Controlling Buildings:
A New Frontier in Feedback
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he protection of civil structures, including their material con-

tents and human occupants, is without doubt a worldwide
priority of the most serious current importance. Such protection
may range from reliable operation and comfort, on the one hand,
to survivability on the other. Examples of such structures leap to
one’s mind, and include buildings, offshore rigs, towers, roads,
bridges, and pipelines. In like manner, events that cause the need
for such protective measures are earthquakes, winds, waves, traf-
fic, lightning, and—today, regrettably—deliberate acts. Indica-
tions are that control methods will be able to make a genuine
contribution to this problem area, which is of great economic and
social importance. In this article, we review the rapid recent de-
velopments which have been occurring in the area of controlled
civil structures, including full-scale implementations, actuator
types and characteristics, and trends toward the incorporation of
more modern algorithms and technologies.

Introduction

One of the exciting new application areas for feedback system
design has to do with the protection of civil engineering struc-
tures from dynamic loadings such as strong earthquakes, high
wind, extreme waves, heavy traffic, and highway loading. Build-
ings and other physical structures, including highway infrastruc-
tures, have traditionally relied on their strength and ability to
dissipate energy to survive under severe dynamic loading. In re-
cent years, worldwide attention has been directed toward the use
of control and automation to mitigate the effects of these dy-
namic loads on these structures [1-3]. In fact, several buildings in
Japan, including a 70-story hotel and a 52-story office complex,
are currently employing active control strategies for motion con-
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trol. Active systems are also used temporarily in construction of
bridges or large span structures (e.g., lifelines, roofs) where no
other means can provide adequate protection.

Fig. 1 provides a schematic diagram of the structural control
problem. The basic task is to determine a control strategy that
uses the measured structural responses to calculate an appropri-
ate control signal to send to the actuator that will enhance struc-
tural safety and serviceability. To better understand the problem,
consider control of the tall building depicted in Fig. 2 using an
active mass damper (AMD) system. For this control system, a
small auxiliary mass, which is usually less than 1% of the total
mass of the structure, is installed on one of the upper floors of the
building, and an actuator is connected between the auxiliary
mass and the structure. Responses and loads at key locations on
the building are measured and sent to the control computer. The
computer processes the responses according to the control algo-
rithm and sends an appropriate signal to the AMD actuator. The
actuator then reacts against the auxiliary mass, applying inertial
control forces to the structure to reduce the structural responses
in the desired manner. A wealth of structural control studies have
been conducted since Yao [4] first introduced the concept of ac-
tive control of civil engineering structures. These include, for ex-
ample, H,/H_ control [5-8], sliding mode control [9-12],
saturation control [13, 14], reliability-based control [15-21],
fuzzy control [22-26], neural control [27, 28], modeling and
identification [29-32], nonlinear control [33-37], implementa-
tion issues [38-43], and benchmark studies [44, 45].

The first full-scale application of active control to a building
was accomplished by the Kajima Corporation in 1989 [46, 47].
The Kyobashi Seiwa building shown in Fig. 3 isan 11-story (33.1
m) building in Tokyo, Japan, having a total floor area of 423 m’.
A control system was installed, consisting of two AMDs—the
primary AMD is used for transverse motion and has a mass of
four tons, while the secondary AMD has a mass of one ton and is
employed to reduce torsional motion. The role of the active sys-

Fig. 1. Schematic diagram of the structural control problem.
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Fig. 2. Concept of the AMD control sy
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stem.

tem is to reduce building vibration under strong winds and mod-
erate earthquake excitations and consequently to increase the
comfort of occupants of the building.

Although nearly a decade has passed since construction of the
Kyobashi Seiwa building, a number of serious challenges remain
to be resolved before feedback control technology can gain gen-
eral acceptance by the engineering and construction professions
at large. These challenges include: (i) reduction of capital cost
and maintenance, (ii) eliminating reliance on external power,
(iii) increasing system reliability and robustness, and (iv) gaining
acceptance of nontraditional technology. Hybrid and semi-active
control strategies are particularly promising in addressing a
number of the challenges to this technology. The next section
discusses some of the hybrid control systems, which are more
mature. The subsequent section considers recently proposed
semi-active control strategies, employing devices that have the
possibility to provide the reliability and low power requirements
of passive devices, yet maintain the versatility and adaptability
of fully active systems. The final section more closely examines
a specific semi-active damper, based on the magnetorheological
technology. that has substantial promise for civil engineering ap-
plications.

