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Preface

This book is designed for students who want to develop professional skill in
stochastic calculus and its application to problems in finance. The Wharton School
course that forms the basis for this book is designed for energetic students who
have had some experience with probability and statistics but have not had ad-
vanced courses in stochastic processes. Although thé course assumes only a modest
background, it moves quickly, and in the end, students can expect to have tools
that are deep enough and rich enough to be relied on throughout their professional
CATeers.

The course begins with simple random walk and the analysis of gambling games.
This material is used to motivate the theory of martingales, and, after reaching a
decent level of confidence with discrete processes, the course takes up the more de-
manding development of continuous-time stochastic processes, especially Brownian
motion. The construction of Brownian motion is given in detail, and enough mate-
rial on the subtle nature of Brownian paths is developed for the student to evolve a
good sense of when intuition can be trusted and when it cannot. The course then
takes up the Itd integral in earnest. The development of stochastic integration aims
to be careful and complete without being pedantic. ’

With the It6 integral in hand, the course focuses more on models. Stochastic
processes of importance in finance and -economics are developed in concert with
the tools of stochastic calculus that are needed to solve problems of practical im-
portance. The financial notion of replication is developed, and the Black-Scholes
PDE is derived by three different methods. The course then introduces enough of
the theory of the diffusion equation to be able to solve the Black—Scholes partial
differential equation and prove the uniqueness of the solution. The foundations for
the martingale theory of arbitrage pricing are then prefaced by a well-motivated
development of the martingale representation theorems and Girsanov theory. Ar-
bitrage pricing is then revisited, and the notions of admissibility and completeness
are developed in order to give a clear and professional view of the fundamental
formula for the pricing of contingent claims.

This is a text with an attitude, and it is designed to reflect, wherever possible
and appropriate, a prejudice for the concrete over the abstract. Given good gen-
eral skill, many people can penetrate most deeply into a mathematical theory by
focusing their energy on the mastery of well-chosen examples. This does not deny
that good abstractions are at the heart of all mathematical subjects. Certainly,
stochastic calculus has no shortage of important abstractions that have stood the
test of time. These abstractions are to be cherished and nurtured. Still, as a matter
of principle, each abstraction that entered the text had to clear a high hurdle.

Many people have had the experience of learning a subject in ‘spirals.’ After
penetrating a topic to some depth, one makes a brief retreat and revisits earlier
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topics with the benefit of fresh insights. This text builds on the spiral model in
several ways. For example, there is no shyness abeut explering a special case before
discussing a general result. There also are some problems that are solved in several
different ways, each way illustrating the strength or weakness of a new technique.

Any text must be more formal than a lecture, but here the lecture style is
followed as much as pessible. There is alse more concern with ‘pedagegic’ issues
th@in is corimen in advanced texbs, and the text aims for a ceaching veice. In
parbicular, readers are encouraged to use ideas such as @eorge Pélya’s “Looking
Back” technique, numerical calculation te build intuitien, and the art of guessing
befeore proving. The main goal of the text is te provide a proefessional view of a bedy
of knewledge, but aleng the way there are even mere valuable skills one can learn,
such as general problem-solving skills and general approaches to the invention of
new problems.

This boek is net designed for experts in probability theory, but there are a
few spots where experts will find semething new. Changes of substance are far
fewer than the changes in style, but seme points that might catch the expert eye
are the explicit use of wavelets in the censtruction of Brewnian motion, the use of
linear algebra (and dyads) in the develepment of Skorohed’s embedding, the use of
mantingales to achieve the approximation steps needed to define the Itd integral,
and a few more.

Many -people have helped with the development of-this text, and it certainly
would have gone unwritten except for the interest and enengy of more than eight
years of Wharten Ph.D. students. My fear of emissions prevents me from trying to
list all the students whe have geone out of their way to help with this preject. My
appreciation for their years of invelvement knows no bounds.

Of the colleagues who have helped persenally in one way or anether with my
education in the matters of this text, I am Ppleased to thank Erhan Cinlar, Kai
Lai Chung, Darrell Duffle, David Freedman, J. Michael Harrison, Michael Phelan,
Yannis Karatzas, Wenbo Li, Andy Lo, Larry Shepp, Steve Shreve, and John Walsh.
T especially thank Jim Pitman, Hristo Sendev, Ruth Williams, and Marc Yor for
their comments on earlier versiens of this text. They saved me from seme grave
errors, and they could save me from more if time permitted. Finally, I would like to
thank Vliadimir Pozdnyakev for hundreds of hours of cenversation on this material.
His suggestions were especially influential on the last five chapters.

J. Michag] Steéle
Philadelphia, PA
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CHAPTER 1

Random Walk and First Step Analysis

The fountainhead of the theory of stochastic processes is simple random walk.
Already rich in unexpected and elegant phenomena, random walk also leads one
inexorably to the development of Brownian motion, the theory of diffusions, the
It6 calculus, and myriad important applications in finance, economics, and physical
science,

Simple random walk provides a model of the wealth process of a person who
makes a living by Aipping a fair coin and making fair bets. We will see it is a hard
living, but first we need some notation. We let {X; :1 < 1 < oo} denote a sequence
of independent random variables with the probability distribution given by

1
PX;=1)=PX;=-1)= 7
Next, we let Sy denote an arbitrary integer that we view as our gambler’s initial
wealth, and for 1 <n < oo we let S, denote Sy plus the partial sum of the X;:
n=58+Xi+Xo+- -+ X,

If we think of S, — Sp as the net winnings after n fair wagers of one dollar each,
we almost have to inquire about the probability of the gambler winning A dollars
before losing B dollars. To put this question into useful notation, we do well to
consider the first time 7 at which the partial sum S, reaches level A or level —B:

T=min{n >0:S5, =4 o S, =—B}.

‘At the random time 7, we have S, = A or S, = —B, so our basic problem is
to determine P(S; = A | Sy = 0). Here, of course, we permit the wealth of the
idealized gambler to become negative — not an unrealistic situation.

:

-1

-2

FIGURE 1.1. HITTING TIME OF LEVEL $2 IS 6

1.1, First Step Analysis

The solution of this problem can be obtained in several ways, but perhaps
the most general method is first step analysis. One benefit of this method is that
it is completely elementary in the sense that it does not require any advanced
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mathematics. Still, from our perspective, the main benefit of first step analysis is
that it provides a benchmark by which to gauge more sophisticated methods.

For our immediate problem, first step analysis suggests that we consider the
gambler’s situation after one round of the game. We see that his wealth has either
increased by one dollar or decreased by one dollar. We then face a problem that
replicates our original problem except that the “initial” wealth has changed. This
observation suggests that we look for a recursion relation for the function

fk)=P(S.=A|S =k), where —B<k<A.

In this notation, f(0) is precisely the desired probability of winning A dollars before
losing B dollars.

If we look at what happens as a consequence of the first step, we immediately
find the desired recursion for f(k),

(L.1) f(lc):—;—f(k—l)+%f(lc+1) for —B <k <A

and this recursion will uniquely determine f when it is joined with the boundary
conditions
f(A)=1and f(-B)=0.

The solution turns out to be a snap. For example, if we let f(—B + 1) = o and
substitute the values of f(—B) and f(—B + 1) into equation (1.1), we find that
f(~B+2) = 20. If we then substitute the values of f(—B+1) and f(—B+-2) into
equation (1.1) we find f(—B +3) = 3a, whence it is no great leap to guess that we
have f(—B+k)=koforall 0 <k < A+ B.

Naturally, we verify the guess simply by substitution into equation (1.1). Fi-
nally, we determine that & = 1/(A+B) from the right boundary condition f(4) = 1
and the fact that for ¥k = A + B our conjectured formula for f requires f(4) =
(A + B)a. In the end, we arrive at a formula of remarkable simplicity and grace:

B

(1.2) P(8, reaches A before —B | Sp = 0) = iTo

LookING Back

When we look back at this formula, we find that it offers several reassuring
checks. First, when 4 = B we get %, as we would guess by symmetry. Also, if we
replace A and B by 24 and 2B the value of the right-hand side of formula (1.2)
does not change. This is also just as one would expect, say by considering the
outcome of pairs of fair bets. Finally, if A — co we see the gambler’s chance of
reaching A before —B goes to zero, exactly as common sense would tell us.

Simple checks such as these are always useful. In fact, George Pélya made
“Looking Back” one of the key tenets of his lovely book How to Solve It, a volume
that may teach as much about doing mathematics as any ever written. From time
to time, we will take advantage of further advice that Pélya offered about looking
back and other aspects of problem solving.

1.2. Time and Infinity

Our derivation of the hitting probability formula (1.2) would satisfy the building
standards of all but the fussiest communities, but when we check the argument we
find that there is a logical gap; we have tacitly assumed that 7 is finite. How do

1.2. TIME, AND INFINITY ) 3
we know for sure that the gambler’s net winnings will eventually reach A or —B?
This important fact requires proof, and we will call on a technique that exploits a
general principle: if something is possible — and there are infinitely many “serious”
attempts — then it will happen.

Consider the possibility that the gambler wins A + B times in a row. If the
gambler’s fortune has not already hit —B, then a streak of A+ B wins is guaranteed
to boost his fortune above A. Such a run of luck is unlikely, but it has positive
probability—in fact, probability p = 2-4~B. Now, if we let Ej denote the event
that the gambler wins on each turn in the time interval (k(A+B), (k+1)(A+B)-1],
then the Fy are independent events, and 7 > n(A4 + B) implies that all of the By
with 0 < k < n fail to occur. Thus, we find

(1.3) P(r>n(A+B)| S =0) < P(MZg Bf) = (1 —p)™

Since P(t = o0 | Sp = 0) £ P(t > n(A + B) | So = 0) for all n, we see from
equation (1.3) that P(r = co | Sp = 0) = 0, just as we needed to show to justify
our earlier assumption.

By a small variation on this technique, we can even deduce from equation (1.3)
that 7 has moments of all orders. As a warm-up, first note that if 1{A) denotes the
indicator function of the event A, then for any integer-valued nonnegative random
variable Z we have the identity

o
(1.4) Z=>"1UZ2k)

k=1
If we take expectations on both sides of the identity (1.4), we find a handy formula
that textbooks sometimes prove by a tedious summation by parts:

(1.5) E(Z) = i P(Z > k).
k=1

We will use equations (1.4) and (1.5) on many occasions, but much of the time we
do not need an exact representation. In order to prove that E(r%) < co we can get
along just as well with rough bounds. For example, if we sum the crude estimate

1{(k —1)(A+ B) <7 < k(A + B)] < k%A + B)?1[(k - 1)(A+ B) < 1],

over k, then we have
[+0]
(1.6) Z (A+BY1[(A+ B)(k —1) < 7).

We can then take expectations on both sides of the inequality (1.6) and apply the
tail estimate (1.3). The ratio test finally provides the convergence of the bounding
sum:

o
E(rY < Z k4 A + B)4(1 —p)*! < 0.
k=1
A SECOND FIRST STEP
Once we know that 7 has a finite expectation, we are almost immediately drawn
to the problem of determining the value of that expectation. Often, such ambitious

questions yield only partial answers, but this time the answer could not be more
complete or more beautiful.
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Again, we use first step analysis, although now we are inferested in the function
defined by

g(k) = B(1 | So = k).
After one turn of the game, two things will have happened: the gambler’s fortune
will have changed, and a unit of time will have passed. The recurrence equation that
we obtain differs from the one found earlier only in the appearance of an additional
constant term:

(1.7) g(k):%g(k—1)+%g(k+1)+lfor ~B<k<A

Also, since the time to reach A or —B is zero if Sy already equals A or —B, we
have new boundary conditions:

g(—B) =0 and g(4) = 0.

This time our equation is not so trivial that we can guess the answer just by
calculating a couple of terms. Here, our guess is best aided by finding an appropriate
analogy. To set up the analogy, we introduce the forward difference operator defined
by

Aglk - 1) = g(k) — gk ~ 1),
and we note that applying the operator twice gives

A2g(k —1) = g(k +1) — 2g(k) + g(k — 1).

The recurrence equation (1.7) can now be written rather elegantly as a second order
difference equation:

(1.8) %Azg(k _l)=—lfor ~B<k<A

The best feature of this reformulation is that it suggests an immediate analogy.
The integer function g: N — R has a constant second difference, and the real
functions with a constant second derivative are just quadratic polynomials, so one
is naturally led to look for a solution to equation (1.7) that is a quadratic over the
integers. By the same analogy, equation (1.8) further suggests that the coefficient of
k? in the quadratic should be —1. Finally, the two boundary conditions tell us that
the quadratic must vanish at —B and A, so we are left with only one reasonable
guess,

(1.9) g(k) = —(k — A)(k + B).

To verify that this guess is indeed an honest solution only reqguires substitution into
equation (1.7). This time we are lucky. The solution does check, and our analogies
have provided a reliable guide.

Finally, we note that when we specialize our formula to £ = 0, we come to a
result that could not be more striking:

(1.10) E(r] Sy =0) = AB.

This formula is a marvel of simplicity — no better answer could even be imag-
ined. Moreover, when we look back on equation (1.10), we find several interesting
deductions.

For example, if we let 7/ = min{n > 0: S, = ~1} and set

™ =min{n >0:85, =—-1or S, = A},

v
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then we see that 7’ < 7/, But equation (1.10) tells us E(r"’) = 4 so we find that -
E(r') = A for all A. The bottom line is that E{r") = co, or, in other words, the
expected time until the gambler gets behind by even one dollar is infinite.

This remarkable fact might give the gambler some cause for celebration, except
for the sad symmetrical fact that the expected time for the gambler to get ahead
by one dollar is also infinite. Strangely, one of these two events must happen on
the very first bet; thus we face one of the many paradoxical features of the fair coin
game.

There are several further checks that we might apply to formula (1.10), but we
will pursue just one more. If we consider the symmetric interval [—A4, A], is there
some way that we might have guessed that the expected time until the first exit
should be a quadratic function of A? One natural approach to this question is to
consider the expected size of |S,|. The central limit theorem and a bit of additional
work will tell us that E(|S,|) ~ +/2n/m, so when both n and A are large we see
that E(|Sy|) will first leave the interval [— A, A] when n ~ mA2/2. This observation
does not perfectly parallel our exit-time formula (1.10), but it does suggest that a
quadratic growth rate is in the cards.

1.3. Tossing an Unfair Coin

It is often remarked that life is not fair, and, be that as it may, there is.no
doubt that many gambling games are not even-handed. Considerable insight into
the difficulties that face a player of an unfair game can be found by analysis of the
simplest model — the biased random walk defined by S, = So+X1+Xa+- -+ X,
where

P(X,=1)=pand P(X; = —1) =1 —p=q where p # ¢.
To solve the ruin problem for biased random walk, we take f(k) and T as before
and note that first step analysis leads us to

F(k) =pf{k +1) + af (k—1).

This is another equation that is most easily understood if it is written in terms of
the difference operator. First, we note that since p + ¢ = 1 the equation can be
rearranged to give

0=p{f(k+1) - f(k)} — o{F (k) — f(k — 1)},
from which we find a simple recursion for Af(k):
(1.11) Af(k) = (a/p)Af(k - 1).
Now, we simply iterate equation (1.11) to find

Af(k+35) = (a/pY Af (),
so, if we set & = Af(~B), we can exploit the fact that f(—B) = 0 and successive
cancellations to find
k+B—-1 k+B-1 (q/p)k+B -1

1.12 flk) = Af(j=B)=a I o= gt =
( ) (k) j;o (4 ) j;o (a/?) (a/p) -1

We can then eliminate o from equation (1.12) if we let k¥ = A and invoke our second
boundary condition:
(a/p)*+5 -1
1=f(A) = a5,
4 (a/p) -1
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After determining o, we return to equation (1.12) and take k == 0 to get to the
bottom line; for biased random walk, we have a simple and explicit formula for the
ruin probability:

B
: -1

(1.13) P(Sy, hits A before —B | Sy =0) = ﬁ—/—z—))——~

| )= =i
This formula would transform the behavior of millions of the world’s gamblers, if
they could only take it to heart. Such a conversion is unlikely, though perhaps a
few might be moved to change their ways if they would work out the implications
of equation (1.13) for some typical casino games.

TIME AND TIME AGAIN

The expected time until the biased random walk hits either level A or —B can
also be found by first step analysis. If g(k) denotes the expected time until the
random walk hits A or —B when we start at k, then the equation given by first
step analysis is just

g9(k) =pg(k+1) +qg(k — 1) + 1.
As before, this equation is better viewed in difference form

(1.14) Ag(k) = (g/p)Ag(k — 1) — 1/p,

where the boundary conditions are the same as those we found for the unbiased
walk

g(—B) =0 and g(4) = 0.

To solve equation (1.14), we first note that if we try a solution of the form ck
then we find that go(k) = /(g — p) is one solution of the inhomogeneous equation
(1.14). From our earlier work we also know that o + B(g/p)* is a solution of the
homogeneous equation (1.11), so to obtain a solution that handles the boundary
conditions we consider solutions of the form

g(k) = ﬁ + o+ Bla/p)*.

The two boundary conditions give us a pair of equations that we can solve to
determine o and f in order to complete the determination of g(k). Finally, when
we specialize to g(0), we find the desired formula for the expected hitting time of
~B or A for the biased random walk:

B A+B 1-(g/n)®
g—p q-p 1—(g/p)A*E’

The formulas for the hitting probabilities (1.13) and the expected hitting time
(1.15) are more complicated than their cousins for unbiased walk, but they answer
more complex questions. When we look back on these formulas, we naturally want
to verify that they contain the results that were found earlier, but one cannot
recapture the simpler formulas just by setting p = ¢ = % Nevertheless, formulas
(1.13) and (1.15) are consistent with-the results that were obtained for unbiased
walks. If we let p = 3 +e€ and g = £ ~¢ in equations (1.13) and (1.15), we find that
as € — 0 equations (1.13) and (1.15) reduce to B/(4 + B) and AB, as one would
expect.

(1.15) E(r| S =0)=

1.5. FIRST STEPS WITH GENERATING FUNCTIONS tog

1.4. Numerical Calculation and Intuition

The formulas for the ruin probabilities and expected hitting times are straight-
forward, but for someone interested in building serious streetwise intuition there is
nothing that beats numerical computation.

e 'We now know that in a fair game of coin tosses and $1 wagers the expected
time until one of the players gets ahead by $100 is 10,000 tosses, a much
larger number than many people might expect.

o If our gambler takes up a game with probability p = 0.49 of winning on
each round, he has less than a 2% chance of winning $100 before losing
$200. This offers a stark contrast to the fair game, where the gambler
would have a 2/3 probability of winning $100 before losing $200. The
cost of even a small bias can be surprisingly high.

In the table that follows, we compute the probability of winning $100 before
losing $100 in some games with odds that are typical of the world’s casinos. The
table assumes a constant bet size of 1 on all rounds of the game.

TABLE 1.1. STREETWISE BENCHMARKS.

Chance on one round [ 0.500 | 0.495 | 0.490 | 0.480 | 0.470
Chance to win $100 [ 0.500 | 0.1191 | 0.0179 | 0.0003 | 6 x 1078
Duration of the game | 10,000 { 7,616 | 4,820 {2,498 | 1,667

One of the lessons we can extract from this table is that the traditional movie
character who chooses to wager everything on a single round of roulette is not so
foolish; there is wisdom to back up the bravado. In a game with a 0.47 chance to
win on each bet, you are about 78,000 times more likely to win $100 by betting
$100 on a single round than by playing just $1 per round. Does this add something
to your intuition that goes beyond the simple formula for the ruin probability?

1.5. First Steps with Generating Functions

We have obtained compelling results for the most natural problems of gambling
in either fair or unfair games, and these results make a sincere contribution to our
understanding of the real world. It would be perfectly reasonable to move to other
problems before bothering to press any harder on these simple models. Nevertheless,
the first step method is far from exhausted, and, if one has the time and interest,
much more detailed information can be obtained with just a little more work.

For example, suppose we go back to simple random walk and consider the
problem of determining the probability distribution of the first hitting time of
level 1 given that the walk starts at zero. Our interest is no longer confined to a
single number, so we need a tool that lets us put all of the information of a discrete
distribution into a package that is simple enough to crack with first step analysis.

If we let 7 denote this hitting time, then the appropriate package turns out te
be the probability generating function:

(o)

(1.16) $(2) = E(2" | So=0) = > P(r=k] S = 0)z".
k=0
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If we can find a formula for ¢(z) and can compute the Taylor expansion of ¢(z)
from that formula, then by identifying the corresponding coefficients we will have
found P(r = k | Sg = 0) for all k. Here, one should also note that once we
understand 7 we also understand the distribution of the first time to go up k
levels; the probability generating function in that case is given by ¢(2)* because
the probability generating function of a sum of independent random variables is
simply the product of the probability generating functions.

Now, although we want to determine a function, first step analysis proceeds
much as before. When we take our first step, two things happen. First, there is the
passage of one unit of time; and, second; we will have moved from zero to either
—1 or 1. We therefore find on a moment’s reflection that

(117) B(2) = BT | Sp = ~1) + LB [ o =1).

Now, E(z" | 8§y = —1) is the same as the probability generating function of the first
time to reach level 2 starting at 0, and we noted earlier that this is exactly ¢(z)2.
We also have E(2" | Sy = 1) = 1, so equation (1.17) yields a quadratic equation for
$(2):

(1.18) (z) = %z¢(z)2 + %z

In principle ¢(2) is now determined, but we can get a thoroughly satisfying
answer only if we exercise some discrete mathematics muscle. When we first apply
the quadratic formula to solve equation (1.18) for ¢(2) we find two candidate solu-
tions. Since 7 > 1, the definition of ¢(2) tells us that ¢(0) = 0, and only one of the
solutions of equation {1.18) evaluates to zero when z = 0, so we can deduce that

(1.19) o(5) = T2V 22 Vzl‘z

The issue now boils down to finding the coefficients in the Taylor expansion of
#(z). To get these coefficients by successive differentiation is terribly boring, but
we can get them all rather easily if we recall Newton’s generalization of the binomial
theorem. This result tells us that for any exponent o € R, we have

(1.20) 1+y)°*= i (Z) v,

k=0
where the binomial coefficient is defined to be 1 for k£ = 0 and is defined by

(1.21) (z) _ofa-1)- -I-c!(a —k+1)

for k > 0. Here, we should note that if « is equal to a nonnegative integer m,
then the Newton coefficients (1.21) reduce to the usual binomial coefficients, and
Newton'’s series reduces to the usual binomial formula.

When we apply Newton's formula to (1 — zz)é, we quickly find the Taylor
expansion for ¢:

z

#(z) = 1-vi-2_ i <1]{:2) (—1)F+1p26-1,
k=1

1.6, EXERCISES 9

and when we compare this expansion with the definition of ¢(2) given by equation
(1.16), we can identify the corresponding coefficients to find

1/2 :
(1.22) Pir=2—-1|S=0)= ( 2 )(-1)’““1.
The last expression is completely explicit, but it can be written a bit more
comfortably. If we expand Newton's coefficient and rearrange terms, we quickly
find a formula with only conventional binomials:

o1 2k\ _og

This formula and a little arithmetic will answer any question one might have
about the distribution of 7. For example, it not only tells us that the probability
that our gambler’s winnings go positive for the first time on the fifth round is 1/18,
but it also resolves more theoretical questions such as showing

E(r%) < oo for all @ < 1/2,

even though we have
E(r%) =0 for all @ > 1/2.

1.6. Exercises

The first exercise suggests how results on biased random walks can be worked
into more realistic models. Exercise 1.2 then develops the fundamental recurrence
property of simple random walk. Finally, Exercise 1.3 provides a mind-stretching
result that may seem unbelievable at first.

EXERCISE 1.1 (Complex Models from Simple Ones). Consider a naive model
for a stock that has a support level of $20/share because of a corporate buy-back
program. Suppose also that the stock price moves randomly with a downward bias
when the price is above $20 and randomly with an upward bias when the price is
below $20. To make the problem concrete, we let ¥, denote the stock price at time
n, and we express our support hypothesis by the assumption that

P(Yp41 =21]Y, =20) =0.9, and P(Yp41 =19]Y; = 20) = 0.1

We then reflect the downward bias at price levels above $20 by requiring for k > 20
that

P¥py1=k+1{Yn=k)=1/3and P(Yp41 =k—1|Y, =k)=2/3.
The upward bias at price levels below $20 is expressed by assuming for k£ < 20 that
P¥pu=k+1|Yn=k)=2/3and P(Ypt1=k—1|Ya =k)=1/3.

Calculate the expected time for the stock price to fall from $25 through the
support level of $20 all the way down to $18.
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EXBRCISE 1.2 (Recurrence of SRW). If S, denotes simple random walk with
Sg = 0, then the usual binomial theorem immediately gives us the probability that
we are back at 0 at time 2k:

(1.24) P(So; =018y =0) = (2:)2%.

(a) First use Stirling’s formula k! ~ v/2rk k¥e~* to justify the approximation
P(Sgx = 0) ~ (wk) "%,

and use this fact to show that if NV, denotes the number of visits made by Sy to 0
up to time n, then B(N,) — oo as n — co.
(b) Finally, prove that we have

P(S, =0 for infinitely many n) = 1.

This is called the recurrence property of random walk; with probability one simple
random walk returns to the origin infinitely many times. Anyone who wants a hint
might consider the plan of calculating the expected value of

N=i1(5’n=0)

in two different ways. The direct method using P(S,, = 0) should then lead without
difficulty to E(N) = co. The second method is to let

r = P(S, =0 for some n > 1|5 = 0)
and to argue that

r
E(N) = T~

To reconcile this expectation with the calculation that F(N) = co then requires
=1, as we wanted to show.

(c) Let 7o = min{n > 1: S, = 0} and use first step analysis together with the
first-passage time probability (1.23) to show that we also have

(1.25) P(ry =2k) = -2?1_7 (2’“> 22k,

k

Use Stirling’s formula n! ~ n™e""/2rn to show.that P(m = 2k) is bounded above
and below by a constant multiple of k~3/2, and use these bounds to conclude that

E(7§) < co for all @ < § yet E(TO%) = 0.

EXERCISE 1.3. Consider simple random walk beginning at 0 and show that for
.any k # 0 the expected number of visits to level k before returning to 0 is exactly
1. Anyone who wants a hint might consider the number N of visits to level k&
before the first return to 0. We have Ny = 1 and can use.the results on hitting
probabilities to show that for all k¥ > 1 we have

k-1

P(Ni>0) = 2% and POy > j+1| Ny > §) = -

3% +

[T
N

CHAPTER 2
-First Martingale Steps

The theory of martingales began life with the aim of providing insight into the
apparent impossibility of making money by placing bets on fair games. The success
of the theory has far outstripped its origins, and martingale theory is now one of
the main tools in the study of random processes. The aim of this chapter is to
introduce the most intuitive features of martingales while minimizing formalities
and technical details. A few definitions given here will be refined later, but the
redundancy is modest, and the future abstractions should go down more easily
with the knowledge that they serve an honest purpose.

We say that a sequence of random variables {M,,: 0 € n < oo} is a martingale
with respect to the sequence of random variables {X,: 1 < n < oo}, provided that
the sequence {M,} has two basic properties. The first property is that for each
n > 1 there is a function f, : R” = R such that M,, = fo{X1,X2,...,Xy), and
the second property is that the sequence {M,,} satisfies the fundamental martingale
identity:

(2.1) E(I\/fn l Xl,Xz, e an—-l) = an——l for all n > 1.

To round out this definition, we will also require that M, have a finite expectation
for each n > 1, and, for a while at least, we will require that My simply be a
constant.

The intuition behind this definition is easy to explain. We can think of the X;
as telling us the ith outcome of some gambling process, say the head or tail that one
would observe on a coin flip. We can also think of M,, as the fortune of a gambler
who places fair bets in varying amounts on the results of the coin tosses. Formula
(2.1) tells us that the ezpected value of the gambler’s fortune at time n given all
the information in the first » — 1 flips of the coin is simply My,—1, the actual value
of the gambler’s fortune before the nth round of the coin flip game.

The martingale property (2.1) leads to a theory that brilliantly illuminates the
fact that a gambler in a fair game cannot expect to make money, however cleverly
he varies his bets. Nevertheless, the reason for studying martingales is not that
they provide such wonderful models for gambling games. The compelling reason
for studying martingales is that they pop up like mushrooms all over probability
theory. ;

2.1. Classic Examples

To develop some intuition about martingales and their basic properties, we
begin with three classic examples. We will rely on these examples throughout the
text, and we will find that in each case there are interesting analogs for Brownian
motion as well as many other processes.
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Example 1

If the X, are independent random variables with E(X,) = 0 for all n > 1, then
the partial sum process given by taking So =0 and S, = X1+ Xo + -+ X, for
n > 1 is a martingale with respect to the sequence {X,: 1 < n < co}.

Example 2

If the X, are independent random variables with E(X,) = 0 and Var(X,,) = o for
all n > 1, then setting Mp = 0 and M,, = S2 —no? for n > 1 gives us a martingale
with respect to the sequence {X,: 1< n < o0},

One can verify the martingale property in the first example almost without
thought, so we focus on the second example. Often, the first step one takes in order
to check the martingale property is to separate the conditioned and unconditioned
parts of the process:

E(My | X1,X2,. .« s Xn—1) = B(S2_; +28p-1Xn+ X2 —n0? | X1, Xay .. , Xn1)-

Now, since S2_, is a function of {Xy,X2.... ,Xw—1}, its conditional expectation
given {X1,Xs,... ,Xn_1} is just S2_,. When we consider the second summand, we
note that when we calculate the conditional expectation given {X3, Xz,... , Xpn_1}
the sum S,—1 can be brought outside of the expectation

E(Sn1Xn | X1, X, ...\ Xpo1) = S B(Xn | X1, X2, 0, Xnm1).

Next, we note that B(X, | X1, Xz,... ,Xn-1) = E(X,) = 0 since X,, is indepen-
dent of X, Xs,...,X,1; by parallel reasoning, we also find

E(X721 | X1, X200y K1) = o’

When we reassemble the pieces, the verification of the martingale property for
M, = 52 — no? is complete.

Example 3

For the third example, we consider independent random variables X, such that
Xn>0and B(X,) =1 for all n > 1. We then let My =1 and set

M,=X; - X9 Xpforn=>1.

One can easily check that M, is a martingale. To be sure, it is an obvious mul-
tiplicative analog to our first example. Nevertheless, this third martingale offers
some useful twists that will help us solve some interesting problems.

For example, if the independent identically distributed random variables ¥,
have a moment generating function

$(A) = B(exp(AYr)) < oo,

then the independent random variables X, = exp(A\Y,)/¢(\) have mean one so
their product leads us to a whole parametric family of martingales indexed by A:

~

M, = exp(\ Z Ya)/p(A)™

=1
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Now, if there exists a Ag # 0 such that ¢(Ag) = 1, then there is an especially useful
member of this family. In this case, when we set S, = Y., ¥i we find that

1‘/[“ — e/\o Su

is a martingale. As we will see shortly, the fact that this martingale is an explicit
function of S, makes it a particularly handy tool for study of the partial sums S.,.

SHORTHAND NOTATION

Formulas that involve conditioning on X, Xs,..., X, can be expressed more
tidily if we introduce some shorthand. First, we will write E(Z | F») in place
of BE(Z | X1,X2,...,Xx), and when {M, : 1 < n < oo} is a martingale with
respect t0 {Xn 1 1 < n < co} we will just call {M,} a martingale with respect
to {Fn}. Finally, we use the notation Y € F, to mean that ¥ can be written as
Y = f(X1,X2,...,Xn) for some function f, and in particular if A is an event in
our probability space, we will write A € F, provided that the indicator function
of A is a function of the variables {X1, X3,...,X,}. The idea that unifies this
shorthand is that we think of F,, as a representation of the information in the set of
observations {Xi, Xa,...,Xn}. A little later, we will provide this shorthand with
a richer interpretation and some technical polish.

2.2. New Martingales from Old

Our intuition about gambling tells us that a gambler cannot turn a fair game
into an advantageous one by periodically deciding to double the bet or by cleverly
choosing the time to quit playing. This intuition will lead us o a simple theorem
that has many important implications. As a necessary first step, we need a defini-
tion that comes to grips with the fact that the gambler’s life would be easy if future
information could be used to guide present actions.

DEFINITION 2.1. A sequence of random variables {An : 1 < n < oo} is
called nonanticipating with respect to the sequence {F,} if for all 1 < n < oo,
we have

An € Foi.

In the gambling context, a nonanticipating A, is simply a function that depends
only on the information F,_; that is known before placing a bet on the nth round
of the game. This restriction on A, makes it feasible for the gambler to permit
A to influence the size of the nth bet, say by doubling the bet that would have
been made otherwise. In fact, if we think of A, itself as the bet multiplier, then
An(My — My—1) would be the change in the gambler’s fortune that is caused by
the nth round of play. The idea of a bet size multiplier leads us to a concept that
is known in more scholarly circles as the martingale transform. ’

DEFINITION 2.2. The process {R/fn 10 < n < co} defined by setting My = My
and by setting

My = My + Ay (My — Mo) + Ag(My — My) 4« 4+ Ap(My — Mp_y)
for n > 1 is called the martingale transform of {M,} by {An}-

The martingale transform gives us a general method for building new mar-
tingales out of old ones. Under a variety of mild conditions, the transform of a
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martingale is again a martingale. The next theorem illustrates this principle in its
most useful instance.

THEOREM 2.1 (Martingale Transform Theorem). If {M,} is a martingale with
respect to the sequence {Fp}, and if {4, : 1 < n < oo} is a sequence of bounded
random variables that are nonanticipating with respect to {F,}, then the sequence
of martingale transforms {M,)} is itself a martingale with respect to {Fp}.

ProoOF. We obviously have Effn € Fn, and the boundedness of the A; guar-
antees that M, has a finite expectation for all n. Finally, the martingale property
follows from a simple calculation. We simply note that

(2.2) E (M- Moo | 7, ~1) = E(An(My = Mp_1) | Fac)
= ApnB(M, ~ M,y | Fae1) =0,
and the martingale identity
E(My |Frer) = Mo

is equivalent to equation (2.2). O

STOPPING TIMES PROVIDE MARTINGALE TRANSFORMS

One of the notions that lies at the heart of martingale theory is that of a
stopping time. Intuitively, a stopping time is a random variable that describes a
rule that we could use to decide to stop playing a gambling game. Obviously, such
a rule cannot depend on the outcome of a round of the game that has yet to be
played. This intuition is captured in the following definition.

DErFINITION 2.3. A random variable 7 that takes values in {0,1,2,...} U {co}
is called o stopping time for the sequence {F,} if

{Tr<n}eF, foral 0<n<co.

In many circumstances, we are interested in the behavior of a random process,
say Y,, precisely at the stopping time 7. If 7 < co with probability one, then we
can define the stopped process Y, by setting

Y=Y Ur=k)Y
k=0

The fact that we define ¥ only when we have P(r < co) = 1 should underscore
that our definition of a stopping time permits the possibility that 7 = co, and
it should also highlight the benefit of finding stopping times that are finite with
probability one. Nevertheless, we always have truncation at our disposal; if we let
n A7 =min{n,7}, then n A7 is a bounded stopping time, and for any sequence of
random variables Y;, the stopped process Y,a- is well defined. Also, the truncated
stopping times n A 7 lead to an important class of martingales that we will use on
many future occasions.

THEOREM 2.2 (Stopping Time Theorem). If {My} is o martingale with respect
to {Fn}, then the stopped process {Mna,} is also a martingale with respect to {Fp}.
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Proor. First, we note that there is no loss of generality in assuming My = 0
since otherwise we can introduce the martingale M}, = M, — Mp. Next, we note
that the bounded random variables Ay defined by

Ar=1(r2k)=1-1(r<k-1)

are nonanticipating since 7 is a stopping time. Finally,

D A{My = My—1} = M 1(r < n— 1) + Mal(r 2 1) = Manr,

k=1
0 we that see {Mna-} is the martingale transform of M, by the process {A}
which is bounded and nonanticipating. Theorem 2.1 then confirms that {Muar} is
a martingale. O

2.3. Revisiting the Old Ruins

The stopping time theorem provides a new perspective on our earlier calculation

of the probability that a random walk S,, starting at 0 has a probability B/(A+ B)
of hitting level A before hitting level —B. If we let

T=min{n: S, =Aor S, =-B},
then the stopping time theorem and the fact that S,, is a martingale combine to
tell us that Spa- is also a martingale, so we have
(2.3) E[Spnr] = E[Sonr] =0 forall n>0.
Now, we checked earlier that 7 is finite with probability one, so we also have

lim Spar = 5, with probability one.

n—0Cc0

The random variables |Spa-| are bounded by max(A, B) so the dominated conver-
gence theorem® tells us
T}EI;Q E[SnA-r] = E[STL

so equation (2.3) tells us
(2.4) 0 = E[S;].

Remarkably, we have a second way to calculate E[S,]. We have the random variable
representation
Sy = AL(S, = A) — B1(S5, = —B),
so if we take expectations, we find
(2.5) E[S;]=P(S-=A)-A— (1= P(S, = 4))-B.
From equations (2.5) and (2.4), we therefore find that
0= E[S,] = P(S, = A) - A— (1 —P(S; = 4)) - B,

and we can solve this equation to find the classical formula:

P(S, = A) = 71%'

1This is the first time we have used one of the three great tools of integration theory: the
dominated convergence theorem, the monotone convergence theorem, and Fatou’s lemma. A
discussion of these results and a quick review of the Lebesgue integral can be found in the Appendix
on Mathematical Tools.
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ONCE MORE QUICKLY

The martingale method for calculating the ruin probability may seem long-
winded compared to first step analysis, but the impression is due to the detail with
which the calculations were given. With some experience behind us, we can pick up
the pace considerably. For example, if we now calculate E[r], the expected hitting
time of A or —B for an unbiased random walk, we can see that the martingale
method is actually very quick.

For unbiased simple random walk S, = X + X5 + -+ - + X,, where the X are
independent symmetric Bernoulli random variables, we have Var(X;) = 1, so we
know from the first calculation in this section that M, = S2 —n is a martingale.
Next, we note that

| Mpnr| < max(A42, B%) 4+,

and, since we showed earlier that E[r] < co, we see that for all n > 1 the random

variables M,a, are dominated by an integrable random variable. The martingale’

property of Mpa, gives us ElMpa-] = 0 for all n > 0, and M- converges to M,
with probability one by the finiteness of 7, so the dominated convergence theorem
finally gives us

BMz] = lim ElMnps] = 0.

What makes this fact useful is that again we have a second way to calculate
E[M.]. If we let @ = P(S, = A) then we have P(S; = —B) = 1 — a, so we
can calculate E[M;] directly from the elementary definition of expectation and our
earlier discovery that a = B/(A + B) to find

E[M,] = E[S?] - E[r] = aA? + (1 — o) B? — E[r] = AB — E[7].

Because our martingale argument already established that E[M.] = 0, we again
find the lovely formula E[r] =

Now WITH Bias

How about the ruin probabilities for biased random walk? This case is more
interesting since we will make use of a2 new martingale. To be precise, if X; are
independent random variables with P(X; = 1) = p and P(X; = ~1) = ¢ where
g=l—-pandp 7é , then we can define a new martingale by setting Mp = 1 and
setting

M, =(g/p)>* forall n>1.

One easily verifies that M, is indeed a martingale, so we can go directly to the
caleulation of P(S; = A). By our usual argument, P(T < c0) = 1, s0 as n — co we
see that My, converges with probability one to M... Because My is a martingale,
we have E{Mna-] =1 for all n > 0, and the random variables M,a, are bounded,
so the dominated convergence theorem tells us that

E[M,] = lim E[Mnn,] = 1.
n~00
We also have a bare-handed calculation of E[M,],

E(M.| = P(S; = A) - (g/p)* + (1 — P(S, = A)) - (¢/p)" 5,
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so from the fact that BE{M,] = 1 we find an equation for P(S; = A). When we solve
this equation, we find

B _
P(S.,=A)=((](/GZ§ZT_1,

exactly as we found by first step analysis.

SOME PERSPECTIVE

The martingale M,, = (¢/p)° may seem to have popped out of thin air, but it
is actually an old friend. The more principled (and less magical) way of coming to
this martingale is to use the parametric family of martingales that we built using
the moment generating function. For each step X; of a biased random walk, the
moment generating function is given by

(2.6) #(\) = E(exp(AX;)) = pe* + ge™%,
so by our earlier calculations we know that the process defined by
My, = 5 [(pe* + ge= )™

is a martingale for all A.
Now, if we can find X such that

(2.7) d(ho) =pe* +geM =1,

then we see that the simple process M, = e*5~ is a martingale. To make the last
martingale completely explicit, we only need to find e*0. To do this, we multiply
squation (2.7) by = = e*® to get a quadratic equation in z, and then we solve that
equation to find two solutions: z = 1 and = = ¢/p. The solution z = 1 gives us
the trivial martingale M, = 1, but when we take the second choice we find the
martingale M,, = (g/p)°" that we found to be so handy in the solution of the ruin
problem for biased random walk.

2.4. Submartingales

The applicability of martingale theory can be extended greatly if we relax the
martingale identity to an analogous inequality. This wider class of processes retains
many of the good features of martingales, yet it is far more flexible and robust.

DEFINITION 2.4. If the integrable random variables M, € F, satisfy the in-
equality
-ZV['n.-—l S E(Mn l .7:7,...1) fOT all n Z 1,
we say {Mp,} is a submartingale adapted to {F,}.

Submartingales are handy because many natural o zpef@"igy%’;@ submartingales
(or martingales) lead us directly to another subma tmgal”"Fo Gragm mple, if {M,}
is a martingale then {|M,|} is a submartingale, And’ if P> D Eh\’e{l. {IM.|?} is
also a submartingale, provided that E{|My|?) < ¢o for {gll"r;fg 0. we will see
shortly, these results are best understood as corol anes of@~ gene: n?nequahty for
the conditional expectation of a convex function of dm V2 a? .

ﬂAnﬁ/&?ﬂLi \ﬁ'
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JENSEN’S INEQUALITY FOR CONDITIONAL EXPECTATIONS

To develop the required inequality, we first recall that one of the most important
features of a convex function ¢(z) is that its graph {(z, ¢(z)) : z € R} is equal to
the upper envelope of the set of linear functions that lie below the graph. Expressed
in a formula, this says:

(2.8) ¢(z) = sup L(z),
Lecl

where
L={L:Lu)=au+b< ¢(u) forall —oo<u<col}.

One of the most important consequences of convexity in probability theory is
Jensen’s inequality.

THEOREM 2.3 (Jensen’s Inequality). For any convez function ¢, we have
(2.9) ¢ (B(X | 7)) < E(3(X) | 7).

ProOF. All we need to do is to use the envelope characterization of convexity
and the linearity of the conditional expectation:

E(p(X) | F) = E(gtégL(X) | F)
= sup E(L(X)|F) = sup L(E(X | F))
= ¢(E(X | F)). O

Here, we should note how remarkably little we needed to know about the condi-
tional expectation in order to prove Jensen’s inequality. We only needed two facts:
(1) B(- | F) is monotone in the sense that X < Y implies that E(X | F) < B(Y | F)
and (2) E(- | F) linear in the sense that for any constants ¢ and b we have
E(aX+b|F)=aBE(X|F)+b.

Before we go too far, we should also note that Jensen’s inequality is often
applied in its unconditional form, which corresponds to taking F to be the trivial
g—ﬁelg. For such a choice, the conditional inequality (2.9) boils down to the simpler

ound:

(2.10) ¢ (B(X)) < E($(X)).

LP SPACES AND JENSEN'’S INEQUALITY

We often need to work with random variables that satisfy some size constraint,
and the most common way to express such constraints is in terms of function spaces,
especially the space LP that consists of all X such that E[|X|P] < co. We will not
call on any detailed information about these spaces, but there are a few facts that
one should know.

For any 1 € p < co, we can consider L? as a normed linear space where for
finite p > 1 the norm is given by ||X||, = (E[]X]P])lv and for infinite p we take
|1X||eo = inf{t: P(IX] < &) = 1}.

For us, the most important L? spaces are those with p = 1,p = 2, and p = co.
The first of these is just the set of random variables with finite mean, and the
second is just the set of random variables with finite variance. The third space is
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the set of random variables that are bounded on a set of probability one. The most
basic relation between these spaces is that

(2.11) [1X]]: < 11Xz € [|X]leo and L C L* C L.

The only one of these relations that might require proof is the bound || X||1 < [|X]|2,
but this is also easy if one recalls Cauchy’s inequality E{|XY]] < ||X|l2||Y]|2 and
makes the special choice ¥ = 1.

The bounds given in relation (2.11) suggest that there is a monotonicity relation
for the LP norms, and Jensen’s inequality turns out to be the perfect tool to confirm
this suggestion. If we take the convex function defined by ¢(z) = z for some A > 1,
then Jensen’s inequality applied to Y = |X|? tells us that

(BIXIP)* < B(XPPY),
so, if we then let p’ = pX and take the pAth root of the last inequality, we find
exactly what we suspected:
(2.12) [1X|lp < || X]lpr forall 1 <p <p' < co.
It even turns out that one has the natural relation
Jira 11l = Xl

but this limit relation does not come into play nearly as often as the important
monotonicity result (2.12).

2.5. Doob’s Inequalities

Many applications of probability theory depend on qualitative inferences rather
than the explicit calculation of probabilities. The main sources of such qualitative
inferences are the limit theorems that tell us that some event has probability one,
and at the heart of such “strong laws” one almost always finds a mazimal inequal-
ity. In this section, we develop two important martingale maximal inequalities that
will serve as key tools in the development of stochastic calculus.

DEFINITION 2.5. If {M,: 0 < n < oo} is any sequence of random variables,

the sequence defined by
My= sup Mp,
0<mEn

is called the maximal sequence associated with M.

THEOREM 2.4 (Doob’s Maximal Inequality). If {M,} is a nonnegative sub-
martingale and A > 0, then

(2.13) AP(M: > \) < E[M, (M2 > M) < B(M,)].
PROOF. The proof of this result is not difficult, but it does bring us to two

observations that are often useful. The first of these observations is the simple
indexz shifting inequality, which tells us that for any submartingale { My} we have

(2.14) E[Mmla) < E[Mnla) for all A € Fr, and all n > m.
To prove the bound (2.14), we first note by the definition of a submartingale that
My € BE(Mpi1|Fm) and My < E(Mmyo|Fmit)
so when we substitute the second inequality into the first we find
Mm < B(B(Mmya| Fms1)|Fm) = B(Mmpo|Fm).
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We can repeat this computation as many times as we like, so in general we find
M, < B(M,|Fy) for all n > m.

Finally, when we multiply the last equation by 14 € F,, and take expectations, the
defining property of conditional expectation gives us inequality (2.14).

The second useful observation is that many random variables are best under-
stood when written in terms of the values of an associated stopping time. Here, we
will use the stopping time

T =min{m : M, > A},

which has the immediate benefit of providing an alternative expression for the tail
probability of the maximal sequence:

P(M: > )= P( sup My > /\) = P(r < n).
o<m<n
The further benefit gained by introducing 7 is that on the set {r < n} we have

M, = A, so we have the basic decomposition TAn

(2.15) Ar<n) < M:llr<n)= Y Mpl(r =m).
o<m<n
Now, to prove the desired maximal inequality, we only need to do honest arithmetic
when we calculate the expected value of both sides of equation (2.15).
Since the event {T = m} is measurable with respect to Fy,, the index shifting
inequality (2.14) tells us that

(2.16) E(Mnl{t =m)) < B(M,l(r=m)) forall m<n.

Finally, when we go back to equation (2.15) to take expectations, we can apply the
bound (2.16) to find

AP( sup My, > A) < E[ Z Mpl{r = m)] = E[Mp1{(M; > N)] < E[M,),

Osm<n o<m<n
which completes the proof. O

In most applications of Doob’s maximal inequality, one only needs the simple
outside bounds of inequality (2.13), but there is one important application where
the critical edge is given by the first half of the double inequality (2.13). This
sharper bound is essential in the proof of Doob’s LP inequality, a result that will
serve as a basic tool in our study of the continuity of stochastic integrals.

SELF-IMPROVING INEQUALITIES

Some inequalities have the interesting feature that they are self-improving in the
sense that they imply inequalities that are apparently stronger versions of them-
selves. For example, from the inequality (2.13), we can immediately deduce the
apparently stronger fact that for any nonnegative submartingale and any p > 1 we
have

(2.17) NPP(M: > N) < E(ME].
In this case, the proof is easy. We merely note that M}, = ME is also a nonnegative

submartingale, so when inequality (2.13) is applied to M}, we immediately find
inequality (2.17).
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.DooB’s LP INEQUALITY

One of the central facts about LP spaces that we have not reviewed before is
Holder’s inequality, which tells us that for all 1 < p < oo we have

XYl < IX|IplIYllg,  provided % + % -1

We will not prove Holder’s inequality at this point, although we will give a proof
later in order to illustrate an interesting probabilistic technique. Our immediate
goal is to prove a lemma that shows how Hélder’s inequality can be used to squeeze
the juice out of an inequality like that given by the inside bound of inequality (2.13).

LeMMA 2.1. If X and Y are nonnegative random variables for which we have
the bounds E[Y?] < co for some p > 1 and

(2.18) AP(X 2 N < B[YL(X 2N forall A0,
then

D
(2.19) 1X1l» < p~_—1||Yl|p-

PROOF. An important conclusion of the lemma is that E[X?] is finite, so we
must be careful to avoid making the tacit assumption that E[XP] < co. If we
let X, = min(X,n), then X, is a bounded random variable, and if we can prove
the bound (2.19) for X, the corresponding inequality for X will follow by Fatou’s
lemma. A nice feature of this truncation is that we can immediately check that X,
again satisfies the bound (2.18).

Now, for any z > 0, we have

P = p/ 2P~ ldg =p/ zP711(z > z)dz,
0 0
so assigning z — X,, and taking expectations, we find:
B(XE) =p/ 2P P(X, > z)dz
000
<p / P2 E(Y1(Xn 2 z))de
0 (o]
= pE(Y/ 2P 21X, > z)dz)
0
=2 (X )Pl
= LBy - ().
We can now apply Hblder’s inequality to decouple ¥ and X,,. Hoélder permits us

to raise Y to the power p and to raise X2~! to the conjugate power g = p/(p — 1)
to find

XAl = B(X?) < S5 BV (X))
< STVl

The inequality of the lemma follows when we divide both sides by I[anlg‘l and
then use Fatou’s lemma. as planned. O
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In view of Lemma 2.1 and Doob’s maximal inequality, we immediately find an
inequality that tells us that the LP norm of the maximal function of a submartingale
is almost as well behaved as the original submartingale.

THEOREM 2.5 (Doob’s L? Inequality). If {My,} is @ nonnegative submartingale,
then for allp > 1 and all n > 0, we have

* p
(2-20) ”A/In“p < p—_—llanHp

2.6. Martingale Convergence

Martingales have the grandest habit of converging. If a martingale is posi-
tive, then it converges with probability one. If it is L'-bounded — that is to say,
E[|My,|] £ B < oo for all n > 1 — then it converges with probability one to a limit
Xeo that is an element of L. If p > 1 and the martingale M, is LP-bounded (so
that B[|[Mn|P] < B < oo for all n > 1), then M, converges with probability one
and, moreover, converges as an LP sequence.

For the theory of stochastic calculus, the most important martingale conver-
gence theorem is probably that for L2-bounded martingales. We will prove this
result by a method that illustrates one of the fundamental ways one can use Doob’s
maximal inequality.

THEOREM 2.6 (L2-Bounded Martingale Convergence Theorem). If {M,} is a
martingale that satisfies E[M?] < B < co for alln > 0, then there ezists a random
variable Moo with E[M2) < B such that

(2.21) P(T}l_{réo M, = Moo> =1 and nlim | My, — Moollz = 0.
ProoF. For any pair of rational numbers a < b, we let
Agp ={w: liminf M, (w) < a < b < limsup JVIn(w)},
n—rcQ n—co

and we then note that to show M, converges with probability one, we only have
to show that P(Aq) = 0. To make the connection to the theory of maximal
inequalities, we note that for any ¢ > (b — a)/2 we have

Ag C {w: sup My —~ Mp| > e} forall m >0,
m<hk<oo

so to prove the first conclusion of the theorem we only have to bound the last
probability.

A key property of square integrable martingales is that the differences di =
M}, — My—; are orthogonal: E[dyd;] = 0if k # j. Now, there is no loss of generality
in assuming that Mo = 0, so the telescoping of the summed differences gives us the
representation A, = Y;_; di. The orthogonality of the dy, and the L2-boundedness
of M, then give us that

EM2 =E [( i dk)z} =" Eld).
k=1
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Our hypothesis tells us that E[M?2) < B for all n, so when we let n — oo we arrive

at the fundamental observation that the E{dZ] have a convergent sum:

(2.22) iE[di] <B.
k=1

Finally, by Doob’s maximal inequality applied to the submartingale defined by
M = (Mpgm — Mm)?, we find that

oo
P (sup | My, — M| > e> = P sup(My — M) > e2> < % > Bld.
kzm k> & pomat

The bottom line is that
1 & 2
PAw)S 5 Y. Bl
k=m+1
so letting m — oo shows that P(As) = 0. The arbitrariness of the rational pair
(a, b) then establishes the convergence of M, on a set of probability one.

To prove the second conclusion of the theorem, we simply let My, denote the
almost sure limit of the M,, and note that we have

o oo
Mo — My = dy and B[(Meo — Mp)*] = > E[d].
k=n+1 k=n-+1

By the convergence of the sum given in inequality (2.22), we know that the tail sums
converge to zero, and, as a consequence, we see |[Me — My ||2 — 0, as required for
the second conclusion of the theorem. O

THE LOCALIZATION IDEA

The localization method is a remarkably general technique that can often be
used to apply L? results in problems that do not begin with any direct connection
to L2, This technique will soon become one of our daily companions, and it may
be fairly considered one of the handiest technical tools in the theory of martingales.
Although the next result is one that we will shortly surpass, it still nicely illustrates
how localization works in the simplest possible context.

THEOREM 2.7 (Convergence Theorem Illustrating Localization). If {My} is a
martingale and there is o constant B such that

(2.23) E[|My]] £ B< o0 and |Mpy1 — Mp| < B <0
for all n > 0, then there ezists a Tandom variable My, with E[|Mw|] < B such that

(2.24) P(nlim My = Mw> =1.

ProOOF. We let 7 = inf{n: [My,| > A}, and we write
My = Mppr + Ry,

where R, = M, — M,a-. By Doob’s stopping time theorem, M., is a martingale,
and |Mnar| € A+ B so E[|Mua-|%] is a bounded sequence. Theorem 2.6 then tells
us that the martingale M, A, will converge with probability one.
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Now, since R,(w) = 0 for w € {T = oo}, we see that the set S of all w where
Mp{w) does not converge satisfies

5 C{r < oo} ={ sup [My|=> /\}
0<n<oo

When we apply Doob’s maximal inequality to the submartingale |M,,|, we have for
all IV that

P( o 10al2 \) < Elwll/A < B/
0<n<N

so letting N — oo we have
(2.25) P(S) < P( sup |My,| = /\> < B/A.
0<n<oo

Since A > 0 is arbitrary, we see that P(S) = 0 and the pioof of the convergence
is complete Finally, the bound F[|Ms]] < B follows from Fatou’s lemma and the
convergence of {Mp,}. O

L'-BOUNDED MARTINGALES

The proof of Theorem 2.7 is a fine illustration of localization, but, as luck would
have it, the result that we obtain is not the best possible. The second hypothesis of
the pair (2.23) is unnecessary. We seldom press for the strongest possible results,
but in this case the light is definitely worth the candle. The stronger theorem is
one of the most important results in probability theory, and 1ts proof will lead us
to several ideas that are useful in their own 1ight.

THEOREM 2.8 (L*-Bounded Martingale Convergence Theorem). If {My,} 15 a
martingale and there 1s a constant B such that

(2.26) E[|Ma]] € B < o0

for alln >0, then there exists a random variable Moo with E[|My|] < B such
that

(2.27) P(lim M, = M) = 1.
00

GOoOD GAMES AND THE UpP-CROSSING INEQUALITY

Our first step toward the proof of Theorem 2.8 1s to 1ecall an intwitive fact from
gambling theory: we should never sit out a round when we aie lucky enough to be
playing a favorable game.

ProposITION 2.1 (Sticking with a Good Game). If M, s a nonnegatiwe
submartingale and of

My = An(My — Mo_y) + An—1(Mn_1 — Mp_g) + -+ + Ay (M1 — Mo) + Mo

15 the martingale transform of M, by a nonanticipating sequence A, of ran-
dom variables that take only the values 0 and 1, then

E[M,] < E[M,).
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PROOF. From the fact that Ay € Fx_1, Ay € {0,1}, and the submartingale
property of {My,} we have

ElAx(My — My_1) | Fr—1] = A E[(My — My—1) | Fr-1]
< B[My — My—1|Fr-1)-
Now, when we take the expectation of this inequality, we find
E{AL(My — Mr_1)] € E[My — M),
and when we sum this inequality over 1 < k < n, we find

E[Mp,] - E[Mo) < E[My) — E[Mo). 0

UP-CROSSINGS AND THE MEANING OF CONVERGENCE

We now need to think a bit about the meaning of convergence. If a sequence
of real numbers converges (to a fimite or infinite limit), then for every pair a < b
of rational numbers there are only a finite number of times that the sequence can
pass from a (or below) on up to b (or above). Our plan is to use the gambling
proposition to show that one cannot expect many such passages from a martingale.
The next definition helps make this plan precise.

DEFINITION 2.6. If S = {c, : 0 <1 < n} 15 a sequence of real numbers, we
define the number of up-crossings of the wnterval [a,b] by S to be the largest k
such that there emist 2k wntegers 0 <11 <3 <19 < Jo < -+- <1 < gk <1 for
whach all of the elements of {c,, : 1 < 5 < k} are less than or equal to a and
all of the elements of {c,, * 1 < s <k} are greater than or equal to b.

Finally, we consider a submartigale {},} and define the random variable
Np(a,b) to be the number of up-crossings of the interval [a, b] that are made by the
sequence {Mr(w) : 0 < k < n}. The key fact about the Ny, (a,b) is that its expecta-
tion can be bounded in terms of the expectation of (M, — a)4+ = max(M, — a,0).

THEOREM 2.9 (Up-crossing Inequality). If {M,} 15 o submartingale, then
for any a < b we have

(2.28) (b — @) E{Na(a,5)] < E{(My — a)4]

ProOF. The first observation is that (M, — a)+ is also a nonnegative sub-
martingale since the function f(z) = (z — a)+ is convex and monotone increasing.
Moreover, the number of up-crossings of [a, b] by the sequence {My(w) : 0 < k < n}
is equal to the number of up-crossings of [0, b — a] by the sequence {(My(w) —a)+ :
0<k<n}

Now we put on our gambling hats. Suppose we make bets on the sequence
{(M, ~ a)+} by following the rule of putting on the bet when the sequence first
hits zero and then taking off the bet when it first gets up to b — a (or higher). We
then continue to play by repeating our rule: put the bet back on when we get back
down to zero and take it off when we get back up to b — a (or higher). This betting
scheme is a transform M, of the submartingale (M, — a); by & nonanticipating
sequence {A,} that takes on the values 0 and 1, so by Proposition 2.1 we have

(2.29) E[My) < E|(My — a)4).
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The final observation is that if we use the betting strategy that gives us M,, then we
are guaranteed to win at least (b — a)Ny,(a, b) units; that is, (b — a)N,(a,b) < M,
When we take expectations in this inequality and apply the bound (2.29), the proof
of the up-crossing inequality is complete. O

Proor or THE CONVERGENCE THEOREM

The proof of Theorem 2.8 is now a piece of cake. To prove the almost sure
convergence of the sequence {M,} to a (possibly infinite) limit M., all we must
show is that for each rational pair a < b we have P(Ag) = 0, where Agp is the
event defined by

Agp ={w: lim inf Mnp(w) < @ < b < limsup IVIn(w)}.
n—+c0 n—0o

Next we note that N, (a,b) is a monotone sequence of random variables that con-
verges with probability one to a (possibly infinite) random variable. If we denote
this limit by Neo(a,b), we have

Agp C {w : Noo{a,b) = oo},

so all we must do to prove P(Aq) = 0 is to show that E[Neo(a,bd)] < co. But this
last bound is easy, since the up-crossing inequality tells us that for each n we have
1
b b—
so the bound F{Ny(a,b)] < co follows from Fatou's lemma.

Our arguments have so far established that M, converges with probability one
to a (possibly infinite) random variable. If we denote this limit by M., then the fact
that E[|My|] < B for all n teams up with Fatou’s lemma. to tell us E[|Ms|] < B.

This is more than we need to conclude that Mo, is finite with probability one so
the proof of Theorem 2.8 is complete.

BN(@,8) < 5= sup B{(Mn  a):] < ;= (lal + B),

Amusing CONVERGENCE SIDE EFFECTS

The martingale convergence theorems sometimes surprise us with their con-
sequences — Imere convergence can have interesting side effects. To give a quick
example, we take simple random walk S, and consider the problem of showing that
the stopping time 7 = min{n : S, = A or S,, = —B} is finite with probability one.
The martingale M, = Spa- cannot converge for any w € {w : T7(w) = oo} since for
such w we have | My (w) — Mpq1 (w)] = |Sn(w) — Sny1(w)] = 1, but M, is a bounded
martingale, so Theorem 2.6 tells us M, does indeed converge with probability one.
As a consequence, we must have P(T < co) = 1. This slick proof certainly offers
an interesting contrast to our first proof that P{r < co) = 1, although, as usual,
the slick proof is more specialized.

2.7. Exercises

The first exercise offers experience in the solution of ruin problems for walks
with steps governed by general discrete-valued random variables. The exercise also
shows that the martingale M, = (g/p) that we used in the analysis of biased
random walk Sy, is not as special as it might seem at first. Exercise 2.2 then gives

-
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an intuitive formula for the expected time of the kth occurrencé of an arbitrary
sequence of independent events. Finally, the last three exercises provide experience
with more general techniques that are important for the theory and applications of
martingales.

EXERCISE 2.1 (Finding a Martingale). Consider a gambling game with multiple
payouts: the player loses $1 with probability ¢, wins $1 with probability £, and
wins $2 with probability . Specifically, we assume that « = 0.52, g = 0.45, and
v = 0.03, so the expected value of each round of the game is only $—0.01.

(2) Suppose the gambler bets one dollar on each round of the game and that
{X4} is the amount won or lost on the k’th round. Find a real number z such that
M, = x5 is a martingale where S, = X1 + X2 + -+ + X, tallies the gambler’s
winnings. Note: You will need to find the numerical solutions to a cubic equation,
but z =1 is one solution so the cubic can be reduced to a quadratic.

(b) Let p denote the probability of winning $100 or more before losing $100.
Give numerical bounds py and p; such that po < p < p; and p; —pp < 3 x 1073,
You should be sure to take proper account of the fact that the gambler’s fortune
may skip over $100 if a win of $2 takes place when the gambler’s fortune is $99.
This issue of “overshoot” is one that comes up in many problems where a process
can skip over intervening states. )
EXERCISE 2.2 (Expected Time to kth Occurrence).

Suppose that the sequence of independent events {4,} satisfies

n
P(ny = ZP(AI) — 00 as 1 — 00,
=1
and let 7% = min{n: 3. 1(A,) = k}. Note that by the Borel-Cantelli Lemma?
that we have P(r; < co) = 1. By applying Doob’s stopping time Theorem to an
appropriate martingale, prove the more quantitative result that

Elp(mi)) =k for all k > 1.

EXERCISE 2.3. Use Jensen’s inequality, the L' martingale convergence theorem,
and Doob’s L? maximal inequality to prove the LP-bounded martingale convergence
theorem. Specifically, show that if {M,,} is a martingale that satisfles E[|M,|?] £
B < oo for some p > 1 and for all » > 0, then there exists a random variable M
with B[|MP] £ B such that

(2.30) P( lim M, = Moo> =1and lim |[M, — M|, =0
n—oo n—e0

2The Borel-Cantell: lemma 1s one of the basic facts of probability theory that is discussed 1n
the Appendix on Mathematical Tools
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EXERCISE 2.4 (Doob’s Decomposition). If {M,,F,} is a martingale with
E[M?] < oo for all n,
show that we can write
M? = Np + An,
where (1) {Ny, F} is a martingale; (2) A, is monotone (so, A, > A,—1 ); and (3)

Ap is nonanticipating (so A, € F,_1). Those who want 2 hint might try defining
the A, by first taking 4y = 0 and then setting

Any1 = Ap + E[(Mny1 — Mp)? | 7] for m > 1.

EXERCISE 2.5. Suppose that {M,} is a submartingale and that v and 7 are
bounded stopping times such that v < 7. Prove that E[M,] < E[M,].

/4

CHAPTER 3

Brownian Motion

Brownian motion is the most important stochastic process. As a practical tool,
it has had profound impact on almost every branch of physical science, as well as
several branches of social science. As a creation of pure mathematics, it is an entity
of uncommon beauty. It reflects a perfection that seems closer to a law of nature
than to a human invention.

The first important applications of Brownian motion were made by L. Bachelier
and A. Einstein. Bachelier is the acknowledged father of quantitative methods in
finance, and Einstein is ... well ... Einstein. Bachelier’s aim was to provide a
model for financial markets, and Einstein wanted to model the movement of a
particle suspended in a liquid. Bachelier hoped that Brownian motion would lead
to a model for security prices that would provide a sound basis for the pricing of
options, a hope that was vindicated after some modifications. Einstein’s aim was
to provide a means of measuring Avagadro’s number, the number of molecules in
a mole of gas, and experiments suggested by Einstein proved to be consistent with
his predictions.

Both of these early investigators were willing to set aside mathematical nu-
ances, since for them a financial market or a physics laboratory could provide a
test of validity with more sway than any formal justification offered by logical
rigor. Still, good foundations make for good houses, and both theory and practice
were profoundly served when N. Wiener directed his attention to the mathematics
of Brownian motion. Among Wiener’s many contributions is the first proof that
Brownian motion ezists as a rigorously defined mathematical object, rather than
as a physical phenomenon for which one might pose a variety of models. One way
that Wiener’s confribution is recognized today is that in many parts of the scientific
world a Brownian motion is equally likely to be called a Wiener process.

DEFINITION 3.1. A continuous-time stochastic process {B; : 0 <t < T} is
called o Standard Brownian Motion on [0,T) if it has the following four properties:

(i) Bo =0.

(it) The increments of B are independent; that is, for any finite set of times
0<t; <ty <---<t, <T the random variables

B;, — Bt,, By, — Bi,,... ,Bt, — Bs,_,

are independent.

(iis) For any 0 < s < t < T the increment B;— B has the Gaussian distribution
with mean 0 and variance t — s.

(iv) For all w wn a set of probability one, By(w) is a continuous function of t.



30 3. BROWNIAN MOTION

The main goal of this chapter is to show that one can represent Brownian
motion as a random sum of integrals of orthogonal functions. This representation
satisfies the theoretician’s need to prove the existence of a process with the four
defining properties of Brownian motion, but it also serves more concrete demands.
In particular, the series representation can be used to derive almost all of the most
important analytical properties of Brownian motion. It even gives us a powerful
numerical method for generating the Brownian motion paths that are required in
computer simulations.

3.1. Covariances and Characteristic Functions

In order to confirm that our construction of Brownian motion is honest, we
will need to use some basic facts about the multivariate Gaussian distribution. In
particular, we will need tools that help us check that the increments of our process
are Gaussian and that those increments are independent.

MULTIVARIATE GAUSSIANS

If V is any d-dimensional random vector, then we define the mean vector of

V1 M1
Va 22
(3.1) V= to be the vector u=EV]=|"1,
Va g
and we define the covariance matrix of V to be the matrix
g1 012 - Oid
021 0322 -+ Oyd
32) =" L where oy = B[(V; - m)(V; — )]
0dl Od2 -+ Ogq

Perhaps the most important fact about multivariate Gaussians is that their
Joint density is completely determined by the mean vector and the covariance ma-
trix. At first glance, that density may look awkward, but, after some experience,
many people come to see the Gaussian density as a genuine marvel of parsimony
and elegance.

DeFmiTION 3.2 (Multivariate Gaussian). A d-dimensional random vector
V is said to have the multivariate Gaussian distribution with mean L and
covariance 3 if the density of V is given by

(3.3) (27)~% (det £)~% exp (—%(x -p) T Yz - u)) for all z € RY.

GAUSSIAN MIRACLE

‘When we look at the simple case of a bivariate Gaussian V = (X,Y), we easily
see that if Cov(X,Y) = 0 then T is a diagonal matrix. The importance of this
observation is that the special form of the density (3.3) then implies that we can
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factor the joint density of V' = (X,Y) as a product of the density of X and the
density of Y. This factorization then yields the miraculous conclusion that X and
Y are independent random variables.

This rare circumstance deserves to be savored. Where else does a measure as
crude as the vanishing of a single integral suffice to guarantee the independence
of a pair of random variables? The theory of Brownian motion often exploits this
fact, and it is of particular importance that the same argument provides a natural
analog for sets of more than two variables. The coordinates {V;:1 <4 < d} of a
multivariate Gaussian vector are independent if and only if the covariance matrix
¥ is a diagonal matrix.

CHARACTERISTIC FUNCTIONS

If X is any random variable, the characteristic function of X is defined to be
the function ¢ : R — C given by ¢(t) = E(e®*¥). Similarly, if V is a d-dimensional
vector of random variables and § = (8y,0s,... ,84) is a vector of real numbers, then
the multivariate characteristic function is defined by ¢(f) = Efexp(i6T V)]. There
are inversion formulas for both the univariate and multivariate cases that permit one
0 calculate the underlying distribution function from the characteristic function,
but for our purposes it suffices simply to note that the characteristic function of a
random variable (or random vector) will uniquely determine its distribution.

For a Gaussian random variable X with mean p and variance o2, the charac-
teristic function is readily computed:

o0 2
(3.4) Elexp(itX)] = —1——\/5_ / gt e(e=m)/20% g = gitng=t0"/2,
g T J—co

With a bit more work, one can also use direct integration and the definition (3.3)
to find that the characteristic function of a multivariate Gaussian with mean p and
covariance matrix % is given by

1
(3.5) Elexp(¢6TV)] = exp (i&Tu - —2—6T29> .
One of the most valuable features of this formula is that it provides us with a handy
characterization of multivariate Gaussians.

PrOPOSITION 3.1 (Gaussian Characterization). The d-dimensional random
vector V' is a multivariate Gaussian if and only if every linear combination 0V4 +
0oV + -+ - + 64V is o undvariate Gaussian.

ProoF. To prove the more interesting implication, we first suppose that for
each @ the linear combination defined by

Zo =01V1 +0:Va+ -+ 04V

is a univariate Gaussian. If 4 and % are the mean vector and covariance matrix for
V, then we can easily check that

BE[Zp] = 6% 1 and VarZy = 67546.

In view of our assumption that Zy is a univariate Gaussian, we can use our expres-
sions for E(Zp) and Var(Zp) in the characteristic function formula (3.4), and set
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t =1 to find
Elexp(26TV)] = E(e*%°) = exp (z&Tu - %GTEH) .

Finally, by formula (3.5), this is exactly what one needs in order to show that V is
multivariate Gaussian.

There are several ways to show the more elementary fact that the linear com-
bination Zg = 6,Vi + 62Va + -+ + 84V, is a univariate Gaussian whenever the
d-dimensional random vector V' is a multivariate Gaussian. A direct (but tedious)
method is to calculate the distribution function of Zp by integrating the density
(3.3) over a half-space. The less direct (but simpler) method is to reverse the
characteristic function argument that was just given for the first implication. [

The purpose of reviewing these facts about covariances and characteristic func-
tions is that they have important consequences for Brownian motion. The covari-
ance properties of Brownian motion are intimately tied to the independent incre-
ment property, and a covariance calculation will be our key tool for establishing
the independent increments property for the process that we construct.

COVARIANCE FUNCTIONS AND (GAUSSIAN PROCESSES

If a stochastic process {X; : 0 < ¢ < oo} has the property that the vector
(Xty, Xtsy- -+, X¢,) has the multivariate Gaussian distribution for any finite se-
quence 0 < ¢ <2 < .-+ < iy, then {X,} is called a Gaussian process. Brownian
motion is the Gaussian process par ezcellence, and many of the most important
models in applied probability also lead us to Gaussian processes.

Gaussian processes are more amenable to exact calculation than almost any
other processes because the joint distributions of a Gaussian process are completely
determined by the mean function u(t) = E[X;] and the covariance function

Fls,t) = Cov(Xs, Xs).

‘We can easily calculate the covariance function for Brownian motion just by noting
that for any s < ¢ we have Cov(B;, B;) = E[(B: — B, + B;)Bs] = E[B?] = s, s0 in
general we have

(3.6) Cov(Bs, By) = min(s,t) 0 < s,¢ < 0.

Many basic properties of Brownian motion are revealed by this covariance for-
mula, and central among these is the fact that any Gaussian process with a covari-
ance function given by equation (3.6) must have independent increments. This fact
is quite easy to prove but is so important it should be recorded as a lemma.

LEMMA 3.1, If o Goussian process {X; : 0 <t < T} has E(X;) =0 jor all
0<t<T andif

Cov(Xs, X;) = min(s,t) for all 0 < 5,8 < T,

then the process {X;} has wndependent sncrements. Moreover, if the process has
continuous paths and Xo =0, then 4t 15 a standard Browman motion on [0,T).
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PROOF. For the first claim, we just need to show that the random vector of
process increments

(th - XtuXta - Xtm e 1Xt,. - th...l)

has a diagonal covariance matrix. We can confirm the vanishing of the off-diagonal
terms just by noting that for i < j we can expand E[(X;, — X, _, (X, — Xt,1)]
to find
ElX3.X,) — E[Xe, Xe, ] — BlXe, X, ] + BIXe, Xe, ]
=1, =t —ty1 + L1 =0.

The second claim is now immediate from the definition of Brownian motion, so the
proof of the lemma is complete. (]

3.2. Visions of a Series Approximation

We will establish the existence of Brownian motion by providing an explicit
series expansion. The calculations we make with this series are quite basic, but we
still need to spell out some facts about function spaces. First, we recall that for
any p > 1, L?[0, 1] denotes the set of functions f : [0,1] — R such that

[ @i <o

and LP[0, 1] is viewed as a normed linear space with norm

it = ([ 15 ac) "

In the special case when p = 2, we can also view L?[0,1] as an inner product space
with inner product defined by

1
(f,9) = /0 f(z)g(z) dz < co.

Finally, if the functions in the set {¢» € L2[0,1] : 0 £ 7 < oo} satisfy (¢n,¢n) =1
for all n > 0 and (¢, ¢m) = 0 for all n # m, then {¢,} is called an orthonormal
sequence. If the finite linear combinations of the ¢, also form a dense set in %0, 1],
then {¢,} is called a complete orthonormal sequence. ! '
There are two facts that make complete orthonormal sequences of particular
importance for us. The first is that for any f € L?[0,1) we have the representation

F= {fbn)dn,

n=0

where the precise meaning of the convergence of the sum is that

N

n=0

1The Appendix on Mathematical Tools provides additional background on complete orthonor-
mal sequences, mcluding a proof of Parseval’s 1dentity.
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The second fact 1s that we can compute the inner product of f and g in two different
ways by means of Parseval’s identity:

(3.7) /0 H@)g(@)do = S (f, a)g, ba)-

n=0

If we ghmpse over the horizon just a bit, we can see how Parseval’s identity
might be useful in the study of Brownian motion. The connection comes from
specializing f and g to be the indicator functions of the intervals [0, s] and [0, 1],
that is

f(@) = 1,5 (2) and g(z) = 1p 4(2).
In this case, Paiseval’s identity simplifies somewhat and tells us

(3.8) mn(s,8) = 3 /0 o /0 bn() da.

n=0

The expansion on the right-hand side may seem like a long-winded way of writing
min(s, t), but, long-winded or not, the formula turns out to be exceptionally fruitful.

THE MIN(s,t) CONNEGTION

‘The benefit of the Parseval expansion (3.8) comes from the fact that Brown-
ian motion has covariance Cov(Bs, B;) = min(s, ), so the identity (3.8) creates a
connection between Brownian motion and the integrals of a complete orthonormal
sequence. There are several ways one might explore this link, but perhaps the most
natural idea is to consider the stochastic process defined by

oo 3
(3.9) Xe=) Zn / bn(z) dz,

n=0 0
where {Z, :0<n < o}isa sequence of independent Gaussian random variables
with mean zero and variance one.

For the moment, we will not consider the issue of the convergence of the sum
(3.9), but we will make an exploratory calculation to see how X; might relate
to Brownian motion. Formally, we have E(X;) = 0, and since X; is a linear
combination of Gaussian varables it is reasonable to compute the covariance:

E(X,X;) = E[i Zn /0  gu(@) s S 7 /0 () dx]

n=0 m=0

= ;;E[anm /; on(z) dz /ot Om(z) d:z:]

- go /0 " $u(a) do /0  pu(o) do

= min(s, t). -

This is a very promising calculation! To be sure, much remains to be justified,

so far we have not even seen that the series representation of X; is convergent. ~
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Nevertheless, if we make a reasonable choice of the orthonormal series, the conver-
gence of the sum (3.9) seems inevitable. Moreover, if we make a shrewd choice,
the representation should also give us a process that has continuous paths with
probability one.

3.3. Two Wavelets

Tn our construction of Browman motion, we will use two sequences of functions
that have been studied for many years but nowadays are seen in a new light. Both
sequences are examples of wavelets, a topic of great current activity. To define these
functions, we first consider a function that can serve as a “mother wavelet”"

1 for0<t<4i
H(t)y={ -1 fori<t<i
0 otherwise.

Next, for n > 1 we define a sequence of functions by scaling and translating the
mother wavelet H(-). Specifically, we note that any n > 1 can be written uniquely
in the form n = 27 4-k, where 0 < k < 2° and 7 > U, and we exploit this connection
to write

Ho(t) = 29/2H (2t — k) forn=2" 4k where ) >0 and 0 < k < 27.

If we also set Ho(t) = 1, we can easily check that {H, .0 < n < oo} is a complete
orthonormal sequence for L2[0, 1]. Orthonormality follows from simple integrations,
and to check completeness we note that — up to sets of measure zero — the
indicator function of any binary interval [k 277, (k + 1) - 277] is 1n the linear span
of the {H,}. Since the linear combinations of such indicators can approximate any
f € L[0,1] as closely as we like, we conclude that the linear span of {Hy} is dense.

Here, we should note that by writing n as 27 + &k where j > 0 and 0 < k& < 27,
we get a second view of the sequence {H,} as a doubly indexed array where the
rows are indexed by 7§, as we see in the more natural layout:

g=1|Hy Hs
7=2|Hy Hs Hg Hy
J=3|Hs Hy Hy Hyu Hiwp Hiz Hu His

This way of looking at the sequence is quite handy, since it makes several aspects of
the geometry of the sequence {H,} much more evident. In particular, one should
note that within any row all of the H, are simply translations of the first element
of the row. Also, within any row the H,, have disjomnt support, so for each z € (0, 1]
we have Hyp(z) # 0 for at most one n in each row. This last observation is of
considerable importance when we want to estimate the size of a linear combination
of the H,.

The next step of the plan is to obtain a good representation for the integrals of
the { H,} — the key elements of our intended representation for Brownian motion.
These integrals turn out to have an elegant expression in terms of another wavelet
sequence that is generated by another mother wavelet, which this time is given by
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the triangle function:

2 for0<t<i
Alt)=<2(1—¢) for3<t<1
0 otherwise.

This function 1s just twice the integral of the mother wavelet H(-} taken from 0 to
t.

Next, for n > 1, we use internal scaling and franslating of the mother wavelet
to define the sequence

An(t) =A% —k)forn=2"+k  whereyj>0and 0 <k <27,

and for n = 0 we simply take Ag(¢) = t. The functions A,, 0 < n < co, will serve as
the fundamental building blocks in our 1epresentation of Brownian motion. Because
we have

0<AL() <1foralltel0,1] and for all n > 0,

we will be able to estimate the supremum norm of series of the An(t) just by
studying the coefficients of the Ap(t). Also, since the mother wavelet A(t) is the
integral of the mother wavelet H (t), we naturally expect a close connection between
the integrals of the H,, and the A,,. In fact, one can check that

t
/ Hi(u) dus = AnAn(2),
0
where A\p =1 and for n > 1 we have
1
Ap = §~2"’/2 wheren>landn=27 +kwith 0<%k < 27.

