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Preface
Philosophy of Mathematics

This is a philosophy book about mathematics. There are, first, mat-
ters of metaphysics: What is mathematics all about? Does it have a
subject-matter? What is this subject-matter? What are numbers,
sets, points, lines, functions, and so on? Then there are semantic
matters: What do mathematical statements mean? What is the
nature of mathematical truth? And epistemology: How is math-
ematics known? What is its methodology? Is observation involved,
or is it a purely mental exercise? How are disputes among math-
ematicians adjudicated? What is a proof? Are proofs absolutely
certain, immune from rational doubt? What is the logic of
mathematics? Are there unknowable mathematical truths?

Mathematics has a reputation for being a cut-and-dried discip-
line, about as far from philosophy (in this respect) as can be
imagined. Here things seem to get settled, once and for all, on a
routine basis. Is this so? Have there been any revolutions in math-
ematics, where long-standing beliefs were abandoned? Consider the
depth of mathematics used—and required—in the natural and
social sciences. How is it that mathematics, which- appears to be
primarily a mental activity, sheds light on the physical, human, and
social world studied in science? Why is it that we cannot get very
far in understanding the world (in scientific terms) if we do not
understand a lot of mathematics? What does this say about math-
ematics? What does this say about the physical, human, and social
world?

Philosophy of mathematics belongs to a genre that includes
philosophy of physics, philosophy of biology, philosophy of psych-
ology, philosophy of language, philosophy of logic, and even phil-
osophy of philosophy. The theme is to deal with philosophical
questions that concern an academic discipline, issues about the
metaphysics, epistemology, semantics, logic, and methodology of
the discipline. Typically, philosophy of X is pursued by those who
care about X, and want to illuminate its place in the overall intel-
lectual enterprise. Ideally, someone who practises X should gain
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something by adopting a philosophy of X: an appreciation of
her discipline, an orientation toward it, and a vision of its role in
understanding the world. The philosopher of mathematics needs to
say something about mathematics itself, something about the
human mathematician, and something about the world where
mathematics gets applied. A tall order.

The book is divided into four parts. The first, ‘Perspective’, provides
an overview of the philosophy of mathematics. Chapter 1 concerns
the place that mathematics has held in the history of philosophy,
and the relationship between mathematics and philosophy of
mathematics. Chapter 2 provides a broad view of the problems in
philosophy of mathematics, and the major positions, or categories
of positions, on these issues.

Part II, ‘History’, sketches the views of some historical philo-
sophers concerning mathematics, and indicates the importance of
mathematics in their general philosophical development. Chapter 3
deals with Plato and Aristotle in the ancient world, and chapter 4
moves forward to the so-called ‘modern period’, and considers
primarily Immanuel Kant and John Stuart Mill. The idea behind
this part of the book is to illustrate an unrelenting rationalist
(Plato)—a philosopher who holds that the unaided human mind is
capable of substantial knowledge of the world—and an unrelenting
empiricist (Mill)—a philosopher who grounds all, or almost all,
knowledge in observation. Kant attempted a heroic synthesis
between rationalism and empiricism, adopting the strengths
and avoiding the weaknesses of each. These philosophers are
precursors to much of the contemporary thinking on mathematics.

The next part, “The Big Three’, covers the major philosophical
positions that dominated debates earlier this century, and still pro-
vide many battle-lines in the contemporary literature. Chapter 5
concerns logicism, the view that mathematics is, or can be reduced
to, logic. Chapter 6 concerns formalism, a view that focuses on
the fact that much of mathematics consists of rule-governed
manipulation of linguistic characters. Chapter 7 concerns intuition-
ism, a view that mathematics consists of mental construction. Each
of the ‘big three’ has advocates today, some of whom are taken up
in this part of the book.

Part IV is entitled “The Contemporary Scene’. Chapter 8 is about
views that take mathematical language literally, at face value, and
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hold that the bulk of the assertions of mathematicians are true.
These philosophers hold that numbers, functions, points, and so on
exist independent of the mathematician. They then try to show
how we can have knowledge about such items, and how mathemat-
ics, so interpreted, relates to the physical world. Chapter 9 concerns
philosophers who deny the existence of specifically mathematical
objects. The authors covered here either reinterpret mathematical
assertions so that they come out true without presupposing the
existence of mathematical objects, or else they delimit a serious
role for mathematics other than asserting truths and denying false-
hoods. Chapter 10 is about structuralism, the view that mathemat-
ics is about patterns rather than individual objects. This is my own
position (Shapiro 1997), so one might say that I have saved the best
for last. With the exception of this temporary chutzpah, I have tried
to be non-partisan throughout the book.

The plan all along was to try to write a book that would offer
something to those interested in mathematics who have little back-
ground in philosophy, as well as those interested in philosophy who
have little background in mathematics. For the most part, some
familiarity with high-school or early college-level mathematics, and
perhaps an introduction to philosophy should suffice. I avoided
excessive symbolization, and tried to explain the symbols I do use.
In some places, [ may have assumed too much for those uninitiated
in university-level mathematics, and in other places too much for
those unfamiliar with philosophical terminology, but I hope those
places are few and far between, and do not interrupt the flow of the
book. The Oxford Dictionary of Philosophy (Blackburn 1994) might
prove to be a handy source for those new to academic philosophy.

My debts concerning this project are many. Thanks first to John
Skorupski for suggesting this book to me, and to Peter Momtchi-
loff, George Miller, Lesley Wilson, and Tim Barton from Oxford
University Press, for encouraging me and guiding the book through
the publication process. When the idea for this book was first
broached, the most common advice I received from colleagues and
friends was that it would be terrific if a book like this existed, and
that I would be a good one to write it. I was flattered by the
compliments, and daunted by the task I was taking on. I hope I have
kept disappointment to a minimum. Special thanks to Penelope
Maddy for reading and giving detailed advice on drafts of most of
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the chapters. A large number of colleagues and friends read parts of
this book in draft and generously gave me help. I especially appreci-
ate the aid I received on the historical material. My list of advisors
includes: Jody Azzouni, Mark Balaguer, Lee Brown, John Burgess,
Jacob Busch, Charles Chihara, Julian Cole, Michael Detlefsen, Jill
Dieterle, John Divers, Bob Hale, Peter King, Fraser MacBride,
George Pappas, Charles Parsons, Michael Resnik, Lisa Shabel, Allan
Silverman, John Skorupski, Mark Steiner, Leslie Stevenson, Neil
Tennant, Alan Weir, and Crispin Wright. Omissions from this list
are inadvertent, and I apologize for them. Thanks also to the
Department of Logic and Metaphysics at the University of St
Andrews for allowing me to offer a course in the autumn term of
1996 on the material in this book. I presented the half-chapter on
Kant to a small group of faculty and students at the University of
Leeds, and benefited considerably from the subsequent discussion.
Thanks to Benjamin Beebe who helped with final editing.

I owe a different sort of debt to my wife, Beverly Roseman-
Shapiro, and to my children. They would be justifiably annoyed at
the time I spent secluded with this project. The book is lovingly
dedicated to my children, Rachel, Yonah, and Aviva. Without them,
even a philosophically rich life would be empty.
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1

WHAT IS SO INTERESTING
ABOUT MATHEMATICS (FOR A
PHILOSOPHER)?

1. Attraction—of Opposites?

THROUGHOUT history, philosophers have had a special attraction
to mathematics. The entrance to Plato’s Academy is said to
have been marked with the phrase ‘Let no one ignorant of geom-
etry enter here’. According to Platonic philosophy, mathematics is
the proper training for understanding the Universe as it is, as
opposed to how it appears. Plato arrived at his views by reflecting
on the place of mathematics in rational knowledge-gathering (see
ch. 3, §§2-3). Before the extensive pigeonholing of academic
institutions, many mathematicians were also philosophers. The
names of René Descartes, Gottfried Wilhelm Leibniz, and Blaise
Pascal come readily to mind, and closer to the present there are
Bernard Bolzano, Bertrand Russell, Alfred North Whitehead, David
Hilbert, Gottlob Frege, Alonzo Church, Kurt Godel, and Alfred
Tarski. Until recently, just about every philosopher was aware of
the state of mathematics and took a professional interest in it.
Rationalism is a long-standing philosophical school that can be
characterized as an attempt to extend the perceived methodology
of mathematics to all of knowledge. Rationalists were impressed
with the seemingly unshakeable foundation enjoyed by mathemat-
ics, and its basis in pure rationality. They tried to put all knowledge
on the same footing. Science, ethics, and the like should also
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proceed by providing tight demonstrations of their propositions,
from reason alone. Rationalism is traced to Plato, and thrived dur-
ing the seventeenth and early eighteenth century in the writings of
Descartes, Baruch Spinoza, and Leibniz. The main opposition to
rationalism is empiricism, the view that sense experience, and not
pure reason, is the source of knowledge. The view is traced to
Aristotle and was developed through British writers like John
Locke, George Berkeley, David Hume, and John Stuart Mill (see
ch. 4, §1). The empiricist tradition was passed down to the logical
positivists and the Vienna Circle, including Moritz Schlick, Rudolf
Carnap, and A. J. Ayer, and is alive today in the work of Bas van
Fraassen and W. V. O. Quine. Since mathematical knowledge seems
to be based on proof, not observation, mathematics is an apparent
counterexample to the main empiricist thesis. Indeed, mathematics
is sometimes held up as a paradigm of a priori knowledge—
knowledge prior to, and independent of, experience. Virtually every
empiricist took the challenge of mathematics most seriously, and
some of them went to great lengths to accommodate mathematics,
sometimes distorting it beyond recognition (see Parsons 1983:
Essay 1).

Today we see extensive specialization within all areas of aca-
demia. Individual mathematicians and philosophers often have
trouble understanding the research of colleagues in their own
departments. Algebraists cannot follow developments in analysis;
work in philosophy of physics is incomprehensible to most
ethicists. Consequently, there is not much direct and conscious
connection between mainstream mathematics and mainstream
philosophy. Nevertheless, mathematics does not lie far from the
concerns of such philosophical fields as epistemology, metaphysics,
logic, cognitive science, philosophy of language, and philosophy of
natural and social science. And philosophy is not far from the main
concerns of such mathematical fields as logic, set theory, category
theory, computability, and even analysis and geometry. Logic is
taught in both mathematics and philosophy departments
worldwide.

Sometimes for better and sometimes for worse, many techniques
and tools used in contemporary philosophy were developed and
honed with mathematics—only mathematics—in mind. Logic
grew into a thriving field through algebraically minded mathemat-
icians like George Boole, Ernst Schréder, Bolzano, Frege, and
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Hilbert. Their explicit focus was the logic and foundations of math-
ematics. From logic we have model-theoretic semantics, and from
that possible-worlds analyses of modal and epistemic discourse. It is
not much of an exaggeration to state that the semantics and
deductive systems for formal logic have become the lingua franca
throughout the issues and concerns of contemporary philosophy:!
In a sense, much of analytic philosophy is an attempt to extend the
success of logic from the languages of mathematics to natural
language and general epistemology. This may be a heritage of
rationalism.

There are several reasons for the connection between mathemat-
ics and philosophy. Both are among the first intellectual attempts to
understand the world around us, and both were either born in
Ancient Greece or underwent profound transformations there
(depending on what to count as mathematics and what to count as
philosophy). Second, and more centrally mathematics is an
important case study for the philosopher. Many issues on the
agenda of contemporary philosophy have remarkably clean formu-
lations when focused on mathematics. These include matters of
epistemology, ontology, semantics, and logic. We have noted the
success of logic when mathematical reasoning becomes the focus.
Philosophers are interested in questions of reference: What is it for
a lexical item to stand for, or represent, an object? How do we
manage to link a name to what it is a name of? The languages of
mathematics provide a focus for these questions. Philosophers are
also interested in matters of normativity: What is it for person 4 to
be obligated to do action B? What do we mean when we say that
one ought to do something, like give to charity? Mathematics and
mathematical logic provide at least one important and, possibly
simple, case. Logic is normative if anything is. In what sense are we
required to follow the canons of correct reasoning when doing
mathematics? Plato advised his students to start with relatively

' Some students suffering from so-called ‘math anxiety’ are attracted to phil-
osophy because of its place in the humanities—far from the sciences. They are
dismayed to find courses in mathematical logic required for the undergraduate
major at most institutions. The requirement is easily justified, given the role of
formal languages in much of the contemporary philosophical literature. From the
other side, science and engineering students, perhaps suffering from what may
be called ‘humanities avoidance’, are delighted to learn that courses in logic
sometimes count towards their humanities requirements.
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simple and straightforward cases.” Perhaps the normativity of
mathematical logic is such a case.

A third reason for the connection between mathematics and
philosophy lies in epistemology—the study of knowledge. Math-
ematics is vitally important because of its central role in virtually
every scientific effort aimed at understanding the material world.
Consider, for example, the mathematics presupposed in virtually
any natural or social science. A casual glance at any college cata-
logue will show that educational programmes throughout the sci-
ences and engineering follow the lead of Plato’s Academy and have
substantial mathematics prerequisites. The rationale for this is dif-
ferent from that of Plato’s Academy, however. With the decline of
rationalism, mathematics is not a model or a case study for the
empirical sciences. Rather, the sciences use mathematics. Because
of this service role, mathematics departments are among the larg-
est in most universities.” The question of whether or not math-
ematics is itself a knowledge-gathering activity is a substantial
philosophical issue (see chs. 8 and 9). Nevertheless, it is clear that
mathematics is a primary tool in our best efforts to understand the
world. This suggests that philosophy of mathematics is a branch
of epistemology, and that mathematics is an important case for
general epistemology and metaphysics. What is it about mathe-
matics that makes it necessary for the scientific understanding of
the physical and social universe? What is it about the universe—or
about us—that allows mathematics a central role in understanding
it? Galileo wrote that the book of nature is written in the language
of mathematics. This insightful, enigmatic metaphor highlights the
place of mathematics in the scientific/philosophical enterprise of
understanding the world, but it does not even hint at a solution of
the problem (see ch. 2, §3).

* During the summers of 1967-9, 1 had the privilege of attending an NSF Sum-
mer Program in Mathematics for high school students at Ohio State Umiversity.
The director, Arnold Ross, told us to think deeply about simple things. Good
advice for the mathematician and philosopher alike.

* In American universities, only English Departments are likely to be as large.
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2. Philosophy and Mathematics: Chicken or Egg?

This section briefly addresses the relationship between mathemat-
ics and philosophy of mathematics (see Shapiro 1994 and 1997: ch. 1
for a fuller account). To what extent can we expect philosophy to
determine or even suggest the proper practice of mathematics?
Conversely, to what extent can we expect the autonomous practice
of mathematics to determine the correct philosophy of mathemat-
ics? This is an instance of a more general issue concerning the place
of philosophy among its offspring—the various academic discip-
lines. Similar questions arise for, say, philosophy of physics and
philosophy of psychology. The answers to these questions provide
motivation and background for the main issues and problems for
philosophy of mathematics, some of which are delimited in the
next chapter.

For a long time, philosophers and some mathematicians believed
that philosophical matters, such as metaphysics and ontology,
determined the proper practice of mathematics. Plato, for example,
held that the subject-matter of mathematics is an eternal, un-
changing, ideal realm. Mathematical objects, like numbers and
geometric objects, are not created and destroyed, and they cannot
be changed (see ch. 2, §2). In Book 7 of Republic, he complained
that mathematicians do not know what they are talking about, and
for this reason they do mathematics incorrectly:

[The] science [of geometry] is in direct contradiction with the language
employed by its adepts . . . Their language is most ludicrous . . . for they
speak as if they were doing something and as if all their words were
directed toward action . . . [They talk] of squaring and applying and add-
ing and the like . . . whereas in fact the real object of the entire subject is
... knowledge . . . of what eternally exists, not of anything that comes to
be this or that at some time and ceases to be. (Plato, 1961, 527a in the
standard numbering of Plato editions)

Virtually every source of ancient geometry, including Euclid’s
Elements, makes extensive use of constructive, dynamic language:
lines are drawn, figures are moved around, functions are applied. In
this respect, the practice has not changed much to this day. If
Plato’s philosophy is correct, dynamic language makes no sense.
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Eternal and unchanging objects are not subject to construction and
movement. One cannot draw a line or circle that always existed.
One cannot take an eternal, unchanging line segment and cut it in
half and then move one of the parts on top of another figure.

One might think that the dispute here concerns little more than
terminology. Buclid wrote that between any two points one can
draw a straight line. According to the Platonists, one can do no such
thing, but perhaps they can reinterpret this principle. Hilbert’s
Grundlagen der Geometrie (1899) contains a Platonistically Correct
axiom that between any two points there is a straight line. Perhaps
Hilbert and Euclid said the same thing once their languages are
properly understood. Plato himself had little trouble interpreting
his geometers, in less ‘ludicrous’ terms. His complaint concerned
the language, not the geometry.

However, the situation is not this simple on either mathematical
or philosophical grounds. Prima facie, the long-standing problems
of trisecting an angle, squaring a circle, and doubling a cube are not
questions of existence. Did ancient and modern geometers wonder,
for example, whether there is an angle of 20°, or was it a question of
whether such an angle can be drawn and, if so, with what tools?

In the twentieth century, debates over intuitionism provide
another clear and straightforward example of a philosophical chal-
lenge to mathematics as practised (see ch. 7). The traditional
intuitionists were the exact opposite of Plato, holding that
mathematical objects are mental constructions, and mathemat-
ical statements must somehow refer to mental construction.
L. E. J. Brouwer (1948), for example, wrote: ‘Mathematics rigor-
ously treated from [the] point of view [of] deducing theorems
exclusively by means of introspective construction, is called
intuitionistic mathematics . .. {I]t deviates from classical mathe-
matics . . . because classical mathematics believes in the existence
of unknown truths.” And Arend Heyting (1956): ‘Brouwer’s pro-
gramme . . . consisted in the investigation of mental mathematical
construction as such . . . In the study of mental mathematical con-
structions, “to exist” must be synonymous with “to be constructed”
... In fact, mathematics, from the intuitionistic point of view, is a
study of certain functions of the human mind.” The intuitionists
contend that the philosophy has consequences concerning the
proper practice of mathematics. Most notably, they deny the valid-
ity of the so-called law of excluded middle, a thesis that for any
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proposition @, either @ is true or it is not—in symbols ® \/ —®.
Intuitionists argue that excluded middle, and related principles
based on it, are symptomatic of faith in the transcendental existence
of mathematical objects and/or the transcendental truth of math-
ematical statements. The dispute extends throughout mathematics.
For an intuitionist, the content of a proposition stating that not all
natural numbers have a certain property P—symbolized —VxPx—is
that it is refutable that one can find a construction showing that P
holds of each number. The content of a proposition that there is a
number that lacks P—3x—Px—is that one can construct a number x
and show that P does not hold of x. Intuitionists agree that the latter
proposition, 3x—Px, entails the former —VxPx, but they balk at the
converse because it is possible to show that a property cannot hold
universally without constructing a number for which it fails.
Heyting notes that a realist, someone who does hold that numbers
exist independently of the mathematician, will accept the law of
excluded middle and related inferences. From the realist’s perspec-
tive, the content of —VxPx is simply that it is false that P holds
universally, and 3x—Px means that there is a number for which P
fails. Both formulas refer to numbers themselves; neither has any-
thing to do with the knowledge-gathering abilities of mathemat-
icians. Hence, the two formulas are equivalent. Either may be
derived from the other in standard logical systems, which codify so-
called classical logic. So it seems that the correctness of classical logic
turns on a more or less traditional philosophical consideration. If
numbers are mind-independent, then classical logic seems
appropriate. The aforementioned intuitionists contend that since
numbers are mental, classical logic must give way to intuitionistic, or
what is sometimes called constructive logic.

Let us consider one other methodological battle that was
thought to turn on philosophical considerations, one that will
occupy us several times in this book.* A definition of a mathemat-
ical entity is impredicative if it refers to a collection that contains the
defined entity. For example, the usual definition of ‘least upper
bound’ is impredicative since it refers to a set of upper bounds and
characterizes a member of this set. Henri Poincaré based a system-
atic attack on the legitimacy of impredicative definitions on the

* Other examples include the axiom of choice and general extensionality. See
Shapiro 1997: ch. 1.



10 PERSPECTIVE

idea that mathematical objects do not exist independently of the
mathematician (e.g. Poincaré 1906; see Goldfarb 1988 and Chihara
1973). In traditional philosophical terms, Poincaré rejected the
actual infinite, insisting that the only sensible alternative is the
potentially infinite. There is no static set of, say, all real numbers,
determined prior to the mathematical activity. From this perspec-
tive, impredicative definitions are viciously circular. One cannot
construct an object by using a collection that already contains it.

Enter the opposition. G6del (1944) made an explicit defence of
impredicative definition, based on his philosophical views concern-
ing the existence of mathematical objects:

... the vicious circle . . . applies only if the entities are constructed by
ourselves. In this case, there must clearly exist a definition . . . which does
not refer to a totality to which the object defined belongs, because the
construction of a thing can certainly not be based on a totality of things to
which the thing to be constructed belongs. If, however, it is a question of
objects that exist independently of our constructions, there is nothing 1n
the least absurd in the existence of totalities containing members, which
can be described (i.e., uniquely characterized) only by reference to this
totality . . . Classes and concepts may . . . be conceived as real objects . . .
existing independently of us and our definitions and constructions. It
seems to me that the assumption of such objects is quite as legitimate as
the assumption of physical bodies and there is quite as much reason to
believe in their existence.

According to this realism, a definition does not represent a recipe
for constructing, or otherwise creating, an object. Rather, it is a way
to characterize or point to an already existing thing. Thus, an
impredicative definition is not viciously circular. “The least upper
bound’ is no more problematic than other ‘impredicative’ def-
initions, such as the use of ‘the village idiot’ to refer to the stupidest
person in the village, or ‘the town drunk’ to refer to the worst
alcohol abuser in the town.

The orientation suggested by these examples is that philosophy
precedes practice in some deep metaphysical sense. At the funda-
mental level, philosophy determines practice. The picture is that one
first describes or discovers what mathematics is all about—whether,
for example, mathematical entities are objective or mind-
dependent. This fixes the way mathematics is to be done. One who
believes in the independent existence of mathematical objects will



MATHEMATICS (FOR A PHILOSOPHER) 11

accept the law of excluded middle and impredicative definitions.
Let us call the perspective here the philosophy-first principle. The idea
is that we first figure out what it is that we are talking about and
only then figure out what to say about it in mathematics itself.
Philosophy thus has the noble task of determining mathematics.
In traditional terms, the view is that philosophy supplies first
principles for the special sciences like mathematics.

Despite the above examples, the philosophy-first principle is not
true to the history of mathematics. Although intuitionistic and
predicative mathematics are still practised here and there, for the
most part classical logic and impredicative definition are thor-
oughly entrenched in contemporary mathematics. Despite a con-
tinuing debate among philosophers, in mathematics the battles are
substantially over. According to the above scenario, one might think
that the overwhelming majority of mathematicians settled on a
realism like Godel’s. However, at no time did the mathematical
community don philosophical hats and decide that mathematical
objects, numbers for example, really do exist, independently of the
minds of mathematicians, and for that reason decide that it is all
right to engage in the erstwhile questionable methodologies.

If anything, it is the other way around. The first half of this
century saw an intensive study of the role of classical logic and
impredicative definition (as well as other disputed principles) in the
central fields of mathematics: analysis, algebra, topology, and so
on. It was learned that excluded middle and impredicative defin-
ition are essential to the practice of these branches as they had
developed at the time. In short, the principles in question were not
accepted because realism sanctions them, but because they are
needed for the smooth practice of mathematics. In a sense, math-
ematicians could not help using the principles, and with hindsight
we see how impoverished mathematics would be without them.
Many subtle distinctions would have to be made, definitions would
constantly have to be checked for constructive or predicative pedi-
gree, and the mathematician would need to pay close attention to
language. These nuisances proved to be artificial and unproductive.
Crucially, many important results would have to be given up.
Mathematicians do not find the resulting systems attractive.’

The opening paragraph of Richard Dedekind’s treatise (1888)

* See Maddy 1993 for similar considerations concerning definablity.
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on the natural numbers explicitly rejects the constructivist pers-
pective. Then there is a footnote: ‘T mention this expressly because
Kronecker not long ago ... has endeavored to impose certain
limitations upon ... mathematics which I do not believe to be
justified; but there seems to be no call to enter upon this matter
with more detail until the distinguished mathematician shall have
published his reasons for the necessity or merely the expediency
of these limitations.” The distinguished mathematician Leopold
Kronecker did state his reasons, but they were philosophical.
Dedekind apparently wanted to know why the mathematician, as
such, should restrict his methods. He apparently held that phil-
osophy, by itself, does not supply these reasons. Thus, Dedekind
rejected the philosophy-first principle.

The philosophy-first principle is not a dominant theme in
Godel's published philosophical papers. The purpose of Godel
(1944) is to respond to a philosophically based attack on mathemat-
ical principles. His argument is that the methodological criticisms
are based on a philosophy that one need not adopt. Other phil-
osophies support other principles. Godel did not argue for realism
on the grounds of first principles, prior to practice. His philo-
sophical papers (1944 and 1964) contain lucid articulations of
realism, arguments that realism conforms well to the practice of
mathematics, and, perhaps, arguments that realism provides a good
guide to this practice. Godel is notorious for his view that the case
for the existence of mathematical objects is an exact parallel of the
case for the existence of physical objects (see ch. 8, §1). His point, I
take it, is that we draw both conclusions on the basis of articulated
and successful (mathematical and physical) theories. This is not, or
not necessarily, philosophy-first.

Some philosophers are inclined to ignore the fact (if it is a fact)
that philosophy-first is not in accord with the history of mathemat-
ics. They concede the ‘data’ of practice and history, and maintain a
normative claim that mathematics ought to be dominated by phil-
osophy and, with Plato, Brouwer, Poincaré, Kronecker, et al., they
are critical of mathematicians when they neglect or violate the true
philosophical first-principles. Some of these philosophers claim that
parts of contemporary mathematics are incoherent, unbeknownst
to the practitioners who happily go on with their flawed practice.
To pursue the normative claim, a philosopher might formulate a
telos for mathematics and then argue either that mathematicians
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do not accept this telos but should, or else that mathematicians
implicitly accept the telos but do not act in ways that pursue it. We
may be off on a regress, or it may come down to a verbal dispute
over what gets to be called ‘mathematics’.

Other philosophers, perhaps the majority, reject philosophy-first
just because it is not true to practice. The goal of philosophy of
mathematics, they claim, is to give a coherent account of mathemat-
ics, and like it or not, mathematics is what mathematicians do.

One’s orientation on this global, meta-philosophical matter
determines her reaction to some of the contemporary philo-
sophical literature—not just issues local to mathematics. One cen-
tral item is the extent to which contemporary mathematics (or
anything else) is internally consistent or otherwise coherent,
according to the philosopher’s considered reflections on what it is
to be consistent or coherent. Whose standards count? As Lewis
Carroll's Humpty Dumpty might put it, who is in charge?

To take one example, Michael Dummett (e.g. 1973) brings a host
of considerations concerning the learnability of language and the
use of language as a vehicle of communication. One consequence
is that the law of excluded middle is not generally valid and so
classical logic should be replaced by intuitionistic logic (see ch. 7,
§3). Dummett, of course, is aware that if he is right about language
then contemporary mathematical practice is flawed—and even
incoherent. Those inclined toward philosophy-first might take
Dummett’s arguments concerning language seriously. It is a live
possibility that Dummett is right and that just about every math-
ematician is incoherent, or at least badly mistaken on a regular and
systematic basis. On the other hand, anti-revisionist philosophers
inclined away from philosophy-first would probably reject Dum-
mett’s considerations about language, perhaps out of hand. They
argue that Dummett’s arguments about language must be wrong if
they demand revisions in mathematics. The rhetorical question is
this: Which is more secure and more likely to be correct, math-
ematics as practised or Dummett’s philosophy of language? To put
the matter more neutrally Dummett argues that contemporary
mathematics does not enjoy a certain type of justification. An
anti-revisionist might agree with this, but will quickly add that
mathematics does not need this justification.

Let us briefly take up the extreme opposite of philosophy-first,
the thesis that philosophy is irrelevant to mathematics. On this
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perspective, mathematics has a life of its own quite independent of
any philosophical considerations. A philosophical view has nothing
to contribute to mathematics and is at worst a meaningless soph-
istry, the rambling and (attempted) meddling of outsiders. At best,
philosophy of mathematics is an unworthy handmaiden to math-
ematics. If it has a job at all, it is to give a coherent account of
mathematics as practised up to that point. The philosopher must be
prepared to reject his work, out of hand, if developments in math-
ematics come into conflict with it. Call this the philosophy-last-if-at-
all principle.

In defence of philosophy-last, the (unfortunate) fact is that many
mathematicians, perhaps most, are not in the least interested in
philosophy, and it is mathematicians, after all, who practise and
further articulate their field. For better or worse, the discipline
carries on quite independently of the musings of philosophers.

It is perhaps ironic that there is sentiment for philosophy-last
from philosophers. The writings of members of the Vienna Circle
contain pronouncements against traditional philosophical ques-
tions, especially those of metaphysics. Rudolf Carnap, for example,
argues that philosophical questions concerning the real existence of
mathematical objects are ‘external’ to the mathematical language
and, for this reason, are mere ‘pseudo-questions’ (see ch. 5, §3).

I presume (or at least hope) that anti-revisionists do not mean to
worship mathematics and mathematicians. No practice is sacro-
sanct. As fallible human beings, mathematicians do occasionally
make mistakes, even systematic mistakes; and some errors can be
uncovered by something recognizable as philosophy. So perhaps
a reasonable anti-revisionist position is that any given principle used
in mathematics is taken as correct by default, but not incorrigibly.
The correctness of the bulk of mathematics is a well-entrenched,
high-level theoretical principle. Given the enormous success of
mathematics—including classical logic, impredicative definition,
and so on—it would take a lot to dislodge it. A few reflections on a
philosopher’s own intuitive beliefs, or generalizations of observa-
tions on ordinary language, will not overturn established mathemat-
ics, at least not by themselves. The underlying idea is that scientists
and mathematicians usually know what they are doing, and that
what they do is interesting and worthwhile.

Perhaps philosophy-first and philosophy-last-if-at-all make for
too sharp a contrast. As noted above, some mathematicians were
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concerned with philosophy, and used it at least as a guide to their
work. Even if there are no philosophical first principles, philosophy
can set the direction of mathematical research. Paul Bernays (1935),
for example, can be seen as rejecting philosophy-last, when he
wrote that the ‘value of platonistically inspired mathematical
conceptions is that they furnish models [that] stand out by their
simplicity and logical strength’. Some observers claim that mathe-
matics has become a highly specialized and disoriented series of
disciplines, with experts in even related fields unable to understand
each other’s work. Philosophy might help provide orientation and
direction, even if it does not supply first principles.

For a striking example, Godel claimed that his realism was an
important factor in the discovery of both the completeness of first-
order logic and the incompleteness of arithmetic. The complete-
ness theorem is an easy consequence of some of Thoralf Skolem’s
results. Yet Skolem did not draw the conclusion. The reason can be
traced to the different orientations that Skolem and Goédel had
toward mathematics, orientations that might loosely be described
as philosophical.’

We are not going to settle the issue of philosophy-first,
philosophy-last, or philosophy-in-between here. In all likelihood,
folks inclined toward an extreme version of philosophy-last do not
find the topic of this book interesting. Perhaps the rest of us can
agree that philosophers have their own interests, beyond those
of their colleagues in other departments, and the pursuit of
those interests is interesting and worthwhile. The work of the
philosopher of mathematics should merge with that of the mathe-
matician, but at least part of it is different work. Philosophy and
mathematics are intimately interrelated, with neither one dominat-
ing the other. On this view, the correct way to do mathematics
is not a direct consequence of the true philosophy, nor is the
correct philosophy of mathematics an immediate consequence of
mathematics as practised.

The job of the philosopher is to give an account of mathematics
and its place in our intellectual lives. What is the subject-matter of
mathematics (ontology)? What is the relationship between the

¢ See Godel’s letters to Hao Wang, published in Wang 1974, and the introduc-
dons, by Burton Dreben and Jean van Heijenoort, to the completeness results in
Godel 1986. See also Godel 1951.
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subject-matter of mathematics and the subject-matter of science
which allows such extensive application and cross-fertilization?
How do we manage to do and know mathematics (epistemology)?
How can mathematics be taught? How is mathematical language to
be understood (semantics)? In short, the philosopher must say
something about mathematics, something about the applications
of mathematics, something about mathematical language, and
something about ourselves. A daunting task, even without the job
of eliciting first principles.

As I see it, the primary purpose of the philosophy of mathemat-
ics is to interpret mathematics, and thereby illuminate the place of
mathematics in the overall intellectual enterprise. According to
anti-revisionism, it is mathematics that we interpret, not what a prior
philosophical theory says that mathematics should be. In general,
interpretation can and should involve criticism, but according to
anti-revisionism, criticism does not come from outside—from pre-
conceived first principles. A revisionist, perhaps in the grip of
philosophy-first, might argue that mathematics, as practised, has no
coherent interpretation. He proposes corrections, or replacements,
to put mathematics on a better foundation, while maintaining its
proper function. We will stay neutral on this point here, so as to
provide coverage of a variety of major positions.

Perhaps all parties can agree that philosophy of mathematics is
done by those who care about mathematics and want to under-
stand its role in the intellectual enterprise. A mathematician who
adopts a philosophy of mathematics should gain something by this,
an orientation toward the work, some insight into its perspective
and role, and at least a tentative guide to its direction—what sorts
of problems are important, what questions should be posed, what
methodologies are reasonable, what is likely to succeed, and so on.

3. Naturalism and Mathematics

Quine (1981: 72) characterizes naturalism as ‘the abandonment of
the goal of first philosophy” and ‘the recognition that it is within
science itself . . . that reality is to be identified and described’ (see
also Quine 1969). From this perspective, the primary epistemo-
logical question is to determine how humans, as natural organisms
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in the physical world, manage to learn anything about the world
around them. The Quinean naturalist contends that science has the
most plausible line on this, and so epistemology must be continu-
ous with science, ultimately physics. One slogan is that epistemol-
ogy is a branch of cognitive psychology. Any knowledge that we
humans claim must be consistent with our best psychological
account of ourselves as knowers. The same goes for ontology and
any other legitimate philosophical inquiry: “The naturalistic phil-
osopher begins his reasoning within the inherited world theory as a
going concern . . . [The] inherited world theory is primarily a scien-
tific one, the current product of the scientific enterprise’ (Quine
1981: 72).

In one form or another, naturalism has become popular among
philosophers, especially in North America where Quine’s influence
is greatest. I close this chapter with a few words on the rami-
fications for the philosophy of mathematics. The topic recurs
throughout the book.

To restate the obvious, Quine’s naturalism entails a rejection of
what I call philosophy-first. The naturalist looks at physical science
‘as an inquiry into reality, fallible and corrigible, but not answer-
able to any supra-scientific tribunal, and not in need of any justifi-
cation beyond observation and the hypothetico-deductive method’
(Quine 1981: 72). One might interpret the key passages as an
endorsement of philosophy-last-if-at-all, but Quine does not go this
far. He regards science and at least parts of philosophy as a seam-
less ‘web of belief. A philosophical view that is totally divorced
from science as practised should be rejected—good riddance—but
traffic along and across a blurry border is to be encouraged. The
epigraph to his influential Word and Object (1960) is a quotation
from Otto Neurath (1932), “‘We are like sailors who have to rebuild
their ship on the open sea, without being able to dismantle it in dry
dock and reconstruct it from the best components.” Quine does not
include the next sentence in Neurath’s text, which is: ‘Only meta-
physics can disappear without trace.” At least part of metaphysics is
an integral part of the scientific ‘ship’ and cannot be exorcized
from it.

If Quine’s metaphor of Neurath’s ship is taken seriously, the
question of philosophy-first and philosophy-last loses much of its
force, if not its sense. Before we can determine whether the
remaining/legitimate part of philosophy is first, last, or in between
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(vis-a-vis mathematics or anything else), we have to separate out
philosophy from the web of belief, and Quine famously argues that
we can do no such thing (see also Resnik 1997: chs. 6-7). That
is, large parts of philosophy are essentially part of the scientific
enterprise. This is naturalized philosophy.

Concerning the philosophy of mathematics, there is an import-
ant irony in Quine’s focus on science. For Quine, the modern
empiricist, the driving goal of the science/philosophy enterprise is
to account for and predict sensory experience (see ch. 8, §2 for
more on Quine’s empiricism). He contends that science has the
only plausible line on this, and he accepts mathematics only to the
extent that it is needed for the scientific/philosophical enterprise
(perhaps with a little more mathematics thrown in, for ‘rounding
things out’). He does not accept (as true) the parts of mathematics,
such as advanced set theory, that go beyond this role of abetting
empirical science. That is, Quine holds that if a part of mathemat-
ics does not play an inferential role (however indirect) in the parts
of the scientific web that bear on sensory perception, then that part
should be jettisoned, via Occam’s razor. Quine thus makes pro-
posals to mathematicians, based on this overall philosophy of
mathematics and science. He suggests, for example, that set theor-
ists adopt a certain principle, called 'V =L, since the resulting
theory is clean, and so presumably easier to apply. We are to ignore
the fact that most set theorists are sceptical of this principle.
Quine’s argument here is in the spirit of philosophy-first with
respect to mathematics, even if it is science/philosophy-first.

Penelope Maddy’s (1997) version of naturalism prescribes a def-
erential attitude towards mathematicians like the one Quine shows
toward scientists. The argument, in part, is that the scientific web
of belief—as practised—is not as seamless as Quine contends.
There is no single governing theory that covers all the branches of
natural science and mathematics. Mathematics has its own meth-
odology, which has proven successful over the centuries. The suc-
cess of mathematics is measured in mathematical, not scientific
terms.

Against Quine, one might argue that if mathematicians gave
serious pursuit only to those branches known to have applications
in natural science, we would not have much of the mathematics
we have today, nor would we have all of the science we have today.
The history of science is full of cases where branches of ‘pure’
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mathematics eventually found application in science. In other
words, the overall goals of the scientific enterprise have been well
served by mathematicians pursuing their own disciplines with their
own methodology.

This argument has force within Quine’s overall holistic empiri-
cist framework. He maintains that mathematics is important or
legitimate only to the extent that it aids science. If we take a long-
range view of ‘aid’, we see that science has been well served by
letting mathematicians proceed by their own standards, ignoring
science if necessary. Thus, we do not need a direct inferential link
between a piece of mathematics and sensory experience before we
can accept the mathematics as a legitimate part of the web. In any
case, Maddy does not endorse Quine’s overarching holism. She
takes the seams in the web of belief seriously, and holds that we do
not have to show that there is an ultimate connection to science to
justify mathematics, either locally or globally. Mathematics does
not look to either science or philosophy for criticism or
justification.

Maddy thus demurs from Quine’s empiricism. The seams in the
web of belief—the ship of Neurath—indicate that there are legit-
imate goals beyond the prediction and control of sensory
experience.

An advocate of astrology might make a corresponding claim that
astrology has shown success in its own terms (whatever those
terms are).” Does it enjoy the same autonomy and support as
mathematics? Quine’s and Maddy’s naturalism would counsel that
there is no need to provide extra-scientific and extra-mathematical
justification for the differential attitude toward the likes of astrology
on the one hand and mathematics and science on the other.
Remember that there is no legitimate extra-scientific (or extra-
mathematical) tribunal. Ordinary scientific criteria are sufficient to
reject astrology. Perhaps there is no need to explain the differential
attitude either, but one can appeal to the role of mathematics in
the overall web of belief. To follow Maddy and accord autonomy
to mathematics is not to ignore the deep connections between
mathematics and science (see ch. 2, §3).

7 Superficially, science and astrology do have the same goals, namely prediction,
and so they can be compared by common criteria, at least in principle. A neutral
observer could make the predictions precise and then compare track-records. Of
course, astrologers do not subject their ‘discipline’ to standard scientific testing.
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In sum, for Maddy as for Quine, the rejection of philosophy-first
is firm. Philosophy does not criticize mathematics. Philosophy does
not justify mathematics either. Only mathematics does that. As
above, philosophy-last-if-at-all does not follow. Maddy (1997: ch. 3)
distinguishes those parts of traditional philosophy that are ‘con-
tinuous with mathematics’, those parts that are outside mathemat-
ics but ‘continuous with science’, and those parts that are outside of
science and mathematics altogether. Although the borders between
these parts are not sharp, only items in the first group have any
bearing on the most important task of delineating (or criticizing or
improving) mathematical methodology. Items in the last group—
those outside of mathematics and science—are the aspects of trad-
itional philosophy rejected as philosophy-first. Gone without trace.
The middle group—the parts of philosophy outside of mathemat-
ics and continuous with science—includes Quine’s ‘naturalized
philosophy’.

The issue, as I see it, concerns the extent to which a part of
philosophy is supposed to justify or ground mathematics or sci-
ence, and not so much the extent to which the philosophy is scien-
tific or “continuous’ with science. Perhaps this is little more than a
terminological preference, since most of Maddy’s and Quine’s fire
is aimed at philosophy-first, the idea that philosophy provides the
ultimate justification for mathematics.
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A POTPOURRI OF QUESTIONS
AND ATTEMPTED ANSWERS

HE purpose of this chapter is to sketch the major problems and
Tsome of the major positions in the interpretive enterprise of the
philosophy of mathematics. What questions must a philosophy of
mathematics answer in order to illuminate the place of mathemat-
ics in the overall intellectual enterprise—in the ship of Neurath?
What sorts of answers have been proposed?

1. Necessity and A Priori Knowledge

A casual survey of the sciences shows that mathematics is involved
in many of our best efforts to gain knowledge. Thus, the phil-
osophy of mathematics is, in large part, a branch of
epistemology—that part of philosophy that deals with cognition
and knowledge. However, mathematics at least appears to be dif-
ferent from other epistemic endeavours and, in particular, from
other aspects of the pursuit of science. Basic mathematical proposi-
tions do not seem to have the contingency of scientific proposi-
tions. Intuitively, there do not have to be nine planets of the sun.
There could have been seven, or none. Gravity does not have to
obey an inverse—square law, even approximately. In contrast,
mathematical propositions, like 7 + 5 = 12 are sometimes held up
as paradigms of necessary truths. Things just cannot be otherwise.
The scientist readily admits that her more fundamental theses
might be false. This modesty is supported by a history of scientific
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revolutions, in which long-standing, deeply held beliefs were
rejected. Can one seriously maintain the same modesty for math-
ematics? Can one doubt that the induction principle holds for the
natural numbers? Can one doubt that 7 + 5 = 12? Have there been
mathematical revolutions that resulted in the rejection of central
long-standing mathematical beliefs? On the contrary, mathematical
methodology does not seem to be probabilistic in the way that
science is. Is there even a coherent notion of the probability of a
mathematical statement? At least prima facie, the epistemic basis of
the induction principle, or ‘7 + 5 = 12°, or the infinity of the prime
numbers, is firmer, and different in kind, than that of the principle
of gravitation. Unlike science, mathematics proceeds via proof. A
successful, correct proof eliminates all rational doubt, not just all
reasonable doubt. A mathematical demonstration should show that
its premisses logically entail its conclusion. It is not possible for the
premisses to be true and the conclusion false.

In any case, most thinkers agree that basic mathematical pro-
positions enjoy a high degree of certainty. How can they be false?
How can they be doubted by any rational being—short of a general
sceptic who holds that everything should be doubted? Mathematics
seems essential to any sort of reasoning at all. If, as part of a
philosophical thought experiment, we entertain doubts about basic
mathematics, is it clear that we can go on to think at all?

The phrase ‘a priori’ means something like ‘prior to experience’
or ‘independent of experience’. It is an epistemic notion. Define a
proposition to be known a priori if the knowledge is not based on
any ‘experience of the specific course of events of the actual world’
(Blackburn 1994: 21). One may need experience in order to grasp
the concepts involved in the proposition, but no other specific
experience with the world. A proposition is known a posteriori or
empirically if it is not known a priori. That is, a proposition is known
a posteriori if the knowledge is based on experience of how the
world unfolds. A true proposition is itself a priori if it can become
known a priori, and a true proposition is a posteriori if it cannot—if
experience with the world (beyond what is needed to grasp the
concepts) is necessary in order to come to know the proposition.

Typical examples of a posteriori propositions are ‘the cat is on
the mat’ and ‘gravity approximately obeys an inverse-square law’.
As we shall see (ch. 4, §3; ch. 8, §2), some philosophers hold that
there is no a priori knowledge, but for the rest, typical a priori
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propositions include ‘all red objects are coloured’ and ‘nothing is
completely red all over and completely green all over at the same
time’. Probably the most-cited examples are the propositions of
logic and mathematics, our present focus. Mathematics does not
seem to be based on observation in the way that science is. Again,
mathematics is based on proof.

It is thus incumbent on any complete philosophy of mathematics
to account for the at-least apparent necessity and a priority of
mathematics. The straightforward option, perhaps, would be to
articulate the notions of necessity and a priority, and then show
how they apply to mathematics. Let us call this the ‘traditional
route’. It follows the maxim that things are as they seem to be. The
burden on the traditional route is to show exactly what it is for
something to be necessary and a priori knowable. In the present
climate, no one can rightfully claim that these notions are suf-
ficiently clear and distinct. If the philosopher is to invoke the twin
notions of necessity and a priority, she must say what it is that is
being invoked.

There is an important tension in the traditional picture. On that
view, mathematics is necessary and knowable a priori, but math-
ematics has something to do with the physical world. As noted,
mathematics is essential to the scientific approach to the world, and
science is empirical if anything is—rationalism notwithstanding. So
how does a priori knowledge of necessary truths figure in ordinary.
empirical knowledge-gathering? Immanuel Kant’s thesis that
arithmetic and geometry are ‘synthetic a priori’ was a heroic
attempt to reconcile these features of mathematics (see ch. 4, §2,.
According to Kant, mathematics relates to the forms of percep-
ton. It concerns the ways that we perceive the material world.
Euclidean geometry concerns the forms of spatial intuition, and
arithmetic concerns the forms of spatial and temporal intuition.
Mathematics is thus necessary because we cannot structure the
world in any other way. We must perceive the world through these
forms of intuition. No other forms are available to us. Mathemat-
ical knowledge is a priori since we do not need any particular
experience with the world in order to grasp the forms of perceptual
intuition.

It is a gross understatement that Kant’s views were, and remain.,
influential, but his views on mathematics were seen to be problem-
atic, almost from the start. The Kantian may be guilty of trading
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some difficult problems and obscure notions like a priority and
necessity for some even more difficult problems concerning intu-
ition. Alberto Coffa (1991) points out that a major item on the
agenda of western philosophy throughout the nineteenth century
was to account for the (at least) apparent necessity and a priori
nature of mathematics, and the applications of mathematics, with-
out invoking Kantian intuition. This agenda item is alive today.

Another option is for the philosopher to argue that mathematical
principles are not necessary or a priori knowable, perhaps because
no propositions enjoy these honours. Some empiricists find this
non-traditional option attractive, rejecting or severely limiting the a
priori. Today this view is more popular than ever, mostly in North
America under the influence of W. V. O. Quine’s naturalism/
empiricism (see ch. 1, §3 and ch. 8, §3). One burden on a phil-
osopher who pursues this non-traditional option is to show why it
appears that mathematics is necessary and a priori. One cannot
simply ignore the long-standing belief concerning the special status
of mathematics. That is, even if the traditional beliefs are mistaken,
there must be something about mathematics that has led so many
to believe that it is necessary and a priori knowable.

2. Global Matters: Objects and Objectivity

As noted in the previous chapter, the philosopher of mathematics
immediately encounters sweeping issues. What, if anything, is
mathematics about? How is mathematics pursued? How do we
know mathematics? What is the methodology of mathematics, and
to what extent is this methodology reliable? What do mathematical
assertions mean? Do we have determinate and unambiguous con-
ceptions of the basic mathematical concepts and ideas? Is math-
ematical truth bivalent, in the sense that every well-formed and
unambiguous sentence is either determinately true or determin-
ately false? What is the proper logic for mathematics? To what
extent are the principles of mathematics objective and independent
of the mind, language, and social structure of mathematicians? Is
every mathematical truth knowable? What is the relation between
mathematics and science that makes application possible?

Some of these questions, of course, are not limited to mathemat-
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ics. From almost the beginning of recorded history, the basic meta-
physical problem has been to determine what (if anything) ordin-
ary language, or scientific language, is about, and philosophers have
always wondered whether ordinary truth is independent of the
human mind. Recently, the proper semantics and logic for ordinary
discourse has become an important topic in philosophy, with philo-
sophers venturing into linguistics. As noted in ch. 1, we must learn
the lesson of rationalism and be careful when we extend conclu-
sions concerning mathematics to the rest of language and the rest
of the intellectual enterprise. And vice versa: we must be careful
when extending conclusions about ordinary language and science
to mathematics.

2.1. Object

One global issue concerns the subject-matter of mathematics.
Mathematical discourse has the marks of reference to special kinds
of objects, such as numbers, points, functions, and sets. Consider
the ancient theorem that for every natural number n, there is a
prime number m > n. It follows that there is no largest prime num-
ber, and so there are infinitely many primes. At least on the surface,
this theorem seems to concern numbers. What are these things? Are
we to take the language of mathematics at face value and conclude
that numbers, points, functions, and sets exist? If they do exist, are
they independent of the mathematician, her mind, language, and
so on? Define realism in ontology to be the view that at least some
mathematical objects exist objectively, independent of the
mathematician.

Realism in ontology stands opposed to views like idealism and
nominalism. The idealist agrees that mathematical objects exist, but
holds that they depend on the (human) mind. He may propose that
mathematical objects are constructs arising out of the mental activ-
ity of individual mathematicians. This would be a subjective ideal-
ism, analogous to a similar view about ordinary physical objects.
Strictly speaking, from this perspective every mathematician has his
or her own natural numbers, Euclidean plane, and so on. Other
idealists take mathematical objects to be part of the mental fabric
shared by all humans. Perhaps mathematics concerns the ever-
present possibility of construction. This is an inter-subjective



26 PERSPECTIVE

idealism, of sorts. All idealists agree on the counterfactual that
if there were no minds, there would be no mathematical objects.
Ontological realists deny the counterfactual, insisting that
mathematical objects are independent of the mind.

Nominalism is a more radical denial of the objective existence of
mathematical objects. One version holds that mathematical objects
are mere linguistic constructions. In ordinary discourse we dis-
tinguish a given item, such as the author of this book, from a name
of that item. Stewart Shapiro is not the same as ‘Stewart Shapiro’.
One is a person and the other a pair of words. Some nominalists
deny this distinction concerning mathematical objects, suggesting
that the number nine, for example, just is the corresponding
numeral ‘9’ (or ‘nine’, ‘IX’, etc.).! This is a variation of a more
traditional nominalism concerning so called ‘universals’, like col-
ours and shapes. That view, popular during the medieval period.
has it that only names are universal. There is no more to an object
being red than having the word ‘red’ correctly apply to (a name of)
that object.

Today it is more common for a sceptic to deny the existence of
mathematical objects than to construct them out of language. This
mathematical nihilism is also called ‘nominalism’ (see ch. 9).

Some philosophers hold that numbers, points, functions, and sets
are properties or concepts, distinguishing those from objects on some
metaphysical or semantic grounds. I would classify these philo-
sophers according to what they say about properties or concepts.
For example, if such a philosopher holds that properties exist
independent of language and the mind—a realism concerning
properties—then I would classify her as a realist in ontology con-
cerning mathematics, since she holds that mathematics has a dis-
tinctive subject-matter and this subject-matter is independent of the
language and mind of the mathematician. Similarly. if a phil-
osopher holds that numbers, say, are concepts and that concepts are

' There are ontological issues concerning such linguistic items as numerals.

Some philosophers hold that they are abstract, eternal, acausal objects, much like
what the ontological realist says about numbers. Numerals in this sense are called
types. In contrast, numeral tokens are physical objects—hunks of ink, burnt toner,
etc.—that exemplify the types. Unlike types, tokens are created and destroyed at
will. For our nominalist to be an anti-realist in ontology concermng mathematics,
she must deny the objective existence of types. This matter recurs several times
below.
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mental, then he is an idealist concerning mathematics, and if he is a
traditional nominalist concerning properties or concepts, then he is
a nominalist concerning mathematics.

Realism in ontology does not, by itself, have any ramifications
concerning the nature of the postulated mathematical objects (or
properties or concepts), beyond the bare thesis that they exist
objectively. What are numbers like? How do they relate to more
mundane objects like stones and people? Among ontological real-
ists, the most common view is that mathematical objects are
acausal, eternal, indestructible, and not part of space-time. After a
fashion, mathematical and scientific practice support this, once the
existence of mathematical objects is conceded. The scientific litera-
ture contains no reference to the location of numbers or to their
causal efficacy in natural phenomenon or to how one could go
about creating or destroying a number. There is no mention of
experiments to detect the presence of numbers or determine their
mathematical properties. Such talk would be patently absurd. Real-
ism in ontology is sometimes called ‘Platonism’, because Plato’s
Forms are also acausal, eternal, indestructible, and not part of
space-time (see ch. 3, §1).

The common versions of realism in ontology nicely account for
the necessity of mathematics: if the subject-matter of mathematics
is as these realists say it is, then the truths of mathematics are
independent of anything contingent about the physical universe
and anything contingent about the human mind, the community of
mathematicians, and so on. So far, so good.

What of a priori knowledge? The connection with Plato might
suggest the existence of a quasi-mystical connection between
humans and the abstract and detached mathematical realm. This
faculty, sometimes called ‘mathematical intuition’, supposedly leads
to knowledge of basic mathematical propositions, such as the
axioms of various theories. The analogy is with sense perception.
which leads to knowledge of the external world. Kurt Gédel (1964,
seems to have something like this in mind with his suggestion that
some principles of set theory ‘force themselves on us as true’ (see
ch. 8, §1). Since, presumably, the connection between the mind and
the mathematical realm is independent of any sensory experience,
the quasi-mystical manoeuvre would make mathematical know-
ledge a priori par excellence. Despite Godel’s authority, however,
most contemporary philosophers reject this more or less direct



28 PERSPECTIVE

mathematical intuition. The faculty is all but ruled out on the
naturalist thesis of the human knower as a physical organism in the
natural world (see ch. 1, §3). According to the naturalist, any
epistemic faculty claimed by the philosopher must be subject to
ordinary, scientific scrutiny. That is, a philosopher/scientist cannot
invoke a direct connection between the mind and the mathematical
universe until he has found a natural, scientific basis for it. Such a
basis seems most unlikely if numbers, points, and so on are as
eternal and acausal as the typical realist says they are. How does
one go about establishing a link to such objects? So perhaps the
Platonist has gone too far with this mind-mathematical connection
via mathematical intuition. Sometimes, the ‘platonism’ of realism
in ontology is written with a lower-case ‘p’, in order to temper the
connection to Plato. The typical realist in ontology defends some-
thing like a Platonic ontology for mathematics, without a Platonic
epistemology.

With the rejection of a quasi-mystical connection, however, the
ontological realist is left with a deep epistemic mystery. If math-
ematical objects are part of a detached, eternal, acausal mathemat-
ical realm, how is it possible for humans to gain knowledge of
them? It is close to a piece of incorrigible data that we do have at
least some mathematical knowledge, whatever this knowledge
comes to. If realism in ontology is correct, mathematical know-
ledge is knowledge of an abstract, acausal mathematical realm.
How is this knowledge possible? How can we know anything about
the supposedly detached mathematical universe? If our realist is
also a naturalist, the challenge is to show how a physical being in a
physical universe can come to know anything about abstract
objects like numbers, points, and sets.

Let us turn to the anti-realisms. f numbers, for example, are
creations of the human mind or are inherent in human thought, as
idealists contend, then mathematical knowledge is, in some sense,
knowledge of our own minds. Mathematics would be a priori to
the extent that this self-knowledge is independent of sensory
experience. Similarly, mathematical truths would be necessary to
the extent that the structure of human thought is necessary. On
views like this, the deeper problem is to square the postulated
picture of mathematical objects and mathematical knowledge with
the full realm of mathematics as practised. There are infinitely
many natural numbers, and even more real numbers than natural
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numbers. The idealist must square our knowledge of natural and
real numbers with the apparent finitude of the mind.

If mathematical objects are constructed out of linguistic items,
then mathematical knowledge is knowledge of language. It is not
clear what would become of the theses that mathematical truths
are necessary and a priori knowable. That would depend on the
nominalist’s views on language. Mathematical knowledge would be
a priori knowable to the extent that our knowledge of language is a
priori. Here again, the main problem is one of reconciling the view
with the full range of mathematics. Finally, if there are no math-
ematical objects, as some nominalists contend, then the phil-
osopher must construe mathematical propositions as not involving
reference to mathematical objects, or else the nominalist should
hold that mathematical propositions are systematically false (and so
not necessary) or vacuous. Similarly, our nominalist will have to
construe mathematical knowledge in terms other than knowledge
of mathematical objects, or else argue that there is no mathemat-
ical knowledge (and so no a priori mathematical knowledge) at all.

2.2. Truth

In light of the interpretative nature of philosophy of mathematics,
and the trend of analytic philosophy generally, it is natural to turn
our attention to the language of mathematics. What do mathemat-
ical assertions mean? What is their logical form? What is the best
semantics for mathematical language? Georg Kreisel is often cred-
ited with shifting the focus from the existence of mathematical
objects to the objectivity of mathematical discourse. Define realism
in truth-value to be the view that mathematical statements have
objective truth-values, independent of the minds, languages,
conventions, and so on of mathematicians.

The opposition is anti-realism in truth-value, -the thesis that if
mathematical statements have truth-values at all, these truth-values
are dependent on the mathematician. One version of truth-value
anti-realism is that unambiguous mathematical statements get their
truth-values in virtue of the human mind or in virtue of actual or
possible human mental activity. On this view, we make some pro-
positions true or false, in the sense that the structure of the human
mind is somehow constitutive of mathematical truth. The view
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here is an idealism in truth-value, of sorts. It does not follow that
we decide whether a given proposition is true or false, just as an
idealist about physical objects holds that we do not decide what
perceptions to have.

Part of what it is for mathematical statements to be objective is
the possibility that the truth of some sentences is beyond the abil-
ities of humans to know this truth. That is, the realist in truth-value
countenances the possibility that there may be unknowable math-
ematical truths. According to that view, truth is one thing, know-
ability another. The truth-value anti-realist might take the opposite
position, arguing that all mathematical truths are knowable. If, in
some sense, mathematical statements get their truth-values in vir-
tue of the mind, then it would be reasonable to contend that no
mathematical truth lies beyond the human ability to know: for any
mathematical proposition @, if @ is true then at least in principle,
@ can become known.

There is a similar battle-line along the semantic front. The realist
in truth-value presumably holds that mathematical language is biva-
lent, in the sense that each unambiguous sentence is either
determinately true or determinately false. Bivalence seems to be
part and parcel of objectivity (so long as vagueness or ambiguity is
not part of the picture). Many anti-realists demur from bivalence,
arguing that the mind and/or the world may not determine, of
every unambiguous mathematical sentence, whether it is true or
false. If, as suggested above, the anti-realist holds that all truths are
knowable, then modesty would counsel against bivalence. It is
arrogant to think that the human mind is capable of determining,
of every unambiguous mathematical sentence, whether it is true or
false. Some anti-realists take their view as entailing that classical
logic must be replaced by intuitionistic logic, which amounts to a
philosophically based demand for revisions in mathematics (see
ch. 1, §2 and ch. 7).

A second, more radical version of anti-realism in truth-value is
that mathematical assertions lack (non-trivial, non-vacuous) truth-
values altogether. Strictly speaking, it would follow that there is
no mathematical knowledge either, so long as we agree that ‘® is
known’ entails ‘® is true’. If this anti-realist does not wish to
attribute massive error and confusion to the entire mathematical
and scientific community, then she needs an account of what
passes for mathematical knowledge. If mathematics is not a
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knowledge-gathering activity, then what is it? Presumably, this
radical anti-realist in truth-value agrees that mathematics is a sig-
nificant and vitally important part of the intellectual enterprise,
and so she needs an account of this significance. If good math-
ematics is not true mathematics (since the sentences do not have
non-trivial, non-vacuous truth-values), then what is good
mathematics?

There is a prima facie alliance between realism in truth-value and
realism in ontology. Realism in truth-value is an attempt to develop
a view that mathematics deals with objective features of the world.
The straightforward way to interpret the language of mathematics
is to take it at face value, and not opt for a global reinterpretation of
the discourse. Prima facie, numerals are singular terms, proper
names. The linguistic function of singular terms is to denote
objects. So, if the language is to be taken literally, then its singular
terms denote something. Numerals denote numbers. If non-trivial
sentences containing numerals are true, then numbers exist. The
truth-value realist further contends that some of the sentences are
objectively true—independent of the mathematician. The onto-
logical thesis that numbers exist objectively may not directly follow
from the semantic thesis of truth-value realism. There may be
objective truths about mind-dependent entities. However, the
objective existence of mathematical objects is at least suggested by
the objective truth of mathematical assertions.

This perspective recapitulates half of a dilemma proposed in
Paul Benacerraf’s ‘Mathmatical Truth’ (1973), an article that con-
tinues to dominate contemporary discussion in the philosophy of
mathematics. One strong desideratum is that mathematical
statements should be understood in the same way as ordinary
statements, or at least respectable scientific statements. That is,
we should try for a uniform semantics that covers ordinary/
scientific language as well as mathematical language. If we assume
that some sort of realism in truth-value holds for the sciences, then
we are led to realism in truth-value for mathematics, and an
attempt to understand mathematical assertions at face value—the
same way that ordinary scientific assertions are understood.
Another motivation for the desideratum comes from the fact that
scientific language is thoroughly intertwined with mathematical
language. It would be awkward and counter-intuitive to provide
separate semantic accounts for mathematical and scientific
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language, and yet another account of how the discourses interact.

This leads to our two realisms, in ontology and truth-value.
According to the two views, mathematicians mean what they
say and most of what they say is true. In recent literature on
philosophy of mathematics, Gédel (1944, 1964), Penelope Maddy
(1990), Michael Resnik (1997), and myself (Shapiro 1997) are
thoroughgoing realists, holding both realism in ontology and
realism in truth-value (see chs. 8 and 10).

We now approach the other horn of Benacerraf’s dilemma. Our
realisms come with seemingly intractable epistemological prob-
lems. From the realism in ontology, we have the objective existence
of mathematical objects. Since mathematical objects seem to be
abstract and outside the causal nexus, how can we know anything
about them? How can we have any confidence in what the math-
ematicians say about mathematical objects? This is a prime motiv-
ation to seek an alternative to one or other of the realisms.
Benacerraf argues that anti-realist philosophies of mathematics
have a more tractable line on epistemology, but then the semantic
desideratum is in danger. The dilemma, then, is this: the desired
continuity between mathematical language and everyday and scien-
tific language suggests the two realisms, but this leaves us with
seemingly intractable epistemic problems. We must either solve the
problems with realism, give up the continuity between mathemat-
ical and everyday discourse, or give up the prevailing semantical
accounts of ordinary and scientific language.

There is another close alliance between what I call idealism in
ontology and idealism in truth-value. The former contends that
numbers, for example, are dependent on the human mind. This at
least suggests that mathematical truth is also dependent on the
mind. The same goes for the other sorts of anti-realisms. Whatever
one says about numbers at least suggests something similar about
mathematical truth. On the contemporary scene Hartry Field
(1980), Michael Dummett (1973, 1977), and the traditional intui-
tionists L. E. J. Brouwer and Arend Heyting are thorough-going
anti-realists, concerning both ontology and truth-value. Field holds
that mathematical objects do not exist and that mathematical
propositions have only vacuous truth-values (see ch. 9, §1). The
traditional intuitionists are mathematical idealists (see ch. 7, §2).

Despite the natural alliances, a survey of the literature reveals no
consensus on any logical connection between the two realist theses
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or their negations. Perhaps the Benacerraf dilemma leads some to
different approaches. Each of the four possible positions is articu-
lated and defended by established and influential philosophers of
mathematics.

A relatively common programme today, pursued by Charles
Chihara (1990) and Geoffrey Hellman (1989), is realism in truth-
value combined with a thorough (nominalist) anti-realism in
ontology (see ch. 9, §2, ch. 10, §3). The goal is to account for the
objectivity of mathematical discourse without postulating a specif-
ically mathematical ontology. Numbers do not exist (or may not
exist), but some of the propositions of arithmetic are objectively
true. Of course, these views demand that ordinary mathematical
statements should not be understood literally, at face value. Advo-
cates of this perspective suggest alternative interpretations of
mathematical discourse, and then hold that, so interpreted, math-
ematical statements are objectively true or objectively false. I only
know of one prominent example of a realist in ontology who is
an anti-realist in truth-value, Neil Tennant (1987, 1997, 1997a).
He holds, with Frege, that some mathematical objects exist object-
ively (as a matter of necessity), but he joins Dummett as a global
truth-value anti-realist, holding that all truths, and not just all
mathematical truths, are knowable.

Advocates of these ‘mixed’ views grasp the first horn of the
Benacerraf dilemma, since they entail that mathematical discourse
does not have the same semantics as ordinary and scientific dis-
course (assuming some sort of realism for the latter). Of course,
there is no denying the extensive interconnections between the
discourses. Hellman, for example, shows how mathematical dis-
course, properly reinterpreted, does fit in smoothly with scientific
discourse, while Tennant (1997) argues that the discourses are
complementary in important ways.

3. The Mathematical and the Physical

The interactions between mathematics and science are extensive,
going well beyond those few branches sometimes called ‘applied
mathematics’. The rich and varied roads connecting mathematics
and science run in both directions. As Nicolas Goodman (1979: 550)
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put it: ‘most branches of mathematics cast light fairly directly on
some part of nature. Geometry concerns space. Probability theory
teaches us about random processes. Group theory illuminates
symmetry. Logic describes rational inference. Many parts of analy-
sis were created to study particular processes and are still indispens-
able for the study of those processes . . . It is a practical reality that
our best theorems give information about the concrete world.” See
Polya (1954, 1977) for a wealth of examples.

It all but follows that one central concern for philosophy of
mathematics is to understand the relationship between mathemat-
ics and the rest of scientific and ordinary discourse. Given the
extensive interactions, the philosopher must at least begin with the
hypothesis that there is a relationship between the subject-matter
of mathematics (whatever it is) and the subject-matter of science
(whatever that is as well), and that it is no accident that mathemat-
ics applies to material reality. Any philosophy of mathematics or
philosophy of science that does not provide an account of this
relationship is incomplete at best. The problems associated with the
applications of mathematics have taken on a greater urgency in
recent decades.

An anecdote that I have recounted before (Shapiro 1983a, 1997:
ch. 8) illustrates some of the issues. The story relies on the unreli-
able memory of more than one person, but the situation is typical.
A friend once told me that during an experiment in a physics lab he
noticed a phenomenon that puzzled him. The class was looking at
an oscilloscope and a funny shape kept forming at the end of the
screen. Although it had nothing to do with the lesson that day, my
friend asked for an explanation. The lab instructor wrote something
on the board (probably a differential equation) and said that the
funny shape occurs because a function solving the equation has a
zero at a particular value. My friend told me that he became even
more puzzled that the occurrence of a zero in a function should
count as an explanation of a physical event, but he did not feel up to
pursuing the issue further at the time.

This example indicates that much of the theoretical and practical
work in science consists of constructing or discovering mathemat-
ical models of physical phenomena. Many scientific and engineer-
ing problems are tasks of finding a differential equation, a formula,
or a function associated with a class of phenomena. A scientific
‘explanation’ of a physical event often amounts to no more than a
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mathematical description of it, but what on earth can that mean?
What is a mathematical description of a physical event?

