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Abstract 

Background:  The association structure linking the longitudinal and survival sub-models is of fundamental impor‑
tance in the joint modeling framework and the choice of this structure should be made based on the clinical back‑
ground of the study. However, this information may not always be accessible and rationale for selecting this associa‑
tion structure has received relatively little attention in the literature. To this end, we aim to explore four alternative 
functional forms of the association structure between the CD4 count and the risk of death and provide rationale for 
selecting the optimal association structure for our data. We also aim to compare the results obtained from the joint 
model to those obtained from the time-varying Cox model.

Methods:  We used data from the Centre for the AIDS Programme of Research in South Africa (CAPRISA) AIDS Treat‑
ment programme, the Starting Antiretroviral Therapy at Three Points in Tuberculosis (SAPiT) study, an open-label, 
three armed randomised, controlled trial between June 2005 and July 2010 (N=642). In our analysis, we combined 
the early and late integrated arms and compared results to the sequential arm. We utilized the Deviance Information 
Criterion (DIC) to select the final model with the best structure, with smaller values indicating better model adjust‑
ments to the data.

Results:  Patient characteristics were similar across the study arms. Combined integrated therapy arms had a reduc‑
tion of 55% in mortality (HR:0.45, 95% CI:0.28-0.72) compared to the sequential therapy arm. The joint model with a 
cumulative effects functional form was chosen as the best association structure. In particular, our joint model found 
that the area under the longitudinal profile of CD4 count was strongly associated with a 21% reduction in mortality 
(HR:0.79, 95% CI:0.72-0.86). Where as results from the time-varying Cox model showed a 19% reduction in mortality 
(HR:0.81, 95% CI:0.77-0.84).

Conclusions:  In this paper we have shown that the “current value” association structure is not always the best struc‑
ture that expresses the correct relationship between the outcomes in all settings, which is why it is crucial to explore 
alternative clinically meaningful association structures that links the longitudinal and survival processes.
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Background
In HIV studies, researchers are mostly interested in the 
association between CD4 counts (or viral loads) and time 
to AIDS or death where both the association structure of 
repeated biomarkers and primary survival endpoints are 
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studied [1, 2]. Classical models such as time-varying Cox 
models [3] as well as separate analysis comprising of lin-
ear mixed effects (LME) models for longitudinal data [4], 
and Cox proportional hazard (PH) models [5] have been 
traditionally used to study the association between time-
dependent covariates and the hazard of an event [5–8]. 
However, separate analysis may not be appropriate for 
such data because they fail to account for the dependency 
and the association between the longitudinal and survival 
processes, resulting in biased estimates [2]. An alterna-
tive would be to use the time-varying Cox model [3], 
where the longitudinal measurements are directly incor-
porated into the Cox model. However, this method uses 
the last-observation-carried-forward (LOCF) approach 
which is not a realistic approach for clinical biomarkers 
such as CD4 counts since they evolve dynamically with 
time and are of endogenous nature [9]. In the literature, 
it has been shown that using the time-varying Cox model 
for endogeneous covariates by treating them as exogene-
ous covariates in the model produces spurious results [9, 
10].

A powerful method that takes into account the depend-
ency and association between longitudinal and time-
to-event outcomes is joint models of longitudinal and 
time-to-event data [9, 11]. Formally, a joint model con-
sists of two linked sub-models, where a linear mixed 
effect model is commonly used for the longitudinal sub-
model, and the Cox proportional hazards model is often 
used for the survival sub-model. The association struc-
ture linking the two sub-models is of fundamental impor-
tance in the joint modelling framework and the choice of 
this structure should be made based on the clinical back-
ground of the study. However, this information may not 
always be accessible. Rationale for selecting this associa-
tion structure has been proposed in the literature.

Within the standard joint model formulation, the “cur-
rent value” association structure is widely used because it 
is simple and has a clear interpretation of the relationship 
between the longitudinal and survival processes. How-
ever, it may not be realistic to expect that it will always 
be the most appropriate functional form in expressing 
the correct association between the outcomes in all set-
tings. This is because, in general, there could be other 
characteristics of the subjects’ longitudinal profiles that 
are more strongly predictive for the risk of an event and 
the consideration of competing association structures 
to describe the link between the two processes is very 
important.

In light of this, our main aim is to explore alternative 
functional forms of the association structure that links 
the two processes that have been proposed in the litera-
ture [12, 13] and we mainly focus on the four most fre-
quently used specifications of the assocation structure in 

the joint modeling literature [14–16] that allow the rate 
of increase/decrease of the longitudinal outcome or a 
suitable summary of the whole longitudinal trajectory to 
determine the risk for an event. We discuss their formu-
lations and how to select the best structure in the subse-
quent sections. To illustrate the virtues of joint modeling, 
we also aim to compare the results obtained from the 
joint model to those obtained from the time-varying Cox 
model.

