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Course Overview

During the spring semester of 2013 there will be an advanced course in
Harmonic Analysis at Aalto University, taught by Ioannis Parissis. The target
group of this course is advanced undergraduate, Master’s and PhD students.
The main goal of the course is to discuss a wide class of operators acting on
Lp spaces for which an axiomatic theory can be established. These operators
are usually called Calderón-Zygmund operators and the relevant notions, tools,
and results can be summed up with the term “Calderón-Zygmund theory”. The
main prerequisite for this course is a solid knowledge of Real Analysis, while
some knowledge of basic Functional Analysis will be helpful, but not critical.
Several tools will be introduced in order to discuss mapping properties of op-
erators acting on Lp spaces. These include, interpolation theorems, the Fourier
transform, the discussion of tempered distributions, weak derivatives, and the
action of the Fourier transform on these objects, the Hardy-Littlewood max-
imal function and its variants, dyadic decompositions and model operators.
These tools will be combined to provide us with general theorems that will as-
sure the boundedness of a wide class of operators on Lp-spaces. Together with
these tools we will also discuss in some detail the space of Schwartz functions
(smooth functions that together with their derivatives of every order decay
faster than any polynomial power at infinity). This space consists of so nice
functions that it allows its dual to contain pretty rough objects. This dual is
the space of tempered distributions which we will also discuss in some detail.
Finally we will introduce the space BMO consisting of functions of bounded
mean oscillation. This function space is larger than the space of bounded func-
tions and usually serves as a replacement endpoint for the boundedness of
singular integral operators, which fail to be bound on L∞. There will be two
two-hour lectures every week and an extra two-hour exercise session every
other week.

Prerequisites

This course will assume a prior knowledge of real analysis and in partic-
ular, the notions of Lebesgue measure and integration, measurable sets and
functions, convergence and approximation theorems (e.g. Lebesgue dominated
convergence, approximation of integrable functions by simple functions), Lp-
spaces, basic inequalities such as Hölder and Minkowski, and a mild familiar-
ity with using these notions. Furthermore, some knowledge of basic Functional
Analysis such as classical Banach spaces and their duals, Hahn-Banach the-
orem and its consequences, and so on, will be useful but not crucial. Some of
these notions will be reviewed (but not rigorously defined nor discussed) in the
beginning of the course.

vii



viii COURSE OVERVIEW

Syllabus

Although there might be small changes, the main plan for the course is the
following:

Introduction: In the first part of the course we will recall some basic
notions from real analysis and add some new elements.

We will start by setting up the main environment for our studies, that is,
the appropriate function spaces where our functions will live and our opera-
tors will act. There will always be an underlying measure space (X,B, µ). As
a typical example you should think of X as the Euclidean space Rn, B as the
σ-algebra of Borel, or Lebesgue measurable sets, and µ as the Lebesgue mea-
sure on Rn. We will however put things in a more general context whenever it
is useful or necessary. We will usually consider appropriate spaces of functions
f : X → C. The most typical example here would be the space of functions
whose p-th powers are integrable with respect to the measure µ, that is the
spaces Lp(dµ) and p will usually lie in the interval [1,∞]. Another relevant
space of importance is the space of functions that marginally fail to be in Lp,
that is the weak-Lp spaces. These, as we will see, are defined in terms of the
measure of the distribution function of the function f . We will also extensively
use the spaces of infinitely differentiable functions with compact support, the
space of Schwartz functions, that is the space of infinitely differentiable func-
tions whose partial derivatives of every order (including the 0-order derivative,
that is the function itself) decay faster than any polynomial power at infinity,
the space of continuous functions that tend to zero at infinity and so on. I will
assume that most of the audience is familiar with these notions on some level
or another. However, this will be our starting point; we will recall these notions
from measure theory (or real analysis if you want) and take them one step fur-
ther. A recurring theme in this course will be the study of operators acting
on these function spaces and, in particular, their boundedness and mapping
properties. For this we will oftentimes use classical inequalities in measure
spaces as for example Hölder’s inequality, Minkowski’s inequality and Young’s
inequality, as well as slightly more sophisticated tools, that is, different forms
of interpolation of operators (e.g. Marcinkiewicz interpolation theorem, Riesz-
Thorin interpolation theorem), Schur’s test, convolution inequalities and du-
ality arguments. We will review the classical inequalities and introduce the
more sophisticated tools just mentioned.

The Fourier transform: We will introduce the Fourier transform of ap-
propriate functions f : Rn

→ C and study its main properties on the corre-
sponding spaces. Special mention will be made on the Fourier transform on the
space of finite measures on Rn, on L1(Rn), on L2(Rn) as well as on the Schwartz
space S(Rn). Although the latter function space seems pretty limited, its dual,
the space of tempered distributions, is rich enough to allow us to extend the
definition of the Fourier transform (in a weak sense) to a wide variety of ob-
jects, including Lp spaces for p > 2. We will rely on the space of tempered dis-
tributions in order to define operators (as for example the Fourier transform,
or the derivative) on functions that do not possess the necessary regularity. We
will give examples of classical Fourier transforms, like the Fourier transform of
the Gaussian, and discuss how one can reconstruct the original function from



SYLLABUS ix

its Fourier transform, that is we will see when, how, and in what sense we
can ‘invert’ the Fourier transform. Some time will be given to the discussion
of bounded linear operators that commute with translations. We will see that
these operators are convolution operators with an appropriate distribution.

The Hardy-Littlewood Maximal function. We will introduce (or recall)
the Maximal function of Hardy and Littlewood and prove its main bounded-
ness properties. This will be done in different ways; we will use the classi-
cal approach that is prove the L1 to weak L1 inequality by means of a cover-
ing lemma and then interpolate between this bound and the trivial L∞ → L∞

bound. We will also study the relevance of the maximal function to the stan-
dard Calderón-Zygmund decomposition. In parallel, we will study the dyadic
maximal function and see how it relates to the usual one.

Singular Integrals: We will introduce singular integral operators ini-
tially acting on "nice" (say Schwartz) functions on Rn. The purpose here is
to show apriori boundedness of these operators, which will automatically al-
low us to extend them to the spaces Lp for example. Our starting point will be
the Hilbert transform which is the primordial example of a Calderón-Zygmund
operator and whose properties we will examine in detail. We will build in this
section the basic hypotheses of Calderón-Zygmund theory and show how we
can deduce the boundedness properties of general Calderón-Zygmund opera-
tors from some size and regularity assumptions on the kernel of the operator
together with an initial boundedness hypothesis (for example that the oper-
ator is already bounded on some Lp space. Given time, we will discuss how
this apriori boundedness assumption can be replaced by suitable testing con-
ditions by means of the famous T(1) theorem. We will also hint at some recent
developments in Harmonic Analysis involving the representation of general
Calderón-Zygmund operators by appropriate averages of dyadic model opera-
tors.

Littlewood-Paley theory and multiplier operators. This concluding
section of the course aims mainly at introducing the Littlewood-Paley decom-
position of a function and prove the Littlewood-Paley inequalities. Roughly
speaking, these inequalities allow us to decompose a function to different pieces
which have localized frequencies in dyadic annuli, and behave almost orthog-
onally to each other. In the Hilbert space L2 this is precise. The Littlewood-
Paley inequalities provide us with a certain substitute of in Lp, p , 2. Given
time we will discuss multiplier operators and give two fundamental theorems:
the Mikhlin-Hörmander multiplier theorem and the Marcinkiewicz multiplier
theorem.

The preceding description gives the main topics I would like to cover in
the course. On the other hand I plan to touch upon some special subjects as
for example, oscillatory integral estimates, Sobolev inequalities and relation
to PDE’s, weighted norm inequalities, Fourier transform on different groups,
Fourier series and so on. There will be relevant exercises in your homework
giving you a flavor of these subjects (with appropriate guidance of course!) as
well as examples in the classroom. There will also be a home assignment on
a special self-contained subject to be presented in the classroom. The choice
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has to be compatible with the material of the course. To give a flavor, a (not
exhaustive) list of possible subjects is:

• Weighted Inequalities for Maximal functions and Singular Integrals.
• Dyadic representation of Singular Integral Operators.
• Sharp weighted inequalities for Maximal functions and Singular In-

tegrals.
• Sobolev Embedding Theorems.
• An instance of the Stein-Tomas restriction Theorem.
• Interpolation theorems not covered in the course.
• T(1) and T(b) theorems.
• Oscillatory integral estimates and the method of stationary phase.
• Singular Integral operators outside the scope of Calderón-Zygmund

theory.
• Three term Arithmetic Progressions via Fourier transform.

Schedule. There will be two two-hour lectures every week, normally on
Monday and Tuesday. There will be a third two-hour meeting (on Thursday)
which will serve as an exercise session.

Grading, Homework and Exams. There will be a set of exercises given
to you as homework (approximately every two-three weeks). You will have
to hand in your solutions usually within 2-3 weeks. We will discuss these
problems (and others) in the Thursday problem session.

Communication. I expect you to check your e-mails on a regular basis for
course related issues. Check also my web site where all my contact information
is available.

Literature. I will suggest some books that I think will be of great help
throughout the course. This list however is neither restrictive nor exhaustive.
I would encourage you to use any book or online resource that you feel can help
you.

[F] G. Folland, "Real Analysis: Modern Techniques and Applications",
Wiley, 1984.

[D] J. Duoandikoetxea, "Fourier Analysis", AMS, 2001.
[K] Y. Katznelson, "An Introduction to Harmonic Analysis" 2nd edition,

Cambridge, 2004.
[R] W. Rudin, "Real and Complex Analysis", 3rd ed., McGraw-Hill, 1987.

[SW] E. Stein, G. Weiss, "Introduction to Fourier Analysis on Euclidean
Spaces", Princeton Univ. Press, 1971.

[S] E. Stein, "Singular Integrals and Differentiability Properties of Func-
tions", Princeton Univ. Press, 1970.

[S2] E. Stein, "Harmonic analysis: real-variable methods, orthogonality,
and oscillatory integrals", Princeton Univ. Press, 1993.

[WZ] R. L. Wheeden.; A. Zygmund, "Measure and integral: An introduc-
tion to real analysis. Pure and Applied Mathematics", Marcel Dekker,
1977.

https://sites.google.com/site/ioannisparissis/
http://books.google.com/books?id=uPkYAQAAIAAJ&q=folland+real+analysis&dq=folland+real+analysis&hl=en&ei=GsE0TZ2lK4WH4QaXmOjtCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCMQ6AEwAA
http://books.google.com/books?id=uPkYAQAAIAAJ&q=folland+real+analysis&dq=folland+real+analysis&hl=en&ei=GsE0TZ2lK4WH4QaXmOjtCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCMQ6AEwAA
http://books.google.com/books?id=Lx6P0gyMTgIC&printsec=frontcover&dq=duoandikoetxea+fourier+analysis&hl=en&ei=FMU0Tc7_H4n44gbT49TdCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCYQ6AEwAA#v=onepage&q&f=false
http://books.google.com/books?id=gkpUE_m5vvsC&printsec=frontcover&dq=katznelson+harmonic&hl=en&ei=_sg0TdSvB8_g4gaUybDkCw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCMQ6AEwAA#v=onepage&q&f=false
http://books.google.com/books?id=gkpUE_m5vvsC&printsec=frontcover&dq=katznelson+harmonic&hl=en&ei=_sg0TdSvB8_g4gaUybDkCw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCMQ6AEwAA#v=onepage&q&f=false
http://books.google.com/books?id=Z_fuAAAAMAAJ&q=Rudin+real+and+complex+analysis&dq=Rudin+real+and+complex+analysis&hl=en&src=bmrr&ei=eMI0Te7dJ8W64Qacz8HDCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCMQ6AEwAA
http://books.google.com/books?id=YUCV678MNAIC&pg=PA37&dq=stein+and+weiss+harmonic&hl=en&ei=8MI0TYSbJNLI4gba0P3uCg&sa=X&oi=book_result&ct=result&resnum=2&ved=0CCgQ6AEwAQ#v=onepage&q=stein%20and%20weiss%20harmonic&f=false
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http://books.google.com/books?id=sAWpsmkqziEC&printsec=frontcover&dq=stein+singular+integrals&hl=en&src=bmrr&ei=WMA0Tb3ULNL-4AbL4KTLCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q&f=false
http://books.google.com/books?id=sAWpsmkqziEC&printsec=frontcover&dq=stein+singular+integrals&hl=en&src=bmrr&ei=WMA0Tb3ULNL-4AbL4KTLCg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCsQ6AEwAA#v=onepage&q&f=false
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Preface

As mentioned in the overview of the course, we will be mainly concerned
with operators acting on certain function spaces, or even spaces of more rough
"objects" such as measures or distributions. Typically we will want to study the
mapping properties of such an operator, that is whether it maps one function
space to another and so on. A typical estimate in this context is of the form

‖T f ‖Y ≤ C‖ f ‖X,

where X,Y are certain (usually Banach) spaces of functions or measures or
distributions and ‖ · ‖X, ‖ · ‖Y are norms, or semi-norms or, in general, norm-like
quantities. Thus such an estimate states that the operator T takes functions
(or "objects") from the space X to the space Y in a continuous way. Already
such an estimate can reveal quite a lot for the nature and the properties of the
operator T.

When studying the mapping properties of an operator it is often useful to
restrict our attention to a "nice" subclass V inside X. If X for example con-
sists of integrable functions, a good idea is to first consider the action of T on
the class of smooth functions with compact support, or on the class of simple
functions. These subclasses are nice or explicit enough to allow us to overcome
many technical difficulties in trying to define T( f ) for a general object f ∈ X.
Furthermore, when these classes are dense in the original space there is a very
natural candidate for the extension of T to the whole class. It turns out that
this extension goes through whenever T is bounded on the dense subclass. An-
other useful technique is to decompose a general function f ∈ X into different
pieces. Since T is usually linear, we can then examine the effect of T on each
piece and sum the pieces together. Likewise, we can decompose the operator
T to different components, each component being easier to control than the
‘whole’ operator T. Finally, we can combine these two ideas and decompose
both the function and the operator into different pieces. Usually good control
on the different pieces is expected to imply a good control on the original op-
erator and/or function. There are however technical difficulties in putting the
pieces together, understanding how they interact with each other and, most
importantly, justifying how the individual estimates sum up to a "global" esti-
mate.

Overall this course is all about estimates: Estimating the norm of a func-
tion, the norm of an operator, the norms of the different pieces of a decomposi-
tion of a function and so on. It is very useful to introduce some notation:

xi



xii PREFACE

Hardy notation; a constant c > 0 that has an unspecified value.

Such a constant c, c1, c2, . . ., or C,A,B and so on, usually represents a nu-
merical constant that does not depend on any of the parameters of the prob-
lem. Using this notation we will many times use a letter, say c, to denote a
generic numerical constant. Different appearances of the letter c will not nec-
essarily denote the same numerical constant, even in the same line of text. For
example a very useful estimate is the following

2
π
|x| ≤ | sin(x)| ≤ |x|, |x| ≤

π
2
.

We will use the Hardy notation in order to write estimates likes this in the
form

c1|x| ≤ | sin x| ≤ c2|x|, |x| ≤
π
2
,

which is just the statement the fact that the function sin x behaves linearly
close to 0. The precise values of the constants, that is, the precise slopes of the
linear functions appearing in the estimate, are rarely of any importance and
the do not depend on anything interesting. Taking this one step further we
would write for example

|2 sin(x)/(1 + x)| ≤ c|x/(1 + x)| ≤ c|x|

when x is close to 0 and

|2 sin(x)/(1 + x)| ≤ c/|1 + x|,

when |x| → ∞.
A variation of this notation is useful when a constant actually depends on

one of the parameters of the problem. Thus we could write

‖T f ‖Y ≤ cX,Y,T‖ f ‖X,

which means that the constants cX,Y,T may depend on X,Y and T but not on the
function f . One should be careful with estimates like this. For example, the
notation

2n
≤ cn

is correct though it might be confusing as it "hides" the dependence of the
constant cn on n (for example whether it is bounded in n, whether it grows to
infinity in n and so on). On the other hand, the notation

2n
≤ c

is wrong though the estimate is actually true for fixed n. Such a notation
would imply that the sequence 2n is uniformly bounded in n which is of course
not true. Such a notation is true for example in the case

| sin(2πn)| ≤ c.
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The Vinogradov notation.

Suppose that we have an estimate of the form Y ≤ cX where X,Y could be
norms of functions, or operators and so on. We will write this estimate in the
form

Y . X.

Similarly we write Y & X whenever Y ≥ cX. If we have that Y . X and Y &
X then we will use the notation X ' Y. This latter notation states that the
quantities X,Y are equivalent up to numerical constants. For example, we
could write 2 sin(2πn) . 1 and also sin x ' x for x close to 0. If we want to state
a dependence on a parameter we use a subscript. For example we write

‖T f ‖Y .X,Y,T ‖ f ‖X,

to denote the dependence of the implied constant on X,Y and T.
A lot of attention should be given when iterating this notation. While this

is legitimate for a finite number of steps, an infinite number of steps can create
many problems. Beware of this situation especially in inductive arguments:
never hide the dependence on the induction parameter in the Vinogradov no-
tation!

The Landau - big O -notation.

In this notation, writing Y = O(X) means that there exists a numerical
constant C > 0 such that |Y| ≤ CX. The big O notation however is mostly
useful when we want to denote a main term and an error term, and keep track
of everything in a nice way. Imagine for example that we want to study the
function sin x for x close to zero, say |x| < π

2 . The Taylor expansion of sin x
around zero is of the form

sin x = x −
x3

3!
+

x5

5!
−

x7

7!
+ · · · .

While it is correct that sin x = O(|x|) as x→ 0, what happens if we want to keep
track of lower order terms? Well, we could use the big-O notation to write

sin x = x + O(|x|3), x→ 0.

Note that this is correct since the higher order terms x5, x7 and so on, are al-
ways controlled by x3 when x → 0. This is a very useful device if we want to
"carry" the lower order terms in our calculations. For example, since

sin x = x + O(|x|3), cos x = 1 −
x2

4
+ O(x6), x→ 0,

we can write

sin x cos x = (x + O(|x|3))(1 −
x2

4
+ O(|x|4)) = x + O(|x|3).

If we want to state the dependence on some parameter we use subscripts again.
Thus we could write Y = On(X) meaning that |Y| ≤ cnX. Also note that the
bound ‖T f ‖Y .X,Y,T ‖ f ‖X can be written in the form ‖T f ‖Y = OX,Y,T(‖ f ‖X).





CHAPTER 1

A brief overview of measure and integral

1.1. Basic notions from measure theory

We begin this introductory chapter by recalling some basic facts from the
theory of measure and integration. As mentioned in the description of the
course, our first task will be to recall all the basic notions and tools from in-
tegration theory and Lp spaces, thus defining our main setup. Our basic envi-
ronment is a measure space (X,X, µ), that is a set X together with a σ-algebra
X of sets in X and a non-negative measure µ on X. The measure µ will always
assumed to be σ-finite (X can be decomposed as a countable union of sets of fi-
nite µ-measure). Recall that our subject is Euclidean harmonic analysis so, in
most cases, the underlying space X will be the n-dimensional Euclidean space,
µ will be the Lebesgue measure on Rn and B will be either the σ-algebra of
Lebesgue-measurable sets, or the σ-algebra of Borel-measurable sets in Rn.

Typically we will consider measurable functions f : (X,X, µ)→ (Z,Z, ν); re-
member here that measurable means that the pre-image of every measurable
set (thus of every set in Z) is a measurable set (that it is a set in X). How-
ever, we will mostly consider functions f : X → C, where it is understood that
C is equipped with the Borel σ-algebra1. Again, the special case of Lebesgue-
measurable complex valued functions on Rn is of particular importance. Thus
the main example to keep in mind is a Lebesgue-measurable, complex valued
function

f : Rn
→ C,

where Rn is equipped with the Lebesgue σ-algebra and C is equipped with the
Borel σ-algebra of sets in C. Note these definitions and conventions here since
we won’t repeat them every time we consider measurable functions.

Let us go back to the case of a general measure space (X,X, µ). If not
otherwise stated, a set in X will mean a measurable set in X and a function f
will mean a measurable complex valued function. For a set E in X, the indicator
function of E will be denoted by 1E(x) or 1E(x):

1E(x) = 1E(x) =

1, if x ∈ E,
0, if x < E.

1Recall that the Borel σ-algebra on X is the smallest σ-algebra containing all open sets (or,
equivalently, all closed sets).

1
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A simple function is then a finite linear combination of indicator functions, that
is a function g(x) defined as

g(x) =

N∑
j=1

c j1E j ,

where c1, . . . , cN ∈ C and E1, . . . ,EN are (measurable) sets. A standard way to
identify a set in X with a measurable function on X is via the map E 7→ 1E.

Two functions (or sets) in a measure space will be considered one and the
same object if they agree almost everywhere. For example, consider a set E in
X and a subset E′ ⊂ E with µ(E \ E′) = 0. For the purposes of this course, the
functions 1E and 1E′ are one and the same function. If you want to be more
rigorous, you have to think of a measurable function as an equivalence class
of functions, where two measurable functions f , f ′ are equivalent if and only
if f = f ′, µ-almost everywhere (µ-a.e.). That is, f = f ′ everywhere on X except
maybe on a set of measure zero. We will however abuse language a bit and just
refer to f as a function, arbitrarily choosing a representative from every equiv-
alence class. Moreover, we can choose the member of the class that is more
convenient for our purposes. To give an example of the usefulness of this prin-
ciple, think of the equivalence class of functions f , say on R, that agree with
0 almost everywhere. One can think of functions that behave very erratically
and are equal to 0 almost everywhere. However, the function f that is iden-
tically equal to 0 everywhere still belongs to the same equivalence class and
is continuous, thus it qualifies as a "nice" representative of this equivalence
class. For continuous functions however, there is no ambiguity.

EXERCISE 1.1. Let X,Y be two topological spaces and suppose that Y is
Hausdorff. Assume that µ is a Borel measure on X such that µ(U) > 0 for every
open set U ⊂ X. Prove that if f , g : X→ Y are continuous and f = g µ-a.e. on X,
then f = g on X.

Hint: Since the space Y is Hausdorff, "open sets separate points": for every
y1, y2 ∈ Y with y1 , y2 there exist disjoint open neighborhoods Vy1 ,Vy2 of y1, y2,
respectively.

1.2. Lp-spaces

Let us begin by fixing a measure space (X,X, µ). We assume as usual that
µ is a non-negative σ-finite measure on X. The most important spaces of func-
tions in this course will be the spaces Lp = Lp(X, µ), 0 < p < ∞, defined as the
spaces of measurable functions f : X→ C such that

‖ f ‖Lp(X,µ) =
( ∫

X
| f (x)|pdµ(x)

) 1
p

< +∞.

For p = ∞ we define the space of essentially bounded functions f : X→ C, that
is the space of measurable functions f such that

‖ f ‖L∞(X,µ) = ess sup
x∈X

| f (x)| < +∞.

http://en.wikipedia.org/wiki/Hausdorff_space
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Recall here that the essential supremum of a function f is the smallest positive
number c such that | f (x)| ≤ c, µ-almost everywhere:

ess sup
x∈X

| f (x)| = inf
{
c > 0 : µ({x ∈ X : | f (x)| > c}) = 0

}
.

We will alternatively use the notations ‖ f ‖Lp or even ‖ f ‖p whenever the under-
lying measure space is clear from context or not relevant for a statement.

EXERCISE 1.2. Let f be a simple function of finite measure support, that
is, a finite linear combination of indicator functions of sets of finite measure.
Show that

lim
p→∞
‖ f ‖p = ‖ f ‖∞,

and that
lim
p→0
‖ f ‖pp = µ(supp( f )),

where
supp( f ) = {x ∈ X : f (x) , 0}.

As we shall shortly see, for 1 ≤ p ≤ ∞, the quantities ‖ · ‖Lp(X,µ) are Banach-
space norms. In order to show this, the only difficulty is the triangle (or
Minkowski, in this case) inequality. For 0 < p < 1 these quantities are not
norms any more but we have a quasi-triangle inequality, that is a triangle
inequality with a constant strictly greater than 1.

LEMMA 1.3. Let (X,X, µ) be a measure space. For 1 ≤ p < ∞, the quantity
‖ · ‖Lp(X,µ) is a norm. In particular we have the following, for all functions f , g ∈
Lp(X, µ):

(i) (Point Separation)

‖ f ‖Lp(X,µ) = 0⇔ f = 0.

(ii) (Positive Homogeneity) For all c ∈ C we have

‖c f ‖Lp(X,µ) = |c|‖ f ‖Lp(X,µ).

(iii) (Triangle inequality)

‖ f + g‖Lp(X,µ) ≤ ‖ f ‖Lp(X,µ) + ‖g‖Lp(X,µ).

For 0 < p < 1, (i) and (ii) still hold true. Triangle inequality is replaced by
(iii′) (Quasi-triangle inequality)

‖ f + g‖Lp(X,µ) .p ‖ f ‖Lp(X,µ) + ‖g‖Lp(X,µ).

PROOF. The statements (i) and (ii) are trivial, given the fact that we iden-
tify functions that agree µ-a.e. For (iii) we can assume that f , g are non-zero
because of (i), otherwise there is nothing to prove. The case p = ∞ of (iii) is
trivial so we assume that 1 ≤ p < ∞. Because of the homogeneity property
(ii) it is enough to prove that ‖ f + g‖p ≤ 1 whenever ‖ f ‖p + ‖g‖p = 1. Since
f , g are non-zero this means that there exists θ ∈ (0, 1) such that ‖ f ‖p = θ and
‖g‖p = 1 − θ. Setting F = f/θ and G = g/(1 − θ) the problem reduces to showing
that

(1.1)
∫
|θF(x) + (1 − θ)G(x)|pdµ(x) ≤ 1,



4 1. A BRIEF OVERVIEW OF MEASURE AND INTEGRAL

whenever
‖F‖p = ‖G‖p = 1.

We will show (1.1) by using a basic convexity estimate. For s ∈ (0,∞) we con-
sider the function given by the formula h(s) = sp where 1 ≤ p < ∞. Then the
function h is convex. This means in particular that for s1, s2 > 0 and 0 < θ < 1
we have h(θs1 + (1 − θ)s2) ≤ θh(s1) + (1 − θ)h(s2). Using the complex triangle
inequality and the convexity of h we can thus write∫

|θF(x) + (1 − θ)G(x)|pdµ(x) ≤
∫

(θ|F(x)| + (1 − θ)|G(x)|)pdµ(x)

≤ θ

∫
|F(x)|pdµ(x) + (1 − θ)

∫
|G(x)|pdµ(x)

= θ + (1 − θ) = 1,

(1.2)

because of the normalization ‖F‖p = ‖G‖p = 1.
The quasi-triangle inequality (iii′) is any easy consequence of the basic

estimate (a + b)p
≤ ap + bp, for a, b > 0 and 0 < p ≤ 1, and is left as an exercise. �

EXERCISE 1.4. Show that the triangle inequality is an equality if and only
if f = g = 0 or f = cg for some c > 0.

Hint: Check carefully when the inequalities in the previous proof become
equalities. Use the fact that for f ≥ 0 we have

∫
f = 0⇔ f = 0 a.e.

For 1 ≤ p ≤ ∞, the spaces Lp(Rn) are Banach spaces, that is they are
normed vector spaces which are complete with respect to the corresponding
norm ‖ · ‖Lp(Rn). For 0 < p < 1 we don’t have a triangle inequality. However, the
quasi-triangle inequality allows us to show that the spaces Lp(X, µ) are (quasi-
normed) complete vector spaces,or, quasi-Banach spaces.

PROPOSITION 1.5. For 1 ≤ p ≤ ∞ the space Lp(X, µ) is a Banach space. For
0 < p < 1 the space Lp(X, µ) is a quasi-normed complete vector space (quasi-
Banach space). Furthermore, for 0 < p < ∞ the preceding spaces are separable.
Separability fails however for p = ∞.

EXERCISE 1.6. Show that L∞(R) is not separable. The underlying measure
here is the Lebesgue measure.

A very useful variation of Minkowski’s inequality is one where we "replace"
the sum by an integral (which, roughly speaking, is also a sum!). Minkowski’s
(integral) inequality is the statement that "the norm of a sum (integral) is
always smaller or equal to the sum (integral) of the norms."

PROPOSITION 1.7 (Minkowski’s integral inequality). Let (X,X, µ) and (Y,Y, ν)
be two measure spaces where the measures µ, ν are σ-finite non-negative mea-
sures. Let f be a X ⊗Y-measurable function on the product space X × Y.

(i) If f ≥ 0 and 1 ≤ p < ∞, then( ∫
X

∣∣∣∣∣ ∫
Y

f (x, y)dν(y)
∣∣∣∣∣pdµ(x)

) 1
p

≤

∫
Y

( ∫
X
| f (x, y)|pdµ(x)

) 1
p

dν(y).

(ii) If 1 ≤ p ≤ ∞, f (·, y) ∈ Lp(X, µ) for ν-a.e. y ∈ Y, and the function y 7→
‖ f (·, y)‖Lp(X,µ) is in L1(Y, ν) for µ-a.e. x ∈ X, then f (x, ·) ∈ L1(Y, ν) for µ-a.e.

http://en.wikipedia.org/wiki/Convex_function
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x, the function x 7→
∫

Y f (x, y)dν(y) is in Lp(X, µ) and∥∥∥∥∥∫
Y

f (·, y)dν(y)
∥∥∥∥∥

Lp(X,µ)
≤

∫
Y
‖ f (·, y)‖Lp(X,µ)dν(y).

Writing (ii) of Minkowski’s integral inequality also highlights the similar-
ity to the classical triangle inequality, where one just has to think of the in-
tegral as a "generalized sum." This is also a good trick to help you memorize
the inequality. Observe that the triangle inequality is just a special case of the
integral version of Minkowski’s integral inequality where the measure ν is the
counting measure. You can find the proof of this inequality in most textbooks
of real analysis. See for example [F].

After the triangle inequality the next most important inequality in the
spaces Lp(X, µ) is Hölder’s inequality.

LEMMA 1.8. Let f ∈ Lp(X, µ) and g ∈ Lq(X, µ) for some 0 < p, q ≤ ∞. Define
the exponent r by means of the "Hölder relationship"

1
r

=
1
p

+
1
q
.

Then the function f g ∈ Lr(X, µ) and we have the norm estimate

‖ f g‖Lr(X,µ) ≤ ‖ f ‖Lp(X,µ)‖g‖Lq(X,µ).

EXERCISE 1.9. Prove Lemma 1.8 above.
Hint: Note that the case p = q = r = ∞ is trivial. Assuming that p, q, r < ∞

homogeneity allows us to normalize ‖ f ‖Lp(X,µ) = ‖g‖Lq(X,µ) = 1, the case f = 0
or g = 0 being trivial. Normalizing and setting F(x) = | f (x)|p,G(x) = |g(x)|q, it
is enough to prove that

∫
X FθG1−θ

≤ 1 whenever
∫

G =
∫

F = 1, for suitable
θ ∈ (0, 1). Complete the proof using the fact that the function θ 7→ aθβ1−θ is
convex, where a, β are positive real numbers. To show this you can use the
convexity of the function x 7→ ex.

REMARK 1.10. Observe that Hölder’s inequality is invariant under the
transformation f 7→ c1 f and g 7→ c2g for any constants c1, c2 > 0. Note also
that this inequality refers to a general measure space (X, µ). Replacing the
measure µ by the measure µ̃ = λµ for some constant λ > 0 observe that
f ∈ Lp(µ) ⇔ f ∈ Lp(µ̃). Using these invariances and applying Hölder’s in-
equality with f = g = 1A with µ(A) = 1, we get

λ
1
r ≤ λ

1
p + 1

q ,

for all λ > 0. We conclude that we must have the Hölder relation between the
exponents r, p, q,

1
r

=
1
p

+
1
q
,

whenever Hölder’s inequality holds true.

1.2.1. Log-convexity of the Lp-norms. We will now study a character-
istic of the Lp-norms which is implicit in many parts of the discussion on Lp-
spaces, and especially in interpolation theorems. This convexity property is
already hidden in the proof of Hölder’s inequality above.



6 1. A BRIEF OVERVIEW OF MEASURE AND INTEGRAL

Let us start with a function F : R → R. The function F is called convex if
for every x, y ∈ R and any 0 ≤ θ ≤ 1 we have that

F((1 − θ)x + θy) ≤ (1 − θ)F(x) + θF(y).

The same definition makes perfect sense whenever the function F is defined on
some interval of the real line or, in fact, on any convex subset of a vector space.
Observe that the definition states that the line connecting the points (x,F(x))
and (y,F(y)) of the graph of F always lies "above" the graph of the function
itself. Now if a function F is positive, we will say that F is log-convex if the
function x→ log F(x) is convex. In this case we must have

F((1 − θ)x + θy) ≤ F(x)1−θF(y)θ.

PROPOSITION 1.11 (Log-convexity of the Lp-norms). Let 0 < p1 < p2 ≤ ∞

and define p2, p1 ≤ p2 ≤ p3, as
1
p2

=
1 − θ

p1
+
θ
p3
,

where 0 < θ < 1. Thus 1/p2 is a convex combination of 1/p1 and 1/p3. Then

‖ f ‖Lp2 (X,µ) ≤ ‖ f ‖1−θLp1 (X,µ)‖ f ‖θLp3 (X,µ).

Note that this means that the function 1
p 7→ ‖ f ‖Lp(X,µ) is log-convex.

PROOF OF PROPOSITION 1.11 VIA HÖLDER. Observing that (1−θ)p2

p1
+
θp2

p3
=

1, we apply Hölder’s inequality to | f |p2 = | f |(1−θ)p2+θp2 to get∫
| f |p2 =

∫
| f |(1−θ)p2 | f |θp2 ≤

( ∫
| f |p1

) (1−θ)p2
p1

( ∫
| f |p3

) θp2
p3
,

which proves the desired estimate. �

The proof of the log-convexity of the Lp-norms via Hölder’s inequality is
quite elegant but not very illuminating. We will give another proof that em-
ploys a notion of convexity in complex analysis and, in particular, the maxi-
mum principle. We state the following lemma which will also be useful in the
rest of the course.

LEMMA 1.12 (Three lines lemma). Suppose that F is a bounded continuous
complex-valued function on the closed strip S = {x + iy = z ∈ C : 0 ≤ x ≤ 1},
that is analytic in the interior of S. Suppose that F obeys the bounds |F(iy)| ≤ A
and |F(1 + iy)| ≤ B for all y ∈ R. Then we have that |F(x + iy)| ≤ A1−xBx for all
z = x + iy ∈ S.

PROOF. First of all we can assume that A,B > 0 otherwise there is nothing
to prove. Now, consider the function G(z) = F(z)/A1−zBz for z ∈ S̄. Thus it suffices
to show that |G(z)| ≤ 1 for all z ∈ S, whenever |G(iy)| ≤ 1 and |G(1 + iy)| ≤ 1. First
consider the case that lim|y|→+∞ |G(x + iy)| = 0 uniformly in 0 ≤ x ≤ 1. Then the
result follows from the maximum principle. Indeed, there is some yo > 0 such
that |G(x + iy)| ≤ 1 for all |y| ≥ yo. Now G is bounded by 1 on the boundary of the
rectangle [0, 1] × [−iyo, iyo] and the maximum principle implies that G is also
bounded by 1 in the interior of the rectangle as well. Thus, in this case, G is
bounded by 1 throughout the strip S.
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To get rid of the condition lim|y|→+∞ |G(x + iy)| = 0 consider the sequence of
functions Gn(z) = G(z)e(z2

−1)/n, for n ∈ N. Since G is bounded, say |G(z)| ≤ M, we
have that

|Gn(z)| = |G(z)|e−y2/ne(x2
−1)/n

≤Me−y2/n
→ 0,

as |y| → +∞, uniformly in 0 ≤ x ≤ 1. Observe that we still have the bounds
|Gn(iy)| ≤ 1 and |Gn(x + iy)| ≤ 1 for y ∈ R, uniformly in n ∈ N and every Gn is
analytic in S and continuous in the interior of S. Thus we also conclude that
|Gn(z)| ≤ 1 for all n. Letting n→ +∞ we get that |G(z)| ≤ 1. �

REMARK 1.13. Observe that if we define the function φ : [0, 1] → C as
φ(x) = sup{|F(x + iy)| : y ∈ R}, then under the hypothesis of the three lines
lemma, we get that φ is log-convex in (0, 1). Another point to observe here
is that the hypothesis we have stated here is not quite optimal. Indeed, we
can actually relax the condition that F is bounded with the growth condition
|F(z)| .F eOF(e(π−δ)|z|) for some δ > 0 when z ∈ S. The idea of the proof is exactly
the same. One first proves the result in the case that lim|y|→+∞ F(x + iy) = 0
uniformly in x ∈ [0, 1]. Then we apply this for the sequence of functions Fn(z) =

e
1
n ei[(π− 1

n )z+ 1
2n ]

F(z).

PROOF OF PROPOSITION 1.11 VIA COMPLEX ANALYSIS. We begin by mak-
ing some reductions. Observe that the inequality we want to prove is invariant
under the transformations f 7→ c f and µ 7→ λµ for any constants c, λ > 0. Using
these invariances it is enough to show that if ‖ f ‖Lp1 = ‖ f ‖Lp3 = 1 then we have
that

∫
| f |p2 ≤ 1, for all p2 with 0 < p1 < p2 < p3 < ∞. To do this, consider the

entire function

C 3 z 7→ F(z) =

∫
X
| f |(1−z)p1+zp3 dµ

Assuming that f is a simple function it is easy to see that F is bounded through-
out the strip S = {x+iy : 0 ≤ x ≤ 1, y ∈ R}. Observe also that we have the bounds
|F(0+ iy)| ≤ ‖ f ‖p1 and |F(1+ iy)| ≤ ‖ f ‖p3 . Using the three lines lemma we conclude
that

|F(x + iy)| ≤ 1,

for all y ∈ R and 0 ≤ x ≤ 1. Applying this bound for y = 0 gives the log-
convexity of the Lp-norms for simple functions. A limiting argument gives the
log convexity for general functions. �

REMARK 1.14. In fact, one can follow the opposite direction and prove
Hölder’s inequality by means of the log-convexity of the Lp norms. Also, as
in the case of Hölder’s inequality, it is not hard to verify that whenever such
an estimate is true, the indices p1, p2, p3 must be related as

1
p2

=
1 − θ

p3
+
θ
p1
.

To see this apply the inequality replacing the measure µ by λµ, where λ > 0.

EXERCISE 1.15. Use the three lines lemma to give a different proof of
Hölder’s inequality.
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Hint: Show Hölder’s inequality initially for simple functions with finite
measure support. For this, apply the three lines lemma to the function

F(z) =

∫
X
| f |p(1−z)

|g|qzdµ,

for z ∈ S = {x + iy = z ∈ C : 0 ≤ x ≤ 1, y ∈ R}. You can take for granted that
simple functions with finite measure support are dense in Lp(X, µ), 1 ≤ p < ∞.
Fill in the details of the limiting argument (omitted in the previous proof).

1.2.2. Heuristic discussion and examples of Lp-spaces. Let us now
see a couple of specific examples of Lp spaces which will come up often in this
course.

EXAMPLE 1.16. The most common setting for this course will be the Eu-
clidean setting, that is the measure space (Rn,L, dx), where L denotes the σ-
algebra of Lebesgue measurable sets in Rn and which typically will be omitted
from the notation. A typical point in Rn will be denoted by x = (x1, . . . , xn) and
dx = dx1 · · · dxn denotes the n-dimensional Lebesgue measure. For a set E in Rn

we will many times write |E| for its Lebesgue measure.

EXAMPLE 1.17. Consider the measure space (Z,D, ν), where D is the σ-
algebra of all subsets of Z. Here ν is the counting measure. Recall that for
E ⊂ Z, the counting measure of E is the cardinality of E, typically denoted
by |E|, if E is finite, and ν(E) is defined to be +∞ if E is infinite. Every subset
of Z is clearly measurable with respect to ν. With these definitions taken as
understood observe that the space Lp(Z,D, ν) is just the space of sequences on
Z whose p-th powers are summable, that is, the space of all sequences a =
{ak}k∈Z such that

‖a‖p =
(∑

k∈Z

|ak|
p
) 1

p

< +∞.

These spaces come up so often in analysis that they deserve to have a special
notation; we usually denote them by `p(Z). Maybe this seems like an unnec-
essary complication to state a very simple definition. Observe however that
once we put things in this language we automatically have all the tools from
measure theory at our disposal.

EXERCISE 1.18. Let {a(n)
}n∈N be a sequence of elements in (Z,D, ν), that is,

a sequence of sequences. For each positive integer n ∈Nwe write a(n) = {a(n)
k }k∈Z.

Assume that for each fixed k ∈ Z, there is a complex number ak such that
limn→+∞ a(n)

k = ak, that is, the sequence {a(n)
}n∈N converges pointwise to some

sequence a = {ak}k∈Z. State Lebesgue’s dominated convergence theorem in this
setup. When can we interchange the limit with summation?

EXAMPLE 1.19. We denote byT the torus, that is the quotient spaceR/2πZ
where 2πZ is the group of integral multiples of 2π. Thus two points of R are
identified if the differ by an integral multiple of 2π. There is a natural identifi-
cation of functions on T and 2π-periodic functions onR. The Lebesgue measure
dt on T can also be identified with the restriction of the Lebesgue measure of
R on the interval [0, 2π), or in fact, any interval in R of length 2π. Remember
that the Lebesgue measure on R is translation invariant. We equip T with the
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Lebesgue σ-algebra. The integral of a function f : T → C can thus be written
as ∫

T

f (t)dt =

∫ 2π

0
f (x)dx,

where f is considered as a 2π-periodic function on R. The preceding definitions
imply that the measure dt on T is translation invariant. The Lebesgue spaces
Lp(T), 1 ≤ p ≤ ∞, are defined in the obvious way. Since the total measure of T
is finite, an important feature of the spaces Lp(T) is that they are nested; for
1 ≤ p1 ≤ p2 ≤ ∞ we have that Lp2 (T) ⊂ Lp1 (T), L∞(T) being the "smaller" space.
Furthermore this embedding is continuous. See also Exercise 1.23.

We now briefly discuss why a function may fail to belong to Lp(Rn) for 1 ≤
p < ∞. For simplicity, let us focus on the real line and consider candidature to
the spaces Lp(R). Very similar conclusions hold in the n-dimensional Euclidean
space. Roughly speaking, there are two main obstructions:

The decay of the function at infinity. Simply put, the function might not
decay fast enough as |x| → +∞ for the integral of | f (x)|p to be finite. The most
naive example one can think of is a constant function f (x) = c, x ∈ R, for some
complex number c ∈ C. Obviously this function raised to any power cannot
be integrable close to infinity. A slightly more subtle example is the function
f which agrees with 1/x for x → +∞, i.e. f (x) = 1

x 1{x≥1}(x) This function fails
logarithmically to be in L1(R) but belongs to Lp(R) for any p > 1. Of course
we can similarly construct functions that decay even slower at infinity so that
they fail to be in Lp for p > 1 as well. Thus, whenever a function f belongs to
some Lp space for some 1 ≤ p < +∞ this imposes a control on the decay of f at
infinity. Increasing p will only make things better at infinity, provided that the
function already has some decay. Observe that this obstruction does not exist
on a finite measure space. This is the case for the spaces Lp(T) for example.

Blow up at local singularities. Here it is enough to consider any compact
set and study the behavior of the function locally. If the function is bounded
on compact sets, i.e. if it is locally bounded, then the local behavior will not
be an obstruction for the function to belong to some Lp space. Things become
more interesting when there is a local singularity around a point. Here we
can consider again the function f (x) = 1

x 1{|x|≤1}(x), close to zero this time. This
function has a logarithmic singularity at zero, and thus it does not belong to
L1(R). Observe here that we have forced the function to be zero away from the
origin in order to isolate the obstruction. As p increases to values p > 1, this
function fails more and more dramatically to belong to Lp(R) since we raise
this singularity to higher powers, thus | f |p presents a more severe singularity
at the origin. The ‘solution’ here would be to consider the Lp spaces for p < 1.
Thus local singularities may also prevent a function from belonging to some Lp

space. Unlike the behavior at infinity, the local behavior of | f |p improves as we
decrease p. For example, the function f (x) = 1

√
x
1{|x|≤1} fails to be in L2(R) but

clearly belongs to all Lp(R) spaces for p < 2.

REMARK 1.20. A function f is in some Lp space if and only if the func-
tion | f | belongs to the Lp space. Thus, there is no cancellation involved in
the Lp-integrability of a function. This is an essential difference between the
Lebesgue integral and the Riemann integral. The typical example here is to
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consider the function

f (x) =

∞∑
n=0

(−1)n

n
1[n,n+1)(x).

Since
∫
| f | is the harmonic series, f is not Lebesgue integrable. However, f is

Riemann integrable since
∫

f =
∑
∞

n=1
(−1)n

n and the last series converges. Thus,
whenever a function oscillates, we expect some cancellation in its integral that
will not be reflected in the Lebesgue integrability of the function.

EXERCISE 1.21. Based on the previous discussion, answer the following
questions (it is a simple calculation):

(i) Let q ∈ (0,+∞) be a given number. Based on the previous discussion,
construct a function that belongs to Lp(R) for all p < q but does not be-
long to Lq(R). For example, for q = 1, a possible answer is the function
f (x) = 1

x 1{|x|≤100}. Also, construct a function that belongs to Lp(R) for all
p > q but does not belong to Lq(R).

(ii) For x ∈ Rn and δ > 0, consider the function f (x) = 1
|x|δ 1{|x|≤1}. Charac-

terize the values of δ > 0 as a function of n, p so that the function f
belongs to Lp(Rn). Consider all the range 0 < p < +∞ and calculate the
Lp norm of the function, whenever it is finite.

(iii) For x ∈ Rn and δ > 0, consider the function f (x) = 1
|x|δ 1{|x|>1}. Charac-

terize the values of δ > 0, as a function of n, p so that the function f
belongs to Lp(Rn). Consider all the range 0 < p < +∞ and calculate the
Lp norm of the function, whenever it is finite.

REMARK 1.22. An important notion that is implicit in the previous discus-
sion is that of local integrability of a function. A function f : Rn

→ C is called
locally integrable if for every compact set K ⊂ Rn we have that∫

K
| f (x)|dx < +∞.

We then write f ∈ L1
loc(R

n). Local integrability ignores the behavior of a func-
tion at infinity. We are thus left with only one obstruction: the possibility that
f has local singularities. Observe that if f ∈ Lp(Rn) for any p ≥ 1 then f will be
locally integrable. Similarly we can define the space Lp

loc(R
n).

EXERCISE 1.23. Give a heuristic explanation of the fact that if f ∈ Lp(Rn)
for any p ≥ 1 then f ∈ L1

loc(R
n) (hint: what is the only obstruction for a function

to be locally integrable?). Give a rigorous proof by means of Hölder’s inequality.
Show also (which is the same) that on a finite measure space (X, µ), we have
that Lq(X, µ) is continuously embedded in Lp(X, µ) whenever 0 < p ≤ q ≤ ∞, that
is, show that

‖ f ‖Lp(X,µ) .p,q,µ(X) ‖ f ‖Lq(X,µ).

Determine the best value of the implied constant in the previous inequality
and give an example showing that once cannot have any better constant.

EXERCISE 1.24. For 0 < p ≤ ∞ consider the spaces `p(N) of all complex
sequences a = {an}n∈N such that

‖a‖p =
( ∞∑

n=1

|an|
p
) 1

p

< ∞.
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Show that if 0 < p1 ≤ p2 ≤ ∞ we have that `p1 ⊂ `p2 and the embedding is
continuous

‖a‖p2 ≤ ‖a‖p1 .

A space (X, µ) is called granular if there is constant co > 0 such that µ(E) > co for
all measurable sets E of positive measure. Show that the for a granular space
Lp(X, µ) with constant co > 0 we have that Lp1 ⊂ Lp2 whenever 0 < p1 ≤ p2 ≤ ∞

with
‖ f ‖Lp(X,µ) .p,q,co ‖ f ‖Lq(X,µ),

whenever 0 < q ≤ p ≤ ∞ and (X, µ). What is the best value of the implied
constant?

REMARK 1.25. Note that the opposite embedding is true for Lp(X, µ) spaces
with µ(X) < ∞. The explanation for this is quite simple. Sequences on N (or
Z) cannot have local singularities so the only deciding factor for candidature
to some `p space is decay at infinity. This also explains the embedding in this
exercise. If a sequence belongs to some `p space, this means there is already
sufficient decay at infinity for the series

∑
|an|

p to be summable. Raising the
exponent p only improves the decay of |an|

p as n → ∞. A similar phenomenon
occurs in general in granular spaces.

EXERCISE 1.26. Show the following statements:
(i) Let 0 < p0 < ∞ and suppose that f ∈ Lp0 ∩ L∞. Show that ‖ f ‖p → ‖ f ‖∞

as p→∞.
(ii) If f < L∞ show that ‖ f ‖p →∞ as p→∞.

1.3. The dual space of Lp

Remember that for a Banach space Y over C, its dual X∗ is the space of all
bounded linear functionals x∗ : X → C. Let 1 ≤ p < ∞ and define p′ be the
duality relation 1/p + 1/p′ = 1. For any g ∈ Lp′ (X, µ) we define the functional

g∗ : Lp(X, µ)→ C,

by means of the formula

g∗( f ) =

∫
X

f (x)g(x)dµ(x).

It is obvious that g∗ is linear and Hölder’s inequality shows that g∗ is continu-
ous since

|g∗( f )| ≤ ‖g‖Lp′ (X,µ)‖ f ‖Lp(X,µ),

for all f ∈ Lp(X, µ). Thus g∗ ∈ (Lp(X, µ))∗. Actually, in most cases the opposite is
true, that is, every functional in (Lp(X, µ))∗ is uniquely defined by a function in
Lp′ , whenever 1 ≤ p < +∞ and the measure µ is σ-finite.

THEOREM 1.27. Let 1 < p < ∞ and x∗ ∈ (Lp(X, µ))∗. There exists a unique
g ∈ Lp′ (X, µ) such that x∗ = g∗. The same is true when p = 1 and the measure µ is
σ-finite.

REMARK 1.28. Theorem 1.27 fails (in most cases) when p = ∞. In fact the
dual of L∞ can be characterized as a space of measures but we will not pursue
that here. We have however the following substitute.
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PROPOSITION 1.29. Let (X, µ) be a σ-finite measure space and Σ denote the
simple functions on (X, µ), of finite measure support. Let 1 ≤ p ≤ ∞ and f be a
function such that f g ∈ L1(X, µ) for all g ∈ Σ. If the quantity

(1.3) Mp( f ) B sup
{∣∣∣∣∣ ∫

X
f (x)g(x)dµ(x)

∣∣∣∣∣ : g ∈ Σ, ‖g‖Lp′ (X,µ) ≤ 1
}

is finite then f ∈ Lp(X, µ) and ‖ f ‖Lp(X,µ) = Mp( f ).

Observe however that for this we need to know a priori that f g ∈ L1(X, µ)
for all g ∈ Σ. A way to bypass this problem is to work with a dense subclass
of functions. This is essentially a duality relation but the small point just
mentioned doesn’t allow one to show that the dual of L∞ is L1 (luckily since
it’s not true!). It is however a very useful device since it allows very often to
"linearize" Lp norms. Furthermore this duality relationship shows that the
norm of the functional g∗ ∈ (Lp)∗ is ‖g‖Lp′ . Thus (Lp)∗ is isometrically isomorphic
to Lp′ , p′ being the dual exponent of p, for 1 < p < ∞ and also for p = 1 whenever
the measure µ is σ-finite.

EXERCISE 1.30. Show the duality relation (1.3) in the previous remark.
This is essentially a consequence of Hölder’s inequality. Using this duality
relation give an alternative proof of the triangle inequality.

REMARK 1.31. Density arguments allow us to restrict g in the supremum
in (1.3) to belong to any dense subclass of Lp′ (X, µ).

1.4. Weak Lp-spaces

Going back to the example of the function h(x) = 1/x, x ∈ R, recall that this
function does not belong to L1(R). For λ > 0 the following estimate is obvious

|{x ∈ R : |h(x)| > λ}| ≤
2
λ
.

On the other hand observe that for every function f ∈ L1(R) we have that

‖ f ‖L1(R) =

∫
R

| f (x)|dx ≥ λ|{x ∈ R : | f (x)| > λ}|.

