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Summary. In some clinical trials, where the outcome is the time until development of a silent event, an
unknown proportion of subjects who have already experienced the event will be unknowingly enrolled due to
the imperfect nature of the diagnostic tests used to screen potential subjects. For example, commonly used
diagnostic tests for evaluating HIV infection status in infants, such as DNA PCR and HIV Culture, have
low sensitivity when given soon after infection. This can lead to the inclusion of an unknown proportion of
HIV-infected infants into clinical trials aimed at the prevention of transmission from HIV-positive mothers
to their infants through breastfeeding. The infection status of infants at the end of the trial, when they are
more than a year of age, can be determined with certainty. For those infants found to be infected with HIV
at the end of the trial, it cannot be determined whether this occurred during the study or whether they were
already infected when they were enrolled. In these settings, estimates of the cumulative risk of the event by
the end of the study will overestimate the true probability of event during the study period and hypothesis
tests comparing two or more intervention strategies can also be biased. We present inference methods for
the distribution of time until the event of interest in these settings, and investigate issues in the design of
such trials when there is a choice of using both imperfect and perfect diagnostic tests.
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1. Introduction
Often clinical trials are designed to evaluate the time to some
silent event among subjects who have not experienced the
event of interest at the time of enrollment into the trial. How-
ever, in some cases, the test used to screen patients for entry
is imperfect, so that some patients who have already had the
event will unintentionally be enrolled. If a perfect diagnostic
test were available at the end of the trial, then a patient found
not to have had the event by study’s end could not have had
it at study entry. However, if at the end of the trial a patient
is found to have had the event, then we cannot determine
whether it occurred before entry or during the trial. Thus,
the proportion of all subjects who have had the event at the
end of the study overestimates the probability of developing
the event during the study.

Our interest in this problem arose from our participation in
a clinical trial currently underway in Botswana that includes
a comparison of two strategies for preventing HIV infection
in infants during their first 18 months of life. Newborns of
HIV-infected mothers are screened for HIV using standard
diagnostic tests (DNA PCR) and those infants who test neg-
ative for HIV are randomly assigned to one of the prevention
strategies and then followed. The sensitivity of these diagnos-
tic tests is known to be low for several days following infection
(Dunn et al., 1995, 2000), and thus infants who became in-
fected in uterus or during birth can be unknowingly enrolled
into the trial. Suppose that all infants are tested for HIV

infection at 18 months of age, using a definitive diagnostic
test such as ELISA/Western Blot. Then the proportion of in-
fants found to be infected by that time would overestimate
the probability of HIV transmission during the study period.
Tests comparing intervention strategies can also give biased
results.

Another example of the setting considered in this article
arises in some studies of Hepatitis B and Leishmaniasis, which
cause liver and spleen disorders, respectively (Sundar et al.,
2002; Hadziyannis et al., 2003). Such studies might require
that, at entry, all subjects are in a particular disease state,
such as no fibrosis or presenting evidence of Leishmaniasis;
however, a definitive test to assess this, such as liver biopsy
or splenic aspirate, carries some risk and inconvenience to the
patients. Thus, some patients might be screened for eligibil-
ity using a less invasive yet imperfect diagnostic test (Harith
et al., 1986; Martin and Friedman, 1998).

The purpose of this article is to develop statistical meth-
ods for clinical trials where the endpoint of interest is the
time until some silent event whose occurrence is assessed only
periodically and with possibly imperfect diagnostic tests, so
that some unrecognized patients may have already had the
event at the time they are enrolled. Because, as in the sec-
ond example, both an imperfect and a perfect diagnostic test
might sometimes be available, we also examine the relative
efficiency of study designs that use different proportions of
perfect versus imperfect diagnostic tests, as the increased risk
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or inconvenience of the former might outweigh their better
diagnostic properties in some settings. In Section 2, we de-
fine the key underlying variables and establish notation. In
Section 3, we consider estimation of the identifiable aspects
of the distribution of time until the event of interest (e.g.,
HIV infection or liver fibrosis) during the study period. In
Sections 4 and 5, we consider hypothesis testing and design,
respectively, and in Section 6, we discuss some related issues
and extensions of the proposed methods.

2. Notation and Probability Elements
Let T denote the time of occurrence of an event that can take
values in (−∞, ∞), with 0 denoting the time of enrollment of
an individual into the trial. We denote the probability density
function (p.d.f.) and cumulative distribution function (c.d.f.)
of T by f(·) and F(·), respectively. The goal is to make an
inference about the distribution function for developing the
event during the study; i.e., either

F0(t)
def
= F (t) − F (0) =

∫ t

0
f(u) du

or

Fc(t)
def
= Pr(T ≤ t | T > 0) = F0(t)/[1 − F (0)],

for t > 0. Note that F 0(·) is a subdistribution function since
F 0(∞) < 1 when F (0) > 0. Without loss of generality, we
assume that the eligibility criterion to enter the study is a
negative diagnostic test result at screening. Let E denote the
result of the diagnostic test used to determine whether the
subject is enrolled into the trial, with E = 1 indicating that
the diagnostic test is negative, in which case the individual
is enrolled, and E = 0 indicating that the diagnostic test is
positive, in which case the subject is not enrolled. The joint
distribution of (T , E) is characterized by the marginal distri-
bution of T, given by f(·), and the conditional distribution of
E given T, denoted by

g(t)
def
= Pr[E = 1 | T = t] for t ∈ (−∞,∞).