Methods
Source of data and description
We used data from the Centre for the AIDS Programme 
of Research in South Africa (CAPRISA) AIDS Treatment 
programme, the Starting Antiretroviral Therapy at Three 
Points in Tuberculosis (SAPiT) study, an open-label, 
three arm randomized, controlled trial between 28 June 
2005 and 04 July 2010. The trial was designed to deter-
mine the optimal time to initiate ART in patients with 
HIV and TB co-infection who were receiving TB therapy 
[17, 18]. More details about the study and the results for 
primary and secondary outcomes have been published in 
detail elsewhere [17–20].

Statistical analysis
Descriptive data, was presented as means with stand-
ard deviations (SD) or medians with interquartile range 
(IQR) and percentages. We fitted ten different mixed 
effects models for the longitudinal sub-model and the 
Bayesian Information Criterion (BIC), was used to select 
the best model, where smaller values are preferable. To 
extend the standard joint model, we considered four 
functional forms of the association structure and used 
the Deviance Information Criterion (DIC) to select the 
final joint model, with smaller values indicating better 
model adjustments to the data. All multivariable models 
were adjusted for the study arm (combined early and late 
integrated therapy arms versus sequential therapy arm as 
in the primary paper [17]), gender and age. A square root 
transformation was used to normalize the CD4 count. 
Analyses were conducted using SAS, version 9.4 (SAS 
Institute INC., Cary) and R version 4.1.2. The most recent 
JMbayes package [21] was used to fit the joint models and 
assess different association structures. We used a Bayes-
ian estimation procedure and a Markov chain Monte 
Carlo (MCMC) algorithm to fit the joint models because 
of its flexibility in dealing with complex models.

The joint model formulation
To formulate a standard joint modelling frame-
work, we follow the typical setup where a mixed-
effects model is used for the longitudinal data and a 
Cox proportional hazards (PH) model is used for the 
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time-to-event data, with the two models sharing some 
random effects. This is the so called shared parameter 
model approach [9, 22–24].

The longitudinal sub‑model
To measure the effect of the longitudinal covariate 
to the risk for an event, mi(t) needs to be estimated 
and successfully reconstruct the complete longitu-
dinal history for each subject. In order for this to 
work a suitable mixed-effects model is postulated to 
describe the subject-specific time evolutions. Results 
in Fig.  1 shows an apparent non-linearity of the 

subject-specific square root CD4 count profiles for 
12 randomly selected individuals and is consistent 
with the spaghetti plots (Fig.  2). This suggests that a 
non linear mixed-effects model could be a plausi-
ble starting point [25]. Thus, we fitted ten different 
mixed effects models and used the BIC to select the 
best model for our data and the results reveal that the 
inclusion of only the natural cubic splines of time in 
both the fixed and random effects parts of the longi-
tudinal sub-model for CD4 count is preferred. There-
fore, the longitudinal sub-model for the ith subject, 
i = 1, · · · , n is defined as:

Fig. 1  Individual longitudinal profiles of CD4 count over time

Fig. 2  Spaghetti plots by study arm
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where Bn(t, �k) : k = 1, 2  denotes the B-spline basis 
matrix for a natural cubic spline of time with one inter-
nal knot placed at the 50th percentile for the follow-up 
times, ǫi(t) ∼ N (0,Ri) and bi ∼ N (0,D) , with Ri = σ 2

ǫ Ini 
and D an unstructured variance-covariance matrix.

The survival sub‑model
The main effects of age, gender and study arm are 
included in the survival sub-model. More specifically, 
the survival sub-model for the ith individual, i = 1, · · · , n 
using the current value specification is given by:

where γ T = {γ1, γ2, γ3} denote the regression coefficients 
and α quantifies the strength of the association between 
the two processes. The baseline hazard function is speci-
fied using B-splines, where the logarithm of the baseline 
hazard is formulated as:

where kT = (k0, · · · , kQ) are the spline coefficients, g 
denotes the degree of the B-splines basis matrix for nat-
ural cubic spline of time such that Bq(·) : q = 1, · · · ,Q , 
and Q = Q̈ is the number of interior knots [26].