Crowell and Fox (1963) is a primer in knot theory, the mathemat-
ics of twisted pieces of rope. At the outset the authors discuss the
problem of using mathematics to study these physical objects, or,
better, the possible manipulations of these physical objects:

Definition of a Knot: Almost everyone is familiar with the simplest of the
common knots, e.g., the overhand knot . . . and the figure-eight knot . . . A
little experimenting with a piece of rope will convince anyone that these
two knots are different: one cannot be transformed into the other without
... ‘tying’ or ‘untying’. Nevertheless, failure to change the figure-eight
into the overhand by hours of patient twisting is no proof that it can’t be
done. The problem that we shall consider is the problem of showing
mathematically that these two knots . . . are distinct from one another.

Mathematics never proves anything about anything except mathemat-
ics, and a piece of rope is a physical object and not a mathematical one. So
before worrying about proofs, we must have a mathematical definition of
what a knot is ... This problem . .. arises whenever one applies math-
ematics to a physical situation. The definitions should define mathemat-
ical objects that approximate the physical objects under consideration as
closely as possible. (p. 3)

The claim here seems to be that possible relationships and inter-
connections of pieces of rope formed into knots can be described
or modelled in the relationships of a topological space. This claim
highlights our problems.

The philosophical literature on scientific explanation is long,
deep, and troubled, but we can stay at a more basic level here. A
curious or puzzling situation prompts a request for explanation.
According to Webster's New Twentieth Century Unabridged Diction-
ary, an explanation should clear something from obscurity and
make it intelligible. Clearly, a mathematical structure, description,
model, or theory cannot serve as an explanation of a non-
mathematical event without some account of the relationship
between mathematics per se and scientific reality. Lacking such an
account, how can mathematical/scientific explanations succeed in
removing any obscurity—especially if new, more troubling obscur-
ities are introduced?” On a more general level, one cannot begin to

* Steiner (1978) distinguishes between an explanation of a physical phenom-

enon via the use of mathematics, and a specifically mathematical explanation.
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understand how science contributes to knowledge without some
grasp of what mathematics has to do with the reality of which
science contributes knowledge.

We have at least two questions: How is mathematics applied in
scientific explanations and descriptions? What is the (philosophical)
explanation for the applicability of mathematics to science? We
apply the concepts of mathematics—numbers, functions, integrals,
Hilbert spaces—in describing non-mathematical phenomena. We
also apply the theorems of mathematics in determining facts about
the world and how it works.

Mark Steiner (1995) distinguishes several philosophical problems
that fall under the rubric of “applying mathematics’. Some of these
are focused versions of issues we encountered in the previous sec-
tion. There is, first, a semantic problem: typical scientific descrip-
tions and explanations invoke mathematical and physical terms.
This goes for simple statements like ‘Jupiter has four moons’ and
the more recherché aspects of modern science. The problem is to
find an interpretation of the language that covers ‘pure’ and ‘mixed’
contexts, so that proofs within mathematics can be employed
directly in scientific contexts.

A second group of problems is metaphysical. How do the objects
of mathematics (if such there be) relate to the physical world, so
that applications are possible? On a typical ontological realism, for
example, mathematics is about a causally inert realm of abstract
objects. On a typical idealism, mathematics is about mental activity.
In either case, how can stuff like that tell us anything about how the
physical world works?

A third group of issues concerns why the specific concepts and
formalisms of mathematics are so often useful in describing empir-
ical reality. What is it about the physical world that makes arith-
metic so applicable? What is it about the physical world that makes
group theory and Hilbert spaces so central to describing it? Steiner
suggests that we really have a different problem here for each
applied concept, and so one should not expect a uniform solution.

The problems occur on several levels. First, one may wonder
how it is possible for a particular mathematical fact to serve as an
explanation of a particular non-mathematical event. My friend’s
puzzlement was on this level. How does a zero of a function
explain a pattern on an oscilloscope? How does the mathematical
fact make the physical event intelligible? In this case, an adequate
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response might consist of a detailed description of the relevant
scientific theory that associates a certain class of functions with a
class of physical phenomena. It would be fair for the lab instructor
to suggest that if my friend wants a full explanation, he should take
a few courses.

Ludwig Wittgenstein wrote that all explanations must ‘give out’
at some point, where our curiosity is satisfied or else we realize we
should stop asking, but perhaps we have not reached that point yet.
Whether or not we take further physics courses, we can wonder
what a class of mathematical objects, such as real-valued functions,
can have to do with physical phenomena. This takes the query to a
different level. Now we ponder the relevance of the given
mathematical/scientific theory as a whole. Why does it work? Surely,
this is another matter of curiosity, up for explanation. A possible
reply to this second question would be to point out that similar uses
of mathematics have an important role in scientific methodology. If
the questions persist, our interlocutor can note the vast success of
this methodology in predicting and controlling the world.

This last reply explains why one might engage in mathematical/
scientific research, and it provides assurance that the methodology
will continue to predict and control, assuming we solve or ignore
the standard problems with induction (and we allow the circular
reasoning). However, if we have not yet hit the Wittgensteinian
running-out point, there is a third level to our issue. What of the
entire mathematical/scientific enterprise, or at least the ‘math-
ematical’ parts of it? Why is mathematics essential to science? What
is its role? In the spirit of David Hume, I do not wish to question the
entire mathematical/scientific enterprise, much less to raise doubts
about it. As Quine and the other naturalists keep asking, what
could be more secure than science? However, the problem of
understanding how the enterprise works, in its own terms, is a
legitimate philosophical enterprise, and that problem is not
answered by the last reply concerning the success of the enterprise.

A popular argument for realism in truth-value for mathematics
focuses on the connections between mathematics and science (see
ch. 8, §2). One premiss is that mathematics is indispensable for
science and another is that the basic principles of science are (more-
or-less) true. From Quinean holism (or the above desideratum from
Benacerraf 1973) the argument concludes that mathematics is
objectively true as well—realism in truth-value. However, even if
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the premisses are true and even if the indispensability argument is
convincing, it is much too cozy to leave things at this stage. To
shore up the argument, the realist must provide an account of
exactly how mathematics is applied in science. The point of this
section is that the first premiss of the argument—the indispens-
ability of mathematics in science—is itself in need of explanation.
What do statements about numbers and sets have to do with the
physical world studied in science? How can such statements shed
light on electrons, bridge stability, and market stability? We cannot
sustain the conclusion of the indispensability argument until we
know this. Surely the philosopher should not be content simply to
note the apparent indispensability, and then draw conclusions that
spawn as many questions as they answer.

Godel also recognized the importance of the connections
between mathematics and physical reality. As noted above, for a
realist in truth-value unambiguous mathematical statements have
objective truth-values. How do we determine those truth-values
when the standard of mathematical proof does not? Godel (1964)
suggested that a probabilistic ‘criterion of truth’ for a mathematical
proposition is its ‘fruitfulness in mathematics and . . . possibly also in
physics’ (my empbhasis). Clearly, fruitfulness in physics cannot be a
criterion for mathematical truth unless the mathematical realm is
related somehow to the physical realm, in an epistemologically
revealing way.

The issues of applicability are also potentially troublesome for
the various anti-realists. The ontological idealist, for example, holds
that mathematical objects are mind-dependent. So how do the
mental constructions of mathematics shed light on the (presum-
ably objective) non-mathematical, physical universe? What is it
about the external universe that allows us to comprehend it
through the mental mathematical realm? If the philosopher is also
an idealist about the physical world, then her problem is to show
how the ideal mathematical world relates to the ideal physical
world. How does the construction of mathematics bear on the
construction of the external physical world?

Philosophers who deny that mathematical propositions have
(non-vacuous) truth-values at all, or that most mathematical pro-
positions are systematically false seem to have an even more
intractable problem. How can propositions like that shed any light
on anything non-mathematical?
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I leave it to the reader to determine which of these versions of
the problem is the least formidable. We will return to this issue
throughout this book, as we develop various philosophies in more
detail.

Steiner (1995, 1997) delimits a compelling, related group of
problems, which we will not revisit often, mostly because I have
nothing to say, and the problem has no straightforward solution on
any of the overall philosophies of mathematics (as far as I know).
Occasionally, areas of pure mathematics, such as abstract algebra
and analysis, find unexpected applications long after their math-
ematical maturity. Mathematicians have an uncanny ability to come
up with structures, concepts, and disciplines that find unexpected
application in science. Throughout history, the following scene
played itself out repeatedly Mathematicians study a given struc-
ture, for whatever reason. They extend it to another structure for
their own, internal purposes (say, by considering infinitely many
dimensions); and then later the newly defined structure finds appli-
cation somewhere in science. As S. Weinberg (1986: 725) put it: ‘It is
positively spooky how the physicist finds the mathematician has
been there before him or her.” And Richard Feynman (1967: 171):
T find it quite amazing that it is possible to predict what will
happen by mathematics, which is simply following rules which
really have nothing to do with the original thing.” From the mathe-
matical camp, the same sentiment was echoed by the Bourbaki
conglomeration (1950: 231): ‘mathematics appears . .. as a store-
house of abstract forms—the mathematical structures; and it so
happens—without our knowing why—that certain aspects of
empirical reality fit themselves into these forms, as if through a
kind of preadaption . . .’

4. Local Matters: Theorems, Theories, and Concepts

The far-reaching issues and questions of the previous sections con-
cern all of mathematics and even all of science. This section
sketches some more-narrow issues for the philosopher of math-
ematics. Typically, the philosopher does not get very far with these
local matters before encountering the global issues.

One group of issues concerns attempts to interpret specific
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mathematical or scientific results. To some extent, questions con-
cerning the applications of mathematics are among this group.
What can a theorem of mathematics tell us about the natural world
studied by science? To what extent can we prove things about knots,
bridge stability, chess endgames, and economic trends? Some philo-
sophers take mathematics to be no more than a meaningless game
played with symbols (see ch. 6), but everyone else holds that math-
ematics has some sort of meaning. What is this meaning, and how
does it relate to the meaning of ordinary non-mathematical dis-
course? What can a theorem tell us about the physical world, about
human knowability, about the abilities-in-principle of programmed
computers, and so on?

Potentially, some results from mathematical logic have philo-
sophical ramifications. Let T be a formal mathematical theory and
let M be a mathematical structure, like the natural numbers or the
real numbers. If the theory T is true of the model M, we say that M
is a model of T. The compactness theorem and the Loéwenheim-—
Skolem theorems concern a certain type of theory, called ‘first-
order’. The results entail that if such a theory has an infinite model,
then for any infinite cardinality K at all, the theory has a model of
exactly size k. It follows that there are models of first-order real
analysis and first-order set theory that have the size of the natural
numbers. This is despite the fact that it is a theorem of set theory,
due to Georg Cantor, that there are more sets, and more real
numbers, than there are natural numbers. Moreover, the first-order
theory of the natural numbers, sometimes called ‘first-order arith-
metic’, has models that are larger than the set of natural numbers.
There are models of first-order arithmetic that have the size of the
real numbers. This puzzling situation is called the ‘Skolem para-
dox’, named after the logician Thoralf Skolem. It is not a paradox
in the sense of a genuine contradiction derivable from plausible
premisses. Technically, the air of paradox is resolved when we
notice that notions like ‘being the size of the natural numbers’
amount to different things in different structures. A given struc-
ture can satisfy the formula that says that a certain set is larger than
the natural numbers even if the set (considered from a different
structure) has no more members than the set of natural numbers.

Still, the Skolem paradox is curious, and some philosophers and
logicians hold that it has philosophical ramifications concerning the
human ability to characterize and communicate various concepts,
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such as natural number, real number, set, and even cardinality. Do
we have determinate and unambiguous conceptions of these
notions? If so, how did we grasp these notions and how do we
communicate them to others? The Lowenheim-Skolem theorems
indicate that anything we say about these concepts and objects can
be rendered into a theory which has unintended interpretations. So
how can we be sure that others understand what we intend for
them to understand? How do I know that I myself have unambigu-
ous conceptions of these items? To be sure, there are general philo-
sophical problems concerning understanding and communication,
but the Skolem paradox gives them special focus when it comes to
mathematics. Skolem (e.g. 1922, 1941) himself took the results to
show that virtually all mathematical notions are thoroughly ‘rela-
tive’. There is uncertainty as to what he meant, but the idea seems
to be that there is no absolute, independent (or objective) notion of,
say, natural number and cardinality. In other words, Skolem held
that no set is finite or the size of the natural numbers simpliciter, but
only finite or the size of the natural numbers relative to some
domain or model. More recently, Hilary Putnam (1980) argues for
a similar relativity on the basis of these and other results in
mathematical logic. Skolem-Putnam relativity is a far-reaching
ontological anti-realism, since the view entails that a given mathe-
matical theory like arithmetic or real analysis does not have a fixed
subject-matter. Accordingly, mathematical terms do not have fixed
reference.

Most philosophers resist the Skolemite relativity, however it is to
be understood. A careful examination of the Lowenheim-Skolem
theorems reveals that they do not rule out absolute, objective
notions of natural number, finitude, and so on. However, the the-
orems do show that if there are such absolute notions, they cannot
be captured in first-order formal theories. Any first-order theory of
these notions, if it has infinite models at all, has unintended models
that get the notions wrong. Some philosophers respond that
informal mathematics is more expressive, and more determinate
than first-order model theory. This manoeuvre leaves a question of
how the informal notions of natural number, finitude, and so on
are understood and communicated. What, then, is the semantics
of informal mathematical discourse, the language that does
unambiguously refer to absolute notions of finitude, natural
number, and so on? How is this reference accomplished? The
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Lowenheim-Skolem theorems do not hold for so-called ‘second-
order’ formal languages and semantics, and so perhaps they provide
the right picture of understanding and communication. However, a
debate rages over whether, or how, second-order languages can be
understood and communicated (see Shapiro 1991: chs. 3-5). It is
hard to avoid begging the question.

Other examples of philosophically rich mathematical results are
the wealth of independence results in set theory. Zermelo-Fraenkel
set theory with choice, called ZFC, is one of the most powerful
mathematical theories on which there is some consensus. Virtually
all of extant classical analysis, real analysis, complex analysis, func-
tional analysis, and so on can be rendered in the language of set
theory, and all known theorems in those fields can be proved in
ZFC. However, logicians have established that many interesting and
important mathematical questions cannot be decided by the axioms
of ZEC. The most notorious of these is Cantor’s continuum hypoth-
esis. As mentioned above, it is a theorem (in ZEC) that there are
more real numbers than natural numbers. The continuum hypoth-
esis is the assertion that there are no infinite cardinalities strictly
between those two sizes. In other words, the continuum hypothesis
is that there are no sets that are strictly larger than the set of natural
numbers and strictly smaller than the set of real numbers. Neither
the continuum hypothesis nor its negation can be proved in the
standard axiomatizations of set theory.

What does this independence say about mathematical concepts?
Do we have another sort of relativity on offer? Can we only specify
the size of a set relative to an interpretation or extension of set
theory? Some philosophers hold that these results indicate that
there is no fact of the matter concerning the continuum hypothesis,
or the relative ‘size’ of the set of real numbers. The same goes for
other independent propositions. These philosophers hold that there
is an indeterminacy concerning mathematical truth, and so they are
anti-realists in truth-value.

The issue has ramifications concerning the practice of math-
ematics. If a mathematician sides with realists in truth-value and
holds that the continuum hypothesis has a determinate truth-value,
he may devote effort to determining this truth-value. In this case,
one philosophical puzzle is to determine the methodology such a
mathematician might use. Given the expressive power of ZFC, it is
unlikely that there is a convincing proof either way, since such a
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proof would have to invoke concepts or principles not captured by
ZEC. On the other hand, if a mathematician holds that the con-
tinuum hypothesis does not have a determinate truth-value, then
she is free to adopt it or not, based on what makes for the most
convenient set theory. It is not clear whether the criteria that the
realist might adopt to decide the continuum hypothesis are differ-
ent from the criteria the anti-realist would use for determining
what makes for the most convenient theory. A naturalist, like
Maddy (1988), begins the philosophical task here with an examin-
ation of the practice of set theorists concerning independence
results.

A third example is Godel’s celebrated incompleteness theorem. Let
T be an axiomatization of arithmetic. Assume that T is effective, in
the sense that there is a mechanical procedure to determine
whether a sequence of sentences in the language of T is a correct
derivation in T. Roughly, the incompleteness theorem entails that if
T is sufficiently rich, then there is a sentence @ in the language of T
such that neither @ nor its negation is derivable in T. In other
words, T does not decide ®.

A truth-value anti-realist might argue that the incompleteness
result confirms that at least some arithmetic propositions lack
determinate truth-values, but the argument would presuppose that
the only route to truth is through proofin a fixed, effective deduct-
ive system. A realist in truth-value concerning arithmetic interprets
the incompleteness theorem as showing that there is no effective
axiomatization whose theorems are all and only the truths of
arithmetic. The result indicates that there is more to truth than
provability in any given deductive system. Of course, it is not
enough for the realist just to say this. His burden is to show what
arithmetic truth consists of, and how arithmetic truth outruns
formal derivability.

Incidentally, an examination of the proof of the incompleteness
theorem shows that the undecidable sentence @ is true of the
natural numbers. Prima facie, we have an informal proof of the
truth of the formally undecidable sentence. So our realist would
hold that there is more to arithmetic provability than what can be
derived in any fixed formal axiomatization.

Some philosophers take the incompleteness theorem to refute
mechanism, the thesis that the human mind operates like a
machine. If we plausibly identify the output of a given machine
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with the theorems of an effective deductive system, and if we ideal-
ize sufficiently, the incompleteness theorem shows that arithmetic
truth and informal arithmetic provability both outrun what can be
produced by a machine (see Lucas 1961 and more recently Penrose
1994). Godel himself drew the careful conclusion that either the
mind is not a machine or there are arithmetic questions that are
‘absolutely undecidable’, questions that are unanswerable by we
humans even in principle. However, the arguments of these
thinkers are not generally accepted. Judson Webb (1980) takes the
incompleteness results to support mechanism.

Another group of issues consists of attempts to articulate and
interpret particular mathematical theories and concepts. One
example is the foundational work in geometry, arithmetic, and
analysis. Sometimes, this sort of activity has ramifications for
mathematics itself, and thus challenges and blurs the boundary
between mathematics and its philosophy. Interesting and powerful
research techniques are often suggested by foundational work that
forges connections between mathematical fields. Consider, for
example, the connection between real numbers and points in space
revealed in analytic geometry. Does this say something about what
a point is or what a number is? There is also the embedding of the
complex numbers in the plane and the embedding of the natural
numbers in the complex plane, via analytic number theory. This
sort of foundational activity spawned whole branches of math-
ematics, in addition to shedding light on the basic ontological
questions.

Sometimes developments within mathematics lead to unclarities
about what a certain concept is. Famously, work leading to the
foundations of analysis led to unclarities over just what a function
is, ultimately yielding the modern notion of function as arbitrary
correspondence (as opposed to a formula or a rule). The proper
methodology, and the logic, of mathematics was at stake. For
another example, the reconstruction of history in Lakatos (1976)
shows how a series of ‘proofs and refutations’ left interesting and
important questions over what a polyhedron is. The questions are
at least partly ontological, concerning the essence of the various
mathematical objects and concepts.

This group of issues underscores the interpretive nature of phil-
osophy of mathematics. The task at hand is to figure out what a
given mathematical concept is, and what a stretch of mathematical
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discourse says. The Lakatos study, for example, begins with a
‘proof’ consisting of a thought experiment in which one removes a
face of a given polyhedron, stretches the remainder out on a flat
surface, and then draws lines, cuts, and removes the various parts—
keeping certain tallies along the way. The development is con-
vincing and has the flavour of a proof, but it is not at all clear how
the blatantly dynamic discourse is to be understood. The language
does not readily fit into the mould of contemporary logic treatises.
What is the logical form of the discourse and what is its logic?
What is its ontology? Much of the subsequent mathematical/
philosophical work addresses just these questions.

Turning closer to the mainstream, consider the basic language of
calculus and real analysis. Surface grammar would suggest that the
expression ‘dx’ is a singular term, like a pronoun or a proper noun,
that denotes an object. However, it took considerable mathematical
development to see that ‘dx’ does not denote anything. It has no
free-standing meaning. However, the expression ‘dy/dx’ is a singu-
lar term and does denote something—a function, not a quotient.
The history of analysis shows what a long and tortuous task it is to
show just what expressions like this mean.

Of course, mathematics can often get on quite well without this
philosophical interpretive work, and sometimes the interpretive
work is premature and is a distraction at best. George Berkeley’s
famous and logically penetrating critique of analysis was largely
ignored among mathematicians—so long as they knew ‘how to go
on’, as Wittgenstein might put it. In the present context, the ques-
tion is whether the mathematician must stop mathematics until
she has a semantics for her discourse fully worked out. Surely not.
On occasion, however, tensions within mathematics lead to the
interpretive philosophical/semantic enterprise. Sometimes the
mathematician is not sure how to ‘go on as before’, nor is she sure
just what the concepts are. Moreover, we are never certain that
the interpretive project is accurate and complete, and that other
problems are not lurking ahead.
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PLATO’S RATIONALISM, AND
ARISTOTLE

Let’s start at the very beginning. A very good place to start.
(The Sound of Music)

IT is natural to begin our historical sketch in ancient Greece, since
it is widely agreed that both mathematics and philosophy, as we
know them today, were born there. Apparently, pre-Greek math-
ematics consisted mainly of calculation techniques and numeration
systems, concerned with either religion or practical matters like
dividing land. For better or worse, the Greek mathematicians
introduced the focus on exactitude and rigorous proof.

Legend has it that the oracle of Apollo once said that a plague
would end if a certain altar were doubled in size, maintaining its
shape. If the concerned citizens had increased each dimension of
the altar by a third, the result would be an object about 2.37 times
its original size. One would think that the god would be pleased
with this additional 37%, but the legend is that the plague con-
tinued after they doubled each side of the altar, increasing its size
eightfold. If the citizens increased the original sides by 26%, the altar
would be about 2.0004 times its original volume. Surely, that would
please the god. The difference between twice the size and 2.0004
times the size is not detectable experimentally, at least by humans.
However, the Greek mathematicians took the task as one of doub-
ling the altar exactly. They were not interested in an approximation,
no matter how close it may be. This ‘practical issue of averting
disaster supposedly led to the geometrical problem of doubling
the cube: given a line segment, and using only a compass and
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unmarked straight edge, to produce a line segment whose cube is
exactly double that of the original. The mathematicians wanted it
exact and they wanted it proved. Two similar problems were to
trisect an angle and to produce a line segment whose square has the
same area as that of a given circle. Arbitrarily close approximations
were available, but did not count. These problems occupied
mathematicians for centuries, culminating more than 2,000 years
later with the result that there are no solutions—the tasks are
impossible.

Thomas Kuhn's influential Structure of Scientific Revolutions
1970) speaks of revolutions and ‘paradigm shifts’ that make it
difficult to understand scientific works of the past. According to
Kuhn, to understand previous work we have to unlearn our current
science and try to immerse ourselves in the overturned world-view.
Intervening revolutions have forever changed the concepts and
tools of the day, making the past work ‘incommensurable’ with
ours. What of mathematics? If Kuhn’s philosophy and histori-
ography of science apply to mathematics, the revolutions and
paradigm changes are far more subtle. A contemporary mathemat-
ician does not have to do much (if any) conceptual retooling in
order to read and admire Euclid’s Elements. Modern logical tech-
niques have uncovered a few gaps in the reasoning, but Euclid’s
concerns look like ours, and so do his proofs and constructions.
The logical gaps notwithstanding, the Elements are a model of
mathematical rigour. It is widely believed that the Elements are a
culmination of a research programme that was well under way
during Plato’s lifetime.

Ancient Greece was also the birthplace of western, secular phil-
osophy. We see Socrates, Plato, and Aristotle (as well as some of the
pre-Socratic philosophers) struggling with many of the issues that
concern today’s philosophers, including some of the issues treated
in the present book. Plato stands at the head of a long tradition in
philosophy sometimes called rationalism or ‘Platonism’ (or ‘platon-
ism’, if one wants a little distance from the master). The next
section is a brief account of Plato’s general philosophy, or theory of
Forms. This is followed by a discussion of Plato’s views on
mathematics—arithmetic and geometry in particular. The succeed-
ing section reverses the orientation, and deals with the influence
of mathematics on Plato’s philosophical development. The final
section of this chapter is on Aristotle, Plato’s pupil and main
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opponent. It serves as a transition into the treatment of empiricism
later in the book (e.g. ch. 4, §3; ch. 8, §2).

1. The World of Being

Plato was motivated by a gap between the ideas we can conceive
and the physical world around us. For example, although we have
tolerably clear mental] pictures of justice, everything we see and
hear falls short of perfect justice. We have a vision of beauty and
yet nothing is completely beautiful. Nothing is completely pious,
virtuous, and so on. Everything in the material world has flaws.
Of course, Socratic questioning would surely reveal that our con-
ceptions of justice, beauty, and the like are not as clear as they
sometimes seem to be, but this does not detract from the present
observations concerning defects in the physical realm. We have
some understanding of the perfect ideals, and yet we never find
them. Why is this?

Plato’s answer is that there is a realm of Forms, which contains
perfect items like Beauty, Justice, and Piety. He sometimes speaks
of ‘Beauty itself’, Justice itself’, and ‘Piety itself’. A physical object,
such as a painting, is beautiful to the extent that it ‘resembles’,
‘participates in’, or ‘has a share of” Beauty itself. A person is just to
the extent that she resembles Justice itself. Plato calls the physical
realm the world of Becoming, because physical objects are subject
to change and corruption. They get better and they get worse.
What is beautiful can become ugly. What is virtuous can become
vicious. In contrast, the Forms are eternal and unchanging. Beauty
itself was, is, and always will be the same; individual things are
beautiful to the extent that they conform to this timeless,
unchanging standard. Clearly, then, Plato would not subscribe to
the slogan that beauty is in the eye of the beholder. The same goes
for justice and the other Forms. There is nothing subjective, or
conventional, or culture-relative about them.

That, in short, is Plato’s ontology of Forms. What of his epis-
temology? How do we know about, or apprehend these Forms? We
understand the physical world—the world of Becoming—through
the senses. He calls this the realm of ‘sights and sounds’. In con-
trast, we grasp the Forms only through mental reflection. We see
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and hear beautiful things and just people, but we have to think our
way to Beauty and Justice. The following passage from Book 6 of
the Republic is typical:

Let me remind you of the distinction we drew earlier and have often
drawn on other occasions, between the multiplicity of things that we call
good or beautiful or whatever it may be and, on the other hand, Goodness
itself or Beauty itself and so on. Corresponding to each of these sets of
many things, we postulate a single Form or real essence as we call it . . .
Further, the many things, we say, can be seen, but are not objects of
rational thought; whereas the Forms are objects of thought, but invisible.

The Meno suggests another epistemology. There, Plato has Soc-
rates lead a slave to the theorem that the square on the diagonal of
a given square is double the area of the original square. Socrates
emphasizes that neither he, nor anyone else, taught the theorem to
the slave. By asking carefully chosen questions, and pointing to
aspects of a drawn diagram, Socrates gets the slave to discover the
theorem for himself. Plato uses the experiment to support a doc-
trine that when it comes to geometry—or the world of Being
generally—what is called ‘learning’ is actually remembering from a
past life, presumably a time when the soul had direct access to the
world of Being.

Scholars disagree on the nature and role of this ‘recollection’ in
Plato’s epistemology, and most subsequent Platonists demur from
it. In any case, Plato did hold that the soul is in a third ontological
category, with the ability to apprehend both the world of Being and
the world of Becoming.

With or without the ‘mystical’ elements of the epistemology,
one gets the impression from the dialogues that the physical world
is constructed as it is just so that we will be driven beyond our
senses to investigate the world of Being. For Plato, mathematics is a
key step in this process. It elevates the soul, reaching beyond the
material world to the eternal world of Being.

2. Plato on Mathematics

Mathematics, or at least geometry, provides a straightforward
instance of the gap between the flawed material world around us
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and the serene, ideal, perfect world of thought. From before Plato’s
time until today we have had completely rigorous definitions of
straight line, circle, and so on, but the physical world contains no
perfectly straight lines without breadth, and no perfect circles, or at
least none that we can see. Perhaps breadthless straight lines and
perfect circles, and the like, are part of the physical space (or space-
time) that we all occupy, but even so, we do not encounter them, as
such, in any physical way. So what do we study in geometry, and
how do we study it?

To labour the obvious, Plato believed that the propositions of
geometry are objectively true or false, independent of the mind,
language, and so on of mathematicians. In the terminology of
Chapter 2, he was a realist in truth-value. This realism is more or
less assumed, and not defended, throughout the dialogues. Perhaps
there were no serious alternatives. But what is geometry about?
What is its ontology? How is geometry known? Plato held that
the subject-matter of geometry is a realm of objects that exist
independent of the human mind, language, and so on. He argued
from realism in truth-value to realism in ontology, a theme echoed
throughout subsequent history. Plato’s main contentious claims
concern the nature of geometrical objects and the source of geo-
metrical knowledge. He believed that geometrical objects are not
physical, and that they are eternal and unchanging. In this sense, at
least, geometrical objects are like Forms and are in the world of
Being. He would thus reject the above suggestion that geometric
objects exist in physical space.

At the end of Book 6 of the Republic Plato gives a metaphor of a
divided line (see Fig. 3.1). The world of Becoming is on the bottom
and the world of Being on the top (with the Form of Good on top
of everything). Each part of the line is again divided. The world
of Becoming is divided into the realm of physical objects on top
and reflections of those (e.g. in water) on the bottom. The world
of Being is divided into the Forms on top and the objects of
mathematics on the bottom.! This suggests that physical objects

' The divisions are unequal, with the Forms getting the largest space. The
following double proportion holds: Forms are to mathematical objects as physical
objects are to reflections, as Being (i.e. Forms plus mathematical objects) is to
Becoming (i.e., physical objects and reflections). Although Plato does not mention
this, it follows that the ‘mathematical objects’ segment is exactly the same size as
the ‘physical objects’ segment.
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THE GOOD

FORMS

BEING

Mathematical objects

_

Physical objects

becoming

reflections

Fig. 3.1. The divided line

are ‘reflections’ of mathematical objects which, in turn, are
‘reflections’ of Forms.

However, there is evidence, including some attributions of Aris-
totle, that Plato took at least some mathematical objects to be Forms.
There are hints that during his later neo-Pythagorean period Plato
took all Forms to be mathematical. There are accounts of a public
lecture on the Good, where, to the disappointment of some of his
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audience, Plato spoke almost exclusively of mathematical matters.

We need not settle these exegetical details. A common thread, of
all periods and all interpretations, is that Plato’s world of geometry is
divorced from the physical world and, more important, geometrical
knowledge is divorced from sensory observation. Geometric know-
ledge is obtained by pure thought, or by remembering our past
acquaintance with the geometric realm, as above.

Concerning ontology, and at least the negative side of epis-
temology, Plato’s argument is deceptively simple. The propositions
of geometry concern points that have no dimensions, perfectly
straight lines that have no breadth, and perfect circles. The physical
world contains no such items, and we do not see Euclidean points,
lines, and circles. Thus, geometry is not about anything in the
physical world, the world of Becoming, and we do not apprehend
geometric objects via the senses. Of course, some physical objects
approximate Euclidean figures. The circumference of an orange and
a carefully drawn circle on paper more or less resemble Euclidean
circles, the orange less, the drawn circle more. But geometric
theorems do not apply to these approximations. Consider, for
example, the theorem that a tangent to a circle intersects the circle
at a single point. Even if one carefully draws a circle and a tangent
straight line, using fancy, expensive tools or a very sharp pencil (or
high-resolution printer), one will still see that the line overlaps the
boundary of the circle in a small region, not a single point (see
Fig. 3.2). If one uses a chalk-board or a stick in sand for the exercise,
the overlap will be considerably larger. Of course, none of this

Fig. 3.2. Tangent to circle
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disconfirms the standard theorem that the intersection of a circle
and a tangent is a single point. Plato’s explanation is straight-
forward. The drawn circles and lines are only poor approximations
of the real Circle and the real Line, which we grasp only with the
mind (or remember). The small boundary overlapping the drawn
figures is a poor approximation of a point.

We are in position to better understand Plato’s remark in the
passage from Book 7 of the Republic, quoted in chapter 1:

[The] science [of geometry] is in direct contradiction with the language
employed by its adepts . . . Their language is most ludicrous . . . for they
speak as if they were doing something and as if all their words were
directed toward action . . . [They talk] of squaring and applying and add-
ing and the like . . . whereas in fact the real object of the entire subject is
... knowledge . . . of what eternally exists, not of anything that comes to
be this or that at some time and ceases to be. (Plato, 1961, 527a in the
standard numbering)

If Plato is correct that geometry concerns eternal and unchanging
items in the world of Being, then there should be no dynamic
language in geometry. It is hard for a Platonist to make sense of the
constructions in Buclid’s Elements, for example. According to the
fifth-century neoplatonist Proclus (1970), the problem of ‘how we
can introduce motion into immovable geometric objects’ occupied
many of the best minds at Plato’s Academy for generations after.

There is a similar issue concerning the diagrams that usually
accompany geometric demonstrations. A Platonist would surely
worry that these might confuse the reader into thinking that the
theorem is about the physically drawn diagram. What, after all, is
the purpose of the diagrams? Plato’s explanation might be that the
diagram somehow aids the mind in grasping the eternal,
unchanging geometric realm, or helps us to recall the world of
Being. However, one might wonder how this is possible, since
the world of Being is not accessible via the senses. In the Republic
(510d), Plato writes:

You . . . know how [geometers] make use of visible figures and discourse
about them, though what they really have in mind is the originals of
which these figures are images. They are not reasoning, for instance, about
this particular square and diagonal which they have drawn, but about the
Square and the Diagonal; and so in all cases. The diagrams they draw and
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the models they make are actual things, which may have their shadows or
images in water; but now they serve in their turn as images, while the
student is seeking to behold those realities which only thought can
comprehend.

Here we have the same metaphor as in the divided line: reflections
and images. I suppose the advanced mathematician would have no
need for diagrams, being in more direct touch with the geometric
universe. Plato was not the last philosopher to wonder about the
role of diagrams in geometric demonstration.

Although, as noted, subsequent Platonists did not adopt the
more mystical aspects of Plato’s epistemology, most of them main-
tained that geometrical knowledge is a priori, independent of sens-
ory experience. It may be that some sensory experience is necessary
to grasp the relevant concepts, or we may need drawn diagrams as
a visual aid to the mind, or perhaps to awaken our minds to the
eternal and unchanging geometric realm of Euclidean space. How-
ever, it is crucial that mathematical knowledge is in principle
independent of sensory experience. The main reason for this comes
from the Platonist ontology. Geometry is not about physical objects
in physical space.

This view leaves a problem of explaining why geometry applies
to the physical world, even approximately. In the Timaeus Plato
provides a detailed, but speculative story of how the physical world
was constructed geometrically, from the five so-called Platonic
solids: tetrahedron (pyramid), octahedron, hexahedron (cube),
icosahedron, dodecahedron.

The details of Plato’s views concerning arithmetic and algebra
are not as straightforward as his account of geometry, but the
overall picture is the same. He was a straightforward realist in both
truth-value and ontology, holding that propositions from arithmetic
and algebra are true or false independent of the mathematician, the
physical world, and even the mind, and he held that arithmetic
propositions are about a realm of abstract objects called ‘numbers’.
In the Sophist (238a), the Stranger says that ‘among the things that
exist we include number in general’, and Theaetetus replies, ‘Yes,
number must exist if anything does’.

The dialogues contain several passages that apply the Platonic
distinctions to numbers. There are, of course, numbers of material
objects, which we may call ‘physical numbers’. This is number in
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the world of Becoming. These are distinguished from ‘the numbers
themselves’, which are not grasped by the senses, but by pure
thought alone.

In the Philebus (56), for example, Plato has Socrates distinguish
between ‘the ordinary man’ and ‘the philosopher” when it comes to
arithmetic. There are, in a sense, two different arithmetics. The
interlocutor, Protarchus, asks ‘on what principle . . . is this distinc-
tion . . . to be based?” Socrates replies: “The ordinary arithmetician,
surely, operates with unequal units; his “two” may be two armies or
two cows or two anythings from the smallest thing in the world to
the largest, while the philosopher will have nothing to do with him,
unless he consents to make every single instance of his unit pre-
cisely equal to every other of its infinite number of instances.” See
also Theaetetus, 196, Republic, 525. We thus see that arithmetic, like
geometry, applies to the material world only approximately, or only
to the extent that objects can be distinguished from each other. The
philosopher’s arithmetic applies precisely and strictly only to the
world of Being.

There is no consensus on Plato’s opinions concerning the nature
of number. One interpretation has it that Plato took numbers to be
ratios of geometric magnitudes.” The number four, for example,
would be the ratio of the perimeter of a square to one of its sides
and also the ratio of the area of a square to the area of a square
whose side is half the original. This approach has the advantage of
covering not only natural numbers, but also (positive) rational and
irrational numbers (as discussed in dialogues like Theaetetus). The
disadvantage of this interpretation is that it does not account for
the use of numbers in contexts other than geometry. Even if we
restrict our focus to the world of Being, we count things other than
geometric magnitudes. We say, for example, that a given equation
has two roots, that there are five Platonic solids, and that there are
four prime numbers less than ten.

The above passage from the Philebus suggests another account of
Plato’s arithmetic. When the ordinary arithmetician counts a pair
of shoes, each shoe is a unit, but the two shoes are not the same
shape or even exactly the same size. In contrast, when the phil-
osopher counts ‘two’, she refers to a pair of units that are the same

* This, 1n effect, is how Euclid proceeded in the Elements, Book 10. Euclidean
arithmetic is a branch of geometry.
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in every way For the philosopher, natural numbers are
collections of pure units, which are indistinguishable from one
another (Republic, 425; Sophist, 245).

Notice, incidentally, that for both the ordinary person and the
philosopher, ‘number’ is always a number of something or other.
The plain person’s numbers are numbers of collections like armies
and cows. The philosopher’s numbers are numbers of pure units.

Several ancient sources distinguish the theory of numbers, called
‘arithmetic’” from the theory of calculation, called ‘logistic’. Most
writers take the latter to be a practical discipline, concerning meas-
urement and business dealings (e.g. Proclus 1970: 20). One would
think that this distinction would suit Plato well, given his stark
contrast between the world of Being and the world of Becoming.
Arithmetic would concern Being, while logistic would concern
Becoming. However, Plato has both arithmetic and logistic focused
on the world of Being. The difference concerns how the natural
numbers themselves are to be studied. Arithmetic ‘deals with the
even and the odd, with reference to how much each happens to be’
(Gorgias, 451). If ‘one becomes perfect in the arithmetical art’, then
‘he knows also all of the numbers’ (Theaetetus, 198). Plato’s logistic
differs from arithmetic ‘in so far as it studies the even and the odd
with respect to the multitude they make both with themselves and
with each other’ (Gorgias, 451). Arithmetic thus deals with the
natural numbers individually and logistic concerns the relations
among the numbers. For logistic, Plato proposed principles for how
natural numbers are ‘generated’ from other natural numbers
(through the gnomon). This is something akin to an axiomatic
treatment of the genesis of the ontology.

Plato said that one should pursue both arithmetic and logistic for
the sake of knowing. It is through the study of the numbers them-
selves, and the relations among numbers, that the soul is able to
grasp the nature of numbers as they are in themselves. As Jacob
Klein (1968: 23) put it, theoretical logistic ‘raises to an explicit sci-
ence that knowledge of relations among numbers which . . . pre-
cedes, and indeed must precede, all calculation’. Plato’s logistic is to
practical calculation as his geometry is to figures drawn on paper or
sand.

One might wonder, with Klein (1968: 20), just what is to be
studied in Plato’s arithmetic, as opposed to his logistic. Presumably,
the art of counting—reciting the numerals—is arithmetic par
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excellence. Yet ‘addition and also subtraction are only an extension
of counting’. Moreover, ‘counting itself already presupposes a con-
tinual relating and distinguishing of the numbered things as well as
of the numbers’. Klein (1968: 24) tentatively concludes that logistic
concerns ratios among pure units, while arithmetic concerns count-
ing, addition, and subtraction. In line with the later dialogues, it
might be better to think of Plato’s logistic as what we would call
‘arithmetic’, namely the mathematical study of the natural num-
bers. Plato’s arithmetic is a part of higher philosophy, where one
comes to grasp the metaphysical nature of number itself.

3. Mathematics on Plato

Plato’s admiration for the exciting accomplishments of mathemat-
icians is abundantly clear, even to a casual reader of the dialogues.
As Gregory Vlastos (1991: 107) put it, Plato ‘was able to associate in
the Academy on easy terms with the finest mathematicians of his
time, sharing and abetting their enthusiasm for their work’. Some
recent scholars have focused attention on the influence of the
development of mathematics on Plato’s philosophy. In a dramatic
way, light is cast on some of the sharp contrasts between Plato and
his teacher Socrates.

As far as we know, Socrates’ main interests were in ethics and
politics, not mathematics and science. He considered himself to
have a divine mandate to spread philosophy to everyone. We all
delight in the image of Socrates roaming the streets of Athens
discussing justice and virtue with anyone who would listen and
talk. Anyone. He lived the slogan that philosophical reflection is the
essence of living. We were born to think. At his trial, Socrates
declared it would be disobedience to God for him to shut up and
mind his own business (Apology, 38a): I tell you that to let no day
pass without discussing goodness and all the other subjects about
which you hear me talking and examining both myself and others
is really the best thing a man can do, and that life without this sort
of examination is not worth living.’

Socrates typically proceeds by eliciting the beliefs of an inter-
locutor and then, through careful questioning, attempts to draw
out surprising and unwanted consequences of those beliefs. In
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most cases the encounter does not end with the reductio ad absur-
dum of the interlocutor’s original position. Instead, the interlocutor
is challenged to re-examine his beliefs and to learn by formulating
new ones. Socrates even pursues this at his own trial, against his
accusers.’

Socratic method, then, is a technique for weeding out false
beliefs. If the method does produce truth, it is only by a process of
elimination or perhaps trial and error. Socrates never claimed any
special positive knowledge of justice, virtue, and so on. Quite the
contrary. He took his wisdom to consist in the fact that he knows
that he does not know. He probably arrived at this negative conclu-
sion by examining himself.

Moreover, Socratic method does not result in certainty. It might
inform us that some of our beliefs are false or confused, but it does
not inevitably point to which of the beliefs are false or confused.
The method is fallible and hypothetical, but it is the best we have.

The methodology of the mature Plato does not resemble that of
Socrates in any of these ways. Plato notes in passing that math-
ematics is ‘universally useful in all crafts and in every form of
knowledge and intellectual operation—the first thing everyone has
to learn’ (Republic, 523).* By Plato’s day one needed intense and
prolonged study to master mathematics. A casual acquaintance
with it would not get you very far. Thus, Plato realized that one
needs intense and prolonged study for any ‘form of knowledge and
intellectual operation’. Especially philosophy.

Unlike his teacher, Plato held that philosophy is not for everyone.
In the Commonwealth envisioned in the Republic only a few care-
fully selected leaders engage in philosophical reflection, and only
after a training period lasting until they are at least 50 years old. The
vast majority of the inhabitants are admonished to get their direc-
tion from these leaders and to mind their own business. Farmers
stick to farming, and cooks stick to cooking. Everyone does only
what he or she does best. Philosophy too is left to the experts—the
Guardians. Plato even held that it is dangerous for the masses to

* Had the accusers, or the jury, realized the absurdity of their underlying
assumptions, Socrates’ life would have been spared. But all too often, trials are not
won or lost on the basis of sweet reason.

‘ As noted in chapter 1, it is not a great exaggeration to say that this holds
today as well. Consider the wide range of mathematics prerequisites throughout
the natural and social sciences.
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engage in philosophy. It is even dangerous for prospective Guard-
ians to engage in philosophy before they have been properly
trained. Plato insisted that for the vast majority of people the
unexamined life is well worth living. If Plato had his way, the exam-
ined life would be forbidden to almost everyone. In this regard, it is
harder to imagine a sharper contrast than that between Socrates
and his most celebrated pupil.

It is noteworthy that for Plato, a full decade of the Guardians’
training is devoted to mathematics. They do little else between the
ages of 20 and 30. This is more than we expect from prospective
professional mathematicians today. Plato’s reason for this is clear.
To rule well, the Guardians need to turn their focus from the world
of Becoming to the world of Being. Thus, a crucial part of their
education has to ‘turn the soul from a day that is as dark as night
to the true day, that journey up to the veritable world which we
shall call the true pursuit of wisdom’ (Republic, 521). Mathematics
‘draws the soul from the world of change to reality’. It ‘naturally
awakens the power of thought . . . to draw us towards reality'—at
least for the few souls capable of such ascent.

Plato’s break with his teacher is understandable, if not admir-
able. Socrates did not give mathematics pride of place, while Plato
saw mathematics as the gateway into the world of Being, a gateway
that must be passed if one is to have any hope of understanding
anything real.” Mathematics, the prerequisite to philosophical study,
demands a long period of intense study. No wonder that most of us
have to live our lives in ignorance of true reality, and must rely on
Guardians for direction as to how to live well.

Plato’s fascination with mathematics may also be responsible for
his distaste with the hypothetical and fallible Socratic methodology.
Mathematics proceeds (or ought to proceed) via proof, not mere
trial and error. As Plato matures, Socratic method is gradually sup-
planted. In the Meno Plato uses geometric knowledge, and geo-
metric demonstration, as the paradigm for all knowledge, including
moral knowledge and metaphysics. In that dialogue Plato wants to
make a point about ethics, and our knowledge of ethics, and he
explicitly draws an analogy with geometrical knowledge. It is a
standard Socratic and Platonic strategy to start with clear instances

* Recall the sign at the entrance to the Academy: ‘Let no one ignorant of
geometry enter here.’
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and proceed to more-problematic cases, by way of analogy. Plato
finds things clear and straightforward when it comes to mathemat-
ics and mathematical knowledge, and he tries to extend the findings
there to all of knowledge. In the dialogue no one questions the
analogy between mathematics and ethics or metaphysics. Rational-
ism is based on the same analogy (see ch. 4, §1).

During their ten years of mathematical study the prospective
Guardians proceed ‘hypothetically’, from postulates and axioms.
They must simply accept those ‘hypotheses’, and do not know what
their ultimate foundation is. As indicated by the metaphor of the
divided line, the mathematicians also use diagrams and other aids
from the world of Becoming. At this stage the future Guardians
proceed from the world of Becoming to the world of Being. This
stage is necessary, but it is not a suitable conclusion to their studies.
Plato hinted at a more certain and secure methodology for phil-
osophy. Beginning at the age of 30—after the decade of
mathematics—the prospective leaders spend some years engaged in
“dialectic’, where they encounter and grasp the Forms themselves,
independent of any soiled instances in the material world, and they
arrive at unhypothetical first principles, the ultimate basis for all
knowledge and understanding. The best among them will then
ascend to contemplate the Good.

In sum, then, for Plato the fumbling but exciting and egalitarian
Socratic method first gives way to the elite rigour of Greek math-
ematical demonstration. This is then replaced with an even more
elite “dialectical’ encounter with the Forms.

4. Aristotle, the Worthy Opponent

Most of what Aristotle says about mathematics is a polemic against
Plato’s views, and there is not much consensus among scholars on
the scattered positive remarks he makes. Nevertheless, there is at
least the main direction of an account (or accounts) of mathemat-
ics that foreshadows some modern thinkers. Aristotle’s philosophy
contains seeds of empiricism.

As noted above, Plato’s philosophy of mathematics is tied to his
account of Forms as eternal, unchanging entities in the separate
realm of Being. In like manner, Aristotle’s philosophy of math-
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ematics is tied to his rejection of a separate world of Being. Aristotle
did accept the existence of Forms, or universals, but he held that
they are not separate from the individual objects of which they are
Forms. Beauty, for example, is what all beautiful things have in
common, and not something over and above those beautiful things.
If someone manages to destroy all beautiful things, she will destroy
Beauty itself—for there will be nothing left for Beauty to exist in.
The same goes for Justice, Virtue, Man, and the other Forms. In
short, for Aristotle things in the physical world have Forms, but
there is no separate world to house these Forms. Forms exist in the
individual objects.

Aristotle sometimes suggests that the important question con-
cerns the nature of mathematical objects, not their mere existence
or non-existence: ‘If mathematical objects exist, they must exist in
perceptible objects as some say, or separate from perceptible objects
(some say this too), or, if neither, then either they do not exist at all
or they exist in some other way. So our debate will be not whether
they exist, but in what way they exist’ (Metaphysics, Book M, 1076a;
the translation used here and subsequently is Annas 1976). One
problem for Aristotle is that if we are to reject Platonic Forms, then
what reason is there to believe in mathematical objects? What is
their nature (if they exist), and, most important, what do we need
mathematical objects for? What do they help to explain, or what do
they shed light on? As he put it himself:

One might also fix on this question about numbers: where are we to find
reasons for believing that they exist? For someone who accepts Forms
they provide some kind of explanation for things, since each number is a
Form and a Form is an explanation of the being of other things some-
how or other (we shall grant them this assumption). But what about the
person who does not hold this sort of view through seeing the difficulties
over Forms latent in it, so that this is not his reason for taking there to be
numbers . . . ? Why should we credit him when he says that this sort of
number exists, and what use is it to anything else? There is nothing
which the man who believes in it says it causes . . . (Metaphysics, Book N,
1090a)

Aristotle’s account of mathematical objects follows his account
of Forms. As in the first quoted passage, he held that mathematical
objects ‘exist in perceptible objects’, not separate from them.
However, there is not much consensus over what this amounts to
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exactly. Some insight comes from a discussion in Physics B of what
is distinctive about mathematical methodology:

The next point to consider is how the mathematician differs from the
physicist. Obviously physical bodies contain surfaces, volumes, lines, and
points, and these are the subject matter of mathematics ... Now the
mathematician, though he too treats of these things (viz., surfaces, vol-
umes, lengths, and points), does not treat them as (qua) the limits of a
physical body; nor does he consider the attributes indicated as the attrib-
utes of such bodies. This is why he separates them, for in thought they are
separable from motion, and it makes no difference nor does any falsity
result if they are separated ... While geometry investigates physical
lengths, but not as physical, optics investigates mathematical lengths, not
as mathematical.(193b-194a)

Book M of the Metaphysics contains similar sentiments:

it is possible for there to be statements and proofs about perceptible mag-
nitudes, but not as perceptible but as being of a certain kind . . . [IIn the
case of moving things there will be statements and branches of know-
ledge about them, not as moving but merely as bodies, and again merely
as planes and merely as lengths, as divisible and as indivisible but with
position . . . [I]t is also true to say without qualification that mathematical
objects exist and are as they are said to be ... [T]he mathematical
branches of knowledge will not be about perceptible objects just because
their objects happen to be perceptible, . . . but neither will they be about
other separate objects over and above these . .. So if one posits objects
separated from what is incidental to them and studies them as such, one
will not because of this speak falsely any more than if one draws a foot on
the ground and calls it a foot long when it is not a foot long . . . A man is
one and indivisible as a man, and the arithmetician posits him as one
indivisible and studies what is incidental to man as indivisible; the geom-
eter on the other hand studies him neither as a man nor as indivisible, but
as a solid object . . . That is why the geometers speak correctly: they talk
about existing things and they really do exist . . . (1077b-1078a}

Sticking to geometry for the moment, the idea here seems to be
that physical objects somehow literally contain the surfaces, lines,
and points studied in mathematics. The geometer, however, does
not treat these surfaces, for example, as the surfaces of physical
objects. In thought one can separate surfaces, lines, and points from
the physical objects that contain them. This just means that we can
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focus on the surfaces, lines, and planes and ignore the fact that they
are physical objects. This separation is psychological, or perhaps
logical. It concerns how we think about physical objects. For Aristo-
tle, Plato’s mistake was to conclude that geometrical objects are
metaphysically separate from their physical instantiations, just
because mathematicians manage to ignore certain physical aspects
of their subject-matter.

There are several interpretations of Aristotle here. One is to take
the talk of mathematical objects seriously, and more or less literally.
Accordingly, Aristotle postulated a faculty of abstraction whereby
objects are created, or otherwise obtained or grasped, by contem-
plating physical objects. We abstract away some of their features
(see, for example, Mueller 1970 and the Introduction to Annas
1976).

Suppose, for example, that we start with a brass sphere. If we
selectively ignore the brass and focus only on the shape of the
object, we will obtain the geometer’s sphere. If we focus on the
surface of one of the sides of an ice cube we get a segment of a
plane and if we focus on an edge of this plane, we get a line
segment. Thus, geometric objects are much like Forms. In a sense,
geometric objects are the forms of physical objects. But, of course,
they are Aristotelian and not Platonic Forms. The mathematical
objects obtained by abstraction do not exist prior to, or independ-
ent of, the physical objects they are abstracted from.

On this interpretation, natural numbers are obtained via abstrac-
tion from collections of physical objects. We start with a group of,
say, five sheep and selectively ignore the differences between the
sheep, or even the fact that they are sheep. We focus only on the
fact that they are different objects, and arrive at the number 5, which
is a form, of sorts, of the group. So numbers exist, as Aristotelian
Forms, in the groups of objects of which they are the numbers.

Notice that arithmetic and geometry come out literally true on a
reading like this, pending an acceptable account of abstraction.
Geometry is about geometrical objects, which have the properties
ascribed to them in geometry treatises. Arithmetic is about natural
numbers.® This is a pleasing realism in truth-value and a realism

® One unfortunate (if not damning) consequence of this account is that a
natural number does not exist unless there is a collection of physical objects of
that size. Similarly, a geometric object, such as a given polygon, exists only if there
is a physical object that has that shape.
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in ontology, consistent with passages like ‘the geometers speak
correctly: they talk about existing things and they really do
exist . . ." (Metaphysics, M1078a).

Some interpreters have Aristotle distinguish the ‘sciences’ on the
basis of their degree of abstraction from matter. Accordingly, phys-
ics concerns matter in motion, abstracting from the kind of matter
it may be. Mathematics concerns matter as (geometric or numer-
ical) quantity, abstracting from motion. Metaphysics is about being
as such, abstracting from everything else.

This sort of abstraction has been roundly criticized throughout
the history of philosophy. If I may be permitted a jump of about
2,000 years, one of the sharpest broadside attacks against abstrac-
tion was launched by the logician Gottlob Frege (writing about
some of his contemporaries). Frege (1971: 125) discusses the so-
called process whereby we take a group of ‘counting blocks’” and
abstract away from the differences between them, so that the
blocks become ‘equal’, much like Plato’s ideal units. Supposedly, we
then arrive at their number, as on the present reading of Aristotle.
Frege replies that if, through abstraction, ‘the counting blocks
become identical, then we now have only one counting block;
counting will not proceed beyond “one”. Whoever cannot dis-
tinguish between the things he is supposed to count, cannot count
them either.” That is, if we do manage to abstract away the differ-
ences between the blocks, then we cannot differentiate them, in
order to count them:

If abstraction caused all differences to disappear, it would do away with
the possibility of counting. On the other hand, if the word ‘equal’ is not
supposed to designate identity, then the objects that are the same will
therefore differ with respect to some properties and will agree with
respect to others. But to know this, we do not have to first abstract from
their differences . . . [A]bstraction is nondistinguishing and nonseeing; it is
not a power of insight or of clarity, but one of obscurantism and
confusion.

Frege (1980a: 84-85) makes a similar point with more sarcasm:

Inattention is a very strong lye; it must not be applied at too great a
concentration, so that everything does not dissolve, and likewise not too
dilute, so that it effects a sufficient change in the things. Thus it is a
question of getting the right degree of dilution; this is difficult to manage,
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and I at any rate have never succeeded ... [Abstraction] is particularly
effective. We attend less to a property, and it disappears. By making one
characteristic after another disappear, we get more and more abstract
concepts . . . Suppose that there are a black cat and a white cat sitting side
by side before us. We stop attending to their colour, and they become
colourless, but are still sitting side by side. We stop attending to their
posture, and they are no longer sitting (though they have not assumed
another posture), but each one is still in its place. We stop attending to
position; they cease to have place, but still remain different. In this way,
perhaps, we obtain from each of them a general concept of Cat. By
continued application of this procedure, we obtain from each object a
more and more bloodless phantom. Finally we thus obtain from each a
something wholly deprived of content; but the something obtained from one
object is different from the something obtained from the other—though it
is not easy to see how.

See also Frege 1884: §§13, 34. To paraphrase Berkeley, abstracted
items seem to be the ghosts of departed objects.

A second interpretation of Aristotle’s remarks on mathematics is
to demur from ontological abstraction, and thereby reject the real-
ism in ontology. We do not get to geometrical or arithmetic objects
via any process. Strictly speaking, there are no such objects. The
trick is to maintain realism in truth-value and, thereby, the objec-
tivity of mathematics. Jonathon Lear (1982) interprets Aristotle’s
geometer as studying specific aspects of (some) ordinary physical
objects, perhaps along lines like those suggested by Frege. Consider,
once again, a sphere made of brass. The geometer does not
abstract from the brass to arrive at a geometrical sphere. She simply
ignores the brass and only considers properties of the physical
object that follow from its being spherical. Whatever conclusion
she draws will hold of a wooden sphere as well.

As indicated by the above passages, it is typical for a geometer to
assume that there is a geometric object that has all and only the
properties that we attribute to the sphere. This is to postulate spe-
cial geometric objects, against this interpretation of Aristotle.
However, Aristotle notes that the postulation of geometric objects
is harmless, since the real physical sphere also has all of those
properties we attribute to the postulated sphere. Strictly and liter-
ally, the geometer speaks only of physical objects (albeit not ‘as
physical’). However, it is harmless to pretend that the geometric
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sphere is separate. In other words, the objects of geometry are
useful fictions. Suppose a geometer says, ‘let A be an isosceles tri-
angle’. He then attributes to A only properties that follow from its
being an isosceles triangle. Mathematicians sometimes say that 4 is
an ‘arbitrary’ isosceles triangle, but all they mean is that A could be
any such triangle. By analogy with the present account, it would be
a harmless fiction to say instead that A is a special object that has all
the properties common to all isosceles triang]es.

A similar account of arithmetic would come from treating a
given object in a collection ‘as indivisible’ or ‘as a unit’. In the
collection of five sheep, for example, we regard each sheep as
indivisible. Of course, as butchers know, each sheep is quite divis-
ible, and so the mathematician’s assumption is false. The idea is
that the mathematician ignores any properties of the collection that
arise from the divisibility of the individual sheep. We pretend
that each sheep is indivisible, and so we treat it as indivisible.

Aristotle agrees with Plato that number is always a number of
something, but for Aristotle numbers are numbers of collections of
ordinary objects. Aristotle’s numbers are Plato’s physical numbers.
As with geometry, it is harmless to introduce numbers as useful
fictions, in giving the heuristics of arithmetic.

On both interpretations of Aristotle’s philosophy of mathemat-
ics, the applicability of mathematics to the physical world is
straightforward. The mathematician studies real properties of real
physical objects. There is no need to postulate a link between the
mathematical realm and the physical realm, since we do not deal
with two separate realms. This is a seed of empiricism, or at least
certain forms of it.

Unlike Plato, both interpretations of Aristotle make sense of the
dynamic language that is typical of geometry. Since geometry deals
with physical objects or direct abstractions from physical objects,
talk of ‘squaring and applying and adding and the like’ is natural.
We certainly do ‘square and apply and add’ physical objects and this
talk carries over almost literally to geometry. Consider Euclid’s
principle that between any two points one can draw a straight
line. For Plato, this is a disguised statement about the existence of
Lines. Aristotle could treat the principle literally, as a statement of
permissions indicating what one can do.

There is a potential problem concerning the mismatch between
real physical objects and geometric objects or geometric properties.
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This, of course, is an instance of the mismatch between object and
Form that motivates Platonism. Consider the brass sphere and the
side of the ice cube. The sphere is bound to contain imperfections
and the surface of the cube is certainly not completely flat. Recall
the theorem that a tangent to a circle intersects the circle in a single
point (see Fig. 3.2 above). This theorem is false concerning real
circles and real straight lines. So what are we to make of Aristotle’s
claim that ‘mathematical objects exist and are as they are said to
be’, and the statement that ‘the geometers speak correctly’?

On the abstractionist interpretation, we want to end up with
objects that exactly meet the mathematical description of spheres,
planes, and lines. To accomplish this, we have to abstract from any
imperfections in the physical specimens, such as bumps on the
surface of the cube. That is, we not only abstract from the brass, we
abstract from the imperfections to arrive at a perfect sphere. If this
further abstraction is allowed, then one might wonder how Aristot-
le’s view differs from Plato’s. In what sense are the final abstracted
figures still part of the physical world? How do the perfect Forms
exist in the imperfect physical objects? We seem to have re-entered
Plato’s world of Being, through the back door, or at least we
encounter the major problems with the world of Being. The con-
templated manoeuvre severs the intimate tie between mathematics
and the physical world noted above.

On the second (fictionalist) interpretation, the geometer studies
the consequences of a certain limited set of properties of physical
objects. To solve the mismatch problem, Aristotle might hold that
there are physical objects that lack the imperfections. In other
words, there are physically real perfect spheres, cubes with perfectly
flat surfaces and perfectly straight edges, perfect triangles, and so
on. Aristotle did hold that heavenly bodies are (perfect) spheres and
their orbits are spherical. However, the heavens do not give us
enough objects for a rich geometry, and this suggestion does not
account for the application of geometry here in the sub-lunar
realm. It might be enough for Aristotle to hold that it is possible for
there to be perfect spheres, lines, planes, and the like—even if there
are none (or few) actual objects for the mathematician to study.
Much of geometric demonstration proceeds via construction. The
reader is asked to produce a certain straight line or circle. On the
second interpretation, Aristotle must allow that this construction is
possible—in the physical world using only physical tools. Similarly,
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in arithmetic the successor principle is affirmed when we note that
for any possible collection of physical objects, there could be a col-
lection with one more object. This move to modality could bring
back the epistemic problems with Platonism. Aristotle might point
out that geometry is applicable to the material world to the extent
that the objects thereof approximate the perfect objects described in
mathematical treatises, but this response is available to Plato as
well.

One might think of the perfect objects of geometry (and arith-
metic) as parts of physical space, but, as above, this would sever the
tie with observed objects. Ideal circles and lines would not be ‘in’
the objects we see.

As noted, Aristotle shares with empiricism a close tie between
the subject-matter of mathematics and the physical world. Such
views founder on branches of mathematics that do not have such a
direct connection to the material universe. Aristotle held that
rational numbers are not numbers, but are related to natural num-
bers as ratios. Perhaps rational and even real analysis could emerge
from an Aristotelian understanding of geometry. Following Euclid.
one can either develop a theory of ratios of line segments or else
recapture the real numbers via line segments, taking an arbitrary
line segment as unit (along the lines of what Aristotle says about
arithmetic units). However, at least prima facie, this is about as far
as such a view can go. How would an Aristotelian understand
complex analysis, or functional analysis, or point set topology, or
axiomatic set theory? Of course, it is not fair to fault Aristotle for
this lacuna, but any modern Aristotelians would have to face this
problem.

5. Further Reading

Plato’s remarks about mathematics are scattered throughout the
dialogues, but mathematics comes in for special attention in the
Republic and Theaetetus. Aristotle’s philosophy of mathematics is
found mostly in Metaphysics M and N, especially chapter 3 of M.
Annas 1976 is a readable translation, and it contains a lucid account
of Plato’s and Aristotle’s philosophy of mathematics. A standard
source for Plato on mathematics is Wedberg 1955; see also Vlastos
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1991: ch. 4, Mueller 1992, and Turnbull 1998. A standard source for
Aristotle on mathematics is Apostle 1952; see also Lear 1982 and
Mueller 1970.



4

NEAR OPPOSITES: KANT AND
MILL

1. Reorientation

E pick up our story in the eighteenth century, with Immanuel

C \/ Kant. There was, of course, considerable philosophical activ-

ity in Antiquity after Aristotle and through the Middle Ages, but not
much of it directly focused on mathematics.'

The seventeenth century saw major revolutions in science and
mathematics, through people like René Descartes, Isaac Newton,
and Gottfried Wilhelm Leibniz. Kant was in a position to take the
philosophical measure of the new scientific developments. The
demands of the emerging physics led to the development of new
branches of mathematics and to new conceptions of the traditional
branches. The major innovations included new methods of analysis
linking geometry with algebra and arithmetic (Pierre Fermat and
Descartes), and the development of the calculus (Newton and
Leibniz) for the study of gravitation and motion. The latter
required notions of continuity, derivative, and limit, none of
which smoothly fitted into previous mathematical paradigms. (See

' It is not uncommon for sequences in the history of philosophy to jump from
Aristotle to the so-called ‘modern period’, with Bacon or Hobbes, or even Des-
cartes. Courses in the history of mathematics often have a similar gap, perhaps
lightly filled in. The erroneous implication is that very little of substance occurred
during those two millennia. In this book the justifications for the gap are limita-
tions on space and my competence, and the fact that we are exploring direct
precursors to contemporary positions in the philosophy of mathematics.
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Mancosu 1996 for a lucid treatment of mathematics and its
philosophy during the seventeenth century.)

At the time there were two major schools of philosophy. On the
European continent, rationalists like Descartes, Baruch Spinoza,
and Leibniz were Plato’s natural heirs. They emphasized the role of
reason, as opposed to sensory experience, in obtaining knowledge.
Extreme versions of the view have it that all knowledge is, or
ideally ought to be, based on reason. The rationalist model for
knowledge-gathering is mathematics—mathematical demonstra-
tion in particular. For example, Spinoza’s Ethics has the same
format as Euclid’s Elements, containing ‘propositions’ and ‘demon-
strations’. Much of Descartes’s philosophical work is an attempt to
give science the same degree of certainty as mathematics. Science
is supposed to be founded on philosophical first-principles. Des-
cartes attempted a mathematical-style derivation of the laws of
motion.

Empiricism, the main opposition to rationalism, is an attempt to
base knowledge, or the materials from which knowledge is based,
on experience from the five senses. During the period in question
the major writers were John Locke, George Berkeley, David Hume,
and Thomas Reid, all of whom lived in the British Isles. A common
empiricist theme is that anything we know about the world must
ultimately come from neutral and dispassionate observation. The
only access to the universe is through our eyes, ears, and so on.
Empiricists sometimes present an image of the mind as a blank
tablet on which information is imprinted, via the senses. We are
passive observers sifting through the incoming data, trying to make
sense of the world around us.

There is no substantial, detailed philosophical account of math-
ematics during this period. The rationalists, of course., admired
mathematics, and Descartes and Leibniz were themselves major
mathematicians. Empiricists tended to downplay the importance of
mathematics, perhaps because it does not easily fit their mould of
knowledge-gathering. Berkeley launched a sustained attack on the
supposed rigour of the infinitesimal calculus (see Jesseph 1993).
However, given the role of mathematics in the sciences, empiricists
had to provide some account of it.

Scattered philosophical remarks about mathematics reveal a sur-
prising amount of agreement between the two major schools. Both
rationalists and empiricists took mathematics to be about physical
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magnitudes, or extended objects. The objects are encountered
empirically. The two schools differed over the mind’s access to the
ideas of extended objects and over the status of the reasoning about
those ideas. Descartes, for example, held that we have clear and
distinct perception of ‘pure extension’ that underlies physical
objects, and he held that we can reason directly about this pure
extension. This view attests to the rationalist conviction that the
human intellect is a powerful tool for reasoning—mathematically—
to substantial a priori conclusions about the physical world.