One should draw the first 32 or so of the A,(t) just to see how the little wave
runs along the unit interval until the last moment when — like Disney’s Sorcerer’s
Apprentice — the wave splits in two, doubles its height, and jumps back to the be-
ginmng of the interval. The bottom line is that our candidate for Brownian motion
has an explicit, even simple, representation in terms of the triangular wavelets Ay,.

"3.4. Wavelet Representation of Brownian Motion

THEOREM 3.1. If {Z, : 0 < n < co} 15 a sequence of independent Gaussian
random variables with mean 0 and variance 1, then the series defined by

(o]
(3.10) Xe= MZnln(t)

n=0
converges uniformly on [0, 1] weth probability one. Moreover, the process {X:}
defined by the luimit s a standard Brownian motion for 0 <t < 1.

Before proving this result, we need to gather some useful mformation about
the behavior of a sequence of independent Gaussian random variables.
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LEMMA 3.2. If {Z,} 15 o sequence of independent Gaussian random variables
with mean zero and veriance one, then there 15 a random varable C' such that

|1Zn] < C+/logn for alln = 2

and
P(C <o) =1

Proor. For z > 1 we have

9 0
P(lan > fL‘) = E/ 6—u2/2 du
T Jaz

2 [ 2 2 2
<2 —u*2 g = o /2 Z,
(3.11) _”W/g; ue w=e 1/71_

and hence for any a > 1 we find

(3.12) P(|Zn] = V2alogn) < exp(—alogn)\/g = n“"\/%

Now, for o > 1 the last bound is summable, so the Borel-Cantelli lemma tells us
that

(3.13) P(|Zs| > v/2alogn  for infinitely many n) = 0.
By equation (3.13), we then see that the random variable defined by
12l _
2<n<oo V90T
1s finite with probability one. O

UniFORM CONVERGENCE WITH PROBABILITY ONE

We can now provide the proof of Theorem 3.1. The first item of business is
to establish the required convergence of the series representation (3.10). For any
n € [27,2771), we have logn < 7+ 1, and for any 0 < 2 < 1 we have Ap(z) =0
for all but one value of 7 in the interval [27,27+1); so, when we bring in the bound
from Lemma 3.2, we find that for any M > 27 we have

i AnlZn]An(t) < C i An/log nd\, (1)

n=M n=M
co 279-1 1
< CZ Z ) 2972y 4+ 10 (1)
g=J =0
21
Z.9-3/2
< OFZ; 5 27+

Since the last term goes to ze10 as J — 0o, we see that with probability one the
series (3.10) that defines X; is uniformly and absolutely convergent. We therefore
find that the paths of the process {X; .0 < ¢ < 1} are continuous with probability
one
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CALGULATION OF THE COVARIANCE FUNCTION
The next step in the proof of Theorem 3.1 is to show that
Cov(X, X;) = min(s,t) for all 0 < s,t < 0.

Because of the absolute convergence of the series defining {X;}, we can rearrange
terms any way we like. In particular, we can return to our earlier heuristic calcu-
lation and check that all the steps leading to the application of Parseval’s identity
are rigorously justified:

B(X. X)) =E [ i AnZn A (8) i /\mZmAm(t)]

n=0 m=0
o

= > A An(s)An(t)

n=0

= i/os H,(uw) du/ot Hn(u) du

n=0

(8.14) = min(s, t).

With the covariance function in hand, it is tempting to declare victory, since the
process {X;} is “obviously” Gaussian “since it is the sum of independent Gaussian
random variables.” Such arguments usually provide sound guidance, but an honest
proof requires us to look deeper.

THE PROCESS 1S GAUSSIAN

The final step will be to show that for any finite sequence &3 < fp < +++ < tpp
the vector (Xy,, Xz,,..., Xy ) has the multivariate Gaussian distribution. Since
we have already determined that the covariance function of the process {X;} is
given by min(s,?), Lemma 3.1 will then confirm that {X;} has the independent
increment property.

In order to show that (X;,,X,,...,X;, ) is a multivariate Gaussian, we will
simply compute its multivariate characteristic function. We begin with the defini-
tion of X, and then exploit the independence of the Z,:

E[exp(iiBJXtJ>]=E[exp igeji/\nZnAn(tJ) }

=1 n=0
o0 m
(3.15) =HE[exp AnZn S 0,00(t;) ]
n=0 _7=1

Next, we calculate the expectations inside the product by the formula for the one-
dimensional Gaussian characteristic function and then we collect terms into a single
exponential:

o 1 m 2 1 0 m 2
2
n|=]0 €xp —5’\71 (_1§=1: ejAn(tJ)> = exp ) E ;A%( z :ejAn(tj)>

n=0 j==1
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If we expand the exponent in the last expression and recall the special case of
Parseval’s identity given by equation (3.14), we see that

oo m m m m
DORDITD 0,0uAn(t)Ante) = Y Y 830, min(ts, t),
n=0 =1 k=1 7=1 k=1

and, when we carry this identity back to equation (3.15), we find

m 1 m m .
(3.18) E{eXpGZGJX%)} =exp | -3 Zzeﬂkmm(t,,tk)

j=1 =1 k=1

The last expression is precisely the characteristic function of a multivariate Gaussian
with mean zero and covariance matrix ¥ = (min(,,t;)), so indeed the vector
(X4,, Xiar« -+ » Xt,,) Is 2 multivariate Gaussian. This is the last fact that we needed
in order to complete the proof of Theorem 3.1.

EXAMPLES OF THE APPROXIMATION

This construction of Brownian motion has very pleasant analytical properties,
which we will soon exploit with abandon, but first we should note that the con-
struction gives us a practical method for computer simulation of the paths of a
Brownian motion. When we use as few as eight summands, then we see from Fig-
ure 3.1 that the paths are too crude for most purposes, but one can similarly deduce
from Figure 3.2 that a path that uses 128 summands might serve quite well in many
circumstances.

FIGURE 8.1. AN APPROXIMATION BASED ON 23 SUMMANDS

~

FIGURE 3.2. AN APPROXIMATION BASED ON 27 SUMMANDS
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3.5. Scaling and Inverting Brownian Motion

Now that we have a standard Brownian motion on [0,1], we can construct a
standard Brownian motion on [0, c0) in a couple of ways. The most straightforward
idea is to take a countable number of independent Brownian motions and to string
them together by starting each new one where the last one left off. Though notation
cannot really make the idea any clearer, we can still root out any ambiguity by
casting the construction as a formula. For each 1 € n < oo, we take an independent
standard Brownian motion Bt(") on [0,1], and for any 0 < ¢ < co we define B; by
the sum

B = Z ng) + B™™ whenever t € [nyn+ 1);
k=1

so, for example,

Bss =B + B® + B® 4 B,
Once one is comfortable with the way the unit interval Brownian motions are pasted
together, there is no difficulty in verifying that B; has all the properties that one
requires of standard Brownian motion on [0, c0).

The interval [0,c0) is the natural domain for Brownian motion. From the
modeler’s perspective there is no good reason to confine the process to an artificially
finite time interval, but there are even more compelling reasons to prefer to view
Brownian motion on an infinite interval. In particular, there are symmetries that
are made much more evident when we consider Brownian motion on [0, co). These
symmetries can be expressed by noting that there are basic transformations of
Brownian motion that turn out to be Brownian motion again.

PROPOSITION 3.2 (Scaling and Inversion Laws). For any a > 0, the scaled
process defined by

1
Xt = —'—a'BG.t fOTt > 0

Vva

and the wnwverted process defined by
Yo=0and Y; =tBy; fort >0
are both standard Browman motions on [0, co).

No one will have any difficulty checking that X; meets the definition of a stan-
dard Brownian motion. A bit later we will see that Y; is continuous at zero with
probability one; and, if we assume this continuity for the moment, we also find it
easy to check that ¥; is a standard Brownian motion.

Although there is no great depth to the mathematics of these results, the physics
behind them still touches on the profound. On the first level, these laws tie Brown-
ian motion to two important groups of transformations on [0, o0), and & basic lesson
from the theory of differential equations is that such symmetries can be extremely
useful. On a second level, the laws also capture the somewhat magical fractal na-
ture of Brownian motion. The scaling law tells us that if we had even_one billionth
of a second of a Brownian path, we could expand it to a billion years worth of an
equally valid Brownian path. The inversion law is perhaps even more impressive.
It tells us that the first second of the life of a Brownian path is rich enough to
capture the behavior of a Brownian path from the end of the first second until the
end of time.
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3.6. Exercises

The first exercise shows that our construction of Brownian motion automati-
cally provides a construction of a second important Gaussian process, the Brownian
bridge. The remaining exercises review important properties of Gaussian random
variables.

EXERCISE 3.1 (Brownian Bridge). In our representation for Brownian motion

B = Z AnZnAn(t):

n=0

we have Ap(1) = 1 and A, (1) =0 for all n > 1; so, if we leave off the first term in
our representation for Brownian motion to define

Ui = i AnZ'nAn(t)a

n=1

we see that Uy is a continuous process on [0, 1] such that Uy =0 and Uy = 0. This
process is called a Brownan bridge, and it is often useful when we need to model
a quantity that starts at some level and that must return to a specified level at a
specified future time.

(a) Show that we can write Uy = By —tBy for 0 <7 < 1.

(b) Show that we have Cov(Us,U;) = s(1 —t) for 0< s <t < 1.

(c} Let X; = g(£) By, and find functions g and h such that X; has the same
covariance as a Brownian bridge.

(d) Show that the process defined by ¥; = (1+t)U;/(144) is a Brownian motion
on [0,00). Note: Since we have a direct construction of the Brownian bridge U,
this observation gives us a third way to build Brownian motion on [0, c0).

EXERCISE 3.2 (Cautionary Tale: Covariance and Independence).

The notions of independence and covariance are less closely related than elemen-
tary courses sometimes lead one to suspect. Give an example of random variables
X and Y with Cov(X,Y) = 0 such that both X and ¥ are Gaussian yet X and ¥
are not independent. Naturally, X and Y cannot be jointly Gaussian.

EXERCISE 3.3 (Multivariate Gaussians). Most of the following problems can be
done by using the change of variables formula of multivariate calculus or, perhaps
more easily, by using characteristic functions.

(a) Let V be a multivariate Gaussian column vector with mean p = E(V) and
covariance ¥, and let A be an n X n real matrix. Show that AV is a multivariate
Gaussian vector with mean Ay and covariance ATAT.

(b) Show that if X and Y are independent Gaussians with mean zero and
variance one, then X — Y and X + Y are independent Gaussians with mean zero
and variance two.

(c) Prove that if X and Y are jointly Gaussian and Cov(X,Y) = 0 then X and
Y are independent.
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(d) Prove that if (X,Y’) are jointly Gaussian, then the conditional distribution
of Y given that X = 7 1s normal with mean

L =yt Cov(X,Y) (z—
YiX=s = hy + 7 =—(w /»LX).

and variance
S Cov?(X,Y)
YiX=z Y VarX

EXERCISE 3.4 (Auxiliary Functions and Moments). For a random variable X,
the characteristic function B(e**X) always exists since ¥ is a bounded random
valiable (with complex values). The moment generating function E(e!X) only exists
iIf X' has moments of all orders and those moments do not grow too fast.

(a) If Z is Gaussian with mean 0 and variance 1, find the moment generating
function of Z and use it to find the first six moments of Z. In particular, show that
E(Z 4) = 3, a fact that we will need later. [Hint: Series expansion can be easier
than differentiation.]

(b) If W = Z4, then W has moments of all orders, since Z has all moments.
Show nevertheless that W does not have a moment generating function.

EXERCISE 3.5 (Gaussian Bounds) The estimation of the Gaussian tail prob-
ability used in Lemma. 3.2 can be sharpened a bit, and there are complementary
inequalities that are also useful. For Gaussian Z with mean zero and variance one,
show that

1 e—%°/2 1 e=%%/2
3.17 —_———— < P(7 > )< —
( ) \/’2—7—1_(2:_!_:3_1) = (Z_l')_ o for:z,‘>0,
and that
2z 2z

The second set of inequalities will be useful when we show that the paths of Brow-
nian motion are never differentiable.

Anyone who wants a hint for the proof of the double inequality (3.17) might
consider the identity (u~le=*"/2) = (1 +u~2)e~%"/2 and the simple fact that for
z < v one has e/ < (u/z)e=*/2,

CHAPTER 4

Martingales: The Next Steps

Discrete-time martingales hive under a star of grace. They offer inferences of
power, purpose, and surprise, yet they impose little in the way of technical nuisance.
In continuous time, martingale theory requires more attention to technical founda-
tions — at a minimum, we need to build up some of the basic machinery of proba-
bility spaces and to sharpen our view of conditional expectations. Nevertheless, by
focusing on martingales with continuous sample paths, we can keep technicahties
to a minimum, and, once we have a stopping time theorem, our continuous-time
tools will be on a par with those we used in discrete time. We can then examine
three classic martingales of Browman motion that parallel the classic martingales
of simple random walk. These martingales quickly capture the most fundamental
information about hitting times and hitting probabilities for Brownian motion.

4.1. Poundation Stones

Ever since Kolmogorov first set down a clear mathematical foundation for prob-
ability theory in 1933, the tradition has been for probability texts from the most
elementary to the most advanced to begin their exposition by defining a probability
space (2, F,P). Nowadays there is not much fanfaie attached to this seemingly
bland formality, but there is no disputing that Kolmogorov’s foundations profoundly
changed the way that the world views probability theory. Before Kolmogorov’s ef-
forts, probability theory and probability modeling were inextricably intertwined,
so much so that one might doubt results in probability just as one might doubt
the implications of a model. After Kolmogoiov’s efforts, probability theory offered
no more room for doubt than one can find in linear algebra or in the theory of
differential equations

Traditions can be deferred but not denied, so eventually we have to recall
some of the basic facts from the foundations of probability theory. First, 2 is only
required to be a set, and F is a collection of subsets of Q with the property that
(i) p e F, (ii) A€ F= A® € F, and (iii) for any countable collection of 4, € F
we have UA, € F. Such an F is traditionally called a o-field, though some authors
now use the term ¢ribe. The final and most interesting element of the probability
triple (or Probabilists’ Trinity) is P, the probability measure. We assume nothing
more of P than that 1t be a function from F into [0, 1] such that P(2) = 1 and for
any disjoint countable collection {4,} of elements of 7 one has P(UA,) = 3 P(4,).

SiDE EFFECTS OF ABSTRACT FOUNDATIONS

The fundamental benefit of a rigorous mathematical foundation for probability
theory is freedom from ambiguity, but there are also side effects that can be both
useful and amusing. When we are no longer tied to intwitive probabilistic models,
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we are free to invent new probability spaces where the methods of probability theory
can be used to achieve unexpected ends. In particular, Kolmogorov helped us see
that we can use probability theory to prove purely analytical facts.

To give just one example of a useful analytical result that can be proved by
introducing an abstract (or artificial) probability space, we will derive Hélder’s
inequality,

1 1
B(XY]) < ”X”p“Y”q where 1 < p,g < co and ; + E =1,

by means of the more intuitive Jensen inequality,
H(E(X)) < E(¢(X)) for all convex ¢.

The trick is to leverage the abstraction that is implicit in the fact that Jensen's
inequality is valid in any probability space. Specifically, the idea is to design an
artificial probability measure so that when we apply Jensen’s inequality to the
artificial measure, Hélder’s inequality pops out. This strategy may seem odd; bus,
as we will discover on several occasions, it can be remarkably effective.

To apply the strategy to prove Hélder’s inequality, we first note that there is
1o loss of generality in assuming that X > 0 and ¥ > 0. Also, since Holder's
inequality is trivial when p = 1, we can assume 1 < p,q < co. Now, to come to the
real trick, we introduce a new probability measure Q by taking
(4.1) Q(A) = B(XP14)/E(XP).
One can easily check that @ is an honest probability measure, and if we denote
the expectation of Z with respect to the probability measure @ by Eq(Z), then in
terms of the usual expectation taken under P, we have Eg(Z) = E(ZX?)/E(XP).
If we now let ¢(z) = 27 and apply Jensen’s inequality, we find (Eq[Z])? < Eq[Z9].
All that remains is to unwrap the definitions and to make a good choice of Z. First,
we note that

(Eql2])* = (E[ZX"]/E(XP))? and Eq(Z?] = E[Z7X?]/E(X?,
so, in longhand, Jensen’s inequality tells us that

e (2" s

E[XP] E[x7]
To get closer to Holder’s inequality, we would like to set ZXP = XY, and, since Z
is completely at our disposal, we simply take Z = Y/XP~!. This choice also gives
us ZP X7 = Y7 since (p—1)g = p, and we then see that the bound (4.2) immediately
reduces to Holder’s inequality.

This proof may not be as succinct as the customary derivation via the real
variable inequality zy < 2P /p+ y9/q, but, from the probabilist’s point of view, the
artificial measure method has a considerable charm. At a minimum, this proof of
Holder’s inequality reminds us that each of our probability inequalities may hide
treasures that can be brought to light by leveraging the generality that is calmly
concealed in the abstract definition of a probability space.

4.2. Conditional Expectations

Since we now have a probability space (2, F, P), we can take a more sophisti-
cated view of some of our earlier intuitive shorthand notations. In the formalism
of Kolmogorov, a random variable is nothing but a function X :  — R with the
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property that {w: X(w) < z} € F for all # € R. This is a perfectly natural defini-
tion because such an X meets the minimal requirement one could impose and still
be guaranteed to be able to talk about the probability P(X < «). In the parallel
language of measure theory, we say that such an X is measurable with respect to
F.

We have A € F if and only if the indicator function 14 is measurable with
respect to F, so we will overburden the symbol € by continuing to write X € F to
indicate that X is measurable with respect to . Finally, if {X1,Xa,..., X5} is
a collection of random variables, then we will often need to consider the smallest
o-field G such that each of the X; is measurable with respect to §. This subfield
of F is called the o-field generated by {Xi,Xa,...,Xn}, and it is denoted by
o{X1,Xo,..., Xn}

Earlier, we used notation such as B(X | G) to stand for E(X | X1, Xa,... , Xa),
and we left the meaning of the second conditional expectation to rest on the under-
standing that one obtains in elementary courses — an understanding that requires
the random variables to be discrete or nicely behaved continuous random variables.
Fortunately, there is an interpretation of expectation and conditional expectation
that frees us from these restrictions, The random variable X is just a function from
© to R, and to define the expectation we simply take

E(X) = /Q X(w)dP(w),

where the integral sign denotes the Lebesgue integral.’ The definition of conditional
expectation is a little more slippery.

DEFINITION 4.1. If X is an integrable random variable in the probability space
(Q,F,P), and if G is a subfield of F, we say thatY is a conditional expectation of
X with respect to G if Y is measurable with respect to G and if

(4.3) E(X14) = E(Y1,) for all A€G.

Also, if Y is any function that is measurable with respect to G that satisfies (4.8),
we write
Y=EX|G).

This definition is not easy to love. Fortunately, love is not required. The defi-
nition is certainly abstract enough; on first consideration it barely evokes the good
uses we have already made of conditional expectation. Nevertheless, we cannot do
without this definition. If we continued to rely entirely on our intuitive understand-
ing and the elementary constructions, we would soon be on rocky shoals. We must
learn to live with the definition and to learn to benefit from what it has to offer.

The best way o become comfortable with Definition 4.1 is to work through a
list of the properties that we have come to expect from conditional expectation and
to show that these properties follow from the definition. As a typical example, we
first consider the linearity property:

E(X+Y|G) =E(X|9)+EXY]|0).

To see that linearity follows from Definition 4.1, we let @ = E(X | G) and ﬁ.=
E(Y | G), and then we verify that the random variable o+ 3 satisfies the properties
that are required by the definition of the conditional expectation of X + Y.

1The Appendix on Mathematical Tools gives a quick review of the construction and most
important properties of the Lebesgue integral.
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Since & + B is G-measurable, we only have to show that
(4.4) Ef{a+B)14) = E{(X +Y)14) for all A€ G.
Naturally, this is easy; we just have to keep the logic tight. First we note that

B{(a+ B)1a] = E((al )] + E[(B14)]

by the linearity of the usual (unconditional) expectation. Next, we note that
E(alA).f E(X14) and E(Bl4) = E(Y1,4) simply by the definition of & and 8
as co'n‘dmonal expectations. Finally, by a second application of linearity of (un-
condltfonal) expectation, we find B(X14) + E(Y14) = B[(X +Y)14), and, when
we string together our chain of equalities, we complete the proof of the required
identity (4.4).

This syn‘lb.ol shuffling can look a little silly, but it is part of the price of a
general definition of conditional probability. The diligent reader should make sure
that the dance is clear, say by showing that B(X | G) > 0 if X > 0, or, better

yet, by proving the important Tower Property of Conditional Ezpectation: If H is
a subfield of G, then

(4.5) E(E(X | G) | H)=B(X | H).
Here, we should note that if 7 denotes the trivial o-field consisting of just Q and

0, then the only functions that are H-measurable are the constants. This tells us
that E(X | H) = E(X), so the tower property tells us in turn that

E(BE(X)9)) = EB(X).
The last identity is particularly useful, and it is sometimes called the low of total
probability.
As a final exercise, one might take on the factorization property: If Y is G-

measurable and |XY| and |X| are integrable, then ¥ can be brought outside the
conditional expectation,

E(XY |G)=YEB(X | g).
This is also a fact that we will use on numerous occasions.

ISSUE OF VERSIONS

If P(Y = Y’') = 1 and Y satisfies the defining equation (4.3) of conditional
expectations E(X | G), then Y’ also satisfies the equation. This circumstance
obligates us to live with a certain ambiguity whenever we use conditional expecta-
tions. We acknowledge this ambiguity by referring to ¥ (or Y’) as a version of the
conditional expectation.

This ambiguity usually causes us no trouble, but if we need to make 2 statement
about a whole set of conditional expectations, then there can be delicate moments if
the set under consideration has the cardinality of the continuum. We usually dance
around this problem by finding a way to do much of our work with countable sets
of expectations. Nevertheless, there are times when the passage from the countable
set to the continuum can prove challenging, and we will need new tools to help us
with the transition.

IssuE oF EXISTENCE

' The cgnditional expectation has now been defined at a level of generality that
is appropriate for our work. However, we have not yet considered the ezistence
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of these conditional expectations. If we are given a random variable X on the
probability space (Q, F, P) and a o-field G C F, how do we know that there exists
a random variable Y that meets the definition of E(X|G)? We would stray too far
from our path if we gave all the details in the construction of F(X|G), but it is easy
to give a sketch of the construction. In fact, it is easy to give two such sketches.
The first construction begins with the assumption that there is a sequence of
finite partitions {Gn} of Q such that {Gp41} is a refinement of {G,} for all n and
such that G is the smallest o-field that contains all of the G,. This assumption
is actually quite mild, and it is easily checked in all of the probability spaces that
one is likely to meet in practice. Next, we let G, be the smallest o-field containing
Gr, and, if the partition G, is given by {B;,Bs,...,Bn}, then we can build a
candidate for E(H | G,) by defining a random variable ¥, on Q by taking

Y (w) = B(X1p,) for all w € By.

One then checks that Y;, does indeed satisfy the definition of a conditional expec-
tation of X given G,. The next step is to show that the sequence {Y,,} is an L!
bounded martingale with respect to the filtration {G,}, so by the discrete martin-
gale convergence theorem Y;, converges in L' to alimit Y € L'(, G, P). This limit
is our candidate for E(X|G), and the last step of the construction is to verify that
Y meets the definition of a conditional expectation.

For readers who are familiar with projections in L2, there is a second approach
to the construction of E(X|G) that is quicker and more geometric.? We first consider
X such that B(X?) < co, and we then note that the set of functions defined by
S = {Y € G with E(Y?) < co} is a closed linear subspace of the space L*(Q, F, P).
Next, we recall the basic fact that for any closed linear space there is a projection
mapping 7 : L2(Q,F,P) — S. In fact, such a map can be defined simply by
taking Y to be the element of S that is closest to X in the L? distance. One then
checks that Y does indeed satisfy the definition of a conditional expectation of X.
Finally, after having established the existence of conditional expectations for square
integrable random variables, one uses an approximation argument to construct the
conditional expectation in the basic case where we only assume that E{|.X|) < co.

4.3. Uniform Integrability

The main goal of this chapter is to develop the continuous-time analogs to
the Doob stopping time theorem and the martingale convergence theorems. The
most natural way to prove these results is to use what we know about discrete-
time martingales and to find appropriate ways to approximate continuous-time
processes by discrete-time processes. Before we can begin such an approximation
in earnest, we need to develop a few technical tools that help us relate different
types of convergence. The first of these is the notion of uniform integrability.

DEFINITION 4.2. We say that a collection C of random variables 15 uni-
formly integrable prowided that

(4.6) olz) = sup E(1Z)1(|2] > x)) satisfies p(z) — 0 as z — oo.
ec

The reason that uniform integrability emerges as a useful concept is that it
provides us with benefits that parallel L' domination, yet it applies in some impor-
tant situations where L! domination is unavailable. For example, the next lemma

24 discussion of L2 and subspace projection 1s given 1 the Appendix on Mathematical Tools.
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provides an analog of the dominated convergence theorem for sequences that are
not necessarily dominated

CONSEQUENCES OF UNIFORM INTEGRABILITY

LeMMA 4.1 (Uniform Integrability and L! Convergence).

If{Z,} 15 a umformly integrable sequence and Z, converges to Z with proba-
bility one, then E(|Z, — Z))— 0 asn — oo.

PROOF. We first note that if we apply Fatou’s lemma to the definition of o(z),
then we find that E(|Z|1(|2| > z)) < p(x), so, in particular, we see that Z € L1
and E(|Z]) < p(z) + z.

Next, we note that |Z, — Z) is bounded above by the three-term sum

(4.7) 1 Zn = Z11(120] < )| +1211(1Z0] > ) + 1 Za[1(Za] > z).

The first term is bounded by 24+ Z € L', so the dominated convergence theorem
tells us

Jlm B (|2, - Z]1(7,) <z)) = 0.

The second term of the sum (4.7) is domnated by [Z] € L, so again we can apply
the DCT to find

A E(Z11(2,] > ) = B(|2[1(12] > z)) < p(z).
"The expectation of the last term of the sum (4.7) is bounded by p(z) for all 7, S0
when we put the three pieces back together we find
limsup E(|Z, ~ Z|) < 2o(z).
=00

Finally, we can choose z to make p(z) as small as we like, so the proof of the lemma,
is complete. d

The next lemma is trivial to prove, but it isolates an mmportant fact that we
will put to immediate use in the proof of Lemma, 4.3.

LEMMA 4.2 (Conditional Expectation is a Contraction). The map that takes
Z e L' to E(Z|G) 1s an L! contraction; thai-is, we have

IE(ZID: < 1121l;.

LeMMA 4.3 (Uniform Integrability and Conditional Expectations). If Z, con-
verges to Z with probability one, and if the sequence {Z,} 1s unsformly wntegrabdle,
then E(Z,|G) converges wn L' and n probabilaty to E(Z|G).

PRrROOF. We know from Lemma 4.1 that our hypotheses imply that Z, con-
verges to Z m L1, and, since conditional expectation is an 1! contraction, we
immediately deduce that E(Z, | G) converges to E(Z | G) in L. Finally, Markov’s
inequality tells us that I} convergence implies convergence in probability, so the
proof of the lemma 1s complete. [

CONDITIONS FOR UNIFORM INTEGRABILITY

Our next task is to provide criteria for uniform integrability that can be used
more easily than the definition. One useful criterion that follows easily from
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Holder’s inequality 15 that {Z,} is uniformly integrable provided that there 1s some
constant B and some p > 1 such that E(|Z,|P) < B for all n > 1. The next‘ lemma
generalizes this L? boundedness ciiterion in a way that we will find particularly

handy.

LemMA 4.4. If ¢(z)/z — o0 as z — oo and C 15 a collection of random
varwables such that

E[¢(]Z])] < B< o for all Z e,
then C s uniformly integrable.

To prove the lemma, we set ¥(z) = ¢(z)/z and note that for any Z € C we
have for all z > 0 that

E(1Z11(2| 2 z)) = E[—ZZE,I—;BI(]Z[ > m)J < B/mmn{y(y)  y > z}.

Now, the fact that 9¥(z) — co completes the proof '

To get bounds of the type needed in Lemma 4.4, we can sometimes exploit the
fact that any integrable random variable can always be viewed as an element of a
space that is a bit like L? for a p > 1. The next lemma makes this idea precise.

LEMMA 4.5. If Z 15 a random variable with E(|Z|) < oo, there 15 a conves
¢ such that ¢(z}/2 — co as 2 — o0 and

Elg(12])] < co.
PRrOOF. We have E(|Z]) = [;° P(|Z| > z)dz < oo, and by Exercise 4.8 we can
find a nondecreasing function a(z) such that a(z) T co and

/oo a(z)P(|Z] > z) dz < .
0

If we then define .
d(z) = / a{u)du,
0

then we have

B(8(12]) = E[ /0 o) dx] - E[ /O ” @)1z < 12)) da;]

- /°° a(2)P(|2] > =) dz < co.
0

We note that ¢(x) is convex by the monotonicity of ¢’ (z) = a(z). Finally, we note
that ¢(z)/z — oo follows from the fact that a(z) — o0, so the proof of the lemma
is complete. O

One of the most useful consequences of Lemma 4.5 is that families of conditional
expectations are uniformly integrable. The formal statement of this fac.:t is set 9ut
in the next lemma, which will provide a key step in our continuous-time version
of Doob’s stopping time theorem. The lemma may seem only technical at first,
but it captures an important aspect of the geometry of random variables. It has
interesting consequences in many parts of probability theory.
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LEMMA 4.6. If Z is an F-measurable random variable with E(|Z|) < oo,
then the collection of random variables given by

(4.8) {Y:Y = E(Z|G) for some o-field G C F}
18 uniformly integrable,

PRroOOF. The proof is almost immediate. By Lemma 4.5 we can choose a convex
¢ such that ¢(z)/z — o0 as £ — oo and

E[¢(1Z])] < ooy
so0, from Jensen’s inequality, we have

El¢(1B(219)D) < E((B(¢(1Z2DI9)) < E(6(12])) < co.

Now, by Lemma 4.4, the last bound is all we need to establish the required uniform
integrability. O

4.4. Martingales in Continuous Time

We now have the tools that we need in order to take a more general view of
martingales. If a collection {#;: 0 € ¢ < oo} of sub-o-fields of F has the property
that s < ¢ implies 7, C F;, then the collection is called a filtration; and, if the
random variables {X;: 0 < ¢ < co} are such that each X, is F; measurable, then
we say that X; is adapted to the filtration. Finally, if {X;} is adapted to {F;}, we
say {X:} is a martingale if we have two additional properties:

(1) B(1X:f) < oo for all 0 <t < co and
(2) B(X; | Fs)=Xsforall 0 < s <t < oo.

For us, the most important continuous-time martingales are those {X;} for
which there is an Qp C Q with P(Q) = 1 such that for all w € Qo the function
on [0,c0) defined by ¢ — Xi(w) is continuous. Naturally, these will be called
continuous martingales. We define the continuous submartingales by a similar
extension of our definition of discrete-time submartingales.

THE STANDARD BROWNIAN FILTRATION

For us, the most important filtrations are those associated with Brownian mo-
tion. The natural filtration of Brownian motion is — naturally — the filtration
given by o{B, : s < t}, but the evolution of the theory of stochastic processes has
brought out the interesting fact that life lows more smoothly if we work with a
slightly different filtration.

This new filtration is called the augmented filtration, and it is given by a
construction that is widely used. To define this filtration for Brownian motion on
[0, T] where T < oo, we first consider the collection C of all of the sets of probability
zero in the o-field 0{B; : s < T'}. Next, we consider the collection M of all A such
that A C B for some B € C. The collection N is called the set of null sets, and
we assume that the probability measure P is extended so that P(A4) = 0 for all
A € N. Finally, we define the augmented filtration for Brownian motion to be the
filtration given by {F:}, where for each ¢t € (0,T] we take ; to be the smallest
o-fleld containing 6{B, : s < t} and V.

In the case Of Brownian motion, the augmented -filiration is also called the
standard Brownian filtration, and one of the consequences of the augmentation
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construction is that the standard Brownian filtration {#;} has two basic properties:
(1) Fo contains all of the null sets NV, and (2) for all ¢ > 0 we have

ft = m .7:5.
s5:8>1
The second of these conditions is often called right continuity, and we sometimes
write Fiy as shorthand for F; = NgeseFs. In a sweep of intellectual inspira-
tion, conditions (1) and (2) were christened the usual conditions. The world still
searches for a more suggestive name.

SToPPING TIMES

Martingales and stopping times are like nuts and bolts; they were made to
work together. Now that we have martingales in continuous time, we should not
waste a second before introducing stopping times. If {#} is a filtration, we say
that 7: Q@ — RU {o0} is a stopping time with respect to {F;}, provided that

{w:r(w) <t} e F forallt >0.

Also, if X, is any collection of random variables indexed by ¢ € [0, c0), we can define
the stopped veriable X, on the seb {w: T7(w) < o} by taking

Xr(w) = X¢(w), provided r(w)=1.
DooB’s STorPPING TIME THEOREM

We are now in a position to prove the main result of this chapter and to take our
profits on the technological investments that we made in the last section. The ideas
and methods of uniform integration provide the key to our proof of the extension
of Doob’s stopping time theorem from discrete time to continuous time.

THEOREM 4.1 (Doob’s Continuous-Time Stopping Theorem).

Suppose {M;} is a continuous martingale with respect to a filtration {F:}
that satisfies the usual conditions. If T is a stopping time for {Fi}, then the
process defined by

Xy = Miar

is also a continuous martingale with respect to {F;}.

PROOF. Our two tasks are to verify the integrability E{|X:|} < oo and to prove
the martingale identity:

(4.9) E(Xy | Fs) = X, for all s < £.

The natural strategy is to bootstrap ourselves up from the results that we have
already obtained for discrete-time martingales.

We begin by introducing a discrete approximation to = that is always at least
as large as 7. This is one of the standard tricks when using discrete time theory
to prove continuous-time results. In our particular case, we can also design our
approximation 7, in a way that guarantees a good relationship to s and ¢. For any
n > 1, we define a random time 7, with values in the set

S(n) = {s + (t — 8)k/2™: 0 < k < o0}
by letting 7 (w) be the smallest element of S(n) that is at least as large as 7(w).

With this definition, we can easily check that 7, is a stopping time and that we have
Tn(w) | T{(w) for all w. Moreover, if we let {My,, Fu }s(ny denote the martingale {M}
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restricted to the times in S(n), then {M,, %, }s(n) is 2 discrete-time martingale and
{|My|, o }s(ny is a discrete-time submartingale.

From the second observation and the fact that both 7, and ¢ are elements of
S{(n), we find that

E[ll\/.[t,\-,-n ” < E“A/.[g” .

If we let n — oo, then the last inequality and Fatou’s lemma tell us that we have
E(|Mia-|) < oo for all £ > 0. This bound establishes the integrability of the random
variables {M;a,}, so all that remains is to prove the martingale identity (4.9).

We first note that s, ¢, and Tn are elements of S(n), so the discrete stopping
time theorem tells us that

(4'10) E(]V[t/\'r,. l Fs) = -A/[s/\r,,-

To complete the proof of the martingale identity (4.9), we just need to examine the
two sides of the identity (4.10) as n — co.

By the continuity of the martingale {M,}, the righthand side of (4.10) converges
for all w to Msp, = X,. In the same way, M-, converges for all w to Mipr, so
the martingale identity (4.9) is established if we can show that we also have L!
convergence. The proof of (4.9) therefore comes down to establishing uniform
integrability of the sequence Min-, .

By the integrability of M, and Lemma, 4.5, we know there is a convex ¢ such that
#(z)/T — oo such that E[p(|Mz])] < co. The convexity of ¢ and the integrability
of ¢(|Az|) then tell us that {¢(lﬂ/ful),fu}3(n)n[0,t] is a discrete-time submartingale.
The stopping time t A7, takes its values in S(n)N[0,¢], and t is also an element of
S(n) N [0,¢], so, by the discrete stopping time theorem, we have

Blp(|1Munr, )] < Elg(|043))).

Finally, by Lemma 4.4 this bound implies the uniform integrability of the set of
variables {Ma-, }, so we can apply Lemma 4.3 to conclude that E(Minr, | Fy)
converges to E(Miar | F,) in L. The bottom line is that we can take the limits
on both sides of equation (4.10) to deduce the martingale identity (4.9) and thus
complete the proof of the theorem. (see Exercise 4.2, Part c). (]

DoOoB’s MAXIMAL INEQUALITY

The proof of the stopping time theorem required us to build up a substantial
collection of new tools, but the continuous-time versions of the maximal inequalities
and the convergence theoréms will not be so demanding. We simply need to focus

our attention on an appropriately chosen subset of times where we can apply our
discrete-time results.

THEOREM 4.2 (Doob’s Maximal Inequalities in Continuous Time). If {M;} is
a continuous nonnegative submartingale and X > 0, then for allp > 1 we have

(4.11) X"P( sup M, > /\) < B(ME),
{t:0<<T}
and, if My € LP(dP) for some p > 1, then we also have
(4.12) Il sup Myll, < =2 j|nsp)i,.
HOSELST p—1
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Proor. If we let S(n,T) = {t, : ¢, = iT'/2", 0 < i < 27}, then the continuity
of M; tells us that for all w we have

i M; = sup M,
(413) nlionc}o tezl(l,,ET) ¢ OSth ¢
and
i My>MA) =1{ sup Mt>)\)-
(4.14) m 1 ( sy > (ogtsT

Also, by Doob’s discrete-time maximal inequality (2.17), we have

(4.15) A”P( sup M; > A) < E(ME),
t€S(n,T)

so when we apply Fatou’s lemma to (4.15) we obtain (4.11). Fi.nally, t'o complete
the proof of the theorem, we note that inequality (4.12) follo.ws immediately upon
application of Fatou’s lemma to the discrete-time LP inequality

I sup Millp < || Mrllp. D
teS(n,T) p-

MARTINGALE LIMIT THEOREMS IN CONTINUOUS TIME

THEOREM 4.3 (Martingale Convergence Theorems in Continuous Time). If a
contnuous martingale {M,;} satisfies B(|My|?) < B <o for some p>1 and
all t > 0, then there ezists a random wariable My, with E(|MlP) < B such

that
(4.16) P(tlggo My = Mm> =1 and lim ||M; — Meo|lp = 0.

Also, if {M;} is a continuous martingale that satisfies E(|M;]) < B < co for
all t 2 0, then there exists o random variable My with B(|My|) < B such

that
(4.17) P(tlif& My = Moo> =1L

PrOOF. We first note that {M, : n=0,1,2,...} is a discrete t%l’{le martingalfa,
s0 there is some M, such that M, converges to M, with probablhty' one and in
LP(dP). Also, for all integers m > 0 and 2ll real ¢ > m, we have the trivial bound

— My — M|,
(4.18) My = Mool < M = Mool & sup M, = Mo

and we already know that | My, — M| — 0 with probability c§e, so (4.18) gives us
(4.19) limsup |M; — My} < lim sup  |M; — My
t—eo

M= (1im<i<oo}
To estimate the last term, we note that {M; — M, : n <t < oo} is a continuous
martingale, so our freshly minted maximal inequality (4.11) tells us that for A > 0
we have
P( sup My — Mp| > /\> S ATPE(|My — My JP).

{t:m<t<n}
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Now, since M, i j i i
Lo € My, converges to My, in LP(dP), we just let n — oo in the last inequahty

4.20 P - -
(4.20) ({t ms;tlioo} [ My — M| > /\) SAPE(|Meo — Mp|P).
If we let m — oo in the bound (4.20), then the L? i
: .20), convergence of M, implies
that the nght-hand side converges to zero and the dominated convergencén theoprem
tells us that we can take the limit inside the probability, so we find

(4.21) P( lim  su My — M, =
o m_<_tp<oo} , t m, >A) =0.
Finally, we see from (4 19) and (4.21) that M; — M. ili
- . . with probabilit;
completing the proof of the first assertion of (42.16). = d S one, thus

‘The L” convergence (4.16) is imi i
. proved by a similar, but
first note that for all m we have Y ) Ouf simpler, exgument. We

”]VIt - A/IOOHP < ”-ZV-[t - A’Im”p + ”Mm - Mooup'

Since S; = | My ~ My,| 1s a submartin
gale, we have for all n > ¢ that || M, — M <
| My, — Moy ||, so we find that for all m we have I mlle <

liiriitipHMt ~ Meollp < || M — M|l +  sup 1My, — Moy ||-
n n>m}

{
Because M,, converges to M. in I?
establishing the L? cgonvergencc):: t)I; f/ft’. e fast o form g0 to 2610 a5 m =
At last, we come to the L2 part of the theorem. Here we will use a localization
argument ?hat parallels one we ntroduced in the discrete case, although this time
it WOI:kS \z{lthout a hitch. First, we let 7, = inf{¢: [My| > n} ,and note by Doob’s
stopping time theorem that Minr, is a martingale for each n. By the definition of
Tn and the continuity of My, we have that Min+, is bounded, so the firsg part of
the theorem tells us that M, converges with probability one as ¢t — 0. Since
Mi(w) = Mipr, (w) for all ¢ if To{w) = 0o, we see that M;(w) converges for all
w € {w: T (w) = co}, except perhaps for a set of probability zero.

Now, by Doob’s maximal ine uality (4.12 1i i
e b fo o opErE B quality (4.12) applied to the submartingale [M;],

P( (M > A) < B(Mr))/A < B/,

s0, by letting T — co, we have
(4.22) P( sup |My| > /\> < B/A
0<i<oo

In terms of 7,, the last mnequality tells us that for all n > 1 we have
© P(r, =00)>1-B/n,

80, when we take unions, we find
P(Upl{w: 7 = 00}) = 1.

Now, since M;(w) converges for all w € Ux
' es h=1{: T = 00}, we finally conclude that
M; converges with probability one. Moreover, if we let ]\/Io,o denote the value of this

limit, we see from Fatow's lemma and the bound E(|M;|) < B that we also have
E(|M)) < B. B ]
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4.5. Classic Brownian Motion Martingales

THEOREM 4.4. Each of the follounng processes 15 a continuous martingale with
respect to the standard Browman filtration :

1. By,

2. B? —t,

3. exp(aB; — o?t/2).

The theorem barely stands in need of proof, although it yields a basket of
consequences. The fact that the processes are adapted, continuous, and integrable
is immediate; and for the first two processes we can verify the martingale 1dentity
just as we did for simple random walk. To check the martingale identity for the
last process, we set X; = exp(aB; — ¢®t/2), and note for £ > s that

B(X: | 7.) = X,B(exp (a(B— B) - &2t~ 5)/2) | ;) = X,

since the conditional expectation reduces to an ordinary expectation by indepen-
dence. To begin the harvest of consequences, we first note that we get ezact copres
of our wonderful formulas for the ruin probabilities and expected hitting times for
simple random walk.

RUIN PROBABILITIES FOR BROWNIAN MOTION

THEOREM 4.5. If A,B > 0 and 7 = min{t: By = —~B or By = A}, then we
have P(r < c0) =1 and

B
2 PB,=A)=——= = AB.
(4.23) (B~ ) . and BE(t) = A
" Proor. The finiteness of 7 is proved even more easily for Brownian motion
than for simple random walk. Since P(|Bpi1 — Bn| > A+ B) = ¢ > 0 and since

the events E, = {|Bp+1 — Bn| > A + B} are independent, we have
Pir>n+1)<(1-¢",
so, as before, we find that 7 has finite moments of all orders.
To prove the formula for the ruin probability, we first note that
B(B;)=A-P(B,=A)—B-(1-P(B,=4)).

Since Bia- is a martingale, we also have E(B;a,) = 0 for all . Moreover, since we
have the bound |Bia.| < A + B, the dominated convergence theorem tells us that

B(B;) = i E(Buxr) = 0.

The last two equations can now be solved for P(B, = A) to obtan the first of our

two formulas (4.23).
Just as for simple random walk, the proof of the expected hitting-time formula

follows immediately from the formula for the ruin probabilities and the identity
(4.24) E(B2) = E(7).

To justify the identity (4.24), we use the martingale M; = BZ—t and the observation
that for all ¢ > 0 we have |Miar| < A% + B? + 7. The last bound has finite
expectation, so one gets (4.24) from the dominated convergence theorem and the
fact that for all t > 0 we have B{M;a,) = 0. O
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HITTING TIME OF A LEVEL

In additi?n to l‘eSl:lltS on the hitting time of a two-sided boundary (4.23), we
can also obtain useful information about the hitting time of a one-sided boundary:

To = inf{t: B; = a}.
In fact, we will find both the Laplace transform and the density of 7,.

THEOREM 4.8. For any real value a, we have P(ry, < c0) =1 and
(4.25) Elexp(—Ar,)] = exp(—|alV2X).

PROOF. By symmetry, it suffices to consider a > 0. Now, in order to prove

that P(7, < 00) = 1, we just note that the fir
s ons ) e first formula of (4.23) tells us that for

b
a+b’

P(1a < 00) > P(Bropr_, =a) =

S0 ﬂ'lI? arbitrariness of b guarantees the desired result.
o prove the identi . i i i
xplabe bty andn ity (4.25), we use the co.ntmuous'—tlme martingale M; =
. bt 5 , we note that the nonnegative martingale M;a,, is bounded
above by exp ‘(aa). We then find by the continuity of M, the stopping time theorem
and the dominated convergence theorem that we have ’

1= lim E(M,,n) = B(My,).

Finally, si = = i
Y, since Br, = a, we have M,, = e exp —2021,), so, if we use the fact

that E[M, ] = 1, then we see that we take o = v/
otz (495), can take a = v/2\ to complete the proof cg

FIRST CONSEQUENGES

'From the expected hitting-time formula for a two-sided boundary, we can im-
mediately deduce that E(1,) = co; we just note that for any b >, 0 we have
Ta 2 Ta ATop 50 E(r,) > ab by (4.23). Simple though this may be, the fact still
may strain our intuition, and it is usefifl to note that the Laplace transform can
also be used to show that E(r,) = co. This time, we just note that

v . d .
B(ro) = ~ lim —=Blexp(—Ary)] = lim % exp(—av/2N) = oo.

In fact, this derivation actually offers us a path to more detailed information. For
example, one can use the Laplace transform (4.25) to prove the amusing formula,
(4.26) B(r;Y) =a™2

Thl.S result is a strange reciprocal analog to the familiar fact that the expected time
until standard Brownian motion leaves [—a, a] is a?.

The derivation of the identit i i
The y (4.26) turns out to be particul i
begin with the easy calculus identity pestioulorly simple if we

(o)
t“1=/ e~ g,
0
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From here, we just replace ¢ by 7,, take expectations, and use our formula for
E(e~7) to calculate that

-1 & AT °° VI . du
E(ry7) = A E(e™\™)d\ = A exp(—aVv2)) d\ = 5 etu— =

This derivation may look a bit magical, but it is more or less typical of the special
manipulations that can be used to extract information from a Laplace transform.

Nevertheless, we could have proceeded in a much more systematic way. In fact,
the explicit inversion of the Laplace transform (4.25) is not difficult if one has access
to a good table of Laplace transforms. Rather remarkably, the inversion gives us
an explicit closed form for the density of 7,:

|a| 2

4.27 fr () = exp(—a*/2t) for t > 0.

(@27) 1 (8) = s exp(—c?/20)

In a later chapter, we will obtain this density by a more direct method, so for the
moment we will be content to note one amusing curiosity — the density of 7, is the
same as that of Z~2, where Z is a Gaussian random variable with mean zero and

variance a 2.

LooKkmNGg BACK

The formula for the Laplace transform of 7, may not seem like one that we
could have guessed, but it turns out that we can come very close just by appealing
to the scaling properties of Brownian motion. The main observation is that if we let
f(a, Ay = Elexp(—A7z)], then we can show that f must satisfy a simple functional
equation:

(4.28) fla+b,2)=f(a,)\) f(b,A) foralla >0 and b > 0.

It is easy to see why equation (4.28) holds. We simply need to note that 754 is
equal in distribution to 7, + 7}, where 7} is a random variable that is independent
of 7, and that has the same distribution as 7.

The functional equation (4.28) is well known to analysts, and it is not difficult
to show that the continuity of the function f(-,A) and the validity of functional
equation (4.28) are enough for one to prove that f(a,A) = exp(ag(}\)), where g is
some unspecified function of A. Finally, in order to get rid of g()\), we first note
that by the space-time scaling property of Brownian motion, we have that 7,5 has
the same distribution as b? 7,. In terms of the Laplace transform, this tells us that
f(ab,\) = f(a, A\b?), or, in terms that make g explicit:

exp(abg())) = exp(ag(Ab?)).

Taking the logarithm, we find bg()) = g(\b?), so setting b = 1/v/X and g(1) = c we
find

f(a, A) = exp(cav/A).
Thus, except for showing that the constant ¢ equals —v/2, we come to the pleas-

ing conclusion that the Laplace transform (4.25) can be obtained by symmetry
arguments alone.
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4.6. Exercises

The first exercise is intended to help build comfort and skill with the formal
notion of conditional expectation. The next three exercises then offer practice with
the relationships between various modes of convergence. These are not difficult
exercises, but their value should not be underestimated. Much of our future work
will count on the reader being able to move easily between all of the different
convergence concepts.

The fifth exercise gives an elegant criterion for the finiteness of a stopping
time, and Exercise 4.6 shows how one can sometimes calculate the higher moments
of stopping times. Finally, Exercise 4.7 provides another important example of the
fact that martingale theory can be used to achieve purely analytical results, and it

also anticipates an approximation that will be used in our development of the It
integral.

EXERCISE 4.1 (Properties of Conditional Expectation).

(a) Tower Property. Use the definition of conditional expectation to prove the
tower property: If  is a subfield of G, then

(4.29) E(B(X|G) | H) = B(X | 'H).

(b) Factorization Property. If Y € G C F, show that if B(lX]) <coand Y is
bounded then
E(XY|G) = YE(X|9).
A good part of the challenge of problems like these is the introduction of notation
that makes clear that there has been no “begging of the question.” Without due

care, one can easily make accidental use of the tower property to prove the tower
property!

EXERCISE 4.2 (Modes of Convergence). The central result of stochastic calculus
is surely It8’s formula, and its proof will use several different modes of convergence.
This exercise provides a useful warmup for many future arguments.

(2) Show that if E(|X, — X[*) — 0 for some a > 0 then X, converges to X in
probability.

(b) Use the Borel-Cantelli lemma to show that if X, — X in probability, then

there is a sequence of integers n; < ng < -.- such that X,,, — X with probability
one as k — oo.

(c) If X, - X in probability and X,, — Y with probability one, show that
P(X =Y) =1. By the way, one should note that this fact was used in the last line
of the proof of Theorem 4.1.

(d) Give an example for which E(lXn—X|) = 0, yet &n does not converge to
X with probability one.

(e) Suppose that E(X]) <0 and ¥, = E(X|Fy) for a sequence of o-felds
Fn C F. Show that if Y, = Y with probability one, then ¥, — Y in L1,
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.3 (L'-Bounded Martingales Need Not Be Uniformly In.tegrable‘).
Confi}é(eiR?;ts E-——4exp((Bt —£/2) and show that X, is a contin_uous mart?ggale wn;h
E(|X;]) = 1 for all ¢ > 0. Next, show that X; converges leth Probablhi:iy on? to
X = 0. Explain why this implies that X; does {lot colnverge in L* to X and explain
why X is not uniformly integrable, despite being L!-bounded.

EXERCISE 4.4 (Time Inversion of Brownian Motion). We claimed i‘n an ear.lier
chapter that if we define a process {¥;} by the time inversion of Brownian motion,

0 ift=0
Y= :
tBl/t lft>0,

then {Y;} is again a standard Brownian motion. ‘One can easily cllled;.tllzat E}ﬁi

is a Gaussian process with covariance function min(s, ), s‘o .the only stic ytp ?

to showing that {Y;} is Brownian motion is to prove th'at it is contfnuous at zero.

Give a verification of this fact by completing the following program: 3 ebina
(a) Show that for all e > 0 the process defined by {X; =Y, — Y. : t > ¢

martingale.
(b) Check that for all 0 < s < ¢ we have E[(Y; — Ys)z] =t—s. .
(c) Use Doob’s maximal inequality (in continuous time) to give a careful proo

of the fact that
P(ling = 0) = 1.
t—0

illi ¢ Later” Lemma).
EXERCISE 4.5 (Williams’ “Sooner Rather Than ‘ ‘
Suppose that 7 is a stopping time for the filtration {F,} and that there is a
constant N such that for all n > 0 we have

(4.30) P(r<n+N|Fy) >e>0.

Informally, equation (4.30) tells us that — no ma,tte'r Wh.a,t has happened so far —
there is at least an e chance that we will stop sometime in the next N steps.
Use induction and the trivial relation

P(r>EN) = P(r > kN and 7 > (k — 1))

to show that P(r > kN) < (1 — ¢)*. Conclude that we have P(T < co) = 1 and

that E[1P] < co for all p > 1. o
ReEna]rk: Here one should note that P(A|F,) is interpreted as E(14|F,), and

any honest calculation with P(A|F,) must rest on the properties of conditional
expectations.

EXERCISE 4.6. Use the martingale
X = exp(aB; — a?t/2)

to calculate ¢(A} = Elexp(—Ar)|, where 7 = inf{t: B, = Aor By =—A}. UseE th;?
result to calculate B[72). What difficulty do we face if we try to calculate E[r
when the the boundary is not symmetric?

AN
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EXERCISE 4.7 (Approximation by Step Functions). Let Q = 0,1], an
be the Borel field of [0, 1] (which by definition is the sr)nallest a-ﬁegd tfll,a.t cc;nl::irﬁ
all of the open sets). Also, let P denote the probability measure on F given by
'Lebesgue measure, and let 7, denote the smallest o-feld containing the dyadic
intervals J; = [227™, (i +1)2""] for all 1 < 4 < 2™, Suppose also that f: [0,1] — R
is a Borel measurable function such that E(|f|2) < co. ’

(2) Write f, = B(f | Frn) as explicitly as you can. Specifically, argue that it is
constant on each of the dyadic interval J; and find the value of the constant.

(b) Show that {f,} is an L2-bounded martingale, and conclude that f, con-
verges to some g in L2,

(c) Assume that f is continuous, and show that g9(z) = f(z) for all x with _

probability one.

EXERCISE 4.8. Show that the function a(z) used in th
can L norsE 48 (z) in the proof of Lemma 4.5

o0 -
a(z) = {/ P(|Z]| > u) du} forany0<a < 1.
x
Hint: If we introduce a sequence {1} by setting zp = 0 and by setting

a:k=min{:z::/ P(Z] zu)du <27} fork>1,
T

then we can easily estimate the integral

/000 a(z)P(|Z| > z)dz = i/

k=0" %k

a(z)P(|Z) = z) dz.

Thae1
k

CHAPTER 5

Richness of Paths

One could spend a lifetime exploring the delicate — and fascinating — proper-
ties of the paths of Brownian motion. Most of us cannot afford such an investment,
so hard choices must be made. Still, without any doubt, there are two fundamental
questions that must be considered to a reasonable depth:

e How smooth — or how rough — is a Brownian path?
o How do the paths of Brownian motion relate to those of random walk?

We will find that the wavelet construction of Brownian motion provides a well-
honed tool for responding to the smoothness part of the first question. The answer
to the roughness part requires an independent development, but the results are
worth the effort. We will find that with probability one, the paths of Brownian
motion are not differentiable at any point. This is the geometric reality that forces
the stochastic calculus to diverge from the elementary calculus of smooth functions.
Our exploration of the second question has two parts. First, we examine some
of the ways that random walk can inform us about Brownian motion. One of the
most persistent links is simply analogy, and we explore this link by giving a parallel
development for the reflection principle for random walk and Brownian motion. We
then give a brief introduction to the more formal bridges between random walk and
Brownian motion, especially the Invariance Principle and Donsker’s Theorem.
The last part of the chapter provides the most decisive connection. We will see
that every unbiased random walk with steps with finite variance can be embedded
into Brownian motion in a way that is so explicit that many questions for random
walk become corollaries of the corresponding results for Brownian motion. This
embedding theory offers one of the most compelling instances in mathematics of
the effectiveness with which the continuum can provide insight into the discrete.

5.1. Quantitative Smoothness

One of the most important features of the wavelet sequence {A,} is that it
forms a basis for the set of continuous functions on [0,1]. Specifically, for any
continuous function f : [0, 1] — R there is a unigue sequence of constants {c,} such
that

(6.1) f@®) = f(0) + Z cnAn (t) with uniform convergence.

n=0

Moreover, the coefficients in the expansion (5.1) are determined by a delightfully
simple linear operation on f. -

To compute the coefficients c,, we first note that cp = f(1) — f(0), and, if we
set g(t) = f(£) — coAo(t) ~ F(0), then we ﬁndQ = g(3). For n > 1 we can continue
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to determine the coefficients by successive evaluations at dyadic rationals of the
residual function at each successive step of the approximation. The net effect can
be summarized in a simple formula for the coefficients ¢, with n > 1:

o e CH) () ()

where as before n > 1 is written uniquely asn =27+ kfor g >0and 0 < k < 27.

The local nature of the wavelet coefficients (5.2) stands in considerable contrast
to the coeflicients of & classical Fourier expansion. Each classical Fourier coefficient
is given by an integral that depends on the entire domain of f, but as n becomes
larger the coefficient defined by equation (5.2) depends on an increasingly small part
of the domain. This locality is the main reason wavelet coefficients can provide an
efficient measure of the smoothness.

HoLDER CONTINUITY

»

To make our measure of smoothness precise, we first recall that a function
f e, b] — R is said to be Holder continuous of order 0 < o < 1 if there is a
constant ¢ such that

|f(s) = F@)| Scls—t|*foralla<s<t<b.

The set of all such functions 1s denoted by C*{a, b], and the basic connection between
the smoothness of f and the smallness of its wavelet coefficients 1s given by the
following lemma.

LEMMA 5.1. If the coeffictents {c,} of the wavelet expansion (5.1) satisfy the
bound |cp,] < 27% forallm withn = 27 4+ k,0< k < 2,and 0 < n < co, then
feceo,1].

ProOOF. There is no loss of generality if we assume that ¢p = 0, and in that
case we can write

7(8) = 1) =3 Dy(s,1),

Di(s, )= > co{nls) = An(t)}

21<n<29t!

where

The key observation is that we have two bounds on D, (s, t):

P
27 . 20+ — ¢,

(5.3) 1D, (s, )] < {

Both of the bounds in (5.3) lean on the fact that we have A,(u) = 0 for all but
at most one value of n € [27,27%1). The first inequality then calls on the fact that
0 < An(u) < 1, and the second uses the observation that A, is a piecewise linear
function with maximum slope 27%?, so we have

|An(s) — Ap(®)] < 22FY|s — 4.
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The second bound in (5.3) is sharper when s is near £, so to take advantage of
this distinction we first make a decomposition that is valid for all k:

IF(s) = fOI < D 27 s —g+ 27
0<Lg<k 13>k
9(=~e)(k+1) _ 7 o—a(k+1)
S~ d ey Yo

If we now choose k so that 271 < |s —¢] < 27%, we find there is a ¢ = ¢(a)
such that |f(s) — f(2)| < ¢|s — £|*, exactly as required to complete the proof of the
lemma. O

BACK TO BROWNIAN MoTIiON

For us, the most important consequence of Lemma 5.1 is that it provides a
precise tool by which to gauge the smoothness of the paths of Brownian motion.
Here, we first recall that the coefficients in our wavelet series for Brownian motion
are given by A,Z,, where the {Z,} are standard independent Gaussians, and the
real sequence {\,} is given by Ao = 1 and ), = % -279/2, where n and j are related
by n = 27 + k with 0 < k < 27. We further recall that in the course of confirming
the continuity of Brownian motion, we also proved that there is a random variable
C such that

Z,] < Cyflogn foralln>2
and
P(C<o0)=1.

If we apply these bounds here, we find that the coefficient ¢, in the wavelet expan-
sion of Brownian motion are bounded by

Clw)y/(logn) 279/% < C(w)y/ (5 + 1) 27972,

and for any o < % the last term is bounded by 27%7 for all sufficiently large n.
Finally we can apply Lemma 5.1 to obtain the basic result on the Hdlder continuity
of Brownian paths.

THEOREM 5.1. For any 0 < o < i, the paths of Brownsan motion are wn

L
C%[0, co) with probability one.

5.2. Not Too Smooth

The estimates used in the proof of Theorem 5.1 break down when o = %, but
this is no accident — for o > % we find a dramatic shift. In fact, we will shortly
find that with probability one there is no point in {0, 1} at which a Brownian path
is Holder continuous of order o > % This roughness is more than a curiosity
The intrinsic randomness of Brownian motion, its fractal nature, and the required
subtlety in the definition of the stochastic integral are all inextricably tied to the
fact that the Holder level o = % is a watershed for the smoothness of Brownian
motion paths.
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THEOREM 5.2. Let G(a,c,€) denote the set of all w € ) such that for some
s € [0,1] we have

{Bs(w) — By(w)| < c|s — t|® for allt wnth |s —t| < e.
Ifa> 3, then the event G(w, ¢, €) has probability zero for all 0 < ¢ < co and € > 0.

Theorem 5.2 offers a natural balance to Theorem 5.1, but even just taking o = 1
provides a result of considerable historical weight — and practical importance. If
we let D denote the set of all w such that there exists some s € [0, 1] for which
F(t) = By(w) is differentiable at s, then we have

D Uz, U, C(L, 1, 1/k).

Since Theorem 5.2 tells us that each of the sets in the union has probability zero,
we find that P(D) = 0. We record this important result as a corollary.

COROLLARY 5.1. For allw ezcept a set of probability zero, the Brownsan motion
path By(w) 1s not differentiable for any 0 <t < 1.

BACK TO THE PROOF

The proof of Theorem 5.2 is not long, but it has some subtle points. Neverthe-
less, the main idea is clear; we need to exploit independence by expressing G{e, c, €)
in terms of events that depend explicitly on the increments of the Brownian motion
paths. To make this operational, we first break [0, 1] into n intervals of the form
[k/n, (k+ 1)/n] with 0 < k < n, and we consider the set of all w for which there is
some value s that satisfies the condition:

[Bs(w) — By(w)| < ¢|s — ¢} for all ¢ with |s —~#{ < e.

The key observation is that B;(w) cannot change very much on any of the intervals
that are near s.

To exploit this observation, we choaose an integer m that we will regard as a
fixed parameter, though we will later find a condition that we will impose on m.
In contrast, n will denote an integer that we will eventually let go to infinity. Now,
for any n > m, we define random variables X, x) by

X("L:k) = max {IBj/n(w) - B(J+1)/'ﬂ-(w)l 1k < J <k+ m} )

where 0 < k £ n —m. The random variable X (n,x) measures the largest increment
of B; over any individual interval in a black B of m intervals that follow &/n.

Now, if n is sufficiently large that m/n < € and if s is contained in one of
the intervals of B, then for any interval [j/n, (5 4+ 1)/n] € B, we see that j/n and
(7+1)/n are both within m/n < € of 5, so the triangle inequality and the condition
on § give us

1By/n = Bl41y/nl < 1By/n — Bs| + |Bs — B(y41)/nl < 2e(m/n).
The last inequality tells us that if w € G(a, ¢, €) then there exists 2 0 < k < n such

that X(n r) < 2¢(m/n)®, or, in other words, we have

(5.4) Gla, c,€) C{w : osﬁiv{l—mx("’k) < 2¢(m/n)* }
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All of the geometry of our problem is now wrapped up in the inclusion (5.4), and
we are left with an easy calculation, although we will still need to take advantage
of an opportunity that one might easily miss.

Pirst, we note that all of the X, ;) have the same distribution, so we see by
Boole's inequality and the definition of X, 1y that

P< min = Xpe < 2c(m/n)“> <P (X(n) < 2e(m/n)*)

0<k<n—m

(5.5) < nP (|Bi/n] € 2¢(m/n)*)™.

We then note that By, has the same distribution as n=3 By, and, since the density
of By is bounded by 1/v/2w, we then have

2z
P(Bi| £2) L —
(I 1I_m)—\/§l‘-

TLP(IB[' <2Cman2 a) <n(46ma 2_(2/ /2 )Tn <<4C’fn' ) +m(—1—'a)
- - n T ‘——‘_\/__. n 2 .

Now, we must not forget that we still have some flexibility in our choice of m. In
particular, from the very beginning we could have chosen our fixed parameter m so
that m(a— £) > 1. With such a choice, we find that the right-hand side of the last
inequality goes to zero as n — oo, and we see at last that indeed P{(G(z, ¢, €)) = 0.

THE NATURE OF THE ARGUMENT

This proof will reward careful study by anyone who is interested in the structure
of probabilistic arguments. Several rich ideas are embedded in the proof. Still, the
pivotal observation was that a single condition could force the occurrence of a large
pumber of independent evenis. In this case, the existence of a “Holder s” forced
m of the changes B,/n — B(;41)/n to be small. Such forcing arguments provide a
powerful lever whenever they can be found.

THE MISSING CASE, OR WHAT ABOUT a = %‘?

Borderline cases exercise a powerful influence on human curiosity, and many
readers will have asked themselves about o = —;— Rest assured, as the following

theorem suggests, the behavior at the borderline is understood with great precision.

THEOREM 5.3 (Lévy’s Modulus of Continuity). For the modulus of continuty
of Browman motion on [0,1],

mle) =sup {|B;— Bs| : 0<s<t<1, [s—t <e},
we have

lim sup m{e)
-0 /2elog(l/e)
This determination of the precise limit supremum of the modulus of continuity
tells us more about the smoothness of the Brownian path than we are likely to need
in almost any application, so we will not give a proof of Theorem 5.3. Nevertheless,
we should note that the tools we have at our disposal would rather quickly show

=1 unth probability one.
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that there is an upper bound on the limit supremum. This fact is even offered as
one of the chapter’s exercises.

The harder part of Lévy’s theorem is to show that 1 is also a lower bound on the
limit supremum. This fact requires a more refined argument that would definitely
test our patience. In any case, Lévy’s theorem is not the last word. There are many
further refinements, and, even though some of these are of great beauty, they are
best left for another time — and another place.

IS

5.3. Two Reflection Principles

Near the end of his long and eventful life, Winston Churchill was asked if
he had any regrets. Churchill puffed and pondered for a moment before replying,
“Yes, when I look back on the times in Cannes and Monte Carlo when I bet on Red,
I would have rather to have bet on Black.” In this instance, Churchill may have
been more clever than forthcoming, but his quip still delivers a drop of probabilistic
wisdom.

Suppose we consider a variation on Churchill’s expressed desires and imagine
a gambler in a fair game who switches his bet preference only after his winnings
have grown to a specified level. In notation, we consider S, = X1 +Xa++--+ Xn,
where the X, are independent random variables that take the values 1 and —1
with equal probability. We then consider the first time that S, reaches the value
z > 0, say 7 = min{n : S, = z}. If S, represents our gambler’s wealth when he
bets his natural preferences, then the wealth S, that he would achieve by switching
preferences after reaching level z is given by

(5.6) g = Sn fn<r
TS = (Sn~8) ifn>T

The ironic fact — plainly evident to Churchill — is that the wealth process S, is
equivalent to the wealth process Sy,; that is, all of the joint distributions of the
processes {S, : n > 0} and {S, : n > 0} are equal. Still, if our aim is other than
to make money, there is value in introducing the new process S

The first observation is that if n > 7 and S, > = +y for some y > 0, then we
also have S, < z — y. But, since the processes {S,} and {S,} are equivalent, this
observation tells us that

(5.7) P(r<n,Sy>z+y)=P(r<n,S, <z—1)
=P(r <n,8, <z -—1y).

In our usual notation for the maximal process, S} = max{Sj : 0 < k < n}, we can
summarize the last identity by saying that for all z > 0 and y > 0 we have

P(Sy 2 2,8, >z +y) = P(S; 22,5, <z —y),

(
N

and since S, > z +y implies S > , we finally deduce
(5.8) P(Sp>z+y)=P(S:>z,5 <z—1y).

This useful formula is often called the reflection principle for sumple random walk,
although the name might more aptly be used to refer to the assertion that {S,}
and {S,} are equivalent processes. The reason for the importance of equation (5.8)
is that it gives the joint distribution of (S%,S,) in terms of our old friend, the
distribution of Sy.
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USEFUL SPECIALIZATION

One of the ways to get to the essence of equation (5.8) is to consider what
happens if we set y = 0 to get the simpler relation

P(S, > z) = P(S; > ,5, <z).
Because it is trivially true that
P(S, >z)=P(S; 2 2,5, 2 z),

we can sum the last two equations to obtain an identity that gives the distribution
of S* in terms of S,:

(6.9) 2P(Sy > z) + P(Sp =) = P(S;, > z).

This simple equation 1s remarkably informative. To be sure, it yields useful com-
putations for finite values of n. For example, it tells us that the probability that
our standard gambler gets ahead by at least $3 at some time in the first 8 rounds
of play is 37/128, or about 0.289.

More surprisingly, the identity can also be used to resolve theoretical questions.
For example, if we let » — co in equation (5.9), the central limit theorem tells us
that the left-hand side tends to one; so, for the third time, we have proved that

P(7y < o) = P(S} =z for some n) = 1.

Similarly, if we replace z by [{/nz] in equation (5.9) before we take the limits, we
see that the central limit theorem for S, tells us that for all 2 > 0 we have

(510)  lm P(S}/VR2 )= lim 2P(Sh/v 2 7) = 2{1- 2()}.

This determination of the asymptotic distribution of the maximum of simple ran-
dom walk is a pleasing accomplishment, but as soon as it hits the page we are driven
to a new question: Does the identity (5.10) hold for all random walks with steps
that have mean zero and variance one? We will shortly find that this is indeed the
case, but we will first need to bring in Brownizn motion as a helpful intermediary.

REFLECTION PRINCIPLES FOR BROWNIAN MOTION

The reflection process {.STn} has an obvious analog for Brownian motion, and
there is also a natural analog to the equivalence of {S»} and {S,}.

PROPOSITION 5.1 (Reflection Principle for Brownian Paths). If T s a stopping
tvme with respect to the filtration gwen by the standard Browmian motion {B;:t>
0}, then the process {By : t > 0} defined by

Btz{Bt ft<r

(5:11) B —(Bs—B;) ft>T

18 agawn o standard Brownian motion.

The proof of the reflection principle for random walk can be given by sim-
ple discrete mathematics; one just needs to count paths. Unfortunately, there is
no analog to path counting for Brownian motion, and, for all of its obviousness,
Proposition 5.1 is a bit tricky to prove. If the reflection were to take place at a fixed
time ¢ rather than the random time 7, the proof would be no trouble, but there is
no escaping the randomness of 7. An honest proof of Proposition 5.1 would require
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us to develop the so-called strong Markov property of Brownian motion, and such
a development would be a substantial distraction.

For the moment, we will take Proposition 5.1 as if it were proven. In fact, it
yields a treasure trove of useful formulas that we would be foolish to miss. Also, as
it turns out, once such formulas are set down, they can almost always be proved by
methods that do not call on Proposition 5.1, so there is no real cost to the omission
of the proof of the proposition.

JOINT DISTRIBUTION OF B; AND B}

[y

When we use the reflection principle for Brownian motion, the argument that
gave us the refection identity (5.8) for random walk can be repeated almost word-
for-word in order to find

(5.12) PBf >z, Bi<z—y)=P(B; >z +Yy).

This continuous-time analog of formula (5.8) again owes its importance to the fact
that it reduces the joint distribution of (B;, Bf) to the much simpler marginal
distribution of B;.

Now, since B;/+/t is a standard Gaussian, we also see that P(B; > z + y) is
simply 1 — ®((z +v)/vt). If we substitute w = z —y and v = = into the identity
(5.12), then for (u,v) in the set D = { (u,v): u € R, v > max(0,u) } we have

P(By <u, Bf >v) =1—&((2v—u)/vt) = &((u—2)/vt)

and since P(B; < u, Bf <v) = P(B; <u)—P(B; <u, Bf >v) we come at last
to the elegant formula

. U U —2v
(5.13) P(B; <u,Bf <v)=& (75) - & (——7{—> for all (u,v) € D.
For many purposes the distribution function (5.13) is the best way to carry around
information about the joint behavior of B; and B}, but still we should note that
two easy differentiations bring us directly to the density of (By, Bf):

2(2v — u)

————"ex
V23

In a later chapter, we will see that the density (5.14) plays a key role in the analysis

of Brownian motion with drift, but we do not need go so far to find important

consequences. For example, we can simply integrate the density (5.14) to find our
first derivation of the density of the maximum of Brownian motion.

(5.14) fia.,B7)y (U ) = p ( (2 - 5 v’ ) for all (u,v) € D.

DENSITY AND DISTRIBUTION OF B}

Naturally, there are more insightful routes to the density of By than brute force
integration, and one of these is to mimic our investigation of the distribution of S
for simple random walk where we exploited the identity (5.8) by specialization to
y = 0. This time we take y = 0 in equation (5.12) to find

P(B; > =, B; < z) = P(B;s > z),
and again we have a trivial companion identity:

P(Bf > =, By > z) = P(B; > z).
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Finally, the sum of these two identities gives us the desired representation for the
distribution of Bj:

(6.15) P(Bf > z)=2P(B; >z)=P(|B;| 2 z) forz > 0.

Tn other words, the distribution of the maximal process By is exactly equal to the
distribution of the absolute value of Brownian motion |Bj|.

This is one of the properties of Brownian motion that deserves to be savored.
As processes, {B;} and {|B;|} could not be more different. For example, {B;} is
nondecreasing, and its paths have many long flat spots. The paths of {|B;|} are
never monotone. In fact, their local behavior away from zero is identical to that of
paths of {B:}, so in particular, the paths of {|B;[} are never differentiable even at
a single point — much less flat. Despite all of these differences, the distributions
of B} and |B;| are equal for each fixed ¢.

To close our discussion of B} and |B;|, we should compute the density of B}.
This is easy, and we will need the result later. Since B,/ v/t is a standard Gaussian,
we have for all z > 0 that

P(Bs| > z) = P(|Bel/Vt > m/VE) = 2{1 — &(z/V1)},
and the reflection formula (5.15) then tells us that for z > 0 we have
P(B? < z) =28(z/Vt) - 1.

Finally, an easy differentiation provides us with the desired density:

(6.16) I (z) = % ¢ (%) S = /% forz > 0.

Liv

DENSITY OF THE HITTING TIME T,

The distributional results for B} have easy and attractive translations into
information for the hitting time of the level a > 0:
7, =inf{t: By =a}.
Since we have
P(B; <a)=P(r, > t),

Plr, > 1) =2 (%) ~1

and differentiation gives the succinct formula:

(5.17) Fra() = ﬁ% o (%) for ¢t > 0.

This formula will answer any question you have about the distribution of 7,
but the only application that we will make right now is to observe that it gives
a very simple upper bound on the tail probability P(r, > t). Specifically, since
¢(z) < 3 for all z € R, we see that

we get

oo
5.18 Pra2t)< | —o—ds=—= foralla>0,t>0.
. 2s8/2 Vi

One could hardly ask for a simpler result, and we will find in a later chapter that
it is also very useful.
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5.4. The Invariance Principle and Donsker’s Theorem

‘When one has a handy law for simple random walk such as the reflection
principle identity (5.8), or it special case (5.9), one is virtually forced to ask if there
is an analogous law for Brownian motion. In fact, the analogous law is almost
always valid, and there are several systematic methods for converting identities for
random walk into identities for Brownian motion, and vice versa.

One of the oldest and best of these methods is based on the approximation
of Brownian motion by the linear interpolation of a general random walk. To
describe this approximation, we fizst take a general sequence {X,,} of independent
identically distributed random variables with mean zero and variance one, and
then we interpolate the random walk S, = X3 + X5 + -+ + X,, in order to'define
a piecewise linear stochastic process for all ¢ > 0 by setting Sg = 0 and taking

(5.19) Sn,t) =8+ ({t—n)Xpy whenn<it<n+1l

This process can now be scaled in space and time in order to obtain a process that
approximates Brownian motion on [0, 1]:

(5.20) B{™ = S(n,nt)/vn for0<t<1.

The suggestion that B§”> approximates Brownian motion is intuitive enough,
but some work is needed to make this idea precise. First, we should note that the
central limit theorem and a bit of easy analysis tell us that

lim P(BM < z) = P(B, < ),

and with a little more effort we can even prove the convergence of the joint distri-
butions, «
n]i)néoP(Bt(?) < $11B§:) < Lo PR ,Bg") < ﬂ}d)
= P(Bt)_ < 71, -Btz < Ty 7Btd < 1Ed).
These results tell us that the finite dimensional distributions of the process {B{™}
do approximate those of {B;}, but there is even more to the approximation. For

example, by the finite distributional results and a bit of additional work, we can
show

(5.21) P( max B{™ < :n) — P( max B; < fL)
0<t<T 0<t<T
or even show
(n) (n)
(5.22) P(oxéltagcTBt <z By’ < y> - P(O%%XTBt <z, Br < y)

Formulas such as (5.21) and (5.22) can be produced in almost endless varieties,
and we will soon need to find some way to consolidate them. Still, before we take
up that consolidation, we should recall how even the humble identity (5.21) can
lead to a remarkable general principle.

THE ORIGINAL INVARIANCE PRINCIPLE

Perhaps the most instructive inference one can draw from the limit (5.21) is
that it implies a general invariance principle. Since the limit one finds in (5.21)
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does not depend on the underlying random walk, the simple equality (5.21) actually
contains a number of interesting identities.

For example, if we take a random walk that is based on a general sequence
{X,} with B(X;) = 0 and E(X?) = 1, we will find the same limit (5.21) that we
get for the simple random walk based on the independent variables {¥;} where
P(Y; =1) = P(Y, = —1) = 1. As a corollary of (5.21), we have the identity

k k
(5.23) lim P(n"% max X, < :z:> = lim P(n‘% max Y; < .'z:),
and we already know from equation (5.10) that
k

(5.24) lim P(’n_% max Y, < :z;) =2®(z) — 1 for all z > 0.

n—oo 1<ksn
By the identity (5.23), we have the same limit law for {X,} that we have for {¥;},
and this proves our earlier conjecture about the asymptotic distribution of the
maximum of a general random walk.

The beauty of equation (5.23) is that it tells us that the limit law (5.24) is
mvariant under the change from the simple {Y;} to the general {X;}. In a broad
range of circumstances, identities such as (5.23) can be used to show that distri-
butional limit laws are invariant under the change of the underlying distribution.
This means among other things that one can use methods of discrete mathematics
to prove limit laws for simple random walk and then almost automatically trans-
late these results to limit laws that apply to all random walks with steps X, with
E(X;) =0 and Var(X;) = 1.

DONSKER’S THEOREM

As we noted earlier, there are countless variations on the identity (5.21). One
can stir in minima, intermediate maxima, or whatever. Fortunately, one does not
need to pursue proofs of each of these individual formulas. There is a single theorem
that nicely houses the whole menagerie.

If we consider the space C[0, 1] of all continuous functions on [0, 1], then C[0, 1]
is a complete metric space with respect to the norm ||f]leo = SUpg<i<i [F(¢)]. To
say that H : C[0,1] — R is a continuous function on C[0,1] then means nothing
more than to say that if f, — f uniformly on [0, 1], then we have convergence of
the real sequence H(fn) — H(f). The archetypes for such continuous functions
are none other than our friends the maximum function H(f) = maxo<i<1 f(£) and
the point evaluation function H(f) = f(1). The remarkable fact is that whenever
we can work out the distribution of H applied to the Brownian motion paths, then
we can work out the corresponding asymptotic distribution for H applied to the
linear interpolation of simple random walk, or vice versa.

THEOREM 5.4 (Donsker’s Invariance Principle).
For any continuous function H : C[0,1] — R, the interpolated and scaled ran-

dom walk {B{™ :0 < t < 1} satisfies
; (n) =
(5.25) im PIH(B(Y') < 2] = P[H(B(,) < g].

The proof of this result is not difficult, but to do a proper job would take
us a bit too far out of our way. Still, this theorem is a landmark in the theory
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of probability, and it provides one of the basic justifications for calling Brownian
motion the most important stochastic process.