It follows that the marginal distribution of E is given by

Pr[E = 1] =

∫ ∞

−∞
g(t)f(t) dt.

The conditional distribution of T, given enrollment into the
study, is

Fg(τ) = Pr[T ≤ τ | E = 1]

=

∫ τ

−∞
g(t)f(t) dt

P [E = 1]

=

∫ τ

−∞
g(t)f(t) dt

∫ ∞

−∞
g(t)f(t) dt

.

In the first example used to motivate this problem, we con-
sidered a single diagnostic test used to determine enrollment
into the trial and a perfect diagnostic test administered at the
end of trial to determine whether the event had occurred by
then. In other settings, perfect or imperfect diagnostic tests

may be administered at various time points during the trial,
including to subjects who are not enrolled into the trial.

3. Estimation
We begin this section by examining the common pretest–
posttest situation in which each subject is given a diagnostic
test to determine enrollment into a trial and is then given an-
other diagnostic test at the end of trial to determine whether
the event of interest has occurred. We allow perfect and im-
perfect diagnostic tests, and for the latter initially assume
that the test sensitivity and specificity are time independent.
We then consider more general settings where multiple diag-
nostic tests can be given during a trial, and where diagnostic
tests can have a time-dependent sensitivity.

3.1 Pretest–Posttest Trials
Suppose that the imperfect test has a time-independent sen-
sitivity p1 and specificity p0. That is, if t denotes the time of
occurrence of the event and τ denotes the time the imper-
fect test is administered, then the probability that the test
is negative for the occurrence of the event, in which case the
subject is enrolled into the trial, is

Pr[E = 1 | T = t, τ ] =

{

1 − p1 for t ≤ τ,

p0 for t > τ.

We assume that 1 − p1 < p0; that is, that the probability
of a negative test result is greater if the event of interest has
not yet occurred. Define πj to be the probability that test
j is positive when given at time 0, and define πjk to be the
conditional probability that test k is positive when given at
time τ > 0, given that test j was negative when given at time
0, where the subscripts j and k equal 1 for the perfect test
and 2 for the imperfect test. Then it is easily shown that
π1 = F (0), π2 = p1F (0) + (1 − p0)[1 − F (0)],

π11 =
F (τ) − F (0)

[1 − F (0)]
,

π12 =
p1[F (τ) − F (0)] + (1 − p0)[1 − F (τ)]

1 − F (0)
,

π21 =
(1 − p1)F (0) + p0[F (τ) − F (0)]

(1 − p1)F (0) + p0[1 − F (0)]
,

and

π22

=
p1(1− p1)F (0) + p0p1[F (τ)−F (0)]+ p0(1− p0)[1−F (τ)]

(1− p1)F (0)+ p0[1−F (0)]
,

where in the last expression we have assumed that the two
imperfect test results are conditionally independent, given the
time of the event.

Suppose that K1 ≥ 0 subjects are assessed for eligibility
at t = 0 using a perfect diagnostic test and that K2 > 0 are
assessed using an imperfect diagnostic test. Let N1 and N2 de-
note the number of these subjects that test negative (E =1)
and are enrolled into the trial, and assume that all N 1 + N 2

are subsequently tested at time τ , denoting the end of the
trial, with either the perfect or imperfect diagnostic test. Let
Nij denote the number of the Ni subjects that are evaluated
at the end of the trial using the perfect (j = 1) and imperfect
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(j = 2) diagnostic tests, and let rij denote the corresponding
number that test positive for the occurrence of the event. We
allow the Nij to be determined adaptively by any known de-
terministic or probabilistic function of (K1,K2,N 1,N 2). Then
it can be shown (Appendix A) that the likelihood function is
proportional to

L =

2
∏

j=1

π
Kj−Nj
j

2
∏

k=1

[(1 − πj)πjk]
rjk [(1 − πj)(1 − πjk)]

Njk−rjk .

(1)

In Section 5, we consider the special case where only the
perfect test is used at the end of the study (i.e., N 12 =N 22 =
0). Here, the likelihood function simplifies to

L =

2
∏

j=1

π
Kj−Nj
j [(1 − πj)πj1]

rj1 [(1 − πj)(1 − πj1)]
Nj1−rj1 .

(2)

In Section 4, we consider another special case where all screen-
ing tests are imperfect (i.e., K1 = N 1 = 0) and only the per-
fect test is used at the end of the study (i.e., N 22 = 0). In this
setting, the likelihood further simplifies to

L = πK2−N2
2 [(1 − π2)π21]

r21 [(1 − π2)(1 − π21)]
N21−r21 . (3)

Yet another special case is when a gold standard (perfect di-
agnostic test) is not available. In this case, the likelihood func-
tion is equal to (1), but where K1 = N 1 = N 21 = 0.

