
Multi-parameter problems
Summarizing posterior information

Bayesian Inference

Loukia Meligkotsidou,
National and Kapodistrian University of Athens

MSc in Statistics and Operational Research,
Department of Mathematics

Loukia Meligkotsidou, University of Athens Bayesian Inference



Multi-parameter problems
Summarizing posterior information

Outline of the course

This course provides theory and practice of the Bayesian approach
to statistical inference. Applications are performed with the
statistical package R.

Topics:

I Bayesian Updating through Bayes’ Theorem

I Prior Distributions

I Multi-parameter Problems

I Summarizing Posterior Information

I Prediction

I Asymptotics

I Markov chain Monte Carlo Methods
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Multi-parameter problems

Most statistical models contain more than one parameter. The
method of analysing multi-parameter problems in Bayesian
statistics is much more straightforward than in classical statistics.
Indeed, there is absolutely no new theory required.

We now have a vector θ = (θ1, . . . , θd) of parameters. We specify
a multivariate prior f (θ), and combine it with a likelihood f (x |θ)
via Bayes’ theorem to obtain

f (θ|x) =
f (θ)f (x |θ)∫
f (θ)f (x |θ)dθ

.

Of course, the posterior will now also be a multivariate distribution
and inference about any subset of parameters within θ is obtained
by straightforward probability calculations on this joint distribution.
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Conditional Posterior Distributions

The conditional posterior distribution of a component of θ, θi say,
given the values of the remaining components θ−i is given by

fi (θi | x , θ−i ) ∝ f (θ | x),

where the values of θ−i are held fixed.

That is the conditional posterior distribution of θi is given by the
joint posterior distribution of θ, f (θ | x), regarded as a function of
θi alone with the other components θ−i of θ fixed, normalised to
be a density function as appropriate.
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Marginal Posterior Distributions

Exact Bayesian inference about the scalar parameter θi can only
be made from the posterior distribution integrated over θ−i ,

f (θi | x) =

∫
f (θ | x)dθ−i .

This resulting marginal posterior of a given parameter of interest
θi , after eliminating the nuisance parameters θ−i by integration,
can be used for drawing inferences about that parameter.

If marginalization is not possible, another approach which can be
used to eliminate the nuisance parameters is to compute the
posterior distribution of the parameter of interest conditioning on
the maximum likelihood estimates of the other components of the
parameter vector. This technique, which is not fully Bayesian, is
called the empirical Bayes method, to be distinguished from fully
Bayesian inferential methods.
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Practical Issues

1. Prior specification. Priors are now multivariate distributions.
This means that the prior specification needs to reflect prior
belief not just about each parameter individually, but also
about dependence between different parameters.

2. Computation. With multivariate problems the integrals are
very difficult to evaluate. This makes the use of conjugate
prior families even more valuable, and creates the need for
numerical techniques to obtain inferences when conjugate
families are either unavailable or inappropriate.

3. Interpretation. The entire posterior inference is contained in
the posterior distribution, which will have as many dimensions
as the variable θ. The structure of the posterior distribution
may be highly complex.
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Multivariate Prior Distributions

Consider a statistical problem parameterised by θ = (θ1, θ2).

I The simplest choice of prior is to assume prior independence
between θ1 and θ2: f (θ) = f (θ1)f (θ2)

I Another choice can be a bivariate distribution factorised as a
product of a conditional times a marginal density:

f (θ) = f (θ1 | θ2)f (θ2)

I The most general case is to assume a bivariate prior
distribution allowing for dependence (correlation) between θ1

and θ2, for example a bivariate normal density.

Note: Generalisation to the case of a multivariate parameter θ.
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A Discrete Example

Suppose a machine is either satisfactory (x = 1) or unsatisfactory
(x = 2). The probability of the machine being satisfactory depends
on the room temperature (θ1 = 0 : cool, θ1 = 1 : hot) and
humidity (θ2 = 0 : dry, θ2 = 1: humid). The probabilities of x = 1
are given in the following table.

Pr(x = 1|θ1, θ2) θ1 = 0 θ1 = 1

θ2 = 0 0.6 0.8
θ2 = 1 0.7 0.6

The joint prior distribution of (θ1, θ2) is

Pr(θ1, θ2) θ1 = 0 θ1 = 1

θ2 = 0 0.3 0.2
θ2 = 1 0.2 0.3
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The Posterior Distribution

The joint posterior distribution can be calculated as follows.

θ1 = 0 θ1 = 1

Pr(x = 1|θ1, θ2)× Pr(θ1, θ2) θ2 = 0 0.18 0.16
= Pr(x = 1, θ1, θ2) θ2 = 1 0.14 0.18

Pr(x = 1) 0.66

Pr(θ1, θ2|x = 1) θ2 = 0 18/66 16/66
θ2 = 1 14/66 18/66

By summing across margins we obtain the marginal posterior
distributions:

Pr(θ1 = 0) = 32/66, Pr(θ1 = 1) = 34/66

and
Pr(θ2 = 0) = 34/66, Pr(θ2 = 1) = 32/66.
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A Continuous Example

Suppose Y1 ∼ Poisson(αβ) and Y2 ∼ Poisson((1− α)β) with Y1

and Y2 independent given α and β.