Hybrid Control Systems

Hybrid control strategies have been investigated by many re-
searchers to exploit their potential to increase the overall reliabil-
ity and efficiency of the controlled structure [48]. A hybrid
control system is typically defined as one that employs a combi-
nation of passive and active devices. Because multiple control
devices are operating, hybrid control systems can alleviate some
of the restrictions and limitations that exist when each system is
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acting alone. Thus, higher levels of per-
formance may be achievable. Additionally,
the resulting hybrid control system can be
more reliable than a fully active system, al-
though it is also often somewhat more
complicated. To date, there have been more
than 20 buildings and 10 bridges (during
erection) that have employed feedback
control strategies in full-scale implementa-
tions (see Tables 1 and 2). The vast major-
ity of these have been hybrid control
systems. Research in the area of hybrid
control systems has focused primarily on
two classifications of systems: (i) hybrid
mass damper systems and (ii) hybrid base
isolation.

Hybrid Mass Damper

The hybrid mass damper (HMD) is the
most common control device employed in
full-scale civil engineering applications:
The HMD is a combination of a tuned mass
damper (TMD) and an active control ac-
tuator, The ability of this device to reduce
structural responses relies mainly on the
natural motion of the TMD. The forces
from the control actuator are employed to
increase the efficiency of the HMD and to
increase its robustness to changes in the
dynamic characteristics of the structure. The energy and forces
required to operate a typical HMD are far less than those associ-
ated with a fully active mass damper system of comparable per-
formance.

Many researchers have made significant contributions toward
development of HMDs that are compact, efficient and practically
implementable. A number of innovative, long-period devices
have been reported. For example, Tanida et al. [49] developed an
arch-shaped HMD that has been employed in a variety of appli-
cations, including bridge tower construction, building response
reduction, and ship roll stabilization. An arch-shaped hybrid
mass damper (see Fig. 4) was used during erection of the bridge

Fig. 3. Kyobashi Seiwa building with AMD installation.
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tower (height = 119m) of the Rainbow suspension bridge in To-
kyo to reduce large-amplitude vortex-induced vibration ex-
pected to occur at a wind speed of 7m/s [49, 50]. The mass ratio
for the hybrid damper used for the Rainbow bridge tower was
0.14% of the first modal mass of the structure, whereas a compa-
rable passive TMD would require a 1% mass ratio to achieve a
similar level of performance. Fig. 5b shows an extension of the
arch-shaped HMD, the V-shaped HMD [51], which has the ad-
vantage of having an casily adjustable fundamental period.
Three of these devices were installed in the Shinjuku Park
Tower, the largest building in Japan, in terms of square footage
(see Fig. 5a).

Two multi-step pendulum HMDs each having a mass of 170
tons [52] have been developed and installed in the Yokohama
Landmark Tower, Fig. 6, the tallest building in Japan. The pro-
cess of constructing the Landmark Tower provides yet another
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interesting and attractive application of active control, which is
associated with the way in which construction cranes were used
during its erection. Active control of the position of the crane was
carried out by two fans (see Fig. 7). These fans prevented exces-
sive displacement and rotation of the building panels while hoist-
ing and installing them, even under strong winds. Moreover, the
overall efficiency of the crane work was significantly improved,
and resulted in reduced construction time for the Tower.

The DUOX HMD [46, 53], which attains high control effi-
ciency with a small actuator force, has also been proposed and
employed in two buildings (see Fig. 8). Devices similar to the
DUOX HMD were also studied by Iemura and Izuno [54]. Ot-
suka et al. [55] conducted experiments in which a roller-
pendulum based HMD was applied to control a tower experienc-
ing seismic excitation. Information regarding similar fuli-scale

Controlled Buildings/Towers

Actiiation
| Mechanism

Contrél
. System |
‘Employed

Hydraulic -

: Hydraulic
_ablé Stiff-
ness System

r;ydraulic

4

Hydraulic

Seérvo
motor

HMD

200m, 56980
fon, 50 stoties

Servo
motor

HMD

Yokohama Land Mark-Tower: | Yokohama,
Kanagawa,

Japan

2561,
260610 ton,

70 stoties

Long Term Credit Bank Tokyo, Japan

| 129m, 40000
ton, 21 stories

1 HMD Servo

miotor

HMD Hydraulic

Ando Nishikicho Tokyo, Japan

Hotel Nikko Kanazawa Kanazawa,
Ishikawa,

Japan o

Sdm. 2600
ton; 14 stories

131m, 27000
tor;, 29 stories

Servo
motor

Hydraulic

HMD
(bUOX)

HMD

Hiroshima,
Japan

Hiroshima Riehga Royal Hotel

150m, 83000
ton; 35 stories

Servo
motor

 Penta-Ocean Exp: Building

Shinjuku Park Tower Tokyo, Japan

Sl botories

227m;
130000 ton,
52 stories

December 1997

21



1y of Actively Controlled Bt

structural control implementations employing HVIDs have been
well documented (e.g., see [47, 51, 57-69]).