5.5. Random Walks Inside Brownian Motion

At moments, the connection between Brownian motion and simple random
walk goes beyond analogy or approximation — in some contexts, the two processes
have exactly the same structure. For example, if A and B are positive integers
and 7 is the first hitting time of level A or level —B, then the formulas we found
for the hitting probability and the expected hitting time are exactly the same for
Brownian motion and for simple random walk:

A
A+ B

One of the remarkable consequences of the hitting probability formula (5.26) is that
it tells us that there is a simple random walk that lives on every Brownian path.
Specifically, if we let 71 = inf{¢: B; ¢ (—1,1)} and set

(527) Tnil = inf{t > Tpt Bt - B‘r,,, ¢ ('—'1, 1)}

for n > 1, then the sequence By, Bo,, ..., Br,, ... bes the same joint distributions
as S1,59,...,85%,..., where as usual S, = X; + X3 + -+ + X, and the X; are
independent random variables with P(X, = 1) = P(X, = —1) = 5. Thus, simple
random walk can be studied in any detail we choose by looking at Brownian motion
at a well chosen set of stopping times.

This is a very pleasing situation. It also prompts the immediate conjecture that
any unbiased walk with steps with finite variance can be embedded in an analogous
way. This is indeed a theorem that we will soon prove, but first we will take a brief
look at an amusing consequence of the embedding provided by the stopping times
(5.27).

(5.28) P(B, = A) = =P(S,=A) and E[r]= AB = E[S?] = E[B?].

AN ILLUSTRATIVE LIMIT THEOREM

Because S, has the same distribution as By, and since B, is exactly Gaussian
with mean 0 and variance n, if we show that By, /+/n and B,/+/m do not differ
too much we can deduce that S,/+/n is approximately Gaussian. This is not a
great deduction; rather, it is a strange path to a result that has been known for
two centuries as the DeMoivre-Laplace approximation of the binomial distribution.
Still, the path offers more than quaint charm. The proof points to a general plan
that has led to many important developments and remains a tool of active use in
current research.

To use the embedding, we need some information about the embedding times
{7n}. The main observation is that the increments §; = 7; — 7,1 are independent,
identically distxibuted, and have expectation E(6;) = 1. This is all we know about
the {7}, but it is all we need to establish the closeness of B;, and B,. Now, given
any 6 > 0 and e > 0, we first note that

P(|Br, — Bn| > ev/n) = P(|Br, — By| > ev/n and | — 7| < 6n)
+ P(|B,, — Bn| > ev/n and |m —n| > 6n)

sP( sup |Bs—Bn|zeﬁ>+P(|¢n—n|zsn).

s:|ls~n|<Lén
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Now, the term P{|r, —n| = én) is no trouble at all, since the law of large numbers
tells us that it goes to zero as n — oo. Also, the second term is easily addressed by
symmetry and Doob’s maximal inequality

P( sup |Bs~ Byl > 5\/7—1> < 2P< sup |Bs| = eﬁ)
si)s—n|<bn 0<s<on

< 2E(B2,)/(e%n) = 26/¢%.
‘We see therefore that

(5.28) 735130 P(|B;, — Bn| > ev/n) < 26/€%,
and since 6 can be chosen as small as we like in the bound (5.28), we see that
(5.29) . nllrréoP(lBT" — By| 2 e/n) =0.

Because B,,/+/n has the standard Gaussian distribution for ail n, we see now (or,
after reviewing the remark attached to Exercise 5.2) that the limit (5.29) gives us
our central limit theorem for S, = B, :

Jim P(B.,/Vn < z) = 3(z).

EXTRNDMNG THE CLASS OF BMBEDDED VaRIARLES!

If we want to embed a random variable that takes on only two values, we
already have a good idea how to proceed. If the values of X are —a < 0 and 0 < b,
then the assumption that E(X) = 0 forces us to the conclusion that

P(X = ~a) =b/(a+b) and P(X =b)=oa/(a+Db);
so, if we simply let 7 = inf{t : B; ¢ (~a,b)}, then our earlier work tells us that we
do indeed reach the required conclusions of the theorem.

We could now consider random variables that take on only three values, but
we may as well take a bold step and consider a random variable X that takes on
an arbitrary finite number of values. To parallel our first exploration, we suppose
that there are nonnegative reals {a;} and {b;} such that the distribution of X is
given by

PX =-a;)=ea,fori=1,2,...m
and

PX=b;)=p;for j=1,2,...n
This time, the condition that E(X) = 0 will not determine the distribution com-
pletely, but it will impose an essential relationship:

(5.30) D e = bp;.
j=1

i=1

RANDOMIZED STOPPING TIMES

At this point, there are several ideas one might try, but perhaps the most
natural plan is to look for a way to randomize our earlier method. Explicitly, this

1Readers in a hurry can skip directly to Theorem 5.5 and the succinct proof outlined in
Exercise 5.1. The present discussion offers a slightly unconventional approach which leans on
more linear algebra than might be fo everyone’s taste. The relationship to other approaches is
discussed in the bibliographical notes.



74 [ 5. RICHNESS OF PATHS

suggests that in order to construct 7 we should search for a pair of integer-valued
random variables I and J, so that if we take

7 =inf{t: B; ¢ (_aIabJ)}i

then B, will have the same distribution as X. What makes this a reasonable plan
is that it places at our disposal an entire probability distribution,

P(I =i,0 =4) =py.

To determine the constraints on {p;;}, we first note that the definition of 7
gives us

P(Br = —a,) —-ZP(B =—a; | I =4,J=J)pi

(5.31) Z b Pio

and
m

P(B,=bj)=) P(B,=b;|I=1J=7)p

=1
m a;

5.32 = —— Dij.

( ) ; a; + b; Pij

SOME LINEAR ALGEBRA

The structure of these equations is made most evident in vector notation. If
we consider {a;},{e;},{b;}, and {8;} as column vectors a, e, b, and B; and if we
introduce a matrix @ = {g;;} by taking

i = pag /(@i + b5),
then the requirement that B, has the same distribution as X can be written very
neatly as

(5.33) a=Qb and T =aTQ. .
Moreover, the mean zero condition (5.30) also has the simple vector form
(5.34) aTa =bTp.

SOLVING FOR @

We are quite accustomed to solving for b in equations such as « = Qb, but
this time we face the slightly odd task of solving for the matrix @ given « and b.
As we would expect, this is even easier. In fact, we can immediately check that

avt
Qy = B
is a solution of the matrix equation & = Qb for any v such that vI'b # 0, and, in
the same way,
_wB"
Qu = Jrey
is a solution of the second equation of (5.33) for any w such that aTw # 0.
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To find one Q that solves both of the equations (5.33), we only néed to éxploit
the freedom we have in choosing v and w. When we equate the formulas for @,
and @Q.;, we get

av?  wgT
vIb  aTw'’

and, since we can make the numerators match if we take v = ,BT and w = «, we
only need to check that this choice also makes the denominators check. Fortunately,
this is an immediate consequence of equation (5.34). The bottom line is that we
can satisfy both equations of the pair (5.33) if we take

(5.36) Q=7"ap",

where v is the common value of a’e and bT4.

(5.35)

AND @Q REALLY WORKS

Thus far, we have seen that Q = (gi;) solves equations (5.33) and (5.34), but
we still must check that p;; = g;;(a; + b;) is a bona fide probability distribution.
The solution (5.36) tells us g,; = v, > 0, so we only need to note that

Zzpu 2,3_7’)’ 12%0@-{-20[{7 Zb Bi=1,

i=1 y=1 J=1 i=1 =1

where in the last step we used the definition of v and the fact that the sum of all the
oy's and B;'s is 1. The bottom line is that our simple choices have been fortuitous
choices, and our construction of @ has produced an honest probability distribution

{pi;}.

CHECKING F(r) = Var(X)

To complete our treatment of the discrete case, we only need to calculate the
expectation of 7 and show that it equals Var(X). There is a temptation to use the
martingale M; = BZ — t to argue via Doob’s stopping time theorem and the dom-
inated convergence theorem that M;a, is a bounded martingale and consequently
E(1) = E(B?%) = Var(X). One can make this argument work, but it is not auto-
matic; 7 is a randomized stopping time, not just a plain vanilla stopping time. To
make the argument honest, we would need to extend Doob’s theorem to cover the
case of randomized stopping times.

A much quicker way to show that F(r) = Var(X) is to exploit the explicit form
of T to give a direct computational check:

E(r) = Z Z a.bjpi; = Z Z aibi(a; + biYau By /v

i=1 _7—1 i=1 j—l

= Zza az,BJb /’)’+ Zzazazﬁjb /'7
i=1 j=1 =1 g=1

=2 afes fyb st 38 ey = V).
i=1 =1 i==] i=1
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FINAL STEP: CONTINUOUS CASE

There are two natural plans for extending our embedding of disciete random
variables to the case of general distributions. The most direct route uses the idea
that any random variable can be approximated as closely as we hke in distribution
by random variables that take on only finitely many values. This plan works, but
it 1s not labor-free; many details must be checked. The second plan 15 to prove
the general case by mimicking the construction that was discovered in the discrete
case. The details of the second plan turn out to be both easy and instructive, as
one can verify by working Exercise 5.1.

Our discussion of the embedding of a random variable in Brownian motion is
almost complete. We only need to summarize the main conclusions m a formal
theorem

THEOREM 5.5 (Skorohod Embedding Theorem). If X 15 a random varable
unth mean zero and variance o2 < oo, there 15 a randomized stopping tume T such
that

PB.<z)=P(X<z) forall z€R
and
B(r) =%

Finally, as we noted in the introduction to the embedding problem, we are
much more interested in embedding a whole process than & single random variable.
Fortunately, the embedding of random walk just requires the repeated application
of the same process that permitted us to embed a single random variable. The
most useful form of the embedding construction is given in the following corollary.

COROLLARY 5.2 (Embedding of Random Walk). For any sequence of indepen-
dent, wdentically distributed random variables {X, : 1 <1 < oo} such that B(X,) =0
and B(X?) = o2, there 15 a sequence {1, : 1 <1 < oo} of wndependent, wdentically
distributed, nonnegatwe random variables wnth E(t,) = o2 such that the random
walk

Sp=X1+Xa+ -+ Xn
and the process defined by
Sp = Britr4 4
are equwvalent; that 1s, all of the joint dustmbutions of

{8p:1<n <o} and {Sn:1<n < oo}

are equal.

SOME PERSPECTIVE ON METHODS

The proof of the Skorohod Embedding theorem is often given by producing a
recipe for 7 as a magician might produce a rabbit from a hat — as a surpnse and
without any indication of how we might find our own rabbits. The path we have
taken here is not as short, but it should piovide a more reliable guide to the trail
one might follow to pursue an attractive idea.

Here we began with the obvious, but striking, fact that one can embed simple
random walk into a Brownian motion by use of stopping times. We then looked at
the simplest possible extension of this embedding, and we observed that we could
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also embed any unbiased walk with steps that take on only two values. Creeping
along, we then considered walks with steps that could take on an arbitrary finite
number of values.

There is something to this process of incremental investigation that is both
sensible and satisfying. There is no silver bullet that slays all mathematical prob-
lems, and even well-motivated investigations may grind to an unsatisfying halt.
Still, when progress is possible, many investigators have found that 1t comes most
quickly when they regularly remind themselves of Pélya’s fundamental question of
problem solving: “What is the simplest question you can’t solve 7"

5.6. Exercises

The first exercise outlines a proof of the general case of the Skorohod embedding
theorem. One can think of Section 5.5 as a warmup and an mtroduction to this
problem. The next exercise illustrates the curious fact that the Skorohod theorem
provides a logically independent proof of the central limit theorem. The last exercise
then offers the opportunity to use the explicit constiuction of Brownian motion to
make the first step toward a proof of Lévy’s modulus of continuity theorem.

EXERCISE 5.1 (General Case of Theorem 5.5). The same idea that we discov-
ered for discrete random variables can be applied to general distributions. Specifi-
cally, if F' is the distribution of X, we let

= _/_medp(x) =/0°°wdF(z)

and define the joint distribution of (I, J) by
5 1
PI<s,J<t) =" / / (u—v)dF()dF(u) s <0<t
~c0 JO

If we rewrite this definition in differential terms
(5.37) P(Ieds,Jedt) =" (t—s)F{ds}F{dt} s<0<t,
we see that it is the continuous parallel to our earlier choice of

Dy = ’Y—l(al + ).,

Define 7 as before as the first exit time of the random interval (7, J), and check
both the conclusions of Theorem 5.5.

EXERCISE 5.2 (Central Limit Theorem via Skorohod). The classical central
limit theorem says that if {X,} is a sequence of independent identically distributed
random variables with E(X,) = 0 and VarX, = 1, then the sum S, = X; + Xo +
-+ 4 X, satisfies

z

Jim P(Sn/v/n < z) = %/ e /2 4y = &(x).

—Cc0

Use Skorohod embedding to give a clear, careful, and complete proof of the classical
central limit theorem.
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Remark: For a complete proof, one needs a clear connection between conver-
gence in probability and convergence in distribution. As a warmup for the exercise,
one should first check that if

lim P(| X, —Ya|>€)=0 forall >0,
n—eo

and P(Y, < z) = F(z), then lim,_,oo P(X, < z) = F(z) for all = such that F is
continuous at z.

EXERCISE 5.3 (Modulus of Continuity — Version 1.0). Show that the argument
that was used to prove Theorem 5.1 may be pressed a bit harder to show that there
is a random variable C such that P(C < co0) =1 and

|Ben(w) ~ Be(w)| < Clw)+/hlog(1/h)

for all w and all 0 < t,t+h < 4.

i

CHAPTER 6
1t6 Integration

The 1td integral carries the notion of a martingale transform from discrete
time into continuous time. The construction gives us a systematic method for
building new martingales, and it leads to a new calculus for stochastic processes,
the consequences of which turn out to be more far reaching than anyone could have
possibly expected. The It0 calculus is now well established as one of the most useful
tools of probability theory.

The main goal of this chapter is to provide an honest — yet well motivated —
construction of the Itd integral,

T
(6.1) I(f)(w) = /0 f(w,t)dB,.

Because the paths of Brownian motion do not have bounded variation, this integral
cannot be interpreted as an ordinary Riemann integral. Instead, we must rely on a
more subtle limit process.

In a nutshell, the idea is to define the integral on a class of rudimentary func-
tions and to extend the definition to a larger class by a continuity argument. Un-
fortunately, one small nutshell does not do justice to the full story. If we want an
integral that offers real insight into the theory of stochastic processes, we must be
prepared to do some fancy footwork.

6.1. Definition of the It6 Integral: First Two Steps

For the integral (6.1) to have any hope of making sense, the integrand must
meet some basic measurability and integrability requirements. First, we consider
measurability. To begin, we let B denote the smallest o-field that contains all of
the open subsets of [0,T}; that is, we let B denote the set of Borel sets of [0,T].
We then take {F;} to be the standard Brownian filtration, and for each ¢ > 0 we
take F; x B to be the smallest o-field that contains all of the product sets 4 x B
where A € F; and B € B. Finally, we say f(,-) is measurable if f(-,-) € Fr x B,
and we will say that f(-,-) is adapted provided that f(-,£) € F; for each £ € [0, 7.

In the first stage of our development of the 1td integral, we will focus on in-
tegrands from the class H? = H2[0,T] that consists of all measurable adapted
functions f that satisfy the integrability constraint

(6.2) E[/OT P (w,) dt] < c0.

Incidentally, one should note that the expectation (6.2) is actually a double integral
and that H? is a closed linear subspace of L2(dP x dt).

To anticipate the definition of the Itd integral, we first consider what we would
expect the integral to be in the simplest cases. For example, if we take f(w,t) to
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be the indicator of the interval (a,b] C [0, T, then for the integral to be worthy of
its name we would insist that

(6.3) 1(H)(w) = / ’ 4B, = By — Ba.

Now, since we fully expect the Itd integral to be linear, our insistence on the identity
(6.3) already tells us how we must define I for a relatively large class of integrands.
To define this class, we let 3 denote the subset of H? that consists of all functions
of the form

n-1
(6.4) Flwyt) =D a (W)l <t < t),
1=0
where a, € F,, BE(a?) < oo, and 0 =1ty <1 <+ < tp-1 <tn =T.
Linearity and equation (6.3) give us no choice about the definition of I on H3.
For functions of the form (6.4), we are forced to define I on Hj by

n—1

(6.5) I(f)(w) = > au(w){Btys — Bu.}-

=0

We would now like to show that we can extend the domain of I from H3 to all of
H2, and to complete this extension we need to know that I : HZ — L?(dP) is a
continuous mapping. This is indeed the case, and the keystone that caps the arch
is the following fundamental lemma.

LeMMA 6.1 (It6’s Isometry on H3). For f € HE we have

(6.6) (W z2eapy = I FllL2(apxat)-

Proor. The proof could not be simpler; we just compute both norms. To
calculate ||f||z2(apxdr), We note that for f of the form (6.4) we have

n—1

f2(w1t) = i af(w)l(n <t < t1)s

1=0
SO
T o = 2 £)
= S — ).
E[/ﬂ f(w,t)dt] LG

To calculate ||I(f)||z2(ap), we first multiply out the terms in the definition (6.5)
of I(f) and observe that a, is independent of Bi,,, — Bi,. The cross terms have
expectation zero, so we finally see :

BlI()?) =§E(a§(3w - B.)")

n—1
= Z E(a?)(tat1 — 1a)-

=0

These calculations tell us that the two sides of equation (6.6) are indeed equal, so
the proof of the lemma is complete. O

6.1. DEFINITION OF THE ITO! INTEGRAL: FIRST TWO STEPS n"8‘11'1

CAUCHY SEQUENCES AND APPROXIMATING SEQUENCES

It6’s isometry establishes the essential fact that I maps HZ continuously into
L?(dP), but an unexpected precision is thrown into the bargain. Because I pre-
serves distances when it maps the metric space #Z into L2(dP), we get for free that
I takes a Cauchy sequence in HZ into a Cauchy sequence in L?(dP). This handy
fact makes light work of the extension step once we know that we can approximate
elements of 7? by elements of 2, as the following lemma, guarantees.

LeMMA 6.2 (HZ is Dense in H2). For any f € H?2, there emsts a sequence {fn}
with f. € HE such that

[1f = fallz2@pxary — 0 as n— oo.

Lemma 6.2 is almost intuitive enough to believe without proof, and, to keep
the logical development of the It integral as transparent as possible we will not
prove the lemma at this point. Rather, in the last section of this chapter, we will
prove an approximation theorem that has Lemma 6.2 as an immediate corollary.

T.0GICAL HEART OF THE SECOND STEP

Now, given any f € H?, the last lemma tells us there is a sequence { f,} C H3
such that f, converges to f in L2(dP x dt). Also, for each n the integrals I(f,)
are well-defined elements of L2(dP) that are given explicitly by formula (6.5). The
natural plan is then to define I(f) as the limit of the sequence I(f,) in L?(dP).
That is, we take

(6.7) I(f) = lim I(fn),

where the detailed interpretation of equation (6.7) is that the random variable I(f)
is an element of L*(dP) such that |[I(fn) — I(f)l|z2(ap) — 0 as n — co.

To be sure that this definition is legitimate, we only need to make a couple
of checks. First, we need to show that [|f — fullr2(apxasy — 0 implies that I(fn)
converges in L2(dP). This is quite easy because the convergence of f — f, to zero
in L?(dP x dt) tells us that {f,} is a Cauchy sequence in L?(dP x dt), and the
1td isometry then tells us that {I(f,)} is also a Cauchy sequence in L?(dP). But
L?(dP) is a complete metric space, and completeness just means that every Cauchy
sequence must converge. In particular, we see that I ( fn) converges to some element
of L%(dP), which we then denote by I(f).

Our second check requires that we show that I is well defined in the sense that
if f;, is another sequence with the property that ||f — f}||z2(apxary — 0, then I(f7)
has the same limit in L?(dP) as I(f,). This is also immediate, since the triangle
inequality tells us that any such f;, must satisfy ||fn — f5||lz2(aPxaty — 0, and the
It6 isometry then tells us that ||I(f) — I(f)|lz2ap) — 0.

INTERMEZZO: FURTHER IT0 ISOMETRIES

Now that the I1td integral has been defined on H?, we should note that Lemma
6.1 has an immediate extension to 72. The space 2 is the natural domain of the
Itd isometry, but, of course, the 72 result could not even be stated until we had
made good use of Lemma 6.1 to extend I from a mapping from H3 into L2(dP) to
a mapping from H? into L2(dP).
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functions f, € H3[0,T) such that ||f — Frllz2(@pxary — 0. For t € [0,T), we also
have m; f, € HZ[0,T], and, since the It5 integral I is defined explicitly for elements
of H3[0, T}, we can define a new process Xt(n) foralln>1l,we,and 0t T
by taking

X{™ () = I(mefa)(w)-
We can even give an explcit formula for Xt(") (w) because the definition (6.5) of
I(-) on HE tells us that for ¢ < < tj4.; we have

k—1

(6.15) X = ax(w)(Bi = By ) + Y au()(Bros, — Br,)-

=0

Now, each Xt(") is a continuous Fi-adapted martingale, so for any n > m we
can apply Doob’s L? maximal inequality to the continuous submartingale M; =
1% — xt™) to find

1
P{ sup |X™ - x| > )<——E @ ximy2
(osltlgfr‘ t i =€) < 2 (‘XT T )

1 2
(6.16) < Ez—llfn — fmllZ2(apxatys
where in the second inequality we used Itd’s isometry.
Because fn converges to f in L%(dP x df), we can choose an increasing subse-
quence ng such that

9 ~3k.
max lfn = FrillL2@pxary < 2777

s0, in particular, taking € = 2% in the bound {6.16) provides us with

P( sup |x (M) _ x| > 2-’°> <27k,
0<t<T

By the Borel-Cantelli lemma, we then have a set {lg of probability one together
with a random variable C such that C(w) < co for all w € Qg and

(6.17) S IXT (W) — XMW (W) < 27F for all k > C(w).

Since 27% is summable, the bound (6.17) tells us that for all w € Qg the sequence
{Xi*(w)} is a Cauchy sequence in the uniform norm on C[0,7]. Thus, for each
w € Qg, there is a continuous function ¢+ X;(w) such that

K9(0) — Xifo) uaitorly on 0,7},

Since the F; martingales {Xt("")} also converge in L?(dP) to {X;}, the martingale
identity for {X;} follows from the corresponding identity for the processes {Xt(n")}.
The bottom line is that {X;} is a continuous ; martingale, just as we claimed.

To prove the last part of the theorem, we note that muf,, — mif in
L*(dP x dt), and therefore the Itd isometry tells us that I(mifn,) — I(muf)
in L2(dP). Since we already have that

Xt(m) = I(myfp,) — Xz in L?(dP),

the uniqueness of L?(dP) limits tells us that |[X; — I(muf)||r2(ap) = O for each
t € [0,7]. This is precisely what we needed to deduce that the event (6.14) has
probability one, so the proof is complete. [
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6.3. The Integral Sign: Benefits and Costs

In his research notes for October 29, 1675, Leibniz wrote the memorable line:
UTILE ERIT SCRIBIT [ PRO OMNIA.

Prior to this note, Leibniz had used the word OMNIA to capture the notion that
he subsequently denoted with his integral sign. His note suggests that it would be
useful to write [ for OMNIA, and few people have been so right for so long.

Until now, we usually avoided the integral sign when writing stochastic in-
tegrals. This discipline helped to underscore the logical development of the It
integral and to keep conflicting intuitions at a respectful distance. Now, we are
close enough to the end of the development to be free to use the notation that
Leibniz found so useful and that our own training makes so natural.

If f € H?[0,T) and if {X;: 0 < t < T} is a continuous martingale such that
P(X;=I(mf))=1for all 0 <t < T, then we will write

¢
(6.18) Xi(w) = / f(w,8)dBs for all 0 <t < T
0

We have gone to considerable lengths to define the left-hand side of equation (6.18),
and the symbol on the right-hand side is nothing more than an evocative shorthand
for the process defined on the left-hand side. Still, notation does make a difference,
as one sees in the crisp restatement of the It6 isometry:

FEH? = E[(/otf(w,s)stﬂ =E[/0tf2(w,s)ds] for all £ € [0, 7).

6.4. An Explicit Calculation

Perhaps the most natural way to confirm one’s mastery of the construction of
the Tt6 integral in H2 is to work out a concrete example. The easiest non-trivial
example is given by taking f(w, s) = Bs, and we will find that the abstract definition
of I(m:f) produces the engaging formula

13
0 2 2

This formula differs from the one we would expect from the usual calculus because of
the presence of the extra term —t/2. We will find that such terms are characteristic
of the Itd integral, and they turn out to have important probabilistic interpretations.

Before we dig into the construction of the integral, we should build some intu-
ition by calculating the mean and variance of the two sides of equation (6.19). The
martingale property of the It3 integral tells us E(X;) = 0, and since E(B?) = ¢ the
right-hand side also has expectation zero — so far, so good. Next, we consider the
variances. By the Itd isometry, we have

t
Var(X;) = E[/ B2 ds] = -;—tz,
0

where we evaluated the last integral by interchanging integration and expectation
and by using E(B?) = s. Finally, when we expand the right-hand side of equation
(6.19) and use E(Bg) = 3t2 we again find a variance of £2/2; so, as far as mean and
variance are concerned, formula (6.19) is feasible.
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THEOREM 6.1 (Itd's Isometry on H?[0,T]). For f € H2(0,T), we have
(6.8) (M z2apy = I fllz2(@pxat)-

ProoF. All we need to do is to line up the application of Lemma 6.1. First, we
choose f, € 3 so that || fn — fl|r2(apxasy — 0 8s n — 0. The triangle inequality for
the LQ(dP X dt) norm then tells us that ||fn”L'~’(ddet) — H.f”L"’(dPth)- Similarly,
since I(f,) converges to I(f) in L?(dP), the triangle inequality in L2(dP) tells us
that {[Z(fo)llz2@py = L(H)|z2(apy. But by Lemma 6.1, we have

NI (falllz2@ry = Il fnllL2(@pxas)s

so taking the limit of this identity as n — oo completes the proof of the theorem. [

A second variation of the Itd isometry that is often useful is the conditional
version that is given by the next proposition.

PROPOSITION 6.1. For any b€ H? and any 0 < s <t, we have

(6.9) E [(/: b(w, u) dBu> -F (/t b2(w, ) du|:ra> .

ProoOF. We could almost assert that this identity is obvious from the uncondi-
tional version, but we might soon wonder if it is really obvious or not. In any case,
an honest proof is quick enough if we just note that equation (6.9) is equivalent to

saying that for all A € F; we have
¢
=E (1A/ b2 (w, u) du).
s

(6.10) E [1,; ( / b, ) dBu)2

Now, there is no reason to doubt obviousness of this equation; it follows immediately
from the unconditional It6 isometry applied to the modified integrand

. . 0 u € [0, 5] 0
(6.11) bl ) = {lAb(w,u) u € (s,

2
Fs

One of the reasons the last proposition is useful is that it implies that for any
b € H? the process defined by

Mt=</Otb(w,u)dBu)2—/Otb2(w,u)du

is a martingale. This gives us a large and useful class of martingales that generalize
our trusted friend B — t.

6.2, Third Step: Itd’s Integral as a Process

The construction of the map I': H2 +— L?(dP) moves us a long way forward, but
to obtain a theory with the power to help us represent stochastic processes we need
a map that takes a process to a process — not to a random variable. Fortunately,
this richer view is within easy reach, and we will see that the It6 integral even
provides us with a continuous martingale. We only need to find a proper way to
view a whole continuum of Itd integrals at a single glance. -

6.2. THIRD STEP! ITO'S INTEGRAL AS A PROCESS “33

The natural idea is to look for a systematic way to introduce the tiiné'Var‘iablﬂ‘e.
For this purpose, we use the truncation function m; € #?[0,7] defined by 'the
simple formula

me(w, 5) = 1 ifsel0,t
%710 otherwise.
Now, for f € H2[0,T)] the product m;f is also in H2[0, T for all ¢ € [0,7], so
I{m;f) is a well-defined element of L?{dP). One then might reasonably suppose
that a good candidate for the process version of It8’s integral could be given by

(6.12) Xi(w) = I(me f)(w).

This is almost correct, but, if we take a hard look, we can also see that it is almost
meaningless.

WHAT’S THE PROBLEM?

The problem is that for each 0 < ¢ < T the integral I(m.f) is only defined as
an element of L2(dP), so the value of I(m:f) can be specified arbitrarily on any
set A; € F; with P(A4;) = 0. In other words, the definition of I(m;f) is ambiguous
on the null set A;.

If we only had to consider a countable number of such A, this ambiguity would
not be a problem because the union of a countable number of sets of probability
zero is again a set of measure zero. Unfortunately, (0,7 is an uncountable set and
the union of the A; over all ¢ in [0, 7] might well be all of Q. The bottom line is that
if we are too naive in the way we build a process out of the integrals I(m.f)(w),
then our construction could be ambiguous for all w € . This would certainly be
unacceptable.

WHAT'S THE SOLUTION?

Naturally; there is a way out of this quagmire; and, in fact, we can construct a
continuous martingale X, such that for all ¢ € [0, T] we have

(6.13) P(X;=I(mf)) =1

The process {X:: t € [0,T]} then gives us exactly what we want from a process
version of the Itd integral. Thus, after all is said and done, the idea behind the
“process” X; = I(m;f)(w) was not so terribly foolish; it only called for a more
delicate touch.

THEOREM 6.2 (Itd Integrals as Martingales). For any f € H2[0,T], there is a
process {X;: t € [0, T} that is a continuous martingale with respect to the standard
Brownian filiration Fy such that the event

(6.14) {w: Xp(w) =TI (mef)(w)}
has probability one for each t € [0,T].

ProoF. We begin by taking a hint from our construction of the Itd integral
on [0,T), and we recall that the HZ approximation lemma gives us a sequence of
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Our variance check also confirms that f(w, s) = Bs(w) is in H2, so we are also
on solid ground when we start to work through the general construction. Our first
step in the process is to set t; =4T'/n for 0 <7 < n and to define

n—1
Falw,8) = D" By 1(t, <t < topa);
i=0
50, fr isin HZ, and f,, gives us a natural candidate for an Hy approximation to f. To
confirm that fr(w,t) = f(w,t) = By(w) in L2(dP x dt), we have a straightforward
computation:

T n—1
1 = FallZammas = E[ | T - B <t <) dt]

=0
n=l et
=3 / (t—t;) di
i=0 Y1
1% , 1T
(6.20) =3 ;(ti+1 —h) =g

The computation confirms that |[f — fullz2(apxary — 0, and, as a consequence,
we also have for the time-truncated functions that |{|m.(f — fu)llz2(apxany — O
Therefore, if we let k,(t) = k(t) = max{i: t,41 < t}, then by the definition of the
1té integral for a function in H? we have

t
/ By dB, = I(myf) = lim I(mf,) =
0 n—co

(6'21) nli{go Z Btz (th+1 - Btm) + Btk(c)+1 (Bi - Btk(\‘.)-{-x)
1<k(2)

Also, to be perfectly explicit about the interpretation of the last equation, we note

that the equality signs simply mean “equal for all w in a set of probability one”

and the limits are taken in the sense of L2(dP).

To clean up the last limit, we first observe that the last summand satisfies
0< BB, .. (Bt = Buypyn )’ = i1 (t — tagy41) < T/m,

so the little scrap that is given as the last summand of equation (6.21) is asymp-
totically negligible. The more amusing observation is that we can rewrite the basic
summands in a way that sets up telescoping:

1 1
By, (B, — Bi,) = ’2'(Bt2,+1 - B) - §(Bt,+1 - By,)%.
When we apply this identity in equation (6.21), we find

. — . 1 2 l o 2
Jim I(m.fy) = lim =B}, - lm %)(BM - B,
1 <k(t

and, when we note that B?;.-(:)H — B} as n — oo, we see that equation (6.21)
reduces to the pleasing representation

i
- l 2 1 N 2
| BeaBo= 3Bt - Lim T (B - B
i<k(t)

6.5. PATHWISE INTERPRETATION OF It6 INTEGRALS: 287+

To complete the derivation of our integration formula (6.19), we only need to show
that the last limit is equal to ¢. If we set

(6.22) Y, = 2 (Btoyy — Bi)%,
1<h(2)

then we have E(Y;) = k(¢)T/n and consequently | B(¥,) ~ £| < 2T/n. Further,
since E[(B; — Bs)%] = 3(t — s)? we see that Var((B; — B;)?) is just 2(t — s)?, so
the simple bound k() < nt/T and the independence of the summands in equation
(6.22) tell us

Var(Yy) = 2k(t)(T/n)? < 2tT/n.
Finally, the last estimate implies that ¥, — ¢ in L?*(dP), exactly as required to
complete the derivation of formula (6.19).

6.5. Pathwise Interpretation of Itd Integrals

One of the interesting psychological consequences of the use of Leibniz’s integral
sign is the increased inclination to treat stochastic integrals as ordinary integrals. In
particular, the integral notation can easily seduce us into thinking about the integral
as if it were defined on a path-by-path basis. Sometimes, pathwise reasoning is valid,
and at other times it is bogus. Care is the watchword, and the most reliable tool
for resolving disputes is to go back to the definition.

The next theorem provides a useful illustration of the risks and rewards that
come from the integral sign. The result is one that we might easily guess, and, if
our pathwise imagination is overactive, we might even think the result is obvious.
Nevertheless, when we look at what is required in an honest proof, we see that our
imagination did not do justice to the theorem’s real meaning.

THEOREM 6.3 (Pathwise Interpretation of the Integral). If f € H2 is bounded
and if v is o stopping time such that f{w,s) = 0 for almost allw € {w: s < v},
then -

i
X(w) =/ Flw,s)dBy =0
0
for almost allw € {w: t < v}.
AN INTUITIVE, BuT BOoGUS, ARGUMENT

If 7 is any random variable with values in [0, T7], then it makes perfect sense to
consider the random variable defined by X,A:, and it is even fine to write

TAL
(6.23) Xyns = /O f(w,5)dB,.

Also, since we often use indicator functions to express the limits in ordinary inte-
grals, we may then be quite tempted to rewrite (6.23) as

(6.24) Xy = / " F(w,8)1(s < 7) dBs.
0

Now, if f(w, s) = 0 almost everywhere on the set {s < 7}, we see that the integrand
in (6.24) is identically zero, and we can conclude that X,; is also equal to zero.
This argument seems to prove Theorem 6.3, and it may even seem to provide
a more general result. We never assumed 7 to be a stopping time. Unfortunately,
Theorem 6.3 is not true in such generality, and the argument contains two errors.
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The easiest error to notice is that if 7 is not a stopping time, then f(w,s)1(s £ 7)
need not be adapted, so the integral of equation (6.24) would not even be defined.

Moreover, even if we take T to be 2 stopping time, there is still a gap in
our reasoning despite the fact that equation (6.24) is well defined. The transition
from equation (6.23) to equation (6.24) may look like a simple substitution, but, on
careful review of the definition of the Itd integral, one will find that the justification
of the substitution is a bit subtle.

AN HoNEST PROOF OF THEOREM 6.3

An honest proof is not difficult; one mainly needs to attend to the difference
between the way the Itd integral is defined for integrands in H3 and the way it is
defined in general. First, we recall that for any f € H3 we may write f as a sum

n
(6.25) Flw,8) = ay(w)1(ts < 5 < tiga),
=0
where a;(w) € F, for all i = 0,1,2,...,n. From this representation we see that if
f{w,8) = 0 for all (w,s) such that s < v(w), then we also have a;(w) = 0 for all
i such that ¢; < v{w). Also, the It integral of f up to ¢ is given by the explicit
formula
t m—1
| 70,5 dBy = Ime[)w) = 3 64(0)(Busy — Be) + am(@)(B: = Bi)
2=1
where m is determined by the condition t € (tm, tm+1). Now, if f(w,s) = 0 for
all s < v(w), we see from our observation about the {a;} that I(msf)(w) = 0 for
all (w,t) satisfying ¢ < v(w). In other words, we have found a straightforward
verification of Theorem 6.3 for f € HZ.

To begin the passage H3 to H?, we first recall that for any f € H2[0, T) thereisa
sequence {f,} of elements of HZ such that f, — f in L?(dP x dt). Moreover, since
we assume that | f] is bounded by B, we may even take f,, with the representation

an_1
fn(w,s) = Z a,(w)1(t: < s <ti41)
1i=0
where |a;(w)| < B and ¢; = iT/2" for 0 < i < 2°. The only bad news is that our
hypothesis that f(w,s) = 0 for all (w, s) such that s < v(w), does not guarantee
that our approximations will share this property. Thus, to exploit our hypothesis,
we need to modify the {f,,} a bit. If we set
. R "1
(6.26) Falw8) = > ai(w)1(t: < s < tag)1{v < &),
i=0
then the F;, measurability of the indicator function 1(v < t;) tells us that fa is
again an element of H3. The passage from H3 to 2 will follow quickly once we
check that f, the three basic properties:

o fa(w,s) = flw,s) = f(w,8)1(r < t) in L2 (apxasy
° fn(w,;s) =0 for all (w, ) such that s < v, and
o I(myfn)(w) =0 for all w such that ¢t < v.
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Since f, converges to f in L?(dP x dt) and since f(wy's) = f(w,s)1(v < ), we see
that fn(w, s)1(v < s) converges to f(w, s) in L2(dP x dt). Thus, to prove the first
itemized property, we just need to show that the difference

Ap(w,s) = folw, s)1(v < s) ~ fn(w,s).
satisfies {|An||L2(4pxary — 0. To check this fact, we first note that by the definition

of fn and fn, the difference A, (w, s) is zero except possibly on one interval (¢;, t41]
with v(w) € (£, t;41]- Thus, we have

T
/ |An(w, 8)|? ds < 27™ max |a;(w)[? < 27™B?,
0 1

and this bound is more than we need to show ||An||z2(@pxayy — 0. Finally, the

second itemized property of f, is immediate from its definition, and the third

property follows from the second property together with the fact that f, € H2.
The pieces are now all in place to complete the proof Theorem 6.3. First, we

note that for each fixed  the construction of the Ité integral for f € H? tells us

(6.27) X, = /o F(w,8)dBy = Imef)w) = lim I(mef)(w)

for all w except possibly for a set of probability zero. We have already seen that
I(myfn)(w) = 0 for all (w,t) such that ¢ < v, so the preceding identity tells us
X; = 0 for all w such that t < v, except for a set E} of probability zero. If we apply
this fact for all rational ¢ and use the fact that X:{w) is a continuous process, we
see that except for a set of probability zero, we have we have X; =0 for all ¢ < w.
Thus, the proof of Theorem 6.3 is complete.

With a bit more work, we can extend Theorem 6.3 to arbitrary elements of
‘H? and rephrase Theorem 6.3 in terms of the persistence under integration of an
identity. This retooling of Theorem 6.3 is quite useful in the next two chapters.
PERSISTENCE OF IDENTITY

THEOREM 6.4 (Persistence of Identity). If f and g are elements of H? and if
v is a stopping time such that f(w,s) = g(w, s) for almost all w € {w: s < v},
then the integrals

¢ ¢
Xi(w) =/ flw,s)dB;s and Yi(w) =/ g(w, s)dB;
0 0
are equal for almost allw & {w: t < v}

ProOF. If we take f, = f1(|f] £ n) and g, = ¢1(|g] £ n), then the dominated
convergence theorem tells us that

(6.28) fn— f and g, — g in L3(dP x dt),

so by the It6 isometry we also have
(6.29) /t falw, s)dBs — X; and /t dn(w,s)dBs; — Y; in L2(dP).
Now, by Theor(;m 6.3, we already know thaot

/Ot falw,s)dB;s = /Ot gn(w, 8) dB; almost everywhere on {w: ¢t < v},

so (6.29) finally tells us that X; = Y; almost everywhere on {w: ¢t < v}. a



90 6 1TO INTEGRATION

6.6. Approximation in H?

Our definition of the Itd integral on H? used the fact that M2 is a dense subset of
H2, and the main goal of this section is to prove an explicit approximation theorem
that provides the desired density result as an immediate corollary. The proof of
this approximation theorem is interesting for several reasons, not the least of which
is that it illustrates the important fact that one can sometimes approximate a
“nonmartingale” with a martingale. Still, this proof does require a detour from our
main path, and the reader who is pressed for time should know that the techniques
of this section will not be used in subsequent chapters.

APPROXIMATION OPERATOR

Given any integer n > 1, the approximation operator A, is defined to be the
mapping from H? into HZ that is given by taking

tz - tz—l

T

27 -1 1 t,
(6.30) An(f) = Z {—/ Flw,u) du} 1(t, <t < ty1),

=1

where ¢, = 2T/2" for 0 < ¢ < 2% Our interest in this operator is explained by the
following theorem and its immediate corollary — M3 is a dense subset of H?.

THEOREM 6.5 (Approximation Theorem). The apprommation operator Ay, de-
fines a bounded linear mapping from H? wnto H3 such that

(6.31) [4n(Hlleo < I Flloos

(6.32) An(Alz2@pxasy < 1Fllz2@pxary,

and

(6.33) i [An(f) = fllz2pxay =0 for all f € H2.

FIrsT CHECKS

The operator A, is clearly linear. To verify that A,(f) € H2, we first consider
measurability. First, note that for all 0 < 1 < 27, the coefficients
2

(6.34) a,(w) = flw,u) du

t1 e t1.—1
are in F;,. For ¢t € [0,727"] we have A,(f)(t) = 0, while for 1 < ¢ < 2™ and
t, <t < t41 we have A, (f)(t) = a,(w) € Fr, C F;. Therefore, for all 0 < ¢ < T,
we have A,(f)(t) € F;. Next, to show that A,(f) € HE, we only need to prove
that E[(A.(f))?] < co, and this follows immediately if we show E(aZ) < co. By
Jensen’s inequality, we have

[

.
(6.35) @) S =
1

' Flw, u)2 du,
- tz-—l

t,—1
and since the right-hand side is bounded by (¢ —t.—1)"*{| fl|Z2(4pxasy < o0; We find

E(a?) < co. This bound tells us that A,(f) € HZ, exactly as required.
The proof of the L® bound (6.31) is trivial, and the proof of the L? bound
(6.32) is not much harder. When we square A,(f) and integrate over [0, T], we find
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that inequality (6.35) gives us RN
2n_1
AL = D Ut <t < tga)ad(w),
=1
so, when we take expectations and apply the bound (6.35), we find
"1

5 [ 4] = 5 3 0020 <8 [ s,

=1

precisely the required L? bound (6.32).

A MARTINGALE COUSIN

‘We now come to the crux of Theorem 6.5, the proof of the limit (6.33). Here,
it is fruitful to introduce a new operator that looks a lot like A, but which has
an interpretation as a martingale. This new operator B, is defined for f € H? by
taking ¢, = ¢T/2™ for 0 < % < 2" and setting

il t,
(6.36) B.(f) = Z {—1—— flw,u) du} 1(t,—1 <t < ty).
=1 L, — 1t tic1

The operator B, is closely related to A,, although one should note that B,
no longer maps H? into H2; the coefficients have been shifted in such a way that
the coefficient of the indicator of the interval (¢,1,%,] is no longer measurable with
respect to Fy,_,. This means that B,(f) no longer has the measurability that is
required of a function in H2. In compensation, we have for all f € L2(dP x dt) and
all w €  that the process defined by

{Mn() = Bn(f)(w,") : n > 0}

is a martingale, or at least it is a martingale once we spell out the filtration and
the probability space where the martingale property holds.
In fact, our new martingale is conceptually identical to the one introduced
in Exercise 4.7, but in this case we have some extra baggage since B,(w,t) is a
function of two variables. Our task is thus to show that when we fix w we obtain a
martingale in the £ variable that exactly replicates the martingale of Exercise 4.7.
This is a little tedious to write out, but it is easy to think through.
To punch out the formalities, we first fix w €  and then define a new proba-
bility space (€, F’,Q) by taking the base space ' = w X [0,7] and a new o-fleld
F' = {(w,A) : A € B}. We then define a probability measure Q on F’ by taking
Qw, A) = P(Q2 x A)/T for all A € B. Finally, the filiration for our martingale is
taken to be {G,}, where G, is the smallest o-field contained in F’ such that all of
the functions of the form
on

(6.37) Z el(t; <t<t,) wherec, €R
=1

are G,-measurable.

The benefit of this choice of Gy, is that it gives us a representation of B, (f)(w, -)
as a conditional expectation

(6.38) Eq(f(w,t) | Gn) = Bu(f)(w, 1),
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so the martingale property for M, comes to us as a consequence of the tower
property of conditional expectations. We are now ready to prove a lemma that
tells us B,(f) is a good approximation to f provide that f € H2 C L3(dP x dt) is
bounded.

LEMMA 6.3. If f € H? and |f(w,t)] < B for all (w,t), then

(639) ”Bn(f) - f”Lg(dPth) — 0 as n — c0.

Proor. If we fix w, our interpretation of B,(f)(w,-) as a martingale lets us
apply the L2-bounded martingale convergence theorem to conclude that B, (f)(w,t)
converges for all ¢ € [0,T] except possibly a set of measure zero. We denote this
limit by Beo(f){w,t) and note by the bound on f this limit is bounded by B. We
can then apply the dominated convergence theorem to find

(6.40) lim / Bo(f)(w,t) dt = / Boo(f)(w, £) dt for all A € B.
=0 JA A

We also know directly from the definition of the sequence {B,} that

(6.41) /A Bon(f)(w, ) dt = /A Flw,t) dt

for all m > n and all A such that (w, A) € G,. From equations (6.40) and (6.41),
we can conclude (e.g., by Exercise 6.5) that for all w € Q we have

(6.42) Boo(fNw,t) = f(w, 1)
for all t € [0, T except a set of measure zero. By a second application of the DCT,
we therefore have for all w € Q that

T
(6.43) lim / |Bn(f)(w,t) = f(w, t)|>dt = 0.
n-—0o0 0
Finally, we can take expectations in equation (6.43) and apply the DCT one last
time to complete the proof of the limit (6.39) and the lemma. O

THE MARTINGALE MEETS THE APPROXIMATION
The key connection between A,, and B, is given by the following lemma.

LEMMA 6.4. For any f € H? and any fized integer m,
Aim [|(An(Bm(F)) = Bm(Pilz2@pxan =0-

PrOOF. Two basic observations yield the lemma. First, we note that by direct
consideration of the definition of B,, we have that By (f)(w,t) is constant on each
of the intervals (i2=™T, (1 +1)2~™T] for : = 0,1, ...,2™ — 1, so from the definition
of A, we find for n > m and all w that

An(Br(f))(w,t) = B (f)(w,t) for all t ¢ Uycycom [127™T, 27T +27"T).
In view of this identity, we have
lim An(B(N)(w:2) = Br(/),1)

for all (w,t) such that t 5 127™T.
Second, we note that the converging terms are dominated. In particular, for
all n > m, we have

[An (B (F))(w, )] < |Bm () (w, 1)] + |Bm () (w,t — 277T)],
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and | B (f)(w,t)] € L2(dP x dt), so for all n > 1 the difference |An(Bm(f))(w,t) —~
Bm(f)(w,?)|? is bounded by a fixed integrable function. The DCT then completes
the proof of the lemma.

PROOF OF THE APPROXIMATION THEOREM: LAST STEP

We only need prove the limit result (6.33). First, we consider a bounded f € H2.
By the triangle inequality and the L? bound (6.32), we have
[[4n(f) = Fllz2@pxay < 14n(f = Bm(fp2@exas) + 1An(Bm(f)) — fllz2(@pxan
SN ~ B (P22 (apxaty + | An(Bm(f)) = fllz2(apxat)

and by Lemma 6.4 we have ||An(Bm(f)) — Bm(f)||r2apxaty — 0, so for all m we
have

ﬁflsolip HAR(F) = Fliza@pxary < 2l1(f — Bm(F)IL2(apxas)-
Since m is arbitrary, this inequality and Lemma, 6.3 tell us that
S HAR(F) = fllz2@pxarn =0

for all bounded f € H2.

Now, at last, we consider a possibly unbounded f € H2. For any € > 0, we
have a bounded fo € H2 such that ||f — fol] L3(dPxdt) < € and now we can check
that the contraction property of A, will complete the proof. Specifically, by the
triangle inequality and the L? bound (6.32), we have

[|Anf—Ffllr2@pxary = | Anfo ~ fo + A(f — fo) — (F = fo)llz2(apxar)
< [Anfo = follzz@pxary + IA(F — fo)llz(apxaty + I(F — Folllzz(apxat
< ||Anfo ~ follz2(@pxar) + 2l1(F — folllzz(apxat)-

If we now let n — o0, the boundedness of fy and the first half of our argument tell
us ||Anfo — follz2(apxat) goes to zero. Finally, the arbitrariness of e completes the
proof of the fundamental limit result (6.33) and the proof of Theorem 6.5. O

6.7. Exercises

The first three exercises offer “must do” practice with the It isometry and
the distinction between ordinary and stochastic integrals. The last two exercises
are more technical. In particular, Exercise 6.5 sketches the proof of an intuitive
result that we needed in our proof of the approximation theorem, and Exercise 6.4
suggests an alternative way to find a dense subset of 72 in H3Z.

EXERCISE 6.1. Use the It0 isometry to calculate the variances of

t t
/|Bs|%st and /(Bs+s)2st.
0 0

EXERCISE 6.2. The integrals

t ¢
I =/ Bsds and I =/ des
0 0

are not stochastic integrals, although they are random variables. For each w the
integrands are nice continuous functions of s and the ds integration is just the tra-
ditional calculus integration. Find the mean and variance of the random variables
I 1 and I2.
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EXERCISE 6.3. For any fixed ¢ the random variable B; has the same distribu-
tion as X; = v/tZ, where Z ~ N(0, 1), but as processes B; and X; could not be
more different. For example, the paths of X; are differentiable for all ¢ > 0 with
probability one, but the paths of B; are not differentiable for any ¢ with probability
one. For another difference (and similarity), show that for a bounded continuous f
the processes

¢ t
U= / f(Bs)ds and V; = / F(Xs)ds
0 0
will have the same expectations but will not in general have the same variance.

EXERCISE 6.4. Let C denote the set of all measurable, adapted functions f(¢, w)
that are continuous in the ¢ variable. Show that if we assume C is dense in 2, then
we can construct {f,} C Hg such that ||f — frllr2(apxaty — 0 Without appealing
to the approximation theorem.

ExXBRCISE 6.5 (A Uniqueness Theorem). Suppose that f and g are integrable
functions that are 7 measurable. Suppose that we have a sequence of o-flelds {F,}
such that Fn, C Fpny4q and for which

{6.44) /A f(z)dz = /Ag(z) dz for all A € F,.

Show that if F is the smallest o-field that contains 7, for all n, then
f(z) = g(z) for all  except a set of measure zero.

The reader who wants a hint might first note that {z : f > g} € F. Next, it may
be useful to show that equation (6.44) holds for all A € F. Here one may want to
consider the set G of all A € F for which we have equation (6.44) and then show
that G is a o-field.

et

CHAPTER, 7
Localization and It6’s Integral

If f: R — R is a continuous function, then any truly convenient theory of
stochastic integration should have no trouble with the definition of the integral

T
(7.1) /o f(Bt) dB;.

The Itd integral will ultimately meet this test, but so far it has only been defined
for integrands that satisfy the integrability constraint:

(7.2) B [ /0 " ) dt} < 0.

Unfortunately, this inequality can fail even for a perfectly pleasant continuous func-
tion such as f(z) = exp(z*). The bottom line is that if we want stochastic integra-
tion to work in the most natural way, then we must find some way to circumvent
the integrability constraint.

Luckily, there is a way out of the trap — even a nice, general way. Frequently
one needs to relax an integrability constraint, and it is often the case that the
method of localization will do the trick. Here, we will see that an appropriate use
of localization will permit us to extend the It6 integral to a class of integrands that
easily contains all of the continuous functions of Brownian motion; so, as we hoped,
the Ito integral (7.1) can be defined without imposing any explicit integrability
conditions.

After completing this final step of the definition of the It6 integral, we examine
two special cases of importance. In the first of these, we see that the It6 integral of
a continuous function of Brownian motion can be written as the limit of Riemann
sums. In the second case, we see that the Itd integral of a deterministic function
is always a Gaussian process. This last fact lets us build an example that shows
why L% is a natural home for It8 integration, and it also gives us a large class of
martingales that can be viewed as Brownian motions with a timescale that speeds
up and slows down. Finally, we will collect some simple tools that help us relate
local martingales to honest ones.

7.1. It6’s Integral on L3¢

We begin by considering the class £L25q = L£25[0,T] of all of the adapted,
measurable functions f: Q x [0, 7] — R such that

(7.3) P </0T Fiw,t)dt < oo> =1

This class of functions certainly contains H2. Also, for any continuous g : R — R,
we have f(w,t) = g(B:) € L because the continuity of Brownian motion implies



96 7. LOCALIZATION AND ITO'S INTEGRAL

that for each w the mapping t — g(B;(w)) yields a bounded function on [0, T]. Still,
the real wisdom behind L2 is that it relates nicely to stopping times. To make
this relationship explicit, we first require a definition.

DEFINITION 7.1 (Localizing Sequence for H2).
An increasing sequence of stopping tumes s called an H2[0,T)| localizing
sequence for f provided that

(7.4) Falw,t) = flw,t)1(t < vn) € H2[0,T] for alln
and that
(7.5) P(D{W:Vn=T}) =1.

n=1

One reason that the space £ turns out to be a natural domain for the Itd
integral is that any f € £ ¢ has a localizing sequence, as we see in the following
proposition.

PROPOSITION 7.1 (Localization in £L¥og). For any f € L}o¢([0,T], the se-
quence defined by
S
(7.6) Tp = inf{s: / fPw,t)dt >n or s> T}
0
is an H2[0,T) localizing sequence for f.
Proor. We always have equality of the sets

0 T
U{w:Tn=T}={w: / f2(w,t)dt<oo},
0

n=1
and for f € L2, the second set has probability one. Furthermore, by the con-
struction of 7, we have for fr(w,?) = f(w,)1{t < ) that
fallZeqapxary S ™

so we certainly have f,, € H? for all n. Consequently, {7,,} is a localizing sequence
as claimed. O

THE L25c EXTENSION IN A NUTSHELL

Now, for the construction, we first take any f € *C%.oc and let {v,} be any
localizing sequence for f. Next, for each n, take {X,} to be the unique continuous
martingale on [0, T) that is a version of the It integral of I(m.g) where g(w,s) =
Flw, $)1(s < v(w)). Finally, we define the It6 integral for f € L2550, T] to be the
process given by the limit of the processes {X:} as n — co . More precisely, we
will show that there is a unique continuous process {X;: 0 < ¢ < T} such that

(77) P<Xt = Hm Xt,n> =1forallte [O,T],
n—oco

and we then take the process {X;} to be our Itd integral of f € L}y¢, or, in
symbols, we define the It6 integral of f by setting

(7.8) / ' Flw, 8)dB, % Xy(w) for t € [0, 7).
0

e e
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Naturally, some work is required to justify this definition, afdd the first ‘order
of business is to prove that the processes X, converge. The next proposition tells
us that this convergence actually takes place in the nicest possible way. For any
t € (0,7 and for almost all w, the sequence {X;n: 1 < n < oo} is ultimately
constant.

FIrsT CHECKS: CONSISTENCY, CONVERGENCE, CONTINUITY

PROPOSITION 7.2 (Sequential Consistency). For any f(w,s) € LEoc[0,T] and
any localizing sequence {v,}, if {X:n} is the continuous martingale version
of the Ité integrals I{my{f(w,s)1(s < vn)}), then for allt € [0,T] and n > m
we have

(7.9) Xin = Xem for almost allw € {w: t < vy }.

Proor. Since v, < vy, the two H? functions

fm(w,t) = f(w,0)1(t € vp) and fo(w,t) = fw, )1 < vp)
are equal on the set {w: ¢ < v}, so (7.9) is immediate by the persistence of identity
guaranteed by Theorem 6.4. O

With sequential consistency in hand, the strong convergence of {X; .} to a
continuous process is almost immediate. Nevertheless, this convergence is at the
heart of our definition of the Itd integral for f € ['%.001 so we will lay out the
details.

PROPOSITION 7.3. There is a continuous process {X;: 0 <t < T} such that
(7.10) P(Xt = nlim Xt,n> =1 for allt €[0,T).
~—00

Proor. If we define a random index N by taking
N = min{n: v, =T},
then by the definition of a localizing sequence we have that P(IV < c0) = 1. We then
let £ denote the set of probability one for which all of the functions ¢ — X, (w)

are continuous.
Finally, for any w € Q; = {N < 00} N Yy, we define X;(w) by taking

Xt(U)) = Xt’N(LU).
The map defined by ¢ — X; y(w) is continuous for all w € 4, so {X;} is a
continuous process. Moreover, by Proposition 7.2, we have
P( nlinéoxt’" = Xt,N> =1 forall ¢t € [0,T},
so the proof of the proposition is complete with X; = Xy ;. g
NExT CHECK: INDEPENDENCE OF THE LOCALIZATION

The It integral is now defined unambiguously for all f € LZ5[0,T], but, as
it sits, the defining limit (7.8) appears to depend on the choice that we make for
‘the localizing sequence {7,}. The next proposition tells us that in fact there is no
such dependence because with probability one every localizing sequence leads to
the same limiting value.
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ProPOSITION 7.4 (Localizer Independence). If v, and ¥, are both localizing
sequences for an f € LE,c[0,T), then the corresponding continuous martin-

gale verswons Xy, and X, of the Itd wntegrals I(m:{f(w,s)1(s < vn)}) and
I(me{f(w, 8)1(s < )} ) satusfy
(7.11) lim X;p = lim X,

n—oo n—co

with probability one for each t € [0,T].

Proor. If we let 7, = min(vy,y), then by Theorem 6.4 on persistence of
identity we have for all n > m that

(7.12) Xt,n = X1 » almost everywhere on {¢t < 7, }.

Also, by Proposition 7.3 we know that Xt,n and X, ,, both converge with probability
one, so equation {7.12) tells us that

(7.13) lim X;, = lim X;, almost everywhere on {¢ < 7;}.
n—oo n—00

Finally, we note that the set
fo o] [e0]
U{mm=T}=J{#m =T end 0, =T}
m=] m=1

has probability one because both v, and &, are localizing sequences, so we have
equation (7.11) just as needed. O
LaST CHECK: PERSISTENCE OF IDENTITY IN Lfo¢

Next, we check that the It6 integral in £2 5 also has the persistence of identity
property that we established in Theorem 6.4 for integrals of functions in 72. This is
a completely straightforward proposition, but it gives nice practice with localization.
It also puts the persistence of identity property into the form that makes it ready
for immediate application.

PROPOSITION 7.5 (Persistence of Identity in L2n¢). If f and g are elements
of Lo and if v is a stopping time such that f(w,s) = g(w,s) for all0 < s < v,
then the wntegrals .

¢ t
Xi(w) =/ flw,s)dB; and Yi(w) =/ g(w, s) dB;
0 0
are equal for almost all w € {w: t < v}.
Proor. If we take
Ta = inf{s: |f(w, 8)| = n, |g(w, s)| = n, or s > T},
then f(w,s)1(s < ) and g(w,s)1(s < 7,) are bounded elements of H2, so by

Theorem 6.4 on the persistence of identity in H? we know that the two integrals

¢ t
Xip = / flw,8)1(s £ 1,)dB; and Yz, = / g(w, $)1(s < 7,) dB,
0 0

have the property that for all n > m one has
(7.14) Xin =Yin for almost all w € {w: t Sv}N{w: ¢t < mn}

7.2. AN INTUITIVE REPRESENTATION Tl
Now, if we let n — co in equation (7.14), we see by Proposition 7.3 that the limit
processes {X,;} and {V;} exist and satisfy

(7.15) X; =Y; for almost all w € {w: t S v}nN{w: e <}

Because 7, is a localizing sequence, we see that

{w:t<v}= D{w:tﬁu}ﬂ{w:tSTm},

so equation (7.15) tells us
Xi(w) =Yi(w) for almost all w € {w: t < v},

just as needed. O
PERSPECTIVE ON THE L%, EXTENSION

‘We now have defined the 1t6 integral on its natural domain, and we can happily
consider the It6 integral of any continuous function. The price of this extension has
been one additional layer of abstraction, but the bargain is a sound one. Anytime
we feel the need, we can introduce an appropriate localizing sequence that will bring
our work back to the familiar ground of H2. In fact, we will often find it useful to
take a localizing sequence that permits us to do our work in a nice subset of H2,
such as the subset of bounded elements.

7.2. An Intuitive Representation

The definition of the Itd integral for a general element of L%y required a
sustained and somewhat abstract development, but there are cases of importance
where a quicker and more concrete representation is possible. In particular, for
continuous functions of Brownian motion the Itd integral also has a natural inter-
pretation as the limit of a Riemann sum. This fact adds to our intuition about the
Itd integral, and the proof of the theorem also reveals how we can male life easy
on ourselves by choosing an appropriate localizing sequence.

THEOREM 7.1 (Riemann Representation). For any coniinuous f: R — R, ¢f
we take the partstion of [0,T) gwen by t, =1T/n for 0 < i < n, then we have

n T
(7.16) Jm 32 F(Be (B~ Bu) = | £(Bo)dB.
=1

where the limit 1s understood in the sense of convergence wn probabulaty.

ProoF. The first step of the proof is to introduce a localization that permits
us to focus on the representation theorem for a continuous function with compact
support. We begin by settling 74s = min{ ¢: |B;] > M or ¢t > T' } and by noting
that 7 is a localizing sequence for f(Bs(w)) € L¥gg[0,7]. We also note that
for any M > 0 there is a continuous function fjs that has compact support and
such that fas(z) = f(z) for all |z| < M. The benefit of introducing fas is that
Far(Bs) € H2[0,T), and we can calculate the Itd integral of far(B:) by using an
explicit approximating sequence in ’Hg. Specifically, we will use the sequence defined
for s € [0,T] by

¢n(w) S) = ZfM(Bti._l) 1(tz—1 <s< tz)-

22=]
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To check that {¢} is indeed an appioximating sequence for far(B:), we first note
that

5| [ " (fle5) = Faa(B) a3

T n
=E [/0 Z(fNI(Bt.-l) — faut(B)?1(tey < 8 < tz)ds}

=1

=1 {sti_1<ssty}

s%}:E[ sup  (far(Bui_,) — fur(Bs))?

Next, if we let

p(h) = sup{|fu(z) — fu(y)l: Iz —y| < A},
then the fact that fas is a continuous function with compact support tells us that
(k) < B for a constant B and that u(h) — 0 as » — 0. If we then set

M, = sup |Bt,., — Bsl,
{s tomy <5<t}

we also have the basic bound

(7.17) E|l swp  (far(Busy) — fu(Bo)?| < BA(M)).
{S't\-—\<3St$}
The random variables defined by pu?(M,) are 2ll bounded by B2, and the uniform
continuity of B;(w) on the compact interval [0, T] gives us
(7.18) sup p?(M,) — 0 as n — oo for all w.
iL1&n

Finally, the dominated convergence theorem tells us that the expectations in in-
equality (7.17) converge to zero as n — o0, 50 ¢, Is indeed an approximating
sequence for fi,.

By the It isometry, we now know that I{(¢,) — I(far) in L?(dP), but we also
have the explicit formula

H6a) =3 Far(Bos)(Be. - Brsy)

=1

so Itd’s isometry tells us that we have a Riemann representation for f:

t n
(719) | (BB, = bmm 3 fr (B ) (B, ~ B,

=1

where the convergence takes place in L2(dP).

‘We are now ready to take up the second step of the proof, which is to exploit the
representation (7.19) and our localization to establish the convergence in probability
of the Riemann representation (7.16) associated with our original f. The basic
connection between f and fir is that for all w € {w: Tar = T} we have the equality
F(Bs,) = fu(By,) for all 0 < 1 < n, and, as a consequence of the persistence of
identity property of the 1t6 integral, we also have

t t
(7.20) / F(Bs)dB;s = / far(Bs) dBs for almost all w € {w : Tay =T}
0 0

72, AN- INTUITIVE, REPRESENTATION" N “ig

{=1

3

All we need to do now is show for all € > 0 that the probability of the event

An(e) = {w: > e}

goes to zero as n goes to infinity We begin by breaking the event A,(e) into two
parts based on the size of Ty
P(An(€)) < P(tas <T) + P(An(e) 0 {rar =T}

Because P(ry < T') — 0, we only need to worry about the second term. On the
set {w : T = T'} we can replace f(B;) by fau(B:), so we can apply Chebyshev's
inequality to get an upper bound for P(A,(e) N {7ar = T'}) that is given by

P ({w: > E} N{ru = T}>
L2(dP)

2
Finally, because of the Riemann limit result (7.19) for fi; (7.18), we see that the
last term goes to zero. The proof of the theorem is therefore complete. O

n T
S F(Buus)(Be — Bor_y) ~ / F(B.) dB,

=1

n T
S Fi(Beu)(Br — Bu_,) - /0 fur(Bs) dB,

1=1

1
< =

T n
| (BB =Y fu(Bi ) - i)
1=1

GAUSSIAN CONNECTION

The next proposition gives another Riemann representation and shows that 1t5
integrals will give us Gaussian processes if the integrand 1s nonrandom. We will see
later that some of the Gaussian processes that are most important in applications
have representations in the form of such integrals.

PROPOSITION 7 6 (Gaussian Integrals). If f € C[0,T), then the process de-
fined by

(7.21) X, = / " He)dB, te o]
0

15 @ mean zero Gaussian process with independent increments and with co-
varwance funciion

(7.22) Cov(Xs, X3) = / " 2 (u) du.
0

Moreover, +f we take the partetion of [0,T] gwen by t, =1T/n for 0 <1< n
and choose t] to satisfy t,—1 <tF <t, for all 1 <1 < n, then we have

n T
i Y FE)(By - Bu) = [ S(5)dE,
1=1 0

where the limat 15 understood wn the sense of convergence wn probability.

PrOOF. The validity of the Riemann representation is easier than that given in
Theorem 7.1, so the proof can be safely omitted. The fact that X; has independent
increments follows from the Riemann representation, as does the vaiiance formula

(7.23) Var(X;) = / t ?(u) du.
0



102 7. LOCALIZATION. AND IT’S INTEGRAL

Finally, the covariance formula follows from this representation of the variance and
the independence of the increments. [

TiME CHANGE TO BROWNIAN MOTION: SIMPLEST CASE

The last proposition has an immediate corollary that is often useful. It reminds
us that in many cases of importance an integral like (7.21) is nothing more than
a Brownian motion with a clock that speeds up and slows down according to a
deterministic schedule. For the purpose of calculation, we often want to relate such
a process more directly to Brownian motion, and the next corollary tells us how.

COROLLARY 7.1. Suppose that a continuous function f:[0,00) — R satis-
fies f(s) >0 for all s > 0 and that

¢
/ fi(s)ds w0 ast— oco.
0

If we let

U Tt
= inf{u: / f2(s) ds > t} end Y;= / f(s)dBs,
0 0
then the process {Y;: 0 <t < co} is a standard Brownian motion.

PrOOF. We have already checked the harder parts. Since 7; is deterministic,
we automatically see that Y; is a continuous Gaussian process with mean zero.
Finally, by the covariance formula (7.22) together with the definition of 7, we can
easily check that

Cov(Y, Yz) = min(s, t),

and nothing more is required to identify {Y;} as a standard Brownian motion. [

The last corollary has a very important generalization to integrals with nonde-
terministic integrands. We will develop this generalization in a later chapter.

7.3. Why Just L35 ?

The function space £Z [0, T] provides a comfortable home for the It integral,
but it is only human to ask if we might not be able to find something a bit bigger.
In particular, suppose we take a p € [1,2) and we define £7 5[0, T] to be the space
of all measurable adapted functions f such that

P</0T|f(w,s)lpds<oo> =1

By Jensen’s inequality, we see that L2455 C LV for 1 < p < 2, and one might
guess that we could define a useful continuous Itd integral on L55. This turns
out to be impossible, and Gaussian representation of Proposition 7.6 will help us
understand the nature of the difficulty.

Specifically, we take f(w,s) = |1 — s|~% and note that f € £F 5[0, 7] for all
Tand all 1 < p < 2. We also have f € LZ5g[0,T] if we take T < 1, and it is
this second property that will help us see that we cannot define a continuous Itd
integral for f on the interval [0,T] when T' > 1 even though f € £}(0,T] for
such " when 1 < p < 2.
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To see why this is true, we first consider the process given by o
i 1 '
X = / |1 — 5|72 dB, where t € [0,1).
0

If we could define an Itd integral X{ for our f on [0,7] for some T > 1, then we
would need to insist that X; = X{ for all ¢ € [0,1), but, as we will soon see, this
modest requirement means that we cannot define {X]} as a continuous process on
07T =1

The problem is that X; goes completely berserk as ¢ — 1. By Proposition 7.6
we know that X; is Gaussian with mean 0 and variance

¢
Var(X;) =/ |1~ s ds=log(———1 ),
A 1-¢

go if we take t, =1—2"" forn =0,1,..., then for all n > 1 the random variables
Z-n = th bt th_l

are independent Gaussians with mean zero and variance o2 = log 2. When we sum
these differences, we then see

tn
/ ll—sl—%dB5=Z1+Z2+---+Zn;
0

that is, at time ¢, the process X;, is equal to the nth term of a random walk with
Gaussian summands with mean zero and variance one, o as a consequence we have

tn tn
lim sup |1 —s|"%dB; = o0 and liminf/ 1— sl‘% dBs = —o0.
n—co JQ n—eo  Jg
The bottom line is that the stochastic process X; cannot be extended to a contin-
uous function on any interval containing [0, 1], despite the fact that the integrand
flw,s) = (1 —5)"% isin LPy[0,T] forall 1 <p <2 and all T.
The lesson to be drawn from this example is that if one hopes to extend the
It6 integral to spaces that are larger than £}, then at least we know that LT ¢
is not the way to go. Fortunately, £ is already roomy enough for all practical
pUrposes.

T.4. Loeal Martingales and Honest Ones

One of the glorious properties of the It6 integral of a function in H2 is that
it is a martingale. For functions in £}, we are no longer quite as lucky, but the
L2 ¢ integrals still come close to being martingales in a sense that is easy to make
precise.

DeriNiTION 7.2 (Local Martingale). If a process {M;} is adapted to the filtra-
tion {F;} for all 0 <t < co, then {M;: 0 <t < oo} s called a local martingale
provided that there is a mondecreasing sequence {7y} of stopping times with the
property that T, — oo with probability one as k — co and such that for each k the
process defined by

M® = Mynr, — My fort € [0,00)
is a martingale with respect to the filtration {F; : 0 <t < 0}.
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One small nuance of this definition is that it does not require My to be inte-
grable. Although this extra freedom will not be exploited here, the definition is
given in this form to be consistent with tradition.

LocAL ALMOST ANYTHING

Needless to say, one can use the same construction to define a local submartin-
gale or a local almost anything. For example, a local L2-bounded submartingale M;
is a process for which there exist nondecreasing stopping times 7, — co such thag
the processes defined by

M® = Mypr, — Mo, 0<t< oo,

are submartingales with

sup B ((Mt(k))z) < By, < oo for all k.

CONNECTION TO STOCHASTIC INTEGRALS

The main reason for isolating the concept of a local martingale is that the It
integral of an L2, function is always a local martingale. We make this notion
precise in the following proposition.

PROPOSITION 7.7 (It Integrals on L3, are Local Martingales).
For any function f € L2,4[0,T], there is a continuous local martingale Xy such
that

P (Xt(w) - /Ot Flw, s) st) —1.

Moreover, one can take the required localizing sequence to be
¢
Ta(w) =inf{t: / Fw,s)ds=nort > T}
0

The proposition hardly requires proof; one only needs to note that the function
fr{w, s) = f(w,$)1(s < 1) is an element of 72[0, T|. Still, this proposition is very
important, and it will be applied constantly in the rest of the text. In fact, the whole
construction of the 1td integral was guided by the goal of extending the notion of a
martingale transform into continuous time, and — however humble — Proposition
7.7 is a milestone.

WORKING WITH LOCAL MARTINGALES

Results for martingales can often be extended to local martingales; the possibil-
ity typically hinges on whether one can make the localizing sequence “go away” at
the right moment. The traditional dance is easily illustrated by one of our favorite
problems — the calculation of the ruin probability.

PROPOSITION 7.8. If X;, 0 < t < o0, is a contznuous local martingale with

Xo = 0 and if the stopping time v = inf{t: Xy = A or X¢ = =B} satisfies
P(1T < co) =1, then E(X;) =0 and as a consequence
PX,=A)= -2

A+ B’
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Proor. If we then let 7 denote a localizing sequence for {X;}, then by the
definition of a local martingale we have that

},i:(k) = Xt/\'rL
is a martingale for each k; so, by the Doob stopping time theorem applied to the
martingale Yt(k) , we have that Yt(,{”l is also a martingale.
Next, as t — co we see from P(1 < co) = 1 that Yt(,(c,)_ converges with probability

one to Y, and since sup, [Yt(,i“l[ < max{4, B) the dominated convergence theorem
tells us that

(7.24) BlY®] = lim BY5] =0.

Finally, by the definition of the 7, we have 7, — co with probability one, so the
continuity of {X;} tells us Yrr(k) — X; as k — 0. Since sup,, |Y~f(k)| < max(4, B),
this convergence is also dominated, so we can let £ — co in equation (7.24) to
deduce that £(X,) = 0, as claimed. The second conclusion of the proposition then
follows by a computation that should by now be quite familiar. 0O

PATTERNS OF ATTACK

Bare-handed appeal to the definition often serves us well enough when working
with local martingales, but it still pays to know a few general results — or patterns
of attack. The first problem we consider is the justification of a local martingale
version of Doob’s stopping time theorem.

PROPOSITION 7.9. If X; is a local martingale and T is a stopping time,
then Y; = Xinr 15 also a local martingale.

PrOOF. We first observe that there is no loss of generality if we assume Xy = 0.
Next, by the hypothesis, there is an increasing sequence of stopping times 73, with
Ty — o0 a.8. such that X;a,, is a martingale for each k. Now,

Yt/\'r;, = X(tA-r)A-rk = -X(t/\-r;,)/\'r:
and, since {Xiar, : 0 <t < oo} is an honest martingale, Doob’s stopping time
theorem tells us that {X(sar)ar : 0 <t < 0o} is also a martingale. Consequently,
{Yinr : 0 < t < co} is a martingale for each k, and since 7% is a nondecreasing
sequence of stopping with 75, — ©0 a.s., we see that ¥; = XA, meets the definition
of a local martingale. O

The last proposition required little more than shufling definitions like dominos,
but the next one has some honest grip.

PROPOSITION 7.10. If X; is a continuous local martingale and B is a con-
stant such that | X;| < B for allt >0, then X; is a martingale.

PROOF. Again, we start by assuming that Xo = 0 and by taking a nonde-
creasing sequence of stopping times such that X;a,, is a martingale for each %k and
for which the sequence {7} increases monotonically to infinity. Next, we consider
5 < t and note by the martingale property of Xiar, that

(725) E(Xt/\-rk [fs) = Xs/\‘r;.'

Now, since 7, — ©0, we have Xsar, — X, and Xiar, — Xi. Because we also
know that [Xiar | £ B < oo for all k, we can take limits on both sides of equation
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(7.25) and apply the dominated convergence theorem. This gives us the martingale
identity for X; and completes the proof. O

The preceding proposition is frequently useful, and it also illustrates a basic
pattern. We often show that a local martingale is an honest martingale by arguing
that we can justify the martingale identity by making an appropriate interchange
of limits and expectations. In the last proposition, we saw how the dominated con-
vergence theorem could be used to justify the interchange, and the next proposition
shows how one can sometimes use more subtle arguments based on Fatou’s lemma.

PROPOSITION 7.11. Any nonnegative local martingale {X4: 0 < ¢t < T} with
E(]Xo]) < oo is also a supermartingale, and if

E(XT) = E(Xo),
then {X:: 0 <t < T} is in fact a martingale.

Proor. If 7, is a localizing sequence, then by the local martingale property
we have
Xsnr, = B(Xinr, | Fs) for all 0 < s <t < T
If we apply Fatow’s lemma as n — oo, we find
(7.26) Xs 2 B(X: | Fs)foral0<s <t < T,

and this tells us that {X;} is a supermartingale.
Now, if we take expectations in the last inequality we find B(X,) > E(X;) for
all 0 € s <t < T, so in particular we have

E(Xo) > B(X,) > E(Xy) > E(X7) forall 0< s <t < T

The hypothesis E(Xg) = F(X7) then tells us that we must have equality up and
down the line. Finally, when we look back at the inequality (7.26), we see that if
strict inequality held on a set of positive probability we would have E(X,) > E(X,),
so, in fact, it must be the case that equality holds with probability one. O

This last proposition will turn out to be very useful for us in later chapters. In
particular, the simple “E(Xr) = E(Xp)” criterion will provide an essential toehold
in our discussion of the famous Novikov condition, which provides a criterion for a
stochastic integral to be a martingale.

But DonN'T JumP THE GUN

Finally, the last two propositions may seem to suggest that any “sufficiently
integrable” local martingale is an honest martingale, but, sadly, this is not the
case. One of the exercises of a later chapter will provide an example showing that
a local martingale can have moments of all order and still fail to be a martingale.
Nonetheless, such examples should not make us paranoid. Much of the time we can
do the work we need to do with simple arguments such as those used in Propositions
7.10 and 7.11.

7.5. Alternative Fields and Changes of Time

One of our most trusted tools is the fact that for any martingale {X;, 7} and
any {F;} stopping time 7, the stopped process {X, s} is also an {F;} martingale.
As it turns out, {X,a:} is still a martingale with respect to a smaller filtration that
has some technical and conceptual advantages. In particular, this new filtration
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will play an essential role in our investigation of the representation of a continuous
martingale as a time change of Brownian motion. As usual, a definition starts the
ball rolling.

DEFINITION 7.3. If 7 is a stopping time adapted to the filtration {F;}, we define
the stopping time o-field F, by selting

(7.27) Fr={AcU2yF: An{r <t} € F; forallt > 0}.

The fact that F, is a o-fleld follows directly from the filtration properties of
{#:}, and we naturally think of the 7, as a way to represent all of the information
up to time 7. Also, as one would expect, the o-field F,. has many properties
that parallel those of the fixed time o-fields like F3; in particular, the definition
of F, implies that {X, < y} € F; for all y, so X, is F,-measurable. The next
three results offer variations on the theme that F, behaves as nicely as F; for all
practical purposes.

LEMMA 7.1 (Stopping Times and Alternative Fields).
If { Xy, i} is o bounded continuous martingale and 7 is an {F;} stopping time,
then for any A € F and any s < t, we have

(7'28) E(XTlAl{'r<s}) = E(X81A1{7'<s}) = E(Xt1A1{1<s})'
Moreover, if Xoo denotes the limit of X; as t — oo, then
(7.29) B(Xwl|Fr) = X7

PROOF. To begin, we let S(n) = {s+k/2" : k € Z}N{0,00), s0 {X; : t € S(n)}
is a discrete-time martingale. For any A € F,, the event AN {7 < s} is Fs-
measurable, so if 7, = min{r € S(n) : » > 7}, then we can easily check that
AN{r, =7} € F.. Now, by the martingale property of {X;}, we can calculate

E(X'rnlAl{-rn<s}) = Z E(Xrl{Tn=T}1A)
T€S(n),r<s

= Z E(Xsl{.,n=r}lA)
r&S(n),r<s

= B(Xsl{r,<s11a) = B(Xsl{r,<s}14)-

When n — 00, we have 1i;, <5 (w) = 1r<sp{w) and X, (W) — X (w) for all w, so
the dominated convergence theorem (DCT) tells us

(7.30) E(XTlAl{T<S}) = E(X31A1{7<S}) = E(Xt1A1{7<s})-

This equation completes the proof of the first assertion (7.28) of the lemma, so
when we let ¢ — co and apply the DCT again, we see

E(XT1A1{1<S}) = E(leAl{.,.<s}).
Finally, if we let s — oo and invoke the DCT a third time, we find
E(X,14) = BE(Xola),

and, since X, is Fr-measurable, the last identity is equivalent to equation (7.29)
simply by the definition of conditional expectation. O
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The preceding lemma has an immediate corollary that shows the stopping time
o-fields interact with martingales in a way that perfectly parallels the interaction
of the fixed time o-fields. The resulting identity is a real workhorse that packs a
multitude of concrete facts into a single abstract line.

