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Outline of the course

This course provides theory and practice of the Bayesian approach
to statistical inference. Applications are performed with the
statistical package R.

Topics:

I Bayesian Updating through Bayes’ Theorem

I Prior Distributions

I Multi-parameter Problems

I Decision Theory and Bayesian Inference

I Prediction

I The Gibbs Sampler
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Unit 3: Specifying Priors

The computational difficulties arise in using Bayes’ Theorem when
it is necessary to evaluate the normalizing constant∫

f (θ)f (x |θ)dθ.

Suppose X1, . . . ,Xn are independent Poisson(θ) r.v.s, and our
beliefs about θ are that it lies in [0, 1] and all values are equally
likely: f (θ) = 1; 0 ≤ θ ≤ 1 and f (θ|x) ∝ exp(−nθ)θΣxi . Then∫ 1

0
exp(−nθ)θΣxidθ,

and this integral can only be evaluated numerically.
So, even simple choices of priors can lead to awkward numerical
problems. But, we have seen cases in which we were able to
identify a prior for which the posterior was in the same family of
distributions as the prior; such priors are called conjugate priors.
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Conjugate Priors
Mixtures of Priors

An Example. Gamma Sample

Let X1, . . .Xn be independent variables having the Gamma(k , θ)
distribution, where k is known. Then

f (xi | θ) =
1

Γ(k)
θkxk−1

i e−θxi ∝ θke−θxi

So, f (x | θ) ∝
n∏

i=1

θke−θxi = θnk exp{−θΣxi}.

Now, studying this form, regarded as a function of θ suggests we
could take a prior of the form

f (θ) ∝ θp−1 exp{−qθ}

that is, θ ∼ Gamma(p, q). Then by Bayes’ Theorem

f (θ|x) ∝ θp+nk−1 exp{−(q + Σxi )θ},

and so θ|x ∼ Gamma(p + nk, q +
∑

xi ).
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Conjugate Priors

Provided they are not in direct conflict with our prior beliefs, and
provided such a family can be found, the simplicity induced by
using a conjugate prior is compelling.

The only case where conjugates can be easily obtained is for data
models within the exponential family. That is,

f (x |θ) = h(x)g(θ) exp{t(x)c(θ)}

for functions h, g , t and c such that∫
f (x |θ)dx = g(θ)

∫
h(x) exp{t(x)c(θ)}dx = 1.

This might seem restrictive, but in fact includes the exponential
distribution, the Poisson distribution, the gamma distribution with
known shape parameter, the binomial distribution, the normal
distribution with known variance and many more.
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Obtaining Conjugate Priors

Given a random sample x = (x1, x2, . . . , xn) from this general
distribution, the likelihood for θ is then

f (x | θ) =
n∏

i=1

{h(xi )}g(θ)n exp{
n∑

i=1

t(xi )c(θ)}

∝ g(θ)n exp{
n∑

i=1

t(xi )c(θ)}.

Thus, if we choose a prior of the form f (θ) ∝ g(θ)d exp{b c(θ)},
f (θ|x) ∝ f (θ)f (x | θ)

∝ g(θ)d exp{b c(θ)} × g(θ)n exp{
n∑

i=1

t(xi )c(θ)}

= g(θ)n+d exp{[b +
n∑

i=1

t(xi )]c(θ)} = g(θ)D exp{Bc(θ)}
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Example 1. Binomial Sample

A binomial random variable has pdf

f (x |θ) =

(
n

x

)
θx(1− θ)n−x

=

(
n

x

)
(1− θ)n

(
θ

1− θ

)x

=

(
n

x

)
(1− θ)n exp{x log(

θ

1− θ
)}.

So, h(x) =
(n
x

)
, g(θ) = 1− θ, t(x) = x , and c(θ) = log( θ

1−θ ).
Thus, we construct a conjugate prior with the form

f (θ) ∝ (1− θ)d exp{b log(
θ

1− θ
)}

= (1− θ)d−bθb = (1− θ)α−1θβ−1

which is a member of the beta family of distributions.
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Example 2. Normal Mean

Let X1, ...,Xn be a random sample from the N(θ, σ2) distribution
with σ2 known. Then,

f (x |θ) ∝ exp

{
−nθ2

2σ2
+
θ
∑

xi
σ2

}
=

[
exp

{
− θ2

2σ2

}]n
exp

{
θ
∑

xi
σ2

}
= g(θ)n exp{

n∑
i=1

t(xi )c(θ)},

where, g(θ) = exp
{
−θ2

2σ2

}
, t(xi ) = xi , and c(θ) = θ

σ2 .

