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Outline of the course

This course provides theory and practice of the Bayesian approach
to statistical inference. Applications are performed with the
statistical package R.

Topics:

I Bayesian Updating through Bayes’ Theorem

I Prior Distributions

I Multi-parameter Problems

I Decision Theory and Bayesian Inference

I Prediction

I The Gibbs Sampler
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Unit 1: Introduction

‘What is statistical inference?’
Many definitions are possible, but most boil down to the principle
that statistical inference is the science of making conclusions about
a ‘population’ from ‘sample’, items drawn from that population.
(This itself begs many questions about what is meant by a
population, how the sample relates to the population,etc).

Parametric Inference

Statistical Modelling: Build a stochastic model, containing a few
unknown parameters, to describe the dynamics of a random
process. (Distributional assumptions, linear models, GLMs, etc).
Statistical Inference: Develop techniques to infer the model’s
parameters from data, observations on the random process.
(Estimation, Confidence Intervals, Hypothesis Tests, Predictions).

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

The Bayesian Approach to Inference
Review of Bayes Theorem
Examples

Unit 1: Introduction

‘What is statistical inference?’
Many definitions are possible, but most boil down to the principle
that statistical inference is the science of making conclusions about
a ‘population’ from ‘sample’, items drawn from that population.
(This itself begs many questions about what is meant by a
population, how the sample relates to the population,etc).

Parametric Inference

Statistical Modelling: Build a stochastic model, containing a few
unknown parameters, to describe the dynamics of a random
process. (Distributional assumptions, linear models, GLMs, etc).
Statistical Inference: Develop techniques to infer the model’s
parameters from data, observations on the random process.
(Estimation, Confidence Intervals, Hypothesis Tests, Predictions).

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

The Bayesian Approach to Inference
Review of Bayes Theorem
Examples

Unit 1: Introduction

Uncertainty holds a central role in statistics!

Bayesian Inference is based on a simple idea:
The only satisfactory description of uncertainty is achieved
through probability.

The rule:
All the unknown quantities should be described through
probabilities.

This means that the parameters of a statistical model should be
treated as random variables.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

The Bayesian Approach to Inference
Review of Bayes Theorem
Examples

Unit 1: Introduction

Uncertainty holds a central role in statistics!

Bayesian Inference is based on a simple idea:

The only satisfactory description of uncertainty is achieved
through probability.

The rule:
All the unknown quantities should be described through
probabilities.

This means that the parameters of a statistical model should be
treated as random variables.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

The Bayesian Approach to Inference
Review of Bayes Theorem
Examples

Unit 1: Introduction

Uncertainty holds a central role in statistics!

Bayesian Inference is based on a simple idea:
The only satisfactory description of uncertainty is achieved
through probability.

The rule:
All the unknown quantities should be described through
probabilities.

This means that the parameters of a statistical model should be
treated as random variables.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

The Bayesian Approach to Inference
Review of Bayes Theorem
Examples

Unit 1: Introduction

Uncertainty holds a central role in statistics!

Bayesian Inference is based on a simple idea:
The only satisfactory description of uncertainty is achieved
through probability.

The rule:

All the unknown quantities should be described through
probabilities.

This means that the parameters of a statistical model should be
treated as random variables.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

The Bayesian Approach to Inference
Review of Bayes Theorem
Examples

Unit 1: Introduction

Uncertainty holds a central role in statistics!

Bayesian Inference is based on a simple idea:
The only satisfactory description of uncertainty is achieved
through probability.

The rule:
All the unknown quantities should be described through
probabilities.

This means that the parameters of a statistical model should be
treated as random variables.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

The Bayesian Approach to Inference
Review of Bayes Theorem
Examples

Unit 1: Introduction

Uncertainty holds a central role in statistics!

Bayesian Inference is based on a simple idea:
The only satisfactory description of uncertainty is achieved
through probability.

The rule:
All the unknown quantities should be described through
probabilities.

This means that the parameters of a statistical model should be
treated as random variables.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

The Bayesian Approach to Inference
Review of Bayes Theorem
Examples

Introduction: Example

Suppose the Forestry Commission wish to estimate the proportion
of trees in a large forest which suffer from a particular disease. It’s
impractical to check every tree, so they select a sample of n trees.

Random sampling: if θ is the proportion of trees having the disease
in the forest, then each tree in the sample will have the disease,
independently of all others in the sample, with probability θ.

X : the number of diseased trees in the sample
X = x : the observed value of the random variable X

Inference: point estimate (θ̂ = 0.1);
confidence interval (95 % confident that θ lies in [0.08,0.12]);
hypothesis test (reject the hypothesis that θ = 0.07 at sig. 5% );
prediction (predict that 15% of trees will be affected by next year).
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Introduction: Example

Statistical inferences are made by specifying a probability model,
also called the likelihood model, f (x |θ), which determines how, for
a given value of θ, the probabilities of the different values of X are
distributed. Here, X |θ ∼ Binomial(n, θ), therefore

f (x | θ) =

(
n
x

)
θx(1− θ)n−x

Inference about the population parameter θ are made on the basis
of observing X = x!