It follows from the above that, at best, the only identifiable
aspects of F(·) are F(0) and F (τ). When p0, p1 are known, then
F(0) and F (τ) are in general identifiable without making any
additional assumptions. When either p0 or p1 are unknown,
nonidentifiability can result unless one reduces the dimension-
ality of the unknown parameter vector by making some ad-
ditional assumptions (see, for details, Balasubramanian and
Lagakos, 2003). Maximum likelihood estimates for these can
be obtained by numerical maximization of the log likelihood
subject to the constraint F (τ) ≥ F (0); however, the inverse
of the expected information, used to estimate their covariance
matrix, is obtainable in closed form (see Appendix B).

Under mild conditions, the estimators of F(0) and F (τ)
can be shown to be consistent and asymptotically normal as
K1 →∞ and K2 → ∞.

3.2 More General Experimental Conditions
The setting described in Section 3.1 can be generalized to
allow each subject to receive several types of perfect or im-
perfect diagnostic tests at multiple times during the trial. For
example, an imperfect diagnostic test might be given at time 0
(to determine whether a patient is enrolled) and then monthly
for the duration of the trial, at which time a perfect diagnos-
tic test is given. Furthermore, the imperfect diagnostic tests
might have sensitivities/specificities that are time dependent
and, additionally, subjects that test positive at t = 0 might
also be followed in some settings, as we see below. In general,
as long as some subjects are screened for enrollment using an
imperfect diagnostic test, the phenomenon of interest in this
article—that some subjects will have already had the event
of interest upon enrollment—is present.

A general approach for estimating the identifiable aspects
of F(·) is given in Balasubramanian and Lagakos (2003) for

settings where there can be multiple types of diagnostic tests,
multiple test times, and where the sensitivity of an imperfect
diagnostic test can be a function of the elapsed time between
the event and the time the diagnostic test is given. In these
more general settings, the identifiable aspects of F(·) will de-
pend on the times that diagnostic tests are administered as
well as the form of the time-dependent sensitivities of the im-
perfect diagnostic tests. If F (t) is estimable at t = 0, then
the desired parameters F 0(τ) and F c(τ) will be estimable for
those τ > 0 for which F (τ) is estimable.

To illustrate these points, we consider a randomized trial
of newborns of HIV-infected mothers, where infants that test
negative for HIV infection, using an imperfect diagnostic test
(such as DNA PCR), are randomized to one of several feeding
strategies. Infants who are enrolled are then evaluated at age τ
using a perfect diagnostic test (such as ELISA/Western Blot)
to determine whether they have become infected. Because the
Botswana trial that motivated our interest is ongoing, we use
the results from two other clinical trials aimed at preventing
mother-to-child transmission of HIV to obtain an estimate of
F(·) that might be reflective of the distribution of time until
HIV infection for infants in this setting.

The first is a trial recently conducted in Tanzania (Fawzi
et al., 1998). To see the impact of the imperfect diagnostic test
used for screening, suppose that newborns are screened at day
30 using DNA PCR, and evaluated at age τ = 2 years of age
for infection. Using the estimate of F(·) for this trial obtained
by Balasubramanian and Lagakos (2003), the probability of
already being infected by the time of randomization is 0.23,
the unconditional probability that an infant will be enrolled
is Pr(E = 1) = 0.79, and the probability of being infected by
2 years of age of 0.38. These calculations assume a specificity
of 98%, that the sensitivity of PCR within 2 weeks following
infection is 70%, and that the sensitivity more than 2 weeks
following infection is 93% (see, for details, Balasubramanian
and Lagakos, 2003). Figure 1 gives the resulting estimators of
F g(τ), the conditional distribution of being infected by age τ ,
given enrollment into the trial, and of F c(τ), the conditional
distribution of becoming infected during the trial, given that
the infant was truly uninfected at enrollment. The bias in the
naive estimator F g(·) is evident. In the same setting, but with
a randomization on day 7 after birth, a smaller bias resulted
due to a smaller probability of HIV transmission during the
2 weeks preceding randomization.

As a second example, we consider protocol 076 of the AIDS
Clinical Trials Group (Connor et al., 1994), which was aimed
at preventing HIV transmission during pregnancy and at birth
(Balasubramanian and Lagakos, 2001). Suppose that the in-
fants are screened at birth using DNA PCR and evaluated at
age τ = 2 years for infection. Using the sensitivity, specificity,
and estimate of F(·) corresponding to times prior to birth for
this study from Balasubramanian and Lagakos (2001), the
probability of already being infected by the time of random-
ization is 0.22 and the unconditional probability that an infant
will be enrolled is Pr(E = 1) = 0.91. Then if the postpartum
probability of infection for an infant breast-fed up to 2 years
of age were 0.18, then the resulting estimates of F g(τ) and
F c(τ) are 0.34 and 0.23, respectively. In this setting, the bias
of the naive estimator is heightened due to a high probability
of HIV transmission in the 2 weeks prior to randomization
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Figure 1. Estimates of F(·), F g(τ), and F c(τ) for randomization at 30 days after birth.

and the low sensitivity of DNA PCR when given shortly after
infection. These examples illustrate that the bias of the naive
estimator F g(·) can be substantial in this setting of an HIV
prevention trial because of the risk of infection at or shortly
before birth and the lower sensitivity of the DNA PCR assay
when given shortly after the time of infection.