That is, for all L1-functions f the measure of the set {x ∈ R : | f (x)| > λ} behaves
like ∼ 1

λ .
In general, for any measure space (X, µ) we define for 0 < p < ∞ the space

weak-Lp(X, µ) or Lp,∞(X, µ) to be the space of all functions f such that

(1.4) µ({x ∈ X : | f (x)| > λ}) ≤
cp

λp , λ > 0,

for some constant c > 0. We define the weak-Lp(X, µ) or the Lp,∞(X, µ) norm of a
function f to be the smaller constant c > 0 such that (1.4) is true. Equivalently

‖ f ‖Lp,∞(X,µ) B sup
λ>0

λµ(x ∈ X : | f (x)| > λ})
1
p .

For p = +∞ we have L∞,∞ = L∞. Note that ‖·‖Lp,∞ is not a norm since the triangle
inequality fails. It is however a quasi-norm (the triangle inequality holds with
a constant).
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EXERCISE 1.32. Show that for 0 < p < ∞ and f , g ∈ Lp,∞ we have the
quasi-triangle inequality

‖ f + g‖Lp,∞(X,µ) .p ‖ f ‖Lp,∞(X,µ) + ‖g‖Lp,∞(X,µ).

PROPOSITION 1.33. Let 0 < p < ∞. The space Lp,∞(X, µ) is continuously
embedded in Lp(X, µ):

‖ f ‖Lp,∞(X,µ) ≤ ‖ f ‖Lp(X,µ).

PROOF. We just use Chebyshev’s inequality to write

‖ f ‖pLp =

∫
X
| f (x)|pdµ(x) ≥

∫
{x∈X:| f (x)|>λ}

| f (x)|pdµ(x)

≥ λpµ({x ∈ X : | f (x)| > λ}),

for every λ > 0. �

Let us also recall how we can write the Lp-norm of a function in terms of
the distribution function of f :

PROPOSITION 1.34. For 0 < p < ∞ we have that

‖ f ‖pLp(X,µ) = p
∫
∞

0
λp−1µ({x ∈ X : | f (x)| > λ})dλ.

EXERCISE 1.35. Prove Proposition 1.34 above.
Hint: It is elementary to see that

| f (x)|p = p
∫
∞

0
1{x∈X:| f (x)|≥λ}λ

p dλ
λ
.

Use Fubini’s theorem to complete the proof.

EXERCISE 1.36. Prove the following assertions:
(i) Let 0 < p < ∞ and f ∈ Lp(X, µ). We define g(x) B f (x)1{x:| f (x)|≤1} and

b B f − g. It makes sense to call g the "good" part of f and b the "bad"
part, although both are actually good for different reasons! Show that
g ∈ Lq(X, µ) for any q > p and b ∈ Lr(X, µ) for any r < p.

(ii) For 0 < p < ∞ and f ∈ Lp(X, µ) show that∫
X
| f (x)|pdµ(x) 'p

∑
k∈Z

2kpµ(x ∈ X : | f (x)| ≥ 2k
}).

Hint: For (ii) observe first that∫
X
| f (x)|pdµ(x) 'p

∑
k∈Z

2kpµ({x ∈ X : 2k < | f (x)| ≤ 2k+1
})

Now one direction (the .p) is straightforward. For the opposite direction it
will help to split the function f to a sum of a "good" part g and a "bad" part b,
f = g + b, and use (i).





CHAPTER 2

Convolution, Dense subspaces and
interpolation of operators

In this chapter we begin by recalling the notion of convolution of func-
tions. This is a basic but extremely useful tool in analysis that will allow us
for example to easily construct smooth (or smoother) approximations to given
functions. It also formalizes the averaging operation which will appear many
times in this course, in various different forms. As an application we will show
that several classes of “nice” functions are dense in the Lp-spaces, at least for
p < +∞. The second part of the chapter deals with interpolation theorem for
bounded linear (or sublinear) operators. We will give two examples of such
theorems, namely the Marcinkiewicz and the Riesz-Thorin interpolation the-
orems. These should be thought of as basic examples of larger classes of in-
terpolation theorem, the Marcinkiewicz one being the prototype for the “real
method of interpolation” and the Riesz-Thorin theorem being a first represen-
tative of the “complex method of interpolation”. Already these theorems are
quite powerful. However, both these two interpolation theorems have more
sophisticated variations which we will only briefly discuss in these notes.

2.1. Convolutions and approximations to the identity

We restrict our attention to the Euclidean case (Rn,L, dx). As we have seen
the space L1(Rn) is a vector space: linear combinations of functions in L1(Rn)
remain in the space. There is however a “product” defined between elements
of L1(Rn) that turns L1 into a Banach algebra. For f , g ∈ L1(Rn) we define the
convolution of f ∗ g to be the function

( f ∗ g)(x) =

∫
Rn

f (y)g(x − y)dy =

∫
Rn

g(y) f (x − y)dy.

Furthermore, using Fubini’s theorem to change the order of integration we
can easily see that

‖ f ∗ g‖L1(Rn) ≤ ‖ f ‖L1(Rn)‖g‖L1(Rn).

Thus for f , g ∈ L1(Rn) we have that their convolution f ∗ g is again an element of
L1(Rn). Note that the previous estimate is the main difficulty in showing that
(L1(Rn), ∗) is a Banach algebra.

More generally, the convolution of f ∈ Lp(Rn), 1 ≤ p ≤ +∞, and g ∈ L1(Rn),
is a well defined element of Lp(Rn) and we have that

‖ f ∗ g‖Lp(Rn) ≤ ‖ f ‖Lp(Rn)‖g‖L1(Rn).(2.1)

EXERCISE 2.1. Use the integral version of Minkowski’s inequality to prove
estimate (2.1) above.

15
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Let us summarize some properties of convolution in the following proposi-
tion. We take the chance to give two definitions here that we will use through-
out these notes.

DEFINITION 2.2. Let X be a topological space and f ∈ C(X) be a continuous
function. The support of f : X→ C, denoted by supp( f ), is the set

supp( f ) = {x ∈ X : f (x) , 0} = f−1(C \ {0}).

This is the smallest closed set in X outside which f = 0.

Observe that we gave the definition of the support of a function for contin-
uous functions. This is mostly a technical issue. It is easily understood that,
in general, the support of a measurable function can only be defined up to sets
of measure zero. The precise definition is as follows.

DEFINITION 2.3. Let µ be a regular Borel measure on a topological space
X and f : X → C be a Borel measurable function. A point x ∈ X is called a
support point for f if

µ({y ∈ Ux : f (y) , 0}) > 0,

for every open neighborhood Ux of x. The set

supp( f ) B {x ∈ X : x is a support point for f }

is called the support of f .

EXERCISE 2.4. Assume that the measure µ in the previous definition has
the additional property that µ(U) > 0 for every open set U ⊂ X. Use Exercise
1.1 to prove that for any continuous function f : X → C the two definitions of
supp( f ), that is Definition 2.2 and Definition 2.3, coincide.

PROPOSITION 2.5. Let f , g, h : Rn
→ C be such that the convolutions below

are well defined.
(i) (commutative) f ∗ g = g ∗ f .

(ii) (associative) ( f ∗ g) ∗ h = f ∗ (g ∗ h).
(iii) (translations) For x, y ∈ Rn and f : Rn

→ C we define the translation
operator

τy( f )(x) = f (x − y).

For y ∈ Rn we have

τy( f ∗ g) = (τy f ) ∗ g = f ∗ (τyg).

(iv) (support) If f , g ∈ C(Rn) then

supp( f ∗ g) ⊂ {x + y : x ∈ supp( f ), y ∈ supp(g)}.

PROOF. Statements (i), (ii) and (iii) are trivial consequences of changes of
variables and Fubini’s theorem. For (iv) observe that if

z < {x + y : x ∈ supp( f ), y ∈ supp(g)}

then for any y ∈ supp(g) we have z − y < supp( f ). Thus g(y) f (z − y) = 0 for all
y ∈ Rn, so ( f ∗ g)(z) = 0. �
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A very useful property of the convolution of two functions is that it adopts
the smoothness of the “nicest” function. Formally this is because any differen-
tiation operator applied to f ∗ g can be transferred to either f or g:

∂α( f ∗ g) = (∂α f ) ∗ g = f ∗ (∂αg).

Here we use the standard multi-index notation: for α = (α1, . . . , αn) ∈ Nn and
f : Rn

→ C we write as usual ∂α f = ∂α1

∂xα1
1
· · ·

∂αn

∂xαn
n

f . We also write |α| = α1 + · · ·+αn.
In practice we need one of the functions to have some regularity and some mild
conditions on the second function to do this rigorously. For example we have
the following:

PROPOSITION 2.6. Let f ∈ L1(Rn) and suppose that g has continuous par-
tial derivatives up to k-th order, that is g ∈ Ck(Rn). Suppose also that ∂αg is
bounded for all |a| ≤ k. Then f ∗ g has continuous derivatives up to k-th order,
i.e. f ∗ g ∈ Ck(Rn), and ∂α( f ∗ g) = f ∗ (∂αg).

SKETCH OF PROOF. Let’s just see the special case n = 1 and k = 1. The
proof in the general case is identical. Call dµ(y) = f (y)dy. Since f ∈ L1(R), dµ is
a finite, absolutely continuous measure. We then need to show that

d
dx

∫
R

g(x − y)dµ(y) =

∫
R

g′(x − y)dµ(y).

Fix some sequence xn → x. Observe that g′(x − y) = limn
g(xn−y)−g(x−y)

xn−x C
limn hn(x, y). By the mean value theorem we have that

|hn(x, y)| ≤ ‖g′‖∞.

Using Lebesgue’s dominated convergence theorem we get

( f ∗g)′(x) = lim
n

∫
R

g(xn − y) − g(x − y)
x − xn

dµ(y) =

∫
R

lim
n

hn(x, y)dµ(y) =

∫
R

g′(x−y)dµ(y).

Observe that the hypothesis on the boundedness of the higher order deriva-
tives will be used to show the uniform boundedness of (the analogues of) the
functions hn(x, y) in the general case. �

2.1.1. The convolution as an averaging operator. It is instructive to
fix one function g to be an indicator function, say g1(x) = 1

2 1(−1,1)(x) where the
constant 1/2 is there just in order to normalize the total L1-mass of the function
g1 to 1. Usually we consider smooth versions of g1 but let’s just stick to case
of the characteristic function for the sake of simplicity. Consider the reflection
of g1 give as g̃1(t) = g1(−t). Since we have started with an even function this
makes no difference so that g1 = g̃1. Observe that we can write

f ∗ g(x) =

∫
f (y)g1(x − y)dy =

∫
f (y)g̃1(y − x)dy =

∫
f (y)(τx g̃1)(y)dy.

For some fixed x ∈ R, the translations of g̃1 by x ∈ R, τx g̃1, centers the
function g̃1 at the point x. So τx g̃1 is (a multiple of) the indicator function
of an interval of length 2, centered at x. Integrating against f (y) essentially
averages the function f around the point x with “weight”, the function g̃1. In
this averaging process, our choice of g1 implies that only the values of f at a
scale 1 around x will be important. Thus the convolution of f and g1, evaluated
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at x ∈ R, replaces the value of f at the point x with the average of the values of f
at a scale 1 around x. One can take this process one step further and consider
sequences of functions that are more or and more concentrated around the
origin, but have the same L1 mass, say 1. For example the second function in
this sequence would be g2 = 1(− 1

2 ,
1
2 ), the third could be g3(x) = 21(− 1

4 ,
1
4 ), and so on.

Taking convolutions of the function f with the functions g1, g2, g3, . . . amounts
to averaging the function f around every point, in smaller and smaller scales
around the point. Intuitively one thinks that, in the limit, one should recover
the function itself, at least in some weak sense. This turns out to be indeed the
case. But what is the gain in doing so? We just saw that taking convolutions of
an integrable (say) function with a smooth bounded function gives us again a
smooth function. Thus the previous process allows us to approximate (in some
sense) any reasonable function by a sequence of very smooth functions. This
has many technical advantages as one can think of any function as a limit, in
the appropriate sense, of smooth approximations. This also gives a heuristic
explanation of why the convolution of two functions behaves at least as good
as the “nicest function” in the convolution; averaging is a smoothing operation.

We will now make the previous heuristic discussion precise. Let φ be a
function on Rn and t > 0. We define the dilations of the function φ to be

φt(x) =
1
tnφ(

x
t

), x ∈ Rn.

Usually we will have a lot of freedom in choosing the function φ and we will
require at least that φ ∈ L1(Rn). Observe that dilating the function φ by t > 0
doesn’t change the integral:∫

Rn
φt(x)dx =

1
tn

∫
Rn
φ
(x

t

)
dx =

∫
Rn
φ(x)dx.

You should think of the function φ as a function concentrated around a point as
was for example g1 in the previous discussion or, even better, as smooth approx-
imations of it (bump function). Thus for example φ could be a smooth function
with compact support around the origin. Observe that as t → 0, the mass
of the function φt, which is constant, becomes more and more concentrated
around the origin. We will refer to this construction as an “approximation to
the identity”. The reason is that, as was mentioned before, one can recover any
reasonable function f by convolving with φt and taking the limit as t → 0, at
least in the Lp sense. An alternative motivation for the terminology “approxi-
mation to the identity” is that φt converges (in a weak sense) to a Dirac mass
at 0.

THEOREM 2.7. Let φ ∈ L1(Rn) with
∫
φ(x)dx = 1. For t > 0 define the

dilations of φ as before, φt(x) = t−nφ(t/x). Then, for any 1 ≤ p < ∞ we have that
f ∗ φt → f in Lp as t→ 0:

‖ f ∗ φt − f ‖Lp(Rn) → 0 as t→ 0.

PROOF. For y ∈ Rn we use the notation

(τy f )(x) = f (x − y),
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for the translation operator. Using the fact that φt has integral 1 we can write

( f ∗ φt)(x) − f (x) =

∫
Rn

[ f (x − y) − f (x)]φt(y)dy

=

∫
Rn

[ f (x − tu) − f (x)]φ(u)du

=

∫
Rn

[(τtu f )(x) − f (x)]φ(u)du.

By Minkowski’s integral inequality we get that

‖ f ∗ φt − f ‖Lp(Rn) =

∥∥∥∥∥∫
Rn

[(τtu f )(x) − f (x)]φ(u)du
∥∥∥∥∥

Lp(Rn)

≤

∫
Rn
‖(τtu f )(x) − f (x)‖Lp(Rn)|φ(u)|du.

Now ‖τtu f − f ‖Lp(Rn) → 0 as t → 0 (see remark below) and ‖τtu f − f ‖Lp(Rn) ≤

2‖ f ‖Lp(Rn) so by the dominated convergence theorem we get the result. �

REMARK 2.8. The translation operator is continuous in Lp for all 1 ≤ p < ∞,
that is

‖τy f − f ‖Lp(Rn) → 0 as y→ 0,
for all f ∈ Lp(Rn), 1 ≤ p < ∞. Observe that for p = ∞, ‖τy f − f ‖L∞(Rn) → 0 as
y → 0 means that f is uniformly continuous. This explains why the previous
theorem breaks down in L∞.

EXERCISE 2.9. Show that the translation operator is continuous in Lp(Rn)
for 1 ≤ p < ∞. Use the fact that continuous functions with compact support are
dense in Lp for 1 ≤ p < ∞. See also §2.2.

EXERCISE 2.10. Let φ ∈ L1 with
∫
φ = 1. Show the following statements:

(i) If f is bounded and uniformly continuous then

‖ f ∗ φt − f ‖L∞ → 0 as t→ 0.

(ii) If f is bounded and continuous on an open set U show that

f ∗ φt → f as t→ 0,

uniformly on compact subsets of U.

REMARK 2.11. There is a slight abuse of notation here. We use ‖·‖∞ for the
norm in the space L∞ defined in terms of the essential supremum of a function.
However, the right norm in spaces of continuous functions should be defined in
terms of the actual supremum of the function. Note however that for a contin-
uous function, the two notions are identical so this should create no confusion.

EXERCISE 2.12. Let 1 ≤ p ≤ ∞ and p′ be its dual exponent. Suppose that
f ∈ Lp(Rn) and g ∈ Lp′ (Rn). Show that f ∗ g exists for every x ∈ Rn and that it is
bounded and uniformly continuous. Also show the estimate

‖ f ∗ g‖L∞(Rn) ≤ ‖ f ‖Lp(Rn)‖g‖Lp′ (Rn).

If 1 < p < +∞ show that f ∗ g ∈ Co(Rn), that is that it is a continuous function
that decays to 0 at infinity.
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REMARK 2.13. If µ is a finite Borel measure on Rn and f ∈ Lp(Rn) it makes
perfect sense to define the convolution of f with µ to be the function

( f ∗ µ)(x) =

∫
Rn

f (x − y)dµ(y).

We then have
‖ f ∗ µ‖Lp(Rn) ≤ ‖µ‖ ‖ f ‖Lp(Rn),

where µ is the total variation of the measure µ.

2.2. Some dense classes of functions

In this paragraph we will discuss some classes of functions that are dense
in the Lp-spaces, at least for 1 ≤ p < +∞. These will prove to be very useful as
many estimates will be easier to establish for these special sub-classes. Also,
many times, working with a dense class in Lp, help us avoid several technical
difficulties or even define operators that are not obviously defined directly on
some Lp space. We will state some of the results here in the generality of a
Hausdorff (or locally Hausdorff) space noting that everything goes through for
Rn equipped with the Lebesgue measure.

2.2.1. Simple functions: Let Σ be the class of all simple functions s : X→
C such that

µ({x ∈ X : s(x) , 0}) < ∞,

that is all simple complex valued functions that have support of finite measure.
For 1 ≤ p < ∞ the space S is dense in Lp(X, µ). The space of all simple functions
(not necessarily of finite measure support) is dense in Lp for 1 ≤ p ≤ ∞.

2.2.2. Continuous functions with compact support: Let (X,X, µ) be
a measure space, where X is a locally Hausdorff space, X is a σ-algebra that
contains all compact subsets of X and such that

(i) locally finite: µ(K) < +∞ for all compact sets K ⊂ X.
(ii) µ is inner regular, meaning µ(A) = sup{µ(K) : K ⊂ A,K is compact.}

(iii) µ is outer regular, meaning µ(A) = inf{µ(U) : A ⊂ U,U ∈ X and U is open.}
We denote by Cc(X) the space of continuous functions f : X → C with

compact support. Then, for every 1 ≤ p < ∞, Cc(X) is dense in Lp(X, µ).
Remark here that whenever we embed Cc(X) into Lp(X, µ), Cc(X) automati-

cally inherits the topology induced by the larger space, that is, the one defined
by the norm ‖ · ‖Lp(X,µ). Since Lp spaces are complete under our hypotheses, this
says that Lp(X, µ) is the completion of Cc(X) with respect to the norm of Lp(X, µ)
for p < ∞. For p = ∞, the completion of Cc(X) with respect to the ‖ · ‖L∞(X,µ) is not
L∞(X, µ) but the space of continuous functions on X that vanish at infinity.

2.2.3. Continuous functions that vanish at infinity: Let X be a locally
compact Hausdorff space (a Hausdorff space where every point has a compact
neighborhood). A function f : X → C is said to vanish at infinity if for every
ε > 0 there exists a compact set K ⊂ X such that | f (x)| < ε for all x < K. We
denote by Co(X) the space of all complex valued continuous functions on X that
vanish at infinity.

http://en.wikipedia.org/wiki/Locally_Hausdorff_space
http://en.wikipedia.org/wiki/Inner_regular_measure
http://en.wikipedia.org/wiki/Locally_compact_Hausdorff_space#Locally_compact_Hausdorff_spaces_that_are_not_compact
http://en.wikipedia.org/wiki/Locally_compact_Hausdorff_space#Locally_compact_Hausdorff_spaces_that_are_not_compact
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It is clear that Cc(X) ⊂ Co(X), and actually the two spaces coincide when-
ever X is compact. We can equip the space Co(X) with the norm

‖ f ‖∞ = sup
x∈X
| f (x)|.

THEOREM 2.14. If X is a locally compact Hausdorff space, then Co(X) is the
completion of Cc(X) with respect to the supremum norm defined above.

For the proofs of the previous classical results see for example [F] or [R].
All the previous results apply to the Euclidean setup (Rn,L, dx). Of course

simple functions with support of finite measure are dense in Lp(Rn) whenever
1 ≤ p < +∞. A bit more can be said as we can choose our simple functions to be
linear combinations of (n-dimensional) bounded intervals, and these are still
dense in Lp(Rn). Continuous functions with compact support are also dense in
Lp(Rn) for all 1 ≤ p < ∞. We can also restrict to a smaller class of more regular
functions:

2.2.4. Infinitely differentiable functions with compact support: Let
us consider the space of functions f : Rn

→ C which are infinitely differentiable
and have compact support. We denote this space by D(Rn) = C∞c (Rn). First of
all it is not totally trivial that this space is non-empty.

LEMMA 2.15. There exists a function φ1 ∈ D(R). From this we easily con-
clude that there is a φ ∈ D(Rn).

EXERCISE 2.16. Consider the function

g(t) =

e−
1
t t > 0,

0, otherwise.

(i) Show that g, together with its derivatives of any order, is infinitely
differentiable and bounded.

(ii) Consider the function φ1(t) = g(1 + t)g(1− t). Show that φ1(t) = e−2/(1−t2)

if |t| < 1 and φ1(t) = 0 otherwise. It is obvious then that φ1 ∈ D(R).
(iii) For x = (x1, . . . , xn) ∈ Rn consider the function φ(x) = φ1(x1) · · ·φ1(xn)

belongs to D(Rn).
(iv) For x = (x1, . . . , xn) ∈ Rn consider the function

ψ(x) =

e−2/(1−|x|2), |x| < 1,
0, otherwise.

.

Show that ψ ∈ D(Rn).

Obviously D(Rn) ⊂ Cc(Rn). However, it is not hard to see the space D(Rn)
is still dense in Lp(Rn) for 1 ≤ p < ∞. It will however be easier to show that
once we’ve introduced some more tools from real analysis and, in particular,
convolution.

2.2.5. Schwartz functions: Here we introduce the space of Schwartz func-
tions S(Rn), which will turn out to be extremely useful in what follows. So let
S(Rn) be the space of all infinitely differentiable (C∞) functions f : Rn

→ C
such that

sup
x∈Rn
|xα∂β f (x)| < ∞,
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for all multi-indices α = (α1, . . . , αn), β = (β1, . . . , βn), of nonnegative integers. In
other words, Schwartz functions are smooth functions whose partial deriva-
tives of every order decay faster than any polynomial power at infinity. Of
course every function in the class D(Rn) is trivially a Schwartz function since
it vanishes identically at infinity together with its derivatives of every order.
A more interesting example of a Schwartz function is the Gaussian function
φ : Rn

→ R:
φ(x) = e−δ|x|

2
, δ > 0.

The space S(Rn) is also dense in all Lp(Rn) spaces for 1 ≤ p < ∞. Of course
this is immediate once one shows that D(Rn) is dense in Lp(Rn).

Schematically we have the following inclusions
D(Rn) ⊂ S(Rn) ⊂ Lp(Rn),

D(Rn) ⊂ Cc(Rn) ⊂ Lp(Rn),

and each space in this chain is dense in Lp(Rn) with the topology induced by
Lp(Rn) for 1 ≤ p < ∞. We will discuss the space of Schwartz functions in much
more detail in what follows. For now you can think of it as another nice class
of functions that is dense in all the spaces Lp(Rn) for 1 ≤ p < ∞.

In the following proposition we use convolutions to show the previous dense-
ness properties:

PROPOSITION 2.17. The space D(Rn), and thus also the space S(Rn), is
dense in Lp(Rn) for all 1 ≤ p < ∞. Also the space D(Rn) is dense in Co(Rn) in the
supremum norm.

PROOF. Let f ∈ Lp(Rn) and ε > 0. Since the space Cc(Rn) is dense in Lp(Rn),
there is a g ∈ Cc(Rn) such that

‖ f − g‖Lp(Rn) <
ε
2
.

Let φ ∈ D(Rn) with
∫
φ = 1. By 2.7 we have that there is φt ∗ g→ g in Lp(Rn) as

t→ 0. Thus for t small enough we have that

‖g ∗ φt − g‖Lp(Rn) <
ε
2
.

We conclude that
‖g ∗ φt − f ‖Lp(Rn) < ε.

It remains to verify that g ∗ φt is in D(Rn) for every t > 0. Note however that
g ∗ φt is smooth by Proposition 2.6. Also, since both g and φt have compact
support, Proposition 2.5 shows that g ∗φt also has compact support and we are
done. Observe that the same argument applies if we start with a f ∈ Co(Rn).
Using the fact Cc(Rn) is dense in Co(Rn) it suffices to approximate a function
g ∈ Co(Rn). However, functions in Co(Rn) are obviously bounded, so Exercise
2.10 completes the proof in this case as well. �

Let us go back to approximations of the identity and justify their name.

EXERCISE 2.18 (convergence of approximations to the identity in the sense
of distributions). For a ∈ Rn we denote by δa the Dirac measure at a:∫

E
dδa =

1, a ∈ E,
0, a < E.
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Let φ ∈ L1(Rn) with
∫
Rn φ = 1 and consider the approximation to the identity

φt(x) = t−nφ(x/t), t > 0. Show that

lim
t→0

∫
Rn
φt(x)ψ(x)dx =

∫
Rn
ψ(x)dδ0(x),

for every ψ ∈ D(Rn). We say that φt(x) (considered as a sequence of finite
measures) converges in the sense of distributions to the measure dδ0. We will
come back to that point later on in the course.

2.3. Operators on Lp spaces; boundedness and interpolation

Having set up our main environment, the spaces Lp(X,X, µ), we come to
the core of this introduction: operators acting on these spaces and their prop-
erties. In general, we will consider operators T taking functions on some mea-
sure space (X,X, µ) to function on some other measure space (Y,Y, ν). Many
times our operators will be initially defined on ‘nice functions’ such as smooth
functions with compact support of Schwartz functions. The goal would then be
to extend the operator to a standard normed vector space such as Lp(X, µ).

Suppose that (Z, ‖ · ‖Z) and (W, ‖ · ‖W) are two normed vector spaces (usually
Banach spaces of functions) and T : Z → W be a linear operator, that is, we
have

T(ax + by) = aTx + bTy,

for all x, y,∈ Z and complex numbers a, b. We will say that T is bounded if there
is a constant c > 0 such that ‖Tz‖W ≤ c‖z‖Z for every z ∈ Z. The norm of the
operator T, denoted by ‖T‖Z→W or just ‖T‖, is the smallest constant c > 0 so that
such an inequality is true. We thus have

‖T‖ = sup
z∈Z

‖Tz‖W
‖z‖Z

= sup
‖z‖Z=1

‖Tz‖W .

Continuity is equivalent to boundedness for linear operators:

LEMMA 2.19. Let T : Z → W be a linear operator. The following are equiv-
alent:

(i) The operator T is continuous.
(ii) The operator T is continuous at 0.

(iii) The operator T is bounded.

Suppose that we want to show that a linear operator T : Z → W is a well
defined bounded linear operator, where Z,W are Banach spaces. Many times
however we can only define the operator on some dense linear subspace Zo ⊂ Z.
Suppose we have then that T : Zo → W. When can we extend T to the whole
space Z? Given z ∈ Z, the obvious thing to do is to consider some sequence
{zn} ⊂ Zo such that zn → z. We then need to examine whether the limit Tzn
exists. Suppose that T is bounded on the dense subspace, that is,

‖Tz‖W ≤ ‖T‖ ‖z‖Z,

for all z ∈ Zo. Using the boundedness of T on the dense subspace and linearity
(essential) we can conclude that

‖Tzm − Tzn‖W ≤ ‖T‖ ‖zm − zn‖Z,
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so the sequence {Tzn} is a Cauchy sequence. The completeness of W then im-
plies that the limit of {Tzn} does indeed exist, so we can define

Tz := lim
n

Tzn.

Observe also that for any other sequence yn → z we must have

‖Tzn − Tyn‖W ≤ ‖T(zn − yn)‖W ≤ ‖T‖ ‖zn − yn‖Z → 0

as n → +∞. Since both sequences {Tzn} and {Tyn} converge we conclude that
they must have the same limit thus the extension is unique. Many times we
will only define the operator T on the dense subspace and show its continuity
there. We will then say that T is densely defined.

We will use this device many times in trying to show that some linear
operator T : Lp

→ Lq is well defined and bounded, by examining the continuity
of T on one of the dense classes that we have considered before (depending on
what is more convenient).

A more general class of operators we will come across quite often is that
of sublinear operators. Suppose that T is an operator acting on a vector space
of measurable functions. Then T is called sublinear if |T(a f )| = |a||T f | for all
complex constants a and

|T( f + g)(x)| ≤ |T( f )(x)| + |T(g)(x)|,

for all f , g in the vector space. Of course all linear operators are sublinear.
However, the most typical example of a sublinear operators we will come across
is a maximal type operator. Such an operator has the form

T f = sup
t∈Λ
|Tt f |,

where Tt is a family of linear operators acting on some vector space of mea-
surable functions, Λ is an infinite countable or uncountable index set, and the
function t→ Tt f is a measurable function of t. Such operators are called maxi-
mal operators and the linearity of each Tt guarantees that T is sublinear.

DEFINITION 2.20. Let 0 < p, q ≤ ∞ and T be a sublinear operator mapping
functions in Lq(X, µ) to measurable functions on (Y, ν).

(i) We will say that T is of strong type (p, q) if

‖T f ‖Lq(Y) .p,q,T,X,Y ‖ f ‖Lp(X),

for all f ∈ Lp(X), where the implied constant depends only on p, q,X,Y
and T. In this case we write ‖T‖Lp→Lq for the norm of the operator
T : Lp(X, µ)→ Lq(Y, ν).

(ii) We will say that T is of weak type (p, q) if

‖T f ‖Lq,∞(Y,ν) .p,q,T,X,Y ‖ f ‖Lp(X,µ),

for all f ∈ Lp(X, µ). We will write ‖T‖Lp→Lq,∞ for the norm of the sublin-
ear operator T : Lp(X, µ)→ Lq,∞(Y, ν).

Observe that for fixed (p, q), the strong type (p, q) property of T trivially im-
plies that T is of weak type (p, q). The opposite, of course, is not true. However,
we will see that in many cases the strong type bound can be deduced by inter-
polating between suitable endpoint weak type bounds. The first such result is
the Marcinkiewicz interpolation theorem.
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THEOREM 2.21 (Marcinkiewicz interpolation theorem). Let (X, µ) and (Y, ν)
be measure spaces, 1 ≤ p1 < p2 ≤ ∞, and let T be a sublinear operator defined on
Lp1 (X, µ) + Lp2 (X, µ) and taking values in the space of measurable functions on
(Y, ν). Suppose that T is of weak type (p1, p1) with constant A1

‖T f ‖Lp1 (Y,ν) ≤ A1‖ f ‖Lp
1(X,µ),

and of weak type (p2, p2) with constant A2

‖T f ‖Lp2 (Y,ν) ≤ A2‖ f ‖Lp
2(X,µ).

Then T is of strong type (p, p) for any p1 < p < p2.

REMARK 2.22. Before going into the proof of this theorem let us discuss a
bit its hypothesis. Given a function f ∈ Lp(X, µ) we first need to show that T( f )
is well defined. Having the information that T is well defined on Lp1 + Lp2 we
essentially need to see that Lp

⊂ Lp1 + Lp2 whenever p1 < p < p2. To see this, fix
a positive constant β > 0, to be defined later, and consider the functions

f1(x) = f (x)1{x∈X:| f (x)|>β},

f2(x) = f (x)1{x∈X:| f (x)|≤β}.

Obviously we have f (x) = f1(x) + f2(x). Moreover,∫
X
| f1(x)|p1 dµ(x) =

∫
X
| f1(x)|p| f1(x)|p1−pdx ≤ βp1−p

∫
X
| f (x)|pdx.

Similarly we can estimate∫
X
| f2(x)|p2 dµ(x) =

∫
X
| f2(x)|p| f2(x)|p2−pdx ≤ βp2−p

∫
X
| f (x)|pdx.

This shows that we can decompose any function f ∈ Lp(X, µ) to a sum of two
functions f1 ∈ Lp1 (X, µ) and f2 ∈ Lp2 (X, µ), whenever p1 < p < p2, thus Lp

⊂

Lp1 + Lp2 . In particular, T( f ) is well defined for any f ∈ Lp(X, µ).

PROOF. We first prove the theorem when p2 < ∞. Since our hypothesis
involves the distribution sets of of T f it is convenient to recall the representa-
tion of the Lp norm of a function in terms of its distribution set. Indeed, from
Proposition 1.34 we have

‖T f ‖pLp(Y,ν) =

∫
Y
|T f (y)|pdν(y) = p

∫
∞

0
λp−1ν({y ∈ X : |T f (y)| > λ})dλ.

The measure of the set {x ∈ X : |T f (y)| > λ} will appear many times in the proof
so it is convenient to give it a shorter notation:

ρ(λ) = ν({y ∈ Y : |T f (y)| > λ}), λ > 0.

With this notation

‖T( f )‖pLp(Y,ν) = p
∫
∞

0
λp−1ρ(λ)dλ.(2.2)

Fix λ > 0 for a moment and consider the decomposition of the function
f = f1 + f2 at level λ as in the remark before:

f1(x) = f (x)1{x∈X:| f (x)|>λ},

f2(x) = f (x)1{x∈X:| f (x)|≤λ}.
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The sublinearity of T allows us to write

|T f (y)| ≤ |T f1(y)| + |T f2(y)|,

for any y ∈ Y. Thus,

{|T f | > λ} ⊂ {|T f1| > λ/2} ∪ {|T f2| > λ/2},

so that

ρ(λ) ≤ ν({y ∈ Y : |T f1(y)| > λ/2}) + ν({y ∈ Y : |T f2(y)| > λ/2}).

Since f1 ∈ Lp1 (X, µ) and T is of weak type (p1, p1) we can estimate the first
summand as

ν({y ∈ Y : |T f1(y)| > λ/2}) ≤ (2A1)p1
‖ f1‖

p1

Lp1 (X,µ)

λp1
.

Similarly, since f2 ∈ Lp2 (X, µ) and T is of weak type (p2, p2) we have

ν({y ∈ Y : |T f2(y)| > λ/2}) ≤ (2A2)p2
‖ f2‖

p2

Lp2 (X,µ)

λp2
.

Combining the previous estimates we can write

ρ(λ) ≤
(2A1‖ f1‖Lp1 (X,µ)

λ

)p1

+
(2A2‖ f2‖Lp2 (X,µ)

λ

)p2

Recalling the definitions of f1, f2 the previous estimate yields

(2.3) ρ(λ) ≤
(2A1

λ

)p1
∫
{x∈X:| f (x)|>λ}

| f (x)|p1 dµ(x) +
(2A2

λ

)p2
∫
{x∈X:| f (x)|≤λ}

| f (x)|p2 dµ(x).

In order to recover the Lp norm of T( f ) observe by (2.2) that it’s enough to
multiply ρ(λ) by pλp−1 and integrate in λ ∈ (0,∞).

Multiplying the first summand on the right hand side of (2.3) by pλp−1 and
integrating we get

(2A1)p1 p
∫
∞

0
λp−p1−1

∫
{x∈X:| f (x)|>λ}

| f (x)|p1 dµ(x) dλ

= (2A1)p1 p
∫

X
| f (x)|

∫
| f (x)|

0
λp−p1−1dλ dµ(x) = p

(2A1)p1

p − p1
‖ f ‖pLp(X,µ).

Similarly, multiplying the second summand in (2.3) by pλp−1 and integrating
we have

(2A2)p2 p
∫
∞

0
λp−p2−1

∫
{x∈X:| f (x)|≤λ}

| f (x)|p2 dµ(x) dλ = (2A2)p2 p
∫

X
| f (x)|

∫
∞

| f (x)|
λp−p2−1dλ dµ(x)

= p
(2A2)p2

p2 − p
‖ f ‖pLp(X,µ).

Summing up the previous two estimates we conclude that

‖T f ‖pLp(Y,ν) ≤ p
( (2A1)p1

p − p1
+

(2A2)p2

p2 − p

)
‖ f ‖pLp(X,µ),

which shows that T is of strong type (p, p) with

‖T‖Lp→Lp ≤ p
1
p

( (2A1)p1

p − p1
+

(2A2)p2

p2 − p

) 1
p

.
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Observe that there is no claim here that this quantitative estimate on the norm
of T is optimal in general.

The proof in the case p2 = ∞ is very similar. Now the hypothesis that T is
of weak type (p2, p2) is replaced by the hypothesis that T maps L∞ to L∞. That
is, there exists some constant A2 > 0, depending only on T and X, such that

‖Tg‖L∞(Y,ν) ≤ A2‖g‖L∞(X,µ),

for all g ∈ L∞(X, µ). We fix some level λ > 0 and we split the function f as
f = f1 + f2 where f2(x) = f (x)1{x∈X:| f (x)|<λ/2A2}. Obviously f2 ∈ L∞(X, µ) so by the
hypothesis we have that ‖T f2‖L∞(Y,ν) ≤ A2‖ f2‖L∞(X,µ) ≤ λ/2. Arguing as in the case
p2 < ∞ we can write

ρ(λ) ≤ ν({y ∈ Y : |T f1(y)| > λ/2}) + µ({x ∈ X : |T f2(y)| > λ/2}).

Since ‖T f2‖L∞(Y,ν) ≤ λ/2, the second summand in the previous estimate vanishes
identically. We conclude that

‖T f ‖pLp(Y,ν) = p
∫
∞

0
λp−1ρ(λ)dλ ≤ (2A1)p1 p

∫
∞

0
λp−1−p1

∫
X
| f1(x)|p1 dµ(x) dλ

= (2A1)p1 p
∫
∞

0
λp−p1−1

∫
{x∈X:| f (x)|>λ/(2A2)}

| f (x)|p1 dµ(x)dλ

= (2A1)p1 p
∫

X
| f (x)|p1

∫ 2A2 | f (x)|

0
λp−p1−1dλ dµ(x)

=
(2A1)p1 (2A2)p−p1

p − p1
‖ f ‖pLp(X,µ).

This concludes the proof in the case p2 = ∞ as well as providing the quantita-

tive estimate ‖T‖Lp→Lp ≤ 2
(Ap1

1 Ap−p1
2

p−p1

) 1
p . �

EXERCISE 2.23. Modify the proof above to show that under they hypothe-
ses of the Marcinkiewicz interpolation theorem we can conclude that

‖T‖Lp→Lp ≤ 2p
1
p

( 1
p − p1

+
1

p − p2

) 1
p

A1−θ
1 Aθ

2 ,

where 1
p := 1−θ

p1
+ θ

p2
for some 0 < θ < 1.

Hint: This is already the constant appearing in the case p2 = ∞. For the
case p2 < ∞ split the function f at the level cλ (instead of λ), for some c > 0,
and optimize in the parameter c > 0 at the end of the proof. For this, use the
heuristic that a sum is optimized when the terms in the sum are roughly equal
in size.

EXERCISE 2.24. Let 0 < p1 < p2 ≤ ∞ and suppose that f ∈ Lp1,∞(X, µ) ∩
Lp2,∞(X, µ). Show that f ∈ Lp(X, µ) for all p1 < p < p2.

Hint: The proof is very similar to the proof of the Marcinkiewicz interpo-
lation theorem, only simpler. Use again the fact that

‖ f ‖pLp(X,µ) = p
∫
∞

0
λp−1µ({x ∈ X : | f (x)| > λ})dλ,

and split the range of λ ∈ (0,∞) as (0,∞) = (0, β)∪ (β,∞), at an appropriate level
β > 0. Use the weak integrability conditions for f in the appropriate intervals
of λ.

http://www.tricki.org/article/To_optimize_a_sum_try_making_the_terms_roughly_equal_in_size
http://www.tricki.org/article/To_optimize_a_sum_try_making_the_terms_roughly_equal_in_size
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EXERCISE 2.25. Let X be a finite set equipped with counting measure and
let f : X→ C be a function. Show that for any 0 < p < ∞ we have that

‖ f ‖Lp,∞(X) ≤ ‖ f ‖Lp(X) .p log(1 + |X|)‖ f ‖Lp,∞(X).

Thus on finite sets, the spaces Lp and Lp,∞ are equivalent. Here |X| denotes the
cardinality of X.

Hint: Observe that |{x ∈ X : | f (x)| > λ}| ≤ min(‖ f ‖pLp,∞/λp, |X|) and use the
representation of the Lp norm in terms of the measure of the level sets.

EXERCISE 2.26 (Dual formulation of Lp,∞). Let 1 < p ≤ ∞. Show that for
every f ∈ Lp,∞(X, µ), we have

‖ f ‖Lp,∞(X,µ) 'p sup
{
µ(E)−

1
p′

∫
E
| f (x)|dx : 0 < µ(E) < ∞

}
,

where 1
p + 1

p′ = 1.
Hint: As in the previous exercise, write∫

E
| f (x)|dµ(x) =

∫
∞

0
µ({x ∈ E : | f (x)| > λ})dλ.

Since the set E has finite measure one can estimate further the measure of the
level set by

µ({x ∈ E : | f (x)| > λ}) ≤ min
(
|E|, ‖ f ‖pLp,∞/λ

p
)
.

Now split the integral we want to estimate accordingly in order to take advan-
tage of this estimate. See also the hint in the previous exercise. This will give
you one direction of the estimate, the other direction being trivial.

While the Marcinkiewicz interpolation theorem is the prototype of real in-
terpolation, complex methods can be used to derive similar conclusions. An
example of such a method has already been used via the three lines lemma
applied to exhibit the log convexity of the Lp norms (which is also a form of
interpolation). We will now describe the prototype of complex interpolation.

The following theorem has some differences compared to the Marcinkiewicz
interpolation theorem. First of all we assume that T is linear rather than sub-
linear. Note as well that our hypotheses concern strong type bounds for the
operator T rather than weak endpoint bounds. On the other hand, the con-
clusion gives a good estimate for the norm of the operator when interpolating
between the endpoints and allows more freedom in the choice of the exponents
at the endpoints.

THEOREM 2.27 (Riesz-Thorin interpolation theorem). Let 1 ≤ p0, p1 ≤ ∞

and 1 ≤ q0, q1 ≤ ∞. Let

T : Lp0 (X, µ) + Lp1 (X, µ)→ Lq0 (Y, ν) + Lq1 (Y, ν),

be a linear operator that is of strong type (p0, q0) with norm k0 and of strong type
(p1, q1) with norm k1. That is we have that

‖T f ‖Lq0 (Y,ν) ≤ k0‖ f ‖Lp0 (X,µ),

for all f ∈ Lp0 (X, µ) and

‖T f ‖Lq1 (Y,ν) ≤ k1‖ f ‖Lp1 (X,µ),
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for all f ∈ Lp1 (X, µ). Then T is of strong type (pθ, qθ) with norm at most
kθ = k1−θ

0 kθ1 :
‖T f ‖Lqθ (Y,ν) ≤ kθ‖ f ‖Lpθ (X,µ),

for all f ∈ Lpθ (X, µ), where 1
pθ

= 1−θ
p0

+ θ
p1

and 1
qθ

= 1−θ
q0

+ θ
q1

, with 0 ≤ θ ≤ 1.

PROOF. We divide the proof in several steps:
step 1: It is enough to prove the theorem for k0 = k1 = kθ = 1. To see this just
observe that we can always replace the measures µ, ν by cµµ, cνν respectively,
for appropriate constants cµ, cν > 0. We can choose these constants so that
k0 = k1 = 1 and then we also have kθ = 1. Doing the calculations you will see
that we need to define the constants cµ, cν by means of the equations

c
1

q0
ν c
−

1
p0

µ k0 = 1 and c
1

q1
ν c
−

1
p1

µ k1 = 1.

In what follows we will therefore assume that k0 = k1 = kθ = 1 in the statement
of the theorem.
step 2: Let us now get rid of the easy case. If p0 = p1 = pθ then by the log-
convexity of the Lp norm we get directly that

‖T f ‖Lqθ ≤ ‖T f ‖1−θLq0 ‖T f ‖θLq1 ≤ ‖ f ‖Lpθ ,

as desired. Thus, for the rest of the proof we can and will assume that p0 < p1
and 1 < pθ < +∞.
step 3: We have that ∣∣∣ ∫

Y
(T f )gdν

∣∣∣ ≤ ‖ f ‖Lpθ ‖g‖Lq′
θ
,(2.4)

for all simple functions of finite measure support f , g. Here q′θ is the dual
exponent of qθ.

First of all, since T is of strong type (p0, q0), Hölder’s inequality shows that

(2.5)
∣∣∣ ∫

Y
(T f )gdν

∣∣∣ ≤ ‖ f ‖Lp0 ‖g‖Lq′0
,

and, similarly, by the (p1, q1) type of T we get that

(2.6)
∣∣∣ ∫

Y
(T f )gdν

∣∣∣ ≤ ‖ f ‖Lp1 ‖g‖Lq′1
.

Thus, estimate (2.4) is true for θ = 0, 1. It is obvious that we need to
interpolate between the two endpoint estimates above. We will do that by
means of the three lines convexity lemma. First we define the map

C 3 z 7→ F(z) =

∫
Y

(
T
[
| f |(1−z)pθ/p0+zpθ/p1sgn( f )

])
|g|(1−z)q′θ/q

′

0+zq′θ/q
′

1sgn(g)dν,

where sgn(h) = h/|h|. In the case q0 = q1 = qθ = 1 then we understand that
q′θ/q

′

0 = q′θ/q
′

1 = 1. The function F is a holomorphic function of z. Furthermore,
since f , g are simple functions of finite measure support, it is not hard to see
that F is actually bounded on the strip S = {z = x + iy : y ∈ R, 0 ≤ x ≤ 1}.
Furthermore, for z = θ + 0i we see that F(θ) =

∫
Y(T f )g. Now, on the boundary

of the strip we have that

|F(0 + iy)| ≤ ‖ f ‖
pθ
p0
Lpθ ‖g‖

qθ
′

q0
′

Lq′
θ
.
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from (2.5) and similarly

|F(1 + iy)| ≤ ‖ f ‖
pθ
p1
Lpθ ‖g‖

qθ
′

q1
′

Lq′
θ
.

from (2.6). Using the three lines lemma we get that

|F(x + iy)| ≤ ‖ f ‖
(1−x)pθ

p0
Lpθ ‖g‖

(1−x)qθ
′

q0
′

Lq′
θ
‖ f ‖

xpθ
p1

Lpθ ‖g‖
xqθ
′

q1
′

Lq′
θ
.

The right hand side however is equal to ‖ f ‖Lpθ ‖g‖Lq′
θ
. Applying the result

for x = θ and y = 0 we get the claim of step 2. Observe that nothing really
changes in the case q0 = q1 = qθ = 1.
step 4: Let f , g be any simple functions of finite measure support. Then T f ∈
Lq0 + Lq1 by the hypothesis thus gT f ∈ L1 for all simple functions g with finite
measure support. Now Step 3 together with Proposition 1.29 show that

‖T f ‖Lqθ ≤ ‖ f ‖Lpθ

for all functions f of finite measure support. Since the set of simple functions of
finite measure support is dense in Lpθ (remember that pθ < +∞), the discussion
in the beginning of §2.3 shows that the operator T has a unique extension to a
bounded linear operator T̃ on Lpθ and satisfies the bounds

‖T̃ f ‖Lqθ ≤ ‖ f ‖Lpθ

for all f ∈ Lpθ . It remains to check that this extension coincides with the origi-
nal operator T.
step 5: Let f ∈ Lpθ and { fn} be a sequence of simple functions of finite measure
support such that | f1| ≤ · · · ≤ | fn| ≤ · · · ≤ | f | and | fn| ↗ | f | almost everywhere.
Let g B f 1{| f |≤1}, b B f 1{| f |>1}, gn B fn1{| f |≤1}, bn B fn1{| f |>1}. We have that gn, g ∈
Lpθ ∩ Lp1 and bn, b ∈ Lp0 ∩ Lpθ and

‖bn − b‖p0 , ‖bn − b‖pθ → 0,

and
‖gn − g‖Lp1 , ‖gn − g‖pθ → 0,

as n→∞. By the hypotheses we have that∥∥∥T(bn − b)
∥∥∥

Lp0
≤ ‖b − bn‖Lp0 → 0 and

∥∥∥T(gn − g)
∥∥∥

Lp1
≤ ‖g − gn‖Lp1 → 0.

Passing to subsequences, if necessary, we conclude that T fn = T̃(bn + gn) → T f
almost everywhere. Since T, T̃ coincide on the set of simple functions with finite
measure support we conclude that

‖T f ‖Lqθ = ‖lim
n

T fn‖Lqθ = ‖lim
n

T fn‖Lqθ ≤ lim inf
n
‖ fn‖Lqθ = ‖ f ‖Lqθ

by Fatou’s lemma. Thus T satisfies the same estimate as T̃ on Lqθ which means
that the two operators coincide. Indeed, if fn is any sequence of simple func-
tions of finite measure support with fn → f in Lpθ we get

‖T f − T̃ f ‖Lqθ = ‖T( f − fn) + T̃( f − fn) + T̃ fn − T fn‖Lqθ ≤ 2‖ f − fn‖Lpθ → 0,

so that T ≡ T̃. �

As a first application of the Riesz-Thorin interpolation theorem we will
now prove Young’s inequality on convolutions of functions.
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PROPOSITION 2.28 (Young’s inequality). Let f , g : Rn
→ C. Let 1 ≤ p, q, r ≤

∞ be such that 1
p + 1

q = 1
r + 1. If f ∈ Lp(Rn) and g ∈ Lq(Rn), then f ∗ g is a well

defined function in Lr(Rn) and we have the estimate

‖ f ∗ g‖Lr(Rn) ≤ ‖ f ‖Lp(Rn)‖g‖Lq(Rn).

PROOF. For 1 ≤ q ≤ ∞ and g ∈ Lq(Rn) fixed we define the operator

T( f ) = g ∗ f .

As we have already seen (see Exercise 2.1) we have the bound ‖T( f )‖Lq ≤

‖g‖Lq‖ f ‖L1 , that is, T is of strong type (1, q). It is also very easy to see that if
q′ is the conjugate exponent of q then we have

|( f ∗ g)(x)| =
∣∣∣ ∫ f (x − y)g(y)dy

∣∣∣ ≤ ‖ f ‖Lq′ ‖g‖Lq ,

that is ‖T( f )‖L∞ ≤ ‖g‖Lq‖‖ f ‖Lq′ and T is of strong type (q′,∞). Letting 1
qθ

= 1
r =

1−θ
q + θ

∞
and 1

pθ
= 1−θ

1 + θ
q′ , the Riesz-Thorin interpolation theorem shows that

T is of strong type (pθ, qθ). Replacing 1 − θ = q/r and using the hypothesis
1/p + 1/q = 1/r + 1 we get that pθ = p. Thus we conclude that T is of strong type
(p, r) with norm at most ‖g‖1−θLq ‖g‖θLq = ‖g‖Lq . That is we have ‖ f ∗ g‖Lr ≤ ‖g‖Lq‖ f ‖Lp

as we wanted to show. �

EXERCISE 2.29 (Schur’s test). Let 1 ≤ p1, q0 ≤ ∞ and B0,B1 > 0. Let (X,X, µ)
and (Y,Y, ν) be measure spaces and K : X × Y → C be a X ⊗ Y-measurable
function such that

(i) For almost every x ∈ X we have that

‖K(x, ·)‖Lq0 (Y,ν) ≤ B0.

(ii) For almost every y ∈ Y we have that

‖K(·, y)‖
Lp′1 (X,µ)

≤ B1.

Define p0 = 1 and q1 = ∞. Show that the operator T, defined as

T f (x) B
∫

K(x, y) f (x)dµ(x)

is of strong type (pθ, qθ) with norm at most Bθ0 B1−θ
1 and

1
qθ
B

1 − θ
q0

+
θ
q1
,

1
pθ
B

1 − θ
p0

+
θ
p1

as in the Riesz-Thorin interpolation theorem.





CHAPTER 3

The Fourier transform and the space of
tempered distributions

3.1. The Fourier transform on L1(Rn).

For f ∈ L1(Rn), the Fourier transform of f is the function

F ( f )(ξ) = f̂ (ξ) =

∫
Rn

f (x)e−2πix·ξdx, ξ ∈ Rn.

Here x · y = 〈x, y〉 denotes the inner product of x = (x1, . . . , xn) and y = (y1, . . . , yn)
in Rn:

x · y = 〈x, y〉 = x1y1 + · · · xnyn.

Observe that this inner product in Rn is compatible with the Euclidean norm
since x · x = |x|2. It is easy to see that the integral above converges for every ξ ∈
Rn and that the Fourier transform of an L1 function is a uniformly continuous
function.

