
Estimating the Survival Function

One-sample nonparametric methods:

We will consider three methods for estimating a survivorship
function

S(t) = Pr(T ≥ t)

without resorting to parametric methods:

(1) Kaplan-Meier

(2) Life-table (Actuarial Estimator)

(3) Cumulative hazard estimator
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The Kaplan-Meier Estimator

The Kaplan-Meier (or KM) estimator is probably the most popular
approach. It can be justified from several perspectives:

• product limit estimator

• likelihood justification

• redistribute to the right estimator

We will start with an intuitive motivation based on conditional
probabilities, then review some of the other justifications.
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Motivation:

First, consider an example where there is no censoring.

The following are times of remission (weeks) for 21 leukemia
patients receiving control treatment (Table 1.1 of Cox & Oakes):

1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23

How would we estimate S(10), the probability that an individual
survives to time 10 or later?

What about S̃(8)? Is it 12
21 or 8

21?
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Let’s construct a table of S̃(t):

Values of t Ŝ(t)

t ≤ 1 21/21=1.000

1 < t ≤ 2 19/21=0.905

2 < t ≤ 3 17/21=0.809

3 < t ≤ 4

4 < t ≤ 5

5 < t ≤ 8

8 < t ≤ 11

11 < t ≤ 12

12 < t ≤ 15

15 < t ≤ 17

17 < t ≤ 22

22 < t ≤ 23
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Empirical Survival Function:
When there is no censoring, the general formula is:

S̃(t) =
# individuals with T ≥ t

total sample size
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Example for leukemia data (control arm):
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What if there is censoring?

Consider the treated group from Table 1.1 of Cox and Oakes:

6+, 6, 6, 6, 7, 9+, 10+, 10, 11+, 13, 16, 17+

19+, 20+, 22, 23, 25+, 32+, 32+, 34+, 35+

[Note: times with + are right censored]

We know S(6)= 21/21, because everyone survived at least until
time 6 or greater. But, we can’t say S(7) = 17/21, because we
don’t know the status of the person who was censored at time 6.

In a 1958 paper in the Journal of the American Statistical
Association, Kaplan and Meier proposed a way to
nonparametrically estimate S(t), even in the presence of censoring.
The method is based on the ideas of conditional probability.
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A quick review of conditional probability:

Conditional Probability: Suppose A and B are two events.
Then,

P (A|B) =
P (A ∩B)

P (B)

Multiplication law of probability: can be obtained from the
above relationship, by multiplying both sides by P (B):

P (A ∩B) = P (A|B)P (B)
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Extension to more than 2 events:

Suppose A1, A2...Ak are k different events. Then, the probability of
all k events happening together can be written as a product of
conditional probabilities:

P (A1 ∩A2... ∩Ak) = P (Ak|Ak−1 ∩ ... ∩A1)×
×P (Ak−1|Ak−2 ∩ ... ∩A1)

...

×P (A2|A1)

×P (A1)
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Now, let’s apply these ideas to estimate S(t):

Suppose ak < t ≤ ak+1. Then

S(t) = P (T ≥ ak+1)

= P (T ≥ a1, T ≥ a2, . . . , T ≥ ak+1)

= P (T ≥ a1)×
k∏

j=1

P (T ≥ aj+1|T ≥ aj)

=
k∏

j=1

[1− P (T = aj |T ≥ aj)]

=
k∏

j=1

[1− λj ]
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So,

Ŝ(t) ∼=
k∏

j=1

(
1− dj

rj

)

=
∏

j:aj<t

(
1− dj

rj

)

dj is the number of deaths at aj

rj is the number at risk at aj
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Intuition behind the Kaplan-Meier Estimator

Think of dividing the observed timespan of the study into a series
of fine intervals so that there is a separate interval for each time of
death or censoring:

D C C D D D

Using the law of conditional probability,

Pr(T ≥ t) =
∏

j

Pr(survive j-th interval Ij | survived to start of Ij)

where the product is taken over all the intervals including or
preceding time t.
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There are possibilities for each interval:

(1) No events (death or censoring) - conditional probability of
surviving the interval is 1

(2) Censoring - assume they survive to the end of the interval, so
that the conditional probability of surviving the interval is 1

(3) Death, but no censoring - conditional probability of not
surviving the interval is # deaths (d) divided by # ‘at risk’ (r)
at the beginning of the interval. So the conditional probability
of surviving the interval is 1− (d/r).

