 460, 462 
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Decoupling: 
diagonal, 377, 378, 633 
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Degree, McMillan, 397 
polynomial vector, 526 
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Return difference matrix 
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Diagonal decoupling, 377, 378, 633 
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Dirac delta distribution, 72, 74, 154 
Direct form, 65 
Direct link matrix, 169 
Direct sum, 126 
Discrete-time impulse, 68, 178 
Discrete-time Kalman filter, 363 
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Discrete-time system, 3, 5, 60, 66, 174, 215, 

241, 242, 257, 348, 358, 362, 388, 392, 
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494, 497, 504, 563 
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494, 499 
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494, 499 
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qualitative characterization, 447 
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491,492 
trivial solution, 138, 446 
uniformly asymptotically stable, 449 
uniformly asymptotically stable in the large, 

450,459,451 
uniformly stable, 448, 453, 454, 455, 459, 

461,470,512 
unstable, 159, 189, 450, 459, 462, 472, 479, 

481, 491, 495, 497, 499, 504, 513 
See also Stability 
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transformation, 181 

Equivalent, 116, 119, 172, 181, 535, 554 
Estimator, 361 

See also State estimator 
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norm, 42 
ring, 551 
space, 437, 441 

Euler: 
method, 25, 65, 85 
polygon, 25 

Exponentially stable, 449, 477, 480, 512 
See also Equilibrium 

Exponentially stable in the large, 450, 459, 471 
See also Equilibrium 

Extended system matrix, 557 
External input, 326 
External system description, 5, 65 

See also System 

Feedback, 326, 589 
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gain matrix, 327 
integral, 379 
output, 363, 379, 658 
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364, 658 
Feedback control systems, 58, 589, 590 
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Feedback stabilizing controller, 589 
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parameterizations, proper and stable (MFD), 
611,615 

two degrees of freedom, 622 
Fermat's Last Theorem, 553 
Field, 37 

algebraically closed, 123 
complex numbers, 38 
rational functions, 37 
real numbers, 38 

Filtering theory, 357 
Floquet multipliers, 163 
Force field, inverse square law, 52 
Fractional description, 521 

See also System representations 
Frequency response, 204, 463, 465 
Frobenius norm, 653 
Function, 8 

bijective, 101 
continuous, 9 
Hamiltonian, 81 
indefinite, 437, 469 
negative definite, semidefinite, 437, 491 
one-to-one, or injective, 101 
onto, or surjective, 101 
piecewise continuous, 9, 58 
positive definite, semidefinite, 437, 469, 491 

Fundamental matrix, 139, 140 
Fundamental sequence, 18 
Fundamental set of solutions, 140 
Fundamental theorem of linear equations, 101 

Gap and position criterion, 465 
See also Stability 

Gaussian elimination, 647 
Generalized distance function, 468 

See also Lyapunov function 
Generalized energy function, 468 

See also Lyapunov function 
Generalized function, 74 

See also Dirac delta distribution 
Geometric multiplicity, 122 

See also Eigenvalue 
Globally asymptotically stable, 491, 494 

See also Asymptotically stable; 
Equilibrium 

Gram 
determinant, 234 
matrix, 234 

Gramian 
constructibility, 251, 256, 262 
controllability, 233, 240, 246 
observability, 249, 253, 259 
reachability, 230, 236, 245 

Gram-Schmidt process, 440 
Graphical criteria, 462 

See also Stability 
Gronwall inequality, 29 

Hamiltonian: 
dynamical system, 81 
function, 81 
matrix, 344, 349 

Hankel matrix, 399 
Hard disk, read/write head, 212, 382 
Harmonic oscillator, 198 
H-B property, 18,44 
Heine-Borel property, 18, 44 

Hermite form, 532 
Hermitian matrix, 648 
Highest degree coefficient matrix, 526 
Homogeneous differential equations, 138 