Empiricists took mathematical ideas to be derived from experi-
ence, perhaps following Aristotle. Our idea of the number six, for
example, comes from our experience with groups of six objects.
The idea of ‘triangle’ comes from looking at triangular-shaped
objects. For the empiricist there is no substantial ‘pure extension’
underlying perceived objects. There are only the perceived objects.
What you see is what you get.

Despite these and other differences, a typical empiricist might
agree with a typical rationalist that, once the relevant ideas are
obtained, the pursuit of mathematical knowledge is independent of
any further experience. The mathematician contemplates how the
various mathematical ideas relate to each other. For example, in his
Treatise on Human Nature, Hume referred to the truths of arithmetic
and algebra as ‘relations of ideas’ and distinguished these from
‘matters of fact and existence’, which we learn empirically. Geom-
etry is an empirical science, presumably concerned with generaliza-
tions from experience. A decade later, in his popular An Enquiry
Concerning Human Understanding, Hume claimed that arithmetic,
algebra, and geometry alike all concern (mere) relations among
ideas, and so are not empirical. The common ground between the
schools is that, in at least some sense, mathematical truths are a
priori, or independent of experience. The main dispute is over the
extent to which sensory experience is needed to obtain or grasp the
relevant ideas and to study them.

Mathematical truth at least appears to have a certain necessity
attached to it. How could 5 + 7 not be 122 How could the prime
factorization theorem be false? Rationalism provides a smooth
account of this, along roughly Platonic lines. There is no contin-
gency in the mentally grasped mathematical ideas, like pure exten-
sion, that underlie physical objects. We may, of course, err in our
grasp of mathematical ideas or in attempting a demonstration, but,
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if properly carried out, the methodology of mathematics delivers
only necessary truths. Of course this perspective is not available to
the empiricists, and they do not have such a straightforward explan-
ation of the seeming necessity of mathematics. Some of them
might hold that basic mathematical propositions are true by defin-
ition, a conclusion that a rationalist would find disappointing since
it leaves mathematics without substance. Hume notes that we can-
not imagine or conceive of the negations of typical mathematical
theorems, but this seems to be a weak hold on the necessity of
mathematics. Is it only a contingent psychological limitation that
prevents us from conceiving things in any other way?

The use of the new mathematics in science brought new force to
the problems of the applicability of mathematics to the physical
world. Here empiricism did better. According to that school, math-
ematical ideas are read off from properties of observed objects, and
mathematicians study the relations among these ideas. That is,
empiricists held that the mathematician indirectly studies certain
physical relations between observed physical objects. This explan-
ation is not available to a rationalist. Her problem is to show how
the innately grasped, eternal mathematical entities relate to the
objects we perceive in the world around us and study in science.
Our empiricist thus follows Aristotle, with a straightforward account
of the match between observed physical objects and their math-
ematical counterparts, while our rationalist follows Plato, with a
straightforward account of the mismatch between the objects of the
senses and their mathematical counterparts, like perfect circles and
triangles, and perhaps large numbers.

2. Kant

The clash between rationalism and empiricism provides a central
motivation for Kant’s attempt at a synthesis that captures the most
plausible features of each. The result was a heroic attempt to
explain or accommodate the necessity of mathematics and the a
priori nature of mathematical truth, while explaining or accom-
modating the place of mathematics in the empirical sciences and, in
particular, the applicability of mathematics to the observed physical
world. Kant’s problem was to show how mathematics is knowable
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a priori and yet is applicable universally—to all experience—with
incorrigible certainty. His views on mathematics are not a separable
component of his overall philosophy. On the contrary, references to
mathematics occur throughout his philosophical writing. Thus, an
important key to understanding Kant is to understand his views on
mathematics.

The reader should note that, even if the following sketch does
suggest some themes of Kant’s complex and subtle philosophy of
mathematics, it barely scratches the surface. Moreover, there is
much disagreement among scholars (see the items mentioned at
the end of this chapter, for a start). The tentative interpretations
suggested below are based on some of their work, and I have tried
either to take note of the major disagreements or to steer clear of
them. However, it is inevitable that parts of any interpretation will
be at odds with some of the prominent scholarship.

The most intriguing and problematic feature of Kant’s phil-
osophy of mathematics is his thesis that the truths of geometry,
arithmetic, and algebra are ‘synthetic a priori’, founded on ‘intu-
ition’. The key notions are thus a priori knowledge, the analytic-
synthetic distinction, and the faculty of intuition.

For Kant, a universal proposition (in the form ‘All S are P’) is
analytic if the predicate concept (P) is contained in the subject con-
cept (S); otherwise the proposition is synthetic. For example, ‘all
bachelors are unmarried’ is analytic if the concept of being unmar-
ried is contained in the concept of bachelor. ‘All men are mortal’ is
analytic if the concept of mortality is contained in the concept of
man. Since being male is (presumably) not part of the concept of
being President, ‘all Presidents are male’ is synthetic.

As we know now, not every proposition has a subject—predicate
form, and so by contemporary lights Kant’s definition of analyticity
is unnatural and stifling. He does recognize other forms of judge-
ment, suggesting that the application of the analytic-synthetic dis-
tinction to negative judgements is straightforward (Critique of Pure
Reason, A6/B11), but he does not say very much else. What of
hypothetical propositions like ‘if it is raining now, then either it is
raining or it is snowing’? This is not the place to suggest improve-
ments or extensions of Kant’s distinction, but we do need to exam-
ine its basis.

The metaphysical status of Kantian analytic truths turns on the
nature of concepts. We need not delve further into this, other than
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to note that Kant’s thesis presupposes that concepts have parts (at
least metaphorically), since otherwise we cannot speak of one con-
cept ‘containing’ another. The relevant issues here are epistemic.
Kant believed that the parts of concepts are grasped through a
mental process of conceptual analysis. For example, when pre-
sented with a proposition in the form ‘All § is P’ we analyse the
subject concept S to see if the predicate P is among the parts. We
come to know that ‘all bachelors are unmarried” by analysing
‘bachelor’ and learning that it contains ‘unmarried’. In short, what-
ever concepts are, Kant held that anyone who grasps one is in a
position to perform the analysis and determine its components.
Conceptual analysis uncovers what is already implicit in concepts:
‘Analytic judgements could . .. be called elucidatory. For they do
not through the predicate add anything to the concept of the sub-
ject; rather they only dissect the concept, breaking it up into its
component concepts which had already been thought in it” (Critique
of Pure Reason, B11). Thus, conceptual analysis does not yield new
knowledge about the world. In a sense, it tells us nothing, or
nothing new.

It is straightforward that analytic truths are knowable a priori.
Let A be an analytic truth. Anyone who has grasped the concepts
expressed in A is in a position to determine their parts and thus the
truth of A. No particular experience of the world is necessary,
beyond what is needed to grasp the requisite concepts.

Kant noted that a few mathematical propositions are analytic.
Consider, for example, ‘all triangles have three angles’ or perhaps
‘all triangles have three sides” or ‘all triangles are self-identical’.
However, Kant held that almost all mathematical propositions are
synthetic. Conceptual analysis alone does not determine that
7+ 5 =12, or that between any two points a straight line can be
drawn, or that a straight line is the shortest distance between two
points. Inspection of the concepts corresponding to 7°, '5°, ‘127,
addition, identity, point, and line will not reveal the truth of these
propositions.

To see why Kant thought that conceptual analysis is not
sufficient to establish many mathematical propositions, we attend

* The concept expressed by the English word ‘triangle’ contains the concept of
being ‘three-angled’. Does it also contain the concept of ‘three-sided’? The Ger-
man word for ‘triangle’ is ‘Dreieck’, or ‘three-cornered’. Presumably, that concept
includes ‘three-angled’, but, again, does it include ‘three-sided’?
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to Kant’s epistemology. He held that synthetic propositions are
knowable only via ‘intuition’, and so we must turn to that notion.

Kantian intuition has two features, although scholars disagree on
the relative importance of each. First, intuitions are singular, in the
sense that they are modes of representing individual objects.
Indeed, intuition is essential for knowledge of individual objects. By
contrast, conceptual analysis is not singular and only produces gen-
eral truths. We know from conceptual analysis that all bachelors are
unmarried, but we do not thereby learn that there are any bach-
elors, nor do we get acquainted with any. In discussing the onto-
logical argument for the existence of God, Kant argued that we
cannot learn about the existence of anything by conceptual analysis
alone (Critique of Pure Reason, B622-3). To adapt this thesis to
mathematics, suppose that someone wants to show that there is a
prime number greater than 100. In typical mathematical fashion,
she assumes that every natural number over 100 is composite and
derives a contradiction. So perhaps she has established an analytic
truth that it is not the case that all numbers over 100 are composite.
But we only get the existence of a prime if we know that there are
natural numbers greater than 100. As far as conceptual analysis
goes, it seems that we still have the option to reject the existential
assumption.’ Similarly, we only know that a diagonal of a square is
incommensurable with its side if we know that there are squares
and that squares have diagonals. Conceptual analysis does not
establish this. According to Kant, we need intuition to represent
numbers (or numbered groups of objects) and geometric figures,
and to learn things about them. A fortiori, conceptual analysis can-
not deliver the (potential) infinity of number and of space (see
Friedman 1985).

So one reason for taking mathematics to be synthetic is that it

* It is bard to be definite about this example since, as far as | know, Kant does
not speak of demonstration in arithmetic. He does allow that some laws in arith-
metic are analytic, but perhaps we do need intuition to determine that not every
prime number greater than 100 is composite. The point here is that he would
surely hold that we need intuition to establish the existence claim. In contemporary
logical systems, ‘it is not that case that all x are P’ entails that ‘there is an x such
that not-P’ In symbols, —=VxPx entails 3x—Px. To engage in a barbarous anachron-
ism, if the foregoing interpretation of Kant is correct, he would regard this infer-
ence as involving intuition. That is, the inference in question might lead from an
analytic truth to a synthetic one. See Posy 1984 for an insightful account of the
proper logic to attribute to Kant.
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deals with individual objects like numbered groups of things, geo-
metric figures, and even space itself—which Kant took to be singu-
lar and apprehended by intuition. However, his views are deeper
than this.

In a famous, or infamous, passage, Kant argued that sums are
synthetic:

It is true that one might at first think that the proposition 7+ 5 =12 is a
merely analytic one that follows, by the principle of contradiction, from
the concept of a sum of seven and five. Yet if we look more closely, we
find that the concept of the sum of 7 and 5 contains nothing more than
the union of the two numbers into one; but in [thinking] that union we
are not thinking in any way at all what that single number is that unites
the two. In thinking merely that union of seven and five, I have by no
means already thought the concept of twelve; and no matter how long I
dissect my concept of such a possible sum, still I shall never find in it that
twelve. We must go beyond these concepts and avail ourselves of the
intuition corresponding to one of the two: e.g., our five fingers or . . . five
dots. In this way we must gradually add, to the concept of seven, the units
of the five given in intuition . . . In this way I see the number 12 arise. That
5 were to be added to 7, this [ had indeed already thought in the concept of a
sum = 7+ 5, but not that this sum is equal to the number 12. Arithmetic
propositions are therefore always synthetic. We become aware of this all
the more distinctly if we take larger numbers. For then it is very evident
that ... we can never find the ... sum by merely dissecting our con-
cepts, i.e., without availing ourselves of intuition. (Critique of Pure Reason,
B15-16)

Recall that for Kant conceptual analysis does not yield new know-
ledge. Rather, it just reveals what is implicit in the concepts. Here
Kant asserts that addition does yield new knowledge, and so is
synthetic.

Kant held that, even though most mathematical propositions are
synthetic, they are knowable a priori—independent of sensory
experience. How can this be? Whether the motivation comes from
mathematics or not, much of Kant’s general philosophy is devoted
to showing how synthetic a priori propositions are possible. How
can there be a priori truths that are not grounded in conceptual
analysis?

A second feature of Kantian intuition is that it yields immediate
knowledge. As indicated by the passage about 7 + 5, for humans at
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least, intuition is tied to sense perception. A typical intuition would
be the perception that underlies the judgement that my right hand
contains five fingers.

Of course, this sort of intuition is empirical and the knowledge it
produces is contingent. We do not learn mathematics that way.
Kant held that there is a form of intuition that yields a priori
knowledge of necessary truths. This ‘pure’ intuition delivers the
forms of possible empirical intuitions. That is, pure intuition is an
awareness of the spatio-temporal form of ordinary sense percep-
tion. The idea is that pure intuition reveals the presuppositions of
unproblematic, empirical knowledge of spatio-temporal objects.
For example, Euclidean geometry concerns the ways humans
necessarily perceive space and spatial objects. We apprehend
objects in three dimensions, enclose regions with straight lines, and
so on. Arithmetic concerns the ways humans have to perceive
objects in space and time, locating and distinguishing objects and
counting them. Arithmetic and geometry thus describe the frame-
work of perception. As Jaakko Hintikka (1967: §18) put it, for Kant
the ‘existence of the individuals with which mathematical reason-
ing is concerned is due to the process by means of which we come
to know the existence of individuals in general’. Kant held that this
process is sense perception. So ‘the structure of mathematical
reasoning is due to the structure of our apparatus of perception’.

Recall that, for Descartes, ‘pure extension’ is perceived directly in
physical objects (at least metaphorically). In contrast, Kant took
pure intuition to concern the forms of possible human perception.
These forms are not in the physical objects themselves, but, in a
sense, they are supplied by the human mind. We structure our
perceptions in a certain way.

Here is a passage from the Critique of Pure Reason that highlights
the nature of geometric a priori intuitions and the necessity of
mathematics. Apparently, Kant takes philosophy to be the activity
of conceptual analysis, and he makes a contrast with mathematics:

Mathematics provides the most splendid example of a pure reason suc-
cessfully expanding itself on its own, without the aid of experience . ..
Philosophical cognition is rational cognition from concepts. Mathematical cog-
nition is rational cogpition from the construction of concepts. But to
construct a concept means to exhibit a priori the intuition corresponding
to it. Hence construction of a concept requires a non-empirical intuition.
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Consequently, this intuition, as intuition, is an individual object; but as the
construction of a concept (a universal presentation), it must nonetheless
express . . . its universal validity for all possible intuitions falling under the
same concept. Thus, I construct a triangle by exhibiting the object corres-
ponding to this concept either through imagination alone in pure intuition
or ... also on paper, and hence also in empirical intuition. But in both
cases I do exhibit the object completely a priori, without having taken the
model for it from any experience. The individual figure drawn there is
empirical, and yet serves to express the concept without impairing the
concept’s universality. For in dealing with this empirical intuition one
takes account only of the action of constructing the concept—to which
many determinations are . . . inconsequential: e.g., the magnitude of the
sides and of the angles—and one thus abstracts from all these differences
that do not change the concept of triangle . . . [Plhilosophical cognition
contemplates the particular only in the universal. Mathematical cognition,
on the other hand, contemplates the universal in the . . . individual; yet it
does so nevertheless a priori and by means of reason. (Critique of Pure
Reason, B741-2)

We thus encounter a recurring theme in the history of the phil-
osophy of mathematics, abstraction (see ch. 3, §4).

One might think of Kant’s pure intuition and the process of
abstraction as exhibiting typical or paradigmatic instances of given
concepts. Beginning with the concept of triangle, for example, intu-
ition supplies us (a priori) with a typical triangle. Similarly, starting
with the concept of number, intuition produces a typical number.
After this, the mathematician works with the intuited instances.
However, as indicated toward the end of the passage, this is prob-
ably not what Kant had in mind. There may be a typical point or
line, but there simply is no typical or paradigmatic triangle. Any
given triangle, either imagined or on paper, must either be acute,
right, or obtuse, and either scalene, isosceles, or equilateral, and so
any given triangle cannot represent all triangles. Moreover, as
Gottlob Frege (1884: §13) later pointed out, this crude abstraction
does not have a prayer of application to arithmetic. Each natural
number has properties unique to it and it alone, and so no natural
number can represent all natural numbers.

Kant’s remark that ‘in dealing with [an] empirical intuition one
takes account only of the action of constructing the concept” indi-
cates a connection to a common technique in deductive reasoning.
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Suppose that a geometer is engaged in a geometric demonstration
about isosceles triangles. She draws one such triangle and reasons
with it. In the subsequent text our geometer invokes only proper-
ties of all isosceles triangles, and does not use any other features
of the drawn triangle, such as the exact size of the angles or
whether the base is shorter or longer than the other sides. If
successful, the conclusions hold of all isosceles triangles. This
technique is common in mathematics. A number theorist might
begin ‘let n be a prime number’ and proceed to reason with the
‘example’ n, using only properties that hold of all prime numbers.
If she shows that n has a property P, she concludes that all prime
numbers have property P, perhaps reminding the reader that n is
‘arbitrary’.

This practice corresponds to a rule of inference in contemporary
logical systems, sometimes called ‘generalization’ or ‘universal
introduction’. In systems of natural deduction, the rule is that from
a formula in the form ®(c) (i.e. a predicate @ holds of an individual
¢) one can infer Vx®(x) (i.e. ® holds of everything), provided that
the constant ¢ does not occur in the formula Vx®(x) or in any
premiss that @(c) rests on. The restrictions on the use of the rule
guarantee that the singular term c is indeed arbitrary. It could be
any number. However, this rule of inference was outside the scope
of logic as Kant knew it. Kant notoriously claimed that logic had no
need to go much beyond the Aristotelian syllogisms. In interpreting
Kant, Hintikka (1967) takes ‘inferences’ like the generalization rule
to be the essential component of mathematical intuition. That is,
any demonstration that makes essential use of this rule has a
synthetic conclusion—even if its premisses are analytic. In con-
temporary frameworks, the rule of generalization invokes a singu-
lar term, the ‘arbitrary’ constant introduced into the text. After a
fashion, this fits the feature that Kantian intuition deals with indi-
vidual objects. According to this interpretation, if Kant had learn-
ed some contemporary logic, he would either retract his main
thesis that mathematics is synthetic, or, more likely, he would
claim that by the light of (our) logic, a valid inference can have
analytic premisses and a synthetic conclusion, just because one of
our rules of inference invokes a singular term (see also note 3
above).

Of course, Kant tied intuition to sense perception or, in the case
of pure intuition, to the forms of sense perception, and the rule of
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generalization has nothing specific to do with either of these. The
rule is completely general. Hintikka downplays Kant’s theses that
intuitions are immediate and that they are tied to perception or its
form. He criticizes Kant for having too narrow a view of the extent
of ‘intuition’. Most commentators do not follow Hintikka here,
and try to delimit a more direct role for immediacy and the forms
of perception in Kant’s philosophy of mathematics (see, e.g. Par-
sons 1969, and the Postscript in the reprint, Parsons 1983: Essay 5).
Most scholars have Kant holding that the axioms of geometry are
synthetic, and so the status of the logic is irrelevant.

Let us consider one more passage where Kant further expounds
the difference between mathematics and the conceptual analysis of
‘philosophy”:*

Philosophy keeps to universal concepts only. Mathematics can accomplish
nothing with the mere concept but hastens at once to intuition, in which it
contemplates the concept in concreto, but yet not empirically; rather,
mathematics contemplates the concept only in an intuition that it exhibits
a priori—i.e., an intuition that it has constructed . . . Give to a philosopher
the concept of a triangle, and let him discover in his own way what the
relation of the sum of its angles to a right angle might be. He now has
nothing but the concept of a figure enclosed within three straight lines
and—with this figure—the concept of likewise three angles. Now, no
matter how long he meditates on this concept, he will uncover nothing
new. He can dissect and make distinct the concept of a straight line, or of
an angle, or of the number three, but he cannot arrive at any other
properties that are in no way connected with these concepts. But now let
the geometer take up this question. He begins immediately by construct-
ing a triangle. He . . . extends one side of this triangle and thus obtains
two adjacent angles that together are equal to two right angles ... He
now divides the external angle by drawing a line parallel to the opposite
side of the triangle; and he sees that there arises here an external adjacent
angle that is equal to an internal one; etc. In this manner he arrives, by a
chain of inferences but always guided by intuition, at a completely evident
and at the same time universal solution of the question. (Critique of Pure
Reason, B743-5)

Here Kant refers to the standard Euclidean proof that the sum of
angles in a triangle is two right angles (180°), found in Book 1,

* On the concept of triangle, see note 2 above.
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Proposition 32 of Euclid’s Elements. Kant’s perspective is suggestive.
As noted above, conceptual analysis does not produce new know-
Jedge but only uncovers what is implicit in concepts. It merely
‘dissects’ or ‘makes distinct’ the parts that are already there. By
contrast, mathematics does produce new knowledge. Its conclu-
sions are not implicit in the concepts. Intuition supplies us with
examples of objects, or groups of objects, that exhibit the concepts
in question. That is, intuition produces geometric figures or num-
bered collections of objects. This is only a scant beginning, how-
ever. With the examples alone the mathematician cannot get much
beyond what would be available from conceptual analysis. So far, all
she knows about the examples is that they have the given concepts
in question, and thus any other concepts contained in them. Math-
ematics reveals new knowledge through an a priori mental process
of construction. The mathematician works on and acts on the given
examples, following rules implicit in ‘pure intuition’.

Hintikka (1967: §8) points out that Kant’s paradigm is Euclid’s
Elements, and it is worth a brief look at the structure of a typical
Euclidean demonstration. It starts with an ‘enunciation’ of a gen-
eral proposition, which states what is to be established. Proposition
32 of Book 1 reads (in part), ‘In any triangle . . . the three interior
angles . . . are equal to two right angles’. Then Euclid assumes that
a particular figure, satisfying the hypothesis of the proposition, has
been drawn. This is called the ‘setting out’ or ecthesis. For Kant, this
setting-out involves intuition, as above. Intuition provides instances
exhibiting the given concepts. (See the left part of Fig. 4.1.) The
crucial third part of the demonstration is where the figure is com-
pleted by drawing certain additional lines, circles, points, and so on.
In the example below, this would be the extension of the line seg-
ment AB to AD and the segment BE paralle] to AC. (See the right

C C

A B A B D

Fig. 4.1. Proof that the sum of the angles in a triangle is two right angles
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half of Fig. 4.1.)° Perhaps these auxiliary constructions are the
essence of the pure intuition involved in mathematics. The geom-
eter (Euclid in this case) produces things that were not there before.
Then Euclid proceeds with the proof, or apodeixis, which consists of
a series of inferences concerning the completed figure. In the
example at hand, we notice that the angle ZCAB is equal to
ZEBD (by a previous theorem) and that ZACB is equal to ZCBE.
Thus, the three angles of the triangle total two right angles.

In the quoted passage, Kant said that inferences are ‘always
guided by intuition’. Intuition is involved in reading the diagrams,
and thus revealing facts about the original triangle. The final,
‘proof” part of the demonstration yields synthetic knowledge.’

Next consider what Kant says about 7 + 5 = 12. Once again, con-
ceptual analysis does not yield the sum, since nothing in the con-
cepts of seven and five gives us the number twelve. To get the
sum, we ‘avail ourselves of the intuition corresponding to one of
the two: e.g., our five fingers or . . . five dots.” This corresponds to
the setting-out in a Euclidean demonstration. We need an
example of a collection of five objects. This, however, is not suf-
ficient, since we still do not have the sum. So we ‘gradually add,
to the concept of seven, the units of the five given in intuition’.
This crucial step, where we keep ‘adding’ a unit, corresponds to
the auxiliary construction. The mathematician thereby produces
the numbers 8, 9, 10, 11, and finally she sees ‘the number 12
arise’. She thus constructs something that is not implicit in the
original concept of the sum of 7 and 5, nor in the examples
supplied by intuition. Charles Parsons (1969) points out that
whenever ‘Kant speaks about this subject, he claims that number,
and therefore arithmetic, involves succession in a crucial way’.

* Proposition 32 is: ‘In any triangle, if one of the sides be produced, the exterior
angle is equal to the two intenior and opposite angles, and the three interior angles
of the triangle are equal to two right angles.” So the setting-out would be the
triangle ABC along with the line segment BD. The auxiliary construction is the
line segment BE parallel to AC.

° This matter is related to one of the so-called logical ‘gaps’ in Euclid’s Elements.
Suppose that we have a line that goes from the interior of a circle to the exterior.
Euclid assumed that there is a point where the line intersects the circle. By modern
lights, this does not follow from the postulates, axioms, and definitions. One must
explicitly add a principle of continuity. However, if we think of Euclid’s inference
as ‘guided by intuition’ then perhaps there is no gap. From this perspective, the
continuity of the circle and line is intuited, and is not logical or analytic.
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Here we see how arithmetic deals with potential infinity We
intuit that we can always keep counting.

To be sure, there is an important difference between our geo-
metric and arithmetic examples. With simple sums there is nothing
that corresponds to the ‘proof stage of a Euclidean demonstration.
Once the ‘auxiliary constructions’ are complete, we have the sum
and so we are done. Kant suggested that arithmetic has no axioms
(e.g. Critique of Pure Reason, B204—6). This might mean that he held
that there are no arithmetic demonstrations.” Nevertheless, the
similarities between arithmetic and geometry are striking. In both
cases, construction is essential to mathematical progress.

To pursue this interpretation, or reconstruction, of Kant's
account of mathematics, we would need to focus on the nature of
mathematical construction. The idea is that pure intuition allows us
to discover (a priori) the possibilities for constructive activity. The
Euclidean postulates delimit possible constructions in space. For
example, any line segment can be extended indefinitely, or in
Euclid’s words, the geometer can ‘produce a finite straight line
continuously in a straight line’ (Postulate 2). In arithmetic, a cor-
responding principle is that any number can be extended to the next
number. This is used in the discussion of 7 + 5 = 12. On this inter-
pretation, postulates tell us what the mathematician can do® This
makes mathematics primarily a mental activity, and its subject-
matter is possible human mental activity (see Parsons 1984). We
will encounter the idea of mathematical construction again with
some versions of intuitionism—perhaps the twentieth-century
philosophy of mathematics closest to Kant (see ch. 7).

We have to tighten the connection between this a priori pure
intuition and ordinary sense perception, or empirical intuition. As
above, pure intuition delimits the forms of perception. One inter-
pretation is that mathematical construction reveals the possibilities

7 The arithmetic theorems in Book 10 of Buclid’s Elements are explicitly inter-
preted in geometrical terms. Some commentators do attribute an axiomatic foun-
dation for arithmetic to Kant. Incidentally, [ do not know what Kant would make
of a difference, like 12 — 5 = 7. One might think that auxiliary construction is not
needed here. Once we have a grasp of the concept of twelve objects, we can
‘dissect’ it to determine the difference. On the other hand, perhaps the very act of
partitioning the collection is a construction involving intuition.

¢ However, Buclid’s fourth postulate is ‘that all right angles are equal’, which
does not represent a construction.
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of perception in space and time. Arithmetic, for example, describes
properties of perceived collections of objects. From this perspec-
tive, geometry is more problematic. On the interpretation in ques-
tion, the Euclidean postulates describe possible lines that we can
see. However, if we look down a long stretch of straight parallel
lines, such as a pair of railway tracks, they appear to meet. If we
rotate a circle, it appears elliptical. In short, Euclidean geometry
does not always describe how space appears. Perception is project-
ive, not Euclidean. Since Kant ties intuition to sense perception, and
thus appearance, he must resolve this appearance-reality dichot-
omy. Presumably, a Kantian can somehow abstract from the vari-
ous perspectives of the different observers, looking for what is
common to them. A second problem is with the idealizations, a
problem we have encountered before and will encounter again.
One simply cannot perceive a line without breadth. With actual
drawn figures (apprehended via ‘empirical intuition’), two straight
lines, or a line tangent to a circle, do not meet in a single point,
but in a small region (determined by the thickness of the lines; see
Fig. 3.2.). To resolve this problem, Kant does not have Plato’s option
of separating the world of geometry from the physical world we
inhabit, with the latter being only a poor and imperfect exemplar of
the former. That would be a lapse into rationalism, and would sever
the close tie with perception.

Kant took geometry to describe space, and so Euclidean figures
are parts of space. We cannot see a Euclidean line, since it is too
thin, but it is a part of space nonetheless. Perceived objects exist in
space and we only understand perception to the extent that we
understand space. Geometry studies the forms of perception in the
sense that it describes the infinite space that conditions perceived
objects. This Euclidean space is the background for perception, and
so it provides the forms of perception or, in Kantian terms, the a
priori form of empirical intuition. The way we learn about space a
priori is by performing constructions in pure intuition, and proving
things about the results.

What is the relation between geometric figures and their drawn
counterparts? No one can deny that drawn lines only approximate
Euclidean lines. However, Kant refers to drawn figures, and ‘empir-
ical intuition’ as part of geometric demonstrations, following Buclid.
What, then, is the role of drawn figures in Euclidean demonstra-
tion? One account, perhaps, is that lines drawn (and grasped via
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empirical intuition) aid the mathematician in focusing on corres-
ponding Euclidean lines. Constructions on the drawn figures cor-
respond to mentally apprehended constructions in Euclidean space.
Surely Kant did not think that it is necessary to actually draw a
figure on paper in order to grasp a Euclidean demonstration. With
some practice, one follows the text of a demonstration directly—
via the mind’s eye—without consulting the diagram. Similarly,
Kant surely did not hold that we have to look at a group of five
objects (such as ‘our five fingers or . . . five dots’) in order to calcu-
late 7+ 5. We can count mentally. In sum, drawn figures or
diagrams—in empirical intuition—aid the mind in focusing on the a
priori forms of perception.

It is widely agreed that Kant’s philosophy of mathematics fal-
tered on later developments in science and mathematics. The most
common example cited is the rise and acceptance of non-Euclidean
geometry, and its application to physics. Kant held that the parallel
postulate is an a priori, necessary truth. So it could not be false, and
yet, according to contemporary physics—an empirical theory—
space-time is best understood as non-Euclidean. There is disagree-
ment among scholars as to whether Kant could have allowed
non-Euclidean geometry any legitimate status. Some argue that he
envisioned only one kind of necessity, and thus he could have made
no distinction between pure and applied geometry. If these scholars
are correct, then for Kant non-Euclidean geometry is a non-starter.
However, others attribute to Kant a distinction between conceptual
possibility and what may be called ‘intuitive’ possibility. A prop-
osition, or theory, is conceptually possible if analysis of the relevant
concepts does not reveal a contradiction. Kant does allow that cer-
tain thoughts that conflict with Euclidean geometry are coherent,
because the thoughts do not involve a contradiction. He mentions a
plane figure enclosed by two straight lines. Since Euclidean geom-
etry is synthetic, non-Euclidean geometry is conceptually possible.’
Of course, non-Buclidean geometry is not intuitively possible, since
Euclidean geometry is necessarily true.

On this interpretation of non-Euclidean geometry, a Kantian
would have to allow a conceptually possible non-standard

° Some interpreters have Kant holding that one cannot express the concepts of
geometry without appealing to construction in intuition—and this construction
is Euclidean. So even non-Euclidean geometry presupposes the necessity of
Euclidean geometry.
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arithmetic—what we might call a ‘non-Peano arithmetic’. For Kant,
7+ 5 =12 is synthetic, and so 7+5=10 and 7 + 5 =13 are con-
ceptually possible. But could we have a coherent ‘pure’ mathemat-
ics in which one (or even both) of these are true?

Even if the manoeuvre in question accords non-Euclidean
geometry some legitimate status, perhaps as pure mathematics, it
does not accommodate its use in physics. Kant wrote that (Eucli-
dean) geometry enjoys ‘objective validity only through empirical
intuition, whose . . . form the pure intuition is’. Were it not for the
connection to intuition, geometry would have ‘no objective validity
whatever, but [be] mere play ... by the imagination or by the
understanding’ (Critique of Pure Reason, B298). Since non-Euclidean
geometry presumably does sever Kant’s tie with intuition, it is mere
play. It follows from Kant’s view that we know a priori that non-
Euclidean geometry cannot be applied in physics.

A better response, perhaps, would be for a Kantian to withdraw
the thesis that the parallel postulate is synthetic a priori. This spe-
cia] status is accorded only to those propositions that are common
to Buclidean and some of the non-Euclidean geometries (i.e. all of
Euclid’s postulates except the fifth). Perhaps it is not a deeply
entrenched part of Kant’s philosophy that Euclidean geometry is
synthetic a priori. What matters is that geometry is synthetic a priori,
and in Kant’s day the geometry was Euclidean. To avoid being
embarrassed twice, our Kantian might remain on guard for future
developments in physics that negate one of the other postulates or
axioms. However, it is curious that a Kantian would change his
views about what is knowable a priori in response to developments
in an empirical enterprise like physics. As we saw in chapter 1, §3, a
naturalist should expect to modify her philosophical views in light
of developments in science and mathematics. Philosophy is a hol-
istic enterprise. But Kant was no naturalist. He fits the mould of
the school I call ‘philosophy-first” in chapter 1, §2. Kant took himself
to be delimiting the a priori presuppositions of experience, and of
empirical science. The fact that physics did not conform to the stric-
tures is deeply problematic, unless the Kantian is prepared to reject
the developments in physics out of hand. Is it coherent to modify
one’s views about what is a priori in response to empirical science?

Other developments in mathematics also proved problematic for
Kantians. For example, the important distinctions between continu-
ity and differentiability and between uniform and pointwise con-
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tinuity seem to have no basis in intuition. How do these distinctions
relate to the forms of perception? Other branches of pure and
applied mathematics go further in severing the tie with intuition.
How can we relate complex analysis, higher-dimensional geometry,
functional analysis, and set theory to the forms of perception?
Many of these branches of mathematics have found application in
the sciences. Indeed, many were developed in response to the needs
of the sciences. Of course, Kant is not to be faulted for this since
most of the developments in question came after his lifetime, but
he did regard his views as providing the limits for all future science.
A contemporary Kantian has a tough row to hoe.

3. Mill

Despite Kant’s considerable influence, many philosophers found.
and continue to find, his notion of intuition—and the concomitant
thesis of synthetic a priori truth—troublesome. According to
Alberto Coffa (1991), a main item on the agenda of philosophy
throughout the nineteenth century was to account for the prima
facie necessity and a priori nature of mathematics and logic with-
out invoking Kantian intuition. Can we understand mathematics
and logic independent of the forms of spatial and temporal intu-
ition? From an overall empiricist perspective, there are two alterna-
tives to the Kantian view that mathematics is synthetic a priori. One
can either understand mathematics as analytic, or else understand it
as empirical, and thus a posteriori. The next chapter concerns logi-
cists, who took the former route. Some versions of formalism can
also be construed as a defence of the analyticity of mathematics
(see ch. 6). We now consider a radical empiricist, John Stuart Mill.
who took the latter route, arguing that mathematics is empirical.
He is a precursor to some influential, contemporary empiricist
accounts of mathematics (see ch. 8, §2).

As we saw, philosophers like Kant took themselves to be explor-
ing the preconditions and limits of human thought and experience
via methods that are independent of, and prior to, the natural sci-
ences. They held that we need philosophy to determine the basic
foundation and a priori limits of all empirical inquiry. Kant took
himself to be uncovering the framework of empirical knowledge,
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to which our perceptions must conform. Philip Kitcher (1998) calls
views like this transcendentalism, since they see philosophy as tran-
scending the natural sciences. They are varieties of the view I call
‘philosophy-first” in chapter 1, §2, entailing that, conceptually, phil-
osophy comes before just about everything else—certainly before
science in some foundational ordering. In Kant’s view, philosophy
reveals the presuppositions of empirical science.

The view now called naturalism opposes this foundationalism.
Naturalists see human beings as entirely part of the causal order
studied in science. There are no sources of philosophical know-
ledge that stand independent of, and prior to, the natural sciences.
Willard Van Orman Quine (1981: 72) characterizes naturalism as
‘the abandonment of first philosophy’ and ‘the recognition that it is
within science itself . . . that reality is to be identified and described’
(see also Quine 1969). Any epistemic faculty that the philosopher
invokes must be amenable to ordinary, scientific scrutiny. Epistem-
ology blends into cognitive psychology.’

Mill was one of the most consistent naturalists in the history of
philosophy. Against the Kantians, he held that the human mind is
thoroughly a part of nature, and thus that no significant knowledge
of the world can be a priori. He developed an epistemology on that
radical empiricist basis.

Mill’s distinction between ‘verbal” and ‘real’ propositions seems
to be modelled after Kant’s analytic-synthetic dichotomy or, better,
Hume’s distinction between ‘relations of ideas’ and ‘matters of
fact’. For Mill, verbal propositions are true by definition. They have
no genuine content, and do not say anything about the world. Mill
differs from Kant and from some other empiricists, such as Hume
before him and Rudolf Carnap after, in holding that the proposi-
tions of mathematics—and most of logic—are real and thus syn-
thetic and empirical. In Hume’s terms, for Mill mathematics and
logic concern matters of fact.

Unlike earlier and later empiricists, the fundamental epistemo-
logical inference for Mill is enumerative induction. We see many
black crows and none of any other colour, and conclude that all
crows are black and that the next crow we see will be black. All
(real) knowledge of the world is indirectly traced back to generaliza-

'* See chapter 1, §3 for a brief account of naturalism in the philosophy of
mathematics. Maddy 1997 is a thorough treatment.
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tions on observation. Mill’s overall epistemology is sophisticated,
and includes his famous principles of experimental enquiry in
science. The epistemic connection between scientific laws and
generalizations from experience is rather circuitous. However,
Mill’s epistemology for mathematics and logic is not as sophisti-
cated. He held that the laws of mathematics and logic can be traced
directly to enumerative induction—inferences from observation via
generalizations on what is observed.

In at least one place, Mill suggests that generalizations add noth-
ing to the force of arguments, since all important inference is from
‘particulars to particulars’. Universal propositions, like ‘all crows are
black’, are just summary records of what we have observed and
what we expect to observe. For Mill, typical mathematical proposi-
tions are generalizations, and so these propositions also record
and summarize experience. Mill's philosophy of mathematics is
designed to show just what mathematical propositions are, in order
to bring them in line with this general epistemological theme.

Let us begin with geometry. Mill rejects the existence of abstract
objects, and he seeks to found geometry on observation. Thus,
like Aristotle, he must account for the obvious sense in which the
objects studied in geometry are not like anything we observe in the
physical world. Every line we see has breadth and is not perfectly
straight. Mill’s writing on this is not clear, but a general outline can
be made out. He held that geometric objects are approximations
of actual drawn figures. Geometry concerns idealizations of
possibilities of construction. The two central notions here are
‘idealization’ and ‘possibility’. How does this unrelenting empiricist
understand these concepts?

Mill takes lines without breadth and points without length to be
limit concepts. A given line on paper may be more or less thin,
depending on the quality of the ink, the sharpness of the pencil, or
the resolution of the printer. We can think of the lines of geometry
as the limit approached as we draw thinner and thinner, and
straighter and straighter lines. Similarly, a point is the limit
approached as we draw thinner and shorter line segments, and a
circle is the limit approached as we draw thinner and more perfect
circles." Physically, of course, there are no such limits, and Mill

"' Notice the similarity between Mill’s limit concepts and the way limits, such as
derivatives and integrals, are defined in contemporary analysis.
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holds that geometry does not deal with existing objects. So, strictly
speaking, Buclidean geometry is a work of fiction. The postulated
figures are ‘feigned proxies’. However, since geometric figures
approximate drawn figures and natural objects, geometric proposi-
tions are true (of nature) to the extent that real figures and objects
approximate the idealizations. If we measure the angles of a drawn
triangle, we will find the sum to be about two right angles. The
more straight and thin the lines of the drawn triangle are, the closer
their angles become to two right angles. If we carefully draw a
triangle, we will see that the three perpendicular bisectors intersect
each other. If we are sloppy (but not too sloppy), we will see that
the bisectors almost intersect each other. In this sense, the proposi-
tions of geometry are inductive generalizations about possible
physical figures in physical space. They have been confirmed by
long-standing experience.

One can question the notion of possibility that Mill invokes in
his account of geometry. To focus on an example, what are we to
make of the Euclidean postulate that between any two points one
can draw a straight line? If this means that we can draw a
breadthless line, then the postulate is not even approximately
true. Indeed, we cannot even conceive of drawing a breadthless
line. What instrument would we use? The talk of limits suggests
that the postulate might mean that if we are given any two phys-
ical points A, B, no matter how small, and if we are given any
degree of thickness d, we can draw a straight line between A and
B no thicker than d. This is not much better, since we cannot
regard this limit-statement as a well-established generalization from
experience. How much experience do we have with really thin
lines? Is the generalization even true? As far as we know;, there is a
lower limit to the thickness of a line we can draw and perceive.
Can we draw a line thinner than the diameter of a hydrogen
atom? With what material? Understood in such stark physical
terms, the limit version of the Euclidean postulate is certainly
false. Similarly, the theorem that every line has a perpendicular
bisector is physically false, even allowing Mill’s idealizations. Sup-
pose we start with a given line segment, say two centimetres
long, and bisect it. Then bisect the left half, and then bisect the
left half of that, continuing as long as possible. It is simply not
possible to continue this thirty times. The thirtieth line segment
would have a sub-atomic length.
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So in what sense is it possible to draw a line between two points or
to bisect any line segment? Perhaps Mill took geometry to concern
a hypothetically improved experience, in which our acuity is max-
imally sharp. Or perhaps a Millian could interpret the geometric
axioms in terms of some distinctive mathematical possibility, rather
than the physical possibility invoked above. The underlying thesis is
that it is consistent with the mathematical laws of space, if not the
physical laws of the universe, that there is no limit to the thinness
of lines and no limit to the line segments that can be bisected.
However, it is hard to see how Mill has the resources to make out
either the hypothetically improved super-acuity or the distinctive
mathematical possibilities. Remember that, for Mill, all mathemat-
ical knowledge is based on inductive generalizations from experi-
ence. So where would we learn about super-sharp acuity and
mathematical possibilities?

Turning now to arithmetic, Mill agrees with Plato and Aristotle
that natural numbers are numbers of collections. He sides with
Aristotle in rejecting ideal ‘units’ and so, for Mill, numbers are
numbers of ordinary objects:

All numbers must be numbers of something: there are no such things as
numbers in the abstract. Ten must mean ten bodies, or ten sounds, or ten
beatings of the pulse. But though numbers must be numbers of some-
thing, they may be numbers of anything. Propositions, therefore, concern-
ing numbers, have the remarkable peculiarity that they are propositions
concerning all things whatsoever, all objects, all existences of every kind,
known to our experience. (Mill 1973: 254-5)

Thus Mill does not take a numeral to be a singular term that
denotes a single object. Rather, numerals are general terms, like
‘dog’ or ‘red’. They do not range over individual objects, but over
aggregates of objects: “Two, for instance, denotes all pairs of things,
and twelve all dozens of things’ (1973: 610).

What of arithmetic propositions? Mill is concerned to give an
account of sums, like ‘S + 2 =7" and 165 + 432 = 597". He says that
there are only two axioms, namely, ‘things which are equal to the
same thing are equal to one another’ and ‘equals added to equals
make equal sums’ (1973: 610) and a definition scheme, one for each
numeral which denotes the number ‘formed by the addition of a
unit to the number next below it’. From this, he gives a derivation
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of '5 +2=7". It is clear how to extend the procedure to derive any
correct sum."

The distinctive feature here is that, for Mill, these sums are real,
not verbal, propositions about physical aggregates and their struc-
tural properties. Since they are real, they must ultimately be known
by enumerative induction, generalization on experience. Our
almost uniform experience with collecting and separating objects
confirms the arithmetic sums. In an infamous passage, Mill wrote
that the sum ‘2 + 1 = 3’ involves the assumption ‘that collections of
objects exist, which while they impress the senses thus, °o°, may be
separated into two parts, thus, oo o’ (1973: 257).

Frege’s Foundations of Arithmetic contains a sustained, bitter
assault on Mill’s account of arithmetic:

What a mercy, then, that not everything in the world is nailed down; for if
it were, we should not be able to bring off this separation, and 2 + 1 would
not be 3! What a pity that Mill did not also illustrate the physical facts
underlying the numbers 0 and 1! . . . From this we can see that it is really
incorrect to speak of three strokes when the clock strikes three, or to call
sweet, sour, and bitter three sensations of taste ... For none of these
impresses the senses thus, °0°. (Frege 1884: §7)

Frege thus takes Mill’s talk of ‘arranging’ in a starkly physical sense:
‘Must we literally hold a rally of all the blind in Germany before we
can attach any sense to the expression “the number of blind in
Germany”?’ (§23).

Frege’s criticism is unfair. As we saw above, Mill himself men-
tions numbers of things which cannot be physically arranged into
the vertices of a triangle. He speaks of sounds and heartbeats. So
Mill must have had something more general in mind. Collecting
and separating small collections of objects is one typical instance of
the generalizations of arithmetic sums. We do mentally ‘collect’
and ‘separate’ heartbeats and clock chimes, not to mention contin-
ents and planets, even if they do not impress the senses thus °0° and
cannot be physically separated thus oo o. We also collect one and
even zero objects of a certain kind, when we consider how many
white kings are on a chessboard or how many female US Presidents
were inaugurated before 1999.

'* As noted by Frege in another context, Mill's derivation of the sums makes
essential use of the associative law.
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Nevertheless, Frege is correct that the serious burden on the
empiricist is to make sense of the terms ‘collecting’ and ‘separat-
ing’. Exactly what experience is involved in the proposition that two
heartbeats plus one heartbeat makes three heartbeats, or that two
planets plus three planets makes five planets?

Frege also questions Mill’s idea that numbers denote physical
aggregates. If we think of an aggregate as a physical hunk of stuff,
we will not be able to attach a number to it: ‘If I place a pile of
playing cards in [someone’s] hands, with the words: Find the num-
ber of these, this does not tell him whether I wish to know the
number of cards, or of complete packs of cards, or even say of
points in a game of skat. To have given him the pile in his hands is
not yet to have given him completely the object he is to investigate;
I must add some further word—cards, or packs, or points’. (1884:
§22). In the next section, Frege wrote that a ‘bundle of straw can be
separated into parts by cutting all the straws in half, or by splitting it
up into single straws, or by dividing it into two bundles’. He adds
that ‘the number word “one” ... in the expression “one straw”
signally fails to do justice to the way in which the straw is made up
of cells or molecules’.

Mill (1973: 611) himself has the response to Frege here: “When
we call a collection of objects two, three, or four, they are not two,
three, or four in the abstract; they are two, three, or four things of
some particular kind; pebbles, horses, inches, pounds weight. What
the name of the number connotes is, the manner in which single
objects of the given kind must be put together, in order to produce
that particular aggregate.” For Mill, then, an aggregate is identified
with the physical hunk of stuff together with the units in which it is
to be divided (and thus counted). The one pack of cards is not the
same physical aggregate as the fifty-two individual cards, the four
suits, and so on. The aggregates are located in the same place at the
same time, but they are different aggregates nonetheless. Similarly.
the aggregate of Frege’'s bundle of straw is not the same as the
aggregate of the bundle of half-straws or the bundle of two half-
bundles or the bundle of molecules. Although Mill rejects the exist-
ence of abstract objects, and thus holds that aggregates are
material, his ontology is not as austere as one might think.

Once again, however, the burden is on the empiricist to make
out this ontological category and show how it is grounded in
experience. Penelope Maddy (1990: ch. 2, §2) suggests that there is a
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difference between seeing, say, four shoes and seeing them as two
pairs. Perhaps something like this would help the Millian here (see
also Burge 1977).

Frege also takes Mill to task concerning large numbers. Do we
have experience of an aggregate of size 1,234,457,890, and can we
distinguish it from an aggregate of size 1,234,457,891? What is the
experience generalized by 1,234,457,890 + 6,792 = 1,234,464,682?
We can extend Frege’s point, by asking how we would confirm a
medium-sized sum, like 1,256 + 2,781 = 4,037. Suppose we took a
random sample of adults and gave each of them a pile of 1,256
marbles and a pile of 2,781 marbles and asked him to collect the
two piles into one big aggregate and determine its number. Human
attention being what it is, very few (if any) of our subjects would
produce 4,037 as the final number. On Mill’s view, do we have to
regard this outcome as a disconfirmation of the sum? Suppose we
used rabbits instead of marbles, and it took several months to
compete the experiment? Suppose we use gallons of two liquids,
where a chemical reaction or evaporation might change the volume
of the aggregate? We would not get the correct results and would
have to declare the sum disconfirmed. Prima facie, it seems absurd
even to attempt this experiment to confirm arithmetic sums. We
know what the correct sum is before we start the experiment. We
might use the results to determine the competence of the subjects
in adding and counting.

Along similar lines, Mill holds that each numeral represents col-
lections the size of the corresponding number. This entails that
there are, or could be, infinitely many objects. Do we have empir-
ical support for this? What if we adopted a physical theory that
entails that there are only finitely many physical objects. Would this
disconfirm arithmetic?

The situation here is similar to the mismatch between the pro-
positions of geometry and statements about ordinary objects. Our
limited experience does not exactly match the mathematical pro-
positions. As with geometry, a Millian might respond with talk of
idealization, possibility, and approximation. The mathematical
propositions—especially the definitions of the numerals—do not
exactly conform to experience. They concern possible experience,
under idealized conditions in which our attention-span is improved
and any differences and interactions between the units (that might
change the number over time) are ignored. Experience confirms
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that arithmetic propositions are approximately true of experience.
However, once again, the burden is on the Millian to make out this
notion of possibility.

Another dimension of Mill’s view, implicit in what we have seen
already, is that he has moved considerably away from the received
view of mathematics as highly (if not absolutely) certain and neces-
sary. According to Mill, many mathematical propositions are not
even true at all, let alone necessarily true and indubitable, and let
alone a priori knowable. Mill takes seriously the problem of show-
ing why the received view is so compelling. He asks: “Why are
mathematical certainty, and the evidence of demonstration, com-
mon phrases to express the very highest degree of assurance attain-
able by reason? Why are mathematics by almost all philosophers
... considered to be independent of the evidence of experience and
observation, and characterized as systems of Necessary Truth?
(Mill 1973: 224). Mill held that arithmetic appears to be necessary
and a priori knowable because the axioms and definitions are
‘known to us by early and constant experience’ (1973: 256). The
basic truths of arithmetic, such as the simple sums, have been
confirmed from the time we began to interact with the world. This
does not make them genuinely a priori. Mill agrees that simple
arithmetic sums are necessary, but only in the sense that we cannot
imagine things to be otherwise (the aforementioned idealizations
notwithstanding). Thus, for example, we cannot imagine that a
collection of objects exists, which, while they impress the senses
thus, °o°, may be separated into two parts, thus, oo oo, or at least
not without changing the objects in some way."

Mill agrees with the Kantians that the ultimate source of con-
fidence in the axioms of arithmetic and geometry lies in the limits
of what we can perceive. The axioms of mathematical theories are
chosen by reflection on how we perceive the structure of the

" Mill’s resolution of the apparent necessity and a priority of mathematics is
similar to Hume’s thesis about causality and ‘necessary connection’. Hume sug-
gested that our belief that one thing causes another is based on our constant
experience of the two things together, to the point that when we see one of them
we expect the other. See Yablo 1993 for an insightful discussion of the extent to
which conceivability is a reliable guide to possibility. Some of the results of mod-
ern physics indicate that perhaps the universe operates in ways that we find
inconceivable. Does this provide empirical disconfirmation of the reliability of spa-
tial and temporal intuition? If in the end we cannot rely on ‘early and constant
experience’, then what can a Millian rely on?
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world. Of course, Mill agrees that these insights into perceptual
intuition are reliable, in that we are not led astray by following
them and assuming, for example, that the world is Euclidean and
that aggregates conform to arithmetic. But he insists that the reli-
ability of perceptual intuition concerning actual geometric and
arithmetic properties of physical objects is an empirical matter. That
is, we discover by experience that perceptual intuition is reliable. By
self-observation we see that we cannot perceive the world in any
other way and that observation continues to conform to Euclidean
and arithmetic forms.

Given the paltry epistemological basis of enumerative induction,
it is interesting that Mill takes his unrelenting empiricism as far as
he does, presenting sophisticated philosophical accounts of Eucli-
dean geometry and basic arithmetic. However, his philosophy of
mathematics does not go very far. Mill only deals with geometry.
arithmetic, and some algebra, not the branches of higher math-
ematics. This shortcoming is understandable in Aristotle, of course,
but not so easily here, given the importance of higher mathematics
in the developing sciences of Mill’s day.

Even Mill's accounts of arithmetic and geometry are severely
limited in their scope. His philosophy of arithmetic captures little
more than simple sums and differences, what is learned in elem-
entary school. The (perhaps ill-named) principle of mathematical
induction is the thesis that for any property P, if P holds of 0 and if,
for every natural number #, if P holds of n then P holds of n +1,
then P holds of all natural numbers. In symbols:

(PO & Vx((Nx & Px) = Px + 1) ) > Vx(Nx — Px).

The principle of mathematical induction is a central theme of
axiomatic arithmetic. It is hard to shed much light on the natural
numbers without it. As far as I can tell, enumerative induction—
generalizations from experience—provides no support for math-
ematical induction. What ‘early and constant experience’ confirms
mathematical induction? Mill might respond that we cannot
imagine mathematical induction to be false, and he might invoke
the empirical reliability of this faculty of imagination. However, it
is hard to see how mathematical induction directly bears on experi-
ence. What sorts of experience does it describe?

At this point our Millian might attempt the Euclidean man-
oeuvre of founding arithmetic on geometry (although this would
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detract from the universal applicability of arithmetic). A geometric
analogue of mathematical induction is the Archimedean principle,
that for any two line segments a, b, there is a natural number n,
such that the n-fold multiplication of a is longer than b. A Millian
can point out that this principle is confirmed by early and constant
experience (so long as we speak of mathematical possibility and
not physical possibility). A counterexample to the Archimedean
principle would be a pair of line segments, one of which is in-
finitesimally smaller than the other. Surely, we have no direct
experience with infinitesimals, even if we manage to imagine them.

Even if our Millian can relate the principle of mathematical
induction to the Archimedean principle, this is not much of a straw
to grasp. The completeness axiom would be a further stumbling-
block. In real analysis, the principle states that every bounded set of
real numbers has a least upper bound. An analogue in geometry is
the Bolzano-Weierstrass property that every bounded, infinite set
of points has a limit point. Since we have no experience with infin-
ite sets of points or objects, there seems to be no basis for these
principles in enumerative induction.

Let us take stock. We have noted some tough criticisms of the
various notions of ‘possibility’ needed to sustain Mill’s account of
mathematics. Although these might be overcome, it seems that the
burden is a difficult one. Second, and more important, Mill’s deci-
sion to base all of mathematics and logic on enumerative induction
is untenable. For reasons like those outlined here, contemporary
empiricists do not attempt to defend Mill on these matters. Never-
theless, the main thrust of Mill's empiricism is alive today, and
perhaps even well. A dedicated core of philosophers accept and
defend the ‘radical’ aspect of Mill's empiricism, the view that logic
and mathematics contain ‘synthetic’ or ‘real” propositions and that,
contra Kant, these propositions are known a posteriori, ultimately
empirically.

Kitcher (1983, 1998) provides a subtle and sophisticated account
of higher mathematics in a roughly Millian framework. Like Mill,
Kitcher takes mathematics to relate to human abilities to construct
and collect, but he is more explicit than Mill about the idealizations
involved. Instead of speaking of the collecting and constructing
activities of actual humans, Kitcher speaks of the activities of ficti-
tious ideal constructors who do not share human limitations of
time, space, attention-span, or even lifetime. The ideal constructors
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draw breadthless lines and they collect large aggregates. For
example, the axioms of mathematical induction and the Bolzano-
Weierstrass property represent statements of abilities allotted to
the ideal constructors, corresponding to arithmetic and real analy-
sis. These constructors deal with infinite sets of line segments and
take limit points and least upper bounds of them. For Kitcher,
mathematical truth—propositions about the ideal constructors—
relates to truths about human abilities via more or less straight-
forward idealization and approximation. In the more advanced
branches, such as set theory, the idealizations are very ideal indeed.
For every infinite cardinal number «, the ideal constructor can
make a collection of size k. Nevertheless, the connection with
actual human construction is not forgotten.

Of course, unlike Mill, Kitcher does not rely solely on enumera-
tive induction to ground mathematics and logic. The moves allot-
ted to the ideal constructor are justified on the basis of the utility of
the theory in the overall scientific enterprise. Kitcher is still a radical
empiricist, in that the overarching goal of the entire scientific
enterprise—mathematics included—is to account for experience.
He joins Mill in rejecting the received view that mathematics is a
priori knowable. Kitcher argues that we need experience to deter-
mine just which idealizations are useful in predicting experience
and controlling the environment. Mathematics is not incorrigible,
since we have to keep open the possibility of radically different
idealizations, and thus radically different mathematics. In chapter
8, §2 below we consider another unrelenting empiricist, Quine,
who maintains a hypothetical-deductive epistemology for all of
mathematics and science, but further departs from Mill in not tak-
ing mathematics to be about real or ideal constructive activity. In
the meantime, we turn to other views of mathematics, including a
less radical empiricism (ch. 5, §3).

4. Further Reading

See Coffa 1991: ch. 1, and the papers in Posy 1992 for an excellent
start on the wealth of scholarship on Kant’s philosophy of math-
ematics (especially Posy’s introduction). The anthology contains
the above cited papers Parsons 1969, 1984, Friedman 1985, Hintikka
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1967, and Posy 1984, as well as a wealth of other influential and
insightful work. See also Friedman 1992. Mill’s own A System of
Logic (1973) is a readable account of his views on mathematics. The
definitive secondary source is Skorupski 1989: ch. 5. See also the
papers in Skorupski 1998, especially Skorupski 1998a and Kitcher
1998.






PART III. THE BIG THREE







5

LOGICISM: IS MATHEMATICS
(JUST) LOGIC?

Mathematics and logic, historically speaking, have been
entirely distinct studies . . . But both have developed in mod-
ern times: logic has become more mathematical and math-
ematics has become more logical. The consequence is that it
has now become wholly impossible to draw a line between
the two; in fact the two are one . .. The proof of their iden-
tity is, of course, a matter of detail.

(Russell 1919: ch. 18)

THE previous chapter presented Immanuel Kant’s views that (1)
mathematics is knowable independent of sensory experience—
mathematics is a priori—and (2) the truths of mathematics cannot
be determined by analysing concepts—they are synthetic. Although
one can hardly overestimate Kant’s influence, subsequent philo-
sophers had difficulty squaring these views with developments in
mathematics and science. As noted above, Alberto Coffa (1991)
argued that a main concern of nineteenth-century philosophy was
to account for the prima facie necessity and a priori nature of
mathematics and logic without invoking Kantian intuition, or some
other reference to a priori forms of spatial and temporal intuition.
The two alternatives to Kant's view seem to be that mathematics is
empirical (and so a posteriori) and that mathematics is analytic.
Section 3 of the previous chapter sketched John Stuart Mill’s bold
attempt at the former alternative. We now move forward a few
decades, to near the turn of the twentieth century, and consider
views that mathematics is analytic (or all but analytic). Some of the
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authors examined in this chapter hold that at least parts of math-
ematics are, or can be reduced to, logic. The idea is that the con-
cepts and objects of mathematics, such as ‘number’, can be defined
from logical terminology; and with these definitions, the theorems
of mathematics can be derived from principles of logic. The view is
called Tlogicism’. We begin with Gottlob Frege, the first accom-
plished mathematician we meet in our historical survey (other than
the passing mention of the rationalists Descartes and Leibniz).

1. Frege

We must briefly attend to the changing notions of analyticity and a
priori knowledge. These mean different things to different thinkers.
Recall that for Kant, if a proposition is in subject-predicate form,
then it is analytic if its subject concept contains its predicate con-
cept.! The central idea is that analyticity turns on the metaphysics
of concepts. One determines whether a proposition is analytic by
analysing its concepts.

Frege employed a different, but perhaps related distinction. He
held that analyticity is like a priority in being an epistemic concept,
turning on how a given proposition is known (or knowable):

[TThese distinctions between a priori and a posteriori, synthetic and ana-
lytic, concern, as I see it, not the content of the judgement but the justifi-
cation for making the judgement. Where there is no justification, the
possibility of drawing the distinctions vanishes. When . . . a proposition is
called a posteriori or analytic in my sense, . . . it is a judgement about the
ultimate ground upon which rests the justification for holding it to be true
... The problem becomes . . . that of finding the proof of the proposition,
and of following it up right back to the primitive truths. If, in carrying out
this process, we come only on general logical laws and on definitions, then
the truth is an analytic one . .. If, however, it is impossible to give the
proof without making use of truths which are not of a general logical
nature, but belong to the sphere of some general science, then the prop-

' One of Frege’s innovations was to dislodge philosophers from the dominance
of the subject-predicate form of propositions. Instead, he thought of each prop-
osition as decomposable into function and argument in a variety of ways, a notion
he borrowed from mathematics.
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osition is a synthetic one. For a truth to be a posteriori, it must be impos-
sible to construct a proof of it without including an appeal to facts, i.e., to
truths which cannot be proved and are not general ... But if, on the
contrary, its proof can be derived exclusively from general laws, which
themselves neither need nor admit of proof, then the truth is a priori.
(Frege 1884: §3)

Although Frege believed that every knowable proposition has an
‘ultimate ground’, something like a canonical proof, the crucial
philosophical definitions can be formulated without presupposing
this. A proposition is a priori if either it is an unprovable ‘general
law’ or it has a justification—proof—which relies only on such
unprovable general laws. A proposition is analytic if either it is a
‘general logical law or definition’ or it has a proof that relies only
on such general logical laws and definitions.” There is a particularly
logical source of knowledge, and the analytic truths are known on
that basis.

The above passage indicates that Frege held that only knowable
or justifiable propositions can be analytic or a priori. Since he also
held that arithmetic and real analysis are analytic, he believed that
every truth about the natural numbers and every truth about the
real numbers is knowable. That is, every such truth is either prov-
able or an unprovable general logical law or definition. Frege was
committed to the view that for every proposition about the natural
numbers or the real numbers, either it or its negation is knowable.

To show that arithmetic propositions are analytic, Frege had to
show how to derive them from general logical laws and definitions.
His logicist programme was an attempt to do just that, at least for
the basic principles of the field.

Frege began with a general fact about counting. Someone can
determine if two collections are the same by putting them in one-
to-one correspondence. Let us say that two concepts are equinumer-
ous if there is a one-to-one correspondence between the objects
falling under one and the objects falling under the other. For
example, on a set table the napkins are equinumerous with the
plates if there is exactly one napkin corresponding to each plate. In
a monogamous society the husbands are equinumerous with the

* This raises a question about the ‘general (logical) laws and definitions’. How
are those known? To what extent are they a priori? Perhaps Frege took general
laws and definitions to be self-evident, or self-evidently a priori.
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wives (by definition). Despite the particle ‘numerosity’ in the name,
Frege showed how to define equinumerosity using only the
resources of (so-called ‘higher-order’) logic, without presupposing
natural numbers, or the notion of number generally. He (1884: §63)
proposed the following thesis, now known as ‘Hume’s principle’:’

For any concepts F, G, the number of F is identical to the number
of G if and only if F and G are equinumerous.

As Frege intends it, the phrase ‘the number of F’ is a grammatical
form for denoting an object. That is, ‘the number of F is a proper
name (broadly speaking), or what is today called a ‘singular term’.
In the terminology of Chapter 2, §2.1 above, Frege was a realist in
ontology, believing in the independent existence of the natural
numbers. He was also a realist in truth value, holding that state-
ments of mathematics have objective truth values.

Let Z be the concept not identical to itself’. Since every object is
identical with itself, no object has the concept Z. That is, for every
object a, Za is false. Frege defined the number zero to be the num-
ber of the concept Z.

Frege (Frege 1884: §76) then defined the successor relation
among numbers. The ‘number n follows in the series of natural
numbers directly after m’ if and only if

there exists a concept F, and an object falling under it x, such that
the number which belongs to the concept F is n and the number
which belongs to the concept ‘falling under F but not identical to x’
ism.

In other words, n is a successor to m if there is a concept which
applies to exactly n objects and when we remove one of those
objects, m objects remain. Frege’s precise language is designed to
say this using only logical terminology like ‘object’, ‘concept’, and
‘identity’.

Let T be the concept ‘identical with zero’, so that for any object
b, Tb holds if and only if b = 0. That is, T holds of exactly one thing,
the number zero. Frege defined the number one to be the number

* The name follows Frege’s citation of a similar principle by the eighteenth-
century empiricist David Hume. Fregean concepts exist objectively, and so are not
mental entities, but they can be grasped through the mind. In the terminology of
contemporary philosophy, ‘property’ might be a better term than ‘concept’ here.
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of the concept T. He showed that the number one ‘follows zero in
the series of natural numbers’, according to his own definition.

Frege reminded the reader that this ‘definition of the number 1
does not presuppose, for its objective legitimacy, any matter of
observed fact’. In other words, the underlying propositions are a
priori and objective.

The next step is to define the number two to be the number of
the concept “either identical to zero or identical to one’, and so on
for the rest of the natural numbers. In general, let n be any number
in the series of natural numbers. Consider the concept S,, ‘member
in the series of natural numbers ending with n’. That is, for any
object 4, S,a holds if and only if 4 is a natural number less than or
equal to n. Frege showed that the number of the concept S, is a
successor to n: the number of S, is n + 1. This establishes that there
are infinitely many natural numbers.

It remains to give a definition of natural number. One would like
to say that # is a natural number if n is obtained from the number
zero after finitely many applications of the successor operation. As
a definition, however, this would be circular, since it invokes the
notion of ‘finitely many’. Frege devised a way to accomplish the
definition using only logical resources. To paraphrase, # is a natural
number if and only if

For any concept F, if F holds of the number zero and if for every
object d, from the proposition that d falls under F it follows that
every successor of d falls under F, then n falls under F.

In more contemporary terms, n is a natural number if n falls under
every concept which holds of zero and is closed under the succes-
sor relation. In symbols:

Nn = VF[(Fo & VdVd’( (Fd & ‘d’ is a successor of
d) — Fd’) ) = Fnl.

Frege then showed how common arithmetic propositions, such as
the induction principle, follow from these definitions. The deriv-
ation of the basic principles of arithmetic from Hume'’s principle is
now known as Frege’s theorem.

Frege was not satisfied with this development. Hume’s principle
determines identities of the form ‘the number of F = the number
of G’, where F and G are any concepts, but it does not determine

>

the truth value of sentences in the form ‘the number of F = t’,
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where t is an arbitrary singular term. In particular, Hume’s prin-
ciple does not determine whether the number 2 is identical with a
given set, or with Julius Caesar. I presume that no one is going to
confuse the number 2 with the emperor, but Hume’s principle
itself does not settle the question.

To sum up, so far Frege has (brilliantly) determined the relations
between the natural numbers, and provided adequate definitions of
the sizes of various collections, all from Hume’s principle, but he
has not identified the natural numbers. What, after all, is the num-
ber 2? The underlying idea is that we have not succeeded in charac-
terizing the natural numbers as objects unless and until we can
determine how and why any given natural number is the same or
different from any object whatsoever. To borrow a slogan from W.
V. O. Quine, ‘no entity without identity’. In the context of Fregean
logicism, the problem of identifying the natural numbers has
become known as the ‘Caesar problem’ (see Heck 1997a).

Notice that the development so far takes Frege’s principle as an
unjustified starting-point. It is part of Frege’s methodology that one
should try to prove what one can, and thus reveal its epistemic
ground. He attempted to do so for Hume’s principle.

The extension of a concept is the class of all objects that the
concept applies to. For example, the extension of ‘chair’ is the class
of all chairs. Frege (Frege 1884: §68) defined natural numbers in
terms of concepts and their extensions:

The number which belongs to the concept F is the extension of the
concept equinumerous with the concept F’.