Suppose our prior information for α and β can be expressed as:
α ∼ Beta(p, q) and β ∼ Gamma(p + q, 1) with α and β
independent, for specified hyperparameters p and q.

Then we have the following likelihood:

f (y1, y2|α, β) =
exp(−αβ)(αβ)y1

y1!
× exp(−(1− α)β)[(1− α)β]y2

y2!

and the prior

f (α, β) =
Γ(p + q)

Γ(p)Γ(q)
αp−1(1− α)q−1 × e−ββp+q−1

Γ(p + q)
.
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The Joint Posterior

By Bayes’ theorem:

f (α, β|y1, y2) ∝ e−ββy1+y2αy1(1− α)y2αp−1(1− α)q−1e−ββp+q−1

= βy1+y2+p+q−1e−2βαy1+p−1(1− α)y2+q−1

over the region 0 ≤ α ≤ 1 and 0 ≤ β ≤ ∞. This is the (joint)
posterior distribution for α and β and contains all the information
from the prior and data.

In this particular case, the posterior factorises into functions of α
and β. Therefore, we can write:

f (α, β | y1, y2) ∝ g(α)h(β), where

g(α) = αy1+p−1(1− α)y2+q−1 and h(β) = βy1+y2+p+q−1e−2β.
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The Marginals

It follows, therefore, that the marginal posterior distributions are
given by

f (α|y1, y2) =

∫ ∞
0

f (α, β|y1, y2)dβ ∝ g(α)

∫ ∞
0

h(β)dβ ∝ g(α),

and

f (β|y1, y2) =

∫ 1

0
f (α, β|y1, y2)dα ∝ h(β)

∫ 1

0
g(α)dα ∝ h(β).

That is, α|y1, y2 ∼ Beta(y1 + p, y2 + q) and
β|y1, y2 ∼ Gamma(y1 + y2 + p + q, 2).

Note: The posterior belongs to the same family with the prior,
therefore the prior we chose was conjugate to this likelihood model.
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Example. The Normal Likelihood

Suppose X1, . . . ,Xn are independent variables distributed as
N(µ, φ−1). Obtain the conjugate prior for θ = (µ, φ)

f (xi |θ) =

√
φ√

2π
exp{−φ

2
(xi − µ)2}

=

√
φ√

2π
exp{−φ

2
x2
i −

φ

2
µ2 + φxiµ}

=

√
φ√

2π
exp{−φ

2
µ2} exp{−φ

2
x2
i + φxiµ}

= h(xi )g(θ) exp{t1(xi )c1(θ) + t2(xi )c2(θ)},

where h(xi ) = 1√
2π

, g(θ) = φ1/2 exp{−φ
2µ

2}, t1(xi ) = x2
i ,

c1(θ) = −φ
2 , t2(xi ) = xi , c2(θ) = φµ.
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The Joint Prior

The likelihood:

f (x | θ) ∝ [g(θ)]n exp{
n∑

i=1

t1(xi )c1(θ) +
n∑

i=1

t1(xi )t2(xi )c2(θ)}

The conjugate prior:

f (θ) ∝ [g(θ)]d exp{b1c1(θ) + b2c2(θ)}

=

[
φ1/2 exp{−φ

2
µ2}
]d

exp{−b1
φ

2
+ b2φµ}

= φd/2 exp{−dφ

2
µ2 − b1

φ

2
+ b2φµ}

= φ1/2 exp{−dφ

2
[µ2 − 2µ

b2

d
]} × φ

d−1
2 exp−φb1

2
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The Joint Conjugate Prior

f (θ) ∝ φ1/2 exp{−dφ

2
[µ2 − 2µ

b2

d
]} × φ

d−1
2 exp{−φb1

2
}

= φ1/2 exp{−dφ

2
[µ2 − 2µα]} × φp−1 exp{−φq}

That is the joint conjugate prior factorizes as

f (θ) = f (µ, φ) = f (φ)f (µ | φ),

where f (φ) ≡ Gamma(p, q) and f (µ | φ) ≡ N(α, (dφ)−1).
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Decision Theory and Point Estimation
Credibility Regions
Hypothesis Tests and Model Comparison

Outline of the course

This course provides theory and practice of the Bayesian approach
to statistical inference. Applications are performed with the
statistical package R.