THEOREM 3.1. Let f , g ∈ L1(Rn). We have the following properties.

(i) The Fourier transform is linear f̂ + g = f̂ + ĝ and ĉ f = c f̂ for any c ∈ C.
(ii) The function f̂ (ξ) is uniformly continuous.

(iii) The operator F is bounded from L1(Rn) to L∞(Rn) and

‖ f̂ ‖L∞(Rn) ≤ ‖ f ‖L1(Rn).

(iv) (Riemann-Lebesgue) We have that

lim
|ξ|→+∞

f̂ (ξ) = 0.

PROOF. Properties (i), (ii) and (iii) are easy to establish and are left as an
exercise. There are several ways to see (iv) based on the idea that it is enough
to establish this property for a dense subspace of L1(Rn). For example, observe
that if f is the indicator function of an interval of the real line, f = 1[a,b], then
we can calculate explicitly to show that

| f̂ (ξ)| =
∣∣∣∣∣ ∫ b

a
e−2πixξdx

∣∣∣∣∣ =

∣∣∣∣∣ e−2πiξa
− e−2πiξb

2πiξ

∣∣∣∣∣ . 1
|ξ|
→ 0 as |ξ| → +∞.

Tensoring this one dimensional result one easily shows that lim|ξ|→+∞ f (ξ) = 0
whenever f is the indicator function of an n-dimensional interval of the form
[a1, b1] × · · · × [an, bn]. Obviously the same is true for finite linear combinations
of n-dimensional intervals since the Fourier transform is linear.

Now let f be any function in L1(Rn) and ε > 0 and consider a finite linear
combination g of indicators of n-dimensional intervals with ‖ f − g‖1 < ε/2. Let

33
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also M > 0 be large enough so that |ĝ(ξ)| < ε/2 whenever |ξ| > M. Using (iii)
and the linearity of the Fourier transform we have that

| f̂ (ξ)| ≤ |̂( f − g)(̂ξ)| + |ĝ(ξ)| ≤ ‖ f − g‖L1 + |ĝ(ξ)| < ε,

whenever |ξ| > M, which finishes the proof. �

In view of (ii) and (iv) we immediately get the following.

COROLLARY 3.2. If f ∈ L1(Rn) then f̂ ∈ Co(Rn).

EXERCISE 3.3. Show the properties (ii) and (iii) in the previous Theorem.

The discussion above and especially Corollary 3.2 shows that a necessary
condition for a function g to be a Fourier transform of some function in L1(Rn)
is g ∈ Co(Rn). However, this condition is not sufficient as there are functions
g ∈ Co(Rn) which are not Fourier transforms of L1 functions. See Exercise 3.20.

Let us now see two important examples of Fourier transforms that will be
very useful in what follows.

EXAMPLE 3.4. For a > 0 let f (x) = e−πa|x|2 . Then

f̂ (ξ) = a−
n
2 e−

π|ξ|2
a .

PROOF. Observe that in one dimension we have

f̂ (ξ) =

∫
R

e−πax2
e−2πixξdx =

∫
R

e−πa(x+i ξa )2
dx e−

πξ2
a

=

∫
R

e−πax2
dx e−

πξ2
a = a−

1
2 e−

π2ξ2
a ,

where the third equality is a consequence of Cauchy’s theorem from complex
analysis. The n-dimensional case is now immediate by tensoring the one di-
mensional result. �

REMARK 3.5. Replacing a = 1 in the previous example we see that e−π|x|2 is
its own Fourier transform.

EXAMPLE 3.6. For a > 0 let g(x) = e−2πa|x|. Then

ĝ(ξ) = cn
a

(a2 + |ξ|2)
n+1

2

,

where cn = Γ((n + 1)/2)/π
n+1

2 .

PROOF. The first step here is to show the subordination identity

e−β =
1
√
π

∫
∞

0

e−u

√
u

e−β
2/4udu, β > 0,(3.1)

which is a simple consequence of the identities

e−β =
2
π

∫
∞

0

cos βx
1 + x2 dx,

1
1 + x2 =

∫
∞

0
e−(1+x2)udu.
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Using (3.1) we can write

ĝ(ξ) =

∫
Rn

e−2πa|x|e−2πix·ξdx =
1
√
π

∫
Rn

( ∫ ∞

0

e−u

√
u

e−4π2a2
|x|2/4udu

)
e−2πix·ξdx

=
1
√
π

∫
∞

0

e−u

√
u

1
an

(√ u
π

) n
2

e−
u|ξ|2

a2 du =
1

π
n+1

2 an

∫
∞

0
u

n−1
2 e−u |ξ|

2

a2 e−udu

=
1

π
n+1

2 an

1(
1 + |ξ|2

a2

) n+1
2

∫
∞

0
u

n−1
2 e−udu =

Γ( n+1
2 )

π
n+1

2

a(
a2 + |ξ|2

) n+1
2

,

by the definition of the Γ-function. �

EXERCISE 3.7. This exercise gives a first (qualitative) instance of the un-
certainty principle. Prove that there does not exist a non-zero integrable func-
tion on R such that both f and f̂ have compact support.

Hint: Observe that the function

f̂ (ξ) =

∫
R

f (x)e−2πixξdx,

extends to an entire function (why ?).

The definition of the Fourier transform extends without difficulty to finite
Borel measures on Rn. Let us denote byM(Rn) this class of finite Borel mea-
sures and let µ ∈ M(Rn). We define the Fourier transform of µ to be the func-
tion

F (µ)(ξ) = µ̂(ξ) =

∫
Rn

e−2πix·ξdµ(x), ξ ∈ Rn.

We have the analogues of (i), (ii) and (iii) of Theorem 3.1 if we replace the
L1 norm by the total variation of the measure. However property (iv) fails as
can be seen by considering the Fourier transform of a Dirac mass at the point
0. Indeed, observe that

δ̂0(ξ) =

∫
Rn

e−2πix·ξdδ0(x) = 1,

which is a constant function. This remark can be used as a first instance of the
heuristic that “regularity of the function implies decay of the Fourier trans-
form”. Observe that f ∈ L1(Rn) implies that f̂ decays to 0 at infinity, while
µ ∈ M(Rn) does not imply any decay. Here the regularity hypothesis is quite
weak, f ∈ L1; functions in L1 are however more regular than general measures
µ ∈ M(Rn).

The Fourier transform interacts very nicely with convolutions of functions,
turning them to products. This turns out to be quite important when consider-
ing translation invariant operators as we shall see later on in the course.

PROPOSITION 3.8. Let f , g ∈ L1(Rn). Then f̂ ∗ g = f̂ ĝ.

EXERCISE 3.9. Prove Proposition 3.8.

Another elementary but important property of Fourier transforms is the
multiplication formula.
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PROPOSITION 3.10 (Multiplication formula). Let f , g ∈ L1(Rn). Then∫
Rn

f̂ (ξ)g(ξ)dξ =

∫
Rn

f (x)ĝ(x)dx.

We will now describe some easily verified symmetries of the Fourier trans-
form. We introduce the following basic operations on functions:

- Translation operator: (τxo f )(x) B f (x − xo), x, xo ∈ Rn

- Modulation operator: Modxo ( f )(x) B e2πix·xo f (x), x, xo ∈ Rn

- Dilation operator: Dilp
λ( f )(x) B λ−

n
p f (x/λ), x ∈ Rn, λ > 0, 1 ≤ p ≤ ∞.

PROPOSITION 3.11. Let f ∈ L1(Rn) We have the following symmetries:
(i) F τxo = Mod−xoF ,

(ii) FModξo = τξoF ,
(iii) FDilp

λ = Dilp′

λ−1F , where 1
p + 1

p′ = 1.

EXERCISE 3.12. Prove the symmetries in Proposition 3.11 above. Also, let
U : Rn

→ Rn be an invertible linear transformation, that is, U ∈ GL(Rn). Define
the general dilation operator

(Dilp
U f )(x) = |det U|−

1
p f (U−1x), x ∈ Rn, 1 ≤ p ≤ ∞.

Prove that
FDilp

U = Dilp′

(U∗)−1F ,

where U∗ is the (real) adjoint of U, that is the matrix for which we have
〈Ux, y〉 = 〈x,U∗y〉 for all x, y ∈ Rn.

We now come to one of the most interesting properties of the Fourier trans-
form, the way it commutes with derivatives.

PROPOSITION 3.13. We have the following statements:
(a) Suppose that f ∈ L1(Rn) and that xk f (x) ∈ L1(Rn) for some 1 ≤ k ≤ n.

Then f̂ is differentiable with respect to ξk and

∂
∂ξk
F ( f )(ξ) = F (−2πixk f )(ξ).

(b) We will say that a function f has a partial derivative in the Lp norm
with respect to xk if there exists a function g ∈ Lp(Rn) such that

lim
hk→0

( ∫
Rn

∣∣∣∣∣ f (x + h) − f (x)
hk

− g
∣∣∣∣∣pdx

) 1
p

= 0,

where h = (0, . . . , 0, hk, 0, . . . , 0) is a non-zero vector along the k-th coor-
dinate axis. If f has a partial derivative g with respect to xk in the
L1-norm, then

ĝ(ξ) = 2πiξ j f̂ (ξ).

EXERCISE 3.14. Prove Proposition 3.13.

A similar result that involves the classical derivatives of a function is the
following:
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PROPOSITION 3.15. For k a non-negative integer, suppose that f ∈ Ck(Rn)
and that ∂α f ∈ L1(Rn) for all |α| ≤ k, and ∂α f ∈ Co(Rn) for |α| ≤ k − 1. Show that

∂̂α f (ξ) = (2πiξ)α f̂ (ξ).

EXERCISE 3.16. Prove Proposition 3.15.

Several remarks are in order. First of all observe that Proposition 3.13 and
Proposition 3.15 assert that the following commutation relations are true

(i) F (−2πixk) = ∂ξkF ,
(ii) F ∂xk = (2πiξk)F ,

where here we abuse notation and denote by 2πixk the operator of multiplica-
tion by 2πixk. Thus the Fourier transform turns derivatives to multiplication
by the corresponding variable, and vice versa, it turns multiplication by the co-
ordinate variable to a partial derivative, whenever this is technically justified.
This is a manifestation of the heuristic principle that smoothness of a function
translates to decay of the Fourier transform and on the other hand, decay of a
function at infinity translates to smoothness of the Fourier transform.

A second remark is that these commutation relations generalize in an obvi-
ous way to higher derivatives. To make this more precise let P be a polynomial
on Rn:

P(x) =
∑
|α|≤d

cαxα.

Slightly abusing notation again we write P(∂αx ) for the differential operator

P(∂x) =
∑
|α|≤d

cα∂αx =
∑
|α|≤d

cα∂α1
x1
· · · ∂αn

xn
.

We then have that the following commutation relations are true

(i′) F P(−2πix) = P(∂αξ)F ,
(ii′) F P(∂αx ) = P(2πiξ)F .

Observe that for “nice” functions, for example f ∈ C∞c (Rn) or f ∈ S(Rn), Propo-
sitions 3.13 and 3.15 are automatically satisfied.

3.1.1. Inverting the Fourier transform. On of the most important prob-
lems in the theory of Fourier transforms is that of the inversion of the Fourier
transform. That is, given the Fourier transform f̂ of an L1 function, when can
we recover the original function f from f̂ ? We begin with a simple case where
the recovery is quite easy.

PROPOSITION 3.17. Let f ∈ L1(Rn) be such that f̂ ∈ L1(Rn). Then the inver-
sion formula holds true. In particular we have that

f (x) =

∫
Rn

f̂ (ξ)e2πix·ξdξ,

for almost every x ∈ Rn.
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PROOF. The proof is based on the following calculation. For a > 0 we have
that ∫

Rn
f̂ (ξ)e−a|ξ|2 e2πix·ξdξ =

∫
Rn

∫
Rn

f (y)e−2πiy·ξdye−a|ξ|2 e2πix·ξdξ

=

∫
Rn

f (x + y)
∫
Rn

e−2πiye−a|ξ|2 dξdy

= (
π
a

)
n
2

∫
Rn

f (x + y)e−
π2
|y|2

a dy

=

∫
Rn

f (x +
√

ay)e−π|y|
2
dy,

where in the last equality we have used Example 3.4. We can thus write∫
Rn

∣∣∣∣∣ ∫
Rn

f̂ (ξ)e−a|ξ|2e2πix·ξ
dξ − f (x)

∣∣∣∣∣dx =

∫
Rn

∣∣∣∣∣ ∫
Rn

f (x +
√

ay)e−π|y|
2
dy − f (x)

∣∣∣∣∣dx

=

∫
Rn

∣∣∣∣∣ ∫
Rn
{ f (x +

√
ay) − f (x)}e−π|y|

2
dy

∣∣∣∣∣dx

≤

∫
Rn

∫
Rn
| f (x +

√
ay) − f (x)|dxe−π|y|

2
dy

=

∫
Rn
‖ f − τ

−
√

ay f ‖L1(Rn)e−π|y|
2
dy.

Since ‖ f−τ
−
√

ay f ‖L1(Rn) → 0 as a→ 0 and ‖ f−τ
−
√

ay f ‖L1(Rn) ≤ 2‖ f ‖L1(Rn), Lebesgue’s
dominated convergence theorem shows that f is almost everywhere equal to
the L1-limit of the sequence of functions

ga(x) =

∫
Rn

f̂ (ξ)e−a|ξ|2 e2πix·ξdξ,

as a→ 0 (technically speaking we need to consider a sequence ak → 0). On the
other hand since f̂ ∈ L1(Rn), another application of Lebesgue’s dominated the-
orem shows that the L1-limit of the functions ga is also equal to

∫
Rn f̂ (ξ)e2πix·ξdξ.

This completes the proof of the proposition. �

An immediate corollary is that the Fourier transform is a one-to-one oper-
ator:

COROLLARY 3.18. Let f1, f2 ∈ L1(Rn) and suppose that f̂1(ξ) = f̂2(ξ) for all
ξ ∈ Rn. The we have that f1(x) = f2(x) for almost every x ∈ Rn.

The proof is an obvious application of Proposition 3.17.

EXERCISE 3.19. Show the following
(i) If f ∈ Cn+1

c (Rn) then

| f̂ (ξ)| . (1 + |ξ|2)−(n+1)/2.

Conclude that whenever f ∈ Cn+1
c (Rn), we have that

f (x) =

∫
Rn

f̂ (ξ)e2πix·ξdξ.

(ii) Show that F maps the Schwartz space S(Rn) onto S(Rn).
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EXERCISE 3.20. The purpose of this exercise is to show that F (L1(Rn)) is a
proper subset of Co(Rn) but also that it is a dense subset of Co(Rn).

(i) Show that F (L1(R)) is a proper subset of Co(R).
Hint: While there are different ways to do that, a possible ap-

proach is the following. For simplicity we just consider the case n = 1:
(a) Show that

∣∣∣ ∫ b

a
sin x

x dx
∣∣∣ ≤ B for all 0 ≤ |a| < |b| < ∞ where B > 0 is a

numerical constant that does not depend on a, b.
(b) Suppose that f ∈ L1(R) is such that f̂ is an odd function. Use (a)

to show that for every b > 0 we have that∣∣∣∣∣ ∫ b

1

f̂ (ξ)
ξ

dξ
∣∣∣∣∣ < A,

for some numerical constant A > 0 which does not depend on b.
(c) Construct a function g ∈ Co(R) which is not the Fourier trans-

form of an L1 function. To do this note that it is enough to find a
function g ∈ Co(R) which does not satisfy the condition in (b).

(ii) Show that F (L1(Rn)) = Co(Rn) where the closure is taken in the Co
topology.

Hint: Observe that C∞c (Rn) is dense in Co(Rn), in the topology of
the supremum norm.

It is convenient to define the formal inverse of the Fourier transform in the
following way. For f ∈ L1(Rn) we set

F
−1( f )(ξ) = F ∗( f )(ξ) = f̌ (ξ) =

∫
Rn

f (x)e2πix·ξdξ = f̂ (−ξ) = ˜̂f (ξ) = ˆ̃f (ξ).

Here we denote by g̃ the reflection of a function g, that is, g̃(x) = g(−x).
Observe that F ∗ is the conjugate of the Fourier transform. Thus the operator
F
∗ is very closely connected to the operator F and enjoys essentially the same

symmetries and properties.
As we shall see later on, it is also the adjoint of the Fourier transform with

respect to the L2 inner product

〈 f , g〉 =

∫
Rn

f ḡ.

Although we haven’t yet defined the Fourier transform on L2 we can calculate
for f , g ∈ L1

∩ L2(Rn) that∫
Rn

(F f )ḡ =

∫
Rn

∫
Rn

f (x)e−2πix·ξdxḡ(ξ)dξ

=

∫
Rn

f (x)
∫
Rn

g(ξ)e2πix·ξdξ dx

=

∫
Rn

f (F ∗(g)).

Proposition 3.17 claims that F ∗ is also the inverse of the Fourier transform
in the sense that

F
∗
F f = f ,
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whenever f ,F f ∈ L1(Rn).
The proof of Proposition 3.17 is quite interesting in the following ways.

First of all observe that we have actually showed that whenever f ∈ L1(Rn), f
is equal (a.e.) to the L1 limit of the functions∫

Rn
f̂ (ξ)e−a|ξ|2 e2πix·ξdξ,

as a→ 0. This does not require any additional hypothesis and actually provides
us with a method of inverting the Fourier transform of any L1 function, at least
in the L1 sense. The second remark is that the proof of Proposition 3.17 can
be generalized to different methods of summability. Indeed, let Φ ∈ L1(Rn) be
such that φ = Φ̂ ∈ L1(Rn) and Φ(0) =

∫
φ(x)dx = 1. For ε > 0 we consider the

integrals ∫
Rn

f̂ (ξ)Φ(εξ)e2πix·ξdξ,(3.2)

which we will call the Φ-means of the integral
∫
Rn f̂ (ξ)e2πix·ξ, or just the Φ-means

of f̌ . Using the multiplication formula in Proposition 3.10 we can rewrite the
means (3.2) as ∫

Rn
f̂ (ξ)Φ(εξ)e2πix·ξdξ = ( f ∗ φ̃ε)(x), x ∈ Rn.(3.3)

The following more general version of Proposition 3.17 is true.

PROPOSITION 3.21. Let Φ ∈ L1(Rn) be such that φ = Φ̂ ∈ L1(Rn) with
∫
φ =

1. We then have that the Φ-means of
∫

f̂ (ξ)e2πix·ξdξ,∫
Rn

f̂ (ξ)Φ(εξ)e2πix·ξdξ,

converge to f in L1, as ε→ 0.

PROOF. The proof is just a consequence of formula (3.3). Indeed, φ̃ε is an
approximation to the identity since φ̃ ∈ L1 and

∫
φ̃(x)dx = 1 and thus f ∗ φ̃ε

converges to f in the L1 norm as ε→ 0. �

Proposition 3.17 says that the inversion formula is true whenever f , f̂ ∈
L1(Rn). This however is not the most natural assumption since the Fourier
transform of an L1 function need not be integrable. The idea behind Proposi-
tion 3.21 is to “force” f̂ in L1 by multiplying it by the L1 function Φ(εξ). Thus,
we artificially impose some decay on f̂ . This is equivalent to smoothing out
the function f itself by convolving it with a smooth function φ̃ε. Although no
smoothness is explicitly assumed in Proposition 3.21, there is a hidden smooth-
ness hypothesis in the requirement Φ, φ ∈ L1. Indeed, we could have replaced
this assumption by directly assuming that φ is (say) a smooth function with
compact support and taking Φ = φ̂; then the conclusion φ̂ ∈ L1(Rn) would fol-
low automatically. The trick of multiplying the Fourier transform of a general
L1 function with an appropriate function in L1 or, equivalently, smoothing out
the function f itself allows us then to invert the Fourier transform, at least in
the L1-sense. This process is usually referred to as a summability method.
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As we shall see now, the inversion of a Fourier transform by means of a
summability method is also valid in a pointwise sense. Because of formula
(3.3), in order to understand the pointwise convergence of the Φ-means of f̌
we have to examine the pointwise convergence of the convolution f ∗ φε to f ,
whenever φ is an approximation to the identity.

DEFINITION 3.22. Let f ∈ L1
loc(R

n). The Lebesgue set of f is the set of points
x ∈ Rn such that

lim
r→0

1
rn

∫
|y|<r
| f (x − y) − f (x)|dy = 0.

The Lebesgue set of a locally integrable function f is closely related to the
set where the integral of f is differentiable:

DEFINITION 3.23. Let f ∈ L1
loc(R

n). The set of points where the integral of f
is differentiable is the set of points x ∈ Rn such that

lim
r→0

1
Ωnrn

∫
|y|<r

f (x − y) = f (y),

where Ωn is the volume of the unit ball B(0, 1) in Rn. In other words, we say
that the integral of f is differentiable at some point x ∈ Rn if the average of f
with respect to Euclidean balls centered at x the value of f at the point x.

We shall come back to these notions a bit later in the course when we will
introduce the maximal function of f which is just the maximal average of f
around every point. For now we will use as a black box the following theorem:

THEOREM 3.24. Let f ∈ L1
loc(R

n). Then the integral of f is differentiable at
almost every point x ∈ Rn.

While postponing the proof of this theorem for later on, we can already see
the following simple proposition connecting the Lebesgue set of f to the set
of points where the integral of f is differentiable. In particular we see that
almost every point in Rn is Lebesgue point of f .

COROLLARY 3.25. Let f ∈ L1
loc(R

n). Then almost every x ∈ Rn is a Lebesgue
point of f .

PROOF. First assume that f is real valued. For any rational number q we
have that the function f (x)− q is locally integrable. Theorem 3.24 then implies
that

lim
r→0

1
rn

∫
|y|≤r

{
| f (x − y) − q| − | f (x) − q|

}
dy = 0,

for almost every x ∈ Rn. Thus the set Fq where the previous statement is not
true has measure zero and so does the set F := ∪q∈QFq. Now let x ∈ Rn

\ F.
Indeed, let ε > 0 and q ∈ Q be such that | f (x) − q| < ε/2. We then have

1
Ωnrn

∫
|y|<r
| f (x − y) − f (x)|dy ≤

1
Ωnrn

∫
|y|<r
| f (x − y) − q|dy +

1
Ωnrn

∫
|y|<r
| f (x) − q|dy.

The first summand converges to | f (x) − q| < ε/2 as r → 0 since x < F while the
second summand is smaller than ε/2. This shows that the Lebesgue set of f is
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contained in Rn
\ F and thus that almost every point in Rn is a Lebesgue point

of f .
For general complex valued f we just apply the result just proved to the

real part and the imaginary part of f and use the triangle inequality. �

We can now give the following pointwise convergence result for approxi-
mations to the identity.

THEOREM 3.26. Let φ ∈ L1(Rn) with
∫
φ = 1. We define ψ(x) := ess sup

|y|≥|x| |φ(y)|.
If ψ ∈ L1(Rn) and f ∈ Lp(Rn) for 1 ≤ p ≤ ∞ then

lim
ε→0

( f ∗ φε)(x) = f (x),

whenever x is a Lebesgue point for f .

PROOF. Let x be a Lebesgue point of f and fix δ > 0. By Corollary 3.25
there exists η > 0 such that

1
rn

∫
|y|<r
| f (x − y) − f (x)|dy < δ,(3.4)

whenever |r| < η.
We can estimate as usual

|( f ∗ φε)(x) − f (x)| =
∣∣∣∣∣ ∫
Rn

[ f (x − y) − f (x)]φε(y)dy
∣∣∣∣∣

≤

∣∣∣∣∣ ∫
|y|<η

[ f (x − y) − f (x)]φε(y)dy
∣∣∣∣∣ +

∣∣∣∣∣ ∫
|y|≥η

[ f (x − y) − f (x)]φε(y)dy
∣∣∣∣∣

=: I1 + I2.

We claim that

(3.5) lim
|x|→+∞

|x|nψ(x) = 0.

First of all observe that ψ is radially decreasing. We will abuse notation and
write ψ(x) = ψ(|x|). For every r > 0 we have that∫

r/2≤|x|<r
ψ(x)dx ≥ ψ(r)(rn

− (r/2)n)Ωn 'n rnψ(r).

Since ψ ∈ L1 the left hand side tends to 0 as r→ +∞ which proves the claim.
We write (3.4) in polar coordinates to get

1
rn

∫
Sn−1

∫ r

0
| f (x − sy′) − f (x)|sn−1dsdσn−1(y′) < δ.

Setting g(s) =
∫

Sn−1 | f (x − sy′) − f (x)|dσn−1(y′) we can rewrite the previous
estimate in the form

G(r) :=
∫ r

0
g(s)sn−1ds ≤ δrn,

whenever |r| < η and, by continuity, for |r| = η as well. We now estimate I1 as
follows
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I1 ≤

∫
Sn−1

∫ η

0
| f (x − ry′) − f (x)|ψε(r)|dσn−1(y′)rn−1dr

=

∫ η

0
g(r)rn−1 1

εnψ(r/ε)dr =

∫ η

0
G′(r)ψε(r)dr.

At this point the proof simplifies a bit if we assume that ψ is differentiable. In
this case we have that ψ′ ≤ 0 and we can estimate the last integral by∫ η

0
G′(r)ψε(r)dr = G(η)ψε(η) −

∫ η

0
G(r)

( d
dr
ψε

)
(r)dr

.n,φ δη
nψε(η) − δ

∫ η

0
rn

( d
dr
ψε

)
(r)dr

= δn
∫ η

0
rn−1ψε(r)dr =

δ
ωn

∫
Rn
ψ(x)dx,

where ωn is the surface measure of the unit sphere Sn−1 in Rn.

REMARK 3.27. A monotone non-decreasing function F is almost every-
where differentiable and

∫ b

a F′ ≤ F(b) − F(a). By considering the function −F
we see that a monotone, non-increasing function G is almost everywhere dif-
ferentiable and

∫ b

a G ≥ G(b) − G(a).

For I2 we estimate as follows

I2 ≤ ‖ f ‖p‖ψε1{|x|≥η}‖p′ + | f (x)|‖1{|x|≥η}ψε‖1.

For the second summand we have that

‖1{|x|≥η}ψε‖1 =
1
εn

∫
|x|≥η

ψε(x/ε)dx =

∫
|x|≥η/ε

ψ(x)dx→ 0,

as ε→ 0, since ψ ∈ L1.
On the other hand, we have

‖ψε1{|x|≥η}‖p′ =
( ∫
|x|≥η

[ψε(x)]p′dx
) 1

p′

=
( ∫
|x|≥η/ε

[ψ(x)]
p′

p ψ(x)dx
) 1

p′

≤ ‖ψ1{|x|≥η/ε}‖
1
p
∞‖ψ1{|x|≥η/ε}‖1.

Now since ψε is decreasing we have that

‖ψ1{|x|≥η/ε}‖∞ ≤ ψ(η/ε) = η−n(η/ε)nψ(η/ε)→ 0

as ε → 0 by (3.5). We get that the first summand also vanishes as ε → 0 and
thus I2 → 0 as ε→ 0.

We have showed that

lim sup
ε→0

|( f ∗ φε)(x) − f (x)| .n,φ δ,

whenever x is a Lebesgue point of f . Since δ > 0 was arbitrary this completes
the proof of the theorem. �
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REMARK 3.28. The previous theorem is true, for example, in the case that
φ itself is a radially decreasing function in L1 or if it is a function that satisfies
a bound of the form |φ(x)| .n,δ (1 + |x|)−(n+δ) for some δ > 0. In particular it holds
for our favorite functions φ(x) = eπ|x|2 and φ(x) = cn(1 + |x|2)−

n+1
2 .

We conclude the discussion on the inversion of the Fourier transform with
a useful corollary.

COROLLARY 3.29. Let f ∈ L1(Rn) and assume that f is continuous at 0 and
that f̂ ≥ 0. Then f̂ ∈ L1(Rn) and

f (x) =

∫
Rn

f̂ (ξ)e2πix·ξdξ,

for almost every x ∈ Rn. In particular,

f (0) =

∫
Rn

f̂ (ξ)dξ.

PROOF. By identity (3.3) we have that∫
Rn

f̂ (ξ)Φ(εξ)e2πix·ξdξ = ( f ∗ φ̃ε)(x),

for all x ∈ Rn. Observe that the functions on both sides of this identity are
continuous functions of x. Now let φ,Φ satisfy the conditions of Theorem 3.26.
Assume furthermore that Φ is non-negative and continuous at 0. For example
we can consider the function Φ(ξ) = φ(ξ) = e−π|ξ|2 . Now since the point 0 is a
point of continuity of f , it certainly belongs to the Lebesgue set of f . Thus we
have that limε→0( f ∗ φ̃ε)(0) = f (0) which gives

lim
ε→0

∫
Rn

f̂ (ξ)Φ(εξ)dξ = f (0).

Since f̂Φ is positive, we can use Fatou’s lemma to write∫
Rn

f̂ (ξ)dξ =

∫
Rn

lim inf
εk→0

f̂ (ξ)Φ(εkξ)dξ ≤ f (0),

so f̂ ∈ L1(Rn). Thus the inversion formula holds true for f and we get

f (x) =

∫
Rn

f̂ (ξ)e2πix·ξdξ,

for almost every x ∈ Rn. However

f (0) = lim
ε→0

∫
Rn

f̂ (ξ)Φ(εξ)dξ =

∫
Rn

lim
ε→0

f̂ (ξ)Φ(εξ)dξ =

∫
Rn

f̂ (ξ)dξ,

since f̂ ∈ L1. �

3.1.2. Two special summability methods. We describe in detail two
summability methods that are of special interest. These are based on the Ex-
amples 3.4 and 3.6 in the beginning of this set of notes and on applications of
Theorem 3.26 and Proposition 3.21.



3.1. THE FOURIER TRANSFORM ON L1(Rn). 45

3.1.2.1. The Gauss-Weierstrass summability method. By dilating the func-
tion W(x) = e−π|x|2 we get

W(x, t) := W√
4πt(x) = (4πt)−

n
2 e−

|x|2
4t .

The function W(x, t), t > 0, is called the Gauss kernel and it gives rise to the
Gauss-Weierstrass method of summability. The Fourier transform of W is

Ŵ√
4πt(ξ) = Ŵ(

√

2πtξ) = e−4π2t|ξ|2 .

It is also clear that ∫
Rn

W(x, t)dx = 1,

for all t > 0. The discussion in the previous sections applies to the Gauss-
Weierstrass summability method and we have that the means

w(x, t) :=
∫
Rn

f (y)W(y − x, t)dy =

∫
Rn

f̂ (ξ)e−4π2t|ξ|2 e2πix·ξdξ

converge to f in L1(Rn) as t→ 0, and also in the pointwise sense, for every x in
the Lebesgue set of f . One of the aspects of Gauss-Weierstrass summability is
that the function w(x, t) defined above satisfies the heat equation:

∂w
∂t
− ∆xw = 0, on Rn+1

+ ,

w(x, 0) = f (x), x ∈ Rn.

Here ∆x B
∑n

j=1 ∂
2
x j

denotes the Laplacian in the space variable x only. To see
that the Gauss-Weierstrass means of f̌ satisfy the Heat equation with initial
data f , one can use the formula for w(x, t) and calculate everything explicitly.
However it is easier to consider the Fourier transform of the solution u(x, t)
of the Heat equation in the x variable and show that it must agree with the
Fourier transform of w(x, t), again in the x variable. Observe that under suit-
able assumptions on the initial data f we get that the solution w(x, t) converges
to the initial data f as “time” t→ 0.

EXERCISE 3.30. Let f (x) = e−πx2 , x ∈ R. Using the properties of the Fourier
transform show that the function f̂ satisfies the initial value problem

u′ + 2πxu = 0,
u(0) = 1.

Solve the initial value problem to give an alternative proof of the fact that
f̂ (ξ) = e−πξ2 . Observe that the differential equation above is invariant under
the Fourier transform.

The Abel summability method. We consider the function P(x) = cn
1

(1+|x|2)
n+1

2

where cn =
Γ((n+1)/2

π
n+1

2
. By dilating the function P we have

P(x, t) := Pt(x) = cn
t

(t2 + |x|2)
n+1

2

.
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The function P(x, t), t > 0, is called the Poisson kernel (for the upper half plane)
and it gives rise to the Abel method of summability. The Fourier transform of
Pt is

P̂t(ξ) = P̂(tξ) = e−2πt|ξ|.

This is just a consequence of the calculation in Example 3.6, the inversion
formula and the easily verified fact that P ∈ L1(Rn). It is also clear by a direct
calculation or through the previous Fourier transform relation that∫

Rn
P(x, t)dx = 1,

for all t > 0. Everything we have discussed in these notes applies to the Abel
summability method. In particular we have that whenever f ∈ L1(Rn), the
means

u(x, t) :=
∫
Rn

f (y)P(y − x, t)dy =

∫
Rn

f̂ (ξ)e−2πt|ξ|e−2πix·ξdξ,

converge to f in L1 as t → 0 and also in the pointwise sense for all x in the
Lebesgue set of f . The function u(x, t) is also called the Poisson integral or
extension of f . It is not difficult to see that it satisfies the Dirichlet problem

∆u = 0, on Rn+1
+ ,

u(x, 0) = f (x), x ∈ Rn.

Here we denote by Rn+1
+ the upper half plane Rn+1

+ = {(x, y) : x ∈ Rn, y > 0}.
Thus, if we are given an L1 function on the “boundary” Rn, the Poisson integral
of f provides us with a harmonic function u(x, t) in the upper half plane which
has boundary value f in the sense that u(x, t) converges to f as t → 0 both in
the L1 sense as well as almost everywhere.

REMARK 3.31. It is not hard to see that the Poisson extension of f ∈ Lp(Rn),
1 ≤ p ≤ ∞

u(x, t) =

∫
Rn

f (y)P(x − y, t)dy,

is harmonic in Rn+1
+ , that is, that it satisfies the Laplace equation:

∆x,tu(x, t) =

n∑
j=1

∂2

∂x2
k

u(x, t) +
∂2

∂t2 u(x, t) = 0.

This is a consequence of the fact that ∆x,tP(x, t) = 0 for (x, t) ∈ Rn+1
+ .

In general, if f ∈ Lp(Rn), 1 < p < +∞, then the Poisson extension of f , u(x, t),
is harmonic in Rn+1

+ and limt→0 u(·, t) = f ∈ Lp(Rn) where the limit is taken Lp-
sense. The function u(x, t) also converges to f (x) for almost every x ∈ Rn, as
t→ 0+. The same is true if p = ∞ and f ∈ Co(Rn) ⊂ L∞(Rn), in which case u(·, t)
converges to f uniformly as t→ 0+.

If one considers the Dirichlet problem in the upper half plane, a natu-
ral question is that of uniqueness. That is, given a boundary value f on Rn

we want to find a function u which is harmonic in Rn+1
+ , continuous up to the

boundary, and equals f on Rn. If we further ask that u is bounded in Rn+1
+ , then

the solution is unique (and given by the Poisson extension of f ). However, un-
less some additional assumption is place u (such as boundedness), the previous
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result fails. For example, both the functions u1(x, t) = t and u2(x, t) = 0 are har-
monic in Rn+1

+ and continuous through the boundary, where they both vanish.
See [SW] for more details on Poisson extensions and properties of harmonic
functions.

3.2. The Fourier transform of the Schwartz class

In this section we go back to the space of Schwartz functions S(Rn) and we
define the Fourier transform on this space. This will turn out to be extremely
useful and flexible. The reason for this is the fact that Schwartz functions
are much “nicer” than functions that are just integrable. On the other hand,
Schwartz functions are dense in all Lp spaces, p < ∞, so many statements es-
tablished initially for Schwartz functions go through in the more general setup
of Lp spaces. A third reason is the dual of the space S(Rn), the space of tem-
pered distributions, is rich enough to allow us to define the Fourier transform
of much rougher objects than integrable functions

3.2.1. The space of Schwartz functions as a Fréchet space. We recall
that the space of Schwartz functions S(Rn) consists of all smooth (i.e. infinitely
differentiable) functions f : Rn

→ C such that the function itself together with
all its derivatives decay faster than any polynomial at infinity. To make this
more precise it is useful to introduce the seminorms pN defined for any non-
negative integer N as

pN( f ) B sup
|α|≤N,|β|≤N

sup
x∈Rn
|xα∂β f (x)|,

where α, β ∈Nn
o are multi-indices and as usual we write |α| = α1 + · · ·+αn. Thus

f ∈ S(Rn) if and only if f ∈ C∞(Rn) and pN( f ) < +∞ for N ∈No.
It is clear that S(Rn) is a vector space. We have already seen that a basic

example of a function in S(Rn) is the Gaussian f (x) = e−π|x|2 and it is not hard
to check that the more general Gaussian function f (x) = e−〈Ax,x〉, where A is a
positive definite real matrix, is also in S(Rn). Furthermore, the product of two
Schwartz functions is again a Schwartz function and the space S(Rn) is closed
under taking partial derivatives or multiplying by complex valued polynomials
of any degree. As we have already seen (and it’s obvious by the definitions) the
space of infinitely differentiable functions with compact support is contained
in S(Rn), D(Rn) = C∞c (Rn) ⊂ S(Rn), and each one of these spaces is a dense
subspace of Lp(Rn) for any 1 ≤ p < ∞ and also in Co(Rn), in the corresponding
topologies.

The seminorms defined above define a topology in S(Rn). In order to study
this topology we need the following definition:

DEFINITION 3.32. A Fréchet space is a locally convex topological vector
space which is induced by a complete invariant metric.

A translation invariant metric on S(Rn). It is not hard to actually define
a metric on S(Rn) which induces the topology. Indeed for two functions f , g ∈
S(Rn) we set

ρ( f , g) =

∞∑
N=0

1
2N

pN( f − g)
1 + pN( f − g)

.

http://en.wikipedia.org/wiki/Positive-definite_matrix
http://en.wikipedia.org/wiki/Frechet_space
http://en.wikipedia.org/wiki/Locally_convex
http://en.wikipedia.org/wiki/Topological_vector_spaces
http://en.wikipedia.org/wiki/Topological_vector_spaces
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The function ρ : S(Rn) × S(Rn)→ [0,+∞) is translation invariant, symmet-
ric and it separates the elements of S(Rn). The metric ρ induces a topology in
S(Rn); a set U ⊂ S(Rn) is open if and only if there exists exists f ∈ U and ε > 0
such that

Bρ( f , ε) := {g ∈ S(Rn) : ρ( f , g) < ε} ⊂ U.
Convergence in S(Rn). By definition, a sequence {φk}k∈N ⊂ S(Rn) converges

to 0 if ρ(φk, 0)→ 0 as k→∞. A more handy description of converging sequences
in S(Rn) is given by the following lemma.

LEMMA 3.33. A sequence {φk}k∈N ⊂ S(Rn) converges to 0 if and only if

pN(φk)→ 0 as k→∞,

for all N ∈No.

PROOF. First assume that ρ(φk, 0)→ 0 as k→∞. Then, since
∞∑

N=1

1
2N

pN(φk)
1 + pN(φk)

converges to zero as k → ∞ and all summands are positive, we conclude that
for every N we have that

pN(φk)
1 + pN(φk)

→ 0,

as k → ∞. However, this easily implies that pN(φk) → 0 as k → ∞, for every
N ∈No.

Assume now that pN(φk) → 0 as k → ∞ for every N ∈ No and let ε > 0. We
choose a positive integer M such that 2−M < ε

2 .
Thus,

ρ(φk, 0) =

M∑
N=1

1
2N

pN(φk)
1 + pN(φk)

+

∞∑
N=M+1

1
2N

pN(φk)
1 + pN(φk)

≤

M∑
N=1

1
2N

pN(φk)
1 + pN(φk)

+
ε
2
.

Now, every term in the finite sum of the first summand converges to 0 as k→∞
and we get that ρ(φk, 0)→ 0 as k→∞. �

S(Rn) is a topological vector space. The topology induced by ρ turns S(Rn)
into a topological vector space. To see this we need to check that addition
of elements in S(Rn) and multiplication by complex constants are continuous
with respect to ρ. This is very easy to check and is left as an exercise.

Local convexity. For ε > 0 and N ∈No consider the family of sets

Uε,N := { f ∈ S(Rn) : pN( f ) < ε}.

We claim that {Uε,N}ε>0,N∈No is a neighborhood basis of the point 0 for the
topology induced by ρ. Indeed, the system Bρ(0, ε) defines a neighborhood basis
of 0. On the other hand it is implicit in the proof of Lemma 3.33 that for every
ε > 0 there is some ε′ > 0 and some N > 0 such that Uε′,N ⊂ Bρ(0, ε). This proves
the claim.

Now, in order to show that S(Rn) endowed with the topology induced by ρ
is locally convex it suffices (by translation invariance) to show that the point
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0 has a neighborhood basis which consists of convex sets. This is clear for
the neighborhood basis Uε,N defined above since the seminorms pN are positive
homogeneous. Observe however that the balls Bρ(0, ε) are not convex.

EXERCISE 3.34. Show that the balls Bρ(0, ε), ε > 0, are not convex sets.

Completeness. The space S(Rn) is a complete topological vector space with
the topology induced by ρ. If {φk}k is a Cauchy sequence in S(Rn) then for every
α, β ∈Nn

o , the sequence
xα∂βφk

is a Cauchy sequence in the space Co(Rn), with the topology induced by the
supremum norm. Since this space is complete we conclude that φk converges
uniformly to some φ ∈ Co(Rn). A standard uniform convergence argument
shows now that φ ∈ S(Rn).

REMARK 3.35. In general, a sequence {φk}k in a topological vector space
is called a Cauchy sequence if for every open neighborhood of zero U, there
exists some positive integer N so that φk − φk′ ∈ U for all k, k′ > N. If the
topology is induced by a translation invariant metric, this definition coincides
with the more familiar one, that is: for every ε > 0 there exists N > 0 such that
ρ(φk, φk′ ) < ε whenever k, k′ > N.

The discussion above gives the following:

THEOREM 3.36. The space S(Rn), endowed with the metric ρ and the topol-
ogy induced by ρ, is a Fréchet space.

We now give a general lemma that describes continuity of linear operators
acting on S(Rn).

LEMMA 3.37. Let (X, ‖ · ‖X) be a Banach space.
(i) A linear operator T : S(Rn)→ X is continuous if and only if there exists

N ≥ 0 and C > 0 such that

(3.6) ‖T(φ)‖X ≤ CpN(φ),

for all φ ∈ S(Rn).
(ii) Let T : S(Rn) → S(Rn) be a linear operator. Then T is continuous if

and only if for each N > 0 there exists N′ > 0 and C > 0 such that

(3.7) pN(T(φ)) ≤ CpN′ (φ),

for all φ ∈ S(Rn).

PROOF. For (i) it is clear that T is continuous if (3.6) holds. On the other
hand, suppose that T : S(Rn)→ X is continuous and let BX(0, 1) be the open ball
of center 0 and radius 1 in X. Then T−1(BX(0, 1)) is an open neighborhood of 0 in
S(Rn) and hence it contains some Uε,N. Thus pN(φ) < ε implies that ‖T(φ)‖X < 1.
Now we have that

‖T(φ)‖X =
2
ε
|pN(φ)|

∥∥∥∥∥T
(

ε
2pN(φ)

φ
)∥∥∥∥∥ . pN(φ).

Similarly, if T : S(Rn) → S(Rn) is continuous then for every N, ε there is
N′, ε′ so that

T−1(UN,ε) ⊃ UN′,ε′ .

This implies (3.7) using the same trick we used to deduce (3.6). �
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It is obvious that for every 0 < p ≤ ∞, S(Rn) ⊂ Lp(Rn). Let us show however
that this embedding is also continuous:

PROPOSITION 3.38. Let 0 < p ≤ ∞. Then the identity map Id : S(Rn) →
Lp(Rn) is continuous, that is, there exists N so that

‖ f ‖Lp(Rn) .p,n pN( f ),

for all f ∈ S(Rn).

PROOF. Let f ∈ S(Rn). For p < ∞ and N > n/p we have that

‖ f ‖Lp(Rn) ≤

( ∫
|x|≤1
| f (x)|pdx

) 1
p

+
( ∫
|x|>1
| f (x)|pdx

) 1
p

≤ ‖ f ‖L∞ |B(0, 1)|
1
p + sup

x∈Rn
|x|N | f (x)|

( ∫
|x|>1
|x|−Npdx

) 1
p

.n,p pN( f ).

If p = ∞ observe that ‖ f ‖∞ = p0( f ) so there is nothing to prove. �

3.2.2. The Fourier transform on the Schwartz class. Since S(Rn) ⊂
L1(Rn) there is no difficulty in defining the Fourier transform on S(Rn) by
means of the formula

F ( f )(ξ) = f̂ (ξ) =

∫
Rn

f (x)e−2πix·ξdx, f ∈ S(Rn), ξ ∈ Rn.

All the properties of F that we have seen in the previous sections are of course
valid for the Fourier transform on S(Rn). As we shall now see, there is much
more we can say for the Fourier transform on S(Rn).

For f ∈ S(Rn) and every polynomial P we have that P(−2πix) f ,P(∂α) f ∈
S(Rn). Using the commutation relations

F (P(−2πix) f )(ξ) = P(∂αξ) f̂ (ξ),

F (P(∂αx ) f )(ξ) = P(2πiξ) f̂ (ξ),

we see that f̂ ∈ S(Rn). Furthermore, since S(Rn) ⊂ L1(Rn) we can use the
inversion formula to write

f (x) =

∫
Rn

f̂ (ξ)e2πix·ξdξ = F −1( f̂ ) = F −1
F f .

This shows that F : S(Rn) → S(Rn) is onto and of course it is a one to one
operator as we have already seen. Finally let us see that it is also a continuous
map. To see this observe that

pN( f̂ ) = sup
|α|,|β|≤N

‖ξα∂β f̂ ‖L∞(Rn) = sup
|α|,|β|≤N

|2π|−|α|‖F (∂αx (−2πix)β f )‖L∞(Rn)

≤ sup
|α|,|β|≤N

|2π||β|−|α|‖∂αx xβ f ‖L1(Rn) .N sup
|α|,|β|≤N

‖xβ∂αx f ‖L1(Rn)

≤ sup
|α|,|β|≤N

pM(xβ∂α f ),
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for every M > n, by Proposition 3.38. However, sup
|α|,|β|≤N pM(xβ∂α f ) ≤ pM+N( f )

so we get that
pN( f̂ ) .N pM+N( f ),

for every M > N which shows that F : S(Rn)→ S(Rn) is continuous.
We have thus proved the following:

THEOREM 3.39. The Fourier transform is a homeomorphism of S(Rn) onto
itself. The operator

F
−1 : S(Rn)→ S(Rn), g 7→ F −1(g)(x) =

∫
Rn

f (ξ)e2πix·ξdξ,

is the continuous inverse of F on S(Rn):

FF
−1 = F −1

F = Id,

on S(Rn).

We immediately get Plancherel’s identities:

COROLLARY 3.40. Let f , g ∈ S(Rn). We have that∫
Rn

f (x)g(x)dx =

∫
Rn

f̂ (ξ)ĝ(ξ)dξ.

In particular, for every f ∈ S(Rn) we have that

‖ f̂ ‖L2(Rn) = ‖ f ‖L2(Rn).

PROOF. Using the multiplication formula for the Fourier transform we can
write ∫

f ĝ =

∫
f̂ g,

for f , g ∈ L1(Rn) and thus for f , g ∈ S(Rn). Now let f , g ∈ S(Rn) and apply this
formula to the functions f , h ∈ S(Rn) where h = ¯̂g. Observing that ˆ̂̄g = ḡ we get
the first of the identities in the corollary. Applying this identity to the functions
f and g = f we also get the second. �

We also get a nice proof of the fact that convolution of Schwartz functions
is again a Schwartz function.

COROLLARY 3.41. Let f , g ∈ S(Rn). Then f ∗ g ∈ S.

PROOF. For f , g ∈ S(Rn) we have that f̂ ∗ g = f̂ ĝ. Since f̂ , ĝ ∈ S we conclude
that f̂ ∗ g ∈ S(Rn) and thus that f ∗ g ∈ S(Rn). �

3.3. The Fourier transform on L2(Rn)

We have already seen that the Fourier transform is defined for functions
f ∈ L1(Rn) by means of the formula

f̂ (ξ) =

∫
Rn

f (x)e−2πix·ξdx.

While this integral converges absolutely for f ∈ L1(Rn), this is not the case in
general for f ∈ L2(Rn). However, Corollary 3.40 says that the Fourier transform
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is a bounded linear operator on S(Rn) which is a dense subset of L2(Rn) and in
fact we have that

‖ f ‖L2(Rn) = ‖ f̂ ‖L2(Rn)(3.8)

for every f ∈ S(Rn). As we have seen several times already, this means that the
Fourier transform has a unique bounded extension, which we will still denote
by F , throughout L2(Rn). In fact the Fourier transform F is an isometry on
L2(Rn) as identity (3.8) shows.

DEFINITION 3.42. A linear operator S : L2(Rn)→ L2(Rn) which is an isom-
etry and maps onto L2(Rn) is called a unitary operator.

COROLLARY 3.43. The Fourier transform is a unitary operator on L2(Rn).

The definition of the Fourier transform on L2 given above suggests that
given f ∈ L2(Rn), one should find a sequence {hk}k ⊂ S(Rn) such that hk → f in
L2 and define

(F f )S(ξ) = f̂ (ξ) = L2
− lim

k→∞

∫
Rn

hk(x)e−2πix·ξdx.

This, however, is a bit too abstract. The following lemma gives us an alterna-
tive way to calculate the Fourier transform on L2(Rn).

LEMMA 3.44. Let f ∈ L2(Rn). The following formulas are valid

f̂ (ξ) = L2
− lim

R→+∞

∫
|x|≤R

f (x)e−2πix·ξdx,

f (x) = L2
− lim

R→+∞

∫
|ξ|≤R

f̂ (ξ)e2πix·ξdξ,

where the notation above means that the limits are considered in the L2 norm.

PROOF. Given f ∈ L2(Rn) let us define the functions

fR(x) =

 f (x), if |x| ≤ R,
0, if |x| > R.

Then on the one hand we have that limR→+∞ fR = f in L2(Rn). On the other
hand the functions fR belong to L1(Rn) for all R > 0 so we can write

f̂R(ξ) =

∫
|x|≤R

f (x)e−2πix·ξdx, ξ ∈ Rn.

Since the Fourier transform is an isometry on L2(Rn) we also have that f̂R → f̂
as R→ +∞ in L2(Rn). The proof of the second formula is similar. �

3.4. The Fourier transform on Lp(Rn) and Hausdorff-Young

Having defined the Fourier transform on L1(Rn) and on L2(Rn) we can now
interpolate between these two spaces. Indeed, we have established that

F : L1(Rn) + L2(Rn)→ L2(Rn) + L∞(Rn),

and that F is of strong type (1,∞) and of strong type (2, 2), with norm 1 in both
cases. We have also seen that it is well defined on the simple functions with
finite measure support and on the Schwartz class, both dense subsets of all Lp

spaces for p < ∞. Setting 1
p = 1−θ

2 + θ
2 we get θ = 2

p′ where p′ is the dual exponent
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of p. This shows that 1
q = 1−θ

2 + θ
∞

= 1
p′ . The Riesz-Thorin interpolation theorem

now applies to show the following:

THEOREM 3.45 (Hausdorff-Young Theorem). For 1 ≤ p ≤ 2 the Fourier
transform extends to a bounded linear operator

F : Lp(Rn)→ Lp′ (Rn),

of norm at most 1, that is we have

‖F f ‖Lp′ (Rn) ≤ ‖ f ‖Lp(Rn), f ∈ Lp(Rn), 1 ≤ p ≤ 2.

REMARK 3.46. This is one instance where the Riesz-Thorin interpolation
theorem fails to give the sharp norm, although the endpoint norms are sharp.
Indeed, the actual norm of the Fourier transform is

‖F ‖Lp→Lp′ =
p

1
2p

p′
1

2p′
< 1, 1 ≤ p ≤ 2.

This is a deep theorem that has been proved firstly by K.I. Babenko in the
special case that p is an even integer and then by W. Beckner in the general
case.

EXERCISE 3.47. Let f be a general Gaussian function of the form

f (x) = ce2πix·ξo e−〈A(x−xo),x−xo〉,

for some positive definite real matrix A : Rn
→ Rn. Show that

‖F f ‖Lp′ (Rn) =
p

1
2p

p′
1

2p′
‖ f ‖Lp(Rn).

Observe that this gives a lower bound on the norm ‖F ‖Lp→Lp′ .
Hint: Write f as a composition of translations, modulations and general-

ized dilations of the basic Gaussian function e−π|x|2 .

