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Conjugate Analysis for the Normal Model

Let x = (x1,...,X,) be an i.i.d sample from the N(u, 7 1)
distribution with both parameters unknown.

The likelihood of the observations is
n/2 T 2
(x| ) o 77 exp{—z_zl(x,-—u) }

The conjugate prior distribution for (u, ) is of the form
f(u,7)="F(7)f(p| 1) where f () = Gamma(a, b) and
f(u|m)=N(&(cT)™t). Thatis

f(p,7) a1 exp{—7b} x 71/2 exp {—%C(u — 5)2} .
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Joint and Conditional Posteriors

The joint posterior distribution of (u, ), obtained by Bayes
theorem, is

Flpsm[x) oo 7)) f(x]p,T)

n

o 77t Lexp {—T [2 ;(x,- — )’ + %(u — &> +b

—_

The conditional posterior distribution of 7 given u is given by

f(r|x,u) o< f(u,7]x) (as a function of 7)

" 1<
8 751+""1e><p{—7 [2 ;(X; — )’ + %(u—f)z +b
=

b

which is a Gamma(P, Q) distribution with parameters
P="H taand Q=337 (x —p)?+ 5(p—&>+0b.
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Joint and Conditional Posteriors

The conditional posterior distribution of p given 7 is

f(p|x,7) o< f(u,7]x) (as a function of 1)

x exp {—; [Z(x,- — P+ e 5)2] }

i=1

n

T TC

X exp {—Znu2 4+ Tu g Xj — 7/3 —|—Tc,u§}
i=1

o exp {—T(n;—c),uz + 7(nx + cﬁ)u}

~ exp{—7_(n+c)[,u2+2m_<+cg,u]},

2 n+c

which is a Normal(B, D?) distribution with mean B = "iigg and

variance D? = 77} (n+ ¢)7L.
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Marginal Posterior of 7

Exact Bayesian inference is based on the marginal posteriors.
(1) = [l | x)dn
RS W T — 5 TC
x /_of P e 3 (x— )~ (€~ 7b}d)

i=1

" 1o
= e lep(rl ;x? + =€+ b}
=

* 1 T(n+c) , ¢
/ M Rexp( =T (3 + el

i=1

X

(nx + c€)?

n4a-1
x el Yo+ G n - (G

]}7

This is again a Gamma(P’, Q') den5|ty with parameters

nXx 2
Pr=%+aand Q=320 X7+ 58 +b— (2(;::5))'
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Marginal Posterior of

The marginal posterior of p is obtained by integrating the joint
posterior distribution over T, i.e.

Fu|x) = / F(r | x)dr

o 1 n
x /0 Fie sl exp{—7[5 ;(Xi — )+ %(M —€)* + b]}d7

1 n _(%1“‘3)
C
o lzz(x,- —w)? 5 (n—*+b

i=1

By some calculus manipulation, it can be shown that the
normalised version of this formula is a non-standardized (three
parameter) Student’s-t probability density function.
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The non-standardized Student’s-t distribution

The standard Student’s-t distribution can be generalized to a three
parameter location-scale family, introducing a location parameter p
and a scale parameter ¢ , through the relation X = y+ o T, where
T ~ t(v).

The resulting non-standardized Student's-t distribution has p.d.f.
g
1 _ 2
14 - (X & ) ]
v o
Here, o does not correspond to a standard deviation. It simply sets
the overall scaling of the distribution. The mean and variance of

the non-standardized Student'’s t distribution are, respectively,
E(X)=p, forv>1, and V(X) = 025 for v > 2.

)

fix|v,p0) = W
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Marginal Likelihood

00 = [ [ Fx LG | () dr

m

_ L /ﬂ 20y e85 S0 )

*Lexp{—b}(2m) V2 (cr)? exp{— (M—f)z}dudf

X

r(a)
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Marginal Likelihood

00 = [ [ Fx LG | () dr

m

_ L /ﬂ 20y e85 S0 )

X r(a) *Lexp{—7b}(2m) M*(c7)"* exp{— (M — &)*}dudr
= (277)75 I'[():) cl/? / rate-l exp{—% z:x,2 — %52 — 7b}
X

[/(277)57-5 exp{—T(n;_ C),u2 + T(Z Xi + C)M}dM] dr
2 i=1
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Marginal Likelihood

Therefore,

fx) = (27)3 rl(i)

_1
2

%(n—i—c)

X /7—2+a Lexp{— 7'[ ZX + +b(g)((n_|:g]}d7—
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Marginal Likelihood

Therefore,
fx) = (2”)grl(7:)ci(n+c)é
X /72+a Lexp{— 7[5 ZX 4 & +bm]}d7
_ (2w)2r‘(’:)cg(n+c)2
X r(nga) ;ixferCerb_m —(3+2)

Loukia Meligkotsidou, University of Athens Bayesian Inference



The rock strata A and B are difficult to distinguish in the field.
Through careful laboratory studies it has been determined that the
only characteristic which might be useful in aiding discrimination is
the presence or absence of a particular brachipod fossil. The
probabilities of fossil presence are found to be as follows.

Stratum ‘ Fossil present Fossil absent
A 0.9 0.1
B 0.2 0.8

It is also known that rock type A occurs about four times as often
as type B. If a sample is taken, and the fossil found to be present,
calculate the posterior distribution of rock types.

If the geologist always classifies as A when the fossil is found to be
present, and classifies as B when it is absent, what is the
probability she will be correct in a future classification?
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Denote
A: rock stratum A, B: rock stratum B and F: fossil is present.

We are given that Pr(F | A) =0.9, Pr(F°| A) =0.1,
Pr(F | B)=0.2, Pr(F¢ | B) = 0.8 and Pr(A) = 4Pr(B).

To obtain the posterior distribution of rock types, after finding the
fossil in the sample, we need to calculate Pr(A | F) and Pr(B | F).
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Denote
A: rock stratum A, B: rock stratum B and F: fossil is present.

We are given that Pr(F | A) =0.9, Pr(F°| A) =0.1,
Pr(F | B)=0.2, Pr(F¢ | B) = 0.8 and Pr(A) = 4Pr(B).

To obtain the posterior distribution of rock types, after finding the
fossil in the sample, we need to calculate Pr(A | F) and Pr(B | F).

Pr(A)+Pr(B) =1=4Pr(B)+ Pr(B) =1= Pr(B) =0.2.
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Denote
A: rock stratum A, B: rock stratum B and F: fossil is present.

We are given that Pr(F | A) =0.9, Pr(F°| A) =0.1,
Pr(F | B)=0.2, Pr(F¢ | B) = 0.8 and Pr(A) = 4Pr(B).

To obtain the posterior distribution of rock types, after finding the
fossil in the sample, we need to calculate Pr(A | F) and Pr(B | F).

Pr(A)+Pr(B) =1=4Pr(B)+ Pr(B) =1= Pr(B) =0.2.