Topics:

I Bayesian Updating through Bayes’ Theorem

I Prior Distributions

I Multi-parameter Problems

I Summarizing Posterior Information

I Prediction

I The Gibbs Sampler
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Decision Theory and Point Estimation
Credibility Regions
Hypothesis Tests and Model Comparison

Summarizing posterior information

We’ve stressed that the posterior distribution is a complete
summary of the inference about a parameter θ. In essence, the
posterior distribution is the inference. However, for some
applications it is desirable to summarize this information.

I Point Estimation. Point summaries of the posterior
distribution obtained within a decision theoretic framework.
Common choices: posterior mean, median or mode.

I Credibility Regions. Analogue of a classical confidence
interval. Point estimates give no measure of accuracy, so it is
preferable to give a region within which it is ‘likely’ that the
parameter lies. Bayesian credibility regions are probabilistic.

I Hypothesis Testing. Comparisons of two (or more) alternative
hypotheses, e.g H0 : θ ∈ Ω0, H1 : θ ∈ Ω1. Probabilistic
statements about and symmetric treatment of the hypotheses.
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Decision Theory

Many problems in the real world are those of making decisions in
the face of uncertainty: ‘which political party will be best to vote
for?’; ‘should I accept one job offer or wait in the hope that I get
offered a better job?’.

All of statistical inference can also be thought of as decision
making: having observed a particular set of data, what value
should we decide to estimate a parameter by?

The elements needed to construct a decision problem are:

1. A parameter space Θ which contains the possible states of
nature;

2. A set A of actions which are available to the decision maker;

3. A loss function L, where L(θ, a) is the loss incurred by
adopting action a when the true state of nature is θ.
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An Example

A public health officer is seeking a rational policy of vaccination
against a relatively mild ailment which causes absence from work.

Surveys suggest that 60% of the population are already immune.

It is estimated that the money–equivalent of man–hours lost from
failing to vaccinate a vulnerable individual is 20, that the
unnecessary cost of vaccinating an immune person is 8, and that
there is no cost incurred in vaccinating a vulnerable person or
failing to vaccinate an immune person.
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So, for this example we have:

1. The parameter space Θ = {θ1, θ2}, where θ1 and θ2

correspond to the individual being immune and vulnerable
respectively;

2. The set of actions A = {a1, a2} where a1 and a2 correspond
to vaccinating and not vaccinating respectively;

3. The loss function is

L(θ, a) θ1 θ2

a1 8 0
a2 0 20

The decision strategy is then to evaluate the expected loss for
each action and choose the action which has the minimum
expected loss.
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Minimising the Prior Expected Loss

The expected loss is calculated based on the prior distribution of θ.

Surveys suggest that 60% of the population are already immune.
Therefore, f (θ1) = 0.6 and f (θ2) = 0.4.

f (θ) 0.6 0.4

L(θ, a) θ1 θ2 E [L(θ, a)]

a1 8 0 0.6× 8 + 0.4× 0 = 4.8
a2 0 20 0.6× 0 + 0.4× 20 = 8.0

The conclusion is that it is preferable (according to minimisation of
cost) to vaccinate everyone. The cost (or loss) is 4.8 per individual.
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Example: Continuation

Suppose now that we had further information or data x available
to us which reflected the value of θ, i.e. we have observed x from
f (x |θ). Then we can replace f (θ) by the posterior f (θ|x) in the
calculation of the expected loss. The best action will then depend
on the particular outcome x .

A simple skin test has been developed which, though not
completely reliable, tends to indicate the immune status of the
individual. The probabilities of reaction are given below.

Immune Vulnerable
θ1 θ2

Negligible x1 0.35 0.09
Reaction Mild x2 0.30 0.17

Moderate x3 0.21 0.25
Strong x4 0.14 0.49
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Posterior Expected Loss

Our general procedure is to use Bayes’ theorem to compute the
posterior distribution f (θ|x). Then, for any particular action a, the
posterior expected loss is

ρ(a, x) = E [L(θ, a)|x ] =

∫
L(θ, a)f (θ|x)dθ.

Having observed a particular value of x , we choose the action a
which results in the lowest value of ρ. Writing a = d(x), we call
d(x) the Bayes decision rule.

For our example, we consider all the possible outcomes x ,
calculating for each of these the corresponding posterior f (θ|x).
For each of these we next work out the posterior expected loss for
each action. Finally we select the best action, that with the
minimum posterior expected loss, for that outcome.
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θ1 θ2

f (x1|θ) 0.35 0.09
Likelihoods f (x2|θ) 0.30 0.17

f (x3|θ) 0.21 0.25
f (x4|θ) 0.14 0.49

Prior f (θ) 0.6 0.4

f (x1, θ) 0.210 0.036 0.246 f (x1)
Joints f (x2, θ) 0.180 0.068 0.248 f (x2)

f (x3, θ) 0.126 0.100 0.226 f (x3)
f (x4, θ) 0.084 0.196 0.280 f (x4)

a1 a2

f (θ|x1) 0.854 0.146 6.829 2.927
Posteriors f (θ|x2) 0.726 0.274 5.806 5.484 Expected

f (θ|x3) 0.558 0.442 4.460 8.847 Losses
f (θ|x4) 0.300 0.700 2.400 14.000
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Bayes Decision Rule