Alternative association structures
The current value association structure, described in 
model   2, assumes that for individual i, the true value of 
the longitudinal marker mi(t) at time t, is predictive of the 
risk of experiencing the event at that particular time point 
t. Although this is a simple and a very appealing parame-
terization providing a clear interpretation for α , it assumes 
that the strength of association between the longitudinal 
value and the event risk is the same across all individu-
als, however the hazard may vary across individuals as a 
function of the other subject-specific covariates, thus this 
may not be the most optimal association structure to link 
the two processes. There exist various and more com-
plex parameterizations of the association structure which 
extend the current value association structure for the sur-
vival sub-model proposed in the literature [9, 11, 16, 24, 
27], and they can be seen as special cases of the following 
general formulation of the relative risk model:

(1)
yi(t) =(β0 + bi0)+ (β1 + bi1)Bn(t, �1)

+ (β2 + bi2)Bn(t, �2)+ ǫi(t)

(2)
hi(t) =h0(t) exp

{

γ1Armi + γ2Agei + γ3Genderi

+αmi(t)}, t > 0

(3)log(h0(t)) = k0 +
Q
∑

q=1

kqBq(t, g)

(4)
hi(t) = h0(t) exp

[

γ Twi1 + f
{

mi(t − c), bi,wi2;α
}

]

,

where f (·) denotes the function of the true level of the 
marker mi(·) , of the random effects bi and extra covari-
ates wi2 and describes different functional forms of 
association between longitudinal and the time to event 
outcomes. In this paper we discuss four most frequently 
used association structures in the joint modeling frame-
work presented below;

Time‑dependent slopes
The current value association structure can be extended 
by incorporating the rate of change of the true longitudi-
nal trajectory, especially when the direction and strength 
of trend of a biomarker are as important as its level at 
a particular time point t, the survival sub-model then 
becomes,

where m
′
i(t) = d

dt
mi(t) = d

dt

{

xTi (t)β + zTi (t)bi
}

 . This 
parameterization was proposed by [9, 13, 28] and has 
some beneficial features in the HIV context [29]. The 
interpretation of parameter α1 remains the same as in 
the standard parameterization (model  2). The parameter 
α2 measures the association between the velocity of the 
true longitudinal trajectory at time t and the risk for an 
event at the same time point, provided that mi(t) remains 
constant.

Cumulative effects (area)
This structure allows the whole trajectory of the longi-
tudinal marker to be associated with the hazard for an 
event by including in the linear predictor of the survival 
sub-model the integral of the longitudinal trajectory, rep-
resenting the cumulative effect of the longitudinal out-
come up to time point t [13], this is represented by

where for any particular time point t, α measures the 
strength of the association between the risk for an event 
at time point t and the area under the longitudinal trajec-
tory up to the same time t, with the area under the lon-
gitudinal trajectory regarded as a suitable summary of 
the whole trajectory [9]. This parametarization have been 
shown to increase the statistical power of the analyses 
[30].

Weighted cumulative effects (weighted area)
The cumulative effect defined in model   6 assumes that 
all measurements for a variable from the beginning of 
the study until time t are of equal importance. This may 
be an unreasonable assumption for studies with longer 

(5)hi(t) = h0(t) exp
{

γ Twi + α1mi(t)+ α2m
′
i(t)

}

,

(6)hi(t) = h0(t) exp

{

γ Twi + α

∫ t

0
mi(s)ds

}

,
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follow-up periods [31]. Recent values of a measurement 
closer to the event may be expected to have a higher rele-
vance to the hazard, especially in the case of internal var-
iables in humans [32]. To remedy this a weight function is 
used in the integral that is a decreasing function of time, 
such that as time increases, measurements are given less 
importance. The normal density function is an appropri-
ate choice for assigning weight to values at time s, ∀s ≤ t 
[31, 32]. For differential weights in the cumulative effect 
formulation we get:

where ̟(·) is an appropriately chosen weight function 
that places different weights at different time points, with 
(t − s)+ = t − s when t > s and zero otherwise, and t − s 
denotes time elapsed since exposure, s denotes a time 
prior to or equal to t. The standardized normal weight 
function considered by [31] is given by

The parameter σ controls the rate of change in the 
weights over time. In the papers by [30, 32] the values 
of parameters were chosen a priori for specific, clini-
cally relevant values of t − s . Operating under a Bayesian 
framework, [31] estimate the value of the scale param-
eter ( σ ) directly from the data, by doing so, this could 
shed light on the important question of how much of the 
biomarker’s history do we really need to predict future 
events, we also take the same approach in this paper. 
For full details on the formulation and estimation of the 
weighted cumulative effect parameterization under a 
Bayesian paradigm, refer to [31].