The active/hybrid mass damper is also effective for retrofit
applications. Fig. 9 depicts the Nanjing Tower, a 340-meter high
television transmission and observation tower recently con-
structed in Nanjing, China. The tower has two observation decks,
the uppermost being at 240 m. During storms, excessive vibra-
tion occurs and accelerations at this upper deck can exceed hu-
man comfort limit of 0.15 m/sec”. Cheng et al. [56] proposed to
use an HMD system, combining a control actuator with a passive
tuned liquid damper to control wind-induced vibration of the
tower. Because the structure already existed, numerous physical
constraints had to be accommodated in the control system design
process. Wu and Yang [73] considered continuous sliding mode
control of the Nanjing Tower. The design chosen to be imple-
mented in the Nanjing Tower to bring the structural responses to
within acceptable limits is an innovative active mass damper sys-
tem reported in Cao et al. [71] and Riley et al. [72]. This design,
employing a 60-ton ring-shaped mass on sliding friction bear-
ings, was shown to adequately reduce the structural response via
a nonlinear control policy, while not violating the constraints.
This research was conducted as part of the U.S.-People’s Repub-
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lic of China cooperative program through the National Science
Foundation.

A number of other interesting ideas employing the mass
damper concept have been proposed. Seto [70, 74] investigated
the possibility of using active or passive forces acting between
two adjacent structures to reduce the seismic response of both
structures. As viewed from actual construction, many modermn
buildings might be divided into two or more adjacent substruc-
tures with connecting elements. Mita and Feng [75], Mita and
Kaneko [76], and Chai and Feng [77] presented studies of mega-
sub control systems for tall buildings. The control system takes
advantage of the mega-structure configuration by designing the
sub-structures contained in the mega-structure to act as multi-
degree-of-freedom tuned mass dampers. This approach implies
that the sub-systems act as vibration absorbers, and hence no ad-
ditional mass is required as would be the case with a more con-
ventional design. Craig et al. [78] showed that hybrid control
schemes, combining a simple active mass damper with the pas-
sive damping provided by cladding-structure interaction [791,
doubled the reduction in peak response due to passive damping
alone.

Researchers have investigated various control methods for
HMDs. For example, Shing et al. [80], Kawatani et al. [81], Petti
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Fig. 4a. Rainbow Bridge Tower while under construction.Fig. 4b. HMD employed during

tower erection.

Fig. 5a. Shinjuku Park Tower. Fig. 5b. V-Shaped hybrid mass damper employed in the
Shinjuku Park Tower.

et al. [82], Suhardjo et al. [5] and Spencer et al. [6] have consid-
ered optimal control methods for HMD controller design. Ta-
mura et al. [83] proposed a gain scheduling technique in which
the control gains vary with the excitation level to account for
stroke and control force limitations. Similarly, Niiya et al. [84]
proposed an ad hoc control algorithm for HMDs to account for
the limitations on the stroke. Adhikari and Yamaguchi [11] and
Nonami et al. [9] applied sliding mode theory to control struc-
tures with HMD systems.

December 1997

Hybrid Base Isolation

Another class of hybrid control systems
which has been investigated by a number
of researchers is found in the active base
isolation system, consisting of a passive
base isolation system combined with a
control actuator to supplement the effects
of the base isolation system. Base isolation
systems have been implemented on civil
engineering structures worldwide for a
number of years because of their simplic-
ity, reliability, and effectiveness. Excellent
review articles of base isolation systems
are presented by Kelly [85, 86], Buckle and
Mayes [87], and Soong and Constantinou
[88]. However, base isolation systems are
passive systems and are limited in their
ability to adapt to changing demands for
structural response reduction. With the ad-
dition of an active control device to a base
isolated structure, a higher level of per-
formance can potentially be achieved with-
out a substantial increase in the cost {89],
which is very appealing from a practical
viewpoint. Since base isolation by itself
can reduce the interstory drift and the abso-
lute acceleration of the structure at the ex-
pense of large absolute base displacement,
the combination with active control is able
to achieve both low interstory drift and, at
the same time, limit the maximum base
displacement with a single set of control
forces. A robust control for uncertain lin-
ear base-isolated structures was proposed
by Kelly et al. [90] and more recently by
Yoshida et al. {91], Schmitendorf et al.
[92], and Yang et al. [93].

Several small-scale experiments have
been performed to verify the effectiveness
of this class of systems in reducing the
structural responses. Reinhorn and Riley
[94] performed analytical and experimen-
tal studies of a small-scale bridge with a
sliding hybrid isolation system in which a
control actuator was employed between
the sliding surface and the ground to sup-
plement the base isolation system.