Conjugate prior:

f (θ) ∝ g(θ)d exp{bc(θ)} ∝ exp

{
−dθ2

2σ2

}
exp

{
bθ

σ2

}
= exp

{
−dθ2

2σ2
+

bθ

σ2

}
= exp

{
− θ2

2D2
+

Bθ

D2

}
, [N(B,D2)].
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Mixtures of Priors

An Example. When a coin is tossed, then almost invariably there
is a 0.5 chance of it coming up heads. However, if the coin is spun
on a table, it is often the case that slight imperfections in the edge
of the coin cause it to have a tendency to prefer either heads or
tails. Taking this into account, we may wish to give the probability
θ of the coin coming up heads a prior distribution which favours
values around either 0.3 or 0.7 say.

That is, our prior beliefs may be reasonably represented by a
bimodal distribution (or even trimodal if we wish to give extra
weight to the unbiased possibility, θ = 0.5).

Our likelihood model for the number of heads in n spins will be
Binomial: X |θ ∼ Binomial(n, θ) and so the conjugate prior is the
beta family. However, no member of this family is multimodal.
One solution is to use mixtures of conjugate distributions!
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A Mixture of two Distributions

θ θ θ 

f
1
(θ) 

f
2
(θ) 

0.5f
1
(θ)+0.5f

2
(θ) 

Loukia Meligkotsidou, University of Athens Bayesian Inference



Conjugate Analysis
Ignorance Priors

Conjugate Priors
Mixtures of Priors

Mixtures of Priors

The mixtures of conjugate priors will also be a conjugate
prior family for the likelihood model!

Suppose f1(θ), . . . , fk(θ) are all conjugate distributions for θ,
leading to posterior distributions f1(θ|x), . . . , fk(θ|x).

Now consider the family of mixture distributions:

f (θ) =
k∑

i=1

pi fi (θ),

where 0 ≤ pi ≤ 1, i = 1, . . . , k and
∑k

i=1 pi = 1.
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The Posterior

Then,

f (θ|x) ∝ f (θ)f (x |θ)

=
k∑

i=1

pi fi (θ)f (x |θ), but fi (θ|x) =
fi (θ)f (x |θ)

fi (x)

=
k∑

i=1

pi fi (x)fi (θ|x), hence f (θ|x) =
k∑

i=1

p∗i fi (θ|x),

where p∗i ∝ pi fi (x). So the posterior is in the same
mixture–family. Notice though that the mixture proportions in the
posterior p∗i generally will be different from those in the prior.

Finite mixtures of conjugate priors can be made arbitrarily close to
any prior distribution. However, it may be possible to represent
one’s prior beliefs more succinctly using non–conjugate priors.
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one’s prior beliefs more succinctly using non–conjugate priors.
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Improper Priors

Let X1, . . . ,Xn ∼ N(θ, τ−1), τ known, θ ∼ N(b, c−1).
The posterior is θ|x ∼ N( cb+nτx

c+nτ ,
1

c+nτ ).

The strength of our prior beliefs about θ are determined by the
variance, or equivalently the precision, c , of the normal prior.

A large value of c corresponds to very strong prior beliefs; on the
other hand small values of c reflect very weak prior information.

Now, suppose our prior beliefs about θ were so weak that we let
c → 0. Then simply enough, the posterior distribution becomes
N(x , 1

nτ ), or in the more familiar notation: N(x , σ
2

n ). Thus we
seemingly obtain a perfectly valid posterior distribution through
this limiting procedure.
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Improper Priors

Consider, though, what’s happening to the prior as c → 0. In
effect, we obtain a N(b,∞) prior, which is not a genuine, ’proper’
distribution.

In fact, as c → 0, the distribution of N(b, c−1) becomes
increasingly flatter, so that in any interval −K ≤ θ ≤ K , provided
c is sufficiently close to 0, we have approximately

f (θ) ∝ 1; − K ≤ θ ≤ K .