COROLLARY 7.2 (The Stopping Time Identity). Suppose that {X;, 7} is o
bounded continuous martingale. If v and T are {Fi} stopping times, then

(7.31) v<sr = X,=E(X:|F)

ProoF. To see why this identity holds, we first use the representation (7.29)
for X, and then use the tower property of conditional expectation to get

(7.32) X, = B(Xo|Fu) = B( E(XoolFr) |Fu)-

If we apply (7.29) again to replace the last occurrence of E(X{F;) with X, we
see that equation (7.32) completes the proof of the required implication (7.31). O

The next result follows quickly from the stopping time identity (7.31), but we
state it as a proposition because of its importance. Set out by itself, it may look
lame, but it has some consequences with real bite, as we will see when we compute
the the density of time required for Brownian motion to hit a sloping line.

PROPOSITION 7.12 (Martingale on Alternative Fields). For any bounded con-
tinuous martingale {X;, 7} and any {F;} stopping time 7, the stopped process
{Xsnt, Frae} is also a martingale.

PrOOF. We already know that X, a: is Fras-measurable, and the integrability
of X,a: follows from the boundedness of {X;}. Thus, we only need to check the
martingale identity

(7.33) E(X-,-/\tlf-,-/\s) = -XT/\S for 0 § s < t,
and if we take ¥ = 7 A s and ¢ = 7 A t, then we see that the identity (7.33) is a
restatement of equation (7.31). 0O

TiIME CHANGE OF A LOCAL MARTINGALE

If {r : 0 <t < oo} a right-continuous nondecreasing process such that each
73 Is a stopping time with respect to the filtration {#;}, then {7} is said to be an
{F:} time change. The next proposition tells us that in favorable circumstances
one can replace t by 7; in a local martingale and still preserve the local martingale
property. For the moment, this result may seem somewhat bland, but later we will
see that it has important consequences.

PROPOSITION 7.13. Suppose that {My, Fi} is a continuous local martingale
and suppose that {r;} is an {F} time change. If My(w) is constant on the
interval [r,_(w), 7w (w)] for allu >0 and w € Q, then the process { My, Fr,} is
again a continuous local martingale.

PROOF. Since {M,,F;} is a local martingale, there is a sequence of {F;} stop-
ping times {0} with 6, — oo for which {M;as,,F:} is & bounded continuous
martingale for each n. Also, if we apply the stopping time identity (7.31) to this
martingale and the times 75 < 74, we have

(7‘34) E(A/[T,,/\a-n I-F‘r,) = -ZVIT,/\o-,, .
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The idea now is to show that the “inverse sequence” o} = inf{t : ¢t > o,} is
a localizer that can be used to confirm that if we set Y; = M., then {¥;, 7, } isa
local martingale. After checking (as in Exercise 7.4) that ¢}, — co and that o}, is
an {Fr,} stopping time for which Y;ao- is bounded, one sees that the whole issue
boils down to showing E(Y;nes|Fr,) = Ysnor . Moreover, this identity will follow at
once from (7.34) if we show Ying: = Mr,c,.

When ¢ < o}, we also have 73 < oy, so we immediately find that we have
Yiner = Yi = My, = My no,. On the other hand, when ¢ > o} the monotonicity
of {:} and the definition of o}, give us 7z > 75 > on. Also, by the definition of
o we have on, € [To;—, Tox], s0 the constancy hypothesis tells us Mo, = M-, and
consequently

tzo, = Yo, =Yo =My, =M, = Mo,

Thus, we always have Yings = Mr,nq,, and the proof is complete. O

7.6. Exercises

A brief chapter deserves a brief collection of exercises. The first gives basic
practice in the application of the simplest time change to Brownian motion, and it
also isolates a large class of stochastic integrals that permit precise determination
of their distribution. The next two problems then offer practice with the notion
of localization, and finally Exercise 7.4 puts a spotlight on Proposition 7.13 by
suggesting a very simple “counterexample.”

EXERCISE 7.1. Find a function 7 such that the processes
¢
X = / e’dB; and Y¥; = B,,
0

are equivalent processes on the infinite interval 0 < ¢ < co. Check your solution
by making independent computations of F(X?) and E(Y;?). Finally, use the time-
change representation to calculate E(X7) and P(X; > 1). Would these calculations
be as easy without the representation?

EXERCISE 7.2. Show that if X; is any continuous martingale and ¢ is any
convex function, then ¥; = ¢(X:) is always a local submartingale. Give an example
that shows Y; need not be an honest submartingale.

EXERCISE 7.3. Show that if X; is a continuous local submartingale such that

(7.35) E( sup |Xsl> < oo,

0<s<T
then {X: : 0 <t < T} is an honest submartingale. Show how this result implies
our earlier result that a bounded local martingale is a martingale. In Exercise 8.5
of the next chapter, we will find that the condition (7.35) cannot be replaced with
the uniform integrability of {X;:0<t < T}.

EXERCISE 7.4. (a) First, complete the checks suggested in Proposition 7.13 by
showing o}, is an F.,-stopping time and o} — co. (b) Next, consider Brownian
motion {B;} and the filtration F = ¢{B, : s < t}. If » = inf{s : Bs > t}, then
{r:} is an F time change, but ¥; = B, = t is certainly not a local martingale.
Explain how this example is compatible with Proposition 7.13.



CHAPTER 8

It0’s Formula

‘When we compute the familiar integrals of Newton and Leibniz, we almost
invariably call on the fundamental theorem of calculus — only a few integrals can
be done comfortably by direct appeal to the definition. The situation with the
1t6 integral is parallel, and the 1td calculus would be stopped dead in its tracks if
we could not find an appropriate analog to the traditional fundamental theorem
of calculus. One of the great charms of It6 integration is that the required analog
comes with an unexpected twist — and several probabilistic interpretations.

THEOREM 8.1 (Itd’s Formula — Simplest Case). If f: R — R has o continuous
second derivative, then

t t
(8.1) £(B2) = (0) + /0 F(B)dB,+ [ 1B s

The most striking feature of this formula is the presence of the second integral,
without which we would just have a formal transcription of the usual fundamental
theorem of calculus. This difference is no mere detail; it turns out to be rich in
probabilistic meaning because the two integrals capture entirely different features
of the process f(By).

The first integral of equation (8.1) has mean zero, so the second integral is
forced to capture all of the information about the drift of f(B;). We will see later
that the first integral holds up its end of the bargain by capturing all of the essential
information about the local variability of f(B;). Thus, in a way that may take a
while to master, Itd’s formula has a second interpretation as a decomposition of
f(B:) into components that are representative of noise and signal.

One baseline observation that we should not omit is that both the integrals
on the right-hand side make sense simply because of the continuity of f/ and f”.
‘We do not need to check any integrability conditionson f/(B;) or f”(B;), and the
parsimonious phrasing of 1t8’s formula is our first dividend on the investment we
made to extend the Itd integral from H?2 to L}5g.

Tinally, to avoid any confusion, we should note that formula (8.1) just begins
a long chain of results that share the name Ité’s formule, or Itd’s lemma. We start
with (8.1) because it is the simplest element of the chain. It also captures the
essence of all of the subsequent formulas.

8.1. Analysis and Synthesis

A large part of human knowledge has been brought to light by the comple-
mentary processes of analysis and synthesis — or of breaking apart and putting
together. The proof of Itd’s formula follows this paradigm to the letter. We first
break f(B;) — f(0) into a sum of small pieces of the form f(Bs,) — f(B:,_,), and
these pieces are further decomposed with the help of Taylor’s formula. These steps
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complete the analysis process. Next, we interpret the limit of the sums of small
terms as integrals, and when we put these pieces back together we complete the
synthesis step. Rather remarkably, we arrive at a formula for f(B;) — f(0) that is
both simple and powerful.

The implementation of the plan is not difficult, although, if one is honest at
each step, some patience is needed. To go as directly as possible to the heart of the
problem, we first assume that f has compact support. After we deal with this case,
we will show how a localization argument can be used to obtain the full result. We
start by setting ¢, = it/n for 0 < i < n, and then we note that the telescoping of
the summed differences gives us the representation:

(8:2) F(Be) = F0) =D {f(Be) — F(Bi._))}

=1

a formula that is itself a discrete variant of the fundamental theorem of calculus.

Because of random variation, the differences B;, — B;,_, may not all be small,
but enough of them should be small enough, for enough of the time, for a two-
term Taylor approximation of f(B;,) — f(B:,_,) to be effective. To make this plan
concrete, we use Taylor’s formula in the remainder form which says that if f has a
continuous second derivative, then for all real z and y we have

63 f0) - o) = - @) + 5 - 2P (@) +r(a),

where the remainder term r(z,y) is given by

o) = | "y =) (") - 1"(2)) du.

From this formula for r(z,y) and the continuity of f” we can easily check that
lr(z,9)| < (y—z)2h(z,y) where h is uniformly continuous, bounded, and h(z, z) = 0
for all z. These modest properties are all that we will ever need to know about r(z, )
and h(z, y).

SYNTHESIS OF THREE TERMS

The telescoping sum (8.2) can then be rewritten as a sum of three terms,
Apn, Br, and C,,, where the first two terms are given by

n 1>
A’n = Z fl(Btz—x)(Bt; - Bt-.—1) and Bn = '2‘ Z flI(Bt1—1)(Biz - Btz—1)2)

=1 =1

and the third term C,, satisfies

n
(8'4) Ic’n! < Z(Bt, - Bt«—L)Qh‘(Bf-.—-nBtz)'

=1

Because f’ is continuous, we know from the Riemann representation given in the
preceding chapter that

t
A, B / f'(Bs) dBs.
0

The proof of the lemma therefore boils down to the analysis of B, and C,.
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When we write B, as a centered sum

1 n 1 n

5 Zf”(Bt“l)(t’ . tz—l) + 5 Zf“(Bt-—x) {(Btz - th-—l)z - (tz - tz—l)} 3
i=1 1=1

we find by the continuity of f”(B;(w)) as a function of s that the first summand
converges as an ordinary integral for all w:

n

t
Jim > F(B )~ 6e) = [ 1B,

=1 0

If we denote the second summand of B, by B,, we then find by the orthogonality
of the summands that

BB2) = 33 B [f(Bu? {(B. - B = (6= i)} ]

=1
1 1 - 2 1
< IS B (B - Buy)? = (6~ )} = o 17
1=1

where in the last step we used the fact that B;, —B;,_, ~ N(0,%/n) and consequently
Var((By, — By,_,)?) = 2t*/n®. By Markov’s inequality, the last bound on E(B2) is
more than we need to show B, LA 0, so all that is left to prove the theorem is the
estimation of the remainder term C,.

ESTIMATION OF THE REMAINDER TERM

There are more subtle ways to argue that Cj, LA 0, but there is also a certain
charm to the Neanderthal approach that begins by applying the Cauchy inequality
to the summands in the bound (8.4) on C,, to find

(8.5) E(Cal) <D B((B, - Bi._,) | E[h*(B,_,, By,)]*.

=1

The first factor in the sum is easily calculated since B;, — B;,_, ~ N(0,t/n) gives
us

(8.6) B((By, — By,_,)*Y = 3t%/n>.

To estimate the second factor, we first note by the uniform continuity of h and
the fact that h(z,z) = 0 for all , we have for each ¢ > 0 a § = §(¢) such that
Jh(z,y)| £ € for all z,y with [z — y| < 4, so we also have

E[h*(Bi,_,, Be,)] < € + [{h||2,P(|B, — B,_,| > §)
< € +||hl|2,672E(|By, — Be,_,|*)
(8.7) = & + |[BI% 6% /n.

When we apply the bounds given by equations (8.6) and (8.7) to the sum in in-
equality (8.5), we find

E(|Crl) < n(3t2/n2)% (¢ + || h||%,6~2t/n) %

and consequently
limsup E(|C|) < 3%te.
n—eo
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By the arbitrariness of €, we finally see E(|Cp|) — 0 as n — 00, s0 Markov's
inequality tells us that we also have Cy &o.

COVERING ALL OF THE BASES

The proof of the lemma is now essentially complete for f with compact sup-
port, but there are some bookkeeping issues that deserve attention if we are to be
absolutely clear. First, we have seen that for any givent € Rt the sums A, and B,
converge in probability to the two integral terms of Itd’s formula (8.1), and we have
seen that C, converges in probability to zero. Now, if we we fix t € R*, we can
choose a subsequence n, such that A, , By, and G, all converge with probability
one, so in fact we see that It6’s formula (8.1) holds with probability one for each
fixed ¢ € R*. Finally, if we then apply this fact for each rational and if we also
observe that both sides of Ité’s formula are continuous, then we see that there is
a set Qg with P(Qg) = 1 such that for each w € Qg we have It6’s formula for all
teR*.

FINISHING ToUCH: THE LOCALIZATION ARGUMENT

To obtain the general result, we first recall that for any f € C%(R) there is an
far € C? with compact support such that f(z) = fa(z) for all |z| < M. We have
already proved the It6 formula for C? functions with compact support, so we have
the identity

13 t
) 5ulB) = 1ul®) = [ Fia(BydB.+ 5 [ steBas

Now, if we take 7ay = min{t: |[B:| > M}, then for all w € {s < Ty} we have
f'(B;) = fi(Bs), and by Proposition 7.5 on the persistence of identity in L3¢
we also have

t
/t f'(Bs)dBs = / fiu(Bs)dB, forwe {t<Tm}.
0 0

Also, it is elementary that for w € {t < Tar} we have

t i
F(Bo) = fur(By) and /0 F'(Bs)ds = /0 Fi(By) ds.

When we apply these identities in equation (8.8), we find that for all w € {¢t < 7}
that we have

i t
(59) £8) - 10 = [ FBdB 5 [ 7B

Finally, we note that 7a; — co with probability one, so equation (8.9) also holds
with probability one, and the proof of It&’s formula is complete. O
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8.2. First Consequences and Enhancements

Without [£8's formula our only way to calculate or interpret an Ttd integral is by
working our way back to its definition. This tedious reduction can now be replaced
by a process that is almost always simpler and more concrete. For example, if we
take an F' € C%(R) for which F¥ = f and F(0) = 0, then Itd's formula can be
written as a formula for the integral of f:

(8.10) /0 F(By)dB, = F(By) —% /0 F(B) ds.

The most compelling feature of the identity (8.10) is that the right-hand side
can be evaluated for each sample path {Bs(w): 0 < s < £}, so equation (8.10) gives
us a new way to understand the Itd integral on the left-hand side; we now have
an interpretation of this It6 integral on a pathwise, or w-by-w, basis. We already
knew that the It6 integral could be viewed as a process, but the general definition
of the integral was a global one without any immediate connection ta the individual
sample paths. In contrast, the right-hand side of equation (8.10) assigns a value
directly to each w. This view can be particularly useful when we think about the
simulation of processes defined by It6 integrals, since otherwise all we can do is
pick some Riemann approximation and just hope that for the application at hand
approximation does a suitable job of reflecting the behavior of the true integral.

Now, to get down to the calculation of interesting integrals, the obvious first
step is to specialize equation (8.10). When f(B;) = 1, both sides simply reduce to
By, which is rather boring, but, when we take f(B;) = Bs, we find the engaging
formula

t 1 1
(8.11) / B;dB; = =B — ~t.

0 2 2
Naturally, we recognize this integral as an old friend from Chapter 6, where it
was derived at the cost of considerable labor. We should also notice that B, is
an element of M2, so its It0 integral is a martingale, and the representation (8.11)
therefore tells us that B? - ¢ is a martingale, a fact that we obtained in Chapter 4
by explicit calculation.

BEYOND SPACE TO SPACE AND TIME

The first two of the three classic Brownian motion martingales have popped
out of It&’s formula so quickly that one is almost forced to inquire about the third
member of the classic trio:

My = exp(aB: — ot/2).

Now, an interesting problem presents itself. The process M; is no longer a function
of B; alone; it is a joint function of ¢ and B;. Nevertheless, we can easily ac-
commodate such functions if we develop Itd’s formula a little further, and it turns
out that this further development is especially fruitful. Before stating the required
extension, we first recall that if a function (¢,z) ~ f({,z) € R has m continuous
derivatives in ¢ and n continuous derivatives in z, then we write f € C™™(R*x R).
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THEOREM 8.2 (It6's Formula with Space and Time Variables). For any func-
tion f € CY2(RT xR), we have the representation

t k) i o 1 ] 32
F(t, Bs) = £(0,0) + /0 o (s, B2) B, + /0 a—{(s,Bs)ds+§ /0 %g(s,Bs)ds.

Proor. The proof follows the same pattern as the proof of the simplest It6
formula. In particular, by the same localization argument that we used in the
proof of Theorem 8.1, we can assume without loss of generality that f has compact
support in Rt x R. We begin the real work by writing f(¢, B;) — f(0,0) as a
telescoping sum and by writing the summands in terms of Taylor’s formula with
remainder. In this case, the appropriate expansion of f(¢,y) is given by a Taylor
series about the point (s, z), so we can rewrite f(2,y) as

af af 1 o f
f(S,CD) + (t - S)E'(S)z) + (y - ZB)%(S, :1}) + 5(3/ - m)g'a_x5(51 ﬂ)) +7‘(5,t,(1},'y),
where the remainder term now satisfies the bound
r(s,t,2,9) < (y - 2)?h(z,y,8,8) + (t = 8)k(z, Y, 5, 8),

where h and % are bounded, uniformly continuous functions that equal zero when
z=yand s=1.

After the Taylor expansion is applied, the terms are collected to provide a sum
of four finite sums. The first three have limits that give the three integrals that
appear in Itd’s formula. The fourth sum contains the remainder terms, and by
following the pattern of Theorem 8.1, one can show that this sum converges to
zero in expectation. The final steps of the proof are then identical to those used to
complete the proof of Theorem 8.1. O

MARTINGALES AND CALCULUS

Perhaps the central benefit of It6’s formula is that it leads to many powerful
connections between the theory of martingales and the well-ciled machinery of
differential equations. The next proposition gives one the simplest, but handiest,
of these connections.

PROPOSITION 8.1 (Martingale PDE Condition). If f € C*?(R* x R) and

of 18
then X; = f(t, Bt) 18 o local martingale. Moreover, of
T af 2
= t
(8.13) E[/o {6:1:} (t, By) dt| < oo

then X: 15 a martingale on 0 <t < T.

Proor. The proposition just puts our earlier work into a neat package. By
Theorem 8.2, any f € C*?*(R* xR) that satisfies the partial differential equation
(8.12) gives us an integral representation

t
£(t,Be) = £(0,0) + /0 %(S,Bs)ws.
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Also, since f € CM2(R* xR), we see that f is continuous, so ‘the integrand is
an element of L4, As a result, the Itd integral gives us a well-defined local
martingale. Finally, if condition (8.13) holds, the integrand is an element of H?2, so
the integral is an honest martingale. [

FIRST EXAMPLES

To see how the last proposition can be applied, we first consider one of our
favorite processes:

(8.14) M, = exp(aB; — &®t/2).

From our earlier work, we already know that M; is a martingale, but the PDE
approach reveals this fact in a different light. To begin, we note that we can write
M, = f(Bs,t) where f(z,%) = exp(az — ¢?t/2). By direct calculation, we have

of 8%f

_ 14 _
ot~ 2 fandazz—af,

so the martingale PDE condition (8.12) is satisfied, and we see that M; is a local
martingale. Moreover, the H? condition (8.13) is also immediate, so in fact we have
an honest martingale, as we expected.

The same method will also verify that the processes defined by M; = B2 ¢ and
My = B; are martingales. One only has to note that f(¢,z) = 2> —¢ and f(t,z) = =
satisfy the PDE condition (8.12), and in both cases we have f(t, B;) € H2. In fact,
we will find in Exercise 8.4 that these two martingales are members of a countable
family of martingales that can be obtained from the Taylor expansion of the moment
generating function martingale (8.14).

New GrounD: Cov(T, B;)

The last examples show how easily we can check if My = f(t, B;) is a local
martingale, but the PDE method only starts to shine when we need to invent some
new martingale in order to solve a concrete problem. For example, suppose we want
to compute Cov(, B;), where as usual we have 7 = inf{t: B, = A or B; = —B}
for A > 0 and B > 0. We already know that E(B.) = 0, so to determine the
covariance we only need to compute F(rB;). The natural idea is to find some
martingale M; of the form f(¢, B;) where f(t,z) = tz + g(t,z) and where we know
how to compute E[g(r, B,)]. This would be the case if g(t, z) contained only powers
of z, say g(t,z) = az® + bz? + cz + d. The PDE condition for a function of the
form f(t,z) = tz + az® 4 bz? + cz + d only requires that a = —1/3 and b = 0. The
choice of ¢ and d is unconstrained, so we just set ¢ = d = 0 to find that taking
f(t,z) =tz — 23/3 makes M; = f(t, B;) a local martingale. We can then argue as
before to establish that M;a is in fact a bounded martingale and that E(M,) = 0.
When it is expanded, the last equation says

Cov(r, B) = B{rB;) = s B(BY)

and, when we use our old formula P(B, = A) = B/(A+ B) to help compute B(B2),
we quickly find

(8.15) Cov(r, By) = %AB(A - B).
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The covariance formula (8.15) is another marvel of simplicity. It also rewards
looking back. First, we see that the covariance is zero if and only if A = B. This
is quite sensible from the point of view of symmetry. It is more amusing that we
get a positive covariance precisely for A > B. This tells us that in order to have
hit the more distant boundary first, we are likely to have taken more time for our
trip. This is also perfectly intuitive.

BROWNIAN MOTION WITH DRIFT: THE RUIN PROBLEM

The PDE method will help us find martingales to fit almost any purpose. One
of our favorite purposes is the solution of ruin problems, and the PDE method is
the tool of choice when facing a new ruin problem for a process that can be related
to Brownian motion.

If B; denotes standard Brownian motion, then the process X; defined by

.Xt =/,Lt+O'Bt

is called Brownian motion with a constant drift rate ¢t and an instantaneous variance
o2. This process is one of the most useful in applied probability for the simple reason
that X, gives a first approximation to many other processes with relatively constant
drift and relatively constant variability.

The ruin problem for X; is the calculation of P(X, = A), where as usual

T=inf{t: X\; =Aor X;, = ~B} with A>0and B >0.

The martingale approach to the calculation of P(X,; = A) invites us to find a
function A(-) on the interval [—B, A] such that for all ¢ > 0 the process M; = h(X;)
is a bounded martingale. If we can also arrange matters so that h(4) = 1 and
h(—B) =0, then the stopping time identity tells us

E(Mo) = E(M,) and P(X, = A) = h(0),

since E(Mp) = h(0) and E(M,) = P(X, = A). The bottom line is that Itd’s
formula. tells us how to reduce the ruin problem to a boundary value problem for a
differential equation. This is a very general, and very useful, reduction.

In our immediate case, we want to find a martingale of the form h{ut+ o By), so
the function f(¢,z) = h(ut + o) needs to satisfy the PDE condition (8.12). Since
we have fi(t,z) = ph'(pt + o) and fuu(t,z) = o2h”(ut + o), the PDE becomes
an ODE for h:

h"(z) = —(2u/0®)h (z) where h(A) = 1 and h(—B) = 0.
This is one of the easiest of ODEs, and we quickly find

exp(—2ux/0?) — exp(2uB/o?)
h(z) = e
exp(—2ud/o?) — exp(2uB/0?)
When we evaluate this formula at z = 0, we find a formula for the ruin probability
for Brownian motion with drift that we can summarize as a proposition.

8.2 FIRST CONSEQUENCES AND' ENHANCEMENTS ™ » "ot

PRropPOSITION 8.2 (Ruin Probability for Brownian Motion with ant)
If Xy = pwt+0B; and 7 = inf{t: Xy = A or Xy = —B} where A > 0 and
B > 0, then we hove

_ o exp(—2pB/c?) —1
(8.16) PO =A) = AT By =1

LOOKING BACK — AND DOWN THE STREET

Equation (8.16) is one that deserves space in active memory. It offers con-
siderable insight into many stochastic processes and real-world situations. In the
simplest instance, if we confront any stochastic process with constant drift and
variability, we almost always gain some insight by comparing that process to a
Brownian motion with corresponding drift and variability.

Perhaps the best way to build some intuition about such comparisons is to
revisit the ruin problem for biased random walk. For the biased random walk
Sy, = Xy + Xo + -+ X, the mean of each step is p ~ ¢ and the variance is
1 - (p — g)?. When we consider the Brownian motion with drift 4 = p — ¢ and
instantaneous variance o2 = 1~ (p — ¢)2, we again have a process with a unit
time step that is comparable to that of biased random walk in terms of mean
and variance. While we have not established any a priori guarantee that the ruin
probabilities of the two processes will have anything in common, we can see from
Table 8.1 that they turn out to be remarkably close.

TABLE 8.1. BiaseD RW VERSUS BROWNIAN MOTION WITH
DrirT: CHANCE OF HiTTING LEVEL 100 BEFORE HITTING

LevEL —100
) —u | o? Biased RW | BM with Drift
0.495 | 0.01 | 0.9999 0.119196 0.119182
0.490 | 0.02 | 0.9996 0.0179768 0.017958

0.480 | 0.04 | 0.9984 | 0.000333921 0.000331018
0.470 | 0.06 | 0.9964 | 6.05614 x10~® | 5.88348 x10~°

For a long time, we have known a simple formula for the ruin probabilities
for biased random walk, so we did not really need to use the parameter-matching
approximation. In fact, our two formulas tell us that if we take y and o so that

q/p = exp(—2p/0%),

then the ruin probabilities for Brownian motion with drift exactly match those for
for the biased walk. As a consequence, any differences in Table 8.1 can be attributed
to the difference between ¢/p and exp(—2(p — q)/{1 — (p — g)?}). Obviously, there
is no good reason to use equation (8.16) and mean-variance matching in order
to estimate the ruin probabilities for biased random walk, although for problems
that are even a bit more complicated one almost always gains useful insight from
equation (8.16).

To be sure, estimates based on equation (8.16) and mean-variance matching are
never perfect, but in a real-world problem where the ratio u/o? is small, the errors
due to modeling defects or inadequate parameter estimation are almost always
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larger than the error that comes from using (8.16) as an approximation to the ruin
probabilities. If you must make a quick bet on a ruin probability, the simple formula
(8.16) is often a wise place to start.

EXPONENTIAL DISTRIBUTION OF THE SUPREMUM

The ruin probability formula (8.16) has a further consequence that is simply
too nice not to take a moment to appreciate. If we consider A = A and B — oo,
then (8.16) rather delightfully tells us that for X; = —ut+oB; with u > 0 we have

P( sup X > /\) = exp(—2u)\/c?),
0<t<oco

or, in other words, the random variable ¥ = supg<;«qo X¢ is simply an exponential
random variable with mean o?/2u. Every streetwise probabilist should keep this
fact in active memory. It is perfect for back-of-the-envelope calculations.

SHORTHAND NOTATION

If f € CY2(R* xR), then It6’s Formula tells us that the process X; = f (%, B:)
can be written as

t aZf

(817) X, = X0+/ —(sB)dB +/ at(sBs)d-i- O (5B as,

and because the three integrals use up so much of the page, we w111 usually prefer
to write equation (8.17) in the shorthand

162 o°F
2 972
This natural notation is used universally, and it helps in ways that go beyond
efficient transcription. Just as in ordinary calculus, our intuition is often well
served by thinking about dX; as an analog of Xt — X; for some small positive
€. Nevertheless, we must keep in mind that we have not given any definstion of
dX; except as shorthand. Any equations that we write with dX; absolutely must
carry the promise that all the terms have a transcription back into the fully defined
integrals used in the long form (8.17) of Itd’s formula. Still, this promise should
not make us paranoid; many useful calculations can be performed with complete
honesty while using this shorthand.

8.3. Vector Extension and Harmonic Functions

Standard Brownian motion in R® is defined to be the vector-valued process

given by
B, = (B},B%,...,BY),

where the one-dimensional component processes {BF: 0 < t < oo} are independent
standard Brownian motions. When d = 2, we speak of planar Brownian motion,
the mathematical model for the movement of those grains of pollen that Robert
Brown first observed under his microscope in the months of June, July, and August
1827.

For Brownian motion in R?, the appropriate extension of Itd's formula takes
advantage of the compact notation of vector analysis. If f : R*xR% — R, we view f
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as a function of a time variable ¢ € R* and a space variable z € R, and we will find
that the Itd formula for f(¢, B;) is neatly expressed in terms of the space-variable

gradient
(L 2

Bz1’ Oz’ ' Ozg
and the corresponding space-variable Laplacian

32f azf azf
Af =V Vf=gg+s5+ - +55
022 " B2l oz2"

THEOREM 8.3 (It6's Formula —Vector Version). If f € CY2(R+xR?) and B,
15 standard Brownian motion in RY, then

(6 Br) = fult, By e+ VS(8, Bi) - B+ 5070 Bi) .

The proof of this version of It6’s formula can be safely omitted. If we follow the
familiar pattern of telescope expansion and Taylor approximation, the only novelty
that we encounter is the need to use the independence of the component Brownian
motions when we estimate the cross terms that appear in our Taylor expansion.
Now, once we have the new It6 formula, we naturally have a criterion for f(t, B})
to be a local martingale.

PROPOSITION 8.3 (Martingale PDE Condition for R%). If f € CY2(Rt xRY)
and By 1s standard Brownian motion wn RY, then M, = f(t, B:) 1s a local martingale
provided that

Flt,3) = ~5A7(2,).

CONNECTION TO HARMONIC FUNCTIONS

If we specialize the conclusion of Proposition 8.3 to functions that depend only
on Z, we see that M; = f(B;) is a local martingale provided that

(8.19) Af =0.

Functions that satisfy the equation (8.19) are called harmonic functions, and they
somehow manage to show up in almost every branch of science and engineering,.
They are also of great importance in pure mathematics, especially because they
have a close connection to the theory of analytic functions. We cannot pursue
these remarkable connections to any depth, but there are a few elementary facts
that everyone must know.

One particularly handy fact is that the real and imaginary parts of an analytic
function are harmonic functions; in particular, the real and imaginary parts of a
complex polynomial are harmonic functions. To appreciate one concrete example,
just consider

= (z +1y)° = (2° - 3ay®) +(3yz” — ).
We can quickly check that u(z,y) = z® — 3zy? and v(z,y) = 3yz? — y® are
both harmonic. Moreover, these polynomials are homogeneous of order three,

u(Az, Ay) = A3u(z,y), and an analogous calculation will provide harmonic poly-
nomials that are homogeneous of any order.
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Even a little exploiation of examples such as these will show that there is rare
magic in the connections among martingales, harmonic functions, and complex
variables. Our first application of this magic will be to develop an understanding of
the recurrence — or transience — of Brownian motion in R¢. We will use harmonic
functions that were familiar to Newton and made famous by Laplace.

RECURRENCE IN R?

If we calculate the Laplacian of the function defined on R? — {0} by

F(2) = log|#| = log \/2} + 23,

then we will find that Af(£) = 0; so, for any 0 < r < R, we see that f is a harmonic
function on the annulus 4 = {Z: r < |Z] < R}. We can then rescale f to get a
harmonic function

log R — log |Z]

log R —logr

with values on the boundary of 4 given by

h(Z) =

h(Z) =1 for |Z| = r and h(Z) =0 for || = R.
Next, we take T € A and let
7, = inf{t: |By| =7} and 75 = inf{¢: |By| = R}

To keep our notation tidy, we first let Pz(:) = P(-| Bo = Z). We then note that for
T = T ATr we have Py(r < o) = 1 and Ez[h(B;)] = Pz(7 < Tr). The familiar
stopping time argument then tells us that we have Ez[h(B;)] = h(Z), or in detail,

log R — log |Z]

(8.20) Pi(r- < 7mR) = e B —logr

where r < |Z] < R.

This is a marvelous formula. One of its immediate implications is that if we
start a Brownian motion at any Z € R?, then in a finite amount of time the process
will hit a ball of nonzero radius located anywhere in R2. Specifically, from our
understanding of Brownian motion in R, we know that 7z — co as R — oo, so,
by the dominated convergence theorem applied to the hitting probability formula
(8.20), we have

(8.21) Pz(1r < 0) =1 for all |z} > 7> 0.

This formula expresses the recurrence property of Brownian motion in R?. We
have seen before that we have an analogous property for Brownian motion in R,
but shortly we will show that when d > 3 Brownian motion in R¢ is no longer
recurrent.

TRANSIENCE IN R? FOR d > 3

We can make a prefectly analogous calculation in R® by starting with the
function

(@) = ja*~
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that is harmonic on the annulus 4 = {Z: r < |#| < R} € R%. In this case, we find
that the hitting probability formula is given by the simple formula

R2—d _ |f|2—d

Palrr <7R) = g1

but now when we let R — oo we find

N
Pyl <c0)={ = .
s <o) = ()
This formula tells us that if we start a Brownian motion at a point outside of a
sphere in R%, then for d > 3 there is positive probability the process will never hit
the sphere. Pélya described the relationship between the recurrence property of
Brownian motion in R? and the transience in R® by saying “a drunken man will
always find his way home, but a drunken bird may not.”

8.4. Functions of Processes

If a process X; is given to us as a stochastic integral that we may write in
shorthand as

(8.22) dX;: = a(w,t) dt + b(w,t) dBy,
then it is natural to define the dX; integral of f(¢,w) by setting

¢ t ¢
(8.23) /Of(w,s)dXs=/0 f(w,s)a,(w,.s)ds+/0 flw, $)b(w, s) dBs,

provided that f(w,t) is an integrand for which the last two integrals make sense;
that is, we are happy to write equation (8.22) or equation (8.23) whenever f(w,t)
is adapted and it has the integrability conditions:

» f(w,s)a(w,s) € L}(dt) for all w in a set of probability one and

o f(w,8)b(w,s) € L.
Now, we come to a very natural question: If the process X; can be written as a
stochastic integral of the form (8.23) and g(¢,y) is a smooth function, can we then
write the process ¥; = g(¢, X;) as a dX; integral?

Itd’s formula tells us that this is the case if X, is Brownian motion, and we
will soon obtain a positive answer to the general question. We begin our approach
to this problem by first considering two instructive examples. These examples will
lead us to some computational rules that will become our daily companions.

CHAIN RULES AND THE Box CALCULUS

If X, is Brownian motion with general drift and variance, then we have our
choice whether to write X; as a stochastic integral or as a function of Brownian
motion:

dXs = pdt+odB;, Xo=0 or Xy =put+oB;.

A similar situation prevails when we consider It6’s formula for a function of ¢ and
X. Specifically, if we have Y; = f(¢, X;), then we can also write Y, = g(¢, B;) where
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we take g to be defined by g(t,z) = f(¢, 4t + o). When we apply Itd’s formula to
the representation Y; = g(¢, B;), we find

1
dY: = gi(t, By) dt + go(t, By) dB: + ‘Q‘sz(t, B;) dt,

and the chain rule gives us gi(¢,z) = fi(t, pt + oz) + fo(t, bt + oz)p, gz (¢, %) =
Jz(t pt + oz)o, and guu(t, ) = fuz(t, pt + 0z)o?, so in terms of f we have

AV ={filt, X2) + pfa(t, Xo)} d + o fult, X2) dBs + %02 Folt, X0 dt

(824) =ft(t, Xt) dt + fm(t, Xt) dX; + %Ojfn:z(t, Xt) dt.

The last expression could be called the It6 formula for functions of Brownian motion
with drift, and it might be worth remembering — except for the fact that there is
a simple recipe that will let us write equation (8.24) without adding to our mental
burdens.

The rule depends on a formalism that is usually called the boz calculus, though
the term boz algebra would be more precise. This is an algebra for the set A of
linear combinations of the formal symbols di and dB;. In this algebra, adapted
functions are regarded as scalar values and addition is just the usual algebraic
addition. Products are then computed by the traditional rules of associativity and
transitivity together with a multiplication table for the special symbols dt and dB;.

TABLE 8.2. BOX ALGEBRA MULTIPLICATION TABLE

- | dt | dBy
dt 0] O
dB; { 0 | dt

If we use the centered dot “” to denote multiplication in the box algebra, then
we can work out the product

(adt+bdBy) - (adt+ BdBy)

as
Now, let us reconsider the formula (8.24), which we called the Itd formula for
Brownian motion with drift. We proved this formula by an honest application
of the usual Itd Formula for Brownian motion, and it gives a simple example of
computation with the box calculus.

When we use the shorthand that defines dX; - dX; as

dX;-dX; = o?dt

in accordance with the rules of the Box Calculus, we see that equation (8.24) can
be written as

(8.25) df (t, Xz) = fe(t, Xe) dt + folt, Xe) dX; + %fmz(t)Xt) aXy - dX;.

This general formula for functions of X; = ut + oB; is easier to remember than
the orignal version (8.24), but the really remarkable aspect of the formula is that
it applies to processes that are much more general than X, = pt + 0 B;. We will
shortly find that it applies to essentially all of the processes that we have seen.
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Nevertheless, before we look to the general case, it is worthwhile to examine a
second example where the chain rule can be used to justify the box calculus version
of Itd’s formula (8.25).

Box CALCULUS AND FUNCTIONS OF GEOMETRIC BROWNIAN MOTION

The process defined by X; = exp(at + 0B;) is known as geometric Brownian
motion, and we will find it to be one of the most useful stochastic processes. Since
X, is a function of Brownian motion and time, a standard application of the space-
time version of 1t&’s formula given by Theorem 8.2 tells us that X satisfies

(8.26) dX, = (a + —;«a?) Xy dt + X, dB;.

Now, we consider a process defined by taking ¥; = f(t, X:). As before, this
process can be written as a function of Brownian motion Y; = g(t, B;). This time
we have g(t,z) = f(i,exp(at + oz)), and, if we are patient, we can again calculate
dY; by Theorem 8.2. First, by the direct application of the chain rule, we have

gt(t,z) = fi(t, exp(at + o)) + fz(t, exp(at + o)) explat + o)
and
9z(t, ) = fo(t,exp(at + o)) exp(ot + oz)o.
Finally, gz=(t, ) is the ugliest worm
o? exp(at + oz){ fo(t, exp(at + 0z)) + foz(t,exp(at + ox)) exp(at + oz)}.
By these calculations and an application of It&’s space-time formula, we find that
the process ¥; = g(t, By) = f(t, X:) satisfies
Y, =gu(t, Bu) di + ga(t, Be) dB. + 9aolt, Bu) di
={fe(t, Xz) + Xy fz (£, X1)} db + 0 X fz(8, X2) dB,

1
+ 'é'{detfz(t, -Xt) + UthZfa::c(t, _Xg)} dt.

When we collect terms and recall the formula (8.26) for dX;, we finally find a
formula that could be called 1t6’s Formula for functions of geometric Brownian
motion:

1
(8.27) dY: = fi(t, ;) dt + fo(t, Xi) X + —2—fm(t,Xt)¢72Xt2 dt.

Now, our task is to see how the identity (8.27) may be rewritten in the language
of the box calculus. From the formula (8.26) for dX; and the Box Calculus rules,
we see that dX; - dX; is shorthand for 02 X? dt, so the definition of the box product
tells us that the formula (8.27) also may be written as

(8.28) df (t, Xz) = fult, Xe) dt + fo (8, X3) d X + %fm(t,Xt) dX;-dX;.

This is ezactly the same as the formula (8.25) that we found for functions of
Brownian motion with drift. Moreover, this coincidence is not an accident. By
working Exercise 8.6, one can confirm that the formula (8.28) is valid whenever X;
is a smooth function of time and Brownian motion. In the next section, we will
find that the formula (8.28) is actually valid for a much larger class of processes.
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8.5. The General 1t6 Formula

The chain rule method for the derivation of formulas such as (8.24) and (8.28)
is limited in its range of applicability, but the same identities hold for essentially
all of the processes that we can write as stochastic integrals. To make this notion
precise, we need a formal definition of what we will call standard processes.

DEFINITION 8.1. We say that a process {X:: 0 <t < T} 1s standard provided
that {X:} has the integral representation

¢ ¢
Xt=:1;0+/ a(w,s)ds+/ b(w,s)dB; for 0<t < T,
0 0

and where a(-,-) and b(,-) are adapted, measurable processes that satisfy the inte-
grability conditions

P </OTla(w,s)|ds<oo> =1 gnd P </O.T|b(w,s)|2ds<oo) =1

The standard processes provide a natural home for the theory of Itd integration,
and one of the clearest expressions of this fact is that 1td’s formula continues to
apply. Any smooth function of a standard process is again a standard process with
an explicit representation as a stochastic integral.

THEOREM 8.4 (Itd's Formula for Standard Processes).
If f € CLY2(RTXR) and {X;: 0 <t < T} 15 a standard process unth the integral
representation

¢ ¢
Xt=/ a(w,s)ds+/ b(w,s)dB,, 0<t<T,
0 0

then we have

t af
f(t, Xt) =f(0, 0) + 'EE'(S, Xs) ds
0

£

of 1 [to? .
+ 0 %(S)Xs) dXs'*‘g[) W(S,X‘g)b (w,s) ds.

When we look at Theorem 8.4 in the language of the box calculus, it tells us
that for the process ¥; = f(¢, X;) we have -

1
(8:29)  dYi=fult Xs)dt+ fult, Xe) dX: + 5 faalt, Xe) dXe - dXe.

This is exactly the formula that we found by ad hoc means for Brownian motion
with drift and for geometric Brownian motion. The thrust of Theorem 8.4 is that
we can always use the Box Calculus, and we always have the elegant differential
representation (8.29). Never again will we need to repeat those long, ugly chain
rule calculations.

Because the proof of Theorem 8.4 follows the same general pattern that we used
in the proof of Theorem 8.1, the simplest It6 formula, we will not give a detailed
argument. Still, we should note that this more general formula has a couple of
new wrinkles. For example, the dX, integral is really two integrals, and we need
to do some work to get a proper understanding of the second ds integral. We will
return to the outline of the proof of Theorem 8.4 after the discussion of quadratic
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variation that is given in the Section 8.6, but first we will look at an even more
general version of Itd’s formula.

FUNCTIONS OF SEVERAL PROCESSES

‘We found considerable value in the examination of functions of several inde-
pendent Brownian motions, and we naturally want to extend our box calculus to
functions of several processes. Formally, we just need to extend our box calculus
multiplication table by one row and one column.

TABLE 8.3. EXTENDED BOX ALGEBRA

" [dt | dBY | dB?

di (0] 0 | O
dBI [0 | dt | 0
dBZ| 0| 0 | &

THEOREM 8.5 (1td’s Formula for Two Standard Processes).
If f € C*2(R x R) and both of the standard processes {X:: 0 < ¢t < T} and
{Y;: 0 < t < T} have the itegral representations

£ ¢
X¢=/ a(w, s) ds-l—/ b(w, s) dB;
0 0
and
¢ t
Yt=/ a(w,s)ds+/ Blw, s) dBs,
0 0

then we have

t t
(8.30) F(X0 Ye) = £(0,0) + / (X0, Ya) X, + / (X0, Ya) dY,
0 0 .
t
+%/ Foa(Xa, Ya) B2(w, ) ds
0
i
+ / foy (X, Vo) b(w, 5)B(w, ) ds
0

1 i
+3 | FnlXa %) B, ) do.

In the language of the box calculus, the It6 formula for Z; = f(X3,Y:) can be
written much more succinctly, or, at least, four lines may be reduced to two:

dZs =fo(X:, Y1) dX; + fy(X:, Y2) dYy
1 1
+ §fmm(-Xt) Yi)dX;  dX; + fo (X3, Y2) X, - dY; + §fyy(Xt, Y;) dY: - dY;.

USEFUL SPECIALIZATIONS

There are many useful specializations of the previous formula, but perhaps the
most natural is to take Y; = t and note that we can recapture our earlier It6 formula
for functions of a general process and time. A more interesting specialization is given
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by the choice f(z,y) = zy. In this case, we have fyz =0, fyy =0, and fry =1, s0
in the end we find

¢ ¢ ¢
(8.31) XY — XoYy = / Y, dX, + / X, dY, +/ b(w, s)B(w, s) ds.
0 0 0

This is the product rule for stochastic integration. In the case where one of the two
processes does not have a dB; component, the last ds integral does not appear, and
we find a formula that coincides with the familiar 1ule for integration by paits of
traditional calculus. Another special situation when we get the traditional formula
is when b(w, s) and B(w, s) are orthogonal in the stiong sense that

/t b(w, $)f(w,s)ds =0
0

for almost every w. This special case will be important to us much later in the
proof of the famous maitingale representation theorem.

One of the interesting aspects of the product rule (8.31) is that it can be
proved independently of It&’s formula — say by staiting with the product version
of telescoping. One then can prove Itd’s formula first showing that the product
rule (8.31) implies It8's formula for polynomial f and by extending the polynomial
formula to more general f by approximation arguments.

8.6. Quadratic Variation

We met the notion of quadratic variation informally in Chapter 6, where in
the course of making a direct calculation of [ BsdBs we found that if ¢, = t/n for
1=0,1,...,n, then

n
(8.32) D (B, =B ,)? Bt asn—co.
=1

Now, in order to establish the general It6 formulas described in the previous section,
we need to establish the analog of formula (8.32) for more general processes. This
development will also yield two important by-products. The first of these is a new
perspective on a class of martingales that generalize Bf — t. The second is a new
way to think about time — a way that will eventually tell us how we can view any
contimuous martingales as a Brownian motion with an altered clock.

The formal introduction of the quadratic variation requires a few basic defini-
tions. First, a finite ordered set of times {tp < ¢) <t < -+ <tp} with £ =0 and
tn =t is called a partstion of [0,t]. The mesh p(mr) of a partition = is then defined
to be the length of the biggest gap between any pair of successive times ¢, and ¢,1,
in .

Now, for any partition 7 = {tp < t; < ta < +++ < tp} of [0,¢] C [0,T] and for
any process {X;} on [0, T}, the m-quadratic variation of the process {X;} is defined
to be the random varnable

(5.39) (X = 3 (Ke, — X )"
=1

If there is a process {V;} such that Q,_(X:) converges in probability to V; for any
sequence of partitions {w} of [0, ¢] such that u(r) — 0 as n — co, then we say that
{V;} is the quadratic varation of {X;}. When the quadratic variation of {X;}
exists, it is denoted by (X);.
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The main goal of this section is to show that the quadiatic Variation of a
standard process can be given explicitly as an integral of the instantaneous variance
of the process.

THEOREM 8.6 (Quadratic Variation of a Standard Process). If X; 15 a stan-
dard process with the integral representation

X = /ota(w,s)ds-}—/tb(w,s)dB, where 0 <t < T,
then the quadratic variation of Xtoemsts, and it 15 gwen by
(X =/Otb2(w,s)ds for0<t£T
The proof of this theorem will require several steps, the easiest of which is to

show how to handle the first summand of the process {X;}.

ProOPOSITION 8.4. If a(w, s) 15 a measurable adapted process with

t
(8 34) / la(w, s)| ds < 0o almost surely,
0

then the quadratic varation of the process

¢
A =/ a(w, s) ds
0
ezists and 18 equal to zero.

Proor. For any w, the function u — f: a(w, 5) ds is uniformly continuous on
the interval (0, #], so for any € > 0 there is a §(w) such that for all 7 with u(7) < §(w)
we have

n t, 2 :, n N
Z (/t:-z a{w, s) ds) < 2o </m_x |a(w,s)|ds) Z (A:_l ]a(w,s)|ds>

=1 1=1
¢
< E/ |a{w, s)| ds.
0

By our assumption (8.34) on a(w,t), the last inequality tells us that Q,(A;) con-
verges with probability one to 0 as y(7) — 0 This is more than we need to complete
the proof of the proposition. ]

The more challenging part of our calculation of the quadratic variation of {X;}
comes from the contribution of the dB; integral. The analysis of this contribution
will itself take a couple of steps. The first of these is to study the quadratic variation
of a bounded continuous martingale. .

LemMmA 8.1. If{Z;: 0K s < t} 1s @ contwnuous martingele for which we

have supgc,<;1Zs| < B for a constant B < oo, then there 1s a finite constant
C such that

(8.35) sup E(Q2(2,)] < CE[(Z; — Z0)% < o
w
and, moreover,
n
8.36 li Bl{Z, - Z,_ )Y —0.
(8.36) o 2 Bl = 210 =
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PrOOF The square of Q»{Z;) can be arranged as
(8 37)
n n—1 n
QiZ) =Y (% — Zo ) +2) {(Zn —Z )2 > (%, - th_l)z} )
=1 3 g=1+1

and the mside sum can be estimated by applying the martingale property and the
boundedness hypothesis to obtain

=41

(8 38) E { i (2, ~ Z,,)° ft,] = E((Z; — Z+,)*|F:,) < 4B*
J

Now, when we apply this last bound (and the boundedness hypothesis) to the
identity (8 37), we then find
ﬂi} ]

< 12B2E((Z: — Zo)?),

BIQ2(2)] <4B® S Bl(Z, - Z,,_,)"

=1

+2E Iinz_l(zfq - Zts—l)zE I: Zn: (ZtJ - ZtJ—l)z

2=x1 g=1+1
-1

> (%~ 2, )

2=l

so we have established the bound (8.35) with C = 1282,
For the second part of the lemma, we first note that the modulus of continuty

p(b,w)=sup{ |Zy — Zy| : 0<Su<v<tand ju—v <4}

<4B%E[(Z; — %)% + 8B%E

18 bounded by 2B, and by the umform continuity of s — Zs(w) on [0, 1t goes to
zero as § — 0 for all w Therefore, if we take the expectation of the elementary
inequality

(8.39) Re=3 (Zi, = Z1,0)" < PP(u(m),0) - Qu(Z2)

=1

and then apply Cauchy’s inequality, we find

B(Rx) < |o*(u(m), w)ll£2apy @ (Ze)] L2 (ap)-

Fnally, by the first part of the lemma, ||Q+(Z;)||z2(4p) is bounded, and by the
dominated convergence theorem |{p?(p(m),w)||L2(ap) goes to zero as u(w) — 0, so
the second part of the lemma, 1s complete. 0

A NEw CLASS OF MARTINGALES

If we think back to our derivation of the simplest It6 formula, we found that
Q«(B;) % ¢, and an essential part of that proof rested on the fact that Bf ~ ¢
1s a continuous martingale. We plan to follow a similar path here, and our first
step is to recall the earlier suggestion that there is a large class of martingales that
generalize Bt2 —t. We will now explore these new martingales, and the first step 1s
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to recall that the conditional form of the It6 1sometry tells us that'for any b € H?

we have
t
]—;} -5 (/ b(w, ) du|]-'s>

(8.40) B [( / b, ) dBu)2

‘We now have an easy proposttion to introduce our new martingale partners.

PROPOSITION 8.5. If b(w,t) € H2[0,T}, then

¢ ¢
(8.41) Zy = / bw,u)dB, and M;=Z2%— / b*(w, u) du
0 0

are continuous martingales with respect to the standard Brownian filiration.

Proor We already know that Z; is a continuous martingale, so we only need
to consider M; The definition of M; and the martingale propeity of Z; give us

t
E(M; — M,|F) = E<z3 . / b%(w, u) du m)
8

¢
(8.42) - E( (Z — Z4)? — / b(w, ) du | ]:3),

8
and the conditional It 1sometry (8.40) tells us that the last expectation 1s equal to
zero, 50 the martingale property of M; is established. (]

ProposITION 8.6. Suppose that b(w,s) s a measurable, adapted process
such that

T
/ b4 (w,s)ds < C
0

with probability one for some constant C < oo If the process defined by
t
Zt=/b(w,s)st 0<tLT
0

15 bounded, then the quadretic varmation of {Z; : 0 < ¢t < T} emsts with
probability one, and 1t s gwen by

i
(Z)t=/ P(w,s)ds 0<t<T
0

Proor. If we let

t n t
Ar = Qx(Z:) _/ b (w,s) ds = Z {(Zt. - Z,.,)° —/ b?(w,s)ds ¢,

0 =1 tie1

then the summands
t,
d = (Ze, ~ Zy,_,)? —/ b%(w, s) ds
t\—l

are martingale differences (by the conditional It8 isometry), so by the orthogonality
of the d, we have

B(A2) =3 B(d)

7=1
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If we then apply the elementary bound (z + y)? < 222 + 232 to the summands of
d,, we find

n n £y 2
(8.43)  E(A2)<2> E((Zi —Z:_.,)")+2)_E [(/ b (w, 5) d.s> } :
=1 =1 ti-y

The first sum in the on the right-hand side of the bound (8.43) is easy to handle
because Lemma 8.1 tells us that

> E(Z, - Zi,,)*) — 0.
=1

To handle the second sum in the bound (8.43), we first introduce the modulus of
continuity

p(d,w) Esup{ / b (w,s)ds: 0<u<v<T and ju—v 36},
u

and note that p(d,w) < C, so we have

n ) 2
(8.44) Z( t bﬁ(w,s)ds> < plp(r), ) /Otbﬂ(w,smsp(u(w),w)a

=1 i1

Because p(m,w) is bounded and goes to zero for all w as p(w) — 0, the dominated
convergence theorem tells us that the expectation of the left-hand side of the bound
(8.44) goes to zero as p(w) — 0. 0O

FINALLY, THE PROOF OF THEOREM 8.6

All that remains is to assemble the individual pieces under the umbiella of a
nice localization. Accordingly, we let 7; denote the smallest value of u for which
we have u > 7 or any of the three conditions

(8.45) / la(w, 8)| ds > M, / P, s)ds > M, | / b(w, ) dBs| = M.
0 0 0
Now, since Qr(X:) = Qu(Xiary,) for allw € {w : & < Tar}, we have
¢
P(,Q,,(Xt) -—/ b?(w, s) ds] > e)
0

< P(|Q,T(Xt) — /ot b2(w,s) dsi >e t< TM> + Plru < t)

= P<|QW(XMTM) — /ot b2 (w, 8)1(t < 7ar) dsl > e) + P(mp < t),

and since X; is a standard process, we can choose M to make P(rys < t) as small
as we like. The bottom line is that it therefore suffices to show that

(8.46) Qr(Xinry) > /Ot b*(w, s)1(t < Tar) ds,

since we now see that this immediately implies

(8.47) Qr(X:) B /0 t b*(w, s) ds.
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¥ H ~

Next, if we write X¢ar,, as a standard process

—~ i t
T = Xopry, = / a(w, 8)L(t < ag) ds + / b(w, 8)1(t < 7a¢) dBs
0 0

¢ . —
=/ E(w,s)ds+/ b(w, s) dBs = A; + Zi,
0 0

then all that remains is to calculate the quadratic variation of X;. We begin by
noting that

Qr(X2) = Qu(A2) + Qu(Z2) + 2C (Az, Z2)
where

(8.48) Cx(A2, Zy) =i ( /ﬁt* A(w, s) ds) ( / b b(w, 5) st>

=1 11
Now, by the construction of 7, we know that @(w, s) = a(w, 8)1(t < Tar) more

than meets the hypotheses of Proposition 8.4, so Q(A;) — 0 as p(r) — 0. Also,
by Proposition 8.6,

- t
Qu(Z) & / b?(w, )1(t < Tar) ds.
0
Finally, by equation (8.48) and Cauchy’s inequality we have
(8.49) Cr(A1, Z1) < Q3 (A1)QE(Z),

so from the fact that Q,(Z;) converges in probability to a bounded random variable

and the fact that Q; (Z;) converges to zero in probability, we deduce that C, (E , Z)
converges 0 zero in probability as u(n) — 0. At last, we see that

i
(8.50) O (Xinmy) B /0 B(w, 8)L(t < 7a) ds,

and by our first reduction (8.46), we know that the limit (8.50) is all we need to
complete the proof of Theorem 8.6.

CLosiNG THE IT6 ForMULA Loop

This brief development of quadratic variation is all that we need to complete
the proof of the Ité formula for a function of time and a standard process, but for
a proof of the It6 formula for a function of two processes we need one more idea.
‘We need to know that for the standard processes

¢ ¢
Xt=/ a(w,s)ds+/ b(w, s) dBs
0 0
and
¢ ¢
Yt=/ a(w,s)ds+/ B(w, s)dBs,
0 0
we have that

Qu(Xe, V) =) (X, — Xo ) (Vs — Vi)

=1
satisfies

(8.51) Qx5 b, $)B(w, 8) ds a5 () — 0.
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Fortunately for the length of this chapter, the preceding result follows immediately
from our earlier work and a well-known polarization trick.

The key observation is that because X;+Y; and X; —Y; are standard processes,
Theorem 8.6 tells us that the left-hand side of

19e(X, + Y5) — 2Qu(Xe — 7) = Qu(Xe, ¥

converges in probability to
¢ t
3 [ 0w+ w0 ds = ¢ [ (bw,9) = Bl o)P s
0 0

= /ot b(w, 5)B(w, ) ds.

Now, we have all of the tools that are needed to apply the same analysis-synthesis
approach to f(X:,Y:) that we applied to f(B:) at the beginning of the chapter.

8.7. Eixercises

To some extent, all of stochastic calculus is an exercise in the application of
It6’s formula. These exercises therefore focus on ideas that are particular to this
chapter. The first exercise invites the reader to follow the plan of Theorem 8.1
to complete the proof of Theorem 8.2, the space-time It6 formula. This exercise
should be done by everyone. The other exercises illustrate diverse topics, including
integration by parts for stochastic integrals, applications of harmonic functions, and
nice local martingales that fail to be honest martingales.

EXERCISE 8.1 (Very Good for the Soul). Give an absolutely complete proof of
Theorem 8.2. Take this opportunity to pick every nit, to revel in every morsel of
detail, and — forever after — be able to greet variations of Itd’s formula with the
warm confidence of “Been there; done that.”

ExERCISE 8.2 (An Integration by Parts). Use It6’s formula to prove that if
h € CY(R*) then

/0 " 1(s)dB, = h(t)Be — /O 1 (5)Bs ds.

This formula shows that the It integral of a deterministic function can be calculated
just in terms of traditional integrals, a fact that should be compared to formula
(8.10), where a similar result is obtained for integrands that are functions of B,
alone.

ExERCISE 8.3 (Sources Harmonic Functions and Applications).

One of the most basic facts from the theory of complex variables is that the real
and imaginary parts of an analytic function satisfy the Cauchy—-Riemann equations;
that is, if f(z) is a differentiable as a function of z = z + iy and if we write
flz +iy) = u(z,y) + iv(z,y), then

ou v Ou v
—==— and —=—-4—.
Oz By Oy Oz

(a) Use these equations to show that u(z,y) and v(z,y) are harmonic. What
harmonic functions do you obtain from the real and imaginary parts of the analytic
functions exp(z) and zexp(z)?
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(b) Consider the family of hyperbolas given by
H(a) ={(z,y) : 2* —y* = a}.
‘What is the probability that the standard 2-dimensional Brownian motion B, start-
ing at (2,0) will hit H(1) before hitting H(5). For a hint, one might consider the

harmonic functions that may be obtained from the complex function z — 22.

EXERCISE 8.4 (More Charms of the Third Martingale).

(a) The martingale M; = exp(a:B; — ot/2) is separable in the sense that it is
of form f(t,B:), where f(t,z) = @(t)i(z). Solve the equation f; = —3 for under
the assumption that f(t,z) = ¢(¢)w(z) and see if you can find any other separable
martingales.

(b) By expanding M; = exp(aB; — &®t/2) as a Taylor series in o, we can write

My =) o*Hy(t, By),
h=0
where the Hy(¢,z) are polynomials. Find the first four of the Hy(¢,z), and show
that for each k € Z™ the process defined by

Mt(k) = Hk (t, Bt)
is a martingale. You will recognize the first three of these martingales as old friends.

ExERrCISE 8.5 (Nice Local Martingale, But Not a Martingale).

The purpose of this exercise is to provide an example of a local martingale
that is L2-bounded (and hence uniformly integrable) but still fails to be an honest
martingale.

(a) First, show that the function f(z,y,2) = (z2 + 12+ 22) "7 satisfies Af =0
for all (z,y,2) # 0, so that if B, is standard Brownian motion in R® (starting from
zero), then for 1 <t < co the process defined by

M, = f(By)

is a local martingale.
(b) Second, use direct integration (say, in spherical coordinates) to show

(8.52) EB(M?) = % for all 1 <t < oo.

(c) Third, use the identity (8.52) and Jensen’s inequality to show that M; is
not a martingale.

ExERCISE 8.6 (A Box Calculus Verification). The purpose of this exercise is
to generalize and unify the calculations we made for functions of Brownian motion
with drift and geometric Brownian motion. It provides a proof of the validity of
the box calculus for processes that are functions of Brownian motion and time.

(2) Let X; = f(¢, By), and use It6’s Lemma 8.2 to calculate dX;. Next, use the
chain rule and 1t3’s Lemma 8.2 to calculate dY;, where ¥; = g(t, Xz) = g(t, (¢, By))-

(b) Finally, calculate d.X;-dX; by the box calculus and verify that your expres-
sion for dY; shows that the box calculus formula (8.28) is valid for 1.



CHAPTER 9

Stochastic Differential Equations

Virtually all continuous stochastic processes of importance mn applications sat-
isfy an equation of the form

(9.1) dX; = p(t, Xi) dt + o(t, Xi) dB; with Xo = zq.

Such stochastic differential equations, or SDEs, provide an exceptionally effective
framework for the construction and the analysis of stochastic models. Because
the equation coefficients p and ¢ can be interpreted as measures of short-term
growth and short-term variability, the modeler has a ready-made pattern for the
construction of stochastic processes that reflect real-world behavior.

SDEs also provide a link between probability theory and the much older and
more developed flelds of ordinary and partial differential equations. Wonderful
consequences flow in both directions. The stochastic modeler benefits from centuries
of development of the physical sciences, and many classic results of mathematical
physics (and even pure mathematics) can be given new intuitive interpretations.

Our first task will be to introduce three specific SDEs of great practical im-
poirtance and to show how explicit solutions for these equations can be found by
systematic methods. We will then develop the basic existence and unigueness theo-
rem for SDEs. This theorem provides an initial qualitative understanding for most
of the the SDEs that one meets in practice.

9.1. Matching Itd’s Coefficients

One of the most natural, and most important, stochastic differential equations
1s given by

(92) dX; = [.LXt dt 4+ oX;dB; with Xpg =120 > 0,

where the equation coefficients —co < g < co and ¢ > 0 are constants. The
intuition behind this equation is that X; should exhibit short-term growth and
short-term variability in proportion to the level of the process. Such percentage-
based changes are just what one might expect from the price of a security, and the
SDE (9.2) is often used in financial models.

How can we solve an equation such as (9.2)7 Because of our earher work, we
can recognize equation (9.2) as the SDE for geometric Brownian motion, but we can
also proceed more systematically. Since It6’s formula is the only tool that 1s even
remotely relevant, the obvious idea is to try to solve equation (9.2) by hunting for a
solution of the form X; = f(¢, B;). When we apply Itd’s formula to this candidate
we see

(93) e = { 10,80 + 3l B) | o+ (0, B B
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s0 in order to make the coefficients of equation (9.3) match those of equation (9.2),
we only need to find an f(¢,z) that satisfies the two equations

(9-9) wf@ z) = fi(t,z) + ‘é‘fm(t,m) and o f(t,z) = fu(t, ).

The second equation can be written as f/f = o, and a solution of this equation
is given by f(t,xz) = exp{oz + g(t)), where g(-) is an arbitrary function. When we
plug this expression for f into the first equation of the system (9.4), we see that g
needs to satisfy ¢'(t) = p — 0% The bottom line is that the solution of equation
(9.2) is given by

(9.5) X: = zgexp ((,u - -;-az)t + aBt> .

For the moment, we must admit the possibility that there may be other solu-
tions to the SDE (9.2), but we will soon prove a general result that will tell us that
formula (9.5) actually gives the unique solution. The process defined by either (9.2)
or (9.5) is called geometric Brownian motion, and it is one of the real workhorses of
stochastic calculus. No other process is used more widely in finance and economics.

LLOOKING BACK: DASHED EXPECTATIONS

The solution (9.5) of the SDE (9.2) could not be simpler, yet it already has a
practical message. We think of equation (9.2) as a model for the price of a risky
asset with an expected rate of return u, and, when we take the expectation in
equation (9.5), we find

E(X;) = zgexp(ut).
Perhaps we should not be surprised that this expectation does not depend on o,
but, if we consider the case when ¢2/2 > u > 0, there is some shocking news. The
law of large numbers tells us that P(B:/t — 0) = 1, and, when we apply this fact
0 equation (9.5), we find

P( lim X; =0) =1

i—c0

In other words, the price of our risky asset goes to zero with probability one, despite
the fact that its expected value goes to plus infinity at an exponential rate. The

prudent investor is invited to probe the meaning of this modest paradox of risk
without the possibility of reward.

9.2. Ornstein—Uhlenbeck Processes

The coefficient matching method that we used to solve the SDE of geometric
Brownian motion is often effective, but it can fail even in simple cases. Our sec-
ond example illustrates the possibility of failure and shows way that the matching
method can be extended to cover further cases of importance. The equation that
we will investigate is given by

(96) dX; = —aXdt + odB; with Xy = g,

where o and o are positive constants. "The drift term ~a.X:d¢ in this equation is
negative when X; is larger than zero, and it is positive when X is smaller than zero;
so, even though the process will never be free of random fluctuations, we can expect
X to be drawn back to zero whenever it has drifted away. Moreover, because the
local variability of X is constant — not proportional to the level as in the case of

9.3. MATCHING PRODUCT PROCESS COEFFICIENTS ~139

geometric Brownian motion — we expect X; to fluctuate vigorously:even when.it
is near zero. As a consequence, we also expect X; to make many crossings of the
zero level, unlike geometric Brownian motion, which never crosses through zero.

This model became well known after 1931, when it was used by the physicists
L. S. Ornstein and G. E. Uhlenbeck to study behavior of gasses, although they
needed to express the model a little differently because the theory of stochastic
differential equations would not be born until more than a dozen years after their
work. What interested Ornstein and Uhlenbeck was the velocity of an individual
molecule of gas. They were motivated by the kinetic theory of gases which states
that the molecules of a gas are in constant motion and the average velocity over all
of the particles is governed by the laws of pressure and temperature. Ornstein and
Uhlenbeck reasoned that an individual molecule could be expected to speed up or
slow down, but, to be consistent with the constant average velocity of the ensemble
of molecules, the difference between the velocity of the individual particle and the
ensemble mean must exhibit reversion toward zero.

Mean reversion stories occur in many fields, so there is little wonder that the
Ornstein—Uhlenbeck model has been applied (or rediscovered) in a variety of con-
texts. In finance, the Ornstein—Uhlenbeck process was used by O. A. Vasiéek in one
of the first stochastic models for interest rates. In that context, X; was intended
to capture the deviation of an interest rate around a given fixed rate — say a cen-
tral bank’s target rate, or perhaps the equilibrium interest rate in a model for the
economnty.

For us, the immediate attraction of equation (9.6) comes from the fact that it
has a simple solution, yet that solution is not of the form f(¢, B;). If we try to
repeat the coefficient matching method based on 1t6’s formula, we are doomed to
failure. Nevertheless, there is a way to make the coefficient matching method work;
we simply need a larger set of processes in which to pursue our match. To find a
class of simple processes that have SDEs that include the Ornstein—Uhlenbeck SDE
(9.6), we need to find a new class of processes in which to carry out the coefficient
matching procedure.

9.3. Matching Product Process Coefficients

If one experiments a bit with the O-U equation (9.6), it is easy to come to
suspect that the solution X; might be a Gaussian process, and because of our
earlier work we might decide to look for a solution of equation (9.6) as an Itd
integral of a deterministic function. This idea does not quite succeed, but it puts
us on the right track.

The product of a Gaussian process and a deterministic process is a Gaussian
process, so we can also look for a solution to equation (9.6) in the larger class of
processes that can be written as

©0.7) X, = a(t) {:1:0 + /0 “5s) st},

where a(+) and b(-) are differentiable functions. If we now apply the product rule
(or the box caleulus), we find that

dXt = a'(t) {!Eo + /: b(S) st} dt + a(t)b(t) dBt
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In other words, if we assume that a(0) = 1 and a(t) > 0 for all ¢ > 0, then the
process defined by formula (9.7) is a solution of the SDE.

I
t
(98) (}/Xt = %'((t—))'Xt dt + O,(t)b(t) dBt with XO = Zg.
The relationship between equations (9.7) and (9.8) now gives us a straightforward
plan for solving almost any SDE with a drift coefficient that is hinear in X; and
that has a volatility coefficient that depends only on ¢. We will illustrate this plan
by solving the SDEs for the Ornstein—Uhlenbeck process and the Brownian bridge.

SowviNg THE ORNSTEIN-UHLENBECK SDE

For the coefficients of equation (9.8) to match those of the Ornstein~Uhlenbeck
equation (9.6), we only need to satisfy the simple equations
a'(t)
= — alt b ty=o.
L = e end () =0
The unique solution of the fiist equation with a(0) =1 is just a(f) = exp{—at), so
the second equanon sells us b{t) = o exp(of). The bottom line is that we see that
a solution to equation (9.6) is given by

7 t
(9.9) X =e {mo + cr/ exs st} = gpe " + a/ e~t=s) gp .
0 0
‘When we look back on the solution of the Ornstein—Uhlenbeck given by formula
(9.9), we find several interesting features. First, we see that as ¢ — co the influence
of the initial value Xy = zp decays exponentially. We also have E(X;) = zoe~ot
since the dB; integral has mean zero, so the mean E(X;) also goes to zero rapidly.
Finally, when we use the It0 isometry to compute the variance of X, we find

t 2
(9.10) Var(Xy) = 0? | e~20-9)ds= T {12},
’ 0 2c
and from this variance calculation we see that
2
o
Var(X;) — o7

Way back in Proposition 7.6, we learned that a dB; integral of a deteiministic
process will give us a Gaussian process, so as t — oo we see that the distribution of
X converges exponentially to a Gaussian distribution with mean zero and variance
0?/2a. As 1t happens, we can think of the limiting distribution N(0,0?/2c) as
a kind of equilibrium distribution, and if we take the starting value Xy to be a
random variable with the N(0,02/2c) distiibution, then one can check that the
distribution of X; is equal to the N (0, 0%/2¢) distribution for all £ > 0.

SOLVING THE BROWNIAN BRIDGE SDE

After our construction of Browman motion, we observed in the exercises that
there is a Gaussian process {X;} defined on [0, 1] such that Cov(X,, X;) = s(1—1)
for 0 < s < t. We also saw that we could represent the process in terms of standard
Brownian motion as

(9.11) Xt = Bt - tBl for 0<¢ <1
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We also suggested that one could think of this Brownian bridge process as a Brow-
nian motion that is constrained to return to 0 at time 1. Now, we will find that It6
integration gives us a method for representing the Brownian bridge in a way that
helps us understand the nature of the forces that bring the process back to zero at
the correct time.

Take ¢t € (0,1) and consider the value of X; at time ¢t. What dnft might one
reasonably require in order for X; to be coerced to hit 0 at time 1?7 Because we
need to go from X; to 0 in the remaining time of 1 —¢, the most natural suggestion
is to consider a drift rate —X;/(1 — t), and if we write the simplest genuine SDE
with such a drift, we come to the equation

Xi
1-¢
We will find that this equation has a unique solution with exactly the required
covariance. We will also see that the solution is a Gaussian process so the SDE
(9.12) does indeed characterize the Brownian bridge.

The coefficient matching method for product processes tells us how to solve the
Brownian bridge SDE (9.12) with delightful ease. When we match the coefficients
of (9.12) with those Irom the product process (9.8) we find

(9.12) dXy = —

dt +dB; with Xy = 0.

% = _% and a{t)b(t) =1,

so we find a(t) = 1 — ¢t and b(t) = 1/(1 — t). We therefore find that a solution to
the SDE (9.12) is given by

4
(913) X = (1 - t)/ 1—1;‘ dB; forte [0, 1)
0 1—

Since (9.13) expresses X; as a nonrandom multiple of a dB; integral of a non-
random function, Proposition 7.6 again tells us that X is a Gaussian process. Also,
we can easily confirm that the two processes have the same covariance function.
First, we note that

ow, 8) def 1—i—§ € H20,1) for all ¢ € [0,1),

so E(X;) = 0 for t € [0,1). To complete the covariance calculation for 0 < s <,
we only need to compute

B(X, X)) = (1 - 8)(1 - O)E UO - dB, /Ot ﬁdBv] .

But we have
s 1 i 1
—_— =0
E[/o l—udBu/s 1_UdB,,}

since the last two integrals are independent, and by It6’s isometry we also have

2|([ o) |- [ tapes=sto-o.

When we assemble the pieces, we find Cov(X,, X;) = s(1 — t), as we hoped.
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LookiNg BACK — FINDING A PARADOX

When we look back on the Brownian bridge representations as a stochastic
integral (9.13), or as a function of standard Brownian motion (9.11), we see the
seeds of a paradox. In the integral repiesentation (9.13), we see that X; depends
on the Brownian path up to time ¢, but in the function representation (9.11) we
seem to see that X; depends on B;.

This may seem strange, but there is nothing wrong. The processes

t
Xt=(1-—t)/ l—lsstandXt’=Bt—tB1
0 —

are both honest Brownian bridges. They can even be viewed as elements of the
same probability space; nevertheless, the processes are not equal, and there is no
reason to be surprised that the two filtrations

.7-',:=U{Xs:0_<_sst}and}'{:a{X;:OS_sst}

are also different. For an even more compelling example, consider the process Xy
defined by taking X/ = X!_,. The process X{' is just one more Brownian bridge,
yet its natural filtration is completely tangled up with that of X]!

9.4. Existence and Uniqueness Theorems

In parallel with the theory of ordinary differential equations, the theory of SDEs
has existence theorems that tell us when an SDE must have a solution, and there
are uniqueness theorems that tell us when there is at most one solution. Here, we
will consider only the most basic results.

THEOREM 9.1 (Existence and Uniqueness). If the coefficients of the stochastic
dfferentral equation

(9 14) aXy = pu(t, Xi) db + o(t, Xz) dBy;, with Xo = zg and 0 <t < T,
satisfy a space-variable Lipschitz condition

(9.15) |1t 2) = p(tYI* + ot ) - o(t,9) [ < Ko —y|?

and the spatial growth condition

(9.16) e, 2) +lo(t,2)* < K(1 +[zf?),

then there emsts a continuous adapted solution X of equation (9.14) that s una-
formly bounded wn L2(dP):

sup E(X?) < oo.
0<t<T

Moreover, 1f X; and 'Y, are both continuous I,2 bounded solutions of equation (9.14),
then

(9.17) P(X; =Y, for allt €{0,T] ) = 1.
NATURE OF THE COEFFICIENT CONDITION

A little experimentation with ODEs 1s sufficient to show that some condition
such as (9.16) is needed in order to guarantee the existence of a solution of the SDE
(9.14). For example, if we take

o(t, ) =0 and p(t,z) = (B~ 1)"12f with 8 > 1,
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then our target equation (9.14) is really an ODE dressed uprin SDE clothing: &
dX, = (B—1)"1XPdt with Xo = 1. ’
The unique solution to this equation on the interval [0, 1) is given by
Xp=(1-t)"/E,
so there is no continuous solution to the equation on [0, 7] when T > 1. What runs

amuck in this example is that the coefficient u(t,z) = (8 — 1)7'zP grows faster
than z, a circumstance that is banned by the coefficient condition (9.16).

PROOFS OF EXISTENCE AND UNIQUENESS

The proof of the uniqueness part of Theorem 9.1 is a bit quicker than the
existence part, so we will tackle 1t first. The plan for the proof of the uniqueness
theorem for SDEs can be patterned after one of traditional uniqueness proofs from
the theory of ODEs. The basic idea 15 that the difference between two solutions
can be shown to satisfy an integral inequality that has zero as its only solution.

From the representation given by the SDE, we know that the difference of the
solutions can be written as

¢ ¢
Xo=Yi= [ s, X0) = s, Y] ds + [ [o(s, ) (s, 70) dB,
0 0
so by the elementary bound (u 4 v)? < 2u? 4 2v? we find

F - <28 K/ot”(S»Xs) — (s, ¥2) ds> 2}

([ oo —a(s,m)d&f

By Cauchy’s inequality (and the 1-trick), the first summand is bounded by

+2F

¢
(9.18) 28| [ lulo, X.) - o, Yl as]
0
whereas by the It6 isometry the second summand simply equals
t
(9.19) 28 { / lo(5, Xs) — (s, Yo)|? ds]
0

Here we should note that the use of the 1t6 isometry is indeed legitimate because
the Lipschitz condition (9.15) on ¢ together with the L2-boundedness of X; and ¥;
will guarantee that

(9.20) lo(s, Xs) — o(s,Ys)| € H2[0,T].

When the estimates (9.18) and (9.19) are combined with the coefficient condi-
tion (9.15), we find that for C = 2K max(T, 1) we have

¢
(0:21) B(X~Yi) < C [ B(X. - %) ds < oo.
0
If we set g(t) = B(}X; — Y;|%), the last equation tells us that

T
(9.22) 0<gt)<C / g(s)dsforall 0 <t < T,
0
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and we will shortly find that this is just the sort of integral inequality that is good
enough to show that g(t) is identically zero.

To complete the argument, we first let M = sup{g(t) : 0 < ¢ < T} and then
note that (9.22) tells us g(t) < MCt. By n successive applications of (9.22) we see
that g{t) £ MC™™/nl. Now, since n! grows faster than C™", the arbitrariness of
n finally tells us that g(¢) = 0 for all ¢ € {0,7]. This brings us almost all of the
way home. If we simply use the fact that g(t) = 0 for each rational t, we see by the
countability of the rationals that we also have

P(X, =Y, for all rational t € [0,T)) = 1.

The strong uniqueness condition (9.17) that we wanted to prove now follows im-
mediately from the continuity of X; and Y;.

ITERATION SOLUTIONS FOR SDESs

Our proof of the existence theorem for SDEs is also based on an idea from the
theory of ODEs — Picard’s iteration. For SDEs the iterative scheme is given by

taking X§°) = xo and by defining a sequence of processes by
¢ ¢
(9.23) XD = g +/ (s, X)) ds +/ o(s, X™) dB,.
0 0

Before we get too carried away with this fine idea, we should check that the
iterations actually make sense; that is, we should verify that the integrals on the
right-hand side of equation (9.23) are always well defined.

Lemma 9.1, If X™ is L2-bounded on [0,T], then

(9.24) o(t, X{™) € H2(0, T and p(t, X™) € L2{[0,T) x Q) .

Moreover, the process Xt("“) defined by equation (9.28) 15 L?-bounded on [0, T.
PrOOF. By the L2-boundedness of Xt("), we can set

sup E(X™?) =B < oo,
tef0,7)

and if we invoke the bound (9.16) in the simplified form |o(t,z)|? < K (1 + z?), we
immediately find

T
E / lo(t, XS dt| < TK(1+ B).
0

We therefore have o(t, X{™) € H2 [0, T}, so by the Itd isometry we also have

E [( /0 " (s, X 435)2} —E [ /0 (s, X2 ds] <TK(1+ B).

Finally, the growth condition (9.16) also gives us |u(s,z)[> < K(1 + z2), so we
similarly find by Cauchy’s inequality that for all 0 < ¢ < T one has

E [(/Ot u(s,Xé"’)dS>2

The bottom line is that both integrals in the iteration (9.23) are well defined and
L%-bounded on [0, 77, so the proof of the lemma is complete. a

<TK(1+B).
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PLAN FOR CONVERGENCE . Ty :

The next step is to show that the sequence of processes X,f") defined by the
recursion (9.23) actually converges to a limit. We will then need to verify that this
limit is indeed a genuine solution of the SDE (9.14). Our first technical challenge
is to prove that the approximations generated by the recursion (9.23) will be a
Cauchy sequence in the uniform norm on C[0, T with probability one. The next
lemma, provides the essential step in the derivation of this fact. Curiously, the proof
of the lemma closely parallels the argument that we used to obtain the uniqueness
theorem.

