


Introducing Philosophy 
of Mathematics





Introducing Philosophy 
of Mathematics

Michèle Friend

acumen



© Michèle Friend 2007

Th is book is copyright under the Berne Convention.
No reproduction without permission.
All rights reserved.

First published in 2007 by Acumen

Acumen Publishing Limited
Stocksfi eld Hall
Stocksfi eld
NE43 7TN
www.acumenpublishing.co.uk

ISBN: 978-1-84465-060-6 (hardcover)
ISBN: 978-1-84465-061-3 (paperback)

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

Designed and typeset in Warnock Pro by Kate Williams, Swansea.
Printed and bound by Cromwell Press, Trowbridge.

Dedicated to my parents, Henriette and Tony Friend. 
I wish that their nobility of spirit were more commonplace.



contents v

Contents

 Acknowledgements vii
 Preface ix

1. Infi nity 1
 1. Introduction 1
 2. Zeno’s paradoxes 2
 3. Potential versus actual infi nity 7
 4. Th e ordinal notion of infi nity 12
 5. Th e cardinal notion of infi nity 13
 6. Summary 22

2. Mathematical Platonism and realism 23
 1. Introduction 23
 2. Historical origins 23
 3. Realism in general 26
 4. Kurt Gödel 35
 5. Penelope Maddy 37
 6. General problems with set-theoretic realism 41
 7. Conclusion 46
 8. Summary 47

3. Logicism 49
 1. Introduction 49
 2. Frege’s logicism: technical accomplishments 52
 3. Frege’s logicism: philosophical accomplishments 58
 4. Problems with Frege’s logicism  63
 5. Whitehead and Russell’s logicism 66
 6. Philosophically, what is wrong with Whitehead and  71
  Russell’s type theory? 



vi introducing philosophy of mathematics

 7. Other attempts at logicism 78
 8. Conclusion 78
 9. Summary 79

4. Structuralism 81
 1. Introduction 81
 2. Th e motivation for structuralism: Benacerraf ’s puzzle  83
 3. Th e philosophy of structuralism: Hellman 85
 4. Th e philosophy of structuralism: Resnik and Shapiro 90
 5. Critique 96
 6. Summary 100

5. Constructivism 101
 1. Introduction 101
 2. Intuitionist logic 106
 3. Prima facie motivations for constructivism 113
 4. Deeper motivations for constructivism  114
 5. Th e semantics of intuitionist logic: Dummett 121
 6. Problems with constructivism 123
 7. Summary 124

6. A pot-pourri of philosophies of mathematics 127
 1. Introduction 127
 2. Empiricism and naturalism 130
 3. Fictionalism 134
 4. Psychologism 137
 5. Husserl 141
 6. Formalism 147
 7. Hilbert 153
 8. Meinongian Philosophy of Mathematics 157
 9. Lakatos 163

 Appendix: Proof: ex falso quod libet 167
 Glossary 169
 Notes 177
 Guide to further reading 191
 Bibliography 195
 Index 201



acknowledgements vii

Acknowledgements

I should like to thank John Shand for suggesting that I write this book, and for 
initial encouragement, and I should like to thank Steven Gerrard at Acumen 
for endorsing the proposal and publishing it.

I received very helpful and careful comments from my two reviewers, 
Stewart Shapiro and Alan Baker. Any mistakes that remain are my fault 
entirely. I should also like to thank an anonymous reviewer for helpful com-
ments. Some colleagues have helped with the section on Husserl. Th ese were 
Alena Vencovska, Jairo DaSilva and Marika Hadzipetros. I should also like 
to thank Graham Priest for comments on the paper that underpins the sec-
tion on Meinongian philosophy of mathematics, and for the many audiences 
to whom I have exposed papers that underscore some of the other sections. 
Th ese include the philosophy departments at the University of Hertfordshire 
and George Washington University, the mathematics department at George 
Washington University and particularly the audience for the Logica ’05 con-
ference in the Czech Republic. I should like to thank David Backer for help-
ing with the fi nal notes and bibliography. Kate Williams edited the text and 
produced the illustrations. 

On a more personal front, I should like to give special thanks to my parents, 
my husband, my enthusiastic seminar students and my friends, who encour-
aged me to write, although they knew not what. I should also like to thank 
the philosophy department at George Washington University for academic, 
personal and fi nancial support. 

Michèle Friend





preface ix

Preface

Th is book is intended as an upper-level undergraduate text or a lower-level 
graduate text for students of the philosophy of mathematics. In many ways 
the approach taken is standard. Subjects discussed include Platonism, logi-
cism, constructivism, formalism and structuralism; others that are less often 
discussed are also given a hearing.

Th is is not meant to be a comprehensive handbook or defi nitive exhaustive 
treatment of all, or even any, of the ideas in the philosophy of mathematics. 
Rather, this book contains a selected set of topics that are aired in such a way 
as to give the student the confi dence to read further in the literature. A guide 
to further reading is given at the back of the book. All the books cited are in 
English, and should be available from good university libraries. Having read 
this book, the student should be equipped with standard questions to bear 
in mind when doing further reading. Th e arguments rehearsed in the text 
are by no means the fi nal word on the issues. Many open questions reveal 
themselves, inviting further investigation. Inevitably, some of my prejudices 
can be detected in the text.

Most of the chapters are self-contained. Anomalous in this respect are 
Chapter 1 on infi nity and Chapter 2 on Platonism. Chapter 1 is a technical chap-
ter. I believe that students of the philosophy of mathematics should have a grasp 
of what the mathematician means by “infi nity”, since many of the philosophies 
of mathematics either have something direct to say about it, or use the concept 
implicitly. It is also an engaging technical topic and, thereby, an interesting point 
of comparison between the diff erent theories. Pedagogically, it makes sense to 
discuss some technical issues while the student is fresh to the work. Having 
worked through some technical material, the student will have the courage to 
tackle some more technical aspects of the philosophy of mathematics on her 
own. Th e remaining chapters are less technical, but be warned: serious readings 
in the philosophy of mathematics rarely shy away from discussing quite techni-
cal notions, so a good grounding is essential to further study. For example, it is 
usual to be well versed in set theory and model theory. 
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Platonism is the “base philosophical theory” behind, or acts as a point of 
reference for, many of the philosophies of mathematics. Most philosophies 
of mathematics were developed as a reaction to it. Some fi nd that the body 
of mathematical results do not support Platonism; others fi nd that there are 
deep philosophical fl aws inherent in the philosophy. Most of the subsequent 
chapters refer back to infi nity, Platonism or both. Cross-referencing between 
the subsequent chapters is kept to a minimum. 

In Chapter 3 we discuss logicism, which is seen as an interesting depar-
ture from some aspects of Platonism. Usually a logicist is a realist about the 
ontology of mathematics, but tries to give an epistemological foundation to 
mathematics grounded in logic. In Chapter 4 we then look at the more recent 
arguments of structuralism, which can be construed as a type of realism, but 
cleverly avoids many of the pitfalls associated with more traditional forms of 
realism or Platonism. 

Constructivism, discussed in Chapter 5, is a sharp reaction to Platonism, 
and in this respect also rejects logicism. Th is time, the emphasis is on both 
epistemology and ontology. Th e constructivist revises both of these aspects 
of the Platonist philosophy. Th e term “constructivism” covers a number of 
diff erent philosophies of mathematics and logic. Only a selected few will be 
discussed. Th e constructivist positions are closely tied to an underlying logic 
that governs the notion of proof in mathematics. For this reason, certain 
technical matters are explored. Inevitably, some students will fi nd that their 
previous exposure to logic used diff erent notation, but I hope that the nota-
tion used here is clearly explained. Its selection refl ects the further reading 
that the student is encouraged to pursue. Again, the hope is that by read-
ing this chapter the student will gain the confi dence to explore further, and, 
duly equipped, will not fi nd all of the literature too specialized and opaque. 
Note that by studying constructivism after structuralism we are departing 
from the historical development of the philosophy of mathematics. However, 
this makes better conceptual sense; since we are anchoring our exploration 
of the philosophical approaches in infi nity and Platonism. Structuralism is 
closer to Platonism than is constructivism, so we look at structuralism before 
constructivism. 

Finally, Chapter 6 looks at a number of more esoteric and neglected ideas. 
Unfortunately, some of the relevant literature is diffi  cult to fi nd. Nevertheless, 
the chapter should give the reader a sense of the breadth of research being 
carried out in the philosophy of mathematics, and expose the student to 
lesser-known approaches that he might fi nd appealing. Th is should encourage 
creativity in developing new ideas and in making contributions to the subject. 
Th e reader may think that many of the sections in Chapter 6 warrant a whole 
chapter to themselves, but by the time they have reached Chapter 6, some 
terms and concepts will be familiar (for example, the distinction between an 
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analytic truth and a synthetic truth does not need explaining again), thus the 
brevity of the sections is partly due to the order of presentation.

Th ere are several glaring omissions in this book, noticeably Wittgenstein’s 
philosophy of mathematics. By way of excuse I can say that this is not meant 
as an encyclopaedia of the philosophy of mathematics, but only an introduc-
tion, so it is not intended to cover all philosophies. Nevertheless, the omis-
sion of Wittgenstein’s philosophy of mathematics bears further justifi cation. 
I am no expert on Wittgenstein, and I am not sure I would trust second-hand 
sources, since many disagree with each other profoundly. I do not have the 
expertise to favour one interpretation over others, so I leave this to my more 
able colleagues.

It is hoped that the book manages to strike a balance between concep-
tual accessibility and correct representation of the issues in the philosophy 
of mathematics. In the end, this introduction should not sway the reader 
towards one position or another. It should awaken curiosity and equip the 
reader with tools for further research; the student should acquire the courage, 
resources and curiosity to challenge existing viewpoints. I hope that the more 
esoteric positions having been introduced, students and researchers will take 
up the standards, and march on to develop them further. As we should let a 
potentially infi nite number of fl owers bloom in mathematics, we should also 
welcome a greater number of well-developed positions in the philosophy of 
mathematics. Each contributes to our deeper understanding of mathematics 
and of our own favoured philosophical theories.
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Chapter 1

Infi nity

1. Introduction

In this chapter mature philosophical ideas concerning mathematics will not 
be discussed in any depth. Instead we discuss various conceptions of infi n-
ity, setting the stage for more technical  discussions because each philoso-
phy has strong or interesting views concerning infi nity. We had better know 
something about infi nity before we embark on philosophical disputes. Th e 
disputes are strong. Some philosophers endorse the whole classical theory 
of inifi nity. Others wholly reject the classical theory, fi nding it misguided 
and dangerous, and replace it with a more modest conception of infi nity, 
or strict fi nitism. Friends of classical infi nity include realist positions such 
as Platonism, logicism and structuralism; enemies include constructiv-
ism, empiricism and naturalism. Some philosophers are ambivalent about 
 infi nity. Th ese include David Hilbert (1862–1943) and Edmund Husserl 
(1859–1938).

Note, however, that while many philosophies of mathematics can be cast 
in terms of their views on infi nity, this is not necessarily the most historically, 
or even philosophically, accurate way of characterizing them. Th ere are good 
reasons sometimes to think of disputes as revolving around other topics.1 
When this is the case, alternative axes of dispute will be carefully considered. 
Nevertheless, attitudes to infi nity will be discussed under each philosophical 
position discussed in the chapters that follow. Infi nity is an important con-
cept in mathematics. It has captured the imaginations of philosophers and 
mathematicians for centuries, and is a good starting-point for generating 
philosophical controversy.

Th is chapter is divided into fi ve sections. Section 2 is largely motivational 
and historical. It introduces Zeno’s paradoxes of motion, which will unsettle 
any preconceived idea that infi nity is a simple topic. Zeno’s paradoxes were 
well known in ancient Greece, and attempts were made to solve them even 
then. From these attempts2 the ancient Greeks developed two  confl icting 
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views: “potential infi nity”, championed by Aristotle, and “actual infi nity”, 
championed by followers of Plato. Th ese two views on infi nity will be dis-
cussed in §3. Th ey immediately serve as intuitive motivators for two rival 
philosophical positions: constructivism and realism, respectively. Potential 
infi nity and actual infi nity are not philosophical viewpoints; they are merely 
ideas about infi nity that partly motivate philosophical positions. 

Th e rest of the chapter will develop the classical theory of actual infi nity, 
since this is mathematically more elaborate. Section 4 concerns infi nite ordi-
nals. Section 5 discusses infi nite cardinals and runs through Georg Cantor’s 
diagonal argument. Th is introduces the student to “Cantor’s paradise”, which 
enthralled Hilbert, despite his insistence on the practice of mathematics being 
fi nite. Complete understanding of the minutiae of these sections is unneces-
sary in terms of understanding the rest of the book. It is enough if the stu-
dent appreciates the distinction between ordinal and cardinal numbers, and 
understands that there are many infi nite numbers under the conception of 
actual infi nity. To understand this is important because the infi nite numbers 
are considered to be part of classical mathematics, which, in turn, is under-
pinned by classical logic (which is what undergraduates are usually taught in 
early courses in logic). Classical logic is appropriated by the realists, who take 
it to be the best formal expression of the logic underlying mathematics. 

2. Zeno’s paradoxes

Notions of infi nity have been around for a long time. In the ancient 
Mesopotamian Gilgamesh Epic3 we see a concept of infi nity already surfac-
ing in the mythology: “Th e Gods alone are the ones who live forever with 
Shamash. / As for humans, their days are numbered”.4 Th is early notion of 
infi nity is that of an endless existence. For us, the puzzle is how to deal with 
infi nity mathematically. For this we have to wait several hundred years for 
Zeno of Elea, who fl ourished around 460 bce. 

Zeno of Elea wrote one of the fi rst detailed texts on infi nity. Th e originals 
do not survive, but the ideas are recounted by Aristotle and others.5 Zeno’s 
famous paradoxes of infi nity concern the infi nite divisibility of space, and thus 
the very possibility of motion. Th e paradoxes leave us bewildered. We know 
the word “infi nity”, we use it regularly, and yet, when we examine the notion 
closely, we see that we do not have a clear grasp of the term. 

Th e setting for Zeno’s discussion of infi nity is a discourse on the paradoxes 
of motion, and there is both a modest conclusion and an ambitious one. Th e 
modest conclusion to be drawn by the readers or listeners was that the con-
cept of infi nity held by the leading scholars of the day was confused. More 
ambitiously, and dubiously, the readers were to conclude that motion, and 
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change, are really illusory, and that only the Unchanging, or the One, is real. 
Modern interpreters attribute this further conclusion to the fact that Zeno 
was a loyal student of Parmenides, and Parmenides supported the doctrine 
that there is an underlying unity to the world that is essential to it. More 
importantly, the One is the true reality. Th erefore, change is essentially illu-
sory. Th us, we can interpret Zeno’s work as supplying further evidence for 
Parmenides’ idea that there is only the One/the Unchanging. Modern readers 
tend to resist this further conclusion, and certainly will not accept it simply 
on the basis of Zeno’s paradoxes. 

Nevertheless, Zeno’s paradoxes are still troubling to the modern reader, 
who might accept the more modest conclusion that we are confused about 
infi nity while rejecting the further claim that change is illusory. Most people 
today do not feel confused for long, because they think that inventing calculus 
was a solution to the paradoxes. However, calculus does not solve the puzzle; 
rather, it ignores it by fi nding a technical way of getting results, or by bypass-
ing the conceptual problem. Th us, mathematicians and engineers have no 
problems with infi nitesimals, but as philosophers we are left with the mystery 
of understanding them.6

Let us survey three of Zeno’s paradoxes. Th e fi rst paradox, as reported by 
Aristotle, is the paradox of the race course. It is argued that for a runner such as 
Achilles to run a race, he has fi rst to run half the distance to the fi nish line (Fig. 
1). Before he can run the second half, he has to run the next quarter distance 
(i.e. the third quarter of the race track) (Fig. 2). Before he can fi nish, the runner 
has to complete the next eighth distance (i.e. the seventh eighth) of the course 
(Fig. 3), and so on ad infi nitum. Since the runner has to complete an infi nite 
number of tasks (covering ever smaller distances) before he can fi nish the race, 
and completing an infi nite number of tasks is impossible, he can never fi nish 
the race. As a fl ourish on the fi rst paradox, we can invert it. Notice that before 
the runner runs the fi rst half of the course, he has to have run the fi rst quarter of 
the course. Before the runner runs the fi rst quarter, he has to have run the fi rst 
eighth, and so on ad infi nitum. Th erefore, it is impossible to start the race!

It is worth dwelling on these paradoxes a little. Th ink about any motion. For 
something to move it has to cross space. On the one hand, we do manage to 
move from one place to another. Moreover, in general, this is not diffi  cult. On 
the other hand, if we think of space itself, we can divide any space, or distance, 
in half. It does not seem to matter how small the distance is. We can still, in 
principle, divide it in half. Or can we?

One possible solution to the above paradoxes is to think that there is a 
“smallest” distance. Th e process of dividing a distance in half has to come 
to an end, and this is not just because our instruments for cutting or divid-
ing are too gross, but because space comes in discrete bits. At some point in 
our (idealized) dividing, we have to jump to the next smallest unit of space. 
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If space does have smallest units, which cannot be further subdivided, then 
we say that space is “discrete”. And the same, mutatis mutandis, for time. 
Returning to our paradox, Achilles does not have an infi nite number of tasks 
to complete in order to fi nish the race. He has only a fi nite number of smallest 
units of distance to traverse. Th is is all well and good, but we should not feel 
completely content with this solution because Achilles still has a very large 
number of tasks to complete before fi nishing the race. Th ere is still some 
residual tension between thinking of running a race as a matter of putting one 
foot in front of the other as quickly as our muscles can manage, and thinking 
of it as completing a very large number of very small tasks. Th e next paradox 
will help us to think about these small tasks.

Th e second paradox is called “Th e Achilles” paradox,7 or “Achilles and the 
tortoise”. Th e idea is that Achilles is to run a race against the tortoise. Achilles 
is a good sport, so he gives the tortoise a head start by letting the tortoise 

START FINISH

½ D

D

Figure 1

START FINISH

¾ D

D

Figure 2

START FINISH

D

7⁄8 D

Figure 3



infinity 5

start at a distance ahead of him. Th ey begin at the same time. Will Achilles 
overtake the tortoise and win the race? 

As Achilles runs to catch up with the tortoise, the tortoise is also moving 
(Fig. 4). By the time Achilles has reached the point of departure of the tortoise, 
A, the tortoise will have moved ahead to a new place, B (Fig. 5). Achilles then 
has the task of running to B to catch up to the tortoise. However, by the time 
Achilles gets to B, the tortoise will have crawled ahead to place C (Fig. 6). In 
this manner of describing the race, Achilles can never catch up with the tor-
toise. Th e tortoise will win the race.

Notice that this is perfectly general. It does not depend on a minimal dis-
tance between the starting-point of Achilles and the tortoise, or on a par-
ticular length of race. In real life, it would make a diff erence. Th ere would 
be starting distances between Achilles and the tortoise where the tortoise 
would obviously win, starting distances where Achilles would obviously win 
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and starting distances where the result could go either way. Th e problem of 
the paradox has to do with the order of the tasks to be completed. It is quite 
right that Achilles has to catch up with the tortoise before overtaking the tor-
toise. It is also correct that the tortoise is also in motion, so is a moving target. 
Again, if space is discrete, then there will be a last unit of distance to cross 
for Achilles to be abreast of the tortoise, and then Achilles is free to overtake 
it. We should consider that Achilles runs faster than the tortoise, so Achilles 
can overcome the small distances more quickly. He can complete more tasks 
in a shorter time. Th e paradox seems to reinforce the hypothesis that space is 
discrete. Moreover, it makes plain that time had better be discrete too: allow-
ing for speed to come in discrete units. Unfortunately, we cannot rest there, 
since there is a further paradox that is not solved by the hypothesis that space 
and time are discrete.

Consider the last paradox: that of the blocks. One is asked to imagine three 
blocks, A, B and C, of equal size and dimension. Blocks A and B are next to 
each other occupying their allotted spaces. Block C is in front of block A 
(Fig. 7). Block C might move, or be moved, to the position in front of B (Fig. 
8). Let us say that this takes 4 moments. Now compare this to the situation 
where not only is block C moved to the right, but blocks A and B are moved 
to the left at the same time (Fig. 9). In this case, it takes only 2 moments for 
the relative positions of the blocks in Figure 8 to be assumed, so the blocks 
reach the same relative position in half the time. 

A B

C

A B

C

A B

C

Figure 7 Figure 8 Figure 9

Th is is not a conceptual problem until we start to make the space occupied 
by the blocks maximally small, and the movements of the blocks very fast. Th e 
blocks make “moment jumps” as in the conception above. But since the blocks 
can move in opposite directions relative to each other, they are jumping faster 
relative to each other than they can relative to the ground. Again this is not a 
problem, except that by choosing a moving reference point we can concep-
tually halve the speed of a block. Th is tells us that speed is not only relative 
(to a reference point), but also can, in principle, always be halved. Space-time 
seems to be infi nitely divisible and, therefore, not discrete. 

To summarize, we can solve the fi rst two paradoxes by arguing that space 
and time come in “smallest” units. If this is the case then it is false that Achilles 
has an infi nite number of tasks to perform to fi nish the race. He has only a 
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fi nite number of tasks: a fi nite number of space units to cross. Th is notion 
of space and/or time being discrete (having smallest units) solves the second 
paradox too. But if space and time are discrete, then we cannot solve the last 
paradox. For the last paradox just shows that we can always subdivide units 
of space and time (by changing the reference point from stationary to mov-
ing). Since, in principle, we could occupy any moving reference point we like, 
we should be able to infi nitely subdivide space and time. Th erefore, our con-
ception of infi nity bears refi ning. Zeno wanted his readers to conclude that 
motion is illusory. We do not have to accept this further conclusion.

We shall say no more about these paradoxes. Th ere have been many good 
studies of them, and they are introduced here just to show that some work has 
to be done to give a coherent account of infi nity. In particular, in resolving the 
paradoxes as a whole there are two confl icting ideas: the notion of space and 
time as always further divisible (we call this “everywhere dense”) and that of 
space and time as discrete.8

Th is brings up another issue about infi nity that was debated in the ancient 
world: what do we really mean by “in principle infi nite”? More specifi cally, we 
need to choose between the notions of potential infi nity and actual infi nity. 
We turn to this pair of concepts in the following section. 

3. Potential versus actual infi nity

As a result of contemplating Zeno’s paradoxes, Aristotle recognized the con-
ceptual confusion surrounding infi nity. He developed his own notion of infi n-
ity, drawing a distinction between potential infi nity and actual infi nity. We can 
think of the concept of potential infi nity as “never running out, no matter what”, 
and the concept of actual infi nity as “there being (already collected) an infi nite 
number of things: temporal units, spatial units or objects”. Once Aristotle made 
this distinction, he decided that the notion of actual infi nity was incoherent.

Th e notion of potential infi nity is that of “not running out”. For example, 
when we say that the numbers are potentially infi nite, what we mean is that we 
will never run out of numbers. Similarly, when we say that time is potentially 
infi nite what we mean is that there will always be more of it. Th is is not to 
say that each of us individually will not run out of time. Rather, the potential 
infi nity of time concerns the structure of time itself. Th ere is no last moment, 
or second; for each second, there is a further second. 

Characteristic of the notion of potential infi nity is the view that infi nity is 
procedural; that is, we think of infi nite processes and not of a set comprising an 
infi nite number of objects. Th e notion of potential infi nity is action-oriented 
(verb-oriented). We think of taking an infi nite number of steps, of counting 
to infi nity, of taking an infi nite amount of time. We can do all of these things 
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in principle. Th e point is that we have no reason to believe that we will run 
out, no matter how much we extend our existing powers of counting.

Th ere is ambiguity in our expression of the notion of potential infi nity. 
Compare the following statements.

(i) It is guaranteed that we shall never run out.
(ii) We are confi dent that we shall never run out.
(iii) More conservatively, until now we have not run out, and there is no rea-

son at present to suppose that we will come to an end of the process.

Let us keep these three possibilities in mind, and contrast them to the notion 
of actual infi nity.

Where potential infi nity is procedural, actual infi nity is static and object 
based. Th at is, we think of infi nity in a very diff erent way when we think of 
actual infi nity. For example, we might think of the set of even numbers, and 
say that this is an infi nite set. Moreover, it is an object we can manipulate; for 
example, we could combine it with the set of odd numbers and get the whole 
set of natural numbers. If we say that time itself is actually infi nite, we mean this 
in the sense that time can be represented by a line that has no ending (possibly 
in both directions, or possibly only in one). Th e actually infi nite time line being 
represented is an object that we can discuss as a whole. Th at is, when we think 
in terms of the actual infi nite, we think of infi nite objects: sets or dimensions or 
some other objects that we can treat as a collected whole. So the infi nite object 
is an object: a set with an infi nite number of members, parts or extension.

We can now contrast the conceptions of actual and potential infi nity. Recall 
our three expressions of potential infi nity. Th e fi rst – “it is guaranteed that we 
shall never run out” – is somewhat odd in that we are tempted to ask what it 
is that guarantees that we shall never run out. Th e advocate of actual infi nity 
will simply respond by explaining that the guarantee that we shall not run out 
comes from the existence of an infi nite set, in terms of which the procedure 
of counting is couched. Put another way, when I say that we are guaranteed 
never to run out of numbers, what sanctions the guarantee is that there is a set 
of numbers that is infi nite. Th us this expression of potential infi nity relies on 
acceptance of the notion of actual infi nity, so the two notions are not incom-
patible. We have the notion of a potentially infi nite procedure, guaranteed to 
be infi nite because the number of possible steps is infi nite. More explicitly, 
the procedure sits on top of, and depends on, an actually infi nite set. Under 
this conception, we just have to be careful about whether we are discussing 
infi nity as a procedure or as an object, because we can do both.

Recall that Aristotle thought that the notion of the actual infi nite was inco-
herent, so expression (i) of potential infi nity is not one Aristotle would have 
favoured.
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Th e second expression of potential infi nity – “we are confi dent that we shall 
never run out” – is more psychological. We can place our confi dence either 
in the existence of the actual infi nite, or in past evidence. Begin with the fi rst. 
If we say that what we mean when we say that, for example, “time is infi nite” 
is that we are confi dent that time will continue, then our confi dence resides in 
there being an infi nite dimension called “time”. Th is again couches potential 
infi nity in terms of actual infi nity. Our confi dence is placed in the potential 
infi nite because we are confi dent of the existence of an actually infi nite dimen-
sion called “time”. So in this case the notion of potential infi nity again depends 
on a notion of actual infi nity, as in expression (i). Th us the two conceptions 
are again compatible; and this does not sit well with someone convinced of 
the incoherence of the notion of actual infi nity.

We could take another tack and deny that our confi dence depends on 
actual infi nity. We could say that our confi dence is not placed in some 
“spooky object” called the “time dimension” but rather in past experience. 
In other words, “we are confi dent that time is infi nite” just means that in 
the past we have not run out, and there is no reason to think that time will 
suddenly stop. Maybe this is because the ending of time is inconceivable, or 
maybe “there is no reason” just means that there has not been one in our past 
experience. So either we have to explain why the infi nity of time depends on 
our powers of conception, and this is implausible because we might just lack 
imagination, or expression (ii) collapses into expression (iii). Unfortunately, 
we cannot really tell what will happen in the future. If we are honest with 
ourselves, we realize that whatever we take to be potentially infi nite could 
come to an end at any moment, even if we cannot think what this would be 
like. In some sense that is alright, since if time came to an end we would not 
be thinking at all. 

Now we have to be careful. Expression (iii) is compatible with there being 
a fi nite amount of, for example, time. Th at is, there might be an end of time. 
While we may have no evidence that the stopping of time is imminent, lack 
of evidence does not mean that time cannot simply end. It is not even clear 
what such evidence would “look like”, and so how we would recognize such 
evidence if there were any. For all we know, time might just stop tomorrow, in 
a billion years, in many more years or not at all. Th e problem is that we lack 
evidence, based on past experience, to help us decide. Since Aristotle thinks 
that the notion of actual infi nity is incoherent, he has to be seriously consider-
ing expression (iii) as articulating what he means by “potential infi nity”.

Pushing this Aristotelian position further still, let us consider four ways of 
making it more precise:

(a) All things come to an end, so time will also. It has not yet happened.
(b) Probably, time is potentially infi nite. 
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(c) Time might be fi nite or it might not.
(d) We should not push this enquiry further.

Each of these sounds harmless enough, but each has some diffi  culties. We ask 
of the person who resorts to (a) what “all” means. When we say that “all things 
come to an end” we mean that any procedure we can think of will come to 
an end. Unfortunately, there does not seem to be any guarantee of this at all, 
at least in the world of experience. Plenty of things carry on after a person’s 
death, so even when a particular life has ended, some things continue. Th is 
is true for everyone we have met so far, at least as far as we know. In fact, 
our evidence is not purely personal evidence; it is shared evidence. We can-
not say that all things come to an end, because even collectively we do not 
experience all things ending. Maybe we can appeal to scientifi c theory. So 
maybe science tells us that everything comes to an end, as well as having had 
a beginning. Unfortunately, science has not ruled on this yet, at least if we are 
discussing the origins and ends of the universe, temporally or spatially. Th e 
only law in physics telling us that “everything comes to an end” is the second 
law of thermodynamics, the law of entropy, which says that energy becomes 
increasingly “less available”. In particular, the second law of thermodynamics 
concerns matter and energy; time itself is neither matter nor energy, so the 
second law of thermodynamics cannot tell us if time itself will come to an 
end or not. When pressed, therefore, (a) does not get us very far with respect 
to (i), (ii) and (iii) above.

At fi rst, those who take the tack of saying (b) seem to be quite sophisticated 
because of the introduction of the notion of probability. Do not be deceived 
by this. We could ask them where the probability measure comes from, or 
how it is to be set up. If someone claims that one event is more probable than 
another, then that person has some measure that assigns a greater number 
to the possibility of that event than the other one. Th e number has to come 
from somewhere. We have to be comparing two things (events) and we need 
some unit of measure to come up with the numbers; and to compare their 
respective probabilities there has to be some plausible ground of comparison 
between the two which is some absolute, or fi xed, frame of reference.

In the case above we say that time is probably potentially infi nite, and 
presumably this means that it is less probable that time is fi nite. Is this a sci-
entifi c claim or a conceptual claim? It cannot be a scientifi c claim, except in 
the rather shaky sense of there being more theories that postulate that time 
is potentially infi nite. We are then counting theories. It is not obvious how to 
tell one theory from another, and it is not clear at all, given the past history 
of science, that the number of our present theories siding on one side, with 
respect to the infi nity of time, is representative of reality. If we are not count-
ing theories, then we are counting some sort of probability within a theory. 



infinity 11

Th e problem here is that it is not obvious, mathematically, how to measure 
probability of time ending or not. Th ere is no absolute background against 
which to measure the probability. So the term “probability”, in the statistical 
or mathematical sense, is not appropriate here. At best, then, ascribing prob-
ability is just a measure of confi dence, which is not quantifi able. If it really is 
not quantifi able, then our confi dence is ungrounded.

A quick, but disingenuous, way of dealing with (c) is to point out that it is a 
tautology of the form “P or not P”, where P can be replaced by any proposition or 
declarative sentence. Tautologies are always true, but they are also uninforma-
tive. More charitably, we could ask of (c) what “might” means, because “might” 
is often oblique for “has a probability measure”. In this case, we return to the 
arguments over (b). On the other hand, if “might” is really to point to a sort of 
agnosticism, then it is possible for time not to come to an end, so it is possible 
for time to be infi nite (actually!). So then we ask how we are to understand the 
possibility of actually infi nite time. In doing so, we have uncovered a commit-
ment to the notion of actual infi nity at least as a possibility. So again, the concept 
of potential infi nity is compatible with a conception of actual infi nity. Again, 
this is something Aristotle would have rejected.

Statement (d) is an infuriating argument. It is not always legitimate, and 
we are entitled to ask where the “should” comes from. Is this normative or 
prescriptive? Is this a “should” of caution? Or is it a “should” of trying to 
cover up for the fact that the person using tactic (d) has nothing more to say? 
Disappointingly, this is often the case. Furthermore, the advocate of (d) can 
seldom defend the prescriptive or normative mode. 

If we look closely, we see that these positions either beg the question, in the 
sense that the argument for the position is circular, or they rely on a concep-
tion of actual infi nity. Th us we had better take a look at the notion of actual 
infi nity a little more closely. To do so we shall investigate the mathematical 
notions of ordinal and cardinal infi nities.

So far, we have dismissed arguments in favour of potential infi nity in order 
to motivate looking at the notion of actual infi nity. In Chapter 5, we shall return 
to more serious philosophical arguments in support of potential infi nity as 
the only coherent notion of infi nity. Henceforth, we shall refer to supporters 
of this viewpoint as “constructivists”.9 Th e arguments that constructivists give 
in favour of discarding actual infi nity from mathematics revolve around two 
ideas. One is that mathematics is there to be applied to situations from outside 
mathematics, such as physics. Th ere are only a fi nite number of objects in the 
universe, therefore, our mathematics should only deal with the fi nite. Call this 
the “ontological argument”. Th e other motivation is more epistemic (having 
to do with knowledge). Th is idea is that there is no point in discussing infi nite 
sets since we cannot know what happens at infi nity or beyond infi nity. More 
strongly, it is irrational to think that a person could be entertaining thoughts 
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about infi nity, since we are essentially fi nite beings, and have no access to such 
things. We shall revisit these arguments in Chapter 5. 

4. Th e ordinal notion of infi nity

Th e word “ordinal” in “ordinal notions of infi nity” refers to the order of objects. 
A very intuitive example is that of people forming a queue. We label them 
as fi rst in the queue, second in the queue, third in the queue and so on. Th e 
natural numbers, that is the numbers beginning with 1, followed by 2, then 3, 
then 4 and so on, are objects. Th ey can be arranged in a natural order by using 
the same numbers as labels for “fi rst”, “second”, “third” and so on: the natural 
number 1 is fi rst in the order of natural numbers; the number 2 is second. We 
can discuss the ordinal numbers as a set of mathematical objects in their own 
right. Th e diff erence between the natural numbers and the ordinal numbers 
can be confusing; remember simply that the natural numbers are conceptually 
prior to the ordinals. Th e natural numbers are quite primitive, and they are 
what we fi rst learn about. We then transpose a (quite sophisticated) theory 
of ordering on them. For convenience we use the natural numbers in their 
natural order to give order to any set of objects we can order. We use the 
ordinals (exact copies of the natural numbers) to order objects such as the 
natural numbers. So the order is one level of abstraction up from the natural 
numbers: we impose an order on objects. 

Th e fi nite ordinals can be gathered into a set in their own right. Th e set is 
referred to as “the set of ordinal numbers”. Th is makes for a certain amount 
of ambiguity in referring to the ordinals as labels, as a series of numbers or 
as a set of numbers. For our purposes, it is more important to think of the 
ordinal numbers as a well-ordered series of labels.10 Th e natural numbers are 
ordered by the “less than” relationship, often symbolized “<”. When we say 
that the natural numbers are ordered by “<”, what we mean is that given any 
two distinct numbers one is strictly greater than the other.

Th ere are all sorts of ordering relations to which we might want to give 
mathematical expression. For example, we might want to capture mathemati-
cally the idea of temporal order. For example, we might ask: did Achilles cross 
the fi nish line before or after the tortoise? We can order people in terms of 
height, so Paul might be taller than Bert. We can order physical objects in 
terms of volume: “this pot is bigger than that pot” usually means that the fi rst 
can hold more liquid (in terms of volume). Provided we have a comparative 
measure,11 we can label the order of things. More simply, provided we have 
an ordering relation we can order things.

Let us return to the natural numbers. Th ese can “order themselves”, in 
the sense of clearly revealing their own natural order. Recall that the natural 
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numbers are ordered by the relation “<”. But the natural numbers are infi nite. 
At “the end” of the natural numbers we have a new number called “omega”, 
the last letter of the Greek alphabet, the symbol for which is “ω”. Now ω is 
an unusual number: it is the fi rst infi nite ordinal. It is an ordinal because it 
is strictly greater than any fi nite ordinal number, so it follows in the “strictly 
greater than” series. However, it lacks an immediate predecessor: a number 
that comes directly before it. Th e one fi nite ordinal that shares this feature is 
1. In the series of natural numbers 1 has no immediate predecessor;12 ω has 
no immediate predecessor and is the successor of all the fi nite ordinals. Th at 
is, there is no number ω – 1. If there were, then we could work our way back 
to the fi nite numbers, and then ω would be fi nite. Because ω has no immedi-
ate predecessor, we call it a “limit ordinal”.

Although ω has no immediate predecessor, it does have an immediate suc-
cessor: ω + 1. Th is is because, by defi nition, all the ordinal numbers have an 
immediate successor. Suddenly we have two infi nite ordinals. It gets better. 
Since we have ω + 1, we also have ω + 2, ω + 3 and so on. What happens at 
“the end” of this part of the series of ordinals? We can add ω to ω, which is 
the same as 2 × ω. Th is is another limit ordinal. It has no immediate pred-
ecessor, but it does have an immediate successor: (2 × ω) + 1. Th e next limit 
ordinal is 3 × ω. In addition to fi nding limit ordinals in this way, we can also 
take powers of ω, for example, ω × ω, written ω2. Th e limit ordinal of the 
series of ω raised to successive powers of ω – that is, ω, ωω, ωωω, … – is given 
a new letter ε (the Greek letter “epsilon”). We can continue combining ε with 
fi nite numbers, ω and ε itself by addition, multiplication and exponentiation. 
Th is gives us an idea of how mathematicians extend the ordinal numbers into 
infi nity, and beyond the least infi nite ordinal, ω. What does the order of all 
these extensions look like?

1, 2, 3, …, ω, ω + 1, ω + 2, …, 2ω, 2ω + 1, 2ω + 2, …, 3ω, 3ω + 1, 
3ω + 2, …, ω2, ω2 + 1, ω2 + 2, …, ω3, ω3 + 1, ω3 + 2, … ωω, ωω + 1, 
ωω + 2, …, (= ε, so we can continue), ε + 1, ε + 2, ε + 3, …

Note that “,” indicates that the next number is the immediate successor, and 
“…” indicates that at least one limit ordinal follows. Not only do we have an 
infi nite ordinal, we have an infi nite number of infi nite ordinals.

5. Th e cardinal notion of infi nity

To spark the imagination, and introduce the concept of infi nite cardinals, it is 
customary to relate some version of the following story, which is based on the 
mathematician David Hilbert’s (1862–1943) hotel paradox. Consider a hotel 
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with an infi nite number of rooms. A large conference on mathematics is to 
take place, and all the delegates are to be accommodated in the hotel. Th ey 
start to arrive the day before the conference and are allocated rooms in order: 
room 1, room 2, room 3 and so on. On the fi rst day of the conference, more 
delegates arrive, an infi nite number of them, and the hotel is able to accom-
modate them. But then there is a problem. A tourist now arrives in town, 
and there is only the one hotel, with an infi nite number of rooms, currently 
occupied by an infi nite number of conference delegates. Th e tourist asks for a 
room for the night. Th e receptionist could ask her to take the room at the end, 
but this would involve walking an infi nitely long way. Instead, the receptionist 
fi nds another solution, asking everyone in the occupied rooms to move to the 
next-numbered room. Th is frees up the fi rst room, which is where the tourist 
is accommodated. Had an infi nite number of tourists arrived, the receptionist 
could have asked all the conference delegates to move to the even-numbered 
rooms found by doubling their original room numbers, thus freeing up an 
infi nite number of odd-numbered rooms for the tourists. Th ere would always 
be room for more in this hotel! Infi nite cardinals can “absorb” fi nite and some 
infi nite cardinal numbers without changing. How can this be?

Th e cardinal numbers answer the question “How many?”; the order of 
presentation of the objects being counted is immaterial. For example, two sets 
of three objects have the same cardinality: the cardinality of each set is three. 
It does not matter if the objects in one set are much larger than those in the 
other set; we just count the members of the sets. A set is indicated by curly 
brackets, and the members of the set are written inside the brackets, separated 
by commas. Let A be the set containing the numbers 6, 95 and 62. Th en A = 
{6, 95, 62}. Similarly, let B = {567, 2, 1346}. Both A and B have cardinality 3. 

Defi nition: Th e cardinality of a set is the number of members of the 
set.

By the “cardinality” of a set we mean the “size” of a set. Two sets are “of the 
same size” if they have the same cardinality: A and B are of the same size. 

Now that we have a notion of cardinality, and one of “sameness of size”, we 
can consider two diff erent infi nite sets of numbers. One is the set of all fi nite 
natural numbers, the other the set of all even numbers. Do both of these sets 
have the same number of members? Th e obvious fi rst answer is that the set 
of even numbers has fewer members than that of all the natural numbers. It 
is missing half the numbers, so it must have cardinality half of infi nity. But 
“half of infi nity” is a peculiar answer. Maybe half of infi nity is also infi nity: 
think of Hilbert’s famous hotel. We need to think about how to compare the 
cardinalities of infi nite sets. To do this we need some more defi nitions.
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Defi nition: A subset of a set A is a set containing only members of A. 
Th e empty set is a subset of every set. Note that it is not a member of 
every set.

A subset may include all the members of the original set, or it may leave 
some out. Th e empty set is the set with no members (cardinality 0). Its being 
a subset of every set follows trivially from the defi nition of subset; the subset 
of any set has to include the set of nothing at all. We denote the empty set 
with the symbol “Ø”.

Defi nition: A proper subset of a set A is a subset that does not contain 
all the members of A.

So a proper subset of a set is a subset that is missing at least one member of 
the original set. For example, consider the set of fi nite natural numbers, {1, 
2, 3, 4, 5, …}. A proper subset of this set is that of all the fi nite natural num-
bers beginning with 5: {5, 6, 7, 8, …}. Th is is a subset because it only includes 
members of the original set and it is a proper subset because it is missing at 
least one of the original members (in fact it is missing four, the numbers 1, 
2, 3 and 4).

If we can match two sets up so that we can pair off  each and every member 
of the fi rst set with one, and only one, member of the second set, then we have 
placed the two sets in one-to-one correspondence. 

Defi nition: Two sets, A and B can be placed in one-to-one correspond-
ence just in case every member of A can be matched up with a unique 
member of B and vice versa. 

When we can do this, we say that the two sets are of the same size.

Defi nition: Two sets are of the same size if and only if they can be placed 
in one-to-one correspondence.

Recall that we asked whether the set of fi nite natural numbers was the 
same size as the set of even numbers. Note that we are just thinking of these 
as sets, not as ordered series. Call the set of natural numbers N and the set 
of even numbers E. Now, E is a proper subset of N; it is missing all the odd 
numbers. However, E can be placed in one-to-one correspondence with N. 
We can pair up 1 from N with 2 from E, 2 from N with 4 from E, 3 from N 
with 6 from E. We can carry on this pairing indefi nitely because both sets 
are infi nite:



16 introducing philosophy of mathematics

N 1 2 3 4 …
    
E 2 4 6 8 … 

Th e set of natural numbers, N, can be placed in one-to-one correspondence 
with one of its proper subsets, E. Th erefore, N and E are of the same size.13

We now have enough concepts to introduce a historically important defi ni-
tion: Richard Dedekind’s (1831–1916) defi nition of an infi nite set.14

Defi nition: A set is infi nite if and only if it can be placed in one-to-one 
correspondence with one of its proper subsets.

So the set N is infi nite. Th is will not work with any fi nite set (try some exam-
ples), but will, of course, work with any infi nite set.

Are there other sets that are infi nite by Dedekind’s defi nition? Th e set of even 
numbers, E, is also infi nite, because we can fi nd a proper subset of E that we 
can place in one-to-one correspondence with it. Consider, for example, the set 
C of all even fi nite numbers except 2. C is a subset of E because it only contains 
members of E; it is a proper subset of E because it is missing 2. And E can be 
placed in one-to-one correspondence with C in the following way: match 2 of 
E with 4 of C; match 4 of E with 6 of C; match 6 of E with 8 of C and so on.

E 2 4 6 8 …
    
C 4 6 8 10 … 

Th e way in which we fi nd the matching is irrelevant; we just have to show 
that there is one. Dedekind’s defi nition of infi nity distinguishes fi nite from 
infi nite cardinal numbers.

We can now move on to ask: are all infi nite sets of the same size? To answer 
this we shall have to address more sophisticated notions among the infi nite 
cardinal numbers. We shall start with sets that we intuitively think are bigger. 
Consider the set of integers, Z. Th is is all the negative natural numbers and 
0 together with the positive natural numbers: … –3, –2, –1, 0, 1, 2, 3, …. Th e 
(positive) natural numbers form a proper subset of the integers. Are the two 
sets N and Z of the same size? Th at is, can the two sets be placed in one-to-one 
correspondence with each other? We might think not, because the integers 
go on infi nitely in two directions, not just one, which suggests that there are 
twice as many integers as there are natural numbers. But think again.

Remember that when we are interested in the cardinality of a set, we are only 
interested in answers to the question: how many? As such, we can  disregard 
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the usual order of the numbers. We could match 0 from the set of integers 
to 1 of the set of natural numbers, 1 from the set of integers to 2 from the set 
of natural numbers, –1 from the set of integers to 3 from the set of natural 
numbers, 2 from the set of integers to 4 from the set of natural numbers, –2 
from the set of integers to 5 from the set of natural numbers, and so on.

Natural numbers 1 2 3 4 5 6 7 …
       
Integers 0 1 –1 2 –2 3 –3 …

Since we have placed the set of integers in one-to-one correspondence with 
the natural numbers, we say that the set of integers is of the same size (or has 
the same cardinality) as the set of natural numbers.

What about the rational numbers? Rational numbers are all those that can be 
represented in the form m⁄n (i.e. as fractions) where m and n are natural numbers 
diff erent from 0.15 Between any two rational numbers there is a third rational 
number, and it follows that there is an infi nite number of rational  numbers 
between any two rational numbers. For example, between ⁄ (= ⁄) and 
⁄ (= ⁄) there is ⁄, and between ⁄ (= ⁄) and ⁄ (= ⁄) there is ⁄, and so on. 
To describe this, we say that the rational numbers are “everywhere dense”.

We might think that there must be more rational numbers than natural 
numbers. In fact, since between any two rational numbers there is an infi nite 
number of rational numbers, we could consider that we have infi nity in three 
dimensions: positive numbers, negative numbers and the “depth” of an infi -
nite number of rational numbers between any two rational numbers. But it is 
possible to place the set of rational numbers in one-to-one correspondence 
with the natural numbers so (from the defi nition above) the sets of rational 
numbers and natural numbers are the same size.

To see this consider Figure 10, which gives a tabular representation of the 
rational numbers. We fi rst have to agree that, if completed, this table will 
capture all the possible rational numbers. Of course, completing the table is 
a superhuman task, but that does not matter. We can see that all the numbers 
are represented: nothing is missed out. Note that we miss out 0 on the vertical 
vertex because anything divided by 0 is “undefi ned”. Also note that there are 
repetitions: ½ is the same as ⁄, is the same as ⁄ and so on. We can eliminate 
the repetitions as we go along by converting each rational into its “lowest form” 
and then erasing exact copies. How are we going to show that this table can 
be put into one-to-one correspondence with the natural numbers?

For added simplicity, ignore the fact that there are repetitions. We can draw 
a continuous line through all the entries on the table by starting in the mid-
dle and spiralling outwards (Fig. 11). We should agree that all the  numbers 
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… –3 –2 –1 0 1 2 3 …
� � � � � � � �
3 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
2 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
1 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …

–1 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
–2 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
–3 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …

� � � � � � � �

Figure 10

are collected using this line. We can now list the numbers according to their 
order on that line – ⁄, ⁄, ⁄, ⁄, ⁄, ⁄ ⁄, ⁄, … – and then put all the 
numbers into their lowest form, eliminating repetitions. We then have: 0, –1, 
1, ½, –½ … . We can now place these in one-to-one correspondence with the 
set of natural numbers:

Natural numbers 1 2 3 4 5 6 7 …

       

Rational numbers 0 –1 1 ½ –½ –2 2 …

You might think this is cheating somehow, but recall from the defi nitions 
above that cardinality is a measure of “how many”, regardless of the order of 
the numbers. To show that there is a one-to-one correspondence, we only 
have to give one way of setting up the correspondence. It is suffi  cient that we 
agree that all the rational numbers will eventually be enumerated using this 
method. Clearly, and trivially, there are alternative methods. 

How do we denote the cardinalities of infi nite sets? Finite sets have  natural-
number cardinalities: a set with three members has cardinality 3; one with 
eighty-nine members has cardinality 89 and so on. We have names for infi nite 
cardinalities too. Th e fi rst infi nite cardinal is ℵ0. Th e symbol ℵ (pronounced 
“alef ”, and written “aleph” in English) is the capital version of the fi rst letter 
in the Hebrew alphabet. Th e “0” is the number zero. To talk of ℵ0 we can say 
“aleph-zero”, “aleph-null” or “aleph-nought”. 

Having demonstrated that the set of rational numbers can be put into 
one-to-one correspondence with the set of natural numbers, we might now 
think that all infi nite sets have the same cardinality. Th e cardinality of the set 
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of natural numbers is ℵ0, and this is also the cardinality of the set of even 
numbers, the set of integers and the set of rational numbers. But there is at 
least one set of numbers that has a greater cardinality than ℵ0. 

Th e set of real numbers consists in the set of rational numbers together 
with the set of irrational numbers. A number is irrational just in case it cannot 
be represented as a fraction: in the form m⁄n. An irrational number has an infi -
nite non-repeating decimal expansion (i.e. the numbers after the decimal do 
not form a pattern that is exactly repeated). For example,  0.12112111211112 
… forms a pattern but not a pattern that is exactly repeated, so it is an irra-
tional number. In contrast, 0.333333… is a rational number (it can be written 
⁄) as is 8.345345345345… . Th e exactly repeating pattern part of this deci-
mal expansion is “345”. We call this the “period” of the decimal expansion. 
Any number with a period in its decimal expansion can be represented as a 
fraction. Th e number 1.18181818… , for example, can be represented as the 
fraction ⁄. Famous examples of irrational numbers are π (the Greek letter 
“pi”), and e.16

We say that the set of real numbers, consisting in the set of rational num-
bers and the set of irrational numbers, represents the “continuum”. We think 
of the line formed by the real numbers as smooth, having no gaps; the set of 
rational numbers has gaps, since it is missing all the irrational numbers.

Th e fi rst thorough mathematical treatment of infi nite cardinal numbers 
was developed by Georg Cantor (1845–1918) in the 1880s, and he proved 
that the set of real numbers has a cardinality greater than ℵ0. Part of the proof 
technique was new. It is called “diagonalization”, and has been replicated in 
many proofs in mathematics since. We shall work through the proof here. It 
is not diffi  cult to follow, although it is tempting to think at the end that there 
has been some sleight of hand.17 

Figure 11

… –3 –2 –1 0 1 2 3 …
� � � � � � � �
3 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
2 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
1 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …

–1 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
–2 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …
–3 … ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ ⁄ …

� � � � � � � �
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 Th e overall structure of the proof is a reductio ad absurdum argument, 
in which we (i) suppose that the set of real numbers is the same size as the 
set of natural numbers and then (ii) show that this leads to a contradiction. 
We then (iii) conclude that the two sets must be of diff erent sizes. Since it is 
obvious that, of the two, the set of natural numbers is smaller than that of the 
real numbers, because the natural numbers form a proper subset of the real 
numbers, we (iv) conclude that the set of real numbers must have a greater 
cardinality. 

Step (i): Suppose (for the sake of argument) that the set of real numbers is 
the same size as the set of natural numbers. 

Step (ii): Under the assumption of (i), there should be some way of listing 
these in some order, so that they can be placed in one-to-one correspondence 
with the natural numbers. Let us concentrate for now on just the real numbers 
between 0 and 1. Each of these has an infi nite decimal expansion. Some of 
these will be trivial, for example, 0.500000… . Some will be repeating; some 
not. We could list them in supposed order in the following format, where 
the subscript numerals refer to the digit in the decimal, and the superscript 
numerals refer to the ordering of the real numbers:18

1 0.a1
1 a2

1 a3
1 a4

1 a5
1 …

2 0.a1
2 a2

2 a3
2 a4

2 a5
2 …

3 0.a1
3 a2

3 a3
3 a4

3 a5
3 …

… …

(For example, if the third number in our list is 0.236835 then a1
3 refers to 2,  a2

3 

refers to 3, a3
3 refers to 6 and so on.) Now consider a number made up from 

the digits along the diagonal, a1
1 a2

2 a3
3 …. Call this the “diagonal number”. Since 

we are listing all the real numbers, it should turn up in the list at some point. 
Now let us modify the diagonal number. For each digit in the diagonal number, 
add 1 to it, unless it is 9; if it is 9, then turn it into the digit 1. Call this new 
number “Cantor’s diagonal number”. Cantor’s diagonal number will not turn 
up on the list above: it is diff erent from the fi rst number on the list in at least 
the fi rst digit; it is diff erent from the second number at least at the second 
digit; it is diff erent from the third number on the list at least at the third digit 
and so on. It does not appear in the original list at all.

Recall that we had to be able to list all the real numbers between 0 and 1 in 
order to place them in one-to-one correspondence with the natural numbers, 
which we know we can list. We have generated a contradiction to our original 
supposition that we could list the real numbers in this way.
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Step (iii): Two sets of numbers have the same size (i.e. same cardinality) if 
and only if they can be placed in one-to-one correspondence with each other. 
We conclude that because the set of real numbers between 0 and 1 cannot be 
placed in one-to-one correspondence with the natural numbers, the set of real 
numbers between 0 and 1 must be of a diff erent size than the set of natural 
numbers. Mutatis mutandis for the whole set of real numbers.

Step (iv): Th e natural numbers form a proper subset of the set of real num-
bers, so we can conclude that the set of real numbers is larger than the set 
of natural numbers. In fact, even the set of real numbers between 0 and 1 is 
larger than the set of natural numbers.

What are the implications of this proof? We call ℵ1 the next cardinality up 
from ℵ0. But we do not know if the continuum (the whole set of real num-
bers) is exactly one size up from the size of the natural numbers; whether the 
continuum is of size ℵ1 or bigger. Th is is called “the continuum problem”.19 
It is provably independent of Zermelo–Fraenkel set theory, which is the cur-
rent standard accepted set theory. Th at is, we can have a consistent set theory 
where the continuum has cardinality ℵ1, and we can have a consistent set 
theory where the continuum is represented by a higher cardinality. Th e prob-
lem of deciding whether the continuum is the next cardinal after ℵ0, and so 
should be represented by ℵ1 is a deep and diffi  cult one. Th ere seems to be 
no good mathematical way to decide the continuum problem because the 
notion of the continuum (or the “seamless” or “gapless” line) is an informal 
notion. Th e continuum, like the notion of “natural number” comes before 
formal representation in set theory. When we develop a formal set theory, 
we try to capture the informal notion as best we can. Th ere are competing 
defi nitions of “real number”, and therefore of the collection of all real numbers 
in the set called the continuum. Some defi nitions have fallen into disuse, but 
they are consistent with some standard set theories. We need not go into the 
technicalities here. What is important is that the formal representation of the 
continuum is provably independent of the theory of infi nite cardinals, and the 
theory of how we get from one infi nite cardinal to the next. In standard set 
theory we get to the next cardinality from one infi nite cardinality by taking 
the powerset of the infi nite cardinality in question.

Defi nition: Th e powerset of a set is a set made up of all the subsets of 
a set. 

For example, the powerset of the fi nite set {9, 654, 24} is {∅, {9}, {654}, {24}, 
{9, 654}, {9, 24}, {654, 24}, {9, 654, 24}}. Th e operation of taking the powerset 
of an infi nite set gets us from one infi nite cardinality to the next. Th at is, ℵ1 



22 introducing philosophy of mathematics

is equal to the powerset of ℵ0, which is equal to 2ℵ0. Th is powerset operation 
is independent of our defi nition of a real number, and thus of the continuum 
(as the set of all the real numbers). Th e present consensus over the continuum 
problem is that the set of real numbers is either of the size ℵ1 or it is greater 
than ℵ1. Which it is can be decided by adding axioms to the basic axioms of 
Zermelo–Fraenkel set theory, but there are several possible axioms to add, 
and both results can be obtained. 

Th e idea of the continuum is important not only in mathematics, but also 
in physics. Physicists and metaphysicians usually think of space and time as 
continuous in the sense of seamless or gapless. Only the set of real numbers 
can mathematically represent this. But the continuum problem shows us that 
we cannot really know where the continuum fi ts in our theory of the cardinal 
numbers.

6. Summary

We now know enough about infi nity to engage the philosophical disputes 
in the philosophy of mathematics. Th e important points to retain from this 
chapter are:

• the distinction between potential and actual infi nity;
• the distinction between ordinal numbers and cardinal numbers;
• the idea that, in current mathematics, it is widely accepted that there are 

diff erent sizes of infi nity, and that there are an infi nite number of infi nite 
ordinals;

• an appreciation that there are several pre-mathematical conceptions of 
infi nity, and that there are several mathematical conceptions too. 
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Chapter 2

Mathematical Platonism and realism

1. Introduction

Together with Chapter 1, this is a lynchpin chapter in this book. Most posi-
tions in the philosophy of mathematics can be cast as reactions to Platonism. 
Some of them, such as logicism or some forms of structuralism, are modifi ca-
tions of Platonism; some, such as constructivism, are very strong reactions to 
it. It is important to study this chapter well, and have a solid grasp of realism 
by the end of it. 

Section 2 will discuss Plato, since he is the originator of the realist posi-
tion in the philosophy of mathematics. In §3 we then turn to realism more 
generally, as the modern incarnation of Platonism. We shall then look at two 
important modern defenders of realism: Kurt Gödel (§4) and Penelope Maddy 
(§5). We then discuss some very important problems with the views defended 
by both Gödel and Maddy, in diff erent ways and to diff erent degrees. Section 
6 on the problems with set-theoretic realism motivates the rest of the book.

2. Historical origins

Unsurprisingly, mathematical Platonism originated with Plato (c. 427–c. 347 
bce). Plato was interested in what mathematical truth consists in. He was 
exposed to geometry and arithmetic, so he was interested in what secures 
geometrical and arithmetical truths.

Plato observed that we grasp geometrical theorems in a way that is quite 
diff erent from the way in which we grasp empirical truths, which are truths we 
arrive at using our senses. To learn mathematics we need neither have much 
sense experience nor be taught particular formulas, in the sense of memo-
rizing them. It is enough for us to learn a few general principles, and we can 
piece together what we need to solve particular problems. In other words we 
seem to be able to reason a priori about geometry and arithmetic. 
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In one of Plato’s famous dialogues, the Meno, Socrates1 proposes to his 
interlocutor, Meno, that he run an experiment to illustrate his thought about 
how we come to know about geometrical truths. Th e experiment is to ask 
someone who has little training in geometry to develop a theorem of geom-
etry himself with only a little rational guidance. Th e chosen person is a slave 
in Meno’s household. Th e slave has had little schooling in geometry, but he 
can read, write and knows what a triangle is, for example. Socrates does not 
tell the boy how to work out the problem he poses, but he does indicate to 
the boy when it is that he has made a mistake. Th e slave develops Pythagoras’s 
theorem: that the square of the hypotenuse of a right-angled triangle is equal 
to the sum of the squares on the other two sides. It is quite an impressive feat, 
and quite believable. With this experiment Socrates demonstrates that we 
need no special prior knowledge in order to develop theorems in geometry. 
Moreover, we do not need to be told what they are; we can develop them our-
selves provided we are aware of when we are reasoning poorly. Moreover, it 
seems that any rational person can help us see that we are reasoning poorly. 
Good reasoning is universally recognized.

Th e well-informed reader might object at this point. For the modern reader 
it seems fantastic to claim that the geometry we develop under rational guid-
ance will turn out to be the truths of geometry, since geometry includes the 
study of many diff erent geometrical systems. We need to be careful. Today, 
we know that there are alternative geometries that were developed in the 
late-nineteenth century and later. It would be presumptuous to say that, in 
so far as they diff er from Euclidean geometry, they are false. It is more dip-
lomatic to say that there are diff erent geometries. Each contains truths, that 
is, axioms and theorems of the system. So why was Euclidean geometry the 
only geometry for so long? Th e mathematical community was ready to accept 
alternatives only after the proof about the independence of Euclid’s fi fth “par-
allel” postulate was proved.

Th e fi fth postulate says that if there is a straight line (infi nitely extended in 
both directions), and a point not on the line, then there is only one straight 
line (infi nitely extended in both directions) that 
runs through the point and will never intersect 
with the fi rst line (Fig. 12). Th is new line is parallel 
to the fi rst. In 1868 Eugenio Beltrami (1835–1900) 
proved that this postulate was independent of the 
other axioms of Euclidean geometry,2 that is, that it 
was possible to have a consistent system using the 
fi rst four axioms and denying the parallel postu-
late. Nikolai Ivanovich Lobachevsky (1792–1856) 
and, independently, Jànos Bolyai (1802–1860) had 
already developed hyperbolic geometry in 1829, 

Figure 12 Th e two lines 
are parallel. Th ey will never 
intersect.

fi rst line

point
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but they had not proved explicitly that this was a non-Euclidean geometry 
(one that does not use the parallel postulate). Th ese discoveries suddenly 
opened the door to the possibility of other axioms of geometry, each inde-
pendent of the four original axioms of Euclid, the addition of which made for 
new systems of geometry. Th us, we do not now study just one theory when 
we study geometry. We might study any number of geometrical systems, all 
emanating from Euclidean geometry.3 For the sake of following Plato’s devel-
opment of Platonism in mathematics, we shall temporarily ignore the recent 
developments in geometry, and pretend that the only geometry is Euclidean 
geometry. Th is is perfectly legitimate. Th e fi rst four postulates are common 
to all theories of geometry. (Otherwise we are studying topology, or some 
other branch of mathematics.) Moreover, Euclidean geometry is intuitive and 
easy to picture.

Th e interesting question is how is this grasping of (Euclidean) geometrical 
truths possible? For Plato, and Socrates, the very possibility of being able to 
reason a priori about geometry depends on our being able to reason about 
something. In this case the “something” is abstract, not concrete or physi-
cal. In particular, we are not reasoning about particular triangles drawn in 
the sand (or, more recently, on paper), but quite generally about triangles. 
Triangles, and other geometrical fi gures, do not seem to depend on par-
ticular drawings of triangles; in fact, our drawings of triangles depend on 
an idea of a perfect triangle to which we aspire. Th e idea of the triangle is 
not subjective, in the sense of varying from one person to the next; rather, it 
seems to be a universal idea that exists independently of our choice or ability 
to conceive it or draw it.4 But what do we mean by “exists” in the last sen-
tence? Socrates and Plato developed a theory, which we call “Platonism”, that 
there exists a realm of perfect objects quite independent of human beings. 
Th e objects in “Plato’s heaven” are perfect, and everything on earth is a pale 
imitation of them. Th e objects are called “Forms” or “Ideals”, depending on 
the translation. 

Th e relation between the Form and its pale physical imitations on earth is 
somewhat analogous with attempts at realistic art. A realistic sculpture of a 
person is never a perfect representation of the person. Inevitably, there are 
some small mistakes or diff erences. Similarly, when we try to draw a triangle, 
it is a pale imitation of the perfect triangle in Plato’s heaven. When we reason 
about geometrical fi gures, we reason about perfect ideal objects, not about 
drawings. Th is is what guarantees that we can be quite general when we so 
reason.