Several additional association structures that were not 
explored in this paper have been proposed in the litera-
ture [12–16]. These include among others, the “lagged 
effects”, the “interaction effects” and the “random effects”. 
The lagged effects parametrization postulates that, the 
hazard of experiencing the event at time t is associated 
with the level of the longitudinal measure at a previous 
time point t − c , hence with a c − lag . Unlike the cur-
rent value parametarization, the interaction effects asso-
ciation structure allow for different values of association 
for different patient subgroups and this can be achieved 
by including interactions between the baseline covari-
ates and the true unobserved longitudinal trajectory 
function, as a linear predictor in the relative risk model. 
The random effects parametarization which postulates 
that patients who have a lower/higher level for the lon-
gitudinal outcome at baseline (i.e., intercept) or who 
show a steeper increase/ decrease in their longitudinal 

(7)hi(t) = h0(t) exp

{

�
T
wi(t) + � ∫

t

0

�(t − s)+mi(s)ds

}

,

(8)̟(t − s)+ =
1

σ
√
2π

exp−{(t − s)+}2/2σ 2

∫ t.max
0

1

σ
√
2π

exp−{x}2/2σ 2dx

trajectories (i.e., slope) are more likely to experience the 
event, for more details refer to [33].

Selecting the best association structure
To select the best functional form for the association 
structure for our data we make use of the deviance infor-
mation criterion (DIC), which is a standard approach for 
model comparison within the Bayesian framework, and it 
is a very popular model selection criterion when assess-
ing models with posterior distributions obtained through 
Markov Chain Monte Carlo (MCMC) [34]. Moreover, the 
DIC is more appropriate for assessing model fit among 
a set of non-nested candidate models similar in concept 
to the Akaike information criterion (AIC) and the Bayes-
ian information criterion (BIC) [34]. Suppose that the 
observed data y with unknown parameters θ has a density 
p(y|θ) and deviance D(θ) = −2 log

{

p(y|θ)
}

+ C , where 
C is a constant. A measure of the effective number of 
parameters as defined by [34] is given by

where θ̂ = E[y|θ ] = θ̄ , the DIC is then defined as

and is a combination of the deviance (D) and the com-
plexity (pD) of the model. Similarly to the AIC and BIC, 
smaller DIC values mean a better model fit.

Results
Exploratory data analyis
Among the 642 patients enrolled in the SAPiT trial, 429 
(66.8%) were in the combined integrated therapy arms 
and 213 (33.2%) in the sequential therapy arm. Out of 
the 642, only 501 (78.0%) patients were initiated on ART. 
The mean age across arms was 34.2 years, and 49.7% of 
the participants were males. The median CD4 count 
was 150 and 140 in the combined integrated therapy 
arms and sequential therapy arm, respectively (Table 1). 
Patient characteristics were similar across the study arms 
(Table 1). Figure 3 shows a constantly increasing trend in 
CD4 count in the combined integrated arms months post 
randomisation. Contrary to the sequential arm where 
ART was initiated 6 months post randomisation.

Survival analysis
During follow-up, a total of 69 (10.7%) patients died 
(combined integrated therapy arms (n=34) and sequen-
tial therapy arm (n=35)) and most of these deaths 
occurred in the first 12 months after randomisation 
across all arms (Fig. 4). In addition, over 984.79 person-
years of follow-up, the mortality rates were 10.1 per 100 

(9)
pD = Eθ |y

[

−2 log
{

p(y|θ)
}

+ 2 log
{

p(y|θ̂ (y))
}]

,

(10)DIC = D(θ̄)+ 2pD
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person-years (py) (95% confidence interval (CI): 5.9-16.1) 
in the combined integrated therapy arms and 11.3 per 
100 py (95% CI: 7.9-15.8) in the sequential arm. Nota-
bly, the mortality rate in the sequential therapy arm was 
more than double that of the combined integrated ther-
apy arms (Hazard Ratio (HR): 0.45, 95% CI: 0.28-0.72, log 
rank p-value = 0.006, Fig. 4).

Time‑varying Cox model analysis
The results from the time-varying Cox model shows a 
strong association between the longitudinal CD4 count 
and the risk of death. In particular a unit increase in the 
square root CD4 count corresponds to a 19% reduction 
in the risk of death (HR: 0.81, 95% CI: 0.77-0.84, standard 
error (SE): 0.023, p-value < 0.001).

Joint modeling analysis
Based on the DIC values presented in Table  2, there is 
strong evidence to favour the joint model with cumu-
lative effects parameterization (DIC=21727.38). The 
results from Table  3 suggests that a higher CD4 count 
is strongly associated with a significant reduction in the 
hazard of death. In particular, the joint model finds a sig-
nificantly strong association between the area under the 
longitudinal profile of CD4 count and the risk for death, 
with a unit increase in square root CD4 count corre-
sponding to a 21% reduction in mortality (HR:0.79, 95% 
CI:0.72-0.86, SE: 0.005).