The principle of maximum likelihood: values of θ which give high
probability to the observed value x are ‘more likely’ than those
which assign x low probability.

The MLE: choose, as the best point estimate of θ the value that
maximizes the likelihood function!
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The Classical or Frequentist Approach to Inference

The most fundamental point in classical inference is that the
parameter θ, whilst not known, is being treated as constant rather
than random. This is the cornerstone of classical theory, but leads
to some problems of interpretation.

For example, we’d like a 95% CI of [0.08, 0.12] to mean there’s a
95% probability that θ lies between 0.08 and 0.12. It cannot mean
this, since θ is not random: it either is in the interval, or it isn’t.

The only random element in this probability model is the data, so
the correct interpretation of the CI is that if we applied our
procedure ‘many times’, then ‘in the long run’, the intervals we
construct will contain θ on 95% of occasions.

All inferences based on classical theory are forced to have this type
of long–run–frequency interpretation. This leads to the, so called,
frequentist approach to inference.
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The Bayesian Approach to Inference

The overall framework which Bayesian inference works within is
identical to that above: there is a population parameter θ which
we wish to make inferences about, and a probability mechanism
f (x | θ) which determines the probability of observing different
data x , under different parameter values θ.

So, Bayesian inference is still likelihood-based inference. The
fundamental difference is that θ is treated as a random quantity.

In essence, inferences are based on f (θ | x) rather than f (x | θ);
that is the probability distribution of the parameter given the data,
rather than the data given the parameter. This leads to a
probabilistic approach to statistical inference.

To achieve this, it is necessary to specify a prior distribution, f (θ),
which represents beliefs about θ prior to observing data.
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The Coin Sampling Example

Five coins have been tossed. We are required to estimate the
proportion θ of these coins which are tails, by looking at a sample
of just two coins.

There are only 6 possible values of θ: 0, 1/5, 2/5, 3/5, 4/5, 1.

Let X be the number of tails in the sample of two coins, and
suppose we observe X = 1.

The likelihood of a given value of θ is the probability of observing
X = 1 depending on this value of θ.

For example, f (X = 1|θ = 3
5 ) is the probability of observing X = 1

(we find 1 tail and 1 head in the sample of 2 coins), if θ = 3
5 (we

have 3 tails and 2 heads in the set of 5 coins).
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The Coin Sampling Example: The Likelihood

The number of ways of picking 1 tail and 1 head, out of the 3 tails
and 2 heads, is

(3
1

)
×
(2

1

)
= 3× 2 = 6.

The total number of ways of picking 2 coins out of 5 is
(5

2

)
= 10.

Then, f (X = 1|θ3/5) =
(3

1)×(2
1)

(5
2)

= 6
10 = 0.6.

The table of likelihoods

θ 0 1/5 2/5 3/5 4/5 1

f (X = 1|θ) 0.0 0.4 0.6 0.6 0.4 0.0
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The Coin Sampling Example: The Prior

The Bayesian approach uses the likelihood function, but combines
it with prior knowledge. This is described by the prior
distribution of θ.

Suppose that, prior to observing data, we believe that the coins
are fair: 1/2 probability of each coin being tail. Then, for example,

f (θ = 0) =

(
5

0

)(
1

2

)0(1

2

)5

=
1

32
= f (θ = 1)

θ 0 1/5 2/5 3/5 4/5 1

f (X = 1|θ) 0.0 0.4 0.6 0.6 0.4 0.0

f (θ) 1/32 5/32 10/32 10/32 5/32 1/32
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The Coin Sampling Example: The Posterior

The joint distribution of X and θ is obtained as
f (X = 1, θ) = f (X = 1|θ)× f (θ).

The important step is to get the conditional distribution of θ
given X = 1, i.e. the posterior distribution of θ, by dividing
through by the sum f (X = 1) =

∑
f (X = 1|θ)× f (θ):

f (θ|X = 1) =
f (X = 1|θ)× f (θ)

f (X = 1)

θ 0 1/5 2/5 3/5 4/5 1
f (X = 1|θ) 0.0 0.4 0.6 0.6 0.4 0.0

f (θ) 1/32 5/32 10/32 10/32 5/32 1/32
f (X = 1, θ) 0 2/32 6/32 6/32 2/32 0
f (θ|X = 1) 0 4/32 12/32 12/32 4/32 0
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Prior Beliefs

In almost all situations, when we are trying to estimate a
parameter θ, we do have some knowledge, or some belief, about
the value of θ before we take account of the data.