4. Hypothesis Testing
A primary goal in a randomized clinical trial is to compare
treatment groups. Suppose patients are randomized to one of
the two treatment groups, say A and B, and let F x (t) and
f x (t) represent the c.d.f. and p.d.f. of T for treatment group
x, respectively, where x = A, B. Define F x

0 (·) and F x
c (·), sim-

ilarly. We consider the null hypothesis

H0 : FA
c (τ) = F B

c (τ), τ > 0

that the treatment groups have the same distribution of time
until the event of interest, conditional on the event not hav-
ing occurred prior to randomization. This null hypothesis is
equivalent to testing the equality of the unconditional sub-
distribution functions FA

0 and F B
0 . Two natural statistics for

testing H0 are given by

Z0 =
F̂A

0 (τ) − F̂ B
0 (τ)

√

Var
(

F̂A
0 (τ) − F̂ B

0 (τ)
)

=
F̂A(τ) − F̂ B(τ)

√

Var
(

F̂A(τ) − F̂ B(τ)
)

,

Zc =
F̂A

c − F̂ B
c

√

Var
(

F̂A
c − F̂ B

c

)

,

where for Z0 we have used the fact that FA(0) = F B(0) due to
the randomization and where the estimates for F0 and Fc are
the maximum likelihood estimators described in Section 3.
The variance estimates can be obtained from the observed
information and using the Delta method. Both test statistics
are asymptotically N(0, 1) under H0 and thus can be used to
assess H0.

An alternative approach for testing treatment equality is to
simply compare outcomes among all subjects enrolled into the
trial, even though an unknown proportion have had the event
at entry. To illustrate the possible problems with this ap-
proach, suppose that all patients are screened for enrollment
using an imperfect diagnostic test and that all are evaluated
at the end of the trial using a perfect test, that is, K1 = 0 and
N 22 = 0. Let πx

21(τ) denote the value of π21(τ) for subjects in
treatment group x, for x = A and B, respectively, and consider
the test statistic

Zn =
π̂A

21(τ) − π̂B
21(τ)

√

Var
(

π̂A
21(τ) − π̂B

21(τ)
)

,

where the estimates of π21(τ) are the observed proportion
of subjects who test positive for event at τ among all those
enrolled in the study (i.e., those who satisfied E = 1 at entry),
and

Var
(

π̂A
21(τ) − π̂B

21(τ)
)

= πA
21(τ)

[

1 − πA
21(τ)

]

E

(

1

NA
2

)

+πB
21(τ)

[

1 − πB
21(τ)

]

E

(

1

NB
2

)

,

where NA
2 and NB

2 are the number of enrolled subjects in
treatment groups A and B, respectively. Note that Zn is
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Table 1
Observed (OR∗) versus true (OR) odds ratios for hypothetical

values of ρ, FA
c (τ), and F B

c (τ)

ρ FA
c F B

c πA
21(τ) πB

21(τ) OR OR∗

0.020 0.10 0.05 0.118 0.069 2.111 1.805
0.050 0.10 0.05 0.145 0.098 2.111 1.570
0.100 0.10 0.05 0.190 0.145 2.111 1.383
0.020 0.15 0.05 0.167 0.069 3.353 2.705
0.050 0.15 0.05 0.193 0.098 3.353 2.207
0.100 0.15 0.05 0.235 0.145 3.353 1.811

asymptotically equivalent to a Fisher’s exact test based on
those subjects enrolled in the study.

We refer to Zn as a naive test because it does not take
explicit account of the fact that some subjects may have al-
ready experienced the event prior to enrollment. Note that Zn

actually tests the null hypothesis

Hn : πA
21(τ) = πB

21(τ),

which in general is not equivalent to H0. To see their connec-
tion, note that

Pr(T ≤ τ | T > 0, E = 1)

=
Pr(T ≤ τ, E = 1 | T > 0)

Pr(E = 1 | T > 0)

=

∫ τ

0
Pr(E = 1 | t, T > 0)f(t | T > 0) dt

Pr(E = 1 | T > 0)
.

If the specificity of the imperfect diagnostic test does not
depend on the future time of occurrence of the event, then
the right-hand side of this equation simplifies to F c(τ). Thus,
if we define ρ = Pr(T ≤ 0 | E = 1), it follows that

π21(τ) − ρ

1 − ρ
= Fc(τ).