The number two, for example, is the extension (or collection) con-
taining all concepts that hold of exactly two objects.* So the con-
cept of being a parent of Aviva Shapiro is a member of the number
two, as is the concept of being a shoe on a given fully-dressed
person, and the concept of being a prime number less than five.
The number three is the extension (or collection) containing all
concepts that hold of exactly three objects, and so on.

Frege (1884: §73) showed how Hume’s principle follows from
these definitions and some common properties of extensions. With

* Itis interesting that Frege did not raise a Caesar-type problem for extensions.
How do we know, for example, whether Caesar is the extension of those concepts
that hold of exactly two objects? Since extensions are closely linked to concepts,
perhaps Frege took them to be already known.
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Frege’s theorem, this completes the derivation of arithmetic, and
the establishment of logicism for the natural numbers—provided
that the above definitions are correct. Under these assumptions,
Frege succeeded in showing that arithmetic is analytic. The account
proceeded through a rigorous and eminently plausible account of
the application of arithmetic to the counting of concepts and col-
lections of objects.

One cannot overestimate Frege’s accomplishment. Who would
have thought that so much could be derived from so little and, in
particular, from such simple and obvious facts about concepts,
extensions, and counting? However, arithmetic is only an early part
of mathematics. Frege’s plans to extend logicism to real analysis
were not developed into a detailed programme (see, for example,
Simons 1987 and Dummett 1991: ch. 22). One can only speculate
on the extent to which Fregean logicism might accommodate some
of the contemporary branches of mathematics, such as complex
analysis, topology, and set theory.

A reader familiar with contemporary logic might notice an
incongruity in Frege’s logicism. The thesis that principles of arith-
metic are derivable from the laws of logic runs against a now
common view that logic itself has no ontology. There are no par-
ticularly logical objects.” From this perspective, logicism is a non-
starter, at least for an ontological realist like Frege, who beld that
natural numbers exist as independent objects. There are infinitely
many natural numbers, and so if logic says nothing about how
many objects there are, then one cannot define the natural num-
bers in logic.

Frege, however, followed a tradition that concepts are in the
purview of logic, and, for Frege, extensions are tied to concepts. So
logic does have an ontology. Logical objects include the extensions
of some concepts that exist of necessity. Thus, logical objects exist
of necessity, and so the necessity of logic is maintained.

As indicated from the first quoted passage above, Frege explicitly
distinguished logic from special sciences, such as physics. Logic is
topic-neutral since it is universally applicable; logical truths are

* As we saw in §2 of the previous chapter, the pedigree for this view traces to
Kant. In discussing a particular argument for the existence of God, Kant claimed
that analysis of concepts cannot entail the existence of anything. If Kant is correct
about this, and if logic consists of conceptual analysis, then there are no specific-
ally logical objects.
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absolutely general. The use of concepts—and their extensions—
does not undermine this neutrality. One needs to deal with con-
cepts in order to think at all. For any sort of objects, there are
concepts of those objects and extensions of those concepts. Frege
showed how to construct the natural numbers from this logical
ontology. He also pointed out that arithmetic enjoys the universal
applicability of logic. Any subject-matter has an ontology, and if
one has objects at all, one can count them and apply arithmetic.

We should note that Frege did not extend his logicism to geom-
etry. On that score he was a Kantian, holding that the principles of
Euclidean geometry are synthetic a priori (with those notions
understood in a Fregean sense, as above). Frege held that geometry
does have a special, non-universal subject-matter—space. We need
not further pursue these issues concerning the boundaries of logic
(see Shapiro 1991: chs. 1-2). There are larger issues on the horizon.

Even limited to arithmetic—and waiving the boundary issues—it
is sad to report that our story does not have a tidy and compelling
ending. Frege’s later Grundgesetze der Arithmetik (1893, 1903) con-
tains a full development of a theory of concepts and their exten-
sions. For present purposes, the crucial plank is the now infamous
Basic Law V, paraphrased as follows:

For any concepts F, G, the extension of F is identical to the exten-
sion of G if and only if for every object 4, Fa if and only if Ga.

In other words, the extension of F is the extension of G if and only
if F and G hold of the same objects.

A letter from Bertrand Russell in 1902 (see van Heijenoort 1967:
124-5) revealed that Basic Law V is inconsistent.® Let R be the
concept that applies to an object x just in case

there is a concept F such that x is the extension of F and Fx is false.

Let r be the extension of R. Suppose that Rr is true. Then there is a
concept F such that  is the extension of F and Fr is false. It follows
from Basic Law V that Rr is also false (since 7 is also the extension of
R). Thus if Rr is true, then Rr is false. So Rr is false. Then there is a
concept F (namely R) such that r is the extension of F and Fr is false.
So, by definition, R holds of 7, and so Rr is true. This is a contradic-

¢ The mathematician Ernst Zermelo discovered the paradox about a year
earlier. See Rang and Thomas 1981.
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tion, and so Basic Law V is inconsistent. This is now known as
Russell’s paradox.

Frege took this paradox to be devastating to his logicist pro-
gramme. Nevertheless, he sent Russell a gracious reply, almost
immediately:

Your discovery of the contradiction caused me the greatest surprise and, I
would almost say, consternation, since it has shaken the basis on which I
intended to build arithmetic . . . [The matter is] all the more serious since,
with the loss of my Rule V, not only the foundations of my arithmetic, but
also the sole possible foundations of arithmetic, seem to vanish . . . In any
case your discovery is very remarkable and will perhaps result in a great
advance in logic, unwelcome as it may seem at first glance. (van Heijenoort
1967: 127-8)

In the same letter, Frege gave a more accurate formulation of the
paradox. After some attempts to recover from the blow, Frege
abandoned his logicist project, left in ruins. We turn to others who
took up the mantle of logicism, starting with Russell himself.

2. Russell

Russell (1919: ch. 2) held that Frege’s account of the natural num-
bers is substantially correct:”

The question “‘What is number?’ is one which has been often asked, but
has only been correctly answered in our own time. The answer was given
by Frege in 1884, in his Grundlagen der Arithmetik. Although this book is
quite short, not difficult, and of the very highest importance, it attracted
almost no attention, and the definition of number which it contains
remained practically unknown until it was rediscovered by the present
author in 1901.

Russell added a footnote that the same definitions are ‘given more
fully and with more development” in Frege (1893) and (1903). We
may conclude that Russell did not accept Frege’s assessment that

7 In discussing Frege’s seminal logical work, Begriffsschrift (1879), Russell (1919:
ch. 3) said that in ‘spite of the great value of this work, I was, I believe, the only
person who ever read it—more than twenty years after its publication’.
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‘the sole possible foundations of arithmetic seem to vanish’ in the
contradiction from Basic Law V.

In fact, Russell held that once it is properly understood, Basic
Law V is correct as a definition of ‘extension’ or ‘class’. His diag-
nosis was that the derivation of the contradiction from Basic Law V
invokes a fallacy. Recall (from ch. 1, §2) that a definition of a math-
ematical entity is impredicative if it refers to a collection that con-
tains the defined entity. The usual definition of the ‘least upper
bound’ is impredicative since it refers to a set of upper bounds and
characterizes a member of this set.

Russell (1919: ch. 17) argued that such definitions are illegitim-
ate, since they are circular:

Whenever, by statements about ‘all’ or ‘some” of the values that a variable
can significantly take, we generate a new object, this new object must not
be among the values which our previous variable could take, since, if it
were, the totality of values over which the variable could range would be
definable only in terms of itself, and we should be involved in a vicious
circle. For example, if I say ‘Napoleon had all the qualities that make a
great general’, I must define ‘qualities” in such a way that it will not
include what I am now saying, i.e., ‘having all the qualities that make a
great general’ must not be itself a quality in the sense supposed.

The development of Russell's paradox runs foul of the ‘vicious
circle principle’. To generate the paradox, we defined a concept R
which ‘applies to an object x just in case there is a concept F such
that x is the extension of F and Fx is false’. The definition of R refers
to all concepts F, and R is just such a concept F. Thus, the definition
of R is impredicative. We derive a contradiction from the assump-
tion that the definition of R holds of its own extension. The ban on
impredicative definitions precludes even making this assumption.
For now, let us put concepts aside and speak only of extensions.
or classes. Russell argues, from the vicious circle principle, that it
‘must under all circumstances be meaningless (not false) to suppose
[that] a class {is] a member of itself or not a member of itself.
Thus, there can be no all-inclusive class that includes all of the
classes in the universe, since this domain would be a member of
itself. Nor can there be a class of all classes that do not contain
themselves as members. For Russell, it is meaningless to say (or even
assume) that there is such a class. He proposed a type theory, which
partitions the universe. Define an ‘individual’ to be an object that is
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not a class. Individuals are of type 0, and classes of individuals are
of type 1. Classes of classes of individuals are of type 2, and so on.
So, for example, the people that make up a baseball team are each
individuals and so are type 0 objects. The team, regarded as a class
of its players, is a type 1 object; and the league, regarded as a class
of teams, is of type 2. A collection of leagues would be of type 3.

The move to classes allows a simplification of Frege’s definitions
of the natural numbers. For any class C, define the number of C to
be the ‘class of all those classes that are’ equinumerous with C (see
Russell 1919: ch. 2). Let A be the class of my three children; so that
A is of type 1. The number of A is the class of all three-membered
type 1 classes. The number of my children is thus a type 2 class.
Similarly, the number of a type 2 class is a type 3 class, and so on.
For Russell, a ‘number is anything which is the number of some
class’. He defined the number zero to be the class of all type 1
classes that have no members. So zero is a type 2 class which has
exactly one member—the type 1 empty set. The number 1 is the
class of all type 1 classes that have a single member. The number 1
is also a type 2 object, and it has as many members as there are
individuals (if this statement mixing types is allowed).® Continuing,
the number 2 is the class of all type 1 classes that have two mem-
bers. Thus, the number 2 is the class of all pairs of individuals. The
number 3 is the class of all triples of individuals, and so on. As
expected, the number of the aforementioned class A of my children
is 3.

Russell adapted another central Fregean definition to the context
with classes: ‘the successor of the number of . .. [a] class a is the
number of . . . the class consisting of @ together with x, where x is
[any individual] not belonging to [@]’ (1919: ch. 3). So far, so good.

Recall that, for Frege, the number zero is the number of the
concept ‘not identical to itself. This conforms to Russell’s pro-
gramme in which zero is a type 2 class. However, Frege’s presen-
tation of the other natural numbers, and his proof (via Hume’s
principle) that there are infinitely many natural numbers, violates
Russell’s type restrictions (and the vicious circle principle). Recall
that Frege proposed that the number 1 is the number of the concept

¢ There are different natural numbers for each type. We might define 0' to be
the class of all type 2 classes that have no members, and 1' to be the class of all
type 2 classes with a single member, etc. So 0' and 1' are of type 3.
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‘identical with zero’. Using classes instead of concepts, the number
1 would be the number of the class whose only member is the
number zero. That is, Frege’s number 1 is the number of {0}. But
{0} is of type 3 and so the number of this class is of type 4. Notice
that even though the number 0 has a single member (i.e., the type 1
empty set), 0 is not a member of Russell’s number 1, since the latter
contains only type 1 classes—as per the type restrictions. Since the
number 0 is of type 2, it is a member of the type 3 class consisting of
all type 2 classes that have a single member (see note 8).

To help keep the types straight, let us temporarily define 1, the
Russell-1, to be the type 2 class consisting of all type 1 classes with a
single member; and define 1' to be the type 3 class consisting of all
type 2 classes that have a single member. So Russell’s number zero
is a member of 1' but not a member of 1,. For Frege, the number
two is the number of the concept ‘either identical to zero or identi-
cal to one’. Transposing this to the present context (involving
classes instead of concepts), Frege’s number two would be the
number of the class {0,1}. Which number 1, 1; or 1'? It does not
work either way. For Russell, the class {0,1'} does not exist, since it
contains a type 2 class and a type 3 class.” The class {0,1,} contains a
pair of type 2 classes and so it is of type 3. The number of {0,15} is
thus of type 4. In general, Frege’s plan to define a number n as the
number of the predecessors of n: {0,1, . .. n- 1} runs into trouble.
We either violate the type restrictions directly (if 0, 1, etc. are not
all of the same type) or else we produce a class of the wrong type.

For Russell, again, each number  is the type 2 class consisting of
all n-membered classes of (type 0) individuals—that is, all n-
membered classes of non-classes. He could not accept Frege’s
proof that there are infinitely many natural numbers, for that
involved treating the natural numbers as if they were individuals.
Like Basic Law V, Frege took Hume’s principle to be impredicative.

° With some care, it is possible to consistently define classes of mixed type, such
as a class of players and teams. Contemporary Zermelo-Fraenkel set theory
allows mixed classes and so it has a class of all classes of finite type, and then
subclasses of that, etc. The resulting structure is sometimes called the ‘cumulative
hierarchy’. Allowing mixed types facilitates the extension of the type hierarchy
beyond finite types. In the cumulative hierarchy, there is no set of all sets that are
not members of themselves. There is no universal set, containing all sets as mem-
bers, and there is no set of all singletons. So the Fregean construction is blocked
there too.
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Frege’s theorem, including the poof that there are infinitely many
natural numbers, turns on this impredicativity.

For Russell, whether a given natural number exists depends on
how many individuals (i.e. non-classes) there are in the universe.
Suppose, for example, that the world contains exactly 612 indi-
viduals. Then Russell’s number 612 would be the class of all 612-
membered classes of individuals. There would be only one such
class, the class of all individuals. To follow the definition, the suc-
cessor of 612 is the number of ‘the class consisting of the universe
‘together with x, where x is [any individual] not belonging to’ the
universe. Well, under the assumption about the size of the uni-
verse, there is no such x and so there is no successor of 612. The
numbers simply run out at 612—there is no number 613.

To avoid this embarrassment, Russell and Whitehead propose an
axiom of infinity, which states that there are infinitely many indi-
viduals. Russell admits that this principle does not enjoy the epi-
stemic status of the other fundamental principles he employs (such
as the definitions). The axiom of infinity cannot be proved, nor is it
analytic, a priori, true of necessity. Nevertheless, it seems to be
essential for arithmetic, so Russell accepts it as a postulate. The
existence of each natural number, and its successor, then follows.

The contrast with Frege is stark. Frege proved that each natural
number exists, but his proof is impredicative, violating the type
restrictions. Russell had to assume the existence of enough indi-
viduals for each natural number to exist. This puts a damper on
logicism. If we go on to prove an arithmetic theorem ®, all we can
say is that the statement

if there are infinitely many (type 0) individuals, then @

is a theorem of logic. Most of arithmetic has an awkward, hypo-
thetical status.

With the axiom of infinity on board, the next step is to define the
general notion of natural number. Here again, Russell attempts to
transpose Frege’s proposal to the context of classes: # is a natural
number if n belongs to every (type 3) class which contains the
number 0 and also contains a successor of each of its members. As
it stands, however, this definition is impredicative, in a most
straightforward manner. The class of natural numbers is a type 3
class defined by referring to ‘every class’ of that type. To maintain
full compliance with the vicious circle principle, Russell (and
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Whitehead) insisted on further structure in the hierarchy of types.
A type 1 class is ‘predicative’, or of level 0, if it can be defined
without referring to classes. A type 1 class is of level 1 if it is not
predicative, but can be defined with reference to predicative classes
only. A type 1 class is of level 2 if it is not of level 1 but can be
defined with reference to level 1 classes only. There is a similar level
structure for every type. The overall theory is sometimes called
‘ramified type theory’."’

In the foregoing definition of ‘natural number’, the locution
‘every class” would have to be restricted to a certain level in the
ramified hierarchy of type 2 classes. One should say that n is a type
2, level 1 natural number if n belongs to every predicative class
which contains the number 0 and also contains a successor of each
of its members; n is a type 2, level 2 natural number if n belongs to
every level 1 class which contains the number 0 and also contains a
successor of each of its members; and so on. However, we now
have no reason to think we get the same class of ‘natural numbers’
at each level. Russell and Whitehead realized that they could not
sufficiently develop mathematics with the level restrictions, since
some of the crucial definitions seem to require impredicative def-
initions. For example, Frege’s proof of the induction principle for
natural numbers from these definitions does not go through. When
formulated in Russell’'s system, the induction principle is, or
appears to be, impredicative, and many important mathematical
developments are impredicative.

In response to this difficulty, Russell and Whitehead proposed
another axiom, a principle of reducibility which states that at each
type, for every class c, there is a predicative (level 0) class ¢’ which
has the same members as c. The principle of reducibility states that
no new classes are generated beyond the first level. This allowed
Russell and Whitehead to restrict the locution ‘all classes’ to “all
predicative classes’, and then proceed with the derivation of the
basic principles of arithmetic. The effect of the principle of reduci-
bility is to allow the logician to ignore the level-hierarchy and pro-
ceed as if impredicative definitions are acceptable and the vicious
circle is not really a problem. A nice deal, if you can get it.

'® Whitehead and Russell 1910. See Hazen 1983 for a readable and sympathetic
development of ramified type theory. Russell used the word ‘order’ for what I call
‘level’ here. In the contemporary literature, a phrase like ‘second-order’ or
‘higher-order’ refers to something more like a type in Russell’s hierarchy.
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But what is the status of the principle of reducibility? Is it ana-
lytic? Knowable a priori? Is it even true? Critics charged that the
principle is ad hoc. Russell’s response was the same as for the axiom
of infinity. He admitted that the reducibility principle does not
enjoy the same justification as the principles of logic, and he did not
provide a compelling argument for it. Yet he claimed that it is
essential for the development of mathematics, and so he proposed
it as a postulate. He admitted that the axiom of reducibility is a flaw
in his logicism."

Using the principles of infinity and reducibility, Russell and
Whitehead established the standard Peano axioms for arithmetic,
and thus all of the usual theorems concerning the natural numbers.
They then extended the development to some more advanced
branches of mathematics, invoking ever higher types along the
way. Let m be a natural number. Russell (1919: ch. 7) defined the
integer +m to be the binary ‘relation of n + m to n (for any n)’ on
the natural numbers. Thus, for example, +4 is the relation that
holds of the following pairs: (4,0), (5,1), (6,2), ... Similarly, the
integer —m is the converse of + m, ‘the relation of n to n+m’, so
that —4 holds of (0,4), (1,5), (2,6), .... One can then define
addition and multiplication on these ‘integers’ so that the usual
properties hold.

It is widely thought, and widely taught, that the integers are an
extension of the natural numbers. We go from the natural numbers
to the integers by tacking on the negative whole numbers, so that
the natural number 2, for example, is identical to the integer +2.
Russell emphasized that on his definitions, the natural numbers and
the integers are distinct from each other. The natural number 2 is a
class of classes (i.e. a type 2 class) while the integer +2 is a relation
on natural numbers. It would violate the type restrictions to iden-
tify this natural number with this integer: * ... +m is under no
circumstances capable of being identified with m, which is not a
relation, but a class of classes. Indeed, + m is every bit as distinct
from m as —m is’.

Next, the rational numbers are defined to be relations which

"' F. P Ramsey (1925) proposed a ‘simple’ or impredicative type theory without
the restrictions on levels, but then presumably one needs to justify the violations to
the vicious circle principle. Ramsey adopted an ontological realism towards
classes, which obviates the need for a vicious circle principle. See ch. 1, §2 above.
We return to this briefly later in this chapter.
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capture ratios among integers: ‘We shall define the fraction m/n as
being that relation which holds between two [numbers] x,y when
xn =ym’. Thus, for example, the fraction 3/4 is the relation that
holds of the pairs: (3,4), (6,8), . . . Intuitively, the relation 3/4 holds
between x and y just in case the fraction x/y reduces to 3/4. Notice
also that the rational number m/1 is not the same relation as the
integer + m. So the rational number 2 is different from the integer
2 and the natural number 2. One can define the ‘greater than’
relation and the operations of addition and multiplication, on these
rational numbers, to recapture the arithmetic of the rational
numbers.

For the real numbers, Russell follows another logicist, Richard
Dedekind (1872). Define a ‘section’ to be a non-empty class ¢ of
rationals such that (1) for all rational numbers x,y, if x is in ¢ and if
y <x then y is in ¢; (2) there is a rational number z such that for
every rational number x if x is in ¢, then x < z; and (3) for every
rational number x if x is in ¢ then there is a rational number y in ¢
such that x <y. In other words, a section is a connected, bounded
class of rational numbers that has no largest member. The sections
correspond to what are called ‘Dedekind cuts’ in the rational num-
bers. Russell identified the real numbers with the sections. The real
number 2 is the class of rationals less than 2 (i.e. 2/1), and the
square root of 2 is the class of all negative rational numbers
together with the non-negative rationals whose square is less than
2. One can define the order relation on the real numbers, and the
addition and multiplication operations, and then show that the real
numbers are a complete ordered field. In particular, one can estab-
lish the completeness principle that every bounded class of real
numbers has a least upper bound.

Notice that on this definition, real numbers are classes of rational
numbers. The axiom of reducibility—or the use of impredicative
definitions—thus plays a large role in the Russell’s development of
rea] analysis. It becomes impossible to keep the levels straight. For
example, it will not do to have a level 0 square root of 2, a level 1
square root of 2, and so on. For real analysis, Russell also needed an
axiom of choice, stating that for any collection ¢ of non-empty
classes, no two of which share a member, there is at least one class
containing exactly one member of each member of ¢ (Russell 1919:
ch. 12; see Moore 1982 for a full development of the role of choice
principles in the development of mathematics). Like infinity and
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reducibility, this axiom can be formulated using logical termin-
ology, but perhaps not established from logical principles alone.

Finally, Russell defined a complex number to be an ordered pair
of real numbers. So the complex number 3 — 2i is identified with
the ordered pair whose first member is the real number 3 and
whose second member is the real number — 2.

This more or less completes the development of Russell’s logi-
cism. Russell (1919: ch. 18) asks a partly rhetorical question: ‘What
is this subject, which may be called indifferently either mathematics
or logic? ... Certain characteristics of the subject are clear. To
begin with, we do not, in this subject, deal with particular things or
particular properties: we deal formally with what can be said about
any thing or any property.” Logic is completely general, and uni-
versally applicable.

To the extent that geometry concerns physical space, it falls outside
the scope of Russell’s logicism. However, one can consider a ‘pure’
version of geometry, which consists of pursuing the consequences of
various axiom systems. This much can be fitted into the logicist
framework, with the advent of model theory and the rigorous
notion of logical consequence. With the principles of infinity, redu-
cibility, and choice, Whitehead and Russell’s type theory captures
just about every branch of pure mathematics short of set theory.

But what is mathematics about? What are numbers, function, and
so on really? Since Russell took the various sorts of numbers to be
classes, relations on classes, relations on relations on classes, and so
on, the status of numbers turns on the status of classes. His mature
writings deny the independent existence of classes. In Introduction
to Mathematical Philosophy (1919: ch. 18) he wrote that ‘the symbols
for classes are mere conveniences, not representing objects called
“classes” ... [Cllasses are in fact ... logical fictions ... [They]
cannot be regarded as part of the ultimate furniture of the world’.
Russell indicated (or tried to indicate) how to paraphrase any state-
ment about classes as a statement about concepts and properties
(what he called ‘propositional functions’). The end result is what he
called the ‘no class’ theory. Talk of classes is only a ‘manner of
speaking’, and is eliminable in practice.

'* Here the axiom of reducibility plays an even larger role, since a single para-
phrase might require one to speak at once of all concepts in the entire type
hierarchy. Russell sometimes speaks of a ‘systematic ambiguity’, where the same
sentence is used to express different propositions about each type and/or level.
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Since Russell’'s numbers are classes (or constructed from classes),
they are also logical fictions, and so not part of the ‘ultimate furni-
ture of the world’. So at this period, Russell sharply departed from
Frege’s realism in ontology. During his mature ‘no class’ period, he
held that any statement in any branch of (pure) mathematics could
be properly rewritten as a complex statement about properties and
concepts, with no reference to numbers, functions, points, classes,
and so on.

3. Carnap and Logical Positivism

We now consider a school of empiricism that flourished in the
early and middle decades of the twentieth century. Logical positiv-
ism took off from the spectacular success of the natural sciences
and the growth of mathematical logic. As noted earlier, math-
ematics is a difficult case for empiricism. In the previous chapter
we considered Mill’s view that the truths of mathematics are
themselves known empirically, by generalizations on experience.
Accordingly, mathematics is synthetic and a posteriori. In contrast,
the logical positivists were attracted to the logicist thesis that the
truths of mathematics are analytic, and so a priori. As we have
seen already, these notions mean different things to different
authors. We encounter a further evolution of the notion of
analyticity.

As noted at the outset of this chapter, Coffa (1991) suggested that
much of nineteenth-century philosophy was occupied with
attempts to account for the (at least apparent) necessity and a priori
nature of mathematics and logic without invoking Kantian intu-
ition. Coffa suggested that the most fruitful anti-Kantian line was
what he calls the ‘semantic tradition’, running through the work of
Bernard Bolzano, the early Ludwig Wittgenstein, Frege, and David
Hilbert, culminating with Moritz Schlick and Rudolf Carnap in the
Vienna Circle. These philosophers developed and honed many of
the tools and concepts still in use today, both in mathematical logic
and in western philosophy generally. The main insight was to locate
the source of necessity and a priori knowledge in the use of lan-
guage. Necessary truth is truth by definition; a priori knowledge is
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knowledge of language use. Michael Dummett calls the approach
the linguistic turn in philosophy."

In the present context, the thesis is that once we understand the
meanings of terms like ‘natural number’, ‘successor function’, ‘add-
ition’, and ‘multiplication’, we would thereby have the resources to
see that the basic principles of arithmetic, such as the induction
principle, are true. This is at least in the spirit of logicism, even if,
strictly speaking, the truths of mathematics do not end up being
true on logical grounds alone.

Of the two main logicists considered above, Frege held that the
numbers exist, of necessity, independent of the mathematician, and
Russell held that numbers do not exist (at least during his no-class
period). One might think that this exhausts the options, but as an
empiricist Carnap found the whole metaphysical question of the
existence of numbers troubling. How can that issue be decided by
observation? Carnap rejected the sense of the very debate over the
existence of mathematical objects.

On one level, the ontological question has a trivial, affirmative
answer. “There are numbers’ is a logical consequence of ‘there are
prime numbers greater than 10°. If we accept the latter, as surely
we must if we take mathematics and science seriously, then we
accept the former: a tidy end to a 2,000-year-old struggle. Frege and
Plato win; Russell, Mill, and perhaps Aristotle lose.

Of course, the ontological anti-realist would not be moved by
this simple logical inference, and many ontological realists agree
that the issue is not that simple."* So what is the traditional dispute
about? Carnap (1950: §2) suggested that the parties ‘might try to
explain what they mean by saying that it is a question of the onto-
logical status of numbers; the question whether or not numbers
have a certain metaphysical characteristic called reality . . . or sub-
sistence or status of “independent entities”’. Carnap complained

" Dummett locates the ‘linguistic turn’ with Frege, but this is controversial.
Although Frege was clearly a pivotal figure in the eventual development of the
semantic tradition, he did not hold that all necessary truth is truth by definition.
Recall that, for Frege, the truths of geometry are synthetic, a priori (see §1 above),
and so not true by definition. For Frege, analytic truths are derivable from ‘general
logical laws and definitions’. Thus, the status of Fregean analytic truths turns on
the nature of ‘general logical laws’, but Frege did not say much about these (see
note 2 above).

** See Hale 1987: 5-10, for a lucid discussion of this matter.
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that ‘these philosophers have so far not given a formulation of their
question in terms of the common scientific language. Therefore
our judgement must be that they have not succeeded in giving to
the [ontological] question ... any cognitive content. Unless and
until they supply a clear cognitive interpretation, we are justified in
our suspicion that their question is a pseudo-question . .. We see
here a tendency toward naturalism, common among empiricists
(see ch. 1, §3 and ch. 4, §3). The idea is that science has the best,
perhaps the only, line on truth and so any meaningful question
must be cast in scientific terms. The ontological question is not
‘theoretical’ or scientific, and so it is meaningless.

What of the trivial, affirmative answer, deriving the existence of
numbers from the proof that there are prime numbers greater than
10? Carnap delineates a distinction:

Are there properties, classes, numbers, propositions? In order to under-
stand more clearly the nature of these and related problems, it is above all
necessary to recognize a fundamental distinction between two kinds of
questions concerning the existence or reality of entities. If someone
wishes to speak in his language about a new kind of entities, he has to
introduce a system of new ways of speaking, subject to new rules; we
shall call this procedure the construction of a linguistic framework for the
new entities in question. And now we must distinguish two kinds of
questions of existence: first, questions of existence of certain entities of
the new kind within the framework; we call them internal questions: and
second, questions concerning the existence or reality of the system of
entities as a whole, called external questions. Internal questions and possible
answers to them are formulated with the help of new forms of expres-
sions. The answers may be found either by purely logical methods or by
empirical methods, depending upon whether the framework is a logical or
a factual one. An external question is of a problematic character in need
of closer examination. (Carnap 1950: §2)

A ‘linguistic framework’ is an attempt formally to delineate a
part of discourse. The framework should contain a precise gram-
mar, indicating which expressions are legitimate sentences in the
framework, and it should contain rules for the use of the sentences.
Some of the rules may be empirical, indicating, for example, that
one can assert such and such a sentence when one has a certain
kind of experience. Other rules will be logical, indicating what
inferences are allowed and which sentences can be asserted no
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matter what experience one has. Carnap calls the latter analytic
truths.

Elsewhere, Carnap presented a logicist system much like
Russell’s (see, for example, Carnap 1931), but with one important
difference. Russell took his task to be a philosophical analysis of
the nature of propositions, concepts, classes, and numbers (see
Goldfarb 1989), and so he insisted on the vicious circle principle,
and thus rejected impredicative definitions. As seen above, the
result was an unwieldy ramified type theory, with the ad hoc axiom
of reducibility. Carnap, on the other hand, regarded his system as a
linguistic framework—one among many. In developing a frame-
work, one is free to stipulate the rules of the system, the only
requirement being that the rules are clear and explicit. Carnap thus
preferred Ramsey’s impredicative simple theory of types, avoiding
the principle of reducibility altogether (see note 11 above).

Carnap (1950) briefly sketches a linguistic framework called ‘the
system of numbers’. Its grammar includes numerals, variables,
quantifiers such as ‘there is a number x such that . . .’, and signs for
the arithmetic operations. Carnap indicates that this framework
contains ‘the customary deductive rules’ for arithmetic. This
framework seems to be a formal deductive system, like those
developed in mathematical logic.

Define a number framework to be a system like Carnap’s earlier
logicist system or his later ‘system of numbers’. With regard to any
such system, there are, first of all, ‘internal questions, e.g., “Is there
a prime number greater than a hundred?” ... [Tlhe answers are
found, not by empirical investigations based on observations, but
by logical analysis based on the rules for the new expressions.
Therefore, the answers are here analytic, i.e., logically true’ (Carnap
1950: §2). The existence of a prime greater than a hundred is an
easy, straightforward consequence of the rules and definitions of
the given number framework. The existence of numbers is an
utterly trivial consequence of those rules and definitions. It follows
from the stipulations that 1 is a number. “Therefore, nobody who
meant the question “Are there numbers?” in the internal sense
would either assert or seriously consider a negative answer’.

Once again, Carnap held that the external question concerning
the reality of the numbers is meaningless. The closest thing to a
legitimate question is the advisability of adopting a given number
framework, but this is a pragmatic matter, not calling for an absolute
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‘yes’ or ‘no’ answer. We—the members of the intellectual/scientific
community—are free to choose to adopt a framework, or not,
based on how it furthers the goals we take on. The overall goal of
the scientific enterprise is to describe and predict experience, and to
control the physical world. Mathematics seems to be part of this
scientific enterprise. The pragmatic question is whether one of
Carnap’s number frameworks serves the purposes of science better
or worse than other frameworks, such as Russell’s ramified type
theory.

Carnap adopted and defended a principle of tolerance. Let a
thousand flowers try to bloom, even if not all of them do:

The acceptance or rejection of . . . linguistic forms in any branch of sci-
ence, will finally be decided by their efficiency as instruments, the ratio of
the results achieved to the amount of effort and complexity of the efforts
required . . . Let us grant to those who work in any special field of investi-
gation the freedom to use any form of expression which seems useful to
them; the work in the field will sooner or later lead to the elimination of
those forms which have no useful function. Let us be cautious in making
assertions and critical in examining them, but tolerant in permitting linguistic
forms. (Carnap 1950: §5)

In chapter 1, §2 above, we saw that G6del defended impredica-
tive definitions on the grounds of ontological realism. So did
Ramsey (see note 11 above). From that perspective, an impredica-
tive definition is a description of an existing entity with reference to
other existing entities. But this requires a positive answer to the
original external question about the existence of numbers, and so it
goes by way of metaphysics. According to Godel and Ramsey,
impredicative definitions are acceptable because numbers and classes
have an independent existence. In contrast, Carnap defended
impredicative definitions on pragmatic grounds. His number
framework is far more convenient than ramified type theory for the
scientific purposes at hand. No further justification is required, or
even coherent. Delving into the metaphysical status of properties,
concepts, or numbers produces only pseudo-questions.

Unlike Mill, Carnap and the other logical positivists held that the
truths of mathematics are not determined by experience. Math-
ematical truths are a priori, holding no matter what experience we
may have. As empiricists, however, they held that every factual
matter must ultimately be decided by experience. So the logical
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positivists concluded that mathematical truths have no factual con-
tent. For Carnap, the truths about the natural numbers may be
called ‘framework principles’ since they emerge from the rules for
using a number framework.

A later member of the school, Alfred J. Ayer (1946: ch. 4), put it
clearly:

For whereas a scientific generalization is readily admitted to be fallible, the
truths of mathematics and logic appear to everyone to be necessary and
certain. But if empiricism is correct no proposition which has a factual
content can be necessary or certain. Accordingly the empiricist must deal
with the truths of mathematics and logic in one of the two following
ways: he must say either that they are not necessary truths . . . or he must
say that they have no factual content, and then he must explain how a
proposition which is empty of all factual content can be true and useful
and surprising.

Ayer wrote that, contra Mill, mathematical truths are necessary, but
he added that they do not say anything about the way the world is.
We ‘cannot abandon [the truths of logic and mathematics] without
contradicting ourselves, without sinning against the rules which
govern the use of language’. For Carnap, the ‘rules which govern
the use of language’ are found in the various linguistic frameworks.

The logical positivists thus eliminated the very possibility of syn-
thetic propositions that are knowable a priori. As Ayer put it, a
proposition is synthetic, or has factual content, only if its truth or
falsehood ‘is determined by the facts of experience’. A proposition
is analytic ‘when its validity depends solely on the definitions of the
symbols it contains’. For Ayer, this exhausts the cases. He added
that although analytic propositions ‘give us no information about
any empirical situation, they do enlighten us by illustrating the way
in which we use certain symbols’.

The logical positivists brought geometry into the fold. The
axioms of, say, Euclidean geometry are ‘simply definitions’ of
primitive terms like ‘point’ and ‘line’. Ayer wrote: ‘if what appears
to be a Euclidean triangle is found by measurement not to have
angles totaling 180 degrees, we do not say we have met with an
instance which invalidates the mathematical proposition that the
sum of the three angles of a Euclidean triangle is 180 degrees. We
say that we have measured wrongly, or, more probably, that the
triangle we have been measuring is not Euclidean.” Euclidean
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geometry, construed as a theory of pure mathematics, is a linguistic
framework 4 la Carnap. The indicated theorem about the angles
in a triangle is a framework principle, and so is analytic, knowable
a priori. It is true by definition. There is a separate pragmatic
or scientific issue concerning the advisability of adopting this
framework, rather than one of the non-Euclidean geometries, for
physics. This last is not a mathematical question.

In addition to Carnap and Ayer, the major logical positivists
included the other members of the so-called ‘Vienna Circle’, such
as Moritz Schlick, Gustav Bergmann, Herbert Feigl, Otto Neurath,
and Friedrich Waismann. Outside Vienna, there is C. W. Morris,
and Ernest Nagel. That movement had pretty much run its course
by the 1960s, if not before, but the position on mathematics was
not the main reason for the decline of logical positivism. Logical
positivism shared the problem with traditional (radical) empiricism
of describing the basis of knowledge. Can we distinguish observa-
tion from theory, and can we sharply distinguish mathematics from
the rest of scientific theory? The success of mathematical logic led
the positivists to attempt a logic of confirmation, that would relate
empirical observation to scientific and mathematical theory. Yet no
compelling confirmation-logic was forthcoming. These failures led
to difficulty in formulating the central thesis that every factual
(non-analytic) statement is verifiable. What exactly is it to be verifi-
able? The verifiability thesis proved untenable, even on ever-weaker
notions of verification.

Some critics pointed out that the very statement of logical posi-
tivism undermines the view. Consider, for example, the proposition
that every meaningful statement is either analytic or verifiable (in
some sense) through experience. Apparently, this proposition is not
analytic, in the sense of being true in virtue of the meaning of the
words it contains. Also, the proposition does not seem subject to
verification by experience, in any sense of the term. Thus, logical
positivism seems to brand itself as a banned metaphysical doctrine.
Many of Carnap’s own philosophical statements, needed to outline
the programme, do not seem to be made within a fixed linguistic
framework. Indeed, his statements are about linguistic frameworks,
and so are ‘external’ to any given framework. Does this turn Car-
nap’s own work into meaningless ‘pseudo-statements’?

One influential attack against logical positivism came from Car-
nap’s most influential student, Quine, who argued that there is no
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distinction between analytic and synthetic statements, or at least no
distinction that serves the purposes of logical positivism. According
to Quine, there is no sharp distinction between the role of language
and the role of the world in determining the truth or falsehood of
meaningful statements. Quine proposed a holistic approach to sci-
entific language, with observation, theory, and mathematical
statements inextricably linked to each other. He shared the basic
empiricist idea that observation is the basis of all knowledge, and so
Quine shared a basic mistrust of much traditional metaphysics. He
developed a naturalism and an empiricism closer to that of Mill in
important ways. Mathematical truths are true in the same way that
scientific truths and reports of observation are true. These truths
are not necessary and not known a priori. We return to Quine in
chapter 8, §2.

The thesis that mathematical propositions are true or false by
virtue of the meaning of mathematical terminology cannot be
fully adjudicated without an extended discussion of what ‘meaning’
is. Note, however, that one main promise of the thesis is an account
of how mathematics is known. According to the logical positivists,
knowledge of the correct use of mathematical language is sufficient
for knowledge of mathematical propositions, such as the induction
axiom, the prime number theorem, and even Fermat’s last the-
orem. For Carnap, once we learn the rules of a given linguistic
framework, such as the number framework or Euclidean geometry,
we have everything we need for knowledge of the requisite math-
ematical propositions. This suggests that, epistemically, mathemat-
ical propositions can be sharply divided into self-contained groups.
Each proposition p is associated with its framework P. Knowledge
of the rules of P is just about all there is to knowledge of the truth
or falsehood of p.

Developments in mathematics, including some results in math-
ematical logic, cast doubt on this promising epistemic thesis.
Godel’s incompleteness theorem is that if D is an effective deduct-
ive system that contains a certain amount of arithmetic, there are
sentences in the language of D which are not decided by the rules
of D (see, for example, Boolos and Jeffrey 1989: ch. 15). The truth-
values of many of these sentences are decided by embedding the
natural numbers in a richer structure, such as the real numbers or
the set-theoretic hierarchy. That is, some statements in the lan-
guage of arithmetic are not knowable on the basis of the rules of a
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natural number framework alone. The situation is typical in math-
ematics. Suppose, for example, that a mathematician is interested in
a certain mathematical statement s about a certain structure S.
According to Carnap, if s is true (of S), then s is analytic and owes
its truth to the linguistic framework of the structure S. However,
the mathematician will commonly invoke structures far richer than
S in order to prove or refute s. That is, the mathematician considers
structures richer than S in order to determine the properties of S.
No rich mathematical theory is as self-contained as Carnap’s
(mathematical) linguistic frameworks are supposed to be."

The recent proof of Fermat’s last theorem is a case in point.
Anyone with a basic understanding of the terms can understand the
statement that for any natural numbers

a>0,b>0,c>0,n>2,a"+b"#c".

Yet the proof eludes the grasp of all but the most sophisticated
mathematicians, since it invokes concepts and structures far beyond
that of the natural numbers. In this case at least, someone can
understand the meanings of terms like ‘natural number’, ‘successor
function’, ‘addition’, ‘multiplication’, and ‘exponentiation” without
having the wherewithal to see that Fermat’s last theorem is true.
There may be a ‘self-contained’ proof of this theorem—that is, a
proof that does not go beyond the properties of the natural num-
bers. Perhaps Fermat himself discovered such a proof, but con-
temporary mathematicians did not learn (and do not know) the
theorem via that route. Nevertheless, the theorem is clearly about
the natural numbers.

One retreat would be for the logical positivist to concede that
only some truths of, say, arithmetic, are analytic, or otherwise
determined by the meanings of arithmetic terminology. Perhaps
someone can maintain that a basic core of arithmetic truths are
analytic. What of the other, non-core propositions? Are those syn-
thetic? If so, are they somehow verifiable in observation?

Another option would be for the logical positivist to maintain
the thesis that mathematical statements are true by virtue of their
meaning, and concede that one can have the knowledge necessary
to understand a given true proposition without thereby having the

" In the next chapter we will see this ‘incompleteness’ phenomenon under-
mine another once prominent philosophy of mathematics, formalism.
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resources to know that it is true. The idea is that when we embed
the natural numbers in a richer structure, we can thereby learn
more about what follows from the meaning of the original mathemat-
ical terminology. The logical positivist thus needs a rich and open-
ended notion of logical consequence and he needs to explicate this
notion of consequence before claiming an understanding of math-
ematical knowledge. Until this notion of consequence is supplied
and evaluated, it is not clear how much progress one can claim on
the epistemology of mathematics.

4. Contemporary Views

Variations of Frege’s approach to mathematics are vigorously pur-
sued today, in the work of Crispin Wright, beginning with Frege’s
Conception of Numbers as Objects (1983), and others like Bob Hale
(1987) and Neil Tennant (1997). Define a neo-logicist to be some-
one who maintains the following two theses: (1) A significant core
of mathematical truths are knowable a priori, by derivation from
rules which are (all but) analytic or meaning-constitutive; and (2)
this mathematics concerns an ideal realm of objects which are
objective, or mind-independent in some sense.'® This combination
of views is attractive to those sympathetic to the traditional view of
mathematics as a body of a priori, objective truths but worried
about the standard epistemological problems faced by realism in
ontology. How can we know anything about a realm of causally
inert, abstract objects? The neo-logicist answers: by virtue of our
knowledge of what we mean when we use mathematical
language—and so she attempts to resolve the problems found in
traditional logicism. The neo-logicist is probably the closest con-
temporary heir of Coffa’s ‘semantic tradition’.

Recall that two concepts F, G, are equinumerous if there is a
one-to-one correspondence between the objects falling under F and
the objects falling under G. For example, if no red cards have been
issued in a soccer match, the players on one team are equinu-
merous with the players on the other team. Frege showed how to

' Frege himself clearly held the second of these theses. See note 13 above on
the extent to which Frege held something like the first thesis.
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define equinumerosity using logical resources without explicitly
presupposing the natural numbers. Recall his (1884: §63) formula-
tion of the thesis now known as ‘Hume’s principle’:

For any concepts F, G, the number of F is identical to the number
of G if and only if F and G are equinumerous.

The neo-logicist programme is to bypass Frege’s treatment of
extensions and to work with Hume'’s principle, or something like it,
directly. A number of authors, including Wright, have pointed out
that Frege’s development of arithmetic (1884, 1893) contains the
essentials of a derivation of the standard axioms of arithmetic from
Hume’s principle (in so-called ‘second-order logic’—see Shapiro
1991). Moreover, Hume’s principle is consistent if (second-order)
arithmetic is. In the presentation of arithmetic, Frege’s only sub-
stantial use of extensions, and the ill-fated Basic Law V, was to
derive Hume’s principle. See, for example, Parsons 1965, Wright
1983, Hodes 1984, and Boolos 1987.

As noted above, the derivation of arithmetic from Hume’s
principle is now called Frege’s theorem. No one doubts that it is a
substantial mathematical achievement, illuminating the natural
numbers and their foundation. The neo-logicist argues that
Frege’s theorem supports the aforementioned philosophical theses
concerning the natural numbers.

The principle idea is that the right-hand side of Hume’s principle
gives the truth conditions for the left-hand side, but the left-hand
side has the proper grammatical and logical form. In particular,
locutions like ‘the number of F are genuine singular terms, the
grammatical forms used to denote objects. At least some instances
of the right-hand side of Hume’s principle are true, on logical
grounds alone. For example, it is a logical truth that the concept of
‘not identical to itself is equinumerous with the concept ‘not iden-
tical to itself. Thus, from Hume’s principle, we conclude that the
number of non-self-identical things is identical to the number of
non-self-identical things. Letting ‘0" denote the number of non-self-
identical things, we conclude that 0 = 0 and so zero exists.

Following Frege, the neo-logicist then defines the number 1 to
be the number of the concept ‘identical to zero’, defines the num-
ber 2 as the number of the concept ‘either identical to zero or
identical to one’, and on from there in Fregean fashion. It follows
from Hume’s principle that these natural numbers are different
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from each other, and so Hume’s principle cannot be satisfied in a
finite domain.

Like Frege’s own development, the neo-logicist requires that
Hume’s principle be impredicative, in the sense that the variable F in
the locution ‘the number of F' can be instantiated with concepts
that themselves are defined in terms of numbers. Without this
feature, the very definition of the individual numbers would fail,
along with the derivation of the basic arithmetic axioms from
Hume’s principle. This impredicativity is consonant with the onto-
logical realism shared by Frege and his neo-logicist followers (see
Wright 1998).

Wright and Hale stop short of claiming that Hume’s principle is
a logical truth or, in Frege’s terms, a ‘general logical law’. Hume’s
principle is not true in virtue of its form, nor does it seem to be
derivable from accepted logical laws. Wright and Hale also do not
claim that Hume'’s principle is a definition of cardinal number. It is
generally agreed that a definition of a term must be eliminable in
the sense that any formula containing the defined term is equiva-
lent to a formula not containing it. It follows from Hume’s prin-
ciple that there is something that is the number of non-self-identical
things, in symbols 3x(x = 0). Hume’s principle does not provide for
an equivalent sentence lacking the number terminology. A success-
ful definition should also be non-creative in the sense that it has no
consequences for the rest of the language and theory. Hume’s prin-
ciple does have such consequences, since it entails that the universe
is infinite. So Hume’s principle is neither eliminative nor non-
creative.

Thus, Wright and Hale do not defend the traditional logicist
thesis that arithmetic truth is a species of logical truth, or that each
arithmetic truth follows from general logical laws and definitions.
Hence the meo’ in ‘neo-logicism’. However, they argue that
Hume’s principle is ‘analytic of the concept of natural number.
Thus, the programme preserves the necessity of at least the basic
arithmetic truths and it shows how these truths can be known a
priori. In a later work, Wright (1997: 210-11) wrote:

Frege’s theorem will . . . ensure . . . that the fundamental laws of arith-
metic can be derived within a system of second-order logic augmented by
a principle whose role is to explain, if not exactly to define, the general
notion of identity of cardinal number, and that this explanation proceeds
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in terms of a notion which can be defined in terms of second-order logic.
If such an explanatory principle . . . can be regarded as analytic, then that
should suffice . .. to demonstrate the analyticity of arithmetic. Even if
that term is found troubling, . . . it will remain that Hume’s principle—like
any principle serving implicitly to define a certain concept—will be avail-
able without significant epistemological presupposition . . . So one clear a
priori route into a recognition of the truth of . . . the fundamental laws of
arithmetic . . . will have been made out. And if in addition [Hume’s prin-
ciple] may be viewed as a complete explanation—as showing how the con-
cept of cardinal number may be fully understood on a purely logical
basis—then arithmetic will have been shown up by Hume’s principle . . .
as transcending logic only to the extent that it makes use of a logical
abstraction principle—one [that] deploys only logical notions. So . . . there
will be an a priori route from a mastery of second-order logic to a full
understanding and grasp of the truth of the fundamental laws of arith-
metic. Such an epistemological route . . . would be an outcome still worth
describing as logicism . . .

The key claim here is that Hume’s principle does not have signifi-
cant epistemological presuppositions. It is essential to the project
that when attempting to establish a basic arithmetic truth, we need
not invoke Kantian intuition, empirical fruitfulness, and so on.

Like the original Fregean logicism, the neo-logicist programme
has a chance at success only if second-order logic is in fact logic. If
substantial mathematics is already built into the logic, then as far as
traditional logicism goes, Frege’s theorem begs the question. What
matters for neo-logicism is whether the axioms and rules of
second-order logic are analytic, or meaning-constitutive in the
requisite sense, or are otherwise free of substantial epistemological
presuppositions. The status of second-order logic is an ongoing
issue in contemporary philosophy. Quine (1986: ch. 5), for example,
claims that second-order logic is set-theory in disguise, a ‘wolf in
sheep’s clothing’. For a sample of the debate, see Boolos 1975, 1984,
Tharp 1975, Wagner 1987, and Shapiro 1991. This reiterates the
point at the end of the previous section that the underlying logical
principles must be made explicit and their epistemic status clearly
delineated before one can claim the virtues of a logicist pro-
gramme. Lacking an examination of the logic, it is not clear what
has been accomplished.

As we saw, Frege himself demurred from taking Hume’s prin-
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ciple as the ultimate foundation for arithmetic because Hume’s
principle only determines identities of the form ‘the number of
F = the number of G’. That is, Hume’s principle does not deter-
mine the truth value of sentences in the form ‘the number of F =
t', where t is an arbitrary singular term. The neo-logicist does not
adopt Frege’s resolution involving extensions, nor does he follow
Russell in rejecting the existence of numbers (nor Carnap in reject-
ing the question of existence). Thus, the ‘Caesar problem’ is an
active and open issue on the neo-logicist agenda. That is, the neo-
logicist seeks to do what Hume’s principle alone does not, to settle
the identity between terms denoting natural numbers and other
singular terms (see Hale 1994 and Sullivan and Potter 1997).

Hume’s principle is an abstraction—from the relation of equinu-
merosity to statements about numbers. It is one of a genus of
abstraction principles of the form:

(ABS) @a = @B if and only if E(a, ),

where E(a,B) is a special kind of relation, called an ‘equivalence’,
and ‘@’ is a new function symbol, so that ‘@a’ and @B are
singular terms.”” Frege invokes two other abstraction principles,
both in the form (ABS). One is at least relatively innocuous: the
direction of 1 is identical to the direction of I if and only if [ is
parallel to I'. The other example is his infamous, and inconsistent,
Basic Law V:

For any concepts F, G, the extension of F is identical to the exten-
sion of G if and only if for every object a, Fa if and only if Ga,

introduced as part of the theory of extensions.

The neo-logicist programme depends on the legitimacy of at
least some abstraction principles. Wright concedes that his own
proposals hinge on the proviso that ‘concept-formation by abstrac-
tion’ be accepted. George Boolos (e.g., 1997) argued against
‘concept-formation by abstraction’ as a legitimate manoeuvre for a
prospective logicist. The most prevalent of his arguments is the
‘bad company objection’. Boolos proposes that there is no non-ad
hoc way to distinguish good abstraction principles like Hume's

7 The relation E is an equivalence if (1) for every a, E(a,a) (reflexivity), (2) for
every o, if E(a,B) then E(B,a) (symmetry), and (3) for every a.B,y, if E(a.B) and
E(B.Y), then E(ay) (transitivity).
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principle, from bad ones like Basic Law V. To be sure, Hume’s
principle is consistent while Basic Law V is not, but that distinction
is too coarse-grained. Hume’s principle is an ‘axiom of infinity” in
the sense that it is satisfiable only in infinite domains. Boolos points
out that there are consistent abstraction principles, with the same
form (ABS) as Hume’s principle (and Basic Law V) that are satisfi-
able only in finite domains. If Hume’s principle is acceptable, then
so are these others. However, the finite principles are incompatible
with Hume’s principle. How then to distinguish the legitimate
abstraction principles? Wright's (1997) response is to delimit and
defend certain conservation principles which rule out the bad
abstraction principles and allow the good ones, Hume’s principle in
particular. The debate continues, but perhaps with less intensity
after Boolos’s tragic death in 1996.

The neo-logicist project, as developed thus far, only applies to
the natural numbers and basic arithmetic. As significant as this may
be, arithmetic is only a small part of mathematics. Another major
item on the neo-logicist agenda is to extend the treatment to cover
other areas of mathematics, like real analysis, functional analysis,
and perhaps geometry and set theory. The programme involves the
search for abstraction principles rich enough to characterize more
powerful mathematical theories. See Wright 1997: 233-44 and Hale
2000 for attempts in this direction.

In sum, then, logicism is not dead. It is an active and potentially
fruitful ongoing research programme in the philosophy of
mathematics.

5. Further Reading

Many of the primary sources cited above are readable and readily
available. Frege 1884 has been translated into English (by J. L.
Austin), and Russell 1919 was republished in 1993 as a Dover
paperback. Ayer 1946 remains a classic work. The Benacerraf and
Putnam 1983 anthology contains much of the original material on
logicism (in English translation if necessary), including Carnap
1931 and 1950, and selections from Frege 1884 (with different trans-
lation), Russell 1919, and Ayer 1946 (and a related piece, Hempel
1945). Resnik 1980 and Dummett 1991 are lucid, important second-
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ary sources on Fregean logicism. See also the papers collected in
Demopoulos 1995 and the second part of Boolos 1998. Several of
the papers in Heck 1997 deal with neo-logicism, and the topic
frequently appears in Philosophia Mathematica. For different logicist
approaches see Dedekind 1872, 1888 (published together in transla-
tion as a Dover paperback) and Hodes 1984.
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FORMALISM: DO
MATHEMATICAL STATEMENTS
MEAN ANYTHING?

ASUAL observation reveals, or seems to reveal, that much
C mathematical activity consists of the manipulation of linguistic
symbols according to certain rules. If someone doing arithmetic
establishes a sentence in the form a x b = ¢, then he can write the
corresponding b X a = c. If he also gets to a sentence like a # 0, then
he is entitled to write c/a = b. The elementary and advanced parts
of mathematics alike have this feature of at least appearing as rule-
governed manipulation.

What is the significance of this observation about the practice
of mathematics? The various philosophies that go by the name
of ‘formalism’ pursue a claim that the essence of mathematics is
the manipulation of characters. A list of the characters and
allowed rules all but exhausts what there is to say about a given
branch of mathematics. According to the formalist, then, math-
ematics is not, or need not be, about anything, or anything
beyond typographical characters and rules for manipulating
them.

Formalism seizes on one aspect of mathematics, perhaps neg-
lecting or downplaying all else. For better or worse, much elem-
entary arithmetic is taught as a series of blind techniques, with little
or no indication of what the techniques do, or why they work.
How many schoolteachers could explain the rules for long division,
let alone the algorithm for taking square roots, in terms other than
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the execution of a routine? But perhaps this is more of a critique of
some pedagogy than an attempt to justify a philosophy.'

Formalism has a better pedigree among mathematicians than
among philosophers of mathematics. Throughout history, math-
ematicians have had occasion to introduce symbols which, at the
time, seemed to have no clear interpretation. The very names
‘negative numbers’, ‘irrational numbers’, ‘transcendental numbers’,
‘imaginary numbers’, and ‘ideal points at infinity’ indicate ambiva-
lence. Fortunately, the profession of mathematics has had its share
of bold, imaginative souls, but it seems that more sceptical folk
provide the names. Although the newly introduced ‘entities’ proved
useful for applications within mathematics and science, in their
philosophical moments some mathematicians did not know what
to make of them. What are imaginary numbers, really? A common
response to such dilemmas is to retreat to formalism. The mathem-
atician asserts that symbols for complex numbers, for example, are
to be manipulated according to (most of) the same rules as real
numbers, and that is all there is to it.

Mathematicians themselves, however, do not always develop
their philosophical positions in depth. One of the most detailed
articulations of the basic versions of formalism is found in Gottlob
Frege’s (1893: §86-137) vigorous critique of the view.

1. Basic Views; Frege's Onslaught

There are at least two different general positions that have some
historical claim to the title formalism’. Although the philosophies
stand in opposition to each other in crucial ways, both opponents
and defenders of formalism sometimes run them together.

' The advent of calculators may increase the tendency toward formalism. If
there is a question of justifying, or making sense of, the workings of the calculator,
it is for an engineer (or a physicist), not a teacher or student of elementary
mathematics. Is there a real need to assign ‘meaning’ to the button-pushing? We
hear (or used to hear) complaints that calculators ruin the younger generation’s
ability to think, or at least their ability to do mathematics. It seems to me that if
the basic algorithms and routines are taught by rote, with no attempt to explain
what they do or why they work, then the children might as well use calculators.
Formalism cuts deeply.
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1.1. Terms

Term formalism is the view that mathematics is about characters or
symbols—the systems of numerals and other linguistic forms. That
is, the term formalist identifies the entities of mathematics with
their names. The complex number 8+ 2i is just the symbol
‘8 + 2i". A thorough term formalist would also identify the natural
number 2 with the numeral ‘2’, but perhaps one can be a formalist
about some branches of mathematics and not others. One might
adopt formalism only for those branches that one is queasy about.

According to term formalism, then, mathematics has a subject-
matter, and mathematical propositions are true or false. The view
proposes simple answers to (seemingly) difficult metaphysical and
epistemological problems with mathematics. What is mathematics
about? Numbers, sets, and so on. What are these numbers, sets, and
so on? They are linguistic characters. How is mathematics known?
What is mathematical knowledge? It is knowledge of how the
characters are related to each other, and how they are to be
manipulated in mathematical practice.

Consider the simplest possible equation:

0=0.

Presumably it comes out true. How does the term formalist inter-
pret it? She cannot say that the equation says that the leftmost hunk
of ink (or burnt toner) shaped like an oval is identical to the right-
most hunk of ink also shaped line an oval. Clearly, those are two
different hunks of ink.

The term formalist might take the equation to assert that those
two hunks of ink have the same shape. But this seems to presup-
pose the existence of entities called ‘shapes’. When discussing lin-
guistic items like letters and sentences, contemporary philosophers
distinguish types from tokens. Tokens are physical objects made up
of ink, pencil, chalk marks, burned toner, and so on. As physical
objects, they can be created and destroyed at will. Types are the
abstract forms of tokens. The word ‘concatenation’ has two
instances of the one type ‘c’. The type ‘c’ is shared by all letter-
tokens of that shape. When we say that the Roman alphabet has
twenty-six letters, we are talking about the types, not the tokens.
The statement would remain true if every token of the letter ‘a’
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were destroyed. From this perspective, the term formalist might
assert that mathematics is about types. The above equation would
thus be a simple, straightforward instance of the law of identity.
The equation says that the type ‘0’ is identical with itself.

What are we to make of these shapes or types? Notice that
shapes and types are abstract objects, much like numbers. What,
then, is the advantage of term formalism over realism in ontology
that asserts the existence of numbers outright? Perhaps the term
formalist can maintain that, unlike numbers, types have straight-
forward instances, their tokens, and we learn things about them
through their tokens.

A rudimentary term formalism was put forward (at least tem-
porarily) by two mathematicians, E. Heine and Johannes Thomae,
around the turn of the twentieth century. Heine (1872: 173) wrote,
‘I give the name numbers to certain tangible signs, so that the exist-
ence of these numbers is thus unquestionable’. Thomae (1898: §§1—
11) claimed that the ‘formal standpoint rids us of all metaphysical
difficulties; this is the advantage it affords us’. This remains to be
seen.

Frege (1893: §§86-137) launched a sustained articulation of, and
harsh attack on, their views. Consider the equation:

5+7=6+6.

What can this come to? Perhaps it means that the symbol 5 + 7 is
identical to the symbol ‘6 + 6". But this is absurd. Even the types are
different. The former ‘S + 7’ has an occurrence of the type 5° and
the latter ‘6 + 6" does not. It is not open to the formalist to claim
that the two symbols denote the same number, since the central
thesis of term formalism is that we need not consider extra-
linguistic entities that the terms supposedly denote. All that matters
are the characters. They denote themselves. So the term formalist
cannot interpret the * = sign as identity. On behalf of term formal-
ism, Frege suggests that the equation be interpreted as saying that
in arithmetic, the symbol ‘5 + 7" can be substituted anywhere for
‘6 + 6" without a change in truth-value. That is, a sentence of the
form A =B says that the symbol corresponding to A is inter-
substitutable with the symbol corresponding to B in any mathemat-
ical context. So the above identity ‘0 = 0" asserts the truism that the
type ‘0’ can be substituted for itself without a change in truth-
value.
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Term formalism can perhaps be extended to the integers and
rational numbers, but what are the real numbers supposed to be?
We cannot identify them with their names, since most real num-
bers do not have names. A term formalist might attempt to identify
the real number © with the Greek letter “n’, but what would he say
about rea]l numbers that do not have names? How would he under-
stand a statement about all real numbers? A straightforward
attempt would be to identify 7 with its decimal expansion: 3.14159
... However, the expansion is an infinitary object, and not a lin-
guistic symbol. The term formalist might introduce a theory of
‘limits” of terminating decimals, and identify © with the ‘limit" of
the symbols 3’, 3.1°, “3.14’, . . . If this route is followed, however, it
is hard to see any advantage of term formalism. The ‘limit’ of the
symbols looks too much like the ordinary understanding of m as
the limit of the rational numbers 3, 3.1, 3.14, . . . We seem to have
lost the sense of formalism.

Suppose that the term formalist manages to solve this problem
and come up with a decent linguistic surrogate for real numbers.
Still, the view only captures mathematical calculation. How is the
term formalist to make sense of mathematical propositions, like the
prime number theorem or the fundamental theorem of calculus? In
what sense can those be said to be about symbols?

1.2. Games

The other basic version of formalism likens the practice of math-
ematics to a game played with linguistic characters. Just as, in chess,
one can use a pawn to capture one square forward on a diagonal, so
in arithmetic one can write ‘x = 10’ if one has previously gotten to
‘¢ =8 + 2’. Call this game formalism.

Radical versions of this view assert outright that the symbols of
mathematics are meaningless. Mathematical formulas and sen-
tences do not express true or false propositions about any subject-
matter. The view is that mathematical characters have no more
meaning than the pieces on a chessboard. The ‘content’ of math-
ematics is exhausted by the rules for operating with its language.
More moderate versions of game formalism concede that the lan-
guages of mathematics may have some sort of meaning, but if so,
this meaning is irrelevant to the practice of mathematics. As far as
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the working mathematician is concerned, the symbols of math-
ematical language may as well be meaningless.

The difference between radical and moderate versions of game
formalism has little significance for the philosophy of mathematics.
The two views agree on the lack of mathematical interpretation for
the typographical characters of a branch of mathematics. Against
this, the term formalist holds that mathematics is about its
terminology.

Like term formalism, game formalism either solves or sidesteps
difficult metaphysical and epistemological problems with math-
ematics. What is mathematics about? Nothing. What are numbers,
sets, and so on? They do not exist, or they might as well not exist.
How is mathematics known? What is mathematical knowledge? It
is knowledge of the rules of the game, or knowledge that certain
moves that accord with these rules have been made. The equation
2! = 1024’ and the theorem that for every natural number x there
is a prime number y>x (in symbols, Vx3Jy(y > x & y is prime) )
each indicate the outcome of a certain play in accordance with the
rules of arithmetic.”

In the context of game formalism, the phrases like ‘language’
and ‘symbol’ are misleading. In just about any other context, the
purpose of language, first and foremost, is to communicate. We use
language to talk about things, usually things other than language
itself. In its normal usage, a symbol symbolizes something. The word
‘Stewart’ stands for the person Stewart. So one would think that the
numeral 2" stands for the number 2. This is just what the game
formalist denies, or demurs from. Either the numeral does not
stand for anything, or else it might as well not stand for anything.
For mathematics, all that matters is the numeral, and the role of
the numeral in the game of mathematics.

It is ironic that Frege’s own work in logic (see ch. 5, §1) gives
impetus to a sophisticated version of game formalism. Frege
claimed that one of the purposes of his logic was to codify correct
inference. To determine the epistemic significance of a derivation,
there can be no ‘gaps’ in the reasoning; all premisses must be made

? Since Wittgenstein 1953, there has been much philosophical discussion of
rule-following. What is it for someone to be following one rule, rather than
another? Can we distinguish the following of one rule incorrectly from the follow-
ing of a different rule correctly? See, for example, Kripke 1982. If there is an issue
here, it is a problem for any philosophy of mathematics, not just game formalism.
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explicit. For this purpose, Frege developed a formal system, or to be
precise, he presented a deductive system that could be understood
formally: ‘my concept writing . . . is designed to . . . be operated like
a calculus by means of a small number of standard moves, so that
no step is permitted which does not conform to the rules which are
laid down once and for all?’ (Frege 1884: §91, emphasis mine). Frege
was aware that this feature could feed a version of formalism:

Now it is quite true that we could have introduced our rules and other
laws of the Begriffsschrift [e.g. Frege 1879] as arbitrary stipulations, without
speaking of the meaning and the sense of the signs. We would then have
been treating the signs as figures. What we took to be the external repre-
sentation of an inference would then be comparable to a move in chess,
merely the transition from one configuration to another. We might give
someone our [axioms] and . . . definitions . . . —as we might the initial
position of the pieces in chess—tell him the rules permitting transform-
ations, and then set him the problem of deriving our theorem . . . all this
without his having the slightest inkling of the sense and meaning of these
signs, or of the thoughts expressed by the formulas . . . (Frege 1903: §90)

Frege pointed out that the meaning that we attribute to the sen-
tences is what makes them interesting, and that this meaning sug-
gests strategies for the derivations. The game formalist might agree
with this, but will add that the meaning of mathematical expres-
sions is extraneous to mathematics itself. As far as mathematics
goes, all that matters is that the rules are followed. Meaning is
merely heuristic, no more than a psychological aid. Mathematics
need have no subject-matter at all.

The game formalist, however, is left with a daunting problem.
Why are the mathematical games so useful in the sciences? After
all, no one even looks for useful applications of chess. Why think
that the meaningless game of mathematics should have any appli-
cations? It clearly does, and we have to explain those applications. A
similar problem arises for applications of mathematics within
mathematics. Why is the game of complex analysis useful in the
game of real analysis or arithmetic? This issue is all the more troub-
ling for someone who is a game formalist about, say, complex
analysis, but not about real analysis or arithmetic.

In this sense, game formalism is much like a philosophy of sci-
ence called instrumentalism, which was designed to alleviate worries
about unobserved theoretical entities, like electrons. According to
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instrumentalism, theoretical science is no more than a complicated
instrument for making predictions about the observable, physical
world. The scientist need not believe that theoretical entities exist.
The instrumentalist is thus spared the epistemological problem of
accounting for our knowledge of theoretical entities, but she is left
with a gaping problem of explaining just why the instrument works
so well, or why it works at all. Similarly, the game formalist is spared
the problem of saying what mathematics is about, and perhaps she
has a clean solution to the problem of how mathematics is known,
but the issue of why mathematics is useful now looks intractable.

Frege’s (1903: §91) main criticism of game formalism goes along
these lines:

an arithmetic without thought as its content will also be without possibil-
ity of application. Why can no application be made of a configuration of
chess pieces? Obviously, because it expresses no thought. If it did so and
every chess move conforming to the rules corresponded to a transition
from one thought to another, applications of chess would also be conceiv-
able. Why can arithmetical equations be applied? Only because they
express thoughts. How could we possibly apply an equation which
expressed nothing and was nothing more than a group of figures, to be
transformed into another group of figures in accordance with certain
rules? [I]t is applicability alone which elevates arithmetic from a game to
the rank of a science.