Prior: Pr(A) =10.8 Pr(B) =0.2
Likelihood: Pr(F | A)=0.9 Pr(F | B)=0.2
Prior x likelihood:

Pr(A)Pr(F | A)=0.72 Pr(B)Pr(F | B) = 0.04
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Law of total probability:
Pr(F) = Pr(A)Pr(F | A)+ Pr(B) Pr(F | B) =0.76
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Law of total probability:
Pr(F) = Pr(A)Pr(F | A)+ Pr(B) Pr(F | B) =0.76

Posterior: Pr(A| F) = Pr(A)Pr(FIA) _ 12

Pr(F) 76
and Pr(B | F) = PUEFLFIE) — 4
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Law of total probability:
Pr(F) = Pr(A)Pr(F | A)+ Pr(B) Pr(F | B) =0.76

Posterior: Pr(A| F) = Pr(A)Pr(FIA) _ 12

Pr(F) 76
and Pr(B | F) = PUEFLFIE) — 4

Probability of correct classification:

Pr(correct) = Pr(A,F)+Pr(B,F°)
Pr(A) Pr(F | A) 4+ Pr(B)Pr(F° | B)
0.72+0.16 = 0.88.
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A seed collector who has acquired a small number of seeds from a
plant, has a prior belief that the probability § of germination of
each seed is uniform over the range 0 < 6 < 1. She experiments by
sowing two seeds and finds that they both germinate.

i. Write down the likelihood function for 6 deriving from this
observation, and obtain the collector’s posterior distribution of
0

ii. Compute the posterior probability that @ is less than one half.
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A seed collector who has acquired a small number of seeds from a
plant, has a prior belief that the probability § of germination of
each seed is uniform over the range 0 < 6 < 1. She experiments by
sowing two seeds and finds that they both germinate.

i. Write down the likelihood function for 6 deriving from this

observation, and obtain the collector’s posterior distribution of
0

ii. Compute the posterior probability that @ is less than one half.

Solution.
(i.) The likelihood function is

fF(X=2]0)= @)92(1—9)2—2 = 62
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Exercise 1.4-Solution

Using the uniform prior f () =1, 0 < 6 < 1 we obtain the
posterior distribution (0 | x) = (0)(( 0) _ = 362.

)
Note that f (x) = [ #2d6 = 1.
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Exercise 1.4-Solution

Using the uniform prior f () =1, 0 < 6 < 1 we obtain the
posterior distribution (0 | x) = (6)(( 0) _ = 362.

)
Note that f (x) = [ #2d6 = 1.

(ii.) The prior probability is P (¢ < 1/2) = [2°1df = 0.5.
The posterior probability is
P(O<1/2]|X=2)= [2°302d6 = 0.8.
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A posterior distribution is calculated up to a normalizing constant
as
f(0]x)ox673,

for # > 1. Calculate the normalizing constant of this posterior and
the posterior probability of 8 < 2.
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A posterior distribution is calculated up to a normalizing constant
as
f(0]x)ox673,

for # > 1. Calculate the normalizing constant of this posterior and
the posterior probability of 8 < 2.

Solution.
Sinceff (0] x)dd =1, thus,

[Zeddo =16 < ZL —lec=2
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A posterior distribution is calculated up to a normalizing constant
as
f(0]x)ox673,

for # > 1. Calculate the normalizing constant of this posterior and
the posterior probability of 8 < 2.

Solution.
Sinceff (0] x)dd =1, thus,

[Zeddo =16 < ZL —lec=2

The posterior probability is:
PO <2|x)=[2f(0]x)do= [22073d6 =3/4.
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Exercise

a. Show that Jeffrey’s prior is consistent across 1-1 parameter
transformations.

b. Suppose that X | 6 ~ Binomial (n,#). Find Jeffrey’s prior for
the corresponding posterior distribution of 6

c. Now suppose that ¢ = %. What is the Jeffrey's prior for ¢7?
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Exercise

a. Show that Jeffrey’s prior is consistent across 1-1 parameter
transformations.

b. Suppose that X | 6 ~ Binomial (n,#). Find Jeffrey’s prior for
the corresponding posterior distribution of 6

c. Now suppose that ¢ = %. What is the Jeffrey's prior for ¢7?

Solution.
a. We need to show that Jp¢ = Job ‘g—g . It is sufficient to show

that I = lof ‘ﬁ
dlog f(x|¢) dlog f(x|0(¢)) d0(¢)

We have that, Hence,

/(¢):E{ dlogfx|¢) } { dlogf(gww)) a0(0)) }:

E { (osf) } () = 10| 2]
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b.
f(x|0) = <)’Z>9X(1—0)"X
and L(0) =logf(x|68)=xlog(f)+ (n—x)log(1—0)+c

dL(f) x n—x
do 6 16
d’L()  x n—x
dez 02 (1-¢)?

Since E(x) = nf = 1 (6) = _%2 _ (rlv:gljz —n (éaﬁ){;) _

ng=1(1—671) = J(0) xx 712 (1 - g)"1/?
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b.
f(x|0) = <)’Z>9X(1—0)"X
and L(0) =logf(x|68)=xlog(f)+ (n—x)log(1—0)+c

dL(f) x n—x
do 6 16
d’L()  x n—x
dez 02 (1-¢)?

Since E(x) = nf = 1 (6) = _%2 _ (rlv:gljz —n (éaﬁ){;) _

ng=1(1—671) = J(0) xx 712 (1 - g)"1/?

(el

with E(X) = 2
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L(¢) = —xlog(¢) + (n—x)log (%1) + ¢ =

—nlog (¢) + (n—x)log(¢p— 1)+ ¢

dl(¢) x—x n

/N

o~ o-1 ¢
d2L(¢):_ n—x _,_i
o (e-17 ¢
AL _”—”/ﬁb_i_mﬁ—”((ﬁ—l)oc 3 2\
0=\ G} = R e < )

-1/2

= J(¢) x (¢° — ¢7)
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L(¢) = —xlog(¢) + (n — x)log %) +c=

—nlog (¢) + (n—x)log(¢p— 1)+ ¢
dl(¢) x—x n

/N

dé o-1 ¢
d?L(¢) n—x n
iz~ (p-17 P
d’L n—n n ng—n(¢p—1

o)== (0 1/)(@%2 =y @)
= J(9) ox (67— ¢?) 2
e Using the result from a. we can find the Jeffrey's prior for ¢ as:
J(¢) =J(0) ‘% = 13(1/;,1/2)9_1/2 (1- 9)71/2 ﬁ x
6-1/2 (1 — 9)_1/2§ _ p\? (1 _ %>_1/2 1 </>_3/2(¢;}J _

2 172 —
oL (o— 1) = (2 )2

—1




In each of the following cases, derive the posterior distribution:
a. x1,Xx2,...X, are a random sample from the distribution with
probability function

fix|0)1(1-0); x=1,2,...
with the Beta (p, q) prior distribution
or-1(1— )97t
£(0) = (1-9) ’
B(p,q)
b. x1,x2,...x, are a random sample from the distribution with
probability density function

0<0<1.

e 79>

x|

f(x|0)= , x=0,1,...

with the prior distribution
f(@)=e"? 6>0.
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Exercise 2.1-Solution

a. We know that (6 | x) oc f(0) f (x| 0).
The likelihood function is:
FOx16) = Ty 0 (1 6) = (1 0)" 9=
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Exercise 2.1-Solution

a. We know that (6 | x) oc f(0) f (x| 0).
The likelihood function is:
FOx16) = Ty 0 (1 6) = (1 0)" 9=

The posterior distribution is:
f(0]x) o< P71 (1 —0)7 1 (1 — )" 0 "6
oc X TEPT T (1 - 6)77 = Beta (P, Q)
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Exercise 2.1-Solution

a. We know that (6 | x) oc f(0) f (x| 0).
The likelihood function is:
Fx6) = Ty 0 (1 6) = (1 0)" 65

The posterior distribution is:
f(0]x) o P71 (1 —0)971 (1 — 6)" g~ "gXi=1 %
o §2io1xitp—n—1 (1- )q+n 1 — Beta(P, Q)

b. Likewise,
—0 px; —n6 27: Xi
f(x10) =TI7 S5t = St and

f (0]x) ox e 9XicXie=0 = e=(m+10GEL1 % = Gamma(p, q).