But this cannot be valid, in the limit as c → 0, over the whole real
line R, because ∫

R
f (θ)dθ =∞.
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Improper Priors

The posterior N(x , σ
2

n ), obtained by letting c → 0 in the standard
conjugate analysis, cannot arise through the use of any proper prior
distribution. It does arise however by formal use of the prior
specification f (θ) ∝ 1, which is an example of what is termed an
improper prior distribution.

So, is it valid to use a posterior distribution obtained by
specifying an improper prior to reflect vague knowledge?
The use of improper prior distributions is considered to be
acceptable in the following sense.

If we chose c to be any value other than zero, we would have
obtained a perfectly proper prior. Thus, we could choose c
arbitrarily close to zero and obtain a posterior arbitrarily close to
the one we actually obtained by using the improper prior f (θ) ∝ 1.
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Representation of Ignorance

We saw that attempting to represent ignorance within the standard
conjugate analysis of a Normal mean led to the concept of
improper priors.

Another fundamental problem of the prior f (θ) ∝ 1 is that it is not
invariant in 1–1 transformations of the parameter!

Consider that we might have specified a prior fΘ(θ) for a parameter
θ in a model. It is quite reasonable to decide to use instead the
parameter φ = 1/θ. For example, θ may be the variance and φ the
precision of a Normal distribution. By probability theory the
corresponding prior density for φ must be given by

fΦ(φ) = fΘ(θ)×
∣∣∣∣ dθdφ

∣∣∣∣
= fΘ(1/φ)

1

φ2
.
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Jeffreys’ Prior

If we wished to express our ignorance about θ by choosing
fΘ(θ) ∝ 1, then we are forced to take fΦ(φ) ∝ 1/φ2. But if we are
ignorant about θ, we are surely equally ignorant about φ, and so
might equally have made the specification fΦ(φ) ∝ 1. Thus, prior
ignorance as represented by uniformity, is not preserved under
re-parameterisation.

There is one way of using the log likelihood `(θ) = log f (x | θ), to
specify a prior which is consistent across 1–1 parameter
transformations. This is the ‘Jeffreys’ prior’, and is based on the
concept of Fisher information:

I (θ) = −E
{
d2 `(θ)

dθ2

}
= E

{(
d `(θ)

dθ

)2
}
.

Then, the Jeffreys’ prior is defined as JΘ(θ) ∝ |I (θ)|1/2.
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The Invariance Property

Proposition. JΦ(φ) = JΘ(θ)
∣∣∣ dθdφ ∣∣∣

Substituting the definition of Jeffrey’s prior’s, and squaring, we
need to verify that

I (φ) = I (θ)

∣∣∣∣ dθdφ
∣∣∣∣2 .

Proof. We have `Φ(φ) = `Θ(θ(φ)) and

d`Φ(φ)

dφ
=

d`Θ(θ)

dθ

dθ(φ)

dφ
.

Therefore

I (φ) = E

{(
d `(φ)

dφ

)2
}

= E

{(
d `(θ)

dθ

dθ

dφ

)2
}

=

(
dθ

dφ

)2

IΘ(θ).
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Plots of Jeffreys’ Prior for a Parameter θ and for φ = 1/θ
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Example. Binomial Sample

Suppose X |θ ∼ Binomial(n, θ). Then,

f (x | θ) =

(
n

x

)
θx(1− θ)n−x

and

`(θ) = log(f (x |θ)) = x log(θ) + (n − x) log(1− θ) + c .

So,
d`(θ)

dθ
=

x

θ
− n − x

1− θ
and

d2`(θ)

dθ2
=
−x
θ2
− (n − x)

(1− θ)2
,
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Example. Binomial Sample

Then, Fisher’s Information:

I (θ) =
nθ

θ2
+

(n − nθ)

(1− θ)2
= n

(
1

θ
+

1

1− θ

)

= n

(
1− θ + θ

θ(1− θ)

)
= nθ−1(1− θ)−1,

since E (x) = nθ.

Jeffreys’ prior:
J(θ) ∝ θ−1/2(1− θ)−1/2

which in this case is the Beta( 1
2 ,

1
2 ) distribution.

Which is Jeffreys’ prior for φ = 1/θ in this case?
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