(4) Tied deaths and censoring - assume censorings last to the
end of the interval, so that conditional probability of surviving
the interval is still 1− (d/r)
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General Formula for jth interval:

It turns out we can write a general formula for the conditional
probability of surviving the j-th interval that holds for all 4 cases:

1− dj

rj

We could use the same approach by grouping the event times into
intervals (say, one interval for each month), and then counting up
the number of deaths (events) in each to estimate the probability of
surviving the interval (this is called the lifetable estimate).

However, the assumption that those censored last until the end of
the interval wouldn’t be quite accurate, so we would end up with a
cruder approximation.
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The Kaplan-Meier - product-limit - estimator

As the intervals get finer and finer, the approximations made in
estimating the probabilities of getting through each interval become
smaller and smaller, so that the estimator converges to the true
S(t).

This intuition clarifies why an alternative name for the KM is the
product limit estimator.
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The Kaplan-Meier estimator of the survivorship

function (or survival probability) S(t) = Pr(T ≥ t) is:

Ŝ(t) =
∏

j:τj<t
rj−dj

rj
=

∏
j:τj<t

(
1− dj

rj

)

where,

• τ1, ...τK are the K distinct death times observed in the sample

• dj is the number of deaths at τj

• rj is the number of individuals “at risk” right before the j-th death

time (everyone dead or censored at or after that time).

• cj is the number of censored observations between the j-th and

(j + 1)-st death times. Censorings tied at τj are included in cj
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Note: two useful formulas are:

(1) rj = rj−1 − dj−1 − cj−1

(2) rj =
∑

l≥j

(cl + dl)
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Calculating the KM - Cox and Oakes example

Make a table with a row for every death or censoring time:

τj dj cj rj 1− (dj/rj) Ŝ(τ+
j )

6 3 1 21 18
21 = 0.857

7 1 0 17

9 0 1 16

10

11

13

16

17

19

20

22

23

Note that:

• Ŝ(t+) only changes at death (failure) times

• Ŝ(t+) is 1 up to the first death time
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• Ŝ(t+) only goes to 0 if the last event is a death
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KM plot for treated leukemia patients
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Note: most statistical software packages summarize the
KM survival function at τ+

j , i.e., just after the time of the
j-th failure.

In other words, they provide Ŝ(τ+
j ).

When there is no censoring, the empirical survival estimate would
then be:

S̃(t+) =
# individuals with T > t

total sample size

21



Output from STATA KM Estimator:
failure time: weeks

failure/censor: remiss

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

-------------------------------------------------------------------

6 21 3 1 0.8571 0.0764 0.6197 0.9516

7 17 1 0 0.8067 0.0869 0.5631 0.9228

9 16 0 1 0.8067 0.0869 0.5631 0.9228

10 15 1 1 0.7529 0.0963 0.5032 0.8894

11 13 0 1 0.7529 0.0963 0.5032 0.8894

13 12 1 0 0.6902 0.1068 0.4316 0.8491

16 11 1 0 0.6275 0.1141 0.3675 0.8049

17 10 0 1 0.6275 0.1141 0.3675 0.8049

19 9 0 1 0.6275 0.1141 0.3675 0.8049

20 8 0 1 0.6275 0.1141 0.3675 0.8049

22 7 1 0 0.5378 0.1282 0.2678 0.7468

23 6 1 0 0.4482 0.1346 0.1881 0.6801

25 5 0 1 0.4482 0.1346 0.1881 0.6801

32 4 0 2 0.4482 0.1346 0.1881 0.6801

34 2 0 1 0.4482 0.1346 0.1881 0.6801

35 1 0 1 0.4482 0.1346 0.1881 0.6801
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Two Other Justifications for KM Estimator

I. Likelihood-based derivation (Cox and Oakes)

For a discrete failure time variable, define:

dj number of failures at aj

rj number of individuals at risk at aj

(including those censored at aj).