REMARK 3.48. The inversion problem for Lp, 1 < p < 2 has a similar so-
lution as the L1 case. One can easily see that the Φ means of f̌ converge to f
in Lp as well as for every Lebesgue point of f if Φ is appropriately chose. In
particular this is the case for the Abel or Gauss means of f̌ .

We also have the following extension on the action of the Fourier transform
on convolutions.

PROPOSITION 3.49. Let f ∈ L1(Rn) and g ∈ Lp(Rn) for some 1 ≤ p ≤ 2. Then,
as we know, the function f ∗ g belongs to Lp(Rn). We have that

̂( f ∗ g)(x) = f̂ (x)ĝ(x),

for almost every x ∈ Rn.

We close this section by discussing the possibility of other mapping prop-
erties of the Fourier transform, besides the ones given by the Hausdorff-Young
theorem. In particular we have seen that the Fourier transform is of strong
type (p, p′) for all 1 ≤ p ≤ 2. But are there any other pairs (p, q) for which the
Fourier transform is of strong, or even weak type (p, q)?

The easiest thing to see is that whenever F is of type (p, q) we must have
that q = p′.
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EXERCISE 3.50. Suppose that F is of weak type (p, q). Show that we must
necessarily have q = p′.

Hint: Exploit the scale invariance of the Fourier transform; in particular
remember the symmetry FDilp

λ = Dilp′

λ−1F .

The previous exercise thus shows that the only possible type for F is of
the form (p, p′). The Hausdorff-Young theorem shows that this is actually true
whenever 1 ≤ p ≤ 2. It turns out however that the bound (p, p′) fails for p > 2.
The following exercise describes one way to prove this.

EXERCISE 3.51. Show that F is not of strong type (p, p′) when p > 2.

(i) Let N be a large positive integer and g(x) = e−π|x|2 . For y ∈ Rn consider
the function

f (x) =

N∑
j=1

e2πix· jyg(x − jy), x ∈ Rn.

Show that

f̂ (ξ) =

N∑
j=1

e−2πiξ· jy ĝ(ξ − jy).

(ii) For any 1 ≤ p ≤ ∞ show that

‖ f ‖Lp(Rn) 'p N
1
p ,

if N and |y| are large enough. For this show first the endpoint bounds
for p = 1 and p = ∞. This will also give you the intermediate upper
bounds by log-convexity. For the lower bounds, consider the values of
f close to integer multiples of y.

(iii) The previous steps show that

‖ f̂ ‖Lp′ (Rn) 'p N
1
p′ −

1
p ‖ f ‖Lp(Rn),

which allows you to conclude the proof.

3.5. The space of tempered distributions S′(Rn)

The purpose of this paragraph is to introduce a space of “generalized func-
tions” that is much larger than all the spaces we have seen so far, namely
the space of tempered distributions. Let us begin with an informal discussion,
drawing some analogies with some more classical function spaces.

We have seen already that whenever 1 ≤ p < ∞ and the underlying mea-
sure is σ-finite, then the space Lp′ (Rn) can be identified with the dual (Lp(Rn))∗,
by means of the pairing:

g ∈ Lp′
7→ g∗ : Lp

→ C, g∗( f ) =

∫
Rn

f (x)g(x)dx.

This is already quite interesting. A function in Lp is already a generalized
object in the sense that it is only defined up to sets of measure zero; so, in fact,
it represents an equivalence class. Furthermore, it can be identified with a
linear functional acting on another function space.
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We have seen that the space S(Rn) is contained in every Lp space and fur-
thermore that it is dense in Lp(Rn) for all p < ∞. Restricting our attention to a
smaller class of functions, the space S(Rn), we get a larger dual space:

S(Rn) ⊂ Lp(Rn) =⇒ Lp′ (Rn) = (Lp(Rn))∗ ⊂ (S(Rn))∗.

We thus obtain a space of generalized functions that contains the classical Lp

spaces. As we shall see, this space is much bigger and in particular it allows
us to differentiate (in the appropriate sense) and remain in this class of gen-
eralized functions and, most notably, consider the Fourier transform of these
objects and still remain in the class. These operation many times are not even
available on Lp spaces; for example we cannot even define the Fourier trans-
form on Lp(Rn) for p > 2. Furthermore, even when there is a way to define these
operations on Lp functions we don’t necessarily stay in the given class of func-
tions. For example, while it is perfectly legitimate to define the Fourier trans-
form of an L1 function, the resulting function f̂ is not in general an integrable
function. We shall see that the fact that S(Rn) is closed under taking partial
derivatives, multiplying by polynomials and by taking the Fourier transform of
its elements, its dual space is also closed under the corresponding operations.

In what follows we will many times write S′ for the dual (S(Rn))∗ and 〈 f , g〉
for the pairing

∫
f ḡ.

DEFINITION 3.52. A linear functional λ : S(Rn) → C will be called a tem-
pered distribution if it is continuous on S(Rn) with respect to the topology on
S(Rn) described in the previous sections.

That is, the linear functional λ : S(Rn) → C is a tempered distribution if
and only if there exists some N ∈No and C > 0 such that

|λ(φ)| ≤ CpN(φ),

for all φ ∈ S(Rn).
We equip the space (S(Rn))∗ with the weak-* topology; a sequence of tem-

pered distributions λk converges to a limit λ if one has λk(φ) → λ(φ) for all
φ ∈ S(Rn). This is the weakest topology such that for each f ∈ S(Rn) the func-
tional

f ∗ : (S(Rn))∗ → C, f ∗(λ) = λ( f )

is continuous. The space (S(Rn))∗ equipped with this topology will also be de-
noted by S′(Rn).

In what follows we will also use the notation ( f , λ) = (λ, f ) for λ( f ) whenever
λ ∈ S′(Rn) and f ∈ S(Rn). Be careful not to confuse this pairing with 〈 f , g〉 =∫

f ḡ.

3.5.1. Examples of tempered distributions. We now describe several
examples of classes of tempered distributions. We begin by showing how we
can identify some known function classes with tempered distributions.

(i) Any element f ∈ Lp(Rn), 1 ≤ p ≤ ∞ can be identified with an element
λ f ∈ S

′(Rn) by means of the formula

λ f (φ) =

∫
Rn

f (x)φ(x)dx, φ ∈ S(Rn),

http://en.wikipedia.org/wiki/Weak-*_topology
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and the map Lp
3 f 7→ λ f is continuous. We will say in this case that

the tempered distribution λ f is an Lp function.
It is clear that λ f is linear. Furthermore we have that

|λ f (φ)| ≤ ‖ f ‖Lp(Rn)‖φ‖Lq(Rn) .p,n ‖ f ‖Lp(Rn)pN(φ),

for some non-negative integer N, by Proposition 3.38. By Lemma 3.37
this shows that λ f ∈ S

′(Rn). Furthermore, the mapping f 7→ λ f is
continuous. Indeed, if fk → f in Lp(Rn) we set λk = λ fk . We need to
show that λk → λ f in the weak-* topology, that is, that λk(φ)−λ f (φ)→
0 for every φ ∈ S(Rn). However this is a consequence of the previous
estimate.

(ii) Any element ψ ∈ S(Rn) can be identified with an element λψ ∈ S′(Rn)
by means of the formula

λψ(φ) =

∫
Rn
ψ(x)φ(x)dx, φ ∈ S(Rn),

and the map S(Rn) 3 ψ 7→ λψ is continuous. We will say in this case
that the tempered distribution λφ is an Schwartz function. The proof
is very similar to that of (i).

(iii) If µ ∈ M(Rn) be a finite Borel measure. Then µ can be identified with
a tempered distribution λµ ∈ S′(Rn) by means of the formula

λµ(φ) =

∫
Rn
φ(x)dµ(x),

and the mapM(Rn) 7→ λµ is continuous. We will say in this case that
the tempered distribution λµ is a (finite Borel) measure. The proof is
the same as that of the preceding cases.

(iv) Let 1 ≤ p ≤ ∞. A measurable function f such that (1 + |x|2)−k f (x) ∈
Lp(Rn) for some non-negative integer k is called a tempered Lp-function.
Again the functional λ f is an element of S′(Rn). For p = ∞ such a
function is often called a slowly increasing function. Similarly a Borel
measure µ such that∫

Rn
(1 + |x|2)−kd|µ|(x) < +∞,

is called a tempered Borel measure and it defines an element of S′(Rn)
by setting

λµ(φ) =

∫
Rn
φ(x)dµ(x).

We will say that the tempered distribution λµ is a tempered Borel
measure.

EXERCISE 3.53. Show that if µ is a tempered Borel measure then λµ ∈
S
′(Rn) and the map µ 7→ λµ is continuous. Conclude the corresponding state-

ment if f is a tempered Lp function. Observe that f (x)dx defines a tempered
measure.

EXERCISE 3.54. Show that a Borel measure µ is a tempered measure if
and only if it is of polynomial growth: for every R > 0 we have that

µ(B(0,R)) . Rk,
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for some positive integer k and all R ≥ 1. In particular, µ is locally finite.

REMARK 3.55. From the previous definitions one gets the impression that
the term “tempered” is closely connected to “of at most polynomial growth”.
This is in some sense correct since all functions or measures of at most poly-
nomial growth define tempered distributions. On the other hand, the opposite
claim is not true. Indeed, observe that the function sin(ex) is a slowly increas-
ing function (actually it is bounded) and thus defines a tempered distribution.
Thus, the derivative of this function, ex cos(ex) is also a tempered distribution
although it grows exponentially fast.

All the previous examples identify functions and measures (of moderate
growth) with tempered distributions and the embeddings are continuous. How-
ever the space S′(Rn) also contains “rougher” objects which are neither func-
tions nor measures.

EXERCISE 3.56. Show that the functional δ′0 : φ 7→ −φ′(0) for all φ ∈ S(Rn)
is a tempered distribution which does not arise from a tempered measure (and
thus it does not arise from a tempered function either).

EXAMPLE 3.57 (The principal value distribution). We define the functional
p.v. 1

x as

(p.v.
1
x
φ) := lim

ε→0

∫
|x|>ε

φ(x)
x

dx.

Then p.v. 1
x ∈ S(R).

To see that p.v. 1
x ∈ S

′(Rn) let us fix some 0 < ε < 1 and φ ∈ S(Rn) and write∫
|x|>ε

φ(x)
x

dx =

∫
ε<|x|<1

φ(x) − φ(0)
x

dx +

∫
|x|>1

φ(x)
x

dx.

Now observe that
∣∣∣φ(x)−φ(0)

x

∣∣∣ ≤ ‖φ′‖∞ thus the limit of the first summand as ε→ 0
exists and

(p.v.
1
x
φ) =

∫
|x|<1

φ(x) − φ(0)
x

dx +

∫
|x|>1

φ(x)
x

dx.

Moreover we have that

|(p.v.
1
x
φ)| . ‖φ′‖∞ + ‖xφ‖∞ ≤ p1(φ).

Furthermore this distribution does not arise from any locally finite Borel mea-
sure. For this consider a Schwartz function φ adopted to an interval of the
form (δ, 1) for δ→ 0.

EXERCISE 3.58 (The principal value distribution in many dimensions). Let
K : Rn

→ C be a homogeneous function of degree −n. This means that

K(λx) = λ−nK(x), λ > 0.

(i) Show that there exists a function Ω : Sn−1
→ C such that K(x) = Ω(x′)/|x|n

where x′ = x/|x| ∈ Sn−1.
(ii) Assume that Ω ∈ L1(Sn−1) and

∫
Sn−1 Ω(x′)dσn−1(x′) = 0. For φ ∈ S(Rn) we

define
p.v.K(φ) = lim

ε→0

∫
|x|>ε

K(x)φ(x)dx.
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Show that the limit in the previous definition the limit exists and that p.v.K
defines a tempered distribution.

3.5.2. Basic operations on the space of tempered distributions. We
have already seen that the space S(Rn) is closed under several basic operations:
differentiation, multiplying by polynomials, multiplying by Schwartz functions
and, most notably, the Fourier transform. The space of tempered distributions
has very similar properties:

3.5.2.1. Derivatives inS′(Rn): We begin the discussion by considering φ,ψ ∈
S(Rn) and writing down the integration by parts formula∫

Rn
(∂βψ)(x)φ(x)dx = (−1)|β|

∫
Rn
ψ(x)(∂βφ)(x)dx.

According to the previous definitions we can rewrite the previous formula as

(∂βψ,φ) = (−1)|β|(ψ, ∂βφ),

or
λ∂βψ(φ) = (−1)|β|λψ(∂βφ).

The right hand side of the previous identity though makes sense for any λ ∈
S
′(Rn) in the place of λψ. Also, for λ ∈ S′(Rn) the mapping φ 7→ λ(∂βφ) is

continuous since λ is continuous and the map φ 7→ ∂βφ is continuous. We thus
define the partial derivative ∂βλ of any λ ∈ S′(Rn) by means of

(∂βλ)(φ) B (−1)|β|λ(∂βψ).

The previous discussion implies that ∂βλ ∈ S′(Rn).

EXAMPLE 3.59. Let f be the tempered L∞ function defined as

f (x) =

0, x < 0,
1, x ≥ 0.

The function f is many times called the Heaviside step function. Clearly f
defines a tempered distribution λ f in the usual way

λ f (φ) =

∫
R

f (x)φ(x)dx, φ ∈ S(R).

For every φ ∈ S(R) we then have

λ′f (φ) = −λ f (φ′) = −

∫
R

f (x)φ′(x)dx = −

∫
∞

0
φ′(x)dx = φ(0) =

∫
R

φ(x)dδ0(x).

That is λ′f = dδ0.

REMARK 3.60. The fact that the distributional derivative of the Heaviside
step function is the Dirac mass at 0 is intuitively obvious. The function f
is differentiable everywhere except at 0 and f ′(x) = 0 whenever x , 0. On
the other hand there is a jump discontinuity of weight equal to 1 at 0 which
roughly speaking requires an infinite derivative to be realized. In general,
a jump discontinuity of weight a at a point xo has a distributional derivative
which coincides with Dirac mass of weight a at the point xo .
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EXAMPLE 3.61. Let δ0 be a Dirac mass at 0. We then have

(∂βδ0)(φ) = (−1)|β|δ0(∂βφ) = (−1)|β|∂βφ(0).

This also explains the minus sign in Exercise 3.56.

EXERCISE 3.62. In dimension n = 1 show that:
(i) The distributional derivative of the signum function sgn(x) B x/|x| is

2δ0.
(ii) The distributional derivative of the locally integrable function log |x|

is equal to p.v. 1
x .

(iii) The distributional derivative of the locally integrable function |x| is
equal to sgn(x).

3.5.2.2. Translations, Modulations, Dilations and reflections in S′(Rn): We
have see that the translation operator τh maps a measurable function f to
the function f (· − h), where h ∈ Rn. A trivial change of variables shows that
whenever fφ ∈ L1(Rn) we have that∫

Rn
(τh f )(x)φ(x)dx =

∫
Rn

f (x)(τ−hφ)(x)dx.

Now assume that f is a tempered Lp function (say). In the language of distri-
butions we can rewrite the previous identity as

λτh f (φ) = λ f (τ−hφ),

for all φ ∈ S(Rn). Again, the right hand side of this identity is well defined for
any λ ∈ S′(Rn) and we define the translation of any distribution λ ∈ S′(Rn) as

(τhλ)(φ) B λ(τ−hφ), φ ∈ Rn.

It is easy to see that τhλ ∈ S′(Rn).
Similarly we define for λ ∈ S′(Rn) and φ ∈ S(Rn) the tempered distributions

λ̃(φ) B λ(φ̃),

(Mody)λ(φ) B λ(Modyφ),

(Dilp
t )λ(φ) B λ(Dilp′

t−1φ), t > 0.

3.5.2.3. Convolution in S′(Rn): Let f , g, h ∈ S(Rn). Then it is an easy appli-
cation of Fubini’s theorem that∫

Rn
( f ∗ g)(x)h(x)dx =

∫
Rn

f (x)(g̃ ∗ h)(x)dx,

where g̃(x) = g(−x) is the reflection of g. In the language of distributions the
previous identity reads

λ f ∗g(h) = λ f (g̃ ∗ h), h ∈ S(Rn).

Now the right hand side of the previous identity is well defined whenever g∗h ∈
S(Rn) while in order to define the distribution f ∗ g we need to have that h ∈
S(Rn). Now assume that g is a function such that g∗φ ∈ S(Rn) for all φ ∈ S(Rn).
This is obviously the case if g ∈ S(Rn). Thus we can define the convolution of
any λ ∈ S′(Rn) with a function g ∈ S(Rn) by means of the formula

(λ ∗ g)(φ) B λ(g̃ ∗ φ), φ ∈ S(Rn).
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It is easy to see that the function λ ∗ g is continuous as a composition of the
continuous maps φ 7→ g̃∗φ and ψ 7→ λ(ψ) thus λ∗g ∈ S′(Rn) for every λ ∈ S′(Rn)
and g ∈ S(Rn).

EXERCISE 3.63. Actually, the condition g ∈ S(Rn) is a bit too much to ask
if one just wants to define the convolution λ ∗ g. As we have observed, the
only requirement is that g ∗ φ ∈ S(Rn) whenever φ ∈ S(Rn). Suppose that g
is a rapidly decreasing function, that is |x|k f (x) ∈ L∞(Rn) for all k = 0, 1, 2, . . ..
Show the convolution of λ ∈ S′(Rn) and g can be defined and that it is again an
element of S′(Rn).

It turns out that the convolution of a tempered distribution with a Schwartz
function is a function:

THEOREM 3.64. Let λ ∈ S′(Rn) and h ∈ S(Rn). Then the convolution λ ∗ h is
the function f given by the formula

(λ ∗ h)(x) = λ(τxh̃), x ∈ Rn.

Moreover, f ∈ C∞(Rn) and for all multi-indices α the function ∂α f is slowly
increasing.

For the proof of this theorem see [SW].
3.5.2.4. The Fourier transform on S′(Rn): We now come to the definition

and action of the Fourier transform on tempered distribution. As in all the
other definitions, first we investigate what happens in the case the tempered
distribution is a Schwartz function. So, letting φ, f ∈ S(Rn) the multiplication
formula implies that ∫

Rn
φ(x) f̂ (x)dx =

∫
Rn
φ̂(x) f (x)dx.

In the language of tempered distributions we have that

λ f̂ (φ) = λ f (φ̂).

Observing once more that the right hand side is well defined for all φ ∈ S(Rn)
and that the map S(Rn) 3 φ 7→ λ(φ̂) is well defined and continuous we define
the Fourier transform of any tempered distribution λ ∈ S′(Rn) as

F (λ)(φ) = λ̂(φ) B λ(φ̂), φ ∈ S(Rn).

We have that λ̂ ∈ S′(Rn) whenever λ ∈ S′(Rn). It is also trivial to define the
inverse Fourier transform of a tempered distribution as

F
−1(λ)(φ) B λ̌(φ) = λ(φ̌),

and to show that F is a homeomorphism of S′(Rn) onto itself. Also the operator
F : S′(Rn) → S′(Rn) satisfies all the symmetry properties that the classical
Fourier transform satisfies and commutes with derivatives in the same way.

EXAMPLE 3.65 (The Fourier transform of |x|−2 inR3). We consider the func-
tion

f (x) =
1
|x|2

, x ∈ R3.

Note that f is locally integrable in R3 and it decays at infinity thus it can be
identified with a tempered distribution which we will still call f . On the other
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hand f is not in any Lp space so we can’t consider its Fourier transform in
the classical sense. We claim that the Fourier transform of f in the sense of
distributions is given as

f̂ (ξ) =
π
|ξ|
.

First of all observe that it suffices to show that

(3.9)
∫
R3

1
|x|2

φ̂(x)dx =

∫
R3

π
|ξ|
φ(ξ)dξ,

for all φ ∈ S(R3). Here it is convenient to express the function 1/|x|2 as an
average of functions with known Fourier transforms. Indeed, this can be done
by means of the identity

1
2π|x|2

=

∫
∞

0
te−πt2

|x|2 dt,

which can be proved by simple integration by parts. Now fix a function φ ∈
S(R3). We have that∫

R3

1
|x|2

φ̂(x)dx = 2π
∫
R3

∫
∞

0
te−πt2

|x|2 dt φ̂(x)dx

= 2π
∫
∞

0
t
( ∫
R3

e−πt2
|x|2 φ̂(x)dx

)
dt,

by an application of Fubini’s theorem since the function te−πt2
|x|2 φ̂(x) is an inte-

grable function on (0,∞)×R3. The inner integral can be calculated now by using
the multiplication formula and the (known) Fourier transform of a Gaussian.
Indeed we have ∫

R3
e−πt2

|x|2 φ̂(x)dx =

∫
R3

1
t3 e−π

|x|2

t2 φ(x)dx.

Putting the last two identities together we get∫
R3

1
|x|2

φ̂(x)dx = 2π
∫
∞

0

( ∫
R3

1
t2φ(x)e−π|x|

2/t2
dx

)
dt.

Now observe that by changing variables s = |x|/t we have∫
∞

0

1
t2 e−π|x|

2/t2
dt =

1
|x|

∫
∞

0
e−πs2

ds =
1

2|x|
,

and thus ∫
∞

0

∫
R3
|φ(x)|

1
t2 e−π|x|

2/t2
dt =

∫
R3
|φ(x)|

1
|x|

dx < ∞,

since |x|−1 is locally integrable in R3 and φ ∈ S(R3). A second application of
Fubini’s theorem then gives (3.9) and proves the claim.

EXAMPLE 3.66 (The Fourier transform of the principal value distribution).
It will be quite useful and instructive to calculate the Fourier transform of the
tempered distribution p.v. 1

x . We will show in this example that

F (p.v.
1
x

)(ξ) = −πi sgn(ξ).



62 3. THE FOURIER TRANSFORM AND THE SPACE OF TEMPERED DISTRIBUTIONS

Since this tempered distribution does not arise from a function this is not
completely straightforward. Instead we argue as follows. Let ε > 0 and set
ψε(x) B 1

x 1{|y|>ε}(x) and Qε(x) B x
ε2+x2 . We first show that

(3.10) lim
ε→0

(ψε −Qε) = 0 in S
′(Rn).

Indeed for φ ∈ S(Rn) we have

(Qε − ψε)(φ) =

∫
|x|>ε

φ(x)
x

dx −
∫
R

xφ(x)
ε2 + x2 dx

=

∫
|x|<ε

xφ(x)
ε2 + x2 +

∫
|x|>ε

( x
ε2 + x2 −

1
x

)
φ(x)dx

=

∫
|x|<1

xφ(εx)
1 + x2 dx −

∫
|x|>1

φ(εx)
x(1 + x2)

dx.

Taking limits as ε→ 0 and applying dominated convergence we get the differ-
ence of the integrals ∫

|x|<1

xφ(0)
1 + x2 dx,

∫
|x|>1

φ(0)
x(1 + x2)

dx

which are both identically 0 since the functions under the integral sign are odd,
and the domain of integration is symmetric around 0. This shows (3.10).

Now, by considering Fourier transforms in S′(Rn) and using the asymptotic
(3.10) we get that

F (p.v.
1
x

)(ξ) = lim
ε→0

Q̂ε(ξ).

Observe that the Fourier transform of Qε has to be understood in the sense of
distributions since Qε is not integrable.

Now one can show that Qε(x) = F −1(−πi sgn(ξ)e−2πε|ξ|)(x). Indeed we have

F
−1(−πi sgn(ξ)e−2πε|ξ|)(x) = −iπ

∫
R

sgn(ξ)e−2πε|ξ|e2πixξdξ

= πi
∫ 0

−∞

e2π(ε+ix)ξdξ − πi
∫ +∞

0
e2π(−ε+ix)ξdξ

= πi
( 1

2π(ε + ix)
+

1
2π(−ε + ix)

)
= πi

2ix
2π(−x2 − ε2)

=
x

x2 + ε2 .

The fact that the inverse Fourier transform of the function −πi sgn(ξ)e2πiε|ξ| is
Qε and the injectivity of the Fourier transform on S′(Rn) imply that Q̂ε(ξ) =

−πi sgn(ξ)e2πε|ξ| in the sense of distributions. Now clearly limε→0 Q̂ε(ξ) = −i sgn(ξ)
so we are done.

EXERCISE 3.67. The purpose of this exercise is to show that the Fourier
transform in the sense of distributions acts on convolutions as the usual Fourier
transform.

(i) Let f be a smooth function such that for all multi-indices α the partial
derivatives ∂α f have at most polynomial growth: |∂α f (x)| . (1 + |x|2)k,
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for some k ≥ 0. Then the product of a tempered distribution λ ∈ S′(Rn)
with f is well defined by means of the formula

(λ f )(φ) = λ( fφ), φ ∈ S(Rn),

and λ f ∈ S′(Rn).
(ii) If λ ∈ S′(Rn) and f ∈ S(Rn) then show that

λ̂ ∗ f = λ̂ f̂ in S
′(Rn).

REMARK 3.68. The definition of the Fourier transform on S′(Rn) implies
that whenever f ∈ Lp(Rn), 1 ≤ p ≤ 2 we have that

λ̂ f = λ f̂ .

Thus the Fourier transform on tempered distributions is an extension of the
classical definition of the Fourier transform. If on the other hand f ∈ Lp(Rn)
for some 2 < p ≤ ∞ then f is a tempered Lp function and thus λ f is a tempered
distribution. This allows us to define the Fourier transform of f by looking at f
as a tempered distribution. The discussion that followed the Hausdorff-Young
theorem however suggests that λ̂ f will not be a function in general.

EXERCISE 3.69 (Poisson summation formula). For f ∈ S(Rn) we define

Λ( f ) =
∑

k=(k1,...,kn)∈Zn

f (k).

Note that Λ can be identified with the sum of a unit masses positioned on every
point of the integer lattice Zd

Λ =
∑
k∈Zn

δk.

Show that Λ ∈ S′(Rn) and that FΛ = Λ.
Hints:

(a) First prove the case of dimension n = 1 by proving the following inter-
mediate statements.

(i) Show that Λ satisfies the invariances τ1Λ = Λ and Mod1Λ = Λ.
(ii) Consider a Schwartz function g ∈ S(R) with support in the inter-

val (− 1
4 ,

1
4 ) and g(0) = 1. If f ∈ S(R) has compact support show

that the function

h(x) =
f (x) −

∑
m∈Z f (m)τmg(x)

1 − e2πix

is a smooth function with compact support.
(iii) Let Λ′ be a tempered distribution which satisfies the invariances

τ1Λ
′ = Λ′ and Mod1Λ

′ = Λ′. Show that

Λ′( f −
∑
k∈Z

f (k)τk(g)) = 0

whenever f , g are as in step (ii). Conclude that

Λ′( f ) = cΛ( f )

for some c ∈ C, whenever f is a Schwartz function with compact
support. Extend this equality to all f ∈ S(R) by a density argu-
ment.
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(iv) Step (iii) essentially shows that any tempered distribution that
has the symmetries in (i) must agree with Λ up to a multiplica-
tive constant. Observe that FΛ satisfies the same invariances.
Conclude that Λ = cΛ̂ by step (i). Determine the numerical con-
stant c ∈ C by testing against the Schwartz function f (x) = e−πx2 .
This concludes the proof for the one dimensional case.

(b) For general n use Fubini’s theorem to show that

F = Fx1Fx2 · · · Fxn ,

where Fx j denotes the (one-dimensional) Fourier transform in the j−th
direction. Thus step (a) implies that

Fx jΛ = Λ,

for every j = 1, 2, . . . ,n. Conclude the proof by iterating this identity.

EXERCISE 3.70 (Equivalent form of Poisson summation formula). If f ∈
S(Rn) and x ∈ Rn then we have that∑

k∈Zn

f (x + k) =
∑
k∈Zn

f̂ (k)e2πix·k.

3.6. The Uncertainty principle

A typical manifestation of the uncertainty principle is the following “in-
verse Hölder” type of bound.

LEMMA 3.71 (Bernstein’s Inequality for a ball). Let f ∈ L1 + L2 and f̂ is
supported in a Euclidean ball B(0,R) ⊂ Rn. Then

(i) For any multi-index α we have

‖∂α f ‖Lp(Rn) .α R|α|‖ f ‖Lp(Rn).

(ii) For 1 ≤ p ≤ q ≤ +∞ we have

‖ f ‖Lq(Rn) . Rn( 1
p−

1
q )
‖ f ‖Lp(Rn).

In other words, if a function f is frequency localized then the lower Lp

norms control the higher Lp norms.

PROOF. For the first part let us consider some function φ ∈ S(Rn) such that
φ̂ is identically 1 on B(0, 1). Setting ψ B Dil1

R−1 φ we have that ψ̂(ξ) = Dil∞R φ̂(ξ) =

φ(ξ/R) thus ψ̂ is identically 1 on B(0,R). We then have f̂ = ψ̂ f̂ so that f = f ∗ ψ.
Furthermore for any r ∈ [1,∞] we have

‖ψ‖Lr(Rn) = ‖Dil1
R−1 φ‖Lr(Rn) = ‖φ‖Lr(Rn)R

n
r′ .

For the derivatives of ψ an easy application of the chain rule shows that

‖∇ψ‖L1(Rn) = R‖∇φ‖L1(Rn).

In the case |α| = 1 of (i) we then have α = (0, . . . , 0, α j, 0 . . . , 0) for some j ∈
{1, 2, . . . ,n} so that

‖∂α f ‖Lp(Rn) = ‖∂α( f ∗ ψ)‖Lp(Rn) = ‖ f ∗ ∂αψ‖Lp(Rn)

≤ ‖ f ‖Lp(Rn)‖∂
αψ‖L1(Rn) ≤ ‖∇φ‖L1(Rn)R‖ f ‖Lp(Rn)

. R‖ f ‖Lp(Rn).
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The case of a general multi-index α follows now by induction.
For (ii) let 1

p + 1
r = 1 + 1

q . Since f = f ∗ ψ we can apply Young’s inequality
from Proposition 2.28 to estimate

‖ f ‖Lq(Rn) = ‖ f ∗ ψ‖Lq(Rn) ≤ ‖ψ‖Lr(Rn)‖ f ‖Lp(Rn)

= R
n
r′ ‖φ‖Lr(Rn)‖ f ‖Lp(Rn)

' Rn( 1
p−

1
q )
‖ f ‖Lp(Rn)

which is the desired estimate. �

3.7. Translation invariant operators

Let V,W be vector spaces of functions on Rn and suppose that T is an op-
erator that maps V into W. We will say that T commutes with translations or
that T is translation invariant if Tτy = τyT for all y ∈ Rn. To see an example
of such an operator, consider K ∈ L1(Rn) and define TK( f )(x) = ( f ∗ K)(x) for all
f ∈ Lp(Rn), 1 ≤ p ≤ ∞. We have seen that TK is well defined and furthermore
that

‖TK( f )‖Lp(Rn) ≤ ‖K‖L1(Rn)‖ f ‖Lp(Rn),

that is, TK is of strong type (p, p). We have seen that the convolution commutes
with translations which implies that TK commutes with translations. Actually
the opposite is also true, namely, all translation invariant operators are given
by a convolution with an appropriate kernel K (which might not be a function
in general).

THEOREM 3.72. Let T : Lp(Rn) → Lq(Rn), 1 ≤ p, q ≤ ∞, be a bounded linear
operator that commutes with translations. Then there exists a unique tempered
distribution K such that

T( f ) = f ∗ K, for all f ∈ S(Rn).

Thus, translation invariant bounded linear operators of strong type (p, q)
are in a one to one correspondence with the subclass of tempered distributions
K which satisfy

‖K ∗ f ‖q . ‖ f ‖p,
for all f ∈ S(Rn). In this case we will slightly abuse language and say that the
tempered distribution K is of type (p, q). It would be desirable to characterize
this class of tempered distribution for all 1 ≤ p, q ≤ ∞ but such a characteriza-
tion is not known in general and probably does not exist. Here we gather some
partial results in this direction:

PROPOSITION 3.73 (“The high exponents are on the left”). Suppose that
T is a linear operator which is translation invariant and of strong type (p, q).
Then we must have that p ≤ q. In particular the class of tempered distributions
of type (p, q) is empty whenever p > q.

EXERCISE 3.74. Prove Proposition 3.73 above.
Hint: Suppose that a that T is translation invariant and of strong type

(p, q) with p < ∞. Let f ∈ Lp(Rn) and consider the function

g(x) =

N∑
k=1

f (x − xn),
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for some large positive integer N and points x1, . . . , xn that will be chosen ap-
propriately. Show that by choosing the points x1, . . . , xn to be far apart from
each other we have that ‖g‖p ' f ,p N

1
p ‖ f ‖p while the left hand side will be of the

order ‖Tg‖q 'q, f N
1
q for N large. However, if T is of strong type (p, q) this is only

possible if q ≥ p.

We also have a precise characterization of translation invariant operators
in the following two special cases.

THEOREM 3.75 (p = q = 2). A distribution K is of type (2, 2) if and only if
there exists m ∈ L∞(Rn) such that K̂ = m. In this case, the norm of the operator

TK : L2(Rn) ∩ S(Rn)→ L2(Rn)

defined on S(Rn) as
TK( f ) = f ∗ K, f ∈ S(Rn),

is equal to ‖m‖L∞(Rn). Moreover, T̂K f = m f̂ .

THEOREM 3.76 (p = q = 1). A distribution K is of type (1, 1) if and only if it
is a finite Borel measure. In this case, the norm of the operator

TK : L1(Rn) ∩ S(Rn)→ L1(Rn),

defined on S(Rn) as
TK( f ) = f ∗ K, f ∈ S(Rn),

is equal to the total variation ‖K‖ of the measure K.

For the proofs of these theorems and more details see [SW].
In this course we will not actually need that every translation invariant op-

erator is a convolution operator since we will mostly consider specific examples
where this is obvious. We will focus instead on the following case.

3.7.1. Multiplier Operators. Let m ∈ L∞(Rn). For f ∈ L2(Rn) we define

T̂m( f )(ξ) B m(ξ) f̂ (ξ), ξ ∈ Rn.

We will say that Tm is a multiplier operator associated to the (Fourier) multi-
plier m.

Observe that Tm is a well defined linear operator on L2(Rn) and in fact it is
bounded. Rather than relying on Theorem 3.75 let us see this directly:

‖Tm( f )‖L2(Rn) = ‖T̂m( f )‖L2(Rn) = ‖m f̂ ‖L2(Rn)

≤ ‖m‖L∞(Rn)‖ f̂ ‖L2(Rn) = ‖m‖L∞(Rn)‖ f ‖L2(Rn).

In fact it is not hard to check that the opposite inequality is true so that
‖Tm‖L2→L2 = ‖m‖L∞(Rn).

EXERCISE 3.77. If Tm is a multiplier operator associated to the multiplier
m ∈ L∞(Rn) show that

‖Tm‖L2→L2 ≥ ‖m‖L∞(Rn).

Thus Tm is a linear operator of type (2, 2). If Tm extends to a linear operator
of type (p, p), that is if there is an estimate of the form

‖T f ‖Lp(Rn) ≤ cp,T‖ f ‖Lp(Rn),

for all f ∈ S(Rn), then we will say that m is a (Fourier) multiplier on Lp.
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REMARK 3.78. The previous discussion and in particular Theorem 3.75
shows that Tm is in fact given in the form

Tm( f ) = f ∗ K,

for some K ∈ S′(Rn). In particular K is the inverse Fourier transform of m in
the sense of distributions.





CHAPTER 4

The Hardy-Littlewood maximal function

4.1. Averages and maximal operators

In this chapter we will be discuss the Hardy-Littlewood maximal function
and some of its closely related variants. Let us first of all define the averages
of a locally integrable function f ∈ L1

loc(R
n) around the point x ∈ Rn:

Ar( f )(x) =
1

|B(x, r)|

∫
B(x,r)

f (y)dy,

where B(x, r) is the Euclidean ball with center x ∈ Rn and radius r > 0 and
|B(x, r)| denotes its Lebesgue measure. Note that since Lebesgue measure is
translation invariant we have

|B(x, r)| = |B(0, r)| = rn
|B(0, 1)| = Ωnrn,

where Ωn denotes the Lebesgue measure (or volume in this case) of the n-
dimensional unit ball B(0, 1) ⊂ Rn. Denoting by χ the indicator function of the
normalized unit ball

χ(x) B
1

|B(0, 1)|
1B(0,1)(x),

and noting that Euclidean balls centered at zero are 0-symmetric, we can write

Ar( f )(x) =
1

|B(0, 1)|rn

∫
B(0,r)

f (x − y)dy

=

∫
Rn

f (x − y)
1

|B(0, 1)|rn 1B(0,1)(y/r)dy

= ( f ∗ χr)(x).

Thus
Ar( f )(x) = ( f ∗ χr)(x),

and of course χr is an approximation to the identity since
∫
Rn |χ| =

∫
Rn χ = 1 and

χr is just the dilation of the function χ:

χr(x) =
1
rnχ

(x
r

)
= Dil1

r χ(x).

Remembering the discussion that followed the definition of the convolution in
Chapter 2, the convolution of a locally integrable function f with the dilations
of an L1-function φ was viewed as an averaging operator. We now see that
when φ = χ this is a precise statement, that is, f ∗ χr is the average of f with
respect to a ball around x of radius r. A similar conclusion follows if we start

69
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with any set K that is say a bounded convex set in Rn with non empty interior,
that is 0-symmetric, and normalized to volume |K| = 1. We then have that

f ∗ (1K)r =
1
|rK|

∫
x+rK

f (y)dy = AK
r ( f )(x),

that is, ( f ∗ (1K)r)(x) are the averages of f with respect to the dilations of the
fixed convex body K at every point x ∈ Rn. Here we denote by rK the dilations
of K

rK := {rx : x ∈ K}.
It is an easy exercise to show that all these averages are uniformly bounded in
size. For all 1 ≤ p ≤ ∞ we have

‖AK
r ( f )‖Lp(Rn) ≤ ‖ f ‖Lp(Rn).

One of course could consider more general sets K instead of convex sets which
are 0-symmetric and in fact this leads to one of the most interesting family of
problems in harmonic analysis. This however falls outside the scope of this
course and we will mostly focus on the case of the normalized unit ball which
in some sense is the prototypical example.

The Hardy-Littlewood maximal operator (with respect to Euclidean balls)
is defined as

M f (x) B sup
r>0

1
|B(x, r)|

∫
B(x,r)
| f (y)|dy = sup

r>0
(Ar| f |)(x) = sup

r>0
(| f | ∗ χr)(x).

Observe that this is a sublinear operator that is well defined at least when f
is locally integrable. It is not hard to check that for f ∈ L1

loc(Rn) the function
M f is slightly more regular than the function f itself. We need the following
definition:

DEFINITION 4.1. Let f : Rn
→ C and xo ∈ Rn. Then f is said to be lower

semicontinuous at xo if
lim inf

x→xo
f (x) ≥ f (xo).

The function f is called lower semicontinuous if it is lower semicontinuous
at every x ∈ Rn. A function f is called upper semicontinuous if − f is lower
semicontinuous

PROPOSITION 4.2. Let f : Rn
→ C where ⊂ Rn is measurable.

(i) If f (xo) = −∞ then f is lower semicontinuous at xo.
(ii) If f (xo) > −∞ then f is lower semicontinuous at xo if and only if, for

every M < f (xo), there exists δ > 0 such that f (x) > M if |x − xo| < δ.
(iii) The function f is continuous at xo ∈ Rn if and only if | f (xo)| < +∞ and

f is both upper and lower semicontinuous at xo.
(iv) The function f is lower semicontinuous if and only the set {x ∈ E :

f (x) > a} is open, for all finite a.
(v) If f is lower semicontinuous then f is measurable.

EXAMPLE 4.3. Let f : R→ C with

f (x) B

0, if x < 0
−1, if x ≥ 0.

Then f is lower semicontinuous.
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Now define g : R→ C with

g(x) B

0, if x < 0
1, if x ≥ 0.

Then g is upper semicontinuous. Finally, consider the Dirchlet function

D(x) B

1, if x ∈ Q
0, if x ∈ R \Q.

Then D is upper semicontinuous at the rational numbers and lower semicon-
tinuous at the irrational numbers.

As a consequence of the previous definitions we get the following.

PROPOSITION 4.4. Let M f denote the Hardy-Littlewood maximal function
of a function f ∈ L1

loc(Rn). Then M f is lower semicontinuous at every x ∈ Rn. In
particular M f is measurable and the sets {x ∈ Rn : M f (x) > λ} are open for all
finite λ > 0.

Although maximal operators are interesting in their own right, there are
some very specific applications we have in mind. The first has to do with point-
wise convergence of averages of a function and is a consequence of the following
simple proposition.

PROPOSITION 4.5. Let {Tt}t>0 be a family of sub-linear operators on Lp(X, µ)
and define the maximal operator

T∗( f )(x) = sup
t>0
|Tt( f )(x)|.

If T∗ is of weak type (p, q) then for any to > 0 the set

{ f ∈ Lp(X, µ) : lim
t→to

Tt f (x) = f (x) a.e.}

is closed in Lp(X, µ)

PROOF. In order to show that the set

ET∗ := { f ∈ Lp(X, µ) : lim
t→to

Tt f (x) = f (x) a.e.}

is closed, consider a sequence of functions { fn} ⊂ ET∗ with fn → f in Lp(Rn). We
need to show that f ∈ ET∗ . To see this observe that for almost every x ∈ Rn we
have

lim sup
t→to

|Tt f (x) − f (x)| ≤ |Tt( f − fn)(x) − ( f − fn)(x)|

≤ sup
t>0
|Tt( f − fn)(x)| + |( f − fn)(x)|

= T∗( f − fn)(x) + |( f − fn)(x)|.

Thus for any λ > 0 we can write
µ({x ∈ X : lim sup

t→to

|Tt f (x) − f (x)| > λ})

≤ µ({x ∈ X : T∗( f − fn)(x) > λ/2}) + µ({x ∈ X : |( f − fn)(x)| > λ/2})

.T∗
‖ f − fn‖

q
p

λq +
‖ fn − f ‖pp
λp .
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Since the right hand side tends to 0 as n → ∞ and the left hand side does not
depend on n we conclude that for every λ > 0

µ({x ∈ X : lim sup
t→to

|Tt f (x) − f (x)| > λ}) = 0.

Now we have that
µ({x ∈ X : lim sup

t→to

|Tt f (x) − f (x)| > 0})

≤

∞∑
k=1

µ
({

x ∈ X : lim sup
t→to

|Tt f (x) − f (x)| >
1
k

})
= 0.

Thus limt→to Tt( f )(x) = f (x) for almost every x ∈ Rn so that f ∈ ET∗ . �

REMARK 4.6. We have indexed the family Tt in t ∈ R+ for the sake of defini-
tiveness but one can of course consider more general index sets and the previ-
ous proposition remains valid. In every case that the index set is uncountable
some attention should be given in assuring the measurability of T∗t ( f ).

REMARK 4.7. To get a clearer picture of what this proposition says consider
the family of operators

Tt( f )(x) = ( f ∗ φt)(x),

for some φ ∈ L1(Rn) with integral
∫
φ = 1. As we have seen already many

times, these averages of f converge to f in many different senses for different
classes of functions f . In particular if f ∈ C∞c (Rn) then f ∗φt converges to f even
uniformly as t→ 0. Thus we have

C∞c (Rn) ⊂ { f ∈ Lp(X, µ) : lim
t→0

Tt f (x) = f (x) a.e.}.

Since C∞c (Rn) is dense in Lp, Proposition 4.5 implies that if T∗ is of weak type
(p, q) then

lim
t→0

( f ∗ φt)(x) = f (x),

for almost every x ∈ Rn. Thus in order to show that approximations to the iden-
tity converge to the function almost everywhere, for all f ∈ Lp it is enough to
show that the corresponding maximal operator is of weak type (p, q), for some
q ≥ 1. In what follows we will show that the Hardy-Littlewood maximal opera-
tor is of weak type (1, 1) and this already implies the corresponding statement
for a wide class of approximations to the identity.

To avoid confusion, remember that in Theorem 3.26 we have already ex-
hibited that

lim
t→0

( f ∗ φt)(x) = f (x)

for every Lebesgue point x of f . However this is only interesting if we already
know that f has “many” Lebesgue points (in particular almost every point in
Rn). In Theorem 15 of Chapter we took for granted that the integral of a lo-
cally integrable function is almost everywhere differentiable and this in turn
implied that almost every point in Rn is a Lebesgue point of f . In this part
of the course we will fill in this gap by showing that the integral of a locally
integrable function is almost everywhere differentiable.
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EXERCISE 4.8. Let T∗( f )(x) B supt>0 |Tt f (x)| be of weak type (p, q). Show
that for every to > 0 the set

{ f ∈ Lp(X, µ) : lim
t→to

Tt f (x) exists a.e. }

is closed in Lp(X, µ).
Hint: The proof is very similar to that of Proposition 4.5. Observe that it

suffices to show that

µ({x ∈ X : lim sup
t→to

Tt f (x) − lim inf
t→to

f (x) > λ}) = 0,

for every λ > 0.

4.2. The Hardy-Littlewood maximal theorem

We focus our attention to the Hardy-Littlewood maximal operator; for f ∈
L1

loc we have defined

M( f )(x) = sup
r>0

1
|B(x, r)|

∫
B(x,r)
| f (y)|dy, x ∈ Rn.

The discussion in the previous section suggests that one should try to prove
weak (p, q) bounds for the operator M. In fact we will prove the following theo-
rem which summarizes the boundedness properties of M.

THEOREM 4.9 (Hardy-Littlewood maximal theorem). Let M denote the Hardy-
Littlewood maximal operator as above.

(ii) The Hardy-Littlewood maximal operator if of weak type (1, 1):

|{x ∈ Rn : M( f )(x) > λ}| .n
‖ f ‖L1(Rn)

λ
, λ > 0,

for all f ∈ L1(Rn).
(i) The Hardy-Littlewood maximal operator is of strong type (p, p); for 1 ≤

p < ∞ we have:

‖M( f )‖Lp(Rn) .p,n ‖ f ‖Lp(Rn),

for all 1 < p ≤ ∞ and f ∈ Lp(Rn).

REMARK 4.10. The Hardy-Littlewood maximal operator is not of strong
type (1, 1). To see this note that for any f ∈ L1(Rn) we have that

M( f )(x) & f
1
|x|n

, |x| → ∞,

which shows in particular that M( f ) is never integrable whenever f ∈ L1(Rn)
is not identically 0. Moreover, no strong estimates of type (p, q) are possible
whenever p , q as can be seen by examining the dilations of f and M f .

EXERCISE 4.11. Prove the assertions in the previous remark.

EXERCISE 4.12. Let f ∈ L1(Rn) and let B be a ball such that M( f )(x) > λ for
every x ∈ B. Let B∗ be the ball with the same center and twice the radius of B.
Show that M( f )(x) &n λ for every x ∈ B∗.
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PROOF OF THEOREM 4.9. First of all let us observe that M is of strong
type (∞,∞). This is just a consequence of the general fact that an average
never exceeds a maximum. In view of the Marcinkiewicz interpolation theorem
it then suffices to show the assertion (i) of the theorem, namely that M is of
weak type (1, 1).

A further reduction can be made by observing that, by homogeneity, it
suffices to show that

|{x ∈ Rn : M f (x) > 1}| .n ‖ f ‖L1(Rn).

We now fix some f ∈ L1(Rn) and set

E B {x ∈ Rn : |M f (x)| > 1},

and let K ⊂ E be any compact subset of E. Our task is to obtain an estimate of
the form |K| .n ‖ f ‖L1(Rn), uniformly in K ⊂ E.

For every x ∈ K there is a ball Bx = B(x, r(x)) such that∫
Bx

| f (y)|dy > |Bx|.

The family {Bx}x∈K clearly covers the compact set K so we can extract a finite
subcollection of balls {Bm}

N
m=1 which still covers K. Since K ⊂ ∪N

m=1Bm we get that

|K| ≤
N∑

m=1

|Bm| <
N∑

m=1

∫
Bm

| f (y)|dy =

∫
| f (y)|

N∑
m=1

1Bm (y)dy.

Observe on the other hand that∫
| f (y)|1UmBm

(y)dy ≤ ‖ f ‖L1(Rn),

so if we managed to show that
N∑

m=1

1Bm (y) .n 1UmBm
(y)

almost everywhere, we would be done. The main obstruction to such an esti-
mate is that the balls Bm may overlap a lot. On the other hand, if the balls Bm
were disjoint (or “almost disjoint”) then there would be no problem. Although
we cannot directly claim that the family {Bm} is non-overlapping, the following
lemma will allow us to extract a subcollection of balls which has this prop-
erty, without losing too much of the measure of the union of the balls in the
collection.

LEMMA 4.13 (Vitali covering lemma). Let B1, . . . ,BN be a finite collection of
balls. Then there exists a subcollection Bn1 , . . . ,BnM of disjoint balls such that

M∑
j=1

|Bn j | = | ∪
M
j=1 Bn j | ≥ 3−n

| ∪
N
i=1 Bi|.

Before giving the proof of this covering lemma let us see how we can use
it to conclude the proof of Theorem 4.9. Recall that we have extracted a finite
collection of balls {Bm}

N
m=1 which cover the set K and which satisfy∫

Bm

| f (x)|dx > |Bm|, m = 1, 2, . . . ,N.
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Now applying the covering lemma we can extract a subcollection of disjoint
balls {Bm j }

M
j=1 so that the measure of their union exceeds a multiple of the mea-

sure of the union of the original family of balls. Thus, we can write

|K| ≤ | ∪N
m=1 Bm| ≤ 3n

| ∪
M
j=1 Bm j | = 3n

M∑
j=1

|Bm j |

< 3n
M∑
j=1

∫
Bmj

| f (y)|dy = 3n
∫
| f (y)|

M∑
j=1

1Bmj
(y)dy

= 3n
∫
| f (y)|1∪M

j=1Bmj
(y)dy ≤ 3n

∫
Rn
| f (x)|dx = 3n

‖ f ‖L1(Rn).

Observe that this estimate is uniform over all compact sets K ⊂ E so taking
the supremum over such sets and using the inner regularity of the Lebesgue
measure we conclude that

|E| ≤ 3n
‖ f ‖L1(Rn),

which concludes the proof. �

We now give the proof of the Vitali covering lemma which was in the heart
of the previous argument.

PROOF OF THE VITALI COVERING LEMMA 4.13. First of all let us assume
that the balls B1, . . . ,BN are numbered so that their size is decreasing (thus B1
is the largest ball). We will choose the subcollection Bm1 , . . . ,BmM based on the
greedy principle. The first ball we choose in the subcollection is the largest ball,
thus Bm1 B B1. Now assume we have chosen the balls Bm1 ,Bm2 , . . . ,Bmi for some
i ≥ 1. We choose the ball Bmi+1 to be the largest ball which doesn’t intersect any
of the balls already chosen. Observe that this amounts to choosing

mi+1 B max{ j : 1 ≤ j ≤ N, B j ∩ Bm` = ∅ for all ` = 1, 2, . . . , i}
= max{ j : mi < j ≤ N, B j ∩ Bm` = ∅ for all ` = 1, 2, . . . , i}.

Since the original collection was finite the selection process will end in a finite
number of M steps. It is clear that the resulting subcollection {Bm j } j consists
of disjoint balls. On the other hand, every ball B of the original collection is
either selected or it intersects one of the selected balls, say Bm` , of greater or
equal radius. Indeed, if B is not selected then by the selection process there is
at least one k ∈ {1, 2, . . . ,M} such that B ∩ Bmk , ∅. Let ` B min{k : B ∩ Bmk , ∅}.
Then necessarily the radius of Bm` is greater or equal than the radius of B. To
see this observe that B does not intersect any of the balls Bm1 , . . . ,Bm`−1 . Since
Bm` was selected instead of B it means that Bm` had a greater or equal radius.

We can then conclude that B ⊂ B∗m`
, where B∗m`

is the ball with the same
center as Bm` and three times its radius. Thus we have that

B1 ∪ · · · ∪ BN ⊂ B∗m1
∪ · · · ∪ B∗mM

.

Taking the Lebesgue measure of both unions we conclude

|B1 ∪ · · · ∪ BN | ≤ 3n
|Bn1 ∪ · · ·BnM |,

as desired. �
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EXERCISE 4.14 (The maximal function on the class L log L). We saw that
if f is a non-trivial integrable function thenM( f ) is never integrable. Suppose
however that f is supported in a finite ball B ⊂ Rn and that it is a “bit better”
than being integrable, namely it satisfies

‖ f ‖L log L(B) :=
∫

B
| f (x)|(1 + log+

| f (x)|)dx < +∞.

where log+ x = max(log x, 0). We say in this case that f ∈ L log L(B). Then we
have that M( f ) ∈ L1(B) and

‖M f ‖L1(B) . |B| + ‖ f ‖L log L(B).