Note:Y ~ Beta(p,q) < f (y) = (1 yP=l(1— H)qfl and
Y ~ Gamma(p,q) < f(y) = pf fre —ayyp—1
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The proportion, 6, of defective items in a large shipment is
unknown, but the expert assessment assigns 6 of the Beta(2,200)
prior distribution. If 100 items are selected at random from the
shipment, and 3 are found to be defective, what is the posterior
distribution of 67

If another statistician, having observed the 3 defectives, calculated
the posterior distribution as being a beta distribution with mean
4/102 and variance 0.0003658, then what prior distribution had
she used?
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Exercise 2.2-Solution

Prior distribution: f () o< 6 (1 —60)'*°, 0 <0 < 1.
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Exercise 2.2-Solution

Prior distribution: f () o< 6 (1 —60)'*°, 0 <0 < 1.

Likelihood:
Fix]0)=(P)RP1-0" x?1-0",0<0<1
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Exercise 2.2-Solution

Prior distribution: f () o< 6 (1 —60)'*°, 0 <0 < 1.

Likelihood:
Fix]0)=(P)RP1-0" x?1-0",0<0<1

Posterior: £ (0 | x) o 63 (1 —0)°"0 (1 — ) = 0* (1 — 0)*° =
Beta(5,297).
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Exercise 2.2-Solution

Prior distribution: f () o< 6 (1 —60)'*°, 0 <0 < 1.

Likelihood:
Fix]0)=(P)RP1-0" x?1-0",0<0<1

Posterior: £ (0 | x) o 63 (1 —0)°"0 (1 — ) = 0* (1 — 0)*° =
Beta(5,297).

Let 6 | x ~ Beta(P, Q) < E( | x) = p-5 = 4/102and V(6 |

— PQ —
x) = (PrQR(PiaiD) — 0.0003658

After some straight forward algebra: P =4 and Q = 98.

Also, P=p+x=—4=p+3=— p=1and
R=g+n—x=—=98=¢g+3-100—= g=1.

— The statistician used Beta(1,1) = U(0,1) prior distribution.
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The diameter of a component from a long production run varies
according to a Normal (6,1) distribution. An engineer specifies
that the prior distribution for 6 is Normal (10,0.25). In one
production run 12 components are sampled and found to have a
sample mean diameter of 31/3. Use this information to find the
posterior distribution of mean component diameter. Hence
calculate the probability that this is more than 10 units.
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The diameter of a component from a long production run varies
according to a Normal (6,1) distribution. An engineer specifies
that the prior distribution for 6 is Normal (10,0.25). In one
production run 12 components are sampled and found to have a
sample mean diameter of 31/3. Use this information to find the
posterior distribution of mean component diameter. Hence
calculate the probability that this is more than 10 units.

Solution.
For known o: f (x; | 0) =

x, 0)
i Vot 0P
expl— ko + 38— 5} e rp{— ot o)
Likelihood: f(x | 0) =111y f (x| 9)
]._[I 1 exp{ 20'2 + 02X’6} - exp{ 20’2 % 27:1 Xi}
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Exercise 2.3-Solution

Prior distribution:
F(0) o exp{ =g (6 — b)*} ox exp{— 5 0” + g b0}
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Exercise 2.3-Solution

Prior distribution:

f (0) o< exp{—5%s (0 — b)*} o exp{— 52,62 + L b0}
Posterior distribution:

fO|x)ocf(0)f(x]|0)x

exp{ (=5 = z2a2) 0 + (@b + 2 X7L1) 0} =

exp {—ﬁ# + %0}
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Exercise 2.3-Solution

Prior distribution:

f (0) o< exp{—5%s (0 — b)*} o exp{— 52,62 + L b0}
Posterior distribution:

F(6]x)ocf(0)f(x|0)ox

exp{ (=5 = z2a2) 0 + (@b + 2 X7L1) 0} =

exp {—W92 20}

In our problem:

d? = 0.25, b = 10, =1 — 31

Substituting, B = 10. 25 and D =16"1 =0.0625

Calculate P(0 > 10) = [;5f (0 | x) db.
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The number of defects in a single roll of magnetic tape has a
Poisson () distribution. The prior distribution for 6 is (3, 1).
When 5 rolls of this tape are selected at random, the number of
defects found on each are 2,2,6,0 and 3 respectively. Determine
the posterior distribution of 6.

Solution.
Prior:

_ G° pp—1,—qb
f(0)= r‘(’p)GP le—a
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The number of defects in a single roll of magnetic tape has a
Poisson () distribution. The prior distribution for 6 is (3, 1).
When 5 rolls of this tape are selected at random, the number of
defects found on each are 2,2,6,0 and 3 respectively. Determine
the posterior distribution of 6.

Solution.
Prior:

_ P —1,—qf
f.(9).— r‘(’p)Gp le—a
Likelihood:

n Xj @0
f(x]0)= Hi:l ‘ x?!
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The number of defects in a single roll of magnetic tape has a
Poisson () distribution. The prior distribution for 6 is (3, 1).
When 5 rolls of this tape are selected at random, the number of
defects found on each are 2,2,6,0 and 3 respectively. Determine
the posterior distribution of 6.

Solution.
Prior:

_ P —1,—qf
f.(9).— r‘(’p)Gp le—a
Likelihood:

F(x | 0) =17, 2
Posterior:
F (0] x)ox P le=d0e= g iixi = g=(a+nipdiy xitp—1 =

Gamma (p+ Y71 xi,q + n) = Gamma(16, 6)
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(i)

Observations y1, s, ..., yn are obtained from independent
random variables which are normally distributed, each with
the same (known) variance o2 but with respective means

x10, %00, ... x,0. The values of xq, x2, ..., x, are known but 6
is unknown. Show that the likelihood, given a single
observation y; is of the form

1 1
f(yi | 0) < exp (‘Mxlgez + UQYiXi9>
Given the prior distribution for the unknown coefficient § may
be described as normal with mean b and variance 02/a?,
show that the posterior distribution of @ is proportional to

exp{—; (aZ—l—En:x,?) Jo? <a2b+§n:y;x,~> /02] 9}
i=1 i=1

62 +
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(iii) Use this to write down the posterior mean of 6. Show that it
may be written as

0

[
S
+
=

|
g

and obtain an expression for w.
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(iii) Use this to write down the posterior mean of 6. Show that it
may be written as

0

[
S
+

=
|
g

and obtain an expression for w.
Solution.
(i) £ (v |9) \/2—exp{_$ (vi — i9)2}o<

exp {— 515 (y? +x262 — 2xy:0) } o exp {— 525 (x20% — 2x;yi0) }
(ii)Prior:

Fo) = @GXP{—%; (6 - b)z} o< exp {—%92 + ;—iba}
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Exercise 2.8-Solution

Likelihood:

f(y|0)= H f(yil 9) H7 leXp{ 2(,2X202 2}/iXi0} =
exp {—ﬁ S+ Y, x,-y,-}
Posterior: . ]
F(0]y)xexp{—3(%+Z020) 02+ (b4 Zopi) o) =
N(B, D) where D = ("—2 + L>_1 and
o (5+ )" (0 ) - e
wb + (1= w) %,ilyx';'

2

where w = —E&—
a4y 7
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Which of the following densities belong to the exponential family
f(x|0) =020+ for x > 2
(x| x) = 0x"Lexp{—x"} for x >0
In each case calculate the conjugate prior if the density belongs to

the exponential family.

Solution.
A density belongs to Exponential Family of distributions if it can
be written in the form of f(x | 8) = h(x) g (0) exp {t(x)c(0)}
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Which of the following densities belong to the exponential family
f(x|0) =020+ for x > 2
(x| x) = 0x"Lexp{—x"} for x >0

In each case calculate the conjugate prior if the density belongs to
the exponential family.