Let us return to the issue of our grasping geometrical truths. Platonist 
philosophy says that as human beings we have insight into this realm of per-
fect forms, and this is how we can aspire to draw more and more accurate 
triangles. Moreover, this is how we can determine that one illustration of a 
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triangle is better than another. We can make these comparative judgements 
because we compare particular drawings to the perfect triangle.5 Th e perfect 
triangle is something our mind has access to, not our bodies; that is, we do 
not sense perfect triangles using our fi ve senses. Instead, we use our reason-
ing, our intuition: in short, our mind.

Platonist philosophy is plausible. Many mathematicians tend towards 
Platonism. Th ey have a clear sense of grasping mathematical truths, of under-
standing something that is true independently of us, is eternally true and is 
very present to the mind. Furthermore, if taken at face value, the language used 
by mathematicians presupposes a sort of Platonist conception.6 Mathematics 
texts talk about discovering truths and fi nding the proof for a true theorem; 
the sentences suggest that there is a realm of truths out there, and we have 
the job of understanding them. When a mathematician talks about “concrete” 
examples, she is not referring to physical examples. Rather, she is referring to 
Ideal natural numbers, or Ideal triangles. Th is is all Platonist talk. Th e opposite 
would be constructivist talk, where one creates the truths, or constructs some 
mathematical object. For the constructivist, we do not discover mathematical 
objects ready-made; we create or construct them.

We shall start to use the lower-case “platonism” to indicate a philosophy 
that shares many features with Platonism, but is not Platonism in the sense of 
following Plato no matter what he might say. A Platonist is someone interested 
in what the great master Plato thought, and this same person will believe what 
Plato said, and take it as truth. A platonist is inclined towards Platonism, but 
is willing to modify it, and will not make special reference to Plato. A real-
ist, is someone who shares his, or her, views with the platonist, but who will 
express the view in vocabulary more usually associated with realism than with 
Plato. Th e Platonist, platonist and realist have overlapping positions. For our 
purposes, we are more interested in platonism and realism than Platonism 
and interpretations of Plato. Bearing this in mind, let us now turn to the real-
ist view, which is the modern incarnation of platonism.

3. Realism in general

From ancient Greece we now jump to the twentieth century. Th is is because 
the current philosophy of mathematics was developed largely as a result of the 
discoveries of the set-theoretic paradoxes at the beginning of the twentieth 
century. Th ese caused a crisis in the foundations of mathematics, which led to 
the current philosophical refl ection concerning mathematics. Let us illustrate 
with the Burali-Forti paradox, which involves infi nite ordinals.7

Th e ordinals, which we encountered in Chapter 1 as the set of numbers 
used to “order” objects, can be described in another way. We can defi ne an 
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ordinal as the set of all preceding ordinals, very elegantly building them up 
from the empty set. Th e idea is this. We stipulate that ∅ is the fi rst ordinal, 
corresponding to the word “fi rst”. Th e set of this is the next ordinal, corre-
sponding to the word “second”, represented {∅}. To form “third”, we gather the 
two previous ordinals into a set: {∅, {∅}}. “Fourth” is formed by gathering the 
three previous ordinals into a set: {∅, {∅}, {∅, {∅}}}; and so on. We can carry 
out this procedure indefi nitely, which is what we want, since there are an infi -
nite number of ordinals. Th is way of defi ning the ordinals is elegant because 
we can always tell which of two ordinals is the greater since the smaller will be 
a member of the greater ordinal. We can also tell if two ordinals are identical: 
they have the same members. Furthermore, all the ordinals are built up from 
the very sparse empty set: ∅.

Now we encounter a problem. Since we are making ordinals by this “gath-
ering” procedure, we can consider the set of all the ordinals: the culmination 
of this gathering is all the ordinals gathered together. Recall that we have 
made the ordinals by swallowing up all the previous ones. Now, is the set of 
all ordinals an ordinal? If we think it is, then it should be included in the set 
of all the ordinals, so we do not have a complete set. If we think it is not, then 
it should be because it is indistinguishable from other ordinals, and therefore 
should be included. Contradiction.

How does the realist react? Th ere is a technical solution to the paradox. 
We distinguish betwen sets and classes. A class is a collection of sets. All sets 
are classes, but not all classes are sets. Classes that are not sets are called 
“proper classes”. Th ese are not constructed from, or derived from, the set 
axioms, which are quite conservative about what can be built up. Th is dis-
tinction between a set and a proper class has two immediate repercussions. 
One is that we are no longer allowed to refer to the “set of all ordinals”: it is 
a “proper class of all ordinals”. Apart from the linguistic diff erence, there is a 
very powerful technical diff erence. We have procedures for building up sets 
from other sets, but none of the building procedures will get us to a proper 
class. Proper classes are those things we discuss when we say consider “all” 
the so-and-sos when these cannot be reached by “normal” set-construction 
methods. We can think of it this way. Th e axioms of set theory allow us to 
build sets from previous sets, but the axioms of set theory do not tell us how 
to construct a proper class. Th ey do, however, give us some properties of 
proper classes. Th e building process for sets is conservative. When we talk 
of proper classes we look at ideas we can form in the language. So the only 
limitation is formal grammar. “Proper class” talk is from the top down: “set” 
talk is from the ground up. We get into trouble, in the form of paradoxes, 
when we confuse the two approaches. Th e realist is at home with this, for this 
technical solution indicates that when we developed the set-theoretic para-
doxes from what is now called “naïve” set theory, we were confused. We did 



28 introducing philosophy of mathematics

not know enough. Now we know more, and have adjusted our set theory so 
as not to engender paradox, so we see more clearly. Th e class–set distinction 
allows the realist to breathe easy for now. We shall not discuss more about 
the set-theoretic paradoxes here, but shall see more later, since reactions to 
these motivated many of the current philosophical positions in the philoso-
phy of mathematics.8 Instead, let us develop our understanding of realism as 
a philosophical position.

To begin with, in the way in which the terms are used here, “platonist” and 
“realist” are interchangeable. We shall stick to “realist”, but the reader should 
be aware that sometimes what we are referring to as realism is called “platon-
ism” in the literature. Th ere are many versions of realism. Let us look at the 
points of divergence between realist positions. One example of a way in which 
two realists might diverge in their positions is over the notion of being a real-
ist in ontology or a realist in truth-value.9 What realists all have in common is 
the idea that the truths of mathematics are not of our making. Th e contention 
is over the objects. Th e realist in ontology thinks that there are a number of 
independent objects. Th is is what makes our judgements about them objective. 
Th e realist in truth-value believes that the truths of mathematics are independ-
ent of us, but not necessarily that what makes them independent is a realm 
of objects. Th e realist in truth-value might be agnostic as to what the truth-
 makers of sentences are, or might think that something other than “objects”, in 
any strong sense of “object”, makes the truths of mathematics true independent 
of us. Intuitively, this makes for an uncomfortable position. For, there is noth-
ing to make the sentences true, and yet they are true independent of us. Many 
philosophers do not like to put independence of truth together with agnosti-
cism about ontology, so they resist the position. On the other hand, it does 
have some merit. Th e realist in truth-value can be indiff erent to there being any 
objects corresponding to the truths of mathematics. Th is saves the philosopher 
having to explain anything about abstract objects. Th e reasons for doing this 
are, again, intuitive, and build on the notion that the canonical example of an 
object is a physical object. Th e things that exist are physical objects. Th e rest 
are either nonexistent, or we are agnostic about what their status is. Th e realist 
in truth-value argues that it is diffi  cult to imagine that timeless ethereal objects 
such as numbers are objects in just the same way that tables and chairs are 
objects. Most realist positions are both realist in ontology and in truth-value, 
since a realism in ontology explains, or justifi es, realism in truth-values. Th is is 
because it is the independent objects that make mathematical truths true.

Another point of divergence between realist positions concerns what it is 
that we are realists about. Th is point occurs between diff erent realists about 
ontology. Th at is, some realists are realists about sets; others are realist about 
numbers; others are realist about the geometrical primitives: points, lines and 
planes. To argue for one mathematical ontology over another, one has to argue 
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that the theory that has these objects as primitive is a “founding discipline” 
within mathematics. A “founding discipline” is such if we can reduce other 
parts of mathematics to it. Th e founding discipline is sometimes referred to 
as the “reducing discipline”. To show a reduction of one discipline, or area 
of mathematics, to another, we have to show that we can translate from the 
reduced discipline to the reducing discipline. We also have to show that we 
can recapture the truths of the reduced discipline in the reducing discipline. 
Successful competing founding disciplines in mathematics include: the vari-
ous set theories, type theory, category theory, model theory and topology. 
Th e very fact that there are competing founding disciplines provokes further 
discussion as to the merits and faults of each.

A third point of divergence between realists (of the ontological or the 
truth-value stripe) concerns epistemology. Diff erent realist theories will dis-
tinguish themselves from each other by appeal to diff erent theories about 
how we can know the truths of mathematics. Some will appeal to intuition 
(see Plato); others argue that we perceive mathematical truths (see Maddy); 
still others argues that our knowledge is analytic and a priori, and therefore 
does not depend on intuition (in a Kantian sense of the term “intuition”) (see 
Frege). We shall be discussing and refi ning the various readings of “intuition” 
throughout the text. For now, it is enough to know that there are several.

Equipped with these three points of divergence within realism, let us take 
a broader view and look at some of the arguments for and against realism. To 
do so, we should refi ne our vocabulary. In giving a philosophical theory, it is 
often useful to distinguish between two parts of the theory: the ontological 
part and the epistemological part. Th e ontological part concerns what there 
is according to our theory: what objects exist according to our theory. Th e 
epistemological part concerns how it is that we know about the objects pos-
tulated by our theory. 

Th e ontological part of Plato’s theory of mathematics concerns Plato’s 
heaven of perfect Forms. Th e epistemological part concerns this notion of 
reasoning a priori (without direct appeal to the senses) about mathematical 
objects. Th e two parts of Plato’s philosophy of mathematics compliment each 
other rather well, and are adopted by the modern realist (in ontology). One part 
of the Platonist theory explains the other: we can explain the epistemology in 
terms of the ontology, and the ontology in terms of the epistemology. More 
explicitly, to account for how it is that we know (i.e. epistemology) independ-
ent truths without appealing to sense experience, we think that there must be 
something that makes the truths true. Th at something is a realm of objects (i.e. 
ontology) that exists independently of us, and that is fi lled with perfect objects. 
Th e other way round is that if we accept that there is a realm of independent 
mathematical objects, then we have access to these in a pure and perfect man-
ner: we do not need to appeal to our experience or our senses, since everything 
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that we sense is imperfect, because it is down here on earth and subject to dis-
tortion. We have direct insight to perfect mathematical objects. Sometimes, 
in modern literature, this insight is called “intuition”. Reason helps guide and 
correct our intuitions.

According to the modern realist (in ontology), we reason about these 
objects, and we intuit them. Th e notion of intuiting mathematics will crop 
up quite often as we examine the alternative philosophies of mathematics. 
Th e reader should be careful whenever this word is seen in the context of the 
philosophy of mathematics, and make sure that she possesses a good under-
standing of the defi nition of the word in that context. 

So what do we mean by intuition, at least at this stage in our enquiry? 
According to the realist, we seem to have access to a realm of perfect objects, 
or Forms. We “see” them in our mind’s eye. Th ey are perceivable by us. 
Mathematical objects sit before our minds as vividly as do physical objects 
such as tables and chairs, once we have learned to see them. It is one of the 
privileges of being human that we can intuit mathematical objects.10 We use 
them to judge whether or not a mathematical description is accurate or faulty. 
Th is notion of intuition sits nicely with how it is that mathematicians describe 
their experiences of learning mathematics. To the mathematician, the number 
2 is very real, and very precise, or sharply delineated. Under normal circum-
stances, the mathematician will not mistake the number 9 for the number 2. 
Both are as real to the mathematician as tables and chairs.

Let us look at some arguments against the realist, in order to deepen 
our understanding. We shall turn to stronger arguments later, especially in 
Chapter 5. Th e problem with the realist account is that this notion of math-
ematical intuition is somewhat mysterious. For example, we might ask: what 
happens when someone has incorrect intuitions? Can we even make sense of 
the notion of “incorrect intuition”? Th e realist will say that, of course, we can 
have incorrect intuitions, whenever we make incorrect guesses about math-
ematics. We use reason to correct the mistakes. Can we have confl icting but 
legitimate intuitions? Th e realist will retort that while it might appear that 
there are disputes of this sort in mathematics, at the end of the day there is 
convergence on the views. Th is happens when we fi nally agree on a founding 
discipline. Convergence only happens after much argument, that is, after rea-
son has had a chance to marshal our mathematical intuitions and perceptions. 
Th e process is piecemeal. For example, mathematicians all agree on the truths 
of the fi rst four postulates of Euclidean geometry. Th is would be miraculous 
if we all had deeply felt divergent intuitions. Th is convergence confi rms the 
hypothesis that the mathematicians are all perceiving the same things. Th ese 
things are mathematical. Th e objects explain the convergence. Convergence is 
arrived at through reasoning. We have not yet worked out the absolute truth 
about Euclid’s fi fth postulate.
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Unfortunately, the mystery of how it is that we come to know mathemati-
cal truths has not been solved. For, we might also ask where the intuition 
originates. Do we all have it from birth, or do some people have mathematical 
intuition, and some do not, a little like “extrasensory perception”? Certainly, 
this is what it feels like to a student who is struggling in a mathematics class. 
It seems as though some people just have a clear picture of what is going on, 
and that he just lacks this vision. Th e realist has an answer to this too: we all 
have mathematical intuition. It takes a good teacher, and one who manages 
the student’s psychology, to draw out the student’s intuition and perception. 
A good teacher can bring the student to understand, or perceive, the math-
ematical truths.

Th e realist has a strong position, since he can answer these diffi  cult ques-
tions. So let us return to the notion of infi nity, since it was already exercising 
the philosophers of ancient Greece. Plato himself has little to say about infi nity, 
except in a spiritual sense. But we can imagine what Plato would say if he were 
interested in infi nity, namely, that the realm of Forms contains an infi nite set, 
say, the set of natural numbers. It might even contain several infi nite sets: the 
set of natural numbers, the set of negative numbers, the set of fractions and so 
on. Cantor’s “paradise” is related in this way to Plato’s “heaven”! Cantor’s para-
dise contains all sorts of infi nite sets. Indeed, the modern mathematician who 
is comfortable with the notion of an infi nite set tends to be a realist.

 Twentieth-century realists in mathematics do say things about the infi nite. 
What they say is that they accept the notion of the actual infi nite. Th at is, there 
is some sense in which the truth or falsity of claims concerning infi nite sets 
is independent of us, and in this sense objective. Moreover, there is an infi -
nite number of infi nite sets: all the ones in Cantor’s paradise; sets of infi nite 
ordinals and sets corresponding to the diff erent cardinal measures of “size of 
set”. Realists will usually fall short of insisting on the existence of a realm of 
objects that make the truths of mathematics true, despite the talk of paradise. 
On the other hand, the realist will be convinced that he discovers the truths 
of mathematics. “Discover” is, of course, used metaphorically, so does not 
need a realm of objects (as in Plato’s heaven). We “discover” by means of our 
rational investigation. 

“Discover” is to be understood as contrasted to “created”. Th is can be a bit 
confusing in the literature, since realist mathematicians often use the word 
“create” or “construct” to refer to a procedure for deriving sets. When the realist 
creates a set, he “creates” in the sense of “following certain rules of the theory”, 
where the emphasis is on “following”. In contrast, the anti- realist (often called 
a “constructivist”) thinks that we create mathematics, in the sense that the 
mathematics is “of our making”, with the emphasis on “our”. In set- theoretic 
realism, the axioms allow us to construct new sets from old ones in a very lib-
eral way, compared to what the constructivists allow. Th e set- theoretic realist 
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uses classical logic to construct new sets, and the reasoning used is of the form: 
if this already exists, then this other thing must exist as well. So, the notion of 
“construction” is that of set-theoretic construction, where the construction is 
simply allowed by the axioms of set theory. To make this clearer, it might be 
useful to look at the contrasting notion. Th e notion of construction, used by 
anti-realist philosophers of mathematics, is that of producing in a step-wise 
manner. We construct piece by piece. Th e anti-realist “creates” in the sense of 
following the rules in our minds. Th e anti-realist does not say that she “follows 
rules that we have discovered”. Th is is because the rules are created by us. A 
consequence of this anti-realist thinking is that we are not allowed simply to 
gather things together in one fell swoop. In particular, the idea of just “taking 
the powerset” of a set is not allowed. For the constructivist this is a huge ille-
gitimate leap, not a small allowed step. What the anti-realist, or constructivist, 
does allow is the construction of the powerset of a fi nite set, step by step. We 
have to be given a procedure for fi nding a fi rst member of the powerset of a 
set, and then for fi nding a second member, and so on. We cannot just take the 
powerset, and move on from there, by making some further construction (in 
the realist sense) or comparing that powerset with another, or whatever we 
wish to do next. We shall discuss this in depth when we examine the anti- realist 
(constructivist) philosophies of mathematics. 

For the realist, the repugnant part of anti-realism in mathematics is that if 
we simply go about creating mathematics, this makes mathematics sound like 
a fi ction that we make up as we go along. Th is does not adequately account 
for the very stringent and rigorous practice of mathematics, or the strong 
conviction we have in mathematical truths. It dilutes any claims about dis-
covering eternal truths.

Usually, the modern realist philosophy of mathematics takes set theory 
(instead of Plato’s Euclidean geometry) as central to mathematics.11 Th is is 
rather clever, because it allows the realist to be ontologically modest. Set 
theory only makes a very simple initial ontological claim: that, independent of 
us, there exists the empty set. Once we have this then we can develop, through 
the axioms of set theory, the whole set-theoretic hierarchy, which includes the 
fi nite sets and infi nite sets. Th is is vast. Th e simplicity of the initial ontological 
commitment is what makes set theory “pure”, very abstract and ontologically 
modest, at least ab initio.

Let us dwell a little on the axioms that perform the miracle of hoisting 
us from the modest ontological presupposition to a whole universe of sets 
arranged in a hierarchy. Set theory has only one pair of unexplained (called 
“primitive”) notions. Th ese are the notion of “a set” and that of “set mem-
bership”. A set is a collection of objects. As soon as we think about sets, we 
learn quickly that there are laws governing them. Th ese are the axioms of 
set theory. Th e axioms stipulate the existence of the empty set, and then tell 
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us how to form a set from an already given set. In this sense we say that we 
construct the set-theoretic universe from the empty set, using the notion of 
membership of a set.

Th e notion of construction allowed by the realist is what gives set theory 
its great power to incorporate other parts of mathematics. In fact, most of 
mathematics can be faithfully redescribed by classical (realist) set theory. 
More precisely, we can translate other mathematical theories – such as group 
theory, analysis, calculus, arithmetic, geometry and so on – into the language 
of set theory. Arithmetic is another sub-part, and so on. In this sense, we 
might say that set theory is a “big” theory. Sometimes, we say that set theory 
is a founding discipline. So set-theoretic realism is also a reductionist account 
of mathematics, because of its ability to absorb other branches of mathemat-
ics. Most philosophies of mathematics are reductionist or foundationalist in 
some sense. Th e notable exception is structuralism, which we shall explore 
in Chapter 4.

We should pause here to say something about classical logic. Characteristics 
of classical logic (as opposed to non-classical logics) include: 

(i) the law of bivalence;
(ii) the law of excluded middle;
(iii) the free use of reductio ad absurdum arguments; and
(iv) an ontologically signifi cant reading of the existential quantifi er.

We shall explain these briefl y since some of them will come up later. Take this 
as a fi rst exposure to the concepts. What we conclude about use of a classical 
logic is what is important here, not how we can spot one.

(i) Th e law of bivalence means that there are only two truth-values: true 
and false. In contrast, a trivalent logic will have three truth-values: true, 
false and undecided (or unknown). In a bivalent logic, every well-formed 
formula12 will be either true or false. Th e truth or falsity might be inde-
pendent of our ability to prove or know the truth or falsity of a claim.

(ii) Th e law of excluded middle is very similar to the law of bivalence. In 
classical logic the diff erence is quite subtle, for it is not a diff erence 
in what is being referred to, but in realm of application. Th e law of 
excluded middle says that given a well-formed formula, either it, or its 
negation, holds, and nothing else.

Strictly speaking, the law of excluded middle is syntactic, whereas the law of 
bivalence is semantic. Th at is, under the law of excluded middle, it is not pos-
sible for a well-formed formula and its negation to hold in the same theory. 
It is also not possible for a well-formed formula and its negation not to hold. 
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“Hold” means “is in the language of, and is consistent with, the theory”, and 
not “can be proved”. In a non-classical logic, either (i) or (ii) or both of these 
might be denied.

(iii) Reductio ad absurdum arguments are ones that start by denying what 
one wants to prove. We then prove a contradiction from this “denied” 
idea and more reasonable ideas in one’s theory, showing that we were 
wrong in denying what we wanted to prove. We then appeal to the law 
of excluded middle and say that what we wanted to prove must be right 
after all. We saw an example of this structure of proof in Cantor’s diago-
nal argument, which showed that the set of real numbers was strictly 
greater than the size ℵ0.

(iv) Th e existential quantifi er belongs to fi rst-order logic and higher-order 
logics. It is symbolized by “∃” and is read as “there exists” or “some”. 
When a logic has an existential quantifi er, it becomes much more pow-
erful, pronouncing on what exists, and what does not exist (accord-
ing to the theory). Some non-classical logics will read ∃ as “some” and 
attribute no ontological import to it; a separate statement is needed for 
existence. 

Putting (iii) and (iv) together we have a type of proof that non-classical logi-
cians object to: “purely existential proofs”. Th ese are proofs through a reductio 
ad absurdum argument that conclude with the existence of some object. If 
we think about it, what these proofs do is start by saying “suppose the object 
in question does not exist”. We prove a contradiction from this, thus proving, 
classically, that the object must exist. For the realist classical logic is fi ne since 
we use the logic to reason about objects that are independent of us.

To summarize, the modern philosophers of mathematics who are closest 
to Platonism are the set-theoretic realists. A set-theoretic realist thinks of set 
theory as true and independent of us. Furthermore, it is the essence of math-
ematics because other parts of mathematics are reducible to it. Th e ontology 
of set theory is vast, in the sense that there are many sets. But it is pure, and 
perfectly abstract, in the sense of being constructed from the empty set. Th e 
rest of the hierarchy is constructed out of this. So it is almost as though the 
set-theoretic hierarchy is constructed ex nihilo (from nothing at all). Th at is 
the ontology of set-theoretic realism. What about the epistemology? Many 
set theorists describe their experience of “doing” set theory in terms of seeing 
or perceiving sets, or in terms of intuiting sets. Th e realist set theorists are 
entirely convinced of the veracity of their intuitions or their perceptions. Th ey 
use classical logic to reason about these objects. One notable mathematician 
who discusses this in print is Gödel.
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4. Kurt Gödel

Gödel (1906–78) is probably the most famous mathematician to express him-
self explicitly as a platonist. In a famous passage in his paper “What is Cantor’s 
Continuum Problem?” he writes:

But despite their remoteness from sense experience, we do have some-
thing like a perception also of the objects of set theory, as is seen from 
the fact that the axioms force themselves upon us as being true. I don’t 
see any reason why we should have less confi dence in this kind of per-
ception, i.e., in mathematical intuition, than in sense perception, which 
induces us to build up physical theories and to expect that future sense 
perceptions will agree with them. (1983b: 483–4, emphasis added)

Th is quotation very much expresses the realist view. Th e epistemologi-
cal account of mathematics is that we perceive axioms (of set theory) by 
means of a special sort of intuition. Th e ontology of mathematics is the set-
 theoretic hierarchy. Th e logic is classical logic: we construct (the hierarchy) 
in the sense of the logic allowing for the existence of new entities given the 
old ones.

Th e realist position is a little sneaky, or quite brilliant, depending on how 
we look at it. Th e realist relegates much of the philosophical work to the logic 
that is adopted to underpin the mathematics. Th is is clever because logic is 
thought of as entirely primitive, universal and unifi ed, so we are reluctant to 
argue against it.13 Th e anti-realist shows great courage by arguing that adher-
ence to classical logic will get us into trouble if we are not careful. For example, 
Bertrand Russell (1872–1970), who made one of his most important contri-
butions to the philosophy of mathematics thirty years before Gödel’s most 
important contribution, reacted to the set-theoretic paradoxes by warning 
against the use of “impredicative defi nitions” in mathematics.14 Impredicative 
defi nitions are ones that refer to themselves (and they might lead to paradox). 
An example is that “a great general” is defi ned as a military person of the rank 
of “general” and who is great. Th e defi nition is circular. If we do not under-
stand the terms “general” and “great” in advance, then the defi nition is not 
helpful. In mathematics, this sort of defi nition is doubly unhelpful because we 
are often breaking new ground, so we do not really know in advance where 
we are going. Russell concluded that our defi nitions have to be precise, and 
“predicative”. Defi nitions have to defi ne a term using wholly diff erent objects 
or concepts; or so Russell thought. 

Gödel argued against Russell’s counsel. He argues that if we are realists, 
then there is nothing fundamentally wrong with impredicative defi nitions. 
Th ey simply partly tell us about something. But, that something is already 
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known to us through our intuition. “If, however, it is a question of objects 
that exist independently of our constructions, then there is nothing in the 
least absurd about the existence of totalities containing members, which can 
be described (i.e., uniquely characterised) only by reference to this totality” 
(Gödel 1983a: 456, emphasis added).

Th ere is nothing wrong with using classical logic and impredicative defi -
nitions when the sets exist independently of us. Let us explore this further. 
In the quotation, Gödel is reacting to Russell’s warnings against the use of 
impredicative defi nitions. In doing so, Gödel reveals an important presup-
position that is built into the logic used in set theory. Th e logic being used is 
classical logic. In classical logic, defi nitions are thought of as revealing our 
attempts to refer to objects (which exist independently of us and our attempts 
to refer to them). A defi nition is good or bad according to how well it refers. 
Partial, or imprecise, reference is not so good. 

In contrast, in intuitionist or constructivist logics, how we formulate a 
defi nition or how we construct an object by means of a defi nition is extremely 
important. Th is is because the objects are constructed and not independent of 
us. If we are not careful in our constructions, then we risk getting into trouble, 
in the form of generating an inconsistent theory. If we fi nd an inconsistency, 
then the whole system falls. Paradoxes indicate inconsistency. Sometimes we 
can explain them away, and show that they do not really show an inconsist-
ency. But we have to do quite a lot of work to do this, and the results are not 
always satisfactory. So, we have to get it right in the fi rst place because we are 
determining an object; creating it, in a sense. If our defi nitions do not uniquely 
characterize an object, we are not entitled to discuss the object.

To summarize, Gödel’s remark says that since the objects of mathematics, 
such as sets of numbers, exist independently of us, it does not matter how we 
refer to them, provided our language is suffi  ciently clear to avoid generating 
outright contradictions. Defi nitions are supplemented by our intuitions; they 
hone our intuitions. Gödel’s diagnosis, when we do end up with a contradic-
tion, is that we have used poor language or are confused in some way. In other 
words, our name for the sets or objects is what is muddled, not the objects. 
Th e objects are well organized, quite independently of us.

In contrast, if one is not a realist or a platonist, then impredicative defi ni-
tions are a problem. Th is is because the objects studied by mathematicians 
are not independent of the names we give them. Gödel’s more philosophical 
material has, for the most part, only recently been made readily available. In 
the texts that were available for a long time, he did not say much at all about 
mathematical intuition, and how that is supposed to reveal mathematical 
truths to us. One philosopher who made a valiant attempt to explain the 
mechanism of mathematical intuition is Maddy. We shall now turn to her 
account, as a possible philosophical supplement to Gödel’s platonism. It will 
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take some time for philosophers to digest Gödel’s complete works; we can 
anticipate more insights into Gödel’s thinking surfacing in the philosophy of 
mathematics.

5. Penelope Maddy

Maddy picks up the thread where Gödel left off . In “Perception and 
Mathematical Intuition” (1996) she gives philosophical arguments and phil-
osophical support for Gödel’s platonism: “Taking Gödel as a starting point, 
I will try to sketch an account of perception and intuition which will … pro-
vide an account of set theoretic realism” (ibid.: 116).15 Th e main philosophical 
problem with the position of platonism or realism is the epistemic problem: 
that of explaining what perception or intuition consists in; how it is possible 
that we should accurately detect whatever it is we are realists about. Or, if we 
are platonists (or Platonists), how it is that we should have insight into Plato’s 
heaven, and how we can feel at all confi dent that we have accurate, veridical 
insight/perception/intuition of this reality/heaven. 

Maddy is interested in interpreting what it is that Gödel means when he 
says that mathematical intuition is something “like sense perception”. To give 
scientifi c and philosophical credence to the view that mathematical intuition 
is a type of sense perception, there has to be a physical mechanism in the 
human body to account for the perceiving. Th is is what it takes to give the 
right sort of causal story to explain mathematical intuition. 

What does “right sort of causal story” mean? At the time of writing the 
article, and among her philosophical colleagues, two points were taken for 
granted: that perception has to be explained causally, and therefore physi-
cally;16 and that what the mathematicians say about their experience of math-
ematics is what the philosophers should work to support. Stewart Shapiro 
calls this position “mathematics fi rst, philosophy second” (2000: 7–20). Th e 
idea is that if philosophers want to know what mathematics is, they had bet-
ter consult with the mathematicians, since they are the most qualifi ed to tell 
the philosophers. Similarly, if mathematicians’ experience of mathematics 
is best described by one philosophical position rather than another, then 
the philosopher had better work on that philosophical position and not on 
another position. Th e philosopher plays second fi ddle to the mathematician. 
Maddy lists this as an advantage of her position. Maddy’s set-theoretic realism 
“squares with the pre-philosophical views of most working mathematicians” 
(1996: 115). Th is orientation is not universally favoured by philosophers; it is 
favoured by Maddy, Shapiro, W. V. Quine and possibly Wittgenstein.

Th e contrasting view would be one of philosophy fi rst, where the phi-
losopher works out what is the most defensible position in the philosophy of 
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mathematics, and then tells the mathematician what mathematics is. Note 
that this orientation of “philosophy fi rst, mathematics second” is potentially 
revisionary of mathematics. Th at is, the philosopher with this orientation 
will have no qualms telling the mathematician that certain moves in proofs 
should no longer be allowed, or that certain branches of mathematics are pure 
fantasy, bordering on the irrational. We shall see some of this in Chapter 5 
when we look at constructivism. 

Returning to Maddy, she is of the “mathematics fi rst, philosophy second” 
persuasion. She also thinks that intuitive perception has to be given a causal, 
and therefore physical, account. 

Set theoretic realism is a view whose main tenets are that sets exist 
independently of human thought, and that set theory is the science of 
these entities. (1996: 114)

On the realistic assumption that they [sets] do exist, I will try to show how 
we can refer to and know about them. Since accusations to the contrary 
are most often based on causal theories of reference and knowledge, I will 
use these theories as starting points. (Ibid.: 116, original emphasis)

Maddy describes some of the clearest and most damning current objec-
tions to set-theoretic realism, which states that the intuitive faculty cannot 
be explained in causal physical terms and therefore there cannot be such a 
faculty.

Maddy then goes on to describe these causal theories of perception and 
adapts them to set theory, arguing that it is no more mysterious that we should 
perceive that there is a set of a dozen eggs in front of us, than it is to perceive 
that there is a chair in front of us. In fact, the mathematician is someone who 
will perceive that there is the singleton set of a chair in front of us.

It sounds extravagant to say that we perceive sets, or any other mathemati-
cal objects for that matter, however, we should be aware that Maddy draws a 
careful and subtle distinction between “physical seeing” and “perception”. Th e 
distinction does much of the work in her theory. “Seeing” is a purely mechani-
cal process entirely explainable in terms of the function of the eye, light, and 
the wavelengths of colours around us. In contrast, perceiving is interpretative. 
Th at is, when we perceive, we see but also look for some features and ignore 
others. When we perceive, we see selectively. Selection is a mental process. 
For example, we individuate objects from the mess of colour splotches. Th e 
individuation (telling which object is separate from which other object) is an 
act of perceiving. More importantly, perceiving is partly a linguistic activity. 
We look for things we have words for. We perceive a chair, but we see a brown 
splotch with some straight edges. Similarly, we perceive sets; we do not see 
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them. Th ey form part of our interpretation of the world. We learn to perceive 
and in learning to perceive we fi rst have to have a concept of the object we are 
perceiving. When a child is having objects pointed out, she is learning to pick 
out instances of the concept named by the noun being used to name the type 
of object. To learn to perceive sets, we have to learn some set theory. Th is is 
how Maddy interprets Gödel. When Gödel says that we “perceive the objects 
of set theory” (1983b: 483), what he means is that we perceive in the sense 
of “selectively see”. Th e selection is informed by our learning of set theory, 
which apprises us of the concept of set. We are then sensitive to the notion, 
and can then perceive sets. 

But then we have a problem. Th e seeing part is entirely mechanical and 
causal. Th is can be given the scientifi cally reputable explanation the critics of 
mathematical platonism seem to require. However, the work of mathemati-
cal intuition is not being done purely by the mechanism of seeing; rather, it 
is being done in the mind, allowing us to pick out certain “set” features. Th e 
picking out requires learning concepts and interpreting the splotches we see. 
Now, on the one hand we have an explanation as to why it is that people 
without mathematical training fail to perceive objects organized in sets; on 
the other hand the reputable causal part of the explanation of perception is 
doing no work. Th e justifi cation for set-theoretic realism is being given by 
the mathematician’s training in set theory. Th is is what gives her the ability 
to interpret what she perceives. Th e mathematician interprets what she per-
ceives in terms of set theory. Th is is circular. Th ere is no guarantee that sets 
lie in the physical world independent of us. On the contrary, sets of objects 
seem to be highly dependent on our training in set theory. Th is would suggest 
that sets are created by us, and therefore depend on us, and this is at odds 
with realist thinking.

Moreover, there is no way that Maddy can account for the existence of large 
cardinal sets, since we neither see nor perceive these. Yet set theory is com-
mitted to the existence of sets of diff erent infi nite cardinality. Th e problem 
that Maddy’s account encounters with this argument is to make perception 
supervene on seeing.17 We cannot perceive without there being some physical 
seeing. Since we never see an infi nite set (since there are only a fi nite number 
of physical objects in front of us at any one time), we also cannot perceive 
an infi nite set.

We could counter, on Maddy’s behalf, that there is some sense in which 
we see an infi nite set: when we think of anything continuous, for example, 
we might stand on a spot, and perceive that there are an infi nite number of 
directions one could (in principle) face from that spot. Th e problem with this 
move is that it is not clear that we can perceive anything of the sort. Again, the 
interesting aspect of perceiving will depend on our education in set theory; 
we cannot then appeal to perceptual intuition to explain our development of 
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set theory, for this would be a circular explanation. Furthermore, even if we 
can make sense of this story of perceiving an infi nite set, this is not enough 
to explain how we might diff erentiate between a set of size of ℵ1 and one of 
size ℵ0, let alone any set of greater cardinality, and yet such sets are part of 
the classical mathematician’s training, which should allow her to perceive 
sets of these sizes. 

Maddy’s valiant attempt to defend set-theoretic realism along the lines of 
a physical and causal explanation of our intuiting sets fails. Realism seems 
plausible, and echoes the experience mathematicians have of mathematical 
objects; however, it is not a watertight position. 

Before losing all hope of defending realism we should add a few notes. One 
is that Maddy has gone on, since the quoted article, to modify her position. 
Th is shows that her views are developing. Maddy now defends a naturalist 
position in the philosophy of mathematics. So it is unfair to dismiss Maddy 
on the grounds of the quoted article. Th e article was mentioned here as a 
brave attempt to defend a very plausible position, and to show how diffi  cult 
it is to do so. Once we have realized this, a change of tack is not absurd. If we 
look back, it is only when we insist that the only legitimate justifi cation for 
mathematical intuition is an explanation along physical and causal lines that 
we end up in this mess. It is only if we think that perception supervenes on 
a physical account of seeing that we feel the pressure to ensure that sets get 
their pedigree from physical causal accounts of seeing in just that same way 
as the objects studied by the physicists do. As philosophers of mathematics, 
we can resist these demands made on which types of explanation are good 
and which are not. 

A last note is that it is quite true that many mathematicians are attracted to 
realism in mathematics. Again, if one is persuaded by the “mathematics fi rst, 
philosophy second” orientation, then one will want to take heed of what the 
mathematicians tell us. However, it should be noted that this is partly a geo-
graphical and historical prejudice. Th roughout the twentieth century many 
Russian, Central European and Eastern European mathematicians have been 
very aware of, and sensitive towards, constructivist views. Th ey show a clear 
preference for constructive proofs, and many are steeped in an anti-realist 
orientation towards mathematics.18

 To set the stage for the remaining chapters, let us examine closely the gen-
eral problems with set-theoretic realism, since this philosophical position is 
central to the philosophy of mathematics. Along with set-theoretic realism, 
we have a strong endorsement of the notion of actual infi nity, together with 
the developed set-theoretic notions of ordinal and cardinal infi nite numbers. 
All sorts of infi nite sets exist for the realist, and this is very attractive to many 
mathematicians.
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6. General problems with set-theoretic realism

Present-day realists tend to be set-theoretic realists, that is, they tend to take 
set theory as the founding discipline of mathematics. Th ere are two easy prob-
lems with set-theoretic realism, and two hard problems, and the problems can 
be revamped to apply to other sorts of realism. Th e problems come in two 
areas: ontology and epistemology. Th e problems concerning ontology have 
to do with (i) the number of objects that exist according to the theory and (ii) 
which objects there are. Th e epistemological problems concern (a) how we 
justify that said objects exist and (b) how we apprehend them. Th ere are quite 
good answers for (i) and (a); (ii) and (b) are more diffi  cult to answer.

Let us deal with the easy questions. Th e ontological question about the 
number of mathematical objects (i), generates a traditional worry in philoso-
phy, often referred to as “Ockham’s razor”. William of Ockham (1285–1347) 
complained about certain scholastic views about angels that concluded that 
since angels are ethereal they do not take up any space. It followed that an infi -
nite number of them could dance on the head of a pin, and so there was noth-
ing (spatio-physical) preventing the existence of an infi nite number of angels 
“located” in a very small space. Ockham thought that this was too much: there 
was no reason to think that there was an infi nite number of angels. Ockham 
issued a wise principle to guide our metaphysical thinking: a theory should 
not postulate more objects than are necessary for the theory.

In philosophical circles, the Ockham’s razor principle is part of the antidote 
to philosophical queasiness that is felt when confronted with a large number 
of abstract objects. When evoking Ockham’s razor, the suspicion is that we 
can make do with fewer abstract objects, or none at all. In other words, it is 
considered to be a fault of a theory to postulate a large number of abstract 
objects. When we heed the principle, we cast around for a theory that has 
fewer abstract objects, but that explains the same phenomena equally well.

Th e “how many” problem comes from a sense of discomfort. Th e whole 
set-theoretic universe includes infi nite numbers of infi nite sets of abstract 
objects. Do we need them all? Th e worry can be answered by drawing atten-
tion to some considerations we made earlier. Th e set-theoretic hierarchy is 
constructed out of the empty set. Th e empty set is not vast; it will neither take 
up a lot of room, nor are there many of them from which we are constructing 
the set-theoretic universe. After all, we use the direct article when discussing 
“the” empty set. If the empty set is any number of things, it is either zero things 
or one thing. So Ockham’s razor cannot do much cutting here.

One might object by drawing attention to the axiom of infi nity, which 
stipulates that there is an infi nite set. In fact, there are a number of these 
axioms, one for each size of infi nity we wish to include in our theory, which 
we cannot construct using the powerset operation (provided the new axiom 
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is consistent with the other axioms). In principle, we could have an infi nite 
number of these, since there is no reason to think that there is any end to add-
ing axioms of infi nity. Th e retort made by the set-theoretic realist is to point 
out that even these infi nite sets are made up of the empty set, so they only 
give the impression of committing us to the existence of an infi nite number 
of new objects.

Th e fi rst epistemological question (a) also admits of a reasonable answer. 
Th e question was: how do we know that the ontology of set theory exists? Th is 
boils down to the question: how do we know that the empty set exists? We 
certainly talk about there not being anything. For example, one might say that 
there are no unicorns or, more mundanely, there are no eggs in the refrigera-
tor. It is easy now to get into a muddle, because the grammar treats “nothing” 
as an object. Th ere is nothing in the bucket. However, “nothing” is not a physi-
cal object, despite the fact that we sometimes attribute location to “it”: there is 
nothing in the bucket. Our concepts and our grammar allow such locutions. 
Our concepts and grammar do lead us into a muddle if we investigate our use 
of the concept of “nothing”.19 Th e set theorist cleverly points out that, in set 
theory, we do not have an analysis of the empty set, or of “nothing”. Instead, 
we introduce it as a primitive. We know about it mathematically through the 
axioms of set theory. Further analysis of the notion of the empty set belongs to 
metaphysics. In set theory we do not get muddled. Furthermore, we are quite 
certain that set theory is consistent.20 Proofs are epistemologically very secure. 
How do I know some truth about set theory? Because I have a proof. Proof is 
evidence by reasoning, and it is a sort of ultimate evidence. Th at is what we 
mean when we say that there is a proof that something exists. It is no longer 
up for question. Th ere can be no counter-evidence if we have a proof. Th is is 
about all that can be said to answer epistemological question (a). 

What of ontological question (ii) (which objects there are) and episte-
mological question (b) (how we apprehend the objects)? Both problems are 
exacerbated by the presence of competing set theories, which disagree over 
the truth or falsity of certain axioms. Th ere are two sorts of situation where we 
have rival theories. One is where we have slightly diff erent basic axioms. Th is 
makes for two rival set theories that will disagree on certain issues. Examples 
are Zermelo–Fraenkel set theory and Gödel–Bernays set theory. Th e two 
theories disagree over the notions of ordinal construction and over the notion 
of class, among other things.

Th e other way in which we can have two opposing set theories concerns 
what are called “independent” axioms. Th at is, we keep the basic axioms fi xed, 
but then there is a question left pending about further axioms. Th ere are 
some, non-basic, axioms that can be attached to the set theory or not. Th is 
is optional. An example is the axiom of choice. Th ere are diff erent versions 
of this, but basically it says that there is a way of picking out one  member of 
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every set that is a member of some larger set. For example, consider a set 
whose members are all pairs of things: pairs of socks, pairs of earrings, pairs 
of gloves, pairs of railway tracks and so on. Th e axiom of choice tells us that 
there is a mathematical way, guaranteed by the axiom, to pick out one of 
each. Th e way has to be mathematical; it cannot just be something like “pick 
out the fi rst you come to” since there are often an infi nite number, and the 
objects are abstract, so there is no “fi rst you come to”. Take a more abstract 
example. Consider the set of arbitrary pairs of numbers (where each member 
of the pair is diff erent from the other). Each member of the set is a pair. Th e 
axiom of choice says that there exists a mathematical way of selecting one 
of each of the pairs. In this abstract example we can come up with a choice 
function: we could say, for example, take the lesser number of each pair. Th is 
is a “nice” example of the axiom of choice. Th e axiom guaranteed that there 
was a choice function. We were then able to specify such a choice function. 
However, in mathematics we cannot always specify a choice function. Th e 
axiom simply tells us that a choice function exists. It does not tell us how to 
specify the function. It is these sorts of cases that lead some mathematicians 
to object to the axiom of choice, saying it is simply not true, unless one gives 
a method for picking out one object from each set. Other mathematicians 
endorse the axiom. Neither Zermelo–Fraenkel set theory nor Gödel–Bernays 
set theory tell us one way or the other whether the axiom is true. Th e attach-
ing of the axiom of choice to either theory is consistent with the rest of the 
theory. Th e denial of the axiom is consistent with the rest of the theory. When 
we have this situation, we say that the axiom of choice is “independent” of 
the set theory. We have two rival theories: Zermelo–Fraenkel set theory with 
the axioms of choice attached, and Zermelo–Fraenkel set theory without the 
axiom of choice attached. Axioms of infi nity are independent of set theories 
too. Th e outcome of all this discussion is that there are rival set theories, and 
it is not at all clear which is the “true” one.

Th is interferes with how we are to know about the basic components of 
set theory. For example, we are told that we are to take the notion of set as 
primitive, or undefi ned. Th e problem then is that the only purchase we can 
get on the notion of set is through the axioms. We say that the axioms give 
an “implicit defi nition” of the notion of set. Since competing set theories have 
diff erent sets of axioms, there are competing notions of set. Th e problem with 
this is that there does not seem to be a good reason to choose one implicit 
conception over the other, so we still do not really know what the truths of 
mathematics are in the fi nal analysis.

Rescinding the “primitive notion of set”, we might say that our purchase 
on the concept of set does not come from the axioms of set theory, but rather 
from intuition, or from some sort of perception. We saw that Maddy was the 
person to most fully develop this view. She does so with mathematicians such 
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as Gödel very much in mind, and in this sense, represents his views to the 
philosophical community. Since he is one of the most respected mathemati-
cians of the twentieth century, his philosophical views concerning mathemat-
ics, and any position developing his views, should be carefully scrutinized. 
Unfortunately, as we saw, either Maddy is not a very good representative of 
the modern position of mathematical realism, or it is simply not a philosophi-
cal position that bears much scrutiny. At the end of the analysis of Maddy’s 
development of Gödel’s position, we do not have a good account of either 
which objects there are (how to best characterize sets) or how it is that we 
apprehend these. We do not apprehend these through perception, and we 
cannot give philosophically sound reasons to choose to study the notion of 
set through one set theory as opposed to a rival theory. Th at is, our intuitions 
do not guide us all to the same choice of founding discipline in mathematics, 
and therefore intuition is not a reliable guide to determining which math-
ematical objects there are.

To be very precise about where we are in assessing the strength of the 
realist position, our consideration of competing set theories is not enough to 
disprove realism. For, a realist could simply insist that his choice of founding 
discipline is correct. If that choice rests on a gut feeling, or intuition, then we 
have a philosophical problem. Th is is because realism about mathematics, sets 
or anything else insists on the mind-independence of mathematics, sets or 
whatever. Th is comes at a price. Th e price, which is a brute fact that follows 
from mind-independence, is that it is possible that we have hitherto failed to 
detect or latch on to these entities. We might think that this is highly unlikely 
or, at least, that it would be very unfortunate if it were the case. Nevertheless, 
it is perfectly consistent with set-theoretic realism that there should be com-
peting notions of set. Moreover, they might all be wrong. 

While consideration of rival set theories does not disprove set-theoretic 
realism, it certainly discredits it. One has to ask what the point is of even say-
ing that there must be sets, if we have no solid way of knowing that we are 
dealing with the truth of the matter. Our feelings or intuitions are not a good 
guide because they lead diff erent mathematicians to mutually incompatible 
conclusions and notions of set.

An intelligent and plausible answer to epistemological question (b), and 
thereby ontological question (ii), is advanced by Eckehart Köhler (2000). He 
argues that there is an intuitive faculty, which he calls “rational intuition”, or 
“reasoned intuition”, which is what mathematicians use to perceive the set-
theoretic hierarchy, and do their mathematics. Th is is not a faculty of percep-
tion in Maddy’s sense.21 It is not causal, and does not supervene on seeing. 
Instead, it is based simply on our capacity to reason. We are all able to reason. 
Th us, we are all capable of abstract thinking. It is our reasoning intuition that 
guarantees that we are able to do this at all.22 Rational intuition is what allows 
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us to abstract from what we are thinking about. Moreover, our rational intui-
tion allows us to reason about abstract objects such as mathematical entities. 
Köhler’s thesis is closely supported by passages in Gödel, where he mentions 
specifi cally a notion of rational intuition, which is diff erent from sense percep-
tion. Köhler is a better representative of Gödel’s realism than Maddy.

Th ere is a diffi  culty. People reason in diff erent ways, so there is not one 
thing that is our reasoning intuition. However, following Gödel and Köhler, 
we can restate the position in a more sophisticated way. Diff erent people have 
reasoning intuition developed to diff erent degrees. Th is is why we say that 
one person has greater reasoning powers than another, for example. Th is is 
also why, when we point out a fault in reasoning to someone, she is able to 
recognize the fault. Interestingly, when confronted by someone who does not 
recognize, or refuses to concede that he recognizes a fault in reasoning, we 
tend to dismiss the person as irrational. Some people have a better developed 
sense of reasoning than other people, just as some people have a better sense 
of geometry or arithmetic than other people.23 In fact, we can be trained to 
reason better. Th is is why we teach classes in basic logic and critical thinking. 
Th ese classes develop our reasoning intuition. So far, so good, but what about 
rival set theories? It is perfectly consistent with Köhler’s view that we have not 
yet worked out which is the true set theory. Our collective reasoning powers 
are not suffi  ciently developed to have settled on one set theory. Set theory is 
rather young after all. However, it is also consistent with Köhler’s view that 
we shall never settle the matter. Th at is, our intuitions might not be strong 
enough, or maybe never will be strong enough, to be able to tell which is the 
real set theory. We can be optimists or pessimists.24 Gödel was an optimist; 
Köhler is a Gödelian optimist.

We should now step back to assess the view. Th e attraction of Köhler’s view 
consists in its responding well to the phenomenology of mathematics, that 
is, to how it is that mathematicians describe their experience of mathemat-
ics. Köhler’s development allows for reasoning intuition leading to disagree-
ments among mathematicians. So the view off ers a good diagnosis of, and 
explanation for, mathematical practice. Th e problem is that it does not get us 
closer to what we want. We cannot explain the mechanisms of this intuition. 
It would be circular to appeal to formal logic or set theory. It would be hope-
less to appeal to a physical mechanism, as Maddy does. We shall leave it up to 
the reader to decide whether such a “mechanistic” explanation of intuition is 
needed for a realist theory. Insisting on a mechanistic explanation, grounded 
in the physical, leads to empiricism or naturalism. If we do not insist on a 
mechanistic explanation of reasoned intuition, then we are left with an atti-
tude of optimism or pessimism concerning our reasoning powers.

So, while our intuitions might be all we have to go on, and while the notion 
of intuition might well describe and capture the experience or phenomenon 
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of practising mathematics, it is not an entirely satisfactory theory from the 
philosophical point of view. 

7. Conclusion

As we have seen, the philosophical position called mathematical Platonism is 
very ancient. Arguably, it is the oldest position in the philosophy of mathemat-
ics. More precisely, Plato was the fi rst25 to write seriously about the nature of 
mathematical knowledge, as opposed to other sorts of knowledge. Our knowl-
edge of mathematics seems to be entirely solid, in the sense of indubitable. 
We acquire mathematical knowledge through proofs and demonstrations that 
have a strong force to them. Proofs are rationally compelling. Interestingly, the 
proofs of geometry, for example, do not rely on the accuracy of the diagram 
we use, or particular examples. We seem, for Plato, to be investigating perfect 
and general objects when we make proofs based on the axioms of Euclidean 
geometry. For Plato, these perfect objects have to exist independently of us, 
and since they have to exist, then they have to exist “somewhere”. Th ey exist 
in Plato’s heaven.

Th e realist in mathematics falls short of this strong ontological commit-
ment to a Platonic heaven, by not postulating a heaven of perfect objects, but 
nonetheless claiming that mathematical truth is independent of the human 
mind. Th at is, the truths of mathematics are timeless. Th is can be understood 
in the sense that if all rational beings, that is, beings practising mathematics, 
were to die, the mathematical truths would still be there, as they were before 
we did any mathematics. Human beings are fortunate enough to discover 
the truths of mathematics. Furthermore, we think ourselves lucky because 
we believe that we have a fairly accurate picture of what the mathematical 
truths are. Th at is, our mathematical intuition and our way of confi rming this 
through proof are quite good at getting it right.

Moreover, this is confi rmed in the descriptions many mathematicians give 
of their experience of doing mathematics. For many of them, mathematics is 
a process of discovery of quite independent truths. Few mathematicians use 
the language of creating mathematical entities, although they will talk of con-
structions, so there is some ambiguity even at the level of candid language. 

Th e philosophers who give the most depth to the notion of intuition are 
Maddy and Köhler. Maddy gives a physical and causal theory of set-theoretic 
realism. In providing a philosophically worked-out account of mathematical 
intuition, she confronts the greatest problem facing the mathematical realist, 
namely, why we are so certain about mathematical truths, and why it is that 
we think that they are independent of us, and timeless.

Köhler’s development of the notion of mathematical intuition is much 
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more subtle. He postulates a rational intuition, to be understood as a reason-
ing faculty which we, as human beings, have. Köhler’s rational intuition is the 
faculty by which we apprehend mathematical truths. It is not perceptual, as it 
is with Maddy. Rational intuition does not fi t well with a rigid causal theory of 
knowledge.26 Th is is a distinct advantage of Köhler’s realism over Maddy’s.

Th ere is no denying that we feel certain when we give a proof in mathemat-
ics. We do seem to be making discoveries when we learn mathematics. We 
usually do not feel that we are creating new truths that did not previously exist 
and that are not responsible to some independent reality. Th is is because there 
are constraints in developing mathematical theories. It is not the case that 
“anything goes” in mathematics. Th e rigour of mathematics fi ts well with the 
notion of discovery. If we were simply creating mathematics, then it would 
not be clear why it is that we have to be so rigorous about it. 

Th e problem is that while many mathematicians have realist inclinations, it 
is not obvious how to defend mathematical realism philosophically. It is also 
clear that there are confl icting purported truths in mathematics in the sense 
that some sentences are true according to one theory and false according to 
another. For example, we might choose a sentence proclaiming the existence 
of infi nite sets. Th ese exist in some theories and not in others. So the sen-
tence asserting the existence of an infi nite set is true in one theory and false 
in another. How do we choose between competing theories? Take a poll? 
Trust the feelings of the greatest mathematicians? Assume that the “biggest” 
theory must be the true one? Take a theory that is common to all mathemati-
cal theories? None of these is an obvious and compelling choice over others. 
More importantly, none are philosophically persuasive.

8. Summary

We now have a default philosophy of mathematics. We also know that it 
engenders philosophical criticism. Th e important points to retain from this 
chapter are:

• the distinction between realism in truth-value and realism in ontology;
• realism about a subject, x, consists in thinking that the ontology and/or 

truth-values of the theory are mind-independent;
• the main problem with realism concerns the epistemology of the theory;
• the appeal of realism is that it accords with reports of mathematicians on 

how they view mathematics.
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Chapter 3

Logicism

1. Introduction

Logicism was advocated by Richard Dedekind, developed by Gottlob Frege 
and extended by Bertrand Russell (1872–1970) together with Alfred North 
Whitehead (1861–1947). We shall not say anything about Dedekind here, but 
take up the philosophical position starting with Frege. Frege developed logi-
cism through three works. Th e fi rst, the Begriff sschrift (Concept Script) (1976),1 
fi rst published in 1879, is a technical work, introducing the reader to a formal 
logical system. Th e second work, the Grundlagen (Foundations of Arithmetic) 
(1980a),2 fi rst published in 1884, is philosophical. Th e third, the Grundgesetze der 
Arithmetik (1980b),3 was originally published in two volumes, in 1893 and 1903. 
It would also be translated as Foundations of Arithmetic, but these are formal 
foundations, not philosophical ones. Whitehead and Russell continued the logi-
cist project, and published Principia Mathematica (1910–13) in three volumes. 
Th is is a technical work developing a formal theory of types, which, they argue, 
is pure logic. Russell also published more philosophical works: Th e Principles of 
Mathematics (1903) and Introduction to Mathematical Philosophy (1919).

 Th e major philosophical question the logicist tries to answer is: what is 
the essence of mathematics? As the word “logicist” suggests, the answer is 
that mathematics, or part of it, is essentially logic. Logicism can be either a 
realist philosophy of mathematics or an anti-realist philosophy of mathemat-
ics. Frege was a realist. Frege’s logicist believes that mathematical truths are 
independent of human beings. Frege’s version of logicism is epistemologi-
cally realist. Th at is, human beings discover, or fail to discover, mathematical 
truths. Frege’s logicism is realist in truth-value. Logical truth is independent 
of human beings. Frege’s realism in truth-value is underpinned by his realism 
in ontology. Th at is, what accounts for the independence of the logical truths 
is the existence of logical objects.

Th e Fregean logicist diff ers from the Platonist, platonist or realist in how 
he attempts to vindicate his realist stance. Th e logicist seeks to support his 



50 introducing philosophy of mathematics

realism by fi rst showing that all, or part, of mathematics is really logic, and 
secondly supporting the claim that logic is objective. To show this, the logicist 
has to reduce all, or part, of mathematics to logic. Th e reason the locution 
“all or part” is being included above is that Frege believed that arithmetic is 
reducible to logic, but not necessarily other parts of mathematics. In particu-
lar, according to Frege, geometry is not reducible to logic.4 Whitehead and 
Russell are more ambitious. Th ey think that all of mathematics is reducible to 
logic. What is common to the two views is not only the reduction to logic but 
also the conviction that there is something deeply fundamental about logic; 
that logic occupies a privileged place, not only in mathematics, but in all our 
knowledge. More dramatically, logic is foundational to mathematics. Logic is 
more basic and universal than the rest of mathematics.

Th is is at odds with much current thinking about logic, where logic is thought 
of as one branch of mathematics among others. Logicians in mathematics 
departments think of themselves as studying a branch of mathematics, on a 
par with topologists, geometers, set theorists and so on. Th e thought that logic is 
more fundamental than the rest of mathematics is a philosophical position about 
epistemology. We shall discuss this shortly, and again in more depth in §3. 

Whitehead and Russell’s logicism diff ers from realism in that they do not 
believe that mathematical truths are independent of us. In some sense, we 
have to construct them and, moreover, we have to be very careful about how 
we construct them. Only some techniques are permissible, and these are 
logical techniques. Th e sense in which Whitehead and Russell are logicists 
is that they believe that mathematics is essentially logic, and they develop 
their formal theory of types in order to prove this, by showing that they can 
reproduce all of mathematics using their type theory.

Whitehead and Russell’s logicism diff ers from Frege’s in two respects. One 
is that Frege is a realist and Whitehead and Russell are not. Th e other respect 
in which the logicist positions diff er is in their scope. Frege thought that only 
arithmetic and analysis are branches of logic. Whitehead and Russell think 
that the vast majority of mathematics is essentially logic. Th e realist/anti-
 realist divide is interesting in the case of logicism, for it does not concern 
infi nity in the way discussed in Chapter 1. Th at is, we do not have a notion of 
actual infi nity in the case of Frege, and a notion of potential infi nity in the case 
of Whitehead and Russell. Instead, Frege, Whitehead and Russell all embrace 
the notion of actual infi nity, and are at pains to ensure that they can capture 
infi nite sets within their respective formal theories. Th is attitude towards 
infi nity is something they share. Nevertheless, it is not really an important 
way of characterizing the logicist position. In order to be considered to be 
a logicist, it is not necessary that one endorse an actual notion of infi nity. 
However, whether one does will have an eff ect on the scope of logic: on which 
parts of mathematics turn out to be essentially logic. Th e realism/anti-realism 
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divide concerns the independence of mathematical truths from our abilities 
to conceive them. Simply put, for Frege we discover mathematical truths and 
for Whitehead and Russell we create them. Whitehead and Russell are par-
ticularly careful to avoid paradox, and consider the paradoxes to indicate that 
we create mathematical reality, since we have made the mistakes that led to 
the paradoxes. For this reason we have to be very careful in how it is that we 
justify the “truths”. Th ey should be justifi ed by a completely reliable system, 
which will not lead to paradox, and this is their logical type theory. 

If well demonstrated, logicism is a very appealing and strong position 
because it makes explicit use of a fi rm conviction that underpins much of 
our thinking. We think of disciplines of research and enquiry as arranged in a 

hierarchy. Th e most general of these is logic. Next 
down we have (the rest of ) mathematics. Below 
this we have physics, then chemistry, then  biology, 
then the social sciences and then it becomes quite 
sprawled and messy (Fig. 13). Th e truths of level 
6 depend on those of level 5; the truths of level 5 
depend on those of level 4; the truths of level 3 
depend on those of level 2; and so on. 

Th e thinking behind the level ordering in the 
hierarchy is that when we investigate questions 
in biology, for example, we have to assume the 
laws of chemistry but not those of economics. 
Another way of expressing this is that we could 

never fi nd a principle of biology that contradicted something in physics or 
in chemistry. Since logic occupies the top of the hierarchy, logic is the most 
fundamental discipline. Moreover, the logicists believe that all, or part, of 
mathematics belongs to the most fundamental discipline: logic. Th is further 
move of reducing all, or part, of mathematics to logic accompanies the very 
strong conviction that the truths of mathematics, or arithmetic, are undeni-
able; 2 + 2 = 4 seems to be an absolute truth, not up for debate. In other words, 
the reason mathematical, or arithmetical, truths are not up for debate is that 
they are really logical truths, and there is no position from which we may 
question these. If we can show that mathematics, or arithmetic, is really logic, 
then we show how solid and unquestionable mathematical, or arithmetical, 
truths are. A contrary, and also very strong, conviction underpins the empiri-
cist, fi ctionalist and naturalist positions. We shall see these in due course.

Frege did not think that all mathematical truths are essentially truths 
of logic. Rather, he thought that arithmetical truths are truths of logic, but 
that geometrical truths are not. Th is is because we cannot deny the truths 
of logic or arithmetic. In contrast, we can imagine denying the “truths” of 
Euclidean geometry. Frege writes: “For the purposes of conceptual thought, 
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we can always assume the contrary of some or other of the geometrical axi-
oms …” (1980a: §14). Compare this to his thoughts about arithmetic: “[if we] 
try denying any one of them [the fundamental laws of logic or of number], 
[then] complete confusion ensues. Even to think at all seems no longer pos-
sible” (ibid.). It is quite a nice experiment to try to think of ways of denying 
the arithmetic fact that 8 + 765 = 773. An easy way is to just reinterpret what 
the symbols for the numbers stand for. For example, reinterpret 8 to mean 
20, then “8 + 765” will equal 785. But this is cheating; it is changing our lan-
guage, not the underlying truth. For the proper experiments we should keep 
the language fi xed because we are interested in the underlying truth, not in 
the names for the numbers. If we keep the language fi xed, then it is hard 
(read impossible) to deny that 8 + 765 = 773. Th is is because it is impossible 
to propose a viable alternative to arithmetic, where by “viable alternative” 
we mean a theory that is just as convincing and respectable as arithmetic.5 
Th e thought experiment reveals the deep convictions that motivate logi-
cism, and so serve as a backdrop to the rest of the chapter. 

In this chapter, we shall take a fairly in-depth look at Frege’s development 
of logicism. We shall look at it from the technical point of view, and from 
the philosophical point of view. We shall then see what is wrong with the 
position, and then how we might react to the criticisms. We then look at 
Whitehead and Russell’s logicism, and problems with this. Lastly we look at 
some modern developments in logicism. 

2. Frege’s logicism: technical accomplishments

In order to show that arithmetic is really logic, Frege developed a sophisti-
cated system of logic. His Grundgesetze contains long proofs, in Frege’s formal 
system, that the Peano/Dedekind axioms of arithmetic are really just theo-
rems of logic; thus reducing arithmetic to logic. Russell then showed that 
Frege’s system of logic suff ers from a fatal fl aw: it is inconsistent. Nevertheless, 
Frege’s attempt at reducing arithmetic to logic should not be overlooked. We 
learn rich lessons in studying Frege’s logicism. 