The decisions for each value of x , together with their associated
minimum posterior expected loss, are summarised below.

x d(x) ρ(d(x), x)

x1 a2 2.927
x2 a2 5.484
x3 a1 4.460
x4 a1 2.400

Conclusion: if either a negligible or mild reaction is observed, the
Bayes decision is not to vaccinate, whereas if a moderate or strong
reaction is observed, the decision is to vaccinate.
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Bayes Risk

We can go one stage further and calculate the risk associated with
this policy, by averaging across the uncertainty in the observations
x . That is, we define the Bayes risk by:

BR(d) =

∫
ρ(d(x), x)f (x)dx

For our example this becomes the sum

BR(d) =
∑

ρ(d(x), x)f (x) = 2.93×0.25+5.48×0.25+4.46×0.23+2.40×0.28

That is BR(d) = 3.76, which is smaller than the least cost per
individual, of 4.8, obtained by using the prior information alone,
without the knowledge of x . Therefore, measuring x is worth while.
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Example

A baseball team needs to decide whether or not to adopt a
promotional campaign with a cost of 0.5 million dollars.

Denote by θ the proportion of matches that the team will win in
the next period. The (prior) belief of the team is that θ has a
uniform distribution in [0, 1].

They expect that, without the campaign, their benefit from the
tickets will be 1 + 5θ million dollars, while, with the campaign,
their benefit will be 3 + 3θ million dollars. Should they adopt the
campaign?
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So, for this example:

1. The parameter space is continuous Θ = [0, 1], with θ denoting
the probability that the team wins a baseball match.

2. The set of actions is A = {a1, a2} where a1 and a2 correspond
to adopting and not adopting the campaign, respectively.

3. The loss function is
L(θ, a1) = 0.5− 3− 3θ = −2.5− 3θ
L(θ, a2) = −1− 5θ

E [L(θ, a1)] =
∫
L(θ, a1)f (θ)dθ =

∫ 1
0 (−2.5− 3θ)dθ = −4

E [L(θ, a2)] =
∫
L(θ, a2)f (θ)dθ =

∫ 1
0 (−1− 5θ)dθ = −3.5

E [L(θ, a1)] < E [L(θ, a2)], therefore the expected loss is minimized
(the expected profit is maximized) if the team adopts the
campaign.
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Example. Continuation

In the playoffs, the team wins 4 out of 4 matches. If it is equally
probable the team to win a match at the playoffs and at the
championship, which is now the optimal decision with respect to
the campaign?

Let X denote the number of matches that the team wins at the
playoffs and θ denote the probability of win. The likelihood of
observing x = n = 4 is:

f (θ | x) = θ4(1− θ)4−4

Posterior: f (θ | x) ∝ f (θ)f (x | θ) ∝ θ4.

f (x) =
∫ 1

0 θ
4dθ = 1

5 , therefore f (θ | x) = 5θ4, 0 < θ < 1.
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Posterior Expected Losses

E [L(θ, a1) | x ] =

∫
L(θ, a1)f (θ | x)dθ =

∫ 1

0
(−2.5−3θ)5θ4dθ = −5

E [L(θ, a2) | x ] =

∫
L(θ, a2)f (θ | x)dθ =

∫ 1

0
(−1−5θ)5θ4dθ = −3.5

E [L(θ, a1) | x ] > E [L(θ, a2) | x ], therefore, after observing the data
the expected loss is minimized (the expected profit is maximized) if
the team does not adopt the campaign.
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Point Estimation

Under the Bayesian approach, the posterior distribution is the
inference. However, for some applications it is desirable (or
necessary) to summarize this information in some way. In
particular, we may wish to give a single ‘best’ estimate of the
unknown parameter.

So, in the Bayesian framework, how do we reduce the information
in a posterior distribution to give a single ‘best’ estimate?
In fact, the answer depends on what we mean by ‘best’, and this in
turn is specified by turning the problem into a decision problem.

We specify a loss function L(θ, a) which measures our perceived
penalty in estimating θ by a. There are a range of natural loss
functions we could use, and the particular choice for any specified
problem will depend on the context.
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Loss Functions

The most commonly used loss functions are:

1. Squared Error (or Quadratic) loss: L(θ, a) = (θ − a)2;

2. Absolute Error loss: L(θ, a) = |θ − a|;
3. 0—1 loss:

L(θ, a) =

{
0 if |θ − a| ≤ ε
1 if |θ − a| > ε

In each of these cases, by minimizing the posterior expected loss,
we obtain simple forms for the Bayes decision rule, which is taken
to be the point estimate of θ for that particular choice of loss
function.
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Squared Error Loss

In this case we can simplify ρ(a, x) = E
[
(θ − a)2|x

]
by letting

µ = E (θ|x) and expanding:

E
[
(θ − a)2|x

]
= E

{
[(θ − µ) + (µ− a)]2 |x

}

= E
[
(θ − µ)2|x

]
+ (µ− a)2 + 2E [(θ − µ)|x ] (µ− a)

= Var [θ|x ] + (µ− a)2

On the right, the first term no longer depends on a, and the
second term attains its minimum of zero by taking a = µ. In
summary, the posterior expected squared error loss has its
minimum value of Var [θ|x ], the posterior variance of θ, when
a = E (θ|x), the posterior expectation of θ.
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Absolute Error Loss

We show that in this case the minimum posterior expected loss is
obtained by taking a = m, the median of the posterior distribution
f (θ|x). We assume that this is unique, and is defined by

Pr(θ < m|x) = Pr(θ > m|x) = 1/2.

To prove the result note first that the function

s(θ) =

{
−1, for θ < m
+1, for θ > m

has the property

E [s(θ) | x ] = −
∫ m

−∞
f (θ | x)dθ +

∫ ∞
m

f (θ | x)dθ

= −Pr(θ < m | x) + Pr(θ > m | x) = 0.
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Absolute Error Loss

Now consider L(θ, a)− L(θ,m) = |θ− a| − |θ−m| for some a < m.

If θ < a:
L(θ, a)− L(θ,m) = −θ + a + θ −m = a−m = (m − a)s(θ)

If θ > m:
L(θ, a)− L(θ,m) = −a + θ − θ + m = −a + m = (m − a)s(θ)

If a < θ < m:
L(θ, a)− L(θ,m) = −a + θ + θ −m = 2θ − a−m > (m − a)s(θ)

Loukia Meligkotsidou, University of Athens Bayesian Inference



Multi-parameter problems
Summarizing posterior information

Decision Theory and Point Estimation
Credibility Regions
Hypothesis Tests and Model Comparison

Absolute Error Loss

Now consider L(θ, a)− L(θ,m) = |θ− a| − |θ−m| for some a < m.

If θ < a:
L(θ, a)− L(θ,m) = −θ + a + θ −m = a−m = (m − a)s(θ)

If θ > m:
L(θ, a)− L(θ,m) = −a + θ − θ + m = −a + m = (m − a)s(θ)

If a < θ < m:
L(θ, a)− L(θ,m) = −a + θ + θ −m = 2θ − a−m > (m − a)s(θ)

Loukia Meligkotsidou, University of Athens Bayesian Inference



Multi-parameter problems
Summarizing posterior information

Decision Theory and Point Estimation
Credibility Regions
Hypothesis Tests and Model Comparison

Absolute Error Loss

Now consider L(θ, a)− L(θ,m) = |θ− a| − |θ−m| for some a < m.

If θ < a:
L(θ, a)− L(θ,m) = −θ + a + θ −m = a−m = (m − a)s(θ)

If θ > m:
L(θ, a)− L(θ,m) = −a + θ − θ + m = −a + m = (m − a)s(θ)

If a < θ < m:
L(θ, a)− L(θ,m) = −a + θ + θ −m = 2θ − a−m > (m − a)s(θ)

Loukia Meligkotsidou, University of Athens Bayesian Inference



Multi-parameter problems
Summarizing posterior information

Decision Theory and Point Estimation
Credibility Regions
Hypothesis Tests and Model Comparison

Absolute Error Loss

Now consider L(θ, a)− L(θ,m) = |θ− a| − |θ−m| for some a < m.

If θ < a:
L(θ, a)− L(θ,m) = −θ + a + θ −m = a−m = (m − a)s(θ)

If θ > m:
L(θ, a)− L(θ,m) = −a + θ − θ + m = −a + m = (m − a)s(θ)

If a < θ < m:
L(θ, a)− L(θ,m) = −a + θ + θ −m = 2θ − a−m > (m − a)s(θ)

Loukia Meligkotsidou, University of Athens Bayesian Inference



Multi-parameter problems
Summarizing posterior information

Decision Theory and Point Estimation
Credibility Regions
Hypothesis Tests and Model Comparison

Plot of L(θ, a)− L(θ,m) and (m − a)s(θ)
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Absolute Error Loss

It can be seen that L(θ, a)− L(θ,m) is greater than (m− a)s(θ) so

E [L(θ, a)− L(θ,m)|x ] > (m − a)E [s(θ)|x ] = 0.

So
E [L(θ, a)|x ] > E [L(θ,m)|x ] .

This also holds by a similar argument when a > m, so E [L(θ, a)|x ]
is a minimum when a = m, the posterior median.
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0–1 Loss

Clearly in this case

ρ(a, x) = Pr{|θ − a| > ε|x) = 1− Pr{|θ − a| ≤ ε|x).

Consequently, if we define a modal interval of length 2ε as the
interval [θ − ε, θ + ε] which has highest probability, then the Bayes
estimate is the midpoint of the interval with highest probability.