Solution.

A density belongs to Exponential Family of distributions if it can
be written in the form of f(x | 8) = h(x) g (0) exp {t(x)c(0)}
fi(x|0)=02exp{—(6+1)logx}

Exponential family with:

h(x)=1

g(0) = 027

t(x) = log x
c(@)=—(0+1)
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Exercise 3.1-Solution

In this case, we choose prior of the form

f (0) x (g (0))? exp {bc ()}, hence

f(0) oc 0929 exp {— (0 + 1) b} = 09 exp {dflog2 — (6 + 1) b} =
09 exp {(dflog2 — b) 0} = Gamma(a, )

witha =d+1and §=b—dlog?2
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Exercise 3.1-Solution

In this case, we choose prior of the form

f (0) x (g (0))? exp {bc ()}, hence

f(0) oc 0929 exp {— (0 + 1) b} = 09 exp {dflog2 — (6 + 1) b} =
09 exp {(dflog2 — b) 0} = Gamma(a, )

witha =d+1and §=b—dlog?2

(x| x)=6exp{(6—1 Iogx—xg}
\

Does not belong to the Exponential family.
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Find the Jeffreys prior for 6 in the geometric model:
fF(x]0)=1—-010 x=1,2,...
Note: E(X) =1/6.
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Find the Jeffreys prior for 6 in the geometric model:
fF(x]0)=1—-010 x=1,2,...
Note: E(X) =1/6.

Solution.
J(0) o< [1(9)2,

wvr 1)< (542 = { ()}
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Find the Jeffreys prior for 6 in the geometric model:
fF(x]0)=1—-010 x=1,2,...
Note: E(X) =1/6.

Solution.
J(0) o< [1(9)2,

where [ (0) = —E (di%ge)) = E{("Z(:)f} and L(0)=

log f (x | 6) = log [(1 — gyt 9] = (x — 1) log (1 — ) + log 6
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Find the Jeffreys prior for 6 in the geometric model:
fF(x]0)=1—-010 x=1,2,...
Note: E(X) =1/6.

Solution.
J(0) o< [1(9)2,

where [ (0) = —E (dzL(9)> = E{(dfﬂf)f} and L(0) =

log f (x | 0) g[(1—9)x—19] = (x — 1) log (1 — ) + log 6
ae) _ 1 (1)
do — 0 9)
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Find the Jeffreys prior for 6 in the geometric model:
fF(x]0)=1—-010 x=1,2,...

Note: E(X) =1/6.

Solution.

J(6) o< [1(0)2,

where [ (0) = —E (dzL(9)> = E{(dfw@)f} and L(0) =

log f (x | 0) g[(1—9)x—19] = (x — 1) log (1 — ) + log 6
dLo) _ 1 (x-1)

doi — 0 9)
d’L(0) _ 1 (x—1)

o> T 07 (1-9)?
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Find the Jeffreys prior for 6 in the geometric model:
fF(x]0)=1—-010 x=1,2,...

Note: E(X) =1/6.

Solution.

J(6) o< [1(0)2,

where [ (0) = —E (dzL(9)> = E{(dfﬂf)f} and L(0) =

log f (x | 0) g[(1—9)x—19] = (x — 1) log (1 — ) + log 6
dL®) _ 1 (x=1)
do. — 6 9)
d’L(0) _ 1 (x—1)
o>~ 07 (1-9)
x— 11 .
1(0)=E (9% + ((1_91))2> 92 + (1 o) 62(11_9) = Jeffrey's prior
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Suppose x has the Pareto distribution Pareto(a, b), where a is
known but b is unknown. So,

f(x|b) = ba®x~b"1.  (x>a, b>0).

Find the Jeffreys prior and the corresponding posterior distribution
for b.
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Suppose x has the Pareto distribution Pareto(a, b), where a is
known but b is unknown. So,

f(x|b) = ba®x~b"1.  (x>a, b>0).

Find the Jeffreys prior and the corresponding posterior distribution
for b.

Solution.
log-likelihood: ¢(b) = log b+ bloga — (b + 1) log x

d—g—l—i—lo a— log x
db b 8 &
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d—g—l—i—lo a— log x
db b 8 3

@1 Py 1
db2 B2 db2) b2

Loukia Meligkotsidou, University of Athens Bayesian Inference



iﬂ_l+|o a— log x
db b 8 g

@1 Py 1
db2 B2 db2) b2

Jeffreys’ prior: J(b) x |E (—Z—Zf) 12=1
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d—g—l—I—Io a— log x
db b 8 3

@1 Py 1
db2 B2 db2) b2

Jeffreys’ prior: J(b) x |E (—Z—Zf) 12=1

Posterior:

1
f(b|x) o f(x|b)J(b) babx*HB = abx~P1

x aPx7b = (z)b = exp{—blog(g)}.

The posterior distribution is exponential with rate log(%).
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You are interested in estimating 6, the probability that a drawing
pin will land point up. Your prior belief can be described by a
mixture of Beta distributions:

F(0) = M(a+ b)

— ot et R gt gy,

2r(p)r(q)

You throw a drawing pin n independent times, and observe x
occasions on which the pin lands point up. Calculate the posterior
distribution for 6.
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Let X denote the number of times that the drawing pin lands
point up.
X ~ Binomial(n,0)

Likelihood: f(x | 8) o< 8%(1 — 0)"—*
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Let X denote the number of times that the drawing pin lands
point up.

X ~ Binomial(n,0)
Likelihood: f(x | 8) o< 8%(1 — 0)"—*

Posterior: (0 | x) o< f(x | 6)f(0)

x 2%:)7;1(32’) 9x+afl(1 _ 9)n7x+b71 + 2%5;‘2’) 9x+p71(1 _ 9)n7x+q71
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Let X denote the number of times that the drawing pin lands
point up.

X ~ Binomial(n,0)
Likelihood: f(x | 8) o< 8%(1 — 0)"—*

Posterior: (0 | x) o< f(x | 6)f(0)

x 2%:;1(32’) 9x+afl(1 _ 9)n7x+b71 + 2%5;‘2’) 9x+p71(1 _ 9)n7x+q71

I(a+b) T(x+a)l (n—x+b F(n+a+b x+a— N—x—4b—
- 2FEa)F(2:) ( F(r3+(a+b) ) {F(XJr(a)F(nfx)+b)9 taml(1— g)nxth 1}

F(p+q) F(x+p)F(n—x+q) r(n+p+q) x+p—1(1 _ g\n—x+g—1
Tar(p(@)  T(n+pTa) {r(x+p)|—(nfx+q)9 P =)t }
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M(a+b) T(x+a)l(n—x+b) and 8 = Mp+q) T(x+p)(n—x+q)
3 (a)F(b)  T(ntath) = W(P(q) T(ntprq)

Let o =
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Let a = ;g;@)) Focta)l(n—xtb) ng g — r(p+q) M(x+p)(n—x+q)

I(n+a+b) (P)F(q)  T(n+p+q)
Posterior:
01 = (255) g a0
B NP+ Q) B
* <a+6> TGO

where A=x+a, B=b+n—x,P=p+xand @ =g+ n— x.
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MNa+b) T(x+a)l(n—x+b M(p+ MN(x+p)l(n—x+
Let a = 2rga)r(2)) ( r(rz+(a+b) ) and 8 = 2r§5)r((¥2,) ( r(pn)+(p+q) 23
Posterior:
. o MA+B) a1 B-1
1010 = (353) i 0o
B > P+ Q) p1 Q-1
+ 9P-1(1 — 9)Q1,
(+53) Fier) 0=

where A=x+a, B=b+n—x,P=p+xand @ =g+ n— x.