LEMMA 9.2. If p and o satisfy the coefficient condition (9.15), then there is
a constant C such that the processes defined by the iteration (9.23) satisfy the
inequality:

i
(9.25) E [Dsup |x {0 X§")|2] <C /0 E(XM™ — X2 g,

<s<t

Proor. To prove the lemma, we first note that the difference X§"+1) - Xé")

can be written as the sum of a drift texm
¢
(9.26) D = [ fu(e, X6) = s, X)) ds
and a second “noise” term,
¢
(9.27) My = / [o(s, X)) = a(s, X=D)] dB,.
0

Here, we should note that the process {M;} is in fact a martingale because we have
already seen that

5 (s, X™) € H2[0,T] for all n > 0.
If again we apply the elementary bound (u + v)? < 2u? + 2v?, we then see that

(9.28) sup |XH) — X(MW2 <9 sup M2 42 sup D2,
0<s<t 0<s<t 0<s<t

so we can pursue the two terms individually.
To estimate the drift term, we simply use Cauchy’s inequality to see that

¢
(9-29) sup D? < t/ s, X™) — p(s, X)) ds.
0<s<t 0
To deal with the martingale term, we first call on Doob’s L? inequality to get
E( sup Mg) < AB(MD),
0<s<t

and then we calculate BE(M2) by the Itd isometry to give

13
(9.30) E< sup Mf) <A4E [ / lo(s, XY — o (s, X~ DY)2 ds].
0

0<Ls<t
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For the final step, we tie the package together with the coefficient condition
(9.15) to find

¢
E| sup |X{~tD) — X§">|2] < 8E [f lo(8, X)) — (s, X=DY)2 ds]
0

0<s<t
t .
+2E [ / (s, X)) ~ (s, XD)J2 dS]
0

t
(9.31) <c / E(IXM — XVP) ds,
0

where it suffices to take C' = 8K max(1,T) to justify the last inequality and to
complete the proof of the lemma. O

EXISTENCE OF THE LiMIT

We can now show that the processes Xt(n) converge with probability one to a
continuous process X;. If we let

g =E [ sup (XD — x(m) 12} ,
0<s<t
Lemma 9.2 then tells us that

(0.52) my <o [ Cgnoi(s)ds, n> 1
0

Except for the appearance of the subscripts, this is precisely the mequality we used
in the umiqueness argument. The rest of the proof follows a famuliar pattern.

To start the ball rolling, we first note that coefficient conditions imply that
go(t) < M for some constant M and all ¢ € [0,7). Now, by one application of
inequality (9.32), we also see that g1(t) < MCt, and by induction we find more
generally that

(9.33) 0 < gn(t) S MC™/n!
From the last bound and Markov’s inequality, we see
P ( sup XD _ x(™)| > 2—"> < MC™T™2%" [n),
0<s<T
so the familiar Borel-Cantelll argument now tells us that there is a set Qg with

probability one such that for all w € Qg the continuous functions ¢ Xt(n)(w)
form a Cauchy sequence in the supremum norm on C[0, 7). The bottom line is that

for all w € Qo there is a continuous function X:(w) such that Xt(") {w) converges
unformly to X:(w) on [0, T].

L? BOUNDEDNESS

We now know that we have a well-defined continuous process {X;* 0 <t < T},
and after a few simple checks we will be able to show that it is the desited solution
of the SDE (9.14). The first order of business is to show that X; is L2-bounded on
[0, T, and that we have

X™ s X, in L*(dP) for all ¢ € [0, T)

In fact, both properties turn out to be easy consequences of our earlier estimates.
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Specifically, by the definition of g,, we have ply
(9.34) XY = X | L2 gapy < T#ga(T)? for all ¢ € [0,T),

and, since the sequence {gn(T)*} is summable, we see that {Xt(")} is a Cauchy

sequence in L2(dP). As a consequence, Xt(") also converges in L2(dP) and by
uniqueness of limits it in fact converges to X in L?(dP). Finally, by summing the
bound (9.34), we obtain the required L%(dP) boundedness together, and we even
have an explicit bound:

(o o]
1%l z2apy < 9o(T)E + > ga(T)? for all £ € [0, 7).

n=0

12 CONVERGENCE

The next step is to note that by the second inequality of (9.31), we also have
T
B [ lote, X4 = (s, X as)
0

T T
<c / B(X — X=D[2)ds < C / on1(s) ds,
0 0 _

and, since gn—1(s) is monotone increasing in s, the last inequality gives us the norm
bound

1

(9.35) llo(t, X = ot X Laapwany S C3T2 931 (T)-

In exactly the same way, the second inequality of (9.31) also gives us the bound
1

(9.36) st X87) = e, X z2(apay < 3T g5a(D):

1
Now, from the bound (9.35) and the It5 isometry, the summability of the g2 (T')
implies

¢ £
(9.37) / o(s, XY dB, — / o(s,X,)dB; in L*(dP).
0 0
1
Finally, the bound (9.36) plus the summability of gz (T") gives us

i t
(9.38) / p(s, X™)ds — / u(s, Xs)ds  in L*(dP).
0 [

SOLUTION OF THE SDE

Now, we need to check that X;(w) is an honest solution of the SDE (914)
When we let n — oo in the recurrence (9.23), we see on the left-hand side that with
probability one we have

x™ - X, uniformly on [0,7].
To handle the right-hand side, we just note that by the limits (9.38) and (9.37)

there is a subsequence {n} such that as k — o0

¢ ¢
(9.39) / u(s, X)) ds — / w(s, Xs)ds as. forallt€(0,7]NQ
0 0



146 9 STOCHASTIC DIFFERENTIAL EQUATIONS

and
¢ ¢
(9.40) /0 o(s, X)) dB, — / o(s,Xs)dBs as. foralte(0,T]nQ.
0
Therefore, when we take the limit in the recurrence (9.23) as ny — co, we find that

there 1s a set Qp with P(Q) = 1 such that
(9.41)

t t
X =mp +/0 (s, X;)ds +/ o(t, Xs)dBs for all ¢ € [0, T]NQ and w € Q.
0

Finally, sir.me b.oth sides of equation (9.41) are continuous, the fact that it holds on
[0,T)N Q implies that it holds on all of [0,7] for all w € Q.

9.5. Systems of SDEs

If the theory of differential equations were confined to one dimension, we would
not have airplanes, radio, television, guided missiles, or much else for that matter.
Fortunately, the theory of differential equations carries over to systems of equations
and the same is naturally true for SDEs. ,

"I‘o keep our notation close to that of our one-dimensional problems, we often
find it useful to write systems of SDEs as

(9.42) dX, = [(t, %) dt + o(t, ;) dB;, with Xo = zo,

where we have

w(t, X) dB}
Ha (t) Xt) dBt2
(9.43) it %) = : and  dB;=| -
a(t, %) dBy
together with
g1 012 ‘- Oud
O21 Oz '+ 0o
(9.44) o(t, X)) = ,
Od1 042 **° Odqgd

where we use the shorthand o,, = ,,(t, X;). The basic existence and uniqueness
theorem for SDEs extends to the case of SDE systems with only cosmetic changes.

EXAMPLE: BROWNIAN MOTION ON A CIRCLE

. If we let X; = f:os(Bt) and ¥; = sin(B;), the two dimensional process (X3, Y:)

S known as Brownian motion on a circle. The associated system of SDEs is given
Y

_ 1
dX; = —sin(B;) dB; — 5 cos(B;) dt = —Y; dB; — %Xt dt
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and
1
4%, = cos(By) dB, ~ 5 sin(By) di = X, B, ~ %Yt dt,

o1 in vector notation
Xe| 1 |X, ~Y; 0] [dB}
o] =3 [ [ o] e
In this case, we see that the second Brownian motion does not have an honest role

in the process. This degeneracy is reasonable because Brownian motion on the
circle is essentially a one-dimensional process that just happens to live n R,

EXAMPLE: SYSTEMS OF LOCATION AND MOTION

Some of the most important systems of SDEs arise in telemetry where the task
is to observe a moving object from a distance and to make the best possible estimate
of 1ts location and velocity. To give a simple illustration of such a problem, consider
a satellite that is designed to maintain a fixed location over a point on the Earth’s
surface — the typical situation of a communications satellite in geosynchronous
orbit. If we focus on just one component X; of the location vector and the cor-
responding component of the velocity vector, then perhaps the simplest model for
the change in the location variable uses the velocity variable and a random error:

dX, = Vydt + o1 dB}.

Also, if the system is designed to maintain a zero velocity then the usual mean
reversion argument suggests that we might model the evolution of the velocity
component by an Ornstein—Uhlenbeck process:

dV; = —aVidt + o2 dBf.

In vector notation, this system can be written as
Xt _ ‘/t g1 0 ng'
o[ [ o3 o) 2]

This system is too simple to be taken very seriously, but it is a stepping stone
to a truly major enterprise. When we couple these system equations together with
observation equations that model the relationship between observables and the
underlying system variables, we then have the basis for an estimation of position
and velocity. Such estimates can then be used for the puipose of control — either
of the observed systems, as in the case of a satellite, or of an independent system,
such as a heat-seeking anti-aircraft missile.

Engineering systems built on appropriate elaborations of these 1deas are ubig-
uitous. They were first used in military hardware, and their descendants are now
critical elements of all major systems that are designed to fly, orbit, or shoot. More

recently, these models have served as essential components in automated manufac-
turing systems and anti-lock brakes for automobiles.

9.6. Exercises

The first four exercises provide essential practice in the solution of SDEs. The
fifth exercise then gives an extension of the recurrence technique that was at the
heart of our existence and uniqueness proofs. Finally, the sixth exercise points out a
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common misunderstanding about the diffusion parameter o of geometric Brownian
motion.

EXERCISE 9.1. Solve the SDE
dX; = (—aX: + B) di + o dB; where Xo = zo and a > 0,
and verify that the solution can be written as
¢
Xi=e (fL‘o + é(e"‘t ~1)+ a/ e®s st> .
o4 0
Use the representation to show that X; converges in distribution as ¢ — co, and
find the limiting distribution. Finally, find the covariance Cov(X,, X).
EXERCISE 9.2. Solve the SDE
dX; = tX, dt + ¢t'/2dB, with Xo = 1.

EXERCISE 9.3. Use appropriate coefficient matching to solve the SDE
Xo=0 dX;= —21X‘t dt++/2t(1 —t)dB; 0<t<].
Show that the solution X; is a Gaussian process. Find the covariance function

Cov(Xs, X:). Compare this covariance function to the covariance function for the
Brownian bridge.

EXERCISE 9.4. Show that if X; is a process that satisfies Xo = 0 and
dX; = a(X;) dt + o(Xy) dBy,

where a(-) and o(-) are smooth functions and (-) > ¢ > 0, then there is a monotone
increasing function f(-) and a smooth function b(-) such that Y; = f(X,) satisfies

i
x=>@+/ b(¥s) ds + Be.
0

The benefit of this observation is that it shows that many one-dimensional SDEs can
be recast as an integral equation where there is no stochastic integral (other than
a standard Brownian motion). Anyone who wants a hint might consider applying
It6’s formula to f(X;) and making appropriate coefficient matches.

EXERCISE 9.5. The argument we used at the conclusion of Theorem 9.1 can
be applied to prove more general results. Suppose f > 0 is continuous and g > 0
nondecreasing on [a, b]. Show that if

13
(9.45) f@)<g@) +c / f(s)ds for all ¢ € [a,b]
for some ¢ > 0, then
F() < g(t)ett= for all t € [a,].

There are many variations on this theme, any one of which may be called Gron-
wall’s lemma.
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EXERCISE 9.6 (Estimation of Real-world o’s). If X; is a stochastic process that
models the price of a security at time £, then the random variable
Xk
X(k-1)h
is called the kth period return. It expresses in percentage terms the profit that
one makes by holding the security from time (k — 1)¢ to time kt.
When we use geometric Brownian motion

(9.46) dX; = pX, dt + o X, dB;

as a model for the price of a security, one common misunderstanding is that o
can be interpreted as a normalized standard deviation of sample returns that more

properly estimate
s = +/ Var[Rg(h)]/h.
Sort out this confusion by calculating B[Ry (k)] and Var[Ri(h)] in terms of p
and ¢. Also, use these results to show that an honest formula for o is

o2 = 1 o Var[Ry(h)]
R % <1+ (1 +E[Rk(h)l)2> ’

and suggest how you might estimate o2 from the data Ri(h), Ra(h), ..., Ra(h).
Finally, make a brief table of o versus s, where E[R;(h)] and +/Var[Ri(h)| are
assigned values that would be reasonable for the S&P500 Index with sampling
period h of one month. Do the differences that you find seem as though they would
be of economic significance?

Ry (h) = -1



CHAPTER 10

Arbitrage and SDEs

The heart of the modern financial aspirant never beats so quickly as in the
presence of an arbitrage opportunity, a circumstance where the simultaneous pur-
chase and sale of related securities is guaranteed to produce a riskless profit. Such
opportunities may be thought of as rare, but on a worldwide basis they are a daily
occurrence, although perhaps not quite as riskless as one might hope.

In financial theory, arbitrage stands as an émenence grise — a force that
lurks in the background as a barely visible referee of market behavior. In many
cases, market prices are what they are precisely because if they were something else,
there would be an arbitrage opportunity. The possibility of arbitrage enforces the
price of most derivative securities, and technology for the calculation of arbitrage
possibilities has brought the markets for derivative securities into a Golden Age.

10.1. Replication and Three Examples of Arbitrage

The basis of arbitrage is that any two investments with identical payout streams
must have the same price. If this were not so, we could simultaneously sell the more
expensive instrument and buy the cheaper one; we would make an immediate profit
and the payment stream from our purchase could be used to meet the obligations
from our sale. There would be no net cash flows after the initial action so we would
have secured our arbitrage profit. What adds force to this simple observation is
the relatively recent discovery of methods that tell us how to replicate the payout
streams of important financial instruments such as stock options.

FINANCIAL FRICTIONS

The theory of arbitrage shares with the theory of mechanical systems the fact
that it is most easily understood in a frictionless world. In finance, frictions are
those irritating realities like the fact that it is easier to buy a sailboat than to sell
one. For individuals, stock commissions are a friction in the transaction of equity
shares, and even institutions that do not pay commussions still face important
frictions like the bid—ask spread or the impact of large sales on market prices.
Frictions are of great importance in financial markets; they are in many ways the
krill that feed the financial Leviathans.

Nevertheless, the first step in either finance or mechanics is to consider models
that are free of frictions. In our case, this means that first we study models where
there are no transaction costs in the purchase or sale of shares, or in the borrowing
or lending of funds. This restriction may seem harmless encugh in the case of
shares, but the stringency of the assumption may be less clear for bonds. We are
all familiar with asymmetry 1n interest rates — witness the worn-out joke about
the traditional banker who borrows at 6, lends at 9, and leaves at 4.



154 10. ARBITRAGE AND SDES

In our initial financial models, we will often assume that there is a continuous
compounding interest rate 7 at which we can equally well borrow or lend funds, a
tu.)o-way interest rate. Still, if we do not make this assumption, all is not lost. We
will see later that our analysis may be informative even if the borrowing and lending
rates are different. In the typical situation, an identity that is derived under the
assumption that we have a two-way rate can be replaced by a pair of inequalities
when that assumption is dropped.

FORWARD CONTRACTS

Forward contracts provide an example of arbitrage pricing that has been hon-
ored for centuries. A typical forward contract is an agreement to buy a commodity
— say 10,000 ounces of gold — at time T for & price K. If the current time is ¢ and
the current gold price is S, then in a world where there are economic agents who
stand ready to borrow or lend at the continuous compounding rate r, the arbitrage
price F' of the forward contract is given by

F=8§—¢¢ Tt

In other words, if the forward contract were to be available at a different price, one
would have an arbitrage opportunity. ’

The key observation is that there is an easy way to replicate the financial
consequences of a forward contract. Specifically, one could buy the gold right now
and borrow e~"(T~9 K dollars for a net cash outlay of S — e "(T~9 K then at time
T pay off the loan (with the accrued interest) and keep the gold. At the end of this
process, one makes a payment of X dollars and gets ownership of the gold, so the
payout of the forward contract is perfectly replicated, both with respect to cash and
the commodity. The cash required to initiate the immediate purchase strategy is
S —e T K and the cost of the forward contract is F, so the arbitrage argument
tells us that these two quantities must be equal.

TABLE 10.1. REPLICATION OF A FORWARD CONTRACT

Cash Paid Out (Time=t) | Commodity and Cash (Time=T)
g Gold owned, K$ Cash paid
Gold owned, K$ Cash paid

Forward Contract
Replication S—e T

We do not want to get too distracted by side variations on our hypotheses, but
we still should note that if the economic agents in our model who borrow money
ajc r* could only lend at r,, where r, < 7*, then our arbitrage argument no longer
gives us an identity. Instead, we find that the absence of arbitrage profits would
only guarantee the double inequality

S—eTOK <Pg§_e™@T-tg
Pur-CALL PARITY

A European call option on a stock is the right, but not the obligation, to buy
t.he stock for the price X at time 7. The European put option is the corresponding
mght to sell the stock at time T' at a price of X. Our second illustration of arbitrage
pricing will tell us that the arbitrage price of a European put is a simple function
of the price of the call, the price of the stock, and the two-way interest rate.
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First, we consider a question in the geometry of puts and calls. -What is the
effect of buying a call and selling a put, each with the same strike price K7 Some
funds will flow from the initiation of this position, then we will find at time T that

s if the stock price is above K, we will realize & profit of that price minus K;
e if the stock price is below K, we will realize a loss equal to K minus the
stock price.

A moment’s reflection will tell us this payout is exactly what we would get from a
contract for the purchase of the stock at time T for a price K. Because we already
know what the price of such a contract must be, we see that the price C of the call
and the price P of the put must satisfy

(10.1) C-P=S-e"T 0.

This relationship is often referred to as the put—call parity formula, and it tells us
how to price the European put if we know how to price the European call, or vice
versa. One might expect this put—call parity formula to be every bit as ancient
as the formula for pricing a forward contract, but such an expectation would be
misplaced. This elegant formula is barely thirty years old.

THE BINOMIAL ARBITRAGE

It does not take a rocket scientist to replicate a forward contract, or to value a
put in terms of a call, but the idea of replication can be pushed much further, and,
before long, some of the techniques familiar to rocket scientists start to show their
value. Before we come to a mathematically challenging problem, however, there is
one further question that deserves serious examination — even though it requires
only elementary algebra.

For the sake of argument, we first consider an absurdly simple world with one
stock, one bond, and two times — time 0 and time 1. The stock has a price of $2
at time 0, and its price at time 1 is either equal to $1 or $4. The bond has a price
of $1 at time 0 and is also $1 at time 1. People in this thought-experiment world
are so kind that they borrow or lend at a zero interest rate.

Now, consider a contract that pays $3 if the stock moves to 34 and pays nothing
if the stock moves to $1. This contract is a new security that derives its value from
the value of the stock, a toy example of a derivative security. The natural question
is to determine the arbitrage price X of this security.

From our earlier analysis, we know that to solve this problem we only need to
find a replicating portfolio. In other words, we only need to find & and G such that
the portfolio consisting of « units of the stock and § units of the bond will exactly
replicate the payout of the contract. The possibility of such a replication is made
perfectly clear when we consider a table that spells out what is required under the
two possible contingencies — the stock goes up, or the stock goes down.

TABLE 10.2. REPLICATION OF A DERIVATIVE SECURITY

Portfolio | Derivative Security
Original cost aS + BB X
Payout if stock goes up 4o+ B 3
Payout if stock goes down | a4+ 0




U AHBI'TRAGE AND SDES

When we require that the portfolio must replicate the payout of the derivative
security, we get the two equations

da+f=3and a+ B =0.

We can solve these equations to find ¢ = 1 and 8 = ~1, so by the purchase
of one share of stock and the short sale of one bond, we produce a portfolio that
perfectly replicates the derived security ‘This replicating portfolio requires an initial

investment of one dollar to be created, so the arbitrage price of the derived security
must also equal one dollar.

REPLICATION 18 THE KEY

The preceding example is simple, but it rewards careful consideration. Before
the 1970s everyone on the planet would have approached the valuation of this
security by first forming a view of the probability of the stock going up. We now
see that this may be a shaky way to start. The price of the security is uniquely
determined by arbitrage without consideration of such probabilities. In fact, even
if we are told upfront that the stock has a 50 % chance of going up to $4, it would
not change the fact that the only price for the security that keeps the world free of
arbitrage is $1. Since the expected value of the claim’s payout would then be $1.50,
we see that the trader who bases his valuations on expected values may become
grist for the arbitrage mill, even if he gets his expected values exactly right.

10.2. The Black—Scholes Model

The world of binomia] price changes does a fine job isolating some very impor-
tant ideas, but it cannot make a strong claim on realism. Nevertheless, considera-
tions like those used for binomial changes can be applied in the much more realistic
context where prices change continuously through time. Even this situation is not
perfectly realistic, but it provides a palpable sense of progress.

We will now follow a remarkable continuous-time arbitrage argument that will
lead us to the famous Black-Scholes formula, for the pricing of European call options.
We let S; denote the price at time ¢ of a stock and let B; denote the price at time #

of a bond. We then take the time dynamics of these two processes to be given by
the SDEs

(10.2)  Stock model: dSy = Sy dt + oS, dB, Bond model: dg; = rg, dt;

that is, we assume that the stock price is given by a geometric Brownian motion,
and the bond price is given by a deterministic process with exponential growth.
For a European call option with strike price X at termination time T, the
payout is given by h(Sy) = (S~ K )+- To find the arbitiage price for this security,
we need to find a way to replicate this payout. The new idea is to build a dynamic

portfolio where the quantities of stocks and bonds are continuously readjusted as
time passes.

ARBITRAGE AND REPLICATION

If we let a; denote the number of units of stock that we hold in the replicating
portfolio at time ¢ and let b; denote the corresponding number of units of the bond,
then the total value of the portfolio at time ¢ is

Vi = 0:5; + b,5,.
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The condition where the portfolio replicates the contingent claim at time 7" is simply:
(10.3) terminal replication constraint: Vo = h(S7):

In the one-period model of the binomial arbitrage, we (?nly needed to 1§ol\tj'e a
simple linear system to determine the stock and bond posmlc?ns of our ll{repBlca mi
portfolio, but in the continuous-time model we .face a more dlfﬁcult‘il tas icat;s
the prices of the stock and bond change contmu.ously, we hfwe the oppor untl}I
to continuously rebalance our portfolio — that is, at'each 1.ns.;t.ant we may se
some of the stock to buy more bonds, or vice versa. This possibility of cc;ntlllnuouﬁ
rebalancing gives us the flexibility we need to replicate the cash flow of the ca
optu];ne'cause the option has no cash flow until the terminal time, the 'replicatmﬁ
portfolio must be contmuously rebalanced in such a way that 1fhere is nc;1 ctast
flowing into or out of the portfolio until the terminal 'tlme T. This me;.ns bt a lz}_
all intermediate times we require that the restructwing of the port':fo 101 e se .
financing in the sense that any change in the'value of the portfolio value I;l;.l}?
equal the profit or loss due to changes in the price of the stoc%t or the gnce o ; e
bond. In terms of stochastic differentials, this requirement 1s given by the equation

(10.4) self-financing condition: dV; = a; dS; + by df;.

This equation imposes a strong constraint on the possible values for a; and b;. zlﬂ./'l}en
coupled with the termination constraint V; = h(St), tl}e self-financing condition
(10.4) turns out to be enough to determine a; and b, uniquely.

COEFFICIENT MATCHING

In order to avail ourselves of the Itd calculus, we DOW suppose that the p(;)rtfslll{o
value V; can be written as V; = f(¢,S;) for an apprt?prlately. s.mooth f- Un er ri:
hypothesis, we will then be able to use the self-financing .con.dltu‘)n to get expiissmbe
for a; and b, in terms of f and its derivatives. The Lepllcatl?n 1dent11';y canE erl1l :
used to turn these expressions into a PDE for f. The S(?lutlon of this P]]?( will in
turn provide formulas for a, and b; as functions of the time and the stock price. .

To provide the coefficient matching equation, we need' tp turn our two C?xlprefe .
sions for V; into SDEs. First, from the self-financing condition and the models fo
the stock and bond, we have

dV;, = atdS,; + btdﬁt = a,t{,uStdt + G'StdBt} + bt{’l‘ﬂtdt}
(105) == {atuSt -+ thﬁt} dt + a0 S; dBs.

From our assumption that V; = f(t, S;) and the It& formula for geometric Brownian
motion (or the box calculus), we then find

Ve = fo(t, Sp) dt + %fmz(t, St)dS; - dSy + fu(t, Si) dSe
(10.6) = {ft(t, St) + %f::xz(t, St) 02-9? + fz(t: St)ﬂ'st} dt + ffr(t’ St)ast dBt

When we equate the dB; coefficients from (10.5) and (10.6), we find a delilg;hf‘,fully
simple expression for the size of the stock portion of our replicating portfolio:

Qg = fm(tv Si)'
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Now, to determine the size of the bond i
» | portion, we only need to equate th
coefficients from equations (10.5) and (10.6) to ﬁI,ld e the &

1
1S fu(t, St) + b5y = Fit, Se) + §fzm(t, S1)oSE + falt, St)uSs.

The uS; fz(t, S¢) terms cancel, and we can then solve for b; to find
1 1
(107) bt = % {ft(t, St) -+ Efzz(t, St)U2St2} .

Because V; is equal to both Sf(t,S;) and a,S; + b
give v n DO oy o (¢, S:) as5¢ + b B, the values for a; and b,

F(:.88) =V = 48, + b3,
_ 1 1
= falt, Si)S; + ﬁt—{ft(t’ Sy + §fmz(ta S8:)oS2} ;.

Now, when we cancel B from the last term and repl i
Now, ace S; by z,
Justly famous Black-Scholes PDE: ’ P e amive b the

1
(10.8) fi(t,z) = —502:1:2fm(t, %) —rafy(t,z) + rf(t,z),
with its terminal boundary condition

f(T,z)=h(z) forallzeR.

10.3. The Black-Scholes Formula

Whgn we soh'/e the Black-Scholes PDE, we find a function F(¢,z) such that
£t S8) s the arb1trage price of a European call option under the stock and bond
model given by equation (10.2). Tn subsequent chapters, we will give several meth-

ods for solving equation (10.8), but for the moment we will concentrate on the
lessons that can be learned from that solution.

NATURE OF THE SOLUTION

In the first place, the solution is simpler than one has any right to expect
The only special function needed to represent the solution is the Gaussian integrai
3, afld all of the parameters of our model appear in a thoroughly intuitive way.
Specifically, the arbitrage price of the European call option at time # with current;

st.;ock price of S, exercise time T, strike price X, and residual time 7 = T—-tis
given by

(109) S0 (log(S'/K) +(r-+ %02)7‘) K log(S/K) 4 (r — 152)r
oVt oVT ) ‘

There are several remarkable features of this famous Black-Scholes formula
but perhaps the most notable of these is the absence of the 4 — the growth rate’
parar{lete? .of the stock model. Prior to the 1970s this absence would have been
S0 umntuitive that it would have cast doubt on the validity of the pricing formula,
— or the (;redibility of the underlying model. Today, we have a much clearer
understanding of the absence of &, although even now there may be some room for
mystery.

Ina fnechanical sense, we know that u does not appear in the Black-Scholes
formula simply because it was cancelled away before we came to the Black-Scholes
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PDE (10.8). This is not a very insightful observation, and eventually we will do
much better. For the moment, perhaps the best way to understand the disappear-
ance of 4 is by thinking about the binomial arbitrage. In that example, we found
that the probability of the stock going up or down was irrelevant to the calculation
of the arbitrage price. We would have found the same phenomenon if we had looked
at binomial models with more than two time periods.

Multiperiod models lead quickly to random walk, and from random walk it is a
short stroll to Brownian motion and the Black-Scholes model. This is all to argue,
far too quickly, that since the expected growth rate of the stock does not matter in
the binomial model, neither should it matter in the continuous-time model.

Naturally, this waving of the hands does not fully resolve the y problem, or
) Koan.! Still, it should at least lend some intuition to the absence of pu in the
Black-Scholes formula. In a later chapter, we will revisit the option pricing formula
from an (almost) entirely new perspective, and eventually we will come to a much
richer understanding of the u problem.

THE FORMULA AND THE PORTFOLIO

Perhaps the most important practical feature of the Black—Scholes formula is
that it tells us very simply and exactly how to build the replicating portfolio. Thus,
the Black—Scholes formula not only specifies the arbitrage price, but it even tells
us how to enforce that price — if we are agile in the execution of our transactions

and if our model honestly reflects reality.
We recall from the derivation of the Black-Scholes PDE that the amount of

stock a; that we hold in the replicating portfolio at time ¢ is given by
ay = fz(t,S),
and, now that we know f, we can calculate a;. If we differentiate the Black—Scholes

formula (10.9) with respect to the stock price 3, then with some algebraic care we
find that the number of units of stock in the replicating portfolio is given by

(log(St/K) +(r+ %02)T)
ar = o] .
o/T

The positivity of a; tells us that the replicating portfolio always has a long position
in the stock, and the fact that a; < 1 tells us that the replicating portfolio never
holds more than one unit of the stock for each unit of the call option.

When we then look at the bond position, we also find from the Black—Scholes
formula (10.9) that the amount of money that is invested in bonds is given by

log(S:/K) + (r — to?)r
a7 )
Because b;3; is negative we see that in the replicating portfolio we are always short

the bond. Moreover, the formula for the bond position (10.11) tells us that dollar
size of that short position, |b;0|, is never larger than the strike price K.

(10.10)

(10.11) by = —Ke ™" ® (

INot to be confused with the Mu Koan of J 6shii from the Mumonkan, a famous Sung Dynasty
(960-1279 A.D.) collection of philosophical problems (or koans): A monk asked Jdshii, “Has a dog
the Buddha Nature?” Joshii answered “Mu.” The meaning of the Mu koan has created an evolving
conversation for almost a millennium. One cannot expect the x Koan to be so lucky.
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10.4. Two Original Derivations

Few activities are more consistently rewarding than the study of the original
sources of important results, and the 1973 paper by F. Black and M. Scholes should
be examined by anyone who wishes to understand how the theory of option pricing
came into being. In that paper, Black and Scholes give two derivations of their
PDE, and, although both arguments have rough spots, they are highly instructive
for the unique insight they provide into the creative interaction of calculation and
modeling. The main goal of this section is to review these arguments in a way
that is faithful to the original exposition yet provides mathematical clarifications
at several points.

THE ORIGINAL HEDGED PORTFOLIO ARGUMENT

In their first argument, Black and Scholes consider a portfolio that consists
of a long position of one share of stock and a short position that consists of a
continuously changing quantity of options. The size of the option position is chosen
so that the option position tracks the stock position as closely as possible, and, in
our earlier notation, the value of this portfolio can be written as

(10.12) X = 8 — f(t,8:)/ falt, St) [BS-eqn-2],

where f(t, ;) denotes the (unknown) value of the call option. Also, the redundant
right-hand equation label [BS-eqn-2] is given so that one can make a line-by-line
comparison between this discussion and the original paper of Black and Scholes.
Thus, our equation (10.12) is just a transcription into our notation of the original
Black—Scholes equation (2).

Next, we need to introduce the evocative notation A, and one naturally thinks
of AY; as something like ;1 — Y; for some small value of h. Black and Scholes
then calculate

(10.13) AXy = AS, — {Af(t,8)} fo(t,S;)  [BS-eqn-3],

and they do not comment on the process by which one goes from the defining
equation {BS-eqn-2] to the interesting [BS-eqn-3], even though a straightforward A
calculation would have given a much messier right-hand side in equation (10.13).
This step is an important one which we will examine in detail after we have seen the
rest of the argument, but, for the moment, we are content to note that {BS-eqn-3]
is self-evident, provided that we think of f;(t,S;) as “held fixed” while the change
Af(t,S;) “takes place.”

Black and Scholes continue their argument by saying® “Assuming the short
position is changed continuously, we can use the stochastic caleulus to expand
Af(2,8:), which is f(t + A, Sy + AS;) — F(2,S;), as follows”:

(10.14)
AF(E,St) = fult, Sp)AS: + % Fan(t, Si)o?SZAL + fi(t, Se)At  [BS-eqn-4],

and for their next step Black and Scholes say “Substituting from equation [BS-eqn-
4] into expression [BS-eqn-3], we find that the change in value of the equity in the

2The notation within the quotes has been changed to conform to the standing notations.
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hedged position is”:
1
(1015) - <§fmm(t, St)O'?‘SZ' + ft(t, St)> At/fm(t, St) [BS-eqn—S].

Now, Black and Scholes make a basic arbitrage argument that we will amplify a
tiny bit. Since the constructed portfolio is a tradable instrument and since the
return on the hedged portfolio in the time period At is certain, the usual arbitrage
argument tells us that this return must equal the return that one would receive
from an investment of the same size in a risk-free bond for a comparable period. At
time £, the amount invested in the hedged position is X; = Sy~ f(t, S1)/ fu(t, St), s0
during the time interval At the return on the hedged portfolio should be X -7 At.
As a consequence, one should be able to equate these two rates to find [BS-eqn-6):

— (3ea(t 500252 + 165 ) A/t 5) = (5. 16, 8/ o6 SN
Now, the At can be dropped, and the last equation can be rearranged to provide
1
Fi(t,8e) = 1 f(t,8e) = rSefu(t: 1) — 5 faslt, 8;)o%52  [BS-eqn-7).

Naturally, we recognize this equation as the classic Black—Scholes PDE that we
derived earlier in the chapter by rather different means.

WHAT Do WE LEARN FROM THIS ARGUMENT?

This argument is of considerable historical importance, and it deserves to be
analyzed to see what it can teach us about mathematics and modeling. One way
we may work toward these goals is to try to put ourselves into the time and place
where the work was done and ask what we would have done, or where we might
have become stuck.

In this case, we have to imagine the ideas that were in the air at the time.
Fortunately, Black and Scholes share some of this background with us in their
paper, and they point out that one of their sources of inspiration came from Beat
the Street, a popular 1967 book by Thorp and Kassouf. One of the ideas in this
book was to use empirical methods to estimate the size of a short position in a
derivative security that would minimize the rigk of holding a long position in the
underlying security. When Black and Scholes looked for a theoretical analog to
this process, they were naturally led to consider the portfolio consisting of a long
position of one share of stock and a short position of 1/fz(¢,5;) options, so, in
symbols, they came to consider a portfolio whose value at time ¢ is given by

(10.16) Xi =8 — F(t,5t)/ f=(t, St) [BS-eqn-2).

At this point, many of us may be tempted to say that the modeling idea is on the
table and all that is needed from this point is simply honest calculation. In fact,
the most impressive modeling step is just about to take place.

If we apply the A operation to both sides of [BS-eqn-2}, we definitely do not get
[BS-eqn-3], or even an approximation to [BS-eqn-3]. Nevertheless, the argument
that follows after {BS-eqn-3] is completely straightforward, and it leads directly to
the Black-Scholes equation [BS-eqn-7], a result that we have every reason to believe
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to be valid. Therefore, we know that there must be some way to justify
(10.17) AXy = NSy — Af(t,5)/ fo(t, ) [BS-eqn-3)],

even if this identity is not a mechanical consequence of [BS-eqn-2].

One way to look for a justification is to consider how one would actually imple-
ment the management of a portfolio such as that given by [BS-eqn-2]. In practice,
we cannot do continuous rebalancing, so, the natural process would be to choose a
discrete sequence of times t;, t2,...tn at which to do our buying and selling. If we
take this point of view, and if we interpret the A’s as the change over the interval
(f2)t.g1] based on the investments that are held at time ¢,, then the meaning of
[BS-eqn-3] is simply

(10'18) th+1 - Xt; = Si~.+1 - Stz - [f(t) St-.+1) - f(t) Stt)]/fz(t: Stz)’

With this interpretation, [BS-eqn-3] is as clear as a bell; but, unfortunately, the
new interpretation brings a new problem.

Is X defined by the portfolio equation [BS-eqn-3], or is it defined by the cur-
rent value of a portfolio that evolves according to some discrete strategy based on
rebalancing at a time skeleton t1,%2,...,%,7 In pure mathematics, one cannot have
it both ways, but in applied mathematics one can and should. The whole issue is
one of objective.

In the down-and-dirty world of applied mathematics, what matters is that one
eventually comes to a model that can be tested against reality. In this case, we come
to a PDE that can be solved and has solutions that are empirically informative, even
if imperfect. This outcome and the process that leads to it are 100% satisfactory,
even if we must be a bit schizophrenic in our interpretation of X;. Schizophrenia
is not an easy condition to live with, but sometimes it is the price of creativity.

THE ORIGINAL CAPM ARGUMENT

In their 1973 paper, Black and Scholes were not content with only one argument
for their PDE. They also gave a second derivation which was based on the market
equilibrium ideas of the capital asset pricing model, or CAPM. For the purpose of
this derivation, the main assertion of the CAPM is that if Y; is the price process
of an asset Y and M; is the price process of the “market asset” M, then there is a

quantity By such that the At-period return AY; /Y: on the Y asset has an expected
value that can be written as

(10.19) B(AY;/Y;) = rAt + afy At,

where 7 is the risk-free interest rate and a is understood (a bit informally) as the
rate of expected return on the market minus the risk-free interest rate r. Moreover,
in the theory of the CAPM, the constant By is given explicitly in terms of the
covariance of the asset and market returns:

By T Cov(AYy/Yi, AMy/M,)/Var(AM, /My).

Now, in order to meld the CAPM point of view with our earlier notation, we
just need to think of f (t,8:) as the price process of asset O, the option, and to
think of S; as the price process of the asset S, the stock. The first step is to relate
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the B’s of the option and the stock, and we begin by using It6’s formula to write
1
(1020) Af(t, St) = fm(t, Sg)ASz -+ §fmm(t, St)O'QSEAt + ft(t, St)At.

When we recast this formula in terms of the rate of return on the O asset, the
option, we see that the rate of return on the option can be viewed as an affine
function of the rate of return on the stock,

A7 S) _ St S) g AS 1 (1 G2S2AE+ filt, S At> .
765 F6S) LS T IS \afeelh S S AL Al S)
Now, Black and Scholes take a remarkable step. They proceed to calc‘ulaife the
covariance of Af(¢,S:)/f(¢, S:) and AS;/S; as if all of the other quantit1e§ in the
preceding formula were constants. Once one makes this an§atz, the deﬁmtlon' of
Bo and the preceding formula for Af(¢, S:)/f (¢, S:) combine in an easy calculation
to give:
(10.21) Bo = (Sefalt, S)/F(,S)) Bs.  [BS-ean-15]
When one looks back on this equation, it certainly seems at least a little §trar}ge.
For one thing, the left-hand side is a constant, whereas the right-hand side is a
random variable. Still, applied mathematics always takes courage, so we press
forward with the optimistic hope that an appropriate interpretation of this step
will emerge once we have the whole argument in view. . .
The next two equations offer a brief respite from the stress of modeling since
they only require us to express two basic assertions of the CAPM in our notation;
specifically, we have a model for the S asset returns,

(10.22) E [——Asi] =rAt + afisAt (BS-eqn-16],
t
and a model for the O asset returns,
Af(tr St):l
. E|—/——=%| = rAt +afo At [BS-eqn-17].
(10:29) |

Now, Black and Scholes are poised to take another remarkable step. In their words
(but our notation), they continue: “Multiplying [BS-eqn-17] by f(t,S:), and sub-
stituting for Bp from equation [BS-eqn-15], we find”

(10.24) E[Af(t,S:)] = rf(t, Se)At + aS; f(t, Si)Bs At {BS-eqn-18].

If we hope to follow this step, we need to note that Black and Scholes seem
to be counting on certain interpretations of their equations that ‘rmght confuse
notationally fastidious readers. First, they surely intend for us to 1I}tfarpret A as
a forward difference, so, for example, AY; = Y;.p, — Y:. The more critical pO{nt is
that they evidently also intend for us to interpret the expectations as condztzm}al
expectations such as those that one more commonly renders as E(|.7-}) With
these interpretations, there is no difficulty with equation [BS-eqn-18] or with the
corresponding multiplication of [BS-eqn-16] by S: to conclude that

(1025) E(A.S't) = TStAt + aﬁSSf,At.



164 10 ARBITRAGE AND SDES

The next step in the CAPM derivation of the Black-Scholes PDE is to use Itd’s
formula in the form of equation (10.20) to calculate

(10.26)  E(AF(tS) = fult, SYB(AS) + %fu(t, )02 SEAL + fi(t, Si)At.

Now, when the expression for B(AS;) given by [BS-eqn-16] (by way of equation
(10.25)) is substituted into equation (10.26), we find

E(Af(t,51)) = r8e fo(t, Se)At + aSi f(t, Se)fs At
1
+ §fu (t, Se)o2SEAL + fi(t, Sp)At  [BS-eqn-20],

and, with this equation in hand, we are essentially done. We have two expressions
for E(Af(t,5:)) given by [BS-eqn-18] and [B-eqn-20], so we can simply equate
them, cancel the A¢’s, and simplify the result to find

Filt 8 = T1(t,50) = 75ufalt, S0) = 56°57 fua(t,52).

PERSPECTIVE ON THE CAPM DERIVATION

The most amazing aspect of the second derivation given by Black and Scholes
may be that it is so different from the first derivation. There is no arbitrage
argument at all The CAPM derivation obtains the Black-Scholes PDE from purely
structural relations 1n a way that almost seems magical.

Perhaps the trickiest step of the argument takes place with the derivation of
the covariance formula given in [BS-eqn-15]: Bo = Si{f=(t, S:)/f(t, S5:)}Bs. Even
though we whined a bit when this formula first appeared, both the formula and its
derivation make perfect sense provided that A is interpreted as a forward difference
and all the expectations, variances, and covariances are interpreted as conditional
expectations, variances, and covariances given ;.

Nevertheless, there is some crafty applied mathematical insight that lurks un-
der the surface. The formulas of the CAPM were written in the unconditional form
in which they were widely understood at the time, yet these formulas were subse-
quently used in a conditional form. This is a situation that a purist might view as
unsportsmanlike. More informatively, one can view the calculations of Black and
Scholes as offering a reinterpretation of the traditional formulas of the CAPM. In
essence these calculations suggest the use of the stronger conditional form of the
CAPM.

Even now a small puzzle remains. If Black and Scholes had this reinterpretation
in mind, why did they not comment on such an interesting theoretical idea? One
possible answer was that there is no real need to go as far as positing an untested
interpretation of the CAPM. The point of both of the derivations was not one of
Proving the validity of the Black-Scholes PDE as a mathematical theorem. The
intention was rather to motivate a specific PDE model as a modet for option prices.

The ultimate test of such a PDE model is always an empirical one, and there
is no compelling reason for one to draw a firm distinction between the use of the
CAPM and the use of an analogy where conditional formulas stand in for more

traditional CAPM formulas. In both cases, one comes to the same point. Either by
extension or by analogy, Black and Scholes show how widely studied equilibrium
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principles of finance motivate a concrete PDE model. The true test of the model
then rests with its empirical performance.

10.5. The Perplexing Power of a Formula

How much should one worry about the assumptions that lead to the Black-
Scholes option pricing formula? This depends entirely on how seriously the model is
to be taken. As it turns out, models for denvative pricing and arbitrage engineering
have had more impact on financial markets than any other development of that
industry in recent memory. The market for risk-sharing financial products would be
a mere trickle of its present flood if market makers and other financial institutions
did not have confidence in their ability to design portfolios that permit them %o
control the risk in selling or buying derivative securities. At this stage, every
nuance of replication theory is fair game for detailed examination.

‘When we examine the model that leads us to the Black—Scholes formula., we find
many assumptions that one might want to modify. To the probabilistic modeler,
the boldest assumption is the use of geometric Brownian motion (GBM) for the
underlying stock model. Then, even if one accepts GBM as a reasonable proxy for
the stock price process, one still has to question whether we should believe that u
and o may be honestly viewed as constant, except perhaps for very short periods
of time. The same concerns apply to the interest rate 7. In a world where interest
rates do not change, the fixed-income markets would lose a considerable amount of
their excitement, yet the trading pit for bond futures is not yet an island of calm.

There is also a structural objection to the options contracts that we have an-
alyzed thus far; the European option is a very rare bird compared to American
options that allow the holder to exercise his purchase or sale at any time up until
the terminal time. In a later chapter, we will find that this problem can be nicely
resolved, at least in the case of call options.

Finally, there is the issue of transaction costs. One can assume that if the
portfolios involved are small enough then market impact costs are not important.
There is also no harm in assuming that brokerage costs will not matter, provided
that we take the point of view of a large institution or a member firm of a stock
exchange. Nevertheless, one cost — the bid-ask spread — cannot be avoided, and
even one unavoidable cost is enough to destroy the fundamental logic of our deriva-
tions. After all, to trade continuously implies that we are continuously trading,
and, with a bit of work, one can show that in the typical case where the stock price
S; is a process with unbounded variation then the total trading volume — and the
associated transaction cost — is also infinite.

PopPULARITY OF A FORMULA

If the Black-Scholes model faces all of these objections, why has it become so
popular — and so genuinely important? In the first place, the model leads to a
concrete formula. In those lucky mstances when sustained modeling and reasoning
manage to jell into a single line, there 15 tremendous psychological power in that
line. To the world beyond professional scientists, a formula is at the heart of what
one means by the solution to a problem.

The Black-Scholes formula also has the benefit of being easy to use and un-
derstand. The only troubling parameter in the formula is the volatility o, and,



166 10. ARBITRAGE AND SDES

despite the fact that o is harder to estimate than p, the disappearance of y is a
celebrated blessing. All of the parameters that are present in the Black—Scholes
formula appear in physically logical ways.

Finally, a formula that engages real phenomena does not need to be perfectly
accurate to provide insight. As it turns out, the empirical performance of the Black—
Scholes formula is reasonably good. To be sure, there are important discrepancies
between observed prices and those predicted by the Black—Scholes formula, but for
options with a strike price that is not too far from the cwrrent stock price the Black—
Scholes formula anticipates observed prices rather well. The biggest empirical defect
is that the market price for an option that is deep out of the money is almost always
higher than the price suggested by the Black—Scholes formula.

REDUNDANCY AND UTILITY

Finally, we must reflect for a moment on the absence of any influence of utility
theory on the Black—Scholes formula. Utilify theory is at the core of almost all
economic modeling, yet it makes no appearance here. One has to ask why.

To get a feeling for this issue, suppose for a moment that someone has offered
to sell you a random prize X that is to be given to you at time T in exchange for a
payment that you are to make now at time ¢t < T'. Also, for the moment, you can
suppose that the payout X is not contingent on the price of a tradable entity such
as a stock, so there is not any issue of arbitrage pricing for X. How much should
you be willing to pay for X7

To keep life pinchingly simple, we will even assume that the time horizon T" is
sufficiently small that we can ignore the time value of money, so there is no need to
worry about discounting the value of the time 7' prize to get its present value. This
would be more or less reasonable for short time horizons and low interest rates, but
our only concern is simplicity; model refinements can come later.

Now, at last, if we let F; summarize our knowledge of the world at time £, then,
in order to work out a value for the random prize, we almost have to consider the
benchmark given by the conditional expectation:

(10.27) V, = B(X|R,).

If the random prize is small with respect to our wealth, this is indeed a decent
candidate for a fair price for the prize. On the other hand, if the random prize is
large compared to our wealth, then this expectation does not represent what we
would be willing to pay. For example, if W is our net worth, we are not willing
to pay W for a random prize that is worth 2W with probability one-half and 0
with probability one-half. This reflects the fact that our utility for money is not
linear; twice as much is not twice as good, unless the amounts involved are small.
The issues involved in the valuation of our random prize are psychological, and
there is no reason to suppose that different individuals would not come to different
valuations. This is quite a contrast to the enforced prices provided by arbitrage
theory.

Now, here is the last puzzle. Why did we hear nothing about the nonlinearity
of utility or about our aversion to risk during the development of the theory of
arbitrage prices? The simple observation is that arbitrage pricing theory is a cer-
tainty theory. To be sure, we did begin with a probability model, but at the critical

H

10.6. EXERCISES g7

moment probability is cut out of the loop. The possibility of arbitrage re’ﬁévéd, all
concern with probability, with one small exception. We did need to know which
events were possible, even though we never needed to know their probabilities. Fi-
nally, the absence of chance reduces utility theory to the trivial; one needs no finer
understanding of money than to know that more is better.

10.6. Exercises

The first exercise should be done by everyone. It provides basic practice with
the most important argument of the chapter and provides an important perspective
on the range and limitation of the PDE approach to option pricing. The next two
problems are easy but amusing. They explore special solutions of the basic Black—
Scholes PDE, and they suggest how these solutions may be used to obtain a second
derivation of the put—call parity formula. The last problem outlines how the Black—
Scholes PDE (and its derivation) may be modified to account for the payment of
stock dividends.

EXERCISE 10.1 (A More General Black-Scholes PDE). Consider the stock and
bond model given by

(1028) de, = M(t, St) dt + G'(t, Sf,) dBt and dﬁt = T(t, St)ﬂg dt,

where all of the model coefficients u(t, S;), o(t, St), and 7(t, St) are given by explicit
functions of the current time and current stock price.

(a) Use the coefficient matching method of Section 10.2 to show that arbitrage
price at time ¢ of a Buropean option with terminal time T' and payout h(St) is
given by f(t,S;) where f(t,) is the solution of the terminal value problem

Folt,z) = —10%(t, 2) Fau(t, 2) — 7(t 2)2fa(t, 2) + 7t 2) £ (£, 7),
F(T,z) = h(z).

(b) Show that f(t,z) and its derivatives may be used to provide explicit for-
mulas for the portfolio weights a; and b; for the self-financing portfolio a;S; + b:58:
that replicates h(ST).

EXERCISE 10.2 (Exploration of Separable Solutions). (a) Find all solutions of
the basic Black-Scholes PDE that are of the form

f(z,t) =¢(z) or f(z,1)=w().

If you consider the just linear combinations of these solutions, what terminal bound-

ary value problems can you solve? -
(b) Now find all of the solutions of the form ¢(z)¥(t). What terminal-value
problems can you solve with these basic solutions?
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EXERCISE 10.3 (Black-Scholes PDE and Put-Call Parity). In the basic Black—
Scholes model, the time ¢ arbitrage price of a European style contingent claim

that pays h(Sr) at time T can be written as f(t, ;) where f(t,z) satisfies the
terminal-value problem

(10.29)  filt,z) = —-;—aza:zfm(t,a:) —12fz(t,x) +rf(t,z) and f(T,z) = h(z).

(a) Consider the collective contingent claim that corresponds to being long one
call and short one put, where each option has the strike price X and expiration
time T. What is the A(-) that corresponds to this collective claim?

(b) Show by direct substitution that ftz) =z — e T-NK is a solution to
the Black-Scholes PDE. Use this observation and your answer to part (a) to give
an alternative proof of the put—call parity formula. Is this derivation more or less
general than the one given at the beginning of the chapter?

EXE.R.CISE 10.4 (Dealing with Dividends). Suppose that we have a stock that
pays a dlwdenfl at a constant rate that is proportional to the stock price, so that if
you hold a; units of the stock during the time period [c, B, then your total dividend
receipts will be given by

g
D / a:S; dt,

a
where the constant rp is called the dimdend yeld. Suppose we start with a stock
that pays no dividend that satisfies the SDE

dS; = pS;dt + 0S5, dB;  and dp, = rf; dt.

If the c}iv1dend pglicy of the stock is then changed so that the stock pays a contin-
uous dividend (with constant dividend yield rp), then, with a bit of thought, one
can see that the SDE for S; should be changed to

dSt = (/,L - TD)St dt + O'St dBt,
since one must change the drift coefficient in order to compensate for the cash
dividends that one receives.

. If we assume that we have the usual bond model dg; = rg; dt, then, by analogy
with other cases we have studied, one might guess that the change in dividend policy
would not lead to a change in the arbitrage pricing PDE. Surprisingly enough, the
change in dividend policy does call for a change in the PDE, and it turns out_that

the a.ppropriate terminal value problem for a Furopean option with time T" payout
h(Sr) is then given by the modified equation:

filt,z) = —%aQ:z?fm(t, z) = (r —rp)xfo(t, z) +rf(t, z),

with the usual terminal condition (T, z) = h(z).

. Use the coefficient matching method of Section 10.2 to show that this assertion
1s correct. To solve this problem you will need to make an appropriate modification
of the self-financing condition before you start matching coefficients.

CHAPTER 11
The Diffusion Equation

In its protean form, the diffusion equation is one of the simplest partial differ-
ential equations:

Bu 8%y
(11.1) 5= /\5;5.
Applications of this equation are now found throughout science, engineering, and
even finance. The equation first became well known through Fourier’s 1822 study of
heat, and, for this reason, it is often referred to as the heat equation. Since the time
of Fourier’s work, the diffusion equation has become central to many areas, and,
most relevant for us, the theory of the diffusion equation is inextiicably intertwined
with Brownian motion.

Further afield, the diffusion equation gave us one of the first physics-based
estimations of the age of the Earth, and it still provides the basis for the calculation
of the distribution of slowly moving neutrons in graphite — useful information if
you want to build an atomic reactor. It has even been used to catch criminals and
to measure the brightness of stars since the diffusion equation guides us to methods
that enhance images from both surveillance and astronomical cameras.

‘We begin our study of the diffusion equation by first observing how it pops
up naturally in physical systems that obey simple conservation and constitutive
laws. We then give three ways to solve the initial-value problem for the diffusion
equation: a Fourier method, a series method, and a similarity method. Each of
these approaches puts a new face on the diffusion equation, and each illustrates a
mathematical idea with far reaching consequences. Finally, we use the solution of
the diffusion equation to complete our investigation of the Black—Scholes PDE.

11.1. The Diffusion of Mice

Each of the fields that leans on the diffusion equation has its own intuition,
technology, and vocabulary, yet the equation retains a simple logic that can stand
by itself. Perhaps the easiest way to master this logic is to consider a model that is
technologically remote, or even modestly absurd. For example, we might consider
the world of a dense population of mice living on the real line.

We imagine these mice running around according to their murine preferences,
and we describe the population dynamics in terms of two basic functions: the
density u(t,z) of mice at location z at time ¢ and the rate g(¢,z) at which mice
cross the point  at time ¢ (moving in the positive direction of the z-axis). The
natural problem is to predict the population distribution at a future time given the
distribution at the present.
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CONSERVATION OF MICE

As a first approximation to the population dynamics, we will suppose that mice
are neither created nor destroyed. In other words, we consider a world where mice
are conserved. If we can calculate the rate at which mice leave the interval [a, b]
in terms of ¢(t,z), and if we can make an independent calculation of this rate in
terms of u(t, z), then we will obtain an equation that relates q and w.

We first note that the rate at which mice leave the interval {a,b] is given by
q(t,b) — g(¢,a), and we can naturally recast this difference as an integral:

]
(11.2) alt,b) - at0) = | gralt,o) e
o O

‘We then note that the total population of mice in the interval [a, b] is also equal to
the integral of the population density u(t,z), so the rate at which mice leave the
interval [a, b] has a second representation which is given by

o b b9
(11.3) — / u(t,z) dz = — / Sru(t,7) do.

By the equality of the two rates (11.2) and (11.3) for all intervals {a,b], we see
the corresponding integrands must be equal, so at last we find a first order partial
differential equation

(11.4) ov 9%

Such an equation is traditionally called a conservation law, or, in this case, the
conservation law for mice.

CONSTITUTION OF MICE

The movements of mice are determined by their preferences, and, in the austere
language of our model, this boils down to saying that there is some function F for
which we have

q(t,z) = Fu, ug, z).
If we hope to find a simple model for our population, we need to find a simple
choice of F'.

Although it is difficult to speak for our fellow mammals, we might reasonably
suppose that mice prefer to live in less crowded areas. We might also suppose
that as they snoop around the mice can sense the spatial rate of change u, of the
population density, even though the nominal levels of v and z would be irrelevant
to their actions. This brings us to consider an F' that depends only on u,, and, if
we boldly approximate F as a linear function, we come to the hypothesis

(10.5) aft,) = 2L,
where we take A to be a positive constant so that the minus sign reflects the as-
sumption that the mice prefer to move to less crowded conditions.

Any relationship that expresses ¢(t,z) in terms of z, u, and u, is called a
constrtutive low, and equation (11.5) is the simplest and most widely used of the
constitutive laws. It is not the only possibility, however, and in every instance we
must regard the constitutive law as an approximation to be judged by experience.
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At first we might only require that the constitutive law (11.5) be qualitatively
reasonable, but, as one comes to rely on the model, the shape of the constitutive law
must be formed by experimental evidence. Rather miraculously, simple constitutive
laws such as equation (11.5) have been found to serve reliably in many important
contexts.

THE DIFFUSION EQUATION

The diffusion equation instantly boils out of any pot that contains a conserva-
tion law and a constitutive law. When we substitute equation (11.5) into equation
(11.4), we immediately find the basic diffusion equation:

du | O%u
ot~ "oz?

One of the interesting features of this derivation is that the function ¢(¢, =) has
left the stage after serving as a trustworthy intermediary. Actunally, this process is
quite common. Many of the second order equations that one finds in science and
engineering come about as the combination of two first order equations that have
more direct physical interpretations.

(11.6)

DIFFUSIONS IN R¢

Equation (11.8) is just the one-dimensional member of a d-dimensional family,
and the physical interpretation of the d-dimensional diffusion equation is perfectly
parallel to the case of d = 1. New issues do emerge, however, and, at a minimum,
we must be a bit more precise in the definition of some of our terms. Also, we will
cater to the usual conventions and speak of material rather than mice. In R%, one
might think of the diffusion of a drop of iodine in a glass of water.

As before, we can begin with a density function u : R xR¢ — R, but for a
diffusion in R¢ we can no longer take g to be simply a rea] valued function of time
and location; now it must be a time-dependent vector field, ¢ : RT xR? — R?. We
think of the magnitude |g| as the rate at which material at z € R? moves away
from z, and we think of g/|q| as the direction in which the material moves. Often,
q is called the fluz field, although the term may be more trouble than it is worth.

Just as before, the true charm of ¢ is that it permits us to express the amount
of material leaving the domain D C R? as an integral, though this time we need to
use the surface integral

(11.7) /8 _alto) s,

where n is the outward normal to the surface 8D of the domain D. We also have
that the rate at which material leaves the domain D is given by

(11.8) ~% / u(t,5)dV,
D

so, as we saw before, the conservation of material tells us that these two quantities
must be equal.

Because the surface integral (11.7) can be rewritten as a volume integral by
Gauss's formula, and since we can take the time derivative inside the volume integral
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(11.8), we therefore have

—/ %u(t,m)dV:/ V- gt z) dV.
D D

The validity of this identity for all D tells us that we have equality of the integrands;
that is, we have
Buft, z)
ot
and equation (11.9) is the d-dimensional version of the conservation law.
The generic — plain vanilla — constitutive law in R is given by

(11.10) q(t, z) = =AVul(t, z)

where A is a positive constant. This law is the natural analog to the one-dimensional
law, and in many physical contexts it can be motivated by arguments that parallel
those of d = 1. The bottom line is that for systems that satisfy the conservation
law (11.9) and the constitutive law (11.10), we have the d-dimensional diffusion
equation:

(11.9) = -V -q(t,z),

ou
11.11 -— =
( ) 5 PYAYTA

11.2. Solutions of the Diffusion Equation

Here is the basic problem in the simplest case. How do we find u(t, z) when we
are given the equation
Oy &y
11.12 — = A
( ) Ot ’\BwQ
and the initial condition

(11.13) w(0,z) = f(z) ?

We will examine three approaches to solving this problem. One might well think
that a single solution method would be enough, and, of course, it would be. Never-
theless, each of the methods that we use to solve equation {11.12) has its advantages.
Moreover, each of these methods is an acorn from which a great theory has grown.

FOURIER TRANSFORM METHOD: SEARCH FOR A CANDIDATE

When we go hunting for the solution of an equation, we are perfectly willing to
make whatever assumptions we need to justify our calculations. After all, we can
always retrace our steps after we have succeeded in finding a candidate solution.
There is never any real cost to bold calculation, provided that we eventually confirm
that our candidate is an honest solution.

One of the great innovations of Fourier’s 1822 treatise was the introduction of
what we now call the Fourier transform:

o0
8 = 30) = [ e%ep(o) do.
When we apply this transformation to the space variable of a function of space and
time, we have g(%, ) — §(t,6), where

(11.14) a@m=/mﬂwm@m,

-0

X
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and, quite remarkably, this process converts the diffusion equation (11.12) from a
PDE for u(t,z) to an ODE for 4(%, 8).

To see how this works, we first note that if we take the Fourier transform (11.14)
of both sides of the diffusion equation (11.12), then by interchanging integration
and differentiation we can write the left-hand side as

le]
(11.15) f % (t, 1) de = 44(¢, ).
—co
The Fourier transform fi, (¢, 8) of ug,{t, z) can also be rewritten by integration by
parts to give
(o]

(11.16) @ag(t, 0) = / €%, (t, ) dz = —62 / e®u(t, ) dz = —0%a(t, 6),

—o0 —co

[oe]

so Fourier transformation automatically converts the initial-value problem for the
PDE (11.12) into a much simpler initial-value problem for an ODE:

(11.17) (8, 0) = ~\024(t, 0),
with the initial condition
(o) fee]
(11.18) 2(0,0) = / e u(0,z) dz = / "% f(z) dz = F(6).
—c0 —00

Now, for each fixed @, this ¢ variable ODE is easy to solve, and, when we take into
account that the constant of integration can depend on 8, we see that the general
solution of equation (11.17) is given by

(11.19) (t, 0) = h(f)e "¢,

where h(8) is a function that remains to be determined. By the initial condition
given in equation (11.18), we have @(0,8) = f(8), and, when we let ¢ = 0 in equation
(11.19), we see that h(f) = 2(0,6). By combining these observations, we see that
h(8) = £(8), so the unique solution of equation (11.17) is given by

(11.20) a(t, 0) = f(8)e™"".

The determination of u(¢,z) now boils down to the inversion of the Fourier trans-
form.

INVERTING THE TRANSFORM

By our great luck, the Fourier transform %(¢, 8) is easy to invert. We just need
two facts. First, the Fourier transform takes convolution into multiplication. That
is, if - o

v(z) =P * d(z) = / Wz —v)g(y) dy = / P(Y)p(z —y) dy,
—o0 —00

then o
A(0) = %(0)9(6).

Second, the Fourier transform of a normal density with mean zero and variance 2At
o a—AG7E
ise .

To exploit these facts, we first write f(6) for the Fourier transform of f(z) and
then note that the convolution

1 1

B )
11.21 _ e~V gy / ~(a—9)? /8>t g
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has 1‘?ouner transform equal to f(8)e=*%"t By equation {11.20), this is also the
Fourier transform of w(t,z), so, by the uniqueness of the transform, we find a
perfectly explicit formula for u(¢, z):

(11.22) u(t, z) = /_ ” F) -

2v/mAt

ez /e dy.

CHECKING THE CANDIDATE

In the course of our derivation of equation (11.22), we happily calculated with-
out any concern for the legitimacy of the individual steps. Now that we have a solid
candidate for the solution to the initial-value problem, we should confirm that our
candidate is a bona fide solution. Later, we will also need to sort out the extent to

whach the solution that we have found may, or may not, be unique.
The function defined by

(At z) = ~a"/4x

e
VTN

is nothing more than the density of a Gaussian random variable with mean 0 and
variance 2Af, but because of 1ts prominent role in the world of PDEs k(Ait,z) is
also called the heat kernel In the standardized case when )\ = 1, we will also write
k() for k(2;t, z).

The main duty of the heat kernel is to serve as the kernel of the integral operator
K that is defined by

(Kif)(z) = /_Z Tk t,z ~y)dy = /oo flz —9)k(\t,y). dy

The i‘nteglal operator K; is called the the heat operator, and it gives us a tidy way
to write down a solution of the initial-value problem for the diffusion equation.

THEOREM 11.1. Suppose the continuous function f : R — R satisfies the growth
condition

(11.23) |F(z)] < Aexp(Blz[?)
for some constant A,B, and p < 2. If we define u(t,z) for t > 0 by
cO

(11.29 u(ta) = Ke) = [ Skt - o) d,

-0
then u € CH2((0,00) xR) and

Ou 82

(11.25) 5= /\a—;; forallt>0 and z € R,
Moreover, u(t,x) can be extended continuously to [0,00) x R wn such a way that
(11 26) w(0,2) = f(z) foralzeR.

PROO.F.'TO begin, we will check the important fact that the heat kernel
k(A t,z) is itself a solution to the diffusion equation. First, by differentiating
log k()\; ¢, z), we find

(11.27) ke(Mitw) 1 a® ka(Ast,7) z

Khta) - aToE ™ Fnne) - o
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Next, if we take the a-derivative of kz(\; ¢, z) = —(z/2A)k()\; ¢, z), we also find

1 z>
kzm(/\;t, :L‘) = {—m + 4—)\-2—1;—2} ]C(/\; t, fl))

When we compare the first identity of equation (11.27) with the formula for the
second derivative kg (A ¢, z) we find that k(A ¢, z) satisfles

k(N 6, @) = Akam (A8, ),

just as we hoped.

Now, since the heat kernel satisfies the diffusion equation, we see that the con-
volution (11.24) is also a solution, provided that we can interchange the integration
with the necessary derivatives §/0t and 8%/9z%. With patience, one can show that
for each fixed t > 0 there are constants C(t) and 6(%) such that the absolute value
of the difference quotients

(11.28) —}1; (st + by — ) — KOG 2 — 3)
and
(11.29) 7115 (b, + 2h — y) — 2k(\ £, 3 + b —9) + E(s 6,2 — 9)

are bounded above by C(t) for all |r| < §(¢) and all z,y. This observation and
the growth condition (11.23) on f are more than we need to invoke the dominated
convergence theorem to justify the required differentiation under the integral.

All that remains is to show that u may be extended to a function that satisfies
the initial-value and continuity conditions. It turns out that if we take Z ~ N(0, 1),
then the required extension can be written rather neatly as

(11.30) ult, z) = E[f(z + V2XAtZ)].

For ¢ > 0, this definition certainly coincides with the integral in equation (11.24),
and by direct substitution into equation (11.30) we see that we also have u(0,z) =
f(z). All that remains is to show that the u defined by equation (11.30) is contin-
uous on RT xR, and this 1s quite easy.

If we take 0 < £ < (2A)7%, then the growth condition on f given by equation
(11.23) tells us that

|f(z + VaXtZ)| < Aexp(B(le| +121)7),

and the last random variable has a finite expectation. The dominated convergence
theorem and the continuity of f then tell us that

limg B{f(z + VaXtZ)) = Eflim f(z + VaXtz)) = (),

so the function u(t, z) defined by the integral (11.24) for £ > 0 may be extended to
a continuous function on [0, c0) X R by taking u(0,z) = f(z). O

SERIES SOLUTION

The integral representation of the solution of the initial-value problem has many
practical and theoretical benefits, but there is a radically different approach to the
initial-value problem that also has its merits. Strangely, it calls on infinitely many
derivatives rather than one integral, a situation that would seem to spell doom.
Nevertheless, there are many instances where it prevails nicely.
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If we fix z and expand u(, z) as a Taylor series about ¢ = 0, we are brought to
the representation

(o]
" O™y
(11.31) u(t, z) = Z{)E%(o,m).
=
What makes this formal expansion attractive is that the diffusion equation
gives us a way to express all of the ¢ derivatives of u in terms of f derivatives. If
we assumne that u(t,z) is sufficiently smooth, then the equation

8
2 1,2) = A2 L(t,2)

can be iterated to give

8 6%u 8% du 28u

Ctay =22l oy 2 B oy T,

or, more generally,

d%y,
11.32 = \"
(11.52) o ta) = N2 (1,3,
Now, if we heroically set ¢ = 0 in equation (11.32) and then apply our initial
condition u(0,z) = f(z) on the right—hand side, we find

atn S (0,2) = X F (),

Now, at last, we can use this formula for the ¢ derivatives of  in our original Taylor
expansion (11.31). The bottom line is that we obtain an almost magical formula.
for u(t, z):

o EPAT o
(11.33) u(t,z) = E% - 7™ ().

n=i

This formula can be used to get the solution of the diffusion equation in many

interesting cases, often with a minimum of calculation. One of the nicest situations
arises when f is a polynomial. In this case, the representation of u(¢, z) has only
finitely many terms, and only trivial differentiations are needed to calculate u as a
simple polynomial in © and ¢. Other nice examples include f(z) = exp(az), where
we quickly find

= tn/\n 2 2

(11.34) u(t,@) = ot = Mo,

n=0
and f(z) = cosz, where the fact that the 2n’th derivative of f is (~1)™ cosz brings
us immediately to

u(t,z) = e~ cos .
In all of these instances, one can easily check that the function given by the formal
series is in fact an honest solution of the initial-value problem.

SIMILARITY SOLUTIONS

Two solutions may seem to be more than enough, but there is a third approach
to the diffusion equation that helps us see more clearly the structure of the solutions.
The big idea here is that if an equation is invariant under a group of transformations,
then the functions that are invariant under that group are the natural candidates
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for solutions of the equation. A familiar instance of this principle is the universal
habit of looking for a radial function whenever we want to solve an equation that
is unchanged by rotation of the coordinate axes.

To begin our hunt for invariance, we first consider the simple linear change of
variables 7 = of and y = Bz, and we introduce a new function v(,y) by requiring
that u(t, =) = v(7,y). Now, if we apply the chain rule, we find

Up = OV Uz = Puy, and Uz, = ﬁzvyy,
so the original equation u; = Augy implies that cv, = ﬂzz\vyy.
Now we have the opportunity to make a useful observation. If we take o = 2,

then v(7,y) is again a solution of the simple diffusion equation v, = Avyy. In other
words, the diffusion equation is unchanged by the transformation

(11.35) tr ot and T+ oiz.

The invariance of the diffusion equation under the one-parameter group of transfor-
mations (11.35) suggests that we should look for solutions to the diffusion equation
that are also invariant. In other words, we should look for a solution u(t,z) that
satisfies u(t, z) = u(at, Vaz) for all @ > 0. This idea greatly simplifies our search
because any u(t,z) with this invariance property can be written as a function of
the ratio z/v/%, say

u(t,z) = Y(z/V1).

When we substitute this candidate into the diffusion equation, we find
T 1
~V @/ VD557 = W' (=/Vi)7,

and if we introduce the variable y = z/+/%, we arrive at the elementary ODE

%’llf%l 2?’1\, or (log®'(y))’ = Qy)\

Now, when we integrate once, we find 9’ (y) = cexp(—~y?/4X), where ¢ is a constant,
so, when we integrate again and replace y by z/ /T, we see that one solution of
the equation u; = Mgy is given in terms of the Gaussian distribution function
as u(t,z) = ®(z/V2Xt). When we let £ > 0 decrease to zero, we find that this
solution corresponds to the initial-value problem with u(0, z) = f(z) equal to zero
for negative z, one for positive z, and one-half for z = 0. More generally, we see
that for any a < b the difference

(11.36) wmn=o(2=2) e (320)

solves u; = Ay, with the initial-value condition

0 z ¢ [a,b]
u(@,0)=Ff(@)=¢% az=aorz=b
1 z € {(a,b).

Finally, by the linearity of the equation u; = Auzs, we also see that equation (11.36)
tells us how to write down the solution to the initial-value problem for any step
function f, or for any f that we are willing to approximate by step functions.
The simple idea of searching for the symmetries of the equation u; = Augg
under linear transformations has brought us amazingly far. Now, after only a
minimal amount of calculation, we have found a rich class of problems that we can
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solve without any further computation. Moreover, the solutions given by equation
(11.36) are useful intuition builders; one cannot beat a simple Mathematica (or
Maple) animation of the formula (11.36) for showing how a diffusion diffuses.

11.3. Uniqueness of Solutions

One of the humbling properties of the diffusion equation is that the initial-
value problem does not have a unique solution, no matter how nice our initial data
f may be. In order to specify a unique solution (%, z), one must look beyond f; a
guarantee of uniqueness can only be found if one imposes conditions on the set of
functions that one is willing to admit as possible solutions. We will soon obtain a
uniqueness theorem that serves well enough for most applications, but first we look
at an example that illustrates the horrors of nonuniqueness.

AN EXAMPLE OF N ONUNIQUENESS

If one has a good eye for index shifting, it is easy to guess that we can get a
formal solution to u; = ugy just by taking

(11.37) u(t, z) = Z(%, dtn¢(t)—¢(t)+ ¢(t)+ ¢~(t)+

To see how this works, we just do our formal differentiations and see what happens
to n:

Ugy (£, 2) = Z (2 1 on - (2n — 1) z?n~2 %Egb(t)

(D n4-1
= ;) @)l gt-;_*_—l¢(t) = (%, ).

Now, if we were looking for pathological solutions to the diffusion equation, one
idea we might try is to hunt for an interesting ¢. This turns out to be a fine idea
if we consider

g~1/¢ fort>0
11.38 t) =
( ) 9(%) {0 fort <0.

This famous function is a building block for many counterexamples in analysis.
What makes it so handy is that it goes to zero amazingly fast as ¢ | 0. In particular,
this rapid convergence permits one to show that ¢ € C®(R) and ¢™(0) = 0 for all
n, so ¢(t) provides an example of a nontrivial smooth function that has a Taylor
expansion at zero that is identically zero.

This lame Taylor series may be amusing enough to make ¢ worth remembering,
but ¢ really comes into its own when it 15 used as an element in the construction of
more complex examples. In particular, when we plug ¢ into equation (11.37), we
end up with a function u(¢, z) such that

o U = Uy for all (£,z) ER x R,

e u(0,z) =0for all z € R, and

e u(t,z) #0.

These properties of u are easy to check if one is content with formal calculations,
and, with honest toil, they can be rigorously justified. Such a justification would
take us too far off our trail, so we must be content with our formal arguments.
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Nevertheless, we should underscore the bottom line. Because there are nonzéro
solutions to the initial-value problem with f(z) = 0, any initial-value problem
for the diffusion equation will fail to have a unique solution. We can only talk
about uniqueness within subclasses of solutions, like nonnegative solutions, bounded
solutions, or solutions that satisfy some more liberal growth condition.

THE IDEA OF A MAXIMUM PRINCIPLE

Many of the most useful function classes satisfy a mazmum principle of one
sort or another. Two of the most important of these are the class of harmonic
functions and the class of analytic functions. Each of these classes has several
varieties of maximum principles, but the simplest are those that deal with bounded
domains. In this case, the maximum principle for harmonic functions says that any
harmonic function k on a bounded domain D c R¢ satisfies

(11.39) ;Ielgaé h{z) = I;}Ea%c h{z),

where D is the closure of the domain and 8D is the boundary of D. Similarly,
for any analytic function f on a bounded domam D C C, the maximum modulus
principle tells us

(11.40) max | f(2)| = max|f(2)).

The reason we mention these results is that maximum principles are the key to
many uniqueness theorems. For example, if D is a bounded domain in R? and if u
and v are both solutions of the boundary-value problem

(11.41) Ah(z) =0 for z € D and h(z) = b(z) for z € 8D,

then the maximum principle for harmonic functions gives us an easy way to prove
that u(z) = v(z) for all z € D. All we need to do is note that A(z) = u(z) — v(z)
1s & harmomec function on D that is zero on 8D, so the maximum principle tells us
h(z) < 0 on D, and, since the same argument applies to —h(z), we actually have
h(z) = 0 on D. In other words, u(z) = v(z) on D, and — woild — the solution of
the boundary value problem (11.41) is unique.

This well-worn pattern suggests that if we want to find a uniqueness theorem
for the diffusion equation, then we might first think about an appropriate maximum
principle. This suggestion turns out to be a sound one.

PARABOLIC MAXIMUM PRINCIPLE

In the diffusion equation, the time variable and the space variable play differ-
ent roles, and these differences must be taken into account in order to frame an
appropriate maximum principle. The simplest natural domain in which we might
study the diffusion equation is surely the space-tame slab defined by

D={(t,z):0<t<T, A<z < B}

for some constants A and B. We will shortly find that in many circumstances a
solution of the equation u; = Uy, will take on its maximum value in D at a point
in the set

8D =0D\{(t,z):t=Tand A<z < B}



180 11 THE DIFFUSION EQUATION

The set oD 15 called the parabolic boundary of D, and it would be equal to the
usual boundary of D except that the open segment between the points (7', A) and
(T, B) has been excluded.

We could now state a maximum principle for the solutions of the diffusion
equation that directly parallels the maximum principle for harmonic functions,
but, for reasons that will be revealed shortly, we will actually have an easier time
proving a “one-sided” version of the natural result. To understand why such an
apparently more general result turns out to be easier to prove, one only needs
recall why we often prefer to work with submartingales rather than martingales.
You can do a lot to a submartingale and still have a submartingale, whereas a
martingale is more fragile. A square or maximum will destroy the martingale
property, but such operations leave the submartingale property unruffied. Proofs
of maximum principles and uniqueness theorems for PDEs often require us to build
modifications of our original functions, and we often need these modifications to
satisfy our original hypotheses. A one-sided condition such as that used in the next
theorem provides just the required flexibility.

THEOREM 11.2 (Parabolic Maximum Principle). Suppose D 1s a space-tume
slab and w € CY2(D)N C(D). If u sahsfies the mequality

(11.42) (b, ) < Ugg (¢, 3) for all (t,z) € D,

then the mazimum of u on D s assumed on the parabolic boundary; that us,
11.43 t, = t,z).

- B5ME) = B uhe)

PrOOF. If we first fix § > 0 and let v(t, z) = u(t, z) —6t, then by the hypothesis
on ¢ we have

(11.44) V4(t, ) < Vgz (¢, z) for all (¢,z) € D.
Now, 1if we can prove that

11.45 t,z) = t,z),
(49 %G = (B,

then we would have for all § > 0 that
=T + max_u(t, z) < t,z) — 6t
(e ult, z) (tr,z;gécﬁ{U( z) — 6t}

= t,z) — 6t} < t,z).
o Sox u(t o) -8} < max u(t,a)
The arbitrariness of § would give us the mequality (11.43) that we are after.

Now, take any 0 < € < T and consider the slightly smaller slab D(e) defined by

D(e) ={(t,z):0<t<T—¢ A<z <B}.

If the maximum value of v(t, z) in D(¢) takes place at a point (fy, 2g) in the interior
of D(e), then we would have vy(to, o) < 0 by maximality of the function z
v(to, =) at zo. Similarly, we have v;(ty, zo) = 0, since the function ¢ v(t, zo) has
an extreme point at Zp. These two inequalities then tell us vz (o, Zo) < vs(to, o),
and this inequality contradicts equation (11.44). Therefore, the maximum value of
(t,z) in D(e) takes place on the boundary.

Next, consider the possibility of a maximum at a point (T — €, p) in the open
line segment L = {(T ~¢,z) : z € (4,B)}. Again, by maximality we have the
mequality vez(T — €,z0) < 0, but this time we just have v,(T' — ¢,z0) > 0, since
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otherwise we would have some €’ > € such that v(T'—¢', zg) > v(T'—¢, Zo)- These two
inequalities tell us that vy, (T — €, zo) < v4(T — ¢, %g). This gives us a contradiction
to equation (11.44), and consequently we have

(11.46) max (¢, z) v(t, z).

=  max
(t,z)E€D(e) (t,2)€80 D (e)
Because u(t, 2) is continuous on the compact set D, the functions

d ax v,z
€ (t,i?é‘%‘(s)v(t’ z) and € — o225 (%)

are continuous for all € € [0,7], so letting ¢ — 0 in equation (11.46) gives us the
target inequality (11.45). By our earlier reductions, this completes the proof of the

[}
theorem.

A UNIQUENESS THEOREM

We now have the tools we need to state and prove a general uniqueness theorem
for the heat equation. A bit later, we will see that this result provides the key to
proving & basic uniqueness theorem for the Black—Scholes terminal-value problem.

THEOREM 11.3 (Uniqueness Theorem). Suppose that u € C*?* on (0,c0) x R
and that u s continuous on [0,c0) x R. Suppose also that there are constants C
and B such that

(11.47) u(t, z)] < CeB= for all (t,z) € [0,00) X R.
If u satisfies the wnequality

(11.48) us(t, ) < ugg(t, z) for all (t,z) € (0,00) X R,
and of u(0,2) <0 for all z € R, then

(11.49) w(t, ) <0 for all (t,2) € [0,00) x R.