See also Differential equations 
Homogeneous solution, 58, 64, 145 

See also Solutions of differential 
equations 

Hurwitz matrix, 460 
Hurwitz polynomial, 462 
Hybrid system, 3, 183 

Idempotent matrix, 126 
Identity matrix, 110 
Identity transformation, 103 
Ill-conditioned, 647 
Impulse response: 

continuous-time, 75, 77 
discrete-time, 70 
time-invariant, 78 
time-varying, 79 

Impulse response matrix, 71, 77, 78, 79, 165, 
166, 177 

Index: 
bilinear functional, 437 
nilpotent operator, 134 
set, 17 

Indices: 
controllability, 283 
decoupling, 377 
Kronecker, 288 
observability, 295 

Induced norm, 43 
Infinite series, convergence, 21 
Infinite series method, 150 

See also Matrix, exponential 
Initial conditions, 4, 5 
Initialtime, 4, 5, 61,62 
Initial value problem, 10, 11, 12, 62 

examples, 13 
existence of solutions, 21 

Inner product, 437 
Inners, 498 
Input: 

command, or reference, 326 
comparison sensitivity matrix, 626 
decoupling zeros, 302, 564 
external, 326 
function observability, 302 
normal representations, 430 
output decoupling zeros, 302, 564 
output stability, 451,481 
vector, 4 

Input-output description, 5, 65, 165, 174 
See also System representations 

Input-output stabiUty, 481, 505 
See also Stability 

Instability, 159, 189, 450, 459, 472, 479, 481, 
491,495,497,499,504,513 

See also Equilibrium, unstable 
Integral equation, 11 
Integral feedback, 379 
Integral representation, 72, 75, 76 
Integration, forward rectangular rule, 85 
Interconnected systems, 568 

feedback, 573 
parallel, 568 
series, 570 



Interlacing, 464 
See also Stability 

Internal description, 5 
See also System representations 

Internal qualitative properties, 490 
See also Internal stability 

Internal stability, 448, 451, 481, 490, 
623, 624 

Internally balanced realization, 424, 430 
See also System representations 

Interpolation of polynomial, rational 
matrix, 653 

Invariance principle, 493 
See also Asymptotically stable 

Invariant factors, polynomials, 298, 534 
Invariant property of (A, B), 288 
Invariant subspace, 260 
Invariant zeros, 302, 306, 563, 564, 565 

See also Zero 
Inverse system, 377, 634 
Inverse z-transformation, 178 
Inverted pendulum, 89, 380 

See also Pendulum 

Jacobian matrix, 48, 447 
Jordan canonical form, 130, 135, 136 

Kalman filter: 
continuous-time, 352 
discrete-time, 363 

Kalman-Bucy filter, 357 
Kalman's Decomposition Theorem, 

269,270 
Kronecker indices, 288 

Lagrange's equation, 83 
Lagrangian, 83 
Lamda approach, 622 
Laplace transform, 75, 154 
La Salle's Theorem, 493 

See also Asymptotically stable; Invariance 
principle 

Latent value, 122 
See also Eigenvalue 

Least squares, 648, 652 
Least-order realization, 394 
Left coprime, 536 

See also Polynomial matrices 
Leonhard-Mikhailov stability criterion, 463 
Level curve, 471 

See also Lyapunov function 
Lienard equation, 16, 479 
Limit cycle, 88 
Linear algebraic equation: 

fundamental theorem, 101 
homogeneous, nonhomogeneous, 115, 646 

Linear manifold, 97 
Linear matrix pencil, 288, 640 
Linear operator, 40 

nilpotent, 134 
See also Linear transformation 

Linear ordinary difference equation: 
autonomous, 12 
homogenous, 62, 63, 174 
homogenous w/constant coefficients, 175 

matrix, 495 
nonhomogenous, 62, 63 
periodic, 62, 63 

Linear ordinary differential equation 
autonomous, 12 
homogeneous, 12, 13, 62, 63, 138, 174 
homogeneous w/constant coefficients, 148, 

164, 175 
matrix, 140, 495 
nonhomogeneous, 12, 54, 62, 63, 145 
periodic, 12, 13, 62, 63, 161 
systems: continuation, 54 

continuity with respect to 
parameters, 54 
existence, 54 
uniqueness, 54 

See also Solutions of differential 
equations 

Linear space, 37 
See also Vector space 

Linear subspace, 97,126 
direct sum, 126 

Linear system, 3, 60, 66, 94, 509 
Linear transformation, 40, 100 

bijective, 101, 102 
determinant, 121 
identity, 103 
injective, 102 
invariant, 127 
nilpotent, 134 
nullity, 101 
orthogonal, 441 
primary decomposition theorem, 