That is the posterior distribution of 8 is a mixture of Beta
distributions with updated parameters and updated mixing
proportions.
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(a)

Observations x; and x> are obtained of random variables X;
and X3, having Poisson distributions with respective means 6
and @0, where ¢ is a known positive coefficient. Show, by
evaluating the posterior density of 6, that the Gamma (p, q)
family of prior distributions of 6 is a conjugate or this data
mode.

Now suppose that ¢ is also an unknown parameter with prior
density f (¢) = 1/ (1 + ¢)?, and independent of §. Obtain the
joint posterior distribution of # and ¢ and show that the
marginal posterior distribution of ¢ is proportional to

¢
(L4 0)* (1 + ¢+ qy e
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Exercise 4.3-Solution

(a) f(x1,x2|0) = 7675?“ 76—91(9'4))@ x e V(1+d)pratxe
1! !
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Exercise 4.3-Solution

(a) f(x1,x2|0) = 7675?“ 76—91(9'4))@ x e V(1+d)pratxe
1! !

Prior:

f(0) = %Hp_le_qe x Pp~le=a0 = Gamma(p, q)
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Exercise 4.3-Solution

(a) f(xi,x2 | 0) = e=001 e00(00)2  —0(1+0)gratxe

x1! xo!
Prior:
f(0)= %9”_15‘79 o #P~1e=9% = Gamma(p, q)
Posterior:

(0] xi,x) = gratxetp—1,—(1+¢+q)0 —
Gamma(xy + x2 + p,1 + ¢ + q) = Gamma family is
conjugate for this model.

. _ X1txe+p
Posterior Mean = Trorq
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Exercise 4.3-Solution

(a)

f(X17X2 ’ 0) - ﬂw o~ e—9(1+¢)9)<1+xz

x1! xo!
Prior:
f(0) = %GP_le o #P~1e=9% = Gamma(p, q)
Posterior:

(0] xi,x) = gratxetp—1,—(1+¢+q)0 —
Gamma(xy + x2 + p,1 + ¢ + q) = Gamma family is

conjugate for this model.

. _ X1txe+p
Posterior Mean = Trorq

Joint Posterior:

(¢,9!X17X2)0<f(¢) (0) f (X17X2\¢79)0<

p—1 —q@ —0(14+¢) px1 px2 hx2
(1+ 0P le ¥

(1+¢)

QP TxITx— 1¢X2 —(1+¢+1)0
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Exercise 4.3-Solution

Marginal Posterior:

f (o, x1,x) = /f(éb’@ | x1,x2) d6

o(/oo ¢ 9P+X1+Xz—1e—(1+¢+1)9d9
o (1+¢)
¢ F(p+x1+x)
(1_|_¢)2 (1+¢+q)x1+x2+P
X ¢X2 1
(1+¢)2 (1+¢+q)x1+x2+P'
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| have been offered an objet d'art at what seems a bargain price of
£100. If it is not genuine, then it is worth nothing. If it is genuine
| believe | can sell it immediately for £300. | believe there is a 0.5
chance that the object is genuine. Should | buy the object?

An art ‘expert’ has undergone a test of her reliability in which she
has separately pronounced judgement — ‘genuine’ or ‘counterfeit’
— on a large number of art subjects of know origin. From these it
appears that she has probability 0.8 of detecting a counterfeit and
probability 0.7 of recognising a genuine object. The expert charges
£30 for her services. Is it to my advantage to pay her for an
assessment?
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1. The parameter space is © = {61, 6>}, where 0; and 0,
correspond to the object being genuine and counterfeit
respectively;

2. The set of actions is A= {a1, a2} where a; and a, correspond
to buying and not buying the object respectively;
3. The loss function is
L(H,a) ‘ 91 92
a -200 100
an 0 0
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1. The parameter space is © = {61, 6>}, where 0; and 0,
correspond to the object being genuine and counterfeit
respectively;

2. The set of actions is A= {a1, a2} where a; and a, correspond
to buying and not buying the object respectively;
3. The loss function is
L(H,a) ‘ 01 92
a -200 100
an 0 0

The decision strategy is to evaluate the expected loss for each
action and choose the action which has the minimum expected
loss.
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The expected loss is first calculated based on the prior distribution
of 0: f(01) = 0.5 and f(6>) = 0.5.
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The expected loss is first calculated based on the prior distribution
of 0: f(01) = 0.5 and f(6>) = 0.5.

f0) |05 05
L(0,3) | 01 6 E[L(0, a)]

a1 200 100 | 0.5 x (—200) + 0.5 x 100 = —50
a 0o 0 05%x0+05x%x0 =0
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The expected loss is first calculated based on the prior distribution
of 0: f(01) = 0.5 and f(6>) = 0.5.

f0) |05 05
L(0,3) | 01 6 E[L(0, a)]

a1 200 100 | 0.5 x (—200) + 0.5 x 100 = —50
a 0o 0 05%x0+05x%x0 =0

So, under the prior, the best action is to buy (according to
minimisation of expected loss - here maximization of expected
profit). The expected profit of this action is £50.
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The expected loss is first calculated based on the prior distribution
of 0: f(01) = 0.5 and f(6>) = 0.5.

f0) |05 05
L(0,3) | 01 6 E[L(0, a)]

a1 200 100 | 0.5 x (—200) + 0.5 x 100 = —50
a 0o 0 05%x0+05x%x0 =0

So, under the prior, the best action is to buy (according to
minimisation of expected loss - here maximization of expected
profit). The expected profit of this action is £50.

Suppose | pay the expert. Her possible conclusions about the
object (observations) are x; = 'says genuine’ and
Xxp = 'says counterfeit’.
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0 6,
f(x) | 0.70 0.20
Likelihoods  f(x2|6) | 0.30  0.80
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61 6>
f(x10) | 0.70 0.20
Likelihoods f(x2|0) | 0.30 0.80
Prior f(0) 0.50 0.50
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61 6>
(x16) | 0.70 0.20
Likelihoods f(x2|0) | 0.30 0.80
Prior f(0) 0.50 0.50
(
(

x,0) | 035 0.10 | 045 f(x1)

Joints x2,0) | 0.15 0.40 | 0.55  f(x)
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61 6>
f(x|0) | 0.70 0.20
Likelihoods  f(x»|0) | 0.30 0.80
Prior f(0) 0.50 0.50
f(x,0) | 035 010 | 045 f(x1)
Joints f(x2,0) | 0.15 0.40 | 055 f(x)
al a»
f(Olx1) | 7/9 2/9 | -1200/9 O Expected
Posteriors  f(f|x2) | 3/11 8/11 | 200/11 0 Losses

w m“’“‘ m

2 x (—200) + & x 100 = 22

(L(9,a1) ’ Xl) = f(91 | X1)L(91, 21) + f(92 | X1)L(92, al) =
x (—200) + § x 100 = —1300
( (9 31) ’ X2) = f(01 | X2)L(91, 81) + f(92 | X2)L(92, a1) =

E(L(9 32) ’Xl) E( (9 82) | X2) =0

Loukia Meligkotsidou, University of Athens

Bayesian Inference



Solution

Bayes Decision Rule: d(x1) = a1, d(x2) = a.
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Bayes Decision Rule: d(x1) = a1, d(x2) = a.

Bayes Risk:
1200

BR(d) = p(d(x1), x1)f(x1)+p(d(x2), x2)f(x2) = — x0.45+0x0.55 = —60
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Bayes Decision Rule: d(x1) = a1, d(x2) = a.