λj Pr(death) in j-th interval

(conditional on survival to start of interval)

The likelihood is that of g independent binomials:

L(λ) =
g∏

j=1

λ
dj

j (1− λj)rj−dj

Therefore, the maximum likelihood estimator of λj is:

λ̂j = dj/rj
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Now we plug in the MLE’s of λ to estimate S(t)::

Ŝ(t) =
∏

j:aj<t

(1− λ̂j)

=
∏

j:aj<t

(
1− dj

rj

)
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II. Redistribute to the right justification (Efron, 1967)

In the absence of censoring, Ŝ(t) is just the proportion of
individuals with T ≥ t. The idea behind Efron’s approach is to
spread the contributions of censored observations out over all the
possible times to their right.

Algorithm:

• Step (1): arrange the n observed times (deaths or censorings) in

increasing order. If there are ties, put censored after deaths.

• Step (2): Assign weight (1/n) to each time.

• Step (3): Moving from left to right, each time you encounter a

censored observation, distribute its mass to all times to its right.

• Step (4): Calculate Ŝj by subtracting the final weight for time j

from Ŝj−1
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Example of “redistribute to the right” algorithm
Consider the following event times:

2, 2.5+, 3, 3, 4, 4.5+, 5, 6, 7

The algorithm goes as follows:

(Step 1) (Step 4)

Times Step 2 Step 3a Step 3b Ŝ(τj)

2 1/9=0.11 0.889

2.5+ 1/9=0.11 0 0.889

3 2/9=0.22 0.25 0.635

4 1/9=0.11 0.13 0.508

4.5+ 1/9=0.11 0.13 0 0.508

5 1/9=0.11 0.13 0.17 0.339

6 1/9=0.11 0.13 0.17 0.169

7 1/9=0.11 0.13 0.17 0.000

This comes out the same as the product limit approach.
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Properties of the KM estimator

In the case of no censoring:

Ŝ(t) = S̃(t) =
# deaths at t or greater

n

where n is the number of individuals in the study.

This is just like an estimated probability from a binomial
distribution, so we have:

Ŝ(t) ' N (S(t), S(t)[1− S(t)]/n)
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How does censoring affect this?

• Ŝ(t) is still approximately normal

• The mean of Ŝ(t) converges to the true S(t)

• The variance is a bit more complicated (since the denominator
n includes some censored observations).

Once we get the variance, then we can construct (pointwise)
(1− α)% confidence bands about Ŝ(t):

Ŝ(t)± z1−α/2 se[Ŝ(t)]
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Greenwood’s formula (Collett 2.1.3)

We can think of the KM estimator as

Ŝ(t) =
∏

j:τj<t

(1− λ̂j)

where λ̂j = dj/rj . Since the λ̂j ’s are just binomial proportions, we
can apply standard likelihood theory to show that each λ̂j is
approximately normal, with mean the true λj , and

var(λ̂j) ≈ λ̂j(1− λ̂j)
rj

The λ̂j ’s are independent in large samples. Since Ŝ(t) is a function
of the λj ’s, we can estimate its variance using the delta method:

If Y is normal with mean µ and variance σ2, then g(Y ) is
approximately normally distributed with mean g(µ) and
variance [g′(µ)]2σ2.
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Two specific examples of the delta method:

(A) Z = log(Y )

then Z ∼ N

[
log(µ),

(
1
µ

)2

σ2

]

(B) Z = exp(Y )

then Z ∼ N
[
eµ, [eµ]2σ2

]

The examples above use the following results from calculus:

d

dx
log u =

1
u

(
du

dx

)

d

dx
eu = eu

(
du

dx

)
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Greenwood’s formula (continued)

Instead of dealing with Ŝ(t) directly, we will look at its log:

log[Ŝ(t)] =
∑

j:τj<t

log(1− λ̂j)

Thus, by approximate independence of the λ̂j ’s,

var(log[Ŝ(t)]) =
∑

j:τj<t

var[log(1− λ̂j)]
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By (A)

var(log[Ŝ(t)]) =
∑

j:τj<t

(
1

1− λ̂j

)2

var(λ̂j)

=
∑

j:τj<t

(
1

1− λ̂j

)2

λ̂j(1− λ̂j)/rj

=
∑

j:τj<t

λ̂j

(1− λ̂j)rj

=
∑

j:τj<t

dj

(rj − dj)rj

Since Ŝ(t) = exp[log[Ŝ(t)]], (by B),

var(Ŝ(t)) = [Ŝ(t)]2var
[
log[Ŝ(t)]

]

Greenwood’s Formula:

var(Ŝ(t)) = [Ŝ(t)]2
∑

j:τj<t
dj

(rj−dj)rj
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Back to confidence intervals

For a 95% confidence interval, we could use

Ŝ(t)± z1−α/2 se[Ŝ(t)]

where se[Ŝ(t)] is calculated using Greenwood’s formula.