Discussion
Joint modeling of longitudinal and time to event data is 
a useful and efficient approach for evaluating associa-
tions between the longitudinal CD4 count and the risk 
of death. In this paper, we sought to explore and discuss 
alternative functional forms of the association structure 
between the CD4 count and the risk of death and ulti-
mately select the best form for our data. We found the 
cumulative effects parameterization to be the best speci-
fication for the association structure for our data. The 
results from this association structure suggested that 
the area under the longitudinal profile of CD4 count is 
strongly associated with a significant reduction in the 
hazard of death. These results are clinically advantageous, 
as they allow for the calculation of hazard ratios between 
patients by utilizing their whole longitudinal profile 
rather than only using their “current value”. In addition, 

Table 1  Baseline characteristics of the study population, 
stratified by arm

Variable Combined integrated 
therapy arms N=429

Sequential 
therapy arm 
N=213

Mean age (SD), years 34.4 (8.4) 33.9 (8.2)

Median CD4+ count 
(IQR), cells/mm3

150 (77-254) 140.0 (69-247)

Number of males, n (%) 209 (48.7) 110 (51.6)

Fig. 3  Mean CD4+ count (cells/mm3 ) over time
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our results gave ample insights into the underlying nature 
of associations between CD4 count and the risk of death 
and confirms results from previous studies [35–38] and 
are consistent with previous results from the same study 
[39, 40]. Of note, the cumulative effects parameterization 
have been shown to increase the statistical power of the 
analyses [30].

Our second aim was to illustrate the virtues of joint 
modeling by comparing our results to those obtained 
from the time-varying Cox model. Our joint model found 
that higher square root CD4 count over time was associ-
ated with a 21% reduction in the risk of death, whereas 
the time varying Cox model found that a higher square 
root CD4 count over time was associated with a 19% 
reduction in the risk of death. In addition, compared to 
the time-varying Cox model, our joint model produced 
smaller standard errors, indicating an increased effi-
ciency in the joint model [41]. These results are consist-
ent with previous research [42, 43].

According to [44], the Cox model tends to underesti-
mate the true association size of markers due to meas-
urement error. Moreover, joint models are more robust 
when assessing the association between longitudinal 
endogenous covariates with time-to-event outcomes 
[45, 46] and it has been shown elsewhere through 

Fig. 4  Kaplan-Meier curve for survival

Table 2  Measures of fit for the four different association 
structures

Association type df LPML DIC pD

Current value 1961 -11412.23 21742.74 1458.60

Cumulative effects (Area) 1961 -11443.00 21727.38 1426.77

Weighted cumulative 
effects (Weighted area)

1962 -11474.02 22007.05 1600.78

Time-dependent slopes 1962 -11726.33 22235.78 1457.14

Table 3  Hazard ratios and 95% credibility intervals (CI) for the parameters of the survival sub-models from four different joint models

Variable Current value HR (95% CI) Area HR (95% CI) Weighted area HR (95% CI) Time-dependent slopes HR (95% CI)

Age 0.99 (0.96-1.02) 0.98 (0.96-1.01) 0.99 (0.96-1.02) 0.99 (0.96-1.02)

Integrated therapy 0.68 (0.41-1.12) 0.60 (0.37-0.98) 0.67 (0.40-1.17) 0.63 (0.39-1.01)

Women 0.59 (0.36-0.99) 0.55 (0.33-0.94) 0.57 (0.33-0.97) 0.58 (0.34-0.94)

α1 0.82 (0.77-0.88) 0.79 (0.72-0.86) 0.82 (0.77-0.87) 0.82 (0.76-0.87)

α2 1.05 (0.74-1.56)
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various simulation studies in the literature [2, 9, 28, 
46–48] that joint models produce unbiased and more 
efficient estimates of the treatment effects on the time 
to event and the longitudinal marker, and reduce bias in 
the estimates of the overall treatment effect [2, 49]. This 
is particularly important when designing clinical tri-
als, where greater efficiency implies higher power and 
smaller sample sizes.

Conclusion
The current value association structure is not always 
the most optimal form to link the longitudinal and 
survival processes, in this paper we showed the impor-
tance of exploring alternative functional forms of the 
association structure in order to choose the most opti-
mal association structure to better assess the relation-
ship between the longitudinal and survival process. 
We hope this information will provide public health 
researchers with an understanding of what this power-
ful methodology can offer in substantive terms and how 
to apply it to their data and also enable them to make 
better informed decision when choosing the best asso-
ciation structure to link the longitudinal and survival 
processes. We also hope that this paper will encourage 
adoption of the joint longitudinal-time-to-event mod-
eling framework in research domains where it is cur-
rently underutilized and that should benefit from it.

Acknowledgements
We gratefully acknowledge CAPRISA for providing with the datasets. We also 
acknowledge the support we received from SAMRC through the provision of 
research facilities.