Bayes Risk:
1200

BR(d) = p(d(x1), x1)f(x1)+p(d(x2), x2)f(x2) = — x0.45+0x0.55 = —60

That is the profit associated with our decision rule is £60. The
gain of £10 does not worth the £30 cost of the expert's services.
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Consider a decision problem with two actions, c; ana ap and a loss
function which depends on a parameter 6, with 0 < 8 < 1. The
loss function is

L(6, ) 0 o= o1.
y &) =
2—30 o= as.

Assume a Beta(1,1) prior for 6, and an observation

X ~ Binomial (n, ). The posterior distribution is

Beta(x +1,n — x 4+ 1). Calculate the expected loss of each action
and the Bayes rule.
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Consider a decision problem with two actions, c; ana ap and a loss
function which depends on a parameter 6, with 0 < 8 < 1. The
loss function is

L(6, ) 0 o= o1.
y &) =
2—30 o= as.

Assume a Beta(1,1) prior for 6, and an observation

X ~ Binomial (n, ). The posterior distribution is

Beta(x +1,n — x 4+ 1). Calculate the expected loss of each action
and the Bayes rule.
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Exercise 5.2-Solution

Prior:
fA)=1, 0<6<1
Likelihood:

fx16) = (g)ox(1-0)""
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Exercise 5.2-Solution

Prior:
fA)=1, 0<6<1
Likelihood:

fx16) = (g)ox(1-0)""

Posterior:
f(0]x)ox0*(1—0)""=Beta(x+1,n—x+1)
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Exercise 5.2-Solution

Prior:
fA)=1, 0<6<1
Likelihood:

fx16) = (g)ox(1-0)""

Posterior:
f(0]x)ox0*(1—0)""=Beta(x+1,n—x+1)

Expected loss under the two actions:
E(L(8,a1) | x) = [, 0d6 =0
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Exercise 5.2-Solution

Prior:
fA)=1, 0<6<1
Likelihood:

fx16) = (g)ox(1-0)""

Posterior:
f(0]x)ox0*(1—0)""=Beta(x+1,n—x+1)

Expected loss under the two actions:
E(L(8,a1) | x) = [, 0d6 =0
E(L(B,a2) | x) = [ (2—360)f(0 | x)d§ =2 —3E (0 | x) =

5 _ 3(x+1) —9o_ 3(x+1)

x+14+n—x-+1 n+2
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Exercise 5.2-Solution

Prior:
fA)=1, 0<6<1
Likelihood:

fx16) = (g)ox(1-0)""

Posterior:
f(0]x)ox0*(1—0)""=Beta(x+1,n—x+1)

Expected loss under the two actions:
E(L(8,a1) | x) = [, 0d6 =0
E(L(B,a2) | x) = [ (2—360)f(0 | x)d§ =2 —3E (0 | x) =

5 _ 3(x+1) —9o_ 3(x+1)

x+14+n—x-+1 n+2

We prefer the action ap if E(L(6,a2) | x) < E(L(0,1) | x) =

3(x+1) 2n+1
2-=<0=--=x=>55=
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(a) For a parameter 6 with a posterior distribution described by the
Beta(P, Q) distribution, find the posterior mode in terms of P and
® and compare it with the posterior mean.

Solution.

f(O]x) o< 8P1(1—0)Q 1
log (0| x)=(P—1)logh + (Q —1)log(1—-0)+c
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(a) For a parameter 6 with a posterior distribution described by the
Beta(P, Q) distribution, find the posterior mode in terms of P and
® and compare it with the posterior mean.

Solution.

f(O]x) o< 8P1(1—0)Q 1

log (0| x)=(P—1)logh + (Q —1)log(1—-0)+c
%:%:P—l—(P—l)H_( -1 =
(P+Q—-2=P—-1=0= P+Q 5 [posterior mode]
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(a) For a parameter 6 with a posterior distribution described by the
Beta(P, Q) distribution, find the posterior mode in terms of P and
® and compare it with the posterior mean.

Solution.

f(O]x) o< 8P1(1—0)Q 1

log (0| x)=(P—1)logh + (Q —1)log(1—-0)+c
slefon) _o -, 22194 o
%:%:P—l—(P—l)H_( -1 =
(P+Q—-2=P—-1=0= P+Q 5 [posterior mode]

Posterior mean: E(0 | x) = m [closer to 1/2 than mode]

Loukia Meligkotsidou, University of Athens Bayesian Inference



The parameter 6 has a Beta(3,2) posterior density. Show that the
interval [5/21,20/21] is a 94.3% highest posterior density region
for 6.

Solution.
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The parameter 6 has a Beta(3,2) posterior density. Show that the
interval [5/21,20/21] is a 94.3% highest posterior density region
for 6.

Solution.
A region Ca(x) is a 100(1 — )% credible region for § if
fc ) f(0]x)dd =1—a. Itisan HPD region if Co(x) ={60:7 (0] x) >~}
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The parameter 6 has a Beta(3,2) posterior density. Show that the
interval [5/21,20/21] is a 94.3% highest posterior density region

for 6.

Solution.

A reglon C (x) is a 100(1 — @)% credible region for 0 if

fc( x)df =1—a. Itis an HPD region if Co(x) ={0:1 (0] x) > ~}.

In our case, f (0 | x) = 8(32 02(1 0) =126%(1—0), 6<]0,1].

b 04
11262 (1 - 0) d6 = 0.943 & 12 [f—ﬂazo.m@
4b3 — 3b* — 423 + 3a* = 0.943.
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The parameter 6 has a Beta(3,2) posterior density. Show that the
interval [5/21,20/21] is a 94.3% highest posterior density region

for 6.

Solution.

A reglon C (x) is a 100(1 — @)% credible region for 0 if

fc( x)df =1—a. Itis an HPD region if Co(x) ={0:1 (0] x) > ~}.

In our case, f (0 | x) = 8(32 02(1 0) =126%(1—0), 6<]0,1].

11262 (1 - 0) d6 = 0.943 & 12 [f - ﬁL = 0.943 &

4
4b> — 3b* — 42> +3a" = 0.943.
Moreover, 12a%(1 — a) = 12b%(1 — b) = 7.
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The parameter 6 has a Beta(3,2) posterior density. Show that the
interval [5/21,20/21] is a 94.3% highest posterior density region

for 6.

Solution.

A reglon C (x) is a 100(1 — @)% credible region for 0 if

fc( x)df =1—a. Itis an HPD region if Co(x) ={0:1 (0] x) > ~}.

In our case, f (0 | x) = 8(32 02(1 0) =126%(1—0), 6<]0,1].

11262 (1 - 0) d6 = 0.943 & 12 [f - %} = 0.943 &
a

4b% — 3b* — 423 + 3a* = 0.943.

Moreover, 12a%(1 — a) = 12b%(1 — b) = 7.

Solving the two-equation system, we derive a = 5/21 and

b=20/21.
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A parameter 6 has a posterior density that is Gamma(1,1).
Calculate the 95% HPD region for #. Now consider the
transformation ¢ = v/20. Obtain the posterior density of ¢ and
explain why the highest posterior density region for ¢ is not
obtained by transforming the interval for 6 in the same way.
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A parameter 6 has a posterior density that is Gamma(1,1).
Calculate the 95% HPD region for #. Now consider the
transformation ¢ = v/20. Obtain the posterior density of ¢ and
explain why the highest posterior density region for ¢ is not
obtained by transforming the interval for 6 in the same way.