133,134 
principle of superposition, 66 
projection, 126, 445 
range space, 100 
reduced, 127 
representation by a matrix, 104 
spectral theorem, 445 
spectrum, 122 
surjective, 101, 102 

Linearization, 5, 48, 477, 504, 574 
examples, 52 

Linearized equation, 50, 51 
Linearly dependent, 98, 234, 524 

See also Vector 
Linearly independent, 97, 98, 99, 234, 524 

See also Vector 
Lipschitz condition, 30, 45 
Lipscitz constant, 30, 45 
Lipschitz continuous, 30 
LQG (linear quadratic Gaussian) problem, 

352, 359 
LQR (linear quadratic regulator) problem: 

continuous-time, 342 
discrete-time, 348 

LU decomposition, 647 
Luenberger observer, 351 
Lyapunov function, 468, 491 

construction of, 474, 500 
level curve, 471 

Lyapunov matrix equation, 468, 469, 499 
Lyapunov stability, 445, 492 

linear systems, 452, 495 
See also Stability 

Lyapunov's Direct Method, 468 
Lyapunov's Second Method, 468 
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Magnetic ball suspension, 91, 92, 174-2 
Mapping, 8 

See also Function 
Markov parameter, 204, 387, 399 
Matrix, 106 

block diagonal, 128 
characteristic polynomial, 123 
cofactor, 113 
column, 107 
column rank, 119 
companion, 461 
companion form, 131, 153, 468 
condition number, 646, 647, 649 
conformal, 109 
congruent, 436 
controllability, 217 
cyclic, 132 
determinant, 111, 113 
diagonal, 120 
elementary unimodular, 526 
eliminant, 542, 546 
exponential, 57, 149, 150 
fundamental, 139, 140 
Gram, 234 
Hamiltonian, 344, 349 
Hankel, 399 
Hermite form, 532 
Hermitian, 648 
highest degree coefficient, 526 
Hurwitz, 460 
idempotent, 126 
identity, 110 
ill-conditioned, 647 
impulse response, 77, 166 
indefinite, 443 
inverse, 110 
Jacobian, 48, 447 
Jordan, 130, 135, 136 
left inverse, 653 
linear pencil, 288, 640 
logarithm, 161 
lower triangular, 131 
LU decomposition, 647 
minimal polynomial, 132, 133, 299 
minor, 113,469 
modal, 128 
Moore-Penrose inverse, 652 
negative definite, semidefinite, 443, 469 
nilpotent, 134 
nonsingular, 101, 110 
norm, 43 
null, 109 
observability, 219, 253, 258 
orthogonal, 441, 648 
permutation of, 112 
positive definite, semidefinite, 443 
principal minor, 113, 469 
proper rational, 391 
properties, 107 
QR decomposition, 647 
rank, 101, 107, 306, 437, 524, 525 
right inverse, 653 
Rosenbrock, 301, 554, 564 
self-adjoint, 443 
singular, 110 
square, 107 
state transition, 56, 63, 143 
Smith form, 531 

Sylvester, 541 
symmetric, 469, 648 
symmetric part, 436 
system, 301, 554, 564 
system, extended, 557 
Toeplitz, 259 
transfer function, 78, 168, 178 
transpose, 8, 107 
unimodular, 526 
unitary, 648 
upper triangular, 131, 532 
well conditioned, 647 

Matrix difference equation, 496 
Matrix differential equation, 140 
Matrix fractional description, 517, 521 

See also System representations 
Maximal element, 27 

Zom's lemma, 26 
McMillan degree, 397 
Metric, 438 
Metric space, 439 
Microphone, 84 
MIMO system, multi input-multi output, 66, 71 
Minimal basis, 552 
Minimal polynomial, 132, 133, 299 
Mode of system, 156, 157, 186, 187 