Th ere had been developments in logic between Aristotle and Frege. In 
ancient Greece alternatives to Aristotle’s syllogistic reasoning were developed, 
but they did not survive into the Middle Ages. Th e medieval philosophers 
developed the syllogistic reasoning beyond Aristotle, and also experimented 
with a few other systems, but they were not well received by the universities, 
and were dropped. Logic and mathematics were perceived as being very dif-
ferent disciplines. Logic was a branch of philosophy, not of mathematics. Th is 
remained the norm until George Boole (1815–1864), and later Frege, decided 
to bring their mathematical understanding to bear in the realm of logic. Boole 
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made some major advances in logic in his Laws of Th ought (1854), in which 
he brings an algebraic approach to propositions and introduces the notion of 
a quantifi er and a type of probabilistic reasoning. Boole’s formal system was 
not taken up by philosophers, despite the fact that he makes a considerable 
eff ort to show the direct application to philosophical reasoning by translat-
ing arguments from Spinoza and Samuel Clarke into his formal notation, and 
exposing the formal reasoning.6 Despite Boole’s achievements, the system 
he advances is not sophisticated enough for Frege’s purposes. Nor is the syl-
logistic reasoning. In particular, before 1879, logic was not powerful enough 
to derive the axioms and theorems of arithmetic. Th us, Frege was compelled 
to develop a new system. 

Frege’s formal system was a revolutionary advance in logic. He brought 
concepts from mathematics to bear in the analysis of sentences, and his judi-
cious choice of notation and concepts borrowed from mathematics and lin-
guistics made for a very powerful system. Th e advantages of a powerful system 
over a weak system are that in a powerful system we can express more of the 
logical structure of a sentence. It follows from this that with enhanced expres-
sive power we can reduce more of mathematics to logic. Th is is because the 
greater the expressive power of a formal system, the more sophisticated our 
analysis of the pre-formalized concepts. For example, fi rst-order logic (also 
called predicate logic) is more powerful than propositional logic.7

Consider the following sentence: “If Mary mucks the barn, then someone 
mucks the barn”. In propositional logic this is represented as a conditional 
statement between two diff erent propositions: P = “Mary mucks the barn”; 
Q  = “Someone mucks the barn”. Th e whole sentence comes out as: P → Q.8 
Once we have formalized the sentence, we cannot see any connection between 
P and Q, although it was there in the English sentence. 

In contrast, if we formalize the sentence in fi rst-order logic, then we might 
assign “a” to the name “Mary”, and the predicate letter “F” to “mucks the barn”. 
Th en the English sentence is represented as: Fa → ∃x(Fx). Th is is read, “if a has 
the property F, then someone has the property F”. Here we can see that there 
is a connection between the thoughts on each side of the implication sign by 
the use of “F”. Th is illustrates the fact that fi rst-order logic has more expres-
sive power than propositional logic. Th is greater expressive power entails 
greater powers of inference. Specifi cally, there will be some arguments whose 
validity can be demonstrated in fi rst-order logic, but not in propositional 
logic. Th is is as a direct result of the greater expressive power of fi rst-order 
logic because fi rst-order logic can reveal interconnections that are lost in 
propositional logic. For example, the sentence “If Mary mucks the barn, then 
someone mucks the barn” is always true. However, we can only prove this 
by translating the sentence into fi rst-order logic. We cannot prove this if we 
simply translate the sentence into propositional logic.



54 introducing philosophy of mathematics

Frege’s formal system of logic is more powerful than Aristotelian syllogistic 
logic. It is also more powerful than propositional logic, Boole’s logic and fi rst-
order logic. Oddly, while Frege’s logic is more powerful than either proposi-
tional logic or fi rst-order logic, it was developed before either of them.9 Frege’s 
formal system is arguably equivalent to what we call “second-order logic” 
today. Th e major diff erence between fi rst- and second-order logic is that in 
second-order logic we are not restricted to quantifying over variables that 
only pick out objects in the domain, but we may also quantify over predicates, 
relations and functions. For example, we may express “mucking the barn is a 
daily task”. “Is a daily task” is predicated of the predicate “mucking the barn”; 
this makes it a second-order predicate. 

To summarize, when Frege developed his system of logic, it had much 
greater expressive power than the existing Aristotelian and Boolean systems 
of logic. We have seen examples of what greater expressive power means. 
Th e advantage this brings is not only that we can show interconnections 
between sentences, and so prove the validity of more arguments, but we can 
also recapture more of mathematics in logic. If we have a more expressive 
logic, then we can reduce more of mathematics to logic. Th e reduction of a 
branch of mathematics to logic consists in a translation from the branch of 
mathematics into the language of the logic, together with some demonstra-
tion that we can prove the theorems of the branch of mathematics in the 
logic, and then translate back again to show the match. In other words, we 
show that the branch of mathematics adds nothing new to the logic. Th e 
mathematics can be absorbed within the logic, and so is strictly redundant 
with respect to the logic. 

Recall some vocabulary. If we are reducing one branch of mathematics to 
logic, we call the branch of mathematics the “reduced” discipline. Th e logic, 
to which we are reducing the branch of mathematics, is called the “reducing” 
discipline. For example, if Frege wants to show that arithmetic is really logic, 
then he has to show that arithmetic is reducible to logic. Arithmetic is the 
reduced discipline, and logic is the reducing discipline.

More specifi cally, in order to prove that arithmetic is really logic Frege has 
to show that he can express concepts such as addition and multiplication in 
the language of logic. He also has to show that he can prove the theorems 
of arithmetic, in that language. For example, Frege has to show that he can 
prove that 2 + 2 = 4 by appeal to logic alone. If Frege can show that this, and 
any other theorem of arithmetic, is really a theorem of logic, then he has 
shown that arithmetic can be reduced to logic. Notice the switch between 
the notions of axiom and theorem. Axioms come at the start of the presenta-
tion of a formal system. Th ey are the basic truths of the formal system, and 
if we accept them, and the rules of inference, then we accept what follows 
from the axioms, where “follows from” means derived by means of the rules 
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of inference. Th e sentences we conclude from the system’s axioms, by use of 
the rules of inference, are all theorems of the formal system.

In his system of logic, Frege proved the axioms of arithmetic. Th at is, what 
were previously thought of as the axioms of arithmetic are logically derived 
as theorems of logic; the “axioms” of arithmetic are logical theorems not 
arithmetical axioms. Th is shows that all the theorems of arithmetic are based 
on logical principles alone. Th is was an important result. Previous to Frege’s 
work, both Peano and Dedekind had independently (around 1888)10  developed 
a series of arithmetical axioms that capture the whole of arithmetic; that is, 
we can derive all the theorems of arithmetic from them. Th e axioms of arith-
metic govern the notions of zero, addition, multiplication and “immediate 
successor” (4 is the immediate successor of 3). Zero, addition, multiplication 
and immediate successor are prima facie thought of as arithmetical concepts, 
not as logical concepts. To represent the axioms of arithmetic formally, we 
symbolize the “immediate successor” of an arbitrary number x as “Sx”; x and 
y vary over the natural numbers; “⋅” symbolizes  multiplication; “∀” is the 
universal quantifi er, which we read as “for every”; “+” stands for  addition; 
“≥” means greater than or equal to; and “>” means strictly greater than. Th e 
Peano/Dedekind axioms of arithmetic are as follows:

Axiom 1: ∀x(Sx > x)
 For every number x, the successor of that number is strictly greater 

than it.

Axiom 2: ∀x(x ≥ 0)
 Every number is either equal to 0, or is strictly greater than 0.

Axiom 3: ∀x((0 + x) = x)
 For every number x, x added to 0 is identical to x.

Axiom 4: ∀x∀y((x + Sy) = (S(x + y)))
 For every x, for every y, x added to the successor of y is identical 

to the successor of (x added to y).

Axiom 5: ∀x((0 ⋅ x) = 0)
 For every x, multiplying 0 and x is identical to 0.

Axiom 6: ∀x∀y((x ⋅ Sy) = ((x ⋅ y) + x)))
 For every x, for every y, x multiplied by the successor of y is identi-

cal to multiplying x by y, and then adding x to that. 

Axiom 7: ∀F((F0 & ∀x(Fx → FSx)) → ∀y(Fy))
 For all properties F, if 0 has the property F and for all numbers x 
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if x has the property F then the immediate successor of x also has 
the property F, then all numbers y, have the property F. 

Axiom 1 prevents looping. Th at is, it stops the idea of the numbers increas-
ing and either stopping, or going around in a circle. For example, a system of 
numbers that would defy Axiom 1 might progress 0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 
5 …. Axiom 2 makes 0 the least number of all the numbers. Axiom 3 just says 
that adding 0 to a number does not change the number. Axiom 4 says that if 
a number x is added to the successor of a number y, then this is equal to the 
successor of x added to y. Axiom 5 says that 0 multiplied to any number is 
equal to 0. Axiom 6 says that if a number x is multiplied by the successor of a 
number y, then this is equal to multiplying x by y and adding x.

Axiom 7 is the most interesting. It is called the “axiom of induction”. It says 
that if a property applies to 0, an arbitrary number and the immediate succes-
sor of that number, then it applies to all the numbers. An example of such a 
property, which is true of any number n, is the identity between all the pred-
ecessors of n added together and ½n(n + 1). Th is is true of any natural number 
n. Th e property is an identity statement. Th e axiom of induction allows us to 
reason over an infi nite set: the natural numbers. To reason over the infi nite 
set, we only need to look at what we call the “base case” – usually 0 – and look 
at an arbitrary number and its immediate successor. We then have enough 
information to say that the property must be true of all the numbers. Th is is 
much faster than checking all the numbers individually. Th is also presupposes 
the notion of actual infi nity. Th e axiom of induction allows us to reason over 
all the natural numbers at once.

Th e axiom of induction also acts as a formal defi nition for the natural 
numbers in the sense that we say that the natural numbers satisfy the axiom, 
or model the axiom. If we are philosophically more sensitive, then we think 
of the natural numbers as coming before, or being conceptually more primi-
tive than, the axiom of induction. We then say that the models that satisfy 
the axiom of induction do a good job of capturing our primitive notion of 
natural number. In fact, there is only one model, unique up to isomorphism, 
which satisfi es all the axioms, and that is the set of natural numbers. Th at is, 
any model that satisfi es the axioms will have the same cardinality, and order 
structure, as the natural numbers.11 Th e model is unique because we cannot 
mathematically distinguish what we might have erroneously supposed were 
“diff erent models”. Th is is very important because Frege complains that we 
do not yet have, in mathematics, a good defi nition of number. “Number” is 
usually taken as a primitive term. Frege proves to us that numbers are  logical 
entities.

A delicate issue arises here. Th e axiom of induction, as written above, is 
second-order because there is a quantifi er quantifying over a predicate. Some 
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philosophers, logicians and mathematicians object to second-order quanti-
fi cation.12 We can replace the second-order axiom with a fi rst-order axiom 
scheme. It looks like this: 

Axiom 7 ′: (F0 & ∀x(Fx → FSx)) → ∀y(Fy)

Th e Fs in axiom 7′ are then schematic letters, which we fi ll in with constants, 
that is, with defi ned predicates. For example, we could say, F stands for “is 
even”.13 Once we say what F stands for, F becomes a constant; its meaning does 
not shift. Th ere are an infi nite number of ways of fi xing F, so there is a separate 
axiom for each constant F. Since there are an infi nite number of these, we call 
Axiom 7′ an “axiom scheme” as opposed to a single axiom.

Th e advantage of the axiom scheme is simply that we restrict ourselves to 
fi rst-order quantifi cation, and this gives us certain desirable (because tidy) 
properties of the logic. Th e disadvantage of only allowing the fi rst-order axiom 
scheme of induction is that the set of axioms then becomes weaker, in the 
sense that we can construct non-standard models of arithmetic. Th ese will be 
sets of numbers that are not isomorphic to the natural numbers.14 Th ey will 
have a diff erent cardinality or a diff erent order structure from that of the natu-
ral numbers.15 Diff erent progressions of “the numbers” satisfy the axioms.

It should also be noted that what is considered to be a “good” property 
for a mathematical system to have and what is a “bad” property varies from 
one mathematician to the next. For example, some mathematicians fi nd 
non-standard models of arithmetic very interesting, and see the existence of 
such as an advantage of fi rst-order arithmetic over second-order arithmetic. 
Others disagree.

Regardless of the disagreement, Frege developed second-order logic, and 
so was able to derive as “logical theorems” the axioms of arithmetic. Frege 
derived the second-order axiom of induction, not the axiom scheme of induc-
tion. Proving the axioms of arithmetic from logic is a great feat. It shows that 
we do not need to take these axioms as primitive, or as the ultimate basis of 
arithmetic. Instead, we learn that logic is the ultimate basis of arithmetic. 
What were thought to be axioms of arithmetic turned out to be theorems of 
logic. Th e theorems of arithmetic, such as 2 + 8 = 10, turned out to be more 
theorems of logic. More impressive still is that Frege proved that there were an 
infi nite number of natural numbers. Th rough his proof, the notion of infi nity 
becomes a logical notion, and arithmetic is really just a branch of logic. When 
Frege goes on to capture analysis, which is the study of the real numbers, he 
proves that there are an infi nite number of these, and he voices his confi dence 
that he can, in the future, reproduce Cantor’s diagonal argument in logical 
notation only to show that there are more real numbers than natural numbers, 
thus making the infi nite cardinals of Cantor all logical notions. 
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3. Frege’s logicism: philosophical accomplishments

Frege’s proof that arithmetic can be founded on logic is philosophically sig-
nifi cant, both epistemologically and ontologically. Th e signifi cance rests on 
the view that knowledge and justifi cation are arranged in a hierarchy. Since 
logic stands at the top of the hierarchy, it is universal and perfectly general. 
Logic gives us the laws of thought, or the constraints on thought. By reducing 
arithmetic to logic, Frege shows that arithmetic is ultimately justifi ed, since it 
is universal and objective. Logic, and a fortiori arithmetic, is objective in the 
sense of being based on logical objects. 

What is a logical object? We normally think of “objects” as physical objects. 
We think of tables and chairs, what J. L. Austin calls “medium-sized dry goods”. 
But there are other sorts of objects: abstract objects.16 Abstract objects do not 
have a location in space and time. Ideas are sometimes thought of as abstract 
objects, and in our case numbers can be thought of as abstract objects. Th ey 
are objects in three senses: 

(i) in the sense of being the referent of singular terms;
(ii) in the sense of not owing their existence to us; and
(iii) in the sense of being objects of study. 

Sense (i) is motivated by how we use language, and how the grammar of our 
language is structured. Speaking grammatically, we say that “the number 3” 
is a singular term in the sentence “Th e number 3 comes before the number 8 
in the ordinal number sequence”. A singular term can be a subject, object or 
indirect object of a sentence. A singular term in a sentence refers to a single 
object. It is by virtue of grammar that we suppose it refers to a single object. 
We infer from this that for a sentence containing a singular term to be true, 
the object it refers to must exist. So we have a prima facie grammatical indi-
cator that numbers are objects. Grammatically, we treat numbers as objects 
and grammar shapes our conceptions. We might, of course, be misled by 
grammar. “Unicorn” is also a singular term, but unicorns do not exist, at least 
according to current scientifi c theory. Th is is why grammar only provides a 
prima facie reason to think of numbers, say, as objects, and not a defi nitive 
reason. Senses (ii) and (iii) are more decisive.

Consider sense (ii). When we do arithmetical calculations we study proper-
ties of numbers, for example, we might “discover” that 387 < (567 ÷ 1.27) + 46. 
We discover, as opposed to create, objects that exist independently of us. 
Arithmetical equations that are true are absolute and undeniable. As such 
there have to be objects that make the sentence true. Th ese are the numbers. 
We refer to them to demonstrate the truth of our discoveries in arithmetic. 
Th is entails that we cannot, and should not hope to, think of alternatives to 
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arithmetic, since the numbers exist independently of us.17 We cannot infl u-
ence or shape them. In contrast, since Euclidean geometry is not universal 
(there are several competing geometrical systems), we can, and do, think of 
alternatives.

Now consider sense (iii). What makes numbers objects of study is that math-
ematicians study them. When we do logic, we study the objects of logic, much 
as a biologist studies living things: the objects of biology. Th e truths of biol-
ogy are discovered and tested by matching them with the objects of biology. 
Similarly with arithmetic; we test our arithmetic theory by checking out the 
theory against how the numbers work. So we study the objects of mathematics. 
Th ey are independent of us, under sense (ii).

Th e fi rst and second senses of “object” are interesting since the objects of 
logic are logical objects, and this is philosophically important. Numbers can 
be defi ned using only logical language and logical notions. Moreover, we can 
derive the existence of the individual numbers as theorems of logic. Th at is, 
according to the Fregean logicist, it is a logical truth, a tautology, that, say, the 
number 6 exists. For this reason we say, for example, that “the number 6 is a 
logical object”; that is, it only takes logic to show its existence and we do not 
need to appeal to special principles. It follows that numbers occupy a special 
place in our thinking. Since the objects of arithmetic are objects of logic they 
are universal. Logic is ubiquitous. We can help ourselves to logical inferences 
or principles at any time, when discussing any subject. Since arithmetic is part 
of this, we can count anything. Numbers are universal.

Another aspect of occupying the top of the hierarchy of knowledge is that 
using principles of arithmetic is never metaphorical. Let us explain this using 
an example. One can apply principles from mechanics to economics, and say, 
for example, that to every action in the market there corresponds an equal and 
opposite reaction. Th e mechanical law is that for every (physically defi ned) 
action there is an equal and opposite physical reaction. If a billiard ball hits 
another, then no energy is lost; the energy is simply translated into the move-
ment of the other billiard ball, and expended in friction against the pool table 
and in the sound of the impact. Similarly in economics (according to some 
theories), we exchange money for goods. Th e money we pay is the value of the 
goods and for every item sold there is a price: an equal and opposite reaction. 
We are using a metaphor from mechanics and applying it to economics. In 
contrast, when we count, or use logic, we are not using a metaphor or simile; 
we directly use logic and a fortiori arithmetic, and this is testimony to the 
universality of logic, and hence logical objects. We have choices in adopting 
one metaphor or another for our economic theories, but we have no choice 
when counting. Arithmetical facts are “brute facts”.

Th e objectivity of arithmetic truths explains why it is that we fi nd arithme-
tic so compelling. It is not something we can deny. Equations such as 2 + 0 = 2 
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seem undeniable and solid. According to the logicist, this is because these 
truths are independent of us. Th ey depend on logical objects. We discover 
them, we do not invent them, so it is not in our capacity to change them by 
rethinking. Our grammar does not mislead us.

Our being able to give an ultimate justifi cation for arithmetic also has 
implications for the epistemology of arithmetic. By giving an ultimate justifi -
cation for arithmetic (i.e. by reducing arithmetic to logic), Frege showed that 
arithmetic is a priori and analytic. A truth is analytic if and only if it is true in 
virtue of meaning and/or logic. A celebrated example of an analytic truth is 
“Bachelors are unmarried men”. Th e sentence is true by virtue of the meaning 
of the words in it. All we do in the sentence is unpack the word “bachelor”. 
Th at is, the sentence “Bachelors are unmarried men” is an analysis of the 
word “bachelor”. Th e opposite of a truth being analytic is that it is synthetic. 
A sentence that is synthetically true will be true by virtue of putting together 
independent ideas. A sentence that is synthetically true might be one that tells 
an empirical fact, such as “Th e prevailing winds come from the west”. Th is is 
an observation statement. We have to observe the fact that most of the time 
winds blow from west to east. We put together two ideas, “prevailing wind” 
and “direction of wind”, and we create a synthesis of the two concepts. Th e 
sentence is not true in virtue of the meaning of the terms in the sentence, so 
it is not analytic. 

Returning to arithmetic, if arithmetic is logic, and if logic is analytic, then 
arithmetical truths are true by virtue of meaning. Th ey are true by virtue of the 
axioms of logic, defi nitions and logical inference. Logical truths are trivially 
analytic. For example, “Either the brumish is fl ampy, or it is not” is an analytic 
truth. We do not have to have had an experience of “brumishes” or have any 
idea of what “fl ampy” means in order to divine the truth of the statement. It is 
a logical tautology. Th is time the sentence is not analytic in virtue of meaning, 
but in virtue of logic. When Frege derived the Peano axioms from logic, he 
derived them from logical axioms and defi nitions, using gapless proofs. 

Frege called the logical axioms “basic laws” so as not to confuse them with 
the axioms of a particular theory. Th e basic laws were presented as logical 
in the sense of universal, independent and analytic. A basic law is absolutely 
primitive. In contrast an axiom is an axiom of a formal system. An axiom is 
not supposed to be absolutely primitive, only primitive relative to the theo-
rems of the formal system. To ask about theorems, we ask about the axioms 
of the system and the rules of inference. To ask about the axioms, we have to 
step outside the system, usually to another formal system. To ask about basic 
laws we engage in philosophical discussion, because we have to step outside 
all of mathematics and logic.

Apart from basic laws, Frege allows defi nitions in his formal system. In 
Frege’s formal system, defi nitions were only shortcuts, so were ultimately 
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 dispensable. For example, the defi nition of “bachelor” is “unmarried man”. If 
we like, we could dispense with the word “bachelor” in all our writing, and 
replace it with “unmarried man” without losing the meaning or truth of sen-
tences. Frege’s formal system of proof is “gapless”. Each move in a proof is 
accounted for by appeal to a previously accepted rule of inference. In fact, in 
Frege’s formal system, there is only one rule of inference, and this is modus 
ponens. Th e rule modus ponens says that if you have a conditional and, inde-
pendently, the antecedent of the conditional, then you may infer the conse-
quent of the conditional.18 Th e gapless proofs ensured against quick reasoning, 
which might involve appeal to some unexamined principle, which might turn 
out to be adding some new concept to the system, which would make the 
derived “truth” synthetic. Th is was a crucial part of the demonstration that 
the truths of arithmetic are analytic.

Since analyticity and syntheticity are exclusive of one another, another way 
to demonstrate that arithmetic is analytic is to show that it is not synthetic. 
Arithmetic could be synthetic for two diff erent reasons: arithmetic could be 
an empirical science or arithmetic could depend on spatiotemporal intui-
tion. We shall start with the fi rst. One claim that the logicist has to justify is 
that arithmetic is not empirical. Th is is easily done. Th e logicist’s hierarchical 
conception of knowledge and justifi cation implies that arithmetic is not a 
posteriori, since establishing, or discovering, the truths of arithmetic does not 
rely on sense experience,19 and if a truth is known a posteriori this precludes it 
from being analytic. A truth is known a posteriori when we have to use sense 
experience to know it. Th is is not to say that we cannot learn some arithmetic 
using “empirical experimentation”. Rather, the point being made by the logi-
cist is that empirical experiments, which necessarily rely on sense experience, 
will not get us very far in our understanding of arithmetic. For example, we 
might try to teach a child that 8 + 8 = 16, by having the child count out eight 
marbles, and another eight marbles, putting them together and then counting, 
and discovering that there are 16 marbles. We might have the child repeat the 
experiment for several types of object, until the child is convinced, empiri-
cally, that 8 things plus 8 other things equals 16 things altogether. Th e problem 
with this method is that the child does not necessarily learn general principles 
about adding. Th e child is only empirically justifi ed in thinking that adding 
8 objects with another 8 objects will make 16 objects. Empirically speaking, 
a new experiment has to be designed for adding 8 objects to 9 objects. Th e 
experimental method only gets us so far.

To learn general principles about addition, one needs to abstract from 
our experience and generate general principles such as axioms, and these are 
analytic. Th ey go well beyond experience, and are not testable by physical 
experiment or physical observation, especially in the case of infi nite numbers. 
Th e laws of logic, and a fortiori the theorems of arithmetic, which used to be 
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thought of as axioms, cannot be inducted, or deduced, from physical experi-
ments, according to the logicist. In fact, to think one can is just wrong-headed, 
again according to the logicist. Instead, we come up with the general princi-
ples, and it is these that give the meaning of numbers, adding and so on. 

Under the logicist view, not only does arithmetic not ultimately depend 
on particular empirical experiments, but arithmetic does not rely on spatio-
temporal intuition in Immanuel Kant’s sense either. Th is would be the second 
way in which a body of truths could be synthetic. It is much harder to show 
that arithmetic is not synthetic in this way. Frege takes issue with Kant’s belief 
that both arithmetic and geometry are synthetic. Truths are synthetic (which 
is the opposite of analytic) if they ultimately depend on either sense experi-
ence or on Kantian intuition. We say “Kantian intuition” because Kant uses 
the term “intuition” in a rather special way. For Kant, arithmetic depends on 
what he called temporal and spatial intuition. In Kant’s technical sense, “intui-
tion” is the bridge between sense experience and pure reasoning. Intuition 
makes it possible for us to apply our reasoning to the physical world around 
us. By “intuition”, he means something that is available to everyone in the same 
way; that is, for Kant, we all have the same spatial and temporal intuition. We 
share these intuitions exactly, so they are universal, in the sense of “common 
to us all”. Moreover, this is a necessary fact about how we represent the world 
to ourselves. What temporal intuition gives us is a sense of ordering: of one 
moment coming before the next in time. Th is is analogous to the numbers: 
one is less than another. Th e spatial intuition gives us a sense of one number 
being “located before” another on the number line. Interpreting Kant on his 
notions of temporal and spatial intuition is subtle work.20 Frege did not think 
that something as basic as arithmetic ought to depend on intuitions, either 
in Kant’s sense or in any other looser sense.21 For Frege, arithmetic is simply 
part of basic logic, not requiring intuition at all, because of the point made 
above about not being able to think of alternatives to arithmetic. Th is supports 
the idea that arithmetic is logic and not a special science relying on intuition. 
We have to be careful. Frege was not entirely rejecting Kant’s ideas about 
intuition;22 rather, he thought that Kant had underestimated the power of 
logic. When Kant was writing, the study of “logic” was more or less confi ned 
to Aristotelian syllogistic logic. Kant’s ideas about arithmetic requiring spa-
tiotemporal intuition did not come as a result of underestimating the power 
of Aristotelian syllogistic reasoning; rather, Aristotelian syllogistic reasoning 
does not formally represent all there is to logic. It is second-order logic, as 
presented in Frege’s formal logical system, that fully represents “logic”, and 
arithmetic is reducible to this logic.

If Kant had been introduced to Frege’s formal system, would he have sided 
with Frege or not? One possibility is that Kant would have sided with Frege 
and said “Ah, you are right! I did not have at my disposal a full logical system. 
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I only had Aristotelian syllogistic reasoning. Now I see that arithmetic does 
not rely on intuition, but is analytic”. In this case, Kant would have recognized 
that thinking that Aristotelian logic exhausted “logic” had been a mistake; 
“logic” has much wider compass. Alternatively, at our imaginary meeting, 
Kant could have denied that Frege’s formal system represented “logic” at all. 
Kant might have stuck to the position that Aristotelian syllogistic logic is all 
there is to “logic”; the rest is mathematics. If this were Kant’s reaction, then, 
when presented with Frege’s formal system, Kant would have said that what 
Frege calls “logic” is mathematics, and that to grasp it one needs spatial and 
temporal intuition. In this latter case, the debate is over what counts as “logic” 
and what “analyticity” is, rather than about the scope and formal representa-
tion of “logic”. We shall never know how Kant would have reacted.

Either way, Frege is explicitly taking issue with Kant. Th is is a bold move. 
Kant’s philosophical remarks about mathematics were considered to be a very 
important reference point for philosophers. According to Alberto Coff a, for 
“better or worse, almost every philosophical development since 1800 has been 
a response to Kant” (1991: 7).23

To sum up, the philosophical signifi cance of logicism accounts for its 
appeal. Logicism gives some account of our reluctance to question arithme-
tic. Unfortunately, there are some deep problems with logicism.

4. Problems with Frege’s logicism 

Th e most devastating problem with Frege’s attempt to prove that arithmetic is 
really logic was discovered by Russell, who had a manuscript version of Frege’s 
Grundgesetze. Before the second volume of Grundgesetze was published, Russell 
wrote to Frege explaining that one could derive a contradiction in Frege’s formal 
system. Th is has come to be known as “Russell’s paradox”.24 Since Frege received 
the letter too late to make major changes to the second volume, he acknowl-
edges Russell’s discovery in an appendix to that volume of Grundgesetze. Frege 
immediately recognized the gravity of Russell’s discovery: 

Hardly anything more unfortunate can befall a scientifi c writer than 
to have one of the foundations of his edifi ce shaken after the work is 
fi nished.
 Th is is the position I was placed in by a letter of Mr. Bertrand Russell, 
just when the printing of this volume was nearing its completion.  
 (Frege 1952: 214)25

Th e problem has to do with Frege’s basic law V, concerning extensions of 
concepts. Frege’s basic law V is:
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∀F∀G((ExtF = ExtG) ↔ ∀x(Fx ⇔ Gx))

F and G are schematic letters standing in for concepts; that is, they can be 
replaced by predicates, relations or functions. Basic law V says that for any 
concepts F and G, the extension of F is identical to the extension of G if and 
only if all the objects falling under the concept F are the same as all the objects 
falling under the concept G. In other words, basic law V just explicates the 
notion of “extension of a concept”. It seems innocuous enough. It seems to be 
trivially and obviously true. 

Explaining further, the notion of extension is contrasted to that of intension. 
Both extension and intension have to do with how the concept is presented to 
us. Th e extensional presentation of a concept is just a list of the objects falling 
under the concept. In contrast, an intensional presentation of a concept gives a 
characterization of the concept, which then allows us to pick out which objects 
fall under it. For example, someone might give a list of fi ve people who are invited 
to dinner. Th e list is the extension of the intensionally given concept “person 
invited to dinner”.26 We can plug this example into basic law V. Call “F ” the 
concept “person invited to dinner”. Call “G” the concept “member of the poetry 
club”. Th e list of people invited to dinner is identical to the list of people in the 
poetry club if and only if the two lists have the same people picked out. When 
this happens we say that, logically, “the concepts are equivalent”, where equiva-
lent means “similar in some, possibly many, respect(s)”. In this case, the concepts 
are identical in their extensions, so the concepts are logically interchangeable 
(we do not care which way you call them, or what means you have of picking 
them out). Th at is, how one comes to generate the list – by looking at the list of 
members of the poetry club, or looking at the guest list for the dinner party – is 
not relevant to the extensions of the intensional characterization. We just want 
to be able to generate the list. Basic law V is intended as a law of logic. It says 
that it is a matter of logic that how we express ourselves (how we intensionally 
represent concepts) is irrelevant, provided we pick out the objects we want. Two 
concepts are identical in extension, that is, logically indistinguishable, if they pick 
out the same objects. Logic is extensional: blind to intensional presentation. Th e 
concept 2 + 2 is logically equivalent to concept 4. Th e concepts have identical 
extensions, since “2 + 2” picks out the same object as “4” does.

Basic law V might seem trivial and obvious. Th is is partly because nearly 
all mathematicians presuppose that their systems are extensional systems, so 
they endorse, implicitly or explicitly, something like basic law V. Frege recog-
nized this. It was for this reason that Frege thought that basic law V could be 
accepted as a logical principle. Frege just made the principle explicit. Basic 
law V, and other axioms like it, are sometimes called “naive” (comprehen-
sion)27 principles. Th e principles are naive because they seem quite obvious 
but lead to contradiction.
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From basic law V we can generate a contradiction because there is no 
restriction on the sorts of concept we are allowed to countenance in Frege’s 
formal system.28 Any two concepts have the feature of being identical in exten-
sion (logically indistinguishable) just in case they pick out the same objects. 
We can substitute what we like for F or G provided we can express, or for-
mulate, the concept in the language. Recall the universal quantifi ers at the 
beginning of basic law V, ∀F∀G: “for any concepts F, for any concepts G”. 
Also recall that in classical logic we can always derive an existential sentence 
from a universal: ∀x(Hx) � ∃x(Hx) is logically valid (� is read as “we can 
syntactically (following logical rules of derivation) derive”). Th e expression 
∀x(Hx) � ∃x(Hx) is read: “All objects in the domain have the property H, 
therefore, there is something in the domain which has the property H”. In 
basic law V, the universal quantifi ers quantify over second-order objects, that 
is, over concepts. So, the universals in basic law V imply, with a little manipu-
lation, the existence of any concepts we think of out of the blue to substitute 
for F and G. Basic law V licenses us to think up any concept we can express 
in the formal language, and guarantees the existence of an extension for that 
concept. Note that the extension might be empty, in case there is nothing to 
pick out. A contradictory concept picks out the empty set. For example, the 
concept of “things not identical to themselves” picks out the empty set.

We can now turn to Russell’s objection to basic law V. Consider the con-
cept “the set of all the things not in their own extension”. Most sets do not 
have themselves in their own extension. For example, the set of members of 
the poetry club is not itself a member of the poetry club. Th erefore, the set is 
not in its own extension. In contrast, we can think of concepts that do have 
themselves in their own extension. An example would be the concept “is an 
infi nite set”. Th e set of “infi nite sets”, is itself infi nite, and therefore is in its 
own extension. Returning to the notion of “sets that do not have themselves in 
their own extension”, we can collect all of these together under one concept: 
“all sets not in their own extension”. Th is forms a set. Call it “R”, for Russell. 
We now ask the question whether R is in its own extension. If R is in its own 
extension, then it ought not to be by virtue of the meaning of the concept. If 
R is not in its own extension, then it ought to be by virtue of what is included 
under the concept. We have a contradiction.

Basic law V is not as innocent or obvious as we thought. Part of the prob-
lem is that it allows any concept at all: it is unqualifi ed. Basic law V does not 
say “all concepts except for …”. Adding such a clause to basic law V is not an 
option. If it had exceptions, then it would not be a candidate for being a princi-
ple of logic, for basic laws are supposed to be entirely general, and a purported 
“law of logic” that has some exceptions is not general or universal. 

Frege tried to repair the damage by suggesting an alternative to basic law V, 
from which Russell had derived a paradox. Unfortunately, the alternative also 
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turned out to be contradictory. Frege was in deep despair about his project 
and he did not try to repair it further. In fact, he did not publish again for four-
teen years. When he fi nally did, he tried to re-found arithmetic in Euclidean 
geometry, rather than in logic. Th is is because Frege was still convinced that 
the mathematical analysis of the notion of number was inadequate. Th e analy-
sis of the notion of number had to be given by appeal to something more basic 
than the notion of number itself. He decided that Euclidean geometry must 
be more basic, in terms of giving a justifi cation for our number concepts. His 
further project was neither fully developed nor seriously taken up by any fol-
lowers, so it was not pursued.

Apart from inconsistency, there is a second major problem in Frege’s presen-
tation of his philosophical view. It is quickly stated. In the literature, it is referred 
to as “the Julius Caesar problem”. Th e problem is this. From within logic itself, 
as we are sitting at the top part of our hierarchy of knowledge, we cannot tell 
if an arbitrary object that is presented to us, such as Julius Caesar, is a number 
or not. Th is sounds very odd. But the point is that logic by itself cannot tell us 
really what sorts of objects numbers are; at least not enough to distinguish 
them from other sorts of objects. If we rely on common sense then we know 
that Julius Caesar is not a number, but logic alone cannot tell us that. 

Th is marks a failure in Frege’s analysis of the concept “is a number”. Th is 
is because we have to go down the hierarchy of knowledge in order to tell 
us something about the upper levels of the hierarchy. So logic is not a self-
 suffi  cient discipline; it requires the help of the lower levels. Th is is a problem 
for Frege, because one of the motivations for Frege in developing logicism is 
that there is no adequate theory of number, and it turns out that, by his own 
lights, his theory of number is not adequate either. 

Frege was well aware of this problem. He discusses it in Grundlagen §56, 
and thinks he has solved the problem by §66. However, the way in which he 
solved the problem is to use the notion of the “extension of a concept”. Frege 
then had to introduce the notion of extension of a concept to his logic. To do 
this he presented basic law V, and we know where that led.29

5. Whitehead and Russell’s logicism

Whitehead and Russell30 picked up where Frege had left off . Th ey decided 
to develop a logical system that was more elaborate in two respects. Th eir 
ambitions were greater than those of Frege: they sought to reduce all of 
mathematics to their formal system. For this they needed great expressive 
power in their logical language.31 Th e other consideration which makes 
for a more elaborate formal system than Frege’s is that Whitehead and 
Russell were adamant that they should avoid paradox, so there are no naive 
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 principles. Unfortunately, the principles that replace naive comprehension 
are intuitively less obvious and therefore arguably not universal, and thus 
not logical.32

Th e formal system developed by Whitehead and Russell is called “type 
theory”. Type theories, of one sort or another, are used today by computer 
scientists. Whitehead and Russell developed two type theories: the simple 
type theory and the ramifi ed type theory. Th e ramifi ed type theory is more 
elaborate, as the name suggests, and was developed to allow a more fi ne-
grained analysis, and organization, of mathematical concepts. We shall not 
discuss the fi ner details of type theory here since these will not be impor-
tant to the overall philosophical position, but we do need to get some feel 
for type theory. In type theory one is entirely explicit about what type of 
thing falls under a given symbol. For example, it was mentioned above when 
discussing Frege’s logic, that “F” and “G” are used by Frege to include pred-
icates, relations and functions. In type theory these things are kept quite 
separate, for they are of diff erent types. We do this in any formal system 
implicitly by using diff erent fonts, symbols and alphabets. In type theory, 
we are very explicit about rules of inference and axioms governing diff er-
ent types. Moreover, in order to avoid paradox there is a strict level system 
where predicates are only allowed to predicate over things at a lower level. 
Th is is the secret to avoiding paradox. We are not allowed, by the “gram-
mar rules” of the type theory, to ask of a set at one level whether it belongs 
to itself (at that same level), so we cannot get started on the reasoning that 
yields paradox. Whitehead and Russell were ingenious in designing the 
grammar (the notion of a well-formed formula) in such a way that concepts 
that lead to paradox turn out to be ungrammatical, and therefore are con-
sidered to be nonsense. Th e rules for making a well-formed formula, that is, 
the rules of grammar for the formal language, concern the types of symbols 
used to form expressions. 

As a result of this grammatical, type-theoretic, elaboration, axioms have to 
be given to govern what happens to things of diff erent types, and at diff erent 
levels. For example, separate axioms have to be given about the extensions of 
functions and the extensions of relations. Before explaining Whitehead and 
Russell’s type theory explicitly, notice that the vocabulary has shifted. We 
have moved from Frege’s basic laws to Whitehead and Russell’s axioms. Both 
formal systems are axiomatic, in the sense of explicitly listing basic prin-
ciples and one or more rules of inference, and then being able to deduce 
the theorems from those.33 Th e diff erence between axioms and basic laws is 
philosophical. Basic laws are laws of logic and, according to the logicist, logic 
plays a special role in our hierarchy of knowledge. Th ere is nothing more 
basic than logic, if we think that logic is what gives us minimal constraints 
in reasoning.
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In contrast, if we are discussing an arbitrary formal system that is pre-
sented axiomatically, then the axioms are the fundamental assumptions of 
that  formal system. So the axioms are basic relative to a formal system, as 
opposed to Frege’s basic laws, which are fundamental to all systems. Because 
Whitehead and Russell’s type theory was clearly diff erent from Frege’s system, 
we avoid begging any questions by calling the basic principles of the system 
“axioms” rather than “basic laws”, and then enquire separately whether they 
deserve the philosophical status of Frege’s basic laws. 

Let us turn to the semantics of Whitehead and Russell’s type theory. We 
shall not be using Whitehead and Russell’s notation because this is not used 
much presently, except by Russell scholars. Also be warned that we are look-
ing at the simple type theory, and omitting many details in the hope of giving 
an understandable fi rst impression. Further details can be added on when 
studying Whitehead and Russell in depth.

We number each type. Individual objects are assigned type 0. Physical 
objects, people or abstract objects can be of this type. A relation between 
two objects of type 0, such as “is the mother of”, is of type <0, 0>. We use the 
angled brackets to show that the order of the members is to be respected. 
In the case of the relation of motherhood, the order is important. Th ere is 
a diff erence in truth-value between saying that Elizabeth is the mother of 
Bertrand, and that Bertrand is the mother of Elizabeth. A three-place rela-
tion between objects of type 0, such as “lies between”, is of type <0, 0, 0>. We 
want to talk about objects, so we predicate properties of them. For example, 
we might say that the chair (which is of type 0) is red. Red is of type (0): it 
predicates over objects of type 0. A predicate of predicates, such as “is a 
colour”, is of type ((0)). A relation between two predicates of type (0) is of 
type <(0), (0)>. An example of such a predicate is “is a darker colour than”. 
In principle, we can extend these by adding brackets, and by adding more 
things of type 0. We might think of this as expanding upwards and sideways, 
respectively. For example, we extend the type <(0), (0)> upwards by add-
ing brackets. We extend the same type sideways by adding more objects: 
<(0), (0), (0)>.

 … … … …

 (((0))) <(((0))), (((0)))> <(((0))), (((0))), (((0)))> …

 ((0)) <((0)), ((0))> <((0)), ((0)), ((0))> …

 (0) <(0), (0)> <(0), (0), (0)> …

 0 <0, 0> <0, 0, 0> …
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We can also have “mixed” types, for example if we want to say that red (of 
type (0)) is predicated of individual object (of type 0), then this is a relation 
between things of diff erent type. Th is relation is of type <(0), 0>. It is a relation 
between a predicate and an object. Th is type assignment system is impor-
tant because we can make rules for the expansion, and then we can prevent 
paradox. We prevent paradox by forbidding certain sorts of type. We do this 
by stipulating axioms and grammar rules about which types are allowed, and 
which are not. In the Whitehead and Russell type theory we may not discuss 
the notion of “all properties”, since it has no type; we would not be able to 
guess how many brackets to put around the original 0.34 If we thought we had 
guessed correctly, then there would be a question about whether that new 
type itself were a property. Moreover, we could generate a paradox by asking if 
the property of “not being a property” is itself a property. All of these danger-
ous notions are forbidden through the rules for piece-by-piece construction of 
expressions of diff erent types. It is because we can order the types that we can 
build piece-by-piece; details are not important here. Once we have an order-
ing on the types, there are strict rules about which types are allowed, given a 
certain type, the idea being that some types are ordered higher than others, 
and a type can only be built up from types of lower order. Moreover, a type 
can only have in its “range of signifi cance” certain lower-order types. “Range 
of signifi cance” is Whitehead and Russell’s expression. It just means that an 
expression of order-type 3, say, can only apply to expressions of order-type 
2, 1 or 0. In our notation, an expression Fa of type (((0))) can only apply to as 
of type ((0)). Th is notion of “range of signifi cance” is particularly important 
for the universal quantifi er.35 Th e quantifi ers are assigned a type, just as any 
other symbol is. In fact there are many types of quantifi er. To make a well-
formed expression, the quantifi er has to be of type higher than the variable 
that follows it. Th is is what is missing in Frege. For example, in type theory 
∀x is allowed provided x is of type lower than ∀. Now x could range over 
objects, so be of type 0. Or x could be a predicate, so of type (0). In the fi rst 
case, ∀ has only object-level variables in its range. In the second case, ∀ has 
predicates in its range. Because of these higher-order quantifi ers, the language 
of type theory has great expressive power. Th is is what gives the type theory 
the power to absorb most of mathematics.

Whitehead and Russell’s type theory is a formal theory that is so expressive 
as to be foundational to most of mathematics: we can do most of mathematics 
in type theory. Several modifi cations have been introduced more recently, and 
various sorts of type theory are used by computer scientists today. However, 
there is some philosophical unease about the type theory acting as a founda-
tion to mathematics in the special sense that a logicist wants. Recall that in 
the case of Whitehead and Russell, the logicist claim is that all, or most, of 
mathematics is really logic.
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6. Philosophically, what is wrong with Whitehead and Russell’s type 
theory?

As we saw, type theory is very powerful: powerful enough to be considered to 
be a foundation to mathematics. It is probably consistent.36 It is even a useful 
theory. Th e development of type theory was supposed to prove the philosoph-
ical claim that mathematics is essentially logic. To prove that mathematics is 
essentially logic we need three things: (i) we need a reduction of mathemat-
ics to a founding discipline; (ii) the founding discipline must be consistent; 
(iii) we need support for the claim that the founding discipline is logic, in 
the philosophical sense of “logic”. Whitehead and Russell’s type theory fairly 
comfortably meet the fi rst two requirements but is criticized by philosophers 
for not really being logic. Th e complaints are made on two counts. One is that 
Whitehead and Russell could not prove that the natural numbers formed an 
infi nite set, which Frege was able to do in his logic. In fact, Whitehead and 
Russell were unable to prove that there exists any infi nite set at all; they had 
to add an axiom that states explicitly that there is an infi nite set.

Th e philosophical criticism says that it is not prima facie a logical truth that 
there exists an infi nite set; it is only a mathematical truth. It is not the business 
of logic simply to declare which sets exist and which do not. If Whitehead and 
Russell were to really succeed in their philosophical aims, then they would 
have to prove that there is an infi nite set from logical principles alone. Th ey 
cannot assume the existence of an infi nite set as a matter of logic. On the 
other hand, it is indispensable to a lot of mathematics that there should be an 
infi nite set. Th us, any reducing discipline that posits an infi nite set by virtue 
of the axioms of the system is more properly described as a mathematical 
system as opposed to a logical system.

Th e second complaint against (iii) is similar, but more technical. Critics of 
the Whitehead and Russell project question the philosophical status of the 
axiom of reducibility. Th e axiom was proposed in order to overcome the fol-
lowing diffi  culty: while we can derive the natural numbers at various levels 
in the hierarchy, it is not clear that they are the same ones each time. Th is is 
because the types can talk about things of lower type, but we cannot talk about 
sub-types being the same at all levels, because we cannot talk about all levels 
without the axiom of reducibility. Th e axiom of reducibility guarantees that 
we have exact copies of the numbers at every level. Th e critics of Whitehead 
and Russell’s philosophical project point out that this too is not obviously a 
matter for logic to decide. It looks more like a convenience, or a mathematical 
fact, at best.37

Russell was aware of these criticisms and his fi nal response was to admit 
that this was a problem. He distinguishes logically necessary axioms from 
what he calls “empirical axioms” in the following way. Logically necessary 
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axioms are much like Frege’s basic laws. For Russell, they are indubitably logi-
cal laws. In contrast, empirical axioms do not enjoy the same philosophical 
status as logically necessary axioms. Th at is, there is some lingering doubt 
as to whether they are logical or properly mathematical (Potter 2000: 160).  
Th ey are justifi ed empirically in the sense of being quite useful in retrospect. 
Ultimately, there is a problem with this attempt at logicism. Mathematics is 
reducible to a formal system that includes both necessary axioms and empiri-
cal axioms. Moreover, the empirical axioms are ineliminable. Th erefore, the 
Whitehead and Russell attempt at proving logicism fails because all it shows 
is that mathematics is reducible to type theory, and type theory is just another 
mathematical discipline. 

7. Other attempts at logicism

In 1983 Crispin Wright suggested a possible repair to Frege’s project.38 Wright 
suggested that we make a change to Frege’s formal system by removing basic 
law V, and replacing it with Frege’s “numbers principle”. Th is new formal 
system has the technical merit of being consistent, and from this set of axi-
oms (Frege’s fi rst four basic laws plus the numbers principle) we can derive 
the Peano axioms as theorems of the formal system. For a presentation of 
Frege’s formal system of logic see his Begriff sschrift (1976) and Grundgesezte 
(1980b).

Th ere are a number of interesting things to say about this brilliant sugges-
tion. Technically, it works. Th at is, we can indeed derive the Peano axioms as 
theorems of a more “primitive” formal system.39 However, we now come up 
against the same complaint as we saw made against Whitehead and Russell’s 
type theory. Th e question is whether this more primitive system is really logic. 
To answer this, we have to look closely at the numbers principle.

Th e numbers principle is:

∀F∀G((NF = NG) ↔ (F ≈ G))

Th is is read “for all concepts F, and for all concepts G, the number of Fs is 
identical to the number of Gs if and only if F and G can be placed into one-
to-one correspondence”. Th is recaptures Cantor’s notion of the size of a set. 
Rather than discuss size as an absolute cardinal notion, it compares the sizes 
of two sets to each other. Th e sets are picked out by the concepts F and G. 
So with the numbers principle we have the notion of two sets being of the 
same size. For example, take the concept F to be “guest coming to dinner”; 
the concept G might then be “is a place set at the table”. Th en we would say 
that the number of guests is identical to the number of places set if and only if 
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every guest has one and only one place set for him, or her, at the table. Th ere 
are not more places set than there are guests, and all guests have a place. Th e 
question for the neo-Fregean, as Bob Hale and Wright call themselves,40 is 
whether the numbers principle is a basic law. Th at is, Hale and Wright want 
to justify the claim that the numbers principle is a law of logic. 

In terms of loyalty to Frege’s original intentions, the numbers principle is 
signifi cant. Frege had proved this principle in his system, and used it to derive 
the axiom of induction in Peano arithmetic. So it was already a theorem in 
Frege’s formal system. Furthermore, Frege discusses the numbers principle in 
Grundlagen (1980a). In Frege’s discussion of the principle in Grundlagen, he 
says that while it is very obviously true he is not convinced that it is obviously a 
logical principle, as opposed to a principle of arithmetic (which he has not yet 
proved is simply logic, and he does not want to make any assumptions). Th is 
is because the numbers principle mentions the notion of number, and this has 
not yet been defi ned as a logical notion. To prove that the numbers principle 
is a principle of logic, he later derived it from basic law V in Grundgesetze. 
Th is derivation proved not only the obvious truth of the numbers principle, 
but also its logical pedigree. In light of the contradiction derived from basic 
law V, the logical pedigree of the numbers principle is again in question.

Th e notion of defi nition deserves attention, for we might think that the 
numbers principle is a type of defi nition. If it is, then we need not defend it 
as a basic law, since Frege says that the truths of logic are derivable from basic 
laws and defi nitions, using his gapless proof system, which is very rigorous. 
Unfortunately, this will not work. For Frege, a defi nition should be strictly 
redundant, and it should allow us to “individuate” the objects being defi ned; 
that is, we should be able to pick out, or recognize, the objects. To do this a 
defi nition has to tell us when something that is presented falls under the defi -
nition or not, and the defi nition should tell us when what we thought were 
two separate objects are really the same object. Th e numbers principle does 
the latter, but not the former. Furthermore, there is no other principle that 
qualifi es as a logical principle, or proper defi nition, in the offi  ng that tells us 
when something is a number, as opposed to some other sort of object. Th is is 
another way of thinking of the Julius Caesar problem. Hale and Wright have 
possibly fi nally put the Caesar problem to rest in “To Bury Caesar …” (2001a). 
However, we should show caution, for among philosophers there is always 
room for further debate.

But this is not enough. Even if we solve the Caesar problem, this will make 
the numbers principle, together with some other considerations, a means of 
individuating objects, but it will not assure us that numbers, “defi ned” via the 
numbers principle, are logical objects. Remember that the numbers principle 
is being put forward as a basic law, not as a mere redundant defi nition. We 
still have to deal with the philosophical status of the numbers principle. If the 
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 principle is a logical principle, then, according to Frege and the neo-Fregeans, it 
has to be a priori and analytic. Th e numbers principle is fairly uncontroversially 
a priori in the sense that knowing that it is true, or even just understanding 
it, does not require sense experience. It is not something that is confi rmed or 
denied by the physical world around us, which we apprehend with our senses. 
More crassly, we could not design a laboratory experiment to prove or disprove 
the numbers principle. 

Analyticity is trickier. Frege said that an idea is analytic if it can be proved 
from the basic laws of his formal system, since each of these is clearly ana-
lytic, and the proof system does not allow any presuppositions aside from the 
laws and redundant defi nitions. Every theorem derived from the basic laws 
and defi nitions is derived using only modus ponens. Th is characterization of 
analyticity does not help in this case because we are proposing a new basic 
law that is not provable from the other laws. 

Another characterization Frege gave for analyticity is that an idea is ana-
lytic just in case it is not synthetic. Th at is, we can understand it without 
having had any particular sense experience of the world, and without any 
intuition (each of which is suffi  cient to make an idea synthetic). Since the 
numbers principle is a priori, the dispute about the status of the numbers 
principle really has to do with this notion of intuition. Elaborating on the ear-
lier discussion concerning Kantian intuition, Frege uses the word “intuition” 
in two diff erent ways (Goethe 2001): the fi rst is as a sort of insight or feeling 
and the second is Kant’s technical notion of temporal and spatial intuition. Let 
us see if we can rule out “intuition” interpreted as “feel” when we talk about 
understanding the numbers principle. We ask if it takes insight, or some feel 
for what number are, to recognize the numbers principle as true. Accepting 
the numbers principle as true does not depend on feel, since feelings or gut 
instincts are notoriously unreliable. Diff erent people have diff erent feelings 
about what they guess is true or false. Mathematical truths are objective, and 
therefore cannot depend on intuition in the sense of feelings. In fact, to argue 
that the numbers principle is true by appeal to gut feelings or intuition is to 
reverse the order of justifi cation. We really want to know if we can acquaint 
ourselves with the concept of number by studying the numbers principle, 
without a prior conception of number. Th e answer to this is less obvious, and 
requires that we show that the principle is analytic. Analytic truths are sen-
tences that are true just in virtue of meaning. Straight defi nitions are analytic. 
However, we saw above that we cannot argue that the numbers principle is 
a defi nition. 

Wright gives an indirect argument to the eff ect that the principle is ana-
lytic. Th e argument is indirect in its structure. He argues that the principle 
cannot be synthetic, and is therefore, analytic.41 Th at is, he argues that accept-
ing the numbers principle is not a matter of appealing to Kantian spatiotem-
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poral  intuition. Instead, the principle is a special sort of defi nition. He calls it 
a “context principle”. Th e argument concerns the structure of the principle. 
Let us look at it again: ∀F∀G((NF = NG) ↔ (F ≈ G)). In terms of structure 
this is not a straight defi nition because the biconditional (symbolized “≡” 
in some texts and “↔” in others, and read “if and only if ”) is not the main 
operator in the sentence. Straight defi nitions take the form … ↔ …, where 
the biconditional is the main operator. Instead, the pair of universal quanti-
fi ers are the main operators. Th e term being defi ned, the “defi niens”, is on 
the left and how we are to understand the term, the “defi niendum”, is on the 
right. In the numbers principle, the “defi nition” is couched within the scope of 
two universal quantifi ers, which give context to the defi nition. Examining the 
principle more closely, and looking inside the scope of the quantifi ers, that is, 
just at the expression “(NF = NG) ↔ (F ≈ G)”, we have a candidate for a defi ni-
tion. It is still not quite a straight defi nition because the same letters appear 
on both sides of the biconditional, so the “defi nition” looks circular. Wright 
argues the defi nition is not circular because if we separate out the two condi-
tions of the biconditional the resulting parts make two very diff erent claims. 
Th e direction “(NF = NG) → (F ≈ G)” is an epistemological claim. If we have 
identical numbers belonging to the concepts F and G, then we can place the 
objects falling under those concepts into one-to-one correspondence. Th is is 
how we know, and justify, that the numbers of Fs is identical to the number 
of Gs. Th e reverse direction “(NF = NG) ← (F ≈ G)” is an ontological claim: 
if two concepts can be placed into one-to-one correspondence, this tells us 
that the cardinal numbers of the two concepts are identical. Th e cardinal 
numbers are objects because, among other things,42 we say “the number of 
Fs”. Th at is, for reasons of grammar (being formally represented by NF) “the 
number” refers to an object. Th is direction of the arrow makes the principle 
look like a defi nition. Th e other direction is what justifi es the claim that the 
defi nition is analytic. Th e notions of identity and one-to-one correspondence 
are not based on spatiotemporal intuition. Th ey are pure analytic concepts, 
or so the argument goes. Th e argument rests on an analysis of the structure 
of the principle.

Unfortunately, this approach faces the following “bad company” objection. 
Th e “bad company” objection is most obviously made by George Boolos in 
“Is Hume’s Principle Analytic?” (1998a).43 Boolos calls the numbers principle, 
“Hume’s principle” because Frege acknowledges that the suggestion for the 
numbers principle can be traced back to Hume. Boolos’s objection is that 
there is nothing to suggest that Hume’s principle is analytic, except for prior 
acquaintance with the notion of cardinal number. Th is is because there are 
several principles that we can suggest, which share the structure of Hume’s 
principle (alias the numbers principle), but that contradict it. So the structure 
is not enough to single out Hume’s principle over other competing principles 
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that share the structure. Th e good base of second-order logic (Frege’s fi rst 
four basic laws) is fi ne; we can accept this as generating only analytic truths. 
However, if we want to add to it, by attaching a principle with a certain struc-
ture, then we have a lot of opposing, mutually exclusive candidates. 

Boolos calls principles that share the structure of Hume’s principle “abstrac-
tion principles”. By adopting this vocabulary, he wants to distance himself 
from Wright’s claims about contextual defi nitions. Th e relevant structure is 
that the principle should have two universal quantifi ers, which are the main 
operators. Within the scope of those quantifi ers we have a biconditional as 
the main logical connective. On one side of the biconditional we have an iden-
tity between two things; on the other side we have an equivalence relation. 
Recall that a relation is an “equivalence relation” just in case there are some 
respects in which the two sides are similar. Th at is, the principle tells us that 
these respects are strong enough to make identity between the “two” objects, 
demonstrating when “they” are really one object. Abstraction principles are a 
way of telling us that we do not care about any other diff erences. For example, 
we might say that the number 3 referred to by the representation 3 and the 
one referred to by the representation 3 are the same 3. We do not care about 
which font we use to represent 3. Th e 3 is the same 3 no matter how many 
times we type 3, or where we type 3, or whether we symbolize 3 in some new 
way, for example, 1 + 1 + 1. Th e numbers principle tells us that two numbers 
attending F and G are identical just in case they can be put into one-to-one 
correspondence.

An abstraction principle that shares the same structure as the numbers 
principle is basic law V. But Wright rules this out since it leads to contradic-
tion. Basic law V cannot be true, therefore it cannot be analytic. However, 
there are abstraction principles that can be added to the good base of  second-
order logic that make a consistent formal system, but are inconsistent with the 
numbers principle (or Hume’s principle). Here is an example, which the reader 
need not be able to follow. Th e philosophical lessons can be made clear with-
out the details. Consider the parities principle: the parity of F is identical to the 
parity of G if and only if F and G diff er evenly (i.e. one minus the other results 
in an even number). In symbols we can write ∀F∀G((PF = PG) ↔ E<F, G>): 
“[T]he concepts F and G diff er evenly if the number of objects falling under 
F but not under G or under G but not F is even (and fi nite)” (Boolos 1998c: 
214–15). Th e parities principle has two universal quantifi ers as main opera-
tors. Within the scope of the quantifi ers we have an expression where the 
biconditional is the main connective. “E” (read “diff er evenly”) is an equiva-
lence relation. All even numbers are equivalent with respect to the property 
of being divisible by two and resulting in a whole number. On the left-hand 
side of the biconditional we have an identity. So, we have the correct structure. 
If we add the parities principle to the good base of second-order logic, then 
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we have a consistent formal system. However, the parities principle is rather 
strange intuitively. It says that all pairs of numbers that have the same parity 
are identical: they are exactly the same, indistinguishable. For example, the 
parity of 8 and the parity of 4 are identical, the parity of 7 and the parity of 
3 are identical. Th e parity of 35 and the parity of 7 are identical. Th is makes 
us uneasy. Th is is because the parities principle is inconsistent with Hume’s 
principle (the numbers principle) because one of the theorems we can derive 
from it, together with the good base of second-order logic, is that there are 
only a fi nite number of numbers (Boolos 1998b: 215). Infi nite numbers do 
not have parities. Recall that one of the technical merits of logicism is that we 
can derive the infi nity of the natural numbers from the numbers principle. 
Both principles are consistent with Frege’s fi rst four laws, so we cannot rule 
out the parities principle on the grounds that it is contradictory and there-
fore false. On the merits of structure alone, the numbers principle keeps bad 
company. 

Th e lesson Boolos, Wright and Hale agree to draw from this is that struc-
ture and consistency alone are not enough to guarantee that the numbers 
principle is analytic; there has to be something else. “Obviousness” will not 
do, since this is a psychological description, and what is obvious to some 
people is not obvious to others. Th e whole point of logicism is to sanction 
our feeling of obviousness with regard to the numbers principle. Rather than 
pursue Wright and Hale’s response to Boolos’s bad company objection, let us 
turn to another response. 

Köhler (whom we met in Chapter 2), suggests an ingenious solution, 
answering to concerns about both realism and logicism. Recall that Köhler 
(2000) says that there is a “rational intuition” that is required in order to recog-
nize the truth of a logical principle. Moreover, the “rational intuition” does not 
off end against analyticity. Th at is, anything that is true according to rational 
intuition is analytic. Anything that is true for other reasons, requiring spatio-
temporal intuition, for example, or observation, is synthetic. One can appre-
ciate the point. It seems that some people simply have mathematical insight, 
or intuition; others lack this faculty. Th ose who lack it are those who simply 
did not do well in mathematics classes. Th ose who have the intuition see the 
mathematical structures, and they are very immediate to them. Obviously, 
they do not see the mathematical structures with their eyes, but they see them 
in the mind’s eye, through, it is argued, the faculty of rational intuition. 

Th ere are a number of questions we could raise about this intuition, such 
as why some people have it and others do not, what it takes to develop it and 
so on. Th ese are largely empirical and/or psychological, and possibly answered 
by genetic science and evolutionary science. What is more important to us 
here is whether positing such a faculty endorses logicism. It will speak for logi-
cism just in case we are convinced that the truths apprehended by this faculty 
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are still analytic. Here is the argument. We could say that any idea that can 
be apprehended using reasoning alone is thereby analytic, for it seems that 
this is what “analytic” means in this context. A truth is analytic just in case 
it is true in virtue of the analysis of concepts. Th is is contrasted to synthetic 
truths, which require some sort of insight having to do with our orientation 
in the world, and our ability to navigate in this physical world. So the numbers 
principle seems to be analytic in the right way. Th e numbers principle analyses 
our conception of cardinal number. It is not true by feel, and it is not based 
on spatial and temporal intuition, as Kant thought.

However, now we face another problem. Th e problem with this view has 
to do with some of the other questions about this intuition. Remember that 
Wright and Hale were trying to argue that we should be able to become 
acquainted with the concept of number through exposure to the numbers 
principle, and that it should not answer to some prior intuition or concept. 
Köhler seems to be arguing that we acquire the concept of number through 
this rational intuition, and this is what would justify the numbers principle 
as analytic.44 Köhler also faces the bad company objection raised by Boolos. 
Rational intuition might justify the numbers principle, but it is not clear that 
it can rule out the parities principle. To do so we would have to claim that the 
infi nity of the natural numbers is true by virtue of rational intuition, and this 
is why we choose the numbers principle over the parities principle. However, 
this argument begs the question; we need the numbers principle in order to 
prove the infi nity of the natural numbers. 

Th e problem runs quite deep because there are confl icting views about 
which is the “right” logic, in the sense of a logic that is prescriptive of all rea-
soning or rationality. Th at is, even if we accept the notion of rational intuition, 
there is controversy over which is the right or correct rationality and/or rea-
soning intuition. Th ere are a number of formal representations of reasoning. 
Some diff er from each other because of the subject one is reasoning about. 
For example, logic with temporal operators is especially designed to deal with 
reasoning about events happening in time. Another example is free logic, 
which is especially designed to help regiment our reasoning about fi ctional 
objects, or nonexistent objects of some sort. Th ere are also formal systems of 
reasoning that can combine more than one of these features.

Th e problem has a wide scope because within each of these areas of espe-
cially tailored logics there are several formal representations, one for each 
combination of axioms. So, for example, there are several modal logics, sev-
eral temporal logics and several free logics. Th e problem is that we have to 
choose one temporal logic over others as prescriptive of reasoning over tem-
poral contexts. Worse, some pairs of formal systems are contradictory, and so 
cannot be combined. Th is is what we met with when considering the numbers 
principle and the parities principle. We cannot add both to Frege’s fi rst four 
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laws, for we would end up with a contradiction: that the number of cardinal 
numbers is both infi nite and fi nite. Th is problem is faced at a much more 
fundamental level too. We cannot agree on all sorts of extensions of Frege’s 
fi rst four laws.