Solution.
The posterior density of 6 is decreasing (Exponential(1)). Thus,
the 95% HPD region is an interval of the form [0,b] satisfying

JYe?=0095c1-eb=095= Gos(x) =[0,3].
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A parameter 6 has a posterior density that is Gamma(1,1).
Calculate the 95% HPD region for #. Now consider the
transformation ¢ = v/20. Obtain the posterior density of ¢ and
explain why the highest posterior density region for ¢ is not
obtained by transforming the interval for 6 in the same way.

Solution.
The posterior density of 6 is decreasing (Exponential(1)). Thus,
the 95% HPD region is an interval of the form [0,b] satisfying

De? =095 1—e?=095= Coos(x) = [0,3].

Now, we have that ¢ = /20 < 0 = %2 Posterior density of ¢:
50 x) = (o) G | = oe "
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A parameter 6 has a posterior density that is Gamma(1,1).
Calculate the 95% HPD region for #. Now consider the
transformation ¢ = v/20. Obtain the posterior density of ¢ and
explain why the highest posterior density region for ¢ is not
obtained by transforming the interval for 6 in the same way.

Solution.

The posterior density of 6 is decreasing (Exponential(1)). Thus,
the 95% HPD region is an interval of the form [0,b] satisfying
be=0 =095 1—eb=095= Cyos(x) =[0,3].

0
Now, we have that ¢ = /20 < 0 = %2 Posterior density of ¢:
50 x) = (o) G | = oe "

Since the posterior density of ¢ is not monotonic, the credibility
interval will be of the form [a, b] with a # 0. Hence, it is not a
transformation of the credibility interval for 6.
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Consider a sample xi, ..., x, consisting of independent draws from
a Poisson random variable with mean 6. Consider the hypothesis
test, with Null hypothesis

HO 0=1
against an alternative hypothesis
H1 10 75 1

Assume a prior probability of 0.95 for Hg and a Gamma prior

f(0) = r(z;)@"l exp{—qf},

under Hj.
(a) Calculate the posterior probability of Hp.
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Solution

Likelihood: f(x | §) = 76>
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Likelihood: f(x | §) = 76>

HO : P(Ho ‘ X) 0.8 P(Ho)P(X ’ Ho)
= P(Ho)f(x |6 =1)=0.95

e—n

1
I1x!
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Likelihood: f(x | §) = 76>

HO . P(Ho ‘ X) XX P(Ho)P(X ’ Ho)

e—n

= P(Ho)f(x|0=1)= 0'95H1x,-!

H1 : P(Hl ’ X) X P(Hl)P(X ’ Hl)
_ p(Hl)/f(xw)f(mHl)de

© 1 P
— 005 / gL xig=0_9__pp—1,-a0 49
0 H X;! r(P)

— 1 q° > S xi+p—1 ,—(n+q)0
= O.OSHXi! r(,D)/o 0 e do

_ 1 g% T(Xx+p)
- O'OSHX;! (o) (n + a) S5
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Exercise 5.8 - Solution

Let « = 0.95¢" and 3 = 0.05%%.

Then P(Ho | x) = ;535
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Exercise 5.8 - Solution

Let « = 0.95¢" and 3 = 0.05%%.

Then P(Ho | x) = ;535

(b) Assume n =10, > ; x; = 20, and p = 2q. What is the
posterior probability of Hg for each of p =2,1,0.5,0.1. What
happens to this posterior probability as p — 07
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Exercise 5.8 - Solution

Let « = 0.95¢" and 3 = 0.05%%.

Then P(Ho | x) = ;535
(b) Assume n =10, > ; x; = 20, and p = 2q. What is the
posterior probability of Hg for each of p =2,1,0.5,0.1. What
happens to this posterior probability as p — 07

For n =10, > ; x; = 20, and p = 2g¢:

o =0.95¢""% and § = 0.05 (’Félzagp (10rﬁo/J2r)g%’+p-
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A random sample xi, ..., x, is observed from a Poisson(6)
distribution.The prior on 6 is a Gamma(g, h). Show that the
predictive distribution for a future observation y from this
Poisson(6) distribution is

C(y+G=1\ [/ 1 \ (.  1)\°
f(y‘x)_< G-1 ><1+H> (1 1+H) y=01...

What is this distribution?

Loukia Meligkotsidou, University of Athens

Bayesian Inference



A random sample xi, ..., x, is observed from a Poisson(6)
distribution.The prior on 6 is a Gamma(g, h). Show that the
predictive distribution for a future observation y from this
Poisson(#) distribution is

C(y+G=1\ [/ 1 \ (.  1)\°
f(y‘x)_< G-1 ><1+H> (1 1+H) y=01...

What is this distribution?

Solution
Fylx)=[f(y]0)f(x|0)dd
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A random sample xi, ..., x, is observed from a Poisson(6)
distribution.The prior on 6 is a Gamma(g, h). Show that the
predictive distribution for a future observation y from this
Poisson(#) distribution is

C(y+G=1\ [/ 1 \ (.  1)\°
f(y‘x)_< G-1 ><1+H> (1 1+H) y=01...

What is this distribution?

Solution
Fylx)=[f(y]0)f(x|0)do

Posterior: f (6 | x) < []7, ef)z!ex" %Hg_l exp {—ho}
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A random sample xi, ..., x, is observed from a Poisson(6)
distribution.The prior on 6 is a Gamma(g, h). Show that the
predictive distribution for a future observation y from this
Poisson(#) distribution is

C(y+G=1\ [/ 1 \ (.  1)\°
f(y‘x)_< G-1 ><1+H> (1 1+H) y=01...

What is this distribution?

Solution

flylx)=[f(y|0)f(x|0)do
Posterior: f (6 | x) oc []74 ;if’x’ r,(ir) 081 exp {—ho}
I\/Iariginal Iikelihood

fO i=1 #Ff(':)gg 1 eXp{—hG} df =
7n002, 1

Tt I exp{— (n+ h) 0} 9XF < e~ 1dg
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Exercise 6.1- Solution

_ e mgXili T xitg
[T X' (8) (npmy=itaxite

n e_‘g X —
[T &t rl(i)‘gg texp {—h6}

e—n€927:1 F(Zlex,--&-g)
T Iy X! (nyh)=imasite
(n—+ h)Xi1%ite S il
ey a 0 I:IXI g eXp . h+n 0
M, %+ 8) {=(h+n)8}

= f(0] x) =
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Exercise 6.1- Solution

Predictive distribution
fly|x)= ff(y | ) (0 | x)do =

h 27: xi+g —0 n : —
(I?(E:)’-’:l x,.1+g) OOO : y!gy griz xite1 exp{—(h+n)0} =
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Exercise 6.1- Solution

Predictive distribution
fly|x)= ff(y | ) (0 | x)do =

h 27: xi+g —0 n : —
(I?(E:)’-’:l x,.1+g) OOO : y!gy griz xite1 exp{—(h+n)0} =

nt-h)Zi=1xite "o 3
% fooo 9> i1 xitgt+y—1 exp{— (h+n+1)0} =
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Exercise 6.1- Solution

Predictive distribution
fly | x)=[f(y|6)f(6|x)do =

NLRZIZ1 X TE oo am X
P e SO e (— (h+ ) 0) =

n i=1%it& "o 3
%ﬁ)& giz1 Xite+y Lexp {— (h+n+1)0} =

(neh)=icite  T(X0 xi+gty)
F(Cr, xi+g)y! (h+n+1)27:1 XitEty

(Z 1 Xi+g+y— 1 n+h > 1Xi+g -
(Z, xi+g—1 yl h+n+1 n+h+1 -

y
(GE:”’) (1jH> (1 Hil> = NegativeBinomial (1+H, G)
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A random sample xi, ..., x, is observed from a N(f, o?)
distribution with o> known, and a normal prior for 6 is assumed,
leading to a posterior distribution N(B, D?) for §. Show that the
predictive distribution for a further observation, y, from the
N(6,0?) distribution, is N(B, D? + o2).
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A random sample xi, ..., x, is observed from a N(f, o?)
distribution with o> known, and a normal prior for 6 is assumed,
leading to a posterior distribution N(B, D?) for §. Show that the
predictive distribution for a further observation, y, from the
N(6,0?) distribution, is N(B, D? + o2).