Since ρ does not depend on the treatment group, it follows
that when the specificity of the imperfect diagnostic test is
time independent, then Hn is equivalent to H0 and thus a
naive test, such as Zn , will also be a valid test of H0.

When H0 does not hold, the naive approach will, in general,
give biased estimates of treatment differences. To illustrate
this, Table 1 gives theoretical values of πA

21(τ) and πB
21(τ) for

different values of ρ, FA
c (τ), and F B

c (τ), again for the case
where K1 = 0 and N 22 = 0. The inclusion of false negatives
in the odds ratio comparing the two treatments, A and B,
attenuates the true underlying differences between the two
treatments. As ρ increases, the difference between the true
odds ratio (based on FA

c (τ) and F B
c (τ)) and the observed odds

ratio (based on πA
21(τ) and πB

21(τ)) also increases.
It does not necessarily follow that the corresponding naive

statistical tests, such as Zn , will have less power than bias-
adjusted tests, such as Z0 and Zc. To explore this, we first
consider the pretest–posttest setting described in Section 3.1
with K1 = 0 and N 22 = 0; that is, where all subjects are
screened with the imperfect diagnostic test and assessed at

the end of the trial with the perfect test, and then compute
the asymptotic relative efficiency (ARE) of the estimators of
F 0(τ) to that of π21(τ). Details are given in Appendix B.

Suppose that subjects are screened at entry by an imperfect
diagnostic test (i.e., K1 = 0), and that all those who test
negative at entry are evaluated at some later time τ using
a perfect test. Figure 2 presents plots of ARE of the bias-
adjusted to the naive test as a function of the sensitivity of the
screening test. Figure 2a–2d represent values of {F (0), F 0(τ)}
equal to {(0.50,0.25), (0.25, 0.50), (0.20, 0.05), (0.05, 0.20)},
respectively. For each of the four cases of {F (0), F 0(τ)}, we
consider values of specificity equal to 0.75 and 0.90, denoted
by dotted and solid lines, respectively. Note that these results
do not depend on the total number of subjects screened for
entry into the study.

For all four choices of {F (0), F 0(τ)}, the asymptotic vari-
ance of the estimate of F 0(τ) is higher than that of the naive
estimator, π̂21(τ), when sensitivity/specificity of the screen-
ing test is low. For high values of sensitivity/specificity, the
adjusted estimator is at least as good as, and in some cases,
more precise than the naive estimator. In panels b and d,
where a higher proportion of events occur during the study,
estimates of π21(τ) perform significantly better than the ad-
justed estimator for all values of sensitivity. When a higher
proportion of events occur prior to the study (panels a and c),
the adjusted estimator actually performs somewhat better
than the naive estimator at values of sensitivity greater than
0.80.

These results suggest that in cases where the diagnostic
test has relatively low error rates, estimates based on the
proposed methods may be preferable, especially in settings
where the event rate prior to study entry is high. When
the diagnostic test has poor diagnostic properties, hypoth-
esis tests constructed based on the naive estimator may be
preferable.

Similar results were obtained when the sensitivity of the
test was assumed to be time dependent, based on models for
the behavior of DNA PCR and HIV culture assays for detect-
ing HIV infection in infants (Balasubramanian and Lagakos,
2001). Such situations arise specifically in HIV vertical trans-
mission studies, where diagnostic tests to detect HIV in in-
fants are highly specific only after a few weeks following in-
fection (Dunn et al., 2000). The results for the simulation
study imply that tests based on the adjusted estimator may
be preferable, especially when the specificity and maximum
sensitivity of the diagnostic tests are relatively high (details
available upon request). However, when diagnostic tests are
administered at multiple times during the study, tests based
on proposed methods may have decreased power as a result
of F(·) being estimated from a larger number of parame-
ters. Note that in settings where there is a single pretest and
posttest, the only identifiable aspects of F(·) are F(0) and
F (τ). This implies that the null hypothesis H0 can be sat-
isfied even in cases where there may be an initial treatment
difference, that is no longer present by the end of the study. In
these situations, additional data from tests administered dur-
ing the study could help identify additional aspects of F(·)
and hence aid in testing hypotheses of treatment differences
during the study.
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Figure 2. ARE of the estimate of F 0(τ) to that of π21(τ) (i.e.,Var[π̂21(τ)]
Var[F̂0(τ)]

).

5. Study Design
To discuss issues related to study design, we consider a clinical
trial in which K1 and K2 subjects are screened for eligibility
using a perfect and imperfect diagnostic test, respectively, and
where all are evaluated at the end of the trial using the perfect
diagnostic test. It is obvious that use of the perfect diagnos-
tic test for all subjects is the most efficient from a statistical
perspective. However, in many settings there will be tradeoffs
between the cost and/or invasiveness of the former and the
possibility of errors with the latter. To illustrate the trade-
off between the sample sizes of the groups given the perfect
versus imperfect screening tests for this setting, we evaluate
the relative sample sizes needed among different designs to
achieve the same power for a variety of choices for the sen-
sitivity (p1) and specificity (p0) of the imperfect diagnostic
test, the probability, F(0), of being infected by the time of
randomization, and the probability, F 0(τ), of being infected
between randomization and the end of the trial (τ).