The formalist could retort that applications are not part of math-
ematics itself, but are extraneous to it. Frege (1903: §88) quotes
Thomae (1898: §§1-11):

The formal conception of numbers accepts more modest limitations than
does the logical conception. It does not ask what numbers are and what
they do, but rather what is demanded of them in arithmetic. For the
formalist, arithmetic is a game with signs which are called empty. That
means that they have no other content (in the calculating game) than they
are assigned by their behaviour with respect to certain rules of combination
(rules of the game). The chess player makes similar use of his pieces; he
assigns them certain properties determining their behavior in the game . . .
To be sure, there is an important difference between arithmetic and chess.
The rules of chess are arbitrary, the system of rules for arithmetic is such
that by means of simple axioms the numbers can be referred to manifolds
and can thus make important contributions to our knowledge of nature.
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Thomae here seems to adopt the view I call ‘moderate game for-
malism’. The idea is that the mathematician treats his ‘language’ as
if it is a bunch of meaningless characters. The rules for arithmetic
were perhaps chosen for the purpose of some applications, but
these applications are of no concern to the mathematician as such.
As Frege puts it on behalf of this game formalist, ‘in formal arith-
metic we absolve ourselves from accounting for one choice of the
rules rather than another’ (Frege 1903: §89).

Frege responds that the problem of applicability does not go
away just because the formalist, or even the mathematician, refuses
to deal with it. He sarcastically asks what is gained by the dodge:
“To be sure, arithmetic is relieved of some work, but does this
dispose of the problem? The [formalist] shifts it to the shoulders of
his colleagues, the geometers, the physicists, and the astronomers;
but they decline the occupation with thanks; and so it falls into a
void between the sciences. A clear cut separation of the domains of
the sciences may be a good thing, provided that no domain remains
for which no one is responsible’ (Frege 1903: §92). Frege then points
out that the applications in question are extremely wide. Math-
ematics applies to anything that can be counted or measured. The
same number ‘may arise with lengths, time intervals, masses,
moments of inertia, etc.” Thus, the problem of ‘the usefulness of
arithmetic is to be solved—in part, at least—independently of those
sciences to which it is to be applied’. And so it will not do to avoid
the problem in this way.’ Even if Frege’s dismissal of formalism is
premature, it is clear that the formalist does owe us an account of
the applicability of mathematics.

2. Deductivism: Hilbert’s Grundlagen der Geometrie

One of Frege’s criticisms of game formalism suggests a variation
on the moderate version of that view. Suppose that someone—the

* The wide applicability of numbers is one of Frege’s considerations in favour
of logicism. His own account of the natural numbers explicitly begins with one of
their applications: to mark cardinality (see Chapter 5, §1). Frege’s (1903) account of
the real numbers turns on their application in measuring ratios of quantities (see
Simons 1987 and Dummett 1991: ch. 22).
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mathematician, the physicist, the astronomer—manages to inter-
pret the basic axioms of, say, arithmetic so that they come out true.
This is not enough to secure an application for arithmetic, since by
itself this interpretation would not guarantee that the theorems are
true under the same interpretation. How do we know that the rules
of the arithmetic-game take us from truths (so interpreted) to
truths? Frege (1903: §91) wrote:

Whereas in an arithmetic with content equations and inequations are
senses expressing thoughts, in formal arithmetic they are comparable with
the positions of chess pieces, transformed in accordance with the rules
without consideration for any sense. For if they were viewed as having
sense, the rules could not be arbitrarily stipulated; they would have to be
chosen so that from formulas expressing true propositions [one] could
[derive] only formulas likewise expressing true propositions. Then the
standpoint of formal arithmetic would have been abandoned, which
insists that the rules for the manipulation of signs are quite arbitrarily
stipulated.

In contemporary terms, for the application of a branch like arith-
metic to succeed, the rules of the game cannot be arbitrary, but
must constitute logical consequences. No matter how the language is
interpreted, if the axioms come out true, then the theorems should
be true under the same interpretation.

The advent of rigorous deductive systems—thanks in large part
to Frege—suggests a tempting philosophy that has something in
common with game formalism, but avoids this particular pitfall. A
deductivist accepts Frege’s point that rules of inference must pre-
serve truth, but she insists that the axioms of various mathemat-
ical theories be treated as if they were arbitrarily stipulated. The
idea is that the practice of mathematics consists of determining
logical consequences of otherwise uninterpreted axioms. The
mathematician is free to regard the axioms (and the theorems) of
mathematics as meaningless, or to give them an interpretation at
will.

To articulate this view rigorously, one would distinguish the
logical terms like ‘and’, ‘if . . . then’, ‘there exists’, and “for all’ from
the non-logical, or specifically mathematical, terminology such as
‘number’, ‘point’, ‘set’, and ‘line’. The logical terminology is under-
stood with its normal meaning, while the non-logical terminology
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is left uninterpreted, or is treated as if it were uninterpreted.‘ Let @
be a theorem of, say, arithmetic. According to deductivism, the
‘content’ of @ is that @ follows from the axioms of arithmetic.
Deductivism is sometimes called ‘if-then-ism’.

The affinity between game formalism and deductivism results
from the development of logical systems that can be ‘operated like
a calculus’, as Frege put it. Deductivism is consonant with the
slogan that logic is topic-neutral. From the modern, model-
theoretic point of view, if an inference from a set of premisses I to
a conclusion @ is valid, then @ is true under any interpretation that
makes all of the premisses I" true. The idea behind deductivism is
to ignore the interpretation and stick to the inferences.

Like the game formalist, our deductivist proposes clean answers
to philosophical questions. What is mathematics about? Nothing,
or it can be regarded as about nothing. What is mathematical
knowledge? It is knowledge of what follows from what. Mathemat-
ical knowledge is logical knowledge.” How is a branch of mathemat-
ics applied? By finding interpretations that make its axioms true.

Deductivism is a philosophy that goes well with developments in
the foundations of mathematics, especially geometry, during the
nineteenth and early twentieth centuries. The crucial events
included the advent and success of analytic geometry, with project-
ive geometry as a response; the attempt to accommodate ideal and
imaginary elements, such as points at infinity; the development of
n-dimensional geometry; and the assimilation of non-Euclidean
geometry into mainstream mathematics alongside, not replacing,
Euclidean geometry. These themes helped to undermine the Kan-
tian thesis that mathematics is tied to intuitions of space and time
(see ch. 4, §2). The mathematical community took on a growing
interest in rigour, in the axiomatizations of various branches of
mathematics, and ultimately in the understanding of deduction as
independent of content. It is perhaps a small and natural step from
these mathematical and logical developments to the philosophical
thesis that the ‘interpretation’ of the axioms does not matter. The
physicist can worry about whether real space-time is Euclidean or

* This approach is foreign to Frege’s logicism. For Frege, every term of math-
ematics is logical, and so would be fully interpreted. See van Heijenoort 1967a and
Goldfarb 1979.

* Deductivism has this much in common with logicism (see ch. 5).
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4-dimensional, but the mathematician is free to explore the con-
sequences of all kinds of geometries.

Moritz Pasch developed the idea that logical inference should be
topic-neutral. Pasch wrote that geometry should be presented in a
formal manner, without relying on intuition or observation when
making inferences:

If geometry is to be truly deductive, the process of inference must be
independent in all its parts from the meaning of the geometrical concepts,
just as it must be independent of the diagrams; only the relations specified
in the propositions and definitions may legitimately be taken into account.
During the deduction it is useful and legitimate, but in no way necessary,
to think of the meanings of the terms; in fact, if it is necessary to do so,
the inadequacy of the proof is made manifest. (Pasch 1926: 91)

Ernest Nagel (1939: §70) wrote that Pasch’s work set the standard
for geometry: ‘No work thereafter held the attention of students of
the subject which did not begin with a careful enumeration of the
undefined or primitive terms and unproved or primitive statements:
and which did not satisfy the condition that all further terms be
defined, and all further statements proved, solely by means of this
primitive base.’

David Hilbert’s work in geometry around the turn of the twen-
tieth century represents the culmination of these foundational
developments. The programme executed in his Grundlagen der
Geometrie (1899) marked an end to an essential role for intuition in
geometry. Although spatial intuition or observation remains the
source of the axioms of Euclidean geometry, in Hilbert's writing
the role of intuition and observation is explicitly limited to motiv-
ation and is heuristic. Once the axioms have been formulated,
intuition and observation are banished. They are not part of
mathematics.

One result of this orientation is that anything at 4ll can play the
role of the undefined primitives of points, lines, planes, and so on,
so long as the axioms are satisfied. Otto Blumenthal reports that, in
a discussion in a Berlin train station in 1891, Hilbert said that in a
proper axiomatization of geometry ‘one must always be able to say,
instead of “points, straight lines, and planes”, “tables, chairs, and
beer mugs”’ (see Hilbert 1935: 388-429; the story is related on
p. 403).

Hilbert (1899) sums up the idea as follows: “We think of ...
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points, straight lines, and planes as having certain mutual relations,
which we indicate by means of such words as “are situated”,
“between”, “parallel”, “congruent”, “continuous”, etc. The com-
plete and exact description of these relations follows as a con-
sequence of the axioms of geometry.” To be sure, Hilbert also says
that the axioms express ‘certain related fundamental facts of our
intuition’, but in the subsequent development of the book all that
remains of the intuitive content is the use of words like ‘point’,
‘line’, and so on (and the diagrams that accompany some of the
theorems). Hilbert’s protégée Paul Bernays (1967: 497) sums up the
aims of Hilbert (1899):

A main feature of Hilbert’s axiomatization of geometry is that the axio-
matic method is presented and practised in the spirit of the abstract con-
ception of mathematics that arose at the end of the nineteenth century
and which has generally been adopted in modern mathematics. It consists
in abstracting from the intuitive meaning of the terms . . . and in under-
standing the assertions (theorems) of the axiomatized theory in a hypo-
thetical sense, that is, as holding true for any interpretation . . . for which
the axioms are satisfied. Thus, an axiom system is regarded not as a system
of statements about a subject matter but as a system of conditions for
what might be called a relational structure ... [On] this conception of
axiomatics . . . logical reasoning on the basis of the axioms is used not
merely as a means of assisting intuition in the study of spatial figures;
rather logical dependencies are considered for their own sake, and it is
insisted that in reasoning we should rely only on those properties of a
figure that either are explicitly assumed or follow logically from the
assumptions and axioms.

The second of Hilbert's famous ‘Mathematical Problems’
(Hilbert 1900) extends the deductivist approach to every corner of
mathematics:®* “When we are engaged in investigating the founda-
tions of a science, we must set up a system of axioms which con-
tains an exact and complete description of the relations subsisting

® In a lecture before the 1900 International Congress of Mathematicians in
Paris, Hilbert presented twenty-three problems for mathematicians to tackle. The
list provided much of the agenda for mathematics, and mathematical logic in
particular, through much of the twentieth century. One of the most famous
problems, the tenth, was to find an algorithm for determining whether a given
diophantine equation has a solution over the natural numbers. This issue was only
resolved when Matijacevi¢ (1970) showed that there is no such algorithm.
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between the elementary ideas of that science. The axioms set up
are at the same time the definitions of those elementary ideas . . .’

One important development in this context, and with logicism,
was that the formal languages and deductive systems were formu-
lated with sufficient clarity and rigour for them to be studied as
mathematical objects in their own right. That is, the mathematician
can prove things about formal systems. Such efforts became known
as meta-mathematics. Interest in meta-mathematical questions grew
from the developments in non-Euclidean geometry, as a response
to the failure to prove the parallel postulate. In effect (and with
hindsight), the axioms of non-Euclidean geometry were shown to
be consistent by describing a structure that makes them true.

Using techniques from analytic geometry, Hilbert (1899) con-
structed a model of all of the axioms using real numbers, thus
showing that the axioms are ‘compatible’, or consistent. In con-
temporary terms, he showed that the axioms are satisfiable. If spa-
tial intuition were playing a role beyond heuristics, this proof
would not be necessary. Intuition alone would assure us that all of
the axioms are true (of real space), and thus that they are all com-
patible with each another. Geometers in Kant’s day would wonder
about the point of proving ‘compatibility’ or satisfiability in this
context. As we shall see in a moment, Frege also balked at it.

Hilbert then gave a series of models in which one of his axioms
is false, but all the other axioms hold, thus showing that each axiom
is independent of the others. The various domains of ‘points’,
‘lines’, and so on of each model are sets of numbers, sets of pairs of
numbers, or sets of sets of numbers. Not quite tables, chairs, and
beer mugs, but in the same spirit.

Presumably, this meta-mathematics is not itself the derivation of
theorems from axioms regarded as meaningless. The goal of meta-
mathematics is to shed light on a subject-matter, namely formal
languages and axiomatizations. Thus, meta-mathematics seems to
be an exception to the theme of deductivism (and game formal-
ism), which holds that mathematics need have no subject-matter.

One option would be for the deductivist to hold that meta-
mathematics is not mathematics, but this is close to an oxymoron.
Meta-mathematics has the same appearances and methods as
any other branch of mathematics. To be sure, meta-mathematics
can be (and subsequently was) formalized. To be consistent,
our deductivist should propose that the ‘mathematics’ in
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meta-mathematics is just the derivation of consequences from the
axioms of this meta-mathematics, with these axioms regarded as
meaningless. The ‘application’ of meta-mathematics to formal
languages and deductive systems is irrelevant to its essence as a
branch of mathematics. Just as arithmetic can be applied to
counting, meta-mathematics can be applied to deductive systems.
The role and importance of meta-mathematics varies among the
formalist authors.

Frege and Hilbert carried on a spirited correspondence, which
highlights the differences in their philosophical approaches to
mathematics.” Frege asked about Hilbert’s (1899) claim that his
axiomatization provides definitions of the primitives of geometry, so
that the very same sentences serve as axioms and definition. Frege
tried to correct Hilbert on the nature of definitions and axioms.
According to Frege, while definitions should give the meanings and
fix the denotations of terms, axioms should express truths. In a
letter dated 27 December 1899 Frege argued that Hilbert (1899:
does not provide a definition of, say, ‘between’, since the axiomati-
zation ‘does not give a characteristic mark’ that can be used to
determine whether the relation ‘between’ holds:

the meanings of the words ‘point’, line’. ‘between’ are not given, but are
assumed to be known in advance . . . (I}t is also left unclear what you call a
point. One first thinks of points in the sense of Euclidean geometry, a
thought reinforced by the proposition that the axioms express funda-
mental facts of our intuition. But afterwards you think of a pair of num-
bers as a point ... Here the axioms are made to carry a burden that
belongs to definitions . . . [Bleside the old meaning of the word ‘axiom’
.. . there emerges another meaning but one which I cannot grasp.

The idea of thinking ‘of a pair of numbers as a point’ refers to
some of Hilbert’s meta-mathematical theorems. For example,
Hilbert showed that his axiomatization is consistent by construct-
ing a Cartesian model in which ‘points’ are pairs of numbers. In the
same letter, Frege told Hilbert that a definition should specify the
meaning of a single word whose meaning has not yet been given,
and the definition should employ other words whose meanings are

7 The correspondence is published in Frege 1976 and translated in Frege 1980.
See Resnik 1980, Coffa 1991: ch. 7, Demopoulos 1994, and Hallett 1994 for insight-
ful analyses of it. See also Shapiro 1997: ch. 5.



FORMALISM 155

already known. In contrast to definitions, axioms and theorems
‘must not contain a word or sign whose sense and meaning . . . was
not already completely laid down, so that there is no doubt about
the sense of the proposition and the thought it expresses. The only
question can be whether this thought is true . . . Thus axioms and
theorems can never try to lay down the meaning of a sign or word
that occurs in them, but it must already be laid down.” Frege’s point
is a simple dilemma: if the terms in the proposed axioms do not
have meaning beforehand, then the statements cannot be true (or
false), and thus they cannot be axioms. If they do have meaning
beforehand, then the axioms cannot be definitions.

In contemporary terms, Hilbert provided implicit, or functional
definitions of terms like ‘point’, ‘line’, and ‘plane’. These are simul-
taneous characterizations of several items, in terms of their rela-
tions to each other. A successful implicit definition captures a struc-
ture (see Shapiro 1997: chs. 4, 5). Frege did not accept this notion, at
least not as a definition.

Frege added that from the truth of axioms, ‘it follows that they
do not contradict one another’ and so there is no further need to
show that the axioms are consistent. That is, Frege did not see the
point of Hilbert’s meta-mathematics. The truth of the axioms is
guaranteed by intuition, and there is no reason to show that they
are consistent.

In reply, on 29 December, Hilbert told Frege that the purpose of
the Grundlagen (1899) is to explore logical relations among the
principles of geometry, to see why the ‘parallel axiom is not a
consequence of the other axioms’ and how the fact that the sum
of the angles of a triangle is two right angles is connected with
the paralle] axiom. 1 presume that Frege, the pioneer in math-
ematical logic, could appreciate this project. Concerning Frege’s
assertion that the meanings of the words ‘point’, ‘line’, and ‘plane’
are ‘not given, but are assumed to be known in advance’, Hilbert
replied:

This is apparently where the cardinal point of the misunderstanding lies. I
do not want to assume anything as known in advance. I regard my explan-
ation . . . as the definition of the concepts point, line, plane . . . If one is
looking for other definitions of a ‘point’, e.g. through paraphrase in terms
of extensionless, etc., then I must indeed oppose such attempts in the
most decisive way; one is looking for something one can never find
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because there is nothing there; and everything gets lost and becomes
vague and tangled and degenerates into a game of hide and seek.

This is an allusion to ‘definitions’ like Euclid’s ‘a point is that which
has no parts’. Hilbert claimed that such definitions do not help.
These ‘definitions’ do not get used in the mathematical develop-
ment. All we can do is specify the relations of points, lines, and
planes to each other—via the axiomatization. All we can provide is
an implicit definition of the terminology. To try to do better is to
lapse into ‘hide and seek’. Hilbert also responded to Frege's com-
plaint that Hilbert’s notion of “point’ is not “unequivocally fixed":

it is surely obvious that every theory is only a scaffolding or schema of
concepts together with their necessary relations to one another, and that
the basic elements can be thought of in any way one likes. If in speaking
of my points, I think of some system of things, e.g., the system love, law,
chimney-sweep . . . and then assume all my axioms as relations between
these things, then my propositions, e.g., Pythagoras™ theorem, are also
valid for these things . . . This circumstance is in fact frequently made use
of, e.g. in the principle of duality . .. [This) . . . can never be a defect in a
theory, and it is in any case unavoidable.

Note the similarity with Hilbert’s quip in the Berlin train station.

Hilbert vehemently rejected Frege’s claim that there is no need
to worry about the consistency of the axioms, because they are all
true: ‘As long as I have been thinking, writing and lecturing on
these things, I have been saying the exact reverse: if the arbitrarily
given axioms do not contradict each other with all their con-
sequences, then they are true and the things defined by them exist.
This is for me the criterion of truth and existence.” Literally, Hilbert
claimed that if a collection of axioms is consistent, then they are
true and the things the axioms speak of exist. This makes for a
sharp contrast to the way we think in other areas. A more cautious
statement for Hilbert would be that the consistency of a collection
of axioms is sufficient for them to constitute a legitimate branch of
mathematics. Consistency is all the ‘truth’ and ‘existence’ that the
mathematician needs.

In his response, dated 6 January 1900, Frege noted that Hilbert
wanted ‘to detach geometry from spatial intuition and to turn it
into a purely logical science like arithmetic’, and Frege was able to
recapture much of Hilbert’s perspective, in his own framework.
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However, the two great minds remained far apart. Frege said that
the only way to establish consistency is to give a model: ‘to point to
an object that has all those properties, to give a case where all those
requirements are satisfied.” As we will see in the next section, the
later Hilbert programme attempted to provide another way to
establish consistency.

Frege complained that Hilbert’s ‘system of definitions is like a
system of equations with several unknowns’. I think that Hilbert
would accept this analogy. In the example at hand, three
‘unknowns’ are ‘point’, ‘line’, and ‘plane’. We only get the relations
among those. Frege wrote: ‘Given your definitions, I do not know
how to decide the question whether my pocket watch is a point.’
Hilbert would surely agree, but he would add that the attempt to
resolve this issue of the pocket watch is to play the game of hide
and seek. Frege’s issue here is reminiscent of the so-called ‘Caesar
problem’ raised in his own logicism (see ch. 5, §1). For Frege, the
sentence ‘my pocket watch is a point’ must have a truth value, and
our theory must determine this truth value, just as the theory of
arithmetic must determine a truth value to the equation 2 = Julius
Caesar’.

Hilbert took the rejection of Frege's perspective on concepts—
indicated by the pocket watch issue—to be a major innovation, and
strength to his approach. In a letter to Frege dated 7 November
1903 he wrote that ‘the most important gap in the traditional struc-
ture of logic is the assumption . . . that a concept is already there if
one can state of any object whether or not it falls under it ...
[Instead, what] is decisive is that the axioms that define the concept
are free from contradiction.” Showing some exasperation, Hilbert
summed it up:

a concept can be fixed logically only by its relations to other concepts.
These relations, formulated in certain statements I call axioms, thus arriv-
ing at the view that axioms . . . are the definitions of the concepts. I did
not think up this view because I had nothing better to do, but I found
myself forced into it by the requirements of strictness in logical inference
and in the logical construction of a theory. I have become convinced that
the more subtle parts of mathematics ... can be treated with certainty
only in this way; otherwise one is only going around in a circle.
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3. Finitism: The Hilbert Programme

To paraphrase Dickens, mathematics at the turn of the twentieth
century was ‘the best of times, the worst of times’. Powerful and
fruitful developments in real analysis, due to mathematicians like
Augustin Louis Cauchy, Bernard Bolzano, and Karl Weierstrass,
overcame the problems with infinitesimals and put the calculus on
a solid foundation. Hilbert (1925: 187) wrote that real and complex
analysis is ‘the most aesthetic and delicately erected structure of
mathematics’. Although infinitely small and infinitely large quan-
tities were not needed, the new theories still relied on infinite col-
lections. According to Hilbert, ‘mathematical analysis is a sym-
phony of the infinite’. At the same time, there was an exhilarating
account of the infinite in Georg Cantor’s set theory.

Despite these breathtaking developments, or because of them.,
there was a feeling of foundational crisis. Mathematics seems to
be, and should be, the most exact and certain of all disciplines, and
yet challenges and doubts were arising. In light of antinomies like
Russell’s paradox (see ch. 5, §§1-2), there was no certainty that the
set theory was even consistent. The sense of crisis was not helped
by Cantor’s use of what he called ‘inconsistent multitudes’, collec-
tions of sets that are too big to be collected together into one set.
The antinomies led to attacks on the legitimacy of some math-
ematical methods, leading some mathematicians to impose severe
restrictions on mathematical methods, restrictions that would
cripple real and complex analysis (see ch. 1, §2, ch. 5, §2, and
ch. 7).

Hilbert’s response to these developments incorporated aspects
of deductivism, term formalism, and game formalism. Whatever
its philosophical merits, the Hilbert programme led to a fruitful era of
meta-mathematics that thrives today. For Hilbert, the programme
had an explicit epistemic purpose: “The goal of my theory is to
establish once and for all the certitude of mathematical methods’
(Hilbert 1925: 184). It would build on the early work in axiomatiz-
ing branches of mathematics, as well as the monumental efforts of
logicists like Frege in developing rigorous logical systems:

There is ... a completely satisfactory way of avoiding the paradoxes
without betraying our science. The desires and attitudes which help us
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find this way . .. are these: (1) ... [W]e will carefully investigate fruitful
definitions and deductive methods. We will nurse them, strengthen them,
and make them useful. No one shall drive us out of the paradise which
Cantor has created for us. (2)We must establish throughout mathematics
the same certitude for our deductions as exists in ordinary elementary
number theory, which no one doubts and where contradictions and para-
doxes arise only through our own carelessness. (Hilbert 1925: 191)

The idea behind the programme is to carefully and rigorously
formalize each branch of mathematics, together with its logic, and
then to study the formal systems to make sure they are coherent.

To describe the programme, we begin with its core, which is
sometimes called ‘finitary arithmetic’. Most emphatically, finitary
arithmetic is not understood as a meaningless game (like chess), or
as the deduction of consequences from meaningless axioms. On
the contrary, the assertions of finitary arithmetic are meaningful,
and they have a subject-matter.

The formulas of finitary arithmetic include equations like
2+3=5"and ‘12,553 + 2,477 = 15,030, as well as simple combin-
ations of these, like ‘7+5=12 or 7+ 7 # 10°, or even 2'%°° + 1 is
prime’. Notice that, so far, the only statements to be considered
are those that refer to specific natural numbers, and that all of the
properties and relations mentioned are effectively decidable in the
sense that there is an algorithm (or computer program) that com-
putes whether the properties and relations hold.

Consider the following two sentences:

(1) there is a number p greater than 100 and less than 101! + 2
such that p is prime.®

(2) there is a number p greater than 100 such that both p and
p + 2 are prime.

Both of these contain a quantifier, ‘there is a number p’, but there is
a difference between them. The quantifier in sentence (1) is ‘limit-
ed’ to the (finitely many) natural numbers less than 100! + 2. Call
this a bounded quantifier. In contrast, the quantifier in sentence (2)
has no limits, and so it ‘ranges’ over all natural numbers, an infinite
collection. This is called an unbounded quantifier. Hilbert regards
sentences with only bounded quantifiers to be finitary, while sen-
tences, like (2), with unbounded quantifiers are not finitary.

® The number 101! is the result of multiplying 1, 2, 3, . . ., 101. It is very large.
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Like the combinations of simple equations, sentences with only
bounded quantifiers are effectively decidable, in the sense that there
is an algorithm for computing whether they are true. Since the
bounds can be very large, there is some idealization involved, but
with bounded quantifiers there are only finitely many cases to be
considered, and so such propositions represent computations. Sen-
tences with unbounded quantifiers do not have this property. There
is no limit to the number of cases to be considered, even in
principle.

Hilbert introduces letters to represent generality. Consider the
sentence:

(3) a+100=100+qQ.

The instances of (3), like ‘0+100=100+0" and
‘47 +100 = 100 + 47, are all legitimate, finitary statements. The
sentence (3) says that each such instance is true. Hilbert regards
such generalizations to be finitary. The commutative law thus has a
finitary formulation:

4 a+b=b+a

The negation of an equation, like 3 + 5 # 8, is a legitimate fini-
tary statement. It expresses the falsehood that the sum of 3 and 5 is
not 8. However, it is not clear what to make of the negations of
statements, like (3) and (4), that contain letters for generality.
Hilbert (1925: 194) said that sentences with generality letters do not
have finitary negations. He wrote: ‘the statement that if a is a
numerical symbol, then a + 1 =1 + a is universally true, is from our
finitary perspective incapable of negation. We will see this better if
we consider that this statement cannot be interpreted as a conjunc-
tion of infinitely many numerical equations by means of “and” but
only as a hypothetical judgment which asserts something for the
case when a numerical symbol is given.” Thus, the negation of a
statement of generality would assert that there is an instance—a
numerical symbol—for which it is false. Similarly, the negation of
(3) would say that there is a number p such that p + 100 is not
identical to 100 + p. Thus, the negation of a statement of generality
contains an unbounded quantifier, and so is not finitary.

There is no serious epistemological issue concerning those fini-
tary sentences that lack letters for generality. All such sentences
represent routine (if long) computations, and so determining their
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truth value is only a matter of executing an algorithm (but see note
2 above). Hilbert is not explicit about how we legitimately come to
assert finitary sentences that do have letters for generality, and there
is disagreement among scholars as to the proof techniques in fini-
tary arithmetic. The most common interpretation is that finitary
arithmetic corresponds to what is today called ‘primitive recursive
arithmetic’, but some take the extent of finitary methods to be
more open-ended.’

Our next item concerns the content of finitary arithmetic. What
is it about? Apparently, the subject-matter of finitary arithmetic is
the natural numbers. So, once again, we ask what those are. Hilbert
explicitly rejected the logicist perspective: ‘we find ourselves in
agreement with the philosophers, notably with Kant. Kant taught

that mathematics treats a subject matter which is given
independently of logic. Mathematics, therefore, can never be
grounded solely on logic. Consequently, Frege’s and Dedekind’s
attempts to do so were doomed to failure’ (Hilbert 1925: 192).
Hilbert holds that finitary arithmetic concerns what is, in a sense, a
precondition to all (human) thought—even logical deduction. Using
Kantian language, Hilbert wrote that to think coherently at all,

something must be given in conception, viz., certain extralogical concrete
objects which are intuited as directly experienced prior to all thinking. For
logical deduction to be certain, we must be able to see every aspect of
these objects, and their properties, differences, sequences, and contiguities
must be given, together with the objects themselves, as something which
cannot be reduced to something else ... This is the basic philosophy
which I find necessary, not just for mathematics, but for all scientific
thinking, understanding, and communicating. (Hilbert 1925: 192)

Hilbert proposed that the subject-matter of finitary arithmetic is
‘the concrete symbols themselves, whose structure is immediately
clear and recognizable’. He proposed that in finitary arithmetic, we
identify the natural numbers with the ‘numerical symbols’:

LG LT

He emphasized that, so understood, ‘each numerical symbol is

° See any treatment of proof theory for an account of primitive recursive
arithmetic (e.g. Smorynski 1977: 840 or, for a fuller treatment, Takeuti 1987). See
also Detlefsen 1986 and Tait 1981.
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intuitively recognizable by the fact that it contains only |’s’. The
symbol 2’ is then introduced as an abbreviation of “| |, etc. So the
inequality ‘3 > 2 serves to communicate the fact that the symbol 3,
i.e., | ||, islonger than the symbol 2, i.e., | |; or, in other words, that
the latter symbol is a proper part of the former’.

Hilbert thus shows an affinity with what I call ‘term formalism’
(see §1.1 above). As with game formalism, the use of the word
‘symbol’ is misleading here. Hilbert is concerned with the char-
acters themselves. In a sense, the numerical symbols symbolize
themselves.

Despite the use of the word ‘concrete’, Hilbert intends the
characters studied in finitary arithmetic to be understood more as
abstract types than as physical tokens.’® The physical hunk of ink
(or burnt toner) | | is not a proper part of the physical hunk | | |.
The two tokens occur at different locations in space, and so are
distinct hunks. Notice also that Hilbert said that the ‘concrete
symbols’ are ‘given in conception’ and ‘intuited as directly experi-
enced prior to all thinking’. Hilbert does not say that the concrete
symbols are perceived. This is another indication that the ‘con-
crete symbols’ are not physical objects. He seems to have had
something like Kant’s form of intuition in mind (see Chapter 4,
§2).

Hilbert also held that the subject of finitary arithmetic is essen-
tial to all human thought. Here as well we have seen similar ideas in
Kant. The idea is that in order to think and reason at all, we have to
use symbols and manipulate them in some fashion or other. Fini-
tary arithmetic may not be absolutely incorrigible, or immune
from doubt, but it is as certain as is humanly possible. There is no
more preferred, or more epistemically secure, standpoint than fini-
tary arithmetic (see Tait 1981).

To be sure, finitary arithmetic is only a small (and potentially
trivial) chunk of the wonderful tapestry of mathematics. The first
foray beyond finitary arithmetic consists of statements about nat-
ural numbers (or character types) that contain unbounded quanti-
fiers. As above, this includes the negations of finitary statements
that contain letters for generality. Then there is real analysis, com-

1% See §1.1 above. In philosophical jargon, ‘concrete” usually means ‘physical’ or
‘spatio-temporal’. Mathematicians sometimes use the word ‘concrete’ for some-
thing more like ‘specific’, as opposed to ‘general’. In this sense, number theory is
more ‘concrete’ than the branches of abstract algebra like group theory.
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plex analysis, functional analysis, geometry, set theory, and so on.
Hilbert dubbed all of this ‘ideal mathematics’, to make the analogy
with ideal points at infinity in geometry. Just as ideal points simplify
and unify much geometry, so ideal mathematics allows us to
streamline and deal more efficiently with finitary arithmetic. There-
fore ideal mathematics is treated instrumentally:

We . .. conclude that [the symbols and formulas of ideal mathematics]
mean nothing in themselves, no more than the numerical symbols meant
anything. Still we can derive from [the ideal formulas] other formulas to
which we do ascribe meaning, viz., by interpreting them as communica-
tions of finitary statements. Generalizing this conclusion, we conceive
mathematics to be a stock of two kinds of formulas: first, those to which
the meaningful communications of finitary statements correspond; and,
secondly, other formulas which signify nothing and which are the ideal
structures of our theory. (Hilbert 1925: 196)

This ideal mathematics is to be treated formally, pretty much
along the lines of game formalism (see §1.2 above). The syntax and
rules of inference for each branch of ideal mathematics are to be
formulated explicitly, and the branch is to be pursued as if it were
just a game with characters. As Hilbert (1925: 197) put it, ‘material
deduction is thus replaced by a formal procedure governed by
rules’. The ‘rules’ are those of the deductive systems developed by
logicians like Frege.

Of course, ideal mathematics must be useful for finitary arith-
metic. The only strict requirement on a formalized branch of ideal
mathematics is that one cannot use it to derive a formula that
corresponds to a false finitary statement. Suppose that T is a pro-
posed formalization of some ideal mathematics and let ® be any
finitary statement, such as a simple equation. Then we should not
be able to derive (a formula corresponding to) ® in T unless ® can
be determined as true within finitary mathematics. In contempor-
ary terms, the formal system T should be a conservative extension of
finitary arithmetic.

Let us say that the formalized theory T is consistent if it is not
possible to derive a contradictory formula, like ‘0=0 and 0% 0’,
using the axioms and rules of T. If every true finitary statement
corresponds to a theorem of T and if T uses a standard deduc-
tive system (such as Frege’s), then the conservativeness of T is
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equivalent to its consistency."’ So the requirement on ideal mathe-
matics is consistency.

The emphasis on consistency thus carries over from Hilbert's
earlier deductivist writing (see the previous section). Recall that he
wrote to Frege that ‘if the arbitrarily given axioms do not contra-
dict each other with all their consequences, then they are true and
the things defined by them exist. This is for me the criterion of
truth and existence.” Here, of course, the notion of ‘consistency’ is
more fully articulated, and the philosophical role of consistency
explicit.

Whether or not one follows Hilbert (or the term formalist) in
identifying the natural numbers with their names, there is clearly a
close structural connection between numbers and symbols. This
connection has been exploited by logicians and other mathemat-
icians ever since (see, for example, Corcoran et al. 1974). Crucially
for the Hilbert programme, the identification of natural numbers
with character types allows finitary arithmetic to be applied to
meta-mathematics. That is, formal systems themselves now come
under the purview of finitary arithmetic. As Hilbert put it, ‘a formal-
ized proof, like a numerical symbol, is a concrete and visible object.
We can describe it completely.” And using finitary arithmetic, we
can prove things about such formalized proofs.

Notice also that if T is a formalized axiomatic system, then the
statement that T is consistent is itself finitary, formulable using a
letter for generality. The statement that T is consistent has the
form:

a is not a derivation in T whose last line is ‘0 # 0"

The final stage of the Hilbert programme is to provide finitary
consistency proofs of the fully formalized mathematical theories.
That is, in order to use a theory of ideal mathematics we have to
formalize it and then show, within finitary arithmetic, that the the-
ory is consistent. Once this is accomplished for a theory T, then we
have achieved the epistemic goal. We have maximal confidence that

"' With standard logical rules, if ¥ is a contradiction and ¥ is any formula, then
‘if ® then ¥’ is derivable. So if a formal theory T is inconsistent, then every
formula can be derived in T. A fortiori, false finitary statements can be derived in T
Conversely, let @ be a true finitary statement, such as an equation, and suppose
that the negation of @ is a theorem of T. By hypothesis, both ® and its negation
are theorems of T, and so T is inconsistent.
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using T will not bring us to contradiction, nor will it produce any
false finitary statements. This is all that we can ask of an ideal
mathematical theory. If T is a formalization of Cantorian set the-
ory, then once we have a finitary consistency proof, we know with
maximal certainty that we will not be driven from the paradise.

John von Neumann (1931) provided a succinct summary of the
Hilbert programme, as involving four stages:

(1) To enumerate all the symbols used in mathematics and logic . . .

(2) To characterize unambiguously all the combinations of these
symbols which represent statements classified as ‘meaningful’ in clas-
sical mathematics. These combinations are called formulas’ . . .

(3) To supply a construction procedure which enables us to construct
successively all the formulas which correspond to the ‘provable’ state-
ments of classical mathematics. This procedure, accordingly, is called
‘proving’.

(4) To show (in a finitary . . . way) that those formulas which corres-
pond to statements of classical mathematics which can be checked by
finitary arithmetical methods can be proved ... by the process
described in (3) if and only if the check of the corresponding statement
shows it to be true.

[tems (1)~3) call for the formalization of various branches of
mathematics. This much was accomplished, brilliantly, and the
study of the resulting formal systems is now a thriving branch of
mathematical logic. Item (4), the crucial culmination, proved to be
problematic.

4. Incompleteness

Kurt Godel (1931, 1934) established a result that dealt a blow—
many say a death blow—to the epistemic goals of the Hilbert pro-
gramme. Let T be a formal deductive system that contains a certain
amount of arithmetic. Assume that the syntax of T is effective in the
sense that there is an algorithm that determines whether a given
sequence of characters is a grammatical formula, and an algorithm
that determines whether a given sequence of formulas is a legitim-
ate deduction in T. Arguably, these conditions are essential for T to
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play a role in the Hilbert programme. Under these assumptions,
Godel showed that there is a sentence G in the language of T such
that (1) if T is consistent, then G is not a theorem of T, and (2) if T
has a property a bit stronger than consistency, called ‘®-
consistency’,'” then the negation of G is not a theorem of T. That
is, if T is ®-consistent, then it does not ‘decide’ G one way or
another. This result, known as Gddel’s (first) incompleteness theorem,
is one of the major intellectual achievements of the twentieth
century.

The formula G has the form of a finitary statement (using
letters for generality). Roughly speaking, G is a formalization of a
statement that G is not provable in T. So, if T is consistent, then G is
true but not provable. Gédel’s result thus dashes the hope of find-
ing a single formal system that captures all of classical mathemat-
ics, or even all of arithmetic. If someone puts forward a candidate
for such a formal system, then we can find a sentence that the
system does not ‘decide’, although we can see that the sentence is
true.

The incompleteness theorem thus raises doubts about any phil-
osophy of mathematics (formalist or otherwise) that requires a
single deductive system for all of arithmetic—a single formal
method for deriving every arithmetic truth.”” However, the dream
of finding a single formal system for all of ideal mathematics was
not an official (or essential) part of the Hilbert programme. The
trouble, if that is what it is, comes elsewhere.

Godel showed that the reasoning behind the incompleteness
theorem can be reproduced within the given formal system T. In
particular, if the formalization of ‘provable in T° meets some
straightforward requirements, then we can derive, in T, a sentence
that expresses the following:

If T is consistent, then G is not derivable in T.

"> An arithmetic theory T is ®-consistent if there is no formula ®(x) such that
D(0), ®(1), (2), . . ., are all provable as well as a statement that there is a natural
number x such that ®(x) fails. J. Barkley Rosser (1936) proved a result similar to
Godel’s from the weaker assumption that T is consistent.

* Although one might argue that the original Fregean logicism would not be
successful without such a deductive system, contemporary neo-logicists are not
committed to a claim that there is a single deductive system that yields every
arithmetic truth (see ch. 5, §§1, 4).
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But, as noted above, ‘G is not derivable in T" is equivalent to G. So,
we can derive, in T, a sentence to the effect that

If T is consistent then G.

Assume that T is consistent, and that we can derive, in T, the
requisite statement that T is consistent; then it would follow that
we can derive G in T. This contradicts the incompleteness theorem.
So if T is consistent, then one cannot derive in T the requisite
statement that T is consistent. This is known as Godel’s second
incompleteness theorem. Roughly, it asserts that no consistent theory
(that contains a certain amount of arithmetic) can prove its own
consistency.

This result does indicate trouble for the Hilbert programme. Let
PA be a formalization of (ideal) arithmetic, say the classical theory
of the natural numbers. The Hilbert programme requires a finitary
proof of the consistency of PA. But the second incompleteness the-
orem is that if PA is in fact consistent, then a straightforward state-
ment of the consistency of PA is not derivable in PA itself, let alone
in the finitary portion of PA. The same goes for any other formal
system, so long as it contains a certain amount of arithmetic. The
Hilbert programme requires a finitary proof that the deductive
system is consistent, and yet, it seems, the consistency cannot be
proved in the system itself, let alone in a more secure subsystem.

A much-discussed paper (Godel 1958) opens by paraphrasing
Bernays:

since the consistency of a system cannot be proved using means of proof
weaker than those of the system itself, it is necessary to go beyond the
framework of what is, in Hilbert’s sense, finitary mathematics if one
wants to prove the consistency of classical mathematics, or even that of
classical number theory ... [Iln the proofs we make use of insights . ..
that spring not from the combinatorial (spatiotemporal) properties of the
sign combinations . . . but only from their meaning.

Godel pointed out that since we have no ‘precise notion of what it
means to be evident’, we cannot rigorously prove Bernays’s claim,
but Godel added that ‘there can be no doubt that it is correct’.
There is a near, but not universal, consensus on the Bernays-
Godel conclusion. A post-Godel defence of a Hilbert-style pro-
gramme has at least two options. One is to challenge the formaliza-
tion of consistency used in the proof of the second incompleteness
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theorem. There are other ways to express consistency-properties
that escape the second incompleteness theorem (see Feferman
1960, Gentzen 1969, and Detlefsen 1980). The issue, then, turns on
just what counts as expressing consistency, and what a proof of
consistency must show in order to meet the epistemic goals of the
Hilbert programme.

A second option would be to show, or claim, that the method-
ology of finitary arithmetic cannot be captured in PA or in any
other formalized theory. That is, even though the purpose of a
branch of ideal mathematics is to streamline the derivation of fini-
tary statements, the proof-methods of any given formalized theory
do not include every finitary proof-method. The thesis is that fini-
tary arithmetic is inherently informal. See Detlefsen 1986.

5 Curry

Any contemporary philosophy of mathematics that relies heavily
on the rigorous formalization of mathematical theories thereby
shows some influence of formalism, and probably owes a debt to
the Hilbert programme. Although formalism still has advocates
among mathematicians, after the 1940s (or so) few philosophers
and logicians explicitly avowed it. A notable exception is Haskell
Curry.

Curry’s philosophy begins with an observation that, as a branch
of mathematics develops, it becomes more and more rigorous in its
methodology, the end result being the codification of the branch in
a formal deductive system. Curry takes this process of formaliza-
tion to be the essence of mathematics.

He argues that all other philosophies of mathematics are ‘vague’
and, more importantly, they ‘depend on metaphysical assumptions’.
Mathematics, he claims, should be free from any such assumptions,
and he argues that the focus on formal systems provides this free-
dom. He thus echoes Thomae’s claim that formalism has no
extraneous metaphysical assumptions.

The main thesis of Curry’s formalism is that assertions of a
mature mathematical theory be construed not so much as the
results of moves in a particular formal deductive system (as Hilbert
or a game formalist might say), but rather as assertions about a
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formal system. An assertion at the end of a research paper would
be interpreted as something in the form ‘® is a theorem in formal
system T. For Curry, then, mathematics is an objective science,
and it has a subject-matter. He wrote that ‘the central concept in
mathematics is that of a formal system’ and ‘mathematics is the
science of formal systems’ (Curry 1954). Curry is thus allied more
with term formalism than with game formalism. An appropriate
slogan is that mathematics is meta-mathematics.

Unlike Hilbert, however, Curry does not restrict meta-
mathematics to finitary arithmetic: ‘In the study of formal systems,
we do not confine ourselves to the derivation of elementary pro-
positions step by step. Rather, we take the system . . . as datum, and
... study it by any means at our command’ (Curry 1954). Curry
concedes that some ‘intuition’ is involved in this meta-mathematics,
but he claims that ‘the metaphysical nature of this intuition is
irrelevant’.

Stepping back one level, on Curry’s view, meta-mathematics is
itself a branch of mathematics. As such, the meta-mathematics
should be formalized. That is, the non-finitary results in meta-
mathematics (like most of contemporary mathematical logic) are
accommodated by producing a formal system for meta-
mathematics, and construing the results in question as theorems
about that formal system. Presumably, this does not constitute a
vicious infinite regress.

For Curry, there is no real issue concerning the truth of a given
formal system. Instead, there is only a question of ‘considerations
which lead us to be interested in one formal system rather than
another’. This matter of ‘interest’ is largely pragmatic: ‘Accept-
ability is relative to a purpose, and a system acceptable for one
purpose may not be for another.’** Curry mentions three ‘criteria
of acceptability’ for formal systems: ‘(1) the intuitive evidence of
the premisses; (2) consistency . . .; (3) the usefulness of the theory as
a whole’ (Curry 1954).

Of course the second criterion, consistency, is important. An
inconsistent formal system has limited use (assuming a standard
logic, see note 11 above). Unlike Hilbert, however, Curry does not
require a proof of consistency:

' Curry’s notion of acceptability is quite similar to Carnap’s ‘external ques-

tion’ concerning the acceptability of a ‘linguistic framework’ (e.g., Carnap 1950).
See chapter 5, §3.
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The criterion of consistency has been stressed by Hilbert. Presumably, the
reason for this is that he . . . seeks an a priori justification. But aside from
the fact that for physics the question of an a priori justification is irrelevant,
I maintain that a proof of consistency is neither a necessary nor a suf-
ficient condition for acceptability. It is obviously not sufficient. As to
necessity, so long as no inconsistency is known, a consistency proof,
although it leads to our knowledge about the system, does not alter its
usefulness. Even if an inconsistency is discovered this does not mean
complete abandonment of the theory, but its modification and refinement
... The peculiar position of Hilbert in regard to consistency is thus no
part of the formalist conception of mathematics . . . (Curry 1954)

Since there is no need to prove consistency before accepting a
formal system, Curry’s philosophy is not affected by Godel's sec-
ond incompleteness theorem. Since Curry does not restrict math-
ematics to a single formal system, his views are also unaffected by
Godel’s first incompleteness theorem.

Like most formalists, Curry seems to require that every legitim-
ate branch of mathematics be formalized. What is the formalist (or
deductivist) to make of the practice of, say, arithmetic, before it was
formalized in the nineteenth century? Were Archimedes, Cauchy,
Fermat, and Euler not doing mathematics? On the contemporary
scene, what is the status of informal mathematical practice, which
does not explicitly invoke a rigorous deductive system? Indeed,
what is the status of informal meta-mathematics?

Opponents of Curry-style formalism question the philosophical
significance of the observation that as a branch of mathematics
develops and becomes rigorous, it gets formalized. With Frege and
Godel, some philosophers maintain that something essential is lost
in the formalism. Mathematical language has meaning and it is a
gross distortion to attempt to ignore this meaning. At best, formal-
ism and deductivism focus on a small aspect of mathematics, delib-
erately leaving aside what is essential to the enterprise. In the next
chapter, we turn to a philosophy that insists that mathematics is
inherently informal.
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6. Further Reading

Many of the primary sources noted above are available in English
translation. Geach and Black 1980: 162-213 contains a translation
of the sections (§§86-137) of Frege 1893 on formalism (i.e., con-
cerning Thomae and Heine). Benacerraf and Putnam 1983 contains
translations of von Neumann 1931 and Hilbert 1925 (the above
quoted passages from Hilbert 1925 are from that version). Van
Heijenoort 1967 contains another translation of Hilbert 1925, as
well as a translation of Hilbert 1904 and 1927. Other relevant
papers are Hilbert 1918, 1922, and 1923. See also Hilbert and Ber-
nays 1934. Curry 1954 is also reprinted in the Benacerraf and
Putnam 1983 anthology, with a note indicating that this paper rep-
resents his views in 1939. Curry 1958 is a fuller elaboration of his
mature formalism. Resnik 1980: chs. 2,3 is an excellent secondary
source on the various types of formalism (and Frege’s critique of
game formalism). For a sample of the large literature on the
Hilbert programme, see Detlefsen 1986, Feferman 1988, Hallett
1990, Sieg 1988, 1990, Simpson 1988, and Tait 1981. Bernays 1967 is
a lucid and sympathetic reconstruction of Hilbert’s views. Reid
1970 is a book-length intellectual biography of Hilbert.
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INTUITIONISM: IS SOMETHING
WRONG WITH OUR LOGIC?

The long belief in the universal validity of the principle of
excluded third in mathematics is considered by intuitionism as
a phenomenon of history of civilization of the same kind as
the old-time belief in the rationality of 7 or in the rotation of
the firmament on an axis passing through the earth. And
intuitionism tries to explain the long persistence of this
dogma by . . . the practical validity . . . of classical logic for an
extensive group of simple everyday phenomena. [This] fact
apparently made such a strong impression that . . . classical
logic . . . became a deep-rooted habit of thought which was
considered not only as useful but as a priori.

I hope I have made clear that intuitionism on the one hand
subtilizes logic, on the other hand denounces logic as a source
of truth. Further that intuitionistic mathematics is inner
architecture, and that research in the foundations of math-
ematics is inner inquiry . . .

(Brouwer 1948: 94, 96)

1. Revising Classical Logic

THE practice of mathematics is primarily a mental activity. To be
sure, mathematicians use paper, pencils, and computers, but at
least in theory these are dispensable. The mathematician’s main
tool is her mind. Although the philosophies considered in this
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chapter are quite different from (and even incompatible with) each
other, they all place emphasis on this activity of mathematics, pay-
ing attention to its basis or justification. A central theme uniting the
views is a rejection of certain modes of inference in mathematics
(see also ch. 1, §2). The philosophies considered here demand revi-
sions to the mathematics of their day, and our day.

The main item is the law of excluded middle (LEM), sometimes
called the law of excluded third’ and ‘tertium non datur’ (TND).
Let ®@ be a proposition. Then the corresponding instance of excluded
middle is the proposition that either ® or it is not the case that @,
sometimes abbreviated as @ or not-®, or in symbols ® \/ —=P. In
semantics, the closely related principle of bivalence is that every
proposition is either true or false, and so there are only two possible
truth-values—hence the name ‘excluded middle’.! Intuitionism is a
general term for philosophies of mathematics that demur from
excluded middle.

Common logical systems that include excluded middle are called
classical, and mathematics pursued with classical logic is called clas-
sical mathematics. The weaker logic, without excluded middle, is
called intuitionistic logic, and the corresponding mathematics is
intuitionistic mathematics. See Dummett 1977 for details.

Intuitionistic logic lacks other principles and inferences that rely
on excluded middle. One of these is the law of double negation
elimination, which allows one to infer a proposition ® from the
denial of the denial of ®. Using intuitionistic logic, one can infer
not-not-® from @, but not conversely. Suppose that someone
derives a contradiction from a proposition in the form not-®. Then
both the classical mathematician and the intuitionist will conclude
that not-not-® (via reductio ad absurdum). The classical logician will
also infer (the truth of) @, but this last inference is disallowed in
intuitionistic logic (unless the mathematician already knows that
@ is either true or false).

To take another example, suppose that a mathematician proves
that not all natural numbers have a certain property P. In symbols,
the theorem is =VxPx. A classical mathematician would then infer

' Excluded middle and bivalence are equivalent if one assumes the platitudes
that for any proposition @, ® is true if and only if @, and P is false if and only if O
is not true. These principles are sometimes called “Tarski biconditionals” or “T-
sentences’.
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that there is a natural number that lacks P (i.e. 3x—Px). The intu-
itionist would not allow this conclusion (in general). Readers famil-
iar with mathematical logic are invited to check that an inference
from —VxPx to 3x—Px relies on excluded middle or some equiva-
lent principle or inference.

The proposed, or demanded, revisions to logic are tied to phil-
osophy. Intuitionists argue that excluded middle and the related
inferences indicate a belief in the independent existence of math-
ematical objects and/or a belief that mathematical propositions are
true or false independent of the mathematician. In present terms,
intuitionists argue that excluded middle is a consequence of realism
in ontology and/or realism in truth value (see ch. 2, §§2.1, 2.2).
Some intuitionists reject this realism outright, while others jus:
argue that mathematics should not presuppose any such meta-
physical thesis.

The mathematics one gets via intuitionistic restrictions is verv
different from classical mathematics (see, for example, Heyting
1956, Bishop 1967, Dummett 1977). Critics commonly complain
that the intuitionistic restrictions cripple the mathematician. On the
other hand, intuitionistic mathematics allows for many potentially
important distinctions not available in classical mathematics, and is
often more subtle in interesting ways. Here we examine what leads
some philosophers to demand the restriction.

2. The Teacher, Brouwer

Although Hilbert’s finitary arithmetic had a clear and explicit
Kantian influence (see ch. 6, §3), the previous two chapters have
recorded a marked trend away from Immanuel Kant’s philosophy
of mathematics. Of all the twentieth century authors considered in
this book, L. E. J. Brouwer was the most Kantian. Brouwer (1912:
78) dubs Kant’s philosophy ‘an old form of intuitionism’ (although
Kant was not critical of the practice of mathematics). It is thus no
coincidence that Hilbert’s finitary arithmetic has an affinity with
intuitionistic mathematics. Brouwer and Hilbert both noted that if
one sticks to the practice of finitary arithmetic, there is not much
difference between the classical and intuitionistic approach. There
are, however, substantial and irreconcilable differences between
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Hilbert and Brouwer. They clearly disagree over what Hilbert calls
ideal mathematics, which, of course, is the bulk of mathematics.
More important here, the philosophical background to their enter-
prises could hardly be more different.

In a paper comparing intuitionism with formalism, Brouwer
(1912: 77) noted that scientific principles ‘can only be understood to
hold in nature with a certain degree of approximation’, and he
pointed out that the main ‘exceptions to this rule have from ancient
times been practical arithmetic and geometry . ..". Mathematics
has ‘so far resisted all improvements in the tools of observation’.
The philosophical problem is to explain the exactitude enjoyed by
mathematics, and its resistance to empirical refinement. Intuition-
ists and formalists differ on the source of the ‘exact validity” of the
mathematical sciences: The question where mathematical exact-
ness does exist, is answered differently by the two sides; the intu-
itionist says: in the human intellect; the formalist says: on paper.’

For Brouwer, as for Kant, most mathematical truths are not
capable of ‘analytic demonstration’. They cannot become known
by mere analysis of concepts, and they are not true in virtue of
meaning. So the bulk of mathematics is synthetic. Yet mathematical
truth is a priori, independent of any particular observations or other
experience we may have. Brouwer held that mathematics is mind-
dependent, concerning a specific aspect of human thought. In the
terminology of chapter 2, §2, Brouwer was an anti-realist in ontol-
ogy and an anti-realist in truth-value. And he was no empiricist.
Like Kant, Brouwer tried to forge a synthesis between realism and
empiricism.

For Kant and for Brouwer, ‘the possibility of disproving’ math-
ematical laws experimentally is ‘not only excluded by a firm belief,
but [is] entirely unthinkable’. For Brouwer, mathematics concerns
the ways humans approach the world. To think at all is to think in
mathematical terms.”

Brouwer (1912: 77) echoes the major Kantian theme that a
human being is not a passive observer of nature, but rather plays an
active role in organizing experience: ‘that man always and every-
where creates order in nature is due to the fact that he not only

* As we saw in §3 of the previous chapter, Hilbert said something similar about
mathematics, but Hilbert’s statement was limited to the use of symbols in reason-
ing. As we will see, for Brouwer, the symbols are a side-matter, well removed from
the essence of mathematics.
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isolates the causal sequences of phenomena ... but also supple-
ments them with phenomena caused by his own activity . . .". Math-
ematics concerns this active role.

Brouwer conceded that developments in nineteenth-century
mathematics made the Kantian view of geometry untenable. The
advent of rigour, leading to the idea of logical consequence as
independent of content, and the development of the multiple inter-
pretations of projective geometry, supported the thesis that only the
logical form of a geometric theorem matters (see ch. 6, §2). This left
no room for ‘pure intuition’ in geometry. According to Brouwer, the
main blow to the Kantian idea that geometry concerns synthetic a
priori forms of perception was the advent and acceptance of non-
Euclidean geometry: ‘this showed that the phenomena usually
described in the language of elementary geometry may be
described with equal exactness. . . in the language of non-Euclidean
geometry; hence, it is not only impossible to hold that the space of
our experience has the properties of Euclidean geometry but it has
no significance to ask for the geometry which would be true for the
space of our experience’ (Brouwer 1912: 80). This point was also
made by Henri Poincaré (1903: 104), another mathematician with
intuitionistic leanings (see Shapiro 1997: ch. 5, §3.1).

Thus, Brouwer abandoned Kant’s view of space. In its place, he
made a courageous proposal to found all of mathematics on a
Kantian view of time. Difficult passages like the following occur
throughout Brouwer’s writing;

[Modern intuitionism] considers the falling apart of moments of life into
qualitatively different parts, to be reunited only while remaining separated
by time, as the fundamental phenomena of the human intellect, passing
by abstracting from its emotional content into the fundamental phenom-
enon of mathematical thinking, the intuition of the bare rwo-oneness.
This intuition of two-oneness, the basal intuition of mathematics, creates
not only the numbers one and two, but also all finite ordinal numbers,
inasmuch as one of the elements of the two-oneness may be thought of as
a new two-oneness, which process may be repeated indefinitely. (Brouwer
1912: 80)

This seems to defy sharp interpretation. The underlying idea might
be to base the natural numbers on the forms of temporal per-
ception, just as Kant founded geometry on the forms of spatial
perception. We apprehend the world as a series of distinct
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moments. Each moment gives rise to another one. This is the ‘bare
two-oneness’. And the second moment gives way to a third, and so
on, thus yielding the natural numbers.

Brouwer states that this ‘basal intuition’ unites the ‘connected
and separate’. Each moment is unique, and yet is connected to
every other moment. The original intuition also unites the ‘con-
tinuous and the discrete’ and ‘gives rise immediately to the intu-
ition of the linear continuum’. The moments of time are distinct,
and yet they flow continuously. Brouwer mentions that the notion
of ‘between’ leads to the rational and, ultimately, real numbers.
The idea seems to be that we know a priori that between any two
moments, there is a third. The temporal continuum ‘is not
exhaustible by the interposition of new units and ... therefore
[cannot] be thought of as a mere collection of units’. So both the
natural and real numbers—the discrete and the continuous—are
grounded in temporal intuition. This yields arithmetic and real
analysis.

Brouwer then follows standard Cartesian techniques to found
geometry on the real numbers, by identifying a point with a pair of
numbers. Brouwer claims that this qualifies ordinary plane and
solid geometry, as well as non-Euclidean and n-dimensional geom-
etry, as synthetic a priori.” Even geometry is ultimately based on the
intuition of time.

Recall that for Kant, arithmetic and geometry are not analytic
because they rely on ‘intuition’. As noted in chapter 4, §2, there
is substantial disagreement among scholars concerning exactly
what Kantian intuition is. In the treatment there, I suggested that
a central component of Kant’s a priori mathematical intuition is
construction. In particular, the crucial intuitive (and synthetic)
aspects of a Euclidean demonstration are the ‘setting out’, where
a typical figure satisfying the hypothesis is drawn, and the aux-
iliary constructions, where the reader is instructed to draw add-
itional lines and/or circles on the given figure. Clearly, these con-
structions are not physical operations on paper or a blackboard,
but are idealizations thereof. One cannot literally draw a line
with no thickness. For Kant, Euclid’s ‘construction’ is a mental

* Recall that Frege held that arithmetic and analysis are analytic, and he main-
tained a Kantian view of geometry as the synthetic a priori forms of space. Thus,
Frege would not accept the Cartesian foundation of geometry on arithmetic and
analysis. He was thus the exact opposite of Brouwer.
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act, the mind’s active process of apprehending the forms of
perception.

Brouwer is quite explicit that the essence of mathematics is ideal-
ized mental construction. Consider, for example, the proposition
that for every natural number n, there is a prime number m >n
such that m <n! + 2 and m is prime. For Brouwer, this proposition
invokes a procedure that, given any natural number n, produces a
prime number m that is greater than n but less than n! + 2. The
mathematician has not established this proposition until she has
given such a procedure. Brouwer (1912, 87-8) discusses a version of
the Schroder-Bernstein theorem: if there is a one-to-one cor-
respondence between set A and a set divided into three disjoint
parts A, + B, + C, such that there is a one-to-one correspondence
between A and A,, then there is also a one-to-one correspondence
between A and A, + B,. This theorem is provable in classical math-
ematics, indeed in second-order logic (see Shapiro 1991: 102-3).
However, Brouwer wrote that the intuitionist interprets the prop-
osition as follows:

if it is possible, first to construct a law determining a one-to-one cor-
respondence between the mathematical entities of type A and those of
type A,, and second to construct a law determining a one-to-one cor-
respondence between the mathematical entities of type A and those of 4,,
B,, and C,, then it is possible to determine from these two laws by means
of a finite number of operations a third law, determining a one-to-one
correspondence between the mathematical entities of type A and those of
types A, and B,.

The classical theorem concerning the existence of the one-to-one
correspondence does not yield the requisite procedure. Brouwer
argued that it is unlikely that the Schréoder-Bernstein theorem is
provable, since we do not know a general method of producing the
procedure of the conclusion.

Brouwer’s repudiation of excluded middle flows from his con-
structive conception of mathematics. Consider first the inference
of double negation elimination, the classical rule that allows one to
infer a sentence ® from a premiss that it is not the case that it is not
the case that @. Let P be a property of natural numbers and con-
sider a proposition that there is a number n such that P holds of n;
in symbols this is InPn. For an intuitionist, this proposition is estab-
lished only when one shows how to construct a number n that has
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the property P. The negation of a proposition @, symbolized —® is
established when one shows that the assumption of (the construc-
tion corresponding to) @ is contradictory. Thus, the double neg-
ation ——3nPn is established when one shows that an assumption
—3nPn is contradictory. Clearly, to derive a contradiction from the
assumption that —3nPn is not to construct a number n such that Pn.
Indeed, we can derive the contradiction and have no idea what such
a number n might be. Thus, from Brouwer’s perspective, double
negation elimination is invalid.

The corresponding instance of excluded middle is that either
there is or is not a number n such that Pn. To establish this instance,
one would have either to construct a number # and then show Pn
or else derive a contradiction from the assumption that InPn.
Throughout his career, Brouwer tirelessly argued that we have no a
priori reason to believe this principle holds in general.

Brouwer (1948: 90) concedes that classical (real and complex)
analysis may be ‘appropriate . . . for science’, but he argues that it
has ‘less mathematical truth’ than intuitionistic analysis, since clas-
sical analysis runs against the mind-dependent nature of mathemat-
ical construction. This is a bold divorce between mathematics and
the empirical sciences.

Brouwer traces the belief in excluded middle to an incorrect and
outdated philosophy of mathematics, the view that I call ‘realism in
ontology’. He argues that the ‘various ways’ in which classical
mathematics is justified ‘all follow the same leading idea, viz., the
presupposition of the existence of a world of mathematical objects,
a world independent of the thinking individual, obeying the laws of
classical logic . . . (Brouwer 1912: 81). Someone who holds that the
natural numbers, say, exist independent of the mathematician is
likely to interpret the foregoing instance of excluded middle as
‘either the collection of natural numbers contains a number n such
that Pn or it does not’. From that perspective, every instance of
excluded middle is obvious, indeed a logical truth.

Recall that Plato was critical of the geometers for using dynamic
language, speaking of ‘squaring and applying and adding and the
like . . .". He insisted that ‘the real object of the entire subject is . . .
knowledge . . . of what eternally exists, not of anything that comes
to be this or that at some time and ceases to be’ (Republic, Book 7,
see ch. 1, §2, and ch. 3, §2 above). Clearly, Brouwer would side with
the geometers against Plato. Mathematics concerns mental activity,
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not some ideal realm of independently existing entities. As such,
the language should be dynamic, not static.

On Brouwer’s view, the practice of mathematics flows from
introspection of one’s mind. In philosophy, a slogan of traditional
idealism is: ‘to exist is to be perceived.” A corresponding slogan for
intuitionism would be that in mathematics, ‘to exist is to be con-
structed’. It follows from Brouwer’s view that all mathematical
truths are accessible to the mathematician, at least in principle:
“The . . . point of view that there are no non-experienced truths . . .
has found acceptance with regard to mathematics much later than
with regard to practical life and to science. Mathematics rigorously
treated from this point of view, including deducing theorems
exclusively by means of introspective construction, is called intui-
tionistic mathematics’” (Brouwer 1948: 90). According to Brouwer,
the classical mathematician incorrectly ‘believes in the existence of
unknowable truths’.

For Brouwer, every legitimate mathematical proposition dir-
ectly invokes human mental abilities. Mathematical assertions are
‘realized, i.e. ... convey truths, if these truths have been experi-
enced’. Thus, as understood by an intuitionist, the principle of
excluded middle amounts to a principle of omniscience: ‘Every
assignment ... of a property to a mathematical entity can be
judged, i.e., proved or reduced to absurdity.” Brouwer’s argument
is that we are not omniscient and so we should not assume
excluded middle.

Recall that a definition of a mathematical entity is impredicative
if it refers to a collection that contains the entity (ch. 1, §2, and
ch. 5,§2). For example, the usual definition of ‘least upper bound’ is
impredicative, since it characterizes a number in terms of a collec-
tion of upper bounds, and the defined number is a member of that
collection. For a realist in ontology, impredicative definitions are
innocuous, since there is no problem in characterizing an object-
ively existing entity in terms of a collection that contains the entity.
For a realist, there is no more problem with ‘least upper bound’
than with the similarly impredicative ‘most stubborn member of
the faculty’. For an intuitionist, however, an impredicative defini-
tion is viciously circular. We cannot construct a mathematical entity
by using a collection that contains the entity.

In similar fashion, Brouwer (1912: 82) objects to consideration of
collections of mathematical entities, as if they were completed
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totalities. He complains that a classical mathematician . . . ‘intro-
duces various concepts entirely meaningless to the intuitionist,
such as for instance “the set whose elements are the points of
space”, “the set whose elements are the continuous functions of
a variable”, “the set whose elements are the discontinuous func-
tions of a variable”, and so forth’. For the intuitionist, we are
never finished constructing all of the elements of one of these
collections, and so we cannot speak of ‘the set” of such
elements.

Brouwer’s conception of the nature of mathematics and its
objects leads to theorems that are (demonstrably) false in classical
mathematics. As classically conceived, a real number can be
thought of as an infinite decimal, a completed infinity. As Brouwer
(1948) put it, the classical mathematician holds that ‘from the
beginning the n™ element is fixed for each n’. Moreover, any arbi-
trary or random sequence of digits is a legitimate real number.
Barly in his career, Brouwer identified real numbers with decimal
expansions given by a rule: ‘Let us consider the concept: “real num-
ber between 0 and 17 . . . For the intuitionist [this concept] means
“law for the construction of an elementary series of digits after the
decimal point, built up by means of a finite series of operations”’
(Brouwer 1912: 85). For technical reasons, a focus on decimal
expansions proved to be awkward and, in any case, it is more com-
mon for mathematicians to speak of Cauchy sequences of rational
numbers, rather than decimal expansions. In these terms, for the
early Brouwer, only Cauchy sequences given by rules determine
legitimate real numbers.*

Later, however, Brouwer supplemented these rule-governed
sequences with what are sometimes called ‘free choice sequences’.
Brouwer envisioned a ‘creative subject” with the power to freely
produce further members of an evolving choice sequence (or,
ignoring the technicality, further digits of a decimal expansion).
Free choice sequences do not have the aforementioned property,
ascribed to classical real numbers, ‘from the beginning the n®

“ A sequence a,, 4,, ... of rational numbers is Cauchy if for each rational
number € > 0 there is a natural number N such that for all natural numbers m, n, if
m > Nandn > N then — € < a,, —q, < €. A Cauchy sequence is given by a rule only
if there is an effective procedure for calculating the members q,, and an effective
procedure for calculating the bound N, given €. The principle of completeness is
that every Cauchy sequence converges to a real number.
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element is fixed for each n’. The key feature of both rule-governed
and free choice sequences is that each one is only a potential
infinity, not an actual infinity. We never have the entire sequence
before us, as it were. We only have the ability to continue the
sequence as far as desired, either by following the rule or by having
the creative subject continue to elaborate a free choice sequence.