Solution
Posterior: (0 | x) = \/2717? exp {—ﬁ(@ - B)?}

Predictive: f(y | x) = [f(y | 0)f(0 | x)db

:ffooo\/zir?exp{—ﬁ(y—G)Q}@exp{—ﬁ(@—By}dG
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Exercise 6.3 - Solution

= [~ 2;U2exp{—ﬁ(y—0)2}ﬁexp{—ﬁ(@—BF}d@
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Exercise 6.3 - Solution

= [~ 2;U2exp{—ﬁ(y—0)2}ﬁexp{—ﬁ(@—BF}d@

2 2 2
= sop e op{ 3G 28+ Lk -2+ Bl
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Exercise 6.3 - Solution

2
= 2%[) foooexp{—%[% —2 + —l— 298 + D2 }d@

2;(72 exp {—5=(y — 0)?} \/;W exp {— 552 (6 — B)?} db

o2 2 2 o2 -2
:ffOOOEXP{_U JED [0 an—zigDz +(y0—2ige2 )2]}d0

1 _y: _ B | (o %y+BD2)2
X 270D &P { 202 ~ 202 T 2(c2+D?)
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Exercise 6.3 - Solution

= [~ 2;U2exp{—ﬁ(y—0)2}\/ﬁexp{—ﬁ(ﬁ—BF}dﬁ

2 0 2 2 5
= gp [ en {3 28+ G4 -2+ Bl a0

2, p-2 —2 _2 o2 _2
= [ exp {—%[@2 —20Y9HBD 2y (v B )2]} d9

1 _y: _ B | (o %y+BD2)2
X 270D &P { 202 ~ 202 T 2(c2+D?)

— V2m 1
T Vo24+D2 X 270D <

22 2 2 ’
exp {_202D2(0172+D—2)[y0g +y2 + Bchzr + B? — 0’202(0’_2)/ + BD—2)2]
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Exercise 6.3 - Solution

_ 1 1 y>D? 2, B?%? 2
= TSPl ty o + B

—02D%07%y? — 62D?B?>D~* — 202D?02yBD~?]}
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Exercise 6.3 - Solution

_ 1 1 y>D? 2, B?%? 2
= TSPl ty o + B

—02D%07%y? — 62D?B?>D~* — 202D?02yBD~?]}

= oo OP sy (v + B” — 2yB)}

_ 1 1
= WGXP{_W(Y - B)z}

Therefore y | x ~ N(B, D? 4 0?)
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Observations x = (x1, X2, . .., Xp) are made of independent random
variables X = (X1, Xo, ..., X,) with X; having uniform distribution

1
f(xi|0) = 5; 0 < x; <46.
Assume that 6 has an improper prior distribution

f(a):%; 6> 0.

(a) Show that the posterior distribution of ¢ is given by

nM?"
where M = max(x1, x2, ..., Xp).

(b) Show that 6 has posterior expectation

n
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(a) Likelihood:
f(x[0)=gT1111(0<x<0)=41(0<M<0),

where M = max(xl, ey Xn)
Prior: f(0) = %

Posterior: f(6 | x) = cf(x | 0)f(0) = czi<1(0 > M)
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(a) Likelihood:
f(x[0)=gT1111(0<x<0)=41(0<M<0),

where M = max(xl, ey Xn)

Prior: f(0) = %

Posterior: f(6 | x) = cf(x | 0)f(0) = czi<1(0 > M)

[F(0]x)d =1=c [T 9,,+1d9—1:>c[ ]:::1;»
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(a) Likelihood:
f(x[0)=gT1111(0<x<0)=41(0<M<0),
where M = max(xl, ey Xn)

Prior: f(0) = %
Posterior: f(6 | x) = cf(x | 0)f(0) = czi<1(0 > M)

[F(0]x)d =1=c [T 9,,+1d9—1:>c[ ]:::1;»

MZ—1=c=nM"=f0|x)=2% 0> M.

n
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(a) Likelihood:
f(x[0)=gT1111(0<x<0)=41(0<M<0),
where M = max(xl, ey Xn)

Prior: f(0) = %
Posterior: f(6 | x) = cf(x | 0)f(0) = czi<1(0 > M)

[F(0]x)d =1=c [T 9,,+1d9—1:>c[ ]:::1;»

MZ—1=c=nM"=f0|x)=2% 0> M.

n

(b) Posterior Expectation:
E(0]|x)= fM 0f (0 | x)do = Oo"Mndﬂ—nl\/l”[ "H}M: an

+1
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(c) Verify the posterior probability:
1
Pr(0 > t M|x) = n for any t > 1.
(d) A further, independent, observation Y is made from the same

distribution as X. Show that the predictive distribution of Y
has density

1 n 1 .
flylx) = <n+1> Ly M Y 0.
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o

(c) Pr(6 > tM | x) = [ 2M7 g = p [g"]tM: Lot>1
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() Pr(0 > tM | x) = [ 2M7 4o = nM" [ﬂ]‘” I
tM gn+1 =0 | m o =

(d) Likelihood of future observation: f(y|f) =% 0 < y < 6.

(o 1x) = [l 106 | 0do = [ 516> y) 5510 = M)do
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o

() Pr(6 > tM | x) = [ B¥ido = n" |22] " = J £>1

(d) Likelihood of future observation: f(y|f) =% 0 < y < 6.

/(y|9 e|xd9_/ 9n+1l(¢9>l\/l)d9

m" M"
= / nn+2 d¢9 — |: n 9 n= 1:|
max(M.,y) 0 -n—1 max(M.y)

Fly | x)
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o

() Pr(6 > tM | x) = [ B¥ido = n" |22] " = J £>1

(d) Likelihood of future observation: f(y|f) =% 0 < y < 6.

fly|x) = / f(y|0)f (9|Xd9—/ 9n+1l(¢9>l\/l)d9
m" m"
= / nn+2d9 = |: n 9 n- 1:|
max(M,y) 0 —n—1 max(M.y)
nM" 1

n+1[max(M,y)]"+1

Loukia Meligkotsidou, University of Athens Bayesian Inference



o

(c) Pr(6 > tM | x) = [ 2M2dg — nM" [;"]tM =1 t>1

(d) Likelihood of future observation: f(y|f) =% 0 < y < 6.

fly|x) = / f(y|0)f (9|Xd9—/ 9n+1l(¢9>l\/l)d9
:/ ”Mda—[”Mne”l}
max(M.y) ot —n—1 max(M,y)
_aM" 1
~ n+1[max(M,y)]"t?
nM" 1

n+ 1Mt max(M/M,y/M)]"+1
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o

() Pr(6 > tM | x) = [ B¥ido = n" |22] " = J £>1

(d) Likelihood of future observation: f(y|f) =% 0 < y < 6.

fly|x) = / f(y|0)f (9|Xd9—/ 9n+1l(¢9>l\/l)d9
:/ nl\/lda_[n/\/l”enl}
max(M,y) gr+2 —-n—1 max(M.,y)
_aM" 1
~ n+1[max(M,y)]"t?
nM" 1

n+ 1Mt max(M/M,y/M)]"+1

1 n 1
- > 0.
M <n+ 1) [max(L, y/ Myt ¥ =0
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