Suppose that {F (0), F 0(τ)} can take the set of values
{(0.50, 0.25), (0.25, 0.50), (0.20, 0.05), (0.05, 0.20)} and that
{p0, p1} can take the set of values {(0.90, 0.90), (0.90, 0.75),
(0.75, 0.90), (0.75, 0.75)}. Figure 3 presents the percentage
increase that is required in the number of subjects screened
by imperfect tests in order to compensate for a correspond-
ing percentage decrease in the number of subjects screened
by perfect tests, where the objective is to obtain the same ac-

curacy in the estimate of F 0(τ) as is attained when there are
equal number of subjects screened by perfect and imperfect
tests. The relative sample sizes are based on the asymptotic
variances of the resulting estimators of F 0(τ), obtained from
the inverse of the expected information matrix (see analytic
expressions in Appendix B). The expression for the percent-
age increase in the sample size of the group screened by the
imperfect test depends on K1 and K2 only through the per-
centage decrease in the sample size of the group screened by
the perfect test (details available upon request).

We see that for a given set of values of (F (0), F 0(τ)), the
percent increase in the size of the group screened by imperfect
tests is lower for tests with higher sensitivity and specificity.
Moreover, the tradeoff between the number of subjects tested
by perfect and imperfect screening tests is dependent on the
values of the underlying distribution, i.e., (F (0), F 0(τ)), with
the rate of change of the percentage increase in the number
of imperfect tests being the slowest for the case correspond-
ing to (F (0), F 0(τ)) = (0.05, 0.20) and fastest for the case
corresponding to (F (0), F 0(τ)) = (0.20, 0.05) (see Figure 3c
and 3d). The increase in sample size is not extreme in cases
where the imperfect test has relatively high sensitivity and
specificity. In addition, the tradeoff is relatively less severe in
situations where the event rate during the study (i.e., F 0(τ))
is expected to be relatively higher than that prior to entry
(i.e., F(0)).
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Figure 3. Percentage increase in the number of imperfect screening tests required for a given percentage decrease in the
number of perfect screening tests in order to obtain the same level of accuracy in the MLE of F 0(τ) as obtained with equal
numbers of perfect and imperfect screening tests.

These results imply that studies can be designed to main-
tain high power to detect differences between treatment
groups even when the number of subjects screened by the
perfect test is lowered. As an example, consider the ran-
domized study of Oral Miltefosine in treating Indian visceral
Leishmaniasis by Sundar et al. (2002). The study enrolled
subjects who were diagnosed to have Leishmaniasis by the
presence of Leishmania in splenic aspirates, through an inva-
sive procedure. The endpoint of interest was the absence of
Leishmaniasis, also determined at the study end via splenic
aspirates. In such settings, the benefit of an imperfect test
for screening may outweigh the cost/inconvenience of a per-
fect test. Here it may be useful to consider study designs that
involve only a few subjects screened by the perfect test, but
compensate by increasing the number of subjects screened by
the imperfect test.

6. Discussion
In this article, we propose methods to estimate and test hy-
potheses in clinical trials, where the diagnostic test used to
allow enrollment into the study may be subject to error. It
was seen in Table 1 that standard estimates of event rates
can be biased. The bias is small when the sensitivity and
specificity of the diagnostic tests are high, but can be sub-
stantial for poorer diagnostic tests. For testing hypotheses,
the naive tests are valid if the specificity of the diagnostic

test is not time dependent. The bias-adjusted methods are
somewhat preferable when the screening test is almost per-
fect, yet the naive estimator is preferable when the diagnostic
test has low sensitivity and specificity. For most intermediate
situations, the power of both methods is similar.

In the second motivating example used in this article, both
imperfect and perfect (or near perfect) diagnostic tests are
available to determine eligibility for enrollment into a trial
and to evaluate whether an event has occurred during the
trial. We showed in Section 5 that in certain settings, use of
an imperfect diagnostic test may require only a small increase
in sample size to achieve the same power as the perfect diag-
nostic test. Thus, when the perfect test carries risk or discom-
fort to the patient, or when it is more expensive, use of the
imperfect test may be preferable because the excess costs in
number of patients could be more than offset by the reduced
risk/inconvenience to patients or costs of the diagnostic test.
A variation of the design setting considered in Section 5 is
where no diagnostic test is used to screen for enrollment. The
naive statistical test can still be used and, as illustrated in
Section 4, will often have good statistical properties as com-
pared to a corrected test. This suggests that in some settings,
such as trials to compare treatments for prevention of prostate
cancer in elderly men where the definitive diagnostic test is
a prostatic biopsy, an initial diagnostic test might be skipped
altogether and thereby reduce risk/discomfort to participants.
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Throughout this article, we have assumed that testing neg-
ative on the diagnostic test used at screening would lead to
enrollment into the trial. In other settings, however, testing
positive on a diagnostic test would be the condition for en-
rollment. Here the same methods apply, but with the roles of
p0 and p1 reversed.

