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The crossing hazard function problem 
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Abstract. Application for the Mantel-Haenzel statistic to the analysis of survival distributions with 
crossing hazard functions is discussed. Both the situation of a prespecified crossing time and a 
suspected crossing sometime during the study's course are examined. An example from a cancer 
clinical trial is included. 

1 Introduction 

Real-life situations in which there is a reversal at some point in time in the direction 
of the difference between two survival or time-to-response distributions are attracting 
current statistical attention. Fleming et al. (1980) discuss a Kolmogorov-Smirnov 
statistic which is sensitive to crossing hazard situations. Stablein et aL (1981) focused 
attention on a situation in which initial analysis had shown limited difference in two 
survival curves over the full duration of a clinical study. But re-examination of the 
data showed that the evident superiority for one treatment early on in the study was 
negated by its apparent inferiority after about a year. Mantel (1980) alluded to the Red 
Dye 40 problem in which an acceleration model was used to explain why the early 
evidence for a neoplastic effect of Red Dye 40 was not reflected by the results of full- 
duration statistical analysis-the tumors had been accelerated in appearance by the 
Red Dye 40 with a consequent deficiency in later appearing tumors. Breslow et aL 
(1984), Stablein & Koutrouvelis (1985) have continued the examination of distribu- 
tional testing under acceleration or crossing hazard alternatives. 

Mantel (1966) discussed the situation of two exact survival patterns (i.e. without 
sampling variability) which crossed each other at one or more points in time. It was 
pointed out that one cannot properly address the problem of comparing two sample 
survival curves when it is unclear how to say which is the superior of two exactly- 
known but crossing survival curves. Specifically, the curves relative superiority is a 
function of one's weighting or value system. 

In their work comparing hazard functions, Stablein et aL (1981) followed the lead of 
Cox (1972) by which no functional form for the survival distribution is postulated. 
But their approach did have to postulate a functional form by which the relative 
hazard function varied with time; a quadratic relationship in time was used. The 
analysis of their example demonstrated that patients with non-resectable gastric 
carcinomas who had received both radiation and chemotherapy had initially poorer 
survival, but after about 1 year, surviving combined modality patients showed lower 
risks of death than did survivors who had received chemotherapy alone. While it was 
the crossing hazard phenomenon which had brought attention to the situation the fact 
that the relative hazard function was not constant was the focus of the solution. The 
time-dependence of the relative hazard function does not necessarily connote that the 
hazard functions cross during the time period of interest. Thus, if the relative hazard 
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function had remained, though time-dependent, on one 'side of unity there would 
probably have been little concern that the time dependence had been ignored. 

The present work is concerned with the crossing hazard function aspect of the 
problem rather than with the aspect of non-constancy of the relative hazard function. 
Note that in order for survival curves to cross an earlier crossing of the hazard is 
required. While not referring to the multiple strata or covariates, any methodology to 
be suggested should be equally suitable to the homogeneous case and to the case of 
multiple strata. 

2 The crossing point pre-specified, exactly or approximately 

Consider the following situation. Suppose that initially two survival curves separate, 
with one showing the lesser survival probability and greater cumulative probability of 
death. The two curves may later come back together and, should they cross, the curve 
previously showing the higher survival probability would subsequently show the lower 
survival probability. (If data as of the crossing point were analysed by some logrank 
approach, the fact that the survival curves crossed would not preclude the possibility 
of a statistically significant result in favor of the therapy that had seemed superior at 
the start). A reversal in the relative position of the hazard function (i.e. force-of- 
mortality or instantaneous death rate) is required prior to the survival curves coming 
together again. 

For one survival curve to show initially poorer survival would have required that its 
hazard function was originally worse of the two-but for the survival curves to come 
back together would have additionally required that from some later point, the second 
curve must have a cumulatively higher hazard function. Suppose we have some 
advance basis for knowing that at a time point, s, there is a reversal in the merits of 
two hazard functions. Admittedly, this is a difficult situation to envisage, but, for 
completeness, it warrants consideration. Also, it permits contrast with the handling of 
other situations. 