Problem: This approach can yield values > 1 or < 0.

Better approach: Get a 95% confidence interval for

L(t) = log(− log(S(t)))

Since this quantity is unrestricted, the confidence interval will be in
the right range when we transform back.
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To see why this works, note the following:

• Since Ŝ(t) is an estimated probability

0 ≤ Ŝ(t) ≤ 1

• Taking the log of Ŝ(t) and bounds:

−∞ ≤ log[Ŝ(t)] ≤ 0

• Taking the opposite:

0 ≤ − log[Ŝ(t)] ≤ ∞

• Taking the log again:

−∞ ≤ log
[
− log[Ŝ(t)]

]
≤ ∞

To transform back, reverse steps with S(t) = exp(− exp(L(t))
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Log-log Approach for Confidence Intervals:

(1) Define L(t) = log(− log(S(t)))

(2) Form a 95% confidence interval for L(t) based on L̂(t), yielding
[L̂(t)−A, L̂(t) + A]

(3) Since S(t) = exp(− exp(L(t)), the confidence bounds for the
95% CI on S(t) are:

[exp(−e(L̂(t)+A)), exp(−e(L̂(t)−A))]

(note that the upper and lower bounds switch)

(4) Substituting L̂(t) = log(− log(Ŝ(t))) back into the above
bounds, we get confidence bounds of

([Ŝ(t)]e
A

, [Ŝ(t)]e
−A

)
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What is A?

• A is 1.96 se(L̂(t))

• To calculate this, we need to calculate

var(L̂(t)) = var
[
log(− log(Ŝ(t)))

]

• From our previous calculations, we know

var(log[Ŝ(t)]) =
∑

j:τj<t

dj

(rj − dj)rj
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• Applying the delta method as in example (A), we get:

var(L̂(t)) = var(log(− log[Ŝ(t)]))

=
1

[log Ŝ(t)]2
∑

j:τj<t

dj

(rj − dj)rj

• We take the square root of the above to get se(L̂(t)), and then
form the confidence intervals as:

Ŝ(t)e±1.96 se(L̂(t))

• This is the approach that Stata uses. Splus also gives an option
to calculate these bounds.
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Summary of Confidence Intervals on S(t)
• Calculate Ŝ(t)± 1.96 se[Ŝ(t)] where se[Ŝ(t)] is calculated using

Greenwood’s formula, and replace negative lower bounds by 0 and

upper bounds greater than 1 by 1 (not very satisfactory).

– Recommended by Collett

– This is the default using SAS

• Use a log transformation to stabilize the variance and allow for

non-symmetric confidence intervals. This is what is normally done

for the confidence interval of an estimated odds ratio.

– Use var[log(Ŝ(t))] =
P

j:τj<t

dj

(rj−dj)rj
already calculated as part

of Greenwood’s formula

– This is the default in Splus

• Use the log-log transformation just described

– Somewhat complicated, but always yields proper bounds

– This is the default in Stata!
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Software for Kaplan-Meier Curves

• Stata - stset and sts commands

• SAS - proc lifetest

• Splus - surv.fit(time,censor)

Defaults for Confidence Interval Calculations

• Stata - “log-log” ⇒ L̂(t)± 1.96 se[L̂(t)]
where L(t) = log[− log(S(t))]

• SAS - “plain” ⇒ Ŝ(t)± 1.96 se[Ŝ(t)]

• Splus - “log” ⇒ log S(t)± 1.96 se[log(Ŝ(t))]
but Splus will also give either of the other two options if you
request them.
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Stata Commands

Create a file called “leukemia.dat” with the raw data, with a
column for treatment, weeks to relapse (i.e., duration of remission),
and relapse status:
.infile trt remiss status using leukemia.dat

.stset remiss status (sets up a failure time dataset,

with failtime status in that order,

type help stset to get details)

.sts list (estimated S(t), se[S(t)], and 95% CI)

.sts graph, saving(kmtrt) (creates a Kaplan-Meier plot, and

saves the plot in file kmtrt.gph,

type ‘‘help gphdot’’ to get some

printing instructions)

.graph using kmtrt (redisplays the graph at any later time)
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If the dataset has already been created and loaded into Stata, then
you can substitute the following commands for initializing the data:
.use leukem (finds Stata dataset leukem.dta)

.describe (provides a description of the dataset)

.stset remiss status (declares data to be failure type)

.stdes (gives a description of the survival dataset)
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STATA Output for Treated Leukemia Patients:
.use leukem

.stset remiss status if trt==1

.sts list

failure time: remiss

failure/censor: status

Beg. Net Survivor Std.