See also System 
Model matching problem, 374, 633, 644 
Module, free, 552 
Monic polynomial, 132, 298 
Moore-Penrose pseudo inverse, 652 
Motor, servomotor, 14, 206, 380 

Natural basis, 100 
See also Basis; Vector space 

Negative: 
definite, 437, 469, 491 
indefinite, 469 
semidefinite, 437, 469, 491 
See also Function; Matrix 

Nilpotent operator, 134 
See also Linear transformation 

Nonhomogeneous differential equations, 
138, 145 

See also differential equations 
Nonlinear systems, 3, 451, 477 
Norm: 

Euclidean, 42 
Frobenius, 653 
induced, 43 
linear space, 41,438 
Manhattan, 42 
matrix, 43 
taxicab, 42 

Numerical solutions of algebraic 
equations, 646 

See also Solutions of algebraic equations 
Numerical solutions of differential equations, 

25, 85, 86 
See also Solutions of differential equations 

Numerical stability, 645 

Observability, 169, 214, 219, 247, 249, 250, 
253, 258, 263, 268, 274, 560 

continuous-time system, 248, 252 
discrete-time system, 219, 257 



eigenvalue/eigenvector (PBH) test, 272 
Gramian, 249, 253, 259 
index, 295 
matrix, 219, 253, 258 
subspace, see Unobservable 

Observable, 562 
eigenvalue, 268 
mode, 268 

Observer, Luenberger, 351 
See also State observer 

Observer companion form, 203 
Observer form, 292, 293, 296, 297 

multi-output, 294 
single-input, 293 

Open covering, 18 
Open loop control, 327 
Operator, linear, 40,100 

See also Linear transformation 
Optimal: 

control problem, 342, 348 
estimation problem, 352, 357, 359, 362 

Optimality principle, 371 
Orbit, 492 
Order of a realization, 394 
Orthogonal, 439 

basis, 440 
complement, 441 
linear transformation, 441 
matrix, 441,648 
projection, 445 

Orthonormal basis, 439 
Orthonormal set of vectors, 439 
Output: 

decoupling zeros, 302, 564 
zeroing, or blocking, property, 307 

equation, 5, 58, 61 
function controllability, 313 
normal representations, 430 
reachability, controllability, 312 
vector, 4 

Output feedback: 
dynamic, 363, 589, 642, 658 
observer based, 363 
static, 379 

Parallelogram law, 438 
Parseval's identity, 440 
Partial state, 519 
Partial sum, 21 
Partially ordered set, 27 
Peano-Baker series, 56, 143,147 
Pendulum: 

inverted, 89, 380 
simple, 16, 52, 82, 93 
two-link, 83 

Periodic solution, 492 
See also Solutions of differential equations 

Periodic system, 11, 62, 161 
Phase: 

plane, 198 
portrait, 88 
variable, 198 

Picard iteration, 31 
Piecewise continuous, 58 

derivative, 23 
function, 9 

Plant, 182 

Pole assignment problem, 330, 658 
See also Eigenvalue or pole assignment 

Pole polynomial, 299 
Poles at infinity, 319 
Poles of a transfer function, 298, 299, 301, 488, 

508, 563 
Poles of the system, 298, 301, 564 

See also Eigenvalue 
Polynomial: 

Hurwitz, 462 
monic, 132, 298 
stable, 462 

Polynomial matrices, 524 
column, row reduced, 526 
common divisors, 535 
coprime, left, right, 536, 612 
division theorem, 545 
doubly coprime, 593 
equations, 540, 653 
equivalent, 535 
Hermite form, 532 
proper or reduced row, column, 527 
rank, 524 
regular, 528 
Smith form, 298, 531, 533 
unimodular, 526 

Polynomial matrix description, 517, 519, 
521,553 

See also System representations 
Polynomial matrix interpolation, 653 
Polynomial of linear transformation, 104 
Polynomial vector, 

degree, 526 
linear independence, 524 

Positive: 
definite, 437, 443, 469, 491 
indefinite, 469 
semidefinite, 437, 443, 469, 470, 491 
See also Function; Matrix 