An Example
You look out of a window and see a large wooden thing with
branches covered by small green things. You entertain two
hypotheses: the thing is a tree or it’s the postman.

Define:
A: the event that you see a wooden thing with green bits
B1: the event it’s a tree
B2: the event it’s the postman
You reject B2 in favour of B1 because f (A|B1) > f (A|B2) (the
principle of maximum likelihood)
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Prior Beliefs

But, you might also entertain a third possibility
B3: the thing is a replica of a tree

In this case it may well be that f (A|B1) = f (A|B3), and yet you
would still reject this hypothesis in favour of B1.

That is, even though the probability of seeing what you observed is
the same whether it is a tree or a replica, your prior belief is that
it’s more likely to be a tree than a replica and so you include this
information when making your decision.

Loukia Meligkotsidou, University of Athens Bayesian Inference
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More Examples

Consider another example, where in each of the following cases our
data model is X |θ ∼ Bin(10, θ) and we observe x = 10 so that the
hypothesis H0 : θ ≤ 0.5 is rejected in favour of H1 : θ > 0.5:

1. A woman tea–drinker claims she can detect from a cup of tea
whether the milk was added before or after the tea. She does
so correctly for ten cups.

2. A music expert claims he can distinguish between a page of
Hayden’s work and a page of Mozart. She correctly
categorizes 10 pieces.

3. A drunk friend claims he can predict the outcome of tossing a
fair coin, and does so correctly for 10 tosses.

Just in terms of the data, we would draw the same inferences in
each case. But our prior beliefs suggest that we are likely to
remain sceptical about the drunk friend, impressed about the
tea–drinker, and not surprised at all about the music expert.
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The Prior Distribution

The essential point is this: experiments are not abstract devices.
Invariably, we have some knowledge about the process being
investigated before obtaining the data. It is sensible (many would
say essential) that inferences should be based on the combined
information that this prior knowledge and the data represent.
Bayesian inference is the mechanism for drawing inference
from this combined knowledge.

Just to put the alternative point of view, it’s this very reliance on
prior beliefs which opponents of the Bayesian viewpoint
object to. Different prior beliefs will lead to different inferences in
the Bayesian view of things, and it’s whether you see this as a
good or a bad thing which determines your acceptability of the
Bayesian framework.
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Characteristics of the Bayesian Approach

I Prior Information. All problems are unique and have their
own context, which derives prior information. This is taken
into account in Bayesian analysis.

I Subjective Probability. Classical statistics hinges on an
objective ‘long–run–frequency’ definition of probabilities.
Bayesian statistics formalizes explicitly the notion that all
probabilities are subjective, depending on knowledge to hand.
Inference is based on the posterior distribution f (θ|x), whose
form depends (through Bayes’ theorem) on the prior f (θ).

I No ‘adhockery’. Because classical inference cannot make
probability statements about θ, various criteria are developed
to judge whether a particular estimator is in some sense
‘good’. Bayesian statistics treats the parameter θ as random
and, hence its whole development stems from probability
theory and all inferences are probabilistic.
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Review of Bayes Theorem

In its basic form, Bayes’ Theorem is a simple result concerning
conditional probabilities:

If A and B are two events with Pr(A) > 0. Then

Pr(B|A) =
Pr(A|B) Pr(B)

Pr(A)

The use of Bayes’ Theorem, in probability applications, is to
reverse the conditioning of events. That is, it shows how the
probability of B|A is related to A|B.
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Review of Bayes Theorem

A slight extension of Bayes’ Theorem is obtained by considering
events C1, . . . ,Ck which partition the sample space Ω, so that
Ci ∩ Cj = φ if i 6= j and C1 ∪ . . . ∪ Ck = Ω. Then

Pr(Ci |A) =
Pr(A|Ci ) Pr(Ci )∑k
j=1 Pr(A|Cj) Pr(Cj)

for i = 1, . . . , k .

A further extension is to continuous random variables:

f (θ | x) =
f (x | θ)f (θ)

f (x)
.
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Example 1

A screening procedure for HIV is applied to a population which is
at high risk for HIV; 10% of this population are believed to be
HIV positive.

The screening test is positive for 90% of people who are
genuinely HIV positive, and negative for 85% of people who are
not HIV positive.