From this perspective, any theorems about a given real number
must follow from a finite amount of information about it. For a
rule-governed sequence, the mathematician can use the rule to
establish facts about the corresponding real number. For a free
choice sequence, however, there is no rule, and so the only infor-
mation the mathematician ever has about it—at any point in time—
consists of a finite initial segment of the sequence. Let a be a free
choice sequence. It follows that any property P that a mathemat-
ician ascribes to a must be based on a finite initial segment of a
corresponding Cauchy sequence. That is, the mathematician
should never have to determine the entire sequence for a before she
is able to determine whether P holds of a—simply because the
entire sequence never exists. Thus, if a has a property P, then there
is a rational number € > 0 such that if a real number b is within € of
a, then P holds of b as well. Using similar reasoning, Brouwer
established that every function from real numbers to real numbers
is (uniformly) continuous!’

The proof of this theorem makes essential use of free choice
sequences. If only rule-governed real numbers are considered, then
discontinuous functions cannot be ruled out on logical grounds.
However, the existence of discontinuous functions entails
unwanted instances of excluded middle. For example, let f be any
function such that for all real numbers x, fx=0ifx <0 and fx =1 if
x> 0. So fhas a discontinuity at 0. Now define a Cauchy sequence

> Incidentally, it follows from Brouwer’s theorem that the axiom of choice fails
in intuitionistic analysis. One formulation of this axiom is that if for every real
number a there is a real number b such that a given relation R holds between a and
b. then there is a function f such that for every a, the relation R holds between a
and fa. The function fpicks out (or ‘chooses’) a value b. In intuitionistic analysis, it
is provable that for every real number a there is a natural number b such that
b>a. We need only approximate a to within, say, .5 and then pick a natural
number much larger than that approximation. However, there cannot be a con-
tinuous function f such that for every real number g, fa is a natural number and
fa>a.
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<a,> as follows: if there is no counterexample to the Goldbach
conjecture less than n, then a, = 1/n; otherwise let a, = 1/p, where
p is the smallest such counterexample. For an intuitionist, <a, > is
a legitimate Cauchy sequence (since we can effectively calculate
each member, and effectively determine arbitrarily close
approximations—see note 4 above). Let a be the real number that
<a,> converges to. Notice that a >0 if and only if the Gold-
bach conjecture is false. What of the real number fa? We have
that fa =0 if the Goldbach conjecture is false and fa=1 other-
wise. So one cannot approximate fa to within .4 unless one
knows whether the Goldbach conjecture is true. Thus, if f were a
legitimate function, then either the Goldbach conjecture is true.
or it is not the case that the Goldbach conjecture is true. This last
is an unwanted instance of excluded middle (at least until the
Goldbach conjecture is settled, in which case we will use another
example).

This argument is an instance of the so-called ‘method of weak
counterexamples’, where the intuitionist demurs from a certain
principle of classical mathematics (the existence of discontinuities
in this case) by showing that the principle entails instances of
excluded middle. To take another example, consider a (purported)
function g such that gx=0 if x is rational and gx=1 if x is
irrational. Let ¢ be any real number. In order to determine whether
gc =0, one must determine whether c is rational. If ¢ is a choice
sequence, one cannot determine whether ¢ is rational. Recall that
any information about a free choice sequence must be obtained
from a finite segment of a corresponding Cauchy sequence. Any
finite segment (or any finite decimal) can be continued to produce a
rational and any finite segment can be continued to produce an
irrational. If ¢ is rule-governed, then in some cases it may be pos-
sible to determine whether ¢ is rational and thus whether gc = 0, by
reasoning about the rule. However, there is no general method for
calculating gc. Again, the existence of g entails unwanted instances
of excluded middle. Thus, the definition of g is not legitimate for an
intuitionist.

In contrast to this, discontinuous functions are a staple of clas-
sical mathematics. They proved essential to physics (see, for
example, Wilson 1993a) but, as noted above, Brouwer was not
interested in tailoring mathematics to the needs of science.

Brouwer recognized that intuitionistic mathematics is not a mere
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restriction of classical mathematics, but is incompatible with it:*
‘there are intuitionistic structures which cannot be fitted into any
classical logical frame, and there are classical arguments not apply-
ing to any introspective image’ (Brouwer 1948: 91). The reason
concerns the basic differences in how the fields are construed:

theorems holding in intuitionism, but not in classical mathematics, often
originate from the circumstance that for mathematical entities . .. the
possession of a certain property imposes a special character on their way
of development from the basic intuition, and that from this special char-
acter of their way of development from the basic intuition, properties
ensue which for classical mathematics are false.

In addition to, or along with, the trend away from Kant’s phil-
osophy of mathematics, the thinkers covered in the previous two
chapters showed an increasing tendency to focus on the language
and the logic of mathematics. Logicists set out to reduce math-
ematics to logic, claiming that mathematics is no more than logic,
while formalists appealed to the practice of manipulating char-
acters in rule-governed ways. Alberto Coffa (1991) calls this trend
the ‘semantic tradition’, and Michael Dummett dubbed it the ‘lin-
guistic turn’. Brouwer bucked the trend. For him, language is no
more than an imperfect medium for communicating mental con-
structions, and it is these constructions that constitute the essence
of mathematics. Suppose that a mathematician accomplishes a
mental construction and wants to share it with others. She writes
some symbols down on paper and submits it to a journal. If all goes
well with the editor and then with subsequent readers, other math-
ematicians can experience the mental, mathematical construction
themselves, by reading the symbols in the journal. Like any other
medium, however, language is fallible. The readers may not ‘get it’
in the sense that they may not experience any construction after
reading the paper (or trying to), or they may experience a different
construction from that of the first mathematician. In either case,

* There is a school of mathematics and philosophy, called ‘constructivism’, that
accepts neither excluded middle nor the non-classical aspects of intuitionistic
analysis. Roughly, Errett Bishop (1967) embraces only the common core of clas-
sical and intuitionistic mathematics. He insists on an epistemic understanding of
the language of mathematics. To say that there exists a number with a given
property, for example, one must give a method for finding such a number. Bishop
calls excluded middle a principle of ‘limited omniscience’.
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the problem is not with the first mathematical construction. As in
the film Cool Hand Luke, what we have here is (only) a failure to
communicate. On Brouwer’s view, logic is merely a codification of
the rules for communicating mathematics via language.

Thus for Brouwer, logicism and formalism both focus on the
external trappings of mathematical communication and com-
pletely ignore the essence of mathematics. He explicitly rejected
the concern with consistency proofs:

in ... construction . .. neither the ordinary language nor any symbolic
language can have any other role than that of serving as a non-
mathematical auxiliary, to assist the mathematical memory or to enable
different individuals to build up the same [construction]. For this reason
the intuitionist can never feel assured of the exactness of a mathematical
theory by such guarantees as the proof of its being non-contradictory, the
possibility of defining its concepts by a finite number of words . . . or the
practical certainty that it will never lead to a misunderstanding in human
relations. (Brouwer 1912, 81)

In other words, the focus on language and logic misses the point.

3. The Student, Heyting

In some ways, Brouwer’s student Arend Heyting was the more
influential of the two—via a contribution that Brouwer did not
approve, and even Heyting showed some ambivalence over. He
developed a rigorous formalization of intuitionistic logic. The sys-
tem is sometimes called Heyting predicate calculus (see, for example,
Heyting 1956: ch. 7, or some contemporary textbooks in symbolic
logic like Forbes 1994: ch. 10). Heyting 1930 suggested that from
the underlying metaphysical assumptions—realism in truth-value—
of classical logic, the language of classical mathematics is best
understood in terms of (objective) truth conditions. A semantics for
classical mathematics would thus delineate the conditions under
which each sentence is true or false. With the rejection of bivalence
(see §1 above), a semantics like this is inappropriate for intuition-
ism. Instead, intuitionistic language should be understood in terms
of proof conditions. A semantics would delineate what counts as a
canonical proof for each sentence. In rough terms, here are some
clauses:
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A proof of a sentence of the form ‘® and ¥’ consists of a proof
of ® and a proof of P

A proof of a sentence of the form ‘either @ or ¥’ consists of
either a proof of ®@ or a proof of V.

A proof of a sentence of the form ‘if ® then ¥’ consists of a
method for transforming any proof of @ into a proof of V.

A proof of a sentence of the form ‘not-®’ consists of a pro-
cedure for transforming any proof of ® into a proof of absurdity.
In other words, a proof of not-® is a proof there can be no proof
of ®.

A proof of a sentence of the form ‘for all x, @(x)" consists of a
procedure that, given any n, produces a proof of the corresponding
sentence P(n).

A proof of a sentence of the form ‘there is an x such that ®(x)’
consists of the construction of an item n and a proof of the corres-
ponding ®(n).

The system is now known as Heyting semantics (see also Dummett
1977: ch. 1). Notice that one cannot have a canonical proof of a
disjunction ‘either ® or ‘¥’ unless one has a proof of one of the
clauses. So one cannot have such a proof of an instance of excluded
middle ‘@ or not-®’ unless one has either a proof of @ or a proof
that there can be no proof of ®. So many instances of excluded
middle do not seem to be justified by this semantics. Notice also
that one cannot prove a sentence that begins ‘there is an x* without
showing how to produce such an x. This is a formalization of a
major intuitionistic theme, shared by all schools of intuitionism.

It is ironic that Heyting’s work here is anathema to Brouwer’s
attitude toward language and logic. Heyting’s formal proposals
might have been an attempt to be helpful to his classical colleagues,
providing them with at least an outline of the linguistic trappings
of intuitionistic mathematics. Heyting shared Brouwer’s views
concerning the prevalence of mental construction and the down-
playing of language and logic. In “The Intuitionist Foundation of
Mathematics’ (1931: 53), he wrote that the ‘linguistic accom-
paniment is not a representation of mathematics; still less is it
mathematics itself. In the book Intuitionism (1956: 5), he echoes
Brouwer’s claim that language is an imperfect medium for com-
municating the real constructions of mathematics. The formal
system is itself a legitimate mathematical construction, but ‘one is
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never sure that the formal system represents fully any domain of
mathematical thought; at any moment the discovering of new
methods of reasoning may force us to extend the formal system’.
Heyting claimed that ‘logic is dependent on mathematics’, not the
other way around. So he did not intend his work in logic to codify
intuitionistic reasoning. Nothing can do that.

Be this as it may, Heyting’s formal work allowed intuitionistic
(and constructivist) mathematics to come under the purview of
ordinary proof theory, and there is now an extensive literature on
formalized versions of intuitionistic arithmetic, analysis, set theory,
and so on. Much (but not all) of the meta-theoretical work on
intuitionistic logic employs a classical meta-theory. That is, the
typical proof-theorist uses classical logic in order to study formal
systems that themselves employ intuitionistic logic. One lasting
contribution, at least from the point of view of the classical math-
ematician, has been a detailed study of the role of excluded middle
in the practice of mathematics. We now know just how different
intuitionistic mathematics is from classical mathematics—assuming
(against Brouwer and Heyting) that intuitionistic formal systems
accurately model intuitionistic mathematics. The same goes for
Bishop’s constructivism (see note 6 above). The meta-mathematical
work has also led to a vigorous debate on the extent to which
intuitionistic mathematics can serve the needs of science.”

Heyting’s philosophical writing reiterates Brouwer’s thesis that
mathematics is mind-dependent and the focus on mathematical
construction:

The intuitionist mathematician proposes to do mathematics as a natural
function of his intellect, as a free, vital activity of thought. For him,
mathematics is a production of the human mind . . . [W]e do not attribute
an existence independent of our thought, i.e., a transcendental existence.
to . .. mathematical objects . . . [MJathematical objects are by their very
nature dependent on human thought. Their existence is guaranteed only
insofar as they can be determined by thought. They have properties only
insofar as these can be discerned in them by thought . . . Faith in transcen-
dental . . . existence must be rejected as a means of mathematical proof
... [This is the reason for doubting the law of excluded middle. (Heyting
1931: 52-53)

7 As we saw in the previous section, Brouwer would not care too much about
the outcome of this debate.
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With his teacher, Heyting argues that classical mathematics relies
on a ‘metaphysical’ principle that the objects of mathematics exist
independently of the mathematician and that the truths of math-
ematics are objective and eternal. He concedes that a mathemat-
ician is free to hold or reject such metaphysical principles in his
spare time. However, the only way to avoid ‘a maze of meta-
physical difficulties” is to ‘banish them from mathematics’ itself
(Heyting 1956: 3). Heyting accuses the classical mathematician of
invoking metaphysical arguments via excluded middle:

If ‘to exist’ does not mean ‘to be constructed’, it must have some meta-
physical meaning. It cannot be the task of mathematics to investigate this
meaning or to decide whether it is tenable or not. We have no objection
against a mathematician privately admitting any metaphysical meaning he
likes, but Brouwer’s programme entails that we study mathematics as some-
thing simpler, more immediate than metaphysics. In the study of mental
mathematical constructions ‘to exist’” must be synonymous with ‘to be
constructed’. (Heyting 1956: 2)

In short, Heyting insists that the practice of mathematics should
not rely on any metaphysics.®

In some places, he seems to go further with the mind-
dependence, and even to claim that mathematics is empirical:

A mathematical proposition expresses a certain expectation. For example,
the proposition, ‘Buler’s constant C is rational’ expresses the expectation
that we could find two integers a and b such that C=4a/b ... The affirm-
ation of a proposition means the fulfillment of an intention. The assertion
‘C is rational’, for example, would mean that one has in fact found the
desired integers . . . The affirmation of a proposition is not itself a prop-
osition; it is the determination of an empirical fact, viz., the fulfillment of
the intention expressed by the proposition. (Heyting (1931: 59)

Intuitionistic mathematics consists . . . in mental constructions; a math-
ematical theorem expresses a purely empirical fact, namely the success of
a certain construction. ‘2 + 2 =3 + 1" must be read as an abbreviation for
the statement: ‘I have effected the mental constructions indicated by
“2+2” and by “3 + 1” and I have found that they lead to the same result’

® In §5 of the previous chapter we saw that Haskell Curry claimed that a main
virtue of his formalism is that it is free of metaphysical assumptions. Metaphysics-
avoidance seems to be a common condition among philosophers of mathematics.
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... [SJtatements made about the constructions . . . express purely empir-
ical results. (Heyting 1956: 8)

I suggest, however, that statements like these should not be taken
too literally. Heyting was not advocating an empiricism like that of
John Stuart Mill (see ch. 4, §3 above). Suppose that someone did a
study of human beings doing sums. If ‘2+2’ and 3+ 1" were
replaced with seven-digit numbers, the empirical results would cer-
tainly differ from the mathematical ones. After all, humans do
make mistakes. Surely, Heyting would take the empirical data to be
irrelevant to mathematics. Along similar lines, the intuitionist
accepts theorems like ‘either 2'°" + 1 is prime or 2'*' + 1 is compos-
ite’ even though the size of the factors (if any) would defy actual
empirical realization.

We have encountered similar idealizations several times before in
this study. I suggest that idealizations make it difficult for either
party to claim that their view is the metaphysically neutral one. In
philosophy of mathematics, metaphysics is all but inevitable—
although one can query the relevance of metaphysics to the practice
of mathematics (see ch. 1, §2). Brouwer’s own Kantian position is
not metaphysically neutral. He expresses definite views on the
nature of mathematics and its entities. One would think that the
best way to approach neutrality would be to reject Brouwer’s free
choice sequences and to stick with something more like Bishop’s
constructivism (note 6 above), the common core of classical and
intuitionistic mathematics. Heyting (1931: 57) admits that intuition-
istic mathematics would be ‘impoverished’ if free choice sequences
were dropped. And classical mathematics would be impoverished
without excluded middle.

Heyting’s early paper (1931) reflects Brouwer’s claim that
classical mathematics is flawed and should be replaced with intui-
tionism: ‘intuitionism is the only possible way to construct
mathematics.” However, his book (1956) is more eclectic, arguing
that intuitionistic mathematics deserves a place ‘alongside’ classical
mathematics. Heyting wrote that the intuitionist does not claim a
‘monopoly’ on mathematics, and will rest content if the classical
mathematician ‘admits the good right of " the intuitionistic concep-
tion. A nice compromise. However, Heyting remained dubious of
the ‘metaphysical’ assumptions that supposedly underlie classical
mathematics.
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4. Dummett

Recall that both Brouwer and Heyting considered language to be an
imperfect medium for communicating mental mathematical con-
struction, the real essence of mathematics. For them, logic con-
cerns the mere forms for the deployment of this medium, and so a
direct focus on language and logic is far removed from the proper
field of debate. In contrast, Michael Dummett’s main approach to
mathematics and its logic is linguistic from the start. His philo-
sophical interests lie more with intuitionistic logic than with math-
ematical matters (although free choice sequences are treated in
Dummett 1977: ch. 3). Like Brouwer and unlike Heyting, Dummett
does not have an eclectic orientation. Rather, he explores the thesis
that ‘classical mathematics employs forms of reasoning which are
not valid on any legitimate way of construing mathematical state-
ments . . . (Dummett 1973: 97).

Dummett suggests that any consideration concerning which
logic is correct must ultimately turn on questions of meaning. He
thus adopts a widely held view that the rules for drawing inferences
from a set of premisses flow from the meaning of some of the
terms in the premisses, the so-called ‘logical terminology’. This is
consonant with the thesis that logical inference is analytic, or
meaning-constitutive.

By its nature language is a public medium, and as such, the
meanings of the terms in a language are determined by how the
terms are correctly used in discourse. As Lewis Carroll’'s Humpty
Dumpty might put it, the users of a language are in charge of how
the terms are to be used. Their use determines meaning. What else
can? Dummett (1973: 98-99) forcefully elaborates this point:

The meaning of a mathematical statement determines and is exhaustively
determined by its use. The meaning of such a statement cannot be, or
cannot contain as an ingredient, anything which is not manifest in the use
to be made of it, lying solely in the mind of the individual who appre-
hends that meaning . . . if two individuals agree completely about the use
to be made of [a] statement, then they agree about its meaning. The
reason is that the meaning of a statement consists solely in its réle as
an instrument of communication between individuals . . . An individual
cannot communicate what he cannot be observed to communicate: if an
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individual associated with a mathematical symbol or formula some
mental content, where the association did not lie in the use he made of
the symbol or formula, then he could not convey that content by means
of the symbol or formula, for his audience would be unaware of the
association and would have no means of becoming aware of it.

To suppose that there is an ingredient of meaning which transcends the
use that is made of that which carries the meaning is to suppose that
someone might have learned all that is directly taught when the language
of a mathematical theory is taught to him, and might then behave in every
way like someone who understood the language, and yet not actually
understand it, or understand it only incorrectly.

I presume that the same goes for non-mathematical language as
well’

This common-sense view of language supports Dummett’s
manifestation requirement, a thesis that anyone who understands the
meaning of an expression must be able to demonstrate that under-
standing through her behaviour—through her use of the expres-
sion: ‘there must be an observable difference between the behaviour
or capacities of someone who is said to have . . . knowledge [of the
meaning of an expression] and someone who is said to lack it.
Hence it follows . . . that a grasp of the meaning of a mathematical
statement must, in general, consist of a capacity to use that state-
ment in a certain way, or to respond in a certain way to its use by
others.” Dummett identifies an important criterion of any seman-
tics that is to play a role in philosophy: understanding should not be
ineffable. One understands the expressions available in a language
if, and only if, one knows how to use the language correctly.

The common slogan for such views is ‘meaning is use’, but this
can be misleading. Advocates of the views are often criticized for
leaving “use’ vague. Surely some account is needed if this notion is
to have such a central place in philosophy. As Ludwig Wittgenstein

’ Dummett’s target includes Frege’s view that the ‘senses’ of expressions are
objective, mind-independent entities (e.g. Frege 1892). According to that view, to
understand a sentence is to grasp its sense. Dummett (1973: 100) wrote that a
‘notion of meaning so private to the individual is . . . irrelevant to mathematics as
it is actually practised, namely as a body of theory on which many individuals are
corporately engaged, an inquiry within which each can communicate his results to
others’. Note the stark contrast with Dummett’s fellow intuitionists Brouwer and
Heyting.
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(1978: 366-367) put it, ‘It all depends [on] what settles the sense of a
proposition. The use of the signs must settle it; but what do we
count as the use?’

Some articulations of ‘use’ make it absurd to motivate the revi-
sion of logic and mathematical practice through considerations of
meaning. If everything the mathematician does (and gets away
with) is legitimate use, then the law of excluded middle is as legit-
imate as anything. As negation and disjunction are used in practice,
excluded middle is correct. Practising mathematicians do not balk
at its employment, and surely they know what they are talking
about if anybody does. For better or worse, classical logic has won
the day among mathematicians. So how can there be an argument
for rejecting the law of excluded middle along semantic lines? On a
view like this, it seems, all use is sacrosanct. Well, as Wittgenstein
asked, ‘what do we count as the use?’

There are at least two orientations toward mathematical lan-
guage that would suggest an interpretation of ‘use’ along such
strongly anti-revisionist lines. One such view is formalism, the
thesis that correct mathematical practice can be codified into for-
mal deductive systems (see the previous chapter). If classical logic is
an ingredient of the appropriate deductive systems, then the issue
of classical logic is settled. Suffice it to note that when both Dum-
mett and the previous intuitionists—including Heyting—speak of
‘proof’, they do not mean ‘proof in a fixed formal system’. For the
intuitionist, proof is inherently informal. Formalism and intuition-
ism are not natural allies.

Another anti-revisionist understanding of language ‘use’ is what
Dummett calls a ‘holistic’ account: ‘On such a view it is illegitimate
to ask after the content of any single statement . .. [Tlhe signifi-
cance of each statement . .. is modified by the multiple connec-
tions it has ... with other statements in other areas of language
taken as a whole, and so there is no adequate way of understanding
the statement short of knowing the entire language.” W. V. O.
Quine’s ‘web of belief is perhaps a view like this (see ch. 8, §2).
Dummett argues that on such a semantic holism, there is no way to
criticize a particular statement, such as an instance of the law of
excluded middle, short of criticizing the entire language. This is not
quite correct. Quine himself raises the possibility of changes to
logic and mathematics owing to recalcitrant empirical data. Clearly,
however, on a holistic view like Quine’s, criticism of mathematical
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practice does not come from semantics, nor from reflections on
meaning and understanding generally.

Dummett (1991a) suggests that the enterprise of semantic the-
ory does not go well with the sort of semantic holism now under
consideration. We need not adjudicate this here. A typical seman-
tics is compositional in the sense that the semantic content of a
compound statement is analysed in terms of the semantic con-
tent of its parts. In the prevailing Tarskian semantics, for
example, the truth conditions of a complex formula are defined
in terms of the truth conditions of its subformulas. For Dum-
mett, the problem is that this semantics runs afoul of the mani-
festation requirement. On a classical, bivalent interpretation of a
mathematical theory,

the central notion is that of truth: a grasp of the meaning of a sentence
... consists in a knowledge of what it is for that sentence to be true. Since,
in general, the sentences of the language will not be ones whose truth-
value we are capable of effectively deciding, the condition for the truth of
such a sentence will be one which we are not, in general, capable of
recognising as obtaining whenever it obtains, or of getting ourselves into a
position in which we can so recognise it. (Dummett 1973: 105)

To satisfy the manifestation requirement, Dummett argues that
verifiability or assertability should replace truth as the main con-
stituent of a compositional semantics. Presumably, language users
can manifest their understanding of the conditions under which
each sentence can be verified or asserted. In mathematics, verifica-
tion is proof, since a mathematician can assert a given sentence only
if she has proved it. Dummett’s proposal thus invokes the central
theme of Heyting’s semantics for intuitionistic logic. Instead of
providing truth conditions of each formula, we supply proof condi-
tions (see §3 above, or Dummett 1977: ch. 1 for details).

Dummett’s alternative to semantic holism is what he calls a
molecular semantics, according to which: ‘individual sentences carry
a content which belongs to them in accordance with the way they
are compounded out of their own constituents, independent of
other sentences of the language not involving those constituents ...
(Dummett 1973: 104). Dummett’s proposal is that at least some
crucial parts of language can be understood independently of any
other parts. This applies, first and foremost, to the logical termin-
ology: connectives such as negation, conjunction, disjunction, and
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‘if-then’, and quantifiers like ‘there is” and ‘for all’. Neil Tennant
(1997: 315), a prominent Dummettian, puts it well:

the contention here is that the analytic project must take the [logical]
operators one-by-one. The basic rules that determine logical competence
must specify the unique contribution that each operator can make to the
meanings of complex sentences in which it occurs, and, derivatively, to the
validity of arguments in which such sentences occur . . . It follows . . . that
one [should] be able to master various fragments of the language in
isolation, or one at a time. It should not matter in what order one learns
{acquires grasp of) the logical operators. It should not matter if indeed
some operators are not yet within one’s grasp. All that matters is that
one’s grasp of any operator should be total simply on the basis of sche-
matic rules governing inferences involving it.

On a view like this, established practice can be criticized. An
analysis of language might reveal an incoherence in how the logical
operators are used. In particular, the philosopher might discover
a disharmony between different aspects of how the terms are
used. Dummertt and, with more detail, Tennant argue that the
ways that logical operators are typically introduced into proofs
conflicts with classical principles and inferences. That is, the rules
for introducing—and showing that one grasps the meaning of—the
negation and disjunction operators separately do not justify
excluded middle when the connectives are combined. Tennant
(1997: 317) calls excluded middle a ‘shoddy marriage of conveni-
ence’. Thus, Dummett and Tennant support Heyting’s argument
that intuitionistic logic is justified on this semantics, but classical
logic is not.

In the Dummettian framework, a major presupposition of clas-
sical mathematics is that there are, or may be, truths that cannot
become known. A bivalent semantics suggests that truth is one
thing and knowability another. Dummett’s approach, sometimes
called global semantic anti-realism, entails that, at least in principle, all
truths are knowable. The possibility of an unknowable truth is
ruled out a priori. As we saw in §2 above, Brouwer himself adopted
semantic anti-realism for mathematics, as well as “practical life and
science’.

The going here is not straightforward. Notice that even with
Heyting semantics, a language satisfies the manifestation require-
ment only under the pesky idealizations encountered earlier. No
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one can manifest understanding of the proof conditions of a long
formula, and no one can know of some large numbers whether
they are prime. Again it is a theorem of intuitionistic arithmetic
that every natural number is either prime or composite. The reason
is that we have a finite method for determining whether a number is
prime. It does not matter how feasible this method is or even
whether anyone has carried it out in a given case. In particular,
2'" 4 1 is either prime or composite. Tennant (1997: ch. 5) provides
a lucid defence of the idealizations needed to support Heyting
semantics.

On the other hand, we should not idealize too much. The route
from Heyting semantics to the repudiation of classical logic depends
on a certain pessimism concerning human mathematical abilities
(see, for example, Posy 1984 and Shapiro 1991: ch. 6). If human
beings are capable of deciding the truth value of every well-formed
mathematical statement, then classical logic will prevail after all—
even under Heyting semantics. It seems that Dummett’s intuition-
ism lies between a strict finitistic view that we only understand
what we have actually proved, and either a straightforward realism
that countenances unknowable truths or a robust optimism that
holds that for each unambiguous mathematical sentence @, the
mathematician can determine whether @ is true or false. Tennant
(1997: chs. 6-8) provides a defence of intuitionistic logic as the right
balance of these possibilities.

A defender of classical logic has two options in light of
Dummett’s critique. One is to provide a semantics that meets the
manifestation, separability, and harmony requirements and still
sanctions classical logic. A philosopher who takes this route accepts
the broadly Dummettian framework and, working within that
framework, argues that classical logic is justified. The debate is likely
to turn on questions of semantics, proper idealization, and the
extent and details of manifestation. Another option for the classical
mathematician would be to reject Dummett’s entire framework.
The philosopher concedes that classical logic does not enjoy the kind
of justification that Dummett demands, but she argues that classical
mathematics does not stand in need of this sort of justification. The
fruit and power of classical mathematics establishes its place in our
intellectual lives. If classical mathematics conflicts with the Dummet-
tian framework for semantics, it is the latter that must go. Those
who lean this way may be tempted by holism (see ch. 8, §2).
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As Dummett (1973: 109) himself points out, the foregoing con-
siderations are very general, turning solely on how language is
understood. Thus, if his conclusions are sound they support the
adoption of intuitionistic logic for all discourse, not just for math-
ematics. So Dummett goes beyond the prior intuitionists Brouwer
and Heyting, who agree that classical logic is appropriate for ordin-
ary reasoning about finite collections of mind-independent objects.
This motivates Dummett to search for other arguments for intui-
tionistic logic that depend only on features special to mathematics:
‘Is there, then, any alternative defence of the rejection, for math-
ematics, of classical in favour of intuitionistic logic? Is there any
such defence which turns on the fact that we are dealing with
mathematical statements in particular, and leaves it open whether or
not we wish to extend the argument to statements of any other
general class?”’

Dummett concludes that one route to such a ‘local’ revisionism
is a ‘hard-headed’ finitism in which one denies that there is a
determinate fact concerning the outcome of a procedure that has
not been carried out. On this view, one cannot conclude

2'%' 4+ 1 is prime or composite

until one has carried out the relevant procedure. So one demurs
from the idealizations discussed previously. On such a view exclu-
ded middle remains unjustified, but the hard-headed finitist has to
restrict logic even further than the intuitionist does. It is not clear
which inferences and principles of intuitionistic logic are justified
from the hard-headed approach. Some of the (intuitionistically
correct) inferences that lead to “2'®' + 1 is prime or composite’ have
to be jettisoned. If the intuitionist does not throw out the baby with
the dirty bathwater, surely the hard-headed finitist does.
Dummett’s recent work (1991, 1991a) provides another angle on
the repudiation of classical mathematics. In an early paper on
Godel’'s incompleteness theorem (Dummett 1963), he defines a
concept to be indefinitely extensible if it is not possible to delineate
the range of objects to which the concept applies. That is, a concept
is indefinitely extensible if any attempt to delineate the extension of
the concept leads to an instance of the concept not so delineated.
Dummett argues that the incompleteness theorem shows that the
notion of arithmetic truth is indefinitely extensible. Let T be any
effective procedure for enumerating arithmetic truths. An applica-



INTUITIONISM 197

tion of the incompleteness theorem yields an arithmetic truth ®
not enumerated by T. So T fails as a characterization of arithmetic
truth.

Dummett argues that virtually any substantial mathematical
domain—the natural numbers, the real numbers, the set-theoretic
hierarchy, and so on—is indefinitely extensible. Any attempt to
delimit the domain leads to extensions of it. This may be related to
the prior intuitionistic claim that there is no actual infinity, only
potential infinity.

Let d be a domain. Dummett suggests that a quantifier “for every
d’ is coherent whether or not d is indefinitely extensible. Otherwise,
mathematics is doomed from the start. In the later work, however,
he argues that classical logic applies to a domain only if it is not
indefinitely extensible. This conclusion is based in part on an analy-
sis of mathematical logic, model theory in particular. In providing
an interpretation of a formal language, one is required to specify a
domain of discourse. Dummett argues that the usual proof that clas-
sical logic is sound for classical model theory presupposes that such
a domain is definite—not indefinitely extensible. Thus, he argues,
classical logical theory does not apply to mathematics where the
range of the quantifiers is indefinitely extensible. But we still need
an argument that full intuitionistic logic applies to such domains.

5. Further Reading

Benacerraf and Putnam 1983 contains a delightful dialogue from
Heyting 1956, and translations of Brouwer 1912 and 1948, and
Heyting 1931. It also has Dummett 1973. Van Heijenoort 1967
contains translations of other relevant papers by Brouwer, notably
Brouwer 1923. Another interesting source in English is Brouwer
1952. Heyting 1956 and Dummett 1977 are excellent book-length
introductions to intuitionistic mathematics, both in English.
Dummett 1978 contains many of his important philosophical
papers (including 1963 and 1973). For more on indefinite extensibil-
ity, see Dummett 1994. Dummett’s more recent work in the
philosophy of mathematics is developed in 1991 and 1991a. See
Tennant 1987 and 1997 for an extensive development of a broadly
Dummettian programme. See also Prawitz 1977.
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NUMBERS EXIST

HESE final chapters examine some contemporary positions in
Tthe philosophy of mathematics, as a sample of the present state
of the discipline. I apologize to defenders of views that have been
omitted (and, of course, to defenders of views that I misrepresent).
The problems surrounding the applicability of mathematics now
get more attention, perhaps, and advances in mathematical logic
have been digested, and put to service on philosophical issues.

Broadly speaking, there are two schools of thought in con-
temporary philosophy of mathematics (and, to some extent, meta-
physics and epistemology). One group holds that the assertions of
mathematics should be taken more-or-less literally, ‘at face value’. It
is an axiom of arithmetic that zero is a natural number and a
theorem that for every natural number n, there is a number m >n
such that m is prime. Together, these imply that there are infinitely
many prime numbers. That is, infinitely many prime numbers exist.
Similarly, sets exist, and so on. Members of the first school under-
stand this in a straightforward, literal sense. There is only one kind
of ‘existence’, applicable to mathematics and ordinary discourse
alike. Just as there are adulterous presidents, there are prime
numbers.

In light of principles like the law of excluded middle and related
inferences (see §1 of the previous chapter), most of the philo-
sophers in question hold that numbers, sets, and so on exist
independent of the mind, language, and conventions of the math-
ematician. In present terms, the members of the first school are
realists in ontology.

As is well known, there are serious epistemological problems to
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be faced by this group. How, for example, is it possible for humans
to know anything about mathematical objects, and what con-
fidence can we have that our assertions about them are true?

The second school is the opposite of the first. Its members are
sceptical of mathematics, if it is taken literally, but they accept the
importance of mathematics in our overall intellectual lives. So, they
attempt to reformulate mathematics, or something to play the role
of mathematics, without invoking mathematical entities. The point
of the second enterprise is to see how far we can go without
asserting the existence of abstract objects like sets and numbers.

This chapter concerns members of the first school, the onto-
logical realists. The folks considered here are also realists in truth-
value, holding that the bulk of mathematical propositions are true
or false objectively, independent of the mathematician. In short,
our realists hold that mathematicians mean what they say, and that
what mathematicians say is, for the most part, true. Ontological
realists encountered above include Plato (ch. 3, §2), Gottlob Frege
(ch. 5, §1), and the neo-logicists Crispin Wright and Bob Hale
(ch. 5, §4).

1. Godel

Kurt Godel was one of the most influential logicians in history.
Although he had a lifelong interest in philosophy, his exacting per-
sonal standards permitted only a few published articles in our field.’

Godel 1944 opens with a favourable citation of Bertrand Rus-
sell's early view that logic ‘is concerned with the real world just
as truly as zoology, though with its more abstract and general
features’ (Russell 1919: 169). Given Russell’s logicism (see ch. 5, §2),
it seems that for him, mathematics is also concerned with the
general features of ‘the real world’. This suggests at least realism
in truth-value. Mathematical assertions are true or false, objectively.
On the matter of ontology, however, Russell eventually adopted

' Godel 1995 contains much of his unpublished philosophical work, and Wang
1974: 8-13, 324-6 includes some relevant (and much-discussed) correspondence.
Godel also wrote on relativity theory and argued against mechanism, the thesis
that the mind is, or can be accurately modelled as, a machine. See Wang 1987: ch. 7
for a lucid and insightful discussion of Gédel’s philosophy.
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the ‘no-class’ view, which takes numbers and other mathematical
objects to be ‘logical fictions’. Godel argued that this ontological
anti-realism is not tenable.

As we saw, much of Russell’s philosophy of mathematics focuses
on the vicious circle principle, which Gotdel summarized as ‘no
totality can contain members definable only in terms of this total-
ity, or members involving or presupposing this totality’. Notice that
there are three different principles here:

(1) No totality can contain members definable only in terms of
this totality.

(2) No totality can contain members involving this totality.

(3) No totality can contain members presupposing this totality.

The second and third of these principles are both plausible, depend-
ing of course on what ‘involving’ and ‘presupposing’ come to.
These principles rule out what may be called ‘ontological circular-
ity’. But they have no ramifications for practice. Godel remarked
that it is only form (1) of the vicious circle principle that leads to
restrictions on mathematics, or the way that mathematics is pre-
sented. That version keeps the mathematician from introducing cer-
tain terms, such as impredicative definitions, a topic we have
encountered before. Subsequent work showed that the restrictions
would cripple mathematics: ‘It is demonstrable that the formalism
of classical mathematics does not satisfy the vicious circle principle
in its first form, since the axioms imply the existence of real
numbers definable in this formalism only by reference to all real
numbers’ (Godel 1944: 455). So the first form of the vicious circle
principle conflicts with classical mathematics. Godel said that he
‘would consider this rather as a proof that {this version of] the
vicious circle is false rather than that classical mathematics is false’.

Godel, however, did not leave things with this clash between
Russell’s theory and mathematical practice. He argued that the first
version (1) of the vicious circle principle ‘applies only if one takes a
constructivistic . . . standpoint toward the objects of . . . mathemat-
ics’ (Godel 1944: 456).> That is,

the vicious circle in its first form applies only if the entities involved are
constructed by ourselves. In this case there must clearly exist a definition

* Russell himself was not a constructivist and so his defence of the vicious circle
principle must lie elsewhere. See Goldfarb 1989.
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(namely the description of the construction) which does not refer to a
totality to which the object defined belongs, because the construction of a
thing can certainly not be based on a totality of things to which the thing
to be constructed itself belongs.

If, however, it is a question of objects that exist independently of our
constructions, then there is nothing in the least absurd in the existence of
totalities containing members, which can be described (ie., uniquely
characterized) only by reference to this totality ... Classes ... may ...
also be conceived as real objects, namely . . . as ‘pluralities of things’ or as
structures consisting of a plurality of things . . . existing independently of
our definitions and constructions.

As we have seen above, several times, for a realist in ontology a
definition is not a recipe for creating an object, but only a method
for describing or pointing to an already existing entity. From that
perspective, impredicative definitions are innocuous.

Godel also pointed out that his realism conforms to the plausible
versions (2) and (3) of the vicious circle principle: ‘Such a state of
affairs would not ... contradict the second form of the vicious
circle principle, since one cannot say that an object described by
reference to a totality “involves” this totality, although the descrip-
tion itself does; nor would it contradict the third form, if “presup-
pose” means “presuppose for the existence” not “for the
knowability” .

The most prominent aspect of Godel’s philosophy is an analogy
between mathematical objects and ordinary physical objects. He
traces this idea to the early Russell who, as Gédel put it,

compares the axioms of logic and mathematics with the laws of nature
and logical evidence with sense perception, so that the axioms need not
necessarily be evident in themselves, but their justification lies (exactly as
in physics) in the fact that they make it possible for these ‘sense percep-
tions’ to be deduced; which of course would not exclude that they also
have a kind of intrinsic plausibility similar to that in physics. I think that
(provided ‘evidence’ is understood in a sufficiently strict sense) this view
has been largely justified by subsequent developments, and it is to be
expected that it will be still more so in the future. (Godel 1944: 449)

Here Godel made a most intriguing—and most controversial—
suggestion that just as we build up sophisticated physical theories in
order to account for (and predict) sensory observations, in math-
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ematics we build up sophisticated theories to account for ‘intu-
itions’, or entrenched beliefs about mathematical objects. These
intuitive beliefs include the principles of David Hilbert’s finitary
mathematics (see ch. 6, §3).

Detractors are fond of attributing to Godel a view that humans
have a sixth sense that we use to directly ‘see’ numbers and sets.
The view, sometimes likened to Plato’s pronouncements on the
intelligible “world of Being’ (see Chapter 3, §1), is then ridiculed as
conflicting with everything we know in science. Godel’s opponents
argue that, as thoroughly physical beings, humans directly appre-
hend entities only by physically interacting with them. Since math-
ematical entities, if they exist, are not physical, then we cannot
‘perceive’ them, even indirectly.

It is not completely clear what Gédel meant by mathematical
intuition or by the analogy between mathematics and physics.
There is a difference between knowledge-that a certain proposition is
true and knowledge-of individual objects. The latter requires some
sort of acquaintance with, or apprehension of, objects like numbers.

In the 1944 paper, Godel wrote that principles of elementary
arithmetic, such as basic equations and inequalities, have a kind of
‘indisputable evidence that may most fittingly be compared with
sense perception’ (p. 449). This suggests that the ‘data’ of math-
ematics consists of certain propositions that we find compelling and
thus try to account for by mathematical theory. The knowledge
here is thus knowledge-that, for example, knowledge that 7 + 5 = 12
or that the square of any real number is non-negative.

This aspect of Godel's view does not warrant the afore-
mentioned derision, since nothing has been said so far about
apprehending individual mathematical objects. In the later paper,
however, Godel spoke favourably of the philosopher who ‘con-
siders mathematical objects to exist independently of our construc-
tions and of our having an intuition of them individually . . "(Godel
1964: 474, my emphasis). So perhaps Godel did hold that we have
some sort of grasp of mathematical objects, an intuitive knowledge-
of individual mathematical objects like numbers and sets. But per-
haps we should not take him too literally here.

Gaodel (1964: 483) noted that ‘the objects of transfinite set theory
... clearly do not belong to the physical world and even their
indirect connection with physical experience is very loose (owing
primarily to the fact that set-theoretical concepts play only a minor
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role in the physical theories of today)’. This, of course, is a trad-
itional realism in ontology. What follows is probably Gédel’s most
famous (or infamous) philosophical passage:

But, despite their remoteness from sense experience, we do have some-
thing like a perception also of the objects of set theory, as is seen from the
fact that the axioms force themselves on us as being true. I don’t see any
reason why we should have less confidence in this kind of perception, i.e.,
in mathematical intuition, than in sense perception, which induces us to
build up physical theories and to expect that future sense perceptions will
agree with them . . .

It should be noted that mathematical intuition need not be conceived of
as a faculty giving an immediate knowledge of the objects concerned.
Rather it seems that, as in the case of physical experience, we form our
ideas also of those objects on the basis of something else which 1s
immediately given. Only this something else here is not, or not primarily,
the sensations. That something else besides the sensations actually is
immediately given follows (independently of mathematics) from the fact
that even our ideas referring to physical objects contain constituents quali-
tatively different from the sensations or mere combinations of sensations,
e.g., the idea of object itself . . . Evidently, the ‘given’ underlying math-
ematics is closely related to the abstract elements contained in our empir-
ical ideas. (Godel 1964: 483-484)

Notice that it is not clear whether this passage refers to the
intuition/perception of individual objects—knowledge-of—or to
intuitive  beliefs of certain mathematical propositions—
knowledge-that. Godel said that it is the axioms that force them-
selves on us as true, and that we may not have immediate know-
ledge of the objects themselves.

Godel remarked that, even with physical objects, our sense
perceptions do not exactly match our ‘intuitive’ beliefs about
physical objects. A building viewed from up close looks much
larger than the same building viewed from afar. To labour the
obvious, we inevitably believe that the large sense perception and
the small one are both perceptions of the same building. Moreover,
sense perception is sometimes deceptive. Godel made an analogy
between optical illusions in the physical world and antinomies like
Russell’s paradox in the mathematical realm. In both cases, our
intuitive beliefs can be misleading, and need to be corrected by
theory.
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Godel’s use of the word ‘intuition’ is explicitly Kantian. In a
footnote, he indicated a ‘close relationship between the concept of
set ... and the categories of pure understanding in Kant’s sense.
Namely the function of both is “synthesis”, i.e., the generating of
unities out of manifolds (e.g., in Kant, of the idea of one object out
of its various aspects).” The very idea of a physical object is not
contained in the perceptions themselves, but is contributed by the
mind. We briefly encountered Immanuel Kant’s philosophy of
mathematics in chapter 4, §2, and in chapter 7, §§2-3 we con-
sidered a modern Kantian, in the intuitionist L. E. J. Brouwer.
Godel departs from the intuitionists, and from Kant himself, with
his ontological realism. He says that, for Kant, intuition is ‘subject-
ive’. I presume that Godel did not intend to attribute to Kant a view
that different people have different mathematics, just as different
people have different subjective tastes. The idea is that Kantian
intuition concerns the underlying forms of perception. For Kant,
and for the Kantian intuitionists, mathematics is mind-dependent.
In contrast, for Godel the ‘given’ underlying mathematics ‘may
represent an aspect of objective reality, but, as opposed to the
sensations, their presence in us may be due to another kind of
relationship between ourselves and reality’. For Godel, then, our
mathematical intuitions are glimpses (of sorts) into an objective
mathematical realm.

This difference between Godel and the Kantians has ramifica-
tions for practice. Earlier in the article Godel demurs from a con-
structivist conception of mathematics, “which admits mathematical
objects only to the extent to which they are interpretable as our
own constructions or, at least can be completely given in intuition’
(Godel 1964: 474, my emphasis). For a Kantian, there is nothing else
to mathematical objects than what is given in intuition. In contrast,
Godel’s view is that although intuition represents a relationship
between us and mathematical reality, the mathematical world goes
beyond our ‘perception” of it—just as the physical world does. This
is what it is to be mind-independent.

In the early paper, Godel conceded admiration for Russell’s
no-class theory as ‘one of the few examples, carried out in
detail, of the tendency to eliminate assumptions about the exist-
ence of objects outside the “data” and to replace them by con-
structions on the basis of these data.” (Godel 1944: 460). This is an
allusion to philosophical attempts to deny that physical objects
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exist independently of the mind, and to construct such objects
out of sense data. It is generally agreed that all such attempts
have failed. Godel argues that Russell's attempt to ‘construct’
mathematical objects (out of attributes and the like) also failed:
‘the classes and concepts introduced [via the no-class theory] do
not have all the properties required for their use in mathematics.’
He concluded that this is a ‘verification of the view . .. that logic
and mathematics (just as physics) are built up on axioms with a
real content’, and this content cannot be ‘explained away’ (Gddel
1944: 461).

Godel takes the analogy between mathematics and physics fur-
ther. We learn about physical objects via highly theoretical scien-
tific activity. Although scientific theories must be connected to
observation, they go beyond observation. We do not see atoms
and electrons, but they help us understand the objects we do see.
By analogy, to determine properties of mathematical objects,
natura] numbers in particular, we have to go beyond ‘intuition’
and develop powerful mathematical theories. Moreover, ‘it has
turned out that . . . the solution of arithmetical problems requires
the use of assumptions essentially transcending arithmetic’
(Godel 1944: 449). Godel refers here to the fact that some simple
statements in the language of arithmetic (such as Diophantine
equations) are undecided in elementary arithmetic, but get
decided in richer theories like real analysis and set theory. Why
think that set theory can shed light on the natural numbers if we
are not realists, at some level, about the natural numbers and
about the sets?

The main focus of the 1964 paper is the continuum hypothesis, an
interesting case study for Godel’s philosophical view. Georg Cantor
showed that there is no one-to-one correspondence between the
natural numbers and the real numbers. That is, there are more real
numbers than natural numbers. Are there any infinite sets whose
size lies between that of the natural numbers and that of the real
numbers? In other words, is there an infinite set S of real numbers
such that there is no one-to-one correspondence between S and the
natural numbers and no one-to-one correspondence between S and
the real numbers? This is sometimes called the continuum problem,
since it asks for the ‘size’ of the continuum. Cantor conjectured
that there are no infinite cardinalities between the size of the nat-
ural numbers and the size of the real numbers (and so there are no
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sets S as described above). This is known as the continuum hypoth-
esis,” abbreviated CH.

The received formalization of set theory is known as Zermelo—
Fraenkel set theory with choice (ZFC). Godel (1938) showed that if
ZEC is consistent, then so is ZFC plus CH. In other words, it is not
possible to refute the continuum hypothesis in ZFC (unless ZFC is
inconsistent). In the 1964 paper, he conjectured that it is likewise
impossible to prove CH in ZEC. This conjecture was established by
Paul Cohen (1963, although Gddel did not know this result when
he wrote the 1964 paper). In technical terms, the continuum
hypothesis is independent of ZEC.

So what is the status of the continuum hypothesis under these
circumstances? According to most versions of formalism (see Chap-
ter 6 above), the independence result settles CH. The deductivist, for
example, claims that if @ is a proposition in the language of ZFC,
then ‘® is true’ comes to something like ‘® can be deduced from
the axioms of ZFC" and ‘® is false’ comes to ‘® can be refuted
from the axioms of ZFC’. So the meta-mathematical independence
result shows that CH is neither true nor false. Similarly, the later
Hilbert regarded all non-finitary statements (like CH) to be mean-
ingless. The only role for such statements is to streamline the
deduction of finitary statements. Since CH can be neither proved
nor refuted in ZFC, it can play no role (via ZFC) for the deduction
of finitary statements.*

In contrast to these views, Godel’s realism has it that the primi-
tive terms of set theory have a determinate meaning, and so ‘the
set-theoretical concepts and theorems describe some well-
determined reality, in which Cantor’s conjecture must be either
true or false’ (Godel 1964: 476). Thus, for Godel, the independence
of CH from ZFC shows that ‘these axioms do not contain a com-
plete description of that reality’.

’ The real numbers are the size of the powerset of the natural numbers. The
generalized continuum hypothesis, GCH, is that for any infinite set S, there is no size
larger than S and smaller than the powerset of S.

¢ The intuitionist holds that no formal system, like ZFC, can capture the con-
structive meaning of any mathematical assertion. So any legitimate versions of
CH remain open, waiting for new methods of construction to be developed (see
Brouwer 1912). In the present state of information, the intuitionist would not say
that CH is either true or false. That would be an instance of excluded middle. See
ch. 7.
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So how could the mathematician go about determining the
truth-value of the continuum hypothesis? As noted above, Gédel
(1944: 449) pointed out that some propositions of arithmetic are
only decided by going beyond arithmetic. This is a lesson of his
incompleteness theorem (see ch. 6, §4). The same goes for set
theory: ‘it seems likely that for deciding questions of abstract set
theory and even for certain related questions of the theory of real
numbers new axioms based on some hitherto unknown idea will be
necessary. Perhaps also the apparently insurmountable difficulties
which some other mathematical problems have been presenting for
years are due to the fact that the necessary axioms have not been
found.” (Godel 1944: 449),

Godel thus calls for new axioms which further ‘unfold the con-
cept of set’. As we have seen, he held that the basic axioms of set
theory have an intrinsic necessity, and they ‘force themselves on us
as true’. It would be nice, of course, for the new axioms to enjoy
the same intrinsic necessity, but Godel held that mathematics can
get by without this intrinsic necessity. Once again, he pursued the
analogy with natural science:

a probable decision about [the] truth [of a proposed new axiom] is pos-
sible ... in another way, namely, inductively by studying its ‘success’.
Success here means fruitfulness in consequences, in particular in ‘verifi-
able’ consequences, i.e., consequences demonstrable without the new
axiom, whose proofs with the help of the new axiom, however, are con-
siderably simpler and easier to discover, and make it possible to contract
into one proof many different proofs . . . A much higher degree of verifi-
cation, however, is conceivable. There might exist axioms so abundant in
their verifiable consequences, shedding so much light upon a whole field,
and yielding such powerful methods for solving problems . .. that, no
matter whether or not they are intrinsically necessary, they would have to
be accepted at least in the same sense as any well-established physical
theory. (Godel 1964: 477)

This is an interesting echo of the Hilbert programme, which also
speaks of the meaningful, or ‘finitary’ consequences of ideal theor-
ies. Unlike Godel, of course, Hilbert did not take fruitfulness to be
a criterion of objective truth.’

’ Godel provided tentative considerations against the continuum hypothesis,
suggesting that it is a rather sterile principle, with untoward consequences.
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So where does Godel’s view leave the philosophy of mathemat-
ics? In particular, how does his realism fare with respect to some of
the traditional philosophical beliefs about mathematics? To repeat,
on Godel’s view, mathematics concerns an ideal realm of objects
which exist independently of us. The mathematical world is time-
less and eternal. Thus, Godel’s realism sanctions the long-standing
view that mathematical truth is necessary truth, and does not suffer
from the contingencies of ordinary statements about ordinary
physical objects. What of mathematical knowledge? If we stick to
the traditional methodology of deducing theorems from axioms
that have—as Godel put it—intrinsic necessity, then presumably
mathematical knowledge is a priori, or independent of experience
(provided that the axioms are known a priori). Given the Kantian
themes in Godel’s thought, it is plausible that he took mathematics
to be synthetic—against the logicists. What of the common view
that mathematical knowledge is, or ought to be, certain? As noted
above, Godel said that antinomies indicate that intuition is fallible.
So perhaps mathematics is not absolutely certain. Absolute cer-
tainty is further undermined by the proposed methodology of
choosing new axioms based on their fruitfulness. In Gédel’'s own
words, the new axioms would be ‘only probable’. In the earlier
paper, Godel concedes that if a methodology like this were com-
mon, ‘mathematics may lose a good deal of its “absolutely cer-
tainty”, but . . . this has already happened to a large extent’ (Godel
1944, 449).

At the end of the 1964 paper, Godel mentioned the possibility
that a new mathematical axiom might be accepted due to its fruit-
fulness in physics, although he indicates that this is rather specula-
tive in the present state of science and mathematics. We are far
from being able to make any productive connections between pro-
posed new mathematical axioms and principles of physics. Notice,
however, that if this methodology were used, mathematical know-
ledge would lose its status as a priori. We would use physical theory
to determine mathematical truth. Goédel's speculation provides a
segue to the next view to be considered here.
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2. The Web of Belief

W. V. O. Quine, one of the most influential contemporary philo-
sophers (at least on the American side of the Atlantic), is an heir of
the unrelenting empiricism of John Stuart Mill (see ch. 4, §3).
Recall that the main theme of empiricism is that all substantial
knowledge is ultimately based on sensory observation. As we saw;,
Mill’s philosophy of mathematics faltered because, at best, it
accounted for only simple mathematics like elementary geometry
and small arithmetic sums. Part of the reason for this failure is
Mill’s insistence that all mathematical knowledge is grounded in
enumerative induction—drawing general conclusions from indi-
vidual cases. Just as we come to believe that all crows are black by
observing lots of crows, we come to believe that 2 + 3 = 5 by doing
the counting a lot of times. Quine’s empiricism is as thorough-
going as Mill’s, but his epistemology of mathematics is more
sophisticated, accommodating much, but not all, of contemporary
mathematics.

A closely related feature of Quine’s philosophy is a deep natural-
ism, which was also inherited from Mill. Quine characterized nat-
uralism as ‘the abandonment of the goal of first philosophy’ and
‘the recognition that it is within science itself . . . that reality is to be
identified and described’ (Quine 1981: 72; see ch. 1, §3 above).
Philosophy does not stand prior to science, ready to determine how
justified scientific pronouncements are. Epistemology must blend
with natural science, ultimately physics: “The naturalistic phil-
osopher begins his reasoning within the inherited world theory as a
going concern’; and the ‘inherited world theory is primarily a scien-
tific one, the current product of the scientific enterprise’. With Mill,
Quine holds that virtually no knowledge is a priori.

Quine’s early writing was largely a reaction to another school of
empiricism, the logical positivism of his teacher Rudolf Carnap and
others in the Vienna Circle (see ch. 5, §3). Unlike Mill, Carnap did
not hold that mathematics is ultimately based on sensory observa-
tion. Carnap’s view requires a distinction between analytic sen-
tences, which are true or false by virtue of the meaning of the
terms in them, and synthetic sentences, true or false by virtue of
the way the world is. For the logical positivists, all knowledge of
synthetic sentences is based on observation. Analytic sentences are
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known by knowing how our language functions. The logical posi-
tivists used this distinction to reconcile their empiricism with the
long-standing theses that mathematical assertions are not true or
false by virtue of the way the (physical) world is, and mathematics
is not known via observation. For Carnap, mathematics concerns
‘framework principles’, rules for operating within a language.
Accordingly, mathematical truth is analytic. There was thus an
affinity between logical positivism and logicism.

In a landmark article, “Two Dogmas of Empiricism’ (1951),
Quine set the stage for a thorough empiricism. He attacked the
‘dogma’ that there is ‘some fundamental cleavage between truths
which are analytic, or grounded in meanings independent of fact,
and truths which are synthetic, or grounded in fact’ (Quine 1951:
20). Of course, Quine does not deny the platitude that the truth-
value of every unambiguous sentence is due to both the meaning
of the terms in the sentence and the way the world is. The sentence
‘Clinton was impeached’ is true because of the meanings of the
words ‘Clinton’, ‘was’, and ‘impeached’, the structure of the sen-
tence, and facts about the extra-linguistic world—the vote in the
House of Representatives, for example. The sentence could have a
different truth-value if the words had different meanings (e.g. if
‘Clinton’ denoted George Washington) or if the facts had been
different (e.g. if Clinton had lost the election, or if the House had
not passed the articles of impeachment). Quine’s thesis is that the
language-factors and the world-factors are intertwined, and there is
no sharp separation between them. Thus, there is no sense in say-
ing a given sentence is true in virtue of language alone.

For Quine, the other rejected ‘dogma’ is ‘reductionism: the belief
that each meaningful statement is equivalent to some logical con-
struct upon terms which refer to immediate experience’. The idea
behind this ‘dogma’ is that each individual meaningful statement
should be a logical combination of statements that are directly
verifiable through experience.

In place of these ‘dogmas’, Quine proposes a metaphor that our
system of beliefs is a ‘seamless web’. Each ‘node’ (belief) has
innumerable links to other nodes in the web. Some of these links
are logical, in the sense that assent to some beliefs requires assent to
others. Some links are linguistic, guided by language use. The
nodes that are directly related to experience, so that they can be
confirmed by direct observation, are at the edges of the web. To
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pursue the metaphor, sensory experience impinges on the web only
at the ‘periphery’, through irritations on our nerve endings—
observation. New observations bring about changes inside the web,
via the innumerable links between the nodes, until some sort of
equilibrium is achieved.

For Quine, ‘science is a tool . . . for predicting future experience
in the light of past experience’ (Quine 1951: §6). Ultimately, the
only evidence relevant to a theory is sensory experience.® This, of
course, is empiricism. However, Quine argues that experience does
not bear on scientific statements considered one at a time. Our
beliefs face the tribunal of experience only in groups. In light of
recalcitrant experience, the scientist has many options over which
of her beliefs to modify. In philosophy, the technical term for
Quine’s view is holism. This is the rejection of the second ‘dogma’.

Critics of Quine’s view point out that some sentences are in fact
true in virtue of meaning. Can we really contemplate sensory
experience that could get us to deny that ‘cats are feline’, ‘bachelors
are unmarried’, or ‘6 = 6? Does Quine really think such experi-
ences are possible? Notice that this dilemma presupposes that if a
sentence is not true in virtue of meaning, then it is disconfirmable
by sensory experience. The logical positivists seemed to accept this
conditional, but perhaps there is a way around it.

In any case, I think that Quine can concede that some sentences
are true in virtue of meaning and so are analytic. After all, language
is part of the natural world, and one would think that theoretical
linguistics occupies a significant part of the web of belief. Empirical
research might reveal that learning English is itself sufficient to
learn the truth-value of sentences like ‘cats are feline’ (see Putnam
1963, for a related argument). Quine’s point is that analyticity can-
not play the central role that the logical positivists had for it. In a
retrospective moment, he wrote:

I now perceive that the philosophically important question about analytic-
ity . .. is the question . . . of [its] relevance to epistemology. The second
dogma of empiricism, to the effect that each empirically meaningful sen-
tence has an empirical content of its own, was cited in “Two Dogmas’
merely as encouraging false confidence in the notion of analyticity; but
now I would say further that the second dogma creates a need for analytic-

¢ Quine allows other factors, like simplicity, to play a subsidiary role in develop-
ng theories.
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ity as a key notion of epistemology, and that the need lapses when we . . .
set the second dogma aside.

For, given the second dogma, analyticity is needed to account for the
meaningfulness of logical and mathematical truths, which are clearly
devoid of empirical content. But when we drop the second dogma and see
logic and mathematics rather as meshing with physics and other sciences
for the joint implication of empirical consequences, the question of limit-
ing empirical content to some sentences at the expense of others no
longer arises. (Quine 1986a: 207)

The idea, then, is that there is no real philosophical need to intro-
duce a notion of analyticity. Quine concluded that the ‘notion of
analyticity . .. just subsides into the humbler domain where its
supporting intuitions hold sway: the domain of language learning
and empirical semantics’ (p. 208).

To return to the topic of this book, what of mathematics? Clear-
ly, Quine’s view calls for a different account of mathematics than
the logicist-like story told by Carnap. Without the privileged realm
of analytic sentences, Quine must join Mill in arguing that even
mathematics is (ultimately) based on observation. Mill’s view failed
because of his limited epistemology. Quine’s holism, via the web of
belief, provides the requisite framework for attacking the deepest
stronghold of the a priori.

For Quine, scientific theories are devices in the web whose pur-
pose is to organize and predict observations. The ultimate, or most
basic, scientific theory is physics. We accept physics as true because
of its premier place in the web. Without it, we cannot organize and
predict as many experiences. Mathematics plays a central part in the
sciences. Indeed, it is hard to imagine doing any serious scientific
research without invoking mathematics. Thus, for Quine, math-
ematics itself has a central place in the web of belief. He accepts
mathematics as true for the same reason that he accepts physics as
true. Indeed, for Quine, mathematics has the same status as the
more theoretical parts of science. It lies far from the ‘periphery” of
the web, where observation has a more direct role. The ultimate
criterion for accepting anything—mathematics, physics, psych-
ology, ordinary objects, myth—is that it should play an essential
role in the web of belief. Physics, chemistry, and with those.
mathematics, are entrenched in the web, and so we believe in
those fields. Quine argues that we believe in the existence of
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ordinary objects for the same reason—because of their place in
the web. Greek mythology is not so entrenched, and we do not
believe it.

Whatever the merits of his general philosophical programme,
Quine is surely correct that it is hard to draw a sharp, principled
boundary between mathematics and the more theoretical branches
of science, physics in particular (putting aside departmental borders
and factors like salary level and funding categories). There is a
continuum with experimental science at one end, more-theoretical
science and applied mathematics toward the middle, and pure
mathematics at the other end. The different disciplines naturally
blend together. The holist has no option but to accept the bulk of
science as true, or nearly true. So she must accept the mathematics
as true as well.

This supports a realism in truth-value. We get to realism in
ontology by insisting that the mathematics be taken at face value,
just as we take the physics at face value. Mathematical assertions
refer to (and have variables ranging over) entities like real num-
bers, geometric points, and sets. Some of these mathematical
assertions are literally true. So numbers, points, and sets exist.
Moreover, it seems that the objects exist independently of the
mathematician.

One of the clearest articulations of the argument underlying
Quine’s perspective on mathematics is found in Hilary Putnam’s
Philosophy of Logic (1971: ch. 5). The view that there are no abstract
objects, such as numbers and sets, is now called nominalism (after a
medieval view on properties). For a nominalist, everything that
exists is concrete, or physical. Define a nominalistic language to be
one that makes no reference to, and has no quantifiers ranging over,
abstract objects. For Putnam, the issue of mathematical realism (in
ontology or truth-value) comes down to the question of whether a
nominalistic language can serve the needs of science. Quine and
Putnam argue that it cannot, and so they are not nominalists (but,
at one point, Quine’s acknowledgment of abstract objects was
reluctant; see Goodman and Quine 1947).

Putnam invites us to ‘consider the best-known example of a
physical law: Newton’s law of gravitation’ (Putnam 1971: 36). The
fact that this principle has been supplanted is irrelevant, since the
same point applies to the more up-to-date versions of the prin-
ciples. Newton’s law
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asserts that there is a force f, exerted by any body 4 on any other body b.
The . . . magnitude F [of the force] is given by:

F = gMM,/d&
where g is a universal constant, M, is the mass of 4, M, is the mass of b, and
d is the distance which separates a4 and b.

The point of the example is that Newton’s law has a content which,
although in one sense is perfectly clear (it says that gravitational ‘pull’ is
directly proportional to the masses and obeys an inverse-square law), quite
transcends what can be expressed in nominalistic language. Even if the
world were simpler than it is, so that gravitation were the only force, and
Newton'’s law held exactly, still it would be impossible to ‘do’ physics in
nominalistic language. (Putnam 1971: 37)

Putnam’s point is that classical and modern physics are full of
magnitudes that are measured with real numbers: volume, force,
mass, distance, temperature, air pressure, acceleration, and so on.
Moreover, the relations between these magnitudes are expressed in
equations. Thus, there is no hope of ‘doing’ science without real
numbers, and so Putnam concludes that real numbers exist: ‘If the
numericalization of physical magnitudes is to make sense, we must
accept such notions as function and real number; and these are just
the notions the nominalist rejects. Yet if nothing really answers to
them, then what at all does the law of gravitation assert? For that
law makes no sense at all unless we can explain variables ranging
over arbitrary distances (and also forces and masses, of course).’
(Putnam 1971: 43).

I might add that sometimes explanations of physical phenomena
involve mathematical facts. An explanation of why a package of
191 tiles will not cover a rectangular area (unless it is one tile wide)
might mention the fact that 191 is a prime number. For a more
complex example, to explain why rain forms into drops, the scien-
tist might invoke surface tension, a physical concept, and then add
the mathematical fact that a sphere is the largest volume that can be
enclosed with a given surface. If we are to know the explanation,
then we must know the constituent mathematics.

This Quine-Putnam indispensability argument presupposes that
there is only one sense of ‘existence’. Medium-sized physical
objects, planets, electrons, and numbers all exist in the same sense.
In all cases, the criterion is the use of such items in the scientific
enterprise.
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Notice that the indispensability argument, as articulated so far,
does not provide anything like a detailed account of the role of
mathematics in the natural sciences. The Quine-Putnam position
does not solve any of the philosophical problems concerning the
applicability of mathematics. Rather, Quine and Putnam take
application as a fact—a sort of philosophical datum—and draw
ontological and semantic conclusions about mathematics. A
more detailed account of the role of mathematics in science
would either solidify the Quine-Putnam indispensability argu-
ment or give the nominalist the wherewithal to show that math-
ematics is dispensable after all. We return to this issue in the
next chapter.

To be sure, the Quinean position on mathematics does not mesh
with the traditional views that mathematical truth is necessary.
and that mathematical knowledge is a priori. Once again, as
an unrelenting empiricist, he rejects the very idea of a priori
knowledge. All knowledge—the entire web of belief—is based on
sensory experience. There are no other sources for knowledge.
Moreover, Quine holds that no truths are necessary, or absolutely
certain in the sense of being incorrigible or unrevisable in light of
future experience. Quine has little truck with the whole notion of
necessity: “We should be within our rights in holding that no for-
mulation of any part of science is definitive so long as it remains
couched in idioms of ... modality ... Such good uses as the
modalities are ever put to can probably be served in ways that are
clearer and already known’ (Quine 1986: 33—4).

It is not sufficient to leave things with this massive rejection of
the traditional views about mathematics. Quine’s burden is to
explain why mathematics was (and is) thought to be necessary, cer-
tain, and knowable a priori. What is it that misled our ancestors and
continues to mislead many of us still? For Quine, mathematics is
deeply entrenched in the web of belief, much like the more theor-
etical parts of natural science. This, by itself, does not explain the
long-standing belief that mathematics is a priori. No one is likely to
conclude mistakenly that theoretical physics is necessary and a pri-
ori knowable (traditional rationalism notwithstanding—see ch. 4,
§1). Prima facie, there seem to be important differences between
sentences like ‘7 + 5 = 12’ and sentences like ‘gravitational force is
inversely proportional to distance’ or ‘electrons have the opposite
charge to protons’. At least simple mathematical propositions enjoy
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a high level of obviousness and, perhaps, certainty, not shared by
deeply theoretical science.