Positive innerwise, 498 
Positive orbit, 492 
Positively invariant, 492 
Prediction estimator, 360 
Proper rational matrix, 391 
Proper transfer function, 170 
Proper value, 102 

See also Eigenvalue 
Proper vector, 122 

See also Eigenvector 
Pythagorean Theorem, 439 

QR decomposition, 647 
Quadratic form, 436 
Quantization, 183 

Radially unbounded, 491 
See also Lyapunov function 

Range space, 100 
Rank, 107, 524 

of a functional, 437 
normal, 306, 525 
test, 274 

Rational function: 
biproper, 552, 577 
proper and stable, 552 
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Rational matrix: 
equations, 653 
right inverse, 313 
Smith-McMillan form, 299, 563 

Rayleigh's dissipation function, 83 
Reachability, 214, 215, 226, 235, 

242,244 
continuous-time system, 227, 235 
discrete-time system, 215, 241 
Gramian, 230, 236, 245 
matrix, see Controllability 
output, 312 
subspace, 228, 235, 242 
See also Controllability, from the origin 

Reachable, 217, 228, 235 
pairs, 228 
state, 242 
subspace, 217, 228, 235, 242 
See also Controllable; Controllability, from 

the origin 
Real numbers, 8 
Real sequence, 17 
Real vector space, 38 
Realization algorithms, 402 

block companion form, 418 
controller/observer form, 404 
matrix A diagonal, 417 
singular value decomposition, 423 

Realization of systems, 383, 385, 388, 565 
existence and minimality, 390, 394, 565 
impulse response, 386 
least order, irreducible, minimal order, 

394,401,565 
order of, 394 
pulse response, 388 
transfer function, 202, 388, 389 

Reconstructible, 255 
See also Constructibility 

Reduced order model, 424 
Reference input, 326 
Relation, 535 
Response, 4, 59, 61 

maps, 625 
total, 165, 166, 174, 176 
zero-input, 146, 165, 177 
zero-state, 146, 165, 166, 177 

Resultant, 542 
Return difference matrix, 586 
Riccati equation, 343, 349, 358, 363 

continuous-time case, 342, 343, 358 
discrete-time case, 349, 363 

Ring, 552 
Euclidean, 551 

RLC circuit, 14, 16, 206, 276 
Robust control, 327 
Rosenbrock system matrix, 301, 554, 564 
Rosenbrock system equivalence, 555 
Routh-Hurwitz stability criterion, 466 
Row, 107 

Hermite form, 532 
proper, see Polynomial matrices 
rank, 119 
vector, 107 

Row reduced, 526 
See also Polynomial matrix 

Sampled data system, 65, 182, 183, 319 
Sampling period, rate, 185 

Scalar, 38 
Schur-Cohn stability criterion, 498 
Schwarz inequality, 42, 49,438 
Semi-group property, 175 
Sensitivity matrix, 599, 626 
Separation principle, property, 325, 365 
Sequence, 17 

functions, 18 
vectors, 44 

Series, 203 
Shift operator, 68, 92 
Signal, digital, 183 
Similarity transformation, 116, 120, 151 
Singular, 101 

value, 648 
value decomposition, 423, 430, 

648,650 
vector, left, right, 651 
See also Linear transformation; Matrix 

Skew adjoint, 443 
Skew symmetric, 435, 436 
Smith form, 298, 531, 533 

See also Polynomial matrices 
Smith-McMillan form, 298, 299, 563 

See also Rational matrix 
Solutions, bounded, 491, 493 
Solutions of algebraic equations, 101, 115, 646, 

655, 657 
Solutions of difference equations: 

particular, 64 
total, 64 

Solutions of differential equations, 10, 12 
bounded, 452 
continuable, 27 
continuation, 26, 27, 28, 31, 37, 45, 54 
continuous dependence, 33, 37, 45 
continuous dependence on initial conditions, 

45,54 
continuous dependence on parameters, 

47,54 
e-approximate, 23 
Euler's method, 25, 85 
existence, 25, 37, 45, 54 
homogeneous, 58, 64, 145 
noncontinuable, 27 
particular, 58, 64, 145 
Peano-Baker series, 56, 143, 147 
periodic, 492 
predictor-corrector method, 86 
Runge-Kutta, 85 
successive approximations, 31, 