By choosing ε arbitrarily small, this procedure will lead to the
posterior mode as the Bayesian estimate.

Conclusion: in the Bayesian framework a point estimate is a single
summary statistic of the posterior distribution. By defining the
quality of an estimator through a loss function, the decision theory
methodology leads to optimal choices of point estimates.
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Example

If the posterior density for θ is

f (θ|x) = 1 for 0 ≤ θ ≤ 1,

calculate the best estimator of φ = θ2 with respect to quadratic
loss.

The best estimator of φ with respect to quadratic loss is

E (φ | x) = E (θ2 | x) =

∫ 1

0
θ2dθ =

[
θ3

3

]1

0

=
1

3
.
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Credibility Regions

In classical statistics parameters are not regarded as random, so it
is not possible to give an interval with the interpretation that there
is a certain probability that the parameter lies in the interval.
Instead, confidence intervals have the interpretation that if the
sampling were repeated, there is a specified probability that the
interval so obtained would contain the parameter (it is the interval
which is random and not the parameter).

There is no such difficulty in the Bayesian approach because
parameters are treated as random. Thus, a region Cα(x) is a
100(1− α)% credible region for θ if∫

Cα(x)
f (θ|x)dθ = 1− α.

That is, there is a probability of 1− α, based on the posterior
distribution, that θ lies in Cα(x).
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Highest Posterior Density Credibility Regions

One difficulty with credibility regions (in common with confidence
intervals) is that they are not uniquely defined. Any region with
probability 1− α will do. Since we want the region to contain the
‘most probable’ values of the parameter, it is usual to impose an
additional constraint:

Cα(x) = {θ : f (θ|x) ≥ γ}

where γ is chosen to ensure that∫
Cα(x)

f (θ|x)dθ = 1− α.
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Unimodal Posterior Distribution

HPD region for a unimodal posterior distribution. The region is an
interval of the form (a, b).

a b 

γ 

θ 

f(θ | x) 
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Symmetric Unimodal Posterior Distribution

HPD region for a unimodal and symmetric posterior distribution.
The region is an interval of the form (µ− c , µ+ c).

µ µ−c µ+c 

γ 

f(θ | x) 
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Example. Normal Mean

Let X1, . . . ,Xn be independent variables from N(θ, σ2) (σ2 known)
with a prior for θ of the form θ ∼ N(b, d2).

With this construction we obtained the posterior:

θ|x ∼ N(µ, s2)

where µ =
b
d2 + nx

σ2
1
d2 + n

σ2

and s2 = 1
1
d2 + n

σ2

.

Since the normal distribution is uni–modal and symmetric, the
HPD regions are symmetric intervals of the form (µ− c , µ+ c). It
follows that the 100(1− α)% HPD interval for θ is:

µ± zα/2s,

where zα/2 is the appropriate percentile of the N(0, 1) distribution.

As n→∞ this interval becomes x ± zα/2σ/
√
n.
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Example

Suppose x ∼ Binomial(n, θ) with the prior

θ ∼ Beta(p, q).

This gives the posterior distribution

θ|x ∼ Beta(p + x , q + n − x)

Thus, the 100(1− α)% HPD interval [a, b] satisfies:

1

B(p + x , q + n − x)

∫ b

a
θp+x−1(1− θ)q+n−x−1dθ = 1− α,

and

ap+x−1(1− a)q+n−x−1 = bp+x−1(1− b)q+n−x−1 = γ.

Generally, this has to be solved numerically.
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Hypothesis Tests

Hypothesis tests are decisions of the form of choosing between two
different hypotheses:

H0 : θ ∈ Ω0,

H1 : θ ∈ Ω1.

In the simplest case where Ω1 and Ω2 consist of single points, the
test is of the form

H0 : θ = θ0,

H1 : θ = θ1.
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Hypothesis Tests

The classical approach to this problem is usually to base the test
on the likelihood ratio:

λ =
f (x |θ1)

f (x |θ0)
.

Large values of λ indicate that the observed data x is more likely
to have occurred if θ1 is the true value of θ than if θ0 is.

In the Bayesian view of things, we should also bring to bear the
prior information we have about θ. Therefore, we may compute
the posterior probabilities of θ1 and θ0:

f (θ1|x) =
f (θ1)f (x |θ1)

f (θ0)f (x |θ0) + f (θ1)f (x |θ1)

f (θ0|x) = 1− f (θ1|x).
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Hypothesis Tests

In the general case of testing the hypotheses:

H0 : θ ∈ Ω0,

H1 : θ ∈ Ω1,

we can still calculate the posterior probabilities of the two
hypotheses, after specifying prior probabilities, f (θ ∈ Ω0) and
f (θ ∈ Ω1), on the hypotheses. Then we have

f (θ ∈ Ω1|x) =
f (θ ∈ Ω1)f (x |θ ∈ Ω1)

f (θ ∈ Ω0)f (x |θ ∈ Ω0) + f (θ ∈ Ω1)f (x |θ ∈ Ω1)
,

where

f (x |θ ∈ Ω) =

∫
Ω
f (θ)f (x |θ)dθ.