Worse, even the fi rst four laws are in jeopardy, for they are basic laws for 
creating what we call a “classical” system of logic. What we normally learn in 
a fi rst course in logic are classical propositional logic and classical fi rst-order 
logic. Th ere are non-classical propositional logics and non-classical fi rst-order 
logics, non-classical second-order logics and so on. What makes a logic non-
classical is that it disagrees with one or more of the classical axioms.45 We 
shall investigate one of these non-classical logics in Chapter 5.

8. Conclusion

We leave the logicist philosophy behind. What is central to logicism is the 
idea that all, or part, of mathematics is really logic. Th is fi ts perfectly with our 
sense of the hierarchy of knowledge, where logic appears at the top. Logic is 
thought of not merely as a branch of mathematics, but as setting a norm for 
rationality. Logic is universal, in the sense of being applicable to any area of 
study in a non-metaphorical way. Logic is directly applicable; we may always 
appeal to logic. Moreover, logic is not about anything in particular; rather, 
it is regimented reasoning. To argue for logicism, we need to fi rst present a 
logic. Th e logic has to be justifi ed in occupying this privileged place in our 
hierarchy of knowledge. We then have to reduce part of all of mathematics 
to this logic.

Th e three logicist groups we have discussed are Frege, Whitehead and 
Russell, and the neo-Fregeans. Frege’s attempt to demonstrate logicism failed 
because a paradox was discovered in his formal logical system. Th is tells us 
that it could not possibly be logic, since logic has to at least be consistent 
(under classical conceptions of logic). Whitehead and Russell’s attempt to 
demonstrate logicism was more ambitious than Frege’s. Th ey wanted to show 
that all of mathematics, not just arithmetic and analysis, are really logic. Th ey 
failed because some of the axioms of their system are arguably not logical 
principles in the philosophically relevant sense. Th e neo-Fregeans try to patch 
up Frege’s demonstration by fi xing the underlying logic, but to even reduce 
arithmetic to logic they need the numbers principle. It turns out that there 
is dispute, which can be very deeply held, over whether this is a principle of 
logic.46 As we can see, the study of logicism is appealing, and there is much 
exciting work still to be done.
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9. Summary

Th e important points to retain from this chapter are:

• Logicism is a philosophical position that claims that some, or all, of math-
ematics is really logic.

• Th e signifi cance of logicism is that logic is accorded a special place in our 
epistemology, and so logicism tries to answer the epistemological puzzles 
that arise against platonism.

• Th e logicist philosophies have been developed in considerable detail, and 
are quite sophisticated.

• Frege’s logicism is modest: reducing arithmetic and analysis to logic. Frege 
made tremendous contributions to the fi eld of logic, but his logic was faulty 
because inconsistent.

• Whitehead and Russell tried to reduce all of mathematics to logic. Th ey 
failed because their proposed “logic” – the type theory – does not seem to 
be logical in the philosophical sense.

• Wright and Hale have recently advocated a neo-logicism, but this too is 
beset with problems concerning the analyticity of the numbers principle, 
which is meant to be a logical principle.
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Chapter 4

Structuralism

1. Introduction

Th ere are three main current exponents of structuralism: Michael Resnik, 
Stewart Shapiro and Geoff rey Hellman. After the introduction in this chap-
ter, §2 is a generally motivating section on structuralism. Section 3 discusses 
Hellman’s modal structuralism. Section 4 compares Resnik’s and Shapiro’s 
structuralist positions and §5 critiques them. 

In brief, the structuralist position states that mathematics is about struc-
tures, as opposed to mathematical objects such as numbers. Roughly, a struc-
ture is a pattern. Th ere are geometrical patterns and numerical patterns. 
A mathematician knows about many of these, and studies them in depth. 
Patterns can be complex and abstract. Visually, an example of a very simple 
pattern is a smooth surface of a uniform colour; one of a very complex pattern 
is one generated by a fractal equation.

We might think that we cannot distinguish a pattern at all when we look 
at, say, a landscape, but although we may not see a symmetrical pattern, we 
do not see complete chaos. We see a cluster of trees, a meandering brook 
along a valley fl oor, a steep hillside. As soon as we make observations, we 
begin to order what we see. We might notice that there are two clusters of 
trees, one spanning part of the brook, the other perched on the hillside. We 
have started counting, and we are describing the spatial relations between 
the things we are picking out. To discern a structure, we abstract away from 
much of what we see. We focus on the structural properties, and not on the 
content. Mathematicians are interested in structures simpliciter. Th ey might 
apply their vast knowledge of structure to other areas of research, but this is 
applying mathematics, rather than doing pure mathematics.

Mathematical structures are not just collections of objects; they have as an 
indispensable part the relations between the objects. To commit a landscape 
to memory we look for patterns, and put various elements in some order, 
and the mathematician carries out this process at a very abstract level, and 
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studies diff erent types of pattern. It is important, for the mathematician, that 
3 < 8. “Less than” is a relation between the two numbers 3 and 8. Th e natural 
numbers are not just a collection of objects. Th ey form a structure: a strict 
ordering of the numbers by the “less than” relation. Moreover, it is an infi nite 
structure. It has no loops, it has a beginning, and there are various mathemati-
cal ways of extending the structure into the infi nite.

Th e structuralist position is diff erent from traditional platonism because, 
for the structuralist, mathematics is not about objects tout court. Th e objects 
are of no importance when divested of their relations with other objects in a 
structure. So, the objects of study in mathematics are whole structures: objects 
together with the predicates that apply to them, relations that bear between 
them and functions that take us from one domain of objects to a range of other 
objects.1 Th e objects can even be eliminated. As we shall see with Hellman’s 
position, it is possible to construe mathematics in such a way as to do all the 
mathematical calculations we want without, strictly speaking, positing any 
mathematical objects at all. Hellman’s is an eliminativist position. In a strict 
sense, he eliminates mathematical objects such as numbers. 

We have to distinguish between what are prima facie objects of a the-
ory, and concepts of a theory. Another way to put the point is to distinguish 
between objects of a theory and objects of study. Th e former are treated as 
basic objects by the theory. Objects are the base things. In physical theory, they 
are anything from stars, to medium-sized dry goods, to protons. Concepts 
such as “power”, “buoyancy” and “electrical charge” are components of the 
theory that are applied to objects. According to the structuralist, the math-
ematician studies the concepts; they are the “objects of study”. Th e prima facie 
objects of mathematics are numbers, shapes and lines. Examples of concepts 
are: “is a real number”, “is greater than”, “is a variable”, “add”, “is similar to” 
and “is an infi nite set”. Predicates, relations and functions are all concepts of 
mathematics. While these can be treated as objects (by virtue of grammar), 
they are not base objects. Th ey are one level of abstraction up from objects. 
Th is is why we call them “concepts”.

Th e platonist thinks that mathematics is about the objects: geometrical 
fi gures or numbers that are in some sort of Platonic heaven. Th e realist thinks 
that the objects of mathematics are independent of us, but are not given a 
location, however ethereal. For both theories, the objects of mathematics are 
these numbers or shapes. Moreover, the objects of study of mathematics are 
these numbers or shapes. Th e mathematician apprehends these and studies 
them. Th e tools the mathematician uses to study the objects are intuition 
together with a battery of concepts, such as those listed above. In contrast, 
the structuralist thinks of these objects as incidental. Th e real focus of atten-
tion is the structure. Mathematical structures are the units of interest, not the 
basic objects of mathematics. 
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Epistemologically, the structuralist is no longer concerned with how it is 
that we know mathematical objects but, rather, with how we know relations 
between objects, or how we are able to pick out a subset of objects by means 
of predication. It is clear that we have this ability. In fact, the structuralist 
thinks that it is less controversial to attribute to us this ability than it is to 
attribute to us the ability to know an abstract object such as a number. We 
shall see why when we examine the diff erent theories of structuralism. Th e 
epistemological puzzle for the structuralist is quite diff erent from that of the 
traditional realist. Since “doing mathematics” is really pattern-spotting, the 
slogan for the epistemology of structuralism is: “mathematical knowledge 
consists in the ability to spot patterns”. Th e slogan is due to Resnik (1982). It 
is a good starting-point, but Shapiro and Resnik part company over the slo-
gan. Shapiro distances himself from the pattern-spotting metaphor in order 
to explain, for example, infi nite patterns. Shapiro points out that there is no 
obvious sense in which we can spot a necessarily infi nite pattern, let alone tell 
diff erent infi nities apart. Th e visual metaphor of spotting is not strong enough 
to account for the epistemology of mathematics.

2. Th e motivation for structuralism: Benacerraf’s puzzle 

Before elaborating on structuralism, let us begin with the problem that led to 
it. All of the notable structuralists cited above pay homage to Paul Benacerraf ’s 
article “What Numbers Could Not Be” (1983a). Benacerraf presents a puzzle, 
and then hints at a solution, and it is this hint that led to the full philosophical 
development of structuralism. 

Th e puzzle is this. Two diff erent mathematical educations are contrasted. 
We are to imagine two children, Ernie and Johnny.2 Each is the child of math-
ematicians, and each begins his education at home. Instead of being exposed 
to a conventional education in mathematics, they are fi rst taught set the-
ory: Johnny is taught Zermelo–Fraenkel set theory and Ernie is taught von 
Neumann set theory. Th e children are fi rst taught the axioms, and then taught 
how to derive theorems from the axioms. Th is forms the base of their math-
ematical education. At some point both children start to receive a more con-
ventional education, and are exposed to basic arithmetic. Th e children have 
a lot of set theory already, so they are just taught translations from words 
such as “number”, “add” and “multiply” to their set-theoretic analogues. Th ey 
are taught that conventionally one focuses on a particular infi nite set, call 
this “numbers”; that this set has a fi rst element, each element has a unique 
successor, and so on. Th ey are taught the words to run through the series of 
elements of the set starting with the “fi rst”, and so on. Th e children can then 
communicate with other children who have received a more conventional 
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education. But they know a lot more mathematics than most children and 
most elementary school teachers. When Ernie and Johnny meet each other 
and start a discussion about arithmetic, they discover that they are able to 
derive, and completely agree on, the Peano/Dedekind axioms for arithmetic.3 
Furthermore, the two children agree as to what counts as addition, multipli-
cation, subtraction and division. So they agree that 2 + 9 = 11, and that 6 < 
78, that 3 × 16 = 48. Th is also accords with what they have been taught under 
the more conventional part of their mathematical education. Th us, they are 
both very profi cient at arithmetic.

Disagreement only begins at the level of ontology: at the level of the objects 
of mathematics. When they each try to match what are conventionally called 
1, 2, 3, … to sets, one child interprets 1 to be ∅, 2 to be {∅}, 3 to be {∅, {∅}}, 4 to 
be {∅, {∅}, {∅, {∅}}} and so on; so each number is a member of all the ordinals 
that succeed it. Th e other interprets 1 to be ∅, but 2 to be {∅} and 3 to be {{∅}}; 
so each successor ordinal is encased in more set-theoretic brackets. Now 1 is 
a member of 2, but it is a member of a member of 3. Th us, for Ernie and Johnny 
there is a disparity concerning what the numbers 2 and 3 really are.4 In particu-
lar, Ernie and Johnny will disagree whether 2 is a member of 6 or a member of 
a member of a member of a member of 6. Th is is something their conventional 
teacher cannot help them with, not because of lack of knowledge, but because 
there is nothing in our conventional wisdom concerning the numbers to decide 
between the two statements. Moreover, there is no absolute mathematical fact 
of the matter as to which is the correct interpretation of our conventional (pre-
set-theoretic notion of ) 6. Similarly, the traditional platonist or realist cannot 
help because the disagreement between Ernie and Johnny shows that the num-
bers of arithmetic are not just one thing, at least according to our most devel-
oped set theories. Set-theoretically, they could be one of many, quite diff erent, 
things; and there seems to be no principled mathematical way to tell which is 
the true mathematical representation of the conventional numbers. Th e platon-
ist then suff ers from epistemological embarrassment.5

Th ere are several reactions to this puzzle. Let us fi rst fi eld a platonist reac-
tion. Th e more traditional platonist will stay loyal to our pre-set-theoretic 
notion of number. She then denies that set theory can tell us what the numbers 
really are. Th ey really are 0, 1, 2, 3, … and the set-theoretic interpretation is just a 
representation of the numbers in a system. Th e problem then is to decide which 
set-theoretic representation is more loyal to our pre-set-theoretic views. But 
this is impossible, since the competing set theories agree on the all the pre-set-
theoretic notions. 

A more sophisticated platonist, might argue that there is one foundational 
set theory. Th is more sophisticated platonist has to battle it out with his rivals 
using philosophical arguments concerning each axiom, rule of inference and 
the semantics of the theory. Th is is not easily done, and the debate  continues 
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today. In particular, the sophisticated platonist has to appeal to intuitions that 
are not contained in our conventional learning of the numbers. Instead, the 
sophisticated platonist has to appeal to “fruitfulness of the theory”, “applica-
bility”, its “fi t” with other theories, “simplicity”, “ontological parsimony” of the 
theory or other practical, aesthetic, metaphysical or mathematically global 
considerations. 

To summarize, the platonist reaction to Benacerraf ’s puzzle is an entrench-
ing of position, in the case of the platonist, saying that “0, 1, 2, 3, … is the 
essential ontology of arithmetic”. Set theories are imperfect representations 
of essential objects. Th e less sophisticated platonist is left embarrassed by the 
puzzle, since she cannot give a philosophically principled way of preferring 
one interpretation, or representation, of the ordinal numbers over another. 
Th e more sophisticated platonist shifts to saying: “However, 0, 1, 2, 3, … are 
best represented in a particular set theory, which is a foundational discipline 
that gives us the essential ontology of arithmetic”. Th e more sophisticated pla-
tonist backs one chosen set theory as being a better foundation for our theory 
of the ordinal numbers than our pre-set-theoretic intuitions. We then have to 
defend the foundational discipline without appeal to that theory, otherwise we 
beg the question against ourselves. Under this sort of reaction to Benacerraf, 
Benacerraf ’s puzzle is seen as a challenge to defend one foundational discipline 
over another.

Th is is not what Benacerraf himself hinted at as a solution. His suggestion 
is much more radical. He points out (Benacerraf 1983b) that the argument 
concerning which foundation is better is really a philosophical argument, not 
a mathematical one. Instead, he proposes that since there is no mathematical 
fact of the matter as to what the number 6 really is, mathematics should instead 
be viewed as a study of structure, as opposed to thinking of mathematics as 
the study of certain sorts of objects, such as ordinal numbers. 

Th e torch is taken up by Resnik, Shapiro and Hellman. Th e general reaction 
of the structuralist to Benacerraf ’s puzzle is to follow Benacerraf ’s lead: not 
to hone in on one foundational theory as giving the essential objects. Instead, 
mathematicians study the relations between these objects as opposed to the 
objects themselves. Th ey study the objects only in the sense of their occupy-
ing positions in a structure. Th e relations between objects are what give form 
to the collection of objects (Resnik 1982, 1997). Without form the objects are 
of no individual interest. Mathematicians study structure. 

3. Th e philosophy of structuralism: Hellman

In Mathematics Without Numbers (1989), Hellman develops a modal struc-
turalism, “modal” standing for the modes, in this case possibility and  necessity. 
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Modal logics are developed to help us reason over possibilities.6 Th e idea 
behind modal structuralism is that the structures studied in mathematics are 
possible structures. Something is possible just in case it is allowed, by rules 
or concepts, or it is not impossible. 

Th e modal structuralist thinks of mathematical theories, individuated 
as structures, as possibilities. A mathematical structure might or might not 
exist in the actual world (have an instantiation), but they are all possible. 
Th is answers directly the puzzle posed by Benacerraf. Th ere are compet-
ing set theories, as there are competing geometrical theories. Th ere is no 
purely mathematical reason to favour one over the other. Th ere might be 
psychological reasons, historical reasons or reasons to do with applications 
within or outside mathematics, but they are not purely mathematical reasons. 
Mathematics does not arbitrate; it only tells us what is possible. All structures 
are treated on a par by the structuralist, and mathematicians qua mathemati-
cians do not really care which ones people favour; which structures the actual 
world has is up to it. So the application of mathematics is just the recogni-
tion that a possible mathematical structure is actualized. So, the structure, 
in an applied case, is both possible and actual. When we apply mathematics, 
we apply our mathematical insights to tell us more about the “real” world. 
Because there is no principled mathematical way of favouring one structure 
over another, Hellman’s approach also includes the idea that the basic objects 
of the mathematical structures do not literally exist, hence the title of his book 
Mathematics Without Numbers. In contrast to the position of the platonist, 
or traditional realist, the numbers do not exist independently of the structure 
in which they fi nd themselves. Moreover, the structures do not “exist” either; 
the structures are just possibilities. Th us Hellman very nicely avoids all the 
ontological problems associated with platonism or traditional realism. He 
does not have to explain a “realm of abstract objects”.

Instead of saying, for example, that the Peano/Dedekind axioms are true, 
Hellman would have us say, in our more careful moments: “It is possible that 
there exists a set of objects (a model) satisfying the Peano/Dedekind axioms 
of arithmetic”. Moreover, the primitive notions used in the axioms, such as 0 
and the notion of “successor”, do not owe any allegiance to our pre-theoretic 
notions of 0 and the idea of successor. Instead, 0 and “successor” are com-
pletely defi ned by the axioms. A structure (composition of concepts with a 
domain of objects) is possible just in case the concepts work well together; 
that is, just in case they do not lead to contradictions. Th e axioms stipulate 
some constraints on concepts and objects. Once we have stipulated axioms, 
we might then try to work out if any particular progression of numbers con-
forms to the dictates of the axioms. If one does, then we say that the axioms 
are satisfi ed by that progression of numbers. Which particular progressions 
of numbers satisfy a set of axioms will be a coincidence, which is not strictly 
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mathematically interesting. Th e structuralist reverses our usual way of think-
ing about mathematical theories. Th e structuralist distinguishes how we hap-
pen to come up with the theory, and what justifi es the theory. For example, 
the way in which Peano and Dedekind came up with the Peano/Dedekind 
axioms was that they were trying formally to represent our intuitions about 
arithmetic from before we gave them formal representation. Th is does not 
justify the axioms, for once we have a good axiomatic theory to represent 
our former loose ideas we can leave the ideas behind. We then strictly work 
within the nice, new, clean theory. Our pre-formalized intuitions are, strictly 
speaking, a coincidence with respect to mathematics. For Hellman, the struc-
ture determined by the Peano/Dedekind axioms is justifi ed because it is pos-
sible. Similarly, which mathematical structures best fi t our physical theory 
(with respect to pure mathematics) will be a coincidence (Hellman 1989: 118). 
Nevertheless, the physical theory plays a role in stimulating and prompting 
mathematical developments and investigations.

But what about the structures themselves, or collections of structures? Are 
possible structures real? Th is is a metaphysical question. Distinguish between 
what is both possible and actual, and what is merely possible (so never comes 
about). Mere possibilities do not exist, according to Hellman; they are just 
possibilities. Hellman is an eliminativist: possible structures are not part of 
the ontology of structuralism. So Hellman’s ontology is quite sparse. 

Unfortunately for Hellman, there are diff erent metaphysical positions con-
cerning possibilities: whether they exist, independently of us; what their rela-
tion is to us; and so on. We shall not delve into the ideas here. Instead, they 
will be touched on briefl y in the section on Meinongian philosophy of math-
ematics in Chapter 6. Here let us just register the fact that there are opposing 
views, and that Hellman chooses a defensible view from among them. But we 
might try to generate a paradox by asking the further question about gathering 
all the possible structures of mathematics together. Do these form a possible 
structure? Is this a new possible structure? Does it include itself? Hellman 
points out that since the structures are possibilities, “It simply makes no 
sense to speak of a collection … of all structures or all the items in structures 
that there might be” (2005: 556). We do not collect possibilities together, says 
Hellman. Metaphysically (conceptually), this makes sense,7 especially when 
talking of more mundane possibilities such as possible futures. But when 
discussing mathematically possible structures we have to be careful and add 
some qualifi cations. It is common for mathematicians to compare structures 
to each other, and group structures together. For example, a mathematician 
might say that all of these structures share some property. Th e trick that the 
structuralist uses here is to interpret this as saying: treat structures as objects 
(of study). Th is makes the group of structures into one (meta-)structure. More 
specifi cally, when a mathematician discusses the relationship between two 
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structures S and T, she is treating S and T as objects in a greater structure 
Σ. Th ere are two objects in Σ, namely S and T, and there is a relationship 
between S and T. Th is is just a play of moving one level of abstraction up, 
and this sort of movement is commonplace in modern mathematics. So we 
are not gathering structures together, we are gathering objects (since this is 
how they are treated). Th ese objects happen to be structures in their own 
right, but they are not, for now, being treated as such. Th is interpretational 
trick of the structuralist refl ects mathematical practice well, so it is a virtue 
of the theory. However, we still have a paradox. Th is big meta-structure of all 
possible structures could still have itself as member, in which case it did not 
include all the structures, since it (necessarily) forgot itself. So Hellman has to 
have a block on moving to ultimate abstractions by grouping together all the 
structures. What prevents us from making “ultimate” abstractions? Hellman’s 
answer is that we are blocked by the rules of set theory. Zermelo–Fraenkel set 
theory determines the possible structures, and a structure created by ultimate 
abstraction cannot arise in Zermelo–Fraenkel set theory. 

However, as philosophers we want more than this; we want to justify the set 
theory. Th ere are two justifi cations. One is that we do not want paradox and, 
therefore, we should not allow “ultimate” abstractions. Zermelo–Fraenkel set 
theory prevents these. Th is is philosophically not a good answer because it is 
ad hoc. Th e second answer is that collecting all the structures together off ends 
against common sense. Again, philosophically, this is not good; common sense 
is not a reliable guide to mathematical truth. Unfortunately, although Hellman 
is aware of this problem he refuses to say more. Th is is a controversial place 
for Hellman to end his discussion, for we might retort that the very reason we 
need a philosophy of mathematics is that a lot of mathematics leaves our com-
mon sense behind. Th us, while the ontological questions are well answered by 
Hellman, questions about the avoidance of paradox are left hanging.

Further, it seems as though the usual epistemological questions are well 
treated by Hellman. We know about the structures because we study what is 
mathematically possible. Th at a particular set of axioms best fi ts some pre-
theoretic conceptions is a coincidence, with respect to pure mathematics. 
Our development, or favouring, of the Peano/Dedekind axioms for repre-
senting our pre-formally expressed intuitions about arithmetic can be given 
a historical, or psychological, explanation. Th is will be discussed further in 
§4. Th e structuralist sees questions about the fi t between pre-formally rep-
resented intuitions about mathematics and particular sets of axioms as lying 
outside pure mathematics. Our best guess as to what the limits of mathemati-
cal possibility are comes from set theory, since this is a well established and 
comprehensive theory.8 Th e set theory championed by Hellman is the well 
accepted Zermelo–Fraenkel set theory. Any structure that is possible within 
set theory is a possible structure worthy of study. But now we can ask a more 
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probing question: how do we know that it is Zermelo–Fraenkel set theory that 
sets the limits on what counts as a mathematical possibility? To answer this 
question “It seems we must fall back on indirect evidence pertaining to our 
successful practice internally and in applications, and, perhaps, the intuitive 
pictures and ideas we have of various structures as supporting the coherence 
of our concepts of them” (2005: 556). Th is is not a very good answer. In par-
ticular, it is awkward when we consider the motivation for structuralism, for 
one of the things pointed out by Benacerraf is that given a set theory there 
are diff erent interpretations of structures within set theory, such as that of the 
“natural” numbers. Th e problem is compounded when we consider that there 
are rival set theories, with diff erent axioms, each setting diff erent bounds on 
what counts as a mathematical possibility. We wanted to avoid talking about 
spooky mathematical objects independent of us, but now we need them, or 
something like them, to justify our choice of what counts as a possible math-
ematical structure.

Th ings get worse for the modal structuralist when he tries to account for 
infi nite structures. Under Hellman’s views (1989: 80), it is possible that there 
should be no infi nite structures. It is also possible that there should be infi nite 
structures (ibid.), since it is logically possible that there should be infi nite struc-
tures. Th is means that much of the study of mathematicians, which concerns 
infi nite structures, is only warranted by an axiom of infi nity. Such an axiom 
belongs to set theory, but it is independent of the other axioms, that is, we could 
consistently run a set theory with the axiom of infi nity, or we could run a con-
sistent set theory with no such axiom. So there is a sense in which we choose 
whether to include an axiom of infi nity in our set theory.

Th ere is something unsatisfying in the modal structuralist story about 
infi nity. Th e modal structuralist says that it is possible that there should be 
infi nite structures, but will say little more than this, for mathematical possibil-
ity is a “primitive” notion. Th is begs the question, since there is a choice, made 
by Hellman, of the set theory governing possibility and necessity. It remains 
that this is one choice among others, and that under a diff erent choice other 
proposed structures, other than those recognized by Hellman’s championed 
theory, would be recognized by the theory. In particular, Hellman could have 
chosen a set theory with no axiom of infi nity. In this case, an infi nite set 
would be a mere possibility (allowed, but not guaranteed, by the theory). In 
contrast, in Zermelo–Fraenkel set theory there is an axiom of infi nity, and 
therefore necessarily there exists an infi nite set. In another set theory that 
contains an axiom stipulating that all sets are fi nite, it will be impossible for 
there to exist an infi nite set. At this point, Hellman appeals to the notion of a 
“very natural” theory. Th e theory he chooses is accepted by mathematicians, 
it has stood the test of time, and sits comfortably with the applications of 
mathematics in physics. Unfortunately, it falls short of answering the deeper 
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metaphysical questions about the reality of the possible structures. Hellman 
recognizes this:

As has been recognised, however, the modal-existence claims [resting 
on a particular set theory and philosophy of possible worlds] raise ques-
tions of their own. We see no way of explaining them away as linguistic 
conventions, or of otherwise reducing them to a level of observation, 
computation or formal manipulation. At best, the modal approach 
involves a trade-off  vis-à-vis standard platonism, and is far from a fi nal 
resolution of deep philosophical issues in this corner of the foundations 
of mathematics. (1989: 143–4)

We shall further develop the notions of choice of theory, and which structures 
exist, in the next section.

4. Th e philosophy of structuralism: Resnik and Shapiro

Shapiro and Resnik hold diff erent positions, but share rejection of Hellman’s 
modal structuralism. Th ey do not need the modal notions because they think 
of structures as sui generis, that is, the structures are not further explained 
in terms of more primitive modal notions. Structures are not eliminated in 
favour of possibilities or anything else. To distinguish Resnik’s and Shapiro’s 
positions, let us return to some generalities about structuralism.

First, let us see what the structuralist says about basic objects such as the 
number 2. As structuralists, we can be quite precise and think of these as 
fi rst-order objects.9 Th ere are two ways of thinking about fi rst-order objects 
in structuralism, corresponding to a dispute among structuralists. One way is 
to think of objects in structures as ante rem (before reality). Th is is Shapiro’s 
view. Th e other is to think of them as in re (in reality). Th is is a view shared 
by Hellman and Resnik. An ante rem structuralist thinks of the structures as 
existing quite independently of whether there exist objects that happen to 
exhibit the structure. An in re structuralist grounds the structures in appli-
cations in the real world: usually in our theory of physics. Th e in re structur-
alist believes that mathematical structures only exist in so far as there exist 
objects that have the particular structure. Which objects exist is not deter-
mined by mathematics, but by the world independent of mathematics. Th is 
is the main bone of contention between Shapiro, on the one side, and Resnik 
and Hellman, on the other side. 

To elaborate, the debate between ante rem structuralists and in re struc-
turalists is one level of abstraction up from an old dispute about proper-
ties, such as “is blue”. A philosopher who thinks of properties as ante rem 
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will maintain that colours exist quite independently of whether there are any 
physical objects that sport the colour. In contrast, a philosopher who thinks of 
properties, such as colours, as in re thinks that the colour only exists if there 
are objects in the world that have it. If there should be no physical objects 
with a certain colour, then that colour will not exist. For the supporter of the 
ante rem view of properties, this is counter-intuitive because some colours 
will come into, and drop out of, existence along with the objects that have 
those colours. Note that colours will also be located (in the objects which 
have them). So we could legitimately ask the philosopher who champions in 
re properties: “Where is the colour aquamarine today?”

Th is might not be as bad as it at fi rst seems to be, since “white” light will 
diff ract into all colours when shone through a prism or through a drop of 
water. Th us, all the colours are present provided there is “white” light around. 
However, insisting on this is not entirely helpful. For one thing, it is somewhat 
anachronistic. Th e debate between an ante rem versus an in re conception 
of properties took place well before Newton’s famous discoveries about the 
diff raction of light. But even if we ignore the anachronism, we can think of 
the “energy-death” of the universe, in accordance with the law of entropy. At 
some point, as the universe approaches zero energy, there will no longer be 
any white light. Th ere will only be a reddish light, and then the universe will 
go dark. Th us there will be some colours that had been instantiated, which 
will no longer be instantiated. In the in re properties view, colours will literally 
cease to exist: not just instances of the colours, but the very colours them-
selves. To many people this will sound implausible.

Generalizing the discussion from properties to structures, in re struc-
turalists, such as Hellman or Resnik, think of structures as abstracted from 
objects or collections of real, or actual, objects. Th e objects come fi rst. Th e 
structure is lifted from these (by abstraction). If no real objects have a cer-
tain structure, then there is no such structure. Th is makes a nice point about 
the “application of mathematics”. Th e platonist, or traditional realist, has to 
account for our ability to apply mathematics to the world. Th e question the 
traditional realist has to address is: given that the objects of mathematics 
exist quite independently of our ability to know about them, how is it pos-
sible to bring the mathematics down to earth, to count, say, physical objects? 
Is the applicability of mathematics a miracle, or just good fortune? Th e in re 
structuralist has no such diffi  culty, since he simply lifts the structure from 
existing objects through a process of abstraction. Th is process of abstraction 
is carried out by mathematicians, who have the ability to see structures or 
spot patterns. Th is pattern-spotting is the process of abstraction. Th e math-
ematician ignores what it is she is abstracting from, and just discerns the 
relations between the things. Th e in re structuralist position is attractive, but 
it faces some problems.
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Th e mathematical case for in re structuralism is also somewhat implausi-
ble under a certain assumption. Th e assumption is that mathematical objects 
exist as constructs of our minds. Th us, for example, until we had “invented” 
or “spotted” non-Euclidean geometric structures, the geometry did not exist. 
Again, the implausibility of the position lies in the thought that mathemati-
cal structures are temporal: they exist at some times and not at others. Th eir 
existence depends on our minds. If we are not thinking about a certain struc-
ture, or if we have not written down a defi nition of a certain sort of structure, 
then it does not exist. Th is is implausible in the light of a strong intuition that 
mathematics is timeless, or transcends time.10

However, there is a way out. Th e in re structuralist does not have to make the 
above assumption. Th e in re structuralist can think of mathematical objects as 
existing all the time, quite independently of our abilities to know that they exist. 
Th e structures that supervene11 on the objects similarly exist independently of 
our knowledge of them. Unfortunately, this type of in re structuralism is not 
so philosophically robust either, for the existence of mathematical structures 
seems to depend on the existence of real, or actual, objects that participate in 
certain structures. If those objects cease to exist, then the structures do too. If 
new sets of objects come into existence that happen to have certain structures, 
then the mathematical structures come into existence. Th e in re structuralist 
now needs to tell us what sorts of objects can participate in a structure. If the in 
re structuralist believes that the only real or actual objects are physical objects, 
then only the mathematical structures exhibited by physical objects are bona 
fi de mathematical structures. Th ere are problems with this. One is that there is a 
lot of mathematics, about which we have no idea whether it is applicable. So the 
in re structuralist story runs against mathematical experience, which develops 
the structures fi rst and worries about applications later. Another problem is 
that in accounting for infi nite mathematical structures, it is not clear at all that 
there are an infi nite number of physical objects around for mathematicians to 
abstract from, to legitimize their development of theories of infi nite numbers. 
Another problem arises when we think of the “death of the universe”. It is not 
clear that when the universe dies there will be any physical objects around at 
all, since there will be no energy to bind atoms and molecules. Th ere will be 
no physical structure at all, or at best there will be one structure. Again, the 
problem is that mathematical structures end up being temporally constrained; 
they come into existence and go out of existence with the coming into existence 
and going out of existence of the physical universe. 

In re structuralists do not have to confi ne themselves to physical objects 
having a structure. We can count ideas, or abstract objects, or follow Hellman 
and discuss possible structures, but then we are back where we started. 
We wanted to avoid talking about spooky possible mathematical objects 
 independent of us, but now we again need them, or something like them, 
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to justify our discussions of infi nite structures. Viewed this way, the in re 
position is self-defeating. Th e structuralist was supposed to help us navigate 
around the philosophical problems associated with realism in mathematics, 
and instead has landed us squarely in the problems.

Shapiro’s ante rem structuralist tells a diff erent story. Th e ante rem struc-
turalist tells us that structures exist independently of any objects’ “being there” 
to instantiate the structures. Th e idea is that mathematicians know about, and 
study, some structures. Th e mathematician studies not individual mathemati-
cal objects, but rather sets of objects with relations that bear between the 
objects. Th ere is no interest for the mathematician in studying the number 8 
in isolation from the other numbers.12 Th e mathematical object 8 is nothing 
more than, and nothing less than, a place in a structure; the structure is what 
is mathematically important; 8 by itself is incidental. Th e “place in a structure” 
might fail to be occupied by anything at all. Whether a position in a structure 
is occupied is of no interest to the mathematician.

Th ere is a puzzle. Th e number 8 fi gures in several structures: the struc-
ture of the natural numbers; the structure of the integers; the structure of 
the rational numbers; and so on. We might ask the structuralist how it is that 
the “same” object (place in a structure) should belong to diff erent structures. 
Th e answer has two stages: the diagnosis and the remedy. Th e diagnosis is 
that there is a historical account of why the “same” number occupies diff er-
ent structures. We started by thinking about the natural numbers, from these 
we developed the integers, from these we developed the rational numbers, 
the real numbers and so on. Historically, one structure of numbers arose out 
of another. Each is a proper subset of the other. Th ere is a sloppiness in lan-
guage that we can easily tidy up, to properly understand locutions such as “8 
is a member of both the natural number structure and the integer structure”. 
Th e sloppy thinking can be overcome by taking the remedy. In the remedy 
we understand that there is a meta-perspective from which “‘8’ in the natu-
ral numbers” is equivalent to “‘8’ in the integers”. Th is is the perspective that 
says that natural numbers are a proper subset of the integers. From another 
meta-perspective “‘8’ in the natural numbers” is equivalent to “‘8’ in the real 
numbers”. In the interest of being precise we then discuss “equivalence of 
numbers” rather than “identity of numbers”, since the structures are very dif-
ferent. Diametrically, there are meta-perspectives in which the “8” of the real 
numbers is quite diff erent from the “8” of the integers.

Let us elaborate on the historical diagnosis. “Conceptual history” is delib-
erately ambiguous between the individual human “learning about the number 
8” and how the history of mathematics gives us diff erent perspectives on 
the number 8, as we progress in our collective, or “best human”, mathemati-
cal conceptions. Th e ante rem structuralist gives both an individual learning 
diagnosis and a historical collective diagnosis. 
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Th e individual learning aspect of the conceptual history starts with observ-
ing children learning mathematical concepts. Children, not born of mathe-
matical parents à la Benacerraf, begin learning their mathematics by learning 
to recite positive whole numbers by rote, then to count small fi nite quanti-
ties of objects. Th e structuralist identifi es this stage of learning with learning 
about numbers as objects. Counting is made possible by understanding a 
relation between numbers (as objects) and groups of, say, physical objects. As 
the child learns that counting can continue indefi nitely, and learns to add and 
subtract numbers from each other, and then multiply and divide numbers; 
the child’s understanding becomes more sophisticated. Th e numbers take on 
a meaning of their own that no longer depends on the presence of physical 
objects. One number can be subtracted from another number, without any 
evocation of physical objects. At this stage in learning, the child has started 
to think structurally. Numbers are places in a structure: the structure of the 
natural numbers.

Th e child will then move on to the next stage, and will learn about nega-
tive numbers and other structures: rational numbers, real numbers and so on. 
Th e structuralist then says that the child learns that there are other structures, 
but still each is compared to the other in an informal way. Each structure is 
presented individually. So, “‘8’ in our integer structure is the same ‘8’ as the 
‘8’ in the natural number structure” is only informally correct. 

Th e more sophisticated stage, usually reached only in adulthood, if at all, 
concerns comparing arbitrary structures, as in model theory. Th e model theo-
rist leaves the natural numbers behind altogether. Th e model theorist is inter-
ested in there being some set that satisfi es, or models, a structure, because 
that guarantees consistency, but does not care which sets model the struc-
ture. Th e real interest for the model theorist is to compare structures to each 
other, or structure types (groupings of features of structures) to each other. 
For example, a mathematician might be interested in eff ective structures. In 
this case he says something like the following: “Th e objects of the study of 
eff ective mathematics are the eff ective mathematical structures. A structure 
is eff ective if its universe is computable and its operations and predicates are 
uniformly computable” (Dimitrov 2002: 1).13 At this stage, “8” is only the same 
“8” in “diff erent” structures, if it satisfi es a number of mathematical properties. 
For example, in several structures “8” is the immediate predecessor of “9”. Th is 
will be true of the whole number structure, or some fi nite subsets of it, and in 
the integer structure. It will be false in the structure of the rational numbers, 
where “8” has neither an immediate successor nor immediate predecessor 
because of the density of the rational numbers.

Now we turn our attention to another interpretation of the history. Th e ante 
rem structuralist can tell a story about the collective human study of math-
ematics. Human beings began studying particular problems in  mathematics 
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and developed techniques for solving the problems, and then the problems 
were applied elsewhere. Babylonian and ancient Egyptian mathematics con-
sisted in formulas for calculating how many bricks were needed to construct 
a ramp of a certain size and how many loaves of bread were needed to feed 
a certain number of slaves. Th e Babylonians had tables for “squares, cubes, 
square roots, cube roots and even roots for the equation x² (x + 1) = a” (Anglin 
& Lambeck 1995: 22). Neither the Babylonians nor the ancient Egyptians had 
proofs for their tables or formulas. It was the ancient Greeks who introduced 
the notion of proof, and thereby not only a general way of generating a table,14 
but also a justifi cation for the fi gures in a given table.

Plausibly, the structuralist thinks of Babylonian and Egyptian mathemat-
ics as akin to the young child learning a few particular fi nite numbers. Being 
able to give proofs requires a higher degree of sophistication than being able 
to apply a formula or look up answers to a problem in a given table.15 Once 
we have a sense of proof, we have moved up a level of sophistication and 
abstraction. We then have the conceptual tools to dispense with tables and 
to deal with arbitrary situations. Our “mathematical” thinking changes from 
being able to solve applied problems concerning loaves of bread, to reason-
ing in general.

It was not until the twentieth century that we saw the emergence of model 
theory as a mathematical discipline. Th is is a mark of conceptual maturity for 
Shapiro’s version of structuralism. Or, more precisely, Shapiro proposes to give a 
philosophical underpinning to this stage of our mathematical understanding.

We need fi rst to get a feel for model theory. Model theory is sometimes called 
“meta-logic”. Some model theorists refer to themselves as logicians. Th e model 
theorist is interested in characterizing structures according to their mathe-
matical properties. Th e model theorist will also compare structures to each 
other. Classical results in model theory include showing that a structure, such 
as propositional logic, is sound or complete, has the downward Löwenheim–
Skolem property, is compact, is decidable and so on.16 Other structures might 
lack these properties. Comparing the properties of one structure to another 
is the stuff  of model theory. Th e model theorist does the mathematics of the 
structuralist philosophy of mathematics. So, the model theoretical perspective 
gives the remedy to the problem of why it is that the same number “8” appears 
in diff erent structures. Th e model-theoretic answer is that it is only recognized 
as the same number “8” in certain meta-structures. 

If one follows Shapiro, and champions an ante rem structuralism, then 
any objects can fi ll the places in a mathematical structure. Th is also explains, 
rather nicely, the applicability of mathematics to anything at all. Th is general 
applicability is sometimes referred to as “topic neutrality” or as the “univer-
sality” of mathematics.17 Shapiro uses the term “free-standing”. Mathematical 
structures (as opposed to other sorts of structure) are free-standing. A 
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free- standing structure implies universal applicability and no ontological 
 commitment to fi rst-order objects. 

To summarize, the Shapiro-fashioned structuralist rejects Hellman’s modal 
primitives and Resnik’s in re view of mathematical objects in structures. 
Instead, Shapiro champions model theory as the branch of mathematics that 
best describes mathematics. Th e essence of mathematical activity is seen, by 
the structuralist, as an exercise in comparing mathematical structures to each 
other. Th is is how the structuralist characterizes current sophisticated mathe-
matics. To labour the point, the Shapiro-inspired structuralist thinks of model 
theory as the canonical mathematical theory of the philosophical position of 
structuralism. Th is easily solves the problem of “the same number ‘8’” appear-
ing in diff erent structures. Th e judgement as to whether the symbol “8” refers 
to the “same place” in diff erent structures depends on a meta- structure. Th at 
is, the judgement necessarily takes place from a meta-perspective. Th e struc-
turalist is explicit about this. “Th e ‘8’ of the natural numbers is the same ‘8’ as 
that in the integers” is true under certain properties of structure. Th e “certain 
properties” are ones that can be recognized explicitly from a meta-structure. 
Both “8”s are the immediate predecessor of “9”; both “8”s are divisible (with-
out remainder) by 1, 2 and 4. By choosing our meta-structure, we decide 
which properties, relations and functions to consider. If we are interested in 
the concept of “immediate predecessor” then in respect of that property, the 
“8” of the integers is diff erent from the “8” of the real numbers, which has no 
immediate predecessor. Th is draws out the diff erence between equivalence 
and identity quite well. Th e “8”s in diff erent structures are not identical to each 
other; they are equivalent. Th at is, they share some characteristics.

5. Critique

With every philosophy of mathematics, a very natural question to ask is: what 
are the ontological commitments of the theory? Th e structuralist distances 
herself from the traditional realist position precisely with respect to the mat-
ter of ontological commitment. Recall that the traditional realist is commit-
ted to the existence of the basic, fi rst-order objects of mathematics. So all 
the numbers exist, all the shapes exist and so on, unless the realist reduces 
mathematics to a founding discipline, in which case the realist is committed 
to the existence of the objects recognized by that discipline, and no other. 
For example, the realist who shows that all of mathematics is reducible to 
set theory will have all the sets of the set-theoretic universe as the ontology 
of mathematics.18 In the case of set theory this is quite neat, since the set-
theoretic universe is “constructed out of” the empty set; we get the ontology 
of mathematics ex nihilo. Explaining this coherently, and philosophically, is 
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what is diffi  cult with the set-theoretic realist position, especially with respect 
to the axioms of set theory, which are independent and controvertible, such as 
the axiom of choice or the axiom of infi nity. Hellman’s eliminativist position 
eliminates the objects of the traditional realist. Th e objects are eliminated in 
favour of the modal notions concerning possible objects and possible struc-
tures. Th is elimination has its own philosophical problems, for we want to 
know the ontological status of the possibilities. Are possible structures real? 
Do they exist independently of us? How do we know about them? We saw 
Hellman’s reply in the quotation; he does not answer these “deep questions”. 
So we seem to have just shifted the aim of the problems faced by the tradi-
tional realist from fi rst-order objects to possible structures.

Th e ante rem structuralist is not committed to an ontology in this sense. 
Th e objects of mathematical study are neither the elements of sets nor what 
are labelled “objects” in a given discipline of mathematics, nor are they pos-
sibilities. Instead, the ante rem structuralist claims that the objects of study 
of mathematics are structures. What the mathematician labels an “object” 
in her discipline, is called “a place in a structure” by the structuralist. Th e 
philosophical signifi cance of this translation is that there is no ontological 
commitment to what the mathematician labels “objects”. What the tradi-
tional realist thinks of as an “object” might or might not exist, according to 
the structuralist; and, frankly, this is just not an important question for the 
philosophy of mathematics. Th is is very much in keeping with Benacerraf ’s 
hinted position. 

Th e ante rem structuralist stance towards mathematical ontology has two 
great advantages. One advantage the structuralist claims over the traditional 
realist is that he does not have to give an epistemological account of spooky, 
ethereal, timeless objects. Rather, the structuralist simply says that math-
ematical structures can be applied to any objects one wants. Th us, we can 
use mathematics to count tables and chairs. We can also count ideas or math-
ematical object or concepts. Whether chairs and ideas exist is a matter of no 
concern to either the mathematician or the structuralist. Th e second great 
advantage is related to the fi rst. It is that the applicability of mathematics is 
also not mysterious or, at least, it is not something that the structuralist has 
to explain. Th is is an empty question, because all we should do is observe that 
we do happen to apply mathematics. Th is is a descriptive claim; we cannot 
transform it into a normative or prescriptive claim. Put another way, it is a 
matter for metaphysics to explain how it is that mathematics is applicable to 
the physical world, or the imaginary world. In contrast, the philosopher of 
mathematics, under the structuralist conception, should occupy himself with 
mathematical activity, not with how mathematics can be used.

To repeat, the “object” in a mathematical theory is a place in a structure. 
Th e structure is what is salient; it is this that is going to have importance for 
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the philosophy of mathematics. In keeping with this thought, we can ask the 
structuralist whether structures exist independently of us. Th e answer is that 
they do. We can count structures that have certain features; we can relate 
two or more structures from the perspective of a meta-language or a meta-
 structure; we can arrange structures into equivalence classes: thus, we can 
count structures. When we do this we treat them as objects. Are structures 
objects in the thin sense of “the mathematician does not care, and need not 
care”? Or do structures exist in the “thick sense”, that is, in the metaphysical 
sense of being objects that exist, and to which we ought to be committed? 

We have moved the question of ontological commitment up one level of 
abstraction. We are no longer asking whether the (what the mathematician 
calls) objects of mathematics, are objects, in the “thick” or “robust” sense of 
counting as objects in their own right. Th is question lies outside mathematics 
for the structuralist. Rather, we are asking about the ontology of structures. 
Do structures exist, in the “thick” or “robust” sense? Philosophers can go two 
ways on this: the anti-realist way and the realist way. Shapiro opts for the real-
ist stance towards structures of mathematics. 

Th e realist structuralist claims that structures exist;19 they are not inventions, 
or creations. Mathematical structures exist independently of us; we discover 
them. We can now ask the standard questions: how many of them are there? 
Could we be quite mistaken about them? Where, or how, do they exist? 

Let us begin with the question of how many of them there are. Since real 
structures neither drop out of existence, nor do we seem to have exhausted 
the possibilities of mathematical structure, there does not seem to be a fi nite 
mathematical ceiling to the number of structures. We seem to be discovering 
“new to us” structures. We have to be careful in answering this, for we want 
to avoid the paradox involved in asking about the structure of all the struc-
tures. Shapiro cleverly does not allow unrestricted quantifi cation over struc-
tures.20 Th at is, we cannot talk about “all the structures”. Similarly, we may 
not simply ask how many structures there are. We have to be more precise. 
We have to ask questions such as: if we use this meta-structure from which 
to assess the number of structures, then how many structures are there? Th e 
answer is always in conditional form. Cardinality depends on which meta-
perspective we adopt, because that will tell us how to individuate, or pick 
out, structures.

We can now start probing quite deeply, philosophically. So far we have 
been rather glib about the notion of counting structures, or identifying, or 
individuating, a structure. Recall that to identify a structure we need to know 
when what we thought were two separate structures turn out to be one.21 How 
we identify, or count, structures will, as with the “how many” case, depend on 
our perspective. A perspective is what allows us to discern some features and 
ignore others. Is there a “God’s-eye” structure, from which we can “see” all 
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structures? Given the discussion above about the number of structures, the 
answer should be fairly obvious: there is no unique major structure. Instead, 
we have to work piecemeal. Th at is, if we want to know whether what we 
think are two structures is really one structure, then we have to adopt a per-
spective from which to make this judgement. From a diff erent perspective 
we could come up with a diff erent answer. Th e answer is conditional, not 
absolute. Th is sort of answer should be familiar from our discussion above 
of the number 8.

Th e second question above was whether we could be mistaken about them. 
In Chapter 3 we saw one sense in which we could. We might think we are dis-
covering, or developing, a structure, and then realize that it is deeply fl awed, 
in the sense of being inconsistent. Th is is one sense in which our methods of 
investigation are imperfect. Th e structuralist is not worried about this because 
this is in keeping with mathematical practice. We learn that structures do 
not exist, when we learn that they are inconsistent. We do not know this in 
advance of developing, or trying to discover, a structure, and we could be 
mistaken about the structures we study today.

A well-developed structuralism is quite a robust philosophical position, 
since it answers Benacerraf ’s puzzle, and some other pressing philosophical 
questions. However a deep problem remains concerning the choice of under-
lying mathematical theory to pick out the structures and compare them to 
each other. Zermelo–Fraenkel set theory is not a good choice, especially when 
coupled with modal notions, for both modal notions and Zermelo–Fraenkel 
set theory are beset with philosophical diffi  culties, one with metaphysical 
questions about possible worlds, the other with questions about foundations 
of mathematics. Shapiro’s choice of model theory is more cunning. Model 
theory is not a foundation, in the way that set theory is. In particular, model 
theory is not an axiomatized theory. Th ere is no “ontology” of model theory. 
Model theory is better thought of as a perspective on mathematics. So in one 
fell swoop we avoid the problems we encountered above. 

Th e model-theory perspective is a sort of organizational perspective, which 
organizes mathematics into structures. We examine one structure from the 
perspective of another (meta-)structure; we compare two structures from the 
perspective of a third meta-structure: it is structures all the way up. Th is gives 
a good global perspective on current mathematical thinking.

To criticize this position, we have to be equally cunning. We can complain 
about the temporality of the theory. Th at is, it is a good theory for current 
mathematics, but not for past mathematics (see the historical diagnosis). It 
might not be a good theory for future mathematics either. Mathematicians 
might start to favour a diff erent perspective. Th e cracks are already showing, 
for mathematicians will sometimes discuss issues that they consider to be 
mathematical but that are not recognized in model theory.22 More  precisely, 
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model theory is written in a formal language. Th e formal language has a cer-
tain, very high, expressive power, that is, we can represent loyally, in the lan-
guage of model theory, most mathematical concepts. However, we cannot 
represent all of them. Details are quite abstruse, so the reader will be spared 
them here.23 Th e criticism against structuralism is quite general. It is that, 
structuralism has to be underpinned by some mathematical theory, which 
might, or might not, be considered to be foundational; and that mathematical 
theory will leave some mathematics out. When it does this, then the struc-
turalist theory is not describing all of mathematics, so it is not a philosophy 
of all of mathematics but, rather, a philosophical theory of some very large 
part of mathematics.

6. Summary

Th e important ideas to retain from this chapter are:

• Structuralism’s major claim is that mathematics is about structures, not 
fi rst-order objects.

• First-order objects are places in a structure.
• One can be a realist about structures or an anti-realist.
• Th e deepest problems with structuralism concern not paradox, but under-

lying mathematics or logic.
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Chapter 5

Constructivism

1. Introduction

To further understand realism, it is useful to contrast it to its opposite posi-
tion: anti-realism. Most of the philosophical positions in this book were devel-
oped as reactions to problems concerning platonism. Th e reactions can be 
moderate, as when we modify platonism slightly, but the constructivist is 
an anti-realist and, as such, wholly rejects the realist thesis that mathemati-
cal objects, or mathematical truths, are independent of us. Instead, for the 
constructivist mathematics is fundamentally a construction of our minds. 
We do not discover mathematical truths or objects; we construct them. Th e 
constructivist also thinks that our minds have tried to construct quite fabu-
lous objects, but that they are not legitimate fabrications. Th e process of 
coming up with them was misguided. To continue the metaphor, some of the 
“constructions” of the realist are fl awed. Th e constructivist urges a rethinking 
of the foundations of construction for mathematics. In particular, the logic 
guiding the construction of mathematical objects has to be epistemically con-
strained. We shall see that the constructivist thinks quite diff erently from the 
realist; he has a diff erent underlying logic from the realist. Th e logic acts as 
a diff erent norm of reasoning from classical logic. Constructivists share the 
feature that they want to revise classical logic.

We have so far been using the terms “anti-realist” and “constructivist” 
interchangeably, but will now clarify the vocabulary. “Anti-realist” is a gen-
eral philosophical term. One can be an anti-realist in ethics, science, language 
and so on. Constructivists are anti-realists specifi cally about mathematics. To 
confuse the issue further, the term used historically for “constructivist” was 
“intuitionist”, introduced by L. E. J. Brouwer at the beginning of the twentieth 
century. Intuitionism is a certain specialized sort of constructivism. Th ere are 
many constructivist positions. What distinguish them from each other are 
the diff erent underlying logics that they use to marshal their reasoning. For 
reasons of historical and philosophical importance, we shall focus more on 
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intuitionism than on the other constructivist positions. In particular, we shall 
look at an exposition of intuitionist logic to get a feel for the diff erent logic, 
together with the sorts of argument summoned in favour of the logic. Th is 
should prepare the reader for delving into the constructivist literature.

Th e realist considers classical logic to set the standard for correct reasoning. 
Recall that classical logic can be characterized by the following features: 

• the law of excluded middle holds; 
• double negation elimination holds; 
• reductio ad absurdum proofs are all fi ne; purely existential proofs are all 

fi ne; 
• and the axiom of choice holds in full generality.

Let us briefl y revise these terms. Th e law of excluded middle says that for any 
formula either it or its negation holds. Double negation elimination is the rule 
that says that from a doubly negated formula, the un-negated formula follows 
(in classical logic, p can be derived from not-not-p; not so, in constructive 
logics). Reductio ad absurdum proofs are ones which proceed from assuming 
the opposite of the conclusion, proving a contradiction, and then rejecting 
the assumption, by asserting its opposite. A purely existential proof is one 
that proves that some thing, or number, exists, but gives no way of fi nding an 
example of such a thing or number. Th e axiom of choice says that every set 
has a “representative member” (a sort of arbitrary member). More generally, 
from a collection of sets, one can always assume that there is a member of 
each, which we can take out and put into a “choice set of members”. Th is will 
be more obviously true if the members are all quite similar to each other. It 
is not so obvious if they are all quite diff erent from each other. For example, 
take the odd set {0, ℵ1, 34/6}. For the classical logician, odd combinations of 
objects do not matter; it is enough that, for the objects to be gathered into a 
set at all, there has to be something “common” to all of them (which might be 
“happens to be a member of this odd set”). Th e choice member is guaranteed 
by what we call a “choice function”. We know that such a choice member exists 
(stipulated by the axiom), although we might not know how to pick each rep-
resentative. Many of these ideas are deeply related to each other, and we shall 
see this later. We shall also discuss some of these features of classical logic in 
detail, to see how the constructivist rejects them.

On a metaphysical level, a realist about some discourse is someone who 
believes that the truths of that discourse are independent of us. We have a 
remarkably good ability to track those truths. We cannot learn all the truths 
there are but we collectively (the human race) shall learn a fraction of the 
truths out there. We refer to a truth or falsity simply by articulating a fact in a 
grammatical way, by means of a sensible declarative sentence. Here  “sensible” 
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just means “without any categorical mistakes”: in the sense of attributing 
something to an object that it is inappropriate to attribute the object. For 
example, a perfectly grammatical nonsensical sentence is: “Th e colour of the 
number 8 elaborates motionlessly”. It makes no sense to attribute a colour 
to a number, let alone to suggest that a colour elaborates anything, nor does 
it makes any sense to say that elaboration can be motionless. Unless one is 
involved in an extremely strained metaphor, these are all categorical mis-
takes. In other words, every declarative sentence that makes sense does so 
in virtue of being both grammatical and not making categorical errors. For 
the realist, the lovely feature about sensible declarative sentences is that they 
are true or false, independently of our ability to know whether they are true 
or false. We say that a sensible declarative sentence is “truth-apt”, that is, it 
has a truth-value. So the realist says that a grammatical declarative sentence 
that does not make category mistakes has met all the criteria necessary for 
making the sentence truth-apt. Th is implies that there exist sentences the 
truth of which we shall never know, or could never know. Th ese are referred 
to as “verifi cation-transcendent truths”; they transcend our abilities to verify 
them. Th e realist is committed to saying that the following sentences all have 
a truth-value, despite the fact that, for all we know, it is impossible for us to 
know what the truth-value is:

• Th ere is a collection of eight stones forming a heap on the dark side of the 
third moon of Jupiter;

• Th e last dinosaur was female;
• Th e universe is expanding in the sense of everything becoming proportion-

ately bigger, together with gravity and the other laws of physics conspiring 
to make the expansion undetectable to us;

• Th e world was created eight minutes ago, but we cannot detect this, since 
it was created complete with a history;

• Th is particular joke X is very funny despite the fact that no one has ever, 
or will ever, laugh at it;

• Th ere exist entities that cannot causally interact with us, but nevertheless 
have spatial location;

• Th ere are an infi nite number of prime pairs.1

Some of these sentences are more plausibly truth-apt than others. Th ese are 
the ones that one is inclined to be a realist about.

In contrast, an anti-realist ties the notion of truth to the notion of knowl-
edge or, rather, possible knowledge: knowledge “in principle”. Th e anti- realist 
thinks that it makes no sense to entertain the idea that a sentence might be 
true, quite independently of our ability to know whether it is true. Th e anti-
realist thinks it is not rational to say that the above sentences must have a 
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truth-value when we cannot, in principle, know what that truth-value is. For 
the anti-realist, truth belongs to us, it is our servant, and as such, it must 
be “epistemically constrained”. Epistemic constraint is added to the require-
ments of being grammatical and categorically correct for truth-aptness of a 
declarative sentence. For the anti-realist, all three constraints must be met for 
the sentence to be “truth-apt”. Th e epistemic constraint is strong. We have to 
have some idea of what it would take, or what it would be like, for the above 
sentences to be true, or for the above sentences to be false. For the anti-real-
ist, it makes no sense to speculate about things we cannot, in principle, know 
about.2 Th e anti-realist draws a distinction between what is wholly impossible 
to know, and what it is simply impractical to know. It might be impractical for 
me to know all of the factors of some large number, just because it would take 
me a long time to work them out. Th is is diff erent from “impossible” to know, 
where even if I had the time and motivation I could not know.

We should be a little more careful. People, even philosophers, tend to be 
realists about some things and anti-realists about others. As such, a person or 
philosopher might allow some, but not all, of the example sentences. Which 
ones he allows will depend on what he thinks he can in principle know. Th e 
point is that for the anti-realist (about subject x) there is no class of sentences, 
in the subject x, that make sense and yet we cannot know, even in principle, 
what their truth-values are.

Th e reason the anti-realist ties truth to knowledge is that he thinks that we 
do not innocently “track” reality (as the realist thinks); rather, says the anti-
realist, we construct reality before us.3 What is true or false depends partly 
on us and how we approach the world, what we choose to pick out, what 
we choose to focus on, and this brings in Kantian philosophy. Kant was an 
idealist, which is a type of anti-realism. For him “the world” is partly of our 
making. More specifi cally, he believed that there is a noumenal world and a 
phenomenal world. Th e noumenal world is what lies beyond us; it is the world, 
as it is, independent of us. We are part of, and are situated in, the noumenal 
world. However, when we interact with it, or even just perceive it passively, 
when we have experiences, we do so not directly but indirectly through our 
concepts. Th e result of our concept-infl uenced way of interacting with the 
noumenal world is the phenomenal world, which is as close as we can get to 
the noumenal world. Th e phenomenal world is intelligible to us. Th is is our 
world, the world we bump up against, and the one we reason about. Included 
in this, we might also say, strictly going beyond Kant, that truths concern the 
phenomenal world, not the noumenal world. We can say very little about 
the noumenal world, except that it exists and contributes to the phenomenal 
world. We cannot, in principle, know what the noumenal world is like. A pre-
condition of our experiencing at all is that we bring our way of perceiving, or 
our way of experiencing, with us to the experience. Strictly speaking, then, 



constructivism 105

the objects of perception, or of experience, are not independent of us: they 
are partly produced by us.

Expressing this more tightly in terms of truth, we say that a mathematical 
realist claims that there are mathematical truths that are true independently of 
our knowing them to be true. Recall our criteria for truth-aptness for the real-
ist: grammar and categoricity. In mathematics, provided a string of symbols 
is well-formed (the stipulations as to what counts as well-formed in logic or 
mathematics incorporates both grammar and categoricity, thanks to Russell), 
it is truth-apt. Particularly interesting are sentences of the form: “Th ere exists 
a number with the properties, F, G and H”. Th is sentence is truth-apt, because 
it is well-formed. However, we might have no idea of how to fi nd a number 
with the properties, or a proof telling us that it is impossible to fi nd a number 
with those properties. We have faith that our mathematical language has all 
the truth-apt sentences, and that our methods of proof are quite good, and 
tell us, of the class of sentences, which mathematical sentences are true and 
which are false. In particular, the sentence “Th ere is an infi nite number of 
prime pairs” is either true or false. We have no way of knowing whether the 
truth-value of the sentence is “true” or “false”; nevertheless, it has a truth-
value. In contrast, the constructivist is more cautious about which sentences 
in mathematics are truth-apt, and which are not. Th e constructivist wants to 
epistemically constrain truth. Truth is conferred by means of a constructively 
acceptable proof. Th e talk of “epistemically constrained truth” comes after 
Kant. We might think of the introduction of this talk as a “semantic inter-
pretation of Kant’s position”. Th e semantic interpretation says that, for the 
Kantian, we reason over the phenomenal world, reasoning is propositional 
(so concerns truths and falsehoods), and since this involves the phenomenal 
world, truth has to be epistemically constrained. 

Kant himself did not suggest intuitionism or constructivism in mathemat-
ics. Rather, more carefully, we should say that Kant’s philosophy is one of the 
motivations for a constructive approach to mathematics. Th e constructivist 
uses Kant’s philosophy to suggest that, in mathematics in particular, we should 
conscientiously display the fact that we are discussing the phenomenal world 
of mathematics. We should reject the realist view that we reason about a nou-
menal world of mathematics.

In the philosophy of mathematics the most famous constructivists are intu-
itionists. Th ey have a particular intuitionist logic that they think should guide 
reasoning in mathematics. Th e logic places epistemic constraints on proofs. 
So unless a well-formed formula is intuitionistically provable, or probably 
generates a contradiction, it is not truth-apt. Th ere are other constructive 
logics, each rejecting some aspect of classical logic. Each constructive logic 
is a candidate for guiding our reasoning in mathematics. In §2 we shall con-
centrate on intuitionist logic. Th is will give a feel for the type of reasoning 



106 introducing philosophy of mathematics

the intuitionist urges on the mathematician. Th e change is quite profound. 
Section 3 concerns some prima facie motivations for constructivism. Section 
4 concerns deeper motivations, and §5 returns to the logic, namely the seman-
tics of intuitionist logic.

To sound an early alert, the main complaint against the constructivist is 
that he advocates too radical a revision of mathematical thinking. Th e math-
ematician who uses classical logic sees the revision as a rejection of too much 
good work. If we are really to revise our way of thinking in mathematics, then 
there are many results that are not acceptable and have to be rejected. Th e 
constructivist says that we really do not know whether they are true or not. 
To the realist, this just seems perverse, since we have a perfectly good classical 
proof of the result. Too much of mathematics is rejected by the constructivist, 
and this is unpalatable to the realist.