Also mentioned in this context is an-
other type of Aybrid base isolation system
which employs a semi-active, friction-
controllable fluid bearing in the isolation
system. Feng et al. [95] employed such
bearings in a hybrid base isolation system in which the pressure
in the fluid could be varied to control the amount of friction at the
isolation surface. Yang et al. [10, 96] investigated the use of con-
tinuous sliding mode control and variable structure system for a
base isolated structure with friction-controllable bearings.

Because base isolation systems often exhibit nonlinear be-
havior, researchers have developed various nonlinear control
strategies including fuzzy control [22], neural network based
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control [27, 28], and robust nonlinear control [97]. In addition,
Inaudi et al. [98] studied the use of frequency domain shaping
techniques in designing controllers.

Semi-Active Control Systems

Control strategies based on semi-active devices appear to
combine the best features of both passive and active control sys-
tems and to offer the greatest likelihood for near-term acceptance
of control technology as a viable means of protecting civil engi-
neering structural systems against earthquake and wind loading.
The attention received in recent years can be attributed to the fact
that semi-active control devices offer the adaptability of active
contro]l devices without requiring the associated large power
sources. In fact, many can operate on battery power, which is
critical during seismic events when the main power source to the
structure may fail.

According to presently accepted definitions, a semi-active
control device is one which cannot inject mechanical energy into
the controlled structural system (i.e., including the structure and
the control device), but has properties which can be controlled to
optimally reduce the responses of the system. Therefore, in con-
trast to active control devices, semi-active control devices do not
have the potential to destabilize (in the bounded input/bounded
output sense) the structural system. Preliminary studies indicate
that appropriately implemented semi-active systems perform

significantly better than passive devices and have the potential to
achieve the majority of the performance of fully active systems,
thus allowing for the possibility of effective response reduction
during a wide array of dynamic loading conditions [99-101]. Ex-
amples of such devices will be discussed in this section, includ-
ing variable-orifice fluid dampers, variable-stiffness devices,
controllable friction devices, controllable tuned liquid dampers,
controllable-fluid dampers, and controllable impact dampers.

Variable-Orifice Dampers

One means of achieving a variable-damping device is to use a
controllable, electromechanical, variable-orifice valve to alter
the resistance to flow of a conventional hydraulic fluid damper. A
schematic of such a device is given in Fig. 10. The concept of ap-
plying this type of variable-damping device to control the motion
of bridges experiencing seismic motion was first discussed by
Feng and Shinozuka [102], Kawashima and Unjoh [103], and
Kawashima et al. [104]. Subsequently, variable-orifice dampers
have been studied by Symans et al. [105] and Symans and Con-
stantinou [106] at the National Center for Earthquake Engineer-
ing Research in Buffalo, NY.

Sack and Patten [107] conducted experiments in which a hy-
draulic actuator with a controllable orifice was implemented in a
single-lane model bridge to dissipate the energy induced by vehi-
cle traffic (see also [108]). Fig. 11 shows a full-scale experiment

Fig. 6. Multi-step pendulum damper used in the Yokohama Landmark Tower.
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being conducted by Sack and Patten on a bridge on interstate
highway 1-35 in Oklahoma to demonstrate this technology. This
experiment constitutes the first full-scale implementation of
structural control in the United States.

The effectiveness of variable-orifice dampers in controlling
seismically excited buildings has been demonstrated through
both simulation and small-scale experimental studies {109-117].
Koborietal. [118] and Kamagata and Kobori [119] implemented
a full-scale variable-orifice damper in an active variable-

stiffness system to investigate adaptive control methods for an
active variable-stiffness system at the Kobori Research Com-
plex. The results of these analytical and experimental studies in-
dicate that this device is effective in reducing structural
1ESpONSES.

Variable-Friction Dampers
Various semi-active devices have been proposed which util-
ize forces generated by surface friction to dissipate vibratory en-