What are the probabilities of false positive and false negative
results?
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Example 1

Denote by
A: person is HIV positive, and B: test result is positive

10% of the population are HIV positive: Pr(A) = 0.1, Pr(Ac) = 0.9
(prior knowledge - before observing data)

The test is positive for 90% of people who are genuinely
HIV positive: Pr(B|A) = 0.9, Pr(Bc | A) = 0.1
and negative for 85% of people who are not HIV positive:
Pr(Bc |Ac) = 0.85, Pr(B | Ac) = 0.15
(information in the data - likelihood)

Probability of false positive: Pr(Ac |B)=?
Probability of false negative: Pr(A|Bc)=?
(posterior knowledge - after observing data)
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Compute Pr(B) through the law of total probability:
Pr(B) = Pr(B | A) Pr(A) + Pr(B | Ac) Pr(Ac) =
0.9× 0.1 + 0.15× 0.9 = 0.09 + 0.135 = 0.225
and Pr(Bc) = 1− Pr(B) = 0.775

Apply Bayes’ Theorem:

Pr(Ac |B) =
Pr(B|Ac) Pr(Ac)

Pr(B)
=

0.15× 0.9

0.225
= 0.6

and

Pr(A|Bc) =
Pr(Bc |A) Pr(A)

Pr(Bc)
=

0.1× 0.1

0.775
= 0.0129
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Example 2

In a bag there are 6 balls of unknown colours. Three balls are
drawn without replacement and are found to be black. Find
the probability that no black ball is left in the bag.

Let A: 3 black balls are drawn, and Ci : there were i black
balls in the bag. Then, we need to calculate Pr(C3|A).

By Bayes’ Theorem:

Pr(Ci |A) =
Pr(A|Ci ) Pr(Ci )∑6
j=0 Pr(A|Cj) Pr(Cj)

, i = 0, . . . , 6

But here’s the key issue: what values do we give
Pr(C0), . . . ,Pr(C6)? These are the probabilities of the different
numbers of black balls in the bag, prior to having seen the data.
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Example 2

Without any information to the contrary, we might well assume
that all possible numbers are equally likely, i.e.
Pr(C0) = Pr(C1) = . . . = Pr(C6) = 1

7 .

In fact, we will use this prior specification for the problem.
But, is it the most sensible?

You could take the view that it’s quite likely that all balls in the
bag are likely to be of the same colour, and consequently give
higher prior probabilities to Pr(C0) and Pr(C7).

Or you could find out from the ball manufacturers that they
produce balls of 10 different colours. You might then take the
prior view that each ball is black with probability 1

10 .

The point is we have to think hard about how to express our
prior beliefs, since the answer will depend on that.
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Apply Bayes’ Theorem:

Pr(C3|A) =
Pr(C3) Pr(A|C3)∑6
j=0 Pr(A|Cj) Pr(Cj)

=
1
7 × ( 3

6 ×
2
5 ×

1
4 )

1
7

{
0 + 0 + 0 + ( 3

6 ×
2
5 ×

1
4 ) + ( 4

6 ×
3
5 ×

2
4 ) + ( 5

6 ×
4
5 ×

3
4 ) + ( 6

6 ×
5
5 ×

4
4 )
}

=
1

35
.

Thus, the data has updated our prior belief of Pr(C3) = 1
7 to the

posterior probability Pr(C3|A) = 1
35 . That is, the event is much

less likely having seen the data than it was previously.
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Example 3

A seed collector, who has acquired a small number of seeds from a
plant, has a prior belief that the probability θ of germination of
each seed is uniform over the range 0 ≤ θ ≤ 1. She experiments by
sowing two seeds and finds that they both germinate.
(i) Write down the likelihood function for θ deriving from this
observation, and obtain the collector’s posterior distribution of θ.
(ii) Compute the posterior probability that θ is less than one half
and compare it with the prior probability that θ is less than a half.

X : the number of seeds that germinate in the sample of 2 seeds

X ∼ Binomial(2, θ)

θ: the probability of germination (0 ≤ θ ≤ 1)
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Binomial model:

f (x | θ) =

(
2

x

)
θx(1− θ)2−x

likelihood (X = 2): f (x = 2 | θ) = θ2

prior of θ : f (θ) = 1, 0 ≤ θ ≤ 1

likelihood x prior: f (x | θ)f (θ) = θ2

posterior: f (θ | x) = f (x |θ)f (θ)
f (x) = 3θ2, since

f (x) =
∫ 1

0 f (x | θ)f (θ)dθ =
∫ 1

0 θ
2dθ = 1

3

Then, Pr(θ < 1/2) =
∫ 1/2

0 f (θ)dθ =
∫ 1/2

0 dθ = 1/2

Pr(θ < 1/2 | x) =
∫ 1/2

0 f (θ | x)dθ =
∫ 1/2

0 3θ2dθ = 1/8
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likelihood x prior: f (x | θ)f (θ) = θ2

posterior: f (θ | x) = f (x |θ)f (θ)
f (x) = 3θ2, since

f (x) =
∫ 1

0 f (x | θ)f (θ)dθ =
∫ 1

0 θ
2dθ = 1

3

Then, Pr(θ < 1/2) =
∫ 1/2

0 f (θ)dθ =
∫ 1/2

0 dθ = 1/2

Pr(θ < 1/2 | x) =
∫ 1/2

0 f (θ | x)dθ =
∫ 1/2

0 3θ2dθ = 1/8
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Unit 2: Bayesian updating