One difference between mathematics and theoretical physics is
that we cannot imagine at least simple mathematical truths being
otherwise. We cannot conceive of 7 + 5 being anything but 12.
This, however, is a psychological feature of human beings, not a
deep metaphysical insight into the nature of mathematical truth.
Nevertheless, it leads some philosophers to conclude (mistakenly)
that mathematical truth is necessary. Moreover, mathematics per-
meates the web of science, in the sense that it plays a role in just
about every nook and cranny. Because mathematics is so wide-
spread, it is least likely to be a candidate for revision in the light of
recalcitrant observations. When we have data that refutes a chunk
of theory, the scientist will look to modify the more scientific parts
of the theory and not the mathematics. The reason for this is
pragmatic and not metaphysical. Modifying the mathematics
would do too much damage to the rest of the web. It will be hard
to achieve equilibrium. For Quineans, mathematics has a status of
being relatively a priori in that it is ‘held fixed’ while the scientist
looks to accommodate theory to observation. This is as close as
they get to the traditional view that mathematics is necessary and a
priori knowable. Quineans insist that revisions to mathematics (and
logic) are possible.”

From Quine’s holism and his empiricism, he accepts as true only
those parts of mathematics that find application in science. Strictly
speaking, for a Quinean to accept a branch of mathematics, there
must be some connection, however remote, between the assertions
of that branch and sensory observations. Otherwise the mathemat-
ics is not, or need not be, part of the web of belief. Quine says he
can accept a bit more mathematics, for purposes of ‘rounding
things out’. I presume he means that a branch of mathematics is
acceptable if it plays a role in organizing and simplifying the math-
ematics that does play a role in the web. But applied mathematics
plus ‘rounding out’ does not exhaust all of contemporary math-
ematics. Quine explicitly demurs from the higher reaches of set
theory, since no applications to science are known: ‘So much of
mathematics as is wanted for use in empirical science is for me on a

7 Since, as above, Quine himself demurs from any use of modal notions, it is
not clear what it might mean to say that revisions to mathematics are possible.
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par with the rest of science. [Some advanced set theory is] on the
same footing insofar as [it comes] to a simplificatory rounding out,
but anything further is on a par with uninterpreted systems’
(Quine 1984: 788). For uninterpreted branches, Quine adopts a
hypothetical spirit, much like the view we called ‘deductivism’ in
chapter 6, §2.

Mathematicians themselves do not look toward applications to
science as a criterion of mathematical truth. For the most part, they
are not concerned with applications at all in their day-to-day work,
and they do not rely on the role of mathematics in science to
confirm mathematical propositions. The methodology of math-
ematics is deductive—and so a mathematical proposition must be
proved before it is known. Thus, Quine’s empiricism does not jive
with the methodology of mathematics. Perhaps a Quinean can
concede this, claiming to be presenting an overall philosophy of
mathematics and science. She might argue that, pragmatically, we
have found that it serves the needs of science for mathematics to be
practised ‘for its own sake’, independent of any applications. Never-
theless, the ultimate reason to be a realist in truth-value about
(some) mathematical propositions and to believe in the existence of
(some) mathematical objects is the place of mathematics in the
scientific enterprise.

3. Set-theoretic Realism

The years around 1990 saw the publication of a wealth of import-
ant books in the philosophy of mathematics, many of them by
Oxford University Press.® One prominent contribution was Penelope
Maddy’s (1990) defence of an ontological and truth-value realism
that synthesizes aspects of Gddel’s platonism and Quine’s empiri-
cism, avoiding the shortcomings of both.

Like Quine (and Mill), Maddy is a naturalist. She argues that
ontological realism about a type of entity is justified if the objective
existence of the entities is part of our best explanation of the
world. Maddy (1990) sanctions the Quine—Putnam indispensability
argument, as in the previous section. Since mathematics is essential

® Including Maddy 1990, Dummett 1991, Field 1989, Chihara 1990, Hellman
1989, Coffa 1991, Lewis 1991, and my own Shapiro 1991.
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to modern science, and the same modern science is our ‘best the-
ory’, we have good reason to believe in the existence of mathemat-
ical objects. The appraisal of scientific theories leaves us little
choice in this matter. Maddy notes, however, that the straight-
forward indispensability argument cannot be the whole story about
mathematics, since, as we have just noted, it does not cover
unapplied mathematics. Unlike Quine, Maddy takes it as a desider-
atum on any philosophy of mathematics that it should accom-
modate the bulk of mathematics, not just the parts that scientists
have found useful. Moreover, she notes that the indispensability
argument ignores the ‘obviousness’ of elementary mathematics.
Generally, the most theoretical parts of the web of belief are any-
thing but obvious, and so it will not do to assimilate mathematics to
theoretical parts of the web and leave it at that.

Thus, Maddy seeks a ‘compromise platonism’: ‘From Quine/
Putnam, this compromise takes the centrality of the indispens-
ability arguments; from Godel, it takes the recognition of purely
mathematical forms of evidence and responsibility for explaining
them’ (Maddy 1990: 35). Maddy’s epistemology for mathematics is
‘two-tiered’. At the lower level we have ‘intuition’, which supports
the underlying principles of basic mathematical theories. With
Godel, the axioms of various branches of mathematics force them-
selves on us as true. At the upper level mathematics is justified
‘extrinsically’, through its applications to lower-level mathematics
and to natural science. Each tier of Maddy’s epistemology supports
the other, and together they accommodate the full range of
mathematics—or so Maddy argues.

As noted above, Godel's notion of mathematical intuition is
often criticized—or ridiculed—for conflicting with naturalism.
How can humans, as physical organisms inhabiting a physical uni-
verse, have intuitive knowledge of a causally inert realm of abstract
objects? How can a human mind, as described by empirical psych-
ology, come to know anything about sets and numbers, as
described by mathematics? As indicated in the quoted passage,
Maddy takes seriously the ‘responsibility for explaining’ mathemat-
ical intuition—the lower tier of the epistemology. Mathematical
intuition must be respectable on scientific grounds before a natural-
ist can invoke it.

Recall that, for Godel, mathematical intuition is analogous to
sense perception. Maddy proposes an even tighter connection
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between mathematics and sense perception (Maddy 1990: ch. 2; see
also 1980). For Maddy, the mathematical objects to be justified are
sets, and so she calls her view ‘set-theoretic realism’.’ She argues that
we actually perceive some sets, namely sets of medium-sized phys-
ical objects. Her innovation is to bring at least some mathematical
objects into the physical world, and so under the direct purview of
physics and psychology.

According to D. O. Hebb’s work on perception (1949, 1980),
during childhood a normal human forms certain neurophysiological
cell-assemblies that allow the perception, and discrimination, of
physical objects. As Maddy (1990: 58) puts it, these cell-assemblies
‘bridge the gap between what is interacted with and what is per-
ceived’. They allow the subject to separate physical objects from the
environment. Maddy calls the cell-assemblies ‘object-detectors’.
She suggests that our brains might also contain ‘set-detectors’ that
identify collections of physical objects. Whatever the fate of Hebb's
scientific work, Maddy speculates that the correct physiological
story of perception, once it is known, will extend to perception of
sets of physical objects.

Consider a collection A of four pairs of shoes (and think of each
pair as a set of two shoes). Let B be the collection of those same
eight shoes. According to set theory, A and B are not the same: A
has four members while B has eight. The members of A are them-
selves sets (each with two members) while the members of B are
shoes and not sets. According to Maddy’s account, there is a differ-
ence between perceiving the stuff as eight shoes (i.e. B) and perceiv-
ing it as four pairs (A). That is, A and B look different—there is a
different gestalt—even though they occupy the same chunk of
space and time.

The relation of ‘set of gets iterated further. Consider a set C of
three groups of pairs of shoes, say the shoes owned by Peter, Paul,
and Mary. The set C has three members, each of which is a set of
sets of shoes. And on it goes, with sets of sets of sets of . . . sets of
shoes, to any ‘depth’. Many set theories, including ZFC (see {1
above), contain an axiom of infinity that asserts the existence of a
set with arbitrarily deep iterations of the ‘set of relation among its

° Maddy (1990: ch. 3) suggests that natural numbers are properties of sets,
perhaps following Russell. The number 3, for example, is the property shared by
all collections of three elements (see also Maddy 1981). See Hodes 1984 and Luce
1988 for similar views on number.
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members. Of course, Maddy does not (and need not) claim that
humans can perceptually distinguish all of these sets (or even that
we perceive all of them). There are probably no perceptual differ-
ences beyond the second or third level. The existence of deeply
iterated sets, including the infinite ones, is a theoretical posit, sup-
ported by the upper tier of Maddy’s epistemology. Set theory—
including the axiom of infinity—provides a uniform foundation for
mathematics which, in turn, forms an essential part of the web of
belief.

As branches of pure mathematics, modern set theories do not
concern sets of physical objects. The set-theoretic hierarchy is
thoroughly abstract, consisting of the empty set, the powerset of
the empty set, and so on. Maddy does not claim that we perceive
such ‘pure sets’, nor that we have direct intuitions about them. As a
service to philosophers inclined against abstract objects, Maddy
(1990: ch. 5) shows how to dispense with pure sets, by sketching a
sufficiently strong set theory in which everything is either a physical
object or a set of sets of . . . physical objects.

Recall that, for Godel, mathematical intuition represents some
sort of relationship between humans and the non-physical, math-
ematical realm. His remarks on the Kantian nature of intuition at
least suggest that, for him, mathematical intuition delivers a priori
knowledge of at least some mathematics. What of Maddy? To be
sure, humans need some experience in order to develop their
object-detectors and set-detectors, but no particular sense experi-
ence is necessary. So she concedes that there is a sense in which
intuitive beliefs are a priori: ‘though experience is needed to form
the concepts, once the concepts are in place, no further experience
is needed to produce intuitive beliefs. This means that insofar as
intuitive beliefs are supported by their being intuitive, that support
is what's called “impurely a priori”” (Maddy 1990: 74).

Notice that just about any knowledge that is held to be a priori is
at best ‘impurely a priori’ in Maddy’s sense. Consider, for example,
the sentence ‘cats are felines’, which is supposedly true in virtue of
meaning. One cannot undermine the claim that this is a priori by
pointing out that sensory experience is needed to know what ‘cat’
means, or to know what a cat is. If the sentence is a priori, it is
because the meaning of the words is itself sufficient to determine
the truth of the sentence. The fact that we need experience to grasp
this meaning is irrelevant. As Simon Blackburn (1994: 21) puts it, a



224 THE CONTEMPORARY SCENE

proposition is knowable a priori if the knowledge is not based on
‘experience with the specific course of events of the actual world’.

In any case, Maddy argues that the a priori nature of mathemat-
ics is especially weak. First, she points out that intuition alone does
not support very much mathematics. More importantly, a naturalist
cannot accept intuition at face value, but must ask why we are
justified in relying on intuition. Why think that it gives accurate
information about an independent mathematical universe? The
answer to that question invokes the role of mathematics in the web
of belief—the other tier of the epistemology. To echo Mill, we
know by experience that intuition is reliable. As Maddy puts it, it does
not follow from the nature of intuition that even ‘primitive math-
ematical beliefs are a priori. Without the corroboration of suitable
theoretical supports, no intuitive belief can count as more than
mere conjecture.” So Maddy is closer to Mill and Quine than to the
traditional view of the nature of mathematical knowledge.

As a realist, Maddy (1990: ch. 4, §5) agrees with Godel that every
unambiguous sentence of set theory has an objective truth-value
even if the sentence is not decided by the accepted set theories. The
continuum hypothesis is a case in point (see §1 above). She exam-
ines several ways of expanding ZFC, noting that each of them
‘answers at least [some of] the open questions . . . Each enjoys an
array of extrinsic supports, supplemented to varying degrees by
intuitive and rule-of-thumb evidence ... The philosophical open
question is: on what rational grounds can one choose between
these . . . theories?” (Maddy 1990: 143). Those inclined toward real-
ism are left with this challenge.

Much of Maddy’s work in the philosophy of mathematics
focuses on this issue concerning independent sentences, and the
closely related issue of what exactly underlies belief in the axioms
of set theory (1988, 1988a, 1993). Her interest in naturalism (and
independence) led to an extensive study of mathematical method-
ology and the role of mathematics in science—the web of belief.
This work culminated in Naturalism in Mathematics (1997) (see also
Maddy 1995, 1996). The focus on naturalism led her to substan-
tially modify the realism advocated in her Realism in Mathematics
(1990).
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4. Further Reading

The primary sources considered in this chapter include Godel 1944
and 1964, Quine 1951, Putnam 1971, and Maddy 1990. Much has
been written on Gédelian intuition, some of it better than others.
Parsons 1979 is especially noteworthy (as are other essays in
Parsons 1983). Quine’s views on mathematics are scattered
throughout his corpus, and his influence is marked by a wealth of
articles and books on the subject by many authors, both in support
and opposition. There is also an extensive literature on the
indispensability argument. The reader would do well to consult the
Philosophers’ Index. Charles Chihara (1973: ch. 2 and 1990: Part 2)
is one of the most persistent critics of the ontological realisms
advocated by Godel and Maddy.
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NO THEY DON'T

E now turn to philosophies that deny the existence of math-
0 V ematical objects. This view, sometimes called ‘nominalism’,
is a radical version of anti-realism in ontology.' I suppose that
someone could simply hold that mathematics has no value. For
such a philosopher, mathematical objects would go the way of
witches and caloric, and mathematics itself would go the way of
alchemy—discarded as intellectual refuse. As attractive as this
might be for at least one of my children (to whom this book is
dedicated), here we are concerned with philosophies that take
mathematics seriously, and admit the good role of mathematics in
intellectual endeavours. The authors considered in this chapter
attempt to reformulate mathematics, or a surrogate, in such a way
that the existence of special mathematical objects—numbers and
sets—is not presupposed in the scientific enterprise.

One of the authors, Hartry Field, takes mathematical language
at face value. Since he holds that mathematical objects do not exist,
mathematical propositions have objective but vacuous truth-values.
For example, he maintains that ‘all natural numbers are prime’ is
true, since there are no natural numbers. It is similar to saying that
‘all trespassers are shot and then prosecuted’ is true even if (as
hoped) there are no trespassers. Similarly, Field holds that ‘there is a
prime number greater than 100° is false. So the truth-values of

' Realism in ontology is the view that mathematical objects exist independent
of the mind, language, etc. of the mathematician. A less radical way to deny this,
and be an anti-realist in ontology, is to hold that mathematical objects exist, but are
dependent in some way on the mathematician. The authors considered in the first
part of this chapter deny the existence of mathematical objects altogether.
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mathematical statements do not correspond to mathematical the-
orems. Thus, for Field, the point of mathematics cannot be to
assert truths and deny falsehoods. That would be a trivial and point-
less exercise. However, Field does take mathematics seriously, and
he delimits a role for it other than asserting truths about (non-
existent) mathematical objects. The vacuous truth-values of math-
ematical propositions play no role in determining the acceptability
of mathematics or the role of mathematics in science. Thus, Field
is at least spiritually allied with anti-realists in truth-value, those
who deny that mathematical propositions have objective truth-
values (except that Field does not advocate revisions in mathemat-
ical practice—see ch. 7).

Another prominent ontological anti-realist, Charles Chihara,
provides a systematic way to interpret mathematical language so
that it has no (implicit or explicit) reference to mathematical
objects. However, the sentences in the language of mathematics,
so interpreted, have their standard truth-values. For example, in
Chihara’s system the induction principle for arithmetic and the
completeness axiom for analysis are both true. Thus, Chihara is a
realist in truth-value, agreeing with the authors covered in the
previous chapter that mathematical statements have objective
truth-values, independent of the mind, language, or social order of
the mathematician.

1. Fictionalism

We begin with Field's view, which he calls “fictionalism’. The idea is
to think of mathematical objects as being like characters in fiction.
The number three and the empty set have the same status as Oliver
Twist. There is a sizeable philosophical literature on the semantics
of fiction, which we can thankfully avoid here. At least prima facie,
one can take fiction seriously (so to speak) without being commit-
ted to a fictionalist ‘ontology’. Few philosophers are tempted to
think that Oliver Twist exists in the same sense as, say, the White
House does.

Field (1980: 5) claims that there is ‘one and only one serious
argument for the existence of mathematical entities’, and this
is W. V. O. Quine and Hilary Putnam’s indispensability argument
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introduced in chapter 8, §2 above. Field claims that other argu-
ments have weight only if the indispensability argument succeeds.
So his starting position is that if one can undermine the indispens-
ability argument, then ontological realism is an unjustified dogma.

Let us focus on real analysis and physics. Roughly, the indispens-
ability argument has the following premisses:

(1) Real analysis refers to, and has variables that range over,
abstract objects called ‘real numbers’. Moreover, one who accepts
the truth of the axioms of real analysis is committed to the exist-
ence of these abstract entities.

(2) Real analysis is indispensable for physics. That is, modern
physics can be neither formulated nor practised without statements
of real analysis.

(3) If real analysis is indispensable for physics, then one who
accepts physics as true of material reality is thereby committed to
the truth of real analysis.

(4) Physics is true, or nearly true.?

The conclusion of the argument is that real numbers exist. If we
add that real numbers exist independently of the mathematician,
we end up with realism in ontology. Real numbers do not seem to
be located in space and time, and they do not enter into causal
relations with physical objects or human beings.

Field accepts the first and third premisses, which represent (now)
commonly accepted theses concerning ontological commitment.
He also accepts premiss (4), the truth of physics, and he adopts the
usual views on the nature of mathematical objects. Of course, he
denies the conclusion of the argument. He launches a detailed case
against premiss (2), the indispensability of real analysis for physics.
Field agrees (as he had better) that mathematics is useful in science,
noting that mathematics is a ‘practical necessity” for the scientist.
It would be highly infeasible to dispose of mathematics. But this
is not to concede that mathematics is essential to science in the
ontologically relevant way. He argues that in some sense, science
can be done without mathematics. Hence his title, Science Without
Numbers.

Recall from §2 of the previous chapter that a nominalistic lan-

? An assumption underlying the hedge here is that the true physics is similarly
riddled with real analysis, or some other powerful mathematical theory.
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guage is one that makes no reference to, and has no quantifiers
ranging over, abstract objects like numbers or sets. As we have seen,
normal scientific language is not nominalistic. The standard formu-
lations of various scientific principles themselves contain math-
ematical terminology and involve mathematical objects. Putnam
(1971) argued that it is hopeless to attempt science in a nominalistic
language. The first aspect of Field’s case is to rebut this charge, by
providing ‘nominalistic’ formulations of scientific theories.

Of course, it would be too much for a single nominalist to
provide an acceptable version of each respectable scientific theory.
That would require her to become en rapport with the full range of
contemporary science: quantum mechanics, general relativity,
chemistry, physiology, astronomy, economics, and so on. Instead,
Field develops a detailed nominalistic version of Newtonian gravi-
tational theory, and some extensions thereof. This is to serve as a
paradigm for other branches of up-to-date science.’

Field’s formulation of Newtonian gravitational theory postu-
lates, and has variables ranging over, space-time points and space-
time regions. So Field holds that points and regions exist. Every
collection of points constitutes a region. A realist about mathemat-
ics would say that every set of points corresponds to a region, but
Field would not put it that way (since he believes that the sets do
not exist).

Field argues that space-time points and regions are concrete—
and not abstract. In other words, points and regions are not math-
ematical objects. First, aspects of the collection of space-time
points, such as its cardinality and its geometry, depend on physical
rather than mathematical theory The gravitational theory itself
determines the structural properties of points. Second, and more
important, contingent properties of space-time points, such as hav-
ing a relatively large gravitational force, are essential parts of causal
explanations of observable phenomena.

Field here engages with an important controversy in the history
and philosophy of science. Substantivalism, traced to Isaac Newton,
is the view that space or space-time is physically real. The oppos-
ition, relationalism, attempts to characterize space-time in terms of

* One prominent critic, David Malament (1982) carefully argues that Field’s
exemplar does not readily extend to quantum mechanics. Mathematics is more
deeply entrenched in that theory than in classical mechanics. Balaguer (1998: ch. 5)
attempts a ‘nominalization’ of quantum mechanics roughly along Field’s lines.
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relations of actual or possible physical objects. These relations are
typically described in mathematical terms. The pedigree for rela-
tionalism is Gottfried Wilhelm Leibniz (see, for example, Friedman
1983 and Wilson 1993). Field sides with the substantivalists—
accepting the physical reality of space-time—in order to defend his
ontological anti-realism concerning abstract mathematical objects
(see also Field 1989: 38-43).

However, ‘physically real’ may not be the same as concrete, and
Field goes further than other substantivalists in his claims about
points and regions. He regards them as theoretical physical entities
on a par with, say, molecules and quarks. Some philosophers (e.g.
Resnik 1985) take issue with Field’s claims about space-time points.
Space-time points do not have some properties shared by ordinary
physical objects like baseballs, chairs, or even molecules. Points do
not endure through time; they cannot be moved, decomposed, or
destroyed; and an individual point has neither mass nor extension.
This makes points more like numbers than baseballs. Moreover, the
existence of points is not contingent, in the way that the existence
of baseballs is. One might go so far as to claim that a given point
does not have a location. Rather, it is a location. We need not
adjudicate this potentially controversial matter here. Let it suffice
that we could do with a better elaboration of the distinction
between abstract and physical objects (see Hale 1987 and Burgess
and Rosen 1997: part I, ch. A, for a start on this).

The terminology of Field’s nominalistic physics includes primi-
tive relations among space-time points. Examples include ‘y Bet xz’,
interpreted as “x, y, and z are colinear and y lies between x and z on
the common line’, and xy Tempcong zw’, interpreted as ‘the differ-
ence between the temperatures at x and y is identical to the differ-
ence between the temperatures at z and w’. These are physical
relations on physical entities. The basic idea behind the nominalistic
theory is to state principles of physical (and geometric) quantities
directly, without reference to real numbers. Field formulates the
relevant structural assumptions through axioms about the various
relations. His axioms entail that space-time is continuous and com-
plete. He brilliantly shows how to formulate surrogates of deriva-
tives and integrals in the language of the nominalistic mechanics,
and he proves that these surrogate derivatives and integrals have all
of the right properties.

The contrast between Field’s physics and classical Newtonian
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physics is much like the contrast between Euclid’s ‘synthetic’ Elem-
ents, and the more contemporary ‘analytic’ geometry that uses real
numbers to measure distances, angles, trigonometric functions, and
so on. Euclid did not present geometric magnitudes as measured
with numbers. Instead, the relations between magnitudes are for-
mulated and studied directly. Consider, for example, the Pythago-
rean theorem that the square on the hypotenuse of a right triangle
is equal to the sum of the squares on the other two sides. In the
Elements, this is taken literally as referring to squares drawn on the
sides of a right triangle, not to the results of multiplying and adding
real numbers* (see Fig. 9.1). Thus, to the extent that the subject-
matter of Euclidean geometry is physical space, it would count as
nominalistic in Field’s eyes—despite the traditional classification of
geometry as mathematics par excellence. Field’s own physics has
been called a ‘synthetic mechanics’ (see Burgess 1984). In what
follows, we adopt that term here.

Fig. 9.1 Euclid’s Elements Book 1, Proposition 47: In right-angled tri-
angles, the square on the side subtending the right angle is equal to the
squares on the sides containing the right angle.

* See Book 2, Propositions 12 and 13 of Euclid’s Elements for ‘synthetic’ versions
of the law of cosines. This example alone provides compelling evidence of the
power of analytic geometry I do not know of any connections between the
distinction between analytic and synthetic geometry and the analytic-synthetic
distinction in philosophy (invoked in most of the previous chapters).
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The axioms of Field's theory of space-time entail that there are
infinitely many points. Indeed, one can show that there is a one-to-
one correspondence between quadruples of real numbers (if they
exist) and the points of Field’s space-time. In technical terms,
Field’s space-time is isomorphic to R, and so there are as many
points as real numbers, and there are as many regions as sets of real
numbers. For the realist, Field's ontology is the size of the powerset
of the continuum. Field holds that there are that many physical
objects.

Arithmetic and real analysis can be simulated in space-time,
using certain space-time points and regions as surrogates for num-
bers (see Shapiro 1983). One can also formulate a version of the
continuum hypothesis (see §1 of the previous chapter) in Field’s
synthetic physics. It concerns the relative sizes of various regions.
Since the sentence is about space-time, this version of the con-
tinuum hypothesis is presumably not vacuous. It makes a substan-
tial statement about physically real space-time. So Field should
admit that this version of the continuum hypothesis has an object-
ive truth-value. A realist would surely hold that the space-time
version of the continuum hypothesis has the same truth-value as
the set-theoretic version, since the structures are the same.

Some of Field’s critics point out that his synthetic gravitational
theory just replaces real numbers with space-time points, and they
wonder what has been gained.” Field considers the natural objection
that ‘there doesn’t seem to be a very significant difference between
postulating such a rich physical space and postulating the real num-
bers’, and replies:

the nominalistic objection to using real numbers was not on the grounds
of their [cardinality] or of the structural assumptions (e.g., Cauchy com-
pleteness) typically made about them. Rather, the objection was to their
abstractness: even postulating one real number would have been a viola-
tion of nominalism . . . Conversely, postulating uncountably many physical
entities . . . is not an objection to nominalism; nor does it become any

’ In conversation, a number of mathematicians asserted that, despite its title,
Science Without Numbers is not a science without mathematics. They argue that the
mathematics is built into the theory of space-time. One would think that math-
ematicians can recognize their subject-matter when they see it, but perhaps these
mathematicians are not interested in philosophical issues concerning ontology and
the abstract—concrete distinction.
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more objectionable when one postulates that these physical entities obey
structural assumptions analogous to the ones that platonists postulate for
the real numbers. (Field 1980: 31)

The formulation of nominalistic (i.e. synthetic) versions of scien-
tific theories is only the first step in Field’s programme. A second
aspect is to show how mathematics can be added to the synthetic
theories, and then establish that mathematics is conservative over
each synthetic theory. Let N be a synthetic theory and let S be a
mathematical theory to be added to N. Then, ignoring a technical-
ity, the conservativeness of the mathematics S over the science N is
formulated as follows:

Let @ be a sentence in the nominalistic language. Then @ is not a
consequence of S + N unless @ is a consequence of N alone.

If mathematics is indeed conservative in this sense, then even if
mathematics is useful for deriving physical consequences from
physical theories, in principle the mathematics is dispensable. Any
physical consequence obtained with the help of mathematics could
be obtained without it.

Field (1980: ch. 1) first argues that mathematics is conservative
over science in terms of the nature of the subject-matter of math-
ematics, its abstract ontology in particular. Even for a realist in
ontology, it would be strange if some facts about the abstract,
causally inert mathematical universe had some consequences for
the material world:

it would be extremely surprising if it were to be discovered that standard
mathematics implied that there are at least 10 non-mathematical objects in
the universe, or that the Paris Commune was defeated; and were such a
discovery to be made, all but the most unregenerate rationalist would take
this as showing that standard mathematics needed revision. Good math-
ematics is conservative; a discovery that accepted mathematics isn’t con-
servative would be a discovery that it isn’t good. (Field 1980: 13)

Field’s example of the Paris Commune is clear enough, but it seems
plausible, at least to me, that ‘standard mathematics’ could have
non-trivial consequences about the structure of space-time (see
Shapiro 1993). So the plausibility of Field’s argument depends on
where one draws the boundaries of mathematics or, perhaps more
importantly, the boundary between the abstract and the physical.
So that question rears its head once more.
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Field goes beyond this informal treatment, providing two model-
theoretic arguments for conservativeness (1980: appendix to ch. 1).
By making reasonable assumptions on mathematical theories and
synthetic theories, he shows that the mathematics is conservative
over the science in the requisite sense.

Field’s formal arguments are what he calls ‘platonistic’ in that
they rely on standard mathematics. That is, Field uses substantial
mathematical assumptions in order to show that, say, set theory
is conservative over nominalistic theories. One might wonder
whether, as a nominalist, Field is entitled to believe that mathemat-
ics is conservative. The proof of conservativeness has mathematical
premisses, and Field rejects those. His official stance is that the
entire argument of Science Without Numbers is a long reductio ad
absurdum against the Quine-Putnam indispensability argument. By
assuming the correctness of standard mathematics, Field argues that
mathematics is not indispensable for science. If his development is
sound, then the indispensability argument is self-undermining.’

According to Field, the application of mathematics to a synthetic
science goes as follows: for each sentence @ in the nominalistic
language there is an ‘abstract counterpart’ @’ in the language of
the mathematical theory S, such that one can prove in the com-
bined theory (S + N) that ® is equivalent to ®’. The equivalences
allow the scientist to appropriate the resources and operations of
the mathematical theory. Suppose, for example, that we have two
nominalistic premisses @, and @,. The scientist obtains the abstract
counterparts @, and @, in the mathematical language. Then she
deduces a mathematical consequence ¥, which is the abstract
counterpart of a nominalistic sentence ‘¥. By conservativeness, she
concludes that 'V follows from the original premisses @, @, in the
synthetic theory N. The use of mathematics is theoretically
superfluous, and so it is ontologically harmless. The scientist need
not believe in the existence of the mathematical entities in order to
obtain the nominalistic conclusion V.

Once again, the usual analytic technique is to fix a frame of
reference and associate each space-time point with a quadruple of
real numbers. Thus, with Newtonian gravitational theory, the
‘abstract counterparts’ of various sentences substitute quadruples

¢ Field (1980: ch. 13 and 1989) later suggests that the nominalist can also accept
the argument for conservativeness (but see Burgess and Rosen 1997: 192-3).
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of real numbers for space-time points, and they substitute sets of
quadruples of real numbers for regions. There are structure-
preserving functions, representing homomorphisms, from points of
space-time to appropriate structures defined from real numbers.
For example, there is a function g which gives the temperature at
each space-time point according to a fixed scale (such as Celsius),
such that the relation Tempcong holds between the pairs a, b and ¢,
d if and only if

|g(a)—gb)| = |glc) —g(@d)].

The representing homomorphisms allow the scientist to bring the
powerful resources of set theory to bear on the surrogates. She can
deal with regions of space-time as if they were sets, without really
believing in the sets.

Field's programme for science is structurally analogous to
David Hilbert's programme for mathematics (see ch. 6, §3). Field’s
synthetic science corresponds to Hilbert’s finitary mathematics,
and mathematics itself corresponds to ideal mathematics in the
Hilbert programme. Recall that Hilbert's thesis was that the role
of ideal mathematics is to facilitate derivations within the finitary
language. Hilbert required that the ideal mathematics be conserva-
tive over finitary mathematics, but in that case conservativeness
amounts to consistency. The analogy is summed up as shown in
Table 9.1.

TasLe 9.1. The Hilbert and Field programmes compared

Hilbert programme Field programme
Basis: finitary mathematics nominalistic science
Instrument: ideal mathematics mathematics
Needed: consistency conservativeness

In both cases, the role of the ‘instrument’ is to facilitate derivations
at the ‘basis’.

Recall that it is widely believed that the Hilbert programme
faltered over Go6del’s incompleteness theorem (see ch. 6, §4). In
‘Conservativeness and Incompleteness’ (1983), I show that essen-
tially the same result applies to the Field programme since, as
above, arithmetic can be simulated in the synthetic physics. In
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particular, there is a sentence G in the nominalistic language such
that G is not a theorem of the synthetic physics, but G can be
derived in that theory together with some set theory (and bridge
principles). The sentence G is an analogue of a sentence used to
establish the incompleteness of arithmetic. This undermines Field’s
claim that the ‘conclusions we arrive at [using mathematics] are
already derivable in a more long-winded fashion from the [nominal-
istic] premisses, without recourse to the mathematical entities’. Our
sentence G is not derivable in the synthetic theory alone.

This counterexample to conservativeness is a rather artificial sen-
tence in the nominalistic language. There are some geometrically
natural counterexamples (see Burgess and Rosen 1997: 118-23), but
a supporter of the Field programme might claim that even those do
not have much physical interest. He might retrench by restricting
the conservativeness requirement to physically important nominal-
istic sentences. However, if Field’s synthetic theory is an accurate
description of space-time, then the sentence G is true of it, and so
the mathematics delivers some truths about space-time (whether
these truths are interesting or not).

In a reply to my 1983 paper, Field (1985) suggested that, in a
sense, the sentence G does follow from the synthetic theory. We
may need mathematics in order to see that G is a consequence of
the synthetic theory, but it is a consequence nonetheless.” This
suggests that mathematics has a role in science beyond providing
shorter derivations of otherwise deducible nominalistic sentences.
We use mathematics to discover consequences of our synthetic the-
ories. One passage of Science Without Numbers suggests that this role
for mathematics is acceptable to a nominalist: ‘someone who does
not believe in mathematical entities is free to use [mathematics]
in deducing nominalistically-stated consequences from nominal-
istically-stated premises. And he can do this, not because he thinks
those intervening [mathematical] premisses are true, but because
he knows that they preserve truth among nominalistically-stated
claims’ (Field 1980: 14, emphasis mine). See Burgess and Rosen
1997: 192-3 for a fuller discussion of the underlying issues.

7 In Shapiro 1983, I show how to reformulate the synthetic and mathematical
theories, so that conservativeness is maintained (by using a first-order language).
But then Field’s account of the application of mathematics fails. One cannot
establish the existence of the representing homomorphisms. Field 1985 provides a
more subtle account of the application.
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Whatever the merits of the philosophical programme of onto-
logical anti-realism, Science Without Numbers is a major intellectual
achievement. The book is one of the few serious, sustained
attempts to show exactly how mathematics is applied in the sci-
ences. As noted in chapter 2, §3 above, this addresses a central
philosophical issue. Many philosophies of mathematics leave the
relationship a mystery. One can accept Field’s development, invok-
ing representing homomorphisms, as at least a partial account of
application without also accepting his ontological claims.

The Field programme focuses attention on the structures actu-
ally exemplified in physical reality, and distinguishes these from the
richer mathematical structures used to study the ‘physically real’
structures. Clearly, the introduction of a particular frame of refer-
ence and units (such as metres and hours) is an arbitrary conven-
tion, but it is such conventions that allow real analysis to be applied
to space-time. Field defines an intrinsic explanation of a physical
phenomenon to be one that does not refer to, or depend on, a
convention. In the case of geometry or Newtonian gravitational
theory, an intrinsic explanation would be formulated in the lan-
guage of the structure of space-time, and would not involve the
richer structure of the real numbers. In other words, an intrinsic
explanation would be formulated in a synthetic language. Field
suggests that everyone ought to be interested in intrinsic explan-
ations (when they are available) independent of any views on the
existence of mathematical objects. His emphasis on intrinsic
explanations is illustrated by the fact that the presentation of many
aspects of his physics is accomplished by reflecting on (geometric
and physical) properties of space-time that are invariant under the
choice of a reference frame and units of measure. The invariant
properties yield the appropriate axioms. The underlying issue
would benefit from an extensive study of the fruitfulness and
power of extrinsic explanations, those that do invoke rich math-
ematical theories (see note 3 above).

2. Modal Construction

In chapter 8, §2, we encountered Quine’s influential scepticism
toward modal notions, like possibility and necessity: “We should be
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within our rights in holding that no formulation of any part of
science is definitive so long as it remains couched in idioms of . . .
modality . . . Such good uses as the modalities are ever put to can
probably be served in ways that are clearer and already known’
(Quine 1986: 33—4). Some of these ‘good uses’ are obtained by
recasting modal notions using mathematical entities, typically sets.
The most developed instance of this is model theory, which can be
seen as an attempt to understand logical possibility and logical
consequence in terms of a realm of set-theoretic constructions. To
say that a given sentence is logically possible is to say that there is
a model that satisfies it. A number of writers try to understand
general possibility and necessity in terms of set-theoretic construc-
tions, sometimes called ‘possible worlds’. As Putnam (1975: 70)
notes, mathematics has ‘got rid of possibility by simply assuming
that, up to isomorphism anyway, all possibilities are simul-
taneously actual—actual, that is, in the universe of “sets”.” The
general programme is to demur from talk of necessity and possi-
bility, replacing it with talk of abstract objects like sets and
numbers.

There is a dedicated group of philosophers of mathematics who
reverse this orientation. They deny the existence of mathematical
objects, like sets and numbers, and they accept at least some forms
of modality. To be precise, these philosophers are less sceptical of
modality than they are of, say, set theory (when it is understood
literally as a theory of abstract objects). So they set out to reformu-
late mathematics in modal terms. Putnam himself was once a
member of this group (1967). Here we take up another prominent
ontological anti-realist, Charles Chihara (1990).°

Chihara provides a successor to Russell’s ‘no class’ account of
mathematics (see ch. 5, §2). Roughly speaking, Russell’s plan was
that any reference to sets should be eliminated in favour of talk of
properties or attributes. For example, we replace talk of the set of
cats with the attribute of being a cat. Apparently, Russell found
attributes to be less problematic than mathematical objects like
sets, or perhaps he held that our overall philosophical/scientific
theories need to invoke attributes anyway. Attributes are a natural
item to employ in a theory of predication, and, clearly, logic deals

® In §3 of the next chapter, we consider the modal structuralism of Geoffrey
Hellman (1989).
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with predication. It is pointless to have attributes and sets, if attrib-
utes alone will suffice.

Today many philosophers find attributes problematic. In an early
article on Russell's co-author, Alfred North Whitehead, Quine
(1941) argued that there is no established criterion of when attrib-
utes are identical or distinct. For example, is the attribute of being
an equilateral triangle the same as the attribute of being an equi-
angular triangle? A now-common Quinean slogan is ‘no entity
without identity’. The thesis is that one is not justified in intro-
ducing, or speaking of, a type of entity unless there is a determinate
criterion of identity for those items. Quine thus proposes the exact
opposite of Russell’s no class theory—that attributes should give
way to sets.’

Be this as it may, it is understandable that a contemporary nom-
inalist like Field or Chihara would not be anxious to embrace
attributes. Attributes seem to share the shortcomings of sets and
numbers. They do not exist in space and time, and they do not
enter into causal relations with physical objects. How can we know
anything about attributes? Moreover, Quine’s aforementioned cri-
tique of attributes is not lost on the ontological anti-realist (but see
Bealer 1982).

Chihara invokes linguistic items instead. An open sentence is a
sentence in which a singular term (such as a proper name) has been
replaced by a variable. In English, examples include ‘x is a cat’ or ‘y
is the wife of an impeached President’. The relationship of ‘true of”
between objects (or people) and open sentences is called satisfac-
tion. For example, our cat Sophie satisfies the open sentence ‘x is a
cat’ and Hilary Clinton satisfies the open sentence ‘y is the wife of
an impeached President’.

Chihara’s programme is to replace talk of sets with talk of open
sentences. For example, instead of speaking of the set of all cats,
we talk about the open sentence “x is a cat’. Instead of speaking of
the set of all lovers, we talk about the open sentence ‘x loves some-
one’. Since no actual language has enough open sentences to
provide surrogates for the mathematical objects invoked in science
(let alone mathematics), Chihara cannot limit consideration to

° This argument is part of Quine’s attack on second-order logic (see Quine
1986: ch. 5). He argues that by invoking sets, one has crossed the border out of
logic and into mathematics proper. In light of Quine’s metaphor of the seamless
web of belief (see ch. 8, §2 above), this move is ironic.
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presently existing languages like English. One move would be to
envision ideal extensions of our language, but open sentences in an
ideal expansion of English seem to be as abstract as numbers and
sets. So Chihara turns to modality, and speaks of the possibility of
writing open sentences—where the possibilities are not limited to
actual languages that have been or will be employed.

Chihara follows a tradition that ordinary quantifiers like ‘for all x’
(symbolized ‘Vx’) and ‘there exist x* (‘Ix’) mark ‘ontological com-
mitment’. The way that a speaker notes the existence of a certain
type of entity is to use a quantifier that ranges over those entities
(see Quine 1948). The slogan is ‘to be is to be the value of a bound
variable’. This is not meant to be a deep metaphysical thesis. The
point is just that the existential quantifier is a decent gloss on the
English word for ‘existence’.

Chihara’s technical innovation is a ‘constructibility quantifier’.
Syntactically, it behaves like an ordinary existential quantifier: if ®
is a formula and x a certain type of variable, then (Cx)® is a
formula, which is to be read ‘it is possible to construct an x such
that @’

In his formal development, the semantics and the proof theory
of these constructibility quantifiers are much the same as those of
ordinary, existential quantifiers, but the constructibility quantifiers
have a different meaning. Chihara argues that, unlike ordinary
quantifiers, his constructibility quantifiers do not carry ontological
commitment. Common sense supports this—to the extent that the
notion of ontological commitment is part of common sense. If
someone says, for example, that it is possible to construct a new
distillery on the Isle of Skye, she is not asserting the existence of
such a distillery, nor the existence of a shadowy entity called a
‘possible distillery’, nor the existence of a possible world containing
such a distillery. She only makes a statement about what it is pos-
sible to do.

The formal language developed by Chihara in Constructibility and
Mathematical Existence (1990) has infinitely many different kinds (or
‘sorts’) of variables. Level 0 variables range over ordinary (presum-
ably material) objects, like cats, people, and rocks. These variables
can be bound by standard existential and universal quantifiers (and
not by constructibility quantifiers). Level 1 variables range over open
sentences satisfied by ordinary objects. So, for example, the above
sentences x is a cat’” and ‘“x loves someone’” would be in the range of



NO THEY DON'T 241

the level 1 variables. Consider the pair of shoes in the rightmost box
in my closet. A set-theorist would be tempted to think of this as a
set S with two members. In Chihara’s language we would instead
speak of the open sentences ‘x is a shoe in the rightmost box in my
closet’. Let c be the left shoe in that pair. For the set-theorist, ¢ is a
member of S, written ce S. For Chihara, ¢ satisfies the given open
sentence.

Level 1 variables can be bound by constructibility quantifiers
(and not by ordinary quantifiers). The language does not speak of
existing open sentences in English or any other language. Instead, it
speaks of what kinds of open sentences are possible. Suppose that
we want to refer to a particular pair of shoes, but our language
lacks the resources to pick out this pair. Then we would envision an
expansion of the language that does have this resource.

Moving on, level 2 variables range over open sentences satisfied
by level 1 open sentences. These open sentences correspond to sets
of sets. For example, suppose a set-theorist wanted to speak of the
set of pairs of shoes in my closet. In Chihara’s language we would
use an open sentence like ‘@ is an open sentence describing two
matched shoes in my closet’ instead. This open sentence is in the
range of the level 2 variables, since the variable a is itself of level 1
(and ranges over open sentences satisfied by ordinary objects like
shoes). Again, level 2 variables can be bound by constructibility
quantifiers, and not by ordinary quantifiers. In general, for each
n>1, level n variables range over open sentences satisfied by the
items in the range of level n — 1 variables. All of the open-sentence
variables can be bound by constructibility quantifiers, and not by
ordinary quantifiers.

Despite the talk of the ‘construction’ of open sentences, Chihara
(1990) is not out to revise mathematics. His programme is an
attempt to have the bulk of contemporary mathematics come out
true on an ontologically austere reading. Unlike the development in
his earlier Ontology and the Vicious Circle Principle (1973), the system
here allows impredicative definitions at each level. If ®(a) is any
formula in which the level 1 variable a occurs free, there is an
axiom asserting that it is possible to construct an open sentence (of
level 2) which is satisfied by all and only the level 1 open sentences
that would satisfy ®(a) (if only they existed). The formula ® may
contain bound variables of any level. So we assert the constructibil-
ity of a given level 2 open sentence by referring to what kinds of
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higher-level open sentences can be constructed. Chihara argues for
this impredicativity on the ground of the nature of the modality
involved. The impredicative feature of the system allows classical,
non-constructive mathematics to be developed in it, and it is this
feature that puts the system at odds with Chihara’s earlier work and
with intuitionism (see ch. 7).

All told, then, Chihara’s (1990) system is quite similar to that of
ordinary, simple type theory (see ch. 5, §2). Chihara shows how to
render any sentence of type theory into his system: replace vari-
ables over sets of type n with level n variables over open sentences,
replace membership (or predication) with satisfaction, and replace
quantifiers over variables of level 1 and above with constructibility
quantifiers. So the existence of sets of sets of sets of objects, or
attributes of attributes of attributes of objects, is replaced with the
possible construction of level 3 open sentences.

It would be routine to translate from Chihara’s language back to
that of simple type theory. So Chihara’s system is formally equiva-
lent to that of simple type theory. There is, however, an important
philosophical difference between them. Suppose that a mathemat-
ician proves a sentence of the form, ‘there is a type 3 set x such that
®(x)’. This presupposes the existence of a set of sets of sets. How
does one verify the existence of such an abstract object? The nom-
inalist denies the existence of such things. The analogue of the
theorem in Chihara’s system has the form ‘it is possible to con-
struct a level 3 open sentence s such that ®*(s)’ Chihara shows that,
in some cases at least, we can verify the counterpart sentence by
actually constructing the open sentence s, or indicating how to
construct the sentence.

With admirable attention to detail, Chihara goes on to develop
arithmetic, analysis, functional analysis, and so on in pretty much
the same way as they are developed in simple type theory. For
example, there is a theorem that it is possible to construct an open
sentence (of level 2) which is satisfied by all and only the level 1
open sentences that are satisfied by exactly four objects. This open
sentence plays the role of the number 4 in the account of
arithmetic—just as the set of all 4-membered sets (or the attribute
of all attributes that hold of exactly four things) plays the role of
the number 4 in Frege’s and Russell’s logicism. To be specific, the
theorem asserting the constructibility of this open sentence plays
the role of the theorem of type theory asserting the existence of the
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relevant set (or attribute). Recall that, in order to develop arith-
metic, Russell invoked a principle of infinity asserting the existence
of infinitely many objects. Chihara has a corresponding modal
principle that there could be infinitely many objects. If open sen-
tences corresponding to the natural numbers were constructed,
they would exemplify the structure of the natural numbers. That is
the point.

In the standard treatment of real analysis in type theory, a real
number is defined to be a set of natural numbers. In the corres-
ponding account here, a real number would be an open sentence
satisfied by the kind of open sentences that correspond to natural
numbers. Both the original treatment and this counterpart are
somewhat artificial. Chihara provides a second interesting and
insightful development of real analysis in terms of the possibility of
constructing objects with various lengths. Each axiom of real
analysis, including the completeness principle, corresponds to a
statement of which constructions are possible. Again, were the
relevant system of possible open sentences to be constructed, they
would exemplify the real number structure.

In Chihara’s system, there is a sentence equivalent to the
following:

For every level 3 open sentence @, if @ can be satisfied by uncount-
ably many surrogate natural number open sentences, then  can be
satisfied by continuum-many such open sentences.

Such a sentence is obtained by translating a type-theoretic ver-
sion of the continuum hypothesis into Chihara’s language. Since
Chihara is a realist in truth-value, then presumably this sentence is
fully objective, and of course, it is independent of the axioms of the
system. So Chihara must join the realists in the attempt to develop
rational ways to adjudicate the truth-values of such sentences.

3. What Should We Make Of All This?

John P. Burgess and Gideon Rosen’s A Subject With No Object (1997)
provides a broad-ranging and detailed critical account of pro-
grammes to develop mathematics (or the mathematics used in sci-
ence) without reference to abstract objects like numbers and sets.
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Their title indicates what mathematics would be like if one of these
programmes succeeded, namely, a subject with no object. The
book provides important perspective and insight into the main
issues of this chapter and the previous one.

One fundamental question concerns the motivation for realism in
ontology as well as the motivation for nominalism. Why should one
believe in the objective existence of abstract objects like numbers
and sets? Why should one demur from that belief? Burgess and
Rosen describe a ‘stereotypical nominalist” who focuses on the epi-
stemic difficulties with abstract objects. The nominalist points out
that it is a downright mystery how human beings, as physical crea-
tures in a physical universe, can have knowledge of the eternal,
detatched, acausal mathematical realm. He argues that, since there
are no causal connections between mathematical entities and our-
selves (Maddy 1990 notwithstanding), then the ontological realist
cannot account for mathematical knowledge without postulating
some muystical abilities to grasp the mathematical universe. Here
the nominalist might poke fun at Godel’s postulated faculty of
mathematical intuition, often characterized as just such a mystical
ability (see ch. 8, §1). Burgess and Rosen point out that a crucial link
in the nominalist’s argument is the so-called ‘causal theory of
knowledge’, a general thesis that we cannot know anything about
any objects unless we have a causal connection with at least sam-
ples of the objects. This constraint imposes severe restrictions on
what can be known, and runs against what untutored common
sense takes to be knowledge (of mathematics). Neither the litera-
ture on causal theories in epistemology nor on anti-realism in
ontology in the philosophy of mathematics contains an argument
in favour of a general causal constraint, nor has anyone articulated
just what type of causal relations are required for knowledge.
Instead of providing these arguments, the stereotypical nominalist
shifts the burden onto the ontological realist to provide an accept-
able epistemology for mathematical objects.

What of the stereotypical anti-nominalist—what we call here a
‘realist in ontology’? Burgess and Rosen describe her as a natural-
ized epistemologist, rejecting first philosophy and holding that sci-
ence gives us our best line on knowledge (see ch. 1, §2). If math-
ematics is used in our best science, then mathematics is true and
mathematical entities exist. This, of course, is the Quine-Putnam
indispensability argument we encountered in chapter 8, §2. Burgess
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and Rosen sum up the stereotype as follows: “We [ontological real-
ists] come to philosophy believers in a large variety of mathemat-
ical and scientific theories—not to mention many deliverances of
common sense—that are up to their ears in suppositions about
entities nothing like concrete bodies we can see or touch, from
numbers to functions to sets ... from shapes to books to lan-
guages . .." (p.34). The stereotypical ontological realist thus shifts
the burden over to the nominalist, and insists that the nominalist
provide scientific reasons against the existence of mathematical
objects. Appeals to philosophical intuition or to some ‘generaliza-
tions from what holds for the entities with which we are most
familiar to what must hold for any entity whatsoever’ are not
acceptable to the typical ontological realist described by Burgess
and Rosen.

So, at the level of stereotypes, Burgess and Rosen have each side
claiming the high ground and putting the burden on the oppos-
ition. Moreover, each side suggests that the burden of proof is so
incredibly hard that it cannot be met. Supposedly, the realist in
ontology cannot really show how mathematical knowledge can be
squared with the abstract nature of mathematical objects, and the
nominalist cannot really give cogent scientific reasons why the best
scientific theories have to be revised in order to eliminate reference
to mathematical objects.

Burgess and Rosen note that many contemporary philosophers
of mathematics concede that undermining the indispensability
argument is sufficient to establish nominalism. In other words,
many parties to the debate agree that we are warranted in belief in
mathematical objects if and only if mathematics is indispensable for
science.’® This is to hold that: (1) it is the ontological realist that has
the initial burden of proof, and (2) the indispensability argument is
really the only one to take seriously (following Field; see §1 above).
Undermining that one argument puts the issue back at the default
state, where the realist has the unbearable burden. Burgess and
Rosen suggest that the realist should not agree to this framework,
in part because the issue of burden of proof should not be decided
so quickly.

' In the next section we briefly encounter an exception. Mark Balaguer argues
that even if mathematics proves indispensable to science, we are still unjustified in
accepting the existence of mathematical objects.
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Notice, incidentally, that the focus on indispensability, by both
sides of the debate, shows the influence of Quine in North Ameri-
ca. On the more traditional view that mathematical knowledge is a
priori, one would think that the last place one would look to justify
belief in mathematical entities would be an empirical enterprise
like science. On traditional views, mathematical objects exist of
necessity (if they exist at all), and science only tells us of contingent
existence. So, on the traditional view, the role of mathematics in
science would not even count as an argument in favour of onto-
logical realism about mathematics, let alone as the one and only
serious argument. As Neil Tennant (1997: 309) put it, claims about
the role of mathematics in science are ‘not strictly relevant to the
philosophical problem of the existence of numbers’, or at least not
as that problem has been traditionally conceived (see also Tennant
1997a).

Recall that the above anti-realist programmes all invoke extra
conceptual resources. Field posits a realm of space-time points and
regions, and he uses a stronger logic. Chihara invokes a modal
constructibility operator and resources needed to define the seman-
tic notion of satisfaction. The situation is typical of ontological
anti-realist programmes. In Quinean terms, they trade ontology for
‘ideology’. Burgess and Rosen pay careful attention to the tradeoffs
involved, analysing what exactly is required in each case, and
whether the bargains are worthwhile.

Recall that the stereotypical nominalist rejects mathematical
objects on the ground that human beings, as physical entities, can-
not have knowledge of causally inert abstract objects. He argues
that his opponent cannot sustain the burden of giving a naturalistic
epistemology for mathematics. Notice, however, that Field has the
burden of providing an epistemology for the highly abstract struc-
ture of space-time, and Chihara has the burden of explaining our
knowledge of the modal truths invoked in the programme. How
do human beings, as physical organisms in a physical universe, have
such detailed knowledge of what is possible concerning such
abstruse constructions as iterated satisfiability sentences (see
Shapiro 1993)?

Another fundamental question concerns what is claimed on
behalf of each reconstruction of mathematics or mathematical
physics. Assume, for the moment, that we do have an acceptable
physics which does not invoke mathematical objects—via one of
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the nominalistic reductions. What would, or should, the nominalist
(or a neutral observer) conclude? What is the austere nominalistic
theory to be used for? Burgess and Rosen propose two orientations.
The revolutionary approach is to claim that the nominalistic theory
is superior to standard mathematical physics, and so should replace
it. On this approach, Field would be insisting that scientists start
using the synthetic theories instead of their comfortable ‘platonis-
tic’ counterparts; Chihara would be claiming that scientists should
use his system concerning the constructibility of open sentences in
place of the usual mathematics involving numbers and sets
(although neither Field nor Chihara makes this claim).

There is a further distinction, which invokes a matter from
chapter 1, §2. A first-philosophy orientation would be to insist that
the nominalistic science should be preferred over the received
mathematical science on a priori, metaphysical grounds that stand
prior to the criteria used by scientists in selecting their theories.
That is, the nominalist claims that philosophical analysis reveals that
mathematical objects are pernicious, and he admonishes scientific
colleagues to conform to this scruple. Given the focus on
indispensability, few parties to the debate follow the first-
philosophy route, and Burgess and Rosen do not give it more than a
passing mention.

The naturalistic revolutionary nominalist argues that the austere
nominalistic theories are superior to ordinary scientific theories on
ordinary scientific grounds. In other words, she claims that there
are good scientific reasons to prefer theories that eschew mathemat-
ical objects. Burgess and Rosen patiently remind us that profes-
sional philosophers are not the ones to adjudicate questions of
scientific merit. If any of the ontological anti-realists are tempted
by the naturalist, revolutionary approach, they should submit their
work to a mainstream physics journal.

If Field or Chihara were to follow this flippant suggestion, the
best result they could hope for would be a polite note from the
editor suggesting that the author try a philosophical outlet. The
serious point underlying Burgess and Rosen’s suggestion is that
only scientists (including editors of professional scientific journals)
are to determine what counts as scientific merit. And for a natural-
ist, what else counts as merit? The fact is that scientists are not much
interested in eliminating reference to mathematical objects. The
nominalist has to show them that, by standards which they have
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implicitly adopted, scientists should eschew reference to mathemat-
ical objects.

To bolster their point, Burgess and Rosen provide a list of criteria
of scientific theory-choice that most observers have noted and
accepted: (i) correctness and accuracy of predictions; (ii) precision,
range, and breadth of predictions; (iii) internal rigour and consist-
ency; (iv) minimality or economy of assumptions in various
respects; (v) consistency and coherence with familiar, established
theories (or failing this, minimality of change); (vi) perspicuity of
the basic notions and assumptions; and (vii) fruitfulness, or capacity
for extension. They conclude that the nominalist: ‘seems to be
giving far more weight to factor (iv), economy, or more precisely, to
a specific variety thereof, economy of abstract ontology, than do
working scientists. And the reconstructive nominalist seems to be
giving far less weight to factors (v) and (vi), familiarity and perspi-
cuity’ (p. 210).

So much for the revolutionary approach to nominalism. Burgess
and Rosen suggest another approach. The hermeneutic option is to
claim that the reconstructed nominalistic theory provides the
underlying meaning of the original scientific theory. The philosopher
argues that, despite appearances, properly understood mathemat-
ical physics—as it stands—does not invoke mathematical objects. It
is hard to square this approach with Field’s account (since he takes
the mathematics at face value). Chihara would be claiming that the
mathematical talk about real numbers and the like is actually talk
about what open sentences can be constructed. From this perspec-
tive the scientist is to go on doing science as before, using the
mathematics. There are no ontological commitments in actual sci-
entific language.

Let P be a scientific statement that makes reference to, say, real
numbers, and let P’ be a nominalistic reconstrual of P. The her-
meneutic nominalist claims that P and P’ have the same meaning,
and so, despite appearances, P does not really make any reference
to real numbers. Burgess and Rosen point out that if P and P’ do
have the same meaning, then the realist in ontology is justified in
reading the opposite conclusion: despite appearances, P " does make
reference to real numbers, since it has the same meaning as P. After
all, synonymy is a symmetric relation—if P ‘really means’ P’, then
P’ ‘really means’ P—and synonymous expressions share their
ontological commitments. So, for example, talk of the constructi-
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bility of open sentences actually invokes real numbers, despite
appearances.

Of course, the ontological anti-realist denies this. So our her-
meneutic nominalist must go beyond a claim of synonymy. He
proposes an asymmetry between ordinary statements like P and
their ontologically austere translations P* . He argues that the nom-
inalistic P provides something like the underlying deep structure
of P, and not vice versa. Burgess and Rosen then modestly point
out that this is an empirical claim, and so should be referred to
experts, such as linguists, who can determine what English sen-
tences mean. Burgess and Rosen go on to provide considerations
against the hermeneutic nominalist, by reflecting on the method-
ology of scientific linguistics.

So Burgess and Rosen argue that neither the (naturalistic) revo-
lutionary approach nor the hermeneutic approach has much of a
chance of success, so long as success is understood in scientific
terms. And what other terms are available here, by what looks like
a common agreement on the force of the indispensability
considerations?

Burgess and Rosen do not attempt to interpret particular philo-
sophers, like Field and Chihara, as either revolutionary or hermen-
eutic nominalists. I suspect that Field and Chihara would accuse
Burgess and Rosen of proposing a false dilemma, claiming that the
revolutionary approach and the hermeneutic approach do not
exhaust the options for understanding their programmes. They
sometimes speak of the ways that science could proceed—
independently of whether it would be best for science to proceed
that way—and then they draw philosophical morals from this
modal claim. Here we will leave this issue with a challenge for the
ontological anti-realist to articulate just what he or she claims on
behalf of the detailed reconstructive system.

4. Addendum: Young Turks

I close this chapter with brief accounts of two recent books that
take a fresh approach to the age-old problem concerning the exist-
ence of mathematical objects. In different ways, the authors pro-
pose that philosophical arguments are, and in some sense must be,
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insufficient to determine whether mathematical objects—sets and
numbers—exist independent of the mathematician. They propose
that the issue be transcended.

As we have seen above—several times—a fundamental problem
for realism in ontology is to show how it is possible to refer to, and
know things about, mathematical objects if we have no causal con-
tact with such objects. The authors considered in this section sug-
gest that a deeper, and more fruitful question concerns why the
causal inertness of mathematical objects seems to play no role in
mathematics itself, or in science for that matter. What is it about
the practice of mathematics and science that allows them to pro-
ceed with terms that refer to objects with which we have no causal
contact? What does this say about mathematical objects?

The main focus of Jody Azzouni's Metaphysical Myths, Mathe-
matical Practice (1994) is the nature of reference and truth in
mathematics. How do these differ from their counterparts in
ordinary language and the empirical sciences? Matters of ontology
are not far away from centre-stage, since one cannot settle the
nature of reference without some account of what it is that
we refer to. Azzouni suggests that mathematical practice fixes
mathematical reference if anything does, and so the philosopher
needs to pay attention to practice.

A postulate system is a collection of axioms. As we saw in Chapter
6, §§2-4, the plan to identify each branch of mathematics with a
single postulate system failed, at least when it comes to describing
deductive mathematical practice. This is a lesson of incomplete-
ness. Azzouni proposes that a live branch of mathematics, such as
arithmetic or real analysis, corresponds to an open-ended family of
postulate systems. The systems are embedded in each other, and
there is no determinate, fixed boundary to the postulate systems of
each branch. The various systems are adopted by consensus in the
mathematical and scientific communities.

Azzouni (1994: 87) suggests that the ontology—or ‘ontological
commitment’—of a branch of mathematics is a matter of gram-
mar: ‘when utilizing a system I', one “commits oneself” to the
systematic commitments of I'.” So when the community accepts
the postulate systems for arithmetic, including the Peano axioms,
they commit themselves to the existence of numbers. This is all
there is to the question of ontology. For a mathematician working
in a branch of mathematics, a proposition is true if it follows from a
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postulate system of that branch. That is all there is to truth. As this
all-too-brief synopsis indicates, Azzouni’s account of reference and
ontology relies heavily on convention."

Suppose that a singular term t refers to an object o in a given
discourse. According to Azzouni, the reference to o is thick if there
is an epistemology that explains this reference via causal interaction
between ourselves and objects of the same type as o. Reference to
ordinary medium-sized physical objects and reference to concrete
theoretical objects (like molecules) is thick. As we saw in the previ-
ous chapter, Burgess and Rosen’s (1997) ‘stereotypical’ nominalist
insists that all reference is thick, and so this philosopher demands
that the realist show that we have thick reference to numbers and
sets. Presumably, this is impossible. For Azzouni, reference to an
object o is thin if the reference occurs by postulating a theory,
where the theory is accepted for its role in organizing our experi-
ence. For Quineans, all reference is thin in this sense. Reference to ¢
is ultrathin if the reference is stipulated purely by posit.'* In this case.
the posit is all there is to reference, and so there is no account of the
nature of the object o.

Azzouni’s view is that mathematical reference is ultrathin. He
shows how such reference is nevertheless ‘non-local’ in that the
terms can have a common reference in different postulate systems. If
a branch of mathematics contains two overlapping systems, then the
common terms have the same reference, albeit ultrathinly, in that
branch. For example, convention has it that natural numbers are real
numbers. So the 2’ of the natural numbers refers to the same object
as the 2’ of the real numbers, again in an ultrathin manner.

Azzouni illustrates and supports his account of mathematical
reference by contrasting ultrathin mathematical reference with
thick reference to physical objects. His interesting insight flows
from a careful analysis of the different kinds of referential errors
that are possible in the two cases. That is, Azzouni supports his
account of the special status of mathematical reference by taking a
close look at the sorts of mis-reference that occur in mathematics
and empirical discourses.

"' Azzouni argues that his account escapes the well-known problems with the
notion of ‘truth by convention’ (e.g. Quine 1936).

"2 Azzouni’s views on reference and ontology have evolved since Metaphysical
Myths. Later work (1997, 1997a, 1998) makes careful distinctions between causality
and epistemic role.
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Azzouni explains the applicability of mathematics to the
material world by the human ability to select useful postulate sys-
tems. He agrees with the Quineans that we do not know a priori, or
incorrigibly, that current mathematics will remain part of our best
empirical science. Like Quine, Azzouni attempts to explain what
led our ancestors to believe that mathematics is necessary and
knowable a priori. Unlike Quine, he argues that our intuitive beliefs
about mathematics cannot be explained by citing the centrality of
mathematics in science. Part of Azzouni's answer is that deriv-
ability from postulate systems, via basic logic, is independent of
any particular thesis of empirical science. However, our intuitive
beliefs about mathematics are robust, subtle, and complex. I cannot
do justice to Azzouni’s detailed treatment of them.

Mark Balaguer’s Platonism and Anti-Platonism in Mathematics
(1998) argues for some surprising and bold conclusions. First, there
is exactly one tenable version of ‘platonism’, or what we call here
‘realism in ontology’. Moreover, this one view is invincible,
immune to any and all rational challenges. Second, there is exactly
one tenable version of ‘anti-platonism’, or nominalism, and this
one view is likewise invincible. Thus, there is no way to determine
whether mathematical objects exist or not. Balaguer’s third conclu-
sion is the boldest of all: the epistemic dilemma is due to there
being no fact of the matter as to whether mathematical objects
€xist or not.

Balaguer’s single defensible ontological realism is called ‘Full-
Blooded Platonism’. The thesis is that all possible mathematical
objects exist. Thus, if I' is any logically possible theory, then there
exists some class C of mathematical objects such that I is true of C.
In other words, every possible theory is a correct description of
some chunk of the mathematical universe.

According to Balaguer, the most important objection to realism
in ontology is the aforementioned complaint that humans cannot
know anything about mathematical objects since there are no
causal interactions between humans and abstract mathematical
objects. Full-Blooded Platonism—and only Full-Blooded Plato-
nism—answers that objection. According to that view, for some-
one to have knowledge that the propositions of a given theory I’
are true, she does not need causal contact with the objects of I". For
Balaguer argues that if Full-Blooded Platonism is correct, then
knowledge that I is possible suffices for knowledge that I is true
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(of some part of the mathematical universe). Moreover, knowledge
that I'is possible does not require any contact with the objects of I'.
If T is possible and a mathematician reasons within I', she need not
worry about whether its terms denote. Full-Blooded-Platonism
assures us that there are such objects.

Balaguer identifies ‘possibility” with consistency. So the essence
of Full-Blooded Platonism is a slogan of the early Hilbert: consist-
ency implies existence. Recall Hilbert’s response to a charge made
by Frege: ‘if ... arbitrarily given axioms do not contradict each
other with all their consequences, then they are true and the things
defined by them exist. This is for me the criterion of truth and
existence.’" So it seems that Full-Blooded Platonism comes close to
some versions of formalism, with the added clause that if a theory
is consistent, then it is true of something. The formalist concludes
that this added metaphysical clause plays no role in the practice of
mathematics or science.

As it emerged from the Hilbert programme, consistency is a
mathematically defined concept, applying to sets of sentences in a
formal language. Formal languages are themselves mathematical
objects, subject to study by mathematical methods. In other words,
as the notion has come to be understood in contemporary math-
ematics and philosophy, consistency is itself a mathematical notion.
So Balaguer’s Full-Blooded Platonist reduces mathematical exist-
ence to consistency, but this last is a mathematical notion like any
other. Circularity threatens. This is part of the reason why the later
Hilbert (and other formalists, like Curry) took meta-mathematics
to be outside the purview of formalism (see ch. 6, §§3, 5). For
Hilbert, finitary meta-mathematics has a ‘content’ unlike the rest of
mathematics.

To illustrate this point, notice that the two most common expli-
cations of ‘consistency’ come from model theory and proof theory.
A set I' of sentences is satisfiable if there is a model that satisfies
every member of I". This definition is in the language of set theory.
According to the Full-Blooded Platonist, set theory is true of some
part of the mathematical universe (assuming that set theory is

"* See ch. 6, §2. The Frege-Hilbert correspondence is published in Frege 1976
and translated in Frege 1980. Of course, Hilbert and Balaguer may not be using
‘truth’ and ‘existence’ in the same way. Balaguer is aware that when a mathemat-
ician says that a sentence (or theory) @ is true, she does not merely mean that @ is
consistent.
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consistent). But why think that matters in this chunk of the math-
ematical realm determine what exists elsewhere? Similarly, a set I
of sentences is proof-theoretically consistent if there is no deriv-
ation of a contradiction from it. Derivations are understood as
mathematical objects in their own right, structurally similar to nat-
ural numbers. Again, why think that matters in this chunk of the
mathematical universe play a role in the whole universe?