Hints:
(a) For λ > 0 show that

|{x ∈ B : M( f )(x) > 2λ}| .
1
λ

∫
{x∈B:| f (x)|>λ}

| f (x)|.

It will help you to split the function f as

f = f 1{| f |>λ} + f 1{| f |<λ} C f2 + f1,

and observe that ‖M( f1)‖L∞(B) < λ.
(b) Show that∫

B
M( f )(x)dx ≤ 2|B| + 2

∫
∞

1
|{x ∈ B : M( f )(x) > 2λ}|dλ.

From this, (a) and Fubini’s theorem you can conclude the proof.

4.3. Consequences of the maximal theorem

Our first application of the maximal theorem has to do with the differen-
tiability of the integral of a locally integrable function. Indeed, using Theorem
4.9 and Proposition 4.5 we immediately get the following.

COROLLARY 4.15 (Lebesgue differentiation theorem). Let f ∈ L1
loc(R

n) be a
locally integrable function. Then, for almost every x ∈ Rn we have that

lim
r→0

1
|B(x, r)|

∫
B(x,r)

f (y)dy = f (x).

For the proof just observe that |At( f )(x)| ≤ M( f )(x) and that the claimed
convergence property is a local property thus one can restrict any locally inte-
grable function to a ball around the point x which turns f into an L1 function.
As we have already seen in Corollary 3.25, the previous statement also implies
the following:

COROLLARY 4.16. Let f ∈ L1
loc(R

n). Then almost every point in Rn is a
Lebesgue point if f , that is, we have that

lim
r→0

1
|B(x, r)|

∫
B(x,r)
| f (x) − f (y)|dy = 0,

for almost every x ∈ Rn.
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Lebesgue’s differentiation theorem generalizes to more general averages.
A manifestation of this is already presented in Theorem 3.26 which asserts
that for “nice” approximations to the identity φ, the means f ∗ φt converge
to f at every Lebesgue point of f . Here we will give an alternative proof of
this theorem by controlling the maximal operator supt>0 f ∗ φt by the Hardy-
Littlewood maximal function.

PROPOSITION 4.17. Let φ ∈ L1(Rn) be a positive and radially decreasing
function with

∫
Rn φ(x)dx = 1. Then we have that

sup
t>0

( f ∗ φt)(x) ≤ ‖φ‖L1(Rn)M( f )(x).

PROOF. First suppose that φ is of the form φ(x) =
∑N

j=1 a jχB j where aJ > 0
and B j are Euclidean balls centered at 0 for all j = 1, 2, . . . ,N. Then we have

φ ∗ f (x) =

N∑
j=1

a j( f ∗ χB j )(x) =

N∑
j=1

a j|B j|
1
|B j|

( f ∗ χB j )(x)

≤

N∑
j=1

a j|B j|M( f )(x) =

∫
Rn
φ(x)dx M( f )(x)

= ‖φ‖L1(Rn)M( f )(x).

However, any function φ which is positive and radially decreasing can be ap-
proximated monotonically from below by a sequence of simple functions of the
form

∑
a jχB j so we are done. �

As an immediate corollary we get the same control for approximations to
the identity which are controlled by positive radially decreasing functions. Ob-
serve that this gives an alternative proof of Theorem 3.26.

COROLLARY 4.18. Let |φ(x)| ≤ ψ(x) almost everywhere where ψ(x) is posi-
tive, radially decreasing and integrable. Then we have that

T∗( f )(x) := sup
t>0

( f ∗ φt)(x) ≤
∫
Rn
ψ(y)dy M( f )(x).

In particular T∗ is of weak type (1, 1) and strong type (p, p) for all 1 < p ≤ ∞. We
conclude that

lim
t→0

( f ∗ φt)(x) =

∫
Rn
φ(y)dy f (x),

for almost every x ∈ Rn.

REMARK 4.19. The qualitative conclusion of the previous corollaries is that
maximal averages of f with radially decreasing integrable kernels are con-
trolled by the Hardy-Littlewood maximal function. A typical radially decreas-
ing integrable kernel is the Gaussian kernel

W(x) = e−π|x|
2
.

By dilating W by
√

2πt we get

Wt(x) =
1

(2πt)
n
2

e−
|x|2
4t .
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The function e−|x|2/4t can be viewed as smooth approximation of the indicator
function of a ball of radius ∼

√
t (up to constants). Indeed, for |x| <

√
t say, we

have that e−|x|2/4t
' 1, while for |x| &

√
t the function e−|x|2/4t decays very fast.

Thus the kernel Wt is not so different from χ√t = t−
n
2 1B(0,

√
t).

4.3.1. Points of density and the Marcinkiewicz Integral. A direct
consequence of Lebesgue’s differentiation theorem is that almost every point
of a measurable set is “completely” surrounded by other points of the set. To
make this precise, let us give a definition.

DEFINITION 4.20. Let E be be a measurable set in Rn and let x ∈ Rn. We
say that x is a point of density of the set E, if

lim
r→0

|E ∩ B(x, r)|
|B(x, r)|

= 1.

Of course the limit in the previous definition might not exist in general
or not be equal to 1. Observe however that if the previous limit is equal to 0
then x is a point of density of the set Ec, the complement of E. On the other
hand, applying Lebesgue’s differentiation theorem to the function 1E which is
obviously locally integrable we get

lim
r→0

1
|B(x, r)|

∫
B(x,r)

1E(y)dy = lim
r→0

|E ∩ B(x, r)|
|B(x, r)|

= 1E(x),

for almost every x ∈ Rn. Thus we immediately get the following

PROPOSITION 4.21. Let E ⊂ Rn be a measurable set. Then almost every
point of E is a point of density of E. Likewise, almost every point x ∈ Ec is a
point of density of Ec.

Thus a point of density is in a measure theoretic sense completely sur-
rounded by other points of E. The measure of the set E in the ball B(x, r) is
proportional to the measure of the ball as r→ 0 and x is a point of density.

Another way to describe this notion is the following. Let F be a closed set
and define δ(x) = dist(x,F). Of course δ(x) = 0 if x ∈ F. Now think of y in a
neighborhood of zero so that the vector x + y is in the neighborhood of x. If
x ∈ F then the distance of the point x + y from F is at most |y| since x ∈ F and
|(x + y)− x| = |y|. Thus we have that δ(x + y) ≤ |y| whenever x ∈ F. That is, when
the point x + y approaches x ∈ F, the distance δ(x + y), that is the distance of
x + y from F approaches zero. In fact the estimate above can be improved.

PROPOSITION 4.22. Let F be a closed set. Then for almost every x ∈ F,
δ(x + y) = o(|y|) as |y| → 0. This is true in particular if x is a point of density of
the set F.

EXERCISE 4.23. Prove Proposition 4.22 above. The o(|y|) is interpreted as
follows: For every ε > 0 there exists some δ > 0 such that δ(x+y) ≤ ε|y|whenever
|y| ≤ δ.

We will be mostly interested in another instance of this principle that is
reflected in the Marcinkiewicz integral. This will also come in handy in our
study of oscillatory integrals in the next chapter.
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For F a closed set as before we define the Marcinkiewicz integral associated
to F, I(x), as

I(x) B
∫
|y|≤1

δ(x + y)
|y|n+1 , x ∈ Rn.

THEOREM 4.24. Let I be the Marcinkiewicz integral as above.
(i) If x ∈ Fc then I(x) = +∞.

(ii) For almost every x ∈ F we have that I(x) < +∞.

REMARK 4.25. The previous theorem shows that, in average, δ(x + y) is
small enough whenever x ∈ F to make the integral converge locally. This can be
seen as a variation of Proposition 4.22 though no direct quantitative connection
is claimed.

Part (i) is obvious and is left as an exercise. For (ii) it will be enough to
show the following:

LEMMA 4.26. Let F be a closed set whose complement Fc has finite measure.
Then we set

I∗(x) =

∫
Rn

δ(x + y)
|y|n+1 .

Then I∗(x) < +∞ for almost every x ∈ F. In particular we have∫
F

I∗(x) .n |Fc
|.

PROOF. It is enough to show∫
F

I∗(x) . |Fc
|,

since then I ∗ (x) is finite for almost every x ∈ F. To that end we write∫
F

I∗(x)dx =

∫
F

∫
Rn

δ(x + y)
|y|n+1 dy dx =

∫
F

∫
Rn

δ(y)
(x + y)n+1 dy dx

=

∫
F

∫
Fc

δ(y)
|x − y|n+1 dy dx =

∫
Fc

( ∫
F

1
|x − y|n+1 dx

)
δ(y)dy.

Now fix a y ∈ Fc. As x ∈ F we obviously have that |x− y| ≥ δ(y) thus F ⊂ {x ∈ Rn :
|x − y| ≥ δ(y)}. Since all the quantities under the integral signs are positive the
previous estimate implies∫

F

1
|x − y|n+1 dy ≤

∫
{x∈Rn:|x−y|≥δ(y)}

1
|x|n+1 .n

1
δ(y)

,

whenever y ∈ Fc. Integrating for y ∈ F we get∫
F

I∗(x)dx .n

∫
Fc
δ(y)δ(y)−1dy ≤ |Fc

|

which is the desired estimate. �

To get the proof of Theorem 4.24 we now use the previous lemma as follows.
Let F be a closed set and let Bm be a ball of radius m centered at 0. Let Fm =
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F ∪ Bc
m. Then Fm is closed and Fc

m ⊂ Bm so that |Fc
m| < ∞. Thus the previous

lemma applies to Fm and we get that∫
|y|≤1

δm(x + y)
|y|n+1 dy < +∞,

for almost every x ∈ Fm where we denote by δm the distance from the set Fm.
Now observe that for x ∈ F ∩ Bm−2 and |y| ≤ 1 we have that δm(x + y) = δ(x + y);
indeed δm(x + y) ≤ |y| ≤ 1 and |x + y| ≤ m − 1 thus dist x + y,Bc

m ≥ 1. We conclude
that ∫

|y|≤1

δ(x + y)
|y|n+1 dy < ∞,

for almost every x ∈ F ∩ Bm−2. Since every x ∈ Rn eventually belongs to some
Bm−2 for some large m we get the conclusion of the theorem.

EXERCISE 4.27. This exercise concerns strengthened estimates for the
Marcinkiewicz integral.

(i) Show the following strengthened form of Lemma 4.26: For ψ ≥ 0 and
locally integrable then∫

F
I∗(x)ψ(x)dx ≤

∫
Fc

(Mψ)(x)dx,

whenever F is closed and |Fc
| < +∞.

(ii) Use (i) and the maximal theorem to conclude that I∗(x) ∈ Lp(F) for all
1 ≤ p < ∞.

4.4. Variants of the Hardy-Littlewood maximal function

4.4.1. The dyadic maximal function. We now come to a different ap-
proach to the maximal function theorem. On the one hand the “dyadic” ap-
proach we will follow here already implies the maximal theorem presented in
the previous paragraph. It is however interesting in its own right and it will
give us the chance to present a dyadic structure on the Euclidean space which
will come in handy in many different cases.

Consider the basic cube Q0,0 = [0, 1)n
⊂ Rn. A dyadic dilation of this cube is

the cube Qm,0 := 2mQ0,0 B [0, 2m)n where m ∈ Z. Now we also consider integer
translations of this cube of the form Qm,k B k + Qm,0 for some integer vector
k ∈ Zn. We have the following definition:

DEFINITION 4.28. A dyadic cube of generation m is a cube of the form

Qm,k = 2m(k + [0, 1)n) = {2m(k + x) : x ∈ [0, 1)n
},

where m ∈ Z and k ∈ Zn. The family of disjoint cubes

Dm B {Qm,k}k∈Z

defines the m-th generation of dyadic cubes. We denote by D the collection of
all dyadic cubes in Rn.

The dyadic cubes have the following basic properties.
(d1) The dyadic cubes in the generation m are disjoint and their union is

Rn. Thus any point x ∈ Rn belongs to unique dyadic cube in the m-th
generation.
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(d2) Two (different) dyadic cubes are either disjoint or one contains the
other.

(d3) A dyadic cube in Dm consists of exactly 2n dyadic cubes of the gener-
ation Dm−1. On the other hand, for any dyadic cube Q ∈ Dm and any
j > m there is a unique dyadic cube in the collection D j that contains
Q.

As a first instance of how things simplify and get sharper in the dyadic world,
let us see the analogue of the Vitali covering lemma in the dyadic case.

LEMMA 4.29 (Dyadic Vitali covering lemma). Let Q1, . . . ,QN be a finite col-
lection of dyadic cubes. There exists a subcollection Qm1 , . . . ,QmM of disjoint
dyadic cubes such that

Q1 ∪ · · · ∪QN = Qm1 ∪ · · · ∪QmM .

PROOF. Let Qmi be the maximal cubes among Q1, . . . ,QN, that is, the cubes
that are not contained in any other cube of the collection Q1, . . . ,QN. Then the
cubes {Qm j }

M
j=1 are disjoint (otherwise they wouldn’t be maximal). Also any cube

that is not maximal is contained in the union Qm1 ∪ · · · ∪QmM . �

Given a function f ∈ L1
loc(R

n) and x ∈ Rn we set

Em f (x) B
∑

Q∈Dm

( 1
|Q|

∫
Q

f
)
1Q(x).

Observe that given x there is a unique cube Qx ∈ Dm that contains x and
then the value of Em f at x equals the average of the function f over the cube
Qx. In fact, Em f is the conditional expectation of f with respect to the σ-algebra
generated by the family Dm. Observe that for every generation m, if Ω is a
union of cubes in Dm then ∫

Ω

Em f =

∫
Ω

f .

The operator EM is the discrete dyadic analogue of an approximation to the
identity dilated at scale 2k. A difference however is that the averages here are
not “centered”. Indeed, Em f (x) is the average of f with respect to the cube Q
whenever x ∈ Q for some Q ∈ Dm. However x is not the center of the cube Q.

The dyadic maximal function is defined as

MD( f )(x) B sup
m∈Z
Em| f |(x) = sup

Q∈D
Q3x

1
|Q|

∫
Q
| f (y)|dy.

Thus the supremum is taken over all dyadic cubes that contain x or, equiv-
alently, over all generations of dyadic cubes. We have the analogue of the
maximal theorem:

THEOREM 4.30 (Dyadic Maximal Theorem). Let MD denote the dyadic
maximal function.

(i) The dyadic maximal function is of weak type (1, 1) with weak type norm
at most 1:

|{x ∈ Rn : MD f (x) > λ}| ≤
‖ f ‖L1(Rn)

λ
,

for all f ∈ L1(Rn).
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(ii) The dyadic maximal function is of strong type (p, p), for all 1 < p ≤ ∞;
for all f ∈ Lp(Rn) we have

‖MD( f )‖Lp(Rn) .p ‖ f ‖Lp(Rn),

where the implied constant depends only on p.
(iii) We conclude using Proposition 4.5 that for every f ∈ L1

loc(R
n) we have

that
lim

m→−∞
Em( f )(x) = f (x) for a.e. x ∈ Rn.

EXERCISE 4.31. Show the pointwise estimate

MD( f )(x) .n M( f )(x)

where the implied constant depends only on the dimension n. On the other
hand, show that the opposite estimate cannot be true. For example when n = 1
test against the function 1[0,1). Conclude that the dyadic maximal theorem
follows from the non-dyadic one (with a different constant though).

Hint: Observe that if x ∈ Q and Q is a dyadic cube, there exists a ball B(x, r)
which contains Q and |B(x, r)| 'n |Q|.

EXERCISE 4.32. Give the proof of Theorem 4.30 above. Observe that the
proof is essentially identical to that of Theorem 4.9 using the dyadic version of
the Vitali covering Lemma instead of the non-dyadic one. For (ii) you need to
observe that the statement is true for continuous functions (for example) and
use Proposition 4.5.

4.4.2. The maximal function with respect to cubes. For x ∈ Rn and
r > 0 let Q(x, r) denote the cube of sidelength r, centered at x ∈ Rn, that is
Q(x, r) B [x − r

2 , x + r
2 )n. The maximal function with respect to cubes is

M�( f )(x) B sup
r>0

1
rn

∫
[− r

2 ,
r
2 ]n
| f (x − y)|dy = sup

r>0
(| f | ∗ ψr)(x),

where ψ is the indicator function of the cube [− 1
2 ,

1
2 ]n. Thus M� f is the maxi-

mal average of f with respect to Euclidean cubes. In the current setup of the
Euclidean space equipped with the Lebesgue measure, the operators M,M� are
pointwise equivalent and thus they have exactly the same mapping properties,
with norms comparable up to constants.

EXERCISE 4.33 (Pointwise equivalence of M,M�). Show that for every f ∈
L1

loc(R
n) we have

M f (x) 'n M� f (x),
with the implied constants depending only upon the dimension n.

4.4.3. The non-centered maximal function. Another common variant
of the Hardy-Littlewood maximal function is the non-centered maximal func-
tion with respect to either Euclidean balls of cubes. For example we have

M′( f )(x) B sup
B3x

1
|B|

∫
B
| f (y)|dy,

where the supremum is taken over all Euclidean balls containing x. Likewise

M′�( f )(x) B sup
Q3x

1
|Q|

∫
Q

f (y)dy,



4.4. VARIANTS OF THE HARDY-LITTLEWOOD MAXIMAL FUNCTION 83

where the supremum is taken over all cubes (with sides parallel to the co-
ordinate axes) that contain x. Again these maximal operators are pointwise
equivalent with say M( f ) and thus they have they same mapping properties as
M, given in Theorem 4.9.

EXERCISE 4.34. Consider the non-centered maximal functions M′,M′� and
a f ∈ L1

loc(R
n). Show the pointwise equivalences

M( f )(x) 'n M′( f )(x) 'n M′�( f )(x),

with the implied constants depending only upon the dimension n.

4.4.4. Maximal functions with respect to a non-negative Borel mea-
sure. Given a non-negative Borel measure µ on Rn and f ∈ L1

loc(R
n, dµ) we

consider the averages of f over Euclidean balls

Aµ
r f (x) B

1
µ(B(x, r))

∫
B(x,r)
| f (y)|dµ(y),

with respect to the measure µ. The corresponding maximal operator with re-
spect to µ is then

Mµ f (x) B sup
r>0

1
µ(B(x, r))

∫
B(x,r)
| f (y)|dµ(y).

Completely analogously we can consider the maximal averages of f with re-
spect to µ and the family of Euclidean cubes in Rn as

Mµ
� f (x) B sup

r>0

1
µ(Q(x, r))

∫
Q(x,r)
| f (y)|dµ(y).

It is essential to note here that these are centered maximal operators with
respect to an essentially arbitrary measure in Rn. The following theorem sum-
marizes the mapping properties of these maximal functions.

THEOREM 4.35. Let µ be a non-negative Borel measure on Rn.
(i) The operators Mµ,Mµ

� map L1(Rn, dµ) to L1,∞(Rn, dµ) with weak-type
norms depending only on the dimension n.

(ii) For 1 < p ≤ +∞ the operators Mµ,Mµ
� map Lp(Rn, dµ) to Lp(Rn, dµ) with

norms depending only on n and p.

The proof of this theorem depends on an especially strong covering lemma
due to Besicovitch:

LEMMA 4.36 (Besicovitch covering lemma). Let A be a bounded set in Rn

and suppose that we are given a collection {Bx}x∈A of (open, half open, or closed)
Euclidean balls, where each Bx is centered at x and has radius r(x) > 0. Then
there exists a (possibly finite) sequence {B j} j ⊂ {Bx}x∈A such that

(i) A ⊆ ∪ jB j.
(ii) We have the estimate

∥∥∥∑ j 1B j

∥∥∥
L∞(Rn)

.n 1 with the implied constant de-
pending only on the dimension n.

(iii) The collection {B j} j can be divided into at most O(n) subcollections, each
of which consists of pairwise disjoint balls.
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REMARK 4.37. A completely analogous statement is valid if one replaces
Euclidean balls by Euclidean cubes in the statement of the Besicovitch cover-
ing lemma above. It is important to note however that the cubes, as well as
the balls, are assumed to be centered in points of the set A.

Before giving the proof of the Besicovitch covering lemma let us see how
we can use it in order to prove Theorem 4.35 above.

PROOF OF THEOREM 4.35. We will give the proof for M f since the proof
for M� f follows by completely analogous arguments. Note however that for
M� f one needs to use the version of the Besicovitch covering lemma for cen-
tered Euclidean cubes instead of balls. Furthermore, by Marcinkiewicz inter-
polation it will be enough to show the weak (1, 1) bound for M f , namely that

µ({x ∈ Rn : M f (x) > λ}) .n
‖ f ‖L1(Rn,dµ)

λ
, λ > 0.

By homogeneity we can assume that λ = 1. In order to have bounded sets, for
m ∈N we set

Em B
{
x ∈ Rn : |x| ≤ m and M f (x) > 1

}
.

Now for x ∈ Em let Qx be a cube centered at x and such that 1
µ(Bx)

∫
Bx
| f (y)|dµ(y).

We apply the Besicovitch covering lemma to the family {Bx}x∈Em producing a
sequence {Bm

j } j with properties (i)-(iii), as in Lemma 4.36. Thus for every m ∈N
we get

µ(Em) ≤
∑

j

µ(Bm
j ) ≤

∫
| f (y)|

(∑
j

1Bm
j

)
dµ(y) .n

∫
| f (y)|dµ(y),

with the first estimate following from (i) and the last estimate following from
(ii) of Lemma 4.36. The conclusion now follows by letting m → +∞ and using
the monotone convergence theorem. �

PROOF OF LEMMA 4.36. Let Bx = B(x, r(x)) for each x ∈ A. First suppose
that a0 B sup{r(x) : x ∈ A} = +∞. Since A is bounded a moment’s reflection
will allow us to pick a single ball (with large enough radius) that covers the
whole set A. We can thus assume that a0 < +∞. We then choose x1 ∈ A such
that r(x1) > 3

4 a0 and set B1 B B(x1, r(x1)). Assuming we have chosen B1, . . . ,B j let
a j B sup{r(x) : x ∈ A \ ∪k≤ jBk}. We choose x j+1 ∈ A \ ∪k≤ jBk so that r(x j+1) > 3

4 a j
and set B j+1 B B(x j+1, r(x j+1)). The balls selected above satisfy

(4.1) B
(
x j,

1
3

r(x j)
)
∩ B

(
xk,

1
3

r(xk)
)

= ∅ whenever j , k.

To see this observe that for j < k (so B j was chosen first) we have that r(x j) >
3
4 r(xk). So if x ∈ B(x j, 1

3 r(x j)) ∩ B(xk,
1
3 r(xk)) we would get that

|xk − x j| ≤ |xk − x| + |x j − x| ≤
1
3

r(xk) +
1
3

r(x j) ≤
7
9

r(x j) < r(x j).

But then xk ∈ B(x j, r(x j)) which is impossible by the selection process.
We have thus construct a sequence {B j} j that can be finite or infinite. If {B j} j

is finite this means that the selection process terminated because A ⊂ ∪ jB j.
Thus {Q j} j satisfies (i) in this case. If {B j} j is infinite then necessarily r(x j)→ 0
as j → +∞. Indeed, if not then we would have that r(xτ) > δ for some δ > 0
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and infinitely many τ’s. However all the balls B(xτ, 1
3 r(xτ)) are contained in the

bounded set {x ∈ Rn : dist(x,A) ≤ a0} and by (4.1) they are disjoint which is
clearly a contradiction. Thus r(x j)→ 0 as j→ +∞.

Assume now that there exists some y ∈ A\∪ jB j. By the selection process we
have for every k that r(xk) > 3

4 sup{r(x) : x ∈ A \ ∪ jB j} > r(y) which is impossible
since r(xk)→ 0. This proves (i) in the case that {B j} is infinite as well.

Let us now verify property (ii). For some fixed k ≥ 1 let us consider the
collection Gk as

Gk B {B j : j < k, B j ∩ Bk , ∅}.

We divide the collection Gk into two subcollections G1
k ,G

2
k as follows

G1
k B {B = B j(x j, r(x j)) ∈ Gk : r(x j) ≤

3
4

Mr(xk)} = {B j} j∈J1 ,

G2
k B {B = B j(x j, r(x j)) ∈ Gk : r(x j) >

3
4

Mr(xk)} = {B j} j∈J2 ,

where M > 3 is a positive integer to be chosen later in the proof. Let |Gi
k|,

i = 1, 2, denote the number of balls in the collections G1
k , G2

k , respectively. We
estimate the size of these two collection in two lemmas below.

LEMMA 4.38. Let G1
k = {B j(x j, r(x j)} j∈J1 be the first collection of balls from the

Besicovitch covering lemma, as above. We have the estimate |G1
k | ≤ 4n(M + 1)n.

PROOF. As we have already shown in the proof of the Besicovitch lemma
so far, the balls B(x j, 1

3 r(x j)) are disjoint. We also claim that these balls are
contained in B(xk, (M + 1)r(xk). Indeed, since B(xk, rk(x)) ∩ B(x j, r j(x)) , ∅ for all
j ∈ J1 we have for j ∈ J1

|x j − xk| ≤ r(x j) + r(xk) ≤ (1 +
3
4

M)r(xk).

Now let x ∈ B(x j, 1
3 r(x j)) for some j ∈ J. Remember that r(x j) ≤ 3

4 Mr(xk) for j ∈ J1.
We have

|x − xk| ≤
1
3

r(x j) + (1 +
3
4

M)r(xk) ≤
1
3

3
4

Mr(xk) + (1 +
3
4

M)r(xk) = (1 + M)r(xk).

This proves the claim. We get∑
j∈J1

|B j(x j,
1
3

r(x j)| ≤ |B(xk, (M + 1)r(xk)

and hence ∑
j∈J1

r(x j)n

3n ≤ (M + 1)nr(xk)n.

Since j < k it follows from the selection algorithm of the Besicovitch covering
lemma that r(x j)/3 > 1

4 r(xk). Thus

r(xk)n

4n |G
1
k | ≤ (M + 1)nr(xk)n

which obviously implies the bound in the statement of the lemma. �
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We now move to the study of the collection G2
k . For this let j, j′ ∈ J2 with

j′ < j < k and consider the segments `k, j and `k, j′ connecting xk with x j and
xk with x j′ , respectively. We next show that the angle between the segments
`k, j and `k, j′ is bounded away from zero. This will allow us to obtain an upper
bound for |G2

k |.

LEMMA 4.39. Let θ B {angle between `k, j and `k, j′ }. Then there is a choice
of a positive integer M (that does not depend on any of the parameters of the
problem) such that θ ≥ θ0 = arccos 5

6 .

PROOF. Let j, j′ ∈ J2 with j′ < j < k as above. By the Besicovitch selection
algorithm we have x j < B(x j′ , r(x j′ ) so that

|x j − x j′ | ≥ r(x j′ ).

Similarly we have that xk < B(x j, r(x j)) ∪ B(x j′ , r(x j′ )) thus

|xk − x j′ | ≥ r(x j′ ) and |xk − x j| ≥ r(x j).

Now by the definition of the selectionG2
k we have that both B(x j, r(x j)),B(x j′ ), r(x j′ )

intersect B(xk, r(xk)) and r(x j′ ), r(x j) > 3
4 Mr(xk). Combining these facts with the

observations above we can write
3
4

Mr(xk) < r(x j′ ) ≤ |x j′ − xk| ≤ r(x j′ ) + r(xk),

3
4

Mr(xk) < r(x j) ≤ |x j − xk| ≤ r(x j) + r(xk).

Now we use the simple consequence of the parallelogram law that for two vec-
tors ~a and ~b in the plane (in fact in any Hilbert space) we have

~a ·~b =
|~a|2 + |~b|2 − |~a −~b|2

2

Applying this to ~a B xk − x j′ and ~b B xk − x j we get

cosθ =
|xk − x j′ |

2 + |xk − x j|
2
− |x j − x j′ |

2

2|xk − x j′ ||xk − x j|

We can clearly assume that cosθ > 0 otherwise there is nothing to show. We
estimate

cosθ ≤
(r(x j′ ) + r(xk))2 + (r(x j) + r(xk))2

− r(x j′ )2

2r(x j′ )r(x j)

≤
r(x j)2 + 2r(xk)2 + 2r(xk)(r(x j′ ) + r(xk))2

2r(x j′ )r(x j)

≤
r(x j)

2r(x j′ )
+

r(xk)
r(x j)

r(xk)
r(x j′ )

+
r(xk)
r(x j′ )

+
r(xk)
r(x j)

≤
r(x j)

2r(x j′ )
+

4
3M

4
3M

+
4

3M
+

4
3M

.

Finally we remember that j′ < j which by the Besicovitch selection algorithm
implies that r(x j′ ) > 3

4 r(x j). Plugging this into the previous estimate we get

0 < cosθ ≤
2
3

+
16

9M2 +
8

3M
.
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Now it is clear that choosing M to be a large positive integer we get cosθ ≤ 5
6 .

For example the value M = 20 will do. �

Having a lower bound on the angle between the angle of the segments `k, j

and `k, j′ easily implies an upper bound for |G2
k |.

LEMMA 4.40. Let G2
k = {B j(x j, r(x j)} j∈J2 be the second collection of balls from

the Besicovitch covering lemma. There exists a positive integer M (for example
M = 20) such that |G2

k | ≤ cn where cn depends only on the dimension n.

PROOF. Let us fix M large, say M = 20 so that θ ≥ arccos 5/6 C θ0 as in the
previous lemma. To see how the proof of the lemma works let us first consider
the two-dimensional case. The number of balls in the collection G2

k is bounded
by the maximum number of rays connecting xk with points in the plane such
that, the minimum angle between any two rays is at least θ0. There are at
most θ0/2π such rays so in this case we immediately get |G2

k | . 1.
Now consider the general n-dimensional case with n ≥ 3. Consider a cone

C(θ0 in Rn with vertex at xk and aperture θ0. The number of balls in G2
k is

bounded by the maximum number of disjoint such cones. This number can be
estimated from above by

|G2
k | ≤

σn−1(Sn−1)
σn−1(C(θ0) ∩ Sn−1)

,

where Sn−1 denotes the unit sphere in Rn and σn−1 is the induced Lebesgue
measure on Sn−1. What is important here is that the upper bound in the last
estimate depends only upon dimension and the angle θ0, which is an absolute
number. �

It remains to verify property (iii) in the Besicovitch covering lemma. How-
ever this is just a consequence of (ii) and is left as an exercise. �

4.4.5. Maximal functions with respect to a doubling measure in Rn.
We now describe a setup that will allow us to extend the theory towards two
different directions. For the first one we are still in the Euclidean setup but the
Lebesgue measure is replaced by a locally finite measure µ which is assumed
to be doubling.

DEFINITION 4.41. Let µ be a locally finite, non-negative measure on Rn.
We say that µ is doubling if there exists a constant cµ, which may depend on
the dimension, such that

µ(B(x, 2r)) ≤ cµµ(B(x, r))

for every x ∈ Rn and r > 0. The constant cµ will be called the doubling constant
of µ.

The definition of a doubling measure above was given with respect to Eu-
clidean balls. However it is an easy exercise to show that µ is doubling with
respect to Euclidean balls if and only if it is doubling with respect to Euclidean
cubes, possibly with a different doubling constant.

EXERCISE 4.42. Show that µ is doubling with respect to Euclidean balls
if and only if it is doubling with respect to Euclidean cubes. The doubling
constants however might be different.
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We saw in the previous section that the centered maximal function Mµ f is
always of weak type (1, 1) and strong (p, p), 1 < p ≤ ∞ whenever µ is just locally
finite and non-negative. This is no longer true in such generality if we consider
the non-centered version of the maximal operator. We define

M′µ f (x) B sup
B ball
B3x

1
|B|

∫
B
| f (y)|dµ(y).

For this non-centered version of the maximal operator we need some extra as-
sumptions on the measure µ. The doubling assumption is one such hypothesis
which allow us to extend all the theory for the maximal operator to the opera-
tor M′µ as defined above.

THEOREM 4.43. Let µ be a doubling measure on Rn (non-negative, locally
finite) and let M′µ denote the non-centered maximal operator with respect to µ
as above. Then M′µ is of weak type (1, 1) and strong type (p, p) for all 1 < p ≤ +∞.
The operator norms depend only on the doubling constant of µ, the dimension,
and p.

PROOF. The idea of the proof is that for doubling measures µ one can easily
prove that the operators Mµ and M′µ are pointwise equivalent. Indeed, let
B = B(z, r) denote any Euclidean ball in Rn and let x ∈ B. Letting B̃ B B(x, 2r)
we readily see that B ⊂ B̃ ⊂ 3B, where 3B = B(z, 3r). By the doubling property of
the measure µ we see that µ(B̃) ≤ µ(22B) ≤ c2

µµ(B). Thus for any B with B 3 x we
have

1
|B|

∫
B
| f (y)|dµ(y) ≤ c2

µ
1
µ(B̃)

∫
B̃
| f (y)|dµ(y) ≤Mµ f (x).

The previous estimate shows that M′µ f (x) ≤ c2
µMµ f (x) while we obviously also

have Mµ f (x) ≤ M′µ f (x). Thus M′µ f (x) 'µ Mµ f (x) and Theorem 4.35 completes
the proof. �

REMARK 4.44. Under the doubling assumption one can essentially repeat
the proof given for the Hardy-Littlewood maximal function, using an obvious
analogue of the Vitali covering lemma. Thus the previous theorem has a more
elementary proof that goes through in a more abstract setting, as we shall see
below.

4.5. The Calderón-Zygmund decomposition

Let (X, µ) be a measure space and f : X→ C be a measurable function (say)
in Lp(X, µ). For a level λ > 0 we have many times used the decomposition of f
at level λ > 0:

f = f 1{x∈X:| f (x)|≤λ} + f 1{x∈X:| f (x)|>λ} C g + b.
The function g = f 1{x∈X:| f (x)|≤λ} is the “good” part of f ; indeed we have that

‖g‖Lp ≤ ‖ f ‖Lp and ‖g‖L∞ ≤ λ.

Thus the good part g adopts the Lp-integrability of f and furthermore it is
bounded. On the other hand the “bad” part b satisfies

‖b‖Lp ≤ ‖ f ‖Lp and µ(supp(b)) ≤
‖ f ‖pLp

λp .
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Thus the bad part b also inherits the Lp-integrability of f but it also has “small”
support.

In a general measure space one cannot do much more than that in terms
of decomposing f in a good part and a bad part. If however there is also a
metric structure in the space which is compatible with the measure, one can
do a bit better and also get some control on the local oscillation of the bad part
b. Various forms of this decomposition are usually referred to as Calderón-
Zygmund decompositions. We present here the basic example in the dyadic
Euclidean setup.

PROPOSITION 4.45 (Dyadic Calderón-Zygmund decomposition). Let f ∈
L1(Rn) and λ > 0. There exists a decomposition of f of the form

f = g +
∑
Q∈B

bQ,

where B is a collection of disjoint dyadic cubes and the sum is taken over all the
cubes Q ∈ B. This decomposition satisfies the following properties:

(i) The “good part” g satisfies the bound

‖g‖L1(Rn) ≤ ‖ f ‖L1(Rn) and ‖g‖L∞(Rn) ≤ 2nλ.

(ii) The “bad part” is b =
∑

Q∈B bQ; each function bQ is supported on Q and∫
Q

bQ = 0, ‖bQ‖L1(Rn) ≤ 2n+1λ|Q|, for all Q ∈ B.

(iii) For each Q ∈ B we have

λ ≤
1
|Q|

∫
Q
| f (y)|dy ≤ 2nλ.

Furthermore we have that⋃
Q∈B

Q = {x ∈ Rn : MD( f )(x) > λ} ⊂ {x ∈ Rn : M( f )(x) > λ}.

In particular, from the dyadic maximal theorem we have∑
Q∈B

|Q| ≤
‖ f ‖L1(Rn)

λ
.

PROOF. The proof is very similar to the proof of the dyadic covering lemma.
We fix some level λ > 0 and let us call a dyadic cube Q bad if

1
|Q|

∫
Q
| f | > λ.

If a dyadic cube is not bad we call it good. A bad cube will be called maximal if
Q is bad and also there is no dyadic cube strictly containing Q.

Observe that every bad cube is contained in some maximal bad cube. In-
deed, if Q′ is bad cube then 12mQ′ → 1 as m → ∞ so monotone convergence
implies that

∫
2mQ′ | f | ↗ ‖ f ‖L1(Rn). It follows that there is a large enough M such

that
1

|2MQ′|

∫
2MQ′
| f | > λ and

1
|2mQ′|

∫
2mQ′
| f | < λ,

for all m > M. Thus the dyadic cube 2MQ′ is maximal and bad.
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Let us denote by B the collection of maximal bad cubes. Since the cubes in
the collection B are dyadic and maximal, they are disjoint. Also, for any bad
cube Q′, let x ∈ Q′. We have that

MD( f )(x) = sup
Q∈D
Q3x

1
|Q|

∫
Q

f ≥
1
|Q′|

∫
Q′
| f | > λ.

The previous estimate implies that ∪Q∈BQ ⊂ {x : MD f (x) > λ}. For the opposite
inclusion let x ∈ {x : MD f (x) > λ}. Then there is a cube Q ∈ D such that

1
|Q|

∫
Q
| f (y)|dy > λ

so that Q is bad. Since every bad cube is contained in a maximal bad cube we
get that {x : MD f (x) > λ} ⊂ ∪Q badQ ⊂ ∪Q∈BQ.

Now let Q be a maximal bad cube and consider the parent of Q, Q(1), that
is the unique dyadic cube with twice its sidelength that contains Q. Since Q is
maximal, Q(1) has to be good so we have

1
|Q(1)|

∫
Q(1)
| f | ≤ λ

and thus
1
|Q|

∫
Q
| f | ≤ 2nλ.

for all maximal bad cubes Q. We set

bQ B
(

f −
1
|Q|

∫
Q

f
)

1Q,

whenever Q ∈ B is a maximal bad cube. We also set

g B (1 − 1∪Q∈BQ) f +
∑
Q∈B

( 1
|Q|

∫
Q

f
)

1Q = f −
∑
Q∈B

bQ.

It is not hard to verify all the required properties of b, g except maybe that
‖g‖L∞(Rn) ≤ 2nλ. It is easy to see that

sup
x∈Q
|g(x)| ≤

1
|Q|

∫
Q
| f | ≤ 2nλ,

whenever Q ∈ B is a bad cube. If x <
⋃

Q∈BQ and x ∈ Q′ ∈ D, then necessarily
Q′ is good. We thus have that

1
|Q′|

∫
Q′
|g| =

1
|Q′|

∫
Q′
| f | < λ,

since Q′ is good. It follows 1
|Q′ |

∫
Q′ f (y)dy → f (x) as |Q′| → 0 with x ∈ Q′, by the

dyadic maximal theorem. Since x <
⋃

Q∈BQ we conclude that |g(x)| = | f (x)| ≤ λ
and we are done in this case as well. �

Observe that in the previous decomposition of f = b + g, the “bad set”, that
is the set where b lives, is given in the form

∪Q∈BQ = {x ∈ Rn : MD( f )(x) > λ}.
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One could prove the Calderón-Zygmund decomposition starting from the set
{x ∈ Rn : MD( f )(x) > λ} and decomposing it as a disjoint union of dyadic cubes.
This sort of decomposition is interesting in its own right. Let us see how this
can be done.

PROPOSITION 4.46 (Dyadic Whitney decomposition). Let Ω ⊂ Rn be an
open set which is not all of Rn. Then there exists a decomposition

Ω =
⋃
Q∈Q

Q,

where Q is a collection of disjoint dyadic cubes. For each Q ∈ Q we have

dist(Q,Rn
\Ω) ' diam(Q).

PROOF. Let Q denote the dyadic cubes inside Ω such that

(4.2) diam(Q) ≤ dist(Q,Rn
\Ω) ≤ 5 diam(Q).

Obviously ∪Q∈QQ ⊂ Ω but the opposite inclusion is also true. Indeed, if x ∈ Ω
note that x is contained in some dyadic cube Q ⊂ Ω since Ω is open. Now
for Q a dyadic cube let Q′ be its “parent”, that is the unique dyadic cube of
side twice the side-length of Q, containing Q. Considering successive parents
of Q there will be a dyadic cube Q′′ containing x with diameter greater than
dist(x,Rn

\ Ω)/4 and less than dist(x,Rn
\ Ω)/2. Thus Q′′ ⊂ Ω and diag(Q′′) '

dist(Q′′,Rn
\Ω). The collection of dyadic cubes Q is not necessarily disjoint so

we only choose the cubes in Q which are maximal with respect to set inclusion
and call this collection again Q. Now maximal and dyadic means disjoint so we
are done. �

Using the Whitney decomposition lemma one can give an alternative proof
of the Calderón-Zygmund decomposition by taking

Ω = {x ∈ Rn : MD( f )(x) > λ},

and noting that the latter set is open.
As a corollary we get a control of the level sets of the Hardy-Littlewood

maximal function by the level sets of the dyadic maximal function.

LEMMA 4.47. For all λ > 0 we have that

|{x ∈ Rn : M�( f )(x) > 4nλ}| ≤ 2n
|{x ∈ Rn : MD( f )(x) > λ}|.

PROOF. Let B be the collection of dyadic cubes obtained by the Calderón-
Zygmund decomposition at level λ > 0. We have that

∪Q∈BQ = {x ∈ Rn : MD( f )(x) > λ}.

We write Q∗ for the cube with the same center as Q and twice its side-length.
We claim that

(4.3) {x ∈ Rn : M�( f )(x) > 4nλ} ⊂ ∪Q∈BQ∗.

Indeed, let x <
⋃

Q∈BQ∗ and R be any cube centered at x. Denoting by r the
side-length of R, we choose k ∈ Z so that 2k−1

≤ r < 2k. Then R intersects m ≤ 2n

cubes in the k-th generation Dk, and let us call them R1, . . . ,Rm. Observe that
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none of these cubes can be contained in any of the Q ∈ B because otherwise we
would have that x ∈

⋃
Q∈BQ∗. Thus the average of f on each R j is at most λ so

1
|R|

∫
R
| f | ≤

1
|R|

m∑
j=1

∫
R j∩R
| f | ≤

m∑
j=1

2kn

|R|
1
|R j|

∫
R j

| f | ≤ λm2n
≤ 4nλ.

This proves the claim (4.3) and thus the corollary. �

EXERCISE 4.48. Using the dyadic maximal theorem only, conclude that
the operators M�,M are of weak type (1, 1).

4.5.1. The Fefferman-Stein inequality. We give a first application of
the Calderón-Zygmund decomposition which in some sense is the prototype of
a weighted norm inequality. It is a variation of the maximal theorem where the
Lebesgue measure is replaced by a measure of the form w(x)dx for some non-
negative measurable function w. It then turns out that the maximal function
maps Lp(Rn,Mw(x)dx) to Lp(Rn,w(x)dx) boundedly for all 1 < p < ∞ and that it
also satisfies a weak endpoint analogue for p = 1. In particular we have

THEOREM 4.49 (Fefferman-Stein inequality). Let w be a non-negative lo-
cally integrable function (a weight).

(i) The operator M maps L1(Mw) to L1,∞(w):∫
{x∈Rn:M( f )(x)>λ}

w(x)dx .n

∫
Rn
| f (x)|Mw(x)dx,

for all f ∈ L1(Rn,Mw).
(ii) We have that∫

Rn
[M f (x)]pw(x)dx .p,n

∫
Rn
| f (x)|pMw(x)dx,

for all f ∈ Lp(Rn,Mw) with 1 < p ≤ ∞.

PROOF. We will show that ‖M( f )‖L∞(w) ≤ ‖ f ‖L∞(Mw) and that the weak (1, 1)
inequality in (i) holds. Then the Marcinkiewicz interpolation theorem will give
(ii) as well.

The bound
‖M( f )‖L∞(w) ≤ ‖ f ‖L∞(Mw),

is trivial and is left as an exercise. We turn our attention to the (1, 1)-bound.
LetB be the collection of the dyadic cubes obtained from the Calderón-Zygmund
decomposition at level λ > 0. By the proof of Lemma 4.47 we have that

{x ∈ Rn : M�( f ) > 4nλ} ⊂ ∪Q∈BQ∗,

where Q∗ is the cube with the same center as Q and twice its side-length. We
have ∫

{x∈Rn:M�( f )(x)>4nλ}
w(x)dx ≤

∑
Q∈B

∫
Q∗

w(x)dx =
∑
Q∈B

2n
|Q|

1
|Q∗|

∫
Q∗

w(x)dx.

Again, from the Calderón-Zygmund decomposition (at level λ) we have that

|Q| <
1
λ

∫
Q
| f (y)|dy =

1
λ

∫
Rn
| f (y)|1Q(y)dy,
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for all Q ∈ B of the decomposition. Combining the last two estimates we can
write ∫

{x∈Rn:M�( f )(x)>4nλ}
w(x)dx ≤

2n

λ

∑
Q∈B

∫
Rn
| f (y)|

( 1
|Q∗|

∫
Q∗

w(x)dx
)
1Q(y)dy.

For fixed Q ∈ B the term | f (y)|
(

1
|Q∗ |

∫
Q∗ w(x)dx

)
1Q(y) is non-zero if and only if

y ∈ Q ⊂ Q∗. Thus the previous estimate implies∫
{x∈Rn:M�( f )(x)>4nλ}

w(x)dx ≤
2n

λ

∫
Rn
| f (y)|M′�(w)(y)dy,

where M′� is the non-centered maximal function associated to cubes. See Exer-
cise 4.33. Since M′�( f )(x) .n M( f )(x) this concludes the proof. �

EXERCISE 4.50 (Heldberg’s inequality and Hardy-Littlewood-Sobolev the-
orem). Let 0 < γ < n, 1 < p < q < ∞ and 1

q = 1
p −

n−γ
n .

(i) Show Heldberg’s inequality: If f ∈ Lp(Rn) then

|( f ∗ |y|−γ)(x)| .γ,n,p [M( f )(x)]
p
q ‖ f ‖

1− p
q

Lp(Rn).

(ii) Use the Hardy-Littlewood maximal theorem and (i) to conclude the
Hardy-Littlewood-Sobolev theorem: For every f ∈ Lp(Rn) we have that

‖ f ∗ |y|−γ‖Lq(Rn) .γ,n,p ‖ f ‖Lp(Rn).

Hint: In order to show (i) split the integral

|( f ∗ |y|−γ)(x)| =
∣∣∣∣∣ ∫
Rn

f (x − y)|y|−γdy
∣∣∣∣∣

≤

∣∣∣∣∣ ∫
|y|<R

f (x − y)|y|−γdy
∣∣∣∣∣ +

∣∣∣∣∣ ∫
|y|≥R

f (x − y)|y|−γdy
∣∣∣∣∣ =: I1 + I2,

where R > 0 is a parameter to be chosen later on. For I1 observe that

I1 = f ∗ (|y|−γχB(0,R)).

Observe that |y|−γχB(0,R) is decreasing, radial, non-negative and integrable (since
γ < n). Use Proposition 4.17 and the calculation in its proof to show the bound

|I1| . Rn−γM( f )(x).

For I2 use Hölder’s inequality to show

|I2| . R−
n
q ‖ f ‖Lp(Rn).

Choose the parameter R > 0 to minimize the sum I1 + I2. Part (ii) is a trivial
consequence of (i).





CHAPTER 5

The Hilbert transform

In this chapter we initiate the study of singular integral operators, that is
operators of the form

(5.1) T f (x) =

∫
K(x, y) f (y)dy, x ∈ Rn,

defined initially for “nice” functions f ∈ S(Rn). Here we typically want to in-
clude the case where K has a singularity close to the diagonal

∆ = {(x, x) : x ∈ Rn
} ⊂ R2n,

which is not locally integrable. Typical examples are

K(x, y) =
1

|x − y|n
, x, y ∈ Rn,

K(x, y) =
x j − y j

|x − y|n+1 , x, y ∈ Rn

and in one dimension

K(x, y) =
1

x − y
, x, y ∈ R,

and so on. Observe that these kernels have a non-integrable singularity both
at infinity as well as on the diagonal ∆. It is however the local singularity close
to the diagonal that is the most crucial and that will characterize a kernel as
a singular kernel. For example, the kernel

K(x − y) =
1

|x − y|n−ε
, ε > 0

is not a singular kernel since its singularity is locally integrable. Observe that
for Schwartz functions f ∈ §(Rn) it makes perfect sense to define

T( f )(x) =

∫
Rn

f (y)
|x − y|n−ε

dy,

and in fact the previous integral operator was already considered in the Hardy-
Littlewood-Sobolev inequality of Exercise 4.50 and can be treated via the stan-
dard tools we have seen so far.

Thus, if one insists on writing the representation formula (5.1) throughout
Rn then K will not be a function in general. Indeed, the discussion in § 3.7
reveals that if the operator T is translation invariant then the kernel K must
necessarily be of the form K(x − y) for an appropriate tempered distribution
K ∈ S(Rn):

T( f ) = K ∗ f .

95
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Bearing in mind that there are tempered distributions which do not arise from
functions or measures we see that (5.1) does not make sense in general and
it should be understood in a different way. To give a more concrete example,
think of the principal value distribution K = p.v. 1

x ∈ S
′(R) and write

T f B f ∗ p.v.
1
x
.

Here we would like to rewrite this in the form

T f =

∫
R

f (y)
x − y

dy,

but this does not make sense even for f ∈ S(R) since the function 1
x−y is not

locally integrable on the diagonal x = y.
In fact, the representation (5.1) of the operator will not be true in general

but we will satisfy ourselves with its validity for functions f ∈ L2(Rn), of com-
pact support, and whenever x does not lie in the support of f . Indeed, if f has
compact support and x < supp( f ) then |y − x| > ε in (5.1) and thus we are away
from the diagonal. Indeed, returning to the principal value example, observe
that the integral ∫

R

f (y)
x − y

dy,

makes perfect sense when f has compact support and x < supp( f ).
Eventually the theory of singular integral operators does not depend on

translation invariance; singular kernels of the type K(x− y) can be viewed as a
special cases of the more general class of singular kernels K(x, y) which satisfy
appropriate growth and regularity assumptions. It is however instructive to
consider the translation invariant case first. In the Calderón-Zygmund theory
of singular integral operators we will start with more or less assuming that the
operator T is well defined and bounded on L2(Rn) and that its kernel K satisfies
certain growth and regularity conditions. Alternatively, assumptions on K will
allow us to show the L2-boundedness. We will see that under these conditions
T will extend to a bounded operator on Lp(Rn) for 1 < p < ∞ and of weak type
(1, 1).

5.1. The definition of the Hilbert transform on S(Rn).

In order to illustrate the general ideas let us consider what is probably
the primordial example of a singular integral operator, the Hilbert transform,
given in the form

H f (x) B p.v.
1
π

∫
R

f (y)
x − y

dy = p.v.
1
π

∫
R

f (x − y)
y

dy

= lim
ε→0

1
π

∫
|x|>ε

f (x − y)
y

dy.

Remembering the principal value distribution we can rewrite this in the
form

H f (x) = (p.v.
1
πy
∗ f )(x),
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at least whenever f ∈ S(R). The previous formula makes sense just because
the principal value of 1/πy is a well defined tempered distribution. Alterna-
tively, we can repeat the argument we used for p.v. 1

πy to write for any ε > 0
and a Schwartz function f ∈ S(R)∫

|y|>ε

f (x − y)
y

dy =

∫
ε<|y|<1

f (x − y) − f (x)
y

dy +

∫
1<|y|<∞

f (x − y)
y

dy.

Observe that we heavily rely on the fact that the kernel 1
y has zero mean on

symmetric intervals around (and away from) the origin:∫
a<|y|<b

1
y

dy = 0, 0 < a < b < +∞.

The mean value theorem now shows that f (x−y)− f (x)
y is uniformly bounded by

‖ f ′‖L∞(R) thus the limit of the first summand as ε→ 0 exists and we have that

(5.2) H f (x) =

∫
0<|y|<1

f (x − y) − f (x)
y

dy +

∫
|y|>1

f (x − y)
y

dy,

whenever f ∈ S(R).

REMARK 5.1. Trying to write the Hilbert transform as an integral operator
with respect to a kernel K,

T( f )(x) =

∫
R

K(x, y) f (y)dy,

we immediately run into the problem that the principal value distribution does
not arise from a function. The previous discussion allows us however to write

H f (x) =
1
π

∫
R

f (y)
x − y

dy =
1
π

∫
R

f (x − y)
y

dy,

whenever f is a compactly supported function inS(Rn) or L2(R) and x < supp( f ).
This is essentially equivalent to the fact that the integrals

1
π

∫
|x−y|>ε

f (y)
x − y

dy,

are absolutely convergent whenever f ∈ L2(R) and ε > 0 is fixed.