Key steps of the Bayesian approach:

1. Specification of a likelihood model f (x | θ);

2. Determination of a prior f (θ);

3. Calculation of posterior distribution, f (θ | x) from Bayes’
Theorem;

4. Drawing inferences from this posterior information.
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Bayes’ Theorem and Bayesian Inference

Stated in terms of random variables with densities denoted
generically by f , Bayes Theorem takes the form:

f (θ | x) =
f (θ)f (x | θ)∫
f (θ)f (x | θ)dθ

Note: We will use this notation to cover the case where x is either
continuous or discrete, where in the continuous case f is the p.d.f.
as usual, but in the discrete case, f is the p.m.f. of x . Similarly, θ
can be discrete or continuous, but in the discrete case∫
f (θ)f (x | θ)dθ is to be interpreted as

∑
j f (θj)f (x | θj).

Notice that the denominator in Bayes’ Theorem is a function of x
only — θ having been ‘integrated out’.
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Bayes’ Theorem and Bayesian Inference

Thus another way of writing Bayes’ Theorem is

f (θ | x) = cf (θ)f (x | θ)

∝ f (θ)f (x | θ) = h(θ)

‘the posterior is proportional to the prior times the likelihood’.

The constant of proportionality c , which may depend on x but not
θ, is a normalising constant (makes the posterior integrate to one).

Note: There is a unique pdf, say g(θ) which is proportional to any
given function h(θ), because g(θ) can be determined uniquely as
g(θ) = ch(θ) where c = 1/

∫
h(θ)dθ.

This allows us to remove any factors of h(θ) = f (θ)f (x |θ), which
do NOT depend upon θ, before carrying out the normalisation.
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Choice of Likelihood Model

Statistical Modelling: Assume a parametric model which is
suitable to describe the dynamics of the observed process. This
leads to a parametric form of the likelihood function associated
with the model.

Therefore, the likelihood model depends on the mechanics of the
problem to hand and its formulation is the same problem faced
using classical inference — what is the most suitable model for
our data?

Often, knowledge of the structure by which the data is obtained
may suggest appropriate models (Binomial sampling, or Poisson
counts, for example), but often a model will be ‘hypothesised’ (Y is
linearly related to X with independent Normal errors, for example)
and its plausibility assessed later in the context of the data.
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Choice of Prior

I Because the prior represents our beliefs about θ before
observing the data, it follows that the subsequent analysis is
unique to us. Different priors lead to different posteriors.

I As long as the prior is not ‘completely unreasonable’, then the
effect of the prior becomes less influential as more data
become available.

I Often we might have a ‘rough idea’ what the prior should look
like (perhaps we could give its mean and variance), but
cannot be more precise than that. In such situations we could
use a ‘convenient’ form for the prior which is consistent with
our beliefs, but which also makes the mathematics easy.

I Sometimes we might feel that we have no prior information
about a parameter. In such situations we might wish to use a
prior which reflects our ignorance about the parameter.
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Bayesian Computation

Though straightforward enough in principle, the implementation of
Bayes’ Theorem in practice can be computationally difficult,
mainly as a result of the normalizing integral in the denominator.

For some choices of prior-likelihood combination, this integral can
be avoided, but in general, specialised techniques are required to
simplify this calculation (for example, numerical or Monte Carlo
integration).

In complex, multi-parameter problems, the multi-dimensional
integral in the denominator of Bayes’ theorem can be impossible
to compute. For such problems, simulation based techniques have
been developed, known as Markov chain Monte Carlo (MCMC)
methods.
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Bayesian Inference

Bayesian analysis gives a more complete inference in the sense that
all knowledge about θ available from the prior and the data is
represented in the posterior distribution. That is, f (θ|x) is the
inference.

Still, it is often desirable to summarize that inference in the form
of a point estimate, or an interval estimate.

Moreover, desirable properties or concepts of statistics, functions
of the data that are used for inferential purposes, are also present
in Bayesian analysis. For example, the concept of sufficiency has
analogous role in Bayesian inference, but is more intuitively
appealing. It can be characterised by saying that if we partition our
data by x = (x1, x2), then x1 is sufficient for θ if f (θ|x) depends
only on x1 and does not depend on x2.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

Statistical Modelling and Bayesian Inference
Examples
General Issues

Bayesian Inference

Bayesian analysis gives a more complete inference in the sense that
all knowledge about θ available from the prior and the data is
represented in the posterior distribution. That is, f (θ|x) is the
inference.

Still, it is often desirable to summarize that inference in the form
of a point estimate, or an interval estimate.