The methods developed in this article can be extended in
several ways. In some settings, the “perfect” diagnostic test
for evaluating the occurrence of event at the end of the study
may in fact be subject to error. For example, in studies involv-
ing liver disorders, a liver biopsy although considered to be
the gold standard, may still be error prone. In these settings,
naive estimators of event rates will no longer be appropriate
but the methods proposed in this article can be extended for
such applications. The proposed methods could also be easily
extended to accommodate situations where all subjects in the
study do not have the same follow-up time.

Finally, in this article, we consider the setting where a fixed
number of subjects are screened at entry and those who test
negative for the event are enrolled into the study. That is,
we assume that the number of subjects enrolled in the study
is random and the number of subjects screened for potential
entry into the study is fixed. Other study designs could involve
screening as many patients as needed to enroll a fixed number
of subjects into the study. It would be useful to extend the
methods developed in this article to accommodate other study
designs.
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Résumé

Dans les essais cliniques où le critère de jugement est le délai
jusqu’à l’apparition d’un événement présentant une phase de
latence avant d’être détectable, une proportion inconnue de
sujets qui auront déjà l’événement sera incluse dans l’étude
sans qu’on le sache, du fait de l’imperfection des tests diag-
nostiques utilisés pour trier les sujets éligibles. Par exemple,
les tests diagnostiques communément utilisés pour évaluer le
statut VIH chez les nourrissons, tel que la PCR DNA et la cul-
ture du virus, ont une faible sensibilité quand ils sont faits tôt
après l’infection. Ceci peut mener à l’inclusion d’une propor-
tion inconnue de nourrisson infectés par le VIH dans des essais
cliniques visant à prévenir la transmission du virus de la mère
VIH positive vers leur nourrisson au travers de l’allaitement.
Le statut infectieux des nourrissons à la fin de l’essai, quand
ils sont âgés de plus de 12 mois, peut être déterminé avec
certitude. Pour ces enfants diagnostiqués infectés à la fin de
l’étude, il est impossible de déterminer si la séroconversion a
eu lieu pendant l’étude ou si l’enfant était déjà infecté au mo-
ment de son inclusion. Dans ces cas, les estimations du risque
cumulé d’événement à la fin de l’essai surestimeront la vraie
probabilité d’événement pendant la période d’étude et les hy-
pothèses des tests comparant deux stratégies d’intervention
ou plus, peuvent aussi être biaisées. Nous présentons des
méthodes d’inférence à utiliser dans de tels cas, pour obtenir
la distribution du délai jusqu’à la survenue de l’événement
d’intérêt, et nous recherchons des méthodes à proposer dans
le protocole de tels essais quand il existe à la fois des tests
diagnostiques imparfaits et parfaits.
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Appendix A

Derivation of Likelihood
Let Di = (τ i, vi , ri ) refer to the observed data for ith subject,
for i = 1, . . . ,K1 + K2, where τ i = (0, τ) refers to the times
of the diagnostic tests, vi = (vi1, vi2) refers to the types of
the corresponding tests, and ri = (ri1, ri2) is the vector of
corresponding test results. We take vij equal to 1 or 2 for a
perfect or imperfect diagnostic test, respectively, and rij equal
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to 1 for a positive test for the occurrence of event of interest
and 0 otherwise. Note that for those subjects who test positive
for event at entry, no further tests will be administered. Then,
the general form of the likelihood can be expressed as

L =

K1+K2
∏

i=1

g(Di)

=

K1+K2
∏

i=1

∫ ∞

−∞
g(τi1, vi1, ri1, τi2, vi2, ri2 | t)f(t) dt

=

K1+K2
∏

i=1

∫ ∞

−∞
g(τi1, vi1, ri1 | t)

× g(τi2, vi2, ri2 | τi1, vi1, ri1, t)f(t) dt

∝
K1+K2
∏

i=1

∫ ∞

−∞
g(ri1 | τi1, vi1, t)g(ri2 | τi2, vi2, t)f(t) dt.

We have assumed that (a) the results of the diagnostic
tests are independent conditional on the time of event, t (i.e.,
g(ri2 | τ i2, vi2, ri1, vi1, ti1, t) = g(ri2 | τ i2, vi2, t)) and (b) the
times and types of diagnostic tests are noninformative with
respect to T (i.e., g(τ i1, vi1 | t) = g(τ i1, vi1) and that
g(τ i2, vi2 | ri1, τ i1, vi1, t) = g(τ i2, vi2 | ri1, τ i1, vi1)). In other
words, the rules for determining whether to administer the
second diagnostic test and type of test given could be prob-
abilistic or deterministic functions of the results of the first
test, but does not depend on knowledge of the time of the
event of interest. Under these assumptions, the likelihood can
be expressed as

L ∝
2

∏

j=1

π
Kj−Nj
j

2
∏

k=1

[(1 − πj)πjk]
rjk [(1 − πj)(1 − πjk)]

Njk−rjk .