Table 2. Summary of Bridge Towers Employing Active Control During Erection
Name of Bridge Years Height, |Frequency| Moving Mass, Control Algorithm Number of
Employed Weight Range | Mass Ratio (%%) Controlled
(Hz) Modes
Rainbow Bridge 1991 ~ 1992 119m 0.26-0.95 6tonx?2 Feedback control 3
Pylon 1 4800 tonf 0.6
Pylon 2 1991 ~ 1992 117m 0.26-0.55 2 ton DVFB® 1
4800 tonf 0.14
Tsurumi-Tsubasa Bridge® | 1992 ~ 1993 183m 0.27-0.99 10tonx2 Optimal regulator DVFB 1
3560 tonf 0.16
Hakucho Bridge 1992 ~ 1994 127.9m 0.13-0.68 9 tonf Sub-optimal feedback 1
Pylon 1 2400 tonf 0.4 control
Pylon 2 1992 ~ 1994 131m 0.13-0.68 4tonx?2 DVFB 1
2500 tonf 0.36
Akashi Kaikyo Bridge 1993 ~ 1995 293m -0.127- 28 ton x 2 Optimal regulator DVFB 1
Pylons 1 & 2 24,650 tonf 0.8
Meiko-Central Bridge® 1994 ~ 1995 190m 0.18-0.42 8tonx?2 He. Feedback control 1
Pylon 1 6200 tonf 0.98-1.15
Pylon 2 1994 ~ 1995 190 0.16-0.25 0.17-0.38 1
6200 tonf
1st Kurushima Bridge 1995 ~ 1997 112m 0.23-1.67 6tonx?2 Sub-optimal regulator 3
Pylon 1 1600 tonf 0.15-2.05 control
Pylon 2 1995 ~ 1997 145m 0.17-1.70 10tonx 2 Ha Feedback control 3
2400 tonf 0.3-2.6
2nd Kurushima Bridge 1994 ~ 1997 166m 0.17-1.06 10ton x 2 DVEB/H.. 2
Pylon 1 4407 tonf 0.41
Pylon 2 1995 ~ 1997143m | 0.20-1.45 10 ton x 2 Fuzzy control More than 3
4000 tonf 0.54-1.01
3rd Kurushima Bridge 1995 ~ 1996 179m 0.13-0.76 11tonx2 Variable gain DVFB 1
Pylon | 4500 tonf 03-24
Pylon 2 1994 ~ 1996 179m 0.13-0.76 ilton x2 Ho output feedback 1
4600 tonf 0.3-2.4 control
Nakajima Bridge® 1995 ~ 1996 7lm 0.21-1.87 35tonx2 Fuzzy control 3
580 tonf 1.0-10.6
*Percent of first modal mass.
"Direct velocity feedback. ’
“Cable-stayed bridge. Others are suspension bridges.
December 1997 25



ergy in a structural system. Akbay and Aktan [120, 121] and
Kannan et al. [122] proposed a variable-friction device that con-
sists of a friction shaft that is rigidly connected to the structural
bracing. The force at the frictional interface was adjusted by al-
lowing slippage in controlled amounts. A similar device was
considered at the University of British Columbia [123-125].
Through analytical studies, the ability of these semi-active de-
vices to reduce the interstory drifts of a seismically excited struc-
ture was investigated [125]. In addition, a semi-active
friction-controllable fluid bearing has been employed in paralle] with
a seismic isolation systern in Feng et al. [95] and Yang et al. [96].

Fig. 7. Actively controlled crane used during construction of the
Yokohama Landmark Tower.

Actuator
/ Spring _
// Spring
/ L1
AMD 7 AAR
T - Damper

o — 1
@] O

Building

Fig. 8. Concept of the DUOX system.
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Controllable Tuned Liguid Dampers

Another type of semi-active control device utilizes the motion
of a sloshing fluid or a column of fluid to reduce the responses of
a structure. These liquid dampers are based on the passive tuned
sloshing dampers (TSD) and tuned liquid column dampers
(TLCD). As in a tuned mass damper (TMD), the TSD uses the
liquid in a sloshing tank to add damping to the structural system.
Similarly, in a TLCD, the moving mass is a column of liquid
which is driven by the vibrations of the structure. Because these
passive systerns have a fixed design, they are not very effective
for a wide variety of loading conditions, and researchers are
looking toward semi-active alternatives for these devices to im-
prove their effectiveness in reducing structural responses [126].
Lou et al. [127] proposed a semi-active device based on the pas-
sive TSD, in which the length of the sloshing tank could be al-
tered to change the properties of the device. Haroun et al. [128]
and Abe et al. [129] presented a semi-active device based on a
TLCD with a variable orifice.

Controllable-Fluid Dampers

All of the semi-active control devices discussed until now in
this section have employed some electrically controlled valves or
mechanisms. Such mechanical components can be problematic
in terms of reliability and maintenance. Another class of semi-
active devices uses controllable fluids. The advantage of control-
lable fluid dampers is simplicity; they contain no moving parts
other than the piston.

