In today's lab, we are going to get familiar with time-dependent covariates. We will use the Stanford heart transplant dataset (*naïve.dta*). In this study 103 patients waiting for a heart transplant were followed for survival. Here is a description of the file:

describe obs: vars: size:	103 12 5,356 (-	19 Dec 2003 15:31
variable name	-	display	value	variable label
patid	float	%9.0g		Patient identifier
year	float	%9.0g		Year of acceptance
age	float	%9.0g		Age
fail	float	%9.0g		Survival status (1=dead)
survtime	float	%9.0g		Survival time
priorsurg	float	%9.0g		Surgery
transplant	float	%9.0g		Heart transplantation status (1=yes)
waitime	float	%9.0g		Waiting time for transplant
missallele	float	%9.0g		
missantigen	float	%9.0g		
misscore	float	%9.0g		
time	float	%9.0g		Survival time (correction for id=38)

Sorted by: patid

There is one record for each patient and the important variables in the framework of time-dependant analysis are **id**, **transplant**, **waitime**, **fail and time**.

A naive approach for estimating the effect of transplantation to the hazard ratio of having vs not having a new heart is to apply a Cox model to the above dataset by considering the transplantation status as a fixed binary covariate.

```
failure event: fail != 0 & fail < .
obs. time interval: (0, time]
exit on or before: failure</pre>
_____
     103 total obs.
      0 exclusions
            _____
      103 obs. remaining, representing
       75 failures in single record/single failure data
  31948.1 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 1799
                                                               1799
. stcox transplant, nohr
         failure _d: fail
   analysis time _t: time
Iteration 0: log likelihood = -298.31514
Iteration 1: log likelihood = -287.817
Iteration 2: log likelihood = -285.44061
Iteration 3: log likelihood = -285.44037
Refining estimates:
Iteration 0:
               log likelihood = -285.44037
Cox regression -- Breslow method for ties
No. of subjects =
                     103
                                                      Number of obs =
                                                                               103
No. of failures =
                             75
```

Time at risk	= 3194	48.1				
Log likelihood	= -285.44	4037		hi2(1) > chi2		
t		Std. Err.			nf.	Interval]
transplant)	8406655

The estimated coefficient is associated with a hazard ratio of 0.267, which implies that patients with a new heart have about 4 times less hazard to die than those without a new heart. This analysis handles transplantation status as a fixed covariate and does not account for the fact that a very high hazard is likely to follow transplantation. To perform an analysis involving time-updated transplant status we need to transform the dataset by creating multiple lines per subject.

To understand the structure of the dataset that we are going to produce, let's take a look at the original data.

. li patid transplant waitime survtime time fail if patid==38 | patid==16 | pat==12 | pat==80, clean

patid	transp~t	waitime	survtime	time	fail
12	0		8	8	1
16	1	28	308	308	1
38	1	5	5	5.1	1
80	1	26	482	482	0

Patient 12 never received a new heart. He died 8 days after acceptance while still on the waiting list. Patient 80 did receive a new heart 26 days after acceptance and he survived until the end of follow-up. Patient 38 died the day of the heart transplantation, 5 days after acceptance. Such cases would be excluded from the statistical software, so we add a small fraction (0.1) to the survival time (time=5.1 instead of 5)

Our goal is to turn this into a dataset that contains the histories of each patient, that is we want records that appear as follows:

patid	transp~t	waitime	time	fail
12	0		8	1
16	0	28	28	0
16	1	28	308	1
38	0	5	5	0
38	1	5	5.1	1

This means that for patients who get a new heart we want to have 1 record for the follow-up period before the transplantation and 1 record for the period after. For this reason we apply the following commands:

```
expand 2 if transplant
(69 observations created)
sort patid
```

This will cause a dublication of the records for patients who had transplant=1. The new file contains 172 observations.

. li	patid	trans	plant	waitime	time f	ail	if pat==1	2	pat==16	pat==38	3	pat==	=80,
clean													
	pat:	id	trans	p~t	waitin	me	time	fa	il				
17.		12		0		•	8		1				
23.		16		1		28	308		1				
24.		16		1		28	308		1				
60.		38		1		5	5.1		1				
61.		38		1		5	5.1		1				
132.	8	80		1	:	26	482		0				
133.	8	80		1		26	482		0				

So we got 1 observation for patient 12 who had transplant=0 and 2 for the rest who had transplant=1. The problem is that patients with 2 records have identical values for all the variables, so **time, fail and transplant** (the time-dependent covariate in this example) do not reflect the transplantation and failure history. Within the records of each patient we replace this variables as follows:

by patid:replace time=waitime if _n==1 & transplant by patid:replace fail=0 if _n==1 & trans by patid:replace transplant=0 if _n==1 & transplant

Thus the above records are now:

	patid	transp~t	waitime	time	fail
17.	12	0		8	1
23.	16	0	28	28	0
24.	16	1	28	308	1
60.	38	0	5	5	0
61.	38	1	5	5.1	1
132.	80	0	26	26	0
133.	80	1	26	482	0

Our data have now the desired form. Save this file with a new name e.g. *transplant.dta*. Let's now stset the new dataset.

The option id(patid) specifies the subject-id variable and indicates that observations with the same id refer to the same patient.

To estimate the effect of heart transplantation we apply the following Cox model.

. stcox transplant, nohr

The estimated coefficient corresponds to a hazard ratio of 1.11 in favor of subjects who did not take a new heart, that is after heart transplantation the hazard for death increases by 11%.