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Outline of the course

This course provides theory and practice of the Bayesian approach
to statistical inference. Applications are performed with the
statistical package R.

Topics:

I Bayesian Updating through Bayes’ Theorem

I Prior Distributions

I Multi-parameter Problems

I Summarizing Posterior Information

I Prediction

I The Gibbs Sampler
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Introduction

Commonly the purpose of formulating a statistical model is to
make predictions about future values of the process.

In making predictions about future values on the basis of an
estimated model there are two sources of uncertainty:

I Uncertainty in the parameter values which have been
estimated from past data; and

I Uncertainty due to the fact that any future value is itself a
random event.

In classical statistics it is usual to fit a model to the past data, and
then make predictions of future values on the assumption that this
model is correct (estimative approach). Only the second source of
uncertainty is included in the analysis, leading to estimates which
are believed to be more precise than they really are.
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The Predictive Density

Within Bayesian inference it is straightforward to allow for both
sources of uncertainty by simply averaging over the uncertainty in
the parameter estimates, the information of which is completely
contained in the posterior distribution.

So, suppose we have past observations x = (x1, . . . , xn) of a
variable with density function (or likelihood) f (x |θ) and we wish to
make inferences about the distribution of a future value of a
random variable Y from this same model.

With a prior distribution f (θ), Bayes’ theorem leads to a posterior
distribution f (θ|x). Then the predictive density of y given x is:

f (y |x) =

∫
f (y |θ)f (θ|x)dθ = E [f (y |θ)|x ] .

Thus the predictive density is the integral (expectation) of the
likelihood of y with respect to the posterior.
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Derivation of the Predictive Density

Note: the derivation of the predictive distribution is simply based
on the usual laws of probability manipulation, and has a
straightforward interpretation itself in terms of probabilities.

The r.v. Y need not come from the same distribution as the
observations x . It is important however that, given θ, we assume
that Y is independent of x . Therefore,

Joint density of y and x , given θ: f (y , x |θ) = f (y |θ)f (x |θ),

Joint density of y , x and θ: f (y , x , θ) = f (y |θ)f (x |θ)f (θ).
Then

f (y , θ|x) =
f (y |θ)f (x |θ)f (θ)

f (x)
= f (y |θ)f (θ|x),

f (y |x) =

∫
f (y |θ)f (θ|x)dθ.
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Classical Approach

The corresponding approach in classical statistics would be to
obtain the maximum likelihood estimate θ̂ of θ and to base
inference on the distribution f (y |θ̂), the estimative distribution.

This makes no allowance for the variability incurred as a result of
estimating θ, and so gives a false sense of precision (the predictive
density f (y |x) is more variable by averaging across the posterior
distribution for θ).

Note: You CANNOT remove a constant of proportionality in
f (y |θ), while it is usually simplest to use the (normalised) posterior
distribution f (θ|x) in

f (y |x) =

∫
f (y |θ)f (θ|x)dθ.

(If you use the posterior up to a constant of proportionality, then
you will also get f (y |x) up to a constant of proportionality).
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Example. Binomial Sample

Suppose we have made an observation x ∼ Binomial(n, θ) and our
(conjugate) prior for θ is θ ∼ Beta(p, q). Then, we have shown,
the posterior for θ is given by:

θ|x ∼ Beta(p + x , q + n − x).

Now, suppose we intend to make a further N observations in the
future, and we let z be the number of successes in those N trials,
so that z |θ ∼ Binomial(N, θ). So, we have the likelihood for our
future observation:

f (z |θ) =

(
N

z

)
θz(1− θ)N−z .
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The Predictive Distribution

For z = 0, 1, . . . ,N,

f (z |x) =

∫ 1

0

(
N

z

)
θz(1− θ)N−z × θp+x−1(1− θ)q+n−x−1

B(p + x , q + n − x)
dθ

=

(
N

z

)
1

B(P,Q)

∫ 1

0
θP+z−1(1− θ)Q+N−z−1

=

(
N

z

)
B(P + z ,Q + N − z)

B(P,Q)
.

This is, in fact, known as a Beta–binomial distribution.
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Example. Gamma Sample

Suppose X1, . . .Xn are independent variables having the
Gamma(k, θ) distribution, where k is known, and we use the
conjugate prior θ ∼ Gamma(p, q):

f (θ) ∝ θp−1 exp{−qθ}

leading via Bayes’ theorem to
θ|x ∼ Gamma(p + nk, q + Σxi ) = Gamma(G ,H).

The likelihood for a future observation y is

f (y |θ) =
θkyk−1 exp{−θy}

Γ(k)
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The Predictive Distribution

f (y |x) =

∫ ∞
0

θkyk−1 exp{−θy}
Γ(k)

× HGθG−1 exp{−Hθ}
Γ(G )

dθ

=
HGyk−1

Γ(k)Γ(G )

∫ ∞
0

θk+G−1 exp{−θ(y + H)}dθ

=
HGyk−1

Γ(k)Γ(G )

Γ(k + G )

(y + H)k+G
=

HGyk−1

B(k,G )(H + y)G+k
, y > 0.

We can relate f (y | x) to a standard distribution by writing

Y = (Hν1/ν2)Fν1,ν2,

where ν1 = 2k and ν2 = 2G and Fν1,ν2 has the Fisher ‘F’
distribution.
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