Time Total Fail Lost Function Error [95% Conf. Int.]

-------------------------------------------------------------------

6 21 3 1 0.8571 0.0764 0.6197 0.9516

7 17 1 0 0.8067 0.0869 0.5631 0.9228

9 16 0 1 0.8067 0.0869 0.5631 0.9228

10 15 1 1 0.7529 0.0963 0.5032 0.8894

11 13 0 1 0.7529 0.0963 0.5032 0.8894

13 12 1 0 0.6902 0.1068 0.4316 0.8491

16 11 1 0 0.6275 0.1141 0.3675 0.8049

17 10 0 1 0.6275 0.1141 0.3675 0.8049

19 9 0 1 0.6275 0.1141 0.3675 0.8049

20 8 0 1 0.6275 0.1141 0.3675 0.8049

22 7 1 0 0.5378 0.1282 0.2678 0.7468

23 6 1 0 0.4482 0.1346 0.1881 0.6801

25 5 0 1 0.4482 0.1346 0.1881 0.6801

32 4 0 2 0.4482 0.1346 0.1881 0.6801

34 2 0 1 0.4482 0.1346 0.1881 0.6801

35 1 0 1 0.4482 0.1346 0.1881 0.6801
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KM Survival Estimate and Confidence intervals
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Kaplan-Meier survival estimate

43



. stsum

failure _d: status

analysis time _t: remiss

| incidence no. of |------ Survival time -----|

| time at risk rate subjects 25% 50% 75%

------+----------------------------------------------------------------

total | 359 .0250696 21 13 23 .

44



Means, Medians, Quantiles based on the KM

• Mean:
Pk

j=1 τj Pr(T = τj)

• Median - by definition, this is the time, τ , such that S(τ) = 0.5.

However, in practice, it is defined as the smallest time such that

Ŝ(τ) ≤ 0.5. The median is more appropriate for censored survival

data than the mean.

For the treated leukemia patients, we find:

Ŝ(22) = 0.5378 Ŝ(23) = 0.4482

The median is thus 23. This can also be seen visually on the graph

to the left.

• Lower quartile (25th percentile):

the smallest time (LQ) such that Ŝ(LQ) ≤ 0.75

• Upper quartile (75th percentile):

the smallest time (UQ) such that Ŝ(UQ) ≤ 0.25
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Stata command for median and quartiles: stsum

(2) The Lifetable Estimator of Survival:

We said that we would consider the following three methods for
estimating a survivorship function

S(t) = Pr(T ≥ t)

without resorting to parametric methods:

(1)
√

Kaplan-Meier

(2) =⇒ Life-table (Actuarial Estimator)

(3) =⇒ Cumulative hazard estimator
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(2) The Lifetable or Actuarial Estimator

• one of the oldest techniques around

• used by actuaries, demographers, etc.

• applies when the data are grouped

Our goal is still to estimate the survival function, hazard, and
density function, but this is complicated by the fact that we don’t
know exactly when during each time interval an event occurs. Lee
(section 4.2) provides a good description of lifetable methods, and
distinguishes several types according to the data sources:
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Population Life Tables

• cohort life table - describes the mortality experience from
birth to death for a particular cohort of people born at about
the same time. People at risk at the start of the interval are
those who survived the previous interval.

• current life table - constructed from (1) census information
on the number of individuals alive at each age, for a given year
and (2) vital statistics on the number of deaths or failures in a
given year, by age. This type of lifetable is often reported in
terms of a hypothetical cohort of 100,000 people.