Authors’ contributions
All the authors made substantial intellectual contributions to the study. NNM 
wrote the initial draft of the article and did the analysis. HGM, DR, TR and NYZ 
assisted with data analysis and interpretation. NNM and NYZ did the revisions 
to the manuscript and was assisted by TR, HGM and DR. All authors partici‑
pated in the writing and editing of the article. All authors approved submis‑
sion of this article. The authors read and approved the final manuscript.

Funding
This work was supported by the DELTAS Africa Initiative Grant No. 
107754/Z/15/Z-DELTAS Africa SSACAB. The DELTAS Africa Initiative is an 
independent funding scheme of the African Academy of Sciences (AAS)’s 
Alliance for Accelerating Excellence in Science in Africa (AESA) and supported 
by the New Partnership for Africa’s Development Planning and Coordinat‑
ing Agency (NEPAD Agency) with funding from the Wellcome Trust (Grant 
No. 107754/Z/15/Z) and the UK government. The views expressed in this 
publication are those of the author(s) and not necessarily those of AAS, NEPAD 
Agency, Wellcome Trust or the UK government.

Availability of data and materials
The data that support the findings of this study are available from CAPRISA 
but restrictions apply to the availability of these data, which were used under 
license for the current study, and so are not publicly available. Data are how‑
ever available from Professor Kogieleum Naidoo who is a principal investigator 
of the SAPIT study (Kogie.naidoo@caprisa.org).

Declarations

Ethics approval and consent to participate
We used secondary data which did not require us to contact participants, thus 
we did not need to obtain ethics approval. The data used in this study was 
anonymised before its use. Permission to use the data was granted by Profes‑
sor Kogieleum Naidoo who is a principal investigator of the SAPIT study. The 
SAPIT study was approved by the Biomedical Research Ethics Committee of 
the University of KwaZulu- Natal (E107/05) and the Medicines Control Council 
of South Africa (20060157).

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Biostatistics Unit, South African Medical Research Council (SAMRC), SAMRC 
Building, 491 Peter Mokaba Ridge Road, Durban, 4041, South Africa. 2 Uni‑
versity of KwaZulu-Natal, School of Mathematics, Statistics and Computer 
Science, King Edward Avenue, Pietermaritzburg, 3209, South Africa. 3 Centre 
for the AIDS Programme of Research in South Africa (CAPRISA), University 
of KwaZulu-Natal, 719 Umbilo Road, Durban 4041, South Africa. 4 Depart‑
ment of Biostatistics, Erasmus University Medical Center, Rotterdam, CE 3000, 
The Netherlands. 5 Department of Epidemiology, Erasmus University Medical 
Center, Rotterdam, CE 3000, The Netherlands. 6 MRC-CAPRISA HIV-TB Patho‑
genesis and Treatment Research Unit, Doris Duke Medical Research Institute, 
University of KwaZulu-Natal, Durban, South Africa. 

Received: 13 January 2022   Accepted: 26 October 2022

References
	1.	 Asar Ö, Ritchie J, Kalra PA, Diggle PJ. Joint modelling of repeated measure‑

ment and time-to-event data: an introductory tutorial. Int J Epidemiol. 
2015;44(1):334–44.

	2.	 Ibrahim JG, Chu H, Chen LM. Basic concepts and methods for joint mod‑
els of longitudinal and survival data. J Clin Oncol. 2010;28(16):2796.

	3.	 Therneau TM, Grambsch PM. Modeling survival data: extending the Cox 
model. The cox model. Springer; 2000. p. 39–77.

	4.	 Laird NM, Ware JH. Random-effects models for longitudinal data. Biomet‑
rics. 1982;38:963–74.

	5.	 Cox DR. Regression models and life-tables. J R Stat Soc Ser B (Methodol). 
1972;34(2):187–202.

	6.	 Andersen PK, Borgan O, Gill RD, Keiding N. Statistical models based on 
counting processes. New York: Springer-Verlag New York, Inc.; 2012.

	7.	 Collett D. Modelling survival data in medical research. Boca Raton: CRC 
Press Taylor & Francis Group; 2015.

	8.	 Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. 
vol. 360. Hoboken: Wiley; 2002.

	9.	 Rizopoulos D. Joint models for longitudinal and time-to-event data: With 
applications in R. Boca Raton: RC Press Taylor & Francis Group; 2012.

	10.	 Campbell KR, Juarez-Colunga E, Grunwald GK, Cooper J, Davis S, Gralla 
J. Comparison of a time-varying covariate model and a joint model of 
time-to-event outcomes in the presence of measurement error and 
interval censoring: application to kidney transplantation. BMC Med Res 
Methodol. 2019;19(1):130.

	11.	 Tsiatis AA, Davidian M. Joint modeling of longitudinal and time-to-event 
data: an overview. Stat Sin. 2004;14:809–34.