PrOOF. We first observe that it suffices to show that there is some fixed T
such that the hypotheses imply u(t,z) < 0 for all (¢,z) € [0,T] x R. To see why
this is so, we only need to note that if we take t' = ¢ — T the hypotheses of the
theorem continue to hold, and we can conclude that u(¢,z) < 0 on [0, 7] x R. This
argument can be repeated as many times as we like, so eventually we find for any
(t,z) € [0,T] x R that u(t,z) < 0. ’

We therefore choose a small fixed T (any T < 1/(8B) will suffice), and we
consider the auxiliary function defined by

(11.50)  v(8,y3t, @) = v(t, z) = u(z,t) — 62T — )~ expl(z — y)?/4(2T — &),

where § > 0 and y € R aze arbitrary fixed parameters. One can use the same
calculation that we used during our investigation of the heat kernel to show that
the difference v — u satisfies the diffusion equation, so by equation (11.48) we also
have

(¢, %) < vge(t, z) for all (¢,z) € D,

where D = D(y, h) is the space-time slab
D(y,hy ={ (t,2):0<t<T,y~h<z<y+h}
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and h > 0 is arbitrary. We can now apply the parabolic maximum principle to v
on D(y, h) to find

11.51 = t, ),
(11.51) (byeD v(t2) (t:5)e80D v(t )
so our task eventually boils down to understanding the behavior of v on 8y.D.
On the upper part of the parabolic boundary, we have z = y-+hand 0 <t < T,
S0

v(8,y;t, ) < Cexp[B(y + h)?] — 6(2T — £)™% exp[h?/4(2T — £)]
< Cexp|B(y + h)?] ~ 8T~% exp(h*/(8T)).

Now, with our choice of T, we have B < 1/(87), so the last equation tells us that
we can choose hp such that for all b > hp the right-hand side is negative. The
same estimates also show that v(t, z) is negative on the lower part of the parabolic
boundary, and the definition of v(t, z) immediately implies that

v(0,%) < u(0,z) <0,

so v(t,z) is nonpositive on the whole parabolic boundary D(h,y) when h > hg.
The maximum principle then tells us that

v(t,z) <0 for all (t,z) € D= D(y,h) and h > ho.
This actually tells us that
(11.52) u(z,t) — 62T — £)™% exp{(z — y)2/4(2T — 1)} < 0

forall 0 £t < T and z € R. Because the region where inequality (11.52) holds
does not depend on §, we can let § — 0 in equation (11.52) to obtain

u(z,t) <O0forall 0 <t <Tand z €R.
By our first remarks, the last inequality suffices to imply the theorem. 0O

Auxiliary comparison functions such as the v defined by equation (11.50) are
widely used throughout the theory of partial differential equations, and the flexibil-
ity we gain by using only ‘one-sided’ conditions is almost always essential for their
construction. In our case, the construction of the auxiliary function v(6, y; ¢, z) was
not difficult, but in some PDE problems the construction of the right comparison
function can be extremely challenging.

11.4. How to Solve the Black—Scholes PDE

The Black-Scholes PDE may look like a long stride from the heat equation, but
there are a couple of standard manipulations that quickly span the gap. The first of
these is the PDE analog to a familiar trick for solving the ODE f/(z)+Af(z) = g(z).
This equation differs from the trivial ODE f'(z) = g(z) by the addition of the linear
term Af(z), and a way to deal with this minor complication has been known since
the dawn of calculus. If we multiply our original equation by e**, then the resulting
equation can be rewritten as (e** f(z))’ = e’*g(z), an equation that is of the trivial
variety. For PDEs there is an analogous multiplier technique that shows us how to
solve versions of the heat equation that have been complicated by the addition of
constant multiples of v and u,,.
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A MULTIPLIER. METHOD FOR PDES

Suppose that u(t, z) satisfies the equation u; = ugg, and consider the function
v(t, z) that lets us reexpress u(t,z) as

(11.53) u(t, z) = e*Poy(t, z).

‘We then have
ug(t, ) = et Py (t, ) + e Py, (¢, 2),

ug(t, z) = BetHP%uy(t, 1) + e Py, (L, z),

o Uz (t, 2) = B2eT0%(t, ) + 28T %, (1, x) + et +Boy, (t, 1),

so the equation us = Uy, tells us that we have

(11.54) Vg = Ugg + 2005 + (B2 — a)v and v(0,z) = e~P*u(0, z).

This equation is our ticket to the solution of a nice class of initial-value problems,
and it brings us one step closer to the solution of the Black—Scholes equation. If we

combine this trick with a netural scaling argument, we will be able to reduce any
constant-coefficient parabolic PDE to the heat equation.

SoLviNg CONSTANT-COEFFICIENT DIFFUSION EQUATIONS

The most natural extension of the initial-value problem for the basic diffusion
equation is the problem with constant coefficients:

(11.55) Vg = QUgg + bug + cv and v(0, z) = P(z).

This problem shows up in a great variety of contexts, and in many of these situ-
ations the term bv, can be interpreted as a transport term and the term cv can
be interpreted as a source term. The intuitive content of these evocative names is
explored in Exercise 11.1, which revisits the world of one-dimensional mice to show
how source and transport terms may make a natural appearance in models that
are built from first principles.

By equation (11.54), we know how to solve the initial-value problem equation
for the standardized case a = 1, so, to write down a general solution for the initial-
value problem (11.55), we only need to make an appropriate transformation. If we
imtroduce the new variable y = pz and write our original function v(3, z) as w(t, %),
then we have

ve(t,z) = wy(t,y)p  and  vge(t, 3) = wyy(t, ¥)0>

When we substitute into our original equation, we find the new initial-value prob-
lem:

wy(t,y) = p2awy, (t, y) + pbwy(t,9) + cw(t,y) and  w(0,y) =%(y/p),

and, if we take p? = 1/a, the lead term of equation (11.56) becomes simply wy,.
At last, we come to an initial-value problem in the desired form:

(11.56)  wilt,¥) = wyy(t, ) + \/%wy(t, y) + cw(t,y) and w(0,y) = Y(yVa).

Because of equation (11.55), we know how to solve this problem, so only arithmetic
stands between us and and the general solution of equation (11.55).
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THEOREM 11.4 (A Solution Formula). If a,b, and c are constants, then the
wahal-value problem given by

(11.57) Vg = QUgg - bug + cv and v(0, 2) = ¥P(z)
has a solutron that can be written as
(11.58)

o
ke(z/v/a — 5)e* V24 (s\/a) ds,
prowded that a > 0 and that the wahal data satisfy the exponential bound
[%(z)| < Aexp(Blz|?)

for some constants A,B, and p < 2.

v(t, z) = exp(—t(b* — dac)/4a — zb/2a) /

ProOF. We already know that v(t,z) satisfies equation (11.57) if and only if
the function defined by w(t,y) = v(t,z) and y = z/./a satisfies the initial-value
problem (11.56). Moreover, by equation (11.54) and Theorem 11.1, we know how
to write down the solution of the last equation. It is simply

o0
w(t,g) =0 [ Ry - )P p(sva) ds,
—co
where o and g are given by 28 =b//a and B2 —a =¢, or

B= 5% and o = (b® — 4ac)/4a.

When we make these substitutions and use the fact that v(¢,3) = w(t,y/+/a), we
come directly to the stated solution (11.58). O

UNIQUENESS THEOREM FOR CONSTANT COEFFICIENT DIFFUSIONS

There is a natural temptation to press on immediately to the solution of the
Black—~Scholes PDE, but we do best to take care of another important task while the
calculations that brought us to Theorem 11.4 are still fresh in mind. We will soon
need a uniqueness theorem for initial-value problems for the constant-coefficient
diffusion equation, and the key link is given by the correspondence between solutions
of equation (11.57) and those of the simple diffusion equation for which we have
the basic uniqueness result of Theorem 11.3.

THEOREM 11.5 (Uniqueness of Solutions). Suppose that v € CH2((0,T] x R)
and v € C([0,T] x R). Ifv satisfies the constant-coefficient PDE

(11.59) Vg = QUzz + by + cv fort € (0,T) and z € R,
the wnatial condition
v(0,z) =0 forall z€R,
and the growth condition
(11.60) o(t,z)] < AP
for some constants A and B and all (t,z) € [0,T} x R, then
v(t,z) =0 for all (t,z) € [0,T) x R.
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Proor. The theorem is almost longer to state than to prove. By the multiplier
method calculations and the change of variables that gave us Theorem 11.4, we
know there are constants «g, 8o, 7o such that the function

(11.61) u(t, &) = e Py(t,v9z)

satisfies the basic diffusion equation u; = ug;. The representation also tells us that
u satisfies the initial condition that w(0,z) =0 for all z € R.

Now, by the growth constraint on v and boundedness of the time interval {0, 7]
we also see that there exist constants Ay and Bp such that v satisfies the growth
condition

[u(t, z)| < AgeBo®”

All of the conditions of Theorem 11.5 are met for u, and we can conclude that
u(t,z) = 0 for all (£,z) € [0,T] x R. By the correspondence (11.61) between u and
v, we also have the same conclusion for v. O

EULER’'S EQUIDIMENSIONAL EQUATION

We could solve the Black-Scholes equation right now, but the solution will seem
a lot simpler if we first take advantage of an old observation of Euler about the
so-called equidimensional equation:

(11.62) az? " (z) + bz f'(z) + cf(z) = 0.

If we introduce the new variable y = az and write f(z) = g(y), then the usual
chain rule calculations give us

f'(z) = g'(y)e and f'(z) = ¢"(y)o?
and, since z = y/c, we see that
zf'(z) = (y/a) - (¢'(W)e) = yg'(y) and 2*f"(z) = (y/0)? - (" (¥)e?) = ¥*¢" ().

These equations tell us that the change of variables y = az leaves Euler’s equi-
dimensional equation (11.62) unchanged; that 1s, changes of scale do not change
the solutions of equation (11.62) — just as changes of location y = 2 + ¢ do not
change the class of solutions of an ODE with constant coefficients.

These observations suggest that we may be able to convert equation (11.62) to
an ODE with constant coefficients if we make the change of variables y = log z and
introduce the new function g(y) = f(z). In this case, the chain rule calculations
give us

(=) = ¢' W)y = §'W)(1/) and f"(z) = " (y)(1/=%) — ¢ (W)(1/="),
50 Euler’s equation (11.62) becomes
ag”(y) + (b - a)g'(y) + cg(y) = 0.

The bottom line is that a logarithmic change of variables gives us a surefire method
for reducing an equidimensional equation to an ODE with constant coefficients.
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LookiNg BACK: ORGANIZING CALCULATIONS

There is nothing particularly difficult in the process of transforming one PDE
to another, but there is an element of complexity that sometimes slows us down.
There is no universal remedy for this molasses effect, but the calculations do seem
to go more quickly if one follows a well-defined plan.

If we know that u(f,z) satisfies an equation, we are guaranteed that we can
make good use of that equation in the derivation of an equation for a new function
v(7,y) if we write the old u as a function of the new v and write the new 7 and y
as functions of the old ¢ and z. This order of things puts everything in the direct
line of fire of the chain rule; the partial derivatives uz, Uz, Uz are easy to compute,
and, at the end, the original equation stands ready for immediate use.

To be sure, one can make correct and useful transformations of equations with-
out following this rule, or any other. Still, with a little practice, many people find
that calculations that are guided by this suggestion tend to flow more quickly (and
with more certainty) than calculations that are organized only by the will of the
moxent.

FIRST SIMPLIFICATION OF THE BLACK—SCHOLES PDE

Now that we have seen that the diffusion equation is not as narrow as it seemed
at first, we will go a step further to show that we can obtain the Black—Scholes
formula by means of the diffusion equation. First, we recall that in the last chapter
we saw that under a reasonable model for stock and bond prices, the arbitrage price
for a European call option was given as the solution to the Black—Scholes PDE

1
(11.63) fi(t,z) = —502:1:2]’,,95(25, z) —rafz(t, z) + 1t ),
together with its terminal boundary condition
f(Tz)=(z~K), forallzeR.

Because we face an equation with a terminal condition instead of an imitial
condition, our first thought is to make a change of the time variable to reverse
time, say by defining a new variable

T=T-1¢
so that 7 = 0 corresponds to t = T. We could now rewrite the Black-Scholes PDE
as a function of 7 and z, but we can save a line or two if we first transform the z
variable.

FINAL TRANSFORMATION OF THE BLACK~SCHOLES PDE

Since the right-hand side of equation (11.63) is equidimensional, our experience
with Euler’s equation screams out to us that we should introduce the new variable

y =logz.
When we write f(t,z) as g(7,y), we find that

ft = grTt = —Gr, f2 = Gy¥Yo = gy(1/%), and fop = gyy(l/a:z) — gy(l/m2),
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so equation (11.63) gives us a new Initial-value problem for g:

1 1
(11.64) gr = §a2gyy + (1‘ - 502) gy — g and g(0,7) = (¥ — K)+.
This problem is precisely of form (11.59), so after we identify the coefficients
(11.65) a= %02, b=1r— -12-02, and ¢ = -,
we see that f(t,z) = g(r,y) is given by the product of the exponential factor
(11.66) exp(—7(b* — 4ac)/4a — yb/2a)
and the corresponding integral term of {11.58):
(o]

(11.67) I= / bor (3] /3 — 8)e2VE(VE — ), ds.

-0

Two INTEGRALS AND THE BLACK—SCHOLES FORMULA

To compute this integral, we first make the change of variables u = y/ Va-—s
and restrict our integration to the domain D where the integrand is nonzero,

(11.68) D={uiy—u/a2logK }={wu<(y—logK)/va},
(11.69) I = exp(y + yb/2a) /D ko () exp(—~u(b/2/a + /&) du

— K exp(yb/2a) /D k- (u) exp (—ub/2+/a) du.

Now, by the familiar completion of the square in the exponent, we can compute
the general integral
o

(11.70) [ 1 ke(s)ePods = e ® ( vl ﬁ\/ﬂ) ,

and we can also check the accuracy of equation (11.70) with a quick differentiation
by . Finally, since both integrals of equation (11.69) are of the same type as
equation (11.70), we see that nothing remains but a bit of arithmetic.

If we recall that 2 = e¥ and patiently collect our several terms, we find that
the formula for f(t, ) emerges from (11.58) like a butterfly from a chrysalis. The
solution f(t,z) of the Black-Scholes terminal-value problem is indeed given by the
Black-Scholes formula:

- <log(£v/K) +(r+ %cﬂ)T) Ko <log(:z:/K) +(r— %UZ)T) .

o+/fT oT
11.5. Uniqueness and the Black—~Scholes PDE

Now that we have found a solution for the Black—Scholes terminal-value prob-
lem for the call option, we would like to be reassured that there are no other
solutions. From our experience with the diffusion equation, we know that this is a
false hope unless we restrict the class of acceptable solutions in some way. Fortu-
nately, there is a natural growth rate restriction that is liberal enough to include
any economically reasonable solutions.
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THEOREM 11.6 (Uniqueness 1 the Black—Scholes Problem). Suppose that
fe G’l’z[(O,T] x (0,c0)] N C([0, T x (0,00))
satisfies the Black-Scholes PDE
(11.71)

1
filt,z) = —Eazxzfm(t, T) ~refs(t,z) +rf(2, z) (t,z) € (0,T] x (0,00),
and the termanal condition
f(T,z)=0 z > 0.
If there emst constants A and B such that
(11 72) |f(t,z)| < Aexp(B 10g2(1 + |z])) (t,z) € [0,T) x [0, 00),
then f 1s wdentically zero on (0,7 x [0, c0).

PROOF. This result only requires that we examine the transformations that we
four.ld 1n the course of solving the Black-Scholes terminal-value problem for the call
option. We found that any solution f(¢,z) of the PDE (11.71) can be written as
g(’r, y), where 1 =T~ ¢, y = logz, and where g(7,v) satisfies a diffusion equation
with constant coefficients. By the assumption that f(T,z) =0 for all z > 0, we
have g(0,y) for all y € R. Also, since f(t,z) satisfies the growth condition (ll.’72)
we see that theie are constants Ap and By such that g(7,y) satisfies ’

l9(T,9)] < AgeB¥"  for all + €[0,T} and all y € R.

By Th'eorem 11.5 on the uniqueness solutions of diffusion equations with constant
coeflicients, we see tha't 9(7,y) =0forall7 € [0,T]andy € R. Asa consequence, we
see that (2, z) is also identically zero, and the proof of the theorem is complete. [J

Here we should remark on the generosity of the growth bound. The function

2
Aexp(Blog*(1+]|z])) grows more slowly than an exponential function, but it grows
faster than any power of z.

A GLANGE AROUND ... AND AHEAD

The theory of partial differential equations is intimately mtertwined with the
theory and application of stochastic calculus. The interplay between the two fields
1s one of the most active areas in mathematics, and new developments are a regular
occurrence. This chapter has provided only a taste of the service that classica]
PDE‘provides to the users of stochastic calculus. N evertheless, we have obtained the
solut}on of the Black-Scholes PDE and have found that under economically realistic
f:ondn:ions the solution of the Black—Scholes terminal-value problem is unique. This
is a worthy achievement

In later chapters, we will find two alternative solutions to the option pricing
problem, each of which has a direct probabilistic interpretation and each of which
tells us something about the solution of PDEs. The first of these is the exception-
ally Powerful martingale method that gudes us to the valuation of a large class of
contingent claims. The second solution is based on the remarkable Feynman-Kac
fqr}xlula. This formula is a true piece of rocket science that repays part of proba-
bility’s debt to the theory of PDE by providing probabilistic representations for a

rich class of important equations, including the notorious Schrédinger equation of
quantum mechanics.
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11.6. Exercises

The first exercise adds to our intuition by showing how basic modeling principles
can be used to derive diffusion equations that contain source terms and transport
terms. The next exercise then shows how martingales and integral representations
can also be used to prove maximum principles. The integral representation tech-
nique is a useful complement to the more elementary local extremum arguments
that gave us the parabolic maximum principle.

The two remaining exercises deal with the Black-Scholes equation. The first
of these completes the last details of our derivation of the Black~Scholes formula.
The last problem is more exciting. It suggests how the superposition principle can
be used to design an algorithm that prices a large class of options.

ExeRCIsE 11.1 (Intuition for Source Terms and Transport Terms)

(a) Suppose that at time ¢ additional one-dimensional mice are born at the
location & at a rate that is a multiple x of the population density u(t, z). How does
this change the conservation law (11.4)? How does this change in the conservation
law change the basic diffusion equation (11.6)? Does your argument go through
even if y is a function of 7 What if it is a function of z and ?

(b) Further, suppose that there is a steady cold wind blowing along the x-axis
from —co to +co, and suppose that this gives the mice a steady tendency to drift
in the positive direction in addition to their continuing desire to find less crowded
living conditions. How does this change the constitutive law (11.5)? How does this
change the diffusion equation found in part (a).

EXERCISE 11.2 (Integral Representations and Maximum Principles).

Suppose A is a connected open set in R? that is bounded, and suppose that
h: A R is a harmonic function on A. It is known that for any disk D of radius
r and center (z,y) such that D C A, we have

1 1
(11.73) h(z,y) = 5 Jop h{u,v) dy and h(z,y) = 7 /D h(u,v) dudy;

that is, h both equals its average over circle D around (z,y) and equals its average
over the disk D.

(a) Use either of these representations to show that if A has a maximum in the
interior of A then h is a constant. This is a version of the maximum principle for
harmonic functions.

(b) Prove the first formula of (11.73) by exploiting the fact that if (B}, B2) 1s
two-dimensional Brownian motion starting at (z,7), and 7 is the hitting time of
0D, then M; = h(B}\,, BZ,,) is a bounded martingale.

(c) Prove the second formula of (11.73) from the first by using polar coordinates
and the fact that the first formula holds for any disk contained in A.

EXEBRCISE 11.3 (A Rite of Passage).

Complete the last step in the computation of the solution of the Black-Scholes
PDE. In particular, compute the integrals in equation (11.69) by exploiting equation
(11.70), then collecting the exponential terms (including those from (11.66), and
finally make the necessary parameter identifications. Try to organize the calculation
in a way that makes the final check as clear as possible. The task is a little dreary
but it is a rite of passage, and one can take refreshment by noticing how informative
elements such as (7 + 102)7)/0+/T pop out of the assembled bits.
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EXERCISE‘ 11.4 (Superposition, Wavelets, and a General Algorithm).
' (a) Assuming the Black-Scholes stock and bond model, find the time ¢ arbitrage
price of a European style option with payout h{S7) at termmal time 7', where

K>0,D>0,and
0 < K
hz)=(x— K z € [K, K + D]
D x> K+ D.

Hint: You should be able to write down the answer almost immediately after you
have graphed the payout function h.

(b) Suppose mstead that the function h is given by

0 z< K~D
H(z—-K+D)/D =z¢€[K-D,K]

hz) =< H z € (K, L]
H-H(@z—~L)/D ze€lL,L+ D)
0 z> L+ D,

where 0 < K < L_, H >0, and D > 0. Find a formula for the option price now.
(¢) As a special case of part (b), can you now price the European style option
with payout A(Sr) where h(z) equals the Mother wavelet Ag(z) of Chapter 37

Suggest how one may use this connection o create an algorithm for pricing a large
class of options.

CHAPTER 12

Representation Theorems

One of the everyday miracles of mathematics is that some objects have two
(or more) representations that somehow manage to reveal different features of the
object. Our constant use of Taylor expansions and Fourler series tends to blunt
their surprise, but in many cases the effectiveness of the right repiesentation can be
magical. Consider the representation for min(s,t) that we found from Parcevals
theorem for the wavelet basis and which formed the cornerstone of our construction
of Brownian motion; or, on a more modest level, consider the representation of a
convex function as the upper envelope of its tangents and the automatic proof it
provides for Jensen’s inequality.

This chapter focuses on three important representation theorems of stochastic
calculus. The first of these is Dudley’s theorem, which tells us that any suitably
measurable function can be represented as the stochastic integral of an £, func-
tion. The second is the famous martingale representation theorem, which plays an
important role in the arbitrage pricing of derivative securities by telling us when we
can represent a continuous martingale as the stochastic integral of an 2 function.
Finally, we establish an important characterization of the stochastic mntegral as a
time change of Brownian motion. This magnificent theorem leads to the wholesale
translation of results for Brownian motion into corresponding results for stochastic
mtegrals and Brownian martingales.

12.1. Stochastic Integral Representation Theorem

Sometimes, a simple observation opens the door to a world of new possibilities,
and the next proposition is a peifect illustration of this phenomenon. It is also
a very optimistic result in that it shows that even the tiniest bit of a Brownian
motion’s future is good enough to recapture any part of its past.

PROPOSITION 12.1 (Capturing the Past). For any 0 < a < b and any finule
random wvariable X € F,, there 15 a stopping time T with a < 7 < b, such that

T o1
(121) .X=/a 'g:—t:dBt

ProoF In order to understand the right-hand side of equation (12.1) a little
more generally, we first consider the Gaussian process Y; defined by talking

V. = 0 for0<t<a
£ Lb-u)tdB, foragt<b.

Clearly, we have FE(Y;) = 0 for all 0 < ¢ < b, and by our earlier work we know
E(Y.Y;) = min{A(s), h(t)}, where the function A(-} is defined by taking h(t) = 0
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for 0 £t < a and by taking
t
h(t) = / (b—s)2ds fora <t <b.
a

The Gaussian process {¥;} therefore has the same covaiiance function as the time-
c.hanged Brownian motion {Bnr)}, so in fact the two processes are equivalent. Now,
since we have assumed that X € F,, we see that the random variable defined by

(12.2) T=min{t > a' ¥; = X}
serves as the required stopping time provided that we can show P(7 < b) = 1.
Fortunately, the required bound on 7 is quite easy. First, we just need to note

th.at h(t) — 00 as ¢t — b, so the familiar properties of Browman motion tell us that
with probability one we have

hr? j},lp Bhrpy = o0 and hgrl’ iglf By = —co.

Now, since the process {¥;} is equivalent to the piocess {Bh(»y}, we also have

(12.3) lim s;;let =oco and lirtn igxf}’; = —00
t—r -

with probability one, and the equations of (12.3) are more than we need to confirm
P{r <b)=1. a

The last proposition provides us a simple example of a representation theorem.
It tells us that any random variable in a certain measurability class can be written
as a stochastic integral. The principal task before us is to generalize the last lemma.
to random variables that satisfy a more modest measurability assumption.

A TaiL Bounp

Our first step in this process will be to exploit the equivalence of {¥;} and
{Bh»} to get quantitative information on the tail probability P(h(r) > t). To
begin, we take any o and note that

(12.4) P(h(7) 2t) < P(h(r) 2 t, |X] < |a]) + P(IX] > |a),
so, if we introduce the parametric family of hitting times
ve =min{t: Y; = q, t > a},
then by (12.3) we have P(vq < b) = 1. We also have the trivial bounds
Ur 2 s, X] <o) <1(Va > 8) +1(van = 5) forall s >0,
so by inequality (12.4) and the monotonicity of A (-) we find
(12.5) P(h(r) 2 t) < 2P(h(va) = t) + P(IX] = o).

hThe equivalence of the processes {¥;} and {Bh(y} then tells us that for any o
we have

h(va) = min{h(t) : ¥; = o}
4 min{h(t) . By = o}
=min{¢t: By =a },

where in the last step we exploited the monotonicity of k. Because we already know
that the density of the first time that Brownian motion reaches a level « is given
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by lelé(|el/\/5)/s%/? for s > 0, we find from inequality (12.5) that for all ¢ > 0 we
have

(126)  P(h(r) 2 t) < 2P(h(ve) > £) + P(X] 2 |el)
<2 [ lolé(al/v5)/s¥2ds + PX| 2 )
< 2lal/VE + P(IX] > Joi),

where in the last step we used the trivial bound ¢(u) < % to help simplify the
integral.

We will confirm shortly that inequality (12.6) provides us with just enough
control over the size of k() to build a far-reaching extension of Proposition 12.1,
but first we need to derive a simple result that tells us how any Fp-measuiable
random variable can be written as a nice sum of random variables such as those
given by the integral of Proposition 12.1.

REPRESENTATION BY INFORMATIVE INCREMENTS

Our intuition about the filtration of Brownian motion suggests that if X € Fr,
and if we successively come to know J;, where ¢, T T', then we should also come to
know X more and more precisely as n — co. There are several ways to make this
intuition precise, and one of the most pleasing ways is to represent X as a sum of
terms that are F; -measurable. We can even exercise considerable control over the
size of the summands.

ProposITION 12.2 (Representation by Informative Increments). For any ran-
dom variable X € Fr and any pawr of summable sequences of decreasing real
numbers {a,} and {b,}, there emsts an wncreasing real sequence {t,} such
that t, — T and a sequence of random variables A, such that

[oe]

(12.7) A, eF, foralln, X= zAn with probability one,
n=0

and

(12.8) P(|An| 2 ap) < by for alln > 1.

Proor. To begin, we let ¥ = ®(X) where ®(:) 1s the standard Gaussian
distribution function. If we then set s, =1 — 1/n and G, = o{B;: t < s}, then
by the boundedness of Y and the martingale convergence theorem, the conditional
expectations Y, = E(Y|G,) converge with probability one to E(Y|Fr) = &(X).
By the strict monotonicity of ®(-), we theiefore have

Xn def ®~1(Y,,) ~ X with probability one,

so we can choose a sequence of integers {k, : 0 < n < co} such that
P(|X - Xg |2 ant1/2) S bpy1/2 foralln 2 0.

We then take Ag = X}, and for n > 1 we take A, = Xi, — Xi,_,, so, for
tn = T—1/kn, wehave A, € F;_ for alln > 0. This establishes the first requirement
of (12.7).
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Now, we also have

P(lAn] Z an) < P(IX = Xk, | 2 an/2) + P(IX — X1,_,| 2 an/2)
Sbn/2+bn/2=bny

and the last inequality is just what we needed for {12.8). Finally, we note that by
the construction of the A,, we have

N
ZAn =-Xk1v’

n=0

so the representation (12.7) follows from the fact that X, converges to X with
probability one. O

A CONSTRUCTION TO PERPLEX ZENO

Zeno, the old Greek philosopher, found 1t paradoxical that a fast runner can
catch a slow one. After all, he reasoned, the fast runner would have to cover one
half of the distance between himself and the slow runner an wnfinite number of
times. Zeno strained to understand how this could be possible. Nowadays we are
comfortable with the execution of an infinite number of actions in a finite amount
of time, and Zeno’s concerns are hard to take seriously. Nevertheless, in some
constructions — such as the one that follows — we may find room to sympathize
with Zeno’s forgotten torment.

THEOREM 12.1 (Dudley’s Representation Theorem). If X € Fr, then there
18 a ¢ € L256[0,T] such that

(12.9) X = / " b, ) dB..
0

Proor. To begin the construction, we take any two decreasing sequences {a,}
and {b,} that satisfy

o0 (o]
(12.10) Znan < oo and an < 0.

n=0 n=0

We then let {t,} be the sequence whose existence is guaranteed by the Proposition
12.2, so that we have random variables A,, € 7, such that

(12.11) P(lAn] 2 an) < by
and
N
(12.12) X = 1\,1@%; A, with probability one.

Now, for each A, in the convergent sum for X, we can apply Proposition 12.1 with
o =1t, and b=,y %o find a stopping time 7, € {tn,tns1) such that

Tn T
A = / (tn+1 - 3)—1 dB, = / ¢n(w, 5) dB,
in 0
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where we have defined ¢,(w, s) by

g~ )7 for s € [tn, )
Inlw, s) = {0 otherwise.

Our candidate for the integrand ¢ in the representation (12.9) for X is then given
by

(12.13) $(w,8) = ) pn(w;5),

n=0
and the first order of business is to check that ¢ is actually an element of £ 5[0, T7.

Because the functions ¢,(w,s) have disjoint supports, we can simply square
$(w, 5) and take the integral over [0,T] to find

T T
(12.14) / Pw,s)ds=> / 62 (w, 5) ds.
0 oyur ¥/
Now, by the tail bound (12.6) applied to 7, (where a =t, and b = tny;), we have
for any A > 0 and any « > 0 that

P(/()Tgbﬁ(w,s)dsZA) g%+P(|An|za),

so when we take @ = a,, and apply the bound (12.11), we find

T 2.
2 T
P (/O ¢n(w,s)d32)\) < 7 + by,

Finally, if we take A = n~2, the summability of the sequences {na,} and {bn}
teams up with the Borel-Cantelli lemma to imply that the sum in (12.14) is finite
with probability one. In other words, we have ¢ € L, just as we hoped.

Our only remaining task is to check the representation (12.9), and this step is
almost immediate from our construction. First, we note that we have

N N Tn EN 41
(12.15) S 8= [ (tnss = 5V dB, = / b(w, ) dBs.
0

n=0 n=0"tn

Now, since ¢ € L350, We also know that the process
Loc p

(12.16) t— /t ¢(w,s) dBy
0

is continuous, so when we let N — co we have by (12.12) and (12.16) that each
side of the identity (12.15) converges to the respective side of equation (12.9). U

Now that we are done with the construction, we can see what might have
upset Zeno. Each A, is F; -measurable, yet the integral summand that represents
A, is never F; -measurable; the representing integral must always peek ahead at
least bit past ¢,. Nevertheless, in finite time —but infinite n — the two sums end
up in exactly the same place. For us, the proof is clear and complete, yet more
philosophical spirits may still sympathize with Zeno and sense a hint of paradox.
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NONUNIQUENESS OF THE REPRESENTATION

Because of the many flexible choices that were made during the construction of
the integrand ¢(w, s) € L that represents X in equation (12.9), one would not
expect the representation to be unique. In fact, the nonuniqueness is quite extreme
'n;l the sense that we can construct a bewildering variety of ¢(w,s) € L2, such
that

(12.17) / ¥ b(w.5)dB, = 0.
0

To give one example that leverages our earlier construction, just consider any real
number 0 < o < T and set

1 for0<s<a
Yw,s) =< (T—s)"! fora<s<r
0 fort<s<T,

where

. ¢
T=m t>a: —_ = —
1n{ >a /aT—udBu Ba}.

From our discussion of “capturing the past” and Proposition 12.1, we know that
:P(T < T) = 1 and that ¥(w,s) is indeed an element of L%5c. Also, just by
integration and the definition of 7, we see that

/Oa P(w,s)dB; = B, = —/aTq,/)(w,s) dB,,

so we also find that (12.17) holds. In other words, ) is a nontrivial integrand whose
1t6 integral is identically zero. Now, given any ¢ with a stochastic integral that
represents X as in (12.9), we see that ¢ -+ also provides a representation of X, so
the representation of equation (12.9) is certainly not unique.

12.2. The Martingale Representation Theorem

Dudley’s representation theorem is inspirational, but it is not all that easy to
use becauset integrands in L}, can be terribly wild. Fortunately, there is another
representation theorem that provides us with nice H? integrands.

.THEOREM 12.2 (H? Representation Theorem). Suppose that X is a random
variable that 18 Fr-measurable where {Fi} s the standard Brownian filtration.

%_X has mean zero and E(X?) < co, then there is a ¢(w,s) € H2[0,T] such
at

(12.18) X = / * bw,5) dB,.
0

{\/[oreover, the representation in equation (12.18) 1s unique in the sense that
if Y(w, s) 15 another element of H?|0, T) that satisfies equation (12.18), then
we have P(w,s) = ¢(w,s) for all (w,s) € Q x [0,T] ezcept a set of dP x dt
measure zero.

The phrasing of Theorem 12.2 has been chosen to show the parallel to Dudley’s
theorem, but most applications of Theorem 12.2 actually call on a corollary that

makes the connection to martingales more explicit. We also state this result as a
theorem because of its importance.
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THEOREM 12.3 (Martingale Representation Theorem). Suppose that X; is an
{F:} martingale, where {F;} is the standard Brownian filtration. If there is
a T such that E(X%) < oo and if Xo = 0, then there 1s a ¢(w,s) € H?[0,T)
such that

t
(12.19) X = / ¢(w,s)dBs  for all0 <t < T.
0

Moreover, the representation in equation (12.19) s unique up to a set of
dP x dt measure zero.

This is one of the most useful theorems in the theory of stochastic integration,
and, more than any other result, it shapes our thinking about martingales with
respect to the Brownian filtration. To check that Theorem 12.3 does indeed follow
from Theorem 12.2, we just note that X = X satisfies the hypotheses of Theorem
12.2, so there is a ¢(w, s) € HZ([0, T) such that

T
(12.20) Xp = / b(w, s) dB,.
0

Now, given any ¢ € [0,T], we can take the conditional expectation E( - |F;) of both
sides of equation (12.20) and use the fact that ¢ € H2 to get equation (12.19). The
nniqueness of ¢ in equation (12.19) is an immediate consequence of the uniqueness
in Theorem 12.2, so we see that Theorem 12.3 is indeed an immediate corollary of
Theorem 12.2.

We now take up the proof of Theorem 12.2. This turns out to be a challenging
project, although one should not think of the proof as difficult. It simply calls
on techniques that are a bit different from those we have been using. These new
techniques are important for many purposes, so we will engage them rather fully,
even when they take us off the customary trail.

IN ‘H? UNIQUENESS Is Easy

First of all we should note that the uniqueness in Theorem 12.2 is almost trivial.
‘We only need to note that for any two representing functions 1 and ¢ in H2(0,T)
the difference 1 — ¢ is again an element of H2[0,T]. Since the It6 integral of the
difference 1 — ¢ represents the zero random variable, Itd’s isometry tells us that

T
0= [ Bl(b(w,9) - bl 5)) s
0

Finally, the integrand (¥(w,s) ~ ¢(w,s))? is nonnegative, so it must equal zero
almost surely with respect to the measure dP x dt. This is precisely the uniqueness
that we sought.

‘While we are here, we should note the sharp contrast between the nonunique-
ness in Dudley’s L%, representation theorem and the easy proof of uniqueness
of the H? representation. This difference is due to the fact that It0’s isometry is
available to us in M2, but it does not extend to £{,c. This point is developed a
bit further in Exercise 12.1.

A SpPECIAL CASE Is ALREADY KNOWN

Whenever we are trying to prove a new result, we always benefit from the
recognition of any special cases where the conjectured result is already known, and
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we happen to be 1 one of those lucky situations right now. During our investigation
of geometric Brownian motion, we found that the process

Xt = zgexp((u — 0?/2)t + oBy]
solves the equation
dX; = uXe dt - 0X;: dB, Xo = zg.
If we take u = 0, the Pprevious equation reduces to dX; = 0 XydB;, so if we also set
o = 1 we see that
X = exp(~a?t/2 + oBy)
solves the integral equation

t
Xi=1 +/ 0X,dB,.
0

Now, if we substitute the expression X; = exp(—o2t/2+0B,;) back into the integral
equation, then a tiny bit of arithmetic leads us to an intriguing self-referential
representation for exp(oB;):

(12.21) exp(0'B;) = exp(o?t/2) + /t oexp (—o*(u —1)/2 + 0By) dB,.
0

This is a very useful and informative formula. In particular, it tells us that every
random variable Y that can be written as

n
Y= Z ay exp(opBy,)
L=1
for some ay,, o, and i can be written as an H2 stochastic integral. The class of
random variables defined by such sums is large, but it is not large enough to be
dense in L2(Q, Fr, P). We need to find some way to build an even richer class of
representable functions.

A MoODEST GENERALIZATION

There are many times when we can extract new information from an old formula,
by replacing one of the real parameters of the formula by a complex parameter. In
this case, one of the ideas we can try is to substitute 6 for ¢ in equation (12.21).
This substitution suggests that exp(10B;) will have the representation

L
(12.22)  exp(8B;) = exp(—8%/2) +/ 6 exp (—62(t — u)/2 + 10B,) dB,.
0

This derivation by complex substitution is not 100 % honest; in essence, it calls for
an imaginary standard deviation. N evertheless, once one writes down an identity
such as (12.22), Itd’s formula and a little patience are all one needs to verify its
truth, although here — if we are picky— we would need to make separate checks
of the identities given by the real and imaginary parts. N evertheless, twice an easy
calculation is still an easy calculation.

The higher art is that of guessing the existence of such an identity — and of
guessing how the new identity may help with our project. In our case, there are
two features of equation (12.22) that offer new hope. First, the random variable
exp(20B;) is bounded, and this can offer a technical benefit over the unbounded
variable exp(c'B;). More criticall ; exp(i0.B;) creates a connection to Fourier trans-
forms, and such connections are often desirable.
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In order to squeeze the benefits out of equation (12.22), we vs./ill first ggneralize it
a bit. In particular, we note that if the standard Brownian motion {B;} is replaced
by the shifted (but still standard) Brownian motion { Byys — B; . 0 S t <oco}, we
find that the random variable exp[10(B;+s — B;)] has the representation

(12.23)  exp(—6%t/2) + /SH ifexp (—0%(s +t —u)/2 +10(By — B;)) dB,.

‘What makes this representation so attractive is that it expresses the rather general
random variable exp[10(Bs+: — B;)] as a stochastic integral with supg.)o?'t m.tqze
wnterval [s, s +t]. When we think back to the product %'ule for stochastic mteg(lj als,
this small observation opens the possibility of generating a huge class of random
variables that have nice integral representations.

A PRODUCT RULE APPLICATION

‘We have seen before that the rule for computing the S].Z)E. of 8 product of 'two
standard processes is particularly simple when the CI‘OSS-V&I‘la.tIOIl is zero. The idea
of the next proposition is to exploit this fact by isolating an 1m1?01'tant case wher?
the product of random variables with integral representations will have an integra,

representation.

PROPOSITION 12.3. Suppose that X and Y are bounded random variables
with the representations
T T
X =1 +/ d(w,t)dB; and Y =y +/0 Y(w,t) dB;,
0

where ¢ and ¢ are elements of H?. If

T
(12.24) /0 $w, O)(w, ) dt = 0,
then the product XY has the representation
T
XY = zoyo +/ Xs¥(w, 8) + Ysd(w, 8) dBs,
0
where the processes {X;} and {¥;} are the bounded martingales defined on
0 <t < T by the conditronal expectations
Xi=E(X|F) and Y, =E(Y|F).
ProoF. The processes X; and Y; satisfy
dX; = ¢(w,t)dB; and dY; = P(w,t)dB,,
so, by the product rule for standard processes, we have
d(X,Ys) = X, dYs + Y, dX, + $(w, (. t) dt.

When we integrate over [0, 7] and use the hypothesis (12.24), we immediately ﬁnél}
the desired representation.

Now, when we combine the last proposition with our observation in equation
(12.23) about the support of the stochastic integral representation of the complex
exponential exp(18(Bys — Bs)), we obtain a very important corollary.
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COROLLARY 12.1. For any0<ty <t < - <ty = T, the random varable
n—-1
(12.25) Z = H exp (26,(By, — By, _.))
J=1
has @ representation of the form

T
Z=E(Z)+ /0 $(w,)dB;  where ¢ € H[0, T.

At this point, an experienced analyst might say that the rest of the proof of
Theorem 12.2 is “just a matter of technique.” What the analyst has in mind is the
fact that the set of random variables of the form (12.25) 1s “clearly” so rich that
any random variable in 2 (€, Fr, P) can be approximated by a linear combination
.Of such Z’s. This approximation and our ability to represent the Z’s as stochastic
mte%rals with 72 integrands should then give us the ability to represent any element
of L*(Q, Fr, P) as such an integral.

Naturally, the experienced analyst is right. The plan is a sound one and
eventually it can be considered as routine. Nevertheless, there is a good bit ’to be
learned from the details that arise, and, in order to give a complete argument, we
will need to make more than one addition to our toolkit. ’

THE APPROXIMATION ARGUMENT

Our first step will be to show that the set of random variables with an 72 repre-

sentation forms a closed set in 2. We can even be explicit about the representation
that one finds for a limit point.

PROPOSITION 12.4. Suppose that X,, n = 1,2,..., 15 a sequence of random
varwables that may be represented n the form

T
(12.26) Xo = B(X,) + /0 bn(w,8)dB;  with ¢, € H.

If fi('n — X 1 L(dP), then there 15 a ¢ € H? such that $n — ¢ m LA(dP x dt)
an

(12.27) X = B(X) + / " bw,0)dB,.
0

ProOF. Since {X,} converges in L*(dP), we also have E(Xn) — E(X). We
then note tl}&t Xn—E(X,) is a Cauchy sequence in L2(dP), so the Its isometry tells
us that ¢, is a Cauchy sequence in 1,2 (dP x dt). By the completeness of 2, there
is a ¢ € M such that ¢, — ¢ in L*(dP x dt). By the fact that E(X,) — E(X) and
a second application of It8’s isometry, we see that we can take the L%(dP) limits
on both sides of equation (12.26) to get equation (12.27). O

THE DENSITY ARGUMENT

The proof of the martingale representation theorem is almost complete. Be-
cause of Corollary 12.1 (on representation) and Proposition 12.4 (on approxima-
tlon),.the proof of Theorem 12.2 will be finished once we have established the
following density lemma.
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LEMMA 12.1. If S 15 the linear span of the set of random varables of the
form

n

H expliu, (By, — By, _, )]

7=1
over alln>1,0=%<t1 <.+ <t =T, and u;, € R, then S is dense wn the
space of square wntegrable complez valued random variables

L*(Q, Fr,P) = {X : X € Fr and E(]X|?) < co}.

This result 1s more in the vein of analysis than probability, and 1ts proof will
force us to bore down into sediment that we have not touched before. We could
proceed directly with that proof, but to do so might strain our patience, even
though the proof is interesting and uses important methods. To keep our spirits
up, we will return to the main t1ail and defer the proof of Lemma 12.1 until Section
12.6 on bedrock approximation techniques.

LOOKING BACK: “INDUCTION” AND ANALYSIS

This proof of the martingale representation theorem follows an important pat-
tern that one finds in many parts of mathematics. The patteitn 1s a kind of “in-
duction,” though naturally it is not the same as formal mathematical induction,
where one proves a proposition, say P(1), and then argues the general case by
showing that proposition P(n) implies proposition P(n + 1). Here, the process is
more flexible, but the parallel with formal induction is still reasonably close.

One still begins with a special case where the conjectuied theorem is true — a
step that is analogous to proving P(1). One then works with that special case to
build up a larger set of cases where the conjecture is true — a step that is analogous
to showing that P(n) implies P(n +1). Finally, after constructing a large reservoir
of cases where the conjecture holds, one shows that an approximation argument
suffices to imply the full conjecture. This last step is loosely analogous to the step
of invoking the principle of mathematical induction.

12.3. Continuity of Conditional Expectations

Before proceeding to the discussion of the chapter's third representation the-
orem, we should take the opportunity to show how the martingale representation
theorem can be used to solve an interesting technical pioblem. If {F;: 0 <t < T}
is the usual Brownian filtration and X € Fr has a finite expectation, anyone would
certainly expect the process defined by

X € EX|FR) forte(0,T]

to be continuous. True enough, X; does indeed have a continuous version, but an
honest barehanded proof is not so easy To make things worse, there are even nice
filkrations where the analogous conditional expectations do not have a continuous
version.

In order to prove the continuity of the process {X;}, one is forced to find some
way to exploit the special properties of the standard Brownian filtration. The
martingale representation theorem provides us with one way to make the critical
link. Although this device may seem a bit extreme (and it is a bit sneaky), the
continuity of {X;} ends up being a consequence of the continuity of the It integral.
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ProprosiTION 12.5. If {FR:0<t< T} is the standard Brownian filtratron
and X 1s an Fr-measurable random variable with E(]X|) < oo, then there s
a continuous process X, such that for each t € [0,T] we have

Xe = BE(X|F;) with probabibty one;
that 1s, the process E(X|F) has a continuous version.

PROOF. Since E(IX[1(]X| > N)) ~0as N — 00, we can choose an increasing
sequence N} < Np < -+ with Ny — oo such that E(lX]1(1X] > Ng)) < 272,
80, In particular, the truncated variables defined by X(0) = X1(] X} < Nip) and
X(k%):}f(lf(]\}flk SIX] < Nigq) for k> 1 also sabisfy || X (k)] <272 for £ > 1.

ach of the variables X (k) is bounded, so for each &k > 0 h bresen-
sation ox {0y o ch & > 0 we have a represen

(12.28) X(k) = BX (k)] + /O ) Br(w, 8) dBy with ¢y € H?2,
and if we take the conditional expectation, we have
(12.29) E(X(R)F) = E[X (k)] + /0 * bu(r5) dB,.
Our candidate for the continuous version of E(X|F;) is then given by
(12.30) % Ex) 4+ 3 /0 * bu(w, 5) dB..

k=0

To c.heck .that X, is well defined and continuous, we first note that by Doob’s L!
maximal inequality and equation (12.28) we have for all ¥ > 1 that

¢
P( sup ]/ $r(w, s) dBg| > 2"‘) <27k
0<t<T Jo

’l"he Borel—Cfa.ntelli lemma. then tells us that with probability one the sum in equa-
tion (12.30) is uniformly convergent, so {X; : 0 < ¢ < T} is indeed a continuous
process.

‘ To check that X, = E(X|F;) with probability one, we first note that by sum-
ming equation (12.29) we have

(12.31)  BIX1(1X] < Nng1) | 7 = E(X1(|X] < Nypy1)] + fj / (o, s)dB,.
k=00

Now, X 1(lX | < Np) converges in L! to X , 80 the DCT tells us the left-hand
side of equation (12.31) converges in L! to E(X|#:), and, consequently, there is a
subsequence m,, such that

BX1(1X| < Nm,) | F] = B(X|7) as.

We already know the right-hand side of equation (12.31) converges with probability
one to X, so when we take limits in equation (12.31) along the subsequence m,,,
we s;e that X; = B(X|A) with probability one, just as we needed to complete the
proof.

) O

[
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‘5:112.4. Representation via Time Change -,

At last, we come to the most widely used of the chapter’s three representatiz)n

¢

" theorems. After learning how a stochastic integral may be written as a Brownian

motion run by an altered clock, one’s view of stochastic integrals is changed forever.

THEOREM 12.4 (Stochastic Integrals as a Time Change of Brownian Motion).
Suppose that ¢ € L35o[0,T) for all 0 < T < oo, and suppose that we set

¢
(12.32) X, = / b(w,5)dBy, ¢ 0.
0
If we have
[oe]
(12.33) / ¢*(w, 8) ds = co with probability one
0

and if we set
U
(12.34) 7y = min{u : / ¢*(w,s)ds > t},
0
then the process {X;, : 0 <t < oo} 15 a standard Brownian motion.

PROOF. As in our proof of the martingale representation theorem, we begin by
considering an exponential process, although this time we will use the more general

process

¢ ¢
Zy = exp <i0/0 &(w, s)dB; + %02/0 ¢*(w, 5) ds)

= exp (i@ /Ot &(w, 8) st> - exXp <%02 /Ot $%(w, 5) ds) .

By analogy with our earlier work, we can guess that Z; is a local martingale, and
we can check this guess simply by calculating dZ;. A pleasant way to organize this
computation is to let X{ and Y{ denote the last two exponential factors and use
It6’s formula to calculate the differentials

dX] = i0¢(w,t) X dB; — %02¢2(w, t)X;dt and dY] = %92(;52(&;,1:)}@' dt,
so that now we can apply the product rule to obtain
dZy =d(X{Y)) = X[ dY] + Y/ dX]
=266 (w, O)X[Y, dt + 188(w, E) XY, dB, - %02¢2(w, 8XIY, dt
=10¢(w, t)Z; dB;.

This formule tells us that Z, is a dB, integral, and consequently Z; is a local

martingale.
One can easily check (say as in Exercise 12.4) that the process {Z;} is constant

on all of the intervals [r,..(w), 7,(w)], so by Proposition 7.13 we know that {Z,,, Fr}
is a continuous local martingale. Since we also have the deterministic bound

|Z-,| < exp(62T/2) for all t € [0,T],

we then see that the local martingale {Z,,, Fr.} is in fact an honest martingale on
(0,7, and, since T is arbitrary, it is even a martingale on all of [0, 00).
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The 1mportance of the last observation is that when we expand the martingale
identity E(Z,, | F.,) = Zr,, we find
(12.35) E(exp(i8(Xr, ~ X)) | Fr, ) = exp(~(t - 5)62/2),
and the identity (12.35) tells us everything we want to know. In particular, Lemma
12.2 below will show that equation (12.35) implies that X, — X, is independent of
Fr, and that X, — Xz, has a Gaussian distribution with mean zero and variance
t —s. Because we alieady know that X, = 0 and since the process {X,,} is

continuous (agam by the argument of Exercise 12.4), nothing more is needed to
conclude that {X;,} is indeed a standard Brownian motion. O

LEMMA 12.2. Suppose F' and F" are o-fields such that F' C F”. If X 1s
an F'-measurable random variable such that

(12.36) B | Fy= e=12 foralige R,

then X 1s wndependent of the o-field F' and X has the Gaussian distribution
with mean zero and variance o2,

PROOF. In longhand equation (12.36) tells us that
(12.37) E(e¥X1,) = P(A) e~"7"/2
for all 6 and all A € F'. We therefore find that by taking A = Q the condition
(12.37) implies that X is Gaussian with mean zero and variance 2. Now, if 4 is

any element of ' with P(A) > 0, we can also define a new probability measure
(and expectation) by setting

Pa(B)=P(Bn A)/P(A) and E4(Z) = E[Z14]/P(4)
for any B € F" and any integrable Z that is F"-measurable.
By equation (12.37), we then see that Eq(e®X) = e=9""/2 o1 in other words,

the Py-characteristic function of X is again that of a Gaussian with mean zero and
variance o2, By uniqueness of the characteristic function, we then have

Py(X < 2) = ®(z/0),
which is shorthand for
P{X<z}nA) = ®(z/o)P(4) = P(X < z)P(4).

This equation tells us that X is independent of any A € F/ with P(A4) > 0,
and, since X is trivially independent of any A with P(A) = 0, we see that X is
independent of . C

12.5. Lévy’s Characterization of Brownian Motion

One immediate corollary of the time change representation theorem for sto-
chastic integrals is the characterization it provides for continuous martingales with
quadratic variation t. Broadly speaking, such a martingale must coincide with
Brownian motion, and, curiously enough, this exceptionally useful fact was first
obtained by P. Lévy without the use of stochastic integrals.

THEOREM 12.5 (Lévy’s Characterization of Brownian Motion). Suppose that
the process {M,: 0 <t < oo} 15 a continuous martingele with respect to the
standard Brownian filiration. If E(M?) < co and (M); =t for all 0 < t < 00,
then {My —~My:0<t< o} 15 a standard Brownian motion.
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To see how this result may be derived from Theorem 12.4, we first note that
the L? martingale representation theorem tells us that there is a process [ such
that B € H2[0,T] for all 0 < T < co such that

£
Xy =My — My = / B(w,s)dB; forallt>0.
0
The assumption that (M), = ¢ then tells us that

(12.38) t= /0 B(w, s) ds,

and the formula for the time change 7; given by Theorem 12.4 tells us that 73 = t.
The main assertion of Theorem 12.4 is that X,, is a Brownian motion, but since
73 =t this simply says M; ~ My is a Brownian motion.

A SECOND VIEW OF THE CHARACTERIZATION

In fact, one can give a proof of the Brownian motion characterization theorem
that is a bit more concrete than the appeal to Theorem 12 4 would suggest, and
Theorem 12.5 is important enough to deserve an independent proof. All one needs
to show is the identity

(12.39) Blg0(M—M,) [ Fi] = 6—02(23—3)/2,

and this turns out to be a nice exercise with Itd’s formula.

The martingale representation theorem applied to M; tells us there is a Blw, t)
in H2([0,T) such that dM; = B{w,t) dB;, and our assumption on 1.;he quadratic
variation of M; further tells us diM; - dM; = dt, so 1t6’s formula implies

det0(Me~My) 29619(2\/1'@—1\/13)djvft — %92619(M—M.)th -dM;
= 19 M=MI g1y N 4B, — %ezeio(Mt—M,) dt.

When we integrate this equation, we find

t 13
GOMe=M,) _ 1 29/ 00h=M g0y ) B, — é92/ OMu=) gy,
s

8§

and if we then take expectations, we find
¢
(12.40) ElefM—M 7] 1 = ~%02 / E[e?Mu=M) 7] o,
The last equation tells us that

¢(t) — E[eze(z\f[L—A\/I,)lfs]

satisfies
1., [t

(12.41) Bt) =1~ 26 / (u) du,

8

or .
¢'(t)=—§€2¢(t) and ¢(s) = 1.

The unique solution of this equation is just exp(—8%(t — s)/2), so the proof of the
theorem is complete.
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WHOLESALE TRANSLATIONS FROM BROWNIAN MOTION TO MARTINGALES

Now, we must attend to a second important consequence of the time change
representation provided by Theorem 12.4. In a nutshell, this theorem tells us
that we can convert almost any fact that we know about Brownian motion into a,
corresponding fact for a continuous martingale. The recipe is simple, but sometimes
the consequences can be striking,

‘ To give just one example, suppose we first recall the law of the iterated loga-
rithm for Brownian motion, which tells us that

lim sup =

S ——
t—oo /2tloglogt

with p‘robabihty one. Now, by Lévy’s theorem, if {Mz, 7;} is a continuous martin-
gale with the representation

i
M, = / $(w, 5) dB,
0

P(/qus?-(w,s)dsm) -1,

lim sup My, =
t-co /2tloglogt

with probability one when 7; Is given by

T = inf{u : /u ¢*(w,s)ds > t}.
0

Obviously, this story has more variations than could be imagined even by a
modern Sheherazade — a thousand and one nights would never suffice to tell all

the tales that spring from the marriage of each continuous martingale and each
theorem for Brownian motion.

and with

then we also have

1

12.6. Bedrock Approximation Techniques

We have often used the simple idea that a continuous function on (0,7 is
uniquely determined by its values on the set of rational points in [0,7]. We will
now develop a characterization of a probability measure that is analogous in that
it shows that a probability measure may be uniquely determined by its values on
a small subset of the measurable sets. The most immediate reason for making this
excursion into the foundations of probability theory is that the tools that provide
this characterization also serve to complete the density argument we needed to
finish our proof the martingale representation theorem. As a bonus, these new
tools will also prove useful in our development of Girsanov theory.

USEFUL SET SYSTEMS

E_very probability measure has a o-field as its natural home, but at times our
work is made easier if we take advantage of some set systems that are simpler than
o-fields. Two of the handiest of these helpers are the w-systems and the A-systems.
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DEFINITION 12.1 (m-System). A collection of sets C 1s called a m-system pro-
wnded that 1t 15 closed under pasrunse wntersections; that 1s, C 15 a T-system provided

that
AeCand BeC=ANBeC.

DEFINITION 12.2 (A-System). A collection C of subsets of a sample space Q) 15
called a A-system prowded that it has three sumple properties:

() QeC,
(w) AL BeECand BC A = A\ BeC,
and

(m) An €C, An C Apyy, = U A, €C.

From these properties, one expects a close connection between \-systems and
o-flelds. In fact, a A-system always satisfies the first two requirements of a o-field,
but it can fail to have the third. To check this, we first note that if C is a A-system,
then @ € C since @ = Q\ R, and if A € C, then A° € C since A° = Q\ A € C. Finally,
to see that a A-system does not need to be closed under unions —even finite unions
— we only need to consider the case of = {1,2,3,4} and

C={ACQ:|A]|=0,|4| =2, or [4] =4}
One can easily check that C is indeed a A-system, but since {a,b} € C, {a, ctec
and {a,b} U {a,c} = {a,b,c} ¢ C, we see that C fails to be a o-field.

In this example, we may also note that C also fails to be closed under intersec-
tions, say by considering {a,b} N {a,c} = {a} ¢ C. Remarkably, if we plug this one
small gap, then a A-system must actually be a o-field. This useful fact deserves to
be set out as a proposition.

PROPOSITION 12.6. IfC s a A-system and a w-system, then C 15 a o-field.

PROOF. We already know that any A-system satisfies the first two properties
of a o-field, so we only need to check that C satisfies the third property as well.
If we take any B; and Bj in C, then their complements are in C, and since C is
a m-system, the intersection of these is again in C. Now, if we take complements
again, we still stay in C, so we find

Bi1UBy=(B{nBs)eC.

Closure under unions of pairs implies closure under any finite union, so 1f By, B,,...
is any countable sequence of elements of C, we see A, = B;UByU---B, is in C,
and since we have A, C Apy;, the third property of a A-system tells us U, 4, € C.
Finally, since we have U, A, = U, B, we see U, B, € C, so C does indeed have all
of the properties that are required of a o-field. O

There is one further property of A-systems that will be useful for us, and 1t also
provides a parallel with o-fields. We will need to know that for any collection C
of subsets of a sample space {2 there is a smallest A-system contasneng C. This A-
system is denoted by A(C), and one can easily check that such a smallest A-system
actually exists. We only need to note that o(C) is a A-system that contains C
and the intersection of the set of all A-systems that contain C is also a A-system.
Trivially, this intersection is the unique minimal A-system that contains C, so a(C)
is well defined.



208 12. REPRESENTATION THEOREMS

THE 7w-A THEOREM

We now come to an important result that accounts for our interest in 7-systems
and A-systems. There are many times when one needs to show that some result
holds for all the events in some o-field, and the next theorem provides the most
useful tool that we have for proving such results.

THEOREM 12.6 (m-A Theorem). If A is a m-system and B is a A-system,
then

AcB = oA CB

Proor. First, we note that A C A(A) C B by the minimality of A(A), so to
prove the theorem we only need to show that A(A) is also a mw-system. Now, for
any C € A(A), we define a class of sets Go by setting

Go={BeAA):BNCeAA) },
and we think of G¢ as the set of elements of A(A) that are “good with respect to

C” in the sense that the intersection of C' and any B in ¢ must again be in A(A).
Now we have four simple observations about Ge:

(1) For any C € A(A), the set G¢ is a A-system (as one can easily check).
(i) Ae A= AC Gy (since A is a 7-system).
(iif) A € A = A(A) C G4 (since by (ii) Ga is a A-system that contains A).

(iv) A€ A and B € A(A) = AN B € A(A) (because of observation (iii)).
Now, the proof of the theorem depends on only one further observation. For any
B in A(A), observation (iv) tells us that A C Gp, and since G is a A-system, the
minimality of A(A) tells us that A(A) C Gg for any B € A(A). The last assertion
is just another way of saying that A(A) is a m-system, so, by our first observation,
the proof of the theorem is complete. a

A UNIQUENESS THEOREM

One of the easiest consequences of the -\ theorem is also one of the most
important. This is the fact that the values of a probability measure on a w-system
A uniquely determine the values of the measure on all of o(A). There are untold
applications of this theorem, and its proof also helps explain why A-systems crop
up so naturally. Time after time, one finds that if C is the class of sets for which a
given identity holds, then C is in fact a A-system.

THEOREM 12.7 (Uniqueness of Probability Measures). Suppose that P and Q
are two probability measures on the measurable space (,F). If AC F is a
w-system and P(A) = Q(A) for all A € A, then P(A) = Q(A) for all A € o(A).
In particular, if F = o(A), then P and Q are equal.

'PROOF. As advertised, the key step is to introduce the class of sets C that
satisfy the identity P(B) = Q(B); that is, we define C by
C={B:P(B)=Q(B)}.
The fact that P and Q are probability measures lets us check that C is a A-system.

By hypothesis, we have that A C C and that A is a m-system, so by the 7~ theorem
we find that ¢(A) C C, just as we wanted to know. a
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THE MONOTONE CLASS THEOREM

The monotone class theorem is another easy corollary of the -\ theorem. In
some applications, it has a modest advantage over the direct application of the 7
theorem because it focuses on functions rather than sets. We will use this theorem
in the proof of the density lemma that provoked this foray into the foundations of
probability theory.

THEOREM 12.8 (Monotone Class Theorem). S’uppose the set H consists of
bounded functions from a set Q to R with the following three properties:

(i) H is a vector space,
(i) H contains the constant 1,

and

(ii) fo € H, fo 1 f, and f bounded = f € H.
If H contains the indicator function 14 for each A € A, and if A is o w-system,
then M contains all of the bounded functions that are o{A)-measurable.

PrROOF. If C is the class of all sets C such that the indicator function of C is
in M, then the properties (i),(ii), and (iii) permit us to check that C is a A-system.
Because C contains the m-system A, the -\ theorem then tells us that o(A) C C.
Now, if f is any bounded nonnegative o(A)-measurable function, then f is the limit
of an increasing sequence of o(.A) simple functions. Such simple functions are in
H, so f is in H. Finally, any bounded o(A)-measurable function-g is the difference
of two nonnegative o(A)-measurable functions, so g is in H because H is a vector
space. The bottom line is that H must contain all of the bounded functions that
are o(A)-measurable. 0O

FINITE-DIMENSIONAL APPROXIMATIONS

Our intuition about Brownian motion strongly suggests that we should be able
to approximate any Fr-measurable random variable as well as we like by a function
that only depends on the values of Brownian motion at a finite set of times. The
monotone class theorem turns out to be just the right tool for giving a rigorous
interpretation of this intuitive idea.

LeEMMA 12.3 (Finite Time Set Approximations). [fD denotes the set of random
variables that can be written as

f(Bey, By — By, Bi, — By, )

for some1 <n<co, somel =ty <t <---<t, =T, and some bounded Borel
function f: R™ — R, then D is dense in L*(Q, Fr, P).

PROOF. We let Hy denote the set of all bounded random variables that can be
written as the limit of a monotone increasing sequence of elements of D and then
we take H to be the vector space generated by Hp. One can easily check that H
satisfies the hypotheses (i),(ii), and (iii) of the monotone class theorem.

Next, if we let T denote the collection of sets of the form

{B,g1 < xl)-Btg < Zg,... ,Bt“ < £L-,;,)
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then T is a m-system, and H certainly contains all of the indicator functions of the
elements of 7. By the monotone class theorem, we therefore find that H contains
all of the bounded o(Z)-measurable functions. Finally, by the definition of the
standard Brownian filtration, the o-field Fr is equal to the augmentation of o(T)
by the class of null sets, so for any bounded simple Fr-measurable function X
there 15 a bounded simple o(Z)-measurable Y such that P(X #Y) =0. Because
H contains all of the bounded functions in L3(Q,o(T), P), it is certainly dense in
L*(Q,0(Z), P). Consequently, D is also dense in L%(Q, Fr, P). O

A FACT FROM HILBERT SPACE

In a finite-dimensional vector space V', we know that if a linear subspace S
does not span all of V, then we can find a nonzero v € V such that v-s = 0 for
all s € S. An analogous fact is also true in the infinite-dimensional vector space
L?(dP), and it is the last fact we need to develop before we complete our proof of
the martingale representation theorem. For the statement of the next lemma, we
recall that if S is a subspace of a Hilbert space H, then S' denotes the set of all
h € H such that h is orthogonal to s for all s € S.

LeMMA 124. If D 15 a closed subspace of L*(dP), and 8 C D, then
DN&t=0 = &=n.

Proor. Since D is a closed linear subspace of a Hilbert space, D is also a
Hilbert space. The closed linear subspace § C D therefore has an orthogonal
complement S* such that any f in D can be written uniquely as f =g+ h, where
ge€Sandh e S+, say by the Hilbert space projection theorem given in the
Appendix of Mathematical Tools. Now, since D is closed and S ¢ D, we have
f-9g=he€Dand f-g=he 81, s0 the hypothesis DN S+ = 0 tells us that
f—g9=~h=0. In other words, f =g € § and, since f € D was arbitrary, we see
D C 8, as we wanted to show. O

DENSITY OF THE Z’s

We have finally collected all of the required tools, and we are ready to address
the problem that provided the stimulus for this section on bedrock approximation
techniques. We want to complete the proof of the martingale representation theo-
rem, and the only step that remains is to show that if S is the linear span of the
set of random variables of the form

n
(12.42) Z= H expliuy (B, — By, _, )]
=1
overalln>1,0=¢y<t; < -.. <tn =T, and all u, € R, then S is dense in the
space of square integrable complex-valued random variables,

L*(Q,Fr,P)={X : X € Fr and E(1X)?) < oo}.

To prove this fact, we first fix the set 7" of times O=to <ty <+ ' Ctpoy <
tn = T and let D7 denote the set of all X € L2(Q, Fr, P) that may be written in
the form

X = f(Bt“Btg —Btl,...,Btn —Btn_l),
where f : R® s C is a bounded Borel function. The set Dy is a closed linear
subspace of L(Q, Fr, P), and, if S denotes the linear span of all Z of the form
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(12.42), then the linear span is a subset of Dy. We want to show that Sy is dense
in Dr.

Now, suppose that X € Dz and E(XZ) = 0 for all Z of the form (12.42). If
we let ¥(z) denote the density of (B;,, B, — B,,...,B:, — Bi,_,), then for all
(u1,u2,...,Un), We have

n
(12.43) / fler,zo,. .., 20) H exp(vu,z,) (1, T2, . . ., Tn) dT1dT2 . . . dTp = 0.
R =1
This equation says that the Fourier transform of f(Z)(Z) is zero, so by the un.ique-
ness of the Fourier transform f(Z)9(Z) must be zero. Because v never vanishes,
we can conclude that f is identically equal to zero.

What this means in terms of the spaces S and Dy is that Dr N S%- =0, so
by Lemma 12.4 we see that St is dense in D7, In turn, this tells us that

S %f UST is dense in U’D»T defp,
T T

We already know by Lemma 12.3 that D is dense in L2(Q, Fr, P) so we see that S
is also dense in L2(£, Fr, P). This, at long last, completes the proof of the Lemrn.a
12.1, and, as a consequence, the proof of the martingale representation theorem is

also complete.

12.7. Exercises

This chapter has itself been quite an exercise, and many readers may have found
the need to invest some time supplementing their background knowledge. Here,
the first two formal exercises offer practice with local martingales and localization
arguments, while the third exercise offers a bare-handed view of the time ch.ange
representation theorem. Finally, Exercise 12.4 fills in some details that were omitted
in the proof of Theorem 12.4, and Exercise 12.5 shows how the hypotheses of
Theorem 12.5 may be relaxed.

EXERGISE 12.1 (A L}, Counterexample to It6’s Isometry). Give an example
of an X € Fr and a ¢ € L} such that we have the representation

T
X =/ ¢(w,s)dBs and we have E(X?) < oo,
0
but nevertheless we still have
T
/ E[¢*(w, )| ds = oo.
0

This result shows rather dramatically that Itd’s isometry does not hold on £Z.
Hint: Consider the example that was used to show nonuniqueness in Dudley’s
theorem.

EXERCISE 12.2 (A More General Martingale Representation Theorem). Sl‘lp-
pose that {M;, 7;} is a continuous martingale where {7;} 1s the standard Brownian
filtration. Use a localization argument and our L? representation theorem to show
there is a ¢(w, s) € L35[0, T such that

14
My = My + / $(w,s)dB, for all t € [0,T).
¢}

~r
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EXERCISE 12.3. Consider the continuous martingale M; = Bf —~t, and let 7,

be the time change guaranteed by Theorem 12.4. Give a direct proof that M, isa
Brownian motion.

EXERCISE 12.4. The time change process defined by equation (12.34) will have
Jjumps if the process ¢(w,s) has intervals on which it vanishes, so the continuity
properties of the process {X,, : ¢ > 0} defined in Theorem 12.4 deserve to be
checked. As a first step, explain why one has the existence of the limits

def ;. def
T3y = lim T, d n— =1l
1+ e and Ty sl}ri Ts»
and then explain why they satisfy

T4
/ ¢*(w,s)ds =0 for all w and all ¢ > 0.
Tt—

Next, explain how this identity implies that the hypotheses of Proposition 7.13
are satisfied and that one can safely conclude that {X.,, 5, } is a continuous local
martingale. Finally, explain why an analogous argument shows that the exponential

process {Zr,,Fr} used in the proof of Theorem 12.4 is also a continuous local
martingale.

EXERCISE 12.5. We smoothed the organization of the proof of Theorem 12.5 by
assuming that E[M?] < co for all 0 < ¢ < oo, but one can show that this hypothesis
may be dropped. Prove this fact by showing that if {M;, 7} is a continuous
martingale with (M); =t for all 0 < ¢ < oo, then E[M2] < co for all 0 < ¢ < co.

Hint: Consider the process X; = M? — (M); and consider stopping times Trms
m =1,2,.. that make {Xs-,,F;} a bounded martingale. Finish off by using the
martingale property and Fatou’s lemma to show E[M?] < t.

CHAPTER. 13

Girsanov Theory

Can a stochastic process with drift also be viewed as a process wrthout dreft?
This modestly paradoxical question is no mere curiosity. It has many important
consequences, the most immediate of which is the discovery that almost any ques-
tion about Brownian motion with drift may be rephrased as a parallel (but slightly
modified) question about standard Brownian motion.

The collection of theorems that tell us how to make drift disappear is commonly
called Girsanov theory, although the important contributions of I.V. Girsanov were
neither the first nor the last in this noble line. Today, Girsanov theory creates
most of its value by providing us with a powerful tool for the construction of new
martingales. In particular, we can apply Girsanov theory in the Black-Scholes
model to find a probability measure that makes the present value of the stock price
into a martingale, and, rather amazingly, the arbitrage price of any contingent claim
can be expressed in terms of the conditional expectation of the claim with respect
to this new probability measure.

QOur study of Girsanov theory begins with the investigation of a simple (but
crafty!) simulation technique called importance sampling. The idea of importance
sampling 18 then extended in a natural way to random processes, and in short order
this extension yields our first Girsanov theorem. To illustrate the effectiveness of
even this simple theorem, we derive the elegant Lévy-Bachelier formula for the
density of the first time that Brownian motion hits a sloping line.

Eventually, we will find Girsanov theorems of several flavors, and we will also
find that they can be established by several different methods. One side benefit of
our development of Girsanov theory is that it leads us to develop a new perspective
on continuous random processes. Here, we will find that a continuous stochastic
process is often best viewed as a random variable with a value that we regard as a
pownt chosen from the path space C[0,T].

13.1. Importance Sampling

‘We begin our investigation by considering a practical problem that people all
over the planet mess up every day. In the simplest instance, we consider the calcu-
lation of E[f(X)], where f is a known function and X is a normal random variable
with mean zero and variance one. A natural (but naive) way to calculate E[f(X)]
is to use direct simulation; specifically, one can try to estimate E[f(X)] by taking
an approximation of the form

(13.0) IS0 = = Y A,

1=1
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where n is alarge (but tractable) integer and the X, are computer-generated pseudo-
random numbers that are advertised as being independent and having the standard
normal distribution.

One can quibble about the validity of the pseudorandom sequence or argue
about the rule for choosing 7, but, in some situations, the defects of direct simu-
lation go much deeper. Sadly, there are very simple f for which the naive approx-
imation (13.1) fails to produce even one significant digit of E[f(X)]. This failure
can take place even if the pseudorandom numbers are perfect and if n is taken to
be as large as the number of electrons in the universe.

To see the problem in the simplest case, we may as well take f (z) to be the
indicator function Yz > 30). For this particular choice, we know several ways to
calculate E[f(X)] to many significant digits, but we will ignore these alternatives
for the moment in order to explore what we can expect from equation (13.1). The
first observation is that if we let N denote the number of terms in equation (13.1)
until the first nonzero summand, then the rapid decay of the tail probability of a
normal random variable tells us that BE[N] > 10'. Furthermore, to have any real
confidence that we have correctly calculated the first significant digit of E[f(X)],
we probably should not stop our simulation before we have calculated a hundred
Or S0 nonzero summands. These two observations reveal that 1t is infeasible to
calculate the first significant digit of B[f(X)] by direct simulation (13.1).

This may seem to argue that for f(=) = 1(z > 30) one cannot calculate E[f(X)]
by simulation, but nothing could be farther from the truth. In fact, a properly
designed simulation will permit us to use a reasonably sized 7 and readily available
pseudorandom numbers to compute three or more significant digits of E[f(X)] in
just a few seconds. All we need to do is to find a way to focus our efforts on whag
is really important.

The problem with naive direct simulation is that one may draw samples {x)
that are terribly far away from any point where important information is to be found
about f. If our problem had been to estimate Elg(X)] where g(z) = 1(z < 0), then
both the standard normal samples and the most informative behavior of g would
have been centered at zero. In such a case, direct simulation would have done a
thoroughly satisfactory job. These observations suggest that we should find some
way to transform our original problem to one where the samples that we draw are
focused more directly on the tmportant behavior of f.

SHIFT THE Focus To IMPROVE A MONTE CARLO

The idea is to look for some way to gaimn a bit of flexibility over the place where
we draw our samples, and, fortunately, there is a natural computation that supports
the feasibility of this idea. If we let E, denote expectation under the model that
X ~ N(p,1), then we can always rewrite By[f(X)] as an E,, expectation:

BEo[f(X)] =—\/;=7r /_ F(z)e™= 12 gy
(13.2) =\/% /oo f(a;)e"‘(z—#)2/26y-2/2e—pm de
T J—co

=By [F(x)esX412)

The punch line is that one has a whole parametric family of alternatives to the
naive simulation given by equation (13.1). By the mean shafting 1dentaty (13.2), we
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could just as well use any of the estimations
1 n

(13.3) Bolf(X)] = ~ > g(%),
=1

where ,
9(y) = F(y)e™#¥+# /2 and Y, ~ N(p,1).

Now, with p completely at our disposal, we can surely in}prove on the eTtm;at;(})lr;
efficiency of the naive simulation (13.1). For exam;])le, if we c?uld eva, u}z: e i
coefficient of variation c(u) = |E[g(Y1)}l/ (Var(g(f.Yl)])i as a function of ,ut;'t .ent. s
ideal choice for x4 would be the value that minimizes c(p).' SadI}f, such f(j)pdlr_IEl,’lza )12))]
schemes are not realistic. After all, we are trying to use mmu%at.lon to fin : [ { -(t 2l
— which is just E[g(¥1)] for p = 0 — so even the boldest optimist must admit tha
ct to know e(p). . .

e C&iﬁ::tﬁzfeess, we are far(gz)m lost. We do not need to make an optimal choice
of u in order to make a good choice. In practical p?oblgms, we often ha\crle sbomi
intuition about the region where important information is to 1.)e dl‘scoverfa afou
f, and we almost always make a major improvement over naive simulation 1 tlve
c}’xoose a value of p that shifts the sampling nearer to th.at location. For examp elzi
in our original problem with f(z) = 1(z > 30), we can‘Jus_t take p = 30. VfV(: wi
then find that the importance sampling method (13.3) is literally billions of times
more efficient than naive simulation (13.1).

13.2. Tilting a Process

Importance sampling is not limited to functions of a single variable, or even to
functions of a fimite number of variables. There are direct 'fmalog.s for processes. To
begin with the simplest case, we take Brownian motion with drift

Xt = Bt -+ ut t Z 0,
and we consider the calculation of the expectation
E[f(-ththy' . :th)])

where 0 =y <t <i3 <--- <t, < T and where f : R® — R is a bounded Borel

function.
In order to exploit the independent increment property of X;, we first note that

there is a g : R® — R such that f(z1,22,...,3,) = g(z1,22 — 21, ..- ,z;(—:vnjzl), s)o
we can focus attention on the density of the vector (X3,, }.{t? o T, SR, S B
We may write this density as the product of the normalizing constant

-— -1/2
C = (2m) ™27 2 (g — )" M2 0 (b = b)Y

and an exponential function of the z,’s,
- 2
Hexp (——{(zt = Ty1) = Pty — tee1)}/2(8 — ti—l)) )
=1

where we have taken zg = 0 to keep the formulas tidy. If we expand the quadr:tlc
exponents in the last expression and then collect terms, we can obtain an alternative
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product where terms that contain y are aggregated into the second factor:

n
n
H €Xp ("‘(3:1 - 3"1—1)2/2(tz = tz—l)) . Hexp <.u($z - zz—l) - ’%:Ufz(tz - t1—1)> .
=1 =1
Now, we see just how lucky we are. When we collect the exponents in the second
factor, the sums of the linear terms telescope to leave us with the simple product

{g exp (—(z: — z.1)?/2(t, — tz—l))} - exp (u:vn _ %pﬁtn) _

Comparing th.is product to the density of the vector (B, Bi;—Bs,,..., By ~B, D
we see our original expectation of a function of the process X; = B; + ut Ca'Ill— be
expressed as a modified expectation of a function of the Brownian motion By:

(134) E[f(th,th, ca. )Xt,.)] =F [f(Btn Btzy ey Btn) exp <)U‘Bi" - —;—,U.ztn)] .

T}}is i‘dentity is a direct analog to the importance sampling formula (13.2), although
this time we see a couple of new twists.

Perhaps the most striking feature of equation (13.4) is the unheralded appear-
ance of the familiar martingale

1
My = exp (MBt - §M2t> )
and several .bonuses come with the emergence of M;. The most immediate benefit
o€ the martingale property of M, is that it lets us rewrite equation (13.4) in a
slightly more symmetrical way. We only need to notice that the random variable

F( Xy, Xt - -y Xt,) is Fy, -measurable and ¢, < T, we can also write equation
(13.4) as
(13.5) Blf(Xy,, X4, ... 1 Xt,)] = B(f(Bt,, By, - .., By, ) M.

This ir.nportant identity is often called the talting formule, and we can think of My
as a kind of correction factor that reweights (or tilts) the probability of Brownian
motion paths so that in the end they have the probabilities one would expect from
the paths of a Brownian motion with drift 4. One should note that the tilting factor
Mz in formula (13.5) does not depend on the sampling times 0 < t; <ty < --- <
tn < T. This feature of My turns out to be critical.

Later, we will develop several useful consequences of the quantitative properties
of the tilting factor My, but, before we dig into any new abstractions, we should
first test our new tool on an honest problem. Encouragingly enough, we will find
that even the modest tilting formula (13.5) gives us a nearly automatic way to

calcylate interesting quantities such as the density of the first time that Brownian
motion hits a sloping line.

FUNCTIONS OF A BROWNIAN PATH

If we let S(n) = {iT/n : 0 < i < n}, then the continuity of Brownian motion
tells us that for all w we have

lim max (B, t) =
’n—vOOtGS('n.)( t+,U;) tgf'g;?l(-.](Bt-’_lj't):
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and consequently we also have for all = that

n—eo

lim 1 (tIEr}gaé)(Bt + pt) < :z:> =1 (tg%g:;}l(Bt + ut) < .'1:> .
Now, the tilting formula (13.5) also tells us that for all n we have

Lo
(13.8) E[l(t‘g‘;}’,i)(Bt + ut) < :1:)] =F [1 (trer}seg) By < :1:) exp(uBr — SH T)} ,

so to get a general property of Brownian motion, we only need to check what
happens when n — co. The integrand on the left-hand side of equation (13.6) is
bounded, and the integrand on the right-hand side is dominated by the integrable
function exp(uBr — $1°T), so we can take the limits in equation (13.6) to find the
interesting identity

(18.7)
= Ll
E [1 (trex%%l(Bt + pt) < w)] =F [1 (tgft%] B; < m) exp (,uBT 2,u T)] .