Moreover, desirable properties or concepts of statistics, functions
of the data that are used for inferential purposes, are also present
in Bayesian analysis. For example, the concept of sufficiency has
analogous role in Bayesian inference, but is more intuitively
appealing. It can be characterised by saying that if we partition our
data by x = (x1, x2), then x1 is sufficient for θ if f (θ|x) depends
only on x1 and does not depend on x2.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

Statistical Modelling and Bayesian Inference
Examples
General Issues

Bayesian Inference

Bayesian analysis gives a more complete inference in the sense that
all knowledge about θ available from the prior and the data is
represented in the posterior distribution. That is, f (θ|x) is the
inference.

Still, it is often desirable to summarize that inference in the form
of a point estimate, or an interval estimate.

Moreover, desirable properties or concepts of statistics, functions
of the data that are used for inferential purposes, are also present
in Bayesian analysis. For example, the concept of sufficiency has
analogous role in Bayesian inference, but is more intuitively
appealing. It can be characterised by saying that if we partition our
data by x = (x1, x2), then x1 is sufficient for θ if f (θ|x) depends
only on x1 and does not depend on x2.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

Statistical Modelling and Bayesian Inference
Examples
General Issues

Example 1. Binomial Sample

Suppose our likelihood model is X ∼ Binomial(n, θ), and we wish
to make inferences about θ, from a single observation x . So,

f (x |θ) =

(
n

x

)
θx(1− θ)n−x ; x = 0, . . . , n.

As prior distribution for θ we will consider the Beta distribution:

θ ∼ Beta(p, q), p > 0, q > 0.

so that

f (θ) =
Γ(p + q)

Γ(p)Γ(q)
θp−1(1− θ)q−1 (0 ≤ θ ≤ 1)

∝ θp−1(1− θ)q−1.
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The Beta Distribution

The Beta distribution is also written

f (θ) =
θp−1(1− θ)q−1

B(p, q)
, where

B(p, q) =
Γ(p)Γ(q)

Γ(p + q)
=

∫ 1

0
θp−1(1− θ)q−1dθ.

We call B(p, q) the beta function.

The mean and variance of this distribution are

E (θ) = m =
p

p + q
and Var(θ) = v =

pq

(p + q)2(p + q + 1)
.
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Cases of the Beta Distribution
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The Posterior Distribution

f (θ|x) ∝ f (θ)f (x |θ)

∝ θp−1(1− θ)q−1 × θx(1− θ)n−x

= θp+x−1(1− θ)q+n−x−1

= θP−1(1− θ)Q−1

where P = p + x and Q = q + n − x .

There is only one density function proportional to this, so it must
be the case that

θ|x ∼ Beta(P,Q).
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Some Notes

Thus, by careful choice, we have obtained a posterior distribution
which is in the same family as the prior distribution, and in doing
so have avoided the need to calculate explicitly any integrals for
the normalising constant.

The effect of the data is to modify the parameters of the beta
distribution from their prior values of (p, q), to the posterior values
of (p + x , q + n − x).

The posterior values P = p + x , Q = q + n − x involve both the
data, through x and n, and the prior values p, q.
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Binomial Sample: A Numerical Example

Of 70 patients given a new treatment protocol for a particular form
of cancer, 34 are found to survive beyond a specified period.
Denote by θ the probability of a patient’s survival.

Medical experts, who are familiar with similar trials, express the
prior belief that E (θ) = 0.4 and Var(θ) = 0.02.

Now, if a beta distribution is reasonable for their prior beliefs, then
we should choose θ ∼ Beta(p, q) such that

E (θ) = m =
p

p + q
= 0.4 and Var(θ) = v =

pq

(p + q)2(p + q + 1)
= 0.02.

These equations are solved by

p =
(1−m)m2

v
−m = 4.4 and q =

(1−m)2m

v
− (1−m) = 6.6,
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Binomial Sample: A Numerical Example

Then, the posterior is Beta(P,Q) with updated parameters
P = 4.4 + 34 = 38.4 and Q = 6.6 + 70− 34 = 42.6.

This posterior distribution summarizes all available information
about θ and represents the complete inference about θ.

By comparing prior and posterior expectations we can see:

E (θ|x) =
P

P + Q
= 0.474 > E (θ) =

p

p + q
= 0.4.

The effect of the observed data has been to increase the prior
estimate of θ from 0.4 to 0.474. On the other hand, a natural
estimate for θ on the basis of the data only is x/n = 0.486, which
is the M.L.E θ̂.
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Some Notes

Actually,

E (θ|x) =
P

P + Q
=

p + x

p + q + n
.

Thus, the posterior estimate is a balance between our prior
beliefs and the information provided by the data.

More generally, if x and n are large relative to p and q then the
posterior expectation is approximately x/n, the M.L.E.

On the other hand, if p and q are moderately large then they will
have reasonable influence on the posterior mean.
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More generally, if x and n are large relative to p and q then the
posterior expectation is approximately x/n, the M.L.E.