Thus we see that the Hilbert transform is a linear operator which is at
least well defined on the Schwartz class S(R). This is quite promising since we
know that S(R) is dense in Lp(R) for p < ∞. Of course, in order to extend the
action of H to say L2(R) we need to exhibit the continuity of H on the dense sub-
class S(R). In the abstract theory of singular integrals it will be a “given” that
our operator is bounded on L2. To make this general assumption meaningful
we have to exhibit that it is indeed satisfied in the model case of the Hilbert
transform. We begin this investigation by first showing a simple asymptotic
relationship.

LEMMA 5.2. Let f ∈ S(Rn). Then we have

lim
|x|→+∞

xH f (x) =
1
π

∫
R

f (y)dy.
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Before giving the proof of this Lemma let us discuss its consequences.
Already the expression (5.2) shows that H f is a bounded function whenever
f ∈ S(R). Indeed, using the mean value theorem for the first term in (5.2) and
Hölder’s inequality for the second term we have that

|H f (x)| . ‖ f ′‖L∞(R) + ‖ f ‖L2(R).

As a result, the integrability of H f for f ∈ S(R) solely depends on the behavior
of H f at infinity. Now the lemma just stated shows that

H f (x) ' f
1
|x|
, |x| → ∞,

whenever f ∈ S(R) with
∫
R

f (y)dy , 0. Thus for a general f ∈ S with non-zero
mean, H f fails to be in L1(R) since it doesn’t decay fast enough at infinity. It is
however in Lp(R) for any p > 1. As we shall see the failure of continuity of H on
L1 has a weak substitute, namely that H is of weak type (1, 1) and this is the
typical behavior of all singular integral operators we want to consider.

PROOF OF LEMMA 5.2. The proof is a variation of the idea used in (5.2).
For any ε > 0 and |x| large we can write

lim
ε→0

x
∫
|y|>ε

f (x − y)
y

dy = x
∫

0<|y|≤ |x|2

f (x − y) − f (x)
y

dy

+ x
∫
|x|
2 <|y|≤2|x|

f (x − y)
y

dy

+ x
∫
|y|>2|x|

f (x − y)
y

dy

C I1 + I2 + I3.

For I1 observe that |x|/2 ≤ |x − y| ≤ 3|x|/2 whenever |y| ≤ |x|/2 thus we have that

|I1| . |x|2 sup
|ξ|'|x|
| f ′(ξ)| ' sup

|ξ|'|x|
|ξ2 f ′(ξ)| → 0

as |x| → ∞ since f is a Schwartz function. On the other hand, for I3 we have
that |x − y| ≥ |x| whenever |y| > 2|x|. We get

|I3| .

∫
|x−y|≥|x|

| f (x − y)|dy =

∫
|z|≥|x|
| f (z)|dz→ 0

as |x| → ∞ since f is integrable, f being a Schwartz function. Now consider the
expression

I2 −

∫
R

f (x − y)dy =

∫
|x|
2 <|y|≤2|x|

(x/y − 1) f (x − y)dy −
∫
{|y|<|x|/2}∪{|y|>2|x|}

f (x − y)dy,

thus ∣∣∣∣∣I2 −

∫
R

f
∣∣∣∣∣ . 1
|x|

∫
R

|y f (y)|dy +

∫
|z|>|x|/2

| f (z)|dy→ 0,

as |x| → ∞. �

EXERCISE 5.3. Let f ∈ S(Rn). Show that H f ∈ L1(R) if and only if
∫
R

f (y)dy =
0.
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Hint: One way to show this is to rework the proof of Lemma 5.2 in order
to estimate x2H f (x).

5.2. The Hilbert transform on L2(R)

Having exhibited that H f ∈ L2(R) whenever f ∈ S(R) our next task is to
show that H is bounded as an operator H : S(R) ∩ L2(R) → L2(R), that is to
show that

‖H f ‖L2(R) . ‖ f ‖L2(R),

for all f ∈ S(R). Remember that since S(R) is dense in L2(R) such an estimate
will allow us to extend H to a bounded linear operator on L2(R). There are
several different approaches to such a theorem, most of them connected to the
significance of the Hilbert transform in complex analysis and the theory of
holomorphic functions. A simple way to show the boundedness of H on L2(R) is
use Example 3.66 for the principal value distribution according to which

F

(
p.v.

1
πx

)
(ξ) = −i sgn(ξ)

It immediately follows that ‖H f ‖L(R) = ‖ f ‖L(R). Here we describe an alterna-
tive approach based on the connection of the Hilbert transform with Cauchy
integrals.

PROPOSITION 5.4. Let f be a function on R such that H f is well defined,
say f ∈ C1(R) and | f (x)| . (1 + |x|)−1 for |x| large. Then

lim
ε→0

1
2πi

∫
R

f (y)
y − (x ± iε)

dy =
± f (x) + iH f (x)

2
,

for every x ∈ R.

PROOF. By the translation invariance of H and taking complex conjugate
in both sides of the identity it suffices to show that

(5.3) lim
ε→0

1
2πi

∫
R

f (y)
y − iε

dy =
f (0) + iH f (0)

2
,

which is equivalent to

lim
ε→0

1
2πi

∫
R

f (y)
y − iε

dy −
1
2

f (0) −
i

2π

∫
|y|>ε

f (y)
−y

dy = 0.

Changing variables y = εu this is equivalent to

lim
ε→0

∫
R

( 1
u − i

− χ{|u|>1}(u)
1
u

)
f (εu)du = πi f (0).

Now let
h(u) =

1
u − i

− χ{|u|>1}(u)
1
u
.

For |u| ≤ 1 we have that

|h(u)| =
1
|u − i|

=
1

(1 + u2)
1
2

≤ 1,

while for |u| > 1 we can calculate

|h(u)| =
1

|u2 − iu|
=

1

(u2 + u4)
1
2

≤
1
u2 .



100 5. THE HILBERT TRANSFORM

The previous estimates obviously imply that h is absolutely integrable on R.
Furthermore ∫

R

h(u)du =

∫
R

( 1
u − i

− 1{|u|>1}(u)
1
u

)
du = iπ,

as can be seen by a direct calculation. Thus by the previous calculations it
suffices to show that

(5.4) lim
ε→0

∫
R

( f (εu) − f (0))h(u)du = 0,

which follows by dominated convergence since h ∈ L1(R) and f is bounded. �

EXERCISE 5.5. Show that for f ∈ C1(R) satisfying | f (x)| ≤ (1 + |x|)−1 for
|x| → ∞ the Hilbert transform H f is indeed well defined. Furthermore, show
that it indeed suffices to show (5.3) in the previous proposition. In particular
exhibit how the full statement of the previous follows from (5.3).

THEOREM 5.6. If f ∈ S(R) then

Ĥ f (ξ) = −i sgn(ξ) f̂ (ξ).

PROOF. Let us define the Cauchy-type integral

Cε( f )(x) =
1

2πi

∫
R

f (y)
y − (x − iε)

dy.

Then Proposition 5.4 shows that

lim
ε→0

Cε( f )(x) =
− f (x) + iH f (x)

2
.

Observe by the proof of the proposition applied to the function τ−x f that

Cε( f )(x) −
− f (x) + iH f (x)

2
=

∫
R

(τ−εu f (x) − f (x))h(u)du

for all x ∈ R. Thus by Minkowski’s integral inequality we get that∥∥∥∥∥Cε( f ) −
− f + iH f

2

∥∥∥∥∥
L2(R)

≤

∫
R

‖τ−εu f − f ‖L2(R)|h(u)|du.

By dominated convergence we conclude that Cε( f ) converges to − f+iH( f )
2 in

L2 as well. By Plancherel’s theorem we get that we must also have that

Ĉε( f )→
1
2

(− f̂ + Ĥ f ),

in L2, as ε → 0. Note here that the Fourier transform Ĥ f is well defined since
f ∈ S(R) and in this case we have exhibited that H f ∈ L2(R). The problem now
reduces to calculating the Fourier transform of Cε( f ) for ε > 0 and see what
happens in the limit. Consider the truncations Cε,R( f )

Cε,R( f )(x) =
1

2πi

∫
|x−y|<R

f (y)
y − (x − iε)

dy.

Let us write

gε(t) =
1

2πi
1

−t + iε
, gε,R(t) =

1
2πi

1
−t + iε

χ{|t|<R}.
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Then gε,R(t)→ gε as R→∞ in L2 by dominated convergence and thus

‖Cε,R( f ) − Cε( f )‖L2(R) = ‖ f ∗ gε,R − f ∗ gε‖L2(R) ≤ ‖ f ‖L1(R)‖gε,R − gε‖L2(R) → 0,

as R→ 0. We now have that

Ĉε,R( f )(ξ) = f̂ (ξ)ĝε,R(ξ).

However we have that

ĝε,R(ξ) = −
1

2πi

∫
|x|<R

e−2πixξ

−x + iε
dx.

Now Cauchy’s theorem from Complex analysis shows that limR→∞ ĝε,R(ξ) = 0
whenever ξ > 0.

The previous definitions allow us to conclude that the Fourier transform

Ĉε( f )(ξ) = 0,

whenever ξ > 0 and thus that

1
2

(− f̂ (ξ) + iĤ f )(ξ) = 0

whenever ξ > 0. We conclude that

Ĥ f (ξ) = −i f̂ (ξ), ξ > 0.

Now not that the Hilbert transform satisfies

H f (−x) = lim
ε→0

∫
|y|>ε

f (−x − y)
y

dy = −H( f̃ )(x),

where remember that f̃ (x) = f (−x). So for ξ > 0 we can write

Ĥ f (−ξ) =

∫
R

H f (x)e2πixξdx = −

∫
R

H( f̃ )(x)e−2πixξdx

= −Ĥ( f̃ )(ξ) = i ˆ̃f (ξ) = i f̂ (−ξ).

In other words for ξ ∈ R we get that Ĥ f (ξ) = −i sgn(ξ) f̂ (ξ). �

The previous theorem shows in particular that ‖H f ‖L2(R) = ‖ f ‖L2(R) for all
f ∈ S(R). This allows us to extend the Hilbert transform to a bounded linear
operator on L2(R). In fact H is an isometry by Plancherel’s theorem and the
fact that | − isgn(ξ)| = 1. Furthermore, although at the current stage it is not
clear that our original definition makes sense on L2(R), we can directly define
the Hilbert transform on L2(R) by means of

Ĥ f (ξ) B −isgn(ξ) f̂ (ξ),

which is a good definition whenever f ∈ L2(R). In fact, recalling the discussion
on multiplier transformations it is clear that the operator H on L2 is the mul-
tiplier transformation associated with the multiplier m(ξ) = −isgn(ξ) which is
obviously a bounded function. We also have that ‖H‖L2→L2 = ‖m‖L∞ = 1 which is
also obvious from the fact that H is an isometry.
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COROLLARY 5.7. The Hilbert transform extends to an isometry on L2(R).
We have that

‖H f ‖L2(R) = ‖ f ‖L2(R),

for all f ∈ L2(R). Furthermore, for f ∈ L2(R) the Hilbert transform can be
defined by means of

Ĥ f (ξ) B −isgn(ξ) f̂ (ξ), f ∈ L2(R).

COROLLARY 5.8. Consider the Hilbert transform H : L2(R) → L2(R). Then
we have the following properties

(i) The Hilbert transform H commutes with translations and dilations
(but not modulations).

Hτxo = τxo H, Dilp
λH = HDilp

λ, xo ∈ R, λ > 0, 1 ≤ p ≤ +∞.

(ii) The Hilbert transform is skew-adjoint on L2(R)∫
R

H f g = −

∫
R

f H(g), f , g ∈ L2(R).

(iii) We have the identity H2 = −id on L2(R):

H(H f ) = − f , f ∈ L2(R).

EXERCISE 5.9. Prove Corollary 5.8 above.
Hint: Use the formula of Theorem 5.6.

EXERCISE 5.10. Let f (x) B 1[0,1](x). Show that

H f (x) =
1
π

log
∣∣∣∣∣ x
x − 1

∣∣∣∣∣.
Conclude that the Hilbert transform is not of strong type (1, 1) nor of strong
type (∞,∞).

5.3. The Hilbert transform on Lp(R)

So far we have defined our first singular integral operator, the Hilbert
transform. This is an operator that is bounded on L2(R) and that has the rep-
resentation

H f (x) =

∫
R

f (y)
1

x − y
dy,

whenever f ∈ L2(R) has compact support and x < supp( f ). The function

K(x, y) =
1

x − y

is the singular kernel associated with the Hilbert transform. Although we
have seen that the Hilbert transform can be described for all x ∈ R, at least for
nice functions f ∈ S(R), the restricted representation just described is all we
really need to execute our program. Furthermore, this approach will serve as
a good introduction to the general case of Calderón-Zygmund operators. From
the previous discussion we know that the Hilbert transform is not of strong
type (1, 1) nor of type (∞,∞). The following theorem is the main result of the
theory.
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THEOREM 5.11. Let H denote the Hilbert transform, initially defined on
L2(R).

(i) The Hilbert transform is of weak type (1, 1); for f ∈ L1(R) we have that

|{x ∈ R : |H f (x)| > λ}| .
‖ f ‖L1(R)

λ
, λ > 0.

(ii) For 1 < p < ∞, the Hilbert transform is of strong type (p, p); for f ∈ Lp(R)
we have

‖H f ‖Lp(R) .p ‖ f ‖Lp(R).

PROOF. We will divide the proof in several steps. The most important
one however is the proof of the weak type (1, 1). All the rest really relies on
exploiting the symmetries of the Hilbert transform, interpolation and duality.

step 1; the weak (1, 1) bound: We fix a level λ > 0 and a function f ∈
L1(R)∩L2(R) and write the Calderón-Zygmund decomposition of the function f
at level λ in the form

f = g + b.
Recall that the “bad part” b is described as

b =
∑
Q∈B

bQ

where B is a collection of disjoint dyadic intervals (since n = 1) and each bQ is
supported on Q. Furthermore we have that∫

Q
bQ = 0,

and
1
|Q|

∫
Q
|bQ| . λ.

Recall also that

| ∪Q∈B Q| ≤
‖ f ‖1
λ
,

by the maximal theorem. On the other hand the ‘good part’ g is bounded

‖g‖∞ . λ

and its L1 norm is controlled by the L1 norm of f :

‖g‖1 ≤ ‖ f ‖1.

Observe that g ∈ L1
∩ L∞ thus g ∈ L2(R) and by the log-convexity of the norm

we have

(5.5) ‖g‖2L2(R) ≤ ‖g‖L1(R)‖g‖L∞(R) . λ‖ f ‖L1(R).

REMARK 5.12. Since f , g ∈ L2(R) it follows that b ∈ L2(R) as well. Also,
by the definition of the pieces bQ it is easy to see that bQ ∈ L2(Q) as well.
However, we will not use the L2 bounds on b nor on bQ, the fact that they
belong to L2 being merely a technical assumption that allows us to define their
Hilbert transforms. Overall, the hypothesis that f ∈ L2(R) cannot be used in
any quantitative way if we ever want to extend our results to L1(R).
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Since f = b + g and H is linear, we have the following basic estimate

(5.6) {|H f (x)| > λ}| ≤ |{x ∈ R : |H(g)(x)| > λ/2}| + |{|H(b)(x)| > λ/2}|.

The part that corresponds to g is the easy one to estimate. This is not surpris-
ing since g is the good part. Since we already know that H is of strong type
(2, 2) it is certainly of weak type (2, 2) thus we have

|{x ∈ R : |H(g)(x)| > λ/2}| .
‖g‖2L2(R)

λ2 ≤
‖ f ‖L1(R)

λ
,

by (5.5). This estimate takes care of the good part. Let’s move now to the
estimate for the bad part. The main ingredient for the estimate of the bad part
is the following statement which we formulate as a lemma for future reference.

LEMMA 5.13. Let I = (xo − ε, xo + ε) be any interval in R and denote by I∗

the interval with the same center as I and twice its length. For f ∈ L1(R)∩ L2(R)
supported in I and with zero mean on I,

∫
I f = 0, we have

|H f (x)| .
|I|

|x − xo|
2

∫
I
| f |,

for all x < I∗. We conclude that∫
R\I∗
|H f (x)|dx .

∫
I
| f |.

REMARK 5.14. Here we require that f is also in L2(R) just in order to make
sure that H f (x) is well defined. Note that in the case of the Hilbert transform
it can be verified directly that H f (x) is well defined for f ∈ L1(I) and x < I∗.
However we prefer this formulation since for more general Calderón-Zygmund
operators we will only have a formula available to us for f ∈ L2(R) with compact
support and x < supp( f ).

PROOF. Using the zero mean value hypothesis for f we can write for x < I∗

|H f (x)| =
∣∣∣ ∫

I

f (y)
x − y

dy
∣∣∣ =

∣∣∣∣∣ ∫
I

( 1
x − y

−
1

x − xo

)
f (y)dy

∣∣∣∣∣
≤

∫
I

|y − xo|

|x − xo||x − y|
| f (y)|dy.

Now since x < I∗ we have that

|x − y| ≥ |x − xo| − |y − xo| = |x − xo| − ε ≥ |x − xo| − |x − xo|/2 = |x − xo|/2

so we can write
|H f (x)| .

|I|
|x − xo|

2

∫
I
| f (y)|dy,

as we wanted to show. The second claim of the lemma follows easily by inte-
grating this estimate. �

We now go back to the estimate of b. First of all note that

|H(b)(x)| ≤
∑
Q∈B

|H(bQ)(x)|,

for almost every x ∈ R. Indeed, if we enumerate the intervals inB as Q1, . . . ,QN, . . .
then we have that bN(x) :=

∑N
j=1 bQ j (x) ↗ b(x) for every x ∈ R thus bN → b in
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L2(R). Since H is an isometry on L2(R) it follows that H(bN) converges to H(b) in
L2 as well. Taking subsequences we then have that H(bN j )(x) → H(b)(x) almost
everywhere. Thus

|H(bN j )(x)| = |
N j∑

m=1

H(bQm )(x)| ≤
∑
Q∈B

|H(bQ)(x)|,

almost everywhere and we get the claim by letting j→ +∞.
For each Q ∈ B let Q∗ denote the interval with the same center and twice

the side-length. We now estimate the ‘bad part’ as follows

|{x ∈ R : |H(b)(x)| > λ/2}| ≤ | ∪Q∈B Q∗| + |{x < ∪Q∈BQ∗ :
∑
Q∈B

|H(bQ)(x)| > λ/2}|.

By the Calderón-Zygmund decomposition we have that

| ∪Q∈B Q∗| = 2| ∪Q∈B Q| .
‖ f ‖1
λ
,

which takes care of the first summand. For the second we use Lemma 5.13 to
write ∫

R\Q∗
|H(bQ)(x)|dx .

∫
|bQ(x)|dx . |Q|λ,

again by the Calderón-Zygmund decomposition. Observe that each bQ ∈ L1(Q)∩
L2(Q) and has mean zero on Q so the appeal to Lemma 5.13 is legitimate. Sum-
ming up the estimates for all the bad intervals in B we get∥∥∥∥∥ ∑

Q∈B

|H(bQ)|
∥∥∥∥∥

L1(R\∪Q∈BQ∗)
. λ

∑
Q∈B

|Q| = λ
‖ f ‖1
λ

= ‖ f ‖1.

By Chebyshev’s inequality we thus get

|{x ∈ R \ ∪Q∈BQ∗) :
∑
Q∈B

|H(bQ)(x)| > λ/2}| .
‖ f ‖1
λ
.

Summing up the estimates for the bad part we conclude that

|{x ∈ R : |H(b)(x)| > λ/2}| .
‖ f ‖1
λ
.

By (5.6) now we conclude that

|{x ∈ R : |H f (x)| > λ}| .
‖ f ‖1
λ
,

whenever f ∈ L1(R) ∩ L2(R).
We have a priori assumed that f ∈ L2(R) ∩ L1(R) in order to have a good

definition of H. However, the weak (1, 1) inequality on L1
∩L2 allows us to extend

the Hilbert transform to a linear operator on L1(R) which is also of weak type
(1, 1). The details are left as an exercise.

EXERCISE 5.15. Let T : L1(Rn)∩S(Rn)→ L1(Rn) be a linear operator which
is of weak type (1, 1). Show that T extends to a linear operator on L1(Rn) which
is of weak type (1, 1), with the same (1, 1) constant.
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step 2; the strong (p, p) bound: As promised, the difficult part of the
proof was the weak (1, 1) bound. The rest is routine. First of all observe that
since H is of weak type (1, 1) and strong type (2, 2), the Marcinkiewicz interpo-
lation theorem allow us to show that H is of strong type (p, p) for any 1 < p < 2.
To treat the interval 2 < p < +∞ we argue by duality, exploiting the fact that
H is almost self-adjoint (in fact it is skew adjoint as we have seen in Corollary
5.8). Indeed, let f ∈ S(R) and 2 < p < ∞. Now for any g ∈ Lp′ (R) we have∣∣∣ ∫

R

H f ḡ
∣∣∣ =

∣∣∣ ∫
R

f H(g)
∣∣∣ ≤ ‖ f ‖Lp(R)‖H(g)‖Lp′ (R) .p ‖g‖Lp′ (R)‖ f ‖Lp(R),

using the fact that H is of strong type (p′, p′) since 1 < p′ < 2. Taking the
supremum over all g ∈ Lp′ (R) with ‖g‖Lp′ ≤ 1 we get

‖H f ‖Lp(R) .p ‖ f ‖Lp(R),

for 2 < p < ∞ as well, whenever f ∈ S(R). Using standard arguments again
this shows that H extends to a bounded linear operator on Lp(R), 1 < p < ∞. �

REMARK 5.16. In fact, tracking the constants in the previous argument
we see that

‖H‖Lp→Lp .
1

p − 1
as p→ 1

and

‖H‖Lp→Lp .
1

p′ − 1
=

p
p′
' p as p→∞.

Overall we have proved that H is of strong type (p, p) with a norm bound of
the order

‖H‖Lp→Lp . max((p − 1)−1, p), 1 < p < ∞.

REMARK 5.17. We have exhibited that H extends to a bounded linear oper-
ator to Lp for 1 < p < ∞ and that it is of weak type (1, 1). However, for a general
f ∈ Lp(R), 1 ≤ p < +∞, there is no reason why H f should by given by the same
formula by which it was initially defined; remember that

H f = lim
ε→0

∫
|y|>ε

f (x − y)
y

dy C lim
ε→0

Hε( f ), f ∈ S(R).

Thus the question whether Hε( f )(x)→ H f (x) a.e., for f ∈ Lp(R), is very natural.
Since we know this convergence is true for the dense subset §(R), the study of
the pointwise convergence amounts to studying the boundedness properties of
the corresponding maximal operator

H∗( f )(x) := sup
ε>0

∫
|y|>ε

f (x − y)
y

dy.

Thus if one can show that H∗ is of weak type (1, 1) for example, the pointwise
convergence of Hε( f ) to H f would follow by Proposition 4.5. Such an estimate
is actually true and thus this formula extends to all Lp functions for 1 ≤ p < ∞.
We will however see this in the general theory of Calderón-Zygmund operators
of which the Hilbert transform is a special case and so we postpone the proof
until then.
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5.3.1. The Hilbert transform and the boundary values of holomor-
phic functions. In this section we briefly discuss the connection of the Hilbert
transform with the boundary values of holomorphic functions in the upper half
plane. Let us write

R2
+ = C+ = {(x, y) : x ∈ R, y > 0} = {x + iy : x ∈ R, y > 0},

for the upper half plane. Two function u, v on R+ are called conjugate harmonic
functions if they are the real and imaginary part respectively of a holomorphic
function F(z) in the upper half plane, where z = x + iy. Thus we have that

F(z) = F(x + iy) = u(x, y) + iv(x, y).

By definition both u, v are real and harmonic. Moreover, they satisfy the Cauchy-
Riemann equations (since F is holomorphic). Now assume that F has a bound-
ary value Fo(x) = uo(x) + ivo(x) on the real line x ∈ R. Then

vo(x) = H(uo)(x), and uo(x) = −H(vo)(x).

Of course, some technical assumptions are needed to make all these claims
rigorous as for example assuming that the holomorphic function F has some
decay of the form |F(z)| . (1 + |z|)−1 in the upper half plane.

Conversely, Let f ∈ Lp(R) be a real function and Py(x) be the Poisson kernel
for the upper half plane

Py(x) =
1
π

y
y2 + x2 .

As we have seen, the convolution u(x, t) = ( f ∗ Py)(x) is a harmonic function in
the upper half plane R+ = {(x, t) : x ∈ R, t > 0}. Observe that

u(x, y) =
y
π

∫
R

f (t)
y2 + (x − t)2 dt.

Consider now the conjugate Poisson kernel

Qt(x, y) =
1
π

x
y2 + x2 .

The name comes from the fact that both Pt,Qt are both real harmonic functions
and writing z = x + iy we have

Pt(x) + iQt(x) =
1
π

ix + y
x2 + y2 =

i
π

x − iy
x2 + y2 =

i
πz
,

which is holomorphic in the upper half plane. Thus Pt, Qt are conjugate har-
monic functions which is what makes the functions u, v conjugate harmonic
functions as well. We conclude that the function

v(x, y) = ( f ∗Qt)(x) =
1
π

∫
R

f (t)(x − t)
y2 + (x − t)2 dt,

is harmonic in the upper half plane and that

F(z) = u(x, y) + iv(x, y), z = x + iy ∈ C+,

is holomorphic in the upper half plane.
Finally observe that according to the previous formulae we have

F(z) = u(x, y) + iv(x, y) =
1
π

∫
R

f (t)[y + i(x − t)]
y2 + (x − t)2 dt =

1
πi

∫
R

f (t)
t − x − iy

dt.
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In this language, Proposition 5.4 just states that F(x + iy) converges to its
boundary value f + iH f as y → 0. We also see that the imaginary part of F
converges to the Hilbert transform:

lim
y→0

( f ∗Qt)(x) = H f (x),

both in Lp(R) and almost everywhere.

5.3.2. Frequency cut-off multipliers and partial Fourier integrals.
Remember that for a bounded function m ∈ L∞(R) the operator

T : L2(R)→ L2(R), T̂( f )(ξ) = m(ξ) f̂ (ξ)

is a multiplier operator (associated to the multiplier m) and that ‖T‖L2→L2 =
‖m‖L∞(R). We also say that m is a multiplier on Lp if T extends to a bounded
linear operator T : Lp(R)→ Lp(R). Thus we see that the Hilbert transform is a
multiplier operator on Lp(R) associated with the multiplier

m(ξ) = −isgn(ξ), ξ ∈ R,

which is obviously a bounded function with ‖m‖L∞(R) = 1. A very closely related
multiplier is the frequency cutoff multiplier. Given an interval (a, b) in the
frequency space, where a < b, we define the operator S(a,b) : L2(R) → L2(R) by
means of the formula

Ŝ(a,b) f (ξ) B 1(a,b)(ξ) f̂ (ξ).

Thus the operator S(a,b) applied to f , localizes the function f in frequency, in
the interval (a, b). Such operators as well as their multidimensional analogues
turn out to be very important in harmonic analysis as well as in the theory
of partial differential operators. Obviously S(a,b) is bounded on L2(R), since
‖S(a,b)‖L2→L2 = ‖χ(a,b)‖L∞(R) = 1. However, the corresponding estimate in Lp(R)
is far from obvious. After all the work we have done for the Hilbert transform
though, we can get the Lp bounds for S(a,b) as a simple corollary. This is based
on the observation that

(5.7) S(a,b) =
i
2

(ModaHMod−a −ModbHMod−b),

where the equality should be understood as an equality of operator in L2(R).
Here remember that

Modxo ( f )(x) = e2πixox f (x).

The verification of this formula is left as an exercise. Formula (5.7) is also true
when a = −∞ or b = +∞ with obvious modifications.

EXERCISE 5.18. Prove formula (5.7).

A simple corollary of the Lp boundedness of the Hilbert transform is the
corresponding statement for S(a,b).

LEMMA 5.19. The operator S(a,b) is of strong type (p, p) for 1 < p < ∞:

‖S(a,b)( f )‖Lp(R) .p ‖ f ‖Lp(R).

Note that the operator norm of S(a,b) does not depend on a, b.
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Now for N > 0 and f ∈ S(R) define the partial Fourier integral operator

SN( f )(x) B
∫ N

−N
f̂ (ξ)e2πixξdξ

∫
R

1(−N,N)(ξ) f̂ (ξ)e2πixξdξ, x ∈ R.

Observe that these integrals are the 1(−N,N)-means of the integral
∫

f̂ (ξ)e2πixξdξ.
We have seen that the Gauss-Weierstrass or Abel means of this integral con-
verge to f , both almost everywhere as well as in the Lp sense. However the
function 1(−N,N) is much rougher. We still have the following theorem as a con-
sequence of the (p, p) bound for the Hilbert transform.

THEOREM 5.20. For 1 < p < ∞ the operator SN has a unique extension to a
bounded linear operator on Lp(R) for 1 < p < ∞.

However the Lp boundedness of SN controls the Lp convergence of partial
Fourier integrals.

LEMMA 5.21. The partial Fourier integrals SN( f ) converge to f in the Lp

norm for 1 < p < ∞ if and only if SN is of strong type (p, p) uniformly in N.

Now Theorem 5.20 and Lemma 5.21 immediately imply:

COROLLARY 5.22. For 1 < p < ∞ the partial Fourier integrals SN( f ) con-
verge to f in the Lp norm.

The question whether SN( f ) converges to f almost everywhere is much
harder. For f ∈ Lp(R), 1 < p < +∞, the answer is positive and this is the
content of the famous Carleson-Hunt theorem. This theorem was first proved
by Carleson for L2 and then extended to Lp by Hunt. A counterexample by
Kolmogorov shows that both in the L1 sense as well a almost everywhere, the
convergence of the partial Fourier integrals fails for f ∈ L1.

EXERCISE 5.23. Show that SN extends to an operator of weak type (1, 1)
on L1(R) and that the partial Fourier integrals converge to f in measure for
f ∈ L1(R). Conclude that for almost every x ∈ R there is a subsequence {Nk}k
such that SNk ( f )(x)→ f (x) as k→ +∞.

http://matwbn.icm.edu.pl/ksiazki/fm/fm4/fm4127.pdf
http://matwbn.icm.edu.pl/ksiazki/fm/fm4/fm4127.pdf




CHAPTER 6

Calderón-Zygmund operators

After having studied the Hilbert transform in detail we now move to the
study of general Calderón-Zygmund operators, that is operators given formally
as

T f (x) =

∫
K(x, y) f (y)dy,

for an appropriate kernel K. Let us quickly review what we used in order
to show that the Hilbert transform H is of weak type (1, 1) and strong type
(p, p). First of all we have essentially used the fact that the linear operator
H is defined on L2 and bounded, that is, that it is of strong type (2, 2). This
information was used in two different ways. First of all, the fact that H is
defined on L2 means that it is defined on a dense subspace of Lp for every 1 ≤
p < +∞. Furthermore, the boundedness of the Hilbert transform on L2 allowed
us to treat the set {|H(g)| > λ} where g is the “good part” in the Calderón-
Zygmund decomposition of a function f . Secondly, we used the fact that there
is a specific representation of the operator H of the form

H( f )(x) =

∫
K(x, y) f (y)dy,

whenever f ∈ L2 and has compact support and x < supp( f ). For the Hilbert
transform we had that the kernel K is given as

K(x, y) =
1

x − y
.

We used the previous representation and the formula of K to prove a sort of
restricted L1 boundedness of H on functions which are localized and have mean
zero, which is the content of Lemma 5.13. This in turn allowed us to treat the
“bad part” of the Calderón-Zygmund decomposition of f . From the proof of that
lemma it is obvious that what we really need for K is a Hölder type condition.
Note as well that for the Hilbert transform we first proved the Lp bounds for
1 < p < 2 and then the corresponding boundedness for 2 < p < ∞ followed by
the fact that H is essentially self-adjoint.

6.1. Singular kernels and Calderón-Zygmund operators

We will now define the class of Calderón-Zygmund operators in such a way
that we will be able to repeat the schedule used for the Hilbert transform. We
begin by defining an appropriate class of kernels K, namely the singular (or
standard) kernels.

111
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DEFINITION 6.1 (Singular or Standard kernels). A singular (or standard)
kernel is a function K : Rn

× Rn
→ C, defined away from the diagonal x = y,

which satisfies the decay estimate

(6.1) |K(x, y)| .n |x − y|−n,

for x , y and the Hölder-type regularity estimates

(6.2) |K(x, y1) − K(x, y)| .n,σ
|y − y1|

σ

|x − y|n+σ
if |y − y1| <

1
2
|x − y|,

and

(6.3) |K(x1, y) − K(x, y)| .n,σ
|x − x1|

σ

|x − y|n+σ
if |x − x1| <

1
2
|x − y|,

for some Hölder exponent 0 < σ ≤ 1.

EXAMPLE 6.2. Let K : R ×R→ R be given as K(x, y) = (x − y)−1 for x, y ∈ R
with x , y. Then K is a singular kernel. Observe that K is the singular kernel
associated with the Hilbert transform.

EXAMPLE 6.3. Let K : Rn
×Rn

→ R be given as

K(x, y) = Ω
( x − y
|x − y|

)
|x − y|−n,

where Ω : Sn−1
→ C is a Hölder-continuous function:

|Ω(x′) −Ω(y′)| .n,σ |x′ − y′|σ,

for some 0 < σ ≤ 1. Then K is a singular kernel.

EXERCISE 6.4. Prove that the kernel K of example 6.3 is a singular kernel.

EXAMPLE 6.5. Let K : Rn
×Rn

→ C satisfy the size estimate

|K(x, y)| .n |x − y|−n,

and the regularity estimates

|∇xK(x, y)| .n |x − y|−(n+1), |∇yK(x, y)| .n |x − y|−(n+1),

away from the diagonal x = y. Then K is a singular kernel. In particular, the
kernel K : Rn

→ Rn
→ C given as

K(x, y) = |x − y|−n,

is a singular kernel since the gradient of K is of the order |x− y|−(n+1). Thus the
estimates (6.2) and (6.3) are consistent with (6.1) but of course do not follow
from it.

REMARK 6.6. The constant 1
2 appearing in (6.2), (6.3) is inessential. The

conditions are equivalent with the corresponding conditions where 1
2 is re-

placed by any constant between zero and one.

We are now ready to define Calderón-Zygmund operators.
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DEFINITION 6.7 (Calderón-Zygmund operators). A Calderón-Zygmund op-
erator (in short CZO) is a linear operator T : L2(Rn)→ L2(Rn) which is bounded
on L2(Rn):

‖T f ‖L2(Rn) .T,n ‖ f ‖L2(Rn) for all f ∈ L2(Rn),

and such that there exists a singular kernel K for which we have

T f (x) =

∫
Rn

K(x, y) f (y)dy,

for all f ∈ L2(Rn) with compact support and x < supp( f ).

REMARK 6.8. Note that the integral
∫

K(x, y) f (y) converges absolutely when-
ever f ∈ L2(Rn) has compact support and x lies outside the support of f . Indeed,∫

Rn
|K(x, y)|| f (y)|dy ≤

( ∫
y<supp( f )

|K(x, y)|2dy
) 1

2

‖ f ‖L2(Rn)

≤

( ∫
|x−y|≥δ

1
|x − y|2n dy

) 1
2

‖ f ‖L2(Rn)

by (6.1), for some δ > 0. Observe that the integral in the last estimate con-
verges.

REMARK 6.9. For any singular kernel K one can define TK by means of

TK( f )(x) =

∫
Rn

K(x, y) f (y)dy,

for f ∈ L2(Rn) with compact support and x < supp( f ). It is not necessary how-
ever that TK is a CZO since it might fail to be bounded on L2(Rn).

REMARK 6.10. It is not hard to see that T uniquely determines the kernel
K. That is if

T f (x) =

∫
Rn

K(x, y) f (y)dy =

∫
Rn

K1(x, y) f (y)dy,

for all f ∈ L2(Rn) with compact support, then K = K1 almost everywhere (why?).
The opposite is not true. Indeed, for any bounded function b ∈ L∞(Rn) the
operator defined as T f (x) = b(x) f (x) is a Calderón-Zygmund kernel with kernel
zero. A more specific example is the identity operator which also falls in the
previous class, and is CZO with kernel 0. However, this is the only ambiguity.
See Exercise 6.11.

EXERCISE 6.11. Let T1,T2 be two CZO’s with the same singular kernel K.
Show that there exists a bounded function b ∈ L∞(Rn) such that

T1 f = T2 f + b f ,

for all f ∈ L2(Rn).

If T is a CZO, the definition already contains the fact that T is defined and
bounded on L2(Rn), so we don’t need to worry about that. The next step is to
establish the restricted L1 boundedness for L1 functions with mean zero. The
following lemma is the analogue of Lemma 5.13.
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LEMMA 6.12. Let Q = Q(z,R) be a Euclidean cube in Rn with center z ∈ Rn

and sidelength R, and denote by Q∗ the cube with the same center and 1 + 2
√

n
times the sidelength of Q, that is Q∗ = Q(z, (1 + 2

√
n)R). Let f ∈ L1(Q) have mean

zero, that is
∫

Q f = 0. Then we have that

|T f (x)| .n,σ
Rσ

|x − z|n+σ

∫
Q
| f (y)|dy,

for all x < Q∗. We conclude that

‖T f ‖L1(Rn\Q∗) .n,σ ‖ f ‖L1(Q).

PROOF. Using the fact that f has zero mean on B, for x < B∗ we can esti-
mate

|T f (x)| ≤
∫

Q
|K(x, y) − K(x, z)|| f (y)|dy ≤

∫
Q

|y − z|σ

|x − y|n+σ
| f (y)|dy

.n,σ
Rσ

|x − z|n+σ

∫
Q
| f (y)|dy.

The last estimate follows since

|x − y| ≥ |x − z| − |y − z| ≥ |x − z| −
1
2
√

nR ≥
1
2
|x − z|.

Now observe that Q ⊂ B(z, (1 + 2
√

n)R) ⊂ Q∗. Integrating throughout Rn
\Q∗ we

get ∫
Rn\Q∗

|T f (x)|dx ≤ Rσ
∫

Q
| f (y)|dy

∫
Rn\B(z,(1+2

√
n)R)

1
|x − z|n+σ

dx

.n Rσ
∫

Q
| f (y)|dy

∫
∞

(1+2
√

n)R

rn−1

rn+σ
dr 'n,σ

∫
Q
| f (y)|dy

which is the desired estimate. �

The only thing missing in order to conclude the proof of the Lp bounds for
CZO’s is the the fact that they are self adjoint as a class. In particular, we need
the following.

LEMMA 6.13. Let T be a CZO. Consider the adjoint T∗ defined by means of

(6.4)
∫

T f ḡ =

∫
f T∗(g),

for all f , g in L2. Then T∗ is a CZO.
PROOF. It is immediate from (6.4) and the fact that T is bounded on L2

that T∗ is also bounded on L2 with the same norm. Now let f , g ∈ L2(Rn) have
disjoint compact supports. We have

(6.5)
∫

T f ḡ =

∫ ∫
K(x, y) f (y)dy ḡ(x)dx =

∫
f (y)

∫
K(x, y)g(x)dx dy.

Let z < supp(g) and φ ∈ C∞c (Rn) have support inside B(0, 1) with
∫
φ = 1. For

ε > 0, the functions φε(y − z) are supported in B(z, ε) so, for ε small enough, the
support of φε is disjoint from the support of g. By (6.5) we conclude that∫

φε(z − y)T∗(g)(y)dy =

∫
φε(z − y)

∫
K(x, y)g(x)dx dy.
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Letting ε→ 0 we get

T∗(g)(z) =

∫
K(x, z)g(x)dx,

for almost every z < supp(g). Since the conditions defining singular kernels are
symmetric in the variables x, y, the kernel S(x, y) B K(y, x) is again a singular
kernel so we are done. �

The discussion above leads to the main theorem for CZO’s. Given Lem-
mas 6.12, 6.13, the proof follows by using the Calderón-Zygmund decomposi-
tion, exactly as in the case of the Hilbert transform in § 5.3

THEOREM 6.14. Let T be a Calderón-Zygmund operator. Then T extends
to a linear operator which is of weak type (1, 1) and of strong type (p, p) for all
1 < p < +∞, where the corresponding norms depend only on n, σ and p.

6.2. Pointwise convergence and maximal truncations

Let T be a CZO. The example of the Hilbert transform suggests that we
should have the almost everywhere convergence

T f (x) = lim
ε→0

∫
|x−y|>ε

K(x, y) f (y)dy,

at least for nice functions f ∈ S(Rn). The truncated operators

Tε f (x) B
∫
|x−y|>ε

K(x, y) f (y)dy,

certainly make sense for f ∈ L2(Rn) because of (6.1). However, the pointwise
limit of the truncations, limε→0 Tε( f )(x), need not even exist in general or may
exist and be different from T f (x). Here we can use the trivial example of the
operator T f (x) = b(x) f (x). As we have already observed this is a CZO operator
with kernel 0. Thus Tε( f )(x) = 0 for all ε > 0 but clearly T f , 0 in general.

The following lemma clears out the situation as far as the existence of the
limit is concerned:

LEMMA 6.15. The limit
lim
ε→0

Tε f (x),

exists almost everywhere for all f ∈ S(Rn) if and only if the limit

lim
ε→0

∫
ε<|x−y|<1

K(x, y)dy,

exists almost everywhere.

PROOF. First suppose that the limit limε→0 Tε f (x) exists for all f ∈ S(Rn)
and let φ ∈ S(Rn) with φ ≡ 1 on B(0, 1). Then

lim
ε→0

Tεφ(x) = lim
ε→0

∫
ε<|x−y|<1

K(x, y)dy +

∫
|x−y|>1

K(x, y)φ(y)dy.
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Observe that by (6.1) the second integral on the right hands side converges
absolutely. Since the limit on the left hand side exists we conclude that the
limit on the right hand side exists as well. Conversely, suppose that the limit

lim
ε→0

∫
ε<|x−y|<1

K(x, y)dy = L

exists and let f ∈ S(Rn). We have that

Tε f (x) =

∫
ε<|x−y|<1

K(x, y) f (y)dy +

∫
|x−y|>1

K(x, y) f (y)dy

=

∫
ε<|x−y|<1

K(x, y)[ f (y) − f (x)]dy + f (x)
∫
ε<|x−y|<1

K(x, y)dy

+

∫
|x−y|>1

K(x, y) f (y)dy C I1(ε) + I2(ε) + I3.

By the same considerations are before |I3| is a positive number that does not
depend on ε. By the hypothesis we also have that limε→0 I2(ε) = L f (x). Finally
for I1(ε) observe that we have∫

0<|x−y|<1
|K(x, y)||x − y|dy .n

∫
|x−y|<1

|x − y|−(n−1)dy .n 1,

by (6.1). Since

|K(x, y)[ f (x) − f (y)]| . ‖∇ f ‖L∞(Rn)|K(x, y)||x − y|,

dominated convergence implies that limε→0 I1(ε) exists as well. �

Thus, for specific kernels K one has an easy criterion to establish whether
the limit limε→0 Tε( f ) exists a.e. for “nice” functions f . For example, for the
kernel K(x, y) = (x − y)−1 of the Hilbert transform, the existence of the limit

lim
ε→0

∫
ε<|x−y|<1

1
x − y

dy = 0

is obvious. In order to extend the almost everywhere convergence to the class
Lp(Rn) we need to consider the corresponding maximal function.

DEFINITION 6.16. Let T be a CZO and define the truncations of T as before

Tε f (x) B
∫
|x−y|>ε

K(x, y) f (y)dy, x ∈ Rn, f ∈ S(Rn).

The maximal truncation of T is the sublinear operator defined as

T∗( f )(x) B sup
ε>0
|Tε( f )(x)|, x ∈ Rn.

The maximal truncation of a CZO has the same continuity properties as T
itself.

THEOREM 6.17. Let T be a CZO and T∗ denote its maximal truncation.
Then T∗ is of weak type (1, 1) and strong type (p, p) for 1 < p < ∞.

The proof of Theorem 6.17 depends on the following preliminary results.
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LEMMA 6.18 (Kolmogorov). Let S be an operator of weak type (1, 1) and
ν ∈ (0, 1). Then for every set E ⊂ Rn with 0 < |E| < +∞ we have that∫

E
|S f (x)|νdx .ν,S |E|1−ν‖ f ‖ν1.

The proof of this lemma is a simple application of the representation of the
Lν norm in terms of level sets and is left as an exercise.

EXERCISE 6.19. Prove Lemma 6.18 above.

The second result we need is the following lemma that gives a pointwise
control of the maximal truncations of the CZO T by an expression that involves
the maximal function of f and the maximal function of T f .

LEMMA 6.20. Let T be a CZO and 0 < ν ≤ 1. Then for all f ∈ C∞c (Rn) we
have that

T∗ f (x) .ν,n,σ [M(T| f |ν)(x)]
1
ν + M f (x).

PROOF. Let us fix a function f ∈ C∞c (Rn) and ε > 0 and consider the balls
B = B(x, ε/2) and its double B∗ = B(x, ε). We decompose f in the form

f = f 1B∗ + f (1 − 1B∗ ) C f1 + f2.

Since supp( f2) ∩ B = ∅ and obviously f2 ∈ L2(Rn) has compact support we can
write

(6.6) T f2(x) =

∫
Rn

K(x, y) f2(y)dy =

∫
|x−y|>ε

K(x, y) f (y)dy = Tε f (x).

Also every w ∈ B is not contained in the support of f2 thus

|T f2(w) − T f2(x)| =
∣∣∣∣∣ ∫
|x−y|>ε

[K(x, y) − K(w, y)] f2(y)dy
∣∣∣∣∣

≤

∫
|x−y|>ε

|x − w|σ

|x − y|n+σ
| f (y)|dy,

by (6.3), since |x − w| < ε
2 <

1
2 |x − y| for y in the domain of integration above. By

this estimate we get that

|T( f2)(w) − T( f2)(x)| .σ εσ
∞∑

k=0

∫
2kε<|x−y|<2k+1ε

| f (y)|
(2kε)n+σ

dy

.σ

∞∑
k=0

1
εn

1
2k(n+σ)

∫
|x−y|<2k+1ε

| f (y)|dy

.σ,n

∞∑
k=0

1
2kσ

M f (x) 'n,σ M f (x).

Combining the previous estimates we conclude that for any w ∈ B

(6.7) |Tε f (x)| ≤ AM f (x) + |T f2(w)| ≤ AM f (x) + |T f (w)| + |T f1(w)|,

for some constant A depending only on n and σ.
We now deal with the cases ν = 1 and ν < 1 separately.
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Case ν = 1. If Tε( f )(x) = 0 then we are done. If |Tε( f )(x)| > 0 then there is
λ > 0 such that |Tε( f )(x)| > λ. Let

B1 = {w ∈ B : |T f (w)| > λ/3},

B2 = {w ∈ B : |T f1(w)| > λ/3},

and

B3 =

∅, if M( f )(x) ≤ A−1λ/3,
B, if M( f )(x) > A−1λ/3

.

Let w ∈ B. Then either w ∈ B1 or w ∈ B2 or AM f (x) > λ/3. In the last case B3 = B
so in every case we conclude that w ∈ B1∪B2∪B3 thus B ⊂ B1∪B2∪B3. However
we have that

|B1| .
1
λ

∫
B
|T f (y)|dy ≤

|B|
λ

M(T f )(x).

Also, by the (1, 1) type of T we get

|B2| .
1
λ
‖ f1‖L1(Rn) =

1
λ

∫
B
| f (y)|dy ≤

|B|
λ

M( f )(x).

Finally, if B3 = B then λ .n,σ M( f )(x). Otherwise B3 = ∅ so

|B| ≤ |B1| + |B2| .n,σ
|B|
λ

(M(T f )(x) + M( f )(x)).

Thus in every case we get that

λ .n,σ M(T f )(x) + M( f )(x).

Since the previous estimate is true for any λ < Tε( f )(x) we conclude that

Tε( f )(x) .n,σ M(T f )(x) + M( f )(x),

which gives the desired estimate in the case ν = 1.
Case ν < 1. For ν < 1 estimate (6.7) implies that

|Tε( f )(x)|ν .σ,ν,n |M( f )(x)|ν + |T( f )(w)|ν + |T( f1)(w)|ν,

and integrate in w ∈ B to get

|Tε( f )(x)|ν .σ,ν,n |M( f )(x)|ν +
1
|B|

∫
B
|T f (w)|νdw +

1
|B|

∫
B
|T f1(w)|νdw,

and thus

|Tε( f )(x)| .σ,ν,n |M( f )(x)| +
( 1
|B|

∫
B
|T f (w)|νdw

) 1
ν

+
( 1
|B|

∫
B
|T f1(w)|νdw

) 1
ν

,

Note that ( 1
|B|

∫
B
|T f (w)|νdw

)
≤ [M(|T f |ν)(x)]

1
ν ,

and by Lemma 6.18 the last term is controlled by( 1
|B|

∫
B
|T f1(w)|νdw

) 1
ν

≤
1
|B|
‖ f1‖1 ≤M( f )(x),

since T is of weak type (1, 1). Gathering these estimates we get

Tε( f )(x) .σ,ν,n M( f )(x) + [M(|T f |ν)(x)]
1
ν ,

as we wanted to show. �
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The operator f 7→
[
M(|T f |ν)

] 1
ν that appears in the previous lemma is obvi-

ously bounded on Lp(Rn) for 1 < p < +∞. The following lemma shows that it is
also well behaved at the endpoint p = 1, at least when f ∈ C∞c (Rn).

LEMMA 6.21. Suppose that S is a sublinear operator which is of weak type
(1, 1) and let 0 < ν < 1. Then for all f ∈ L1(Rn) ∩ L∞(Rn) we have∣∣∣{x ∈ Rn :

[
M(|S f |ν)

] 1
ν

}∣∣∣ .n
1
λ
‖ f ‖L1(Rn).

PROOF. We first argue that the statement of the lemma is true for the
operator f 7→

[
MD(|S f |ν)

] 1
ν , where MD is the dyadic maximal operator. Indeed,

using the Calderón-Zygmund decomposition it is not hard to see (Exercise 6.22)
that

|{x ∈ Rn : MDg(x) > λ}| ≤
1
λ

∫
{MDg(x)>λ}

|g(x)|dx,

where MD is the dyadic maximal function. Applying the last estimate to the
function g(x) B [MD(|S f |ν)(x)]

1
ν we get

|{x ∈ Rn : [MD(|S f |ν)(x)]
1
ν > λ}| ≤

1
λν

∫
{[MD(|S f |ν)(x)]

1
ν >λ}
|S f (x)|νdx.

For f ∈ L1(Rn) ∩ L∞(Rn) the set {[MD(|S f |ν)(x)]
1
ν > λ} has finite measure. This is

because [
MD(|S f |ν)(x)

] 1
ν ≤

[
MD(|S f |pν)(x)

] 1
pν

for any p > 1. Using this estimate with p = q/ν for some q > ν we have

|{x ∈ Rn : [MD(|S f |ν)(x)]
1
ν > λ}| ≤ |{x ∈ Rn : [MD(|S f |q)(x)]

1
q > λ}|

≤
1
λq

∫
|S f (y)|qdy .T

1
λq

∫
| f (y)|qdy < +∞.

Since S is of weak type (1, 1) we conclude by Lemma 6.18 we conclude that

|{x :
[
MD(|S f |ν)(x)

] 1
ν > λ}| ≤

1
λν
‖ f ‖νL1(Rn)|{x : [MD(|S f |ν)(x)]

1
ν > λ}|1−ν.

which shows the desired estimate for
[
MD(|S f |ν)(x)

] 1
ν :

(6.8) |{x :
[
MD(|S f |ν)(x)

] 1
ν > λ}| ≤

1
λ
‖ f ‖L1(Rn).

In order to complete the proof remember that from Lemma 4.47 we have

(6.9) |{x ∈ Rn : M�g(x) > 4nλ}| ≤ 2n
|{x ∈ Rn : MD(g)(x) > λ}|

for all functions g, and that M�g(x) 'n Mg(x). These observations together with
(6.8) conclude the proof of the lemma. �

EXERCISE 6.22. Show that for all f ∈ L1(Rn) we have that

|{x ∈ Rn : MD( f )(x) > λ}| .n

∫
{x∈Rn:MD( f )(x)>λ}

| f (x)|dx.