	12.	 Rizopoulos D, Ghosh P. A Bayesian semiparametric multivariate joint 
model for multiple longitudinal outcomes and a time-to-event. Stat Med. 
2011;30(12):1366–80.

	13.	 Brown ER. Assessing the association between trends in a biomarker and 
risk of event with an application in pediatric HIV/AIDS. Ann Appl Stat. 
2009;3(3):1163.



Page 9 of 9Mchunu et al. BMC Medical Research Methodology          (2022) 22:295 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	14.	 Lin X, Taylor JM, Ye W. A penalized likelihood approach to joint modeling 
of longitudinal measurements and time-to-event data. Stat Interface. 
2008;1(1):33–45.

	15.	 Brown ER, Ibrahim JG, DeGruttola V. A flexible B-spline model for multiple 
longitudinal biomarkers and survival. Biometrics. 2005;61(1):64–73.

	16.	 Rizopoulos D, Hatfield LA, Carlin BP, Takkenberg JJ. Combining dynamic 
predictions from joint models for longitudinal and time-to-event data 
using Bayesian model averaging. J Am Stat Assoc. 2014;109(508):1385–97.

	17.	 Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray 
A, et al. Timing of initiation of antiretroviral drugs during tuberculosis 
therapy. N Engl J Med. 2010;362(8):697–706.

	18.	 Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray AL, 
et al. Integration of antiretroviral therapy with tuberculosis treatment. N 
Engl J Med. 2011;365(16):1492–501.

	19.	 Naidoo A, Naidoo K, Yende-Zuma N, Gengiah TN, Padayatchi N, Gray AL, 
et al. Changes to antiretroviral drug regimens during integrated TB-HIV 
treatment: results of the SAPiT trial. Antivir Ther. 2014;19(2):161.

	20.	 Yende-Zuma N, Mwambi H, Vansteelandt S. Adjusting the effect of 
integrating antiretroviral therapy and tuberculosis treatment on mortal‑
ity for non-compliance: a time-varying instrumental variables analysis. 
Epidemiology (Cambridge, Mass). 2019;30(2):197.

	21.	 Rizopoulos D. Maintainer Dimitris and Imports, MASS and SystemRequire‑
ments, JAGS and Rcpp, LinkingTo. Package ‘JMbayes’. J Stat Softw. 2020.

	22.	 Wu L, Liu W, Yi GY, Huang Y. Analysis of longitudinal and survival 
data: joint modeling, inference methods, and issues. J Probab Stat. 
2012;2012:1–17.

	23.	 Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal meas‑
urements and event time data. Biostatistics. 2000;1(4):465–80.

	24.	 Wulfsohn MS, Tsiatis AA. A joint model for survival and longitudinal data 
measured with error. Biometrics. 1997;330–339.

	25.	 Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. Linear and nonlinear 
mixed effects models. R Packag Version. 2007;3(57):1–89.

	26.	 Rosenberg PS. Hazard function estimation using B-splines. Biometrics. 
1995;51:874–87.

	27.	 Papageorgiou G, Mauff K, Tomer A, Rizopoulos D. An overview of joint 
modeling of time-to-event and longitudinal outcomes. Ann Rev Stat 
Appl. 2019;6:223–40.

	28.	 Ye W, Lin X, Taylor JM. Semiparametric modeling of longitudinal meas‑
urements and time-to-event data-a two-stage regression calibration 
approach. Biometrics. 2008;64(4):1238–46.

	29.	 Wolbers M, Babiker A, Sabin C, Young J, Dorrucci M, Chêne G, et al. 
Pretreatment CD4 cell slope and progression to AIDS or death in 
HIV-infected patients initiating antiretroviral therapy—the CAS‑
CADE collaboration: a collaboration of 23 cohort studies. PLoS Med. 
2010;7(2):e1000239.

	30.	 Abrahamowicz M, Bartlett G, Tamblyn R, du Berger R. Modeling cumula‑
tive dose and exposure duration provided insights regarding the 
associations between benzodiazepines and injuries. J Clin Epidemiol. 
2006;59(4):393–403.

	31.	 Mauff K, Steyerberg EW, Nijpels G, van der Heijden AA, Rizopoulos 
D. Extension of the association structure in joint models to include 
weighted cumulative effects. Stat Med. 2017;36(23):3746–59.

	32.	 Vacek PM. Assessing the effect of intensity when exposure varies over 
time. Stat Med. 1997;16(5):505–13.

	33.	 Rizopoulos D. The R package JMbayes for fitting joint models 
for longitudinal and time-to-event data using MCMC. arXiv pre‑
print arXiv:1404.7625. 2014.