2. Intuitionist logic

Th e idea behind the logic is to rule out the law of excluded middle: for any 
well-formed formula A, either A or not-A holds. In classical logic this is inti-
mately related to the law of bivalence, which says that there are only two 
truth-values, true and false, and every well-formed formula A is either true 
or false, and not both. Once we reject the law of excluded middle, we fi nd 
that the law of bivalence is quite independent. Th at is, we can accept it or 
reject it. We can reject it in diff erent ways: by adding another truth-value; 
by allowing sentences no truth-value; and by allowing sentences more than 
one truth-value (to be both true and false, in the case of paradoxical sen-
tences). Each of these strategies can be found in some constructivist theory 
or other. An intuitionist, typically, retains bivalence, but rejects the law of 
excluded middle. Moreover, rejecting the law of excluded middle has reper-
cussions for a number of simple rules of inference, such as double negation 
elimination, reductio ad absurdum and modus tollens. Th e last two are not 
rejected outright, but they are more carefully expressed than in classical logic. 
Furthermore, many axioms of formal systems are either rephrased or rejected 
outright. Th ese include the axiom of choice and the axiom guaranteeing the 
existence of infi nite sets. Th e semantics of intuitionist logic is diff erent from 
that of classical logic. Th us the understanding of the connectives is diff erent. 
We shall say how in detail in §5. However, fi rst, we should discuss each of the 
rules of classical logic that are dispensed with or reformulated.

We begin by recalling two basic facts about classical logic. First, sentences, or 
well-formed formulas, in logic are either true or false, and not both. Secondly, 
an inference, or argument, is valid if and only if whenever the premises are 
true, so is the conclusion. If we want to justify rules of inference, we do so 
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in terms of the universal validity of the rule: that it preserves truth from one 
formula to another. When we make this justifi cation, we have to draw on a 
pre- formal notion of truth: universal validity. Otherwise we would beg the 
question. Turning to our system, let us look at the simplest rule: double nega-
tion elimination. Th is is simply the rule that if a well-formed formula is double 
negated, then we can infer the un-negated version of the formula. For example, 
where A is a well-formed formula, we can infer A from not-not-A. In symbols: 
~~A � A. Th e intuitionist rejects this altogether. Remember that truth is epis-
temically constrained. So asserting A is not just asserting that it is true, in the 
classical sense, but also asserting that we know A to be true. Turning to double 
negation, if we do not know that we do not know A, it does not follow that we 
know A. So the inference above is not intuitionistically valid.

In contrast, double negation introduction is allowed in intuitionist logic. 
Double negation introduction in classical logic is the rule that if we have A, 
we may infer the double negation of A. In symbols: A � ~~A. Th is is allowed 
by the intuitionist because if we rephrase it in terms of knowledge, then it 
sounds plausible. If we know that A, then it follows that we know that it is not 
the case that we do not know that A. We shall not have this as a simple rule, 
but as a special case of ex falso quod libet. “Knowing X” means that we have a 
proof for X, or know how to generate a proof. To make this thinking explicit, 
the intuitionist reformulates negation in terms of proving a contradiction, 
symbolized “Λ” (Greek “lambda”). If A � Λ then ~A. Th e single negation 
introduction rule for the intuitionist echoes the reductio ad absurdum rule of 
classical logic. It says that if from the negation of A, you can prove a contra-
diction, then ~~A. We shall switch to the symbol “¬” for intuitionist negation 
(because the meaning of the connective is really quite diff erent in intuitionist 
logic). We shall also use a line between premises and conclusion for intuition-
ist deductive proof, and “:” for “there is an intuitionistically acceptable proof 
from the formulas on the left to the formula on the right”. We use uppercase 
Greek letters – such as Γ, Δ, Θ, but not Λ – to symbolize sets of premises, 
or sets of formulas in the proof; which allows us to generalize the rule when 
we have a proof with many premises. Th e essence of the rules concerns eve-
rything but the uppercase Greek letters. In symbols, the intuitionist rule for 
single negation introduction to generate a double negation is: 

Γ, ¬A : Λ
¬¬A

Th is is a special case of the more elegant rule for single negation introduction, 
which echoes reductio ad absurdum proofs: 

Γ, A : Λ
 ¬A
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In words: “If from A, plus a collection of other premises, Γ, we can prove a 
contradiction, then we may assert the negation of A”. Note that the notion 
of negation is directly tied to that of proving a contradiction rather than to 
falsity. Th is way of expressing the rules makes explicit how to read the rules, 
and to understand the thinking. Drawing out the notion of contradiction, we 
can re-express the rule for negation introduction as follows.4

Γ, A : B  Δ, A : ¬B
Γ, Δ : ¬A

Th at is, if A, possibly together with a collection of other formulas Γ can prove 
B and, quite separately, A together with some formulas Δ can prove not-B, 
then we may constructively write on a new line that Γ and Δ can prove ¬A. 
Th is is because A is instrumental in proving a contradiction. 

Th is can be simplifi ed with the more elegant rule for negation elimination, 
which is:

Γ : A  Δ : ¬A
Γ, Δ : B

Th at is, we have ex falso quod libet: from a contradiction (logical falsity) any-
thing follows. Th is principle is rejected by some constructivist logics, but it 
is not rejected by intuitionists (see the Appendix for details). As we noted 
before, there is no straightforward rule for double negation elimination, 
which is usually used in conjunction with reductio ad absurdum proofs. Th is 
is because if we lack a proof of A we cannot then infer that we cannot have 
a proof of A proving a contradiction. Th is brings us directly to the law of 
excluded middle and bivalence.

Th e law of excluded middle is purely syntactic: it says that for any well-
formed formula A, A ∨ ~A. Notice that we have used a diff erent negation sym-
bol: “~”. Th is is because this law holds only in classical logic, not in intuitionist 
logic. We have to be careful. Th e law of excluded middle does not mean that 
we can prove either A or not-A; only that A or not-A. Classical logicians use 
this rule in proofs. Note that the law of excluded middle is not a semantic law. 
It does not say that either A is true or A is false. Th e semantic version of the 
law of excluded middle is the law of bivalence: for any well-formed formula A, 
either A is true or A is false. In classical logic there is no third truth-value, such 
as “unknown” or “undecided”. In classical logic, the law of bivalence can be 
thought of as a semantic interpretation of the law of excluded middle. Th e only 
diff erence is that one is semantic and the other syntactic. In terms of proofs, or 
information, in classical logic, we can slide from one to the other with impunity. 
Th is is because both propositional logic and classical fi rst-order logic are sound 
and complete.5 Th e semantic proofs (through truth-tables or semantic trees) 
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perfectly match the syntactical (natural deduction) proofs. For every semantic 
proof there is a syntactic proof, and vice versa.

In contrast, in intuitionist logic bivalence holds while the law of excluded 
middle will not generally hold. So, the law of excluded middle is not a “law” 
of intuitionist logic, because we know that we cannot have a proof, or proof 
of contradiction from, every well-formed formula.6 “True” is interpreted to 
mean “we are able to prove”; “false” is interpreted to mean “we have a proof 
from this to a contradiction”. Proofs have to be intuitionistically acceptable, 
and each rule of inference of the intuitionist system of proof is justifi ed in 
terms of vindicating our three criteria for truth-aptness.

Th e rules for conjunction are the same as those in classical logic. 
Conjunction introduction is:

 Γ : A  Δ : B
 Γ, Δ : A ∧ B

In words, “If from some set of well-formed formulas Γ we can prove A, and 
from some set of formulas Δ we can prove B, then from those sets of formulas 
we can prove the conjunction of A and B”.

Conjunction elimination is:

 Γ : A ∧ B
 Γ : A

In words, “If from a set of well-formed formulas Γ we can prove the conjunc-
tion A ∧ B, then from that set we can prove one of the conjuncts”. Strictly 
speaking, we should specify that we can just as well prove the right conjunct 
as the left, since conjunction is commutative. Explicitly:

 Γ : A ∧ B
 Γ : B

is also a possible rule of conjunction elimination.
We can prove the commutativity of ∧, so (ignoring the last rule, for deriv-

ing B) we notice that we have a pair of rules for ∧: an “introduction rule” and 
an “elimination rule”. Most of the rules in intuitionist logic can be grouped 
in symmetrical pairs like this. Th e thinking behind the choice of rules is that 
the introduction rules allow us to add a symbol to a formula; the elimination 
rule allows us to take it away from a formula. We then see a proof as a set of 
manipulations of symbols from the formulas in the premises to the formula 
of the conclusion.7 More philosophically, the elimination rules give us the 
strongest derivable formula, which is missing the symbol being eliminated. 
Th e introduction rules are what give the meaning of the connective; here, 
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“meaning” really means the semantics. As we see, the semantics of intuition-
ist logic are contained in the rules, and they are quite diff erent from those of 
classical logic. In intuitionist logic we have no need for semantic proofs via 
truth-tables or tree rules; we just have the introduction and elimination rules. 
We shall return to this.

Let us work through some more rules for the logical connectives. Th e rules 
for “or” are: 

Γ : A
Γ : A ∨ B

In words, “If from Γ we can prove A, then from Γ we can infer the disjunc-
tion A or B”. Sometimes this rule is referred to as “weakening”, sometimes as 
“or introduction”. Again, “or” is commutative, so from a proof of B we can 
infer a proof of A ∨ B. “Or elimination” is more elaborate.8 Th e rule for “or 
elimination” is that if we have a disjunction A ∨ B, and we can prove C from 
each of A and B separately, then C follows from A ∨ B. 

Γ : A ∨ B  Δ, A : C  Θ, B : C
Γ, Δ, Θ, A ∨ B : C

Th is bears a little discussion, especially for those brought up on a steady 
diet of Patrick Hurley or Irving Copi for their natural deduction. In the bra-
zenly classical Hurley- or Copi-type systems, the closest we have to “or-elimi-
nation” is “disjunctive syllogism”. Disjunctive syllogism says that if we have a 
disjunction, and the negation of one of the disjuncts, we can infer the other 
disjunct. In intuitionist logic, disjunctive syllogism is derivable but is not a 
primitive rule of inference. Th is is because when we move to a philosophical 
discussion about justifying the rules of inference, we do so with reference to 
the logical connectives. We then discuss these in terms of their introduction 
and elimination rules. If we have rules that combine more than one connec-
tive, then the philosophical discussion becomes much more muddied. Th is is 
because we are discussing the combination of two connectives, as opposed to 
one on its own, and these can only be justifi ed philosophically by justifying the 
whole system of rules as a package. For the intuitionist, this sort of argument 
begs the question, since it is the whole system that is at issue. Instead, the 
intuitionist justifi es each rule separately. So the intuitionist will derive rules 
such as disjunctive syllogism or De Morgan’s laws.9 If we do this, then we have 
a proof of them, and do not need to justify them philosophically. We only need 
to justify philosophically the fi rst primitive rules and these should only involve 
one connective at a time. So for disjunction elimination we have to show that 
we can prove the desired conclusion from each disjunct separately (from 
each other). Th en it does not matter which disjunct holds, or whether both 



constructivism 111

hold; we have a proof of our desired conclusion. When we conclude C, we 
discharge A and B as separate assumptions. A, and separately B, were assump-
tions that were made for the sake of argument. Δ, A ∨ B  A : C can be read as: 
“assume that from the disjunction A ∨ B, that A holds, then we can prove C”. 
A ∨ B, B : C is read as “assume that from the disjunction A ∨ B, that B holds, 
then we can prove C”. If we can get to C either way, then we no longer need to 
know which particular disjunct holds; we only need to know that the full dis-
junction holds, so we can do away with our assumptions. Discharged assump-
tions are sometimes symbolized with a bar over the letter for the formula. 
Using the bar notation in the or-elimination rule we would write the rule:

Γ : A ∨ B  Δ, Ā : C  Θ, B̄ : C
Γ, Δ, Θ, A ∨ B : C

Consider implication. We shall use “→” for intuitionist implication. Th e elimi-
nation rule is essentially modus ponens. 

 Γ : A  Δ : A → B
 Γ, Δ : B

Implication introduction shows us the close rapport between implication and 
proof in intuitionist logic.

 Γ, Ā : B 
 Γ : A → B

If from some formulas Γ, and an assumption A, we can prove B, then from 
the formulas Γ we can prove the conditional if A then B. We then discharge 
the assumption A. Modus tollens is worth mentioning as a derived rule. In 
intuitionist logic, modus tollens is carefully worded. From a conditional and 
the negation of the consequent, we can prove the negation of the antecedent. 
In symbols:

 Γ : A → B  Δ : ¬B
 Γ, Δ : ¬A

What is careful about the wording, or the rule, is the use of the word 
“negation”, as opposed to just saying “the opposite”. By wording modus tol-
lens through negation, some classical proofs will not go through, because of 
having to later use double negation elimination: for example, when A, in the 
rule, happens to be a negated formula. Th e astute reader will have noticed 
that in the modus tollens rule we are combining two connectives in the rule, 
which is something we objected to in principle when we dismissed the rule for 
disjunctive syllogism. Th is is a correct observation. Modus tollens is a derived 
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rule: we can prove it from the other rules. We introduced it here to emphasize 
some points about negation. 

Some general remarks are in order. Th ere are diff erent ways of presenting 
intuitionist logic. We can present it with a mixture of axioms and rules of infer-
ence. Presenting only rules emphasizes the notion that mathematics is a proc-
ess, not a static discipline. In the presentation above there are only the rules of 
inference. It could be asked how anything is proved at all. Well, fi rst one tends 
to be given premises, or hypotheses (assumptions for the sake of argument). So 
an argument is valid if its conclusion can be derived from the premises using 
the rules of inference mentioned above. Remember that there are three sorts of 
well-formed formula in logic: those that are always true, those that are always 
false, and those that are contingent on the interpretation. Th ese are some-
times true and sometimes false, depending on the truth-value assignment to 
the proposition variables. Th e statement of validity is a conditional. It says that 
if the premises are true then the conclusion is also true. Th e “if–then” is subject 
to the rules of inference of the formal system governing the conditional.

To discuss proofs of conclusions from no premises (logical theorems), 
we should return to the notion of discharging assumptions. Or-elimination 
and implication-introduction are discharging rules. Th at is, one advances 
assumptions, for the sake of argument. Th ese are discharged when the rule 
for the symbol is fi nally used for getting the desired conclusion. In the case 
of or-elimination, we assume one disjunct, prove the conclusion from it, then 
assume the other disjunct and prove the conclusion from it. We can then dis-
charge both assumptions, since the disjunction alone is suffi  cient information 
to draw the conclusion. In the case of implication-introduction, temporarily, 
for the sake of the argument, we assume the antecedent of the implication. We 
then derive the consequent on the basis of the assumed antecedent, and then 
discharge the antecedent at the moment when we conclude the conditional: 
“if the antecedent, then the consequent”. We can prove theorems using the 
discharging rules. Th eorems are well-formed formulas that are provable from 
no premises. In classical logic, each theorem has a corresponding tautology.10 
In intuitionist logic we can prove A → A as a theorem. We can also prove 
(A ∧ B) → A. Th eorems will tend to be conditional statements, as they often 
are in classical logic. We can prove a theorem from no premises by making 
an assumption, which we later discharge. 

For the most part, the rules for intuitionist logic should look very similar 
to the rules in classical logic. Th e big diff erence, besides the notation, has to 
do with negation. In some ways the rules are surprising. In intuitionist logic, 
it turns out that A ∨ ~A is not a theorem. In other words, the law of excluded 
middle cannot be proved in the formal system. Similarly, the following proofs 
are classically valid, but cannot be carried out in intuitionist logic – they are 
not intuitionistically valid: 
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(A & B) → C ~(A → B) (A → B) & (C → D)
(A → C) ∨ (B → C) A  (A → D) ∨ (C → B)

Th e proofs are left for the reader to fi nd. It is worth proving them in whichever 
classical system one is familiar with, and then noting where the proof would 
be blocked by the intuitionist.

As has been mentioned, there are other constructive formal systems, many 
of them more restrictive than intuitionism. For example, relevant logic sys-
tems block disjunctive syllogism.11 Th e restrictions in other formal construc-
tive systems have to do with implication, and how that is understood. As 
we also mentioned, the semantics for intuitionist logic are contained in the 
rules. Th e introduction rules are what give the meaning to the connectives. 
For now, let us leave the formal aspects of constructivism aside, and discuss 
some of the motivations for adopting a diff erent logic to set a standard for 
reasoning in mathematics. 

3. Prima facie motivations for constructivism

One quite eff ective prima facie motivation comes from considering the set-
theoretic paradoxes. Th is motivation is only prima facie because it is not what 
is really driving the constructivists, but these considerations are enough to 
disturb any complacent acceptance of classical mathematics. Discussing the 
paradoxes gives us a reason to cast around for a solution, one of which is a 
rethinking of reasoning in mathematics. 

Around the end of the nineteenth century and beginning of the twentieth 
century, a number of set-theoretic paradoxes surfaced, causing a crisis in 
the foundations of mathematics: in Chapter 2 we discussed the Burali-Forti 
paradox; in Chapter 3 we encountered the Russell paradox; and we briefl y 
entertained a structuralist paradox in Chapter 4. Th is last paradox is very 
similar to Cantor’s paradox, which we shall discuss here. 

Cantor’s paradox concerns the cardinal numbers. According to the theory 
of cardinal numbers, the powerset of a set has a cardinal number strictly 
greater than that of the original set (from which we “constructed” the power-
set). Cantor’s diagonal argument uses this fact. Consider the set of all cardinal 
numbers. What is its cardinality? Now take the powerset of this set. What 
is the cardinality of its powerset? Th e answer is that it is strictly greater than 
itself. Contradiction.

If we consider the Burali-Forti paradox, the Russell paradox and Cantor’s 
paradox, then we have a good sample of the paradoxes that appeared in 
the early-twentieth century. Th e paradoxes made a mockery of contempo-
rary logic and set theory, both of which were supposed to be foundations 
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of  mathematics. Th e Burali-Forti paradox and Cantor’s paradox particularly 
address our conceptions of infi nity, just as Zeno’s paradoxes did over 2300 
years earlier. Th ese paradoxes partly motivate constructivism. One of the 
characteristics of constructivism is a distrust of the notion of actual infi nity 
as it is developed in set theory. Not all the paradoxes address our notions of 
infi nity; the Russell paradox does not. So, it is not only our notion of infi n-
ity that needs revising. After the emergence of the paradoxes, it appeared to 
many philosophers and mathematicians as though the whole of mathematics 
might be infected by these paradoxes and contradictions. Recall that from a 
contradiction anything follows (ex falso quod libet). So, a contradiction in the 
foundations of mathematics makes the whole of mathematics trivial, in the 
sense that any mathematical sentence is true, and false. In a contradictory 
theory with the symbols of arithmetic, 2 + 2 = 4, but also 2 + 2 = 5, and 5 = 
39 and so on. Because of the threat of spread to other parts of mathematics, 
these paradoxes caused a crisis of confi dence in the mathematical commu-
nity. Th ere were two sorts of reaction: keep all the mathematics we can and 
minimally tweak the axioms that give rise to paradox so that they no longer 
generate paradox (Zermelo’s approach); or re-found mathematics on a fi rmer 
foundation by epistemically constraining truth. Th e former approach was 
adopted by most mathematicians.12 Th e latter approach was much more radi-
cal, and this is what the intuitionists, led by Brouwer, proposed.13

4. Deeper motivations for constructivism 

Th ere are diff erent degrees of commitment to the idea of revising mathemat-
ics by means of revising the logic that underlies the notion of mathematical 
proof. We can think of the new logic as setting a standard for excellence in 
proofs, or we can think of the logic as setting the minimal limit on what is an 
acceptable proof. If we think of the logic as normative, as setting a standard, 
we might or might not reach that standard in a particular proof. Th is does 
not imply that the purported proof is not a proof, only that it could be better. 
Th e normative constructivist counsels the mathematician to strive towards 
constructively acceptable proofs. Th is counsel is taken more or less seriously. 
Some mathematicians, who call themselves constructivist, merely acknowl-
edge that the counsel is a good one, and fl ag all non-constructive moves in 
their proofs, more or less explicitly, with the idea that the proofs could either 
be rewritten in the future or, if we had to revise the theory because of a later 
paradox or contradiction, then we would know exactly which parts of which 
proofs to scrutinize. Th is sort of fence-sitting mathematician plays the game 
of caution in the following way. As a weak sort of constructivist, she does not 
believe that we have to start mathematics all over again. Rather, she believes 
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that classical mathematics is for the most part fi ne. However, there are some 
problematic theories. A theory developed with only constructively acceptable 
proofs is guaranteed to be non-paradoxical, or is at least far less likely to be 
problematic, but the converse is not true. Not all non-problematic theories 
have to be constructive. Indeed, mathematicians of this inclination tend to 
think that the results we obtain using non-constructive means are usually 
true, and they point the way for a future revised proof that is constructively 
acceptable.

Why take this attitude? Constructive proofs are not always possible, and 
they require more work. We can get the results out more quickly classically. 
Th e results are usually good. We assume that we can, under the right circum-
stances of time and insight, go back and give a better proof later. 

Th e problem with this practical fence-sitting attitude is that it gambles on 
the truth. Th is is loosely expressed in terms of probability: “probably” most 
classical theories are fi ne. What does this mean? If we probe, we fi nd that it 
is diffi  cult to say, since it is not clear that we can individuate mathematical 
theories in a relevant way to measure the probability, or even assert “most”. 
With a little more charitable a reading, we can reinterpret what we mean by 
“probably” as drawing on the work of constructivists who do go back through 
the non-constructive proofs and give constructive proofs of the same theo-
rems.14 Th ey are usually able to do this. Th e problem still remains, however, 
that from within this weak constructivist attitude there is no strong diagno-
sis as to why constructive proofs are better. After all, we can generate non-
constructive proofs more quickly. Moreover, we should be aware that this 
talk of “more” is not really what is at issue at all. We do not simply want a 
large quantity of proofs. A computer can produce proofs at an alarming rate; 
moreover, it can generate constructive proofs just as fast as classical proofs. 
Th e problem is that most of these will be unimportant. In mathematics some 
proofs are more important than others; that is, they carry more weight, or 
they are more inspiring or more insightful.15 Recognizing this, for the weak 
constructivist, is a separate (historical/psychological/sociological) issue. It 
remains that in the fi nal analysis there will be proofs that are more signifi -
cant than others; only time will tell. Mutatis mutandis for the argument that 
we favour constructive proofs over classical proofs (when the two are dif-
ferent) because constructive proofs give more information. Th is argument, 
too, is weak. Usually, this sort of argument refers to the diff erence between 
“purely existential proofs”, which are classically acceptable, and “construc-
tive existential proofs”, which are constructively acceptable. Both existential 
proofs conclude that some object with a given property must exist. Th e dif-
ference is that the constructive proof has to generate an instance, or a wit-
ness, to the property. In other words, we need an object with the property in 
order to conclude that “there exists” an object with said property. In  contrast, 
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a classical purely existential proof usually runs through reductio: consider 
the idea that there is an object with said property, see that this leads to a 
contradiction, and conclude that there must be an object with the property. 
Th e classical proof gives us no means of fi nding an object with the prop-
erty; it just tells us that there exists some such object. Th is is one piece of 
information, whereas the constructive proof gives us two pieces of informa-
tion. On this simple numerical argument we should favour the constructive 
proof. However, think again. Recall that computers can generate proofs at an 
alarming rate, and just as many using constructive means as using classical 
means. Note that they will not necessarily generate the same conclusions, 
but we are just considering numbers of proofs, not types of conclusion. Now 
consider working human mathematicians generating proofs. We said earlier 
that many mathematicians fi nd that they “can get results out faster” using 
classical proofs than constructive proofs, so now compare the mathemati-
cian allowed to use classical logic with the mathematician constrained by 
constructive logic. Th e classical mathematician will produce more conclu-
sions, but the constructive mathematician will produce more information 
per proof, for certain sorts of proof, but fewer conclusions. Which math-
ematician produces more information? Th is is not clear. Th e very notion of 
“more information” is really a non sequitur. Ultimately, the fence-sitter is 
occupying an incoherent position. At best he has a superfi cial and unexam-
ined view of quantity of results in mathematics or, at worst, he is gambling 
on classical logic’s having a good handle on truth, allowing the mathemati-
cian’s interests to be guided by the constraints of classical reasoning while 
at the same time acknowledging that this might be mistaken. In the end the 
normative or weak constructivist cannot mathematically, or philosophically, 
justify the preference for constructive proofs.

Th e philosophically more radical position is the revisionary position in 
constructivism. Th is is underpinned by well-defended philosophical consid-
erations. Brouwer, considered to be the father of intuitionism, adopted some 
of Kant’s ideas.

Th e strong, revisionary, prescriptive, constructivist philosophy is this: we 
should simply reject non-constructive proofs. Whole sets of results are dis-
missed as not part of mathematics proper. Th e reason for rejection is that 
classical mathematical thinking has gone astray, and has led us too far; it is 
no longer grounded in anything (independently of the classical mathematics 
itself ).16 Th e paradoxes are symptomatic of our having gone too far. Our pure, 
unchecked, thinking has led us into trouble. Th at is the diagnosis. So it is not 
that classical proofs are, for the most part, fi ne; rather, they are badly mis-
taken and incoherent. How do the strong constructivists come to think this? 
Th ey think seriously about our knowledge of mathematics and the notion of 
mathematical truth. When we say that we have to epistemically constrain 
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truth, we mean that, on pain of paradox, incoherence or irrationality, we 
cannot think of mathematical truth as independent of us. A truth is not such 
without a proof. Any objects discussed in a theorem have to be constructed, 
or displayed, and the proofs have to obey intuitionistically acceptable rules 
of inference. A metaphor that is often used is that we construct mathematics 
rather than discover mathematical truths. Mathematics should be seen as a 
process rather than as a body of truths.17

Brouwer discusses the process of mathematical construction, and is ada-
mant that mathematics itself should not go beyond this process. In particular, 
the process of proving, or understanding, a part of mathematics has to be car-
ried out in a step-wise manner. We have to understand and really follow each 
step in our mathematical constructions. Th e constructions and proofs have 
to accord with our basic mathematical intuition, not in the sense of Gödelian 
insight, but in the sense of each of us being able to follow each small obvious 
step. Mathematics, then, very much exists in our minds, and is not independ-
ent of us at all. If we take seriously Brouwer’s way of thinking about mathemat-
ics, then we start to realize how fantastical the notion of an infi nite set is. We 
cannot step-wise construct an infi nite set. We cannot hold an infi nite set in 
our minds at one time. Th e whole notion of an infi nite set is quite incoherent. 
Recall the law of excluded middle. Th is says that if a formula is well-formed 
then it, or its negation, holds, where “holds” means not “is provable”,18 but 
rather “is true”. “Is true” means that there is a model (i.e. a semantic interpreta-
tion)19 for the sentence (or its negation), where “there is a model” just means 
that there exists a model, not that we know how to generate one or what one 
looks like. A model can be thought of as a domain that makes the sentence 
true. We might know of the existence of a model by means of a reductio proof; 
that is, the evidence we have for the model is that if there is no model then 
we get a contradiction. Reductio proofs are often called “indirect” proofs for 
this reason, and are not, in general, intuitionistically acceptable. In particular, 
they are not acceptable when they involve a double negation elimination step. 
Why does the intuitionist reject the package of double negation elimination, 
reductio proofs, law of excluded middle and infi nite sets?20

As the modern proponents of intuitionism, we shall look at Michael 
Dummett and Neil Tennant’s arguments. Following Dummett, we shall 
advance two arguments in favour of anti-realism: the acquisition argument 
and the manifestation argument. In Elements of Intuitionism (2000), Dummett 
brings these arguments to bear in favour of intuitionism. Neil Tennant deep-
ens Dummett’s arguments, and uses them in favour of a more restrictive 
logic, which he calls “minimal logic” in Anti-Realism and Logic (1987). We 
shall not pursue Tennant’s arguments here all the way to minimal logic but, 
rather, use them to argue against classical logic, and we shall then default to 
intuitionist logic. 
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Th e acquisition argument and the manifestation argument arise from four 
considerations concerning language, meaning, communication and under-
standing. In particular, in this context, we are interested in language, meaning, 
communication and understanding in mathematics. Th e considerations bear 
outside the mathematical context as well, but this does not concern us.

I. When we are mastering [a mathematical] language, and when 
we are exercising that mastery, all that is available to us for glean-
ing or conveying meaning is the overt, observable behaviour of 
fellow speakers.

II. Th e meaning of any well-formed expression in our [mathemati-
cal] language depends in a rule-governed way on the meaning 
of its constituent simple expressions.

III. When we have mastered a [mathematical] language, its sen-
tences have a determinate meaning for us.

IV. Our knowledge of those meanings can be displayed by an appro-
priate exercise of recognitional capacities shared by competent 
speakers [of the mathematical language]. (Tennant 1987: 3)

Th e acquisition argument concerns the fi rst three considerations, in particular 
the fi rst. In order to communicate we fi rst have to listen, or read, to acquire a 
language. We have to grasp what others are trying to communicate to us. We 
are not born with a ready-made, particular mathematical language in our heads. 
We have to acquire the language from limited resources: the fi nite number of 
sentences uttered to us. We could not acquire a mathematical language with-
out being exposed to some fi nite sample of sentences. We could not acquire 
the language without its being rule-governed. Otherwise, anything goes, and 
speakers are just making random noises. If there is no correct use of language 
then we cannot communicate. Implicit in this notion of the language being 
rule- governed is the idea that sentences (or well-formed formulas) have a deter-
minate meaning. If they do not then we have no standards of correctness and, 
again, no communication, for, communication requires both a speaker and a 
listener. Th e speaker has to convey a message in a way that is graspable by the 
listener. Th e listener has to make the eff ort to understand what is being con-
veyed. For two-way communication to take place, both the construction of the 
language has to be piece by piece, and any reasoning, from one idea to another, 
has to be piece by piece. Otherwise, understanding is at best mysterious and 
inexplicable and, at worst, not happening at all. In other words, to acquire a lan-
guage we have to observe speakers of the language speak (part I). Th e speakers 
have to be obeying some rules in their sound-making (part II). Th e rules have 
to be rules that we can follow. Th e sentences have to have some determinate 
meaning that we can grasp; otherwise we would not have acquired the language, 
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but would just be making noises. If the noises have no determinate meaning, 
then we cannot be corrected in our noise-making (part III). Th is is the diff er-
ence between communicating and making noises, which might, at best, have 
a psychological eff ect on listeners. Th e acquisition argument counsels us to 
make rules of inference explicit, and not require, or presuppose, great insight 
on the part of the student of mathematics.

Th e manifestation argument concerns being able to judge, of another person, 
that she really does understand what she says. Th at is, to belong to the com-
munity of communicators one has to manifest, to others, one’s understanding 
of the language being used to communicate. We do this when we take a test in 
mathematics. We display our understanding to the teacher. In conversation, 
the manifestation is more subtle than a test, but nevertheless we can all think 
of times when we suspect that someone else does not really understand what 
he is saying. Th e person reveals this through his faulty manifestation of under-
standing, much to his embarrassment. For the manifestation argument, con-
centrate more on the fourth consideration above. We show our understanding 
through our behaviour, through the inferences we draw from a given piece of 
mathematics. Th is becomes quite serious in mathematics, where manifesting 
our understanding consists in proving, or showing that we can recognize or 
follow, a proof.

In mathematics we have nothing else to go on, save the proofs. Proofs are 
what allow us to demonstrate our understanding and knowledge of a math-
ematical concept. Moreover, not any proof will do. Listeners have to be able 
to follow the proof. Th is means that the steps have to be short, simple and 
indubitable. Th is explains why logic teachers are so exacting about proofs. It is 
through the proofs that the student manifests her understanding of the rules 
of logic. But why choose intuitionist logic over classical logic? Consider again 
the intuitionist rule for singe negation elimination. “Not-A” is concluded  from 
“from A, we can prove a contradiction”. Th is is because “not-A” is not just a 
negative fact; we have to be able to show why or how it is negative. Similarly, 
“not-not-A” is, intuitionistically derived from “from ‘not-A’ we can generate a 
contradiction”. Notice the use of the word “generate”. Th is highlights the idea 
that learning and acquiring knowledge in mathematics occurs through proofs 
and coming up with proofs; and following proofs is an activity. Does it follow 
from “from being able to generate a contradiction from A, we can generate 
a contradiction” that A? If we can prove a contradiction from A, then A is 
incorrect: it cannot be the case. Expanding again to the double negation, if 
we can prove a contradiction from the proof from A to a contradiction, then 
it does not follow that A is true, or that A holds, or that we are entitled to 
assert A. Trying to manifest our grasp of A by proving two contradictions is 
very convoluted, and not legitimate unless we have demonstrated our grasp 
of some separate background considerations that warrant our concluding that 
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A from the double negation of A. But, if we have these background assump-
tions, then we need to make them explicit in our proof.21 So, classical double 
negation elimination is not intuitionistically acceptable as a law of logic. It 
only works provided there are other considerations present. Th e notion of 
manifestation in mathematical proof is one of carrying out demonstrations 
in small and easy to follow steps.

Armed with the acquisition and manifestation arguments, we can create 
arguments against the classical concept of infi nite set. Th e classical concep-
tion involves manipulating infi nite sets into the various transfi nite cardinals 
and ordinals. With the acquisition and manifestation arguments, it becomes 
plain that we could not possibly manifest our capacity to take the powerset of 
an infi nite set, since we cannot do this piece by piece. “Taking the powerset” 
is only a fi nite (and therefore acceptable) procedure if the original set is fi nite; 
it is not acceptable if the original set is infi nite. It follows that there cannot 
be “diff erent sizes of infi nity”. Th at is, Cantor’s paradise is shunned. Cantor’s 
diagonal proof is not intuitionistically acceptable. We can recreate similar 
arguments using the intuitionist requirements of acquisition and manifes-
tation against classical reductio proofs, the law of excluded middle and the 
axiom of choice. (Th is is left for the reader to do.)

On a historical note, at a general level there are two attitudes towards the 
authorizing of proofs among the revisionary constructivists. Brouwer was ada-
mant that it was not possible to formalize intuitionist logic; that is, it is not pos-
sible to decide in advance which proofs will be acceptable and which proofs 
will not. Th is is not very satisfactory since, in mathematics, we like to be very 
precise about what we are and are not allowed to do. In particular, we want to 
know which proofs are intuitionistically acceptable, and to know this, we need 
an explicitly developed logic. One of Brouwer’s students, Arend Heyting, did 
propose an intuitionist logic. Th is has become quite well accepted by intuition-
ists. Dummett’s intuitionist logic, presented earlier in this chapter, is equivalent 
to Heyting’s logic. Th e logic is meant to constrain mathematical proofs, and 
can be used to tell us immediately, and relatively easily, whether a proof is intui-
tionistically acceptable. Current literature has moved on from intuitionism, 
and there are many constructivist positions. It is generally accepted now, by 
revisionary intuitionists, or constructivists, that there is some underlying logic. 
Th e intuitionists take this to be intuitionist logic. Other sorts of constructivist 
take other formal systems to prescribe the notion of mathematical proof. 

To summarize, intuitionist logic is well accepted as a system of proof. 
Moreover, it is well defended as a guide to ensuring that, in mathematics, we 
properly manifest our understanding of mathematical theorems. However, ulti-
mately, we should take Brouwer seriously too, and acknowledge that the formal-
ized representation of intuitionist logic is ultimately revisable, in fact has been 
revised, and that each revision should be subjected to philosophical scrutiny. 
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5.  Th e semantics of intuitionist logic: Dummett

For Dummett, semantics is completely articulated by the rules of inference of 
the system. He does not have separate truth-table proofs or semantic trees, 
although he shows how the rules of inference can be given tree-rule analogues. 
Dummett is philosophically austere because the natural deduction rules of 
inference are suffi  cient to talk about the meaning of formulas and connectives. 
He motivates intuitionism by thinking about proving as an activity. Moreover, 
to be a meaningful activity it has to be shared by a community, and has to be 
communicated. Dummett is an example of an intuitionist who will countenance 
bivalence, but denies that all well-formed formulas are meaningful. Notice that 
countenancing truth-values does not imply that Dummett thinks that we have 
to defi ne the logical connectives using truth-tables. If a well-formed formula is 
not constructively provable using the rules of inference, then it is not meaning-
ful, for we cannot know what its truth consists in, since we have no justifi cation. 
We cannot know this because we lack a procedure for fi nding out. Similarly, 
we lack a procedure for sharing our knowledge with others. “Knowing” means 
“we can generate an intuitionistically acceptable proof”. Talk of truth-values is 
parasitic on the rules of inference because truth is epistemically constrained by 
the rules. So while it might be convenient to talk of truth and falsity, such talk 
is strictly speaking redundant, and can be replaced by talk of proofs. Given this 
gloss on truth, it should be clear why Dummett accepts bivalence, but denies 
the law of excluded middle.

We have three notions interacting: being a well-formed formula, mean-
ingfulness; and provability/truth. A well-formed formula is a candidate for 
meaning and provability. Th at is, if a formula is not well-formed, then it has 
no hope of being understood. For example, “P&&~” is a meaningless string 
of symbols. We could not possibly prove it, since there are no rules that will 
allow us to construct such a string of symbols. We can see this by inspection 
of the rules of inference for intuitionist logic. Compare this to a sentence 
in mathematics that is well-formed but still meaningless. Such a formula is 
one that we can recognize is well-formed, but for which we cannot see how 
we would prove it, even in principle. Th e rest of the well-formed sentences 
are proved, or provable, and therefore are meaningful, for, we can share the 
knowledge. We can show the proof. We can manifest our knowledge through 
proof and, therefore, we can share our knowledge through proof. Dummett 
insists that we cannot understand a formula we cannot prove or show leads 
to contradiction. We learn the meaning of sentences in a formal language 
through their proof, so proof is what gives meaning to a sentence. For this 
reason, only intuitionist proofs will count as proofs. Intuitionist proofs tell 
us how to go from one proof to the next without requiring special insight or 
powers. For the intuitionist, the semantics of a formal system is the proof 
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procedure. All we need to understand the symbol “∧” are the inference rules 
governing it. 

More specifi cally, repeating what we said earlier, Dummettian intuitionists 
will say that the introduction rules for a symbol give us the meaning of the 
symbol; the elimination rules tell us the strongest formula we can derive from 
a formula that has that symbol as the main connective in the original formula. 
For example, the or-introduction rule tells us the meaning of the symbol “∨”. 
Th e question to ask is: does it really?

Th e interesting thing about this take on meaning is that, so far, we have 
nothing formal against which to judge these rules. Th ey are the semantics, so 
the rules are what give us meaning. Th ere is nothing to which they are respon-
sible, such as truth-table defi nitions. Th e Dummettian might respond, how-
ever, that there is our natural-language understanding of “or”, for example. 

Why is this enough? Th ere are three guiding notions to the justifi cation of 
the intuitionist rules of logical inference: (i) we can only understand a fi nite 
number of things; (ii) language is compositional – we build our understand-
ing from simple sentence to more complex sentences; and (iii) proofs are to 
be thought of as procedures for communication, not as static artefacts. Let 
us begin with the fi niteness of our understanding. To do this we should add 
a note about intuitionistic quantifi cation. Th ere is an intutionistic version 
of fi rst-order logic. Th e universal quantifi er (read “all”) is understood as “we 
have a procedure for checking every” or “we have checked every”. Universal 
quantifi cation is fi ne over fi nite sets, but not so legitimate over infi nite sets. In 
the following quotation, Dummett fi rst discusses the classical mathematician’s 
conception of meaning in mathematics, and then denies its plausibility:

Since the theory of meaning underlying classical mathematics … con-
sists in … an awareness of what has to be the case for it to be true, we 
must possess an understanding of [for example] quantifi cation over an 
infi nite domain which does not relate to our own restricted means of 
recognising as true, sentences formed by such quantifi cation … Th e nub 
of the intuitionist critique of classical mathematics is the contention 
that we do not, and could not, have any such conception of mathemati-
cal truth; that we suppose ourselves to have it only by an illusion based 
upon a false analogy. (Dummett 2000: 258)

In other words, we cannot understand a sentence of the form “every natural 
number has the property F” since we do not have the means of surveying an 
infi nite domain of objects. To think otherwise is simply  delusional. At best, we 
might intuitionistically be able to say that “we have not yet found a number 
that lacks the property F”. Th is is much more careful than the classical “all 
numbers have the property F”, which we might prove classically.
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Now we need an account of how it is that we do gain understanding of sen-
tences. Th ere are two components to compositionality. We learn the meaning 
of sentences by putting together words with which we are already familiar. 
Th is is how it is possible for us to understand a sentence we have never heard 
before. Th e “unit” of understanding is neither individual words (except when 
they constitute a whole sentence), nor the whole of the language, but rather 
the sentence. We understand whole sentences. We build our understanding 
from simple sentence to more complex sentences. Moreover, we understand 
simple sentences before we understand more complex sentences. Sentences 
can be arranged in a partial-order of complexity.22 Th e logic we saw above is an 
intuitionist propositional logic. Th e units symbolized by the As and Bs above 
stand for formulas. Th e formulas are atomic or complex. If they are atomic, 
then they consist in a propositional variable, and these can have a determinate 
meaning. In particular, they do have a determinate meaning when they stand 
for a fact that can be proved, verifi ed or shown to lead to a contradiction. If a 
formula is complex, then it is made up of propositional variables and logical 
connectives, so if the component propositions have a determinate meaning 
then the fi nite complex whole is either provable or its negation is provable. 

Th e next element is the procedural aspect of proofs. Proofs have to give us 
a method for manifesting the meaning of a conclusion. Th e meaning of the 
conclusion depends on how we trace it back to some premises. Th e intuition-
ist rules of inference give us procedures for determining the meaning of the 
sentences in mathematics. Moreover, they are conducive to our necessarily 
fi nite understanding.

6. Problems with constructivism

Th e main complaint against the constructivist philosophy of mathematics is 
that it takes too much of mathematics away. When Brouwer suggested the 
refounding of mathematics on a constructive basis, tied to the intuition, he 
was met with fi erce resistance. 

What Weyl and Brouwer do amounts in principle to following the erst-
while path of Kronecker: they seek to ground mathematics by throw-
ing overboard all phenomena that make them uneasy [for example, the 
law of excluded middle] … if we follow such reformers, we run the 
danger of losing a large number [infi nite number] of our most valuable 
 treasures. (Hilbert, quoted in Van Stigt 1998: 2)23

Th is is the main complaint against the revisionist constructivists. Douglas 
Bridges and Errett Bishop have, together and separately, taken this complaint as 
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a challenge. Th ey are working on recovering as much classical mathematics as 
possible using only constructive proofs. Th e task is daunting, but they are able 
to reconstruct quite a lot of mathematics. However, the valiant eff ort made by 
these constructivist mathematicians and philosophers somewhat misses the 
point: the debate is not about losing or giving up existent mathematical results. 
Instead, it is about those very results. For the intuitionist they are meaningless 
because they cannot be understood; there is nothing there to “recover”.

If the constructivist is right, then by refounding mathematics we lose 
nothing except incoherence. For the Dummettian intuitionist, it is simply 
not rational to pursue mathematics using classical logic. Classical logic is 
not just dangerous, because it could lead to paradox, but is incorrect. So the 
quotation from Hilbert, and the feeling it echoes for many mathematicians, 
also misses the point. If the constructivist is correct, then we would not lose 
treasures; we would lose a few old rags. 

Th e other problem the constructivist faces comes from the other direction: 
from other constructivists. Th ere are diff erent ideas as to what counts as an 
acceptable constructive logic underlying acceptable proofs. It is not clear, at 
this stage in our mathematical fi ndings, whether one type of constructive logic 
is better at avoiding paradox than another, or sets a better standard of reason-
ing and of manifesting understanding. Th e debate rages, and in the meantime 
there are a number of new constructive formal systems being developed. 
Th ere is too much choice; there are several diff erent constructive logics and 
they disagree with each other. Each has some philosophical motivation behind 
it and each can, in part, be defended. Th e problem is to choose between them. 
Moreover, we do have to make a choice. What counts as proper, successful, 
coherent or good mathematics counts on it.

7. Summary

Th e important points to retain from this chapter are:
• Intuitionism is a particular type of constructivism.
• Constructivists are all anti-realists, and so strongly oppose realism in 

mathematics.
• Th e constructivist is concerned about the standards for correct reasoning 

and understanding in mathematics.
• Correct reasoning is important both for our acquiring mathematical 

knowledge and for our ability to manifest that knowledge so that we can 
communicate that knowledge.

• For the constructivist, the notions of truth and falsity are tied to knowl-
edge. Th ere are no verifi cation-transcendent truths. Truth is epistemically 
constrained.



constructivism 125

• Th e constructivist constraints on “correct reasoning” are restrictive with 
respect to the “results” obtained using classical proof techniques. Th is is a 
major complaint for the classical mathematician against the constructivist. 
But it is a weak complaint, since it misses the point.

• Th e more devastating criticism of constructivism comes from within: with 
having to choose between diff erent constraints on “correct/acceptable” 
proofs.
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Chapter 6

A pot-pourri of philosophies of 
mathematics

1. Introduction

Frege took exception to three philosophies of mathematics: empiricism, psy-
chologism and formalism. His criticisms were so strong and infl uential that 
either little attention has been accorded to these philosophies, or they have 
been strongly modifi ed or retrenched in answer to his criticisms. Th e criti-
cisms can be found in the fi rst half of Frege’s Grundlagen (1980a) and in his 
correspondence, and they are well worth reading. In this chapter, we shall 
discuss these three philosophical positions as well as others that grew out of 
them. Th is will help us gain a better understanding of the positions we have 
discussed so far, since they will serve as a contrast.

Most of the sections of this chapter come in pairs, and should be read as 
such. Fictionalism (§3) can be seen as a rethinking of empiricism and natu-
ralism (§2). Husserl’s phenomenological approach (§5) is closely related to 
psychologism (§4). Hilbert (§7) is often thought of as a formalist (§6). Th e last 
two sections encourage a rethinking of the whole project of the philosophy 
of mathematics. Th e questions asked by a Meinongian philosophy of math-
ematics and by Imre Lakatos are diff erent. Interestingly, all these philosophical 
ideas, from empiricism to Hilbert, are fi nitistic in some sense. Th us we return 
to our notion of potential infi nity, and the view that mathematics is a process, 
not a static body of truths. So this chapter gives points of comparison with 
the subjects previously discussed and then goes on to give the reader a sense 
of the breadth of the philosophy of mathematics. 

Th e fi rst position we shall examine is that of empiricism. Roughly, this 
is the view that mathematics is simply an abstraction from empirical data. 
Empiricism is a type of anti-realism concerning mathematics in the sense that 
mathematics is parasitic on our experience of the physical world. So math-
ematics would not exist without the physical world to ground it. Furthermore, 
it is through sense experience of the physical world that we come to know 
mathematics. Th is implies that mathematical truths are neither eternal nor 
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independent of the physical world. Th e champion of this position is J. S. Mill. 
Among current philosophers, this position is of interest to those who are 
wedded to a causal theory of knowledge, where this has the following strin-
gent qualifi cations: (i) by “causal” we mean physically causes, where a physical 
theory of mechanics gives a canonical and implicit account of causation; and 
(ii) the only sort of knowledge that human beings can claim to have is causal 
in this sense. Th e result is that under a causal theory of knowledge we cannot 
literally (or directly) have knowledge of abstract entities. Either what seem to 
be abstract entities are not wholly abstract, or all of mathematics is a fi ction. If 
we take the “not wholly abstract” disjunct seriously, we are led to naturalism. 
Central to naturalism are the so-called “indispensability arguments”. Th ese are 
arguments to the eff ect that some part of mathematics is indispensable to our 
best physical theory and therefore we ought to take that part of mathematics 
to be true. Note that this type of argument reverses the logicist hierarchy of 
knowledge; for the naturalist, physics, and our observation statements, are at 
the top of the hierarchy. Th ey are the ultimate justifi cations for our theories, 
including our mathematical theories. If we take the other disjunct, and say 
that mathematics is a fi ction, then we believe that there is not much diff erence 
between our knowing about the character Hamlet and our knowing about the 
natural numbers. Th e fi ctionalist believes that the sentences of mathematics 
are all literally false, in the same way as sentences about Hamlet are literally 
false. Th ey can only be “true” when indexed to the context of the written work, 
in the case of “truths” about Hamlet that we get from the play; or traced back 
to a particular mathematical theory, in the case of mathematics. Outside these 
contexts the “facts” are false. 

Quite diff erent from the views above, we have formalism, which is seeing 
a revival. Th e revival, however, is largely implicit in the sense of not being 
widely published in philosophical circles. Formalism is the view that math-
ematics is a formal activity. What this entails is that, strictly speaking, math-
ematics has no meaning. All there is to mathematics is manipulation rules 
for the symbols. Th is resonates with intuitionist semantics. However, there 
are important diff erences between the intuitionist and the formalist. Th e for-
malist does not attribute meaning to mathematical expressions, whereas the 
intuitionist does. Moreover, formalists part company with the intuitionists 
when they insist that the rules of manipulation are somewhat arbitrary, in the 
sense that they need only to form a consistent system.1 For the intuitionist, a 
formal system is ultimately responsible to our pre-formally expressed intui-
tions. Also opposed to formalism, we fi nd the “classical” and/or realist view 
that the meaning of abstract symbols for logical connectives is given by the 
truth-table for the symbol. For a formal system, such as arithmetic, meaning 
is given by the numbers. Moreover, the semantic meaning relies on our insight 
into the true meaning and, ultimately, the formal representation is just that: 
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a representation of what we know to be true, independent of the representa-
tion. One of the keys to characterizing formalism lies in how the semantics of 
mathematics is analysed. For the formalist, there are no, or at least very few, 
external requirements on mathematics. In particular, applicability, appeal to 
intuition and truth are not required of mathematical systems. Importantly, 
for the formalist, mathematical sentences have no truth-value independent 
of the game in which they fi gure. Th e “game” analogy is taken quite seriously 
by formalists.

Th e current implicit revival of formalism comes from computer science. 
Computer scientists usually concede that computers do not understand what 
they do. Th ey just perform according to a set of rules, but this strictly mean-
ingless activity is mathematics, at least, this is mathematics to the compu-
ter scientist. Th erefore, there is no reason to attribute meaning, in any deep 
experiential or emotional sense, to mathematics. Th e implicit formalist and 
computer science infl uence runs deep. Consider a certain style of writing 
mathematics or logic texts. In this style, the author is very careful to describe 
all calculations meticulously, so meticulously that we need no longer appeal 
to some intuitive idea. Older logic texts, and more classical logic texts, are not 
so explicit. Th eir authors take it for granted that all the readers “have logic” 
intuitively. So the latent mathematical abilities of the reader only need to be 
drawn out and given names. Long explanations, or explicit rules and instruc-
tions, are unnecessary.

Another implicit endorsement of formalism can be detected in recent 
developments in formal algorithmic learning theory. Some mathematicians, 
and some social scientists and economists, view human beings as “essen-
tially” (analysable in terms of ) algorithms. Th is view is the inverse of the 
idea that machines imitate or project our calculating abilities. Instead, human 
beings are essentially machines, superior at some computational skills than 
computers, and inferior at others. Th e point is that some sorts of computer 
scientist think of all of our mental processes as ultimately mathematically 
describable. 

When the formalist takes this computer science inspiration, he sees our 
mental activity as essentially mechanical. Th is brings him close to psycholo-
gism. Psychologism (pronounced “psycho-low-gism” to distinguish it from 
“psy-cholo-gism”, the more general attribution of anything at all to psychol-
ogy) is the view that mathematical “objects” are mental constructs caused by, 
or supervening on, our brain confi gurations. Mathematics should be explained 
in terms of neuropsychology. Psychologism distances itself from empiricism. 
Mathematical truths are not grounded in the physical, outside us, but are 
grounded in mental activity. Th us, psychologism is anti-realist in the sense 
that mathematical truths are not eternal, and they are not independent of us. 
Whereas the  psychologist might see the machine as an imperfect imitator 
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of us, the formalist reverses this and sees us as an imperfect imitator of the 
machine. Th at is, for the psychologist we devised machines to calculate for 
us; they extend our abilities. Th e early champion of psychologism is Salomon 
Stricker,2 but the position was also given some attention by Husserl. Arguably, 
Husserl also modifi ed the view considerably, making his version of it an inte-
gral part of his phenomenology. Th us, we might call his more mature view the 
“phenomenological philosophy of mathematics”. Stricker and Husserl were 
both heavily criticized and dismissed by Frege, but there has recently been 
a revival of Husserl’s views. Th e revival both defends Husserl against Frege’s 
criticisms of psychologism, and integrates Husserl’s philosophy of mathemat-
ics into the rest of his philosophy.

When we discuss the philosophy of mathematics, we might ask diff erent 
sorts of questions than the ones we have been asking so far concerning epis-
temology and ontology. Husserl is concerned with the phenomenology of 
mathematics; that is, with the nature of our (shared or objective) experience 
of mathematics. He is not so concerned with ontology, and his take on epis-
temology is subtly diff erent from other philosophies of mathematics. In §9 we 
shall see another position that does not take ontology and epistemology to be 
the central questions in the philosophy of mathematics. Lakatos is interested 
in the development of mathematical thinking. He is interested not so much 
in the history (although he paid a lot of attention to it) as in the mechanisms 
for deep changes in mathematical thinking. We saw a little of this in Chapter 
4, but whereas this is more of a diagnostic issue for the structuralist, it is 
a central issue for Lakatos. Interestingly, Lakatos believes that rather than 
really constructing mathematics like a building, with sets of truths carefully 
aligning with each other like bricks, we learn more from making mistakes 
in mathematics than by getting right answers. Th e refutations of purported 
proofs are what lead to the signifi cant developments in mathematics. Yet 
another approach is to ask not “What is the essence of mathematics?”, but 
rather, “What is the ‘conceptual space’ within which mathematical activity 
takes place?” To discuss this contextual space, the Meinongian philosophy of 
mathematics (§8), needs an underlying logic, and this has to be maximally 
permissive. So, as in Chapters 3 and 5, we see the deep relationship between 
logic and mathematics.

2. Empiricism and naturalism

“Naturalism” is the modern version of “empiricism”. Empiricism was cham-
pioned by J. S. Mill (1806–73), who wrote that assertions about numbers are 
assertions of observed, or physical, fact (1970: bk. II, esp. ch. vi, §2).3 Th at is, 
for a diehard empiricist such as Mill, there is nothing beyond physical facts. 
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We begin with the very strong claim that all our knowledge is empirical. We 
learn to count by counting physical objects, such as pebbles. We learn to sub-
tract by taking some pebbles away from our gathered pebbles. We observe 
that we have the same number of pebbles, even when we arrange them slightly 
diff erently. We can try to divide the number of pebbles in half by alternately 
placing them in two diff erent piles, and then counting each pile to see if they 
have the same number of pebbles or not. Roughly, this pebble-counting story 
(Mill’s analogy) accounts for arithmetic. What is important is that arithmetic 
begins with observations, and physical objects. Mathematics is an inductive 
science grounded in observation of the physical world. Geometry is presumably 
learned through engineering, through drawing and physical experimentation 
with the drawings.

Th e immediate problem with this position is that Mill, and other empir-
icists, are hard pressed to explain the existence of mathematics that goes 
beyond the observable. For example, we cannot straightforwardly claim that 
we directly see that the number of trees in the fi eld is 0, for what we see are 
physical objects, not the absence of objects. We cannot touch, see, smell or 
taste absent objects. But recall Maddy’s distinction between seeing and per-
ceiving. Seeing is the purely physical activity that concerns the working of the 
eye and the refl ection of light and perceiving includes a selection and inter-
pretation of what it is we see. We cannot see 0 trees, but we can observe, or 
perceive that there are no trees. Th e empiricist now has to explain the diff er-
ence between seeing and perceiving. One way of doing this is to follow Maddy. 
But we saw already that this approach suff ers from implausibility. Recall that 
this was because Maddy’s distinction between seeing and perceiving rests on 
our bringing our highly mathematically trained concepts to bear on what we 
see, in order to count as an act of mathematical perception. Th e problem with 
this, from the empiricist point of view is that this gets things wrong because 
the concepts have to emerge from the tangible physical world, not be imposed 
on the world from our mathematically trained minds. Th is is the whole point 
about empiricism. Mathematics is empirical. Perceiving has to be grounded in 
empirical facts, not be a mixture of empirical and conceptual facts. Similarly 
problematic is the observation that there are exactly 46,983 trees in a given 
delineated forest. We might count them, but with large numbers we could 
make mistakes, missing trees out, or counting some twice. Again, we might 
perceive that there are 46,983 trees. We do not directly see 46,983 trees. Th e 
numbers are too big to really see that many all at once. If we do see that many, 
say by looking over a valley on a clear day, then we cannot really say that this 
sight is diff erent from the sight of 46,980 trees. We cannot perceptively distin-
guish these numbers. It is not our sight mechanism that allows us to tell the 
diff erence between the two numbers. We can only distinguish the numbers 
abstractly, for example, by saying that one is an even number, and the other is 
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odd. Th e empiricist also has a hard time explaining how we might distinguish 
between observing that there are negative two pots in the sink from observing 
that there are negative three pots in the sink. All negative numbers look the 
same. Yet for the empiricist it is vital that mathematics be nothing above and 
beyond the empirical or physical world. So mathematics has to be explained 
in terms of the physical world, which is available to our senses. 

Th ere are two ways to go. Th e empiricist could bite the bullet and say 
that there are only a few fi nite numbers: those that we can observe directly, 
so “observation” does not reach beyond seeing. Th e rest of the numbers are 
a delusion, or are essentially interchangeable. Th ere is no real diff erence 
between 46,983 and 46,980. Unfortunately, this sort of strict fi nitism is not 
very practical in our society, especially when we discount diff erences in nega-
tive numbers. It would be awkward to argue in a court of law that there is no 
diff erence between owing someone £3,000 and owing someone £30,000. In 
order to function in our society, the empiricist would have to learn a way of 
speaking that would allow him to function in such a way as not to give away 
his view that diff erences between very large numbers or negative numbers 
is, at best, approximate.

Th e other way to go is to try to be a little more sophisticated, and say that 
mathematics originates in sense experience, but much of mathematics is a 
projection based on the initial observations. What the empiricist concedes is 
some sort of induction, in the sense of generalization, from the fi nite observ-
able empirical to the less observable. Th en to account for numbers such as 
0, negative numbers or large numbers, the observer generalizes on various 
rules such as addition, multiplication and negation. “Generalizing” just means 
going beyond the direct sighting. Th is is what allows us to do arithmetic in our 
heads, without physical objects in front of us. “Going beyond direct sighting” 
involves an imaginative leap, where we say something like “we can imagine 
counting 327 pebbles”. 

Apart from the diffi  culty of giving an empirical account of this projection 
(without reference to a priori mathematics), we could also ask about infi nity. 
We could try to ground infi nity in the physical by pointing out that the physi-
cal universe is infi nite, or some aspect (time or space) of the physical universe 
is infi nite. Some current cosmological theories assume the infi nity of space 
and/or time, but it is not clear that they have to. After all, what cosmologists 
are trying to account for is the cosmos in time. Th e cosmos is really just the 
physical matter. Th ere are a fi nite number of fundamental particles in this 
universe. Th e infi nity of space or time is consistent with many cosmological 
theories, but is not necessary for these theories. 

Th e empiricist has to off er a diagnosis as to what happens when we dis-
cuss, contemplate or reason about infi nite numbers. Th ere are two gen-
eral  strategies. One is to say that it is simply not “useful” to discuss infi nite 
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 numbers; the other is to say that it is not “rational” to discuss such numbers. 
We saw the “not rational” strategy in Chapter 4. So, here, let us look at the fi rst 
strategy. Th ere is some confusion as to what counts as “useful”, for it is usu-
ally a relative term: one thing is useful for something else. But be aware that 
whenever a philosopher cites usefulness one has to wonder whether there is 
any irony in what she says.4 Th e empiricist cannot argue for infi nite numbers 
in mathematics on the grounds of usefulness, for “useful” does not imply exist-
ence; there are “useful” fi ctions (we shall look at fi ctionalism in §3).

Returning to the charge of the uselessness of infi nitary mathematics, we 
might say that for purposes of mere survival we probably need no more than 
the fi rst fi ve natural numbers. But this is not what the empiricist wants. Th e 
empiricist is not giving the philosophy of that part of mathematics that is 
essential to survival. Rather, she wants to give a philosophy of mathematics 
that is grounded in the physical world that we can observe. As long as we can 
use a number to count an object in the universe, then it is a number. Th en 
we can ask: why is it that the empiricist chooses to limit herself to counting 
physical objects? Why not count abstract objects, such as concepts, or num-
bers themselves? Moreover, why does the empiricist think that she has the 
right to impose this choice on others? After all, mathematicians fi nd it very 
useful to talk about infi nite numbers. 

Here is a diagnosis. Th e choice the empiricist makes has to do with trust. 
Th e empiricist is someone who, illusions notwithstanding, trusts her senses 
fi rst, before any fl ights of reason (as opposed to the rationalist who trusts his 
reason above sense experience). Th is placement of trust seems to be a matter 
of personal taste or philosophical temperament. Th is is because the debate 
between rationalists and empiricists has not yet been resolved; and the issue 
is diffi  cult, if not impossible, to resolve. Th is is indicated by the fact that the 
empiricist will (as will the rationalist too in his own way) start to beg the 
question against herself. 

Th e conclusion is that there is a consistent empiricist position about 
mathematics. Mathematically, it is an agnostic position, metaphysically 
motivated by trust in observation statements. Th e negative side is that to 
the more rationalist-minded philosopher, empiricism and naturalism get 
the cart before the horse, for, in these philosophies what turns out to be 
good mathematics, and what turns out to be bad, is hostage to a choice of 
physical theory. Th is is backwards for the rationalist, because physical the-
ory has to obey mathematics, and not the other way around. A physical 
 theory that claims that 4 + 5 = 62 is just not coherent; and yet the empiricist 
cannot reject that physical theory by appeal to mathematics, even in part. 
Th e choice of physical theory will require its own motivation, independent 
of mathematics. Th is sort of position will encounter fi erce opposition from 
the rationalist. 
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3. Fictionalism

Fictionalism was developed by Hartry Field in his two books Science Without 
Numbers (1980) and Realism, Mathematics and Modality (1989). Fictionalism 
is the position that there is not a great deal of diff erence between discussing 
fi ctional objects, or fi ctional characters such as Moosbrugger,5 and discussing 
mathematical objects such as the number 3. “Moosbrugger is a terrible, and 
simple-minded murderer” is literally false, because there is no Moosbrugger. 
Similarly, 3 < 7 is literally false, because 3 and 7 do not exist: they are liter-
ally fi ctions. A mathematical theory is like a work of fi ction. We have to work 
within the constraints of the theory. Th e comparison between works of fi ction 
and mathematical theories works surprisingly well. Not all fi ction has been 
written. Similarly, there are many mathematical theories being developed. 
Mathematical theories are “fi nished” or self-standing when they have been 
axiomatized; all we then have to do is work out what follows from the axioms. 
Similarly, a work of fi ction can be published, and then literary critics, or read-
ers, are free to work out the implications of the fi ction, or learn what lessons 
they can from it. We spend much time working out the implications of a work 
of fi ction; see the many classes on English literature. Similarly, we spend much 
time working out the implications of certain mathematical theories; see the 
many classes in mathematics. Some works of fi ction are given more attention 
than others, just like some theories in mathematics. Some works of fi ction are 
more relevant to our lives than others. Similarly, some theories of mathemat-
ics are more easily applicable than others. Th ere can be rigorous discussion 
about what follows from a work of fi ction. In particular, if a work of fi ction is 
found to be internally inconsistent, then we tend to reject it.