Two fluids that are viable contenders for development of con-
trollable dampers are: (i) electrorheological (ER) fluids and (i1)
magnetorheological (MR) fluids. The essential characteristic of
these fluids is their ability to reversibly change from a free-
flowing, linear viscous fluid to a semi-solid with a controllable
yield strength in milliseconds when exposed to an electric (for
ER fluids) or magnetic (for MR fluids) field. Although the dis-
covery of both ER and MR fluids dates back to the late 1940s
[130-132], research programs have to date concentrated primar-
ily on ER fluids. A number of ER fluid dampers (see Fig. 12)
have recently been developed, modeled, and tested for civil engi-
neering applications [133-138].

Recently developed MR fluids appear to be an attractive alter-
native to ER fluids for use in controllable fluid dampers [139-
141] (see also: http://www.rheonetic.com/mrfluid/ and
http://www.nd.edu/~quake/). MR fluids have an inherent ability
to provide a simple and robust interface between electronic con-
trols and mechanical components. Much of the current interest in
MR fluids can be traced directly to the need for reliable, fast-
acting valves necessary to enable semi-active vibration control
systems [142-144]. MR fluid technology provides the means for
enabling such a valve.

A typical magnetorheological fluid consists of 20-40% by
volume of relatively pure, soft iron particles, e.g. carbonyl iron,
suspended in an appropriate carrier liquid such as mineral oil,
synthetic oil, water, or a glycol. MR flnids made from iron parti-
cles exhibit a yield strength of 50-100 kPa for an applied mag-
netic field of 150-250kA/m (~2-3 kOe). MR fluids are not highly
sensitive to contaminants or impurities such as are commonly
encountered during manufacture and usage. Further, because the
magnetic polarization mechanism is not affected by the surface
chemistry of surfactants and additives, it is relatively straightfor-
ward to stabilize MR fluids against particle-liquid separation in

IEEE Control Systems
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spite of the large density mismatch. Antiwear and lubricity addi-
tives can also be included in the formulation without affecting
strength and power requirements [1435, 146].

As a controllable fluid, the primary advantage of an MR fluid
stems from the large, controlled yield stress it is able to achieve.
Typically, the maximum yield stress of an MR fluid is an order of
magnitude greater than that of the best ER fluid, while their vis-
cosity is comparable. This has a profound impact on ultimate de-
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Fig. 10. Schematic of a variable-orifice damper.

vice size and dynamic range, because the minimum amount of
active fluid in a controllable fluid device is proportional to the
plastic viscosity and inversely proportional to the square of the
maximum field induced yield stress [139, 141]. This means that
for comparable mechanical performance the amount of active
fluid needed in an MR fluid device will be about two orders of
magnitude smaller than that of an ER device.

From a practical application perspective, an advantage of MR
fluids is the ancillary power supply needed to control the fluid.
While the total energy and power requirements for comparably
performing MR and ER devices are approximately equal [139,
141], only MR devices can be powered directly from common,
low-voltage sources. Further, standard electrical connectors,
wires, and feedthroughs can be reliably used, even in mechani-
cally aggressive and dirty environments, without fear of dielec-
tric breakdown. This aspect is particularly important in
cost-sensitive applications.

Another advantage of MR 1luids is their relative insensitivity
to temperature extremes and contaminants. Carlson and Weiss
[140] indicated that MR fluids can operate at temperatures from
-40° to 150°C with only slight variations in the yield stress. This
arises from the fact that the magnetic polarization of the parti-
cles, and therefore the yield stress of the MR fluid, is not strongly
influenced by temperature variations. Similarly, contaminants
(e.g., moisture) have little effect on the fluid’s magnetic proper-
ties. A summary of the properties of both MR and ER fluids is
given in Table 3.

The future of MR devices for civil engineering applications
appears to be quite bright. Spencer et al. [147-149], Carlson and
Spencer [150], and Dyke et al. [99-101] have conducted a
number of pilot studies to assess the usefulness of MR dampers
for seismic response reduction. Dyke et al. [99-101] have shown
through simulations and laboratory experiments that the MR
damper, used in conjunction with recently proposed acceleration
feedback control strategies, significantly outperforms compara-
ble passive configurations of the damper while using only a frac-
tion of the power required by fully active devices. More details
regarding the application of MR technology to control of civil
engineering structures will be given in the next section.

Semi-Active Impact Dampers
Passive impact dampers have been around for many years and
have been used very successfully to reduce vibration and noise in
turbines and gear cases. Studies of multi-particle dampers under
random excitation [151] have shown that significant vibration re-
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Table 3. Summary of the Properties of Today’s MR and ER Fluids [145, 146]

Semi-Active Control of Civil
Engineering Structures

Property MR Fluids ER Fluids Magnetorheological dampers are

Max. Yield Stress 50-100 kPa 2.5 «Pa one of the most promising realizations
of semi-active technology for applica-

Ty e tion to full-scale civil structures. This
Maximum Field ~250 kA/m ~4 kV/mm section summarizes the work in
Spencer et al. [147-149], Dyke et al.