47,143 
total, 58 
uniqueness, 29, 30, 32, 45 
See also Variation of constants formula 

Space: 
of linear transformations, 102 
of ^-tuples, 38 
of real-valued continuous functions, 39 
span, 97 

Spectral theorem, 445 
Spectrum, 122 
Spring, 16, 88, 320 
Spring mass system, 13, 82, 83, 

206, 320 
Stability, 445, 492, 560 

algebraic criteria, 461, 462 
asymptotic, 159, 189, 449, 491, 494, 

497, 504, 563 



asymptotic in the large, 450, 491, 
494, 499 

attractive equilibrium, 449 
bounded-input^ounded-output (BIBO), 481, 

490, 505 
causal, 67,70,71,77 
domain of attraction, 449, 491 
exponential, 449, 477, 480, 512 
exponential in the large, 450, 459, 471 
external, 481,490, 506 
gap and position criterion, 464 
global asymptotic, 491, 492, 494, 499 
graphical, geometric criteria, 462 
input-output, 452, 481, 490, 505 
interlacing, 464 
internal, 452, 481, 490, 613, 623 
Leonhard-Mikhailov criterion, 463 
linear systems, continuous, 159 
linear systems, discrete, 189 
Lyapunov, 445, 448, 590 
Routh-Hurwitz criterion, 466 
Schur-Cohn, 498 
uniform, 448 
uniform asymptotic, 449 
uniform asymptotic in the large, 450, 

459, 461 
See also Equilibrium 

StabiUzable, 330 
Stable, 159, 189, 448, 452, 455, 459, 491, 492 

See also Stability 
Standard form: 

Kalman's canonical, 269 
uncontrollable system, 264, 265 
unobservable system, 267, 268 

State, 56, 58, 60, 228, 235 
controllable, 242 
partial, 519 
phase variable, 198 
variables, 4, 56, 58, 61 
vector, 4, 56, 58 

State constructibihty, 251, 260 
See also Constructibihty 

State controllability, 229, 235, 242 
See also Controllability 

State estimator, 351,359 
See also State observer 

State equation, 5, 58, 61, 165 
linear solution, 55, 145 

State feedback, 321, 322, 326, 605 
input-output relations, 345 
See also Feedback 

State observability, 250, 258 
See also Observability 

State observer, 321, 322, 350, 359, 608 
current, 360 
full-order, 350, 358 
identity, 350, 359 
optimal, 357, 362 
partial state, 354, 362, 608 
reduced-order, 355, 362 

State reachability, 215, 235, 242, 243 
See also Reachability 

State space, 56, 58 
State space description, 5 

continuous-time, 58 
discrete-time, 60 
See also System representations 

State transition matrix, 56, 63, 143 
State unconstructible, 250, 255 

State unobservable, 248, 253, 258 
Static: 

decoupling, 634 
output feedback, 379 

Structure theorem: 
controllable version, 291 
observable version, 297 

Subsequence, 18 
Successive approximations, 31, 47 

See also Solutions of differential 
equations 

Superposition principle, 60, 66 
Sylvester: 

matrix, 541 
rank inequality, 205, 396 
resultant, 542 
theorem, 437 

Symmetric, 435, 436, 648 
See also Bilinear functional; 

Matrix 
System: 

at rest, 71,77 
autonomous, 12, 62 
classification, 3 
composite, 203 
conservative, 81 
continuous time, 4 
description, external, 5, 65 
discrete-time, 5, 60, 68, 174 
distributed parameter, 3 
dual, 222, 402 
finite dimensional, 3, 4, 5 
Fuhrmann equivalence, 554 
Hamiltonian, 81 
hybrid, 3, 183 
infinite dimensional, 3 
input, 66 
inverse, 377, 634 
linear, 60, 66, 94, 509 
linear time-invariant, 59, 61 
linear time-varying, 59, 61 
lumped parameter, 3 
matrix, 301,564 
with memory, 67 
memoryless, 66 
mode, 156, 186, 187 
multi input/multi output, 66, 71 
nonanticipative, 67 
nonlinear, 3, 451,477 
output, 66 
periodic, 12, 62, 161 
realization, 383 
response, 64 
Rosenbrock equivalence, 555 
sampled data, 65, 183 
single input/single output, 66 
strict equivalence, 555 
time-invariant, 5, 242 
time-varying, 5, 68 
zeros, 301, 565 