On the other hand, if p and q are moderately large then they will
have reasonable influence on the posterior mean.
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Example 2. Poisson Sample

Suppose we have a random sample (i.e. independent observations)
of size n, x = (x1, x2, . . . , xn) of a random variable X whose
distribution is Poisson(θ) , so that

f (x | θ) =
θxe−θ

x!
, θ ≥ 0.

The mean and the variance of this distribution are:

E (X ) = Var(X ) = θ

The likelihood is

f (x |θ) =
n∏

i=1

e−θθxi

xi !
∝ e−nθθΣxi
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The Prior Distribution

Prior beliefs about θ will vary from problem to problem, but we’ll
look for a form which gives a range of different possibilities, but is
also mathematically tractable.

We consider a gamma prior distribution:

θ ∼ Gamma(p, q),

so

f (θ) =
qp

Γ(p)
θp−1 exp{−qθ}, θ > 0.

The parameter p > 0 is a shape parameter, and q > 0 is a scale
parameter.

The mean and variance of this distribution are

E (θ) = m =
p

q
and Var(θ) = v =

p

q2
.
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Examples of the Gamma Distribution

m=1/q 
θ θ 

m=3/q 

p=1 p=3 

f(θ) f(θ) 

q/2 

mode 

θ ~ Exp(q) 

f(θ)=qe−qθ
Sum of 3 i.i.d 
Exp(q) r.v.s

f(θ)=cθ2e−qθ 
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The Posterior Distribution

Applying Bayes’ Theorem with the gamma prior distribution,

f (θ|x) ∝ θp−1 exp{−qθ} × exp{−nθ}θΣxi

= θ(p+Σxi−1) exp{−(q + n)θ}

= θP−1 exp(−Qθ)

where P = p +
∑

xi and Q = q + n.

Again, there is only one p.d.f. proportional to this:

θ|x ∼ Gamma(P,Q),

a gamma distribution whose parameters are modified by the sum
of the data,

∑n
i=1 xi , and the sample size n. (Note that

∑
xi is

sufficient for θ).
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Example 3. Normal Mean

Let x = (x1, x2, . . . , xn) be a random sample of size n of a random
variable X with the N(θ, σ2) distribution, where σ2 is known:

f (x | θ) =
1√
2πσ

exp

{
−(x − θ)2

2σ2

}
.

The mean and the variance of this distribution are:
E (X ) = θ and Var(X ) = σ2.

The likelihood of θ from a single observation xi is given by

f (xi | θ) = 1√
2πσ

exp
{
− (xi−θ)2

2σ2

}
∝ exp

{
− 1

2σ2 (x2
i − 2xiθ + θ2)

}

= exp
(
− 1

2σ2 x
2
i

)
exp

(
1
σ2 xiθ − 1

2σ2 θ
2
)

∝ exp
(
− 1

2σ2 θ
2 + 1

σ2 xiθ
)
.
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The Likelihood and the Prior

The likelihood of the whole sample is then

f (x | θ) =
∏

i f (xi | θ)

∝
∏

i exp
(
− 1

2σ2 θ
2 + 1

σ2 xiθ
)

= exp
[∑

i

(
− 1

2σ2 θ
2 + 1

σ2 xiθ
)]

= exp
[
−
(

n
2σ2

)
θ2 +

(
1
σ2

∑
i xi
)
θ
]
.

Suppose our prior beliefs about θ can be represented as a normal
distribution: θ ∼ N(b, d2). Then,

f (θ) = 1√
2πd

exp
{
− (θ−b)2

2d2

}
∝ exp

(
− 1

2d2 θ
2 + 1

d2 b θ − 1
2d2 b

2
)

∝ exp
(
− 1

2d2 θ
2 + 1

d2 b θ
)
.
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The Posterior

We now derive the posterior distribution of θ as follows

f (θ | x) ∝ f (θ)f (x | θ)

∝ exp
(
− 1

2d2 θ
2 + 1

d2 bθ
)

exp
[
−
(

n
2σ2

)
θ2 +

(
1
σ2

∑
i xi
)
θ
]

= exp
[
−1

2

(
1
d2 + n

σ2

)
θ2 +

(
1
d2 b + 1

σ2

∑
i xi
)
θ
]

= exp
(
− 1

2D2 θ
2 + 1

D2Bθ
)
.