Th ere are disanalogies too: with respect to mathematical theories, many 
mathematicians contribute to the development of one theory, whereas works 
of fi ction tend to be written by one person. But this is just a coincidence. Works 
of fi ction could be written by several people.6 More importantly, we tend to think 
that while there might be vigorous disagreement about some interpretation of a 
work of fi ction, there will be rigorous means of testing in the case of mathemat-
ics. Th at is, normative discussions in mathematics can be resolved, whereas often 
they cannot be resolved when discussing fi ction. Sociologically, there is another 
important diff erence. If someone runs to a department of literature and exclaims 
“It is not literally true that ‘Moosbrugger is a terrible, and simple-minded mur-
derer’”, he will be met with a shrug of the shoulders. Nothing surprising was 
exclaimed. In contrast, if someone runs to the mathematics department and 
exclaims “It is not literally true that ‘2 + 4 = 6’”, she will be met with an incredu-
lous stare. But how might the fi ctionalist position be defended?

Th e fi ctionalist contends that the diff erence between fi ction and math-
ematics is one of degree, not one of type. While Clarisse might claim that 
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Moosbrugger is musical and, in the fi ction, he does sing and dance briefl y, it 
does not follow that he is really musical, not because he does not exist, but 
because of the lack of evidence in the fi ction. Th e discussion cannot be rigor-
ous because the terms are vague and ambiguous. What it means to “be musi-
cal” might be diff erent for Clarisse than for an arbitrary reader. We cannot 
further interview Clarisse. Or we might also disagree as to what counts as 
evidence that someone is musical; his once dancing and singing in his prison 
cell is not enough to claim that Moosbrugger is musical. Th e issue cannot 
strictly be resolved in discussing fi ction.

In contrast to literary fi ction, ambiguity and vagueness are maximally 
expunged from mathematics. Th is is what allows us to have rigorous discus-
sions and proofs. Th e purposes of writing fi ction and writing up a mathemati-
cal theory might be diff erent, but the fi ctional nature of the two is the same, 
according to the fi ctionalist. Th e diff erences are of degree, not of nature.

Mathematical “truth” is relativized to a theory, just as a fi ctional “truth” is 
relative to a work of fi ction.

[T]he fi ctionalist can say that the sense in which “2 + 2 = 4” is true 
is pretty much the same as the sense in which “Oliver Twist lived in 
London” is true: the latter is true only in the sense that it is true accord-
ing to a certain well-known story, and the former is true only in that it 
is true according to standard mathematics. (Field 1989: 3)

Th e question now is: should we believe “standard mathematics”? More care-
fully, do the objects of mathematics exist, and is standard mathematics a theory 
about these? If, along with the fi ctionalist, we only trust our sense data as giving 
evidence for something existing, we are inclined to answer yes to the fi rst ques-
tion, and no to the second, for mathematics is a sort of convenient fi ction. Th e 
standard mathematics is “standard” in virtue of its being readily applied to the 
physical world. However, this is not enough, says the fi ctionalist, to warrant the 
ontological claim that mathematical entities exist. Evoking the indispensability 
argument, mathematics is essential to physics, and it is that essential part of 
mathematics that is standard. 

Th e naturalist is someone who argues that whatever part of mathematics is 
indispensable to our best physical theory is true, since physics is true. So, the 
entities posited by the mathematical theory exist on a par with the entities pos-
ited by the physical theory. Th at is, the mathematics cannot be divorced from 
scientifi c explanations. It is not as though we have one part that is the physi-
cal part, and one part that is the mathematical part. Th e “two” are completely 
enmeshed. If well run, the indispensability argument is enough to convince the 
philosopher who favours sense-perception data, over pure logic and rationality 
as a source of knowledge, to accept “standard” mathematics as true.
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Th e fi ctionalist resists the conclusion drawn by the naturalist, and says 
that the mathematical “entities” are nonexistent because not physical. Th e 
argument runs as follows.  In Science Without Numbers, Field shows us how 
to do some science (mechanics) without literally appealing to numbers. In 
other words, Field shows that the entities of arithmetic, namely numbers, are 
dispensable with respect to our physical theory of mechanics. Th e idea is that 
we should be able to extend the project to explain more of physics, chemistry 
and biology. In so far as we can do that, we do not really need numbers to do 
science; numbers have been extricated from science. Th e ontology underlying 
standard mathematics has been shown to be separable from physics, so the 
ontology of standard mathematics is not indispensable to our scientifi c theory. 
Th is is supposed to undercut the indispensability argument for believing in 
mathematical entities. Standard mathematics is not literally true.

Th ere is a glitch. Philosophers are sceptical about how far we can extend 
the programme initiated by Field. In particular, they notice that the notions of 
space and time, so in particular all the space-time points, are not eradicated 
from Field’s version of mechanics. To do mechanics, we have to be able to dis-
tinguish space-time points from each other, and once we start to do this, we 
have enough mathematical entities, namely, all the members of the continuum, 
to re-establish the ontology of standard mathematics as indispensable. Th is is 
not a fi nal criticism. Th e fi ctionalist can take it as a challenge: to see if we can 
extend the programme to really reproduce the results of the whole of physics 
without ever making appeal to a set of mathematical objects, such as numbers. 
Also, it is worth noting that in order to undercut the indispensability argument, 
it might be enough just to show that what is indispensable to physics is not 
some unique part of mathematics. Rather, we might be able to show that there 
are several diff erent, equivalent, ways of re-expressing the results of physics, 
each appealing to a diff erent mathematical theory, with diff erent mathematical 
objects (real numbers, natural numbers, lines and points on a graph, etc.). Th e 
diff erent theories would be equivalent with respect to the central virtues of the 
physical theory, such as predictive power, explanatory power and fi t with other 
theories. What this would show is that there is no privileged mathematics that 
is indispensable to physics, but rather that there is a disjunction of mathemati-
cal theories, one of which is indispensable: either arithmetic, or analysis, or 
geometry, or topology, or set theory and so on. We can choose which one on 
the basis of effi  ciency, familiarity, fi t with other theories, or other considera-
tions that are not purely mathematical. Th e indispensability argument is then 
substantially weakened, for it then says that in so far as we are committed to 
the entities in physics we also have to be committed to some mathematical 
entities, but it is not at all clear which ones. 

Th is “disjunctive version” of the indispensability argument is not enough to 
vindicate fi ctionalism, for we cannot conclude that therefore no  mathematical 



a pot-pourri of philosophies of mathematics 137

entities literally exist, so all mathematics is literally false. Th e arch-enemy of 
the fi ctionalist, the realist about mathematical entities, could simply retort 
that it is true that there are a number of diff erent sets of mathematical entities, 
each a candidate for indispensability to physics. However, one of them is the 
privileged class of mathematical objects, we just do not know which one on 
the basis of physics alone. Our physical theory is not discriminating enough 
to tell us which one. We simply have to look at other evidence to narrow the 
pool of possibilities. At best, the fi ctionalist project is too incomplete to be well 
supported. At worst, it is not possible to complete it.

Th e other major problem that the fi ctionalist faces is to account for the 
rigour of argument in mathematics. Many mathematicians and philosophers 
instinctively feel that the rigour of argument is signifi cantly diff erent from that 
of arguments concerning fi ctional characters. It is not just a matter of degree, 
as we suggested above, but a diff erence in type. For this reason, the fi ction-
alist argument from analogy with fi ction is not convincing to many math-
ematicians or philosophers. Th e dispute concerns whether the arguments in 
mathematics really are of a diff erent type than those concerning fi ction. Here 
we reach a stalemate, or challenge, since it is not clear what would count as 
showing that the rigour we are used to in mathematics is “of a diff erent type” 
than the rigour we see in arguments about fi ction.

4. Psychologism

Psychologism is similar to fi ctionalism in the sense that the objects of math-
ematics, such as numbers, are mental rather than physical constructs. Th e 
psychologist in interested in the word “mental”: in “mental construct”. Th e 
fi ctionalist is interested in the metaphysical implications of the claim that 
mathematical objects are mental constructs. In contrast, the psychologist 
reduces mathematics to activity in the brain. Mathematics is no more than 
brain activity. Th us, 2 + 8 = 10 is no more than a series of mental computations 
that, with training, some of us fi nd easier to do than others. Stricker was one 
of the fi rst to propose psychologism.7 His version is rather crude and easy to 
ridicule. However, psychologism takes an interesting direction when we look 
at Husserl’s phenomenological approach to the foundations of mathematics. 
In some places Husserl seems to be a psychologist. However, it is also clear 
that his position is not entirely psychologist, for it is intimately related to his 
development of phenomenology. 

According to Frege, Stricker claimed that mathematics is in us and is depend-
ent on psychology. “Stricker … calls our ideas of number motor phenomena 
and makes them dependent on muscular sensations” (Frege 1980a: v). Frege 
goes on to lampoon this position and makes two important points. 
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[N]o mathematician can recognise his numbers in such stuff  or knows 
what on earth to make of such a proposition. An arithmetic founded on 
muscular sensations would certainly turn out sensational enough, but 
also every bit as vague as its foundation. No, sensations are absolutely 
no concern of arithmetic. No more are mental pictures, formed from 
the amalgamated traces of earlier sense impressions. All these phases of 
consciousness are characteristically fl uctuating and indefi nite, in strong 
contrast to the defi niteness and fi xity of the concepts and objects of 
mathematics. (Ibid.: v–vi)

As Frege describes it, the psychologist position is easy to dismiss. However, 
let us take a closer look at it, while addressing his general points against the 
psychologist. We can update the reference to “muscular sensations” in the fi rst 
quotation by replacing it with “neurons fi ring”, and similarly update “motor-
phenomena” by replacing it with “neurological phenomena”. Th e fi rst point 
Frege makes is that the mathematician cannot recognize his mathematics in 
a neurological description; the second is that psychology cannot account for 
the “defi niteness and fi xity” of mathematics.

On the fi rst point, psychologism, like fi ctionalism and Hellman’s structur-
alism, is an eliminativist philosophy of mathematics. According to the psy-
chologist, we should be able to re-express mathematical sentences in terms of 
neurological descriptions. Th is is a radical idea: that we should be able, once we 
have done enough neuroscience, to rewrite mathematical textbooks with neu-
rological descriptions instead of equations written in mathematical language. 
Th e textbooks would look rather diff erent than they do today. Frege’s point is 
that it is not at all clear that the researcher in mathematics would fi nd such a 
book illuminating at all, with respect to mathematics, although, as Frege says, 
it would be sensational enough, in its own right. Th ere are diff erent degrees of 
eliminativism. Th e most radical version would say that we ought to replace all 
our talk of mathematics with talk of neuroscience, so rewrite the textbooks. 
Th e less radical version is to accept that, while in principle we could do this, it 
is not practical to do so. Nevertheless, the less radical version continues, the 
truths of mathematics are not based on a fi ction, or on real entities. Rather, 
mathematical truths are based on how our brains are constructed. So we could 
rewrite the textbooks, although for practical reasons we will not insist on this; 
but if one wants to know the deeper truth of the matter, then one had better 
start reading neuroscience. Th e radical version is diffi  cult to accept now, given 
our present understanding, and at best looks like something we could only do 
in the distant future, if at all. Th e less radical psychologist position also involves 
a future projection: we still have to show that we can map the equation 6 + 7 = 
13 to some neurons fi ring, and 6 + 18 = 24 to some other neurons fi ring, and at 
this stage in brain research this is still a distant hope. 
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 On the second point made by Frege, a sceptic can resist the reduction 
from mathematics to neuroscience. Frege’s point is that the psychologist 
could never hope to explain why arithmetic is this way and not another way, 
for, Frege might argue, our mental make-up is accidental with respect to 
arithmetic. Our brains do not determine mathematics. Our brains enable 
us to discover mathematics. It is necessary for us to have brains to do this, 
but that is not all there is to mathematics. Our knowledge of mathematics 
might depend on our having brains, but the brains do not explain mathemat-
ics. According to Frege, arithmetic could not depend on how our brains are 
constructed, because if that were the case and our brains were constructed 
diff erently, our arithmetic would be diff erent. In other words, psychologism 
makes mathematics implausibly subjective, because it makes it dependent 
on brain confi guration. For Frege, the objectivity of mathematics rests not 
on a biological or neurological fact, but on a conceptual epistemological fact, 
lying outside us. Consider our practice of mathematics. If, in a classroom, a 
child learning to add were to say to the teacher “I feel/sense/compute that 2 
+ 8 really equals 12”, it would be ridiculous for the teacher to reply “Oh, well, 
you just have a diff erent arithmetic, due to your personal neurological make-
up. I’ll send you to the surgeon to fi x the problem”. Th e aberrant adding is 
not fi xed with surgery; it is fi xed by aligning the concepts. But, the psycholo-
gist has to defend the idea that, given enough neuroscience, it would not be 
inappropriate to send the aberrant child to the surgeon, rather than go over 
the meanings of the terms in the equation. Again, this sort of science-fi ction 
mathematics is unrecognizable to us now.

Th e psychologist might reply that modern neuroscience has the hope of 
drawing a fairly accurate map of the brain in the relatively near future. So 
the charge of “subjectivity” that Frege levels at psychologism is no longer 
apposite. It might well be the case that there is a defi nite and precise rapport 
between certain mathematical operations and particular brain activities. In 
other words, there might be a reduction of mathematics to brain activity, and 
there might be some sort of explanation of mathematics in terms of brain 
activity. Finding the mechanisms, and being able to surgically, or chemically, 
alter them, is only a question of time.

However, one has to ask, as Frege did when he says that “the mathemati-
cian cannot recognise his numbers in such stuff ”, why one would be interested 
in this reduction, and what sort of explanation is being given. Th is sort of 
explanation might explain how, or why, it is that a particular person is having 
diffi  culty with learning division, or why it is that we need so much practice 
in order to grasp certain mathematical operations. Th is sort of explanation 
might help with tolerance in teaching mathematics, but it is not the sort of 
explanation that will help with developing further mathematics. Th is is why 
the mathematician “cannot recognise his numbers in such stuff ”. Th is is also 
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why this reduction or explanation is important to the psychologist, neurolo-
gist, cognitive scientist, or teacher, but not to the mathematician. 

However, the psychologist might still maintain that brain activity is essen-
tially what mathematics is. Th e reduction indicates the origin; and the origin 
gives us the essence and the limitations of the subject. Maybe some things are 
inconceivable (cannot be confi gured in the brain), and therefore will never be 
a part of mathematics. If this is right, then the reduction would have philo-
sophical importance, if not mathematical importance. However, Frege has a 
reply to this too.

Never let us take the description of the origin of an idea for a defi ni-
tion, or an account of the mental and physical conditions on which we 
become conscious of a proposition for a proof of it. A proposition may 
be thought, and again it may be true; let us never confuse these two 
things. (1980a: vi)

A philosophy of mathematics is supposed to justify mathematics, not account for 
our thinking it at all. Psychologism might account for our interest in, or activity 
involving mathematics, but it cannot account for the truth of mathematics.

On careful examination, Frege’s rebuke is not so strong. While it may be 
appropriate to draw this distinction sometimes, it is not clear that it is entirely 
appropriate in this case. To claim that the distinction is appropriate, here, one 
has to appeal to something like the independence of mathematics to the thinker 
of the mathematics; and this is exactly what is at issue. Th e psychologist cannot 
divorce the thinker from the mathematics. Th e realist can and has to. Th us the 
two are talking at cross purposes.

Moreover, psychologism also implies that consensus over, say, basic arith-
metic, depends only on the brain’s confi guration. Once the psychologist argues 
this, then she also has to account for the consensus over arithmetic truths. Th e 
psychologist could say one of three things: (i) it is miraculous, or coincidental 
(which is not a good move in philosophy); (ii) there are evolutionary reasons 
that explain the consensus; (iii) in deconstructionist mode, we might venture 
that there actually is little consensus, we just think there is. 

Th e evolutionary account will not do. It is better suited to supporting real-
ism. Consider the fact that diff erent groups of people, isolated from each 
other, still develop the same arithmetic, albeit to diff erent stages. In so far as 
this is the case, then that development of the same arithmetic rests on the 
underlying reality of arithmetic as being in the world, since it is evolutionarily 
advantageous for us to cotton on to the real arithmetic, and not something 
else. On this account, we select for the real arithmetic, and then the arithmetic 
is real independent of us. It is in the world: our evolution helps us to grasp it, 
but does not create it.
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Th e last tack for the psychologist is more radical, and essentially involves 
a deconstruction of mathematical practice. Th e psychologist could argue as 
follows. We delude ourselves when we say that there is complete consensus 
concerning mathematics. Th ere is no fundamental consensus. Instead, con-
sensus is a social construct. Th ere is enormous normative pressure in the 
classroom to get the mathematics right. We learn to conform to the thinking 
the teacher projects, for sociological and psychological reasons. Th ese are 
not mathematical reasons. As students, we feel the psychological pressure 
and we respond by suppressing our fi rst instincts to add in our own way, and 
reinforce the teacher’s way in order to conform. 

Th is story, too, is not very plausible. First, many people are instinctively 
rebellious, and no one thinks of developing odd mathematics as a political 
ploy, which it would be if the deconstructionist psychologist’s story were a 
good one. Secondly, the classroom-pressure idea only makes sense in a mod-
ern setting, where we have the right sort of classrooms. Mathematics is very 
ancient. It was developed independently in diff erent parts of the world. Th e 
teaching of mathematics was carried out in diff erent ways, and none allowed 
diff erences of opinion on basic equations to go unchecked.

In conclusion to this section, it is probably most devastating to the psy-
chologist position to point out that this reduction is in no way helpful to the 
mathematician qua mathematician, as opposed to a teacher of mathematics, 
or neuroscientist, to whom fi ndings about the relationship between brain 
activity and mathematical calculations in human beings might be helpful. 
Even if the neuroscientist were to say that we can develop mathematics by 
stimulating certain parts of the brain in the right order, or something like that, 
this is still not satisfying for the mathematician, for she is not interested in 
brain activity. She is interested in mathematics as a subject that is treated as 
incidental to particular brain activities. Th e means of stimulating mathemati-
cal thought should not be confused with the subject of mathematical thought. 
Th e elimination of mathematics in favour of psychology is too distorting to 
be of interest as a philosophy.

5. Husserl

Frege accused Husserl of being a psychologist, and some of the remarks 
Husserl makes would certainly support the accusation, especially in some 
passages of his early writings. However, some philosophers today argue that 
it is too simplistic to view Husserl’s writings on mathematics as psychologis-
tic.8 In fact, he was deeply distrustful of psychologism, even before Frege’s 
accusations.9 Instead, these philosophers argue that it is better to think of 
Husserl’s philosophy of mathematics in the context of his phenomenology. 



142 introducing philosophy of mathematics

Th us, Husserl is better characterized as giving a phenomenological philoso-
phy of mathematics.

What does this mean? Th e phenomenologist is someone who takes our 
experience of the world to be the most fundamental area of enquiry. Th e point 
of philosophy is to enquire about the nature of our experience of the world, 
and mathematics in our case. Experience involves both sense experience and 
mental activity. Central to the mental activity is intentionality. Intentionality 
bears on, and modifi es, propositions. Propositions are facts. Grammatically, 
propositions are announced by the word “that” in English: “that Elizabeth had 
her hair done”, “that the cat is on the mat”, “that 2 + 5 = 7”. Diff erent sorts of 
intentional attitudes (modifi ers/operators) include belief, knowledge, fears, 
wishes and so on. Intentionality accounts for our focusing our attention on 
an object. It also gives information about the attitude, or type of attention, we 
are bringing to bear on an object. Th e phenomenological approach to the phi-
losophy of mathematics consists in reporting on experience, not on a personal 
level, but on a general and impersonal level. Th e purpose is to understand the 
very nature of experience itself, as a general, intentional, not personal, phe-
nomenon. Th e following explanation of phenomenology should help.

I begin … by inviting you to engage in a very simple exercise … Th is 
exercise involves little more than continuing to do what you are doing 
right now, which at least includes looking at the words printed on the 
page in this book. … Th at you are looking at the words on this page, 
that you are reading, means, among other things, that you are engaged 
in the act of seeing, or, to be a bit fancier but perhaps no less awkward, 
that you are currently having or enjoying visual experience. Now, sup-
pose you are asked to describe what you see. In response, you may note 
such things as the page before you, along with the words and letters, and 
perhaps also the shape of the page, the shape and colour of the letters. 
You may even read aloud the words that are occupying you the moment 
the request is entered. You may also, if you are being especially careful 
and attentive, say something about the background that forms a fi eld 
on which the page appears. … [C]onsider a slightly diff erent request. 
Instead of being asked to describe what you see, the “objects” of your 
visual experience, suppose you were asked to describe your seeing of the 
objects. Here, you are being asked to shift your attention away from the 
things you see to your visual experience of these things, and here you 
may fi nd the request a little less straightforward …
 I happen to wear glasses. If I were to take them off  while looking at 
the page of the book held at the usual half-arm’s length away, the letters, 
words and page would, as I might put it, become blurry … Th at there are 
descriptions that apply to visual experience without necessarily  applying 
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to the objects of that experience helps to make vivid the distinction we 
are trying to delineate between what we see and our seeing of it. To 
concentrate on the latter, to focus one’s attention not so much on what 
one experiences out there in the world but on one’s experience of the 
world, is to take the fi rst step in the practice of phenomenology. Th e 
word “phenomenology” means “the study of phenomena”, where the 
notion of a phenomenon coincides, roughly, with the notion of experi-
ence. Th us, to attend to experience rather than what is experienced is 
to attend to the phenomena …
 … Phenomenology … invites us to stay with what I am calling here 
“the experience itself ”, to concentrate on its character and structure 
rather than whatever it is that might underlie it or be causally respon-
sible for it. (Cerbone 2006: 2–3)

Husserl’s idea is to provide a “science of consciousness”. We study conscious-
ness in a systematic way, not as an object as we do in neuroscience, but as 
“noetic” experiences: experiences that lead us to knowledge, understanding 
and experience of the world. What Husserl is interested in is the relationship 
between knowledge and experience: how experience can teach us anything at 
all. Our consciousness is what allows us to know and understand, and make 
sense of the world around us. Th is knowing, understanding and making sense 
of the world is subjected to analysis by Husserl. Th ere is a certain structure 
to experience, and there are pre-conditions to experience, since experience is 
intentional. Th at is, we must have intentionality, which presupposes that we 
have brought our attention to bear on an “object of experience” in order to have 
an experience of an object. Our conscious experience has to have structure; we 
usually have some battery of concepts that we can bring to bear on our experi-
ence, since these will shape our experience. If we now consider mathematics and 
logic, the analysis becomes quite interesting, for it is our experience of abstract 
objects that we analyse: how we come to know and understand these. Further, 
we want to understand the interplay between our experience and knowledge 
of the abstract with our knowledge and understanding of the concrete. Husserl 
is deeply impressed by the rigour and objectivity of mathematics. Moreover, 
mathematical objects, in the sense of objects of study, are “ideal objects”. Th ey 
are not physical, and we do not experience them through our sense perceptions. 
Nevertheless, they are entirely objective. We cannot change them at will.

We can understand better if we contrast Husserl’s phenomenological 
approach to mathematics to both empiricism and psychologism. Th e empir-
icist believes that our knowledge exclusively stems from experience of the 
physical world, and cannot reach beyond this experience. Here experience is 
very much thought of as sense experience. Th e empiricist does not enquire 
into the nature of experience per se. Th is is taken for granted, and as  primitive, 
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so it cannot be further analysed. Th e empiricist is interested in grounding, or 
justifying, our knowledge by tracing it back to sense experience. Th e empiri-
cist trusts his senses. In fact, knowledge can only be gained through sense 
experience. My seeing three trees before me is good evidence that there are 
three trees before me. In contrast, the phenomenologist is interested in the 
more abstract questions of what it is like to be seeing three trees, and what 
it is to count three of them, and this has to do with our intentional stance 
towards the objects of attention, not with our sense experience of the objects. 
Th e phenomenologist is not interested in gathering empirical facts, and ascer-
taining how sure we can be of these facts but, rather, in refl ecting on the 
activity of mathematical fact-gathering as one type of experience that we 
have. Moreover, Husserl is quite aware that work with mathematics reaches 
well beyond the physical world. In fact, he agrees with Frege that mathemat-
ics itself comes before the physical world. Th e application of mathematics 
to the physical world is a diff erent sort of activity or experience from that of 
thinking of pure or ideal mathematics.

Let us turn to the contrast between the psychologist and the phenom-
enologist. Th e psychologist reduces mathematical activity to brain activity. 
Th e forming of mathematical concepts is reducible to physical changes in the 
brain. Th e phenomenologist is interested not so much in particular math-
ematical experiences, but in the experience of mathematics quite generally. 
Th e exploration of this will not, for the phenomenologist, degenerate into 
a discussion of neurons fi ring or other brain activity; nor will it degenerate 
into a discussion about certain brain types having more or less propensity for 
mental calculation. Rather, the phenomenologist is interested in what hap-
pens conceptually when we form a concept of a number, not with respect to 
our physical brains, but with respect to how this changes our perception of 
the world, how it might infl uence our further experience, or how it is that we 
come up with a judgement involving mathematical concepts. For example, the 
phenomenologist might ask how it is that we come to say that there are three 
trees, or that there are no lemons. More interestingly, the phenomenologist 
will enquire after, say, an axiom of infi nity. How do we justify this? What is 
our experience of the justifi cation, and how does our experience of abstract 
objects justify the axiom? 

Note that Husserl is not interested only in easy and elementary mathemat-
ics. He studied a lot of mathematics and was, for 15 years, a colleague and 
friend of Cantor (Hill & Haddock 2000: xi). So he was well versed in very 
abstract mathematics. What does it mean for us to be conscious of a new (to 
us) mathematical object? We have to have some intention towards the object. 
Maybe this is provoked by curiosity, or a prompting from a teacher. Our inten-
tion has to be precise enough for us to recognize the object when we grasp or 
apprehend it. We have to be able to distinguish that object from another, that 
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is, say, distinguish the infi nite set of natural numbers from the infi nite set of 
even numbers. Th ese are purely mathematical experiences. When we learn 
some new mathematics we learn to discern new mathematical objects, or rela-
tions between mathematical objects. We witnessed this in the discussion of 
the actual infi nite in Chapter 1. Which mathematical sentences are true is told 
to us by mathematicians. Which mathematical objects exist is also told to us 
by mathematicians or by our grasping the truth or by our generating a proof. 
What is more interesting is what the bounds of conceivability are. Cantor 
pushed these bounds further than anyone before him. To discover what is 
conceivable, we have to enquire into the concept. We make a phenomenologi-
cal analysis of the concept. Th e phenomenological analysis of mathematics is 
quite diff erent from the analysis of empirical truths, for mathematical objects 
of attention, or objects of study, are quite defi nite in the sense of being well-
defi ned; and the same mathematical object of attention is studied by diff erent 
mathematicians. Th is last point is important, and draws out another meaning 
of “objective” when applied to mathematics. For Husserl, there is no doubt 
that the number π that was studied by the Pythagoreans is the same as the 
number π being calculated by modern computers. Th e objects of attention 
of mathematics transcend time, space, culture and particular personal expe-
riences. To emphasize this point, Husserl calls mathematical objects “ideal 
objects”. Recall the distinction between objectivity in ontology and objectivity 
in truth-value. Husserl’s objectivity is diff erent. We might call it “objectivity 
in phenomenology”. It is objectivity in the way the object (of our attention) is 
presented to us. Mathematical facts are hard immovable facts.

Th e objections to Husserl’s phenomenological philosophy of mathemat-
ics will be quite deep, for they will involve questions about the success of the 
phenomenological approach, and to judge success in this case we also have 
to say something about the very reasons for doing philosophy. Th ese issues 
have been raised in previous chapters, but in a more superfi cial way, for in 
previous chapters the diff erences in approach to philosophy were not so very 
great. Husserl has a truly diff erent approach.

To fi x on the area of discussion, it is useful to compare Husserl’s phenom-
enological approach to mathematics with Frege’s logicism. Husserl’s corre-
spondence with Frege is revealing because both are interested in the same 
questions: what a mathematical object is, and whether, or to what extent, 
logic is foundational to mathematics. Th e diff erence between them lies in 
what they will accept as answers to these questions or, more precisely, what 
the presuppositions are to any answers. Husserl agrees with Frege that logic 
plays a special role with respect to the rest of mathematics. For Husserl, logic 
is fundamental. “Logic” for Husserl means “fundamental in the structure of 
experience”. Th at is, Husserl recognizes that logic will inform our mathemati-
cal enquiry. Logical moves are phenomenologically more basic than other 
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mathematical moves. However, the phenomenology of our mathematical 
enquiry is what we are seeking to analyse, not some Fregean “ultimate justi-
fi cation”. For Frege, logic is fundamental in the sense of off ering an ultimate 
justifi cation. In particular, Frege was afraid that Husserl’s approach involved 
too much psychology. Frege was adamant that his ultimate justifi cations were 
free of any psychological connotation. Frege’s conception of knowledge is 
divorced from psychology because Frege was afraid that by letting psychologi-
cal considerations slip in to an analysis of knowledge this would make math-
ematics look personal, and mathematical truths look relative, and subjective. 
Mathematics would then be true for a person, or for his psychology. We can 
have knowledge of psychology. However, for Frege, this knowledge will not 
aff ord us insight into anything but psychological matters.

Arguably, Frege mistook Husserl’s phenomenological approach for a psy-
chologistic approach.10 Th e mistake is easy, since Husserl does not believe 
that the philosophical investigation of mathematics concerns only the logi-
cal justifi cation of a realm of truths that is independent of us. Th e immediate 
supposition, made by Frege, is that Husserl must be interested in the psychol-
ogy of mathematics. Frege misses Husserl’s point about intentionality, which 
sits between logical justifi cation and psychology but cannot be reduced to 
either one. Husserl agrees with Frege that, as philosophers, we should avoid 
any sense of the personal, or the subjective, in analysing mathematics. Th e 
misunderstanding arises because Frege cannot see the absence of personal 
considerations or psychology in Husserl’s phenomenological approach. Frege 
gives a false dichotomy. Either we give a psychological account of mathemat-
ics, or we give an ultimate justifi cation (based on logic). For Frege, only the 
latter guarantees the objectivity of mathematics. Husserl does not pin the 
objectivity of mathematics to a hierarchy of justifi cation, or of knowledge. 
Husserl takes an intermediate approach: he talks of “ideal objects”, which 
are abstract objects. But this is not enough for Frege. In contrast to Frege, 
for Husserl, logic does not provide a justifi cation for anything. Th is is not 
Husserl’s interest. Th ere is no reason to justify anything in the way that Frege 
does. Instead, we enquire into what being conscious of mathematics consists 
in. Th e disagreement between Husserl and Frege concerns what counts as 
answer to a philosophical question. 

Again, “objectivity” is very diff erent in the two cases. For Frege, mathemati-
cal truths are objective in the many senses we saw in Chapter 3. Frege felt com-
pelled to show, or prove, that mathematical truths are objective. For Husserl, 
the “objectivity” of mathematics is evident. What is not evident is how it is 
that we come to grasp these objective truths and work with them to develop 
and discover more mathematics. Th is was the real focus for Husserl.

Husserl and other philosophers of mathematics diff er over what the phi-
losopher can tell us about mathematics, and what counts as a good answer 
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to the central questions. Interestingly, the central questions often sound the 
same. In order to disagree with Husserl, we have to disagree that the central 
point of philosophy is to off er a theory of consciousness, or that the way to 
develop such a theory is to engage in phenomenological analysis. 

6. Formalism

Compare fi ctionalism to formalism. Th e fi ctionalist thesis is that mathe-
matical sentences are all literally false because they fail to refer to anything. 
Mathematical sentences can only be true within the context of the math-
ematical theory, but the theory is literally false. In contrast, one of the main 
characteristics of formalism is the view that mathematical sentences are lit-
erally meaningless. For the formalist, mathematical sentences are the results 
of manipulations according to rules, and so cannot have a meaning. Th is is 
because the manipulations are mechanical and thoughtless. Th ere is, there-
fore, no content or meaning. In Reason’s Nearest Kin, Michael Potter puts it 
very well:

Th e fact that quantifi er-free elementary arithmetic[11] reduces to the 
mechanical application of a fi nite number of rules allows us to decouple 
it from its meaning: there is an obvious sense in which this sort of simple 
arithmetic does not require thought at all.[12] It is natural, therefore, to 
wonder whether we can obtain an account of arithmetic that focuses 
entirely on the signs and abandons any attempt to argue that arithmeti-
cal propositions express thoughts about a subject matter distinct from 
the signs occurring in them. (2000: 10)

Th e idea is that we should be able to extend this natural thought, about 
 quantifi er-free elementary arithmetic to the rest of mathematics. Mathematics 
is neither mental (psychologism) nor based on the physical world (empiri-
cism). Instead, mathematics is simply a series of mechanical procedures. 
Mathematics consists in symbol manipulation. An upshot of this is that the 
meaning, in so far as there is any, is not contained in the semantics, as real-
ists conceive. Rather, the meaning of the mathematical symbols is deriva-
tive, not literal and, strictly speaking, dispensable. Meaning, in so far as 
there is any, is contained in the rules for manipulating the symbols. Since, 
to most philosophers, this is a degenerate notion of meaning, let us refer to 
it as “manipulation-meaning”. Manipulation-meaning falls short of regular 
notions of meaning. In particular, consider that, for the formalist, sentences 
in mathematics do not get a truth-value, except as part of a game internal 
to mathematics, but then it is not a real truth-value. Th e truth-values T and 
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F could be replaced by 0 and 1, or any other symbol we choose. Attributing 
truth-value is just another set of mechanical manipulations. Th e manipula-
tion-meaning is dependent on the game being played, so all we can really say 
is that a sentence is in accordance with the rules, or it is not. 

Th is philosophical idea about manipulation-meaning is partly born out in 
some logic textbooks, which introduce natural deduction before they intro-
duce the truth-tables.13 Th e idea is that the manipulation rules are suffi  cient to 
give the meaning of the connectives. As we saw, some constructivists believe 
that the meaning of the logical connectives is entirely revealed by the manip-
ulation rules for those connectives. Nevertheless, for the constructivist, the 
sentences still have meaning or content, for we can be called on to justify a 
manipulation rule. Th e truth-tables are an alternative, realist, way of under-
standing the connectives. But each of these positions is diff erent from the 
formalist stance, which says that the sentences of mathematics are literally 
meaningless. We just have moves in a game.

Th e textbooks that begin by introducing rules for manipulation only partly 
bear out the philosophical position of formalism because they do, typically, 
later introduce truth-tables.14 A purely formalist textbook would never men-
tion the truth-tables, except as a philosophical, or historical, note. Or it would 
introduce the truth-tables as a mechanical game we can play, where any 
notions of truth and falsity would be suppressed because they are meaning-
less symbols in a game of making “truth-tables”. Typically, we suppress these 
notions by making T = 1 and F = 0. It is no coincidence that the computer 
scientists prefer 1 and 0 over T and F. Another feature of a formalist-type text 
in mathematics is that it will be exceedingly explicit about what to do with 
each symbol. Th ere are no informal discussions about what a symbol “means 
intuitively”. Th ese are replaced by manipulation rules. Similarly, there need not 
be any suggestive names or shapes for the symbols. Th e formalist idea can be 
detected through the whole of mathematics, beyond introductory logic.

What does the mathematician do, according to the formalist? She devises, 
experiments with, or fi nds fault with, diff erent sets of manipulation rules for 
symbols. One can imagine the mathematician beginning with an existing for-
mal system, modifying some of the rules and seeing whether new theorems 
can be proved, or whether there are theorems provable in the new system 
that are not provable in the old system. She will have failed in creating a new 
system if the new system is provably equivalent to the old, or if an inconsist-
ency is derivable from the new system.

An advantage of the formalist philosophy of mathematics is that it is con-
ceptually very free. Pure mathematics is not responsible to anything external 
to mathematics; the constraints on mathematical activity are purely internal. 
Th ey consist in a demand for consistency, complete rigour and explicitness 
about the rules (Curry 1963: 11).15 Th is is conceptually liberating because the 



a pot-pourri of philosophies of mathematics 149

mathematician can treat mathematics as a game of manipulation, and really 
explore what happens when one adds a new operator to a language, or a new 
rule of manipulation. Th e mathematician does not have to justify doing this 
in terms of wanting to prove a theorem, or in terms of responding to some 
pre-mathematical (platonic or realist) intuition about what there is, or in 
terms of the importance of the new system to some application. Th e “game” 
analogy is taken very seriously. In fact, this is exactly where complaints about 
formalism are usually aimed, for the freedom is a double-edged sword. Th ere 
are not enough constraints, so there is no way to select a direction for trying 
to develop mathematics. Th ere is no part of mathematics that is more impor-
tant than another. We just spin the mathematics in the void; there is noth-
ing to ground it conceptually. We would be better off  letting computers take 
over, since they are faster and less prone to error. We have no mathematical, 
objective or debatable justifi cation for playing the game in the fi rst place, for 
we are not discovering truths. We cannot judge mathematical activity, except 
to say that it is successful in some applications. Applicability is seen as an ad 
hoc issue: to do with applied mathematics, not pure mathematics.

Th is is an oversimplifi cation because it is not always easy to separate the 
pure interests from the application interests. Th e formalist has to be careful to 
say that what is important, or interesting, or applicable in mathematics is not 
a matter for mathematics to settle. Th at does not mean that these matters can-
not be settled but just that they have to be settled from outside. For example, 
the proof of Fermat’s last theorem has historical importance. It might even 
have a romantic, or sentimental, importance. But the formalist recognizes all 
these measures of importance as lying outside mathematics itself. Th e result, 
and the proof, might be helpful for other parts of mathematics. But even this 
is, ultimately, a feature of what mathematics we have developed and which 
problems we want to solve; and which problems we want to solve has to be 
analysed, according to the formalist, in non-mathematical terms. Choice of a 
particular mathematical pursuit is primitive and extraneous to mathematics. 
Th at is, a mathematician simply says that she is interested in this branch of 
mathematics, and cannot be asked for further justifi cation. 

What the formalist will stringently avoid saying is that we “discover” truths 
when we prove results in mathematics. Th e formalist will also avoid saying 
that we can be certain that there are more results to be proved, for the already 
existing results are not couched in a body of truths ready for our discovery. 
Th e formalist position is defi nitely anti-realist. Th is, in turn, suggests that the 
formalist might take a stance on the issue of infi nite numbers. Th e argument 
in favour of the formalist being a closet fi nitist runs as follows. Th e formalist 
believes that mathematics is simply symbol manipulation. We, as fi nite beings, 
can only perform a fi nite number of manipulations on a fi nite number of sym-
bols even if we extend our powers with computers. Th is entails that there are 
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only a fi nite number of proofs that we shall ever generate. Th e fi nite number 
of symbols and manipulations also entails that we shall only ever have a fi nite 
catalogue of results. Th is does not entail that we cannot manipulate sym-
bols that the platonist thinks of as symbolizing infi nite numbers. So for the 
formalist, there is nothing wrong with writing “ℵ4 + ℵ6 = ℵ6”; this sentence 
is just as meaningless as “21 × 1 = 21”. Each is a string of symbols. Each is a 
legitimate equation in a game of addition or multiplication, respectively. But 
neither sentence is literally true; it only follows the rules set out by the game, 
or the manipulation rules applied to the axioms of the theory.

However, we now have a problem. We have to ask how it is that adding 
infi nite numbers does not, prima facie, obey the same rules as adding fi nite 
numbers. Following rules for addition in fi nite numbers, we would think that 
ℵ4 + ℵ6 should really equal ℵ10. But no existing mathematical theory endorses 
the equation ℵ4 + ℵ6 = ℵ10. Th is is because ℵ6 is so much bigger than ℵ4, it 
just absorbs ℵ4 without noticing. We have not added anything of signifi cance 
to ℵ6. All addition of infi nite cardinals is like this. Adding an infi nite cardinal 
to any other cardinal is equal to the greater of the two, or the same, if they are 
the same. How might the formalist explain this? Th e formalist is reluctant 
to say that what might have motivated the choice about how to understand 
addition with infi nite numbers was some sense of what the infi nite numbers 
are. For the formalist, this way of speaking is ultimately misguided. Th ere is 
nothing that the infi nite numbers are; there are just various symbols that we 
manipulate. Strictly mathematically, we made a choice about addition of the 
infi nite cardinal numbers that is consistent with the other manipulation rules 
concerning infi nite cardinal numbers. We did not reveal some deep truth about 
infi nity. We simply adopt conventions in mathematics that are consistent with 
previously set-out rules, and follow our rules through. Th e real answer, for the 
formalist, is that we generate a contradictory theory if we endorse “regular” 
arithmetical rules when adding with infi nite cardinal numbers. If we generate 
a contradiction, then we have a trivial mathematical system, in the classical 
sense of “anything follows”. Th at is, every well-formed formula both holds and 
its negation holds. If we have a trivial system, in this sense, then we are not 
playing a game, says the formalist. We do not have a good set of rules. Notice 
that we did not say that a trivial system is meaningless for, strictly speaking, 
all mathematical formulas are meaningless. Th is is not a way of distinguishing 
trivial from consistent mathematical theories. Why the need for consistency? 
It is a primitive constraint on the notion of a “good game”.

Unfortunately for the formalist, this is deeply unconvincing to most math-
ematicians. Th ey feel constrained to add infi nite cardinal numbers in a cer-
tain way because of how they understand infi nite cardinal numbers. If their 
understanding of cardinal numbers is not a mathematical matter, then it is 
not clear what it is. Th e realist mathematician can justify the requirement 
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for consistency in a theory as a minimal requirement, among others such as 
truth. Th e formalist thinks of consistency as a “primitive” constraint: one for 
which the justifi cation cannot be forthcoming.

Th ere are philosophically weaker replies to this. Th ese mainly involve a 
retrenching of positions. Th e arguments are ones we saw in Chapter 5, since 
the issues we raised there are not dissimilar to those that the realist will raise 
against the constructivist. According to the formalist, the greatest resistance 
to formalism is not made on mathematical grounds but, rather, on emotional 
grounds. Since these are not mathematical, they need not be addressed.

Stronger replies by the formalist to the emotional and phenomenological 
complaint involve reference to computers and modern developments in theory 
of computation. Arguably, computers and theory of computation carry out the 
formalist programme, for computers extend the thoughtlessness metaphor. 
What a computer does is manipulate; it does not think. Computation theory 
shows us that it is possible to calculate solutions well beyond  quantifi er-free 
elementary arithmetic. Th e formalist seems to characterize the mathemati-
cian as a lesser sort of computer, with no legitimate mathematical or philo-
sophical grounds for why she is carrying out the manipulations. Similarly, 
computers do not have to be convinced to make an eff ort to make a cal-
culation; they just carry out their program. Computers are physically less 
demanding than we are, and they do not get tired as easily; of course, a com-
puter might still run out of electricity, parts of computers physically wear out 
and so on. Nevertheless, they are faster and more accurate than we are. In 
fact, computers are able to do quite sophisticated calculations. Th e formalist 
position assumes greater strength when we consider the great sophistication 
of these computers, for they are also able to imitate us quite well, including 
making mistakes if we insist on them. Computers can be designed to pass 
the Turing test.

Th e Turing test is about imitation. Th e test is set up as follows. We put a 
computer in one room, and a person in another. A second person, who does 
not know which is in which room, is allowed to type questions to the occu-
pants of the rooms. Th e second person is trying to guess in which room we 
have a computer, and in which room we have a person. He asks questions that 
he hopes will reveal which is which. Since current computers are quite good 
at imitation we can program them to make human-type mistakes, and give 
human-type answers; we can even program them to imitate impatience, or 
other emotions. We cannot always program computers successfully to imitate 
human beings, but we are getting ever closer. Th is is a major part of the arti-
fi cial intelligence business. Th e Turing test, if successful (that is, if the second 
person is unable to tell the diff erence between the person and the computer), 
is supposed to tell us that there is no real diff erence. Philosophers then worry 
about what real means in this context. Now add the formalist twist: restrict 
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the “players” to a mathematician and a computer doing mathematics. Th e 
third person asks mathematical questions. We can always build the required 
human time lag and human mistakes into the computer. Th e point of the 
Turing test adapted to the formalist position is to tell the diff erence between 
the results produced by a mathematician and those produced by a computer. 
Knowing that we can slow a computer down, and have it “make mistakes”, the 
computer might well pass the Turing test and be mistaken for a mathemati-
cian. Once the computer passes the Turing test, and is mistaken for a person, 
it is an easy step from this perfect imitation to saying that mathematicians, 
or any people, are equivalent to computers with respect to mathematical 
content (i.e. there is none). Ability and speed is a diff erent issue. Th e formal-
ist is vindicated by the Turing test since we can give a complete algorithmic 
account of our mathematical activities: thanks to the sophistication of current 
computers and current algorithmic learning theory.

It is worth pausing now to compare formalism to psychologism. 
Interestingly, the psychologist can also run the mathematical version of the 
Turing test. But he will conclude something quite diff erent from the scenario 
where the computer passes the test. Th is is where the psychologist and the 
formalist part company. Whereas the formalist is delighted to reduce math-
ematics to computer activity, since this is clearly simply symbol manipulation, 
to the psychologist, what is important is that by developing computers we 
have extended our capacity to calculate. Computers have been constructed 
to imitate human beings, not the other way round. As such, they extend our 
powers, which originated in our psychology. Which way the reduction goes is 
what distinguishes the psychologist from the formalist. Th e formalist reduces 
humans, and especially mathematics to computation. Th e psychologist points 
out that in designing a computer to pass the Turing test, computers are imitat-
ing human beings, and so the essential characteristics we are trying to draw 
out are psychological characteristics, or brain activity, not pure manipulation. 
Since we have these two ways of reading the results of a successful Turing 
test, the test is not decisive in deciding between the two positions. But it is an 
interesting thought experiment, which does force us to ask questions about 
whether computers are like people, or if people are like computers. Either way, 
the realist will be quite unhappy since brain activity or computer activity do 
not capture mathematics because they miss out what is important in math-
ematics: the objective truth, or meaning, of mathematical discoveries.

Returning to the fi nitism question, computers are fi nite machines, and 
can only carry out fi nite calculations. Manipulations, are, by the nature of 
the manipulators, necessarily fi nite. Nevertheless, we can certainly manipu-
late symbols that the realist thinks of as referring to infi nite totalities. But the 
manipulations themselves are fi nite. In this sense, the formalist is a “closet 
fi nitist”. Th ere is only a fi nite amount of mathematics. Th e symbols thought 
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of by the realist as referring to infi nite totalities, do not so refer. Th e notion of 
infi nity as a mathematical object, or mathematical notion is meaningless. We 
shall explore this issue further in the next section, when we discuss Hilbert. 

Returning to our emotional and phenomenological complaint above, the 
bottom line is that the formalist’s terse characterization of mathematical activ-
ity is resisted by many mathematicians. Mathematicians tend to have realist 
leanings, and feel that they are doing something important. Furthermore, the 
importance of mathematical activity does not lie simply in the application of 
mathematics to subjects outside mathematics. Th ere is a sense of discovering 
truths independent of us. Th is is the draw enjoyed by the realist, or platonist, 
positions. Th ese positions carry intuitive sway, but they are not easily defen-
sible, as we saw in Chapter 2.

Hilbert is unhappily characterized as a formalist, for he, like many math-
ematicians today, is interested in what lies beyond what is manipulable and 
(anachronistically speaking) computable, and is reluctant to make the philo-
sophical move of dismissing what lies beyond. He recovers this infi nite part 
of mathematics, and calls this the “ideal realm”. Note that he does not mean 
this in Husserl’s sense (of abstract). Hilbert’s “ideal realm” is the mathemat-
ics beyond fi nitist mathematics: the infi nite ordinals and cardinals. Because 
Hilbert is interested both in the fi nitistic and the ideal realm, he is like many 
current mathematicians. Nevertheless, when talking of the realm of math-
ematics that falls short of the ideals – the fi nitistic realm – he sounds a lot 
like a formalist.

7. Hilbert

David Hilbert is famously remembered for a talk he gave at a large interna-
tional mathematics conference hosted at the Sorbonne in 1900 in which he 
listed 23 problems for the mathematical community to solve over the next 
century. Mathematicians took him seriously and the set of problems was 
widely distributed, most of them being solved by the end of the twentieth cen-
tury. Th ere is a theme to the problems; they come from Hilbert’s vision about 
what was important in mathematics. He not only contributed substantially 
to setting the agenda for mathematics in the twentieth century, he also made 
major contributions to pure mathematics.

In part, Hilbert’s vision arose from a plan he had for mathematics. Hilbert 
wanted to secure the foundations of mathematics against contradiction 
by giving fi nite and rigorous procedures for working in mathematics. Th is 
was Hilbert’s formalist and anti-realist side. But he is not best classifi ed as a 
formalist, fi nitist or anti-realist, for he believed that classical mathematics, 
including the mathematics of the infi nite, was all good mathematics. In par-
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ticular, Hilbert was fascinated and enchanted by Cantor’s development of the 
transfi nite numbers. He was not interested in seeing anti-realist philosophers 
of mathematics, such as Brouwer, “drive us out of the paradise that Cantor 
has created for us” (quoted in Shapiro 2000: 159).16 So Hilbert has two sides: 
the formalist (anti-realist) side and the realist (classical) side. Confusingly for 
the language as it is used by philosophers, Hilbert talks of “real” propositions 
and “ideal” propositions, where these are philosophically reversed. Hilbert’s 
“real” propositions are what the anti-realists are interested in, and Hilbert’s 
“ideal” propositions, are more easily associated with realism and classical 
logic. Hilbert’s formalist tendencies were motivated by concern about the 
paradoxes, but he remains realist because he is quite convinced that classi-
cal mathematics is all good. Hilbert wanted to prove this by deriving ideal 
mathematics from the secure, paradox-free, fi nite mathematics. Securing all 
of mathematics this way is known as Hilbert’s programme.

Hilbert placed great emphasis on the axiomatization of mathematical 
theories, and on giving rigorous deductions of theorems in those theories. 
Th e purpose of this was to prove a point against Brouwer, and wean math-
ematics away from intuition. Th e more explicit and mechanical the deri-
vation of a theorem, the less it relies on our feel or intuition. In fact, the 
calculator illustrates this very well. We are able to have a calculator churn 
out a number of mathematical results without having any inclination to 
attribute to it mathematical prowess or mathematical intuition. Th is is pos-
sible thanks to our ability to make the instructions for calculation explicit 
and determinate.

Like formalists, Hilbert thought that rigorous axiomatization together with 
explicit rules of inference demonstrate that intuition is strictly redundant 
with respect to the subject of mathematics. Hilbert brings this approach to 
geometry. Th e idea was to make the axioms of geometry quite explicit, and 
the rules of inference quite determinate. Once this is accomplished, Hilbert 
demonstrates that, pace Kant and Frege, geometry does not rely on an intui-
tion of space.17 Extending the approach to other branches of mathematics is 
Hilbert’s programme.

Say it is possible to carry out Hilbert’s programme for the whole of math-
ematics. Th en it would seem that any formal system with suffi  ciently explicit 
rules constitutes mathematics. Again, as we saw with formalism, this becomes 
a very liberal attitude towards mathematics. Mathematics is a series of games, 
and there are an infi nite number of possible games to play. One is not better 
than another, if we are judging by strictly mathematical criteria. In fact, the 
only criterion for completely ruling out a game is inconsistency. No consistent 
formal system is deemed “crazy”, at least not on mathematical grounds. 

Hilbert was well aware of the possible excesses of such a liberal atti-
tude. He did propose some more constraining guidelines on the choices of 
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 mathematical games, and he packed this into his notion of “fi niteness”. Th ese 
were not absolute constraints, but more of a general guide to choice. We 
have to be careful about what we mean by Hilbert’s constraints. Th e strong-
est one is consistency. As a comparative aside, note that strictly speaking, for 
a realist, demonstrating consistency is unnecessary (Hallett 1991: 2), for our 
insight into the truths of mathematics is what guarantees consistency. We 
perceive mathematical truths through intuition or whatever. Consistency is 
not something we need to prove; instead, it is a precondition of thought, espe-
cially about a mathematical notion. Of course, the period around the end of 
the nineteenth century into the beginning of the twentieth century was one 
where paradoxes were surfacing at an alarming rate. Th e paradoxes made it 
plain that our intuitions are not wholly reliable guides to consistency in math-
ematics. So for the realist proofs of consistency are checks on the reliability 
of our intuitions, or perceptions (however these are explained); they are not 
a check on the mathematics. In contrast, for the formalist consistency is a 
criterion for good mathematics, not for good intuition.

For Hilbert, consistency had to be demonstrated by giving a model. In his 
geometry Hilbert showed that the formal geometrical system was consistent 
with the arithmetical characterization of the real numbers. Th is is a relative 
consistency proof, that is, it shows that Hilbert’s geometry is consistent if and 
only if the arithmetical characterization of the real numbers is consistent. 
What is important in Hilbert is that the real numbers are not then treated as 
intuitively obvious. Th at is, the proof is not an absolute guarantee of consist-
ency. Rather, the real numbers are a model for the geometry. Th e model is 
not treated as a semantic entity, in the sense of giving meaning, but as part of 
a syntactic process of translation from geometry to arithmetic.18 Th e model 
does not ground, or give meaning to, the geometry. So Hilbert understands the 
notion of model as an ethereal “end of a syntactic process”, as with geometry, 
or as a move in a meta-game, sanctioning the original game (of geometry).

Th ere is now a very great danger that the theory of real numbers is shown 
to be inconsistent. If that were to happen, then it would show that geometry 
and analysis are trivial, in the sense that every mathematical sentence and its 
opposite hold in each system. We then no longer even have a proper game 
going, because all moves are fi ne. Th is possibility is a lingering problem in 
mathematics. To this day we have no absolute proof of consistency of the 
major parts of mathematics. In fact, in 1932 Gödel showed us that if a math-
ematical theory of a certain minimum complexity is consistent, then an abso-
lute proof of its consistency is impossible. Only a relative consistency proof 
can be given. If the mathematical theory is not so complex, then we can give 
an absolute consistency proof.

Hilbert’s major contributions predate Gödel’s results, so he would not have 
known about the impossibility of absolute proofs of consistency. However, he 
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still sensed some danger for he felt that there should be a second constraint 
on mathematical activity: he chose “fi niteness in procedure”. We have to be 
careful. Hilbert was very fond of Cantor’s infi nite numbers and he was not 
interested in curtailing manipulations of these. But Hilbert did urge the dis-
tinction between fi nite mathematics and ideal (infi nite) mathematics.

Hilbert distinguishes three types of proposition: “strictly fi nitary”, “fi nitary 
but general” and “ideal”. Th e fi rst two were considered to be subdivisions of 
“real” propositions. Strictly fi nitary propositions are ones we fi nd in  quantifi er-
free elementary arithmetic: “37849 – 7893 = 30956” is an example of such a 
proposition. We can check whether it is true or false by running a fi nite check 
over particular fi nite numbers. We can determine that the equation is false 
because each number in the equation is fi nite and there are no quantifi ers or 
variables. “Finitary but general” propositions are ones with variables, each of 
which can be substituted with a fi nite number: for example, “5 + x = x + 5”. 
We want to say that this is true, since this is just an instance of the commu-
tativity of addition. Now, x is assumed to range over fi nite numbers, so there 
is an implicit bounded quantifi er: “for all x, where x ranges over the (fi nite) 
natural numbers”. We do not bother to make the quantifi er explicit, since it 
is understood. Moreover, it is understood as a substitutional quantifi er; that 
is, 5 + x = x + 5 is true whenever we plug in the same fi nite number for the x 
on each side of the identity symbol. We know that this is true, but we do not 
prove this by checking every fi nite number. Th is would require an infi nite 
proof. Nevertheless, because the implicit quantifi er is bounded by the fi nite 
natural numbers (it reads “substitute any fi nite number for x”) the equation 
is considered to be real, and so fi nitistically acceptable. Ideal propositions are 
all the rest. Th ese have either quantifi ers ranging over numbers that are not 
fi nite – for example, “for all cardinal numbers”, “for all ordinals”, “for all real 
numbers” – or unbounded quantifi ers, where it is left free to choose a domain, 
and the domain could be of any cardinality. For example, Frege’s basic law V: 
∀F∀G((ExtF = ExtG) ↔ ∀x(Fx ⇔ Gx)) is an ideal expression. Th e quantifi ers 
range over predicates, and so over subsets of a domain. Moreover, since the 
proposition/expression/well-formed formula is meant as a law of logic, and 
logic is universally applicable, we should be able to bring any domain we like 
for the quantifi ers to range over. “∀x” is not generally restricted (bound) to 
the fi nite natural numbers. Unfortunately for Hilbert, most interesting math-
ematics concerns ideal propositions, and not real ones.

Hilbert hoped that all of mathematics could be shown to be a conservative 
extension of “fi nitary” arithmetic. Th at is, he hoped to show that the “fi nitary 
but general” propositions and the ideal propositions were just shorthand for 
strictly fi nite propositions. Since we can, in principle, capture all of quanti-
fi er-free elementary arithmetic by means of a wholly mechanical fi nite pro-
cedure, so we should be able to capture other parts of mathematics too. One 
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way to do this is to concentrate on our fi nite proofs and the use of signs. If 
we write “ℵ0”, we write a fi nite sign. In a realist moment we might interpret 
this to refer to a size of set, and that size is infi nite, but it is still represented 
using a fi nite sign. Similarly, all of our equations are written using fi nite signs. 
We can assign a unique number to every symbol in a language and thereby 
number our equations. Th is is called “Gödel numbering”. Gödel numbering 
gives us a method for demonstrating sort “fi niteness”. When we are thinking 
this way about mathematics, we return to the contentless, and meaningless 
manipulation of symbols. Unfortunately, the device of Gödel numbering, and 
this fi nitist way of thinking about mathematics will not, in fact, get us very 
far in Hilbert’s programme. Gödel shows us that not all of mathematics is a 
conservative extension of fi nitary arithmetic. Hilbert’s programme, under-
stood in the sense of demonstrating consistency of a formal system fi nitisti-
cally, cannot be carried out. On the other hand, we can salvage something 
by turning this into a limitative result, telling us that Hilbert was quite right 
to distinguish between the conservative fi nitist part of mathematics and the 
ideal part of mathematics. Hilbert’s programme can be given new breath by 
expressing it as an investigation into where the border lies between real and 
ideal mathematics. In a sense, this is what the mathematical discipline of 
proof theory is doing. 

Because Hilbert is trying to show that mathematics is fi nitary, in some 
sense, this implies that he took arithmetic to be primitive, or beyond question. 
Depending on how we understand this, we then distance Hilbert from the 
formalists, since he is essentially grounding mathematics in arithmetic, which 
he sees as true, as opposed to “yet another game”. Th is leads to some philo-
sophical problems in Hilbert, since he then has to say something about what 
makes arithmetic (which grounds the very notion of fi nite procedure) true. 
In other words, Hilbert has to tell us on what basis he favours the fi nite part 
of mathematics over the ideal. His answer has to do with concrete physical 
signs, such as strokes: “3” is really better represented as “|||” – three strokes. 
We can then calculate and discuss concrete signs, and not abstract ideas. 
Nevertheless, there is an uneasy tension in Hilbert’s notions of meaning, sym-
bols and manipulation. For “|||” represents something; it is not prima facie 
meaningless. If we turn now to Meinongian philosophy of mathematics, we 
see what happens when we loosen Hilbert’s criteria.

8. Meinongian philosophy of mathematics

Meinongian philosophy of mathematics is named after the Austrian philoso-
pher Alexius Meinong (1853–1920). We shall begin with a word of warning. 
Th e very mention of Meinong’s name sets off  alarm bells in the minds of 
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many philosophers, because Meinong’s writings were heavily criticized and 
ridiculed by Russell in 1905 and 1907. Most philosophers took Russell’s criti-
cisms to be decisive, and simply did not bother reading, or trying to defend, 
Meinong’s theories. Current proponents of Meinong claim that Russell 
misread Meinong, and they therefore feel entitled to return to his writings. 
Meinong’s views are not wholly unattractive. We shall discuss Meinong’s 
views in general, and then turn to the philosophy of mathematics, which 
makes use of his views.

 Meinong had an original theory of ontology. He was interested in accom-
modating our talk of fi ctional objects: of exotic objects that could not possibly 
exist, such as a mountain made of gold, and even contradictory objects such 
as round squares. To accommodate this talk, Meinong distinguishes between 
“existing objects” and “subsisting objects”: objects that have properties but do 
not exist. An object might have “sein” (being) and it might have “sosein” (how 
it is, i.e. a description or characterization).19 “Being an object” does not imply 
“existence”; it only implies “having properties”. Every object has properties. 
Some objects exist, and some do not. When we are discussing fi ctional objects, 
we attribute properties to them but not existence. For example, Hamlet has the 
property of “being prince of Denmark”. Hamlet does not have the property of 
“being an old woman”, at least not on a straightforward reading of the play by 
Shakespeare. Similarly, the “mountain made of gold” is an object, but it does 
not exist. It is an object in virtue of it’s being the bearer of properties.

Richard Routley takes Meinong seriously and adapts Meinong’s insight to 
mathematics. Routley maintains that in the actual world only concrete objects 
exist. Th us, anything abstract – relations, numbers, measurements, ideas, 
properties and so on – do not exist in the actual world. Th ey do, however, have 
properties, since even properties have properties. Properties of properties are 
second-order in the sense of being one level of abstraction up: rather than 
being properties of objects, they are properties of the properties of objects. “Is 
a colour” is an example of a second-order property, and “blue” is an example 
of a fi rst-order property. “Hat” is an object. First-order properties characterize 
objects. In particular, properties characterize objects that exist (in the actual 
world) and possible objects, which exist in a possible world. We discussed 
modality a little when we discussed Hellman’s structuralism. 

Recall that the idea behind “possible worlds” is to make sense of talk of 
possibilities, and possible objects (technically “possibilia”). Sometimes possi-
bilities are also called “counterfactuals”. An example would be when we make 
future plans, or reason about changing a past event. For example, someone 
might say: “had I been born a hundred years ago …”. We can make sense of such 
talk. We can argue whether such claims are true or false. Th e idea of “possible 
worlds”, which dates back to Leibniz, is that when we say “had I …” what we 
mean is that “there is a possible world where …”. Th e connection between this 
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world (the “actual world”) and possible worlds is truth- functional and meta-
physical; it is not causal. Possible worlds have no physical impact on ours, but 
they do sanction attributing truth-values to counterfactual sentences. Th ere 
is much debate over the ontological status of possible worlds: whether they 
exist independently of our imagination, if so in which sense, and how many 
of them there are, whether they are abstract or concrete. 

Routley and Graham Priest apply Meinong’s distinction between being a 
nonexistent object and being an existent object to mathematics. Mathematical 
theories are possible but not actual. Th ey believe that the actual world exists, 
and that physical objects exist. Th ey do not believe that abstract mathemati-
cal objects exist. Nevertheless, they are objects. Moreover, they are possible 
objects, so they inhabit a possible world. Th ey are possible simply in virtue 
of having properties, and they adopt Meinong’s criterion for being an object. 
Anything with properties is an object. Routley and Priest consider that math-
ematical objects are possibilia.

 Meinong, Routley and Priest are conceptually generous. Th ey want to 
leave room for impossible objects and even contradictory objects. Impossible 
objects are objects like the mountain made of gold. Th is is impossible in the 
sense of there simply not being that much gold in the actual world we inhabit. 
A mountain made of gold is logically possible, but not actually possible: that 
is, it is not possible using the actual world as a reference. A mountain made 
of gold has properties: namely, of being a mountain, and being made of gold. 
Th erefore it is an object. Since it is an object it is (at least) a possible object, 
so there are possible worlds which have this mountain: not the actual world, 
but merely possible worlds.