Generally, censoring is not an issue for Population Life Tables.
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Clinical Life tables

Applies to grouped survival data from studies in patients with
specific diseases. Because patients can enter the study at different
times, or be lost to follow-up, censoring must be allowed.
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Notation

• the j-th time interval is [tj−1, tj)

• cj - the number of censorings in the j-th interval

• dj - the number of failures in the j-th interval

• rj is the number entering the interval
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Example: 2418 Males with Angina Pectoris (Lee, p.91)

Year after

Diagnosis j dj cj rj r′j = rj − cj/2

[0, 1) 1 456 0 2418 2418.0

[1, 2) 2 226 39 1962 1942.5 (1962 - 39
2 )

[2, 3) 3 152 22 1697 1686.0

[3, 4) 4 171 23 1523 1511.5

[4, 5) 5 135 24 1329 1317.0

[5, 6) 6 125 107 1170 1116.5

[6, 7) 7 83 133 938 871.5

etc..
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Estimating the survivorship function

We could apply the K-M formula directly to the numbers in the
table on the previous page, estimating S(t) as

Ŝ(t) =
∏

j:τj<t

(
1− dj

rj

)

However, this approach is unsatisfactory for grouped data.... it
treats the problem as though it were in discrete time, with events
happening only at 1 yr, 2 yr, etc. In fact, what we are trying to
calculate here is the conditional probability of dying
within the interval, given survival to the beginning of it.
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What should we do with the censored people?

We can assume that censorings occur:

• at the beginning of each interval: r′j = rj − cj

• at the end of each interval: r′j = rj

• on average halfway through the interval:

r′j = rj − cj/2

The last assumption yields the Actuarial Estimator. It is
appropriate if censorings occur uniformly throughout the interval.
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Constructing the lifetable

First, some additional notation for the j-th interval, [tj−1, tj):

• Midpoint (tmj) - useful for plotting the density and the
hazard function

• Width (bj = tj − tj−1) needed for calculating the hazard in
the j-th interval

Quantities estimated:

• Conditional probability of dying is q̂j = dj/r′j

• Conditional probability of surviving is p̂j = 1− q̂j
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• Cumulative probability of surviving at tj :

Ŝ(tj) =
∏

`≤j

p̂` =
∏

`≤j

(
1− d`

r`′

)
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Some important points to note:

• Because the intervals are defined as [tj−1, tj), the first interval
typically starts with t0 = 0.

• Stata estimates the survival function at the right-hand
endpoint of each interval, i.e., S(tj)

• However, SAS estimates the survival function at the left-hand
endpoint, S(tj−1).

• The implication in SAS is that Ŝ(t0) = 1 and Ŝ(t1) = p1
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Other quantities estimated at the midpoint of the j-th
interval:

• Hazard in the j-th interval:

λ̂(tmj) =
dj

bj(r′j − dj/2)
=

q̂j

bj(1− q̂j/2)

the number of deaths in the interval divided by the average
number of survivors at the midpoint

• density at the midpoint of the j-th interval:

f̂(tmj) =
Ŝ(tj−1)− Ŝ(tj)

bj
=

Ŝ(tj−1) q̂j

bj

Note: Another way to get this is:

f̂(tmj) = λ̂(tmj)Ŝ(tmj) = λ̂(tmj)[Ŝ(tj) + Ŝ(tj−1)]/2
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Constructing the Lifetable using Stata

Uses the ltable command.

If the raw data are already grouped, then the freq statement must
be used when reading the data.
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. infile years status count using angina.dat

(32 observations read)

. ltable years status [freq=count]

Beg. Std.

Interval Total Deaths Lost Survival Error [95% Conf. Int.]

-------------------------------------------------------------------------

0 1 2418 456 0 0.8114 0.0080 0.7952 0.8264

1 2 1962 226 39 0.7170 0.0092 0.6986 0.7346

2 3 1697 152 22 0.6524 0.0097 0.6329 0.6711

3 4 1523 171 23 0.5786 0.0101 0.5584 0.5981

4 5 1329 135 24 0.5193 0.0103 0.4989 0.5392

5 6 1170 125 107 0.4611 0.0104 0.4407 0.4813

6 7 938 83 133 0.4172 0.0105 0.3967 0.4376

7 8 722 74 102 0.3712 0.0106 0.3505 0.3919

8 9 546 51 68 0.3342 0.0107 0.3133 0.3553

9 10 427 42 64 0.2987 0.0109 0.2775 0.3201

10 11 321 43 45 0.2557 0.0111 0.2341 0.2777

11 12 233 34 53 0.2136 0.0114 0.1917 0.2363

12 13 146 18 33 0.1839 0.0118 0.1614 0.2075

13 14 95 9 27 0.1636 0.0123 0.1404 0.1884

14 15 59 6 23 0.1429 0.0133 0.1180 0.1701

15 16 30 0 30 0.1429 0.0133 0.1180 0.1701

-------------------------------------------------------------------------------
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It is also possible to get estimates of the hazard function, λ̂j , and
its standard error using the “hazard” option:
. ltable years status [freq=count], hazard