We can now give the proof of the fact that maximal truncation of a CZO is
of weak type (1, 1) and strong type (p, p) for 1 < p < ∞.
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PROOF OF THEOREM 6.17. By Lemma 6.20 for ν = 1 we immediately get
that T∗ is of strong type (p, p) for 1 < p < ∞ since both M and T are. In order
to show that T∗ is of weak type (1, 1) we argue as follows. By Lemma 6.20 we
have that

|{x ∈ Rn : T∗( f )(x) > λ}| .n,ν,σ |{x ∈ Rn : M( f )(x) > λ/2}|

+ |{x ∈ Rn : [M(|T f |ν)(x)]
1
ν > λ/2}|

.
1
λ
‖ f ‖L1(Rn) + |{x ∈ Rn : [M(|T f |ν)(x)]

1
ν > λ/2}|.

Thus the proof will be complete if we show that

|{x ∈ Rn : [M(|T f |ν)(x)]
1
ν > λ}| .

1
λ
‖ f ‖1.

However, this follows immediately from Lemma 6.21. �

6.3. Vector valued Calderón-Zygmund singular integral operators

We close this chapter on CZO’s by describing a vector valued setup in which
all our results on CZO’s go through almost verbatim. We will see an application
of these vector valued results in our study of Littlewood-Paley inequalities.

So let H be a separable Hilbert space with inner product 〈·, ·〉 and norm
‖ · ‖ and consider a function f : Rn

→ H . All the well known facts about
spaces of measurable scalar functions have almost obvious generalizations in
this setup once we fix some analogies. For example, the function f will be called
measurable if for every h ∈ H the function Rn

→ x 7→ 〈 f (x), h〉 is a measurable
function of x. If f is measurable then ‖ f ‖ is also measurable. We then denote
Lp(Rn;H) the space of all measurable functions f : Rn

→H such that

‖ f ‖Lp(Rn;H) B
( ∫
‖ f (x)‖pdx

) 1
p

< +∞, 1 ≤ p < +∞,

and the usual corresponding definition for p = ∞

‖ f ‖L∞(Rn;H) B ess sup
x∈Rn

‖ f (x)‖.

It is not hard to check the duality relations for these Lp spaces; for example

‖ f ‖Lp(Rn;H) = sup
{∣∣∣ ∫ 〈 f (x), g(x)〉dx

∣∣∣ : ‖g‖Lp′ (Rn;H) ≤ 1
}
,

for all 1 ≤ p < ∞. Also our interpolations theorems, the Marcinkiewicz interpo-
lation theorem and the Riesz-Thorin interpolation theorem go through in this
setup as well.

Moreover, if a function f : Rn
→ H is absolutely integrable, we can define

its integral as an element of H by defining the functional I f : H → C

I f (h) B
∫
Rn
〈 f (x), h〉dx.

Note here that I f is uniquely defined as a functional on H ∗. Indeed, I f is obvi-
ously linear and by the Cauchy-Schwartz inequality we have

|I f (h)| =
∣∣∣ ∫
Rn
〈 f (x), h〉dx

∣∣∣ ≤ ∫
Rn
|〈 f (x), h〉|dx ≤

( ∫
Rn
‖ f (x)‖dx

)
‖h‖.
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By the Riesz representation theorem on Hilbert spaces, there is a unique
element of H , which we denote by

∫
Rn f (x)dx, such that I f = 〈

∫
Rn f (x)dx, ·〉, that

is

I f (h) =
〈∫
Rn

f (x)dx, h
〉
, h ∈ H .

Finally, if H1,H2 are separable Hilbert spaces we denote by B(H1,H2) to be
the space of bounded linear operators T : H1 → H2, equipped with the usual
operator norm:

‖T‖H1→H2 B sup
x∈H1

||Tx||H2

‖x‖H1

.

Again, a function F : Rn
→ B(H1,H2) will be called measurable if for every

h ∈ H1 the function
Rn
3 x 7→ F(x)h ∈ H2

is a measurable H2-valued function.
We are now ready to give the description of vector valued CZO’s. We start

with the definition of a singular kernel.

DEFINITION 6.23 (Vector valued singular Kernel). Let H1,H2 be two sep-
arable Hilbert spaces and K : Rn

×Rn
→ B(H1,H2) be a function defined away

from the diagonal ∆ B {x = y}. Then K will be called a (vector-valued) singular
kernel if it obeys the size estimate

(6.10) ‖K(x, y)‖H1→H2 .n
1

|x − y|n
, (x, y) ∈ Rn

×Rn
\ ∆,

and the regularity estimates

(6.11) ‖K(x, y1) − K(x, y)‖H1→H2 .n,σ
|y − y1|

σ

|x − y|n+σ
if |y − y1| <

1
2
|x − y|,

and

(6.12) ‖K(x1, y) − K(x, y)‖H1→H2 .n,σ
|x − x1|

σ

|x − y|n+σ
if |x − x1| <

1
2
|x − y|,

for some Hölder exponent 0 < σ ≤ 1.

DEFINITION 6.24. LetH1,H2 be separable Hilbert spaces. An linear oper-
ator T : L2(Rn;H1) → L2(Rn;H2) is called a (vector valued) Calderón-Zygmund
operator (vector valued CZO) from H1 to H2 if it is bounded from L2(Rn;H1) to
L2(Rn;H2)

‖T f ‖L2(Rn;H2) .n,T ‖ f ‖L2(Rn;H1),

for all f ∈ L2(Rn;H1), and there exists a vector valued singular kernel K :
Rn
×Rn

→ B(H1,H2) such that

T f (x) =

∫
K(x, y) f (y)dy,

whenever f ∈ L2(Rn;H1) has compact support and x < supp( f ).

Adjusting the proof of the scalar case to this vector valued setup we get the
corresponding statement of Theorem 6.14.

http://en.wikipedia.org/wiki/Riesz_representation_theorem#The_Hilbert_space_representation_theorem
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THEOREM 6.25. Let H1,H2 be separable Hilbert spaces and T be a vector
valued Calderón-Zygmund operator from H1 to H2.
(i) The operator T is of weak type (1, 1)

|{x ∈ Rn : ||T f (x)||H2 > λ}| .n,σ
‖ f ‖L1(Rn;H1)

λ
, λ > 0,

for all f ∈ L1(Rn;H1).
(ii) For all 1 < p < ∞, T is of strong type (p, p)

‖T f ‖Lp(Rn;H2) .n,σ ‖ f ‖Lp(Rn;H1),

for all f ∈ Lp(Rn;H1).



CHAPTER 7

The space of functions of bounded mean
oscillation, BMO.

7.1. Singular integral operators on L∞ and BMO.

The theory of Calderón-Zygmund operators developed so far is pretty sat-
isfactory except for one point, the action of a CZO on L∞. Exercise 5.10 shows
for example that in general a CZO cannot be bounded on L∞. Furthermore, it
is at the moment unclear how to define the action of T on a general bounded
function or even on a dense subset of L∞. Observe here that if f ∈ Lp

∩ L2 then
T f is well defined since we apriori assume T to be well defined and bounded
on L2. Thus what we did so far is show the boundedness of T as an operator
Lp
∩L2
→ Lp and show that this operator extends by density to a bounded linear

operator on Lp.
Let us try to interpret the kernel formula of T for a bounded function f :

(7.1) T f (x) =

∫
K(x, y) f (y)dy.

As we have already mentioned several times, such a formula is not meaningful
throughout Rn. Indeed the previous formula is problematic when x is close to y
since K is singular along the diagonal x = y. Furthermore, the kernel formula
is also problematic when |y| → +∞. Indeed, the function f is just bounded so
no decay will come from the term f , and K(x, y) is bounded by |x − y|−n which
is not integrable as |y| → +∞. In order to deal with the first problem, the
local singularity close to the diagonal, we can try our usual solution: localize
f “away from” the point x. What about the behavior of the kernel formula as
|y| → +∞? In the Lp-case with p < +∞ we never really run into this problem
since Cauchy-Schwartz and the size condition on K showed that the kernel
formula was meaningful close to infinity. However, looking at the difference of
the values of T f at two points x1, x2 with x1 , x2, we can formally write

T f (x1) − T f (x2) =

∫
[K(x1, y) − K(x2, y)] f (y)dy.

Using the regularity condition (6.3) we see that

|K(x1, y) − K(x2, y)| .n,σ
|x1 − x2|

σ

|x − y|n+σ
.

This is enough to assure that the previous integral converges absolutely as
|y| → +∞ as long as f is bounded.

In order to implement the heuristics discussed above we first choose some
cube Q centered at a point cQ and set Q∗ B (1 + 2

√
n)Q. We write

f (x) = f 1Q∗ (x) + f 1Rn\Q∗ (x).

123
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thus splitting f to a “local piece” and a “far-away” piece. Now if f ∈ L∞(Rn) and
x ∈ Q we define

(7.2) T f (x) B T( f 1Q∗ )(x) +

∫
Rn\Q∗

[K(x, y) − K(cQ, y)] f (y)dy.

Observe that our definition of T f (x) is only local, it defines T f (x) for x in some
cube Q.

It is easy to see that the right hand side of the definition (7.2) makes sense.
Indeed, T( f 1Q∗ ) is well defined since f 1Q∗ is in L2(Rn). On the other hand, the
integral in the second summand converges absolutely since we integrate away
from Q 3 x and f is bounded. More precisely we have

|x − y| ≥
1
2

(2
√

n) side(Q) = diag(Q) ≥ 2|x − cQ|.

Thus the regularity assumption for K applies to show that

|K(x, y) − K(cQ, y)| ≤
|x − cQ|

σ

|x − y|n+σ
.Q,n,σ

1
|x − y|n+σ

.

Since f is bounded this shows that the integral in the second summand of (7.2)
converges absolutely. However there is a certain ambiguity in the definition
(7.2). Indeed if Q1,Q2 are two different cubes and x ∈ Q1 ∩ Q2 we have two
possible definitions for T f (x). However the difference in the two definitions
can be estimated to be a constant independent of x. Let us first see this in the
special case that x ∈ Q1 ⊂ Q2. We have

(dfn-Q1 : T f (x)) = (dfn-Q2 : T f (x))

+

∫
Rn\Q∗2

[K(cQ2 , y) − K(cQ1 , y)] f (y)dy −
∫

Q∗2\Q
∗

1

K(cQ1 , y) f (y)dy.

The last two terms in the previous display are finite constants independent of
x. For the second term note that the function g = 1Q∗2\Q

∗

1
f is an L2-function with

compact support and cQ1 < supp(g). For the first term we have

|cQ1 − cQ2 | ≤
1
2
√

n side(Q2) ≤
1
2
|y − cQ2 |

for y ∈ Rn
\Q∗2. Thus the regularity estimate for K assures that the integral∫

Rn\Q∗2

[K(cQ2 , y) − K(cQ1 , y)] f (y)dy

converges absolutely. Thus, in the special case x ∈ Q1 ⊂ Q2 the difference in the
two definitions of T f (x) is a finite constant, independent of x. Now let Q1,Q2
be two cubes and x ∈ Q1 ∩ Q2. We can assume without loss of generality that
Q2 has the largest sidelength among the two. Since the two cubes intersect at
x and side(Q2) ≥ side(Q1), the cube 3Q2 ⊃ Q1,Q2. Now the definitions of T f (x)
with respect to Q1 and Q2, both differ by a constant independent of x with
the definition of T f (x) with respect to 3Q2. Thus all the definitions differ by a
constant independent of x.

Thus we only define T f modulo constants. To deal with this ambiguity in
the definition, we have to define the appropriate space.
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DEFINITION 7.1. We say that two functions f , g ∈ Rn are equivalent mod-
ulo a constant if there exists a constant c ∈ C such that f (x) − g(x) = c almost
everywhere on Rn. This is an equivalence relationship. By abuse of language
and notation we will oftentimes identify an equivalence class with a represen-
tative of the class, much like we do with measurable functions.

DEFINITION 7.2 (Bounded Mean Oscillation). Let f be a locally integrable
function f , defined modulo a constant. We set

fQ B
1
|Q|

∫
Q

f C
?

Q
f ,

to be the average of f on the Euclidean cube Q. The BMO norm of f is the
quantity

‖ f ‖BMO B sup
Q

1
|Q|

∫
Q
| f − fQ|,

where the supremum varies over all Euclidean cubes Q. The space BMO(Rn)
is the set of all locally integrable functions f , defined modulo a constant, such
that ‖ f ‖BMO < +∞. Thus, an element of BMO is only defined up to a constant.

First of all observe that this is a good definition since replacing a function f
by f +c for any constant c ∈ C does not affect its BMO norm. Thus, all elements
in the equivalence class of f have the same BMO norm. The previous quantity
actually defines a norm, always keeping in mind that we identify functions that
differ by a constant. For example any constant is equivalent to the function 0
in BMO and thus ‖ f ‖BMO = 0 if and only if f = c almost everywhere for some
c ∈ C.

It is not hard to give the following alternative description of the BMO
norm, which is maybe a bit more revealing:

PROPOSITION 7.3. Let f ∈ BMO(Rn).
(i) We have that

‖ f ‖BMO 'n sup
Q

inf
a∈C

1
|Q|

∫
Q
| f − a|.

(ii) For any locally integrable function f and a ball B set fB =
∫

B f . We set

‖ f ‖BMO© B sup
B

1
|B|

∫
Q
| f − fB|,

where the supremum is taken over all balls B ⊂ Rn. Then

‖ f ‖BMO© 'n sup
B

inf
a∈C

1
|B|

∫
B
| f − fB|

as in (i). Moreover ‖ f ‖BMO 'n ‖ f ‖BMO© .

PROOF. For (i) observe that for any cube Q we have

inf
a∈C

1
|Q|

∫
Q
| f − a| ≤

1
|Q|

∫
Q
| f − fQ|.

On the other hand for any a ∈ C we have
1
|Q|

∫
Q
| f − fQ| ≤

1
|Q|

∫
Q
| f − a| +

1
|Q|

∫
Q
| fQ − a| ≤

2
|Q|

∫
Q
| f − a|,
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which gives the opposite inequality as well by taking the infimum over a ∈ C.
The proof of the first claim in (ii) is identical. For the second claim in (ii) let
a ∈ C and Q be a cube. Consider the smallest ball B ⊃ Q with the same center
as Q. Then

1
|B|

∫
B
| f − a| &n

1
|Q|

∫
Q
| f − a|.

Thus,

sup
B

inf
a∈C

1
|B|

∫
B
| f − a| &n inf

a∈C

1
|Q|

∫
Q
| f − a|,

for any cube Q. Taking also the supremum over cubes Q proves the one direc-
tion of the inequality. The proof of the opposite inequality is similar. �

Thus a function f in BMO has the property that for any cube Q there is a
constant cQ such that 1

|Q|

∫
| f − cQ| ≤ ‖ f ‖BMO. That is, the values of f oscillate

around cQ by at most ‖ f ‖BMO in average. Locally, and in the mean, the function
f has bounded oscillation.

The space BMO contains L∞ but also contains unbounded functions.

PROPOSITION 7.4. We have the following statements
(i) For every f ∈ L∞(Rn) we have that

‖ f ‖BMO(Rn) . ‖ f ‖L∞(Rn),

thus L∞(Rn) ⊂ BMO(Rn).
(ii) The function f (x) = log |x| is in BMO(Rn). Thus L∞(Rn) is a proper

subset of BMO(Rn).

EXERCISE 7.5. Prove Proposition 7.4.

With this definition of BMO, one now has a lot more flexibility in defining
T f for bounded functions f .

REMARK 7.6. Let T be a CZO with kernel K and f ∈ L∞(Rn) ∩ L2(Rn). Ob-
serve that there are two possible definitions for T f (x). One coming from the a
priori definition of T on L2(Rn), let us still call it T f (x). Since f ∈ L∞(Rn) we can
also define T f (x) by means of (7.2). Let us temporarily call this L∞-definition
T̃ f (x). We claim that T f (x) and T̃ f (x) coincide as BMO functions. To see this
first consider f be a bounded function with compact support. In particular
f ∈ L2(Rn). Let Q be a large cube such that x ∈ Q and supp( f ) ⊂ Q. We then see
that

T̃ f (x) = T( f 1Q∗ f )(x) +

∫
Rn\Q∗

[K(x, y) − K(cQ, y)] f (y)dy = T( f 1Q∗ f )(x) = T f (x).

Thus T̃ and T agree on the space of bounded functions with compact support
which are dense in L2(Rn). Since T is known to be bounded on L2(Rn) the two
operators have a unique bounded extension to L2(Rn), and thus coincide on
L2(Rn). However, the formula used for T̃ only defines T̃ up to a constant so
T f (x) and T̃ f (x) only agree modulo constants, that is, in the BMO sense. We
will henceforth just write T f (x) to denote the action of the operator T on L∞(Rn)
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Our interest in the space BMO mainly lies in the fact that it serves as a
substitute endpoint for the boundedness of CZO’s, namely a CZO T is bounded
from L∞ to BMO, where T should be defined as in (7.2). Note here that even
though (7.2) only defines T “up to constants”, this is the only possible definition
of a BMO function.

THEOREM 7.7. Let T be a CZO. Then for every f ∈ L∞(Rn) we have that

‖T f ‖BMO(Rn) .n,σ ‖ f ‖L∞(Rn).

PROOF. Let Q be a cube Rn, centered at cQ. We need to show that for some
constant βQ we have

1
|Q|

∫
Q
|T f − βQ| .n,σ ‖ f ‖L∞ .

Since T is of strong type (2, 2) we have

‖T( f 1Q∗ )‖L2(Rn) .n,σ ‖ f ‖L2(Q∗) ≤ ‖ f ‖L∞(Rn)|Q∗|
1
2 .

Thus by Cauchy-Schwartz we have

1
|Q|

∫
Q
|T( f 1Q∗ )| ≤

1
|Q|
‖T( f 1Q∗ )‖L2(Rn)|Q|

1
2 .n,σ ‖ f ‖L∞ .

On the other hand for x ∈ Q and y < Q∗ we have |x− cQ| ≤
1
2

√
n side(Q) ≤ 1

2 |x− y|
thus∫
Rn\Q∗

[K(x, y) − K(cQ, y)] f (y)dy ≤ ‖ f ‖L∞(Rn)

∫
Rn\Q∗

|K(x, y) − K(cQ, y)|dy

≤ ‖ f ‖L∞(Rn)

∫
|y−cQ |≥

√
n side(Q)

|x − cQ|
σ

|x − y|n+σ
dy

.n,σ ‖ f ‖L∞(Rn) side(Q)
∫
|y−cQ |≥

√
n side(Q)

1
|x − y|n+σ

dy

.n,σ ‖ f ‖L∞(Rn).

Remembering that (7.2) only defines T f (x) up to some arbitrary finite constant
βQ, we have

1
|Q|

∫
Q
|T f (x) − βQ|dx ≤

1
|Q|

∫
Q
|T( f 1Q∗ )(x)|dx

+
1
|Q|

∫
Q

∣∣∣∣∫
Rn\Q∗

[K(x, y) − K(cQ, y)] f (y)dy
∣∣∣∣dx

.n,σ ‖ f ‖L∞(Rn)

By Proposition 7.3 this proves the theorem. �

EXERCISE 7.8. Let f ∈ BMO(Rn) and consider a sequence of nested cubes
Q0 ( Q1 ( · · · ( QN where each cube Q j+1 in this sequence satisfies |Q j+1| =
2n
|Q j|, 0 ≤ j ≤ N − 1. Show that

| fQ1 − fQN | ≤ N2n
‖ f ‖BMO(Rn).
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7.2. The John-Nirenberg Inequality

We will now see that although the space BMO contains unbounded func-
tions like log |x|, this is in a sense the maximum possible growth for a BMO
function. Although such a claim is not precise in a pointwise sense, it can be
rigorously proved in the sense of level sets. Indeed, assuming ‖ f ‖BMO = 1 then

1
|Q|

∫
Q
| f − fQ| ≤ 1,

for all cubes Q. Using Chebyshev’s inequality this implies

|{x ∈ Q : | f (x) − fQ| > λ}| ≤
|Q|
λ
.

This estimate is interesting for λ large, and states that on any cube Q the
function f exceeds its average by λ only on a small fraction 1/λ of the measure
of the cube |Q|. This can be substantially improved.

THEOREM 7.9 (John-Nirenberg inequality). Let f ∈ BMO(Rn). Then for
any Euclidean cube Q we have that

|{x ∈ Q : | f (x) − fQ| > λ}| .n e−cnλ/‖ f ‖BMO |Q|,

for all λ > 0, where the constant cn > 0 depends only on the dimension n.

REMARK 7.10. Obviously it doesn’t make any difference to work with balls
instead of cubes so the the previous theorem remains valid with balls B replac-
ing cubes Q.

PROOF. For λ > 0 let us denote by ψ(λ) the best constant in the inequality

|{x ∈ Q : | f (x) − fQ| > λ}| ≤ ψ(λ)|Q|,

valid for any cube Q and f with ‖ f ‖BMO = 1. By Chebyshev’s inequality com-
bined with the trivial bound we get

ψ(λ) ≤ min(1, 1/λ),

which is of course quite far from the desired estimate

ψ(λ) .n e−cnλ.

We will however bootstrap this first trivial estimate to obtain the desired bound
by iterating a local Calderón-Zygmund decomposition as follows.

Let us fix a cube Qo and let Dm denote the family of dyadic cubes inside
Qo of sidelength 2−m side(Q). The family of all dyadic cubes inside Qo will be
denoted by Do. For a level Λ > 1 to be chosen later let B′ be the “bad” cubes in
Do, that is the cubes Q ∈ Do such that

1
|Q|

∫
Q

F(w)dw > Λ,

where F(w) = | f (w) − fQo |. Let B be the family of maximal bad cubes. Since
1
|Qo |

∫
Qo

F(w)dw ≤ 1 < Λ for the original cube Qo, every bad cube is contained in
a maximal bad cube. As in the global Calderón-Zygmund decomposition we
conclude that

Λ ≤
1
|Q|

∫
Q

F(w)dw ≤ rnΛ



7.2. THE JOHN-NIRENBERG INEQUALITY 129

for each cube Q ∈ B where the constant rn depends only on the dimension n.
We also conclude that

F(w) ≤ Λ

if w < ∪Q∈BQ by the dyadic maximal theorem. Remembering the initial nor-
malization ‖ f ‖BMO = 1 we get∑

Q∈B

|Q| ≤
1
Λ

∑
Q∈B

∫
Q

F(w)dw ≤
1
Λ
|Qo|

and for Q ∈ B

| fQ − fQo | =
∣∣∣∣ 1
|Q|

∫
Q

( f − fQo )
∣∣∣∣ ≤ 1
|Q|

∫
Q

F(w)dw ≤ rnΛ.

Now consider λ > rnΛ. We have
|{x ∈ Qo : |( f − fQo )(x)| > λ}| ≤ |{x ∈ ∪Q∈BQ : | f (x) − fQo | > λ}|

≤ |{x ∈ ∪Q∈BQ : | f (x) − fQ| > λ − | fQ − fQo |}|

≤

∑
Q∈B

|{x ∈ Q : F(x) > λ − rnΛ}| ≤ ψ(λ − rnΛ)
∑
Q∈B

|Q|

≤ ψ(λ − rnΛ)
1
Λ
|Qo|.

However this means that

ψ(λ) ≤
ψ(λ − rnΛ)

Λ
whenever λ > rnΛ. Suppose that NrnΛ < λ ≤ (N + 1)rnΛ for some N ≥ 1. Since
ψ(λ) is non-increasing and we have the trivial estimate ψ(λ) ≤ 1 we get

ψ(λ) ≤ ψ(NrnΛ) ≤
ψ(rnΛ)
ΛN−1 ≤

1
rnΛN .n e−N ln Λ

≤ e−( λ
rnΛ−1) ln Λ.

Choosing Λ = e (say) we get ψ(λ) .n e−cnλ for λ > rne. On the other hand, for
λ < rne we have

ψ(λ) ≤ 1 .n e−cnλ

so the proof is complete. �

COROLLARY 7.11. For 1 ≤ p < +∞ we consider the Lp version of the BMO
norm

‖ f ‖BMO,p B sup
B

( 1
|B|

∫
B
| f − fB|p

) 1
p

'p,n sup
B

inf
a∈C

( 1
|B|

∫
B
| f − a|p

) 1
p

'n,p sup
Q

( 1
|Q|

∫
Q
| f − fQ|p

) 1
p

'n,p sup
Q

inf
a∈C

( 1
|Q|

∫
Q
| f − a|p

) 1
p

.

Then
‖ f ‖BMO 'p,n ‖ f ‖BMO,p.

COROLLARY 7.12. Let f ∈ BMO(Rn). There exists a constant cn depending
only on the dimension such that

sup
Q

1
|Q|

∫
Q

exp
( cn

‖ f ‖BMO(Rn)
| f − fQ|

)
.n 1,
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where the implicit constant depends only on the dimension and the supremum
is taken over all cubes Q ⊆ Rn.

EXERCISE 7.13. Use the John-Nirenberg inequality and the description of
Lp norms in terms of level sets to prove Corollary 7.11

EXERCISE 7.14. Use the John-Nirenberg inequality to prove the exponen-
tial integrability of Corollary 7.12

7.2.1. On exponential Orlicz classes. Here is a small note on some
special Orlicz-type spaces. Let (X, σ,P) be a probability space and consider
ψ : R → [0,∞) a symmetric convex function such that ψ(0) = 0. Typical exam-
ples we should keep in mind here are

ψ(s) = sp, 1 ≤ p < ∞, ψ(s)

s, 0 ≤ s ≤ 1
esα−1 f or s > 1

, α > 0

and the probability space (Q,B(Q), dx
|Q| ) where Q is a cube in Rn and (Q) denotes

the Borel subsets of Q.
The Orlicz space Lψ is defined the set of locally integrable functions f such

that
‖ f ‖Lψ B inf{λ > 0 : Eψ(| f |/λ) ≤ 1} < +∞.

For the first example of ψ above we recover the local (normalized) Lp spaces
on the cube Q while for the second example we recover the exponential Orlicz
classes which we will denote by exp(Lα).

We have already seen that the John-Nirenberg estimate for BMO(Rn) amounts
to saying that given f ∈ BMO(Rn) and any cube Q we have

‖ f − fQ‖exp(L1)(Q) .n ‖ f ‖BMO(Rn)

uniformly over cubes Q, and thus f is exponentially integrable over every cube.
The following proposition is many times useful.

PROPOSITION 7.15. Let Q be a cube and consider the normalized exp Lα(Q)
class with respect to the measure dx/|Q| as above. Then

‖ f ‖exp(Lα)(Q) hn,α sup
p>1

p−
1
α ‖ f ‖Lp(dx/|Q|)]

PROOF. Let us take some λ > ‖ f ‖exp(Lα)(Q). Then we look for a constant
c = c(p, α) ≥ 1 such that

|x|p ≤ c exp(|x|α)
for |x| ≥ 1. Setting φ(x) B xp exp(−xα) for x > 0 and differentiating we see that
φ has a single maximum at the point xo = (p/α)

1
α . Thus we get

|x|p ≤ φ(xo)e|x|
α

With this in mind we now have for p ≥ 1?
Q
| f (y)|pdx ≤ φ(xo)λp

?
Q

exp(| f (y)|α/λα)dy ≤ φ(xo)λp.

Thus ‖ f ‖Lp(dx/|Q|) ≤ φ(xo)
1
pλ .α p

1
αλ. Letting λ→ ‖ f ‖exp(Lα)(Q) gives

sup
p>0

p−
1
α ‖ f ‖Lp(dx/|Q|) .α ‖ f ‖exp(Lα)(Q).
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To see the other direction let us call ρ B supp≥1 p−
1
α ‖ f ‖Lp(dx/|Q|)] we write for λ > 0?

Q
exp(| f |α/λα) − 1 =

∞∑
k=1

1
λkαk!

?
Q
| f |kα .

∑
k≥1

ρkα(kα)k

k!λkα
≤

∑
k≥1

ρkα(kαe)k

kk+1/2λkα

=
∑
k≥1

(ρααe)k

k
1
2λkα

by Stirling’s formula k! h kk+1/2e−k. Now we see that the series in the last
display converges to a number smaller than 1 as long as λ > λo h ρ. This
however means that

‖ f ‖exp(Lα)(Q) ≤ λo h ρ

and the proof is complete. �

7.3. Interpolation and BMO.

One of the motivations for considering the space BMO(Rn) is that it can
serve as a replacement of L∞ as an endpoint for different interpolation argu-
ments. The first such simple example shows that the space BMO(Rn) can serve
as a different endpoint in the log-convexity estimates for the Lp norms.

LEMMA 7.16. Let 0 < p < q < ∞ and f ∈ Lp(Rn)∩BMO(Rn). Then f ∈ Lq(Rn)
and

‖ f ‖Lq(Rn) .p,q,d ‖ f ‖
p
q

Lp(Rn)‖ f ‖
1− p

q

BMO(Rn).

PROOF. Obviously it is enough to assume that ‖ f ‖BMO , 0 otherwise there
is nothing to prove. Also by homogeneity we can normalize so that ‖ f ‖BMO = 1.
Now form the Calderón-Zygmund decomposition of | f |p at level 1 and denote by
B the family of bad cubes as usual. For each cube Q ∈ B we then have

1
|Q|

∣∣∣∫
Q

f
∣∣∣ ≤ ( 1
|Q|

∫
Q
| f |p

) 1
p

.n,p 1.

Using the John-Nirenberg inequality and the previous estimate we conclude
that

|{x ∈ Q : | f (x)| > λ}| ≤
∣∣∣{x ∈ Q : | f (x) − fQ| > λ − | fQ|

}∣∣∣ .n ecn | fQ |e−cnλ|Q| .n,p e−cnλ,

for all the bad cubes Q ∈ B, where cn > 0 is a dimensional constant. Since we
have that | f (x)| ≤ 1 for x < ∪Q∈BQ we get

(7.3) |{x ∈ Rn : | f (x)| > λ}| .n e−cnλ
∑
Q∈B

|Q| ≤ e−cnλ‖ f ‖pLp ,

for all λ > 1. On the other hand, since f ∈ Lp we have

(7.4) |{x ∈ Rn : | f (x)| > λ}| ≤
‖ f ‖pLp

λp .

We conclude the proof by using the description of the Lp norm in terms of level
sets and using (7.4) for λ < 1 and (7.3) for λ > 1. �

https://en.wikipedia.org/wiki/Stirling%27s_approximation
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EXERCISE 7.17 (The sharp Maximal function). For f ∈ L1
loc(R

n) define the
sharp maximal function

M]( f )(x) B sup
Q3x

1
|Q|

∫
Q
| f (y) − fQ|dy, x ∈ Rn.

Observe that f ∈ BMO(Rn) if and only if M]( f ) ∈ L∞(Rn) and, in particular,

‖ f ‖BMO(Rn) = ‖M]
‖L∞(Rn).

Show that for every x ∈ Rn we have

M]( f )(x) .n M′�( f )(x).

Thus the maximal function M′� controls M]( f ) in the pointwise sense. Of
course the opposite can not be true as it would imply that M′� is bounded when-
ever f ∈ BMO(Rn). Since M′�( f ) ≥ f almost everywhere, this is impossible as we
know that BMO(Rn) contains unbounded functions. However we can reverse
the inequality in the Lp sense.

THEOREM 7.18. Let 1 ≤ po ≤ p < ∞ and assume that f ∈ Lpo (Rn). Then

‖M′�( f )‖Lp(Rn) .p,n ‖M]( f )‖Lp (Rn).

By Lemma 4.47 the Lp norm of M′� is controlled by the Lp norm of the dyadic
maximal function MD so it will be enough to prove Theorem 7.18 for the latter
operator. The proof relies on the technique of a good-λ inequality.

LEMMA 7.19. Let λ, γ > 0. Then

|{x ∈ Rn : MD f (x) > 2λ, M] f ≤ γλ}| ≤ 2nγ|{x ∈ Rn : MD f (x) > λ}|.

PROOF. Let us consider the Calderón-Zygmund decomposition of f at level
λ and write {x ∈ Rn : MD f (x) > λ} = ∪ jQ j. Observe that the stopping cubes Q j
exist as we assume that f ∈ Lpo (Rn) for some po < ∞. Furthermore, we have
that

Eγ,λ B {x ∈ Rn : MD f (x) > 2λ, M] f (x) ≤ γλ} ⊆ {x ∈ Rn : MD f (x) > λ} = ∪ jQ j

and thus we can estimate |Eγ,λ| ≤
∑

j |Eγ,λ ∩ Q j|. Now for x ∈ Eγ,λ ∩ Q j we have
that MD f (x) ≥ 2λ. Thus there exists a dyadic cube Q 3 x with

>
Q | f | ≥ 2λ.

However, both Q j,Q 3 x thus one is contained in the other. As both cubes give
f -averages greater than λ and Q j is maximal we conclude that Q ⊂ Q j. This
observation implies that for x ∈ Eγ,λ ∩Q j

MD(( f − fQ(1)
j

)1Q j )(x) ≥ |MD( f 1Q j )(x) − fQ(1)
j
| ≥

?
Q
| f | − | f |Q(1)

j
> λ.

Using the weak (1, 1) inequality for MD we can now estimate

|Eγ,λ ∩Q j| ≤ |{MD(( f − fQ(1)
j

)1Q j )(x) > λ, M] f (x) ≤ γλ} ∩Q j|

≤
1
λ

∫
Q j

| f − fQ(1)
j
| ≤

1
λ
|Q(1)

j | inf
y∈Q(1)

j

M]( f )(y).
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Observe that if there exists some y ∈ Q j such that M]( f )(y) ≤ γλ then we have
proved the estimate |Eγ,λ ∩Q j| ≤ γ|Q

(1)
j |. However, if such y does not exist, then

Eγ,λ ∩Q j = ∅ and there is nothing to prove. We have thus showed that

|Eγ,λ| ≤ γ
∑

j

|Q(1)
j | ≤ 2nγ|{x ∈ Rn : MD f (x) > λ}|

as desired. �

The good-λ inequality just proved easily implies Theorem 7.18.

EXERCISE 7.20. Use the good-λ inequality of Lemma 7.19 in order to prove
Theorem 7.18

Hint: Use the description of the Lp norm of MD on the left hand in terms of
level sets of the dyadic maximal function. In turn, these can be split into two
parts, one where M]( f ) is big and another where MD f is big and M]( f ) is small.
The first term gives the right hand side while the second can be absorbed in
the left hand side by a use of the good-λ inequality. Some care has to be taken
when using this argument as one needs some apriori assumption in order to
make sure that the Lp norm of MD f is finite.

Another instance, and maybe a more important one, where BMO(Rn) can
replace L∞(Rn) as an endpoint is when it comes to interpolation of operators.
The precise statement is as follows.

THEOREM 7.21 (Interpolation between Lp and BMO). Let T be a linear
operator such that T is bounded from Lpo (Rn) to itself and T is bounded from
L∞(Rn) to BMO(Rn). Then T is bounded from Lp(Rn) to Lp(Rn) for all po < p < ∞.

PROOF. We consider the operator T] f B (T( f ))]. By the assumption we
have that

‖T] f ‖L∞(Rn) = ‖T f ‖BMO(Rn) .T ‖ f ‖L∞(Rn).

Again, using the assumption and the boundedness of M′� we have

‖T] f ‖Lpo (Rn) . ‖M′�(T f )‖Lpo (Rn) .T,n,po ‖ f ‖Lpo (Rn)

Since T] is sublinear and bounded on Lpo and on L∞, Marcinkiewicz interpola-
tion implies that T] is bounded on Lp(Rn) for all po < p < ∞. Now consider any
f ∈ Lpo (Rn) ∩ Lp(Rn) for p > po. By the assumption we have that T( f ) ∈ Lpo and
thus Theorem 7.18 applies for T( f ) (in place of f ) to show that

‖T( f )‖Lp(Rn) ≤ ‖M′�(T( f ))‖L(Rn) .p,n ‖T] f ‖Lp(Rn) .T,p,n ‖ f ‖Lp(Rn)

and we are done. �

REMARK 7.22. If T is a Calderón-Zygmund operator remember that show-
ing that T : BMO(Rn) → L∞ was substantially easier than showing the weak
(1, 1) property of T. Another way to establish the Lp bounds for T is to interpo-
late between the L2(Rn) − L2(Rn) and the L∞(Rn) − BMO(Rn) bound. However,
substantial machinery had to be used in order to prove the interpolation result
for BMO(Rn).
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7.4. Commutators of singular integrals

We assume throughout this section that T is a Calderón-Zygmund operator
and b is a function. The commutator of T and b is defined as

[T, b]( f ) B T(b f ) − bT( f )

with gauges the non-commutativity of the operator T and the operator of mul-
tiplication by the function b. A first easy observation is that [T, b] is bounded on
Lp for 1 < p < ∞whenever b ∈ L∞. However, the Theorem of Coifman, Rochberg,
and Weiss shows that the boundedness of the commutator [T, b] remains valid
whenever b ∈ BMO(Rn), and in fact, it characterizes BMO(Rn) in some sense
that will be made precise in the following. The main purpose of this section is
to describe this characterization. We begin with the positive direction.

THEOREM 7.23. Let T be a Calderón-Zygmund operator and b ∈ BMO(Rn).
Then

‖[T, b]‖Lp(Rn) .T,n,p ‖b‖BMO(Rn)‖ f ‖Lp(Rn)

for all 1 < p < ∞.

PROOF. The proof relies on the following pointwise estimate, valid say for
all f ∈ S(Rn):

M]([T, b] f ) .r,n Mr(T f ) + Mr( f ),

where for 1 < r < ∞, we denote by Mr the maximal operator

Mr( f )(x) B sup
Q3x

( 1
|Q|

∫
Q
| f (y)|rdy

) 1
r .

Note that for p > r the maximal operator Mr is bounded on Lp(Rn). Thus the
identity above for r > 1 sufficiently small, combined with the estimate of Theo-
rem 7.18 will give the Lp bound for the commutator.

In order to prove the pointwise estimate let Q be some cube in Rn and
Q∗ B cnQ be a concentric cube enlarged by cn > 1 which will be chosen sufficient
large depending upon dimension only. We estimate the commutator as follows

[T, b] f = T(b f ) − bT( f ) = T((b − bQ∗ ) f ) + (bQ∗ − b)T( f )

= T((b − bQ∗ ) f 1Q∗ ) + T((b − bQ∗ ) f 1Q∗c ) + (bQ∗ − b)T( f )
C I + II + III.

First we use the John-Nirenberg equivalence of BMO(Rn) and BMO,p(Rn) from
Corollary 7.11 to estimate III:?

Q
|III| ≤

?
Q
|b − bQ∗ | |T( f )| ≤

(?
Q
| f − fQ∗ |r

′
) 1

r′
(?

Q
|T( f )|r

) 1
r

.n,r ‖b‖BMO(Rn) inf
y∈Q

Mr(T f )(y).
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For I, 1 < q < r and use again the John-Nirenberg estimate from Corollary 7.11,
the boundedness of T on Lq, and Hölder’s inequality to estimate?

Q
|I| ≤

(?
Q
|T((b − bQ∗ ) f 1Q∗ )|q

) 1
q .T,n,q

(?
Q∗
|(b − bQ∗ ) f |q

) 1
q

≤q,r,n ‖b‖BMO(Rn)

(?
Q∗
| f |r

) 1
r
≤ ‖b‖BMO(Rn) inf

y∈Q∗
Mr f (y)

≤ ‖b‖BMO(Rn) inf
y∈Q

Mr f (y).

Finally let c(Q) B T((b − bQ∗ ) f 1Q∗c )(cQ) where cQ is the center of Q. We have?
Q
|II − c(Q)|dx ≤

?
Q

∫
Q∗c
|[K(x, y) − K(cQ, y)](b(y) − bQ∗ ) f (y)|dy dx

.T

?
Q

∫
Q∗c

|x − cQ|
σ

|x − y|n+σ
|b(y) − bQ∗ || f (y)|dy dx

.n side(Q)σ
∫

Q∗c

1
|y − cQ|

n+σ
|b(y) − bQ∗ || f (y)|dy

provided that the enlargement Q∗ = cnQ is sufficiently large, depending upon
dimension. Now we write

Q∗c = ∪τ≥12τQ∗ \ 2τ−1Q∗ C ∪τ≥1Eτ C ∪τ≥1Qτ \Qτ−1

and note that for y ∈ 2τQ∗ \ 2τ−1Q∗ we have that |y − cQ| hn 2τside(Q). With this
remark in hand we proceed with the estimate?

Q
|II − c(Q)|dx .n,T,σ side(Q)σ

∑
τ≥1

1
(2τside(Q))n+σ

∫
Eτ
|b(y) − bQ∗ || f (y)|dy

.n

∑
τ≥1

2−τσ
?

Qτ

|b(y) − bQ∗ || f (y)|dy

.n

∑
τ≥1

τ2−τσ
?

Qτ

|b − bQτ || f (y)|dy

where the last inequality uses Exercise 7.8 to replace the average bQ∗ by the av-
erage bQτ , paying with a factor τ in the series. Now a use of Hölder’s inequality
with exponents r, r′ and the fact that the series sums to a constant depending
only on σ allows us to conclude the bound?

Q
|II − c(Q)|dx .n,T,σ ‖b‖BMO(Rn) inf

y∈Q
Mr f (y).

Observe that for any constant c(Q) depending on Q and function g we have?
Q
|g − gQ| ≤

?
Q
|g − c(Q)| +

?
Q
|gQ − c(Q)| ≤ 2

?
Q
|g − c(Q)|

and thus we have proved the claimed pointwise estimate, which in turn proves
the theorem. �

The Theorem of Coifman, Rochberg, and Weiss, tells us that the commuta-
tor of a Calderón-Zygmund operator T with the multiplication by b is bounded
on (say) L2 whenever b ∈ BMO(Rn). Now assume that [T, b] is bounded on L2 for
a sufficiently large family of CZO’s. Can we say anything about b? The answer
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is again provided by Coifman, Rochberg, and Weiss. Their original theorem
states that if [R j, b] is bounded on L2(Rn) for all the Riesz transforms R j then
b ∈ BMO(Rn). We illustrate the result in one dimension when there is only one
Riesz transform, namely the Hilbert transform.

THEOREM 7.24. Let H denote the Hilbert transform on R. Then for all
1 < p < ∞ we have

‖b‖BMO(R) hp ‖ [H, b] ‖Lp(R)→Lp(R).

PROOF. We only need to prove the estimate ‖[H, b]‖ & ‖b‖BMO(R) as the other
direction is contained in Theorem 7.23. For an interval I in R we need to
estimate the quantity ?

I
|b − bI |.

From now on we fix the interval I and call ΓI B sgn(b − bI)1I. Then

|b(x) − bI |1Q(x) = (b(x) − bI)ΓI(x) =
1
|I|

∫
(b(x) − b(y))1I(y)Γ(x)dy.

Let ε > 0. Calling cI the center of I we can write the series of identities∫
|x−y|>ε

(b(x) − b(y))1I(y)ΓI(x)dy =

∫
|x−y|>ε

b(x) − b(y)
x − y

(x − cI − (y − cI))1I(y)ΓI(x)dx

≤

∣∣∣∣(x − cI)ΓI(x)
∫
|x−y|>ε

b(x) − b(y)
x − y

1I(y)dy
∣∣∣∣ +

∣∣∣∣ΓI(x)
∫
|x−y|>ε

b(x) − b(y)
x − y

1I(y)(y − cI)dy
∣∣∣∣.

We now need a small technical observation. Given a function g ∈ L∞(I) we have∫
|x−y|>ε

b(x) − b(y)
x − y

g(y)1I(y)dy = b(x)
∫
|x−y|>ε

g(y)1I(y)
x − y

dy −
∫
|x−y|>ε

g(y)b(y)1I(y)
x − y

dy.

Observe that the functions g1I and gb1I are in L2(R) and thus we can write

lim
ε→0+

∫
|x−y|>ε

b(x) − b(y)
x − y

g(y)1I(y)dy = π
(
b(x)H(g1I)(x) −H(gb1I)(x)

)
= π[H, b](g1I)(x).

On the other hand, since b ∈ L1(I) dominated convergence implies that

lim
ε→0+

∫
|x−y|>ε

(b(x) − b(y))1I(y)Γ(x)dy = |b(x) − bI |1Q(x).

With these observations, the estimate above implies that

|b(x) − bI |1Q(x) ≤
π
2

1I(x)|[H, b](1I)(x)| +
1
|I|

1I(x)|[H, b](1I(· − cI))(x)|

and thus, using the boundedness of the commutator on Lp we have∫
I
|b − bI | . ‖[H, b]‖Lp→Lp

(
|I|

1
p |I|

1
p′ +

1
|I|
|I|

1
p ‖(· − cI)‖Lp′ (I)

)
. ‖[H, b]‖Lp→Lp |I|

and thus
‖b‖BMO(Rn) . ‖[H, b]‖Lp→Lp

which concludes the proof of the theorem. �



CHAPTER 8

Littlewood-Paley inequalities and multiplier
operators

In this chapter we will study the Littlewood-Paley decomposition and the
Littlewood-Paley inequalities. These consist of very basic tools in harmonic
analysis which allow us to decompose a function, on the frequency side, to
pieces that have almost disjoint frequency supports. These pieces, the Littlewood-
Paley pieces of the function, are almost orthogonal to each other, each piece
oscillating at a different frequency.

8.1. The Littlewood-Paley decomposition

We start our analysis with forming a smooth Littlewood-Paley decomposi-
tion as follows. Let φ be a smooth real radial function supported on the open
ball {ξ ∈ Rn : 0 < |ξ| < 2} of the frequency plane, which is identically equal to 1
on {ξ ∈ Rn : 0 ≤ |ξ| ≤ 1} and satisfies 0 ≤ φ ≤ 1. We then form the function ψ as

ψ(ξ) B φ(ξ) − φ(2ξ), ξ ∈ Rn.

Observing that φ(2ξ) = φ(ξ) = 1 if |ξ| < 1/2 and also that φ(ξ) = φ(2ξ) = 0 if
|ξ| ≥ 2 we see that ψ is supported on the annulus {ξ ∈ Rn : 1/2 ≤ |ξ| < 2}. Now
the sequence of functions {Dil∞2kψ}k∈Z = {ψ(·/2k)}k∈Z forms a partition of unity:∑

k∈Z

ψ(ξ/2k) = 1, ξ ∈ Rn
\ {0}.

To see this first observe that each function ψ(ξ/2k) has support inside the an-
nulus {2k−1

≤ |ξ| ≤ 2k+1
}. Thus for each given ξ ∈ Rn

\ {0} there are only finitely
many non-zero terms in the previous sum. In particular if 2` ≤ |ξo| < 2`+1 then∑

k∈Z

ψ(ξo/2k) = ψ(ξo/2`) + ψ(ξo/2`+1) = φ(ξo/2`+1) − φ(ξo/2`−1) = 1.

Note that we miss the origin in our decomposition of the frequency space as
each piece ψ(ξ/2k) is supported away from 0. Some attention is needed con-
cerning this point but usually it creates no real difficulty.

Thus we partition the unity in the form 1 =
∑
ψk and each ψk is smooth

and has frequency support on an annulus of the form |ξ| ' 2k. Now for k ∈ Z let
us define the multiplier operators

∆̂k( f )(ξ) B ψ(ξ/2k) f̂ (ξ),

and
Ŝk( f )(ξ) B

∑
`≤k

∆̂`( f )(ξ) = φ(ξ/2k) f̂ (ξ),

137
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initially defined for f ∈ L2(Rn) or f ∈ S(Rn). The frequency cut-off operator ∆k is
almost a projection to the corresponding frequency annulus {2k−1

≤ |ξ| < 2k+1
};

it is not exactly a projection since the function ψ(ξ/2k) is smooth, introducing
a small tail which is mostly harmless. Similarly, the operator Sk is almost a
projection on the ball |ξ| . 2k.

We have the following simple properties of the Littlewood-Paley decompo-
sition:

PROPOSITION 8.1. We have the following estimates.
(i) For every f ∈ L2(Rn) we have ∆k( f ) = Sk( f )−Sk−1( f ) that is ∆k = Sk−Sk−1

in L2(Rn).
(ii) For every f ∈ L2(Rn) we have that limk→−∞ Sk f = 0 and limk→+∞ Sk f = f

where the limits are taken in the L2(Rn)-sense.
(iii) For every f ∈ L2(Rn) we have that∑

k∈Z

∆k f = f

in L2(Rn).

REMARK 8.2. Property (iii) above holds in a more general sense and for a
wider class of functions, for example Lp functions and more generally, locally
integrable functions that have some decay at infinity. The decomposition fails
however if f has no decay. Indeed, the function 1 satisfies ∆k1 = 0 for all k ∈ Z.
Observe here that 1̂ = δ0 and thus the function 1 has frequency support on {0}
which is the point missed in our partition of unity.

Thus, with a Littlewood-Paley decomposition we managed to write any L2

function (and thus any Schwartz function) as a sum of pieces ∆k f , each piece
being well localized in frequency inside the annulus |ξ| ' 2k.

It is pretty obvious how the operators Sk,∆k act on the frequency variable so
let us take a look on what the pieces Sk f ,∆k f look in the physical space. From
the general facts about the Fourier transform (see for example Exercise 3.7)
we know already that Sk f ,∆k f cannot have compact spatial support. Since

Ŝk f (ξ) = φ(ξ/2k) f̂ (ξ) = Dil∞2kφ f̂ (ξ) = F (Dil1
2−k φ̌ ∗ f )(ξ),

and φ̌ = ˆ̃φ = φ̂, we have

Sk( f )(x) = (Dil1
2−k φ̂ ∗ f )(x) =

∫
Rn

f (x − y)2knφ̂(2ky)dy =

∫
Rn

f (x − 2−ky)φ̂(y)dy.

Here we remember that
∫
φ̂ = φ(0) = 1. From the discussion that followed

the definition of convolutions in § 2.1.1 we thus see that Sk f (x) is an average
of f around the point x at scale ' 2−k. Remembering that Ŝk f is supported on
the ball {|ξ| . 2k

} this is also consistent with the uncertainty principle which
also implies that the function Sk( f ) is essentially constant at scales . 2−k. Now
since a piece ∆k f has frequency support contained in {|ξ| ≤ 2k+1

} and φ(ξ/2k+1)
is identically 1 on the ball |ξ| ≤ 2k+1 we get that

∆k( f ) = Sk+1∆k( f ) =

∫
Rn

∆k f (x − 2−(k+1)y)φ̂(y)dy.
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Thus ∆k( f ) is essentially constant on scales . 2−(k+1). On the other hand, since
∆k f has frequency support on the annulus {2k−1

≤ |ξ| ≤ 2k+1
} we have that

Sk−2∆k f = 0.

As before we can rewrite this as∫
Rn

∆k f (x − 2−k+2y)φ̂(y)dy = 0.

The previous identity roughly says that the function ∆k( f )(x) has zero mean on
every ball around x of radius & 2−k+2.

REMARK 8.3. We have mentioned in passing that the operators ∆k can be
seen as smooth approximations of the exact projections operators

P̂k( f )(ξ) B 1{2k≤|ξ|≤2k+1}(ξ) f̂ (ξ).

Similarly, Sk can be viewed as a smooth approximation of the frequency projec-
tion

Σ̂k( f )(ξ) B 1{|ξ|≤2k}(ξ) f̂ (ξ).

There are however important differences between the rough and smooth ver-
sions of these projections. For example, since φ is a Schwartz function the
function φ̂ is also Schwartz and Young’s inequality shows that

‖Sk( f )‖Lp = ‖Dil1
2−k φ̂ ∗ f ‖Lp ≤ ‖φ̂‖L1‖ f ‖Lp ,

thus Sk is bounded on Lp. Now, consider the rough version Σk given as

Σk( f )(x) = (Dil1
2−k 1̂B(0,1) ∗ f )(x).

Of course Σk is still bounded on L2 because of Plancherel’s theorem. However,
the function 1̂B(0,1) is no longer in L1 and Young’s inequality cannot be used. In
fact Σk is not bounded on Lp whenever n ≥ 2 and p , 2. This is a deep result of
Charles Fefferman.

8.2. Littlewood-Paley Projections and derivatives

Recall the basic relation describing the interaction of derivatives with the
Fourier transform:

∂̂α f (ξ) = (2πiξ)α f̂ (ξ).

In particular

|∇̂ f |2 =

n∑
j=1

∣∣∣∣∣ ∂̂ f
∂x j

∣∣∣∣∣2 = 4π2
|ξ|2| f̂ |2

If f has support on some annulus |ξ| ' 2k we immediately get

‖∇ f ‖L2(Rn) 'n 2k
‖ f ‖L2(Rn),

and thus for any function f ∈ L2(Rn) that

‖∇(∆k f )‖L2(Rn) 'n 2k
‖∆k f ‖L2(Rn),

In fact the same approximate identity extends to all Lp spaces for 1 ≤ p ≤ ∞.

http://www.jstor.org/pss/1970864
http://www.jstor.org/pss/1970864
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PROPOSITION 8.4. Let g have Fourier support inside {2k−1
≤ |ξ| ≤ 2k+1

}. For
all 1 ≤ p ≤ ∞ we have that

‖∇g‖Lp 'n 2k
‖g‖Lp

In particular
‖∇(∆k f )‖p 'n 2k

‖∆k f ‖p.