Meinongian philosophy is yet more radical. Th ere are objects for Meinong, 
and also for Routley and Priest, that are contradictory. Such an object has 
properties, for example, that of “being a contradictory object”. An example of 
a contradictory object is a round square, or an object that is both wholly blue 
and not blue at the same time and place. We would like to say that a contradic-
tory object is “logically impossible”, but then we would have a problem with 
how we are expressing ourselves. It is not clear at all that we want to have 
impossible worlds, for they are impossible. So, by defi nition of “impossible” 
there should be no corresponding object or world. 

Tidying up the language, mountains made of gold are not possible, given a 
reference to our actual world. We shall call these “actually impossible”. Th ey 
are logically possible in the sense that logic does not fi nd any problem with 
attributing both the property “made of gold” and “is a mountain” to one and 
the same object. Logically impossible objects, or contradictory objects, such 
as our blue and not-blue objects are more problematic, for if the object is 
contradictory then it will spread its contagion of contradiction to any object 
it touches through ex falso quod libet (the lemma of classical logic that says 
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that from a contradiction anything follows). If an object is logically impossible 
it should not occupy a possible world since contradictions are logical impos-
sibilities, so there should be no corresponding possible world, even if we do 
say that they are nonexistent.

Routley and Priest developed a way out of this conundrum by develop-
ing paraconsistent relevant logic (Priest 2003: 14). Relevant logics are logics 
that insist on there being some sort of connection between the premises and 
conclusion to an argument. In particular, relevant logics block the classically 
legitimate inference from a contradiction to anything at all: ex falso quod libet. 
It was this inference, allowed in classical logic, that got Frege into such trouble 
with his formal system, and similarly with other formal systems with para-
doxes. Having a relevant logic underpinning the “conceptual space” or “logic” 
of possible worlds stops the ubiquitous spread of inconsistency. To stem the 
spread of inconsistency we need two more considerations. One is that “exist-
ence” be turned into a predicate, as opposed to a quantifi er, and as such be 
attributable only relative to a world. For example, Hamlet exists relative to 
the context of the play by Shakespeare so in a possible world where the play is 
“real”, the physical objects in the play world are physical. In particular, Hamlet 
is physical. He has mass, location and duration, at least while he is “alive”. 
Th us, Hamlet is physical in the play world of Shakespeare’s play Hamlet. In 
relevant paraconsistent logic, the existential quantifi er does not disappear, 
but it is interpreted diff erently from the classical existential quantifi er. Th e 
relevant paraconsistent existential quantifi er is read “some”. So “∃x[Fx]” is 
read “Some x has the property F”. Th e existential quantifi er does not commit 
us to the existence of the object being quantifi ed over. Th ere might be no x, 
even if some x has F. Th is is alright because it might be a nonexistent x that 
has the property F. For example, if F is “has the property of being a unicorn”, 
then there is no x that has this. Nevertheless, some (nonexistent) x might. Th e 
existential quantifi er only serves to quantify over objects. “Some objects are 
white” will be true of both existent horses and nonexistent unicorns. We need 
the further existential predicate, “E”, not quantifi er, to assert that an object 
exists, Ex, (in a world). Th us, a distinction is drawn between the existential 
quantifi er and the existence predicate.

Th e other consideration we need explains how it is that objects get their 
characterization. For this we need a “characterizing principle” (CP). Th e prin-
ciple is this: 

CP An object has the properties it is characterized as having and any 
characteristics that follow from those properties. 

Th is merits elaboration. “Any” means any as allowed by the relevant para-
consistent logic. Paraconsistent logics are logics that allow contradictions. 
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Contradictions are analysed as being both true and false. In particular, con-
sider the liar paradox. Th e sentence “this sentence is false” is both true and 
false according to the paraconsistent logician.20 So, there are some objects, 
occupying worlds, that are characterized as having a property and its oppo-
site. Take for example our blue but not-blue object. It has the property of 
being blue all over at a given time and place. It has another characteristic of 
having no blue on it at the same time and place. Th ese are two characteristics 
belonging to the object. Since it has characteristics, it is an object. Since it is 
an object, it occupies a world. Th e world is one that has impossible objects. 
Note that this odd object is neither actual nor does it exist. Th is is because, 
in Priest’s Meinongian philosophy of mathematics, the only existent world is 
the actual world. It follows that anything that does not exist in this world does 
not exist at all, including possible worlds themselves. Th is does not prevent 
objects from occupying nonexistent possible worlds.

Returning to mathematics, a contradictory classical system is trivial, in the 
technical sense that anything follows from the contradiction through ex falso 
quod libet. Th us “2 + 2 = 19”, “2 + 2 > 8” and “the internal angles of any triangle 
add up to 230 degrees” are all truths of a contradictory classical formal system 
of mathematics. Th ey are also all false in a classical system. If the underlying 
logic of the system is not classical but, rather, relevant and paraconsistent, 
then ex falso quod libet inferences are not allowed, so there is no spread of 
inconsistency. Not every sentence of the theory is both true and false: only 
some paradoxical ones are. Th e limitation is often exercised through the rules 
of inference of the system, which ensure relevance. So, simplistically, from P 
and ~P we can infer P, ~P or ~~P; we cannot infer Q. Details can be found 
in the Appendix.

How will this help with the philosophy of mathematics? Why should we 
want to accommodate contradictions? Th ere are pairs of mathematical sys-
tems that contradict each other. Th ere are also mathematical systems that 
are internally contradictory. Th ey tend to be unsuccessful, but they are nev-
ertheless part of mathematics. We want to discuss them. Th e objects of those 
mathematical theories are objects in contradictory worlds: worlds with pairs 
of sentences that are both true and contradict each other; P and ~P are both 
true (and false). We shall leave these aside for now and just concentrate on 
pairs of consistent systems. An example of a pair of mathematical systems that 
are mutually contradictory are Euclidean geometry and projective geometry. 
Th e two geometries diff er over the truth of Euclid’s fi fth postulate, so there 
are some theorems of Euclidean geometry that are denied by projective geom-
etry. In particular, in projective geometry parallel lines do meet (at infi nity); 
in Euclidean geometry parallel lines never meet. 

Th e Meinongian philosophy of mathematics will tell us that there is a pos-
sible world where Euclidean geometry is true and a possible world where 
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projective geometry is true. Th ere are possible worlds corresponding to each 
mathematical theory. Moreover, the Meinongian allows us reasonably to con-
template putting the two theories together, and discovering that that possible 
theory (or possible world) is inconsistent. Th us, Meinongian philosophy of 
mathematics is more liberal than the platonist who insists that one of the two 
theories of geometry is correct. Th e Meinongian philosophy of mathematics 
is more liberal than Hellman’s modal structuralism because the underlying 
logic is paraconsistent, not classical.

Let us specify what “each” means above, where we talk about “each math-
ematical theory”. It will certainly include all the mathematical theories we 
study today. “Each” will also include past theories we have stopped studying, 
and possible theories: ones we have not yet started to study. “Each” could 
(depending on how much stomach one has for paraconsistency) also include 
inconsistent systems of mathematics. In so far as one thinks that contradiction 
is the same as logical impossibility, there will be impossible worlds that have 
inconsistent mathematical systems. Th ere will also be inconsistent possible 
worlds; recall that these do not exist. Nevertheless they have characteristics, 
so we can talk about them. Meinong’s nonexistent objects are transformed 
into Routley’s and Priest’s nonexistent possible worlds, some of which are 
mathematical theories. A theory might be consistent or inconsistent. One 
inconsistent world is Frege’s world of second-order logic; a contradiction was 
derivable in the formal system. Th e formal system is classical, so allows ex 
falso quod libet inferences. Th e formal system has a number of characteristics. 
Th erefore there is a corresponding mathematical world. Th e virtue of this way 
of organizing the system of possible worlds is that it allows us to make sense 
of our talk of inconsistent formal systems, such as Frege’s. We do study and 
discuss Frege’s formal system, and we are not talking nonsense when we do 
so. When we study Frege’s formal system, we usually try to salvage parts of 
it, or modify it in some way. Nevertheless, we are discussing “it”, and “it” is 
inconsistent and trivial. 

How do we stop the spread of inconsistency from one world to another 
(consistent) one? Th rough relevant paraconsistent logic. Th is is used to govern 
the “universe of possible worlds”. Th at is, the very organization under which 
all these worlds fi nd themselves is a relevant, paraconsistent organization. If a 
world is inconsistent, it does not follow that every other world is inconsistent. 
Frege’s inconsistent logic is hermetically sealed from others.

Th e advantage of this view is its generous pluralism. Th e Meinongian phi-
losopher of mathematics will not censure any mathematical theory, however 
“crazy” it is. Th is does not prevent the Meinongian from saying that one the-
ory is not as useful as another theory, or that one theory is inconsistent with 
another theory, or that more mathematicians like or believe in one theory over 
another. However, all theories have their place in a possible world. 
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Th e objection to this is that we do not want our philosophy of mathematics 
to be so liberal. Normally, what we understand by a philosophy of mathemat-
ics is a theory of what counts as successful mathematics, not just any combina-
tion of mathematics-like elements. Th e philosopher of mathematics does not 
have to account for, or show an interest in, bad (i.e. inconsistent) mathemat-
ics. Similarly, if we give a philosophy of science we do not give a philosophy 
of anything that can assume the garb of science. Instead, we want to say that 
only some of our enquiry is good and successful, and this is what counts as 
science. Philosophers give a theory of the good practice, not of the good and 
the bad practice all mixed together. Th e divide between this philosophy and 
the others we have examined in this book is quite deep, for it involves an 
explanation as to what counts in giving a philosophy of some topic. We saw a 
little of this probing enquiry in the section on Husserl. Meinongian philoso-
phy of mathematics is another way of radically departing from other positions 
in the philosophy of mathematics.

9. Lakatos

Imre Lakatos’s philosophy of mathematics is diffi  cult to situate among the 
standard philosophies of mathematics. He is interested in the process of 
mathematical discovery. How do we learn more mathematical theories, and 
what are the more instructive lessons? We might say that the way in which 
we learn more mathematics is that we prove more and more things. Proofs 
teach us more mathematics, and they take us from things that we knew to 
new things that we did not previously know. Interestingly, Lakatos only partly 
agrees with this. He thinks that we do learn a little from proofs, but we actu-
ally learn a lot more from dis-proofs. If we think about it, this makes sense. 
If we get a proof of some theorem we have been trying to prove for a while, 
then this just confi rms our thinking. Everything falls into place where we 
expected it. If we fi nd a dis-proof, then this causes us radically to rethink our 
position. Our instincts are shown to be wrong; the theory is not so predict-
able. Th is makes for a deeper change in our mathematical knowledge than a 
straightforward, confi rming proof.

Lakatos railed against what he called “static rationality” (Larvor 1998: 19). 
Th is is the view, held by any realist of mathematics, that mathematics is a fi xed 
body of knowledge, got at by means of fi xed rules of inference: a static logic. 
Th is is not to say that Lakatos disliked logic; his objection was against the 
philosophical import attributed to logic, by logicists in particular. Logicists 
believe that their logic, be it second-order logic or type theory, is our only 
means of really justifying the body of mathematical truths, and that therefore 
mathematics (or whatever part can be justifi ed by logic) is essentially logic. 
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Th is imports the static reasoning of logic to mathematics. Moreover, Lakatos 
was not convinced that there was such a fi xed, or static, body of mathemati-
cal truths.

In order for there to be such a body of truths, mathematical language 
would have to be fi xed. Th e typical realist’s view is that “triangle” means tri-
angle and it has done so from the fi rst use of the word to today. Instead of this 
view, Lakatos believes that mathematical language develops. As we learn more 
about geometry, our understanding of “triangle” changes, and the meaning 
of the word changes. A perfectly adequate Euclidean characterization of a 
triangle as a three-sided closed fi gure is naive, and adequate only until non-
Euclidean geometries were developed. “Triangle” is, today, ambiguous. Do 
we refer to triangles on the Euclidean plane, triangles on the outer surface of 
a sphere or triangles on the inner surface of a sphere? Are these all triangles? 
From how we use the term, it seems that “triangle” not only refers to a number 
of diff erent types of triangle, but also diff erent types in diff erent contexts 
(on diff erent sorts of surface, which change the properties of the triangle). 
Th ese changes in use of the term “triangle” changed when the mathematical 
community learned about non-Euclidean geometries, and decisions had to 
be taken over what was essential to being a triangle. Is a triangle essentially 
a three-sided fi gure? Is a triangle essentially a three-
sided fi gure with the sum of the interior angles adding 
to 180 degrees? Do the sides of the fi gure have to be 
straight, and what do we mean by “straight”? A tri-
angle on the outside surface of a sphere has a sum of 
interior angles adding to more than 180 degrees (Fig. 
14). (Th e lines connecting the angles are the shortest 
possible, and curve along the surface of the sphere.) 
Th ese questions had to be resolved by appeal to our 
Euclidean notion of “triangle”, and what prompted all 
these questions was the refutation that Euclid’s fi fth postulate was derivable 
from the other postulates. When it was discovered that the fi fth postulate 
was independent, this profoundly overturned out thinking about geometry. 
We learn much more from this sort of “refutation” proof than from a straight 
proof of a theorem of geometry.

Lakatos observed that when mathematicians, raised on a steady diet of 
Euclidean geometry, are faced with non-Euclidean geometry, they have to 
come to some agreement as to what terms like “triangle” mean (essentially).21 
It took a while for the vocabulary to gel. Th e process of refi ning our under-
standing consists in confronting alleged counter-examples to defi nitions, 
equations, rules or axioms. Lakatos further observed that there are diff er-
ent ways of reacting to a counter-example:22 modify the defi nition, say, to 
include the new example; reject the defi nition altogether as hopeless; add 

Figure 14
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an  “exception” clause to the original defi nition; or make up some new words 
to deal with the separate cases, so we might, for example, have to distin-
guish “triangle-on-the-Euclidean-plane” from “triangle-on-the-surface-of-
a-sphere”. Reading older textbooks in mathematics is highly instructive on 
which terms have or have not yet gelled. We see some terms being defended, 
and others taken for granted.

Lakatos found the static style of writing adopted by mathematicians to be 
highly deceptive.23 Not only does this style remove any motivation for the 
reader to learn the piece of mathematics, but it also gives a false impression 
as to what mathematics really is (Larvor 1998: 27). Mathematics, for Lakatos, 
is an evolving and changing body of knowledge. Th e change occurs in the 
direction of greater sophistication and refi nement. 

But now we have a problem. We have to determine whether there is any 
distinction to be drawn between mindless developments in false refi nement 
of words and concepts, and progress in true, or good, understanding, for it is 
possible for someone to introduce a distinction that leads us astray. Profound 
refutation-type proofs, or proofs of limitations of a formal system, certainly 
generate a great deal of activity, but is all the activity legitimate, and how do 
we judge whether it is? If there is a distinction to be drawn, then we have to 
give some indication as to how it is that we can favour one type of activity 
over the other. From at least some of the things Lakatos writes, it is clear that 
he, at least at times, does want to draw such a distinction. If he does not, then 
Lakatos is simply describing a psychological, subjective, descriptive view of 
mathematics. Mathematical development is not then viewed as a rational 
process but simply as a human activity comparable to making up games.24 
Usually, we do not make up games to come closer to generating the ultimate 
game, for there are many games on a par with each other. Nor do we strive 
to fi nd out truths about games, or to discover truths that we cannot know 
about by other means. Instead, we make up games either for amusement, or 
as a response to a psychological need. We do not do science when we invent 
games. Any notion of progress towards a goal, outside the game, is misguided. 
Th ere is no ultimate body of games. Th ere just is a body of games, to which 
we add to as we see fi t. Th is begins to sound like formalism. Lakatos “hopes 
to examine the growth of mathematics philosophically. Th at is, he hopes to 
depict it as a rational objective process” (ibid.: 21). Subsumed under this dec-
laration there has to be a sense of progress. Th us, there is a sense of correct 
and incorrect direction. “For Lakatos, progress in mathematics means that the 
concepts employed by mathematicians approximate more and more closely 
the objective structure of mathematical reality” (ibid.: 25). Th e deep problem 
consists in recognizing the “objective structure” when we see it. We have to 
know which are good directions and which are bad directions. “Even if we 
had a guarantee that mathematics will always progress (which we do not), 
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there would still be no knowing which direction this progress would take” 
(ibid.: 29).

Maybe mathematics does not progress towards an “objective” structure, 
but rather progresses only in the sense of ever greater refi nement in our 
mathematical concepts and understanding. If this is the case, then there is 
no mathematical justifi cation for preferring one development from another 
provided it is “more refi ned” under some understanding of “more refi ned”. 
Th ere is no rationale behind favouring one result over another, of fi nding one 
more important than another; and yet, it is this, for Lakatos, that is the source 
of motivation, discovery and mystery in mathematics. We strip mathematics 
of signifi cance if it is just an idle activity of theorem or refutation production. 
We might as well just set the computers whirring to produce ever more theo-
rems. Of course, this would not do, since mathematics is for human beings, 
not computers; and the computers do not have the creativity to change a 
defi nition once it is given to them.

Lakatos did have a certain amount of faith in the “rational process”. Lakatos 
refused to give a logic to this process. Th e problem is that, in so far as he resists 
formalization of that reasoning process, he forfeits any decisive ability to know 
whether we are engaged in properly directed reasoning or some deceptive 
imitation of reasoning that will, ultimately, lead us astray. Maybe Lakatos 
really should go all the way and say that mathematics is just a human activity. 
We engage in it. Th e only discernment of good from bad mathematics is deter-
mined by mathematicians and, in the end, the decisions come from a mixture 
of factors, some of which are social. Th ere is no mathematically objective body 
of knowledge. Ultimately, there is no mathematical, or logical, justifi cation 
for the activity, or account for the directions it takes. Ultimate justifi cation 
rests in the human institutions of mathematical activity: journals, textbooks, 
mathematics departments, conferences. Engaging in the activity is what is 
important, rather than the content or focus of the activity. Th e focus, or con-
tent, only delineates mathematical activity from others. Partly inspired by 
Lakatos, David Corfi eld has a much more pluralistic and piecemeal approach 
to the philosophy of mathematics, thinking that it is unrealistic to try to off er 
a philosophical position to account for, or justify, all of mathematics. Instead, 
the philosopher should concentrate on local problems within mathematics. 
Maybe this is a viable new direction in the philosophy of mathematics.
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Appendix

Proof: ex falso quod libet

Th is is a classical proof that from a contradiction, anything follows: p, ~p ∴ 
q. It can be set out as follows:

{1} 1. p Premise
{2} 2. ~p Premise
{3} 3. ~q Assumption for a reductio ad absurdum argument
{1, 3} 4. p & ~q 1, 3 &-introduction
{1, 3} 5. p 4 &-elimination
{1, 2, 3} 6. p & ~p 2, 5 &-introduction
{1, 2} 7. ~~q 3, 6 Reductio ad absurdum, discharging 3
{1, 2} 8. q 7 Double negation elimination

Th is proof is not valid intuitionistically or paraconsistently, for reductio ad 
absurdum and double negation elimination are not rules of inference in either 
system. We can avoid using reductio ad absurdum by either using the rule 
of conditional proof together with modus tollens, or by using disjunctive 
syllogism.

Here is the proof using disjunctive syllogism, which is intuitionistically 
valid:

{1} 1. p Premise
{2} 2. ~p Premise
{1} 3. p ∨ q 1 ∨-Introduction (weakening)
{1, 2} 4. q 2, 3 Disjunctive syllogism

Th e intuitionist allows disjunctive syllogism. Th e paraconsistent logician 
will not allow disjunctive syllogism as a rule of inference (Priest 2001: 151). 
For the paraconsistent logician, it is possible to have an inconsistent sentence, 
such as the liar sentence, as an axiom or derived theorem, without the whole 
theory becoming trivial. Th at is, it will not be the case that every well-formed 



168 introducing philosophy of mathematics

formula of a theory containing a contradiction will be derivable. Th e theory 
is then inconsistent (contains a contradiction) but non-trivial (not anything 
is derivable). Th is is because paraconsistent logic allows truth-value gaps and 
truth-value gluts. A truth-value gap occurs when a well-formed formula of a 
language gets no truth-value assigned to it. A truth-value glut occurs when 
both “true” and “false” are assigned to the same sentence. An example of a 
sentence that will enjoy a truth-value glut is a paradoxical sentence such as 
“Th is sentence is false”. To show the invalidity of the inference p, ~p ∴ q, take 
p to be both true and false. Take q to be false. Th en both premises are true, but 
the conclusion is false (ibid.). Both premises are also false, but the defi nition 
of validity is worded exactly the same as in classical logic: if the premises are 
true, so is the conclusion. Because paraconsistent logic blocks ex falso quod 
libet inferences, it is possible to have theories that contain inconsistencies 
but that are not trivial.
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Glossary

a posteriori truth A proposition is an a posteriori truth if it can only be known by appeal 
to sense data. Th ese are empirical truths. A posteriori truths are contrasted to a  priori 
truths.

a priori truth A proposition is an a priori truth if and only if it is not necessary to have 
any particular sense experience in order to recognize that it is true. Truths of logic and 
many (arguably all) analytic truths are considered to be a priori. 

abstraction principle In the literature, this is also called “contextual defi nition”. Examples 
are: basic law V; the parities principle; Hume’s principle (the numbers principle). Th e 
necessary features of an abstraction principle are that it should be a second-order 
universal formula. Inside the scope of the second-order universal quantifi ers we fi nd 
a biconditional expression. On one side of the biconditional there is an identity, on the 
other side there is an equivalence relation. Th e numbers principle is: ∀F∀G(Nx:Fx = 
Nx:Gx ↔ F ≈ G). Th is is read: for all concepts F and for all concepts G, the number of 
Fs is identical to the number of Gs if and only if F and G can be placed into one-to-one 
correspondence. One-to-one correspondence is an equivalence relation. 

acquisition argument Th e acquisition argument against the decoupling of truth from 
understanding or knowledge is used by anti-realists against realists. Th e realist claim is 
that there are verifi cation-transcendent truths, that is, truths that lie beyond our abili-
ties to verify or experience them. Th e anti-realist asks: how it is possible for there to be 
truths that we cannot verify or experience, since it then seems that we cannot acquire 
understanding of that truth? Th e purported (candidate verifi cation- transcendent) 
truth is then devoid of content, and therefore meaningless. 

actual world Th e actual world is the real world we live in. Th is is contrasted to merely 
possible worlds.

analytic truth A truth is analytic if and only if it is true in virtue of the meaning of the 
sentence. A celebrated example of an analytic truth is: “All bachelors are unmarried 
men”. Th is is not a statistical coincidence; it is true in virtue of meaning. If a proposi-
tion is an analytical truth it cannot be a synthetic truth.

ante rem “Ante rem” is translated as “before reality”. Th e term is most famously used when 
discussing properties. Properties, such as colours, are ante rem just in case they exist 
independent of whether or not there are any real or actual objects that happen to have 
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the property. Applied to structures, the idea is that a structure exists independently of 
whether or not there are any mathematical objects that happen to satisfy the structure. 
Ante rem is contrasted to in re.

anti-realist Unless he is a “global anti-realist”, an anti-realist is an anti-realist about a 
particular discourse or subject matter (and a realist about others). If one is an anti-
realist about numbers, then one thinks that numbers are created by us: their exist-
ence depends on our having created them, or on our having the ability to create them 
(under some sense of “able”). Often this is expressed as: the truths about numbers 
are “epistemically constrained”. Th at is, there are no verifi cation-transcendent truths 
about numbers. 

axiom An axiom is a basic truth of a system (or theory). From axioms, together with 
some rules of inference, we can derive theorems. Examples of axiomatic systems in 
mathematics include Euclidean geometry and Zermelo–Fraenkel set theory. Not all of 
mathematics is developed axiomatically. However, it is thought that if we can fi nd the 
axioms of a theory, we can gain a more precise understanding of the theory. We are 
also less likely to make mistakes in our proofs of purported theorems of the theory.

axiom of choice Th ere are many versions of the axiom of choice. For the purposes of this 
book it is enough to have a rough idea. Th e axiom of choice guarantees that there is a 
“choice function” for any set A composed of other sets. Th e choice function will pick 
out one member from each set (which is a member of A). Th e truth of the axiom of 
choice is independent of Zermelo–Fraenkel set theory. For this reason, there is another 
set theory called “Zermelo–Fraenkel set theory with choice”. Th e truth of the axiom 
of choice is disputed by constructivists.

axiom of infi nity An axiom of infi nity is one that guarantees the existence of an infi nite 
set. A formal system might have several axioms of infi nity to guarantee the existence 
of diff erent sorts, or sizes, of infi nity.

basic law Th e term “basic law” was coined by Frege, and refers to a law, or axiom, of logic. 
Th is is more basic than an axiom of a particular mathematical theory.

bivalence A logic is bivalent if, in its semantics, it has two truth-values: true and false.

cardinality Cardinality is the measure of the size of a set, answering the question: how 
many members does it have? 

causal In philosophical literature, “causal” tends to be restricted to physical causation, as 
opposed the broader explanatory causation (whatever can follow the word “because” 
in English). 

class A class is a gathering of objects under some concept or predicative term. All sets are 
classes, but not all classes are sets. Th ose that are not sets are proper classes. Proper 
classes are not obtained from the axioms of set theory. Th ey are obtained by think-
ing up a concept that we cannot construct from the set-theoretic axioms. Intuitively, 
proper classes are “too big” to be sets. Examples are: the set-theoretic hierarchy, all 
the ordinals and all the cardinals. 

compactness Th e compactness theorem is true of some logics (or mathematical theories). 
If a theory is compact then a formula A is valid (always true) in the theory if and only 
if A is valid in some fi nitely axiomatized part of the theory. Second-order logic is not 
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compact because there are some valid statements that cannot be proved using a fi nite 
number of axioms.

compositionality “Compositionality” refers to the structure of languages. A language is 
compositional if and only if the meaning of larger units is completely analysable in 
terms of the meaning of smaller units. More mundanely, the meaning of sentences 
can be completely understood in terms of the meaning of the words in the sentence 
together with how those words are ordered (so we can refer to the grammar of the 
language). A language would not be compositional if and only if the meaning of large 
units, such as sentences, went beyond the meaning of the parts. 

concrete object A concrete object is a physical object. It has location and mass. 

consistency A theory is consistent if and only if it is not possible to derive a contradic-
tion in the theory. 

constructive logic Th ere are many constructive logics. What they have in common are 
that they are motivated by some sense of epistemically constraining truth through the 
logic. To meet those ends they reject some of the principles of classical logic. Th ey 
will reject some combination of: the rule of double negation elimination; reductio ad 
absurdum; certain versions of modus tollens; the axiom of choice; existential elimina-
tion; the law of bivalence; and the law of excluded middle. Intuitionist logic is a type 
of constructive logic. 

context principle See “abstraction principle”.

continuum problem Th e continuum problem is deciding whether or not the following 
“continuum hypothesis” is true (in set theory): 2ℵ0 = ℵ1. Th at is, the problem is to 
decide whether or not ℵ1 (which is the next size up after ℵ0) is got at by raising 2 to 
the power of ℵ0. Th e problem was posed by Cantor. It was resolved much later, when 
mathematicians discovered that the hypothesis is independent of Zermelo–Fraenkel 
set theory with choice. 

contradictory object A contradictory object is one that has properties that preclude 
each other. An example is a round square or a hat that is only blue all over at the 
same time as being only red all over. Contradictory objects do not exist, and yet we 
can reason about them. As a result, Meinong proposes that they are treated as non-
existent objects.

counterfactual A counterfactual is a fact that does not actually obtain. Th ese are facts 
that could have been, or that depend on some prior conditions that do not happen 
to obtain.

decidable A logic, or mathematical theory, is decidable if and only if our (proof ) test for 
theorems will always give us a defi nite answer in a fi nite number of steps. Decidability 
concerns the effi  cacy of our proof system. A theory is undecidable if and only if there 
are some truths of the theory that cannot be proved to be true by the proof system in 
a fi nite number of steps (some proofs will continue forever). 

density Density refers to series of numbers. A series of numbers is everywhere dense if 
and only if between any two there is a third. Th e rational numbers and real numbers 
are everywhere dense. Th e natural numbers, and integers are not.
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disjunctive syllogism Th e logical rule of disjunctive syllogism is that if you have a dis-
junction and the negation of one of the disjuncts, then you can infer the other disjunct 
(is true). 

empty set Th e empty set is the set with no members. It is a subset of every set (by the 
defi nition of “subset”), but is not a member of every set. 

epistemology Epistemology is the study of how we know, or what our knowledge consists 
in, concerning some area of study. 

equivalence Equivalence is a looser relation than identity (or equality). Two objects are 
equivalent if and only if they are the same in some respects. If they are the same in 
all respects then they are “the same” object, that is, “they” are identical: we have only 
one object. 

extension of a concept Th e extension of a concept is all the objects that fall under the con-
cept. An extensional defi nition is one that lists the objects. In contrast, an intensional 
defi nition is one that gives us a means of picking out the objects. Most mathematicians 
think that all of mathematics is extensional. Th at is, which expressions we use to pick 
out objects is irrelevant to mathematics. Provided we pick out the same objects, no 
mathematician cares about the particular expression. For example, the expression “2 
+ 2” has the same extension as the expression “8 – 4”. 

free logic Th e “free” in free logic refers to “free of ontological commitments”. A free logic 
is designed to accommodate reasoning over nonexistent objects, for example, fi ctional 
objects. Th ere are several free logics. Typically, they take issue with the classical rule 
of existential instantiation, or existential elimination: that from an existentially quan-
tifi ed sentence we can directly infer a named version of that sentence (provided the 
name is free – not used already in the proof ), where the name refers to an object in 
the domain. ∃x(Fx) therefore Fa, where “a” is a name for an object in the domain, and 
is therefore, guaranteed to exist. 

gapless We use the term “gapless” in two diff erent ways in the text. One is when we refer 
to the continuum as a gapless line. Th at is, the continuum is a smooth line, with no 
points, or numbers representing those points, missing. Frege uses the term “gapless” to 
refer to proofs. A proof is gapless just in case the reasoning is completely tight. Every 
step in the proof is accounted for either by an axiom or by a rule of inference from 
previous lines in the proof. Th e virtue of a gapless proof is that we can be sure that no 
unexamined presupposition has crept into the proof.

higher-order logic A logic is a “higher-order” logic if and only if it allows quantifi cation 
over higher-order variables. Th at is, it will allow quantifi cation over predicates, rela-
tions and functions. Th is is contrasted to fi rst-order logic, which only allows quanti-
fi cation over objects. 

impredicative defi nitions A (non-impredicative) defi nition should pick out an object, 
and it should express itself in terms diff erent from the term being defi ned. In contrast, 
an impredicative defi nition is one that uses the terms being defi ned in order to give 
the defi nition. In some way the defi nition is then circular. 

in re “In re” is translated as “in reality”. Th e term is most famously used when discussing 
properties. Properties, such as colours, are in re just in case their existence depends on 
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there being some objects that have the property. Applied to structures, the idea is that 
a structure exists only if there are mathematical objects that satisfy the structure. 

indispensability arguments Indispensability arguments are used by naturalists to defend 
some parts of mathematics. Th e idea is that the part of mathematics that is indispen-
sable to physics, or our other scientifi c theories, is good, vindicated mathematics. Th e 
rest of mathematics is suspect. 

integers Integers are the whole numbers and all the negative whole numbers: …–3, –2, 
–1, 0, 1, 2, 3…

irrational numbers Irrational numbers are numbers that cannot be expressed as a frac-
tion with whole numbers as numerator and denominator. Th ey have to be expressed 
as numbers with a decimal. Th e numbers after the decimal never repeat in the same 
fi nite pattern. Th e “same fi nite pattern” is called a “period”: it can have any fi nite length. 
An example is: 345. A number that has the period 345 will continue infi nitely after the 
decimal point with … 345345345345…. Any number with a period can be expressed 
as a fraction, so is rational. Th e number π is a famous irrational number. 

law of excluded middle Th e law of excluded middle is a syntactic law, or axiom. It states 
that for any well-formed formula either it or its negation holds. Th e law of excluded 
middle is often rejected by constructivists. Th ey add that a well-formed formula also 
has to be constructed (by the constructive rules) in order to hold. Th e semantic coun-
terpart of the law of excluded middle is bivalence. Intuitionists accept bivalence but 
reject the law of excluded middle.

limit ordinal A limit ordinal is an infi nite ordinal with no immediate predecessor. ω 
is the fi rst limit ordinal. It follows all the fi nite ordinals, so is infi nite, and it has no 
immediate predecessor.

logical object A logical object is one that logic says exists. If logicism is right, then num-
bers are logical objects.

Löwenheim–Skolem property Th e Löwenheim–Skolem property pertains to mathemat-
ical theories or logics. Th e theorem is: if T is a countable theory having a model then 
it will have a countable model. A theory is countable if and only if its language is of 
size ℵ0. For example, the language of propositional logic is countable, since it has fi ve 
logical connectives and an infi nite number of proposition letters. If the Löwenheim–
Skolem theorem is true of a mathematical theory or logic, then that theory, or logic, 
has the Löwenheim–Skolem property.

manifestation argument Th e manifestation argument is deployed by anti-realists against 
realists, and concerns our understanding of a truth. Th e anti-realist believes that it 
makes no sense to attribute understanding of a truth to another person if that person 
cannot manifest her understanding of that truth. Th e anti-realist asks how it is possible 
for that person to have understanding. Note that “manifesting” does not necessarily 
require a full explanation, but it does require correct(able) use. If a person claims to 
have understanding of a truth concerning a concept, but cannot give some indication 
of how to use those words (even by example) then we cannot attribute understand-
ing to that person. Th e purported truth is verifi cation-transcendent, and therefore 
meaningless. 
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modus ponens Modus ponens is a rule of inference. It says that if we have a conditional 
statement, and the antecedent of that conditional, then we may infer the consequent 
of the conditional. 

modus tollens Th e classical version of modus tollens is that if we have a conditional and 
the negation of the consequent, then we may infer the opposite of the antecedent. Th e 
constructivist is more careful. He says that if we have a conditional and the negation 
of the consequent we may infer the negation of the antecedent. If this happens to be a 
doubly negated formula, then we need to use double-negation elimination to get rid 
of the double negation, and the rule of double-negation elimination is rarely endorsed 
by the constructivist. 

natural deduction Natural deduction is a formal syntactic system of deduction, where we 
reason from premises using rules of inference to the conclusion. Natural deduction is 
distinguished from tree proofs or table proofs, which are semantic.

non-classical logic A logic is non-classical if it rejects some of the principles of classical 
logic. See “constructive logic”.

non-standard models of arithmetic Non-standard models of arithmetic are only allowed 
in fi rst-order arithmetic. If we move to second-order arithmetic (where the axiom of 
induction includes quantifi cation over properties), then there are no non-standard 
models. A non-standard model is a series of numbers that at the beginning will look 
exactly like the natural numbers but, “after” all the fi nite numbers, the number line 
looks diff erent than what we see with the standard ordinals. Th ere are many non-
standard models. An example will have all of the fi nite ordinals, and then the infi nite 
ordinals as per our regular theory, but there will be an infi nite number of copies of 
infi nite ordinals.

normativity “Normative” is contrasted to “descriptive” and sometimes “prescriptive”. A 
theory, or principle, is normative if it sets a norm. Th is is not a statistical norm; rather, 
it is a standard. A descriptive theory, or principle, simply describes what is. A prescrip-
tive theory, or principle, prescribes what we ought to do. 

noumenal world “Noumenal world” comes from Kant. Th e noumenal world is the world 
as it is in the raw: the world as it really is. We do not directly interact with it. Instead, 
our world is the phenomenal world. Th e phenomenal world lies between the noume-
nal world and our concepts and experiences. We have contact with the phenomenal 
world, which is the noumenal world shaped by our concepts and our abilities to sense 
the world.

one-to-one correspondence More accurately, this should be written “one-to-one and 
onto”. Two sets can be placed into one-to-one (and onto) correspondence if and only 
if every member of one set can be matched with exactly one member of the other set, 
and vice versa. We say that two sets that can be placed into one-to-one (and onto) 
correspondence are of the same size.

ordering relation An ordering relation imposes an order on a set of objects. Examples of 
an ordering relation are: “is greater than”; “is taller than”; and “is older than”.

ordinal An ordinal is a number used to give a place in an order. For example, “fi rst”, “sev-
enth” and “eighteenth” are all ordinals. 
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phenomenal world See “noumenal world”.

possible world Possible worlds are places where possibilities are played out. Th e term 
“world” in this case is not restricted to a planet the size of earth. Rather, these will often 
include whole universes. Whenever we use the locution “it is possible that …” the idea 
is that what makes the locution true is that there is a possible world where “that …” 
happens. In the literature, there are many questions concerning the ontological status 
of possible worlds: whether they really exist, are abstract, whether past ones exist and 
so on. Th ey are not causally linked to our world but, by supposing them, we endorse 
counterfactual statements: we make them truth-apt. 

powerset Th e powerset of a set is the collection of all the subsets of a set.

prescriptive See “normative”.

prime pairs Prime pairs are pairs of prime numbers that are separated by only one even 
number. Examples include <3, 5>, <5, 7>, and <11, 13>. 

proposition A proposition is a fact referred to by means of a declarative sentence. A 
proposition is truth-apt.

propositional logic Propositional logic is sometimes called “sentential” logic. Th e logic 
is simpler than fi rst-order logic or higher-order logics. Propositions are taken as an 
irreducible unit. So any declarative sentence is replaced by a proposition letter. Th e 
logical connectives are also part of the vocabulary. First- and higher-order logics are 
more sophisticated, since they allow us to analyse propositions, and not take them as 
irreducible. 

quantifi er-free elementary arithmetic “Quantifi er-free” means “without quantifi ers”, so 
quantifi er-free elementary arithmetic is the arithmetic concerning particular numbers. 
2 + 5 = 7 is a true formula (theorem) of quantifi er-free elementary arithmetic. Th e 
formula expressing the commutativity of addition ∀x∀y(x + y = y + x) is not a formula 
of quantifi er-free elementary arithmetic. “Elementary” refers to it’s being fi rst-order. 

reductio ad absurdum Reductio ad absurdum is a rule of inference of classical logic. It 
states that if a contradiction follows from a formula then that formula is incorrect. Th e 
rule runs: assume (for the sake of argument) that P, where P is some formula. Prove a 
contradiction from P. You may then infer that it is not the case that P. 

relevant logic A relevant logic is one that will block ex falso quod libet arguments. Th at is 
they reject the classically valid arguments with contradictory premises. It is classically 
valid that from a contradiction anything follows. 

second-order logic Second-order logic allows quantifi cation over second-order  variables. 
Th ere are many second-order logics. 

singular term “Singular term” is a grammatical expression. A singular term refers to only 
one object. In contrast, a general term might refer to several objects. “Is an object in 
the room” is a general term (provided there are several objects in the room). “Is a moon 
of Earth” is a singular term. 

size of set Th e size of a set is its cardinality.

soundness of a logic A logic is sound if and only if every syntactically proved argument 
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is truth-functionally valid. Th at is, the syntactic proof system will not allow us to gen-
erate a false conclusion from true premises. 

spatiotemporal intuition Spatiotemporal intuition is postulated by Kant to explain how it 
is that it is possible for us to have experiences of the external world at all. We do so, by 
participating in, or by making use of, spatiotemporal intuition. Th is allows us to organ-
ize objects in the world spatially and temporally. More interesting is Kant’s idea that 
it takes spatiotemporal intuition to enable us to understand geometry and arithmetic. 
Th is makes the truths of geometry and arithmetic synthetic, for Kant. 

supervenience Roughly, a property supervenes on an object if and only if the property 
would change if the object were to change. Th ere are strong and weak formulations of 
supervenience. For example, beauty supervenes on a painting because if we were to 
alter the painting, then the beauty would disappear (or would be a diff erent example 
of beauty). 

synthetic truth A synthetic truth is a proposition that is true by bringing independent 
concepts together. For Kant a synthetic truth might be a posteriori or it might be true 
because it appeals to spatiotemporal intuition. 

tautology A tautology is a sentence that is always true. Logical truths are tautologies. Any 
sentence of the form p implies p, where p is a proposition, is a tautology. 

temporal logic A temporal logic is one that includes temporal operators. Temporal logics 
are designed to set norms for reasoning over time. 

truth-apt A sentence is truth-apt if it is a candidate for getting a truth-value. Questions 
are not truth-apt; nor are nonsense sentences. 

universal quantifi er Th e universal quantifi er belongs to fi rst-order logic and any logic 
higher than fi rst-order logic. Th e symbol for the universal quantifi er is ∀. It is used to 
represent the locution “for all” or “all” in English. 

validity An argument is valid if and only if, given true premises, the conclusion is also 
true. Another way of putting this is that an argument is logically valid if and only if it is 
impossible for the premises to be true and the conclusion false. A sentence, or formula 
is valid just in case it is always true, that is, if it is a tautology. 

verifi cation-transcendent truth A truth is verifi cation-transcendent if and only if it lies 
beyond our abilities to verify it. What counts as “our abilities to verify” is up for debate 
and, in accordance with this, philosophers will be inclined towards considering diff er-
ent propositions as examples of verifi cation-transcendent.
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Notes

Chapter 1: Infi nity

 1. See W. Sieg, “Mechanical Procedures and Mathematical Experience”, in Mathematics 
and Mind, A. George (ed.), 71–117 (Oxford: Oxford University Press, 1994).

 2. For example see Aristotle’s discussion of infi nity; Aristotle, Physics, Book 6, Chapter 
9, 239b–240a.

 3. Th e Gilgamesh Epic, a series of legends and poems about the mythological king 
Gilgamesh engraved on eleven stone tablets around 1300 bce, had its origins much 
earlier. It relates the story of Gilgamesh’s search for eternal life.

 4. Th e Epic of Gilgamesh 3.2.34–36, S. Shabandar (trans.) (Reading: Garnet Publishing, 
1994), 34.

 5. For information about this see the excellent article by Gregory Vlastos, “Zeno of Elea”, 
in Th e Encyclopedia of Philosophy, vol. 8, Paul Edwards (ed.), 369–79 (New York: 
Macmillan, 1967).

 6. In mathematics, infi nitesimals are left as not further defi ned. As we further subdivide a 
space, or line, we approach a limit. However, mathematically, the process of subdiving 
is infi nite. Th e very smallest divisions are the “infi nitesimals”. Th at is, we cannot, for 
example, divide an infi nitesimal into two parts. In fact, there are a lot of conceptual 
problems with the calculus. See Marcus Giaquinto, Th e Search for Certainty (Oxford: 
Clarendon Press, 2002), 4. 

 7. Th is is referred to by Aristotle in Physics 239b15–18. Aristotle does not mention the 
tortoise explicitly. However, it was conventional to call a slow runner a tortoise. Th e 
paradox is called “Achilles and the tortoise” in other contemporary texts. We do not 
know what Zeno called it.

 8. Th is is often put in terms of space and time being continuous as opposed to discrete, 
but this is not quite accurate with respect to the puzzle posed by the paradoxes. Th e 
rational numbers (fractions) are “everywhere dense”. Th at is, between any two there is 
a third. If space and time are structured like the rational numbers then they are infi -
nitely divisible, and this is enough to generate the paradox. Th e rational numbers are 
not enough to make a gapless line, often called the “continuum”, which is numerically 
represented by the real numbers. Th e real numbers include both the rational numbers 
and the irrational numbers. It is a metaphysical question whether space and time are 
continuous, and this question is not, strictly speaking, raised by the paradoxes. In con-
trast, we have a conception of space and time as having smallest units, so not being 



178 introducing philosophy of mathematics

infi nitely divisible. Th is would be represented numerically by the natural numbers 
or the integers. Under this conception, space and time have smallest bits of space or 
moments. If we work out, or decide, that space and time are not infi nitely divisible 
then this precludes their being continuous.

 9. Th e shift in language is made in order to refl ect the shift in the text from talking of the 
ancient Greek debate (in which case the language of “supporter of the notion of the 
potential infi nite” was appropriate) to the more modern debate between realists and 
constructivists. 

 10. It is unnecessary to know precisely what the term “well-ordered” means here. To satisfy 
the curious, the precise defi nition is that a series is well-ordered just in case it is ordered 
(by a relation such as “strictly less than”, symbolized by “<”), and each subset has a least 
element. So, for example, the set of integers is not well-ordered, since the subset of the set 
of integers made up of the negative numbers has no least member. Th ere has been much 
mathematical investigation into order-types for those interested in further reading.

 11. Th e “measure” does not have to be physical; it can be mathematical. We cannot cali-
brate an instrument suffi  ciently fi nely to detect the diff erence between two very close 
irrational measures of some physical object, distance or time. In fact we cannot say 
that we have measured a particular distance between two points and found that it 
is of length “x”, where x is an irrational number. Ponder this. However, we can order 
irrational numbers by the “<” relation. So, the notion of “measure” being used here is 
not restricted to the notion of physical measure.

 12. For convenience, we are distinguishing whole numbers from natural numbers. Th e 
whole numbers begin with 0 rather than 1. We choose to do this because of the more 
immediate match up between the label “fi rst” and the number 1, the fi rst number in 
the series of natural numbers. 

 13. Th e observation that there are as many natural numbers as there are even numbers 
was fi rst made by Galileo Galilei. To be precise, Galileo asked about numbers and their 
squares, and reasoned that since every number has a square, there must be as many 
squares as there are numbers. Cantor simplifi es the example to that of numbers and 
their doubles. See Galileo Galilei, Dialogues Concerning Two New Sciences, H. Crew 
and A. Salvio (trans.) (Evanston, IL: Northwestern University Press, 1939). 

 14. Richard Dedekind, Essays on the Th eory of Numbers (New York: Dover, 1963), 63–70.
 15. Th e number on top of a fraction is called the numerator and the number below is 

called the denominator. Fractions with 0 as the denominator are called “undefi ned” 
(essentially they are infi nite, under a loose sense of “infi nite”). Fractions with 0 as a 
numerator are just 0 itself. 

 16. Sometimes called the Euler Number or Napier’s Constant, e is an irrational constant 
used in working out logarithms. Th e number π is indispensable to geometry and is 
found in measurements concerning the cirle. For example, the circumference of a circle 
is 2πr, where r is the radius of the cirle.

 17. For this reason it is no wonder that this is one of the favoured proof techniques of 
Raymond Smullyan, who is not only an important mathematician, but also worked 
for a long time as a magician.

 18. Th ere are diff erent presentations of this. I have chosen a very abstract method, but 
some readers might fi nd it more helpful to envisage a list of random numbers, where 
some are irrational and some rational. It might also be helpful to just try to generate a 
list that will eventually scoop up all the numbers. Th e proof is a way of convincing us 
that not only is this a diffi  cult task, but it is truly impossible. 
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19. See K. Gödel, “What is Cantor’s Continuum Problem?” [1964], in Philosophy of 
Mathematics: Selected Readings, 2nd ed., P. Benacerraf and H. Putnam (eds), 483–4 
(Cambridge: Cambridge University Press, 1983) and discussions in Michael Hallett, 
Cantorian Set Th eory and Limitation of Size (Oxford: Clarendon Press, 1984) 2, 5, 6.

Chapter 2. Mathematical Platonism and realism

 1. Socrates features as a character in many of Plato’s dialogues. Socrates was Plato’s 
teacher, and Plato recorded the dialogues between his teacher and other philosophers. 
It is thought that the early dialogues are loyal recordings, but that Plato’s later work, 
such as the Republic, was much less infl uenced by Socrates, and better represents 
Plato’s own thinking. 

 2. W. S. Anglin and J. Lambeck, Th e Heritage of Th ales (New York: Springer, 1995), 90.
 3. For a good discussion of this see Anglin & Lambeck, Th e Heritage of Th ales, 89–92 on 

non-Euclidean geometries. 
 4. It might be a useful conceptual exercise to compare this to diff erent people’s experi-

ences of a particular colour, or of pain. 
 5. It is not important that we cannot always rank any pair of drawn triangles. It suffi  ces 

that there are pairs of triangles that we can rank. Th e diff erence is subtle.
 6. Th is is a little ironic since Plato chides the geometers of his time for poor use of language. 

Th e language of the geometers is in the active mode, calling for extending lines and 
drawing circles. Plato would prefer the geometers to express themselves in the passive. 
For example, they should say: “there exists a line that intersects the circle” as opposed to 
“draw a line that intersects the circle”; Plato, Th e Republic, G. R. Ferrari (ed.), T. Griffi  th 
(trans.) (Cambridge: Cambridge University Press, 2000), Book 7: 527a, b.

 7. Cesare Burali-Forti (1861–1931) was an assistant to Guiseppe Peano (1858–1932), a 
founder of set theory. See Haskell Curry, Foundations of Mathematical Logic (New 
York: McGraw-Hill, 1963), 5 n.2.

 8. For an in-depth discussion see Marcus Giaquinto, Th e Search for Certainty; A 
Philosophical Account of the Foundations of Mathematics (Oxford: Clarendon Press, 
2002). Ernst Zermelo (1871–1953), who set out to axiomatize set theory in 1908, did 
not develop a theory of classes; his was a theory of sets. As such, for Zermelo talk of 
proper classes lies outside mathematics, because it lies outside set theory. In particu-
lar, we cannot talk within set theory of the proper class of all the ordinals. Th us, we 
are never in a position to run the paradox. We shall return to these ideas later in the 
chapter.

 9. We could marshal our vocabulary and say that a mathematical realist is a realist in 
truth-value, and that a platonist is a realist in both ontology and truth-value. Th is 
marshalling would help to distinguish the various realist positions. Unfortunately, 
such clarity would come at a price, and the price would be confusion when reading 
the literature. Unfortunately, in the literature, many realists do not draw the distinc-
tion between realism and platonism in this way. 

 10. Notice that we have been using “see”, “perceive” and “intuit” interchangeably. Th ese 
notions will be disentangled in the course of the book. For now, we lump them 
together.

 11. Set theory was developed at the end of the nineteenth century and the beginning of the 
twentieth century. Work is still being done in set theory. Th e theory grows up around 
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the notion of a set of objects. We explore this notion, and discover the idea that there 
must be an empty set: a set containing no objects. We go on to discover other sets, we 
develop axioms which allow us to fi nd more sets out of existing sets, and so on. Th e 
“universe of sets” thus discovered/created, is arranged in a hierarchy, and called “the 
set-theoretic hierarchy”, or “the set-theoretic universe”.

 12. A well-formed formula is a string of symbols in the formal language that is grammati-
cal. Th at is, it makes sense. “P & ~P” is a well-formed formula, but “~~P&” is not a 
well-formed formula. 

13. At this stage, simply read this at face value and we shall assess it and discuss alterna-
tive views in depth later. We leave the logic in place for now, and question it only later, 
when we have a viable alternative.

 14. Russell changed his mind frequently. For a careful and illuminating navigation through 
Russell’s various theory changes see Michael Potter, Reason’s Nearest Kin: Philosophies 
of Arithmetic from Kant to Carnap (Oxford: Oxford University Press, 2000); ch. 5, 
119–63, is on Russell’s type theory.

 15. Maddy prefers the term “realism” over “platonism” (or “Platonism”) to describe Gödel’s 
position: Penelope Maddy, “Perception and Mathematical Intuition”, in Th e Philosophy 
of Mathematics, W. D. Hart (ed.), 114–41 (Oxford: Oxford University Press, 1996), 
114  n.1. 

 16. Very simply, this is because of the causal theory of knowledge is still philosophically 
popular, especially in philosophy of science. Th e immediate problem with a causal 
theory of knowledge and abstract objects is to account for how it is that abstract 
objects can have a causal connection with us at all.

 17. Supervience is a relation between, usually, an object and a concept. We say that “the 
concept supervenes on the object”. Th is means that were the object to change, then 
so would the concept. Th e clearest example is in aesthetics. We say that beauty super-
venes on a painting. Should the painting be altered, so would the beauty. “Beauty” is 
abstract whereas the painting is physical.

 18. Th e list of such mathematicians is too long to include in full. Examples include Albert 
Dragalin, Smolenski and Alexander Yessinin-Volpin. Some of the Polish logicians of 
the 1920s and 1930s also have a strong awareness of constructivism. 

 19. I highly recommend P. L. Heath, “Nothing”, in Th e Encyclopedia of Philosophy, vol. 5, 
Paul Edwards (ed.), 524–5 (New York: Macmillan, 1967).

 20. “Quite certain” means that we have proofs of equi-consistency. Th ese are proofs that 
if one system is consistent, then so is the other. We do not have absolute proofs of 
consistency of any set theories. Since there are no absolute proofs of the consistency of 
any set theory, we ultimately have to express our faith that so much of our mathemat-
ics could not be wrong, since many of the set theories developed are equi- consistent 
with each other. We might then add that we have not discovered a paradox yet in 
the existing theories, so we are unlikely to. Of course, this is an empirical inductive 
argument. 

 21. Th is is enough to distance Köhler from Maddy.
 22. For readers to whom this will make some sense: “rational intuition” is comparable to 

Kant’s notions of spatial intuition and temporal intuition.
 23. One person will have a better arithmetical sense than another if he is quicker or more 

precise in making calculations or estimates than another. 
 24. See the character called the “Gödelian optimist” in Neil Tennant, Th e Taming of the 

True (Oxford: Clarendon Press, 1997). Th is character surfaces in a few places in the 
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text. Köhler is a Gödelian optimist, as are the mathematicians he is representing in his 
philosophical position.

 25. Of course, this judgement is made in reference to the few fragments of ancient Greek 
writing we have. 

 26. Th ere are diff erent stances towards a causal theory of knowledge. We can say that a 
causal account is the only possible account of knowledge, and “causal” is read as “physi-
cally causes”, in which case we cannot have knowledge of abstract objects. Or we build 
into our theory of causation some notion of rationality, so our mathematical skills are 
part and parcel of our causal theory of knowledge. Th e third possibility is that we have 
two theories of knowledge – one for physical objects, one for abstract objects – and 
we try to use the appropriate one for the occasion.

Chapter 3. Logicism

 1. In English, Concept Script: A Formula Language, Modeled upon that of Arithmetic, for 
Pure Th ought, in From Frege to Gödel: A Source Book in Mathematical Logic, 1879–
1931, J. van Heijenoort (ed.), 1–82 (Cambridge, MA: Harvard University Press).

 2. In English, Th e Foundations of Arithmetic, J. L. Austin (trans.) (Evanston, IL: 
Northwestern University Press, 1980).

 3. Th e Grundgesetze is partially translated in Translations from the Philosophical Writings 
of Gottlob Frege, 3rd edn, Peter Geach and Max Black (ed. and trans.), (Oxford: 
Blackwell, 1980), 117–224. 

 4. Frege changed his mind about this towards the end of his career. However, we shall 
restrict ourselves to the logicism he developed in the Begriff sschrift, Grundlagen and 
Grundgesetze. In the Grundlagen (see §13), Frege clearly states that geometry is not 
reducible to logic.

 5. See my “A Reductio Ad Absurdum Argument for Naïve Logicism”, unpublished 
manuscript.

 6. George Boole, An Investigation of the Laws of Th ought (New York: Barnes & Noble, 
2005), 192–228.

 7. Sometimes “propositional logic” is referred to as “sentential logic”.
 8. An alternative standard symbol for “→” is “⊃”. Here, “→” is the symbol for implication; 

it is read as “if … then …”.
 9. Modern propositional logic was developed separately by Emil Post and Wittgenstein 

in 1920. Some medieval logicians also developed a version of propositional logic. 
See Martha Kneal and William Kneal, Th e Development of Logic (Oxford: Oxford 
University Press, 1962). Unfortunately, what the medieval logicians developed was 
not very popular, and the syllogistic logic predominated. 

 10. Dedekind, Essays on the Th eory of Numbers.
 11. Th at is, we might have thought that we had two diff erent structures, because they 

were diff erently described, but we only have one that we can detect. Th e last qualifi er 
is important. What we can detect depends on the sophistication of our mathematical 
language. Th e realist maintains that there is only one structure really, and this does 
not depend on our ability to detect it, or confound it with others. Th is is an interesting 
point of comparison with structuralism. 

 12. Th is is not really the place to raise the objections but, roughly, they have to do with the 
limitative results that pertain to full (as opposed to Henkin) second-order logic. Full 



182 introducing philosophy of mathematics

second-order logic is incomplete, not compact and does not have the Löwenheim–
Skolem properties. Th is makes for a less “tidy” system, to use an aesthetic term, than 
fi rst-order logic.

13. It is not true that every number is even. However, it is true that the conditional of 7′ 
holds since the antecedent of the conditional is false. 0 is not an even number; nor is 
it the case that if x is an even number its immediate successor will always be an even 
number.

 14. A set is isomorphic to another if and only if there is a one-to-one correspondence 
between the sets.

15. Ironically, (because compactness is supposed to be “good”), we can construct such a 
non-standard model by exploiting the compactness of fi rst-order logic.

 16. Some philosophers deny that there are any abstract objects. However, see Bob Hale, 
Abstract Objects (Oxford: Blackwell, 1987), which defends a view of abstract objects. 

 17. Put more carefully, any formal system that looks like an alternative had better be para-
sitic on regular arithmetic. For example, modular arithmetic, or clock arithmetic, is 
not a real alternative to regular full arithmetic. It is parasitic on regular arithmetic, for 
there is no principled (logical/mathematical) upper bound on the module. We can do 
arithmetic mod 8, or mod 9 or mod 10 and so on. One might think that fi rst- and sec-
ond-order arithmetic are alternatives to each other, and that one is true and the other 
not always true. I think, and this is speculation, that Frege would have referred to non-
standard models of arithmetic. Th ese are only constructible in fi rst-order arithmetic. 
Th is indicates that second-order arithmetic is the more loyal formal representation of 
arithmetic.

 18. For those unfamiliar with this vocabulary, here is the explanation. A conditional is 
an “if … then …” statement. Often we symbolize this with → or ⊃. In propositional 
logic we might write P → Q. P is the antecedent of the conditional and Q is the 
 consequent. Modus ponens is the rule that says that if you have, for example, P → Q, 
and  independently of this you also have P, then you may write Q on a new line. Th at 
is, you may infer Q. 

 19. Frege is careful about this. Th e claim is not that someone with no sense experience 
at all can still come up with mathematics. Rather, recognizing arithmetic truths does 
not depend on any particular sense experience. Frege acknowledges that as human 
beings we probably need some sense experience to get us started in thinking at all. See 
Grundlagen §105, n. 2.

 20. See, for example, Michael Dummett, “Frege and Kant on Geometry”, Inquiry 25 (1980),  
233–54. 

 21. For a nice discussion of this see Norma Goethe, “Frege Between Kant and Leibniz 
or How to Understand Truth by Means of Rigorous Proof ”, manuscript presented 
to the History of Philosophy of Science Working Group (HOPOS), June 2002, and 
Eckehart Köhler, “Logic is Objective and Subjective”, paper presented at the History 
of Philosophy of Science Working Group (HOPOS) Conference, Vienna, July 2000.

 22. In particular, Frege agreed with Kant about geometry requiring spatial intuition.
 23. Quoted in Stewart Shapiro, Philosophy of Mathematics: Structure and Ontology 

(Oxford: Oxford University Press, 1997), 144.
 24. Ernst Zermelo (1871–1953) had discovered the paradox before Russell, but not in 

Frege’s system. Zermelo discovered it in an early attempt to axiomatize set theory, 
and he knew to avoid the problem. Russell made it famous because of the dramatic 
circumstances under which he revealed it.
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 25. Peter Geach and Max Black, “Frege on Russell’s Paradox (appendix to Vol. II)”, in 
Translations from the Philosophical Writings of Gottlob Frege, P. T. Geach (trans.) 
(Oxford: Blackwell, 1952), 214.

 26. For a discussion of intensional logic see Edward N. Zalta, Intensional Logic and the 
Metaphysics of Intentionality (Cambridge, MA: MIT Press, 1988).

 27. Set theory usually has a comprehension principle or a principle of extensionality. 
Restrictions are placed on this in order to avoid paradox, but it is as though mathema-
ticians regret the fact that the naive version of the principle leads to contradiction. 

 28. Frege even allows us to think of contradictory notions, such as all objects not equal 
to themselves. Since this is contradictory, no object falls under it. He uses this to pick 
out the number 0, or the empty set. Frege notes that any notion that has no objects 
falling under it will do, so we could also use “state in Canada” to pick out 0, since there 
are none. By basic law V, the number of “state in Canada” and the number of “object 
not identical with itself ” are identical since they are equivalent in extension.

 29. For a recent discussion of the Julius Caesar problem see Bob Hale and Crispin Wright, 
“To Bury Caesar …”, in Th e Reason’s Proper Study: Essays Towards a Neo-Fregean 
Philosophy of Mathematics, B. Hale & C. Wright (eds), 335–96 (Oxford: Oxford 
University Press, 2001).

 30. Th ere is some controversy concerning the order in which to write the names Russell and 
Whitehead. It is clear, from their other writings and correspondence that Whitehead’s 
contribution was the more technical aspects of the work, and Russell contributed 
more to the philosophical aspects. Many logicians consider that the technical achieve-
ment is the greater of the two, and therefore favour writing Whitehead’s name before 
Russell’s, and Whitehead is the fi rst named author on their Principia Mathematica 
(1910–13).

 31. Frege also thought that he could probably reduce analysis to logic as well, but he was also 
clear that he did not think that geometry was reducible to logic. In contrast, Whitehead 
and Russell do think that geometry is reducible to their formal system of logic. 

 32. Here, “intuitively” is meant in the sense of pre-theoretic, or informal.
 33. “Th eorems” are the syntactic counterparts of “truths”. Note too that in studying Frege 

carefully one should be aware that the semantic–syntactic distinction is not as explicit 
and natural as it is now, so language that is sensitive to the semantic–syntactic distinc-
tion is somewhat anachronistic. Th e distinction only became signifi cant after Gödel’s 
incompleteness results were understood by the mathematical community. 

 34. An interesting way of thinking about this is that the grammar rules and axioms implic-
itly bind the quantifi ers. In particular, they bind the universal quantifi er. Th at is, “all” 
does not mean “anything that we can think of out of the blue”. Instead, the universal 
quantifi er is bound by the hierarchical structure. Concepts of diff erent types have to 
be built from the ground up: we have to start with 0 and add grammatical structure 
to that piecewise. Th is notion of building from the ground up, and building piecewise, 
is an important anti-realist concept.

 35. Th e existential and universal quantifi ers are interdefi nable so, strictly speaking, it 
does not matter whether we are discussing the universal, the existential or both. Th e 
existential is defi nable as the negation of the universal not. We can give an example 
expression: ∃x(Fx) is defi nitionally equivalent to ~∀x(~Fx). However, intuitively, it is 
the universal that generates paradoxes.

 36. More precisely, if Zermelo–Fraenkel set theory is consistent, then type theory is con-
sistent. Th is is called “relative” consistency, as opposed to absolute consistency. Th e 
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latter is where we have proof that we shall not generate contradiction from a set of 
axioms. Relative consistency is the best sort of result we can get for formal systems of 
a certain minimal complexity (such as that of fi rst-order arithmetic). Th is was shown 
by Gödel in 1931.

 37. See Stewart Shapiro, Th inking About Mathematics (Oxford: Oxford University Press, 
2000), 120–21.

 38. See Crispin Wright, Frege’s Conception of Numbers as Objects (Aberdeen: Aberdeen 
University Press, 1983).

 39. More impressive still, we can recapture basic set theory too, by adding another prin-
ciple, which is similar in structure to the numbers principle. 

 40. Witness the title of the latest book-sized defence of this sort of logicism: Bob Hale 
and Crispin Wright (eds), Th e Reason’s Proper Study: Essays Towards a Neo-Fregean 
Philosophy of Mathematics (Oxford: Oxford University Press, 2001). 