Beg. Cum. Std. Std.

Interval Total Failure Error Hazard Error [95% Conf Int]

--------------------------------------------------------------------------

0 1 2418 0.1886 0.0080 0.2082 0.0097 0.1892 0.2272

1 2 1962 0.2830 0.0092 0.1235 0.0082 0.1075 0.1396

2 3 1697 0.3476 0.0097 0.0944 0.0076 0.0794 0.1094

3 4 1523 0.4214 0.0101 0.1199 0.0092 0.1020 0.1379

4 5 1329 0.4807 0.0103 0.1080 0.0093 0.0898 0.1262

5 6 1170 0.5389 0.0104 0.1186 0.0106 0.0978 0.1393

6 7 938 0.5828 0.0105 0.1000 0.0110 0.0785 0.1215

7 8 722 0.6288 0.0106 0.1167 0.0135 0.0902 0.1433

8 9 546 0.6658 0.0107 0.1048 0.0147 0.0761 0.1336

9 10 427 0.7013 0.0109 0.1123 0.0173 0.0784 0.1462

10 11 321 0.7443 0.0111 0.1552 0.0236 0.1090 0.2015

11 12 233 0.7864 0.0114 0.1794 0.0306 0.1194 0.2395

12 13 146 0.8161 0.0118 0.1494 0.0351 0.0806 0.2182

13 14 95 0.8364 0.0123 0.1169 0.0389 0.0407 0.1931

14 15 59 0.8571 0.0133 0.1348 0.0549 0.0272 0.2425

15 16 30 0.8571 0.0133 0.0000 . . .

-------------------------------------------------------------------------

60



There is also a “failure” option which gives the number of failures
(like the default), and also provides a 95% confidence interval on
the cumulative failure probability.

Suppose we wish to use the actuarial method, but the data do not
come grouped.

Consider the treated nursing home patients, with length of stay
(los) grouped into 100 day intervals:
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.use nurshome

.drop if rx==0 (keep only the treated patients)

(881 observations deleted)

.stset los fail

.ltable los fail, intervals(100)

Beg. Std.

Interval Total Deaths Lost Survival Error [95% Conf. Int.]

------------------------------------------------------------------------

0 100 710 328 0 0.5380 0.0187 0.5006 0.5739

100 200 382 86 0 0.4169 0.0185 0.3805 0.4529

200 300 296 65 0 0.3254 0.0176 0.2911 0.3600

300 400 231 38 0 0.2718 0.0167 0.2396 0.3050

400 500 193 32 1 0.2266 0.0157 0.1966 0.2581

500 600 160 13 0 0.2082 0.0152 0.1792 0.2388

600 700 147 13 0 0.1898 0.0147 0.1619 0.2195

700 800 134 10 30 0.1739 0.0143 0.1468 0.2029

800 900 94 4 29 0.1651 0.0143 0.1383 0.1941

900 1000 61 4 30 0.1508 0.0147 0.1233 0.1808

1000 1100 27 0 27 0.1508 0.0147 0.1233 0.1808

-------------------------------------------------------------------------
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Examples for Nursing home data:

Estimated Survival:

ltable los fail, intervals(100) graph connect(J)

.1
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.5
.6

P
ro

p
o
rt

io
n
 S

u
rv

iv
in

g

0 500 1000

Length of stay (days)
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Estimated hazard:

version 7

ltable los fail, hazard intervals(100) graph connect(J)
H

a
z
a

rd

Length of stay (days)
0 500 1000

0

.002

.004

.006

.008

Note: This command is not supported by version 9.0 in Stata.

64



(3) Estimating the cumulative hazard

(Nelson-Aalen estimator)

Suppose we want to estimate Λ(t) =
R t

0
λ(u)du, the cumulative hazard at

time t.