Appendix B

Analytic Expressions for Expected Information Matrix
To derive the expected information matrix, we assume that
N j1 = αjNj for j = 1, 2, where αj are known constants and
satisfy αj < 1. Let the expected information matrix be de-
noted by I = (Iij ).

The components of I for the general form of the likelihood
in equation (1) are

I11 =
K1

F (0)
+

(p0 + p1 − 1)2K2

p1F (0) + (1 − p0)[1 − F (0)]
+

α1K1

1 − F (τ)

+
(1 − α1)(p0 − 1)2K1

(p1[F (τ) − F (0)] + (1 − p0)[1 − F (τ)]

+
(1 − α1)p2

0K1

(1 − p1)[F (τ) − F (0)] + p0[1 − F (τ)]

+
α2(1 − p1)2K2

(1 − p1)F (0) + p0[F (τ) − F (0)]
+

α2p0K2

1 − F (τ)

+
(1 − α2)[p1(1− p1)− p0(1− p0)]2K2

p1(1− p1)F (0) + p0p1[F (τ)−F (0)]+ p0(1− p0)[1−F (τ)]

+
(1 − α2)

[

(1 − p1)2 − p2
0

]2
K2

(1 − p1)2F (0) + p0(1 − p1)[F (τ) − F (0)] + p2
0[1 − F (τ)]

,

I21 = I12

=
α1K1

1 − F (τ)
+

(1 − α1)(p0 − 1)(p0 + p1 − 1)K1

p1[F (τ) − F (0)] + (1 − p0)[1 − F (τ)]

+
(1 − α1)p0(p0 + p1 − 1)K1

(1 − p1)[F (τ) − F (0)] + p0[1 − F (τ)]

+
α2(1 − p1)p0K2

(1 − p1)F (0) + p0[F (τ) − F (0)]
+

α2p0K2

1 − F (τ)

+
(1 − α2)[p1(1− p1)− p0(1− p0)][p0p1 − p0(1− p0)]K2

p1(1− p1)F (0) + p0p1[F (τ)−F (0)]+ p0(1− p0)[1−F (τ)]

+
(1 − α2)

[

(1 − p1)2 − p2
0

][

p0(1 − p1) − p2
0

]

K2

(1 − p1)2F (0) + p0(1 − p1)[F (τ) − F (0)] + p2
0[1 − F (τ)]

,

I22 =
α1K1

F (τ) − F (0)
+

α1K1

1 − F (τ)

+
(1 − α1)(p0 + p1 − 1)2K1

p1[F (τ) − F (0)] + (1 − p0)[1 − F (τ)]

+
(1 − α1)(1 − p1 − p0)2K1

(1 − p1)[F (τ) − F (0)] + p0[1 − F (τ)]

+
α2p

2
0K2

(1 − p1)F (0) + p0[F (τ) − F (0)]
+

α2p0K2

1 − F (τ)

+
(1 − α2)[p0p1 − p0(1− p0)]2K2

p1(1− p1)F (0) + p0p1[F (τ)−F (0)] + p0(1− p0)[1−F (τ)]

+
(1 − α2)

[

p0(1 − p1) − p2
0

]2
K2

(1 − p1)2F (0) + p0(1 − p1)[F (τ) − F (0)] + p2
0[1 − F (τ)]

.

For the special case when all tests at study end are perfect
(see equation [2]), the above expressions simplify as follows:

I11 =
K1

F (0)
+

(p0 + p1 − 1)2K2

p1F (0) + (1 − p0)[1 − F (0)]
+

K1

1 − F (τ)

+
(1 − p1)2K2

(1 − p1)F (0) + p0[F (τ) − F (0)]
+

p0K2

1 − F (τ)
,

I21 = I12

=
K1

1−F (τ)
+

p0(1− p1)K2

(1− p1)F (0)+ p0[F (τ)−F (0)]
+

p0K2

1−F (τ)
,

I22 =
K1

F (τ) − F (0)
+

K1

1 − F (τ)

+
p2

0K2

(1 − p1)F (0) + p0[F (τ) − F (0)]
+

p0K2

1 − F (τ)
.

When we further assume that all screening tests are imper-
fect (see equation [3]), we obtain

I11 =
(p0 + p1 − 1)2K2

p1F (0) + (1 − p0)[1 − F (0)]

+
(1 − p1)2K2

(1 − p1)F (0) + p0[F (τ) − F (0)]
+

p0K2

1 − F (τ)
,

I21 = I12

=
p0(1 − p1)K2

(1 − p1)F (0) + p0[F (τ) − F (0)]
+

p0K2

1 − F (τ)
,

I22 =
p2

0K2

(1 − p1)F (0) + p0[F (τ) − F (0)]
+

p0K2

1 − F (τ)
.