 41.  Filling in the logic of the argument in detail, grammatically the numbers principle is a 
declarative sentence, in the sense that it can take on a truth-value (unlike a question, 
for example). Moreover, a declarative sentence cannot be both analytic and synthetic. 
Furthermore, a declarative sentence has to be one or the other. 

 42. Th e full argument also has to interpret the universal quantifi ers ranging over the whole 
expression. Be aware that this is a simplifi cation of the full argument. For the full argu-
ment see Wright, Frege’s Conception of Numbers as Objects, and further elaborations 
on the argument given by Hale and Wright.

 43. Th e article fi rst appeared in Richard Heck Jr (ed.), Language, Th ought, and Logic 
(Oxford: Oxford University Press, 1997), ch. 9.

 44. Köhler does not specifi cally address the numbers principle in his paper, so this is an 
extension of his position that he might not accept.

 45. Th ere is much material on this. See the Guide to Further Reading.
 46. Th ere are non-classical developments of logicism. In Autologic (Edinburgh: Edinburgh 

University Press, 1992), Neil Tennant arguably develops an intuitionist version of 
logicism. He argues that a relevant intuitionist logic is fundamental as normative of 
good reasoning, and then reduces arithmetic to this. We shall examine this further in 
Chapter 5. 

Chapter 4. Structuralism

 1. A “function” (sometimes called a “mapping” or “graph”) takes us from one set of math-
ematical objects to another. An example of a function is “add two”. Th is takes us from 
a set of numbers, the “domain”, to another set of numbers, the “range”. Th e domain is 
independent of the function; we can specify whatever we like to be the domain. We 
then carry out the function, and get the range.

 2. Ernie is an oblique reference to Ernst Zermelo, and Johnny is an oblique reference to 
Johann von Neumann. Interestingly, Benacerraf reverses the two when he identifi es 
how each develops the set-theoretic analogue of the pre-set theoretic numbers.

 3. More technically: the Peano/Dedekind axioms are true of the Zermelo numerals, and 
the fi nite ordinals of von Neumann. 

 4. In Zermelo–Fraenkel set theory the ordinals (and therefore, fi nite cardinals) are “con-
structed” ex nihilo, that is, from the empty set, as follows. We symbolize 0 by ∅. Th en 1 
is symbolized by the set of the empty set: {∅}. Now 2 is the set whose members are the 
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empty set and the set of the empty set: {∅, {∅}}. And 3 is the set whose members are 
0, 1 and 2: the empty set, the set of the empty set and the set of the empty set together 
with the set of the empty set – {∅, {∅}, {∅, {∅}}}. In contrast, in von Neumann set 
theory the numbers are constructed ex nihilo again from the empty set, but the number 
depends on the number of set-theoretic brackets, so 0 is ∅, 1 is {∅}, 2 is {{∅}}, 3 is 
{{{∅}}} and so on.

 5. Note that this is always a risk with platonism or realism. Th e realist position includes 
in it the possibility that we are wholly wrong in thinking that we track, accurately, 
reality. Benacerraf ’s puzzle makes it plain that we have got it wrong, at least some of 
the time, and that there is no way to work out how to ensure that we get it right. 

 6. Th is happens when we are reasoning over choices. For example, I might be trying to 
choose between studying for a test or going to a party. Both are possibilities available 
to me. I might reason as follows. If I go to the party and do not study, then there is a 
possibility that I will fail the test. If I were to fail the test, then that would be disastrous, 
so the very possibility of failing had better be eliminated by my studying. Reasoning 
over probabilities is a refi nement on this sort of example. 

 7. In modal logic, we distinguish between a possible world (possible structure for 
Hellman) and the universe of possible worlds. We cannot talk of the structure of all 
structures/world of all possible worlds, but just the universe of structures/possible 
worlds. Th e universe is a logic: a set of rules governing inferences concerning the 
relationships between the worlds.

 8. In Mathematics Without Numbers: Towards a Modal-Structural Interpretation 
(Oxford: Clarendon Press, 1989), Hellman assumes set theory as his background 
theory governing what is, and is not, possible. However, in a more recent article,  
“Structuralism”, in Th e Oxford Handbook of Philosophy of Mathematics and Logic, 
S. Shapiro (ed.), 556–62 (Oxford: Oxford University Press, 2005), Hellman gives the 
outlines of a modal structuralism based on second-order logic. So choosing set theory 
as a backdrop is not a necessary move.

 9. Here we mean “objects” as traditionally conceived. Although this can have two read-
ings, both are acceptable. Th e fi rst is the realist reading, where the objects of math-
ematics are the ontology of mathematics. Th ese are the things about which one 
develops a mathematical theory. Examples of mathematical objects are numbers, 
points, lines and fractions. Th e other reading is that the objects of mathematics are 
whatever it is that a fi rst-order mathematical theory has in its intended domain. So, 
for example, fi rst-order arithmetic has the natural numbers in the domain of quan-
tifi cation. Th e restriction to “fi rst-order” is important, since we do not want to talk 
of relations as objects. In the last sentence, the word “object” slipped up an order, 
and we want to restrict our use of object to the lowest level, for now. However, the 
structuralist will be asked later whether the relations in a structure are objects of 
mathematics. 

 10. If one is willing to give up this intuition, then one is inclined towards constructivism.
 11. I am not sure I want to invoke the supervenience relation here. For those unaware 

of the meaning of “supervenience” it has several meanings or formulations, but the 
general idea is suffi  cient here. A property (structure) supervenes on an object (set of 
objects) just in case some changes in the object (set of objects) will eff ect a change 
in the property (structure). A famous example is that the beauty of a painting super-
venes on the brushstrokes of the paint on the canvas. Th e material of the painting is 
insuffi  cient to make the painting beautiful, and some alterations in the arrangement 
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of paint may not aff ect the beauty, but some rearrangements will, as will cutting up 
the canvas and distributing the parts.

 12. Study of the number 8 in isolation from the other numbers would approach numerol-
ogy, or some spiritual study of number as entity or force. Th is is not the sort of study 
engaged in by mathematicians, despite there being whole books devoted to the study 
of π. In fact, π is studied as a member of the irrational numbers, and because it fi gures 
in some geometry theorems. 

 13. In the quotation, the emphasis on eff ectiveness is acknowledged to be a matter of 
choice. Th e notion of structure is, however, viewed as central to mathematical study 
generally.

 14. Since we do not have Babylonian proofs or general methods, we can surmise that the 
tables were fi lled in as much by approximation as by use of a general technique.

 15. Of course, someone had to know something general in order to generate a table in 
the fi rst place. However, the method of table creation was not widely known; at least 
we have no evidence that it was. Th e tables are incomplete and surprisingly, but not 
completely, accurate. 

 16. Th e Löwenheim–Skolem theorem states that if T is a countable theory having a model, 
then T has a countable model; Joseph R. Shoenfi eld, Mathematical Logic (Nantick, 
MA: A.K. Peters, 1994), 79. A theory is countable just in case the language in which 
the theory is expressed has no more than countably many non-logical constants. 
“Countable” means ℵ0 or lower (ibid.: 78). 

   Th e compactness theorem of a mathematical theory is: “A formula A in a theory T 
is valid in T iff  it is valid in some fi nitely axiomatized part of T”. A corollary to this is: “A 
theory T has a model iff  every fi nitely axiomatized part of T has a model” (ibid.: 69).

   Th ere are results about “degrees of compactness” where, rather than specify that the 
theory be fi nitely axiomatized, there is some infi nite cardinal, less than which is the 
number of axioms needed to show validity. Specifi cally, let κ be some infi nite cardinal. 
Th en for κ-compactness, a formula A in a theory T is valid in T iff  it is valid in some 
sub-version of T with only κ axioms. 

 17. Th e logicist will tend to insist that logic is even more general than the rest of math-
ematics. Th is is important if we exploit some sort of hierarchy of knowledge in our 
philosophy.

 18. For the philosophical sophisticates, we are discussing ontological reduction, as opposed 
to epistemic, justifi catory or explanatory reduction. Often all the diff erent forms of 
reduction are confl ated. 

 19. Other structuralists, such as Hellman, advocate a modal structuralism. Th ey relegate 
the ontological question to possible worlds. Th at is, Hellman talks of possible and nec-
essary structures. We then ask what it is that makes a structure necessary, as opposed 
to possible. Th at will depend on the modal logic used (which axioms the logic has); 
Hellman prefers S5 (Mathematics Without Numbers, 17 n. 8).

 20. Th e reason for disallowing this sort of question is that it could lead to paradox, which 
is always a danger with unrestricted quantifi cation.

 21. A very interesting question has to do with the structure of the real numbers, and 
how big it is: what the cardinality of the real numbers is. Th e cardinality of the real 
numbers depends on which structure we are measuring them from. Th is is known 
as the Skolem paradox. For a nice presentation of Skolem’s paradox see the appendix 
in Moshe Machover, Set Th eory, Logic and their Limitations (Cambridge: Cambridge 
University Press, 1996).
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 22. An example of this came up at a talk in the logic colloquium at George Washington 
University. A well established model theorist, Valentina Harizanov, remarked about 
some mathematical concept being discussed that “this property is important [math-
ematically], but it is not recognized in model theory” (unpublished).

 23. See Michèle Friend “Meinongian Structuralism”, in Th e Logica Yearbook 2005, M. 
Bílková and O. Tomala (eds) (Prague: Filosofi a, 2006).

Chapter 5. Constructivism

 1. A “prime pair” is a pair of primes separated by only one (even) number. Examples of 
prime pairs are: <3, 5>, <5, 7>, <11, 13>, <15, 17>, … .

 2. Th e philosophical language is at odds with ordinary discourse where we might say 
that someone is realistic, or a realist if she refuses to talk of verifi cation-transcendent 
truths. A philosopher would label such a person an anti-realist. Th e philosophical 
use of the term relates to our notion of reality, and whether this depends on us or is 
independent of us.

 3. Philosophers taught in the United States tend to draw the distinction between a realist 
and an anti-realist somewhat diff erently. For an American, a relativist is an anti- realist; 
the rest are largely realists. Th e way in which the distinction is drawn here, and in 
Chapter 2 is more common to the UK. Canadians tend to know of both distinctions. 
Students should be aware of the diff erences in order to make sense of the literature 
on these subjects. For a discussion of the diff erences see Tennant: Th e Taming of the 
True, 4–6.

 4. Th ese are all taken from Michael Dummett, Elements of Intuitionism, 2nd ed. (Oxford: 
Oxford University Press, 2000), 89.

 5. Soundness and completeness refer to the match between semantic proofs and syntactic 
proofs. A formal system is sound if every syntactic rule is truth-preserving. A formal 
system is complete if every semantic truth has a corresponding syntactic proof. Not 
all formal systems are complete.

 6. Recall the discussion in Chapter 3 about Frege’s notion of “basic law”, and how that 
contrasts to notions of “axiom”.

 7. Th is is a nice point of contact between the constructivist and the formalist, who we 
shall encounter in Chapter 6.

 8. In many texts introducing logic to students, the complexity of disjunction is avoided 
by giving the student a rule called “disjunctive syllogism”: A ∨ B, ~A � B. Th is is prov-
able from disjunction elimination.

 9. De Morgan’s laws are very practical. Th ey were developed by Augustus De Morgan 
in the 1920s. Th ey are: ~(A ∧ B) � ~A ∨ ~B and ~(A ∨ B) � ~A ∧ ~B. Th e inferences 
work in the other direction too, in classical logic.

 10. Tautologies are semantic and theorems are syntactic. Tautologies are always true. 
Th eorems are proved from no premises using natural deduction. Assumptions are all 
discharged. If a formal system is complete then exactly the same well-formed formulas 
will be theorems and tautologies.

 11. For good discussions about this see Stephen Read, Th inking About Logic: An 
Introduction to the Philosophy of Logic (Oxford: Oxford University Press, 1994), 59 
and Graham Priest, An Introduction to Non-Classical Logic (Cambridge: Cambridge 
University Press, 2001), 151.
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 12. For a nice discussion of why this was, placed in a historical context, see Paolo Mancosu, 
From Bouwer to Hilbert: Th e Debate on the Foundations of Mathematics in the 1920s 
(Oxford: Oxford University Press, 1998).

 13. For those interested in other responses, where we block the reasoning minimally, I 
suggest looking at Russell’s Th e Principles of Mathematics (Cambridge: Cambridge 
University Press, 1903) for the Russell paradox. See also R. M. Sainsbury, Paradoxes 
(Cambridge: Cambridge University Press, 1988). Also, for a very close and original 
analysis of Russell’s paradox in Frege, with a sensitivity to constructivism, see Alan 
Weir, “Naïve Set Th eory is Innocent!”, Mind 107 (1998), 763–98.

 14. Th is is related, or is a species of, reverse mathematics. Reverse mathematics was pro-
posed by Harvey Freedman and others in the 1980s. Th e idea is to show which axi-
oms a theorem rests on, for often the fi rst proof of a theorem uses more axioms than 
it needs to. Reverse mathematics tries to minimize the number of axioms needed. 
Constructivists, such as Douglas Bridges or Errett Bishop, do something similar. Th ey 
are only interested in constructively acceptable axioms and rules of inference. Bridges 
and Bishop are engaged in a project of going through a number of important proofs 
and rewriting them in constructively acceptable terms. It is not clear, at this stage, how 
much of classical mathematics they can recapture.

 15. To put it another way, they give us more information that we fi nd interesting. Maybe 
ultimately this is just a preference, and in that sense a matter of taste.

 16. It is interesting to compare this to formalism.
 17. Th is should remind us of Aristotle and the notion of the potential infi nite.
18. “Holds” cannot mean “is provable” because of the decision problem that is, it is a well-

established fact in mathematics that there are some formulas that cannot be proved 
syntactically. However, we might be able to use a semantic argument to show that they 
are true or false.

 19. In propositional logic, this will be an argument that shows that every truth-value 
assignment to the proposition letters that makes the premises true, also makes the 
conclusion true.

 20. Th e full axiom of choice should be added to this list. It was excluded simply because it was 
not woven into the interconnection of ideas previously given. Th e axiom of choice is also 
intimately connected to the law of excluded middle, but to show this requires the intro-
duction of technical vocabulary. For a good exposition of these intricacies, see W. Tait, 
“Th e Law of Excluded Middle and the Axiom of Choice”, in his Essays in the Philosophy of 
Mathematics and its History, 105–32 (Oxford: Oxford University Press, 2005).

 21. An example of appropriate background assumptions would be if A is fi nitely checkable. 
If this is the case, then we can turn the doubly negated A into a positive A, not by means 
of two reductio proofs, but by means of a positive proof going through the examples.

 22. A partial-order is like a tree. Th ere is a, or several, base case(s). Th ere are sentences 
of one degree of complexity greater, which are “derived from” or “based in” the base 
cases. Th ere are sentences of one degree of complexity higher than those occupying 
level one, and derived from those on level one. For example, “Quiet”, “Quiet, please” 
and “Quiet in here” might be thought of as occupying the fi rst three levels, respectively. 
It is diffi  cult, but not impossible, to give a detailed articulation for partially ordering 
sentences in terms of complexity. It is easier if we consider sentences written in a for-
mal language, so proposition letters are the least complex, proposition letters together 
with the negation come next, then come pairs of proposition letters with a binary con-
nective between, and so on. 
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 23. Th e original quote is from David Hilbert, “Neubegründung der Mathematik”, Abhand-
lungen aus dem mathematischen Seminar der Hamburgischen Universität I (1922), 200.

Chapter 6. A pot-pourri of philosophies of mathematics

 1. Th is is not quite right. Th ere might be other constraints as well, such as not being a 
“silly” system: one that is consistent but really quite useless. For example, we might 
have a very small system that can only prove one thing. Or we might have a system 
that can only prove falsehoods. Nevertheless, what is not a constraint on counting 
something as a mathematical system is “truth”.

 2. Stricker is cited in Frege, Th e Foundations of Arithmetic, v.
 3. Referred to in Frege’s Grundlagen, Th e Foundations of Arithmetic, §7.
 4. Philosophers are often charged with doing something that is not useful. 
 5. Moosbrugger is a character in Robert Musil, Th e Man Without Qualities (New York: 

Coward-McCann, 1953). 
 6. Consider the computer games where several people participate with virtual characters. 

Th e entire game is like a work of fi ction, but there are many players (authors). 
 7. Th at Sticker is one of the fi rst to propose this is simply inferred from Frege’s Grundlagen, 

where Frege heralds him as the champion of psychologism. I have not looked into the 
issue of the origin of the position.

 8. See Claire Ortiz Hill and Guillermo E. Rossado Haddock (eds), Husserl or Frege? 
Meaning, Objectivity and Mathematics (Chicago, IL: Open Court, 2000). 

 9. Th is will come as a surprise to many philosophers brought up in the analytic tradition. 
However, see Hill and Haddock, Husserl or Frege, xiii–xiv. Richard Tieszen, Phenomenology, 
Logic and the Philosophy of Mathematics (Cambridge: Cambridge University Press, 2005) 
repeatedly points out that Frege and Husserl were both very critical of psychologism in the 
philosophy of mathematics, and their arguments against psychologism were very similar. 
For this reason Frege made a mistake in accusing Husserl of psychologism.

 10. See, for example, Claire Hill, “Frege’s Attack on Husserl”, in Hill and Haddock (eds), 
Husserl or Frege?, 95–108, esp. 103.

 11. Th is includes calculations concerning fi nite numbers, for example: adding, multiply-
ing, subtracting and so on.

 12. We can use an abacus or primitive calculator to perform this sort of arithmetic.
 13. See, for example Paul Tomassi, Logic (London: Routledge, 1999) or E. J. Lemmon, 

Beginning Logic (Indianapolis, IN: Hackett, 1965).
 14. Th e reasons why Tomassi, Logic, and Lemmon, Beginning Logic, begin with the  natural-

deduction rules are twofold: pedagogical and philosophical. Pedagogically, the moti-
vation is simply that students who are fi rst taught the truth-tables tend to depend 
on them too much when they then learn natural deduction, so they have diffi  culty 
understanding the rules since they are tempted to try to understand them in terms of 
the truth-tables. Th e philosophical reason derives from a sensitivity towards construc-
tivist positions in the philosophy of mathematics. Indeed, rather than simply present 
an expedient set of rules of deduction, both texts are careful to give both introduction 
and elimination rules, thus preserving the symmetry requirement of the constructivist 
on rules of inference. Th is was discussed in Chapter 5. 

 15. Curry distances himself from Hilbert in not insisting on consistency of a mathematical 
theory as a constraint on theories.
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 16. Shapiro is quoting David Hilbert, “Über das Unendliche”, Mathematische Annalen 95 
(1925), 171.

 17. Whether Hilbert is wholly successful in his demonstration is controversial. He cer-
tainly used intuitive ideas as a teaching device, but the idea was to do away with these 
and replace them with an understanding of the axioms and manipulation rules. If 
the rules and axioms are good, then intuition is left behind; Hilbert, Foundations of 
Geometry, 2nd edn, L. Unger (trans.) (La Salle, IL: Open Court, 1971).

 18. To distance ourselves from notions of semantics as “giving meaning” we sometimes 
say that a model “satisfi es” a theory. Many diff erent models might satisfy the same 
theory, so a model does not give a unique meaning. A set of models satisfi es a theory, 
so meaning, in the sense of satisfaction, is at best ambiguous. 

 19. Th is might be partly what led Russell astray, for in English, at least, we tend to talk 
about “being an object”, so the existence of objects is built into the grammar. Russell 
was rather keen to model logic on grammar, albeit a universal grammar, and not 
English grammar. Nevertheless, English grammar was that with which he was most 
familiar. Russell criticized Meinong for allowing too much into his ontology, thus 
assuming that calling something an object is enough to give it ontological status: 
enough for it to exist, in some sense. If we allow fi ctional objects to exist, then we have 
many objects. If we allow contradictory objects to exist, then the contradiction spreads 
to infect everything and any theory becomes trivial, in the sense of inconsistent.

 20. When a sentence can have both truth-values, this is called a “truth-value glut”. A para-
consistent logic allows truth-value gluts. 

 21. Th e famous example Lakatos exploits to make this point is that of Euler’s formula for a 
polyhedra, V – E + F = 2, where V is the number of vertices, E is the number of edges, 
and F is the number of faces. Th ere are exceptions. For example, an open cylinder has 
two edges and one face. Th e defi nition of “vertex” is not fi xed. It comes under discus-
sion in Imre Lakatos, Proofs and Refutations: Th e Logic of Mathematical Discovery, 
J. Worrall and E. Zahar (eds) (Cambridge: Cambridge University Press, 1997), 107, 
114–15. To make Euclid’s formula work, there would have to be three vertices, and 
this is a bit odd under any intuitive understanding of “vertex”. What Lakatos fi nds 
interesting is that there are several possible reactions to the ambiguity in the notion 
of vertex. 

22. Lakatos classed counter-examples into two sorts: heuristic and logical. Heuristic 
 counter-examples foster a side investigation, not directly aff ecting the original con-
jecture for which it is a counter-example. Logical counter-examples force one to give 
something up in the original conjecture. To muddy the waters, it is not always clear 
which sort a counter-example is. It depends to some extent on how the mathemati-
cal community reacts to it. See Brendan Larvor, Lakatos: An Introduction (London: 
Routledge, 1998), 15.

 23. It is interesting to compare these remarks to those of Plato admonishing the geom-
eters for using the active mode over the passive mode. Plato thought of mathematics 
as static (Republic, bk VII, lines 527a, b).

 24. Th is is meant neither in the technical sense of “game theory” nor in the strict sense of 
“game” as the formalist uses the term. Instead, here, this is meant in a very loose sense 
of play.
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Guide to further reading

Introduction

After reading this book one’s next step should be to consult one of the following: Stephen 
Körner, Th e Philosophy of Mathematics: An Introductory Essay (New York: Harper & Row, 
1962); Stewart Shapiro, Th inking About Mathematics (Oxford: Oxford University Press, 
2000); James Brown: Philosophy of Mathematics: An Introduction to the World of Proofs 
and Pictures (London: Routledge, 1999). Th ese are general texts that examine most of the 
issues covered in this book and do not present one particular philosophical position, but 
many. Th ey are not aimed exclusively at the specialist and so are reasonably accessible to 
the beginner. Körner’s book discusses Platonism, logicism, formalism and constructivism. 
It is nicely set out, giving the position, and then a lengthy criticism of it. Shapiro’s book 
gives a more current treatment of the positions covered in Körner, including a chapter 
on structuralism. Brown’s approach is interesting, for he does not have chapters just on 
the various positions, but also on themes, such as defi nitions, or applied mathematics. 
Students new to the fi eld will fi nd these books the most approachable, and they serve as 
good comparisons to this book. 

Somewhat more diffi  cult but equally broad in approach is Marcus Giaquinto, Th e 
Search for Certainty: A Philosophical Account of the Foundations of Mathematics (Oxford: 
Clarendon Press, 2002), which explores the crisis in the foundations of mathematics caused 
by the set-theoretic paradoxes and discusses various philosophical and mathematical reac-
tions to those paradoxes. Two collections of essays that have long been standard research 
texts in the philosophy of mathematics are Paul Benacerraf and Hilary Putnam (eds), 
Philosophy of Mathematics: Selected Readings, 2nd edn (Cambridge: Cambridge University 
Press, 1983) and Jean van Heijenoort (ed.) From Frege to Gödel: Mathematical Logic, 1879–
1931 (Cambridge, MA: Harvard University Press, 1977). Both are heavily used resources, 
comprising selections of classic papers in the philosophy of mathematics that have for 
the most part appeared in journals. Th e books are not as accessible to the beginner, but 
are excellent for deepening one’s knowledge of the various positions. In addition, Stewart 
Shapiro (ed.), Th e Oxford Handbook of Philosophy of Mathematics and Logic (Oxford: 
Oxford University Press, 2005) is a more recent collection of papers by current philoso-
phers of mathematics, outlining and critiquing particular positions. 

It is also worth consulting encyclopedias. Entries in Th e Routledge Encyclopedia of 
Philosophy, the older Th e Encyclopedia of Philosophy (New York: Macmillan, 1967) and the 
two internet encyclopedias, “Stanford Encyclopedia of Philosophy” (http://plato.stanford.
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edu/) and the “Internet Encyclopedia of Philosophy” (www.iep.utm.edu) provide excellent 
further threads to follow via their bibliographies.

Chapter 1. Infi nity

For Zeno, Gregory Vlastos, “Zeno of Elea”, in Th e Encyclopedia of Philosophy, vol. 8, 369–79, 
is a succinct and reliable article on Zeno. It discusses the paradoxes of motion in the con-
text of arguments against the possibility of motion, and also discusses arguments that Zeno 
makes concerning plurality. It also sets Zeno’s work in context with his contemporaries.  

For the post-Cantorian theory of infi nite ordinals and cardinals, Moshe Machover, 
Set Th eory, Logic and their Limitations (Cambridge: Cambridge University Press, 1996), 
is a good book for the more logically or technically minded. It is a very clear presenta-
tion of set theory aimed at upper-level philosophy students. Th ere are separate chapters 
on ordinals and cardinals. It is diffi  cult to read these chapters without either reading the 
previous three chapters, or having a fairly solid foundation in logic. On a more amusing 
note, see Raymond Smullyan, What is the Name of this Book? Th e Riddle of Dracula and 
Other Logical Puzzles (Harmondsworth: Penguin, 1990). Th is is a series of logical puzzles, 
starting with those of the knights and knave variety (where knights only tell the truth and 
knaves always lie). Th e puzzles become increasingly diffi  cult, and some of them require 
“diagonalization” to solve them.

For good philosophical overviews about infi nity see A. W. Moore, Th e Infi nite (London: 
Routledge, 1990) and J. R. Lucas, Th e Conceptual Roots of Mathematics (London: Routledge, 
2000). 

Chapter 2. Mathematical Platonism and realism

For early Platonism, see Plato’s Meno and Th eatetus. Th ese can be readily found in many 
collections of Plato’s dialogues. Both explore the peculiarities of mathematical knowl-
edge over other sorts of knowledge based on sense experience. Th e claim defended in the 
dialogues is that mathematical knowledge is not taught, but is available to all reasoning 
people. For Plato’s ontological views see the Republic. For general overviews on math-
ematical Platonism and realism see Körner, Th e Philosophy of Mathematics; Mark Balaguer, 
Platonism and Anti-Platonism in Mathematics (Oxford: Oxford University Press, 1998); 
Shapiro, Th inking About Mathematics and Brown, Philosophy of Mathematics.

For a good treatment of how and why the set-theoretic paradoxes caused a crisis in the 
philosophy of mathematics see Giaquinto, Th e Search for Certainty. For other developed 
views about set theory and its relation to philosophy see Michael Potter, Set Th eory and 
its Philosophy (Oxford: Oxford University Press, 2004). For more specifi c views see Kurt 
Gödel, “What is Cantor’s Continuum Problem?”, in Benacerraf & Putnam (eds), Philosophy 
of Mathematics, 483–4, and “Russell’s Mathematical Logic”, in Benacerraf and Putnam 
(eds), Philosophy of Mathematics, 447–69. For Maddy, see Penelope Maddy, Realism in 
Mathematics (Oxford: Clarendon Press, 1990) and Naturalism in Mathematics (Oxford: 
Clarendon Press, 1997). Köhler’s papers are in manuscript form.
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Chapter 3. Logicism

Th e reading in this area is quite technical and can sometimes be quite challenging. For Frege 
one should really read the Grundlagen  [Die Grundlagen der Arithmetik], Th e Foundations of 
Arithmetic, 2nd rev. edn, J. L. Austin (trans.) (Evanston, IL: Northwestern University Press, 
1980). Th is is one of the classic texts in analytical philosophy. Furthermore, it is short and 
even entertaining in places. For Whitehead and Russell, the original is, of course Principia 
Mathematica, 3 vols (Cambridge: Cambridge University Press, 1910–13). Th is is not easy 
to understand, so the secondary literature is helpful. See, for example, the relevant chapters 
in Michael Potter, Reason’s Nearest Kin: Philosophies of Arithmetic from Kant to Carnap 
(Oxford: Oxford University Press, 2000) and Giaquinto, Th e Search for Certainty.

To read another good exposition of Frege, and then Wright’s development of Frege, read 
Crispin Wright, Frege’s Conception of Numbers as Objects (Aberdeen: Aberdeen University 
Press, 1983). For more recent work on the neo-Fregean position as developed by Wright 
and Hale, see B. Hale and C. Wright, Th e Reason’s Proper Study: Essays Towards a Neo-
Fregean Philosophy of Mathematics (Oxford: Clarendon Press, 2003). For the “bad com-
pany argument” against Hale and Wright, see George Boolos, “Th e Standard of Equality 
of Numbers”, in his Logic, Logic, and Logic, 214–15 and “Is Hume’s Principle Analytic?”, 
in Logic, Logic, and Logic, 301–14 (Cambridge, MA: Harvard University Press, 1998). For 
Köhler’s views see his “Gödel on Intuition, and How Carnap Abandoned Empiricism” 
(unpublished manuscript) and “Logic is Objective and Subjective”, paper presented at the 
History of Philosophy of Science Working Group (HOPOS) Conference, Vienna, July 2000. 
For Neil Tennant’s development of logicism from an intuitionist perspective, see his Anti-
Realism and Logic: Truth as Eternal (Oxford: Oxford University Press, 1987). 

Chapter 4. Structuralism

For Benacerraf ’s views see two papers in Benacerraf & Putnam (eds) Philosophy of 
Mathematics: “What Numbers Could not Be”, 272–94, and “Mathematical Truth”, 403–
20. For Hellman, see his Mathematics Without Numbers: Towards a Modal-Structural 
Interpretation (Oxford: Clarendon Press, 1989). For Resnik’s position see his Mathematics 
as a Science of Patterns (Oxford: Clarendon Press, 1997) and his papers: “Mathematics as a 
Science of Patterns: Ontology and Reference”, Noûs 15 (1981), 529–50, and “Mathematics 
as a Science of Patterns: Epistemology”, Noûs 16 (1982), 95–105. For Shapiro, see Philosophy 
of Mathematics: Structure and Ontology (Oxford: Oxford University Press, 1997).

Chapter 5. Constructivism

For Brouwer, a less-known but quite readable article appears in the Proceedings of the 
Irish Academy: L. E. J. Brouwer, “Th e Eff ect of Intuitionism on Classical Algebra of Logic”, 
Proceedings of the Royal Irish Academy, vol. 57, Section A: Mathematical Astronomical, 
and Physical Science, 113–16 (Dublin: Hodges, Figgis & Co. 1954–56).  Th e paper is part 
of a centenary celebration of the publication of Boole’s Laws of Th ought. It is odd to fi nd 
the paper here, since Brouwer pays little attention to Boole’s work. Instead he gives an, 
uncharacteristically, clear and concise articulation of his philosophical views. For more 
on Brouwer see Paolo Mancosu: From Brouwer to Hilbert: Th e Debate on the Foundations 
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of Mathematics in the 1920s (Oxford: Oxford University Press, 1998). For a more philo-
sophically oriented discussion see Michael Dummett, Th e Logical Basis of Metaphysics 
(Cambridge, MA: Harvard University Press, 1991), and Elements of Intuitionism, 2nd edn 
(Oxford: Oxford University Press, 2000). Th e last text is good for an in-depth discussion 
of what can and what cannot be proved intuitionistically. For an excellent discussion of 
the manifestation argument there are several chapters and sections in Neil Tennant, Th e 
Taming of the True (Oxford: Clarendon Press, 1997).

Chapter 6. A pot-pourri of philosophies of mathematics

For more on empiricism see John Skorupski, “Later Empiricism and Logical Positivism”, 
in Th e Oxford Handbook of Philosophy of Mathematics, 51–74. See also John Stuart Mill, 
A System of Logic, Ratiocinative and Inductive (London: Longman, 1970). For fi ctionalism 
see Hartry Field: Science Without Numbers: A Defence of Nominalism (Oxford: Blackwell, 
1980). Th ere is also a nice short dicussion of fi ctionalism in his Realism, Mathematics 
and Modality (Oxford: Blackwell, 1989). For a thorough discussion of the indispensabil-
ity argument, see Mark Colyvan, Th e Indispensability of Mathematics (Oxford: Oxford 
University Press, 2001).

Th ere are no readily available sources on psychologism. General treatments can be found 
in encyclopedias. Husserl is discussed nicely in Richard Tieszen, Phenomenology, Logic and 
the Philosophy of Mathematics (Cambridge: Cambridge University Press, 2005).

Formalism is described in Curry’s work. Th ere is not much on Curry so it is best to 
look at his own books. Th e introductions and notes are philosophically explicit and can-
did. See Haskell B. Curry, Foundations of Mathematical Logic (New York: McGraw-Hill, 
1963), “Remarks on the Defi nition and Nature of Mathematics”, in Benacerraf & Putnam 
(eds), Philosophy of Mathematics, 202–6, and especially Outline of a Formalist Philosophy 
of Mathematics (Amsterdam: North Holland, 1951).

For more on Hilbert, see Michael Hallett, “Physicalism, Redutionism and Hilbert”, in 
Physicalism in Mathematics, A. D. Irvine (ed.), 182–256 (Dordrecht: Kluwer, 1989), Michael 
Hallett, “Hilbert, David”, in Handbook of Metaphysics and Ontology, H. Burkhardt & B. 
Smith (eds), 354–8 (Munich: Philosophia, 1991) and Michael Detlefsen, Hilbert’s Program 
(Dordrecht: Kluwer, 1986). To read some of the original, see David Hilbert, Foundations of 
Geometry, 2nd edn, L. Unger (trans.) (La Salle, IL: Open Court, 1971). See also the relevant 
sections in Mancosu, From Brouwer to Hilbert; Shapiro, Th inking About Mathematics; 
Brown, Philosophy of Mathematics and Potter, Reason’s Nearest Kin.

For more reading on Meinongian mathematics see Richard Routley, Exploring Meinong’s 
Jungle and Beyond (Canberra: RSSS, Australian National University, 1980); Richard Sylvan, 
“Th e Importance of Nonexistent Objects and of Intensionality in Mathematics”, Philosophia 
Mathematica 11 (March 2003), 20–52; Graham Priest, In Contradiction (Dordrecht: 
Kluwer, 1987) and “Meinongianism and the Philosophy of Mathematics”, Philosophia 
Mathematica 11 (February 2003), 3–15.

For the original Lakatos see Imre Lakatos, Proofs and Refutations: Th e Logic of 
Mathematical Discovery, J. Worrall & E. Zahar (eds) (Cambridge: Cambridge University 
Press, 1997). For accessible secondary reading see Brendan Larvor, Lakatos: An Introduction, 
(London: Routledge, 1998). For deeper scholarly issues surrounding Lakatos see George 
Kampis, Ladislav Kvasz and Michael Stöltzner (eds) Appraising Lakatos: Mathematics, 
Methodology and the Man (Dordrecht: Kluwer, 2002).



bibliography 195

Bibliography

Anglin, W. S. & J. Lambeck 1995. Th e Heritage of Th ales. New York: Springer.
Anonymous 1994. Th e Epic of Gilgamesh, S. Shabandar (trans.). Reading: Garnet 

Publishing.
Balaguer, M. 1998. Platonism and Anti-Platonism in Mathematics. Oxford: Oxford 

University Press.
Benacerraf, P. 1983a. “What Numbers Could Not Be”. See Benacerraf & Putnam (eds) 

(1983), 272–94. 
Benacerraf, P. 1983b. “Mathematical Truth”. See Benacerraf & Putnam (eds) (1983), 403–20. 
Benacerraf, P. & H. Putnam (eds) 1983. Philosophy of Mathematics: Selected Readings, 2nd 

edn. Cambridge: Cambridge University Press.
Bishop, E. 1967. Foundations of Constructive Analysis. New York: McGraw-Hill.
Bishop, E. 1973. “Schizophrenia in Contemporary Mathematics”, American Mathematical 

Society, Colloquium Lectures. Missoula: University of Montana. 
Bishop, E. & D. Bridges 1985. Constructive Analysis. Heidelberg: Springer.
Bridges, D. 1998. “Constructive Truth in Practice”. In Truth in Mathematics, H. Dales & 

G. Oliveri (eds). Oxford: Clarendon Press.
Boole, G. 2005. An Investigation of the Laws of Th ought. New York: Barnes & Noble.
Boolos, G. 1998a. “Is Hume’s Principle Analytic?”. See Boolos (1998c), 301–14.
Boolos, G. 1998b. “Th e Standard of Equality of Numbers”. See Boolos (1998c), 214–15.
Boolos, G. 1998c. Logic, Logic and Logic. Cambridge, MA: Harvard University Press.
Brouwer, L. E. J. 1954–56. “Th e Eff ect of Intuitionism on Classical Algebra of Logic”. 

Proceedings of the Royal Irish Academy, vol. 57, Section A: Mathematical Astronomical, 
and Physical Science, 113–16. Dublin: Hodges, Figgis & Co.

Brouwer, L. E. J. 1983a. “Consciousness, Philosophy and Mathematics”. See Benacerraf & 
Putnam (eds) (1983), 90–96.

Brouwer, L. E. J. 1983b. “Intuitionism and Formalism”. See Benacerraf & Putnam (eds) 
(1983), 77–89. 

Brown, J. R. 1999. Philosophy of Mathematics: An Introduction to the World of Proofs and 
Pictures. London: Routledge.

Cerbone, D. R. 2006. Understanding Phenomenology. Chesham: Acumen.
Church, A. 1996. Introduction to Mathematical Logic. Princeton, NJ: Princeton University 

Press.
Coff a, A. 1991. Th e Semantic Tradition from Kant to Carnap: To the Vienna Station. 

Cambridge: Cambridge University Press.



196 introducing philosophy of mathematics

Colyvan, M. 2001. Th e Indispensability of Mathematics. Oxford: Oxford University Press.
Corfi eld, D. 2003. Towards a Philosophy of Real Mathematics. Cambridge: Cambridge 

University Press.
Curry, H. 1951. Outline of a Formalist Philosophy of Mathematics. Amsterdam: North 

Holland.
Curry, H. 1963. Foundations of Mathematical Logic. New York: McGraw-Hill.
Curry, H. 1983. “Remarks on the Defi nition and Nature of Mathematics”. See Benacerraf 

& Putnam (eds) (1983), 202–6.
Dales, H. & G. Oliveri (eds) 1998. Truth in Mathematics. Oxford: Clarendon Press.
da Silva, J. J. 2000. Book Review, Husserl or Frege? Meaning Objectivity and Mathematics 

(Claire Ortiz Hill and Guillermo E. Rosado Haddock). Manuscrito: Revista Internacional 
de Filosofi a 23(2) (October), 351–71.

Dedekind, R. 1963. Essays on the Th eory of Numbers. New York: Dover.
Degen, J. W. 1993. “Two Formal Vindications of Logicism”. In Philosophie der Mathematik, 

J. Czermak (ed), Scriftenreihe der Wittgensteingesellschaft 20(10), 243–50.
Detlefsen, M. 1986. Hilbert’s Program. Dordrecht: Kluwer.
Dimitrov, R. 2002. Computably Enumerable Vector Spaces, Dependence Relations and 

Turing Degrees. PhD thesis submitted to the Department of Mathematics, George 
Washington University, Washington, DC.

Dummett, M. 1980. “Frege and Kant on Geometry”. Inquiry 25, 233–54.
Dummett, M. 1991a. Frege, Philosophy of Mathematics. London: Duckworth.
Dummett, M. 1991b. Th e Logical Basis of Metaphysics. Cambridge, MA: Harvard University 

Press.
Dummett, M. 2000. Elements of Intuitionism, 2nd edn. Oxford: Oxford University Press.
Field, H. 1980. Science without Numbers: A Defence of Nominalism. Oxford: Blackwell.
Field, H. 1989. Realism, Mathematics and Modality. Oxford: Blackwell.
Fraenkel, A. 1968. Abstract Set Th eory. Amsterdam: North Holland.
Frege, G. 1952. “Frege on Russell’s Paradox (appendix to Vol. II)”. In Translations from the 

Philosophical Writings of Gottlob Frege, P. Geach & M. Black (eds and trans.). Oxford: 
Blackwell.

Frege, G. [1879] 1976. Begriff sschrift, a Formula Language, Modeled upon that of 
Arithmetic,for Pure Th ought. In From Frege to Gödel: A Source Book in Mathematical 
Logic, 1879–1931, J. van Heijenoort (ed.), 1–82. Cambridge, MA: Harvard University 
Press.

Frege, G. 1979a. “On Euclidean Geometry”. In G. Frege, Posthumous Writings, 167–9. 
Oxford: Blackwell.

Frege, G. 1979b. “A New Attempt at a Foundation for Arithmetic”. In G. Frege, Posthumous 
Writings, 278–81. Oxford: Blackwell.

Frege, G. 1980. Grundlagen, 2nd ed. rev. Evanston, IL: Northwestern University Press.
Frege, G. [1884] 1980a. [Die Grundlagen der Arithmetik] Th e Foundations of Arithmetic, 

2nd rev. edn, J. L. Austin (trans.). Evanston, IL: Northwestern University Press.
Frege, G. [1893, 1903] 1980b. [Grundgesetze der Arithmetik], partially translated in 

Translations from the Philosophical Writings of Gottlob Frege, 3rd edn, P. Geach & M. 
Black (eds and trans.), 117–224. Oxford: Blackwell.

Friend, M. 2006. “Meinongian Structuralism”. In Th e Logica Yearbook 2005, M. Bílková & 
O. Tomala (eds). Prague: Filosofi a.

Friend, M. n.d. “A Reductio Ad Absurdum Argument for Naïve Logicism”. Unpublished 
manuscript.



bibliography 197

Galilei, G. 1939. Dialogues Concerning Two New Sciences, H. Crew & A. Salvio (trans.). 
Evanston, IL: Northwestern University Press.

George, A. (ed.) 1994. Mathematics and Mind. Oxford: Oxford University Press.
George, A. & D. J. Vellman 2002. Philosophies of Mathematics. Oxford: Blackwell.
Giaquinto, M. 2002. Th e Search for Certainty: A Philosophical Account of the Foundations 

of Mathematics. Oxford: Clarendon Press. 
Goble, L. 2001. Th e Blackwell Guide to Philosophical Logic. Oxford: Blackwell.
Gödel, K. [1944] 1983a. “Russell’s Mathematical Logic”. See Benacerraf & Putnam (eds) 

(1983), 447–69.
Gödel, K. [1964] 1983b. “What is Cantor’s Continuum Problem?”. See Benacerraf & Putnam 

(eds) (1983), 483–4.
Goethe, N. B. 2001. “Frege Between Kant and Leibniz or How to Understand Truth by 

Means of Rigorous Proof ”. Manuscript presented to the History of Philosophy of 
Science Working Group (HOPOS), June 2002.

Hale, B. 1987. Abstract Objects. Oxford: Blackwell.
Hale, B. & C. Wright 2001a. “To Bury Caesar …”. In Th e Reason’s Proper Study: Essays 

Towards a Neo-Fregean Philosophy of Mathematics, B. Hale & C. Wright (eds), 335–96. 
Oxford: Oxford University Press.

Hale, B. & C. Wright (eds) 2001b. Th e Reason’s Proper Study: Essays Towards a Neo-Fregean 
Philosophy of Mathematics. Oxford: Clarendon Press. 

Hallett, M. 1984. Cantorian Set Th eory and Limitation of Size. Oxford: Clarendon Press.
Hallett, M. 1989. “Physicalism, Redutionism and Hilbert”, in Physicalism in Mathematics, 

A. D. Irvine (ed.), 182–256. Dordrecht: Kluwer.
Hallett, M. 1991. “Hilbert, David”. In Handbook of Metaphysics and Ontology, H. Burkhardt 

& B. Smith (eds), 354–8. Munich: Philosophia.
Hallett, M. 1994. “Hilbert’s Axiomatic Method and the Laws of Th ought”. See George (ed.) 

(1994), 158–200.
Hardy, G. H. 1967. A Mathematician’s Apology. Cambridge: Cambridge University Press.
Hart, W. D. (ed.) 1996. Th e Philosophy of Mathematics. Oxford: Oxford University Press.
Heath, P. L. 1967. “Nothing”. In Th e Encyclopedia of Philosophy, vol. 5, P. Edwards (ed.),  

524–5. New York: Macmillan.
Heck, R. Jr (ed.) 1997. Language, Th ought, and Logic. Oxford: Oxford University Press.
Hellman, G. 1989. Mathematics Without Numbers: Towards a Modal-Structural 

Interpretation. Oxford: Clarendon Press.
Hellman, G. 2005. “Structuralism”. In Th e Oxford Handbook of Philosophy of Mathematics 

and Logic, S. Shapiro (ed.), 556–62. Oxford: Oxford University Press.
Hilbert, D. 1922. “Neubegründung der Mathematik: Erste Mitteilung”. Abhandlungen aus 

dem mathematischen Seminar der Hamburgischen Universität I, 157–77.
Hilbert, D. 1925. “Über das Unendliche”, Mathematische Annalen 95, 161–90.
Hilbert, D. 1971. Foundations of Geometry, 2nd edn, L. Unger (trans). La Salle, IL: Open 

Court.
Hill, C. O. 2000. “Frege’s Attack on Husserl”. In Husserl or Frege? Meaning, Objectivity and 

Mathematics, C. O. Hill & G. E. R. Haddock (eds), 95–108. Chicago, IL: Open Court.
Hill, C. O. & G. E. R. Haddock (eds) 2000. Husserl or Frege? Meaning, Objectivity and 

Mathematics. Chicago, IL: Open Court.
Isaacson, D. 1994. “Mathematical Intuition and Objectivity”. See George (ed.) (1994), 118–40.
Kampis, G., L. Kvasz & M. Stöltzner (eds) 2002. Appraising Lakatos: Mathematics, 

Methodology and the Man. Dordrecht: Kluwer.



198 introducing philosophy of mathematics

Kleene, S. C. 1971. Introduction to Meta-Mathematics. Amsterdam: North Holland.
Kneal, M. & W. Kneal 1962. Th e Development of Logic. Oxford: Oxford University Press.
Köhler, E. 2000.  “Logic is Objective and Subjective”. Paper presented at the History of 

Philosophy of Science Working Group (HOPOS) Conference, Vienna, 6–9 July.
Köhler, E. 2001. “Gödel on Intuition, and How Carnap Abandoned Empiricism”. 

Unpublished manuscript.
Körner, S. 1962. Th e Philosophy of Mathematics: An Introductory Essay. New York: Harper 

& Row.
Lakatos, I. 1997. Proofs and Refutations: Th e Logic of Mathematical Discovery, J. Worrall 

& E. Zahar (eds). Cambridge: Cambridge University Press.
Larvor, B. 1998. Lakatos: An Introduction. London, Routledge.
Lemmon, E. J. 1965. Beginning Logic. Indianapolis, IN: Hackett.
Lucas, J. R. 2000. Th e Conceptual Roots of Mathematics. London, Routledge.
Machover, M. 1996. Set Th eory, Logic and their Limitations. Cambridge: Cambridge 

University Press.
Maddy, P. 1990. Realism in Mathematics. Oxford: Clarendon Press.
Maddy, P. 1996. “Perception and Mathematical Intuition”. In Th e Philosophy of Mathematics, 

W. D. Hart (ed.), 114–41. Oxford: Oxford University Press.
Maddy, P. 1997. Naturalism in Mathematics. Oxford: Clarendon Press.
Malinowski, G. 2001. “Many-Valued Logics”. In Th e Blackwell Guide to Philosophical Logic, 

L. Goble (ed.), 309–35. Oxford: Blackwell.
Mancosu, P. 1998. From Brouwer to Hilbert: Th e Debate on the Foundations of Mathematics 

in the 1920s. Oxford: Oxford University Press.
Mill, J. S. 1970. A System of Logic, Ratiocinative and Inductive. London: Longman.
Moore, A. W. 1990. Th e Infi nite. London: Routledge.
Musil, R. 1953. Th e Man Without Qualities. New York: Coward McCann.
Parsons, C. 1994. “Intuitionism and Number”. See George (ed.) (1994), 141–57.
Paseau, A. 2005. “Naturalism in Philosophy and the Authority of Philosophy”. British 

Journal of the Philosophy of Science 56, 377–96.
Plato 2000. Th e Republic, G. R. Ferrari (ed.), T. Griffi  th (trans.). Cambridge: Cambridge 

University Press.
Potter, M. 2000. Reason’s Nearest Kin: Philosophies of Arithmetic from Kant to Carnap. 

Oxford: Oxford University Press.
Potter, M. 2004. Set Th eory and its Philosophy. Oxford: Oxford University Press.
Priest, G. 1987. In Contradiction. Dordrecht: Kluwer.
Priest, G. 2000. “Objects of Th ought”. Australasian Journal of Philosophy 78, 494–502.
Priest, G. 2001. An Introduction to Non-Classical Logic. Cambridge: Cambridge University 

Press.
Priest, G. 2003. “Meinongianism and the Philosophy of Mathematics”. Philosophia 

Mathematica 11 (February), 3–15.
Read, S. 1994. Th inking About Logic: An Introduction to the Philosophy of Logic. Oxford: 

Oxford University Press.
Resnik, M. 1981. “Mathematics as a Science of Patterns: Ontology and Reference”. Noûs 

15, 529–50.
Resnik, M. 1982. “Mathematics as a Science of Patterns: Epistemology”. Noûs 16, 95–105.
Resnik, M. 1997. Mathematics as a Science of Patterns. Oxford: Clarendon Press.
Routley, R. 1980. Exploring Meinong’s Jungle and Beyond. Canberra: RSSS, Australian 

National University.



bibliography 199

Russell, B. 1903. Th e Principles of Mathematics. Cambridge: Cambridge University 
Press.

Russell, B. 1905. “Review of A. Meinong, Untersuchungen zur Gegenstadstheorie und 
Psychologie”. Mind 14, 530–38. Reprinted in B. Russell, Essays in Analysis, D. Lackey 
(ed.) (London: Allen & Unwin, 1973), 77–88.

Russell, B. 1907. “Review of: A. Meinong, Uber die Stellung der Gegestandtheorie im 
System der Wissenschaften”. Mind 16, 436–9. Reprinted in B. Russell, Essays in 
Analysis, D. Lackey (ed.) (London: Allen & Unwin, 1973), 89–93.

Russell, B. 1919. Introduction to Mathematical Philosophy. London: Allen & Unwin.
Sainsbury, R. M. 1988. Paradoxes. Cambridge: Cambridge University Press.
Shapiro, S. 1991. Foundations Without Foundationalism. Oxford: Clarendon Press.
Shapiro, S. 1997. Philosophy of Mathematics: Structure and Ontology. Oxford: Oxford 

University Press.
Shapiro, S. 2000. Th inking About Mathematics. Oxford: Oxford University Press.
Shapiro, S. (ed.) 2005. Th e Oxford Handbook of Philosophy of Mathematics and Logic. 

Oxford: Oxford University Press.
Shoenfi eld, J. R. 1994. Mathematical Logic. Nantick, MA: A. K. Peters.
Sieg, W. 1994. “Mechanical Procedures and Mathematical Experience”. See George (ed.) 

(1994), 71–117.
Skorupski, J. 2005. “Later Empiricism and Logical Positivism”. In Th e Oxford Handbook of 

Philosophy of Mathematics, 51–74. Oxford: Oxford University Press.
Sluga, H. 1977. “Frege’s Alleged Realism”. Inquiry 20, 227–42.
Smullyan, R. 1990. What is the Name of this Book? Th e Riddle of Dracula and Other Logical 

Puzzles. Harmondsworth: Penguin.
Sylvan, R. 2003. “Th e Importance of Nonexistent Objects and of Intensionality in 

Mathematics”. Philosophia Mathematica 11, 20–52.
Tait, W. W. 1994. “Th e Law of Excluded Middle and the Axiom of Choice”. See George 

(ed.) (1994), 45–70.
Tait, W. 2005a. “Finitism”. See Tait (2005d), 21–43.
Tait, W. 2005b. “Remarks on Finitism”. See Tait (2005d), 43–54.
Tait, W. 2005c. “Th e Law of Excluded Middle and the Axiom of Choice”. See Tait (2005d), 

105–32.
Tait, W. 2005d. Th e Provenance of Pure Reason: Essays in the Philosophy of Mathematics 

and its History. Oxford: Oxford University Press.
Tennant, N. 1987. Anti-Realism and Logic: Truth as Eternal. Oxford: Oxford University 

Press.
Tennant, N. 1992. Autologic. Edinburgh: Edinburgh University Press.
Tennant, N. 1997. Th e Taming of the True. Oxford: Clarendon Press.
Tieszen, R. 2005. Phenomenology, Logic and the Philosophy of Mathematics. Cambridge: 

Cambridge University Press.
Tomassi, P. 1999. Logic. London: Routledge.
Van Heijenoort, J. (ed.) 1977. From Frege to Gödel: Mathematical Logic, 1879–1931. 

Cambridge, MA: Harvard University Press.
Van Stigt, W. P. 1998. “Brouwer’s Intuitionist Programme”. In From Brouwer to Hilbert: Th e 

Debate on the Foundations of Mathematics in the 1920s, Paolo Mancosu (ed.), 1–22. 
Oxford, Oxford University Press,.

Vlastos, G. 1967. “Zeno of Elea”. In Th e Encyclopedia of Philosophy, vol. 8, 369–79. New 
York: Macmillan.



200 introducing philosophy of mathematics

Weir, A. 1998. “Naïve Set Th eory is Innocent!”. Mind 107, 763–98.
Whitehead, A. N. & B. Russell 1910–13. Principia Mathematica, 3 vols. Cambridge: 

Cambridge University Press.
Wright, C. 1983. Frege’s Conception of Numbers as Objects. Aberdeen: Aberdeen University 

Press. 
Zalta, E. N. 1988. Intensional Logic and the Metaphysics of Intentionality. Cambridge, 

MA: MIT Press.



index 201

Index

abstraction
principles  75; see also Hume’s principle, 

context principle, numbers principle, 
basic law V

process of  91
Achilles  3–6, 12, 177
acquisition argument  117–19
actual world  86, 173, 158–9, 161
actual infi nity  see infi nity, actual
algorithmic learning theory  129, 152
analysis  33, 50, 57, 78–9, 136, 183
analytic truth  ix, 60–63, 73, 75; see also 

synthetic truth
ancient Egypt  95
ancient Greece  1, 26, 31, 52
ante rem  90
anti-realist  31–2, 35, 40, 49–50, 98, 101, 

103–4, 153–4, 183, 187
a posteriori  61
a priori  23, 29, 60, 73, 132
Aristotle  2–3, 7–9, 11, 52, 177, 188
arithmetic  see geometry, non-standard 

models of, axioms: Peano/Dedekind, 
quantifi er-free elementary

Austin, J. L.  58
axioms  

choice  42–3, 97, 102, 106, 120, 188
empirical  70–71
Euclidean geometry  24, 46; see also 

geometry, Euclidean
independent  42
induction  56–7, 72
infi nity  41–3
logic  60; see also basic laws
logically necessary  70–71
Peano/Dedekind of arithmetic  52, 55, 

84, 86–8
scheme  57
set-theoretic  27, 31–2, 42–3, 97; see also 

Zermelo–Fraenkel
type theory  67–8

Babylonian mathematics  95, 186
basic law  60, 67–8, 71–3, 75, 78, 187

V  63–6, 71–2, 75, 156, 175
Begriff sschrift (Frege)  49, 71, 181
Beltrami, Eugenio  24
Benacerraf, Paul  83, 85–6, 89, 94, 97, 99, 

184–5
Bishop, Errett  123, 188
bivalence  33, 106, 108–9, 121
Bolyai, Jànos  24
Boole, George  52–4
Boolos, George  74–7, 181
Bridges, Douglas  123, 188
Brouwer, L. E. J.  101, 114, 116–17, 120, 

123, 154
Burali-Forti paradox  26, 113–14, 171

calculus  3, 33, 169
Cantor, Georg  34–5, 57, 71, 120, 145, 154, 

156, 178
diagonal argument  2, 20, 34, 57, 113
paradise of  2, 31, 120, 154
paradox  113–14

cardinality  14–16, 18–21, 39, 56–7, 98, 113, 
156, 186–7

same  14, 17, 21, 56
category theory  29
causation  37–40, 44, 46–7, 103, 128, 143, 

159, 180–81
Clarke, Samuel  53



202 introducing philosophy of mathematics

class  27–8, 31, 42, 45, 76, 98, 104, 137, 179
Coff a, Alberto  63
compact  95, 182, 186
compositionality  122–3
computer  115–16, 129, 145, 149, 151–2, 

166, 189
science  129
scientist  67, 69, 129, 148

consistency  66, 94, 148, 150–51, 155, 157, 
180, 184, 189

equi-consistency  180, 184
context principle  74
continuum problem  21–2, 35, 179
Corfi eld, David  166
counterfactual  158–9

decidable  95
Dedekind, Richard  16, 49, 52, 55, 84, 86–8
density of numbers  see rational numbers
discharging rule  111–12, 187
disjunctive syllogism  110–11, 113, 167, 

187
double negation  102, 106–8, 111–12, 117, 

119–20, 167
Dummett, M.  117, 120–22, 124

economics  51, 59
eff ective  see procedure
eliminativist  82, 97, 138
empiricism  1, 45, 51, 127, 129–33, 142–4, 

147
equivalence class  98
ex falso quod libet  107–8, 114, 159–62, 

167–8
existential  65, 160

proof  102, 115–16
quantifi er  33–4, 160, 183

expressive power  53–4, 66, 69, 100
extension of a concept  63–6

fi ctionalism  51, 127, 134
Field, Hartry  134–6
formalism  ix, 127–9, 147–9, 151–2, 154, 

165, 178
forms  see Platonic forms

gapless
line  21–2, 169
proof  60–61

geometry  

Euclidean  24–5, 30, 32, 46, 51–2, 59, 66, 
161, 164

non-Euclidean  25, 92, 164
parallel postulate  24–5

Gilgamesh Epic  2
Gödel, Kurt  23, 35–7, 39, 44, 45, 155, 157
Gödel–Bernays set theory  43, 43
group theory  33

Hale, B.  72, 76–7, 79
Hellman, Geoff rey  81–2, 85–92, 96–7, 138, 

158, 162
Heyting, Arend  120
Hilbert, David  1–2, 13–14, 123–4, 127, 

153–7, 188–90
Hume, David  74–6
Husserl, Edmund  1, 127, 130, 137, 141–7, 

153, 163

idealism, Kantian  104
Ideals  see Platonic forms
impredicative defi nitions  35–6
in re  90, 93, 96
indispensability arguments  128, 135–7
integers  16–17, 19, 93, 96
intension  64, 183
irrational numbers  19, 177–8

decimal expansion of  19

Julius Caesar problem  66, 72

Kant  29, 62
Köhler  44–7, 76–7
Kronecker, Leopold  123
Lakatos, Imre  127, 130, 163–6
law of excluded middle  33–4, 102, 106, 

108–9, 112, 117, 120–21, 123
Leibniz  158, 182
Lobachevsky, Nikolai Ivanovich  24
logic  

constructive  36, 102, 105, 116, 124
free  77
higher-order  34
law of  64–5, 72, 120, 156
modal  77, 86
non-classical  33–4, 78
paraconsistent  160–62
propositional  53–4, 78, 95, 108, 123, 

181–2, 188
relevant  113, 160



index 203

second-order  54, 57, 62, 75–6, 78, 
162–3, 182, 185

soundness of  108, 187
temporal  77

Löwenheim–Skolem property  95, 182, 186

Maddy, Penelope  23, 29, 36–40, 43–7, 121, 
180

manifestation argument  117–20
Meno (Plato)  24
Meinong, Alexius  127, 130, 157–9, 161–3, 

190
Mill, J. S.  128, 130–31
model theory  ix, 29, 94–6, 99–100
modus ponens  61, 73, 111, 182
modus tollens  106, 111, 167
Moosbrugger  134–5, 189

natural deduction  109–10, 121, 148, 187, 
189

naturalism  1, 40, 45, 51, 127–8, 130, 133
neuroscience  138–9, 143
noetic experience  143
non-standard models of arithmetic  57, 182
normativity  11, 97, 114, 116, 134, 141, 184
noumenal world  104–5

object
concrete  158
contradictory  158–9, 190
logical  49, 58–60, 72
perfect  25, 29–30, 46
real  59, 91
spooky  9, 89, 92, 97

Ockham  41
one-to-one correspondence  15–18, 20–21, 

74–5, 182
ordering relation  12
ordinal

construction  42
numbers  12–13, 22, 85
limit  13

parities principle  75–7
Parmenides  3
Peano, Giuseppe  60, 71–2, 179; see also 

Dedekind
Peano/Dedekind axioms  52, 55, 84, 86–8
perception  30–31, 34–5, 37–40, 43–5, 105, 

131, 135, 143, 155

phenomenal world  104–5
Plato, Forms  25, 29–31
Potter, Michael  147
powerset  21–2, 32, 41, 113, 120
premises  106–9, 112, 123, 160, 187–8
prescriptivity  11, 77, 97, 116
Priest, Graham  159–62
prime pairs  105, 103, 187
Principia Mathematica  49
Pythagoreans  145
Pythagoras  24–5

quantifi er-free elementary arithmetic  147
Quine, W. V.  37

reductio ad absurdum  33–4, 102, 106–8, 
116–17, 120, 167, 181, 188

Resnik, Michael  81, 83, 85, 90–91, 96
rigour  32, 47, 62, 134–5, 153–4
Routley, Richard  158–60, 162
Russell, Bertrand  see Whitehead, Alfred 

North
paradox 113–14

second-order logic  see logic, second-order
set  see class

construction  27, 29–31, 36
empty  15, 27, 32–4, 41–2, 65, 96, 180, 

183, 184–5
mathematical objects  12, 36, 38, 83, 86, 

136, 180, 185
size of  14–15, 31, 34, 40–41, 71, 95, 120, 

157
subset of  15–16, 20–21, 83, 93–4, 156, 

178
Shapiro, Stewart  37, 81, 83, 85, 90, 93, 

95–6, 98–9, 154
singular term  58
Socrates  24–5, 179
Spinoza  53
Stricker  130, 137
structure

free-standing  95
meta-structure  87–8, 95–6, 98–9
sui generis  90

successor  13, 83–4, 56, 86
immediate  13, 55–6, 94, 182

supervenience  39–40, 44, 92, 129, 180, 185
syntax  33, 65, 108–9, 155, 183, 187–8
synthetic truth  x, 60–62, 73, 76–7, 184



204 introducing philosophy of mathematics

tautology  11, 59–60, 112, 187
Tennant, Neil  117–18, 181, 184
thermodynamics, second law of  10
topology  25, 29, 50, 136
tortoise  4–6, 12, 177
truth-apt  103–5, 109
Turing test  151–4
type theory  see Whitehead

universal quantifi er  55, 65, 69, 74–5, 78, 
122, 165–6

validity  53–4, 65, 106–7, 112, 167–8, 186

Weyl, Hermann  123
Whitehead, Alfred North  49–52, 66–71, 

78–9, 183
Wittgenstein  xi, 37, 163
Wright, Crispin  71–7, 79

Zeno  1–3, 7, 114, 177
Zermelo, Ernst  21–2, 42–3, 83, 88–9, 99, 

114, 178, 183, 184
Zermelo–Fraenkel set theory  see Zermelo


	Cover
	Copyright
	Contents
	Acknowledgements
	Preface
	1. Infinity
	2. Mathematical Platonism and realism
	3. Logicism
	4. Structuralism
	5. Constructivism
	6. A pot-pourri of philosophies of mathematics
	Appendix. Proof: ex falso quod libet
	Glossary
	Notes
	Guide to further reading
	Bibliography
	Index