This formula tells us that to calculate the distribution of the maximum of Brownian
motion with drift, all we need to do is work out the right-hand side of equation

(13.7).

HiTTiNG TIME OF A SLOPING LINE: DIRECT APPROACH

We already know that for any a > 0 the hitting time 7, = min{t: B; = a} has
a density that can be written compactly as

a

(13.8) fo () = ﬁ% ¢ (75) for t > 0.

One of the remarkable early successes of Bachelier was his discovery that the density
of the hitting time of a sloping line has a formula that is strikingly similar to that
of formula (13.8). In particular, if the line L has the equation y = a+bt witha > 0,
then the first hitting time of the line L,

7, =inf{t: By=a+bt},

has a density that is given by

(13.9) Frult) = 75 ¢ (%@) for ¢ > 0.

This formula creates an unforgettable parallel between the problem of hitting a line
y = a + bt and that of hitting a level y = a. Even more, it gives an elegant quanti-
tative expression to several important qualitative distinctions, especially those that
depend on the sign of b.

For example, when b < 0, the function fr, (t) integrates to 1, reflecting the fact
that Brownian motion will hit such a line with probability one. On the other hand,
if b > 0, we find that f,, (t) integrates to a number pz, < 1, and this reflects the fact
that there is exactly a probability of 1 — pz, > 0 that a standard Brownian motion
will never reach the line L.

Now, to prove the formula (13.9), we first note that 7, > t if and only if
B, —bs < afor all 0 < s < t, and as a consequence the distribution of 71, is easily
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addressed by the process tilting formula (13.5), or, rather, th
which we find (18.5), or, rather, the corollary (13.7) from

P = -
(L >t)=P (0123‘%(5(33 sb) < a>

_ 1
(13.10) =F [1 (0%121%% B < a) exp <—bBt - §b2t)] .

What mePkfas this ff)rmula practical is that long ago, in equation (5.14), we found
that the joint density of B, and By = maxg<s<; Bs is given by

2(2v — u) (2v — u)?
Jorm P (— 2t

where D = {(u,v) : max(0,u) < v}. When we substitute this lai ;
(13.10) we find that } is formula into equation

= 2(20 —u) (2v — u)?
P(TLZt)—-// bk S 7 _ u) 5 1,
Dn{v<a} V2mt3 oxp 2t exp | —bu ~ §b t) dudv.

Ther'e is nothing between this double integral and the lovely formula (13.9) for the
density of the hitting time of a line except a little calculus, and, even though the
integral is messy, one can always deal with mess. ’

. The part of our derivation that most deserves sincere appreciation is that equa-
t1.on (13.7‘) gives us an automatic way to convert almost any question about Brow-
nian II}otlon with drift into a question that only depends on standard (driftless)
B‘rowman motion. In the particular case of the derivation of equation (13.9), we
w111_ soon find that we can even avoid the pesky double integral. As it happ’ens
a slightly more abstract view of the tilting formula (13.5) will lead us quite na.tu—,
rally to a martingale method that replaces the double integral fo1 P(7y, > ) by a
one-dimensional integral that is no trouble at all.

fi.,Bpy(w,v) = ) for all (u,v) € D,

13.3. Simplest Girsanov Theorem

Our view of Brownian motion never focused too closely on the underlying mea-
sure space, and, by and large, we have profited from keeping a respectful distance.
Nevertheless, the time has come to take a second look at our basic probability
mod'el, and, in particular, we need to develop the idea that the sample path of a
continuous process on [0, T] may be viewed simply as a posnt in the space C[0, T
that has been chosen at random according to a probability measure. ,

Whe.n we view C[0, T| as a metric space under the usual supremum norm, then
the metric determines the class of open sets in C[0, T}, and the Borel a-ﬁel(i B of
C[0, T is defined to be the smallest o-field that contains all of these open sets. Our
‘171;5\1 rgeta(;slll)l;a?}l:; ipaicee a(-.(fli:a.lz) takes Q = C[0,T)] to be the sample space and takes
_ Now, all we need to construct useful probability measures on the space (Q, F)
is to observe that any contin~u01~15 stochastic process {X; : 0 < ¢ < T} that is deﬁ,ned
or} any probability space (2, F, P) suggests a way to define a measure on (Q, F).
Given such a process, we first define a mapping X : Q +— C[0,T] by taking X (&)
to be the continuous function on [0, T] that is specified by

t— Xy () for t € 0,71,
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and then we define a new probability measure @ on (C|[0, T}, B) by taking~
(13.11) Q(4) = P(X~(4)).

‘We often say that a probability measure Q obtained in this way 1s the measure on
(C[0,T), B) that is :nduced by the continuous stochastic process {X.}, or say that
@ is the probability measure on (C[0, T, B) that corresponds to the process {X;}.

‘We now simply let P denote the measure on C[0,T] that corresponds to stan-
dard Brownian motion and let @ denote the measure on C[0,T] that corresponds
to Brownian motion with constant drift p.

THEOREM 13.1 (Simplest Girsanov Theorem: Brownian Motion with Drift).
If the process {B:} 1 a P-Browman motion and Q 1s the measure on C[0,T]
wnduced by the process Xy = B; + ut, then every bounded Borel measurable
function W on the space C[0,T] satisfies

(13.12) Eq(W) = Ep(W Mr),
where M is the P-martingale defined by
(13.13) M, = exp(uB; — 1t/2).

PRrOOF. Since any bounded Borel function W is a limit of bounded simple
functions, the proof of the theorem only requires that we prove the identity (13.12)
for all W = 1,4, where A is a Borel set in C[0, T]. Next let 7 denote the class of all

sets that are of the form
A={w:w(t) € [a,b,) forall 1 <2< n}

for some integer n and real a,, b,. The tilting formula (13.5) tells us that equation
(13.12) holds for all W = 1,4 with A € Z. The collection 7 is also a w-system, and,
if we let C denote the class of all A for which W = 1, satisfies the identity (13.12),
then we can essily check that C is a A-system. Since 7 C C, the m-A theorem then
tells us that equation (13.12) holds for all A € o(Z). Finally, since o(Z) is precisely
the class of Borel sets of C[0,T], the proof of the theorem is complete. O

Before we move on to the extension of the simplest Girsanov theorem, we should
take another quick look at the Lévy—Bachelier formula. This brief detour gives a
nice illustration of one of the ways that stopping times may be used to simplify
calculations.

HITTING A SLOPING LINE: THE MARTINGALE VIEW

The fact that the drift correction process {M;} is a martingale turns out to be
important in many applications of Girsanov theory, and we should always remain
alert to the possibility of exploiting this connection. The problem of calculating
the density of the first hitting time of a sloping line provides a classic case. If we
use the martingale property of M; from the outset, we can completely avoid the
messy double integral that we found before, and, with the right perspective, we will
quickly find a simple one-dimensional integral that yields the desired density with
minimal calculation.

We noted earlier that the first time 77, that B; hits the line y = a+bt 1s precisely
the first time 7, that the process X; = By — bt hits the level y = a, so now if we let
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@ denote the measure on C[0,T] induced by the process {X:}, then the simplest
Girsanov theorem tells us

P(r, £1) = Q(7, £ 1) = Eg(1(7a £1)) = Ep(1{7s < t)M7),

where M, is the P-martingale defined by equation (13.13).
Now, to exploit the martingale property of My, we first note that {r, < it} is
an Fiar,~-measurable event, so if we condition on the o-field Finr, , we find

Ep(l(r, < HMr) = Ep(1(rq < t)Minr,)
= Ep(1(1, < t)exp (—ab— b2‘ra/2))

¢
= [ exp(—ab—b%5/2) s b [ -2 ) ds.
/[; xp ( s/)s3/2¢(\/§ ds

Differentiation of the last integral is a piece of cake, and, after completing the square

in th.e exponent, we are again pleased to find the Lévy-Bachelier formula for the
density of the first hitting time of a sloping line:

(13.14) Frn(t) = ﬁ% & <“_%bf> for t > 0.

EQUIVALENCE, SINGULARITY, AND QUADRATIC VARIATION

Before we take on more elaborate results, we should reflect for a moment on
some simple qualitative questions that are answered by Girsanov’s theorem. For
example, suppose we observe two independent processes

Xe=pt+o0B, and X,=jit+5B,

during the time period [0,T]. Can we decide with certainty that the two processes
are ge;minely different, rather than just independent realizations of equivalent pro-
cesses?

The answer to this question may be surprising., If ¢ # &, then the fact is that
we can tell with certainty that the two processes are different. The values are taken
by 4 and [, do not matter a bit, and neither does it matter how small one might
take T > 0. When o # &, a billionth of a second is more than enough time to
tell the two processes are different. On the other hand, if ¢ = &, then we can
never be certain on the basis of observation during a finite time interval whether
the processes X, and X; are not equivalent.

The reason for this is simple. If we 't,ake t, = iT/2" for 0 <1 < 27, then we

have

271

dm D (e = X)) = 07T,

+=0
w?lere the convergence takes place with probability one. The bottom line is that
with probability one we can use our observed path to compute o2 exactly. If o 5 &
then even the tiniest interval of time suffices for us to be able to tell with certainty
that we are watching two different processes.

Two probability measures P; and P, on a measurable space (Q, F) are said to
be equivalent if
Pi(A) =0& P(A) =0,

and are said to be singular if there exists an A € F such that

Pi(A) =1 and Py(4)=0.
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Now, thanks to Girsanov’s theorem, we know that for any T < co, if P, is the
probability measure induced on C[0,T] by the continuous process X; = ut + B,
then P, is equivalent to Pp. for all p. Also, by our observations concerning
quadratic variation, we know that P, ;, and P, o, are singular if and only if o1 # og.

13.4. Creation of Martingales

If we consider the process X; = B; + pt together with the measure space
(Q,F,P), where B; is a standard Brownian motion, then X; is certainly not a
martingale. Nevertheless, if we define a new probability measure Q on (Q,F) by
taking

Q(A) = Ep[La exp(—pBr — 1*T/2)),
then the simplest Girsanov theorem tells us precisely that on the probability space
(Q,F,Q) the process X; is a standard Brownian motion and a fortiori X; is a
Q-martingale.

This miracle applies to processes that go far beyond drifting Brownian motion,
and, subject to a few modest restrictions, a great number of continuous processes
that are adapted to the filtration of Brownian motion may be transformed into a
martingale by an appropriate change of measure. For our first example of such a
transformation, we will consider the present value of the stock price in the Black—
Scholes model.

DISCOUNTED STOCK PRICE

If we go back to the Black-Scholes model, we had a stock process that we took
to be

dSy = pSy dt + Sy dBs,
and we had a bond model given by
dBe =rfedt fo=1,
so, if we solved these equations, we found
Sy = Soexp (t(u — 0?/2) + 0B;) and f; = ert.

The present value of the time ¢ stock is defined to be the stock price discounted by
the bond price, so, in symbols, the discounted stock price is given by

(13.15) Dy = S;/P: = Sp exp (t (u —-r— -;-02> + aBt> .

If we apply It6’s formula, we find the SDE for D, to be
(13.16) dD; = (g — r) Dy dt + 0 D:dBy,

and we can see from either equation {13.16) or equation (13.18) that D; is not a
martingale with respect to P except in the special case when r = p. Nevertheless,
a similar story could have been told for the process X; = By + ut, and in that case
we found a measure that makes X; a martingale. We must ask whether there might
also be a measure Q under which D; is a martingale.
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THE QUEST FOR A NEW MEASURE

In order to make the connection between D; and drifting Brownian motion
more explicit, we first note that we can rewrite the SDE for D; in the form

dD, = 6D, d {t(#:—’") + Bt} = oD, dX;,

where X; = B;--[it, and the drift parameter f is taken to be (z—r)/o. In longhand,
this equation tells us that

13
(13.17) Dy — Do = / oD, dXs,
0

and now our job is to interpret the previous equation.
Naturally, there are two interpretations — actually infinitely many — but only
two really matter. We can interpret equation (13.17) under the measure P that

makes B; a standard Brownian motion, or we can interpret it under the measure
@ defined by

Q(A) = Ep[laexp(—fiBr — 32T/2)}.

Now, since X; is a standard Brownian motion with respect to @ and the integrand
D; is a nice continuous process, we know that the stochastic integral given by
equation (13.17) is again a well-defined 1td integral.

The idea that we may have multiple interpretations of a single stochastic in-
tegral may seem a little odd at first, but, in fact, the only reason we might feel
ill at ease with this multiplicity of interpretations is that when we did our earlier
work with stochastic integrals we kept only one probability measure in mind. At
the time, we had no reason to be alert to the richer possibility that any one of our
integrals could be viewed as a member of many different probability spaces.

13.5. Shifting the General Drift

Thus far, we have only seen how one can remove a constant drift, but the drift-
rem9val idea works much more generally. The next theorem shows how a Brownian
motion plus a general drift process may still be viewed as a standard Brownian
motion.

THEOREM 13.2 (Removing Drift). Suppose that u(w,t) is a bounded, adapted
process on [0,T], B; 1s a P-Brownian motion, and the process X; 15 given by

t
(13.18) X, =B, + / (w0, 5) ds.
0
The process M; defined by
t 1 gt
M; = exp <—/ wlw,s)dB; — 5/ 13w, s) ds)
0 0
ts a P-martingale and the product XM, 15 also a P-martingale. Finally, if

Q denotes the measure on C[0,T)] defined by Q(A) = Ep[laMr7], then X; is a
Q-Brownian motion on (0,T].
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PRrROOF. By Itd’s formula we have dM; = —u(w, s) My dBy, so My is certainly a
P-local martingale. The boundedness of u{w, s) then lets us check without difficulty
that supg<;<q M; has a finite expectation, so (after recalling Exercise 7.3) we see
that M, is indeed an honest P-martingale.

Thus, the main task is to show that under Q the process {X;} has the same joint
distributions as Brownian motion. Remarkably, this follows almost immediately
from the elegant fact that for all bounded deterministic f : [0, 7] — C one has the

key formula
T T
Eq [exp </0 f(s) dXs>] = exp(%/o 2(s) ds).

To exploit this formula, we simply take any §, € R for j = 1,2,..., NV and take any
O0=tg <t < -+ <ty_1 <ty =T so that the deterministic function

N
fls)=) i 1(t,-1 <s<ty) for0<s<T,

=1

and the key formula may be combined to tell us

Eq {exp (z iBJ (Xe, — th_l)>l = exp <——12— i&f(ts - ty_l)).

=1 =1

This identity says that the difference vector (Xz, , Xty —Xt1, ooy Xty —Xty_1) has the
same characteristic function under @ as the difference vector of Brownian motion,
so {X;} is in fact a @-Brownian motion.

All that remains is to prove the key formula, and, as a first step, we simply
apply the definition of X; and Q to rewrite the left-hand side of the formula as

Ep [exp(/oT(f(s) — p(w, s)) dBs +/0T f(8)u(w, s) ds — %/0 12 (w, ) ds)].

Now, since f is deterministic, this expectation may also be written as

oxo(§ [ 1#(0ds) 3o osp( [ (19t a5, [ U6 -pea’ss)]

and this brings us to a critical observation. The second factor here is the expectation
of an exponential martingale that is associated with c(w, s) = p(w,s) — f(s) in the
same way that u(w, s) was associated with M;. Consequently, this expectation must
equal one, and the proof of the key formula is suddenly complete. (]

T

TwoO DRIFTS AND ONE VOLATILITY

If one can remove drift by a change of measure, one can surely add drift by
a similar change. When the two processes are put together, we only need good
bookkeeping to keep track of the tiansformations. If we are careful, we can even
incorporate a general volatility into our drift-shifting processes.
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THEOREM 13.3 (Swapping the Drift). Suppose that X s a standard process
that we can write as

t ¢
(13.19) Xe=z+ / p(w, s)ds + / o(w, ) dB;.
0 0

If the ratio O(w,t) = (p(w, t) — v(w, 1)) /o(w,t) 15 bounded, then the process

¢ ¢
M =exp (-—/ 8w, s) dB; — %/ 6*(w, 5) ds)
0 0

18 & P-martingale and the product XMy 15 a P-martingale. Finall
measure Q on C[0,T) by ¢ g nally, of we define a

(13.20) Q(A) = Ep(1aMr),
then the process defined by

_ ¢
B; = B, +/ O(w, s) ds
0
15 & Q-Browman motion, and the process X; has the representation
¢ t
(13.21) Xi=2 +/ v(w, s) ds +/ o(w,s) dBs.
0 0

.PROOF. We have already done most of the work during the proof of the pre-
ceding tfheorem. The fact that M; is a P-martingale follows the now standard
calculation, and the fact that B; 1s a (-Brownian motion is exactly the content
of Theorem 13.2. Finally, to see that equation (13.21) holds for X;, we first note
Xo =z and simplify equation (13.21) to find

dX: = v(w,t) dt + o(w,t) dB;
= v(w,t) dt + o(w, t){dB: + (w, t) dt }
= v(w,t) dt + o(w,t) dBy + {p(w, t) — v(w, )} dt
= u(w, t) dt + o(w, t) dB;.

The last expression matches up with our target equation (13.19), so the proof of
the theorem is complete. O

Dip WE NEED BOUNDEDNESS?

Theorem 13.2 imposed a boundedness condition on 1 and Theorem 13 3 im-
posed boundedness on @, but one should check that the proofs of these theoiems
used these hypotheses only to obtain the martingale property for the associated
exponential local martingales. In both of these theorems, one can replace the
boundedness hypothesis by the more general (but more evasive) assumption that
the exponential process M, is a martingale. Such a substitution may seem odd, but
there are .times when the added flexibility is useful. Such a hypothesis shifts’. the
responsibility to the user to find more powerful criteria for M; to be a martingale
The next section shows how to rise to this challenge. ‘

13.6. EXPONENTIAL MARTINGALES AND NOVIKOV'S CQNDITION 285

13.6. Exponential Martingales and Novikov’s Condition

One of the key issues in the use of Girsanov theory is the articulation of cir-
cumstances under which an exponential local martingale is an honest martingale.
Sometimes, we can be content with a simple sufficient condition such as bound-
edness, but at other times we need serious help. The next theorem provides a
sufficient condition that is among the best that theory has to offer.

THEOREM 13.4 (The Novikov Sufficient Condition). For any p € L3¢[0,7],
the process defined by

(13.22) M;(p) = exp (/: ww, s) dB; — % /; w3 (w, s) ds)

18 a martingale, prowded that i satisfies the Novikov condition

(13.23) E {exp (—;— /T B3 (w, 8) ds)} < co.
0

UNDERSTANDING THE CONDITION

One of Pélya’s bits of advice in How to Solve It is to “understand the condition.”
Like many of the other pieces of Pélya’s problem-solving advice, this seems like such
basic common sense that we may not take the suggestion as seriously as perhaps
we should. Here the suggestion is particularly wise.

‘When we lock at the condition (13.23) and angle for a deeper understanding,
one of the observations that may occur to us is that if 4 satisfies the condition then
so does Ap for any |A| < 1. At first, there may not seem like there is much force to
this added flexibility, but it offers the seed of a good plan.

A PLAN SUGGESTED BY POWER SERIES

From our work in Chapter 7, we already know that the nonnegative local mar-
tingale My;(u) is a supermartingale, and by Proposition 7.11 we also know that
M;(p) will be an honest martingale on [0, T) if E[M ()] = 1. This modest obser-
vation suggests a marvelous plan.

If we introduce the function H(X) = E{Mz(\y)], where X is a real parameter,
then the proof is complete if we show H(1) = 1, but, if the theorem is true (as we
strongly suspect!), we should actually have H(A) = 1 for all |A| < 1. It 1s trivial
that H(0) = 1, and from the definition of M; we might suspect that we would have
an easier time proving H(\) = 1 for A € (—1,0] than for positive A > 0. At this
point, some experience with power series suggests that if we can prove H(\) = 1 for
all ) in an interval such as (—1,0], then we should have great prospects of proving
that H()\) = 1 for all A < 1. Even without such experience, the plan should be
at least modestly plausible, and, in any event, we will need to make some small
modifications along the way.

FiRsT A LOCALIZATION

As usual when working with local processes, we do well to shp in a localization
that makes our life as easy as possible. Here, we want to study M:(\p) for negative
), so we want to make sure that the exponent in M (u) is not too small. For this
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purpose, we will use the related process

Y, = /otu(w,s) dBs — /tuz(w,s) ds
and introduce the stopping time ’
Ta=inf{t:Yt=—aort2T}.
The next proposition gives us some concrete evidence that our plan is on track..
ProrosiTIiON 13.1. For all A <0, we have the identity
(13.24) E[M,, (Au)] =1.

PROOF. As we have seen several times before, It6’s formula tells us that the
process My(Ap) satisfies dM;(\p) = Au(w, )My (Ap)dB; and as a consequence we
have the integral representation

(13.25) My, (Aw) =1+ / " M, )M, (A) dB,
0

.NO‘W, tg prove (13.24), we only need to show that the integrand in equation ( 13.25)
Is in H*, or, in other words, we must show

(13.26) E [/OTu P2 (w, s)M2(\p) ds} < 0.

Here we first note that for ¢ < 7, we have
L] 2 8
(13.27) Ms(Ap) =exp (/\/ p{w, s)dBs — /\7/ B (w, ) ds)
0 0

=exp(AY;) exp ((/\ —~A%/2) /8 p3(w, s) ds)
0
Sexp(alAl),

where in the last step we use the definition of T, and the fact that A — X\2/2 < 0
for A < 0. Next, we note that the simple bound z2 < 2exp(z?/2) and Novikov’s
condition combine to tell us that

T
(13.28) E </0 13 (w, 5) ds) <2E l:exp <% /Tu2(w,s) ds)] < .
0

Finally, in view of the bounds (13.27) and (13.28), we see that equation (13.26)
holds, so the proof of the proposition is complete. O

POWER SERIES AND POSITIVE COEFFICIENTS

At this point, one might be tempted to expand E(M,, (\u)) as a power series in
A in order to exploit the identity (13.24), but this frontal assault runs into technical
problems. Fortunately, these problems can be avoided if we can manage to work
with power series with nonnegative coefficients. The next lemma reminds us how
pbleasantly such series behave. To help anticipate how the lemma will be applied, we
should note that the inequality (13.29) points toward the supermartingale property
of M, (Au) whereas the equality (13.30) connects with the identity that we just
proved in Proposition 13.1.
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LemMa 13.1 If {ex(w)} 45 a sequence of nonnegative random wariables
and {ar} is a sequence of real numbers such that the two power series

flz,w) = ch(w) z* and g(z) = Zakxk

k=0 k=0
satisfy
(13.29) E{f(z,w)] < g(z) <o for all z € (—1,1]
and
(13.30) E[f(z,w)] = g(z) for all z € (~1,0],
then
(13.31) Blf(1,0)] = g(1)

PROOF. Since cx(w) > 0, we can apply Fubini’s theorem and the bound (13.29)
to get

(=]

(13.32) B(f(z,w)] =) Ecx)z* < g(z) < oo forallz e (~1,1],
k=0

whereas Fubini’s theorem and the identity (13.30) give us

(13.33) Ef(z,w)] = iE(ck) ok = iakmk for all z € (—1,0].
k=0 k=0

Now, by the uniqueness of power series, the last identity tells us E(ci) = ay, for all
k > 0, and this implies that the identity (13.33) actually holds for all z € (~1,1).
Finally, since f(z,w) is a monotone function of z on [0, 1), we can take the limit z T 1
in the identity g(z) = E(f(z,w)) on [0,1) to conclude that g(1) = E(f(1,w)). O

EXTENDING THE IDENTITY

By Proposition 13.1, we know that E[M,_(Au)] = 1 for all A < 0, and we simply
need to extend this identity to A < 1. When we write M;(\x) in terms of ¥;, we
find

My(Ap) = exp (AK + (A= X2/2) /Ot 13w, s) ds) )

and the 1elationship of ¥; to the level a can be made more explicit if we consider
¢
(13.34) e My (M) = exp (/\(Y; +a)+ (A — /\2/2)/ 12w, s) ds) .
0

Now, if we reparameterize the preceding expression just a bit, we will be able to
obtain a power series representation for e’ M., (Ax) with nonnegative coefficients.

Specifically, we first choose z so that A — A?/2 = 2/2, and we then solve the
quadratic equation to find two candidates for X\. Only the root A =1 — /1 — 2z will
satisfy A < 1 when |2| < 1, so we will use the substitutions

A=22=z/2and A=1—+1—2
to replace the A’s by the z in the identity (13.34).
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In these new variables, the power series for e** M, (\y) is given by

(13.35) flw,z) =exp ((1 —v1-2)(Ys, +a)+ g /On 12w, 5) ds)

(o]
=) W),
k=0

and, because the power series for e? and 1 — +/1 — z have only positive coefficients,
we see that ¢ (w) > 0 for all £ > 0.

Now, because e1=V1=2)e pf, (1 — /T — z)u) is a supermartingale for any z < 1
we can also take the expectation in equation (13.35) to find

(13.36) Ef(w,2)] < exp(a(l —vI—2)) € g(z) & iakzk.

k=0
The identity of Proposition 13.1 tells us that for all z € (—1,0] we have
(13.37) E{f(w,z)) = exp(a(l — VI —2z)) = g(2),

so all of the conditions of Lemma 13.1 are in place, and we can apply the lemma
to conclude that

E[f(w,1)] = €%,
so when we unwrap the definition of f, we find
B{Mr, ()] = 1.

All that remains to complete the proof of Theorem 13.4 is to show that 7, can be
replaced by T in the previous identity.

FINAL STEP: DELOCALIZATION

The natural plan is to let a — co in E[My, ()] = 1 so that we may conclude
E[Mr(p)] = 1. This plan is easily followed. The first step is to note that the
identity E[M, (u)] = 1 gives us

1= E[My, (1)1(7a < T)]+ E[M, (11)1(1a = T)]
= B[M, (1) 1(ra < T)] + ElMr(u)i(r, = T)],

and trivially we have

B[Mr(p)] = B[Mr(u)1(ra = T)] + BlMr(p)1(ra <T)],

so we have
(1838)  ElMr(u)} =1 - BIM,, ()i(ra <T)) + E[Mr(s)i(r, < ).
Now, on the set {7, < T’} we have Y;, = —a so

M, ()1(1e <T) =1(r, < T)exp (Ym + —;—/ ’ 12 (w, s) ds>
0

T
s} [ ).
0
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and the Novikov condition tells us the exponential has a finite expectation so as
a — oo we find

—-a 1 T 2
(13.39) EM. (W1, < T)] < e °F [exp 5/(; w(w,s)ds || — 0.

The continuity of Y; implies that 1(m, < T) — 0 for all w, and the super-
martingale property gave us E[Mp(u)] < 1, so now by the dominated convergence
theorem, we find

(13.40) EMr(p)l(r, < T)] — 0 asa — .

Finally, if we apply the limit results (13.39) and (13.40) in the identity (13.38), then
we see at last that E[M7(u)] =1 and we have confirmed that {M; : 0 <t <T}is
an honest martingale.

LOOKING BACK: THE NATURE OF THE PATTERN

In our development of the martingale representation theorem we found an anal-
ogy between mathematical induction and the way we worked our way up from a
special case to the general theorem. Here, the analogy is mo1e strained, but perhaps
it still merits consideration. We began with the trivial observation that H(0) =1
(analogous to the proposition P(1) in mathematical induction), and this observa-
tion motivated us to study the more general case H(\) = 1 for A < 0 (analogous to
showing P(n) = P(n+1)). Finally, function theoretic facts were used to show that
H(\) =1 for A £ 1, and this last step was (very loosely!) analogous to invoking
the principle of mathematical induction.

13.7. Exercises

The first exercise is just a warm-up based on the tilting formula and the simplest
Girsanov theorem, but the second exercise is both lovely and sustained. It outlines
a proof that Brownian motion will write your name with probability one during
any time interval when you care to watch.

The next two exercises aim to provide insight into Girsanov’s theorem. The
first of these explores one of the ways in which Girsanov’s theorem is sharp, and
the last exercise shows that except for a tiny ¢ one can prove Girsanov’s theorem
using little more than Holder’s inequality.

EXERCISE 13.1 (Warm-ups).

(a) Show that the tilting formula (13.5) implies the elementary mean shifting
formula (13.2). Use this opportunity to sort out when one has a plus p or a minus p.

(b) Use the simplest Girsanov theorem to show for p > 0 we have

E [e"‘B"“ max Bt] ~ —l—e"zT/2 and F {e"g"' max Bt] o~ uTe“2T/2
0<t<T 24 0<t<T

as T — co.
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'EX}:::RCI§E 13.2 (Brownian Motion Writes Your Name). Prove that Brownian
rr’lc;tlon in R* will write your name (in cursive script, without dotted i’s or crossed
t’s).

To get the pen rolling, first take B; to be two-dimensional Brownian motion
on [0,1], and note that for any [a, 8] C [0,1] that the process

a,b
X = 0 0By - B

is a:gain a Brownian motion on [0, 1]. Now, take g : [0,1] ~ R2 to be & parameteri-
zation of your name, and note that Brownian motion spells your name (to precision
€) on the interval (a, b) if
(13.41) sup |x{®® _ 9@t <e.

0<t<1

() Let Ay denote the event that inequality (13.41) holds for a = 2-%-1 ang
= 2% Check that the Ay are independent events and that one has P(4y) =
P(A;) for all k. Next, use the Borel-Cantelli lemma to show that if P(4;) > 0
then infinitely many of the Ar will oceur with probability one.
(b) Consider an extremely dull individual whose signature is maximally undis-
tinguished so that g(t) = (0,0) for all ¢ & [0, 1). This poor soul does not even make
an X; his signature is just a dot. Show that

(13.42) P ( sup |Bi < e) > 0.
0<t<1

(c) Finally, complete the solution of the problem by using (13.42) and an ap-
propriate Girsanov theorem to show that P(A;) > 0; that is, prove

(13.43) P ( sup |B; —g(t)] < e) > 0.
0<t<1

EXERCISE 13.3 (Sharpness of Novikov’s Condition). We begin with a, warm-up
example with T = co. We have not established any Girsanov theorems on the
infinite interval [0, 00), but we can still learn something from exploring what can go
wrong there. First, we choose an a > 0 and an 0 <e< % so that we may introduce
the hitting time

7L =inf{t: By = —a + (1 — €)t}.
(a) Use the Lévy-Bachelier formula to show that

(13.44) E (exp ( (-21- - ) TLD = goll—2¢)

(b) Let p(w,s) = 1(s < 1) and show that

(13.45) E (exp ( (% - ) /0 - P2 (w, s) ds)) = o126 < o

but the exponential process

t ¢
(13.46) My(p) = exp (/ (w, 8)dBs — %/ 13w, s) ds)
(i 0
satisfies
(13.47) B(Mw) = B(M,,) =e™2 < 1,
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(c) Now, use the previous observations to give an example of a u(w, s) with
0 < s <1 such that

(13.48) E (exp ((% - e> /01 U (w,s) ds)) < o,

but for which we have
(13.49) E(M;(u)) < 1.

Such a p demonstrates that one cannot relax the Novikov condition by replacing %
by any smaller number. In order to construct u, one may want to recall that the
process

t
Xt=/ LdBS 0<t<1
0 l-s
is equivalent to the process { B}, where z(t) = t/(1 —¢) for 0 < ¢ < 1.
EXERCISE 13.4 (Lazy Man's Novikov). If € > 0, the condition

(13.50) E [exp ((_;. + e) /OT 12 (w,5) d.s‘)} < oo

is stronger than the Novikov condition, but it still holds under many of the cases
where one would apply Theorem 13.4. The purpose of this exercise is to outline a
proof of Theorem 13.4 where the condition (13.50) replaces the Novikov condition.
The proof is quite straightforward, and it reveals that all the subtlety in Theorem
13.4 comes from squeezing out that last e.

(a) Let 7, = min{s : [M,o(w,s)| > ¢, or s > T}, and let & > 1 and 8 > 0 be
parameters to be chosen later. Let

¢ t
X(%) =/ u(w, 8) dBs and Y(%) =/ 12 (w, s) ds,
0 0
so that we can write
1
(13.51) Mf,,. =exp <aX(t ATp) — %(a +BY (t A7) + EﬂY(t A 'rn)> .

Now, show that there are suitable choices for & > 1, # > 0 together with suitable
choices for p and g so that Holder’s inequality and (13.51) imply

T
(13.52) B(MS, )< E [exp ((% +e) /O 12w, ) dsﬂ .

(b) By the condition (13.50), the right-hand side of equation (13.52) is finite,
and by inspection the resulting bound is independent of n. Use this fact and the
notion of uniform integrability to prove that E(Mr) = 1, so M; is a martingale on
[0,T], exactly as we hoped.
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CHAPTER 14

Arbitrage and Martingales

The martingale theory of arbitrage pricing is one of the greatest triumphs of
probability theory. It is of immense practical importance, and it has a direct bearing
on financial transactions that add up to billions of dollars per day. It is also of great
intellectual appeal because it unites our economic understanding of the world with
genuinely refined insights from the theory of stochastic integration.

Strangely, this high-profile theory also has a rough-and-ready side. Its central
insight is in some ways embarrassingly crude, and, ironically, the whole theory
rests on a bold guess that is prefectly natural to a streetwise gambler—yet much
less natural to ivory tower economists or to portfolio-optimizing arbitrageurs. Still,
the gambler’s guess has a rigorous justification, and, in the end, the gambler’s
unfettered insight provides the world with scientific progress on an impressive scale.

14.1. Reexamination of the Binomial Arbitrage

Several chapters ago, we began our discussion of arbitrage pricing with the
investigation of a simple one-period model where the stock price could take on only
two possible values. Specifically, we considered an idealized world with one stock,
one bond, and two times — time O and time 1. We assumed that the stock had a
price of $2 at time 0 and that its price at time 1 would either equal $1 or $4. We
also assumed an interest rate of zero so that a bond with a price of $1 at time 0
would also be worth $1 at time 1.

The derivative security we studied was a contract that promised to pay $3 when
the stock moves to $4 and to pay nothing if the stock moves to $1. We looked for a
way to replicate this payout (see Table 14.1) with a portfolio consisting of & units
of stock and 8 units of bond, and by examination of the combined payout table
we found that a portfolio that is long one unit of stock and short one unit of bond
would exactly replicate the payout of the derivative X. The net out-of-pocket cost
to create this portfolio was §1, and the portfolio neither consumes nor creates any
cash flow between period 0 and period 1, so by the arbitrage argument the umque
arbitrage-free price for X is also precisely $1.

TABLE 14.1. REPLICATION OF A DERIVATIVE SECURITY

Portfolio | Derivative Security
Original cost aS + B X
Payout if stock goes up da+ 0 3
Payout if stock goesdown | a+f 0
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One of the points of this arbitrage pricing argument that seems to elude some
people is that the arbitrage price of the derivative was determined without any re-
gard for the probability p,, that the stock goes up or the corresponding probability
DPdown = 1 — Dyp that the stock goes down. The irrelevance of such probabilities
may seem paradoxical at first, but on reflection we see that it expresses a naked
mathematical truth. Moreover, the irrelevance of transition probabilities also pro-
vides us with clear answers to several nagging questions. For instance, we may have
asked ourselves why utility theory did not enter into the valuation of the derivative
security. Now, we can see that there was no need for utility theory because all
of the uncertainty is driven out of our model by the arbitrage argument and the
replicating portfolio. Probabilities do not enter the game at all, and, consequently,
neither does utility theory.

A CLEAN SLATE AND STREETWISE INFERENCES

For the moment, let us suppose that we forget this clear understanding of
arbitrage valuation. Instead, let us share the untainted state of mind of a street-
smart friend who has never heard about arbitrage but who does have extensive
experience in the practical art of making sound bets. How would such a worldly
individual price the derivative X7

For such a person, an all but inescapable first step is to try to wnfer the values of
the transition probabilities for the price movements of the stock. Given such a task,
about the only means at our disposal for making such an inference is to assume
that the stock price offers a precisely fair gamble. This assumption is tantamount
to saying that

2=4 -pyp+1: (1 _pup):
and from this assumption we can infer that the transition probabilities must be

1
Pup = g and Paown = §

Thus far, this inference looks feasible enough, even if a bit bold, but the proof of
the pudding is the pricing of the derivative.

STREETWISE VALUATIONS

Here, the street-smart individual may squirm a bit. If a bet is to be made, the
considerations of utility and risk preference cannot be ignored. Still, if the bet is
small enough so that the funds at risk are within the (approximately) linear range
of the gambler’s utility, then our streetwise gambler will be content to estimate
the fair price of the derivative contract X by its expected value under the inferred
probability distribution m = (Pup, Paown). That is to say, our gambler’s candidate
for the fair price of the derivative contract is given by

= 1.

ol o

1
EW(X)=3'pup+0'pdawn=3"3‘+0‘

What is going on here? This ill-informed guttersnipe gambler has hit upon the
same price for the derivative that we found with our careful economic reasoning.
Worse yet, this was not just a lucky example. For any binomial model and any
derivative contract, this apparently harebrained method of inferred probabilities
turns out to yield the same value for the derivative contract that one finds by the
economically rigorous arbitrage argument. Something serious is afoot.
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14.2. The Valuation Formula in Continuous Time

The same street-smart reasoning can also be used in continuous-time models
with nonzero interest rates. For us, such models provide the most natural domain
for option pricing theory, so we will not tarry any longer with the analysis of discrete
time models. The key step in continuous ime is to find a proper analog to the
inferred probability distribution that worked so well in the two-time model. Once
we have found an appropriate candidate for the inferred probability distribution in
continuous time, we can turn ourselves over to the machinery of stochastic calculus.
Thereafter, simple calculation can be our guide.

To provide a concrete context for our analysis, we will take the general stock
model

(14.1) dSy = 1S dt + 04S¢ d By,

where the only a priori constraints on the coefficients pu:(w) and o¢(w) are those
that we need to make {5;} a standard stochastic process in the sense of Chapter 8.
For our bond model, we will also take a more geperal view and assume that

(14.2) dp: = P dt,

or, equivalently,
t
Bt = Poexp (/ Tst) )
0

where the nonnegative process {r;} has the interpretation as an instantaneous risk-
free interest rate. In passing, we also note that the last formula gives us a quick
way to see that

(14.3) d(B;t) = —r:f7 " dt,
a small fact that we will use shortly.

PRESENT VALUE AND DISCOUNTING

The street-smart gambler knows that a dollar today is better than a dollar
tomorrow, and the search for the inferred probability measure must take account
of this fact. Here, the street-smart gambler looks at the stock process S; and notes
that in a world with genuine interest rates one should try to think of the discounted
stock price Dy = S;/B: as a martingale. In other words, one should consider a
probability measure @ on the path space C[0,T] such that D; is a martingale with
respect to Q. Here, @ is the direct analog of the inferred transition probabilities
7 = (Pup, Pdown) that we found so useful in the binomial model.

The derivative contract pays X dollars at time T, and the present value of such
a payout is just X/Fr. In parallel with the gambler’s analysis for derivative pricing
in the binomial model, he would then regard the natural price for the derivative
contract at time 0 to be the expectation of the present value of the contract under
the inferred probability measure Q. Thus, at time 0 the gambler’s formula for the
fair price of the contingent claim would be

Vo = Eq(X/Br).
For this formula to make sense, we must at least assume that X is integrable,
but, to minimize technicalities, we will only consider contingent claims X € Fr

that satisfy X > 0 and Eg(X?) < co. This requirement does not impinge in any
practical way on our ability to analyze real-world claims.
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At a general time ¢ & [0,7], the streetwise pricing formula is given by the
conditional expectation Eg(X/ (Br/Bs) | F+), and because the time ¢ bond price §;
is Fi-measurable, the pricing formula can also be written as

(14.4) Vi =BEQ(X/Br|F:) for0<t<T.

As it sits, the gambler’s candidate for the fair value of the contingent claim X is not
much more than a bold guess. Still, there is some immediate wisdom o this guess.
At the very least, V; replicates the correct terminal value of the option because
if we let t = T in equation (14.4) then the two interest rate adjustments exactly
cancel to give Vp = X,

A FURTHER WORD ABOUT Q

We have tried to follow the lead of the discrete-time problem in our design of
the pricing formula (14.4), but there remains an important restriction on Q that
must be brought out. If the only property that we require of ) is that the process
{S:/B:} be a martingale under Q, then we are forced to accept some pretty dumb
choices for Q. In particular, one could take @ to be any measure on C[0,T] that
makes S;/B; a constant. Such a silly choice was not what the streetwise gambler
had in mind.

When we look back at the discrete problem, we find that the probability mea-
Sure T = (Pup, Pdouwn) has one further property besides making the stock price a
martingale. Hidden in the simple notation for 7 is the fact that puts its mass on
the same paths that are possible in the original scenario, and vice versa. To impose
an analogous condition on @ in our continuous-time model, we need to introduce
the notion of equivalent measures.

If P and Q are two probability measures on a measurable space (2, F), we say
that P and Q are equivalent provided that for any A in F we have

P(A) =0 if and only if Q4) =0.

Intuitively, this condition tells us that events under @ are possible (or impossible)
if and only if they are possible (or impossible) under P. One should note that
the equivalence of measures is quite a different notion from the equivalence of
processes. Two measures can be quite different yet be equivalent, whereas two
equivalent processes must be — well — equivalent.

The bottom line here is that; there are two requirements that one must impose
on the probability measure @ that we use in the martingale pricing formula, (14.4).
The first requirement is that @ be equivalent to P in the sense just defined, and
the second requirement is the fundamental one that under @ the process S, /B: be a
martingale. Logically enough, @ is often called the equwvalent martingale measure,
although the term is neither as euphonious nor as precise as one might hope.

Naturally, there are questions of existence and uniqueness that come to us hand-
in-hand with our introduction of Q. These important issues will be dealt with in
due course, but, before tackling any technical issues, we should take a harder look
at some basic structural features of the pricing formula.

A CRITICAL QUESTION

Thus far, we have only modest heuristic support for the reasonability of the
pricing formula, (14.4). To be truly excited, we at least need to show that V; is

28 3y
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equal to the value of a self-financing portfolio in the underlying stock and bond;
that is, we would need to show that V; can also be written as

(145) Ift = U,tSt + bt,@t for 0 <t S T,
where the process V; also satisfies the self-financing condition
(146) d% = atdS't -+ btdﬁg for 0 S t S T.

Remarkably enough, the determination of coefficients a; and b; that satisfy equa-
tions (14.5) and (14.6) is almost mechanical.

THE INVENTORY

First, we should recall that there are two natural Q-martingales of immediate
importance to us, and both of these deserve to be written in their representations
as stochastic integrals with respect to the Q-Brownian motion B;. The first of these
martingales is the unadjusted conditional expectation

t —~
(147) Ue = Bo(X/pr | 7:) = Bo(X/pr) + [ ulw,s)dB,

and the second is the discounted stock price that motivated us to introduce the
inferred probability measure @,

t ~
(14.8) D; = 8;/B: = Su/bo +/0 d(w, s) dB,.

The integrands u(w,t) and d(w, *) that represent the Q-martingales U, and D, will
provide the building blocks for our portfolio weights a; a.r}d be. . .

Finally, we need to keep in mind the simple bookkeeping relationships bfztween
U and D; and their (adjusted and unadjusted) counterparts V; and S;. Specifically,
we have

(149) Vi = ﬂtUt and St = ﬂt.Dt.

For the moment, all we need from these equations is that the second one tells us
how to express the differential of the stock price in terms of the differential of the
discounted stock price, or vice versa. In particular, we will find that as we work
toward formulas for the portfolio weights a, and b; we will need to use the fact that

(14.10) dS; = fydDy + Dydf;  and  dD, = B;{dS; — D, dB;}.

THE PORTFOLIO WEIGHTS

Now, we come to a simple calculation that has some claim to being' the most
important calculation in this book. We will find that the direct expansion o.f the
stochastic differential of V; will give us explicit candidates for the portfolio welg.hts
ay and b;. We simply begin with V; = 8,U; and work our way toward an equation
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that contains dS; and dB; as the only differentials:

th = d(ﬂtUt) = ﬁt dUt + Ut dﬁt
= Beu(w, t) dB; + Uy dB;

= B 4D, + Ve

= B Yo (45— DB} + Uiy

= ZE‘:Z; o {Ut - zézg Dt} B,
This calculation gives us the required candidates for the portfolio weights:
(14.11) as = ZE‘::Q and by = U ~ %’%Dt.

These formulas are very important for the martingale theory of pricing, and
we will make repeated use of them in this chapter. Here, we should note that these
portiolio allocations may be infeasible if the ratio u{w,t)/d{w,t) is poorly behaved,
and before a; and b; are put to any serious use one needs to check that they satisfy
the integrability conditions that are required by the SDE for dV;.

Exercise 14.2 illustrates that pathological behavior is possible even in a fairly
reasonable model, but such examples should not make us paranoid. Pathologies are
the exception rather than the rule, and, unless otherwise specified, we will always
assume that the stock and bond models lead us to values for u(w,t) and d(w,?)
that provide well-defined portfolio weights a; and b; that are suitably integrable
for any contingent claim X that satisfies the standing conditions that X > 0 and
Eo(X 2) < 0.

THE SELPF-FINANCING CHECK
By our construction of the portfolio weights a; and b;, we know that

dVy = 6:dS; + by dB; fort € [0,T),

so if we want to show that the portfolio determined by (as, by) is self-financing we
only need to show that we also have

(14.12) Vi = asS¢ + beBe.

‘When we evaluate the right-hand side of equation (14.12) by inserting the values
of a; and b; given by equation (14.11), we find

. 'lL(LU,t) u(w,t)

af,St + btﬂt = d(w,t) St + {Ut - d(w, t) Dt} ,Bt
_ uwt) o uw,t)
=Uif: + A, ) Sg ~ d(w,2) Dy,

and since Uy f; = V; and Dyf; = S; the preceding formula simplifies to just V;. The
bottom line is that V; does represent the value of a self-inancing portfolio, and
explicit formulas for the portfolio weights are given by the equations of (14.11).
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THE EXISTENCE OF () AND TwO TECHNICAL CONDITIONS CuE

At this point, the pricing formula is starting to look rather compelling, but
several issues still require attention before we go too much further. At a minimum,
we must be sure that we really do have a probability measure @ that makes the
discounted stock price Dy = S;/f: into a Q-martingale. After all, the martingale
pricing formula is simply a typographical fantasy if @ does not exist.

From our experience with Girsanov theory, we know that the first step toward
the determination of such a measure is to work out the SDE for D;. An easy way
to find this SDE is simply to apply 1t6’s formula to D; and turn the crank:

(14.13) dD; = d(S:/B:) = B dS; + Sedp; "
= :B;ISt(#t dt + o4dBg) — Ttﬁflst dt
= De{(pt — r¢) dt + 04dBs}.

Now, from this SDE, we see that D; would be a local martingale if we could only
remove the drift term u; —7;. Fortunately, we also know from Girsanov theory that
this is easily done.

If we define the measure Q by taking Q(A) = Ep(laM7), where M; is the
exponential process

i t
(14.14) M; = exp (—/ my dB; — %/‘ m2 dt) with my = {ut — 71} /ou,
0 0

then we know by Theorem 13.2 that if ms = (p: — r;)/0¢ is bounded (or even if
m; just satisfies the Novikov condition), then M; is a martingale, and the process
defined by

d.ét = d.Bt +mg dt

is a Q-Brownian motion. Finally, the SDE for D; given by equation (14.13) can be
written in terms of B; as

(1415) th = DtO't dét = StO'g/ﬂf, d.ét,

so we see that D; is a @-local martingale. One way to check that D; is actually an
honest martingale is by showing that Fg(supy<s<r D) < co; that is, one checks
the sufficient condition given in Exercise 7.3. An alternative criterion that is a bit
more powerful can be obtained by noting that the SDE (14.15) tells us that D, will
be a Q-martingale provided that o; satisfies the Novikov condition under @. In
particular, if the process oy is bounded, then equation (14.15) tells us that D; is a
Q-martingale without further ado.

THE MARKET PRICE OF RiIsK

The remarkable quantity mz = (u: — r1)/0: that appears in the exponential
martingale (14.14) has an economic interpretation in addition to its technical sig-
nificance. The ratio (s — r;)/0¢ measures (in units of o) the excess of the rate
of return of the risky security S; over the riskless security ;. For this reason, m;
is often called the market price of risk. Models for which m; = 0 are called risk
neutral models, and by the form of the Girsanov transform (14.14), we see that such
models have the amusing property that P = Q.
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THE UNIQUENESS OF @}

If S;/B; is a constant process, then any Q makes 5;/f; into a martingale, so
one does not have uniqueness of the equivalent martingale measure unless some
conditions are imposed on the stock and bond processes. While one might be able
to concoct some situation where the pricing formula is well-defined even when the
choice of @ is ambiguous, one should consider such a situation to be a fuke; in any
reasonable application, @ must be unique for the value of B;Eq(X/fr|F:) to be
unique. The following proposition spells out a simple but natural situation where
one is sure to have the required uniqueness.

PROPOSITION 14.1 (On the Uniqueness of Q). Suppose that {B;:0 <t < T}
is o (Q-Brownian motion and 7y = o{Bs : 0 < s < t} for 0 < t £ T. Further,
suppose that {Dy, Fi}o<i<T is a Q-martingale with an integral representation
that is given by

t
(14.16) D, = Dy +/ d(s,w)dB, 0<t<T
0

1.1)he7"e d(s,w) # 0, exzcept possibly on o set with dt x dQ measure zero. If Qg
is o probability measure on Fr that is equivalent to Q and of {Dy, Fi}o<i<r 15
also a Qo-martingale, then Q(A) = Qo(A) for all A € Fr.

Proor. If A € Fr and Q(A) = 0, then the equivalence of Q and Qg tells
us that Qg(A) = 0, so by the Radon-Nikodym theorem, such as one may find in
Dudley (1989, pp. 134-138) or in Williams (1991, pp. 145-149), there exists an
Fr-measurable random variable in L}(dQ) such that Qo(A4) = Eq[14Y] for all A
in Fr. Moreover, we can use ¥ to build a continuous @Q-martingale {My, 7} by
setting My = Eq(Y|F;) for 0 <t < T, and, since My = Eg[Y] = Qo(Q) = 1, the
L}-martingale representation theorem then tells us that we may write

3
(14.17) M, =1 +/ dlw,s)dB; 0<t<T.
0

This formula now suggests an elegant plan. If one shows that ¢(w,s) = 0 almost
surely, then we have My = 1, and, since Mr also equals Y, we further find that
Qo(4) = BEg(Y14) = Eq(Mr1,) = Q(A) for all A € Fr.

The desired uniqueness thus depends on showing ¢(w, s) = 0, and this depends
in turn on two basic observations. First, one can easily check that D, M; is indeed a
Q-local martingale simply by working with the definition or by following the hints
in Exercise 14.5. Second, the product rule gives us

d(DtA’It) = Dtdﬂ/[t + A/Itht + d.Dt . dﬂ/.[t
= Dyp{w, t) dBy + Myd(w, t) dB: + ¢{w, t)d(w, t) dt,
so, for Dy M to be a Q-local martingale, the drift term ¢(w, ¢)d(w, ) dt must vanish.

By hypothesis d{w,t) # 0 except on a set with dt X dQ measure zero, so we see
¢(w, t) must vanish almost everywhere, and the proof is therefore complete. O

The existence and uniqueness of the equivalent martingale measure Q is a sine
qua non of the martingale method of contingent claim valuation, and the results
of the last two subsections deserve to be summarized in a proposition.
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ProprosITION 14.2 (Existence and Uniqueness of Q). If the market price for
risk my = (ug —11)/0t satisfies the P-Nowvikov condition

1 /T,
Ep |exp 5/0 m; dt || < oo,

then there is a probability measure @ that is equivalent to P such that Si/f;
is o Q-local martingale. Moreover, if the volatility coefficient o, satisfies the

Q-Novikov condition
1 /T
Eg |exp 5/ afdt < 00,
0

then S;/B; is an honest Q-martingale. Finally, +f the integrand that repre-
sents Si/B; as an Ité integral does not vanish except on a set with dt x dQ
measure zero, then there is only one Q equwalent to P such that S;/B; is a
Q-martingale.

14.3. The Black-Scholes Formula via Martingales

Among the cases where the martingale valuation formula 8, Eq(X/fr|F:) may
be worked out explicitly, there is no more instructive example than that provided by
the European call option under the classical Black—Scholes model. Here, of course,
the stock and bond price processes are given by the SDEs

(14.18) dS; = uS;dt + 0S;dB; and  df; =rpdt,
and the basic task is to calculate the time-zero value
(14.19) VD = e~TTEQ[(ST - K)+]

There are several ways to organize this calculation, but two basic steps seem
inevitable. First, we must understand the measure Q that makes D; = S /B a
martingale, and then we must exploit that understanding to calculate the expec-
tation in equation (14.19). We always have the option of writing @ explicitly in
terms of P and an exponential martingale, but one often does well to avoid this
direct translation. In most cases, we can get what we need more quickly just by
using the fact that we know the distribution of {S;} under Q.

FINDING @ TO MAKE A MARTINGALE

One natural way to find a probability measure @ that turns D; = S;/8; into
a martingale is to take advantage of the SDE for D;. In particular, we look for a
way to rewrite that SDE so that Girsanov theory will tell us how to construct a @
that makes D; into a local martingale.

In the case of the classical economy specified by the model (14.18), we can
simply solve the stock and bond SDE to find an explicit representation of the
process D; = S;/0; as

(14.20) S:/B; = Soexp ((p—r — 02/2)t +0By),

and we can then use this equation to calculate the SDE of D; = S; /B:. Specifically,
we can apply Ité’s formula to the representation (14.20) to find

d(Ss/Bs) = (1 — )(S2/Be) db + o(S5:/B:) dBy
(14.21) = o(S:/Bt) {d {(t(u — o+ B:)}.



242 14 ARBITRAGE AND MARTINGALES

This SDE tells us that D; = S;/8; will be a Q-local martingale provided that Q is
chosen so that the process defined by
B LT, B
g

is a @-Brownian motion. In terms of the process {Bt}, the SDE for D; given by
equation (14.21) can be written as dD; = 0-D,dB;, and, since o is just a constant
here, this SDE tells us that D, is in fact an honest martingale under the measure
Q. Finally, since B; (and B;) can be written as a monotone function of S; /Bs, we
also see that

O’{St/ﬁt: 0 _<__tST} =.7:T,

so Proposition 14.1 confirms that @ is in fact the unique measure equivalent to P
such that S;/6; is a Q-martingale.

How T0 WORK OUT A Q-EXPECTATION

Now that @ has been defined, the next task is to make an explicit calculation
of the valuation formula,

(14.22) Vo = e Eq[(Sr — K)4].

The defining property of @ is that B; = t{p— 1) /o + By is @-Brownian motion, so
the most logical way to compute the expectation in equation (14.22) is to express

St in terms of B;. This reexpression will let us throw the whole calculation back
on our understanding of Brownian motion,

_ We can write Sy as a function of By, and we can write By as a function of
Br, so if we put the two steps together, we find

St = Soexp(rT — 0*T/2 + 0 Br).

The time-zero valuation formula for a European call option with strike price K can
then be written as

Vo = T Eq[(Sr - K),]
=e""TEg((So exp(rT — o*T/2 + 6 Br) — K)4]

and at this point only calculus remains. If we note that ¥ = —¢2T/2 + ¢By
is a Gaussian variable with mean —¢?T/2 and variance o7, then Vo equals the
expectation of a function of ¥ that we may write explicitly as an integral:

- i _ 2 dy
14.23 =T / SoeTH _ Ky g— 4 T/2)/20°T .
( ) log (K/So)—rT{ 0 } o orT

This integral can be written more informatively as two integrals
[>c]

S Vo= w+a T/ 20°T WY
log (X/So)~rT oV 2nT
_ e _ dy
~ e Tg e (y+o2T/2)2 [20%T ,
log (K/Sp)~rT ovVorT

and this formula already begins to take the shape of the Black-Scholes formula.
All that remains is the computation of two integrals that are precisely of the type
that we found in our first solution of the Black-Scholes PDE. With just a bit of
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diligence, the sum of these integrals may be reduced to f(0,So), where f(¢,z) is
the solution of the Black—Scholes PDE that is given by

& [ log=/K) +(r + %d2)7> —rr (108(31/K) +(r— %02)T>
(14.24) z® ( . Ke @ = ,
where we use T as the usual shorthand for T — 2.

The bottom line here is that the martingale valuation foimula (14.22) for the
call option is not so abstract after all. In fact, even with a bit less work than was
needed to solve the Black~Scholes PDE, we were able to recapture the classical
Black—Scholes formula for the arbitrage price of the European call option. This
is certainly a worthwhile achievement which can only add to our enthusiasm for
the martingale arbitrage pricing formula. Still, before we become too devoted to
the martingale method, we should check how well it measures up to the other
big achievement of the PDE method — the explicit determination of the asset
allocations for the replication portfolio.

THE PORTFOLIO WEIGHTS

When we followed the PDE approach to the evaluation of the European call
option via the Black-Scholes PDE, we found delightfully explicit formulas for the
asset allocation of the replicating portfolio. Specifically, if f(z,t) is the solution to
the Black-Scholes PDE given by equation (14.24), then the portfolio weights

(1425) ay = f:,:(t, St) and bt = Tiﬂg‘ {ft(t, St) + ’;‘fzm(t, St)0'253}
yield a self-financing portfolio a;S; + b;0; that replicates the cash flow of the call
option. Can we obtain such nice formulas by the martingale method?

We have already found that when we apply the martingale method to the
problem of valuing the general claim X, we find formulas for a; and b; that can be
written as

u(w, t) u(w, t)
ay =

d(w, t) d(w, t)
For the purposes of theoretical analysis these formulas are quite useful, but at least
at first glance they are undeniably more abstract than the concrete formulas (14.25).
Given values of ¢, S;, and the model parameter o, the PDE formulas (14.25) tell
us exactly how to construct our portfolio, but if we hope to rely on (14.26) we
have more work to do. Nevertheless, we will find in Exercise 14.4 that the abstract
formulas (14.26) can be used to deduce the concrete formulas (14.25), even though
the latter are powerless to return the favor in the general case.

(14.26) and bt = Ut - Dt.

Two PORTFOLIO PROPERTIES

Even though a bit of work is needed to obtain useable portfolio weights from
the martingale pricing formula, there are many other questions that it answers very
quickly. In particular, for the European call option, the martingale pricing formula

(14.27) Vi = BiEig[(Sr — K)4/Br|F] for0<t<T
automatically tells us that
(14.28) V;>0 foral0<t<T,
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since for any value of S; with ¢ < T the probability law @ assigns positive probability
to the event St > K. This strict positivity of V; for ¢ < T may seem like a modest
property, but we will find shortly that it has some meaningful consequences.

A second nice property of the portfolio value V; is that the discounted value
Vi/B: is a @-martingale. We designed @ so that S;/8: would be a martingale, but
the martingale property of V;/8: comes to us as a bonus from the representation

(14.29) Vi/B: = Eol(Sr — K)+./Br | Fl.

The tower property implies that all such conditional expectations are martingales,
and at first glance the martingale property of V;/f; may seem a httle toothless.
Still, in due course, we will find that it also has important consequences. For the
moment, we will pursue a different corollary of the martingale pricing formula —
one that is undeniably interesting because it answers a question that has been
floating in the background since we first began discussing options.

14.4. American Options

An especially pleasing consequence of the martingale pricmg formmla is the
insight that it provides into the pricing of American options, a topic we have ne-
glected for too long. The most important of these options is the call option with
strike price X, and in this case if we exercise the option at time 0 < ¢ < T our
payout is 2(S5;), where h(z) = (z — K)...

We can now use the martingale theory of arbitrage pricing to establish the
important fact that there is never any benefit to exercising an American call option
at any time ¢ prior to the terminal time 7. In order to establish such a result,
we need to show that there is no strategy for determining the time to exercise the
option that is superior to the simple strategy that executes the option at time 7"

In this context, the idea of a strategy turns out to be rather simple. It is just
& rule that tells us when to exercise the option, and, since any rule can only be
based on the information that is available up to the time of exercising the call, we
see that strategies correspond precisely to stopping times.

Given any exercise strategy 7, the basic problem is to determine the value of
following that strategy starting from time zero. If we focus on contingent claims
such as the American option that has a time ¢ payout of hA(S:), then the time-
zero present value of that payout is just ~{S:)}/B:. Similarly, if we consider the
exercise strategy T, then the time-zero present value of that payout is given by
h(S:)/Br. The streetwise valuation of this payout is its expected value under @,
and no exercise strategy T can yield a value of Eg(h(S:)/8;) that is larger than

(14.30) v 4 sup Eglh(Sr)/ 6]

In particular, the constant 7 = T is also an exercise strategy, and the time-zero
martingale valuation of a Furopean option with terminal time T has the pricing
formula

V& & Eoh(Sr)/Br|Fol = Eqlh(Sr)/Brl,

so we always have the trivial inequality

(14.31) VE <Vt

i3

2R
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Without imposing some constraints on h, we can have strict inequality’in the
bound (14.31), but, fortunately, the class of & for which we have equality is reason-
ably laige. In particular, this lucky class is large enough to contain 4(z) = (z—K).+,
so for the American call options there is no strategy 7 that does better than simply
exercising the option at the terminal time T

PROPOSITION 14.3 (Condition for No Early Exercise). Suppose that the func-
tion h : R — R 15 convez and h(0) = 0. Suppose also that the processes S and Py are
{F:} adapted, B; > 0, B: s nondecreasing, and the ratio S /B 15 o Q-martingale.
If M, = h(S;)/Bs 15 wntegrable for 0 < t < T, then {My, Fi} 15 a Q-submartingale
Jor0<t<LT.

PROOF. We first observe that if 0 < p < 1, then for any @ > 0 we have the
trivial identity p-z =p-z+ (1 — p) - 0, so the convexity of h tells us that

(14.32) h(ps) < p- () + (1~ ) - h(0) = - h(z).
Now, for any ¢ > 0 and s > 0 we have
EQ(Mys |7t) = EQ[h(St+s)/Bets | Fil

1 B

A Eq {h(SHs)ﬂtﬂ ‘]:t]

(14.33) > L, [h(ﬂ-sﬁ.‘:) If-.:],
t t+s

where in the last inequality we used the elementary bound (14.32). Now, if we first
apply Jensen’s inequality and then use the martingale property of {S;/8:}, we also
have the bound

Fa o (g5) 17] 2o 1]
s 17]) =0

= h| BB,

(ﬁt Q[ﬂt+
When we combine the last estimate with the bound (14.33), we come precisely to
the submartingale property of My = h(St)/ ;. O

The preceding proposition is of great reassurance to us. While there do exist
some isolated circumstances of European style option contracts in the real world,
they are almost vanishingly rare compared to American style contracts. Now that
we know that there is no economic benefit to the early exercise of an American call,
we see that our valuation of the Buropean call carries over to that of the American
call. Without the modest Proposition 14.3, the valuation of the European call
would almost have been a hollow exercise.

Purs AR NoT COVERED

The payout function at time ¢ for a put option is given by h(St) = (S; — X)—,
and in this case h(z) is again convex. Unfortunately, 4(0) # 0 so Proposition 14.3
does not permit us to reduce the valuation of American puts to the case of European
puts. Moreover, this fact is not just a coincidence; one can easily find situations
where the immediate ezercise of an American put option will produce a value that
1s larger than the value of the corresponding European option.
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This places the problem of valuing American put options in a very diffieult
spot. The requisite mathematical tools have much more to do with the theory
of free boundary problems for partial differential equations than with stochastic
calculus, and the whole topic is best left for another time and another place. In
any case, several important foundational questions must be faced before we are at
liberty to worry about the special problems presented by American puts.

14.5. Self-Financing and Self~Doubt

Pélya once wisely advised that anyone who is lucky enough to have two things
to say should first say one and then the other, not both at the same time. Ever
since we began our discussion of self-financing strategies in continuous time, there
have been some important observations that have gone unsaid. The time has come
for them to take their place in the conversation.

The sad fact is that the self-financing condition is considerably more subtle in
continuous time than it is in discrete time. Many statements that are honestly self-
evident in discrete time are neither so self-evident nor so honest in continuous time.
We could have engaged these subtleties before we saw how the martingale pricing
formula recaptured the Black-Scholes formula, or before we saw how it implied
that one should not exercise an American call option before the terminal time. We
naturally chose first to build a store of energy and courage before engaging those
model nuances that may cause us to doubt our intuition or ourselves.

The crux of the problem 1s that in continuous time the set of self-financing
portfolios is so large that some pathological portfolios manage to creep in. Our
task now is to study some of those portfolios in order to assess and repair any
damage that they might do to martingale pricing theory. Fortunately, by adding
two natural supplements to the basic self-financing condition, we will be able to
rule out the pathological portfolios. The resulting theory will then support all of
the work that we have done earlier.

A HUGE CLASS OF SELF-FINANCING PORTFOLIOS

The notion of a self-financing portfolio is a pillar of arbitrage pricing theory, yet
so far we have not taken time to examine this important notion on its own merits.
As we suggested a bit earlier, the self-financing condition 1s trickier in continuous
time than in discrete time, and we will surely need some concrete examples to help
us sort out the subtleties.

To begin, we can take a general stock model

(1434) dSt = [,LtSt dt + o‘tS't dBt Wlth SO = 1:

where the only restrictions on the coefficients p; and oy are those that are needed in
order for S; to be a standard process. Actually, the generality provided by the SDE
(14.34) will only be used to illustrate how little is required of S; in the construction
of the self-financing strategies. In the examples that are important to us, we will
simply take S; to be the familiar geometric Brownian motion.

Our choice for the bond model is much more constrained. We will take a
zero interest rate model so that 8; = 1 for all t£. The benefit of this restriction
is that the trivial SDE df; = 0 causes the self-financing condition to be radically
simplified. Remarkably enough, this strong restriction on B; is not as draconian
as one might think. In fact, Exercise 14.3 outlines an argument that shows how
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almost all problems involving self-financing portfolios can be reduced to the case
where the interest rate is zero.

By definition, the portfolio V; = a;S; + b:0; is self-financing whenever we have
dV;i = a;dS; + b:dB:, and by our choice of the bond model we have dpB; = 0 so the
self-inancing condition boils down to just the simple relation

If we integrate this SDE, we obtain a representation for V; that we may equate to
a1 St + b3y = 1Sy - b; to get an equation for by, which we may write as

i
(1436) by =VWo+ / Oy 4S8y — a5y,
0

The bottom line here is that for essentsally any choice of a; one can take the
by defined by equation (14.36) to obtain a self-financing pair (as,b). The only
constraint on this construction is the modest requirement that the processes a; and
S; be nice enough to guarantee the existence of the integral in equation (14.36). In
the situations where one applies this construction, this constraint is usually trivial
to verify, so, in the end, we have a very powerful machine for the construction of
self-financing portfolios.

A WiILD SELF-FINANCING PORTFOLIO

Now, we want to exploit the general construction to give examples of wild
behavior in some simple self-financing portfolios. Our first step is to specialize the
stock model (14.34) to one that facilitates computation, and the natural choice is
simply to take

(14.37) dS; = 05;dB; So =1,
so that S; is just a geometric Brownian motion with geometric drift parameter
p=0.

Now, from the general recipe for the construction of self-financing portfolios
with a constant bond price 8; = 1, we know that we have almost complete flexibility
in our choice of the portfolio weight a;. If we keep an eye toward our past experience
with Gaussian processes, then an interesting choice of a; that presents itself is
simply

1

= 0<t<T.
(14.38) ag YN <
Since df; = 0, we then have
1 1
(14.39) dV't =y dSt = mUSt dBt = ﬂ dBt,
and, consequently, V; has the representation
¢
1

= ——— dB;.

(14.40) Vi Vo+/0 75 4B

We are already well acquainted with this process, and in particular we know from
our first work with Gaussian processes that if we let

i 1 d
T‘=/o T—s2 ™
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then we may write V; — Vp = B,,, where B, is a standard Brownian motion. When
one pairs this fact with the general observation that the portfolio with weights
given by equations (14.38) and (14.36) is self-financing, one has the raw material
for many interesting examples (or counterexamples!) for problems in mathematical
finance.

UNBOUNDED WEALTH VERSUS BANKING STANDARDS

The portfolio V; = a:S5; + b:f; constructed above is self-financing, and since
Vo was left arbitrary we may as well take o = 1. Now, by the representation
Vi—-Vp = Bn and the fact that 73 — oo ast — T, we see that for any M the stopping
time v = min{t : V; = M} satisfies P(v < T) = 1 and V,, = M. In other words,
the self-financing portfolio determined by the weights (s, b;) is guaranteed to make
an arbitrarily large amount of money during the time period [0,T]. This simple
two security portfolio has all the essential features of the long-sought philosopher’s
stone; it is a tool for generating untold riches.

Our intuition tells us something has gone wrong, yet when we look back we find
there is no room to criticize the stock model or the bond model. In fact, with only
a Yittle more calculation, we could have produced 2 sirnilarly pathological portfolio
under the completely standard Black—Scholes model that we have been using all
along.

Nothing is wrong with the model or with the verification of the self-financing
property, yet something has gone wrong. The problem is that our model diverges
from the real world in a way that any decent banker would spot in an instant. Just
consider what happens as the time gets nearer to T if the investor in charge of the
portfolio ¥; has not yet reached his goal. In that case, the investor borrows more
and more heavily, and he pours the borrowed funds into the risky asset. Any banker
worth his salt who observes such investment behavior will pull the investor’s credit
line immediately. The simplest rules of lending practice are enough to prohibit the
management of a portfolio by any strategy (a:,b:) like that defined by equations
(14.36) and (14.38).

CONSEQUENCES OF A CREDIT CONSTRAINT

The modeler’s problem is not to improve on banking practice. The challenge is
rather to see how banking standards translate into appropriate constraints on the
class of allowable self-financing strategies. Fortunately, this translation is simple.
If we restrict our attention to just those self-financing portfolios that satisfy the
eredst constrawnt V; > 0 for all ¢ € [0, T, then we can show that all sorts of get-
rich-quick schemes will be ruled out auntornatically. The mathematical basis for this
observation is given by the next proposition.

PROPOSITION 14.4 (Credit Constraint Supermartingale). Consider the gen-
eral stock and bond model

(14.41) dS; = p Sy dt + 045 dBy and  df =P dt.

If there is a probability measure Q that is equiwvalent to P such that S;/B; 15 a
Q-martingale, and if the portfolio V; = a:Sy + b 0; 45 self-financing, then the
discounted portfolio value V;/B; 1s a Q-local martingale. Moreover, if Vi > 0
for all0 <t < T, then V;/B: 15 also o @-supermartingale.
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PROOF. The first step is to relate the SDE for V;/8; to that of S;/B;. "This
only requires a product rule calculation:

d(V/Bs) = B; ' dV; — VireBy dit
= B; Ha:dSs + b8y di} — {asSe + b B }reBit dt
(1442) = at{ﬁt_ldSt d Sﬂ”tﬁt_l dt} = atd(St/ﬁt),

Now, since S;/f; is a Q-martingale, the martingale representation theorem and
localization tell us there is an «; such that

(14.43) d(S;/Bs) = a By,

where B; is a standard Brownian motion under Q; moreover, if we thumb back to
equation (14.15) to recall that dD; = o3D;dB,, then we even find that c; = 035:/8,
although such an explicit formula is not really necessary.

Simply by combining equations (14.42) and (14.43), we have

d(V{t/ﬂt) = a0 dét,

and this SDE is enough to certily that V;/8; is alocal martingale. Finally, we proved
long ago (in the course of establishing Proposition 7.11) that any nonnegative local
martingale is a supermartingale, so the proof of the proposition is complete. ]

The credit constraint V; > 0 applied in Proposition 14.4 is more liberal than
the conditions that are universally imposed by lenders and regulatory agencies, so
we will not miss out on any realistic trading strategies if we restrict our attention
to just those self-financing pairs (a4, b;) that satisfy V; > 0 for all £ € [0,T]. This
class of strategies is called SF'*, and it is an important one for financial theory.

SF+ AND RISK-FREE BONDS

The lending rules of banks and regulators give us the best reason for limiting
our consideration to the trading strategies in SF*, but there are also beneficial
modeling consequences to this restriction. In order to make one of these precise,
we will need the notion of a rusk-free bond arbitrage.

DEFINITION 14.1 (Risk-Free Bond Arbitrage). A portfolio strategy (ae,b:) is
called a risk-free bond arbitrage on [0, if there 1s a A € R such that

(14.44) P(W/Bo <N) =1, P(Vp/fr=A)=1,
and
(14.45) P(Vp/Br > A) > 0.

Any portfolio V; that satisfles (14.44) is guaranteed to provide a yield during
the time period [0,77] that is at least as great as the yield of the risk-free bond,
and by equation (14.45) it has a chance of providing a better yield. Such a deal is
simply too good. A trading universe that supports the existence of such portfolios
would not have any demand for risk-free bonds, yet the real world shows there is a
substantial demand for such bonds. One of the reassuring features of the class of
SF* strategies is that it rules out the possibility of a risk-free bond arbitrage.
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PROPOSITION 14.5 (SF* and Risk-free Bond Arbitrage). If (as, b:) 25 a risk-
free bond arbitrage, then (as, b)) ¢ SF*.

ProOF. If (as,b:) satisfies (14.44) and (14.45), then the fact that P and Q are
equivalent measures implies that the inequalities (14.44) and (14.45) remain true
when P is replaced by Q. This in turn implies that

(14.46) Eo(Vo/Bo) <X and Eq(Ve/Br)> A

On the other hand, if (a;,b;) € SF™, then Proposition 14.4 implies {V;/5:} is a
@-supermartingale. Since the equations of (14.46) are incompatible with the fact
that supermartingales have nonincreasing expectations, we see (as, b)) ¢ SF7T as
claimed.

PROBLEMS REMAIN EVEN WITHIN SE+

Remarkably, there are still some pathological strategies even within the nice
class SF*. These odd strategies are easy to overlook because they call on the
investor to behave in a way that is stupid, or even self-destructive. For this rea-
son, these are called suicide sirategies, and they will lead us to another important
restriction on the set of candidate strategies. Formally, we say that the portfolio
weight pair (as,bs) is a suicide strategy provided that ¥ > 0 and Vg = 0. Such
portfolios are just the opposite of those that generate unrealistic wealth. These
portfolios are born to lose.

To see why suicide strategies deserve our attention, suppose we are interested
in the value of a time T’ contingent claim X and that we have a strategy (s, b;)
from SF* such that Vr = apSyr +brfr = X. Someone who has not worried about
the subtle twists and turns of continuous-time processes might confidently argue
that the only arbitrage-free price for X at time zero must be Vj = aS; -+ bofo, but
our experience with continuous-time portfolios may make us cautious about such a
claim. Such self-doubts would be well placed.

To see the problem, suppose that (a}, b}) is a suicide strategy in SF* and that
V{ is the associated portfolio. If we consider the new portfolio strategy defined by
taking the sum (a: + af,b; + b}), then again we have a strategy from SF*, but
in this case the time-zero value of the portfolio is Vo + V§ > Vo. The arbitrage
argument for SF'* trading strategies may be applied equally well to the two prices
Vo + V3 and V, so who is to say which value is the true arbitrage value of X? The
existence of even one suicide strategy in SF* is enough to put us on the horns of
a dilemma.

EXISTENCE OF SUICIDE STRATEGIES

Life would be beautiful if suicide strategies did not exist in SF*, but, alas,
they do exist. We can even build an example out of the same raw material we used
to construct our first pathological self-financing strategy, the one that generated
such great wealth in the blink of an eye.
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To construct our new example, we begin with the same simple stock and bond
model

(14.47) dS; = 05;dB; where So =1 and ft=1 forallt>0,

and we recall from our earlier analysis that (a, b:) is a self-financing strategy when
a; and b; are given by

1
- g St (T - t)
Furthermore, we recall that this choice of (az,b:) yields a portfolio value V; with
the property that V; = V + B.,, where {B;} is a Browman motion and 7; — oo as
t—T.

Now, to get the desired suicide strategy, we modify (a, bs) just a bit. To begin,
we let v denote the first time ¢ such that V; = 0, and we note by the representation
of V; as a time change of Brownian motion that we have P(v < T') = 1. We then
define new portfolio weights (a},b}) by setting

al, b = {(at,bt) for ¢t € [0,]

¢
(14.48) at 0<t<T, and b=VW+ / Oy, 5, — a1 Sy
0

(14.49) (6,0) forte(yT)

To check that (af, b)) is self-financing, we only note that we have
dV.;, = a; dSt -+ b; dﬁt

under each of the two separate cases of equation (14.49). Also, by the definition of
v as the first hitting time of the level 0, we have V{ > 0 for all ¢ € [0, T, and since
P(v < T) =1 we also have P(V}. = 0) = 1. Finally, the choice of V5 = V{ can be
made arbitrarily in (14.48), so by taking Vo = 1 we see that (aj,b}) is an element
of SF* with all of the properties required by a suicide portfolio.

ELIMINATION OF SUICIDE STRATEGIES

Suicide strategies exist in SF*, and they wreak havoc on naive applications of
the arbitrage argument, so — by hook or by crook — they must be banished. One
of the easiest ways to eliminate suicide strategies is to restrict our attention only
to those strategies in SF* that have the property that V;/8; is a martingale under
the equivalent martingale measure Q. At first glance, this may seem like an odd
requirement, but after a bit of checking one can confirm that it is both effective
and appropriate.

To see why this restriction works, we just note that any suicidal strategy in
SF* has the property that

P(Vo/Bo > 0) =1 and P(Vy/Br =0) =1,
50, by the equivalence of @ and P, we also have
Q(Vo/Bo >0y =1and Q(Vp/Br=0)=1.
These identities imply that
(14.50) Eo(Vo/Bo) > 0 and Eq(Vr/Br) =0,
and the inequalities of (14.50) are incompatible with the assumption that V;/3; is

a Q-martingale.

/



avs 14. ARBITRAGE AND MARTINGALES

A small point worth recording here is that there is nothing about equation
(14.50) that contradicts the supermartingale property of V;/B;, which we get for
free when we assume that (as, b;) € SF+. To rule out the suicide strategies, one
must impose additional restrictions on (at,b:), and, once one decides to rule out
(14.50), the idea of requiring V;/f; to be a Q-martingale is natural enough.

14.6. Admissible Strategies and Completeness

Our discussion of self-financing strategies has disclosed the uncomfortable fact
that continuous-time models can strain our intuition. To be sure, the difficulties
that we found were met with sensible antidotes, but one cannot help remaining a bit
apprehensive. How can we be sure that there are not further difficulties that remain
undiscovered? The challenge now is to show that such undiscovered difficulties do
not exist.

To meet this challenge, we must formalize the ideas that have been discovered
in the preceding sections, and we must formulate theorems that address our worries.
We will continue to work with the general stock and bond model in the form

(1451) dSt = ﬂtSt dt + U'tSt dBt and dﬂt = ’I‘tﬂt dt.

To begin, we will assume nothing about the coefficients in the SDEs (14.51) except
that the processes r; and o, are both nonnegative and that {S5;} and {8;} are both
standard stochastic processes in the sense of Chapter 8.

A TRIO OF FUNDAMENTAL DEFINITIONS

The first step of the formalization is to lay out three basic definitions. The first
f‘.wo formalize ideas that have been introduced earlier, and the third introduces the
important idea of completeness for a financial model.

DermuTiON 14.2 (Contingent Claim). If there is o unigue Q equivalent to P
such that {S;/B:} is a Q-martingale on [0,T], then a nonnegative random variable
X € Fr is called a contingent claim provided that

(14.52) Eq(X?) < 0.

DeFINITION 14.3 (Admissibility and Replication). If (as,b;) € SFT, then the
par (at, by) is called an admissible strategy provided that {V;/B;} is a Q-martingale,
where Q) is the unique measure equivalent to P for which {S:/B:} is a Q-martingale.
The class of all admissible strategies is denoted by A, and if (as, b;) € A satisfies

arSy +brfr =X
for a contingent claim X, we say that (as, bs) replicates X.
DEFINITIQN 14.4 (Completeness). The model {(St,B:) : t € [0,T]} is said to be
complete provided that (1) there is a unigue probability measure @ equivalent to P

suc.h that {S;/B:} is a Q-martingale on [0,T] and that (2) every time T contingent
claim X can be replicated by a trading strategy in A.
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ADMISSIBILITY AND Two USEFUL CONSEQUENCES

The motivation for the class of admissible strategies differs considerably from
the motivation for the class SF+. We came to SF* because we had no alternative.
We were driven by the rules of agencies and lenders to restrict our attention only
to the strategies that satisfy the credit constraint that defines SF +. To be sure, we
were happy to find several theoretical benefits of working within SP*, but these
benefits were essentially forced on us.