Therefore, we can conclude that the posterior distribution of θ is

θ|x ∼ N(B,D2)

where

B = E (θ|x) =
1
d2 b + n

σ2 x̄
1
d2 + n

σ2

and D2 = V (θ|x) =

(
1

d2
+

n

σ2

)−1

,

and we have replaced
∑

xi by nx̄ .
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The Precision

This result is expressed more concisely if we define ‘precision’ to
be the reciprocal of variance. Let τ = 1/σ2 and c = 1/d2, then

X ∼ N(θ, τ−1) and f (xi | θ) ∝ exp
{
− τθ2

2 + τxiθ
}

θ ∼ N(b, c−1) and f (θ) ∝ exp
{
− cθ2

2 + cbθ
}

The posterior is obtained as

f (θ | x) ∝ exp
{
− (nτ+c)θ2

2 + (nτ x̄ + cb)θ
}

, that is

θ|x ∼ N(
cb + nτx

c + nτ
,

1

c + nτ
)
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Some Notes

1. E (θ|x) = c
c+nτ b + (1− c

c+nτ )x̄ = γnb + (1− γn)x .
The posterior mean is a weighted average of the prior mean
and x . If nτ is large relative to c, then γn ≈ 0 and the
posterior mean is close to x .

2. ‘posterior precision’: [Var(θ | x)]−1 = c + nτ

If nτ is large relative to c , then Var(θ | x) ≈ σ2

n .

3. As n→∞, then (loosely) θ|x ∼ N(x , σ
2

n ), so that the prior
has no effect in the limit.

4. As d →∞ (c → 0), we again obtain θ|x ∼ N(x , σ
2

n )

5. The posterior distribution depends on the data only through x
and not through the individual values of the xi themselves.
We say that x is sufficient for θ.
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Sequential Updating

We have seen that Bayes’ Theorem provides the machine by which
your prior information is updated by data to give your
posterior information. This then can serve as your ‘new’ prior
information before more data become available.

Consider two independent variables X1 and X2, each having density
f (x |θ). Suppose we observe x1, and update our prior through

f (θ|x1) ∝ f (θ)f (x1|θ).

This becomes our new prior before observing x2. Thus,

f (θ|x1, x2) ∝ f (θ|x1)f (x2|θ) = f (θ)f (x1|θ)f (x2|θ)

= f (θ)f (x1, x2|θ)

which is the same result we would have obtained by updating on
the basis of the entire information (x1, x2) directly.
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Sufficiency

The classical result by which we recognise that a function s(x), of
the data alone, is a sufficient statistic for a parameter θ, is that

f (x |θ) = g(x)h(s, θ)

where g(x) does not involve θ, only the data.

If this is the case, in the Bayesian analysis

f (x |θ) ∝ h(s, θ)

so the likelihood depends on the data only through the sufficient
statistic s(x).

In that case the posterior distribution f (θ|x) also depends on the
data only through the sufficient statistic s(x).

f (θ | x) ∝ f (θ)f (x | θ) ∝ f (θ)h(s, θ)
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The Likelihood Principle

The likelihood principle states that if two experiments yield the
same likelihood (up to proportionality), then all inferences
we draw about θ should be the same in each case.

A major virtue of the Bayesian framework is that Bayesian
techniques are inherently consistent with the likelihood
principle, whereas many simple procedures from classical statistics
violate it.
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An Example

Consider two experiments concerned with estimating the
probability of success θ in independent trials. In the first
experiment, the number x of successes in n trials is recorded. In
the second, the number y of trials required to obtain m successes
is recorded.

The distributions of the random variables X , Y describing the
outcomes of these experiments differ. They are the Binomial and
Negative Binomial distributions, respectively.

f (x |θ) = P(X = x) =

(
n

x

)
θx(1− θ)n−x , x = 0, 1, . . . , n

and

f (y |θ) = P(Y = y) =

(
y − 1

m − 1

)
θm(1−θ)y−m, y = m,m+1, . . . ,∞.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

Statistical Modelling and Bayesian Inference
Examples
General Issues

An Example

Consider two experiments concerned with estimating the
probability of success θ in independent trials. In the first
experiment, the number x of successes in n trials is recorded. In
the second, the number y of trials required to obtain m successes
is recorded.

The distributions of the random variables X , Y describing the
outcomes of these experiments differ. They are the Binomial and
Negative Binomial distributions, respectively.

f (x |θ) = P(X = x) =

(
n

x

)
θx(1− θ)n−x , x = 0, 1, . . . , n

and

f (y |θ) = P(Y = y) =

(
y − 1

m − 1

)
θm(1−θ)y−m, y = m,m+1, . . . ,∞.

Loukia Meligkotsidou, University of Athens Bayesian Inference



Unit 1: Introduction
Unit 2: Bayesian updating

Statistical Modelling and Bayesian Inference
Examples
General Issues

An Example

The corresponding M.L.E.s are θ̂x = x/n and θ̂y = m/y .
However, their sampling distributions are quite different.

If n = 2, then x/n can take the values 0, 1/2 and 1.

If m = 1, then m/y can take the values 1, 1/2, 1/3, . . . .

But if it happened that also x = 1 and y = 2,

f (x |θ) = 2θ(1− θ) and f (y |θ) = θ(1− θ)

so that the likelihoods are proportional, and the Bayesian
inference would be the same in both cases.
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