PROOF. Let us first prove that ‖∇g‖p .n,p 2k
‖g‖p which is the “easy” direc-

tion. Since supp(ĝ) ⊂ {2k−1
≤ |ξ| ≤ 2k+1

} we have

g(x) = Sk+1g(x) = Dil1
2−(k+1) φ̂ ∗ g(x) = 2(k+1)n

∫
Rn
φ̂(2k+1y)g(x − y)dy

=

∫
Rn

g(x − 2−(k+1)y)φ̂(y)dy.

Thus we can write

∇xg(x) =

∫
Rn
∇xg(x − 2−(k+1)y)φ̂(y)dy = −2k+1

∫
Rn
∇yg(x − 2−(k+1)y)φ̂(y)dy

= 2k+1
∫
Rn

g(x − 2−(k+1)y)∇yφ̂(y)dy

where the last equality follows by integration by parts. Now by Young’s in-
equality we can conclude that for any 1 ≤ p ≤ +∞ we have

‖∇g‖Lp ≤ 2k+1
‖g‖Lp‖∇φ̂‖L1 . 2k

‖g‖Lp

since for each j the function ∂x j φ̂ is a Schwartz function so that ‖∇φ̂‖L1 .n 1.
The precise value of the implied constant depends on the exact choice of φ but
this is of small importance.

To prove the opposite inequality, ‖∇g‖Lp & 2k
‖g‖Lp we will essentially pro-

ceed to “invert” the operator ∇. Let ρ be a Littlewood-Paley cutoff function
which is identically 1 on { 12 ≤ |ξ| ≤ 2}, is compactly supported inside { 14 ≤ |ξ| ≤ 4}
(say), and satisfies 0 ≤ ρ ≤ 1. We can the write

ρ(ξ/2k)∂̂x j g(ξ) = ρ(ξ/2k)(2πiξ j)ĝ(ξ) = (2πiξ j)ĝ(ξ)

and thus
ξ jρ(ξ/2k)∂̂x j g(ξ) = 2πiξ2

j ĝ(ξ).

Summing in j ∈ {1, 2, . . . ,n} we get

ĝ(ξ) =

n∑
j=1

ρ(ξ/2k)
ξ j

2πi|ξ|2
∂̂x j g(ξ),

Inverting the Fourier transform we conclude that

g(x) = 2−k
n∑

j=1

Kk, j ∗ ∂x j g(x)

where

Kk, j(x) B 2k
∫
Rn
ρ(ξ/2k)

ξ j

2πi|ξ|2
e2πix·ξdξ = 2kn

∫
Rn
ρ(ξ)

ξ j

2πi|ξ|2
e2πi2kx·ξdξ.
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Remembering that ρ(ξ) ≡ 0 whenever |ξ| < 1
4 we can thus estimate

|Kk, j(x)| ≤
4

2π
· 2kn
‖ρ‖L1 . 2kn.

By repeated integration by parts we can also estimate

(8.1) |Kk, j(x)| .N 2kn(1 + 2k
|x|)−N

for any positive integer N. The previous estimate allows us to estimate

|Dil1
2k Kk, j(x)| .N (1 + |x|)−N

for every N which means that Kk, j can be written in the form

Kk, j = Dil1
2−k Dil1

2k Kk, j

which means that Kk, j is an approximation to the identity at scales 2k. In
particular ‖Kk, j‖1 . 1 and thus

‖g‖Lp = 2−k
n∑

j=1

‖Kk, j‖L1‖∂x j g(x)‖Lp .n 2−k
‖∇g‖Lp

which proves the desired estimate. �

EXERCISE 8.5. Prove estimate (8.1) above.

8.3. The Littlewood-Paley inequalities

The Littlewood-Paley inequalities quantify the heuristic principle that the
pieces ∆k( f ), having well separated frequency supports, behave independently
of each other, meaning that∣∣∣∑

k

∆k( f )
∣∣∣ ' (∑

k

|∆k( f )|2
) 1

2 ,

in some appropriate sense (for example in Lp). In L2 this is already an easy
consequence of Plancherel’s theorem. Indeed, note that∥∥∥∥∥(∑

k

|∆k( f )|2
) 1

2

∥∥∥∥∥2

=

∫
Rn

∑
k∈Z

|ψ(ξ/2k)|2| f̂ (ξ)|2dξ.

Like before observe that for every ξ ∈ Rn there are only two terms ψ(ξ/2`), ψ(ξ/2`+1)
which don’t vanish, and these add up to 1. We have

1 = (ψ(ξ/2`) + ψ(ξ/2`+1))2 = |ψ(ξ/2`)|2 + |ψ(ξ/2`+1)|2 + 2ψ(ξ/2`)ψ(ξ/2`+1),

and thus ∑
k∈Z

|ψ(ξ/2k)|2 = |ψ(ξ/2`)|2 + |ψ(ξ/2`+1)|2 ' 1.

We can equivalently write this identity in the form∥∥∥(∑
k∈Z

|∆k( f )|2)
1
2

∥∥∥
L2 ' ‖ f ‖L2 .

The following theorem is the central result of this chapter and provides an
extension of this approximate identity to all Lp spaces for 1 < p < ∞.
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THEOREM 8.6. Define the Littlewood-Paley square function as

S( f )(x) B
(∑

k∈Z

|∆k( f )(x)|2
) 1

2

.

Then for all 1 < p < ∞ we have

‖S( f )‖Lp(Rn) 'n,p ‖ f ‖Lp(Rn).

PROOF. Consider the vector valued singular integral operator
~S( f )(x) B {∆k f (x)}k∈Z,

and observe that
S( f )(x) = ‖~S( f )(x)‖`2(Z).

Thus the statement of the Theorem is equivalent to

(8.2) ‖~S( f )‖Lp(Rn;`2(Z)) 'n,p ‖ f ‖Lp(Rn).

Observe that ~S is a bounded linear operator from L2(Rn;C) to L2(Rn; `2(Z)). In-
deed the strong (2, 2) type of ~S follows from the remarks before the theorem.
Furthermore, defining

~K(x, y) B {2nkψ̂(2k(x − y))}k∈Z, (x, y) ∈ Rn
×Rn

\ ∆,

we can verify that ~K is a singular kernel associated to the vector valued singu-
lar integral ~S:

LEMMA 8.7. The kernel K defined above is a singular kernel from C to `2(Z).

Postponing the proof of this lemma for now, we use the vector valued ver-
sion of the Calderón-Zygmund theorem to show that ~S is bounded from Lp(Rn)
to Lp(Rn; `2(Z)):

‖~S( f )‖Lp(Rn,`2(Z)) .n,p,ψ ‖ f ‖Lp(Rn),

which is one of the estimates in (8.2). To prove the lower estimate we argue as
follows. Let ~g = {g j} j∈Z : Rn

→ `2(Z). Then∫
Rn
〈~S( f )(x), ~g(x)〉dx =

∫
Rn

∑
k∈Z

∆k( f )(x)gk(x)dx =

∫
Rn

∑
k∈Z

ψk(ξ/2k) f̂ (ξ)ĝk(ξ)dξ

=

∫
Rn

f (x)
∑
k∈Z

∆k(gk)(x)dx C
∫
Rn

f (x)~S∗(~g)(x)dx.

By vector valued duality and the estimate ‖~S( f )‖Lp(Rn,`2(Z)) .n,p,ψ ‖ f ‖Lp(Rn) we con-
clude that the adjoint operator ~S∗ satisfies∥∥∥∑

k∈Z

∆k(gk)
∥∥∥

Lp(Rn)
= ‖~S∗(~g)‖Lp(Rn) .n,p,ψ ‖~g‖Lp(Rn;`2(Z)), 1 < p < ∞.

Now we repeat the Littlewood-Paley decomposition but starting with the
function

ψ̃(ξ) = φ(ξ/4) − φ(4ξ),
and setting

̂̃∆k( f )(ξ) B ψ̃(ξ/2k) f̂ (ξ) = (φ(ξ/(42k)) − φ(4ξ/2k)) f̂ (ξ)
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or equivalently
∆̃k( f ) = Sk+2( f ) − Sk−2( f ).

Observe that in this case we also have
∑

k∈Z ψ̃(ξ/2k) ' 1 for all ξ ∈ Rn
\ {0}.

Using exactly the same arguments as before we can show that we have the
same estimates for these modified Littlewood-Paley projections, namely

(8.3)
∥∥∥(∑

k∈Z

|∆̃k( f )|2
) 1

2
∥∥∥

Lp(Rn)
.p,n ‖ f ‖Lp(Rn)

and

(8.4)
∥∥∥∑

k∈Z

∆̃k(gk)
∥∥∥

Lp(Rn)
.p,n ‖~g‖Lp(Rn,`2(Z)).

Observe that for 2k−1
≤ |ξ| ≤ 2k+1 we have that |ξ|/(42k) ≤ 2k+1/(42k) = 1/2 and

|4ξ|/2k
≥ 42k+1/2k = 8 thus for any function h with supp(h) ⊂ {2k−1 < |ξ| ≤ 2k+1

} we
have that ∆̃kh = h. In particular observe that ∆̃k∆k( f ) = ∆k( f ) since we already
have that supp(∆k( f )) ⊂ {2k−1

≤ |ξ| ≤ 2k+1
}. Applying (8.4) with ~g B {∆k( f )}k∈Z we

get ∥∥∥∑
k∈Z

∆̃k(∆k( f ))
∥∥∥

Lp(Rn)
=

∥∥∥∑
k∈Z

∆k( f )
∥∥∥

Lp(Rn)
.p,n

∥∥∥(∑
k∈Z

|∆k f |2
) 1

2
∥∥∥

Lp(Rn)
.

However on the left hand side we have the pointwise identity
∑

k ∆k( f )(x) = f (x)
which shows that

‖ f ‖Lp(Rn) .p,n ‖~S( f )‖Lp(Rn,`2(Z)),

as we wanted. �

We now go back to the proof of Lemma 8.7.

PROOF OF LEMMA 8.7. Remember that the kernel ~K is given as
~K(x, y) = {2nkψ̂(2k(x − y))}k∈Z.

Let ψk(ξ) B ψ(ξ/2k) so that
2nkψ̂(2kx) = ψ̂k(x)

First of all we prove the estimates

(8.5) |ψ̂k(x)| .
1
|x|n

min((2k
|x|)n, (2k

|x|)−2),

and

(8.6) |∇ψ̂k(x)| .
1
|x|n+1 min((2k

|x|)n+1, (2k
|x|)−1),

For (8.5) we write

|ψ̂k(x)| = 2nk
∣∣∣∣∣ ∫
Rn
ψ(ξ)e−2πi2kx·ξdξ

∣∣∣∣∣.
On the one hand we have that

|ψk(x)| ≤ 2nk
∫
Rn
|ψ(ξ)|dξ .ψ

1
|x|n

(2k
|x|)n.

Furthermore, for any positive integer N we have

|ψk(x)| = 2nk
∣∣∣∣∣ ∫
Rn
ψ(ξ)(

x
2πi2k|x|2

· ∇ξ)Ne2πi2kx·ξdx
∣∣∣∣∣ .ψ,N 2nk 1

(2k|x|)N
,
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by integrating by parts N times and passing the derivatives to ψ. Applying
this estimate for N = n + 2 gives the second estimate in (8.5).

The proof of (8.6) is very similar by observing that

∇ψ̂k(x) = 2nk
∫
Rn
ψ(ξ)∇xe−2πi2kx·ξdξ = 2nk

∫
Rn
ψ(ξ)(−2πi2kξ)e−2πi2kx·ξdξ.

Now the same analysis as in (8.5) applies (with an extra 2k factor) and gives
(8.6). Estimates (8.5) and (8.6) now imply the size and regularity conditions
for the singular kernel ~K in `2(Z). �

8.3.1. A rough version for n-dimensional dyadic intervals. So far we
carried out the Littlewood-Paley decomposition based on a smooth partition of
unity. The use of smooth functions to form the Littlewood-Paley decomposition
has many advantages since then the projections ∆ j are bounded multiplier
operators. On the other hand Remark 8.3 shows that in dimensions n > 1 the
multiplier associated with a Euclidean ball is not bounded on Lp. This means
that the Littlewood-Paley inequalities based on the projections

(8.7) P̂k( f ) = 1{2k<|ξ|≤2k+1} f̂ ,

will fail in any dimension n ≥ 2.
The previous discussion leaves the one-dimensional case open. In fact we

will see now that one can form the Littlewood-Paley decomposition in one di-
mension based on the rough partition of unity

1 =
∑
k∈Z

1{2k<|ξ|≤2k+1}(ξ), ξ ∈ Rn
\ {0},

and still have the Littlewood-Paley inequalities. So let us define Pk to be the
exact frequency projection as in (8.7). We have the following.

THEOREM 8.8. Let f ∈ Lp(R), 1 < p < ∞. Then we have the one dimensional
Littlewood-Paley inequalities for the rough projections Pk:∥∥∥∥∥(∑

k∈Z

|Pk( f )|2
) 1

2

∥∥∥∥∥
Lp(R)

'p ‖ f ‖Lp(R).

PROOF. Writing Pk( f ) in the form

P̂k f = 1[−2k+1,2k) f̂ + 1(2k,2k+1] f̂ ,

we have the following representation in terms of the Hilbert transform

(8.8) Pk( f ) =
i
2

(
Mod2k HMod−2k f −Mod2k+1 HMod−2k+1 f

)
.

For ~g = {gk}k∈Z ∈ Lp(R; `2(Z)) let us define the vector valued analogue

~P(~g) B {Pk(gk)}k∈Z.

Using the fact that H is a CZO and the representation (8.8) of Pk in terms of
H we can see that ~P is a vector valued Calderón-Zygmund operator, thus ~P is
bounded from Lp(R; `2(Z)) to Lp(R; `2(Z)). Applying this property to the vector-
valued function

~g B {∆̃k f }k∈Z
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we get ∥∥∥∥∥(∑
k∈Z

|Pk∆̃k( f )|2
) 1

2

∥∥∥∥∥
Lp(R)
.p

∥∥∥∥∥(∑
k∈Z

|∆̃k( f )|2
) 1

2

∥∥∥∥∥
Lp(R)

,

where the ∆̃k’s are as in the proof of Theorem 8.6. Now we remember that
that ̂̃∆k( f )(ξ) = f̂ (ξ) whenever 2k−1

≤ |ξ| ≤ 2k+1. Thus we have the identity
Pk∆̃k( f ) = ∆̃kPk( f ) = Pk( f ). The previous estimate implies that∥∥∥∥∥(∑

k∈Z

|Pk( f )|2
) 1

2

∥∥∥∥∥
Lp(R)
.p

∥∥∥∥∥(∑
k∈Z

|∆̃k( f )|2
) 1

2

∥∥∥∥∥
Lp(R)

.

By (8.3) in the proof of Theorem 8.6 we get one of the inequalities in the state-
ment of the theorem: ∥∥∥∥∥(∑

k∈Z

|Pk( f )|2
) 1

2

∥∥∥∥∥
Lp(R)
.p ‖ f ‖Lp(R).

To prove the opposite inequality, we write the dual estimate that was obtained
in proof of Theorem 8.6: ∥∥∥∑

k∈Z

∆̃k(~g)
∥∥∥

Lp(R)
.p ‖~g‖Lp(R;`2(Z)).

Now take ~g B {Pk f }k∈Z and use the observation ∆̃kPk f = Pk( f ) to write

‖ f ‖Lp(R) =
∥∥∥∑ Pk f

∥∥∥
Lp(R)
.p ‖~g‖Lp(R;`2(Z)) =

∥∥∥∥∥(∑
k∈Z

|Pk( f )|2
) 1

2

∥∥∥∥∥
Lp(R)

,

which gives the other inequality in the theorem. �

EXERCISE 8.9. Let T be a scalar-valued Calderón-Zygmund Operator and
let 1 < r, p < +∞. If ~f ∈ Lp(Rn; `r(Z)) then show that∥∥∥∥∥(∑

k∈Z

|T( fk)|r
) 1

r

∥∥∥∥∥
Lp(Rn)

.p,n,r,T

∥∥∥∥∥(∑
k∈Z

| f j|
r
) 1

r

∥∥∥∥∥
Lp(Rn)

.

Hint: Consider the vector valued operator

~T( ~f ) B {T fk}k∈Z.

The problem reduces to showing that ~T is a vector valued CZO from Lp(Rn; `r(Z))
to Lp(Rn; `r(Z)). Observe that ~T is associated with the kernel

~K(x, y) B K(x, y)id`r ,

where id`r is the identity from `r(Z) to `r(Z) and K is the (scalar) kernel asso-
ciated with T. You can assume the Banach space version of the vector valued
Calderón-Zygmund theorem.

EXERCISE 8.10. Let {Ik}k∈Λ be a sequence of bounded or unbounded inter-
vals on the real line, where Λ is a finite or countably infinite index set. Define
the frequency projections

P̂Ik f B 1Ik f̂ .
Show that ∥∥∥∥∥(∑

k∈Λ

|PIk f |r
) 1

r

∥∥∥∥∥
Lp(R)
.p,r

∥∥∥(∑
k∈Λ

| f |r
) 1

r
∥∥∥

Lp(R)
.
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Hint: Like in the proof of Theorem 8.8 use the representation of the pro-
jections PIk in terms of the Hilbert transform and Exercise 8.9.

We have already remarked (see Remark 8.3) that Theorem 8.8 does not
generalize to annuli in the n-dimensional Euclidean space if we insist on us-
ing the rough projections 1{2k<|ξ|≤2k+1} f̂ . However, there is a generalization of
the “rough” Littlewood-Paley theorem to dimensions n > 1. This is based on
a decomposition of the frequency space Rn into a union of disjoint dyadic “in-
tervals”, that is, n-dimensional rectangles with sides parallel to the coordinate
axes where every side of the rectangle is an interval of the form (2k, 2k+1] or
[−2k+1,−2k]. This allows for “tensoring” Theorem 8.8 to several dimensions
without great difficulty. This is done as follows. For k = (k1, . . . , kn) ∈ Zn we
set

P(k) B Pk1 Pk2 · · ·Pkn

where each Pk j is the one-dimensional projection previously defined acting only
on the j-th variable. For f : Rn

→ C we have

P̂k j f (ξ) = 1
{2kj<|ξ j |≤2kj+1

}
(ξ j) f̂ (ξ), ξ = (ξ1, . . . ξ j, . . . , xn) ∈ Rn.

The corresponding square function is defined as

S�( f )(ξ) B
( ∑

k=(k1,...,kn)∈Zn

|P(k) f (ξ)|2
) 1

2

This leads to:

THEOREM 8.11. For 1 < p < ∞ we have

‖S�( f )‖Lp(Rn) 'p,n ‖ f ‖Lp(Rn).

We omit the proof of this theorem as it is mostly technical, based on in-
duction and starting from the one dimensional version of the theorem already
proved. You can find the proof for example in [D] or [S].

8.4. Two theorems on multipliers

We now go back to multiplier operators and reconsider them from the point
of view of Calderón-Zygmund theory. We have already seen that a multiplier
operator is the linear operator Tm with T̂m f = m(ξ) f̂ (ξ) for some m ∈ L∞(Rn).
This definition automatically implies that Tm is bounded on L2 with norm
‖Tm‖L2→L2 = ‖m‖L∞ . Alternatively, the discussion from § 3.7 reveals that these
are all the bounded linear operators on L2 that commute with translations and
can be realized in the form

Tm f (x) = (K ∗ f )(x), f ∈ S(Rn),

where K ∈ S′(Rn) is the unique tempered distribution such that K̂ = m.
If the operator Tm extends to a bounded linear operator on Lp(Rn) we say

that m is an Lp-multiplier and write m ∈ Mp. We set

‖m‖Mp B ‖Tm‖Lp→Lp .

The previous remarks then show that ‖m‖M2 = ‖m‖L∞ . It turns out that the
space (Mp, ‖ · ‖Mp ) is a Banach space but we will not dwell on this issue here.
We also have the following easy proposition:
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PROPOSITION 8.12. We have the following statements:
(i) Let 1 ≤ p ≤ ∞ and p′ be the conjugate exponent of p. Then

m ∈ Mp
⇔ m ∈ Mp′

and in this case we have that

‖m‖Mp = ‖m‖Mp′ .

(ii) For all 1 ≤ p ≤ ∞ we have

‖m‖L∞(Rn) ≤ ‖m‖Mp .

PROOF. The claim in (i) is a consequence of the following obvious identity;
for f , g ∈ S(Rn) we have∫

Rn
Tm f (x)g(x) =

∫
Rn

m(ξ) f̂ (ξ)ĝ(ξ) =

∫
Rn

f (x)Tmg(x)dx,

That is, Tm is the adjoint of Tm. Thus

‖m‖Mp = ‖Tm‖Lp→Lp = ‖Tm‖Lp′→Lp′ = ‖m‖Mp′ = ‖m‖Mp′ ,

since m and m have the same norm. To prove the second assertion assume that
‖m‖Mp < +∞ otherwise there is nothing to prove. By (i), the linear operator
Tm is of strong type (p, p) and (p′, p′) with the same operator norm. By the
Riesz-Thorin interpolation theorem we get that

‖m‖L∞(Rn) = ‖Tm‖L2→L2 ≤ ‖m‖θ
Mp‖m‖1−θ

Mp′ = ‖m‖Mp ,

which proves (ii). �

REMARK 8.13. Observation (ii) above shows that Lp multipliers are nec-
essarily bounded functions. The opposite however is not true. Another easy
consequence of the discussion above is the following. We always have

Tm f (x) = (K ∗ f )(x) = (m̌ ∗ f )(x),

where K = m̌ ∈ S′(Rn) as observed above. The problem with this representa-
tion is that we don’t know whether K = m̌ is actually a function that can give
meaning to the formula

Tm f (x) =

∫
Rn

K(x − y) f (y)dy.

If however it happens that K = m̌ ∈ L1(Rn) then Young’s inequality readily
applies to show that

‖Tm f ‖Lp(Rn) ≤ ‖K‖L1(Rn)‖ f ‖Lp(Rn),

so that
‖m‖Mp = ‖Tm‖Lp→Lp ≤ ‖m̌‖L1(Rn).

The main problem in the theory of multipliers is to get away from the case
p = 2 and place suitable conditions on m so that we can conclude that m ∈ Mp.
The previous generalities easily imply that if m ∈ S(Rn) then m ∈ Mp since
m̌ ∈ L1(Rn) in this case. A similar result with weaker hypothesis requires the
following definition.
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DEFINITION 8.14. We define the Sobolev space Ws,2 to be the space of tem-
pered distributions f such that f̂ agrees with a function almost everywhere
that satisfies

‖ f ‖2Ws,2 B

∫
Rn
| f̂ (ξ)(1 + 4π2

|ξ|2)
s
2 |

2dξ < +∞.

We then have the following simple multiplier theorem.

PROPOSITION 8.15. Let m : Rn
→ C and suppose that m ∈ Ws,2 for some

s > n/2. Then m ∈ Mp and ‖m‖Mp .n,s ‖m‖Ws,2 .

PROOF. We will show that m̌ ∈ L1(Rn). We have∫
Rn
|m̌(x)|dx =

∫
Rn
| ˆ̃m(x)|(1 + 4π2

|x|2)
s
2 (1 + 4π2

|x|2)−
s
2 dx

≤ ‖m‖Ws,2

( ∫
Rn

(1 + 4π2
|x|2)−sdx

) 1
2 .n,s ‖m‖Ws,2

since 2s > n. Thus we have

‖Tm f ‖Lp(Rn) = ‖m̌ ∗ f ‖Lp(Rn) ≤ ‖m̌‖L1(Rn)‖ f ‖Lp(Rn) .s ‖m‖Ws,2‖ f ‖Lp(Rn)

which proves the desired estimate. �

REMARK 8.16. Observe that for any tempered distribution f we have that

̂(−∆ f )(ξ) = 4π2
|ξ|2 f̂ (ξ).

If k is an even integer we can write

F ((I − ∆)
k
2 f )(ξ) = (1 + 4π2

|ξ|2)
k
2 f̂ (ξ).

Thus, at least when k is an even integer, the Sobolev space Wk,2 is the space of
tempered distributions such that

(I − ∆)
k
2 f ∈ L2(Rn),

where (I − ∆)
k
2 makes sense as a partial differentiable operator since k/2 is an

integer. Similarly one can define the Sobolev spaces Wk,p to be the space of
tempered distributions f such that

(I − ∆)
k
2 f ∈ Lp(Rn).

In fact one can take one step further and define the space Ws,p for any real
number s and 1 < p < +∞. In the case p = 2 this presents no difficulty since
one has a direct interpretation of (I − ∆)

s
2 as a Fourier integral operator. In

particular, (I − ∆)
s
2 is the multiplier operator defined as

(I − ∆)
s
2 f B F −1

(
(1 + 2π|ξ|2)

s
2 f̂

)
.

With this discussion we have

Ws,p B { f ∈ Lp(Rn) : ‖(I − ∆)
s
2 f ‖Lp < +∞}.

The general flavor of the previous results is that if a function m has no
local singularities and, together with its derivatives, decays fast enough at
infinity, then m is anMp multiplier for all 1 ≤ p ≤ ∞. Besides a (controllable)
singularity at infinity, one can also allow for a singularity at the origin.
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We present two instances of this principle, usually referred to as the Hör-
mander multiplier theorem. We start with an “easy” version where the func-
tion m is bounded, to assure the (2, 2) hypothesis is satisfied, C∞ away from the
origin and its derivatives decay at least as fast as their order.

THEOREM 8.17 (Hörmander-Mikhlin multiplier theorem version I). Let m :
Rn
→ C be a bounded function which belongs to the class C∞(Rn

\ {0}) and
satisfies

|∂αξm(ξ)| .n,α |ξ|
−|α|, ξ ∈ Rn

\ {0},
for all multi-indices α. Then K = m̌ agrees with a C∞ function away from the
origin and satisfies

|∂αK(x)| .α |x|−n−|α|, x ∈ Rn
\ {0},

for all multi-indices α. In particular, m is an Mp multiplier for all 1 < p < ∞
with ‖m‖Mp .p,n 1.

PROOF. Using the Littlewood-Paley decomposition we can write

m(ξ) =
∑
j∈Z

ψ(ξ/2k)m(ξ) C
∑
j∈Z

m j(ξ),

whenever ξ , 0. Each piece m j is supported on the annulus 2 j−1
≤ |ξ| ≤ 2 j+1 and

is a C∞-function as a product of smooth functions so it makes sense to define

K j(x) =

∫
Rn

m j(ξ)e2πix·ξdξ = m̌ j(x).

Furthermore, from our hypotheses on m we can get some good estimates on
each K j together with its derivatives. Indeed since ‖m j‖L∞ ≤ ‖m‖L∞ .n 1 by our
hypothesis (with the zero multi-index α) we have

|K j(x)| ≤
∫
|ξ|'2 j
|m j(ξ)|dξ .n 2 jn.

Likewise

|∂αK j(x)| ≤
∫
|ξ|'2 j
|(2πiξ)αm j(ξ)|dξ .n,α

∫
|ξ|'2 j

dξ ≤ 2 j(n+|α|).

On the other hand for every multi-index α we have

|∂αK j(x)| =
∣∣∣∣∫
|ξ|'2 j

(2πiξ)αm j(ξ)
( x · ∇ξ
2πi|x|2

)M
e2πix·ξdξ

∣∣∣∣,
for every non-negative integer M. Integrating by parts M times to pass the
derivatives to the term (2πiξ)αm j(ξ), using Leibniz’s rule and the hypothesis on
the derivatives ∂αm j we get the estimate

|∂αK j(x)| .n,α,M |x|−M2 j(n+|α|−M),

for all multi-indices α and non-negative integers M. We summarize these esti-
mates in the form

(8.9) |∂αK j(x)| .n,α,M min(2 j(n+|α|), |x|−M2 j(n+|α|−M))

for all multi-indices α and non-negative integers M. Using (8.9) for M = 0 we
have ∑

2 j≤|x|−1

|∂αK j(x)| ≤
∑

2 j≤|x|−1

2 j(n+|α|) .n,α |x|−(n+α)
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On the other hand, using (8.9) for M > n + |α| we get∑
2 j>|x|−1

|∂αK j(x)| ≤ |x|−M
∑

2 j>|x|−1

2 j(n+|α|−M)
'n,α |x|−M

|x|−(n+|α|−M) = |x|−(n+|α|).

Now since the series
∑

j ∂
αK j(x) converges absolutely whenever x , 0 we con-

clude that for every K the series
∑

j K j converges locally in C∞loc, away from a
neighborhood of 0, to some function K̃ ∈ C∞(Rn

\ {0}) that satisfies

(8.10) |∂αK̃(x)| .n,α
1

|x|n+|α|

for every multi-index α. Since
∑

j m j =
∑

j K̂ j converges to m = K̂ in L2(Rn) we
conclude that K(x) = K̃(x) when x , 0. In particular,

Tm f = (K ∗ f )(x) =

∫
K̃(x − y) f (y)dy,

whenever f ∈ L2(Rn) has compact support and x < supp( f ) since then x − y , 0.
However, K̃ satisfies

|K̃(x − y)| .n |x − y|−n, x , y,

by taking the zero multi-index in (8.10) and furthermore

|∇yK(x − y)| .n |x − y|−(n+1), |∇xK(x − y)| .n |x − y|−(n+1), x , y,

by considering multi-indices α with |α| = 1 in (8.10). These estimates are
enough to assure that K̃ and thus K is a singular kernel so Tm is a CZO as-
sociated with K. However this means that m ∈ Mp with ‖m‖Mp .n,p 1 and we
are done. �

REMARK 8.18. The hypothesis of the previous theorem is not optimal as
one can get away with less derivatives of m. However it already applies to
many practical cases. For example for any multi-index β of order |β| = 2, con-
sider the operator Tm with symbol

mβ(ξ) =
ξβ

|ξ|2
.

Observe that mβ falls under the scope of Theorem 8.17 since for ξ , 0 we have

|∂αmβ(ξ)| .
1
|ξ||α|

,

for all multi-indices α. So mβ ∈ M
p for all 1 < p < ∞. Now observe that for

f ∈ S(Rn) (say) we have

(̂∂β f )(ξ) = (2πiξ)β f̂ (ξ) =
(2πiξ)β

−4π2|ξ|2
(−4π2

|ξ|2) f̂ (ξ) = mβ(ξ)∆̂ f (ξ).

which shows in particular that

‖∂β f ‖Lp . ‖∆ f ‖Lp

for all multi-indices of order 2, whenever ∆ f ∈ Lp(Rn). Thus all partial deriva-
tives of order 2 are controlled by the Laplacian in Lp.
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Now consider the space W2,p(Rn) to be the space of Lp functions f such that
all the partial derivatives of order up to 2 are in Lp and equip this space with
the norm

‖ f ‖W2,p B
∑

0≤|α|≤2

‖∂α f ‖Lp(Rn).

By the remarks above this norm is equivalent to

‖ f ‖W2,p 'n,p ‖(I − ∆) f ‖Lp(Rn).

Similar conclusions hold for any s ≥ 0 and the space Ws,p. Thus the two def-
initions of the Sobolev space Wk,p, the one given here and then one given in
Remark 8.13 coincide whenever s ≥ 0:

‖ f ‖Ws,p =
∑

0≤|α|≤k

‖∂α f ‖Lp(Rn) 'n,p ‖(I − ∆)
s
2 f ‖Lp(Rn), s ≥ 0.

We now give a sharper form of the multiplier theorem which requires con-
trol only on ∼ n/2 derivatives of m.

THEOREM 8.19 (Hörmander-Mikhlin multiplier theorem version II). Let m
be a bounded function on Rn.

(i) Let k be the smallest integer > n/2 and suppose that the multiplier
m : Rn

→ C is of class Ck(Rn
\ {0}) with

|∂αm(ξ)| .α |ξ|−|α|,

for all multi-indices α with |α| ≤ k. Then m̌ agrees with a function K(x)
away from the origin which is locally integrable away from the origin
and satisfies ∫

|x|>2|y|
|K(x − y) − K(x)|dx .n 1,

for all y , 0.
(ii) Under the assumptions of (i) we have that m ∈ Mp for all 1 < p < ∞

and ‖m‖Mp .n,p 1.

PROOF. As in the proof of Theorem 8.17 it will be enough to control the
pieces K j. For this, let β be a multi-index. We have∫

Rn
|(−2πix)βK j(x)|2dx =

∫
Rn
|∂
β
ξm j(ξ)|2dξ.

For M ≤ k this implies that∫
Rn

(|x|M)2
|K j(x)|2dx =

∫
Rn

(x2
1 + · · · + x2

n)M
|K j(x)|2dx .n,M 2nj2−2Mj.

Now for any R > 0 we have∫
|x|≤R
|K j(x)|dx ≤

( ∫
|x|≤R
|K j(x)|2dx

) 1
2

R
n
2 .n,M 2

nj
2 R

n
2 .

On the other hand

(8.11)
∫
|x|>R
|K j(x)|dx =

∫
|x|>R
|K j(x)||x|k|x|−kdx ≤ 2

nj
2 2−kjRn/2−k,
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where n/2 − k < 0. Choosing R = 2− j these estimates imply that∫
Rn
|K j(x)|dx .n 1 + 2 j(n−2k) .n 1.

We will now prove a similar estimate for the derivatives of K j using a very
similar approach. Indeed, we start from the identity∫

Rn
|(−2πix)β∂αK j(x)dx|2dx =

∫
Rn
|∂
β
ξ[(2πiξ)αm j(ξ)]|2dξ.

Now for M ≤ k and using the Leibniz rule we get∫
Rn

(|x|M)2
|∂αK j(x)|2dx .M,α 2nj2−2Mj22 j|α|.

Thus we have∫
|x|≤R
|∂αK j(x)|dx ≤

( ∫
Rn
|∂αK j(x)|2

) 1
2

R
n
2 .α,n 2

nj
2 2 j|α|R

n
2 .

Also ∫
|x|>R
|∂αK j(x)|dx =

∫
|x|>R
|x|−k
|x|k|∂αK j(x)|dx .n,α,k 2

nj
2 2 j|α|2−kjR

n
2−k.

Choosing R = 2− j and combining the last two estimates we conclude∫
Rn
|∂αK j(x)|dx .n,α 2 j|α|.

This estimate for |α| = 1 together with the mean value theorem implies that∫
Rn
|K j(x + h) − K j(x)|dx .n 2 j

|h|.

We now have for all y , 0∑
2 j≤|y|−1

∫
|x|≥2|y|

|K j(x − y) − K(x)|dx .n

∑
2 j≤|y|−1

2 j
|y| .n,k 1.

On the other hand∑
2 j>|y|−1

∫
|x|≥2|y|

|K j(x − y) − K(x)|dx .
∑

2 j>|y|−1

∫
|x|≥|y|
|K j(x)|dx

.n

∑
2 j>|y|−1

2
nj
2 2−kj

|y|
n
2−k .n,k 1,

by (8.11). Using now that
∑

j K j(x) converges in L1(V) to some locally integrable
function for every compact set V that doesn’t contain 0 we conclude that K
coincides with a locally integrable function away from 0 and satisfies

(8.12)
∫
|x|≥2|y|

|K(x − y) − K(x)|dx .n 1,

for y , 0. Since K = m̌ away from the origin we have that Tm satisfies

Tm f (x) =

∫
K(x − y) f (y)dy

whenever f in L2(Rn) and has compact support and x < supp( f ). Furthermore,
by the assumption m ∈ L∞(Rn) we automatically get that Tm is bounded on
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L2(Rn). Here condition (8.12) is enough to substitute the conditions given in
the definition of a singular kernel and show that Tm is a CZO with K playing
the role of the kernel. Indeed, the (2, 2) type of Tm can be used to treat the
bad part in the Calderón-Zygmund decomposition of a function f . On the other
hand, if bQ is a bad piece supported on a dyadic cube Q with center wQ and
Q∗ = (1 + 2

√
n)Q is the cube with the same center and (1 + 2

√
n) times the

side-length of Q, we have∫
Rn\Q∗

∣∣∣∣∫
Q

K(x − y)bQ(y)dy
∣∣∣∣ dx ≤

∫
Rn\Q∗

∫
Q
|K(x − y) − K(x − wQ)| |bQ(y)| dy dx

≤

∫
Q
|bQ(y)|

∫
Rn\Q∗

|K(x − y) − K(x − wQ)| dx dy.

Now if y ∈ Q and x < Q∗ we have that |x − wQ| ≥
√

n side(Q) ≥ 2|y − wQ|. Thus
for y ∈ Q we have from (8.12) that∫
Rn\Q∗

|K(x − y) − K(x − wQ)|dx =

∫
Rn\Q∗

|K(x − wQ − (y − wQ)) − K(x − wQ)|dx .n 1,

so that ∫
Rn\Q∗

|

∫
Q

K(x − y)bQ(y)dy|dx .n ‖bQ‖L1(Q).

This treats the bad part of the Calderón-Zygmund decomposition of f so we
conclude the proof that Tm is of weak type (1, 1) as in the general case of a
CZO. Interpolating between this bound and the strong (2, 2) bound we get that
m ∈ Mp for 1 < p < 2. By Proposition 8.12 or using the symmetry of K(x − y) in
x and y, we also get the range 2 < p′ < ∞ with ‖m‖Mp = ‖m‖Mp′ = ‖Tm‖Lp→Lp . �

EXERCISE 8.20. The purpose of this exercise is to clear out some of the
calculations in the proofs of the two versions of Hörmander’s theorem.

(i) Prove the identity ( x · ∇ξ
2πi|x|2

)
)N

e2πix·ξ = e2πix·ξ,

for any positive integer N. Here the meaning of the symbol x · ∇ξ is

x · ∇ξ B x1∂ξ1 + · · · + xm∂ξm .

(ii) Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be two multi-indices in Nn.
We write β ≤ α if β j ≤ α j for all j ∈ {1, 2, . . . ,n}. With this notation
the Leibniz rule says that for any multi-index α and functions f , g we
have

∂α( f g) =
∑
β≤α

(
α
β

)
(∂α−β f )(∂βg).

Here the generalized binomial coefficients
(α
β

)
are defined as(

α
β

)
B

(
α1

β1

)(
α2

β2

)
· · ·

(
αn

βn

)
.

Alternatively we use the notation

α! B α1! · · ·αn! so that
(
α
β

)
=

α!
β!(α − β)!

, β ≤ α.
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For any two multi-indices α, β ∈Nn
o show that

∂αx (xβ) =

 β!
(β−α)! x

β−α, α ≤ β,

0, otherwise.

(iii) Let m : Rn
→ C satisfy the estimate

|∂αm(ξ)| .n,α |ξ|
−|α|,

and let ψ j(ξ) = ψ(ξ/2 j), j ∈ Z, be as in the Littlewood-Paley decompo-
sition. Show that m j = mψ j satisfies the same estimates, that is,

|∂αm j(ξ)| .n,α |ξ|
−|α|,

with different implied constants of course. Remember that ψ j and
thus m j is supported on |ξ| ' 2 j.

(iv) Let m : Rn
→ C satisfy the estimate

|∂αm(ξ)| .n,α |ξ|
−|α|,

and ψ j = ψ(ξ/2 j), j ∈ Z, be as in the Littlewood-Paley decomposition.
Set m j = mψ j. Show that for every multi-index γ of order |γ| = M we
have

|∂γ((2πiξ)αm j(ξ))| .n,α,M |ξ|
|α|−M.

(v) Let h be a smooth function which is supported on Ak B {2k−1
≤ |ξ| ≤

2k+1
}. Show that∫

Ak

h(ξ)
( x · ∇ξ

2πi|x|2

)
e2πix·ξdξ =

∫
Ak

[(
−

x · ∇ξ
2πi|x|2

)
h(ξ)

]
e2πix·ξdξ,

and by iterating that∫
Ak

h(ξ)
( x · ∇ξ

2πi|x|2

)N

e2πix·ξdξ =

∫
Ak

[(
−

x · ∇ξ
2πi|x|2

)N

h(ξ)
]
e2πix·ξdξ,

for all positive integers N.

EXERCISE 8.21. Let K ∈ L2(Rn) be such that m B K̂ ∈ L∞(Rn). Furthermore
suppose that K satisfies the mean regularity condition∫

|x|>2|y|
|K(x − y) − K(x)|dx .n 1, y , 0.

Show that m ∈ Mp(Rn).
Hint: Briefly describe the key elements of the proof showing that Tm f =

K ∗ f is of weak type (1, 1). Argue why this implies that m ∈ Mp for 1 < p < 2.
You get the complementary interval 2 < p < ∞ for free (why?).

8.5. The Sobolev spaces Ws,p(Rn)

Let s ≥ 0 be a non-negative integer and 1 ≤ p ≤ ∞. The Sobolev space
Ws,p(Rn) is defined to be the space of all functions f ∈ Lp(Rn) whose distribu-
tional (or weak) derivatives of orders ≤ k belong to Lp(Rn). We can equip this
space with the norm

‖ f ‖Ws,p(Rn) B
∑

0≤|α|≤k

‖∂α f ‖Lp(Rn).
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For s = 0 we have of course W0,p(Rn) = Lp(Rn) and for s > 0 the space Ws,p is
a linear subspace of Lp(Rn). In fact the space Ws,p, equipped for example with
the norm given above, is a Banach space for all 1 ≤ p ≤ ∞ and non-negative
integers s.

An equivalent way to define and gauge Sobolev functions is the following.
For j ≥ 0 a non-negative integer let ∇ j denote the vector of all the distributional
partial derivatives of f of order j. Thus ∇ j f is a vector of n j partial derivatives
of f of order j. Then let us set

|∇
j f | B

(∑
|α|= j

|∂α f |2
) 1

2 .

With these definitions it is elementary to see that we also have

‖ f ‖Ws,p(Rn) 'n,p,s

s∑
j=0

‖∇
j f ‖Lp(Rn).

Using the Fourier transform and the way it interacts with (weak) derivatives
we get another expression which is comparable to the Ws,p-norm in the range
1 < p < +∞. This is the analogue of Proposition 8.4 for the differential operator
∇

s instead of ∇ = ∇1.

PROPOSITION 8.22. For s ≥ 0 a non-negative integer and 1 < p < ∞ we have

‖∇
s f ‖Lp(Rn) 'n,p,s

∥∥∥(∑
k∈Z

|2ks∆k f |2
) 1

2
∥∥∥

Lp(Rn)
.

We conclude that

‖ f ‖Ws,p(Rn) 'n,p,s

∥∥∥(∑
k∈Z

|(1 + 2k)s∆k f |2
) 1

2
∥∥∥

Lp(Rn)
.

PROOF. Observe that the case s = 0 of the proposition is Theorem 8.6 while
the case s = 1 is compatible with Proposition 8.4.

Observe that ∇s f = (∂α f )|α|=s is a vector with ns components, each compo-
nent being of the form ∂α f with |α| = s. As in the proof of Proposition 8.4 we
have

∆k f (x) = Sk+1∆k f (x) =

∫
Rn

∆k f (x − 2−(k+1)y)φ̂(y)dy.

Thus we have the vector identity

∇
s
x∆k f (x) =

∫
Rn
∇

s
x∆k f (x − 2−(k+1)y)φ̂(y)dy

= −2s(k+1)
∫
Rn
∇

s
y∆k f (x − 2−(k+1)y)φ̂(y)dy

= 2s(k+1)
∫
Rn

∆k f (x − 2−(k+1)y)∇s
yφ̂(y)dy

's (Dil1
2−k ∇

s
yφ̂ ∗ 2sk∆k f )(x).

Now the operation
h 7→ ∆∗kh B Dil1

2−k ∇
s
yφ̂ ∗ h
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is a (modified) Littlewood-Paley projection at frequency |ξ| ' 2k. Thus we have
the identity

∆k∇
s
x f 's 2sk∆∗k∆k f

We then have

‖∇
s f ‖Lp(Rn) ≤

∥∥∥∑
k

∆k(∇s f )
∥∥∥

Lp(Rn)
.s

∥∥∥∑
k

∆∗k2sk∆k f
∥∥∥

Lp(Rn)
.

Using estimate (8.4) for the operators ∆∗k we get one side of the desired estimate

‖∇
s f ‖Lp(Rn) .s,p,n

∥∥∥(∑
k

|2sk∆k f |2
) 1

2
∥∥∥

Lp(Rn)
.

The converse estimate is slightly more involved, but again follows the ideas
in the proof of Proposition 8.4. Choosing a function ρ ∈ S(Rn) which is iden-
tically 1 on { 12 ≤ |ξ| ≤ 2} and vanishes outside { 14 ≤ |ξ| ≤ 4} we can write the
identity

ρ(ξ/2k)∆̂k∂αx f (ξ) = ρ(ξ/2k)ψ(ξ/2k)∂̂αx f (ξ) = (2πiξ)α∆̂k f (ξ)

for every multi-index α with |α| = s. The generalized binomial theorem now
states that for ξ = (ξ1, . . . , ξn) we have

|ξ|2 = (ξ2
1 + · · · + ξ2

n)s =
∑
|α|=s

s!
α1! · · ·αn!

ξα C
∑
|α|=s

cs,αξ
α.

Thus we have

∆̂k f (ξ) =
1

(2πi)s

∑
|α|=s

cα,sρ(ξ/2k)
ξα

|ξ|2s ∆̂k∂αx f (ξ).

Inverting the Fourier transform we get

∆k f (x) = 2−ks
∑
|α|=s

Kk,α,s ∗ ∆k∂
α
x f (x)

where

Kk,α,s(x) =
cα,s

(2πi)s 2ks
∫
Rn
ρ(ξ/2k)

ξα

|ξ|2s e2πix·ξdξ.

Again we see that for each α with |α| = s the operation

h 7→ ∆k,αh B Kk,α,s ∗ h

is a (modified) Littlewood-Paley at frequencies |ξ| ' 2k. Thus we have proved
the identity

2ks∆k f =
∑
|α|=s

∆k,α∆k∂
α
x f =

∑
|α|=s

∆∗k,α∂
α
x f

for some other Littlewood-Paley projection ∆∗k at frequency |ξ| ' 2k. Thus∥∥∥(∑
k

2ks
|∆k f |2

) 1
2
∥∥∥

Lp(Rn)
.

∑
|α|=s

∥∥∥(∑
k

|∆∗k,α∂
α
x f |2

) 1
2
∥∥∥

Lp(Rn)

'n,p

∑
|α|=s

‖∂αx f ‖Lp(Rn) ' ‖∇
s f ‖Lp(Rn).

These two estimates complete the proof. �
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Although the original definition of Sobolev spaces was given in terms of
derivatives, thus s was a non-negative integer, the equivalence in Proposi-
tion 8.22 makes sense for any s ∈ R. Thus one can use Proposition 8.22 in
order to define Sobolev spaces for any s ∈ R. This defined the fractional Sobolev
spaces Ws,p(Rn) for any s ∈ R and 1 < p < +∞. For s ≥ 0 these spaces can be
thought of as spaces of functions f ∈ Lp(Rn) whose distributional fractional
derivatives of order s belong to Lp.

But what is a fractional derivative? Using the Fourier transform we have
the familiar identity:

∂̂α f = (2πiξ)α f̂ (ξ).
and thus, applying for |α| = 1 we have for all non-negative integers s that

∇̂ f (ξ) = 2πiξ f̂ (ξ).

We then define the differential operator |∇| of order 1 as

|̂∇| f (ξ) B 2π|ξ| f̂ (ξ).

Now for any s ∈ R we can define the differential operator of fractional order s,
|∇ f |s, as ̂|∇ f |s(ξ) B (2π|ξ|)s f̂ (ξ).
When −n < s < 0 the operator |∇|s should be understood more as a fractional
integration operator. By a bit of Fourier analysis we can see that in this case
|∇|

s has an integral representation as

| ∇|
−s f (x) = Is f (x) B cn,s

∫
f (y)

|x − y|n−s dy, 0 < s < n.

The kernel of the convolution operator above is called a Riesz potential (not
to be confused with the Riesz transforms which are Calderón-Zygmund opera-
tors). By the Hardy-Littlewood-Sobolev theorem of Exercise 4.50 we have the
estimate

‖|∇|
−s f ‖Lp(Rn) .n,p,q,s ‖ f ‖Lq(Rn), 0 < s < n, 1 < p < q < ∞,

1
q

=
1
p
−

s
n
.

PROPOSITION 8.23 (Fractional Sobolev spaces). Let s ∈ R and 1 < p < +∞.
We have the equivalence

‖ |∇|
s f ‖Lp(Rn) 'n,p,s

∥∥∥∥(∑
k∈Z

|2sk∆k f |2
) 1

2
∥∥∥∥

Lp(Rn)
.

From this we can conclude that for s ≥ 0

‖ f ‖Ws,p(Rn) 'n,p,s ‖ f ‖Lp(Rn) + ‖ |∇|s f ‖Lp(Rn).

For s < 0, an equivalent norm for the Sobolev space Ws,p(Rn) can be given as

‖ f ‖Ws,p(Rn) 'n,p,s inf
f=g+h

(
‖g‖Lp(Rn) + ‖ |∇|sh‖Lp(Rn)

)
.

A more robust description of the Sobolev space Ws,p(Rn) can be given in
terms of “functions of the Laplacian”. To make this precise we remember the
identity

−̂∆ f (ξ) = 4π2
|ξ|2 f̂ (ξ)
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from which we immediately see that F ( (I −∆) f )(ξ) = (1 + 4π2
|ξ|2) f̂ (ξ). Now one

can easily define the first order differential operator (I − ∆)
1
2 by means of

F ((I − ∆)
1
2 f )(ξ) B (1 + 4π2

|ξ|2)
1
2 f̂ (ξ).

The corresponding differential operator of fractional order s ∈ R is then

F ((I − ∆)
s
2 f )(ξ) B (1 + 4π2

|ξ|2)
s
2 f̂ (ξ).

For s ≥ 0 the operator (I − ∆)
s
2 corresponds, to derivatives of order s, plus the

identity. For high frequencies |ξ| & 1 the operator (I − ∆)
s
2 behaves like |∇|s.

However, for small frequencies, |ξ| . 1, the operator (I − ∆)
s
2 behaves like the

identity unlike the operator |∇|s which damps low frequencies whenever s ≥ 0.
For s < 0 the operator (I − ∆)

s
2 is better behaved than |∇|s. Indeed, for s < 0

the operators (I − ∆)
s
2 are known as smoothing operators and their kernels as

Bessel potentials. We also have the notation

Is f (x) B (I − ∆)−
s
2 f (x), s ≥ 0.

The Sobolev space Ws,p(Rn) can now be described in terms of (I − ∆)
s
2 :

PROPOSITION 8.24. For s ∈ R and 1 < p < ∞ we have the equivalent de-
scription of Ws,p(Rn) as

‖ f ‖Ws,p(Rn) 'n,s,p ‖(I − ∆)
s
2 f ‖Lp(Rn).

For s ≥ 0 we can formally write (I − ∆)
s
2 f C g ⇒ f = Isg; we see that

g ∈ Lp(Rn) whenever f ∈ Ws,p(Rn) and ‖ f ‖Ws,p(Rn) = ‖g‖Lp(Rn). Thus for s ≥ 0 we
can symbolically write

Ws,p(Rn) ⊆ Is(Lp(Rn)).
In fact the smoothing operators Is have an integral representation of the form
Is f (x) = Gs ∗ f (x) where Gs are the Bessel potentials which satisfy Gs ≥ 0 and
‖Gs‖L1(Rn) = 1. For every f ∈ Lp(Rn) we have

‖Is f ‖Lp(Rn) ≤ ‖ f ‖Lp(Rn), 1 ≤ p ≤ ∞.

Thus if f ∈ Lp(Rn) then Is f ∈ Lp(Rn) and obviously (I − ∆)
s
2Is f = f , s ≥ 0. We

conclude that we also have the inclusion

Is(Lp(Rn)) ⊆Ws,p(Rn), s ≥ 0.

Combining the previous observations we see that

Ws,p(Rn) = Is(Lp(Rn)), s ≥ 0, 1 < p < ∞,

that is Ws,p(Rn) for s ≥ 0 is the image of Lp(Rn) under the operator Is. This point
of view also allows us to define the fractional Sobolev spaces Ws,p for s ≥ 0 and
p = 1,∞.
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