The logrank computing procedure as given in Mantel (1966) neatly resolves the 
situation. That computing procedure requires that at each response time, or for each 
short observation period, a 2 x 2 contingency table be constructed. Then, following the 
methodology of Mantel & Haenszel (1959), one obtains for each contingency table the 
observed, and expected, number of failures in, say, the study group, together with the 
associated hypergeometric variance. That is for the ith table with Nji subject and O9 
failures on treatment i (j= 1,2), 

E.=Nli (O1i+ O21) 

I Nli+N2i 

and 

Nli N2i (0li+ 021) (Nli+N2i-Nli-O021) 

(N11+N21)2 (N-+N2 - 1) 

But now, instead of considering the cumulated difference between observed and 
expected over all tables, one considers separately the difference of the cumulated 
differences prior to and subsequent to the anticipated crossing point. 

Thus, we define the statistic 

W2=h[e(re-Ei) Z (t,S]21V 

where 
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Z(ti,s)=, { t>s 

and 

V=IVi. WU is distributed as a Xi. 

3 Letting the data suggest the crossing point 

A more likely situation than knowing where the true crossing point occurred would be 
one in which we suspected the hazard functions to cross, but had no prior basis for 
designating the point in time. Minimally, we can see where the data suggest the 
crossing point to be. 

For this purpose, suppose we try every possible point in time as a candidate crossing 
point. Actually we need consider as potential candidates only a single time point 
between successive sample response times. For each candidate crossing time we would 
proceed as in the preceding section, cumulating the difference between observed and 
expected prior to the candidate crossing point and adding the negative of the 
subsequent cumulated difference. The crossing point suggested by the data would then 
be the time point or rather time interval between two successive failures, for which the 
calculated chi-square is maximal (Note a relationship to the suggestion in Mantel 
(1966) for using the maximal chi-square over time as a test statistic as developed by 
Muenz et al. (1977).) 

One can calculate 

W= sup(JWs) 
s 

the maximal chi-square statistic to test for the equality of the two survival distribu- 
tions. The null distribution of W can be determined by simulation. Table 1 contains 
for the given sample sizes and censoring levels simulated (Monte Carlo) critical values 
for the statistic obtained from 2000 random samples of distinct survival times. 
Random samples under the null distribution of distributional equality were generated 
as in Meunz et al. (1977) using the GGUBFS (IMSL (1980)) random number 
generator. When censored, a uniform censoring variate was generated for each 
observation and applied to the same sequence of failure times, for the 20% censoring 
level the same sequence of censoring variates were used as for the 10% level. 

Table 1. Maximum chi-square critical values for test of distributional 
equality 

Sample size Critical values 
per treatment % censoring =0.10 =0*05 =0.01 

20 0 6-69 8-33 12 04 
10 6*52 8*10 12-42 
20 6-82 8*23 11-80 

30 0 6*59 8*17 11*19 
10 6-71 8-20 11-13 
20 6*49 7-91 10-68 

40 0 6-57 8*19 1149 
10 6-55 7-94 1182 
20 6-58 8-07 11-22 

50 0 6.56 8-12 11-11 
10 6-36 7-91 11-32 
20 6.68 7-93 12-13 
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If there is a separation, but no crossing of the hazard functions, the maximum of the 
chi-square value so described should tend to be after the last, or possibly before the 
first, observed failure time. But due to chance variation, it would not be unlikely to 
have the maximal chi-square correspond to one of the very early or one of the very 
late intervals between successive failures. Examples would be where either the first or 
the last response time corresponded to the group which otherwise displayed the lower 
degree of risk. In all this, we must recognise that there can be no real crossing point 
unless the relative hazard function differs from unity. If there is no treatment 
difference, there can be no crossing point. 