Obviously, it is straightforward to generalise the above testing
approach to the case of testing more than two hypotheses.
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Baysian Model Comparison

Bayesian model comparison is a generalisation of Bayesian
hypothesis testing.

Consider being interested in comparing k competing models for a
given set of observed data: M1, M2,..., Mk .

We assume prior model probabilities: Pr(Mj), j = 1, . . . , k,∑k
j=1 Pr(Mj) = 1.

We compute the posterior model probabilities as

Pr(Mj | x) ∝ Pr(Mj)f (x | Mj)

Before dealing with the problem of model comparison, let us define
the marginal likelihood of a given model.
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The Marginal Likelihood

The marginal likelihood or evidence f (x) of a given model f (x | θ)
is the marginal distribution of the data under that model. It is
obtained by integrating the product of the likelihood times a prior
distribution f (θ) on the model parameters θ over θ:

f (x) =

∫
f (x | θ)f (θ)dθ.

That is f (x) is the normalising constant of the posterior:

f (θ | x) =
f (x | θ)f (θ)

f (x)
.

Equivalently, the marginal likelihood is defined as the expectation
of the likelihood with respect to the prior distribution f (θ).

Note: for given data, x , f (x) is the probability (or density) of
observing x under the assumed model.
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Bayesian Treatment

Consider a number of competing models M1, . . . ,Mk ,
parameterised respectively by θ1, . . . , θk , for an observed data set.
In the presence of uncertainty about the correct model, Bayesian
inference involves:

1. Evaluation of the posterior probability Pr(Mj | x) of each
model Mj , j = 1, . . . , k.

2. Evaluation of the posterior distribution f (θj | x ,Mj) of the
parameters θj of model Mj , j = 1, . . . , k .

In fact, the unknown quantities in the process of statistical
inference are both the model and the parameters. Under the
Bayesian approach, all unknown quantities are treated as random
variables and inferred through their posterior distributions.
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Bayesian Inference

After specifying prior model probabilities, Pr(Mj), for all competing
models and carefully choosing proper prior distributions for the
model specific parameters, f (θj | Mj), j = 1, . . . , k , posterior
inferences are obtained as follows.

1. The posterior probability of model Mj is calculated using
Bayes therom as

Pr(Mj | x) =
Pr(Mj)f (x | Mj)∑k
i=1 Pr(Mi )f (x | Mi )

, j = 1, . . . , k,

where f (x | Mj) is the marginal likelihood of model Mj .
2. The posterior distribution of the parameters θj of model Mj is

given by Bayes theorm as

f (θj | x ,Mj) =
f (θj | Mj)f (x | θj ,Mj)

f (x | Mj)
, j = 1, . . . , k .
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Proof

Consider the problem of joint inference for the model and the
parameters. Let M be a discrete r.v. denoting the model and
taking the values M1, . . . ,Mk . Let θ denote generically the
parameter(s).

Joint Prior: f (θ,M) = f (M)f (θ | M)
Joint Posterior: f (θ,M | x) ∝ f (M)f (θ | M)f (x | θ,M)
Marginal Posterior of M:

f (M | x) ∝
∫

f (M)f (θ | M)f (x | θ,M)dθ

= f (M)

∫
f (θ | M)f (x | θ,M)dθ = f (M)f (x | M)

Conditional Posterior of θ:
f (θ | x ,M) ∝ f (θ,M | x) ∝ f (θ | M)f (x | θ,M)
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Example. A Poisson Changepoint Problem

Consider data consisting of a series relating to the number of
British coal mining disasters per year, over the period 1851 - 1962.
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From this plot it does seem to be the case that there has been a
reduction in the rate of disasters over the period.
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Bayesian Model Comparison

For the coal-mining disasters data we consider two competing
models:

M1 each xi is an independent draw from a Poisson random
variable with mean θ;

M2 for i ≤ t, xi is an independent draw from a Poisson random
variable with mean θ1, and for i > t, xi is an independent
draw from a Poisson random variable with mean θ2.

In the first model there is just one unknown parameter, θ. In the
second model, there are three unknown parameters: θ1, θ2 and t.
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Prior Specification

Model M1: Xi ∼ Poisson(θ), i = 1, . . . , n
Model M2: Xi ∼ Poisson(θ1), i = 1, . . . , t

Xi ∼ Poisson(θ2), i = t + 1, . . . , n

We assume θ ∼ Exp(1/2), i.e. f (θ) = 1
2e
−θ/2

Furthermore, θ1 ∼ Exp(1/2), and θ2 ∼ Exp(1/2),
i.e. f (θ1) = 1

2e
−θ1/2, f (θ2) = 1

2e
−θ2/2,

t ∼ DU(1, . . . , n − 1), i.e. f (t) = 1
n−1 , t = 1, . . . , n − 1,

and P(M1) = P(M2) = 1
2 .
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Model M1

Likelihood: f (x | θ) =
[∏n

i=1
1
xi !