System interconnections: 
feedback, 203, 573 
parallel, 203, 568 
series, or tandem, 203, 570 

System representations: 
balanced, 430 
differential/difference operator, 517 
equivalence, of, 170, 180, 554 
external, 65 
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670 fractional, left, right, 517, 521 
input normal, 430 
input-output, 66 
integral, 72, 75, 76 
internal, 5, 619 
linear continuous-time, 76 
linear discrete-time, 68 
matrix fractional, 521, 612, 619 
output normal, 430 
polynomial matrix, 517, 519, 521, 553 
standard form, uncontrollable, unobservable, 

265,267, 268 
state space, 5 
zero-input equivalence, 170, 171, 173, 181 
zero-state equivalent, 170, 171, 173, 181 

Time reversibility, 145, 175 
Toeplitz matrix, 259 
Trajectory, 88, 198 
Transfer function: 

McMillan degree, 397 
pole polynomial, 299, 563 
proper, 170, 530 
strictly proper, 170, 530 

Transfer function matrix, 78, 168, 177, 178 
Transmission zero, 303, 564, 565 

See also Zero 
Triangle inequality, 41 
Trivial solution, 138,446 

See also Equilibrium 
Truncation operator, 92 
Two degrees of freedom controller, 622 

Unity feedback, 631, 642 
Unobservable, 264, 274 

eigenvalues, modes, 268 
subspace, 220, 253, 258 
See also Observability 

Unstable: 
complete instability, 273, 501 
See also Equilibrium, unstable 

van der Pol equation, 16, 88 
Variation of constants formula, 57, 146, 197 
Vector, 38 

coordinate representation, 100 
linearly dependent, 97, 98, 234, 524 
linearly independent, 98, 234, 524 
normalized, 439 
null, 38 
unit, 439 

Vector space, 37, 38, 97 
basis, 99, 100, 170, 439, 552 
complex, 38 
dimension, 99 
finite dimensional, 99, 437 
inner product, 437 
normed, 42, 438, 439 
null, 100, 444 
real, 38 

Weierstrass M-test, 21 
See also Infinite series 

Without memory, 66 

Uncertainties, 327 
Unconstructible, 250, 260 

subspace, 250, 255, 260 
See also Constructibility 

Uncontrollable, 264, 274 
eigenvalues, modes, 265 
See also Controllability 

Uniformly asymptotically stable, 449 
Uniformly asymptotically stable in the large, 

450, 459, 461 
Uniformly BIBO-stable (bounded-

input/bounded-output stable), 482, 
483, 4t84 

Uniformly bounded, 22 
Uniformly continuous, 9 
Uniformly controllable, 315 
Uniformly convergent, 19 
Uniformly stable, 448, 453, 454, 455, 459, 461, 

470,511,512 
Unimodular matrix, 526 
Unit impulse, 74 
Unit pulse, or unit sample, 68, 178 
Unit pulse, or unit impulse, response, 70 
Unit step: 

function, 154 
sequence, 69 

Youla parameter, 595, 615, 635 

Zero, 298, 563 
blocking property, 307 
decoupling input/output, 302, 564 
direction, 306 
at infinity, 320 
invariant, 302, 303, 564, 565 
polynomial, 302, 303, 564, 565 
system, 301,564, 565 
of transfer functions, 301, 302, 303, 

564, 565 
transmission, 303, 564, 565 

Zero-input equivalence, 170, 171, 174, 181 
See also System representations 

Zero-input response, 146, 165, 176 
See also Response 

Zero-order hold, 183 
See also Sampled data system 

Zero-state equivalence, 170, 171, 173, 181 
See also System representations 

Zero-state response, 146, 165, 166, 177 
See also Response 

Zom's lemma, 26 
z-transform, 177 