	34.	 Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A. Bayesian meas‑
ures of model complexity and fit. J R Stat Soc Ser B (Stat Methodol). 
2002;64(4):583–639.

	35.	 Tang Z, Pan SW, Ruan Y, Liu X, Su J, Zhu Q, et al. Effects of high CD4 cell 
counts on death and attrition among HIV patients receiving antiretroviral 
treatment: an observational cohort study. Sci Rep. 2017;7(1):1–8.

	36.	 Grinsztejn B, Hosseinipour MC, Ribaudo HJ, Swindells S, Eron J, Chen YQ, 
et al. Effects of early versus delayed initiation of antiretroviral treatment 
on clinical outcomes of HIV-1 infection: results from the phase 3 HPTN 
052 randomised controlled trial. Lancet Infect Dis. 2014;14(4):281–90.

	37.	 Collaboration HC, et al. When to initiate combined antiretroviral therapy 
to reduce mortality and AIDS-defining illness in HIV-infected persons 
in developed countries: an observational study. Ann Intern Med. 
2011;154(8):509.

	38.	 Kitahata MM, Gange SJ, Abraham AG, Merriman B, Saag MS, Justice 
AC, et al. Effect of early versus deferred antiretroviral therapy for HIV on 
survival. N Engl J Med. 2009;360(18):1815–26.

	39.	 Padayatchi N, Abdool Karim SS, Naidoo K, Grobler A, Friedland G. 
Improved survival in multidrug-resistant tuberculosis patients receiving 
integrated tuberculosis and antiretroviral treatment in the SAPiT Trial. Int J 
Tuberc Lung Dis. 2014;18(2):147–54.

	40.	 Naidoo K, Yende-Zuma N, Padayatchi N, Naidoo K, Jithoo N, Nair G, et al. 
The immune reconstitution inflammatory syndrome after antiretroviral 
therapy initiation in patients with tuberculosis: findings from the SAPiT 
trial. Ann Intern Med. 2012;157(5):313–24.

	41.	 Wu L. A joint model for nonlinear mixed-effects models with censoring 
and covariates measured with error, with application to AIDS studies. J 
Am Stat Assoc. 2002;97(460):955–64.

	42.	 Rizopoulos D. An introduction to the joint modeling of longitudinal and 
survival data, with applications in R. Department of Biostatistics, Erasmus 
University Medical Center; 2017.

	43.	 Mchunu NN, Mwambi HG, Reddy T, Yende-Zuma N, Naidoo K. Joint 
modelling of longitudinal and time-to-event data: an illustration using 
CD4 count and mortality in a cohort of patients initiated on antiretroviral 
therapy. BMC infectious diseases. 2020;20:1–9.

	44.	 Prentice RL. Covariate measurement errors and parameter estimation in a 
failure time regression model. Biometrika. 1982;69(2):331–42.

	45.	 Dong R, Stefan G, Horrocks J, Goodday SM, Duffy A. Investigating the 
association between anxiety symptoms and mood disorder in high-risk 
offspring of bipolar parents: a comparison of Joint and Cox models. Int J 
Bipolar Disord. 2019;7(1):22.

	46.	 Arisido MW, Antolini L, Bernasconi DP, Valsecchi MG, Rebora P. Joint 
model robustness compared with the time-varying covariate Cox model 
to evaluate the association between a longitudinal marker and a time-to-
event endpoint. BMC Med Res Methodol. 2019;19(1):222.

	47.	 Rizopoulos D, Takkenberg J. Tools & techniques-statistics: Dealing with 
time-varying covariates in survival analysis-joint models versus Cox 
models. EuroIntervention J EuroPCR Collab Work Group Interv Cardiol Eur 
Soc Cardiol. 2014;10(2):285–8.

	48.	 Seid A, Getie M, Birlie B, Getachew Y. Joint modeling of longitudinal CD4 
cell counts and time-to-default from HAART treatment: a comparison of 
separate and joint models. Electron J Appl Stat Anal. 2014;7(2):292–314.

	49.	 Wang P, Shen W, Boye ME. Joint modeling of longitudinal outcomes and 
survival using latent growth modeling approach in a mesothelioma trial. 
Health Serv Outcome Res Methodol. 2012;12(2):182–99.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Using joint models to study the association between CD4 count and the risk of death in TBHIV data
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Source of data and description
	Statistical analysis
	The joint model formulation
	The longitudinal sub-model
	The survival sub-model

	Alternative association structures
	Time-dependent slopes
	Cumulative effects (area)
	Weighted cumulative effects (weighted area)

	Selecting the best association structure

	Results
	Exploratory data analyis
	Survival analysis
	Time-varying Cox model analysis
	Joint modeling analysis

	Discussion
	Conclusion
	Acknowledgements
	References