]
e−nθθ

∑n
i=1 xi

Conjugate Prior: f (θ) = 1
2e
−θ/2

Posterior: f (θ | x) ∝ f (θ)f (x | θ)

= 1
2e
−θ/2

[∏n
i=1

1
xi !

]
e−nθθ

∑n
i=1 xi = 1

2

[∏n
i=1

1
xi !

]
e−(n+ 1

2
)θθ

∑n
i=1 xi

≡ Gamma(
∑n

i=1 xi + 1, n + 1
2 ).

Evidence: f (x | M1) =
∫
f (θ)f (x | θ)dθ

=
∫∞

0
1
2 [
∏n

i=1
1
xi !

]e−(n+ 1
2

)θθ
∑n

i=1 xidθ

= 1
2 [
∏n

i=1
1
xi !

]
∫∞

0 e−(n+ 1
2

)θθ
∑n

i=1 xidθ

= 1
2 [
∏n

i=1
1
xi !

]
Γ(
∑n

i=1 xi+1)

(n+ 1
2

)
∑n

i=1
xi+1
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Model M2

Likelihood:
f (x | θ1, θ2, t) =[∏t

i=1
1
xi !

]
e−tθ1θ

∑t
i=1 xi

1

[∏n
i=t+1

1
xi !

]
e−(n−t)θ2θ

∑n
i=t+1 xi

2

Priors: f (θ1) = 1
2e
−θ1/2, f (θ2) = 1

2e
−θ2/2, f (t) = 1

n−1

Posterior: f (θ1, θ2, t | x) ∝ f (θ1)f (θ2)f (t)f (x | θ1, θ2, t)

= 1
4(n−1)

[∏n
i=1

1
xi !

]
e−(t+ 1

2
)θ1θ

∑t
i=1 xi

1 e−(n−t+ 1
2

)θ2θ
∑n

i=t+1 xi
2 .

Conditional Posteriors of θ1 and θ2 given t:

f (θ1 | x , t) ∝ f (θ1, θ2, t | x) ∝ e−(t+ 1
2

)θ1θ
∑t

i=1 xi
1

≡ Gamma(
∑t

i=1 xi + 1, t + 1
2 )

f (θ2 | x , t) ∝ f (θ1, θ2, t | x) ∝ e−(n−t+ 1
2

)θ2θ
∑n

i=t+1 xi
2

≡ Gamma(
∑n

i=t+1 xi + 1, n − t + 1
2 )
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2

)θ1θ
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1

≡ Gamma(
∑t

i=1 xi + 1, t + 1
2 )
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2
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Model M2

Marginal Posterior of t:

f (t | x) =

∫
θ1

∫
θ2

f (θ1, θ2, t | x)dθ2dθ1

∝
∫
θ1

∫
θ2

e−(t+ 1
2

)θ1θ
∑t

i=1 xi
1 e−(n−t+ 1

2
)θ2θ

∑n
i=t+1 xi

2 dθ2dθ1

=

[∫ ∞
0

e−(t+ 1
2

)θ1θ
∑t

i=1 xi
1 dθ1

] [∫ ∞
0

e−(n−t+ 1
2

)θ2θ
∑n

i=t+1 xi
2 dθ2

]
=

Γ(
∑t

i=1 xi + 1)

(t + 1
2 )

∑t
i=1 xi+1

Γ(
∑n

i=t+1 xi + 1)

(n − t + 1
2 )

∑n
i=t+1 xi+1
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Bayesian Model Comparison

Evidence of M2:
f (x | M2) =

∑n−1
t=1

∫
θ1

∫
θ2
f (θ1)f (θ2)f (t)f (x | θ1, θ2, t)dθ2dθ1 =

∑n−1
t=1

∫ ∫
1

4(n−1)

[∏n
i=1

1
xi !

]
e−(t+ 1

2
)θ1θ

∑t
i=1 xi

1 e−(n−t+ 1
2

)θ2θ
∑n

i=t+1 xi
2 dθ2dθ1

=
∑n−1

t=1

{
1

4(n−1)

[∏n
i=1

1
xi !

]
Γ(
∑t

i=1 xi+1)

(t+ 1
2

)
∑t

i=1
xi+1

Γ(
∑n

i=t+1 xi+1)

(n−t+ 1
2

)
∑n

i=t+1
xi+1

}
= 1

4(n−1)

[∏n
i=1

1
xi !

]∑n−1
t=1

{
Γ(
∑t

i=1 xi+1)

(t+ 1
2

)
∑t
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