Plastic Viscosity, M, 0.1-1.0 Pa-s 0.1-1.0 Pa-s [99-101], and Carlson and Spencer
Operable Temp Range -40° to 150° C +10° to 90° C [150] to demonstrate the efficacy of MR

dampers for seismic response reduc-

Stability Unaffected by most impurities | Cannot tolerate impurities | tion. Both scale-model and full-scale
Response Time milliseconds milliseconds studies are presented.

Density 304 g/cm3 1to2 g/cm3 Scale-Model Studies

M,/ Tee) 101010 5/Pa 107 - 1078 s/Pa Fig. 13 is a diagram of the three-

Maximum Energy Density | 0.1 J oules/cm®

0.001 7 oules/crn3

story model building that was employed
in the pilot MR damper studies con-

Power Supply (typical) 2-25V

2000-5000 V
1-2A 1-10 mA

ducted at the Structural Dynamics and
Control / Earthquake Engineering

duction can be achieved in lightly damped systems with a rela-
tively small multi-particle impact damper. Single particle
dampers of the same total mass give greater vibration reduction
in certain frequency bands but may have little or no effect in other
frequency bands. To remedy this defect, semi-active control has
been applied to impact dampers, such that only favorable im-
pacts are permitted [152-154].

Fig. 11. Full-scale experiment on Interstate 35 in Oklahoma.
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Laboratory at the University of Notre
Dame (see
http://www.nd.edu/~quake/). The test
structure used in this experiment is designed to be a scale model
of the prototype building discussed in Chung et al. [38] and is
subject to one-dimensional ground motion. A single magnetor-
heological (MR) damper is installed between the ground and the
first floor, as shown in Fig. 13. The MR damper employed here,
the Lord SD-1000 linear MR fluid damper, is a small, monotube
damper designed for use in a semi-active suspension system in
large on- and off-highway vehicle seats. The SD-1000 damper is
capable of providing a wide dynamic range of force control for
very modest input power levels. The damper is 3.8 cm in diame-
ter, 21.5 cm long in the fully extended position, and has a+2.5 cm
stroke. An input power of four watts is required to operate the
damper at its nominal maximum design current of one amp.
Because of the intrinsically nonlinear nature of all semi-
active control devices, development of control strategies that are
practically implementable and can fully utilize the capabilities of
these unique devices is a challenging task. Various nonlinear
control strategies have been developed to take advantage of the
particular characteristics of the semi-active devices, including
bang-bang control [138], clipped optimal control [99-
101,108,112}, bi-state control [108, 112], fuzzy control methods
[155], modulated homogeneous friction [156] and adaptive non-

iLoad

ER/MR Fluid

}B Controllable Valve

Yo%
Fig. 12. Schematic controllable fluid damper.

Accumulator .
AN |
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linear control [ 119]. Caughey [157] proposed a variable stiffness
algorithm that employed a semi-active implementation of the
Reid spring [158] as a structural element which could provide
large amounts of damping for a very small expenditure of control
energy.

To evaluate the effectiveness of the semi-active control sys-
tem employing the MR damper, acceleration feedback control
strategies [99-101] based on H» performance measures were im-
plemented on the laboratory structure. The three-story model
structure was subjected to a scaled version of the N-S component
of the 1940 El Centro earthquake, and the measured responses
were recorded. Fig. 14 shows the uncontrolled (i.e., without the
MR damper attached) and semi-actively controlled responses for
the tested structure. The effectiveness of the proposed control
strategy is clearly seen, with peak third-floor displacement being
reduced by 74.5% and the peak third floor acceleration being re-
duced by 47.6%.

The semi-active control systems performed significantly bet-
ter than two passive configurations that were simultaneously
considered. A 24.3% reduction in the peak third-floor displace-
ment and a 29.1% reduction in the maximum interstory displace-
ment were achieved as compared to the best passive case.
Moreover, these results were obtained while also achieving a
modest reduction in the maximum acceleration over the compa-
rable passive case. These results demonstrate the significant po-
tential for the use of MR technology in dynamic hazard
mitigation.

Full-Scale Seismic MR Damper

To prove the scalability of MR fluid technology to devices of
appropriate size for civil engineering applications, a full-scale,
MR fluid damper has been designed and built [149, 150]. For the
nominal design, a maximum damping force of 200,000 N (20-
ton) and a dynamic range equal to ten were chosen. A schematic
of the large-scale MR fluid damper is shown in Fig. 15. The
damper uses a particularly simple geometry in which the outer
cylindrical housing is part of the magnetic circuit. The effective
fluid orifice is the entire annular space between the piston out-

Xlaa

> — -~

i

i

{

5('32 ;

-+ oo ¥
Current
Driver

A

Control
Computer

Fig. 13. Diagram of MR damper implementation.