Just as we did for the KM, think of dividing the observed timespan of

the study into a series of fine intervals so that there is only one event per

interval:

D C C D D D
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Λ(t) can then be approximated by a sum:

Λ̂(t) =
X

j

λj∆

where the sum is over intervals, λj is the value of the hazard in the j-th

interval and ∆ is the width of each interval. Since λ̂∆ is approximately

the probability of dying in the interval, we can further approximate by

Λ̂(t) =
X

j

dj/rj

It follows that Λ(t) will change only at death times, and hence we write

the Nelson-Aalen estimator as:

Λ̂NA(t) =
X

j:τj<t

dj/rj
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The Fleming-Harrington (FH) estimator

D C C D D D

rj n n n n-1 n-1 n-2 n-2 n-3 n-4

dj 0 0 1 0 0 0 0 1 1

cj 0 0 0 0 1 0 1 0 0

λ̂(tj) 0 0 1/n 0 0 0 0 1
n−3

1
n−4

Λ̂(tj) 0 0 1/n 1/n 1/n 1/n 1/n

Once we have Λ̂NA(t), we can also find another estimator of S(t)
(Fleming-Harrington):

ŜFH(t) = exp(−Λ̂NA(t))

In general, this estimator of the survival function will be close to
the Kaplan-Meier estimator, ŜKM (t) We can also go the other way
... we can take the Kaplan-Meier estimate of S(t), and use it to
calculate an alternative estimate of the cumulative hazard function:

Λ̂KM (t) = − log ŜKM (t)
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Stata commands for FH Survival Estimate

Say we want to obtain the Fleming-Harrington estimate of the
survival function for married females, in the healthiest initial
subgroup, who are randomized to the untreated group of the
nursing home study.

First, we use the following commands to calculate the Nelson-Aalen
cumulative hazard estimator:

. use nurshome

. keep if rx==0 & gender==0 & health==2 & married==1

(1579 observations deleted)
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. sts list, na

failure _d: fail

analysis time _t: los

Beg. Net Nelson-Aalen Std.

Time Total Fail Lost Cum. Haz. Error [95% Conf. Int.]

----------------------------------------------------------------------

14 12 1 0 0.0833 0.0833 0.0117 0.5916

24 11 1 0 0.1742 0.1233 0.0435 0.6976

25 10 1 0 0.2742 0.1588 0.0882 0.8530

38 9 1 0 0.3854 0.1938 0.1438 1.0326

64 8 1 0 0.5104 0.2306 0.2105 1.2374

89 7 1 0 0.6532 0.2713 0.2894 1.4742

113 6 1 0 0.8199 0.3184 0.3830 1.7551

123 5 1 0 1.0199 0.3760 0.4952 2.1006

149 4 1 0 1.2699 0.4515 0.6326 2.5493

168 3 1 0 1.6032 0.5612 0.8073 3.1840

185 2 1 0 2.1032 0.7516 1.0439 4.2373

234 1 1 0 3.1032 1.2510 1.4082 6.8384

----------------------------------------------------------------------
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After generating the Nelson-Aalen estimator, we manually have to
create a variable for the survival estimate:
. sts gen nelson=na

. gen sfh=exp(-nelson)

. list sfh

sfh

1. .9200444

2. .8400932

3. .7601478

4. .6802101

5. .6002833

6. .5203723

7. .4404857

8. .3606392

9. .2808661

10. .2012493

11. .1220639

12. .0449048

Additional built-in functions can be used to generate 95% confidence intervals on

the FH survival estimate (to be covered in lab session).
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We can compare the Fleming-Harrington survival estimate to the
KM estimate by rerunning the sts list command:
. sts list

. sts gen skm=s

. list skm sfh

skm sfh

1. .91666667 .9200444

2. .83333333 .8400932

3. .75 .7601478

4. .66666667 .6802101

5. .58333333 .6002833

6. .5 .5203723

7. .41666667 .4404857

8. .33333333 .3606392

9. .25 .2808661

10. .16666667 .2012493

11. .08333333 .1220639

12. 0 .0449048

In this example, it looks like the Fleming-Harrington estimator is
slightly higher than the KM at every time point, but with larger
datasets the two will typically be much closer.
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