4 Illustration 

The data set employed by Stablein et al. (1981) are used for illustration purposes here. 
These data report on a experiment with 45 individuals receiving both chemotherapy 
and radiation treatment and another 45 receiving only chemotherapy for the treat- 
ment of locally unresectable gastric cancer. Of the 45 receiving the combined modality 
therapy, 37 were observed to die, with death times ranging from day 17 to day 1366 
while the range of still-alive times for the eight survivers at the time of analysis ranged 
from 882 to 1472 days. The death times for the 38 failures on chemotherapy ranged 
from day 1 to 1271, the still-alive times for the remaining 7 range from day 381 to day 
1519. Figure 1 displays the survival and log (-log (survival)) curves for the experi- 
ment; each visually indicates a lack of constancy of the relative hazard function. 
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Fig. 1. Estimated survival and log (-log (survival)) curves by treatment of gastric cancer experiment 
chemotherapy+ radiation; __ chemotherapy only. 

The overall Mantel-Haenszel chi-square statistic is calculated to be 
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(37-32.13)2/18.03 = 1 32 with a p value of 0 254. Had one prespecified the alternative 
hypothesis of a crossing of the relative hazard functions at one year, the observed and 
expected death in the two sets created by partitioning at 365 days could be deter- 
mined. The statistic W365 is calculated to be [(25-16-69)-(12-15.44)]2/18-03=7.65 
p<0*01. Thus the implications of the two tests are in conflict. 

More realistically one may want to protect against the possibility of crossing hazards 
but may not be able to prespecify the time point for the suspected crossing. For this 
data set there are 70 distinct non-empty partitions. The statistics WJ are plotted 
against time in Fig. 2. Note that for all partitions between 220 and 350 days, the 
statistic exceeds the 0.05 level criterian from Table 1. The maximum statistic over all 
partitions, W, equals 12.05 for the appparent hazard crossing between days 315 and 
352. It is clear that even by searching for the maximal chi-square a difference as large 
as that observed is unlikely to occur if the distributions are the same. Thus it seems 
reasonable to claim the distributions are significantly different as the observed value is 
sufficiently extreme. 
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Fig. 2. Chi-square statistics WJ for gastric cancer experiment. 

At 11 months, the estimated time of the hazards crossing, a nearly 40 percentage 
point survivorship benefit for chemotherapy is observed. In fact, the study was 
terminated early because of this substantial early survival advantage. By 3 years the 
curves had come together and further follow-up of these patients showed a persistant 
10% advantage beyond 5 years for the combination arm. Increased cures, not just 
short term survival advantage, is the objective of treatment in this disease stage. It is 
hoped that radiation provides for sterilization of locally residual disease present after 
surgery and thus an increased cure rate. In the combination arm chemotherapy was 
delayed for at least 10 weeks during irradiation and it was hypothosized that this may 
have permitted disseminated disease spread. A current protocol addresses this issue by 
sandwiching radiation between chemotherapy treatments. 

Discussion 

Continued developments in the analyses of censored survival data when non-constant 
hazard ratios exist are required. Clearly the local optimality of the log rank procedure 
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for detection of constant hazard ratio differences is well known. The procedure 
discussed here is not intended as a competitor in this situation. When non-constant 
hazard ratios exist multiple analyses may be required, and each has attendant 
advantages and disadvantages. For example the modified Smirnov procedure has good 
power properties when hazards are equal initially and diverge at a later time point. 
Alternatively the proposed approach provides for an estimate of the time of the 
hazards crossing point. When hazard functions cross one may be interested in 
maximising cure rates (i.e. the tail of the curve), the mean survival, the median 
survival or a plethora of other approaches which could be contemplated. Selection of 
the objective will be a function of the medical problem, prior knowledge and the 
analysis technique available. The approach detailed herein should be useful when one 
has a single crossing of the hazard functions. 
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