Balaguer responds that the notion of consistency at work in
Full-Blooded Platonism is neither the proof-theoretic notion of
consistency nor the model-theoretic notion of satisfiability. Rather,
consistency is a primitive notion that we already understand. Pre-
sumably, the primitive notion of consistency is a property of collec-
tions of English (or Greek, French, etc.) sentences. Proof-theoretic
consistency and derivability somehow provide information about
the extension of the primitive notion of consistency. For example,
if a formal theory is satisfiable, then a translation of it into English
is really consistent, and if a theory is really consistent, then it is not
possible to derive a contradiction from a formalization of it.

Balaguer’s (primitive) notion of consistency cannot be a math-
ematical notion at all. If it were, then it would be tied to a particu-
lar mathematical theory, like any mathematical notion is (according
to Full-Blooded Platonism anyway). If this ‘consistency theory’ (or
perhaps meta-mathematics) were itself consistent, then the Full-
Blooded Platonist would declare it to be true of some part of the
mathematical universe. This, however, does not do justice to the
role that consistency plays in Full-Blooded Platonism. Consistency
is the epistemic criterion for existence for the entire mathematical
realm, not just the small neighbourhood described by the consist-
ency theory. Knowledge that a given theory is consistent should not
itself require knowledge of abstract mathematical objects. Accord-
ing to Full-Blooded Platonism, it is supposed to go the other way
around: knowledge of the existence of abstract objects falls out of
knowledge of consistency. So the Full-Blooded Platonist must have
a separate account of (knowledge of) consistency, different from
(and prior to) his general account of mathematical knowledge—
and mathematics generally.

Balaguer’s treatment of nominalism has the same format as his
treatment of realism in ontology. He argues that there is only one
argument against nominalism that has ‘a serious claim to cogency’.
namely the aforementioned Quine-Putnam indispensability argu-
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ment (Balaguer 1998: 95). How can we account for the applications
of mathematics to science without holding that mathematical
objects exist? And Balaguer holds that there is exactly one version
of nominalism that emerges unscathed, namely Hartry Field’s fic-
tionalism (see §1 above).

There are two ways for the fictionalist to respond to the problem
of applicability. One is to follow Field and try to show that math-
ematics is not indispensable for science. As indicated above, this is
to give a version of each legitimate scientific theory in a nominal-
istic language, and then to show that adding mathematics to these
theories does not yield any new consequences in the nominalistic
language. Balaguer devotes a chapter to responding to one objec-
tion to the Field programme, and he seems to believe that there are
true, nominalistic theories of the physical world. However, he is
prepared for an outcome that the Field programme ultimately fails,
in which case mathematics would be indispensable for science.
Balaguer argues that, even so, the philosopher should not concede
the existence of mathematical objects. Instead, one can provide a
fictionalist account of the applicability of mathematics. Balaguer
suggests that mathematics provides a ‘theoretical apparatus’ or
‘descriptive framework’ for developing theories about the physical
world. In science (and elsewhere) we make statements about fic-
tional mathematical entities in order to describe the non-
mathematical universe.

If mathematics is indeed indispensable, then we cannot describe
the physical world without invoking mathematics. Nevertheless,
Balaguer’s fictionalist maintains that indispensability does not pro-
vide compelling evidence for the existence of mathematical objects.
Since mathematical objects are causally inert, the physical world
would be the way it is whether or not there are any of these
mathematical objects. So even if we need to use mathematical
language (invoking mathematical objects) in order to describe the
physical world, nothing about the physical world—or our theories
of it—counts as evidence for the existence of mathematical objects.
We would have the same ‘data’ whether mathematical objects exist
or not.

Again, Balaguer does not think the Field programme will fail,
but who knows what sorts of theories future scientists will develop?
If the Field programme does fail, then Balaguer’s fictionalist con-
cedes that we cannot completely describe what is real without
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invoking entities that do not exist. In the light of indispensability,
the fictionalist prefers this strange outcome to committing a logical
fallacy and giving up the fictionalism.

Suppose, then, that Balaguer is correct in the bold claims
sketched here, that neither Full-Blooded Platonism nor fictionalism
are refuted by the best arguments brought against them. Then the
neutral philosopher of mathematics is at a loss, at least for the
moment. We have no way to determine whether mathematical
objects exist. Balaguer goes further, arguing that the standoff
between Full-Blooded Platonism and fictionalism is robust: ‘we can
never have’ an argument that rationally compels one to accept the
existence of mathematical objects, and we can never have an argu-
ment that rationally compels one to deny the existence of math-
ematical objects. If Balaguer is right about this, the standoff must
continue forever. There is no rational adjudication of the dispute
between realism in ontology and its opposite.

Balaguer then goes from this epistemic conclusion to the meta-
physical thesis that there is just no fact of the matter as to whether
mathematical objects exist. He argues that if there are truth condi-
tions for a sentence like ‘numbers exist’, they are determined by the
way our language is used (for example, the meanings of the terms,.
He then argues that nothing in the use of language determines
truth conditions for this sentence. So ‘numbers exist” does not have
truth conditions at all. It is neither true nor false.

5. Further Reading

The primary works considered in this chapter are Field 1980,
Chihara 1990, Burgess and Rosen 1997, Azzouni 1994, and Balaguer
1998. Of these, the Field programme has generated the most dis-
cussion in the literature. Virtually every philosophy journal has
published a review of the book, and several have included detailed
critical studies of aspects of it. Some of the prominent criticisms
are referenced and discussed in Field 1989. The second half of
Chihara 1990 has some detailed criticisms of the Field programme
as well.
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STRUCTURALISM

His concluding chapter presents a philosophy of mathematics,
Tcalled structuralism, that emerged from developments in logic
and mathematics earlier this century. Its main defenders include
Paul Benacerraf (1965), Geoffrey Hellman (1989), Michael Resnik
(e.g. 1997), and myself (e.g. Shapiro 1997)." The slogan is that
mathematics is the science of structure.

Most structuralists are realists in truth-value, holding that each
unambiguous sentence of, say, arithmetic and analysis, is true or
false, independent of the language, mind, and social conventions of
the mathematician. However, structuralists differ over the existence
of mathematical objects. Benacerraf and Hellman articulate and
defend versions of the view that do not presuppose the existence of
mathematical objects, while Resnik and myself are realists in ontol-
ogy, after a fashion. Our versions of structuralism have ramifica-
tions for basic notions like existence, object, and identity, at least as
those items are used in mathematics.

1. The Underlying ldea

Recall that a traditional platonist, or realist in ontology, holds that
the subject-matter of a given branch of mathematics, like arith-
metic or real analysis, is a collection of objects that have some sort
of ontological independence. Resnik (1980: 162) defines an ‘onto-
logical platonist’ to be someone who holds that ordinary physical

! This chapter is based loosely on Shapiro 1997: chs. 3 and 4.
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objects and numbers are ‘on a par’. For such a philosopher, num-
bers are the same kind of thing—objects—as automobiles, only
there are more numbers than automobiles and numbers are
abstract and eternal.

To pursue the analogy, our platonist might attribute some sort
of ontological independence to the individual natural numbers.
Just as each automobile is independent of every other automobile,
each natural number—as an individual object—is independent
of every other natural number.” Perhaps the idea is that one can
give the essence of each number without invoking other numbers.
The essence of the number 2 does not involve the number 6 or the
number 6,000,000.

The structuralist vigorously rejects any sort of ontological
independence among the natural numbers. The essence of a nat-
ural number is its relations to other natural numbers. The subject-
matter of arithmetic is a single abstract structure, the pattern
common to any infinite collection of objects that has a successor
relation, a unique initial object, and satisfies the induction principle.
The number 2 is no more and no less than the second position in
the natural number structure; and 6 is the sixth position. Neither of
them has any independence from the structure in which they are
positions, and as positions in this structure, neither number is
independent of the other.

To be sure, a child can learn much about the number 2 while
knowing next to nothing about other numbers like 6 or 6,000,000.
But this epistemic independence does not preclude an ontological
link between the natural numbers. By analogy, one can know a
great deal about a physical object, like a baseball, while knowing
next to nothing about molecules and atoms. It does not follow that
the baseball is ontologically independent of its molecules and
atoms.

The natural number structure is exemplified by the strings on a
finite alphabet in lexical order, an infinite sequence of distinct
moments of time, and an infinite sequence of strokes:

I I

Similarly, real analysis is the study of the pattern of any complete

? I do not know if this thesis of ontological independence can be made out
coherently. After all, the typical platonist holds that natural numbers exist of
necessity, and so there is no sense of some of them existing but not others.
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real closed field. Group theory studies not a single structure, but a
type of structure, the pattern common to collections of objects
with a binary operation, an identity element thereon, and inverses
for each element. Euclidean geometry studies Euclidean-space-
structure, topology studies topological structures, and so on.

Define a system to be a collection of objects with certain relations
among them. A corporate hierarchy or a government is a system of
people with supervisory and co-worker relationships; a chess con-
figuration is a system of pieces under spatial and “possible move’
relationships; a language is a system of characters, words, and sen-
tences, with syntactic and semantic relations between them: and a
basketball defence is a collection of people with spatial and ‘defen-
sive role’ relations. Define a pattern or structure to be the abstract
form of a system, highlighting the interrelationships among the
objects, and ignoring any features of them that do not affect how
they relate to other objects in the system.

One way to apprehend a particular pattern is via a process of
abstraction. One observes several systems with the structure, and
focuses attention on the relations among the objects—ignoring
those features of the objects that are not relevant to these relations.
For example, one can understand a basketball defence by going to a
game (or several games) and noticing the spatial relations and roles
among the players on the team without the ball, ignoring things
like height, hair colour, and field goal percentage, since these have
nothing to do with the defence system.

In these terms, the structuralist holds that (pure) mathematics is
the deductive study of structures as such. The subject of arithmetic
is the natural number structure and the subject of Euclidean geom-
etry is Buclidean space structure. In mathematics, these structures
are studied independently of any instances they may have in the
non-mathematical realm. In other words, the mathematician is
interested in the internal relations of the places of these structures.
As Resnik put it:

In mathematics, I claim, we do not have objects with an ‘internal’ com-
position arranged in structures, we have only structures. The objects of
mathematics, that is, the entities which our mathematical constants and
quantifiers denote, are structureless points or positions in structures. As
positions in structures, they have no identity or features outside a struc-
ture. (Resnik 1981)
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Take the case of linguistics. Let us imagine that by using the abstractive
process ... a grammarian arrives at a complex structure which he calls
English. Now suppose that it later turns out that the English corpus fails in
significant ways to instantiate this pattern, so that many of the claims
which our linguist made concerning his structure will be falsified.
Derisively, linguists rename the structure Tenglish. Nonetheless, much of
our linguist’s knowledge about Tenglish qua pattern stands; for he has
managed to describe some pattern and to discuss some of its properties.
Similarly, I claim that we know much about Euclidean space despite its
failure to be instantiated physically. (Resnik 1982)

Of course, some of the examples mentioned above are too sim-
ple to be worthy of the mathematician’s attention. What can we
prove about a basketball defence? There are, however, non-trivial
theorems about chess games. For example, it is not possible to force
a checkmate with a king and two knights against a lone king. This
holds no matter what the pieces are made of, and even whether or
not chess has ever been played. This fact about chess is a more-or-
less typical mathematical theorem about a certain structure. Here,
it is the structure of a certain game.

Let us briefly return to a matter that arose in the discussion of
Hartry Field’s (1980) ‘nominalistic’ reconstruction of Newtonian
gravitational theory in §1 of the previous chapter. Field maintains
that mathematical objects do not exist, but the ontology of his
physics includes infinitely many space-time points and regions. He
argues that space-time points and regions are concrete, physical
objects, and so they are not mathematical. Field considers the nat-
ura] objection that ‘there doesn’t seem to be a very significant
difference between postulating . . . a rich physical space and postu-
lating the real numbers’. He replies:

the nominalistic objection to using real numbers was not on the grounds
of their [cardinality] or of the structural assumptions (e.g., Cauchy com-
pleteness) typically made about them. Rather, the objection was to their
abstractness: even postulating one real number would have been a viola-
tion of nominalism . . . Conversely, postulating [infinitely] many physical
entities . . . is not an objection to nominalism; nor does it become any
more objectionable when one postulates that these physical entities obey
structural assumptions analogous to the ones that platonists postulate for
the real numbers. (p. 31)

The structuralist demurs from this distinction. For her, a real
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number is a position in the real number structure. It makes no
sense to ‘postulate one real number’ since each real number is part
of a large structure. It would be like trying to imagine a point guard
independent of a basketball team, or a piece that plays the role of
the black queen’s bishop independent of a chess game. Where
would it stand? What are its moves? One can, of course, ask
whether the real number structure is exemplified by a given system
(like a collection of physical points). Then one could locate objects
that have the roles of individual numbers, just as on game day one
can identify the person who has the role of point guard on one of
the teams, or in a game of chess one can identify the pieces that are
the bishops. But it is nonsense to contemplate numbers independent
of the structure of which they are part.

Field agrees that his nominalistic physics makes substantial
‘structural assumptions’ about space-time, and he articulates these
assumptions with admirable rigour. Although Field would not
put it this way, the ‘structural assumptions’ of his space-time char-
acterize a structure much like that of R?, the quadruples of real
numbers.’ Indeed, Field proves theorems about this structure. As the
structuralist sees it, he thereby engages in mathematics, the science
of structure. The activity of proving things about space-time is the
same kind of activity as proving theorems about real numbers.
Both are the deductive study of a structure.

There are two interrelated questions concerning the ontology of
structuralism. One concerns the status of structures themselves.
What is the natural number structure, the real number structure,
and so on? Do structures exist as objects in their own right? What
of more earthly structures and patterns, like a chess configuration,
a basketball defence, or a symphony? The other group of issues
concerns the status of individual mathematical objects, the places
within the structures. What is the structuralist to say about num-
bers, geometric points, sets, and so on? Of course, these issues are
closely interrelated and we treat them together.

Since one and the same structure can be exemplified by more
than one system, a structure is a one-over-many. Entities like this

’ As noted in §1 of the previous chapter, the distinction between Field's space-
time and R* is similar to the distinction between Euclid’s synthetic geometry and
the more contemporary analytic geometry. The main difference between the
structure of Field’s space-time and the structure of R is that the latter has a frame
of reference and units for the metric.
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have received their share of philosophical attention throughout the
ages. The traditional exemplar of one-over-many is a property,
sometimes called an attribute, a universal, or a Form. All of the
different red objects in the world share the single property of red-
ness. All of the different people in the world share the property of
personhood. In more-recent philosophy, there is the type-token
dichotomy (broached in ch. 6, §§1.1, 3). The various pieces of ink,
chalk, and burnt toner in the shape ‘E’, for example, are called
tokens of the type ‘E’. Tokens are physical objects which can be
created or destroyed at will. The type is an abstract object, the shape
that they all share. So the following line:

EEEE

consists of four different tokens of the single type. A different copy
of this book would have four other tokens of that type on the
corresponding page. If the relevant page were ripped out of the
book in disgust and shredded, the tokens would thereby be des-
troyed. But (thankfully) the type would not be. The type would
survive even if every copy of the page were destroyed.

As defined above, a system is a collection of objects with some
relations on them, and a structure is the form of a system. Thus,
structure is to structured, as pattern is to patterned, as universal is
to subsumed particular, as type is to token.

Various positions in the extensive literature on universals delimit
options for structuralism. One view, traced to Plato, is that at least
some universals exist prior to and independent of any items that
instantiate them (see ch. 3, §1). Even if there were no people and no
red things, the properties of personhood and redness would still
exist. This view is sometimes called ante rem realism, and universals
so construed are ante rem universals. Ante rem universals (if such
there be) exist prior to (and so independent of) the objects that have
the universal. On this view, a ‘one-over-many’ is ontologically prior
to the ‘many’. So one cannot get rid of the type ‘E’ even by destroy-
ing every token of this letter.

An alternative to ante rem realism, attributed to Aristotle, is
that universals are ontologically dependent on their instances (see
ch. 3, §4). On this view, there is no more to redness than what all
red things have in common. Get rid of all red things and redness
itself goes with them. Destroy all people and there is no longer
such a thing as personhood. Universals so construed are called in re



STRUCTURALISM 263

universals, and the Aristotelian view is sometimes called in e realism.
Typical advocates of this view admit that universals exist, after a
fashion, but they deny that universals have any existence independ-
ent of their instances. In a sense, the universals exist only in their
instances. Ontologically, the ‘many’ comes first, and only then the
‘one-over-many’.

There are other views on universals. Conceptualists hold that
universals are mental constructions and traditional nominalists hold
that either universals are linguistic constructions or they do not
exist at all.* For the present discussion, the important distinction is
between ante rem realism and the other views. Our question is
whether, and in what sense, structures themselves exist independ-
ent of the systems of objects that exemplify them. Is it reasonable
to speak of the natural number structure, the real number struc-
ture, or Euclidean space, if there are no systems that exemplify
these structures? We consider an ante rem approach to structural-
ism in the next section and some in re approaches in the one after.

2. Ante Rem Structures, and Objects

Once again, for a structuralist a natural number is a place in a
particular infinite pattern, the natural number structure. This pat-
tern may be exemplified by many different systems, but it is the
same pattern in each case. The ante rem structuralist takes this
pattern to exist independent of any systems that exemplify it. The
number 2 is the second place in that pattern. Individual numbers
are analogous to particular offices within an organization. In a club,
for example, we distinguish the office of secretary-treasurer from
the person who happens to hold that office in a particular adminis-
tration, and in chess we distinguish the white king’s bishop from
the piece of marble that happens to play that role on a given chess
board. In a different game the very same piece of marble might play
another role, such as that of white queen’s bishop or, conceivably,

“ As noted in the previous chapter, in contemporary philosophy of mathemat-
ics ‘nominalism’ is a common term for the view that mathematical objects do
not exist. The use of the word derives from its medieval usage concerning
universals. Nominalism is a version of what I call ‘anti-realism in ontology’ (see
ch. 2, §2.1).
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black king’s rook. Similarly, we can distinguish an object that plays
the role of 2 in an exemplification of the natural number structure
from the number itself. The number is the office, the place in the
structure. The same goes for real numbers, points of Euclidean
geometry, and members of the set-theoretic hierarchy. Each struc-
ture is prior to the places it contains, just as any organization is
prior to the offices that constitute it. The natural number structure
is prior to 2, just as the club organization is prior to ‘secretary-
treasurer’, or ‘US government’ (or the Constitution) is prior to
“Vice-President’.’

In the history of philosophy, ante rem universals are sometimes
given an explanatory primacy. It might be said, for example, that
the reason the White House is white is that it has the universal of
Whiteness. Or what makes a basketball round is that it has the
universal of Roundness. However, neither Resnik nor I claim this
explanatory primacy for structures. We do not hold, for example,
that a given system is a model of the natural numbers because it
exemplifies the natural number structure. If anything, it is the other
way around. What makes the system exemplify the natural number
structure is that it has a one-to-one successor function with an
initial object and the system satisfies the induction principle. That
is, what makes a system exemplify the natural number structure is
that it is a model of arithmetic.

Ante rem structuralism resolves one problem taken seriously by
at least some platonists—or realists in ontology. Recall that Gottlob
Frege (1884) gave an eminently plausible account of the use of
number terms in such contexts as ‘the number of F is y’, where F
stands for a predicate like ‘moons of Jupiter’ or ‘cards on this table’
(see ch. 5, §1). But Frege observed that this preliminary account
does not sustain his desired conclusion that numbers are objects. He
suggested that an ontological realist must provide a criterion that
determines whether any given number, like 2, is the same or differ-
ent from any other object, say Julius Caesar. That is, Frege’s pre-
liminary account does not have anything to say about the truth
value of the identity Julius Caesar = 2’. This quandary, now

* During the recent impeachment trial, it was common for members of Con-
gress to express respect for the Office of President, while expressing contempt for
the person who held the office at the time. This is the mundane distinction invoked
here.
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known as the Caesar problem, occupies the thinking of some con-
temporary logicists (see ch. 5, §4).

Paul Benacerraf (1965) and Philip Kitcher (1983: ch. 6) raise a
variation of this problem, as an objection to realism in ontology.
After the discovery that virtually every field of mathematics can be
reduced to (or modelled in) set theory, the foundationally minded
came to think of the set-theoretic hierarchy as the ontology for all
of mathematics. Why have sets, numbers, points, and so on when
sets alone will do? But there are several reductions of arithmetic to
set theory, and seemingly no principled way to decide between
them. The set-theorist Ernst Zermelo proposed that the number
0 is the empty set (¢) and for each number n, the successor of n is
the singleton of n, so that 1 is {0}, 2 is {{0}}, 3 is {{{®}}}, etc. So
every number except 0 has exactly one member. Another popular
reduction, due to John von Neumann, defines each natural number
n to be the set of numbers less than n. So 0 is the empty set ¢, 1 is
{0}, 2 is {0,{9}}, and 3 is {0,{0},{0,{9}}}. In this system each
number n has exactly n members. Well, is von Neumann or Zerme-
lo (or neither of them) correct? If numbers are mathematical
objects and all mathematical objects are sets, then we need to know
which sets the natural numbers are. What is the number 3, really?
How can we tell>? We are left with other quandaries. On the von
Neumann reduction 1 is a member of 3, but on Zermelo’s 1 is not a
member of 3. So we are left without an answer to the question, ‘Is
1 really a member of 3, or not?” From these observations and
questions, Benacerraf and Kitcher conclude, against Frege, that
numbers are not objects, and so they reject the ontological realism.

The ante rem structuralist finds this conclusion unwarranted. To
see why, we turn to the general question of what it is to be an object,
at least in mathematics. Rather than try to solve the Caesar prob-
lem and answer the Benacerraf-Kitcher questions directly, the
structuralist argues that these questions need no answers. Again, a
natural number is a place in the natural number structure. The
latter is the pattern common to all of the models of arithmetic,
whether they be in the set-theoretic hierarchy or anywhere else.
One can form coherent and determinate statements about the iden-
tity of two numbers: 1 =1 and 1 # 4. And one can inquire into the
identity between numbers denoted by different descriptions in the
language of arithmetic. For example, 7 is the largest prime that is less
than 10. But it makes no sense to pursue the identity between a
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place in the natural number structure and some other object. Iden-
tity between natural numbers is determinate; identity between
numbers and other sorts of objects is not, and neither is identity
between numbers and the positions of other structures. Alter-
nately, we can safely declare many of the identities to be false.
Manifestly, Caesar is not a place in a structure, and so Caesar is not
a number.

Along similar lines, one can expect determinate answers to
questions about numerical relations between numbers, relations
definable in the language of arithmetic. Thus, 1 <3, and 7 is not
a divisor of 22. These statements are internal to the natural num-
ber structure. One can also expect answers to standard questions
concerning the cardinality of collections. The number of planets
is 9 (once we decide what to count as a planet). But if one
inquires, with Kitcher and Benacerraf, whether 1 is an element of
3, there is no answer waiting to be discovered. It is similar to
asking whether the number 1 is funnier than the number 4, or
greener.

Similar considerations hold for more mundane patterns. It is
determinate that the goal keeper is not a striker (at the same time),
but there is something odd about asking whether positions in pat-
terns are identical to other objects. There is something odd about
asking if the Presidency is identical to Bill Clinton—whether the
office is identical to the person. Again, if the question is insisted on,
we can say that Bill Clinton is not—and never was—the Presidency.

Similarly, it is determinate that a queen’s bishop cannot capture
the opposing queen’s bishop, but there is something weird about
asking if the queen’s bishop is smarter than the opposing queen’s
bishop. There is also something odd about asking if the point guard
position is taller, or faster, or a better shooter than the power for-
ward position. Shortness, tallness, and shooting percentage do not
apply to positions.

Similar, less philosophical questions are asked on game day,
about a particular line-up, but those questions concern the people
who occupy the positions of point guard and power forward that
day, not the positions themselves. Virtually any person prepared to
play ball can be a point guard—anybody can occupy that role on a
basketball team (some better than others). Any small, moveable
object can play the role of (i.e. can be) black queen’s bishop.
Similarly, anything at all can ‘be’ 3—anything can occupy that
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place in a system exemplifying the natural number structure. The
Zermelo 3 ({{{0}}}), the von Neumann 3 ({¢,{0},{0,{0}}}), and
even Julius Caesar can each play that role (in different systems, of
course). As the structuralist sees things, the Frege-Benacerraf-
Kitcher questions are either trivial and straightforward, or else the
questions do not have determinate answers, and they do not need
them.

Structuralism points toward a sort of relativity concerning
objects and existence, at least in mathematics. Mathematical objects
are tied to the structures that constitute them. Benacerraf (1965:
$IIL.A) put forward a similar view, at least temporarily, suggesting
that some statements of identity are meaningless: ‘Identity state-
ments make sense only in contexts where there exist possible
individuating conditions ... [QJuestions of identity contain the
presupposition that the “entities” inquired about both belong
to some general category’ The structuralist agrees, noting that
positions in the same structure are certainly in the same ‘general
category’ and there are ‘individuating conditions’ among them.
Benacerraf concludes: ‘What constitutes an entity is category or
theory-dependent ... There are ... two correlative ways of
looking at the problem. One might conclude that identity is sys-
tematically ambiguous, or else one might agree with Frege, that
identity is unambiguous, always meaning sameness of object, but
that (contra-Frege now) the notion of object varies from theory to
theory, category to category . . ." The structuralist maintains that in
mathematics, the notions of ‘object’ and ‘identity’ are unequivocal
but thoroughly relative.

Resnik traces this relativity to the Quinean thesis of the relativity
of ontology. For Resnik, as for Quine, the relativity here is quite
general, applying throughout the web of scientific belief (see, for
example, Quine 1992). My own version of structuralism does not
take the relativity quite as far, even for mathematics. Mathemat-
icians sometimes find it convenient, and even compelling, to iden-
tify the positions of different structures. This occurs, for example,
when set theorists settle on von Neumann'’s definitions of the nat-
ural numbers (as opposed to Zermelo’s or any other). For a more
straightforward example, it is surely wise to identify the positions in
the natural number structure with their counterparts in the integer,
rational, real, and complex number structures. Accordingly, the
natural number 2 is identical to the integer 2, the rational number
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2, the real number 2, and the complex number 2 + 0i. Hardly any-
thing could be more straightforward.®

There is, of course, an intuitive difference between an object and
a position in a structure, between an office-holder and an office.
Much of the foregoing motivation for structuralism turns on this
distinction. To maintain that numbers, sets, and points (etc.) are
objects, the ante rem structuralist invokes a distinction in linguistic
practice. There are, in effect, two different orientations involved
in discussing patterns and their positions. Sometimes the places
of a structure are treated in the context of one or more systems
that exemplify the structure. We might say, for example, that the
goalkeeper today was a striker yesterday, that the current secre-
tary-treasurer is more dedicated to the organization than her pre-
decessor, or that some Presidents have more integrity than others.
Similarly, we might say that the von Neumann 3 has two more
elements than the Zermelo 3. In each case, we treat each position
of a structure in terms of the objects or people that occupy the
position. Call this the places-are-offices perspective. So construed,
the positions of a structure are more like properties than objects.
The office-orientation presupposes a background ontology that
supplies objects that fill the places of the structures. In the case of
teams, organizations, and governments, the background ontology
is people, and in the case of chess games the background ontology
is small, moveable objects, typically with certain colours and
shapes. In the case of arithmetic, sets—or anything else—will do
for the background ontology.

In contrast to this office-orientation, there are contexts in which
the places of a given structure are treated as objects in their own
right, at least grammatically. That is, sometimes items denoting
places are singular terms, like proper names. We say that the Vice-
President is President of the Senate, that the chess bishop moves on
a diagonal, or that the bishop that is on a black square cannot move
to a white square. Call this the places-are-objects perspective. Here,
the statements are about the respective structure as such, independ-
ent of any exemplifications it may have. From this perspective,
arithmetic is about the natural number structure, and its domain of

¢ As we saw in chapter 5, §2, Bertrand Russell (1919: ch. 7) argued that all of
these 2s are different. See Parsons 1990: 334, for a subtle discussion of identity in
the context of structuralism.
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discourse consists of the positions of this structure, treated from
the places-are-objects perspective. The same goes for the other dis-
ciplines, such as real and complex analysis, Euclidean geometry, and
perhaps set theory.

The suggestion here is that sometimes competent speakers of
English treat the positions of a mathematical structure as objects, at
least when it comes to surface grammar. Some structuralists, like
Resnik and myself, take this to give the underlying logical form of
mathematical language. That is, sentences in the language of
arithmetic, such as 7+ 9=16" and ‘for each natural number n,
there is a prime number m >n’ are taken literally to refer to the
places of the natural number structure. The terms denoting num-
bers are in the places-are-objects perspective. In mathematics, the
places of mathematical structures are bona fide objects.

For the ante rem structuralist, then, the distinction between
office and office-holder—and so the distinction between position
and object—is a relative one, at least in mathematics. What is an
object from one perspective is a place-in-a-structure from another.
In the places-are-offices perspective, the background ontology can
consist of places from other structures, when we say, for example,
that the negative whole real numbers exemplify the natural number
structure, or that a Euclidean line exemplifies the real number struc-
ture. Indeed, the background ontology for the places-are-offices
perspective can even consist of the places of the very structure under
discussion, when it is noted that the even natural numbers exemplify
the natural number structure. In particular, each structure exempli-
fies itself. Its places, construed as objects, exemplify the structure.

Michael Hand (1993) argues that ante rem structuralism faltersona
version of the traditional Aristotelian "Third Man’ argument against
ante rem universals. Both the von Neumann and the Zermelo reduc-
tions exemplify the natural number structure. From the ante rem
perspective, the natural number structure itself also exemplifies the
natural number structure. Hand argues that the ante rem structural-
ist thus needs a new structure, a super natural number structure,
which the original natural number structure shares with the von
Neumann and Zermelo systems. And a regress emerges. From the
ante rem perspective, however, the sentence ‘the natural number
structure itself exemplifies the natural number structure’ turns on the
different orientations toward structures. The idea is that the places of
the natural number structure, considered from the places-are-objects
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perspective, can be organized into a system, and this system exempli-
fies the natural number structure (whose places are now viewed
from the places-are-offices perspective). The natural number struc-
ture, as a system of places, exemplifies itself, as does every structure.

3. Structuralism Without Structures

The ante rem perspective thus presupposes that statements in the
places-are-objects perspective are to be taken literally, at face
value. Terms like ‘secretary-treasurer’, ‘goalkeeper’, ‘2’, and ‘6 + 37’
are genuine singular terms denoting objects. Some structuralists
demur from this, and do not take the places-are-objects perspective
seriously. Notice that places-are-objects statements entail general-
izations over all systems exemplifying the structure in question.
Everyone who is Vice-President—whether it be Gore, Quayle,
Bush, or Mondale—is President of the Senate in that government.
Every chess bishop moves on a diagonal, and none of those on
black squares ever move to white squares (in the same game). No
person can be point guard and power forward simultaneously; and
anything playing the role of 3 in a natural number system is the
successor of whatever plays the role of 2 in that system. In short,
places-are-objects statements apply to the objects or people that
occupy the positions in any system exemplifying the structure.

A philosopher who rejects the ante rem approach in favour of a
more in re account of structures might hold that places-are-objects
statements are no more than a convenient rephrasing of corres-
ponding generalizations over systems that exemplify the structure
in question. If successful, a manoeuvre like this would eliminate
the places-are-objects perspective altogether. The thesis would be
that places-are-objects statements are not to be taken literally. The
apparent singular terms mask implicit bound variables.

This plan depends on being able to generalize over all systems ex-
emplifying the structure in question. On the in re programme, a
mathematical statement like 3 + 9 = 12’ would come to something
like:

in any natural number system S, the object in the 3-place-of-S S-
added to the object in the 9-place-of-S results in the object in the 12-
place-of-S.
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When paraphrased like this, seemingly bold ontological claims lose
their teeth. For example, the sentence ‘3 exists’ comes to ‘every
natural number system has an object in its 3-place’, and ‘numbers
exist' comes to ‘every natural number system has objects in its
places’. Hardly anything could be more innocuous.

The programme of rephrasing mathematical statements as gen-
eralizations is a manifestation of structuralism, but it is one that
does not countenance structures—or mathematical objects for that
matter—as bona fide objects. Talk of numbers is convenient short-
hand for talk about all systems that exemplify the structure. Talk of
structures generally is convenient shorthand for talk about systems.

Charles Parsons (1990: §§ 2-7) presents (but quickly abandons) a
view like this, which he dubs eliminative structuralism: ‘It . . . avoids
singling out any one . . . system as the natural numbers . . . [Elimi-
native structuralism] exemplifies a very natural response to the
considerations on which a structuralist view is based, to see state-
ments about a kind of mathematical objects as general statements
about structures of a certain type and to look for a way of eliminat-
ing reference to mathematical objects of the kind in question by
means of this idea’ (Parsons 1990: 307). Benacerraf (1965) adopts
an eliminative, in re version of structuralism when he writes that
number theory ‘is the elaboration of the properties of all [systems]
of the order type of the numbers’. This, of course, is of a piece
with his rejection of the thesis that numbers are objects.

In present terms, the eliminative structuralist programme para-
phrases places-are-objects statements in terms of the places-are-
offices perspective. Recall that the places-are-offices orientation
requires a background ontology, a domain of discourse, to fill the
places of the (in re) structures. A potential stumbling-block of the
eliminative programme is that to make sense of a substantial part
of mathematics, the background ontology must be quite robust.
The nature of the objects in the ontology does not matter, but there
must be a lot of objects there. To see this, let ® be a sentence in the
language of arithmetic. According to eliminative structuralism, @
amounts to something in the form:

@ for any system S, if S exemplifies the natural number
structure, then ®[S],

where ®[S] is obtained from ® by interpreting the arithmetic ter-
minology and the variables in terms of the objects and relations of
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the system S. Every system that exemplifies the natural number
structure must have infinitely many objects. So if the background
ontology is finite, then there are no systems that exemplify the
natural number structure. In this case, ®° comes out true, no
matter what sentence ® is. That is, if the background ontology is
finite, then the interpretations of 3 + 5 =4’ and ‘every number is
prime’ and ‘some numbers are not prime’ are all true. So if the
background ontology is finite, then we do not end up with a ren-
dering of arithmetic that respects the normal truth-values of
arithmetic sentences. Thus, an eliminative structuralist account of
arithmetic requires an infinite ontology. Similarly, an eliminative
structuralist account of real analysis and Euclidean geometry
requires a background ontology whose cardinality is at least that of
the continuum. An eliminative account of set theory requires even
more objects. Otherwise, the fields are vacuous.

There are two responses to this threat (other than a return to
ante rem structuralism or a rejection of structuralism altogether).
One is to postulate the existence of enough abstract objects for all
of the structures under study to be exemplified. That is, for each
legitimate field of mathematics, we assume that there are enough
objects to keep that field from being vacuous. Call this the onto-
logical option. The view is ontological eliminative structuralism.

On this programme, if one wants a single account for all (or
almost all) of mathematics, then the background ontology of
abstract objects must be quite big. Several logicians and philo-
sophers think of the set-theoretic hierarchy as the ontology for all
of mathematics. If one assumes that every set in the hierarchy
exists, then there will surely be enough objects to exemplify just
about any structure one might consider. Since, historically, one
purpose of set theory was to provide models of as many structures
as possible, set theory is a good candidate to be the background
ontology for eliminative structuralism.” The relevant notions of sys-
tem and satisfaction are standard parts of ordinary model theory. A
structure is an order-type of a model-theoretic interpretation.

7 Some logicians and mathematicians have shown that mathematics can be
rendered in theories other than that of the set-theoretic hierarchy (e.g. Quine
1937, Lewis 1991, 1993). There is a dedicated contingent who hold that the cat-
egory of categories is the proper foundation for mathematics (see e.g. Lawvere
1966). McLarty 1993 is an enthusiastic articulation of structuralism in terms of
category theory.
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The crucial feature of ontological eliminative structuralism is
that the background ontology is not understood in structuralist
terms. If the set-theoretic hierarchy is the background, then set
theory is not, after all, the theory of a particular structure. Rather,
set theory is about a particular class of objects, the background
ontology. Perhaps from a different point of view, set theory can
be thought of as the study of a particular structure U, but this
would require another background ontology to fill the places
of U. The new background ontology is not to be understood as
the places of another structure or, if it is, we need yet another
background ontology for its places. The ontological elimina-
tive structuralist must stop this regress. The final ontology is
not understood in terms of structures, even if everything else in
mathematics is.

Some philosophers who lean toward anti-realism in ontology
have expressed sympathy with a structuralist account of mathemat-
ics, but, of course, they do not countenance ante rem structures.
From the nominalistic perspective, the ontological eliminative
option is no better, due to the background ontology. Our nominal-
ist proposes that we speak of possible structures rather than struc-
tures. Instead of saying that arithmetic is about all systems of a
certain type, one says that arithmetic is about all possible systems of
a certain type. Again, let ® be a sentence in the language of arith-
metic. Above, on the ontological option, an arithmetic sentence P
is interpreted as ‘for any system S, if S exemplifies the natural
number structure, then ®[ST. With the present option, ® is under-
stood as:

for any possible system S, if S exemplifies the natural number
structure, then ®[S];

or as

necessarily, for any system S, if S exemplifies the natural number
structure, then ®[S].

For the ontological anti-realist, the puzzle is to keep arithmetic,
analysis, and so on from being vacuous without assuming that
there is a system that exemplifies the structure. The present solu-
tion is to assume instead that such a system is possible. Unlike the
ontological option (or ante rem structuralism), here we do not
require an actual, rich background ontology. Instead, we need a
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rich background ontology to be possible. Call this view modal elimi-
native structuralism.

Hellman (1989) carries out a programme like this in meticulous
detail. The title of his book, Mathematics Without Numbers, sums
things up nicely. It is a structuralist account of mathematics which
does not countenance the existence of structures—or mathematical
objects. Statements in a branch of mathematics are understood as
generalizations inside the scope of an operator for possibility or
necessity. Instead of assertions that various structures or systems
exist, Hellman has assertions that the systems might exist.

Probably the central issue with the modal option is the nature of
the invoked modality. What are we to make of the ‘possibilities’
and ‘necessities” used to render mathematical statements? Perhaps
it is physically possible for there to be a system exemplifying the
natural number structure. We might even think of Euclidean space
as physically possible. However, it is stretching this modal notion
beyond recognition to claim that a system exemplifying any richer
structure is physically possible (Maddy 1990: ch. 5 notwithstanding;
see ch. 8, §3 above). Surely, it is not possible for there to be that
many physical objects.

The relevant modal operator is not to be understood as meta-
physical possibility either. Intuitively, if mathematical objects—Ilike
numbers, points, and sets—exist at all, then their existence is meta-
physically necessarily. Most proponents and opponents of the exist-
ence of mathematical objects agree that ‘the natural numbers exist’
is equivalent to both ‘possibly, the natural numbers exist’ and
‘necessarily, the natural numbers exist’. The same goes for just
about any mathematical objects, at least as they are traditionally
conceived. Thus, the existence and the possible existence of the
items in the background ontology are equivalent. So the use of
metaphysical modality does not really weaken the ontological bur-
den of eliminative structuralism (for an elaboration of a similar
point, see Resnik 1992).

For these reasons, Hellman does not invoke physical or meta-
physical possibility. Instead, he mobilizes the logical modalities for
his eliminative structuralism. Our arithmetic sentence @ becomes:

for any logically possible system S, if S exemplifies the natural num-
ber structure, then ®[S).

Logical possibility is akin to consistency. From this perspective, the
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modal structuralist needs to assume only that it is logically possible
that there are systems exemplifying the natural number structure,
the real number structure, etc.

A matter from §2 and §4 of the previous chapter emerges here.
Recall that in contemporary logic textbooks and classes the logical
modalities are understood in terms of sets. To say that a sentence is
logically possible is to say that there is a certain set that satisfies it.
According to the modal option of eliminative structuralism, how-
ever, to say that there is a certain set is to say something about
every logically possible system exemplifying the structure of the
set-theoretic hierarchy. This is an unacceptable circularity. It does
no good to render mathematical ‘existence’ in terms of logical
possibility if the Jatter is to be rendered in terms of existence in the
set-theoretic hierarchy. Putting the views together, the statement
that a sentence is logically possible is really a statement about all
set-theoretic models of set theory. Who says there are such models?
Hellman accepts this straightforward point, and so he demurs from
the standard, model-theoretic accounts of the logical modalities.
Instead, he takes the logical notions as primitive, not to be reduced
to set theory.

4. Knowledge of Structures

The different versions of structuralism have different ontologies,
and they use different conceptual resources to interpret mathemat-
ical statements. So the different versions of structuralism have dif-
ferent epistemologies. The ontological in re structuralist (e.g.
Benacerraf) requires a large stock of abstract objects to fill the
places of the structures. Mathematical propositions are understood
as generalizations about this ontology. The structuralist part of this
view is essentially model theory, a respectable branch of mathemat-
ical logic. Thus much is not philosophically problematic, or not
especially so. From the ontological eliminative perspective, the hard
part is to understand how we know anything about the systems of
abstract objects that exemplify the in re structures. Thus, the onto-
logical eliminative structuralism inherits the problems and poten-
tial solutions of realism in ontology (platonism).

Recall that the ante rem structuralist posits the existence of a
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realm of structures, which exist independent of any systems that
exemplify them. Mathematical knowledge is thus knowledge of,
and about, such structures. So the ante rem structuralist must
speculate on how we accomplish this knowledge. The modal struc-
turalist (e.g. Hellman) must speculate as to how we know which
systems are possible, and how we obtain knowledge of what holds
of the possible systems. I suggest that this issue is closely related to
the epistemological problem for the ante rem structuralist. When
the ante rem structuralist says that a given structure exists, the
modal structuralist says that a corresponding system is logically
possible. And vice versa. So I will deal with the two views together.

4.1. Pattern Recognition and Other Abstraction

A structuralist might begin with the thesis that one can apprehend
some structures via pattern recognition. Of course, pattern recogni-
tion is a deep and challenging problem in cognitive psychology, and
there is no accepted account of the underlying mechanisms. Never-
theless, pattern recognition is not philosophically occult, as, say,
Godelian intuition is supposed to be (see ch. 8, §2). Here, I illustrate
a few instances of the procedure at work, showing how it can lead
to an apprehension of small structures. Of course, we will be left
with the question of whether these structures are to be construed
as ante rem or as in re.

Let us start with the recognition of letters, numerals, and short
strings of characters. These are the simplest instances of the afore-
mentioned type-token dichotomy, and one of the simplest
instances of abstraction. These types are apprehended through
their tokens. We see several of the tokens and somehow obtain
knowledge of the types.

The primary mechanism for introducing characters to the
uninitiated is ostensive definition. A parent points to several
instances of, say, a capital ‘F’ and pronounces ‘efff . Eventually, the
child comes to understand that it is the letter—the type—that is
ostended, and not the particular tokens. Ludwig Wittgenstein
(1953) is noted for his reminder that the practice of ostension pre-
supposes abilities on the part of both teacher and learner. They
must already be able to recognize the sorts of things being
ostended—whatever those sorts of things might be. So the struc-
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turalist does not claim that pattern recognition solves the epistemo-
logical problems, all by itself.

Throughout the learning process, each character type is seen to
be exemplified by more and more kinds of objects. At first, of
course, the child associates the type ‘F’ with tokens that have
roughly the same shape: a straight vertical line with two horizontal
lines protruding to the right, one at the top and a shorter one at the
middle (with or without serifs). Soon, however, the child learns to
identify tokens with different shapes, such as ¥, ‘Z, ‘¥, & as
capital ‘Fs’. The child then learns that there is a type whose tokens
include both capital and lowercase ‘Fs’.

At this point, there is nothing like a common shape to focus on,
and so we have moved beyond simple abstraction. Still, all of the
various ‘F’ tokens are physical inscriptions, consisting of hunks of
ink, graphite, chalk, burned toner, pixels, and so on. But the child
also learns that there are tokens among certain sounds. The sound
‘efff is also an ‘F’. There is sign language, flag semaphores, smoke
signals, and Morse code. In coding, a character might even be
tokened by (tokens of) other characters. ‘Look Watson, the “H” here
isan “A”, the “C”isa “B” ... .

I suggest that we are now thinking in terms of places in a pattern
or structure. What the various ‘Fs” have in common is that they all
have the same role in an alphabet and in various strings. By this
time our child has learned to recognize an alphabet structure and
‘F’ is a place therein—the sixth place.

Let us consider another simple sort of pattern, small cardinal
numbers. For each natural number n, there is a structure exempli-
fied by all systems consisting of exactly n objects. For example, the
4-pattern is the structure common to all collections of four objects.
The 4-pattern is exemplified by the members of a string quartet, by
their instruments, by the walls of a typical room, and by two pairs
of gloves. We define the “2-pattern’, ‘3-pattern’, and so on similarly.
Let us call these ‘finite cardinal structures’. Each finite cardinal
structure has no relations and so it is about as simple as structures
get. We include the ‘1-pattern’ as a degenerate case. It is exempli-
fied by a ‘system’ consisting of a single object under no relations.

In part, our child starts to learn about cardinal structures by
ostensive definition. The parent points to a group of four objects,
and says ‘four’, then points to a different group of four objects and
repeats the exercise. Eventually the child learns to recognize the
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pattern itself. Virtually everything said above about character types
applies mutatis mutandis to (small) finite cardinal structures.

At first, perhaps, our child may believe that the 4-pattern applies
only to systems of physical objects that happen to be located near
each other, but she soon learns to count all kinds of systems and
she sees that the 4-pattern applies universally. We count the planets
in the solar system, the letters in a given word, the chimes of a
clock, the colours in a painting, and properties: ‘Justice and mercy
are two cardinal virtues.” Since anything can be counted, systems of
all sorts exemplify the cardinal patterns. We even count numbers
when we note that there are four primes less than 10. That is,
systems of numbers like {2,3,5,7} exemplify finite cardinal
structures.

To obtain knowledge of character types and cardinality struc-
tures via pattern recognition, a subject must observe tokens and
collections of objects. So in that sense, knowledge obtained via
pattern recognition is not a priori. However, no particular speci-
mens are necessary—any token of the relevant type and any collec-
tion of the right size will do. The situation with colour concepts is
similar. Presumably, we need some perceptual experience to know
what the colours are, but it is plausible that at least some proposi-
tions about colours are a priori. For example, we may know a priori
that all green objects are coloured and that nothing that is red all
over is also green all over. Someone might argue along similar lines
that we have a priori knowledge of certain facts about finite struc-
tures. Perhaps we can know a priori that any system exemplifying
the 4-pattern is larger than any system exemplifying the 3-pattern.

The ante rem structuralist would argue, or just claim, that osten-
sive definitions and pattern recognition yield knowledge of small,
ante rem structures. So far, this is a difficult pill to swallow, since
less extravagant explanations are forthcoming. The modal structur-
alist has it easier at this stage. Clearly, the ostended systems exist,
and so there is no problem with the possibility of such systems.

Notice that at best we have only simple, finite patterns in the
epistemological picture at this point. The structures are not only
finite, but very small. Clearly, simple pattern recognition cannot be
much more than a scant beginning to the epistemology of struc-
turalism, if structuralists are to present a serious philosophy of
mathematics.

At some point, still early in our child’s education, she develops an
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ability to understand cardinal structures beyond those that she can
recognize all at once via pattern recognition, and beyond those that
she has actually counted, or even could count. What of the 12,444
pattern, not to mention the sizes needed for atomic physics,
astronomy, or the United States national debt? No one has ever
observed sufficiently large systems, in order to abstract the cardinal-
ity structure. No one has counted a system of, say, 4 trillion dollar
bills (since there are not that many). Surely we do not learn about
and teach such patterns by simple abstraction and ostensive defin-
ition. The parent does not say, ‘Look over there, that is 12,444’. Yet
we speak of large numbers with ease. We learn about, and discuss
and manipulate, the numbers of molecules in physical objects and
the distances to other galaxies. To accommodate large finite struc-
tures, the structuralist must get more speculative.

Returning to our learning child, perhaps she reflects on the
sequence of numerals, eventually noting that the sequence goes
beyond the collections she has actually counted. She then sees
that any finite collection can be counted and thus has a cardinal-
ity. A related possibility is that humans have a faculty that
resembles pattern recognition but goes beyond simple abstrac-
tion. The small finite structures, once abstracted, are seen to
display a pattern themselves. For example, the finite cardinal
structures come in a natural order: the 1-pattern followed by the
2-pattern followed by the 3-pattern, and so on. We then project
this pattern of patterns beyond the structures obtained by simple
abstraction. Consider our child learning the patterns represented
by the following:

L L EETE

Reflecting on these finite patterns, the subject realizes that the
sequence of patterns goes well beyond those she has seen instances
of. Perhaps this is an early hint of an ante rem structure, or the
possibility of an in re structure not exemplified in the actual world.
In any case, our subject thus gets the idea of a sequence of 12,444
strokes and she gets the idea of the 12,444-pattern. Soon thereafter,
she grasps the 4-trillion-pattern, and so has some appreciation of
the national debt.

If this much is acceptable, the simplest infinite structure is near
at hand. Our subject, no longer a child, continues to reflect on the
sequence of larger and larger finite structures and grasps the notion
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of a finite cardinal structure per se. The finite cardinal structures are
ordered as follows:

L L T s

where the sequence has no end. An ante rem structuralist would
claim that our subject discovers that the sequence of finite cardinal
structures goes on indefinitely. A modal eliminative structuralist
would say instead that for each #, if there can be a system of size ,
then there can be a system larger than n. In either case, the subject
sees that the (possible) system of (possible) finite cardinal structures
has a pattern. For each finite cardinal structure, there is a unique
next-biggest structure, and so there is no longest finite cardinal
structure. The system of finite cardinal structures is at least poten-
tially infinite. Eventually, the subject can coherently discuss the
structure of these finite patterns, perhaps formulating a version of
the Peano axioms for this structure. We have now reached the
structure of the natural numbers.

The ante rem structuralist characterizes the process as follows:
one first contemplates the finite cardinal structures as objects in their
own right. Then we form a system consisting of the collection of
these finite structures with an appropriate order. Finally, we discuss
the structure of this system. Notice that this strategy depends on
construing the various finite structures, and not just their members,
as objects which can be organized into systems. It is structures that
exhibit the requisite pattern. We thus have a new wrinkle on the
structure-system dichotomy. What is structure from one point of
view—the perspective of finite cardinal structures—is object from
another. The finite structures are themselves organized into a sys-
tem, and the structure of that system is contemplated. The 4-
pattern itself plays the role of 4 in the natural number structure.
The modal eliminative structuralist would use different notions to
tell what is essentially the same story.

The natural number structure can also be reached by reflection
on the passage of time. If the time-line is thought of as divided into
discrete moments, one second apart, then the moments from now
on exemplify the natural number structure. The natural number
structure can also be reached by reflection on finite sequences of
characters,

a, aa, aaa, aaaa, aaaaa.
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Or perhaps our subject can reflect on ever increasing sequence of
‘a’s, and formulate the notion of a sequence that does not end (in
one direction). Of course, one cannot write down a token of this
infinite string. The practice is to write something like this instead:

aaaaaaaa. ..

Students eventually come to understand what is meant by the ellip-
ses ..., in the sense that they can coherently discuss the infinite
pattern and even teach it to others. When they do, they have
grasped (an instance of) the natural number structure. From a
structuralist point of view, there is not much difference between
sequences of character types and natural numbers (see Corcoran et
al. 1974).

After a given structure is understood, other structures may be
characterized and understood in terms of it. The integer-structure,
for example, is like the natural number structure, but unending in
both directions:

IR

Again, students eventually understand what is meant, and can dis-
cuss the structure coherently. The rational number structure is the
structure of pairs of natural numbers, with the appropriate
relations.

To obtain larger structures, our subject can contemplate certain
sets of rationals, as in Dedekind cuts, or she can contemplate cer-
tain infinite sequences of rationals, as in Cauchy sequences (assum-
ing that such talk of sets or sequences is coherent). These two
techniques differ, of course, but the same structure results, the struc-
ture of the real numbers. It might be more natural for our subject
to conceive of the real number structure (or a possible system
exemplifying it) by contemplating actual or possible physical or
geometric magnitudes. The presentation is often a pedagogical
challenge, but once the student acquires some facility in working
within the structures, in the appropriate language, no problems
arise. We have at least the appearance of communication, and on
the present account, it is communication of facts about
structures—or possible systems.

Of course, a sceptic about abstract objects will balk at the onto-
logical claim of the ante rem structuralist. He will insist that at best
we are only talking about predicates of physical inscriptions (i.e.
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tokens) and collections of physical objects. After all, that is all that
we have contact with. He might concede that pattern recognition
and the other types of abstraction lead to beliefs about abstract
objects, and an ability to discuss the unexemplified patterns
coherently. But our ontological anti-realist will maintain that
these mechanisms do not yield knowledge unless the structures (or
at least the objects in their places) exist. Have we established this
last, ontological claim? Can this be done without begging the
question?

The ante rem structuralist thus owes at least a speculative
account of how the mechanisms sometimes deliver veridical know-
ledge of structures. Resnik (1997: ch. 11) delimits a ‘genetic’ process
by which our ancestors (and presumably ourselves) may have
become ‘committed’ to at least small abstract (ante rem) structures,
although he does not put much stock in a process of abstraction.
Resnik follows Quine in holding that the existence of both physical
and mathematical objects is postulated, as part of our overall ‘the-
ory’ of the world. The existence of any types of object—rocks,
baseballs, electrons, numbers, and structures—is justified on hol-
istic grounds, on the basis of their role in science. It is our old friend
the indispensability argument, now applied to structures. My own
epistemology (Shapiro 1997: ch. 4) turns on the strength of struc-
turalism as a perspicuous philosophy of mathematics. I present an
account of the existence of structures, according to which an ability
to discuss a structure is evidence that the structure coherently
exists. The argument for ontological realism is an instance of a
form sometimes called ‘inference to the best explanation’. The idea
is that the nature of structures guarantees that certain experiences
count as evidence for their existence.®

A modal eliminative structuralist like Hellman does not have to
show that the structures exist, only that they are possible. It may be
that the psychological mechanisms help with that task. As indicated
above, this depends on the nature of the modality involved. The
modal eliminative structuralist owes an account of how the mech-

¢ One upshot of these epistemic proposals is a blurring of the abstract-concrete
boundary (see Resnik 1985 and 1997: ch. 6, Shapiro 1997: ch. 8, Maddy 1990). It is
not that there is no difference—a fuzzy border is still a border—but the difference
does not allow for crisp philosophical pronouncements, or easy answers to deep
questions. Parsons (1990: 304) delimits the role of entities that he calls ‘quasi-
concrete’. These are abstract objects that have concrete instances.
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anisms that lead to beliefs about patterns do sometimes yield ver-
idical knowledge about which systems are possible.

4.2. Implicit Definition

There are limits to the sizes of structures that can be apprehended
by any of the above techniques. One grasps a structure via simple
pattern recognition only by perceiving a system that exemplifies the
structure. Such a structure can have at most a small finite number
of places. The extensions beyond pattern recognition yield know-
ledge of large finite structures, structures the size of the natural
numbers, and perhaps structures the size of the real numbers, but
not much more. We are still woefully short of the full range of
structures considered in mathematics. We turn to a more powerful,
but more speculative technique for grasping structures.’

One way to understand and communicate a particular pattern is
through a direct description of it. For example, one might describe
a basketball defence as follows: the point guard stands at this place
and covers this part of the floor, the power forward does that, and
so on. Similarly, the structure of the US government can be
described by listing the various offices and the ways that the various
office-holders relate to each other. In either case, of course, a lis-
tener might misunderstand and think that a particular system is
being described. He might display this confusion with inappropri-
ate questions, like “What is the name of the small forward’s
mother?” or ‘Is the senior Senator from South Carolina a Repub-
lican?” Eventually, however, a properly prepared listener will under-
stand that it is the structure itself, and not any particular instance of
it, that is being described. I do not claim to illuminate the psycho-
linguistic mechanisms that underlie this understanding. There is a
whole host of presuppositions on the part of the listener. Neverthe-
less, it is clear that at least some listeners get it.

We have here an instance of implicit definition, a technique famil-
iar in mathematical logic. An implicit definition is a simultaneous
characterization of a number of items in terms of their relations to

° Shapiro (1997: ch. 4, §§5-6) outlines a type of linguistic abstraction that is
similar in some ways to the abstraction employed by the neo-logicists Wright
(1983) and Hale (1987, see ch. 5, §4 above). On this approach, Hume’s principle
delivers knowledge of the natural number structure.
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each other. In contemporary philosophy these are sometimes called
‘functional definitions’.'° Here, the thesis is that a successful implicit
definition characterizes a structure, or a possible system.

In characterizing a structure by implicit definition, one uses sin-
gular terms to denote the places of the structure. For example, ‘the
point guard’ and ‘the Vice-President’ are definite descriptions or
proper names. However, in the implicit definition the terms do not
denote people; they denote places in the respective structures. The
singular terms denote the offices, not the office-holders. In §2 above
this orientation toward the structure is called ‘places-are-objects’.

Notice that an implicit definition can describe a structure even if
no instance of the structure is displayed. One might describe a
variation of a basketball defence or a government that has not been
tried yet. Someone might wonder how it would go if there were
two Presidents, one of whom is Commander-in-Chief of the armed
forces and the other who vetoes legislation. If successful, these
describe either ante rem structures or possible systems (depending
on the version of structuralism in place).

In the opening pages of a textbook on number theory we might
read that each natural number has a unique successor, that 0 is not
the successor of any number, and that the induction principle
holds. Similarly, a treatise in real analysis might begin with an
announcement that certain mathematical objects, called ‘real num-
bers’, are to be studied. The only thing we are told about these
objects is that certain relations hold among them. We may be
informed, for example, that the numbers have a dense linear order-
ing, that there are associative and commutative operations of add-
ition and multiplication, and so on. One easily gets the impression
that the objects themselves do not matter; the relations and oper-
ations or, in a word, the structure is what is to be studied. A reading
of this material as an implicit definition is straightforward. The
statements in the implicit definition are sometimes called ‘axioms’.

' For example, in philosophy of mind, a functional definition of “pain” would
be at attempt to characterize pain in terms of its relation to beliefs, desires, and
other psychological states (as well as ‘inputs’ and ‘outputs’). Incidentally, there is an
ambiguity in the phrase ‘implicit definition’. Here we use it as a simultaneous
definition of several items in terms of their relations to each other. In a different
sense, an ‘implicit definition” presupposes that all but one of the terms of a
language already have a fixed meaning, and attempts to define that one term by
providing sentences using the new term. The contrast is with ‘explicit definitions’.
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In §2 of chapter 6 we observed David Hilbert (1899: §1) provid-
ing implicit definitions in his classic treatment of geometry: “We
think of ... points, straight lines, and planes as having certain
mutual relations, which we indicate by means of such words as “are
situated”, “between”, “parallel”, “congruent”, “continuous”, etc.
The complete and exact description of these relations follows as a
consequence of the axioms of geometry.” Hilbert's deductivism has
much in common with structuralism (see Shapiro 1997: ch. 5).

Implicit definition supports the long-standing belief that math-
ematical knowledge is a priori. Again, an implicit definition charac-
terizes a structure or class of possible systems, if it characterizes
anything. Thus, if sensory experience is not involved in the ability
to understand an implicit definition, nor in the justification that an
implicit definition is successful, nor in our grasp of logical con-
sequence, then the knowledge about the defined structure(s)
obtained by deduction from the implicit definition is a priori.

Of course, not every set of sentences successfully characterizes a
structure (or possible system), even if someone intends to use it for
that purpose. The structuralist needs an account of when a pur-
ported implicit definition succeeds. This may be the most specula-
tive aspect of structuralism. There are two requirements one might
have for an implicit definition. The first is that at least one
structure—or possible system—satisfies the axioms. Call this the
‘existence condition’. The second is that at most one structure is
described—or that all the characterized systems share a structure.
This is the ‘uniqueness condition’.

The uniqueness condition turns on the semantic relationship
between structures (or systems) and sentences that are true or false
of them. In other words, the uniqueness condition depends on the
underlying logic of the axiomatization. Resnik and I differ on this
matter. He favours a relatively weak logic, sometimes called ‘first-
order logic’. It follows (from results like the Léwenheim-Skolem
theorems) that no theory that is true of an infinite system charac-
terizes a unique structure. Resnik argues that, in some cases, there
is no fact of the matter as to whether two implicit definitions
characterize the same structure. I favour a stronger logic, called
‘second-order logic’ (see Shapiro 1991), and hold that there are
unique characterizations of rich mathematical structures (Shapiro
1997: ch. 4, §§8-9).

Resnik and I are a bit closer on the sticky question of when an
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implicit definition characterizes at least one structure—the exist-
ence condition. The idea is to use ‘possibility” as a criterion for the
existence of ante rem structures. Several times in the early sections
of this chapter I inferred the existence of a pattern from an ability
to discuss the pattern coherently . The same goes for implicit def-
initions, so let me formulate the coherence principle explicitly:

If @ is a coherent group of sentences, then there is a structure that
satisfies @.

Since coherence is a modal notion, the coherence principle
brings ante rem structuralism closer to modal structuralism, at least
on the epistemological front. Once again, if a modal structuralist
correctly asserts that a given type of system is possible, the ante
rem structuralist concludes that the structure exists. For the ante
rem structuralist, the coherence principle is an attempt to address
the traditional problem concerning the existence of mathematical
objects. Once we are satisfied that an implicit definition is coherent,
there is no further question concerning whether it characterizes a
structure, and whether its terms refer to anything. For an ante rem
structuralist, mathematical objects are tied to structures, and a
structure exists if there is a coherent axiomatization of it. A seem-
ingly helpful consequence is that, if it is possible for a structure to
exist, then it does. Thus, structure theory is allied to what Mark
Balaguer (1998) calls ‘full-blooded platonism’ (see Chapter 9, §4).
provided we read his ‘consistency’ as ‘coherence’. The modality
that we invoke here is non-trivial, about as problematic as the trad-
itional matter of mathematical existence.

A first attempt to articulate the coherence principle would be to
follow Balaguer and read ‘coherent’ as ‘consistent’, and then to
understand consistency in deductive terms. The thesis would then
be that if one cannot derive contradictory consequences from a set
of axioms, then those axioms describe at least one structure. As we
have seen, Hilbert adopted a version of the slogan, ‘consistency
implies existence’.

An issue we encountered above arises here. The coherence-is-
consistency manoeuvre results in a circle. Consistency is usually
defined as the non-existence of a deduction with a contradictory
conclusion. What do we mean by a deduction? Surely, the consist-
ency of an axiomatization does not follow from the lack of con-
crete tokens for the relevant deduction. That is, we cannot conclude



STRUCTURALISM 287

that an axiomatization is consistent just because no one has yet
written a deduction of a contradiction from it. So consistency is the
non-existence of a certain deduction type. So this formulation of
the coherence condition invokes abstract objects. As above, the
structure of strings is the same as that of the natural numbers. The
structuralist cannot very well argue that the natural number struc-
ture exists because arithmetic is consistent if this consistency is
understood as a fact about the structure of the natural numbers. Or
can he? Perhaps this circle is tolerable, since we are not out to put
mathematics on a firm, extra-mathematical foundation. We can
find support for structuralism within mathematics, even if the sup-
port is corrigible.

For an ante rem structuralist, an alternative might be to take a
page from the playbook of modal structuralism, and define consist-
ency in terms of ‘possible deduction tokens’, or perhaps one can
take consistency as an unexplicated primitive. It is not clear what
this move to modality buys us. We would have a problem about the
‘possible existence’ of strings and of structures.

If this problem could be resolved, the ‘consistency implies exist-
ence’ thesis might get support from Gédel’s completeness theorem,
which asserts that if a set of sentences in a first-order language is
deductively consistent, then there is a set-theoretic structure that
satisfies the set of sentences. That is, if an axiomatization is consist-
ent, then the defined structure has at least one instance. Notice,
however, that the completeness theorem is a result in mathematics,
set theory in particular. The various models for consistent axioma-
tizations are found in the set-theoretic hierarchy, which the ante
rem structuralist regards as being a structure. So there is another
circularity here, but again, perhaps the circle is tolerable.

However, the completeness theorem only holds for first-order
languages. In the second-order logic that 1 favour, there are sen-
tences that are deductively consistent but have no models." So the
completeness theorem is more helpful to Resnik’s approach than to
mine. From my perspective, the relevant formal rendering of
‘coherence’ is not ‘deductive consistency’. A better analogue for
coherence is something like ‘satisfiability’: a set I' of sentences is

"' See Shapiro 1991: ch. 4. The incompleteness of second-order logic is a con-
sequence of Godel’s theorem on the incompleteness of arithmetic, and the fact
that there is a second-order characterization of the natural number structure.
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satisfiable if there is a set-theoretic system that is true of every
member of I'. It will not do, of course, to define coherence as
satisfiability. The circle is too blatant, and, besides, the structures
are supposed to be ante rem. In the framework of mathematical
logic, to say that a set I of sentences is satisfiable is to say that there
exists a model of I' in the set-theoretic hierarchy. For the struc-
turalist, the set-theoretic hierarchy is just another structure. What
makes us think that set theory itself is coherent?

There is no getting around this situation. We cannot ground
mathematics in any domain or theory that is more secure than
mathematics itself. But again, the circle that we are stuck with may
not be vicious, and perhaps we can live with it. ‘Coherence’ is a
primitive, intuitive notion, not reduced to something formal. The
model-theoretic notions of consistency and satisfiability are useful
explications of coherence, but do not give an analysis, or reduction,
of it.

In mathematics as practised, set theory (or something equiva-
lent) is taken to be the ultimate court of appeal for existence ques-
tions. Doubts over whether a certain type of mathematical object
exists are resolved by showing that objects of this type can be found
or modelled in the set-theoretic hierarchy. Examples include the
‘construction’ of erstwhile problematic entities, like complex num-
bers. This much is consonant with structuralism. To ‘model’ a
structure is to find a system that exemplifies it. If a structure is
exemplified by a system, then surely the axiomatization is coherent
and the structure is possible. For the ante rem structuralist, it exists.
Set theory is the appropriate court of appeal because it is com-
prehensive. The set-theoretic hierarchy is so big that just about any
structure can be modelled or exemplified there. Set theorists often
point out that the set-theoretic hierarchy contains as many iso-
morphism types as possible. That is the point of the theory.”

Surely, however, we cannot justify the coherence of set theory
itself by modelling it in the set-theoretic hierarchy. Rather, the
coherence of set theory is presupposed by much of the foundational

'? See Wilson 1993 for other manifestations of this ‘existence question’. I sug-
gested above (§3) that the set-theoretic hierarchy may be the appropriate ontology
for eliminative structuralism for the same reason. The difference is that the onto-
logical eliminative structuralist would not regard the set-theoretic hierarchy as a
structure.
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activity in contemporary mathematics. Rightly or wrongly, math-
ematics presupposes that satisfiability (in the set-theoretic hier-
archy) is sufficient for existence. One instance of this is the use of
the set-theoretic hierarchy as the background for model theory, and
mathematical logic generally. Ante rem and eliminative structural-
ists accept this presupposition and make use of it like everyone else,
and are in no better (and no worse) of a position to justify it.

5. Further Reading

The primary sources for this chapter are Resnik 1997, Shapiro 1997,
Hellman 1989, and Benacerraf 1965. See also Resnik 1981, 1982,
1988, and 1990, and Shapiro 1983a, 1989, and 1989a. Parsons 1990 is
an important paper, dealing with many subtle issues concerning
structuralism. Philosophia Mathematica, 3:4, no. 2 is devoted to
structuralism, containing papers by Resnik, Hellman, Hale, Benac-
erraf, Mac Lane, and myself.
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