December 1997

Table 4. Design Parameters for 20-Ton Seismic Damper
Stroke 8 cm
Fo!F. . 10.1 @ 10 cmy/s
Cylinder Bore (ID) 20.32 cm
Max. Input Power <50 watts
Max. Force (nominal) 200,000 N
Effective Axial Pole Length 8.4 cm
Coils 3 x 1050 turns
Fluid 0/ T ) 2x 1010 s/Pa
Fluid 1 Pa-s
Fluid T ;) Max 70 kPa
Gap 2 mm
Active Fluid Volume ~90 cm®
Wire 16 gauge
Inductance (L) 6.6 henries
Coil Resistance (R) 3 x 7.3 ohms

side diameter and the inside of the damper cylinder housing.
Movement of the piston causes fluid to flow through this entire
annular region. The damper is double-ended, i.e., the piston is
supported by a shaft on both ends. This arrangement has the ad-
vantage that a rod-volume compensator does not need to be in-
corporated into the damper, although a small pressurized
accumulator is provided to accommodate thermal expansion of
the fluid. The damper has an inside diameter of 20.3 cm and a
stroke of £8 cm. The electromagnetic coil is wound in three sec-
tions on the piston. This results in four effective valve regions as
the fluid flows past the piston. The coils contain a total of about
1.5 km magnetic wire. The completed damper is approximately 1
m long and with a mass of 250 kg. The damper contains approxi-
mately five liters of MR fluid. The amount of fluid energized b;/
the magnetic field at any given instant is approximately 90 cm”.

Displacement
X5 (Cm)

Acceleration
Ya3 (CMV8EC?)

2 25 3 35 4 45
Time {sec)

Fig. 14. Controlled and uncontrolled structural responses due to El
Centro earthquake.
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Fig. 15. Schematic of 20-ton MR fluid damper.

A summary of the parameters for the 20-ton damper are given in
Table 4.

Fig. 16 shows the experimental setup at the University of No-
tre Dame for the 20-ton MR fluid damper. The damper was at-
tached to a 7.5 cm thick plate that was grouted to a 2 m thick
strong floor. The damper is driven by a 560 kIN actuator config-
ured with a 305 lpm servo-valve with a bandwidth of 80 Hz. A
Schenck-Pegasus 5910 servo-hydraulic controller is employed
in conjunction with a 200 MPa, 340 lpm hydraulic pump.

Fig. 17 shows the measured performance for the damper at 5
cm/sec (triangular displacement). The maximum force meas-
ured at full magnetic field strength is 201 kIN at a piston velocity
of 5 cm/sec, which is within 0.5% of the analytically predicted
result [149]. Moreover, the dynamic range of the damper is well
over the design specification of 10.

Because of their mechanical simplicity, low power require-
ments and high force capacity, magnetorheological (MR) damp-
ers constitute a class of semi-active control devices that meshes
well with the demands and constraints of civil infrastructure ap-

Fig. 16. Experimental setup for 20-ton MR fluid damper.
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plications and will likely see increasing interest from the engi-
neering community as a viable means for mitigating - the
devastating effects of severe dynamic loads on civil structures.

Conclusions

Protecting civil structures from natural and other types of un-
wanted dynamic influences is continuing to move steadily up the
list of high-priority needs of the world community. The struc-
tures alone represent a huge investment of resources. Moreover,
they are platforms that carry within them very expensive equip-
ments, irreplaceable records, and priceless human cargo.

As our readers have seen over and over again, the traditional
methods of dealing with these exigencies are being reconsidered,
and are beginning to give way to the influence of more recent
technologies. Of course, along with these technologies comes

250 ! ! ! , !
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Fig. 17. Measured performance for 20-ton MR fluid damper at 5
cmisec.
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the possibility of more advanced design goals, more modern al-
gorithms, and more state-of-the-art implementations.

Full-scale buildings are being controlled successfully; and at-
tention is turning toward the features of a whole new family of
actuators, especially those of semi-active type. Controllable
fluid dampers provide a fascinating class of instances, with the
magnetorheological fluids offering attractive properties.

It turns out that models for such devices lead one into issues of
hybrid control and hysteresis, both of which are topics of consid-
erable current interest in the controls community.

In summary, the modern thrust toward control of civil struc-
tures is providing a new opportunity for control engineers to
make their work more understandable to the public, while at the
same time making a genuine technical, economic, and social
contribution.

And, there are hundreds of interesting ideas to ponder ... !
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