In complete contrast, the decision to restrict our attention to the smaller class
of admissible strategies is essentially voluntary. As a practical matter, investors
are not institutionally constrained from following suicide strategies, even though
few investors will wince at the loss of liberty that would come from proscribing
such strategies. Nevertheless, a reasonable investor might worry that by restricting
our attention only to the admissible strategies there might be some useful strategies
thrown out along with the suicide strategies. We will soon allay this concern by
showing that A contains all of the trading strategies we will ever need.

Before we prove this important result, we will first establish two other attractive
properties of A. The first of these tells us that if the contingent claim is replicated
by a strategy (a:,b;) from SF+ and a strategy (a},b;) from A, then the strategy
from A is guaranteed to have an initial cost that is no greater than the initial cost
of the strategy from SF*. The bottom line is that when you can do the job in A
and in SF*, it cannot cost you a dime to use A — and it may save you a buck.

PROPOSITION 14.6 (A Is Optimal within SF'*). For any pair of trading
strategies such that

(14.53) (@, b))e A and (as,b) € SF*
which satisfy the terminal conditions
(14.54) ap Sy +bpBr =X ond apSy+bpfr =X,
where X is a contingent claim, we have the inequality
(14.55) ahSo + byPo < aoSo + bolo-
PROOF. Since we assume the strategy (a;,b;) is an element of SF'*, we have
(14.56) Vi=aS;+b6 =0 forall0<t<T,

and consequently by Proposition 14.4 we see that V;/B; is a Q-supermartingale.
The supermartingale property tells us that

(14.57) 2050 + bofBo = Eo(Vo/Bo) = Eq(Vr/Br) = Eq(X/Br),

while, on the other hand, for V; = a.S; + b}, the assumption (a;,b;) € A and the
definition of A tell us t V//B; is a @Q-martingale. Thus, we also have

(14.58) ahSo + byl = Eo(Vy/Po) = Ea(V/Pr) = Ea(X/Pr),

and, by the equality of the right-hand sides of equations (14.57) and (14.58), the
proof of the inequality (14.55) is complete. 0
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The next proposition has less direct financial impact, but 1t provides a prop-
erty of A that is quite useful computationally. It tells us that under very modest
conditions on the model (St Bt) there is at most one strategy in A that can be used
to replicate a given contingent claim.

PROPOSITION 14.7 (Uniqueness within A). Suppose the two trading strategies

(at,b) and (al, bl} are both elements of A. If both strategies replicate the contingent
clavm X ot time T, so

(14.59) arSt+brfr =X and apSp+ brfr = X,

then we have

(14.60) Plas=aj and by = b)) =1  for almost all t € [0,77,
prowided that
P(oy >0 for alit € [0,T)) = 1.
Proor. Since {V;/f;} and {V{/B.} are both @-martingales, we have
VelBe = Eq(Vr/Br|F;) and V)8, = Eq(Vr/Br|F),

and by equations (14.59) the right-hand side of each of these equals Eq(X/pr|F)
Consequently, we have V; /B = V] /B, and since we always have 0 < 8; < oo we
also have V; = V..

The self-financing property applied to V; and V/ then gives us the basic equality
(1461) (473 dSt + ﬂt dﬂt = 0,2 dSt + ﬁé dﬁt

At this point, one could Just assert the equality of the coefficients on the basis of
the equality of the differentials, and, even though this direct assertion would be
valid, there is some humor to arguing the uniqueness from first principles.

II.1 particular, if we let Ay = V; — V{, then A, is identically equal to zero, but
amusingly enough we can still apply Itd’s formula to A? to find

(1462) 0= dA? = 2AtdAg -+ dAt . dAt = (at - a£)20'752 dt.

This equation tells us that (a; — al)%0? is equal to zero with probability one for
almost every ¢, and since P(c; > 0) = 1 we see that P(a; = a!) = 1 for almost every
t.'When we subtract 0,5 = a}S; from the equality V; = V/, we also get b,0; = ! B
with probability one for almost every . Finally, since r; > 0 we always have g, >t 0

and therefore we also find that P(b; = b;) =1 for almost every ¢ € {0, T]. O

COMPLETENESS OF A MARKET MODEL

The optimality and uniqueness properties expressed by Proposition 14.6 and
Proposition 14.7 demonstrate desirable features of the class of admissible trading
strategies, but these are faint virtues if admissible strategies do not exist for the
problems that interest us. Fortunately, the next theorem confirms that admissible
strategies exist in abundance under almost any reasonable stock and bond model.
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THEOREM 14.1 (Completeness Theorem). ! b o
The stock and bond model {(S:,B:)} gwen by the SDEs of (14.51) s complete,
provnided that four conditions are satisfied:

T
(14.63) | exp( [ mt )| < oo where mi = ()

0

1 T
(14.64) EQ[GXP(§' / ot dt)] < o0,
0
(14.65) o{8:/B::0<t<T}=Fr, and
T

(14.66) P(/0 p2lo?dt < oo) =1

ProoF. The first three conditions are already familiar to us, and we know
from Proposition 14.2 that they guarantee the existence of a unique probability
measure () that is equivalent to P for which the process {S;/8;} 1s a @-martingale.
The critical task is to show that for any contingent claim X there is an admissible
trading strategy (as,b:) that rephcates X at time 7.

If we define the process {V;} by the familiar valuation formula,

(14.67) V; = B1EQ(X/Br|F:) forallte0,T],

then the measurability property of a contingent claim tells us X € Fr, so by
(14.67) we have V@ = X. Also, by (14.67) and the claim’s positivity property
X 20, we have V; > 0, and finally (14.67) teams up with the basic properties
of conditional expectation to imply that the process {V;/8:} is a Q-martingale.
These trivial checks tell us that V; has every property that is required of a portfolio
in A, prowded that Vi corresponds to the value of a portfolio that is given by a
self-financing strategy (as, b;).

Fortunately, we already know from the fundamental calculation of Section 14.2
that there are portfolio weights (as, b;) such that V; = B:Eq(X/Br|F:) may be
written as a;S; + biff;. We even know that the strategy (a:,b;) has the formal
self-financing property

(14.68) dVi = a; dSy + by df;.

All we need to do now is to check that the coefficients in the SDE (14.68) satisfy
the integrability conditions that are needed for the SDE to be well-defined.
When we use the model SDEs to expand (14.68), we find

(1469) dVi = Qg d.S’t + bt dﬂt = at,utSt di + a,;atS,; dBf, -+ btﬂtrt dt,
and to verify the necessary integrability properties of the coefficients of dt and
dBy, we need to use the formulas for a; and b; that were derived earlier in (14.11).
Specifically, we have

w(w, ) u(w, t)

= = —_———— D
Qat d(w,t) and bt Ut d(w,t) t
where D; = S;/8;, Uy = Eg(X/Br|F:), and the processes d(w, t) and u(w,t) are
related to Dy, Uy, and the Q-Brownian motion {B;} by the SDEs

dDs = d(w, t) d.ét and dU;= u(w, t) d'ét

(14.70)
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The only fact that we will need about d(w,t) is that it has the representation
(14.71) dw, 1) = 03(w) Se(w)/ Be(w)

that was derived in equation (14.15). Finally, the only fact that we will need about
u(w, 8) is that it is . L2(dt) for almost every w. This basic property comes from the
fact that the representation theorem for the I.2 (dQ) martingale Uy = Eg(X/Br|F;)
provides a unique representing integrand u(w, s) that is an element of H2 (dQ).

The pieces are all assembled, and now we only need to complete the calculations.
These may seem a bit routine, but the end result is important, and some aspects
of the calculations are informative. What adds spice to these computations is that
models that fail to be complete often owe that fact to the failure of one of these
routine checks.

To begin, we note by the formula for a; given in equation (14.70) and by the
formula for d(w,t) given by equation (14.71) that we have

u(w, t)

e u)50) = 280, ),

(14.72) a3 (w) i (w) Sy (w) = )

so by Cauchy’s inequality we have

T T 12 (w) 3/ T 7

0479 [Catmseles ([ 5 a)" ([ ewose )
0 ()] 0
By tl}e fot}rth condition of the theorem, the first integral of the inequality (14.73)
is finite with probability one. To confirm the almost sure finiteness of the second
integral, we only need to note that £;(w) is continuous on [0,7] so it is bounded
and to 1ec?,11 that we already know that w(w,t) € L?(dt) almost all w. The first
;:oefﬁment in the SDE (14.69) therefore passes its test, and we have just two more
0 go.
The coefficient of dB; in the SDE (14.69) is given by

u(w, w
(14.74) a1 (w)o{w) Sy (w) = %}%w—))at(w)&(w) = u(w, t)B:(w),
and for this to be a valid dB; coefficient we need to check that it is an element of
L3(dt) for almost every w. We already noted that f§;(w) is bounded for all w and
that u(w,¢) € L2(dt) for almost all w, so the product u(w, t)B:(w) checks out just
as it should.
The third coefficient in the SDE (14.69) is

(14.75) b (w) Be(w)rs(w) =(Ut(w) - Zé‘j g Dt(‘“))ﬁt (w)re(w)

_ s (w)
Up(w) By (w)rs(w) — Bo{w) o(@) u(w, 1).
Because Uz(w)B:(w) is continuous on [0, 77 it 1s bounded, and because S; is a stan-
dard process we know that r, is integrable for almost every w. Consequently, the
first summand of equation (14.75) is integrable for almost every w.

The second summand of equation (14.75) is more interesting. We know now for
almost every w that f;(w) is bounded and u(w, t) is in L2(dt), so the integrability of
the second summand (14.75) will follow from Cauchy’s inequality if we show that
T¢/oy is in L?(dt) for almost every w. This turns out to be easy to see 1f we note
that the Novikov condition for m; = (us — 71)/o certainly implies that m; is in
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L?(dt) for almost every w, and condition four of the theoiem tells us p:/0; is in
L?(dt) for almost every w. As a consequence, the difference
Tt _#
Oy gt

—my

is in L?(dt) for almost every w. This completes the last of the coefficient checks
and therefore completes the proof of the theorem. O

14.7. Perspective on Theory and Practice

In retrospect, this long chapte: has proceeded through three distinct phases.
In the first phase, we saw how a streetwise gambler could guess the pricing formula

(14.76) Vi = BEQ(X/Br | F3).

We then saw what this representation could do fo1 us, and, in particular, we found
that the simple formula (14.76) could recapture the Black-Scholes formula for a call
option. We also saw how the representation (14.76) could be used to argue that an
American call option should not be exercised before the terminal date

In the second phase, we made some critical obseivations about self-financing
strategies, and we took a deeper look at the arbitrage argument in continuous
time. We observed that the class SF contains strategies that are tantamount to
get-rich-quick schemes that will not be allowed in any mature financial system. We
then argued from basic banking principles that the only strategies that one should
consider are those that satisfy a credit constraint. This led us to consider the
class SF'F, and we found several properties of SF* that support its viability as a
domain for financial theory. Specifically, we found that SF* has the economically
important feature of excluding the possibility of any rsk-free bond arbitrage.

Nevertheless, we continued our self-doubting exploration of self-financing strate-
gies, and we discovered that even SF7T has serious problems. In particular, we
were forced to face the fact that suicide strategies present serious difficulties to
continuous-time arbitrage theory. This was our darkest hour, and in near desper-
ation we turned to the class A of admissible strategies. At first, this class seemed
terribly special, and arbitrage theory seemed to be at risk. The nagging worry
was that the alternating pattern of pathological example and quick-fix might keep
repeating ad nauseam.

‘We then came to the third and most formal phase of our development. We took
up the cause of the admissible strategies in earnest, and we proved the important
completeness theorem. This result confirmed that under rather general circum-
stances any contingent claim may be replicated by an admissible strategy. This
fact combined with the simpler uniqueness and mimimality properties of admissi-
bility to show that the class of admissible strategies is actually a natural domain
for the continuous-time theory of arbitrage pricing. Our fears of the alternating
pattern then could be safely set aside.

We now come to a fourth and final phase — a celebration. At the heart of
the celebration, we have to place the acknowledgment of what is genuinely new
in the martingale theory of arbitrage pricing. If the theory only provided a new
perspective and gave us a sharper look at American call options, these would be
fine accomplishments, but the contributions of martingale pricing theory go much
further.
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NEW POSSIBILITIES

To put martingale pricing theory in perspective, we must think back to the
SDE valuation method and to our development of the Black-Scholes PDE. The
PDE method focuses entirely on derivative securities that may be expressed as a
function of the stock price at the terminal time; that is, the PDE method only
permits us to study contingent claims of the form X = g(S7). The martingale
pricing formula (14.76) is not nearly so restrictive. It only requires that X be
suitably measurable and suitably integrable. This increased generality opens up a
world of practical possibilities.

For example, if the contingent claim X is taken to be the average stock price
over the time period [0, T, then we see that

1 T
(14.77) X=2 / 8, dt
T Jo

depends on the whole path of the stock price {S; : 0 <t < T}. Such a contingent
claim ca'mnot be expressed as a function of St alone, yet the new pricing formula
(14.76) is perfectly applicable. Similarly, if we want to price the contingent claim
given by

(14.78) X = max S,
te(0,T)

then the PDE method is powerless, even though the martingale method is again in
its element.

The options defined by equations (14.77) and (14.78) are simple examples of
what are respectively called Asian and Look-Back options. There are untold vari-
ations on these options that financial engineers design on a daily basis to serve the
risk-sharing needs of their clients. Essentially all of these new options call on the
martingale theory of arbitrage pricing in order to value the options and to construct
portfolios that hedge the risk of writing such options.

New COMPUTATIONS

A second important contribution of the martingale pricing formula {14.76) is
the window that it opens on new computational techniques. As one might expect,
the explicit calculation of the martingale pricing formula is a reasonably rare event,
even though we have seen that the pricing formula (14.76) provides a path to the
Black-Scholes formula that is a bit easier than solving the Black-Scholes PDE. Still,
once a computation is possible there is not much point in worrying about which
method may be a little easier or a little harder. The much more important issue is
the range of problems that a new method renders feasible.

One of the major benefits of the valuation formula (14.76) is that it is al-
most always possible to use simulation methods to estimate an expectation such
as Eq(X/Pr). To be sure, such simulations are not easy to do well, and they will
almost always be less accurate than the numerical solution of a PDE when a PDE
method is applicable. Nevertheless, skillful simulations may be coupled with other
numerical methods to provide practical solutions to many valuation problems that
fall completely outside the domain where PDE methods can be applied. For this
reason alone, the valuation formula (14.76) has telling practical importance,

14.8. EXERCISES 259

NEwW MODELS

The third and final virtue of the martingale approach to arbitrage pricing is
that it extends the class of stock and bond models that one can consider. In order
to obtain a PDE by the coefficient mafching method, one typically assumes that
the coefficients of the stock model may be written as functions of the current stock
price. One can weaken this requirement a bit — say to include coefficients that
also depend on time and the bond price — but the PDE method can never deal
with model coefficients that depend on the whole history of the stock price.

The martingale method imposes far less stringent constraints on the coefficients
of the stock and bond models. All one ever requires is that the coefficients be
nonanticipating processes that are not too large. This added flexibility permits one
to consider a wide class of non-Markovian stock and bond models, and, although
this possibility has not been exploited very much so far, non-Markovian models can
be expected to gain importance. The traditional concerns over computational cost
become much less significant every day.

Probabilists (and others) have long been warned by historians that one cannot
wisely ignore the past, and streetwise gamblers are justifiably hesitant to assume
that a stock’s history is completely irrelevant given the current price. One can
hardly doubt that non-Markovian models will have their day, and we should be
pleased to know that the martingale theory of arbitrage pricing stands ready for
use upon their arrival.

14.8. Exercises

The first problem asks for the arbitrage price of a contingent claim that depends
on the whole sample path. The problem provides an example of a claim that cannot
be priced by the PDE method, and it has the added virtue of having been used
for several years as an interview question at a well-known investment bank. The
second problem provides an instructive example of an incomplete model. It also
shows how some basic computations become simpler under risk-neutral models, and
it shows how the coefficient checks such as those in the proof of the completeness
theorem can have real bite.

The third problem suggests a simple computation that supports the important
observation that many portfolio problems may be reduced to the consideration of
models that have zero interest rates. The fourth problem then indicates how the
abstract portfolio weights given by martingale theory can be used to recapture the
concrete portfolio weights obtained by PDE methods. Any one of these problems
it well worth the investment of some part of a nice fall afternoon.

ExERCISE 14.1 (An Interview Question). Consider the classic Black-Scholes
stock and bond model with constant u, o, and r. Find the arbitrage price of a
contingent claim that pays M if the stock price gets to a level K or higher during
the time period [0, T and that pays zero otherwise. In other words, find a formula
for the arbitrage price of the claim

X =Ml( sup St > K)
t&(0,T)
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EXERCISE 14.2 (Pozdnyakov’s Incompleteness Example). The stock and bond
models given by

(1479) dSt = Sg dit + tSt dBt and dﬂt = ,Bt dt

are like those we have considered before except that the coefficient tS; of dB;
vanishes at time ¢ = 0. This one defect is enough to make the model incomplete.

(2) In the martingale method, the first step in computing the arbitrage price of
the claim X is to find a measure @ that is equivalent to P such that Dy =5;/B:isa
(-martingale. Calculate dD; and argue that D; is already an honest P-martingale.

(b) This means that the equivalent martingale measure @ is equal to P, and
this interesting invariance property suggests that some claims may yield very simple
formulas for the time ¢ valuation V;. For example, take X = exp(Br + T/2) and
calculate an explicit representation for

Vi = B:EqQ(X/Br | 7).

(¢) Now work out the values of the portfolio weights a; and b; by first deriv-
ing formulas for the integrands of the stochastic integrals (14.7) and (14.8) that
represent the U; and D, processes as stochastic integrals. In particular, show that

(14.80) u(w,t) = exp(B; —t/2) and d(w,t) =t- /B,
and use these formulas to obtain
(14.81) a; = exp(B; — t/2)/(tS:e™*) and b; = exp(B; — t/2){1 - %}

(d) Finally, observe that for all ¢ € (0, T] we have
¢
/ bsfsds =co  with probability one,
0

and argue that this implies that the model defined by (14.79) is not complete.

EXERCISE 14.3 (Generality of Zero Interest Rates).
In the examination of the binomial arbitrage, we found considerable convenience
in the assumption that the interest rate was zero. Very pleasantly, the nature of
self-financing strategies is such that we can almost always restrict attention to this
case.

Suppose that the processes {S;} and {B:} satisfy the equations of the SDEs
(14.82) dSs = p(w,t)di + o(w,t)dB; and df; = rp; di.

If the trading strategy (as,b;) is self-financing for the processes S; and §; in the
sense that it satisfies

t t
(14.83) aS; - b By = agSy + bofo + / as dS; +/ b dg;,
0 0

then for any measurable adapted -y; > 0, we also have
(14.84)

t t
as(15%) + be(veB:) = ao(70S0) + bo(080) + /0 at d(7:S:) + /o b d(v:5:),

provided that all the indicated integrals are well defined.
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EXERCISE 14.4 (Abstract to Concrete Portfolio Weights). In gene.r?,l, the port-
folio weights (a¢, b;) of martingale pricing theory are given by the familiar formulas
w(w, 1) )
(1485) ay = m and bt = Ut d(w,t) t-
On the other hand, the PDE method can be applied under the classic‘Black‘—Scho‘les
model with constant p, o, and  to show that for the call option with strike price

K the replicating portfolio has the concrete weights

1 1
(14.86) @ = fult,S)) and bt=T—ﬁt{ft(t,st)nhgfm(t,StWS?}’

where f(t,T) is given by the Black—Scholes formula (14.24).

Show that the concrete weights (14.86) may be obtained from the more ab§tract
weights by exploiting the fact that we have two representations for the arbitrage
price of the call option:

f(&,8e) = BeBo((Sr — K)+/Br|F) = BeUe.
EXERCISE 14.5 (Confiming a Martingale Property). Fill in the calculation that
was omitted from Proposition 14.1 by showing
(14.87) Eq[DiMy|Fs| = DsM, forall0<s <t < T
As a hint, first recall that equation (14.87) really means
Eqg[DiMl4] = E[DsM;14] forall0<s<t<Tandal A€ F,
and complete the proof of this identity by explaining each link in the chain
EolDiM;l 4] =Eq(DyMpla] = Eq,[Dsla]
=Eqg,[Dsla] = Eq[DsMrly) = EQ[DSJ\/fslA].




CHAPTER, 15
The Feynman—Kac Connection

The basic, stripped-down, Feynman—Kac representation theorem tells us that
for any pair of bounded functions ¢ : R — R and f : R — R and for any bounded
solution u(t, z) of the initial-value problem

(15.1) welt, z) = %um(t, ) +q(@ult, sy u(0,z) = F(=),

we can represent u(t, z) by the Feynman—Kac Formula:

(15.2) u(t,z) = E [f(:z: + By)exp < /0 t g(z -+ B,) ds)] .

The value of this result (and its generalizations) rests in the link that it provides
between important analytic problems, such as the solution of the PDE (15.1), and
important probability problems, such as the calculation of the expectation (15.2).
Remarkably, the benefits of this connection flow in both ways.

For us, the most immediate benefit of the Feynman—Kac formula (15.2) is that
it gives us a way to get information on the global behavior of a sample path of
Brownian motion. To give a concrete example, suppose we consider the amount of
time 7} that Brownian motion spends in the set [0, co) during the time period [0, ¢].
Because we can represent T; as the integral

t
n=/u&zmm
0

we can take g(z) = —A1(z > 0) and f(z) = 1 in the Feynman—Kac formula, (15.2) to
find that u(t, 0) represents the Laplace transform of T;. By solving the initial-value
problem (15.1), we can calculate that transform and subsequently deduce that T;
has the arcsin distribution, a marvelous result due to P. Lévy.

Naturally, there are connections between equations such as (15.1) and (15.2) for
processes that are more general than Brownian motion, and we will find that these
connections can be used to obtain representations for the solutions of interesting
PDEs. In particular, we will find versions of the Feynman—Kac formula that yield
new and informative representations for the solutions for the Black—-Scholes PDE
and its various extensions.

15.1. First Links

We already know from our discussion of the diffusion equation that for a well-
behaved function f : R — R there is a unique bounded solution u(%,z) of the
initial-value problem

(15.3) ws(t, ) = -;-uu(t, 2 u(0,3) = flz),
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and we also know that this solution may be written as a Gaussian integral
(15.4) w(t, z) = —ae / flu)e@=o) /2 gy

Now, just by inspection, we can see that u(¢,z) can also be written as
(15.5) u(t, z) = E[f(z + B:)],

and — mirabile dictu — this formula is precisely the Feynman-Kac formula for the
special case of g(z) = 0.

This modest observation serves to remind us of many tools that might be used
to prove the Feynman—-Kac formula for general g, and, in particular, we are warned
that Itd’s formula might prove handy. Still, before we dig into the derivation of
the general Feynman—Kac formula, we will first consider another important special
case. When g(z) is a constant, the Feynman-Kac formula turns out to have two
informative interpretations that make easy work of guessing the general formula.

BROWNIAN MoTioN: KILLED OR DISCOUNTED

One of the most general ways of building new stochastic processes out of old
ones is by a construction called killing. The simplest example of this construction
is given by ezponentially killed Brownian motion, and anyone who happens to
investigate this process has an excellent chance of discovering the Feynman-Kac
formula.

To begin the construction, take any nonnegative random variable T'. Brownian
motion killed at time T is defined to be the process {X;} with values in the set
R U {coffin}, which is defined at time ¢ by

B; ifo<t<T
X =
coffin T <.

Here, of course, the coffin state is a special state that we have introduced so that
Brownian motion will have a place to go when it gets killed. The terminology is
insensitive but traditional.

Now, given any f : R — R, we can extend the definition of f to R U {coffin}
by defining f(coffin) = 0, so we can introduce an analog to the Brownian motion
formula (15.5) that solves the heat equasion (15.3). To be completely specific, we
specialize T to have the exponential distribution with parameter ), so we have
P(T 2 t) = e for t > 0, and, for the moment at least, we also assume that T is
independent of the Brownian motion {B;}. In this case, the process {X;} is called
exponentially killed Brownian motion with wnstantaneous killing rate X > 0.

We now ask ourselves whether we can find an initial-value problem that is
satisfied by

u(t, z) = B[f(z + X))

We certainly have u(0,z) = f(z) just from the fact that X = z, so we only need
to work out u;. From the definition of u(%,z) together with the independence of
the process {B;} and the killing time 7', we have the explicit factorization

(15.8) u(t, z) = B[f(z + B,)1(T > t)] = e M E[f(z + By)],
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so by direct calculation we have

w(t,) = LBl + B - A Bl (o + B

- e“’\t; g Elf(z + B:)] — AE{f(z + B)LT > 1))
- %%E[j(z + BYLT > )] - AE[f(z + B)L(T > ¢)]
= %umm(t: 117) - Au(ta "E)

The net result is quite promising, and, formally at least, it tells us that for the
special choice g(z) = —A the formula given by

(57)  ulan) = BlSe+ B exa( | ' g(e + Bu) ds)] = Blf(a + B)e™]

will provide us with a representation of the solution of u; = -%um_- + g(z)u with
u(0,z) = f(z). In other words, the Feynman—Kac formula is valid when g(z) is a
nonpositive constant.

This simple observation is bound to present itself to anyone who investigates
exponentially killed Brownian motion, and those investigators who are blessed with
the youthful desire to generalize will find the discovery of the Feynman—Kac formula
to be just a few lines away. The key step is to look for an alternative interpretation
of the expectation (15.7), and, given our economic orientation, nothing could be
more natural than to regard E[f(z + B:;)e~™] as a discounted payout where X
is interpreted as an interest rate. With this point of view, there is no reason to
stick with just constant interest rates, and, if we simply consider interest rates that
depend on {x + B;}, then the Feynman-Kac formula leaps before our eyes.

15.2. The Feynman-Kac Connection for Brownian Motion

This story suggests how one might guess the Feynman-Kac formula, but guess-
ing is not the same as proving, and that is our next task. There are many different
proofs of the Feynman-Kac formula, but the method of proof that is most in keep-
ing with the ideas that have been developed here is based on Ité’s formula. In &
nutshell, the key idea is to find a martingale {M} for which we have

My=u(t,s) and E(M,)=E [f(a; + By exp( /0 4@+ By) ds)].

Any martingale trivially satisfies E(Mp) = E(M), and, pleasantly enough, this
bland identity is good enough to give us the Feynman-Kac formula. One can think
of this technique as a kind of interpolation method, and there are many interesting
identities that have analogous proofs.
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THEOREM 15.1 (Feynman—Kac Representation Theorem for Brownian Motion).
Suppose that the function ¢ : R — R is bounded, and consider the initial-value
problem

1
(15.8) us(t, @) = Eum(t, z) + g(z)ult, ) u(0,z) = f(z),

where f : R — R is also bounded. If u(t,x) is the unique bounded solution of
initial-value problem (15.8), then u(t,x) has the representation

(15.9) u(t,z) = E [f(:z: + B;) exp (/Ot g(z + Bs) ds)} .

Proor. The most creative step in the interpolation method is the invention
of the interpolating martingale. This always requires substantial experimentation,
but with some experience and a bit of luck one may reasonably come to consider
the process { M} that is defined for 0 < s < ¢ by sebting

(15.10) M; =u(t — s,z + B;)exp (/3 g{z + By) dv) .
0

By 1td's formula and the assumption that u(t, z) solves the PDE (15.8), we have
du(t — s,z + Bs) = uy(t — 5,7+ B;s) dB;

1
+ §uw(t ~8,& + Bs)ds — us(t — s,z + B,) ds
= Uy (t — 8,2+ By) dBs — q(z + Bs)u(t — s,z + B;) ds,

so by the product rule we see dM; equals

exp(/os g(z + B,) d7'> {ux(t —~ 8,2+ B;)dBs — q(z + Bs)u(t — 8,z + B;) ds}
+ exp(/os q(z + B,) dr) {q(:z: + Bg)ult — s,z + By) ds}
= exp(/os q(z + B;) dr) {um(t ~s,z+ Bs)} dB;.

This last formula tells us that {M; : 0 < s < ¢} is a local martingale, and from the
defining equation (15.10) of {M,} we find

(15.11) sup |Ms| < |[ulleo exp(tlgllco)s
0<s<t

where ||uf]oo < 00 and {|g]|es < 00 by the boundedness hypotheses on ¢ and u. The
inequality (15.11) tells us the local martingale {M; : 0 < s < £} is bounded, and as
a consequence it is an honest martingale.

The crudest consequence of the martingale property is the equality of the ex-
pectations E[Mo] = E{M;], but this modest fact is at the epicenter of our plan. In
longhand, it tells us that

L
(15.12)  E{Mo) =u(t,2) = E(M;)=FE [f(:z: + By) exp(/ g{z + B;) ds)] )
0
just as we wanted to show. O

The pattern demonstrated by this sly proof can be used to establish a large
number of representation theorems for functions that satisfy parabolic PDEs. We
will soon use the same device to prove a generalization of Theorem 15.1 that will
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help us understand the Black-Scholes PDE more deeply, but first we will look at a
classic application of the basic Feynman-Kac formula for Brownian motion.

15.8. Lévy’s Arcsin Law

To see how one can use the Feynman—Kac formula on a concrete problem, there
is no better exercise than to work through Mark Kac’s derivation of the famous Lévy
Arcsin Law for the distribution of the amount of time T} that Brownian motion
spends in the positive half-line [0,00) during the time period [0,#]. The law adds
considerably to our intuition about Brownian motion (or random walk), and it also
leads to a clear understanding of many empirical phenomena that might otherwise
seem paradoxical.

THEOREM 15.2 (Lévy's Arcsin Law). For any 0 < p <1 ond any t > 0, we
have

2 1 /? du
15.13 P(T; < pt) = ~ arcsi =—-/ —me,
( ) (t_P) T Sln\/ﬁ 7 Jo m

To get to the physics behind this law, one should first note that the arcsin den-
sity 7~ u~Y/2(1 —u)~/2 piles up mass near u = 0 and v = 1. It also places minimal
mass near ¢ = —21- This allocation of mass has some interesting consequences.

For the traditional coin flip game, Lévy’s Arcsin Law tells us that during a long
playing session you are at least twenty times more likely to be ahead for more than
98% of the time than to be ahead for just 50 & 1% of the time. The arcsin law is
one of the theoretical facts that shows why even the fairest world can seem unfair
to a casual observer.

TRANSLATION TO A PDE

In the introduction to the chapter, we noted that taking g(z) = —AL(z > 0)
and f(z) =1 leads us to

¢
—ATt=/ g(Bs) ds.
0

The Feynman—Kac connection also tells us that we have

¢
(15.14) Elexp( / o(@ + B,) ds)] = u(t, z),

0
provided that u(t, z) is the unique solution of the initial-value problem
(15.15) Up = %um ~AM(z>0u and u(0,z)=1foralzekR.

We now have a natural plan. We just need to solve the initial value problem
(15.15), find the Laplace transform of T3, and check that this transform coincides
with that of the arcsin density. In essence, this plan works, but there are still a
couple of new challenges.

SowviNg THE PDE

Written in longhand, the initial-value problem (15.15) really gives us two equa-
tions:
Tz (t,3) — Mult,z) >0
Luza(t, ) z <0,

ug(t, ) = {
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and the initial condition can be stated more precisely as
u(0",z) =1,

where (0%, ) denotes the limit of u(t, z) as ¢ approaches 0 through positive values.

We now face an amusing bit of mental gymnastics. The function u(t, z) repre-
sents a Laplace transform, but the quickest way to solve the initial-value problem
(15.15) is by taking the Laplace transform of both sides to convert it into an ODE.
The solution of the resulting ODE will then be a Laplace transform of a Laplace
transform, and, although this seems like a one-way ticket without possibility of
return, special features of the problem make the round trip easy.

If we take the Laplace transform of u(t, %) in the ¢ variable and write

def [*°
e,z =/ e~ (¢, ) dt,
0

then iflte.gration by parts shows that u;(t, ) is transformed to 1+oi(a, z) while dif-
ferentiation under the integral sign shows that 1 (t,z) is transformed to 1y (2, 7).
All told, our PDE (15.8) transforms nicely into the more amenable ODE

Uzz(a, ) — Mi(e,z) >0

(15.16) 4 o, ) =

DOl B

T%le general solution of this ODE may be obtained by the usual exponential sub-
stitution, and, after a little routine work, we find that the only bounded solutions
of the ODE (15.16) are given by

(15.17) U, z) = s toexp(-z/2[@+ X)) z>0
L+ ¢ exp(zv2a) z <0,

where ¢p and ¢; are constants of integration that remain to be determined. Once
these constants are found, we will have established the existence of a solution to the
Initial-value problem (15.15). The uniqueness of the solution then follows from the
uniqueness for the corresponding ODE and the uniqueness of the Laplace transform.

USING SMOOTHNESS OF FIT

The most natural way to find the two constants ¢y and ¢; is to hunt for a system
of two linear equations that they must satisfy. We are lucky to have such a system
close at hand. Any solution of the PDE u(t, &) = Juas(t, 2) + g(z)u(t, 2) must be
twic}:le differentiable in z, and for any u(z,t) that is even continuously differentiable
we have

u(t,0%) =u(t,07) and  ug(f,0F) = uy(t, 07).
As a consequence, the Laplace transform 4 must also satisfy
(15.18) W, 0%) = 4(e,07)  and  dig(a,0%) = Gz (e, 07),

and these equations will give us the necessary system.
When we calculate the corresponding limits in formula (15.17), we see that the
first equation of (15.18) gives us

1
afa TG te
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and the second equation of (15.18) gives us

~cov/2(a+ ) = a1v2a.

‘When we solve this system for ¢y and ¢;, we then find

c_\/m—-ﬁ and c_\/_—\/m
0= Vea(a+ A) 1 ava+a

We can use these constants in (15.17) to complete our formula for the solution of our
initial-value problems for 4(t, ) and u(¢, z), but we are really only after #(c,0%).
To make life easy, we just let © = 0 in (15.17) and collect terms to find

1
15.19 (e, 0F =/ e~ (¢, 0) dt = ————u—.
(15.19) (@07 = | e uln0)di= s
This is as simple a formula as we could have hoped to find, and we have every
reason to be confident that the proof of the arcsin law will soon be in the bag.

CHECKING THE TRANSFORM — CONFIRMING THE LAW

Lévy’s Arcsin Law says that T;/t has the arcsin density on [0, 1], and one line
of calculus will confirm that this is equivalent to showing that T} has the arcsin
density on [0,¢]. In terms of the Laplace transform, this means that the proof of
Lévy’s theorem will be complete if we show

t —As
1 e
15.20 Be™T) = / s
(15.20 = o=
By the uniqueness of the Laplace transform, the identity (15.20) will follow if we
can prove the equality of the transforms

® ( AT ) at « at 1 e_l\s dsd
15.21 / E(e™t)e™ ™ dt =/ / e e ds di.
( ) 0 o Jo T +/5(t — 3)
The left-hand side of the integral (15.21) is just @(¢, 0), for which we have the lovely
formula (15.17), so the proof of Lévy’s theorem will be complete once we check that

—As
1o isdr

1 o] i ot
(15.22) T /0 /0 s

Fortunately, the right-hand side of equation (15.22) is easy to compute. If we
start with Fubini’s theorem, we can finish with two applications of the familiar

gamma, integral
[e ] --'1t
/ fdt= [T
o Vi Y

00 ,—As OO b Q0 ,—A3 OO ,—oft+s)
1/ -‘L—/ i———dtds:—l-/ £ ¢ dt ds
TJo Vs Js Vi-s TJo VS Jo Vi

1 o] e—(/\+a)s co e—at
=2 /0

—Fds —=dt
Vs o Vi

1/ \/E
TaVa+AVa

Now, just cancelling the #’s completes our check of equation (15.22) and finishes
the proof of Lévy’s Arcsin Law.

to find in quick order that
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15.4. The Feynman~Kac Connection for Diffusions

The martingale interpolation technique that helped us prove the Feynman—Kac
formula, for Brownian motion can also be used to get analogous results for more
general processes. The proof of the next theorem closely follows the basic pattern,
but the calculations are still instructive.

TueoReEM 15.3. Let g : R — R and f : R — R be bounded and suppose that
u(t, ) is the unique solution to the problem defined by the equation

1
(15.23) ut(t, z) = 502(:1:)1&“.(1&, z) + u(z)ug (¢, ) + g(z)u(t, 2)
and the initial condition
u(0,z) = f(=).

If the functions p : R — R and o : R — R are Lipschitz and satisfy the growth
condition

(15.24) 13 (z) + o*(z) < A(1 + 2?)

for some constant A > 0, then the function u(t,z) then has the representation

¢

(15.25) u(t,z) = F {f(m + Xi) exp </ gz + Xs) ds)} )
0

where the process X, is the unique solution of the SDE

Proor. From our earlier experience, we can easily guess that we would do well
to consider the process

(15.27) M; = u(t — 5, X;) exp(/os a(Xy) dv) .

If we now write M, = U,I,, where U; and I, provide eponymous shorthand for the
two natural factors of A, then the next step is to use the product rule to show
{M;:0 < s < (} is a local martingale.
By It8’s formula applied to U,, we have
1
dUs = ug(t — 8, Xs) dX,s + §um(t —8,X5)dX, - dX, —us(t — 8, X;) ds
= uy(t — 5, Xs)0(X;s) dB,
1
+{§um(t — 8, X5)0%(Xs) + ug(t — 8, Xo)1u(Xs) — ue(t — s,Xs)} ds,

= ug(t — 8, X5)o(Xs) dBs — q(Xs)u(t — s, X,) ds,

and for I, Itd’s formula reduces to ordinary calculus to give

(15.28) dI, ={ exp( /0 T (%) d'u> }q(Xs) ds = I,q(X.) ds.
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The product rule then gives us ) - ;
dM,; = I,dU; 4+ UydI
= I{us(t — 8, X;5)0(Xs) dBs — g(Xs)ult — 5, X;) ds}
+u(t — 5, X,):q(Xs) ds
= Lug(t ~ 5, X, )0 (X;s) dBs.

Just like last time, this SDE confirms that {M} is a local martingale, and the first
step of the interpolation argument is complete.

Finally, the defining representation (15.27) for M, and boundedness hypotheses
on u and ¢ imply

(15.29) sup [M;| < [fulleo exp(t]|glleo) < oo,
0<s<t

so again the local martingale {M; : 0 < s < t} is bounded, and we see that {M;}
is an honest martingale. By the martingale identity, we have E(Mp) = BE(My),
and this identity is just a transcription of equation (15.25) so the proof of the
Feynman—Kac representation is complete. (]

15.5. Feynman—Kac and the Black—Scholes PDEs

The traditional hunting ground for financial applications of the Feynman-Kac
method is the class of stock and bond models that may be written as

(15.30) dSy = pu(t,Ss) dt + o(t,5:)dB;y and  df; = (3, S¢)B: dt,

where the model coefficients u(t,S:), o(t,S:), and r(t,S:) are given by explicit
functions of the current time and current stock price. This set of models is less
general than those we considered in the previous chapter where the coefficients
only needed to be nonanticipating processes, but it is still an exceptionally rich
and important class. At the barest minimum, it contains the classic Black-Scholes
model where the coefficients take the specific forms

w(t, S;) = uS, o(t, St) =08, and 7(¢, ) =7r

for constants u, o, and 7.

The real charm of the set of models defined by the system (15.30) is that it is
essentially the largest class for which one can use PDE methods to price contingent
claims. In fact, if we simply repeat our original derivation of the classic Black-
Scholes PDE, we can show that the time ¢ arbitrage price u(t, S;) of the time T
European claim X = h(Sr) will satisfy the terminal-value problem

(15.31) ug(, ) = ~%a2(t, T)Ugs (8, ) — 7(2, ) U (E, T) + (L, 2)u(d, )

(15.32) (T, z) = h(z).

The calculations that bring us to this important analytical problem are worth revis-
iting, but we will skip that step so that we can go directly to our main task, which
is to modify the Feynman—Kac method to provide a representation for the solution
of the terminal-value problem (15.31). Nevertheless, some time is well spent with
Exercise 15.1, which invites the reader to discover that the terminal value problem
(15.31) can be used to price claims in a class of models that is even a bit more
general than the class defined by the system (15.30).
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The logical structure of the Feynman—Kac connection is our main concern here,
and we are prepared to make strong assumptions to set aside any purely technical
concerns. In particular, we will assume that the nonnegative interest rate process
7(t, ) is bounded, and we will assume that the stock parameters u(t, 2) and o (¢, z)
satisfy both the Lipschitz condition

(u(t, 2) - u(ty))? + (o(t,2) — o(8,9))* < Al —y)°
and the linear growth rate condition
() + 0% (t, z) < B(1+2?).

We will even assume that 2(z) is bounded, and some may worry for a moment
that this assumption is simply too strong. After all, the European call option
corresponds to the unbounded function h(z) = (z — K)4. As a practical matter,
this concern is groundless. If we replace h(z) by ho(z) = min(h(z), M), where M
denotes the total of all of the money in the universe, then ko is bounded and even
sharp-penciled hedge fund partners will be happy to accept the pricing of ho(St)
as a satisfactory surrogate for the pricing of h(S7).

With these ground rules in place, we are ready to state the main result of this
section — the Feynman~Kac Formula for the solution of the general Black-Scholes
PDE. The formula that we obtain may seem to be a bit more complex than those
we have found before, but this complexity is largely due to some notational clutter
that is forced on us in order to deal with a terminal value problem.

THEOREM 15.4. If u(t,x) is the unigue bounded solution of the terminal-value
problem given by equations (15.81) and (15.32), then u(t,z) has the representation

(15.33) u(t,z) = B [h(x,f,:m) exp< - /t ’ (s, X1®) ds)]

where for s € [0,1] the process X is defined by taking X1® = x and where for
s € [t, T] the process X= is defined to be the solution of the SDE:

(15.34) dXP" =r(s, X0®) X5 dt + o (s, X®)dB, and XI® =az.

ProoF. We naturally want to exploit the familiar device of interpolating mar-
tingales, although this time our interpolation points will be chosen a bit differently.
If we set

S
(15.35) M, = u(s, X47) exp( —/ r(v, X5®) d’u) =Usl;, fort<s<T,
t

then we trivially find that M; = u(t,z). Also, the expectation of My is equal to
the right-hand side of the target identity (15.33), so, if we can prove that M, is a
martingale for s € [¢, T, then proof of the theorem will be complete.

As usual, we will extract the martingale property of M, from a product rule
calculation of dM,. The calculation goes even more smoothly than before, but this
time we will use the numerical notation for partial derivatives in order to minimize

K
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symbol delirium. First, we calculate dU; by Itd’s formula to find

= {0, K4 + 50%(5, X5 (o, X3%)  ds + (s, X4 X"

={“1(8,X§'2> + 5025, X Yuza(s, XE%) + uals, X4 s, X:@)Xz’”} a
+ ug(s, X5®)o (s, X1™) dB,.
Next we note that dI; = —I;r(s, X5®) ds, so the product rule gives us

dM; = I,dUs + Usdl,
= I, {dU, — Usr(s, Xi®) ds}

= Is{ul(s,Xg'm) + %a(s,X}”)uzg(s,X;'z)

+ ug(s, XE®)r(s, X)X — u(s, X0%)r(s, Xﬁ"c)} ds
— Iug(s, X5®)o (s, X1®) dBs.

Now, by the key assumption that u(¢,z) satisfies the Black-Scholes PDE (15.31),
we see that the braced ds term of dM; must vanish, and as a consequence we
see that M, is a local martingale, as we suspected. Furthermore, because 7(t, z)
is nonnegative and u(t,z) is bounded, we see from the definition of M given by
equation (15.35) that M is bounded. This implies that M is an honest martingale
and completes the proof of the theorem. 0

TRACKING THE PROGRESS

At first glance, the formula for u(t,z) given by the integral (15.33) may look
almost as abstract as the general arbitrage pricing formula that we found by the
martingale method. In fact the integral representation (15.33) is several steps closer
to the ground. One big point in its favor is that nothing further remains to be found;
in particular, there is no @ to be calculated as in the case of the preceding chapter.

Any difficulties that may reside in the integral (15.33) can be traced to the
process {X5® : ¢t < s < T} and its SDE

(15.36) dXE" = p(s, Xb) X0 dt + o(s, X5®)dB;  and XP® = =.

When the solutions of this SDE are well understood, there is an excellent chance
that the expectation (15.33) may be obtained explicitly, and Exercise 15.2 gives
a simple illustration of this lucky circumstance by showing that for the classical
Black-Scholes model the Feynman—Kac formula (15.33) reduces precisely to the
Black—Scholes formula.

For more difficult problems, the most telling feature of the Feynman—Kac for-
mula (15.33) is that it presents a problem that is directly accessible to simulation.
The explicit form of the SDFE for the process X5® means that a suitable interpre-
tation Buler method for the numerical solution of ODEs may be used to generate
sample paths of X%®. As usual, the overall accuracy of these simulations may be
difficult to judge, but in this case we have the important reassurance that if the
Euler steps are small enough then the simulations will be valid. This observation
and the opportunity to reduce the size of the Euler step in a series of independent
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simulations may be developed into a practical approach to the evaluation of the
discounted expectation (15.33).

The field of SDE simulation is large and rapidly growing. Practical, accurate
simulation is evolving into one of the most important topics in stochastic calcu-
fus, but we will not pursue the development of symulation here. For fans of the
Feynman-Kac formula, the key observation is that each advance in simulation tech-
nique and each increase in computational speed adds value to the Feynman-Kac
representation for the solution of the general Black—Scholes PDE.

15.6. Exercises

The first two exercises deal with the relationship of the Black-Scholes PDE
and the Feynman—Kac formula. The first of these explores the most general model
that leads to a PDE of the Black-Scholes type, and the second checks that the
Feynman—Kac formula essentially contains the classical Black-Scholes formula.

The third exercise returns to the roots of the Feynman-Kac formula and studies
the occupation time of an interval. The first two parts of the problem are easily
done by hand, but the remaming parts are done most pleasantly with help from
Mathematica or Maple.

EXERCISE 15.1 (A General Black-Scholes PDE). The general Black~Scholes
PDE given by equation (15.31) does not contain the drift coefficient u(t,S;), and
this fact gives us an interesting hint. Could it be that the same equation would
continue to hold for a more general stock and bond model than that given by
the system (15.30)? Show that this is the case by proving that equation (15.31)
continues to hold even where we only assume that

(1537) dSt = Ut dt + O'(t, St) d.Bt and dﬂt = T(t, St)ﬁt dt,

where the only conditions that we place on p; are that it be an adapted process
which is integrable for almost all w.

EXERCISE 15.2 (Feynman—Kac and the Black-Scholes Formula). Consider the
classic Black-Scholes economy

(1538) dSt = ,u,.S',g dt + O'St dBt and dﬂt = Tﬂg dt,

where u, 0, and r > 0 are constants. Work out the integral given by equation (15.33)
in this case, and show that the Feynman-Kac formula reduces to the Black—Scholes
formula. You may save on arithmetic by showing that the formula (15.33) boils
down to a representation that we found earlier.

EXERCISE 15.3 (Occupation of an Interval).

Extend the calculations that were done in Kac’s proof of the Lévy Arcsin Law
to discover the Laplace transform of the amount of time that Brownian motion
spends in an interval. _

(2) Suppose that 0 < a < b and let T; be the amount of time that Brownian
motion spends in [a, b] during the time period [0, t]. Use the Feynman-Kac formula
to find an initial-value problem for a function u(t, z) with the propert,y that u(t, 0)
is the Laplace transform of T;.

(b) Convert your PDE to an ODE by taking Laplace transforms and then solve
the resulting ODE.

(¢} Check your solution of the ODE by setting a = 0 and letting b — co. Show
that the limit recaptures the result we found for 7 in Section 15.3.
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(d) Use the result of part (b) to find a formula for the Laplace transform of
the expected value u(t) = E[Ii]. If you know & bit about Laplace transforms, you
should then be able to determine the asymptotic behavior of y(t) as t — co.
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APPENDIX I

Mathematical Tools

The purpose of this appendix is to provide some quick guidance to the results
of probability theory and analysis that are used in the main text. Although the
results summarized here suffice to make the text self-contained, a supplemental text
such as Jacod and Protter [36] may serve as a wise investment.

Expectation and Integration

The term ezpectation that is used throughout probability theory is just short-
hand for the Lebesgue integral that is taken with respect to a probability measure.
The calculations of probability theory hardly ever force us to go all the way back to
the definition of the Lebesgue integral, and a great many probability calculations
require nothing more than the linearity and positivity properties of expectation.

To begin, we say that X is a ssmple function if it can be written as a finite
linear combination of indicator functions of measurable sets,

n
X = Z cla,,
=1

and we define the expectation of such an X by the natural formula

E(X) = zn: & P(A,).

=1
Next, for any nonnegative random variable Y, we define the expectation of ¥ by
E(Y) =sup{E(X): X <Y with X a simple function}.

Finally, for general random variables we define the expectation by reduction to
the case of nonnegative variables. Specifically, for general Y we introduce the
nonnegative random variables

Yt=Y1Y >0)and Y~ =-Y 1(Y <0),
so the two expectations E(Y+) and E(Y ~) are well defined, and, as a last step, we
define the expectation of Y by
E(Y)=E(Y*)-EY),

provided that E(Y+) and E(Y ) do not both equal infinity.

In a course on integration theory, one would now need to show that these
definitions do indeed give us an expectation that is linear in the sense that for real
a and b we have

E(aX +bY) = aE(X) +bEY).
Because the expectation is defined by use of a supremum in the key step, the
linearity of the expectation is not immediate. Nevertheless, with a little work one
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can show that defining properties of a probability measure suffice to establish the
required linearity.

The day-to-day workhorses of integration theory are the dominated convergence
theorem (DCT), the monotone convergence theorem (MCT), and Fatou’s lemma.
Each of these results provides us with a circumstance where we can change the
order of a limit and an expectation. Here they are as they are most commonly used
in probability theory.

DomiNATED CONVERGENCE THEOREM (DCT). If P(X, = X)=1land [X,| <Y
for 1 £n < oo where Y satisfies E(Y) < o0, then E(|X]) < o0 and

lim E(X,) = E( lim Xn) = E(X).

n—eo n—oo

MONOTONE CONVERGENCE THEOREM (MCT). If 0 < X, £ Xy for alln > 1,
then

lim E(X,) =E< lim X’n)y

—ro0 n—eQ

where the limits may take infinity as o possible value.
Fatou’s LeMMA. If0 < X, for alln > 1, then

E(limiann> < liminf B{X,),
n—co n—00
where the limits may take infinity as a possible value.

Any one of these three integration results can be used as the basis of a proof
for the other two, so none of the three has a strong claim on being the most
fundamental. Nevertheless, courses in integration theory almost always take the
MCT as the basis for the development. As a practical matter, the DCT is the
result that is most important for probabilists.

Probabilists use Fatou’s lemma less often than the DCT, but there are times
when it is the perfect tool. This is commonly the case when we have information
about the distribution of the individual terms of the series {X,}, and we would
like to show that the limit has finite expectation. For example, if we know that
Xn = 0 and that X, — X with probability one, then Fatou’s lemma tells us that
if we can show E(X,) < 1, then E(X) exists and F(X) < 1. On the other hand, if
we try to use the DCT to show that E(X) exists, then we would need to show that
Y = sup, X, has a finite expectation. Such a bound requires information about
the joint distributions of the {X,} that may be hard to obtain. This is quite a
contrast to Fatou’s lemma, where we only need information about the marginal
distributions to show the existence of E(X).

Conditional Expectations

Conditional expectations are discussed at length in the text, and the only point
left for this appendix is to note that the DCT, MCT, and Fatou’s Lemma carry over
to conditional expectations with largely cosmetic changes. To get the conditional
versions of the MCT and Fatou’s lemma, there are two steps. First, we naturally
want to replace E(-) by E(-|F) at each appearance. Second, since the conclusions
now refer to random variables instead of numbers, one needs to note that the
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identities now only hold with probability one. We can illustrate these steps with
the DCT, which needs the most care, although the principle is the same in all three
cases.

CoNDITIONAL DCT. If P(X, — X) = 1 and [X,| <Y for 1 < n < oo where
E(Y|F) < oo with probability one, then on a set of probability cne we have
E(X||F) < o and

lim E(Xn| ) =E( lim Xn|]-') = E(X | F).

Probability Theory Basics

The text naturally presupposes some familiarity with probability theory, but
we should still recall some basic points that must be taken as common ground. Two
fundamental facts that we often use without comment are Markov’s inequality,

P(X > A) £ BE(X)/X provided that X >0 and A >0,
and Chebyshev’s inequality,
P(X — p| > X\) < Var(X)/\? where p = E(X) and A > 0.

Also, our most trusted tool for proving that some event occurs with probability one
is the Borel-Cantelli lemma. This much-used lemma comes in two parts.

BOREL-CANTELLI LEMMA. If {A,} is any sequence of events, then

[=0] [o0)
ZP(A,) < oo implies that P<Z 14, < oo) =1,

=1 i=1

and if {B,} is any sequence of independent events, then

o0 (=]
ZP(Bz) = oo implies that P(Z lp, = oo) =1

=1 =1

Finally, we are always guided by the law of large numbers and the central limit
theorem, even though they are used explicitly on only a few occasions in the text.

STRONG LAW OF LARGE NUMBERS. If {X,} is a sequence of independent random
variables with the same distribution, E(|X;|) < oo, and E(X,) =0 then

P( %(X1+X2+---+Xn) converges toO) =1.

CENTRAL LiMIT THEOREM. If {X,} is a sequence of independent random variables
with the same distribution, E(X,) =0, and Var(X,) =1, then

X1+ X+ o+ Xn ) 1 /nc /2
P < = — du.
( \/7_7’ =7 V2 —ooe

In fact, the text even provides proofs of these two important results, although
these proofs are admittedly strange if one does not already know the customary
arguments. In the course of our introduction to martingale theory in discrete time,
we find a proof of the strong law of large numbers, and much later we find that

lim

TL—r OO
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the central limit theorem can be viewed as one of the corollaries of the Skorohod
embedding theorem.

Hilbert Space, Completeness, and L?

In a metzic space S with metric p, we say that a sequence {z,} C § is a Cauchy
sequence if

P&, Tm) — 0 as 1, M — o0,

and we say that the metric space S is complete if every Cauchy sequence converges
to an elem'ent of S. One of the most useful complete metric spaces is C[0, 1], the
set of continuous functions on [0, 1] with the metric given by

p(f,9) = sup |f(z) —g(z)l.
z€(0,1]

The completeness of C[0,1] is a consequence of the fundamental fact that if a
sequence of continuous functions on a compact set converges uniformly, then the
limit is also a continuous function.

‘ One of ?he reasons that Lebesgue’s integral was an immediate hit when it was
introduced in 1904 is that the new integral made it possible to view the inner
product space L?(dP) as a complete metric space. In the language of probability
theory, this means that if {X,,} is a sequence of random variables for which we have
lim || Xy —~ X2 =0,

TM—00

n
then there is an X € L?(dP) such that
{|Xn —~ X|l2 = 0 as n — oo.

The usual tools of probability theory make it easy for us to give a proof of
this important fact, and the proof even offers good practice with the material we
have reviewed thus far. In outline, one first shows the existence of X by means
of subsequence and Borel-Cantelli arguments, and, once a candidate in hand, one
shows the required L? convergence by a simple application of the triangle inequality.

To flush out the details, we first note that the sequence

r(N) = sup (1 Xm — Xalla

mmn>
decreases rilonotonically to zero, so we can choose a subsequence n; such that
r(ng) < 27%. Next, we note by Markov’s inequality that

P(|Xn, ., — Xn,| > 1/4%) < 4%27%,

141

so the Borel-Cantelli lemma guarantees there is a set g of probability one such
that for each w € {p we have

[Xnops (@) = X, (W)] < 1/42
for all but a finitely many 7. We can therefore define a random variable X for all

w € o by the converging sum

X (@) = Xny (W) + D _{Xnoya (@) = Xn, (@)}

n=1
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Finally, for any n there is a k such that n;y < n < ng41, so we have
1X5n — Xll2 S [ Xn ~ Xagllz + 11 Xn, — X2

(o] o
X = X2+ D Xy = Xy | <278+ > 277 =3 275,
j=k _7=k

Since k — o0 as n — oo, the last inequality shows that || X, — X|l2 — 0, as required
to show that L2(dP) is complete.

Notational Matters

The notation that one uses to describe function spaces has natural variation,
though less than one finds in urban pigeons. For example, L always denotes a set
of functions for which the absolute p’th power is integrable, but there are many
different measure spaces where these functions may live, and the plumage adorning
LP(u) or LP(dP) just reflects this variation.

For us, the basic case is given when the measure space is the familiar probability
space (2, F, P), although even here there is one special case that should be singled
out. When Q is [0, 1], F is the Borel o-field, and P is the uniform measure on [0, 1]
(so for A = [0,z] we have P(A) = z), then we write L2[0, 1] instead of just L?[dP).
There is no defense to the charge that this notation is inconsistent, except the
Emmersonian standby that a foolish consistency is the hobgoblin of little minds.
In the construction of the It6 integral that is given in Chapter 6, we will work at
once with several different function spaces, and we will need to introduce several
variations on the basic notation to make the distinctions clear.

Bessel and Parseval

A sequence {¢,} in L?(dP) is called an orthonormal sequence if it satisfies
E(¢2) = 1 and E(¢s¢x) = 0 when j # k.

Such sequences owe much of their importance to the fact that for any X € L? the
generalized Fourier coefficients

an = E(¢nX)

can tell us a lot about X, and vice versa. For example, one of the simplest but
most useful connections is given by Bessel’s inequality:

oo
Z a2 < B(X?).
n=1

Despite its importance, the proof of Bessel’s inequality is as easy as pie. We begin
with the trivial inequality

0< E[(X _ ianqbn)z],

n=1
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and then we do honest arithmetic using the definition of orthonormality to close
the loop:

E [(x - é an¢n)2] “B(X?)— 23 anB(paX) + B [(ijl an¢n) 2]

n=1
m
=E(X?) - d.
n=1

We now face a natural question. When does Bessel’s inequality reduce to a
genuine equality? This is an extremely fruitful direction for investigation, and we
are fortunate that there is a definitive answer.

PARSEVAL'S THEOREM. For any orthonormal sequence {¢, : 1 < n < oo} in
L2(dP), the three following conditions are equivalent:

(A) the finite linear combinations of the functions {$,} form a dense
subset of L?(dP),

(B) the only X € L?(dP) that satisfies E(¢ppX) =0 for alln is X =0,
and

(C) for any X € L?(dP), we have Parseval’s identity,

E(X?) = Zai where  ap, = B{¢X).

n=1

Proor. To show that condition A implies condition B, we first suppose that
we have F(¢,X) = 0 for all n, and then note that condition A tells us for any € > 0
that we have an integer N and real numbers {a,} such that

N
X = Z onén+Ry and E(R%) <€

n=1

Now, if we compute E(X?) by orthogonality, we find

N N
E(X*) =) o2+2) anE(¢nRy)+ B(RY),

n=1 n=1

and, when we recall our assumption that F(¢pX) = 0, we also find

N
E(¢xRn)=E [¢k(X -3 an¢n)] = —oy.

n=1

The two preceding formulas tell us that

N N
E(X*) =) ol ~2) oi+E(RY) <&,
n=1 n=1
and, because ¢ > 0 was arbitrary, we see that X = 0. This completes the proof of
the first implication.
Next, to show that condition B implies condition C, we begin by noting that
for a, = E(X¢n) Bessel’s inequality tells us

o0
Zaﬁ<oo,

n=1
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so the sum defined by

Z QnOn

n=1
converges in L?(dP) to a some random variable which we may denote as Y. To

complete the proof of condition C, we just need to show that X =Y. This is in
fact quite easy since we have

Bl(X -Y)ps) =an—an =0,

and condition B then guarantees that X — Y =0.
Now, to close the loop through all three conditions, we only need to show that
condition C implies condition A, and this is the simplest implication of the lot. We

have
N oo
2 2
X = angullf= > a,
n=1 n=N+1
and the last sum goes to zero as N — oo because Bessel’s inequality provides the
convergence of the infinite sum. O

Traditionally, an orthonormal sequence that satisfies the first condition of Par-
seval’s theorem is called a complete orthonormal sequence, and the main conse-
quence of Parseval’s theorem is that for any such sequence {¢,} and any X € L?
we may represent X as a weighted sum of the elements of the sequence.

Parallelograms and Projections

The complete inner product spaces are so useful they have a special name —
Hilbert spaces. The finite-dimensional Hilbert spaces include R™ for all n < oo,
but even the infinite-dimensional Hilbert spaces have a geometry that continues to
echo familiar features of the finite dimensional Euclidean spaces. For example, if u
and v are elements of a Hilbert space, then simple algebraic expansion will prove
that

Il = ] + [l + oI = 2[Jull® + 2l vi*.

This identity already contains an important law of Euclidean geometry; it tells us
that the sum of the squares of the diagonals of a parallelogram equals the sum of
the squares of the sides.

HILBERT SPACE PROJECTION THEOREM. If Hy is a closed linear subspace of the
Hilbert space H, then for every X € H there is a umique Y in Hy such that

(Al1.1) X ~Y||=if{|{|X - 2Z||: Z € Hy }.
This Y can also be characterized as the unique element of Hy such that
(AL.2) (X ~Y,2Z) =0 for all Z € Hy.

In particular, any X € H may be written uniquely as X =Y + W where Y € Hy
and

WeH: ¥ (W:BW2)=0 VYZe Hp}.
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PrOOF. To show the existence of Y, we let & denote the value of the infimum
in (Al.1), and choose a sequence of elements Y¥;, € Hp such that

X ~Yn|? < a+1/n.

Now, if we let u = X —Y,, and v = X — ¥,,, the parallelogram identity tells us

Y = Yall? + [|(X = Yin) = (X = V)l = [|IX = Yo + |1 X = Yl %,
or, more informatively,

Yo = Yall? < 201X = Y12 4 201 = Yall? = 4l1X — (Yim + Ya)/2I12
But we have ||X — (Y, + ¥4)/2|]? = o? by definition of @ and the fact that the
average (Yo, + Y5,)/2 € Hy since Hy is a linear space, so we find

IYm = Yall® < 2(a + 1/m) + 2(a + 1/n) — 4o® = 2/m + 2/n.

This tells us that {Y,,} is a Cauchy sequence in H, so Y, converges to some Y € H.
But Hy is closed and Y, € Hy so in fact we have Y € Hy.

To prove the uniqueness of the minimizer Y, we can also use the parallelogram
law. For example, suppose that W € Hy also satisfies || X — W/|| = «, then we also
have ||Y + W||? = 4]|(Y + W)/2||2 > 4a2 so

Y~ W2 = 2|2 + 2| W] ~ [[¥ + WP
< 20% + 20 =0.
Next, to check the orthogonality condition (Al.2), we first note that by the defini-
tion of Y we have for all Z € Hy that

inf||(Y — X) +£2]2 = |X - Y%
But by calculus, we know that the quadratic function of ¢ given by
(Y ~ X) +2)]7 = ||IY - X||? - 26(X - Y, Z) +t*]| 2]
has a minimum at ¢ = (X — Y, Z)/||Z||2 with associated minimum value
IX Y12 = (X - ¥,2)*/|12IP". ‘

Since this minimum cannot be less than || X — Y||2, we must have (X —Y, Z)2 = 0.
Finally, we need to show that the orthogonality condition {A1.2) characterizes
Y. But, if there were a W € Hy with

(X —W,Z)=01{or all Z € Hy,

then the fact that ¥ satisfies the same condition would let us take the difference to
find

(Y -—W,Z) =0 for all Z € Hy.
But Y —~ W & Hp, so we can take Z =Y — W in the last equation to deduce that
W=Y. (]

There is a great deal more that one might discuss in this Appendix such as the
solution of elementary ODEs, the basics of power series, and the use of transforms,
such as those of Laplace and Fourier. We only use the simplest aspects of these
topics, and, with luck, the brief introductions that are given in the text will provide
all the necessary background.

APPENDIX II

Comments and Credits

In his preface to Fourier Analysis, Korner says ¢ ... a glance at the average
history of mathematics shows that mathematicians are remarkably incompetent
historians.” Ko&rner might have claimed exception for himself yet he did not, and
neither can this author. Nevertheless, history is the thread that binds us all, and
the acknowledgement of our teachers gives recognition to everyone who would teach.

Only a few of the ideas in this volume are new, but, with luck, not too many are
stale (and even fewer false). The main purpose of this appendix is to acknowledge
the sources that have been drawn upon. Also, at times, it points out a place
one might go for further information, or it shares an observation that did not fit
comfortably into the main text.

CHAPTER 1: RANDOM WALK AND FIRST STEP ANALYSIS

Virtually all probability books deal with simple random walk, but Feller [27]
takes the elementary treatment to remarkable heights. Even as the book begins to
show its age, anyone interested in probability needs a copy within easy reach.

Epstein [23] gives a careful description of casino games, and any excursion on
the Internet will reveal that there is a huge specialized literature on gambling. Much
of the specialized material is pap, but some is reasonably serious, such as Griffin
[28]. Gambling possibly deserves more attention from probabilists and statisticians.
After all, it is the cradle of our craft, and it is also finance of a remarkably pristine
sort.

Wilf [60] gives a deep but easy-to-read development of the modern theory of gen-
erating functions, the superset for our probability generating functions. Also, Lin
and Segel ([41], p. 234) offer modest but pointed coaching about the use of Newton
series versus the Taylor expansion: “... experience teaches us that in constructing
power series one should use the binomial expansion whenever possible.”

CHAPTER 2: FIRST MARTINGALE STEPS

This chapter puts more weight on L? martingales than is common. The mo-
tivation for this allocation of effort was the desire to give the reader additional
familiarity with L? arguments before digging into the construction of Brownian
motion in Chapter 3 and the I? construction of the Itd integral in Chapter 6. By
beginning with the L? theory, we also have the chance to meet localization argu-
ments before they are faced at gale force during the development of the Itd integral
in £2 6.
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Nevertheless, one really cannot do without the usual L' theory and the up-
crossing inequality; so, after soul searching and foot dragging, this material was
also added. For further discussion of the theory of discrete-time martingales, one
cannot do better than consult Neveu {50] or Williams [66].

The notion of a self-improving inequality is based on a comment from Pélya
and Szegd ([54], VoL.II, p. 30), where they note that Landau’s proof of the maximum
modulus principle shows how “... a rough estimate may sometimes be transformed
into a sharper estimate by making use of the generality for which the original
estimate is valid.”

The elegant argument of Lemma 2.1, which shows how to convert an “inner
inequality” to an L? inequality, can be traced back at least to Wiener’s work on the
ergodic theorem and the work of Hardy and Littlewood on the maximal functions
of differentiation theory.

CHAPTER 3: BROWNIAN MOTION

The decision to use the language of wavelets in the counstruction of Brownian
motion was motivated by the discussion of Brownian motion in Y. Meyer's inspira-
tional book Wavelets: Algorithms and Applications. True enough, the essence of
the construction goes back to P. Lévy, who simplified Wiener's construction through
the introduction of the Schauder functions {A,}, but there is still value in using
the new language. Dilation and translation properties are the defining elements of
wavelet theory, and they are also at the heart of the symmetry and fractal qualities
of Brownian motion.

For a quick, well-motivated introduction to the application of wavelets, one does
well to begin with the essay of Strang [59]. This paper gives a concise introduction
to the core of wavelet theory, and it also reports on the interesting contests between
wavelets and Fourier methods in the development of high-definition television. One
now finds a deluge of book-length treatments of wavelets. To choose among these
is a matter of taste, but one collection that seems to offer 2 good balance between
theory and practice is Benedito and Frazier (5]. -

The original construction of Wiener used the beautiful, but more complex,
representation:

co 2"-1 .
sin 7wkt
By =t Z Zi V2 .
s o + nz-——;k;;—‘ V2 —

Such sums over geometric blocks were fundamental to much of Wiener’s work in
harmonic analysis, and, in the case of Brownian motion, the trick of using blocks is
essential; other arrangements of the same surnmands may fail to converge uniformly.

For many years, the undisputed masterwork of Brownian motion was that of
1td and McKean [35]. This is still a remarkable book, but now there are many
rich sources that are more accessible. The two works that have been most useful
here are those of Karatzas and Shreve [39] and Revuz and Yor [55]. The collection
of formulas in the handbook of Borodin and Salminen [8] is a treasure trove, but
the user needs to bring a pick and shovel. The handbook’s gems are not easy to
unearth,
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CHAPTER 4: MARTINGALES: THE NEXT STEPS

The idea of using Jensen’s inequality to prove Holder’s inequality is a bit ironic;
after all, the usual proof goes via the elementary bound zy < z?/p + y?/q, yet one
of the easiest ways to prove this bound is by Jensen. Plus ¢a change ...

Dudley ([18], p. 140) gives an interesting historical account of Hélder’s inequal-
ity, including the surprising observation that the name Roger’s inequality may be
more appropriate.

Exercise 21 of Bass ([3], p. 80) motivated the argument that we used to obtain
the uniform integrability needed in the proof of Doob’s stopping time theorem.
Williams ([66] p. 128) provides an alternative method to establish the required
uniform integrability that is brief and elegant, though less quantitative. One of
the interesting consequences of Lemma 4.4 is that it yields a systematic way to
sharpen some common estimates. In particular, the lemma may be used to convert
almost any O-estimate that one obtains from Markov’s inequality into a o-estimate,
although in most cases there are several ways to get the same improvement.

CHAPTER 5: RICHNESS OF PATHS

Our development of the Skorohod embedding begins with a traditional idea, but
the linear algebra connections are new. Friedman [27] gives a motivated discussion
of the applications of dyads to integral equations and ODEs; it fits nicely with our
development of embedding theory.

Dubins (15] provides an important refinement of the Skorohod embedding that
is more consonant with a martingale view of the world. Dubins shows that es-
sentially any discrete-time martingale can be embedded in essentially any contin-
uous martingale without having to call on any exogeneous randomization. When
the square integrable martingale {M,} is embedded in Brownian motion, Dubins’
method again provides stopping times that satisfy the critical expectation identity
Efr.] = BlM2]

Exercise 5.3 was motivated by the discussion of Lévy’s construction of Brownian
motion given by Y. Meyer ([48] p. 18).

CHAPTER 6: 170 INTEGRATION

This reasonably barehanded approach to the Itd integral is distilled from many
sources, the most direct being lectures given by David Freedman one summer at
Stanford in the early 1980s. These lectures may in turn owe a debt to the amazingly
terse volume Stochastic Integrals by H. P. McKean. The treatments of stochastic
integration given in Chung and Williams (12], Durrett [21], and Karatzas and Shreve
[39] are all directed to a somewhat more sophisticated audience. The treatments
of Ikeda and Watanabe [33], Protter [51], Revuz and Yor [55], and Rogers and
Williams [56] are even more demanding, yet always worth the effort.

The Latin quote from Leibniz is taken from FEriksson et al. ([24], p. 60),
where one can also see an interesting photograph of the appropriate page from the
Leibniz manuseript. To judge from The Cambridge Companion to Leibniz [38],
mathematics only had a walk-on role in this philosopher’s life.
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CHAPTER 7: LOCALIZATION AND ITO’S INTEGRAL

Localization may seem technical, but it 1s a technicality that makes life easier
— not harder. If one’s goal were to give the most parsimonious development of
continuous time martingale theory, the efficient plan would be to take local martin-
gales as the primitive objects and to consider proper martingales just as a special
case. Naturally, such a plan does not make sense if one’s goal is rather to gain
more members for the club of people who understand both martingales and local
martingales. For many potential members, the mitiation fee would be too high.

The formulation and proof of Proposition 7.13 follow the discussion given by
Revuz and Yor ([55], p. 180).

CHAPTER 8: ITO’S FORMULA

The basic analysis-synthesis approach to 1td’s formula is present in some form
in almost any development of the formula, but here the aim has been to make the
steps absolutely explicit. The chain rule approach to the It6 formula for geometric
Brownian motion seems to be a novel twist, but this is not much to crow about
since the chain rule method is really quite crude. It must be set aside for the more
powerful tools of the box calculus.

The development of quadratic variation given here 1s based in part on that of
Karatzas and Shreve ([39], pp. 32-35).

The example in Exercise 8.5 of a local maitingale that is not a martingale is
from Revuz and Yor ([55], p. 194).

Axler et al. [1] is a delightful place to read further about harmonic functions.

CHAPTER 9: STOCHASTIC DIFFERENTIAL EQUATIONS

The existence and uniqueness theorems developed here follow a natural pattern

based on the Picard iteration scheme of ODEs. The application of Picard’s method:

to stochastic integrals goes back to It6 [34]. It is used almost universally and has
the benefit of applying equally well to systems of SDEs.

For one-dimensional SDEs there is an interesting alternative approach to ex-
istence theory due to Engelbert and Schmidt. A valuable development of this
approach is given in Karatzas and Shreve ([39], pp. 329-353).

The intriguing “squared” Browmian bridge of Exercise 9.2 was introduced by
Li and Pritchard [43], where it was found as the solution to a sock sorting problem!

The text havdly touched on the important topic of the numerical solution of
SDEs. A useful introduction to this rapidly developing field can be found in Kloeden
and Platen [40] together with the instructive experimental companion volume of
Kloeden, Platen, and Schurz [41).

Exercise 9.6 is the text’s only brush with the important topic of the estima-
tion of parameters of financial models. Even here we stop short of developing the
empirically essential idea of implied volatehty. Fortunately, the well known text
of Campbell, Lo, and MacKinlay [11] provides easy and accessible coverage of this
topic, as well as many other topics of importance in empirical finance.

o]
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CHAPTER 10: ARBITRAGE AND SDESs

This chapter owes a special debt to the founding fathers, Fisher Black and
Myron Scholes. The line-by-line dissection given here of their classic paper [7]
does not seem to have any direct antecedent, though there is a loose parallel in
Polya’s discussion of Buler’s memoir “Discovery of a Most Extraordinary Law of
the Numbers Concerning the Sum of Their Divisors.” In Induction and Analogy
wn Mathematics, Pélya ([52], pp. 90-107) translates almost all of Euler’s memoir
in order to comment on what it has to teach about the psychology of invention and
inductive reasoning.

The discussion of the put-call parity formula is based on the original article of
Stoll [60]. Exercise 10.3 and the minor observation that the Black-Scholes PDE
can be used to prove the put-call parity formula seem to be new.

The translation of the Mumonkan by Sekida [57] never fails to inspire.

CHAPTER 11: THE DIrrusioN EQUATION

There are enjoyable elementary discussions of the diffusion equation in Lin and
Segel [44] and Feynman et al. [26]. In the first of these, a diffusion equation is
found for the population of slime mold amoebae that is only a bit more involved
than the basic diffusion equation of our mice, yet it quickly leads to novel questions
in biology.

Korner [42] also presents a lively discussion of the diffusion (or heat) equation,
and in particular, he gives an entertaining synopsis of Kelvin's use of temperature
to estimate the age of the Earth. Burchfield (9] provides an extensive treatment of
Kelvin's investigation of this problem.

For the mathematician, the most focused account of the heat equation is prob-
ably the elegant text of Widder [62]. An especially instructive part of Widder’s
book is the discussion of his uniqueness theorem for nonnegative solutions for the
heat equation. Karatzas and Shreve ([39], pp. 256-261) also give an interesting
probabilistic discussion of Widder’s uniqueness theorem.

The parabolic maximum principle is treated in almost all texts on partial dif-
ferential equations. The discussion in John ([37], pp. 215-218) is patticularly clear,
and it helped form the development followed here. John ([37], pp. 211-213) also
gives a detailed discussion of an example showing nonuniqueness of solutions of the
heat equation.

Zwillinger ([68], pp. 235-237) gives a right-to-the-pomt discussion of Euler’s
equidimensional equation. The classic text of Carslaw and Jaeger [10] contains the
explicit solution of many boundary value problems for diffusion equations, although
the boundary constraints studied by Carslaw and Jaeger are better focused for
applications to physics than to finance.

Wilmott, Howison, and Dewynne [65] provide a valuable introduction to option
pricing from the point of view of of partial differential equations, and their mono-
graph [64] possibly provides the most extensive treatment of the PDE approach to
option pricing that is available.

Shaw’s monograph {58] gives a fascinating, individualistic development of de-
rivative pricing from a computational point of view that is not quite mainline PDE.
This book also contains much practical advice that cannot be found in other sources.
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CHAPTER 12: REPRESENTATION THEOREMS

The proof of Dudley’s Theorem follows his beautiful paper [17] with the small
variation that a conditioning argument in the original has been side-stepped.

The idea of exploiting alternative o-fields when calculating the density of the
hitting time of a sloping line is based on Karatzas and Shreve ([39], p. 198).

The proof of the martingale representation theorem given here is based in part
on the development in Bass ([3], pp. 51-53). The time change representation
(Theorem 12.4) is due to Dubins and Schwarz [16] and K.E. Dambis [14].

The w—A theorem is a challenge to anyone who searches for intuitive, memorable
proofs. The treatment given by Edgar ([23], pp. 5-7) is a model of clarity, and it
formed the basis of our discussion. Still, the search continues.

CHAPTER 13: GIRSANOV THEORY

The idea. of importance sampling occurs in many parts of statistics and simu-
lation theory, but the connection to Girsanov theory does not seem to have been
made explicit in earlier expositions, even though the such a development is prefectly
natural and presumably well-understood by experts.

The parsimonious proof of Theorem 13.2 was suggested by Marc Yor.

The treatment of Novikov’s condition is based on the original work of R.S.
Liptser and A.N. Shiryayev [45] and the exposition in their very instructive book
[46]. Exercise 13.3 modifies a problem from Liptser and Shiryayev [45], which for
some reason avoids calling on the Lévy-Bachelier density formula.

CHAPTER 14: ARBITRAGE AND MARTINGALES

The sources that had the most influence on this chapter are the original articles
of Cox, Ross, and Rubinstein [13], Harrison and Kreps [31], Harrison and Pliska
(32] and the expositions of Baxter and Rennie [4], Duffie [20], and Musiela and
Rutkowski (49].

The pedagogical artifice of the martingale pricing formula as the best guess
of a streetwise gambler evolved from discussions with Mike Harrison, although no
reliable memory remains of who was talking and who was listening.

Proposition 14.1 and its proof were kindly provided by Marc Yor.

The discussion of the American option and the condition for no early exercise
was influenced by ideas that were learned from Steve Shreve.

CHAPTER 15: FEYNMAN-KAC CONNECTION

The Feynman-Kac connection is really a part of Markov process theory, and
it is most often developed in conjunction with the theory of semi-groups and the
theory of Kolmogorov’s backward and forward equations. This chapter aimed for
a development that avoided these tools, and the price we pay is that we get only
part of the story.

The pleasant development of martingale theory solutions of PDEs given by
Durrett [21] formed the basis of our proof of Theorem 15.1, and the discussion
in Duffie [20] informed our development of the application of the Feynman-Kac
formula to the Black—Scholes model. Duffie [19] was the first to show how the
Feynman—Kac connection could be applied to Black-Scholes model with stochastic
dividends and interest rates.
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APPENDIX I: MATHEMATICAL TOOLS

There are many sources for the theory of Lebesgue integration. Both Billingsley
[6] and Fristedt and Gray [28] give enjoyable developments in a probability context.
Bartle [2] gives a clean and quick development without any detours.

Young [67] provides a very readable introduction to Hilbert space. Even the
first four chapters provide more than one ever needs in the basic theory of stochastic

integration.
THREE BoNUS OBSERVATIONS

o George Pélya seems to have changed his name! In his papers and col-
lected works we find Pélya with an accent, but the accent is dropped in
his popular books, How to Solve It and Mathematics and Plausible
Reasoning.

o There was indeed a General Case, a graduate of West Point. The General
gave long but unexceptional service to the U.S. Army.

o Michael Harrison has a useful phrase that everyone should have at hand if
challenged over some bold (or bald) assumption, such as using geometric
Brownian motion to model a stock price. The swiftest and least reproach-
able defense of such a long-standing assumption is simply to acknowledge
that it is a custom of our tribe.
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