Today, we are going to see how to construct confidence intervals and tests for hazard ratios. Also, we are going to compare nested models using likelihood ratio tests. Then we are going to learn how to estimate the baseline survival function, predicted medians and P-year survival.

1. C.I., Wald test and Likelihood Ratio test: MAC Dataset

This time we are interested in the time to MAC disease and not in time to death. So we are going to *stset* the data in the following way:

```
stset mactime, failure(macstat)
```

```
failure event: macstat ~= 0 & macstat ~= .
obs. time interval: (0, mactime]
exit on or before: failure

1177 total obs.
26 obs. end on or before enter()

1151 obs. remaining, representing
121 failures in single record/single failure data
489509 total analysis time at risk, at risk from t = 0
earliest observed entry t = 0
last observed exit t = 827
```

First we are going to fit the following model:

Model 1: $\lambda(t, X) = \lambda_0(t) \exp(\beta_1 KARNOF + \beta_2 RIF + \beta_3 CLARI)$

stcox karnof rif clari, nohr

```
failure _d: macstat
  analysis time _t: mactime
(iterations )
Refining estimates:
Iteration 0: log likelihood = -754.52813
Cox regression -- Breslow method for ties
                    1151
                                            Number of obs =
No. of subjects =
                                                              1151
No. of failures =
                      121
Time at risk =
                   489509
                                            LR chi2(3)
                                                         =
                                                              32.01
Log likelihood = -754.52813
                                            Prob > chi2
                                                              0.0000
                                                         =
        _____
     _t |
    _d | Coef. Std. Err. z P>|z| [95% Conf. Interval]
  ______
 karnof | -.0448295 .0106355 -4.215 0.000 -.0656747 -.0239843
rif | .8723819 .2369497 3.682 0.000 .4079691 1.336795
clari | .2760775 .2580215 1.070 0.285 -.2296354 .7817903
```

- (a) What is the hazard ratio of the Karnofsky score status? What is the interpretation of this hazard ratio?
- (**b**) Using $[L,U] = [e^{\hat{\beta}-1.96se(\hat{\beta})}, e^{\hat{\beta}+1.96se(\hat{\beta})}]$. Construct the 95% confidence interval of the estimated hazard ratio in (a), interpret your result.
- (c) Test the effect of the Karnofsky score using Wald test. State your null and alternative hypothesis. What do you conclude?

Next we want to add the effect of CD4, so we need to fit the following model:

Model 2: $\lambda(t, X) = \lambda_0(t) \exp(\beta_1 KARNOF + \beta_2 RIF + \beta_3 CLARI + \beta_4 CD4)$

```
stcox karnof rif clari cd4, nohr
        failure _d: macstat
   analysis time _t: mactime
Iteration 0: log likelihood = -770.53218
Iteration 1: log likelihood = -740.59073
Iteration 2: log likelihood = -738.68473
Iteration 3: log likelihood = -738.66226
Iteration 4: log likelihood = -738.66225
Refining estimates:
Iteration 0:
            log likelihood = -738.66225
Cox regression -- Breslow method for ties
                     1151
No. of failures =
Time at risk =
                                              Number of obs =
                                                                  1151
                      121
                     489509
                                              LR chi2(4)
                                                           =
                                                                 63.74
Log likelihood = -738.66225
                                              Prob > chi2
                                                           =
                                                                 0.0000
_____
     _t |
     _d |
             Coef. Std. Err.
                                  z P>|z|
                                                   [95% Conf. Interval]
karnof | -.0368538 .0106652 -3.456 0.001 -.0577572 -.0159503
rif | .880338 .2371111 3.713 0.000 .4156089 1.345067
    rif | .880338 .2371111 3.713 0.000
lari | .2530205 .2583478 0.979 0.327
cd4 | -.0183553 .0036839 -4.983 0.000
   clari |
                                                    -.253332
                                                              .7593729
                                                   -.0255757
                                                              -.0111349
```

To construct a Likelihood Ratio test comparing this model (saturated) to model 1 (reduced) in STATA, you use the lrtest command. But first you have to fit the saturated (bigger) model, save it and then fit the smaller model to get the right

likelihood ratio test in STATA. So after model 2 we would fit again model 1; the sets of commands are the following:

stcox karnof rif clari cd4

(Model 2)

(Fit model 2 first to test the treatment effect in

estimates store B

(specifies that the summary statistics associated with the most recently estimated model are to be saved as name. The saturated model is typically saved by typing "estimates (or just est) store B".)

stcox karnof rif clari est store A	(Model 1)
lrtest A B Cox: likelihood-ratio test (Assumption: A nested in B)	chi2(1) = 31.73 Prob > chi2 = 0.0000

(d) Compute the likelihood ratio test by hand and confirm that you get the same result as above. What do you conclude from this result?

To conduct an overall test of treatment effect we can use the test command in STATA:

this model).

The test command can also be used to test whether there is a difference between the rif and clari treatment arms:

```
test rif=clari
```

```
( 1) rif - clari = 0.0
chi2( 1) = 8.76
Prob > chi2 = 0.0031
```

2. <u>Survival Function, Predicted Medians and P-year Survival: Nursing Home Data</u> (Morris et al., *Case Studies in Biometry*, Ch 12)

We are going to consider the same example as last time (*nurshome.dta*).

Again before starting any analysis we have to *stset* our data: **stset** los, failure(fail)

To predict the baseline survival we use the option **basesurv** after the **stcox** command:

stcox married health, basesurv(prsurv)	(Name baseline survival prsurv)				
failure _d: fail analysis time _t: los					
<pre>Iteration 0: log likelihood = -8556.5713 Iteration 1: log likelihood = -8534.0911 Iteration 2: log likelihood = -8533.9783 Iteration 3: log likelihood = -8533.9783 Refining estimates: Iteration 0: log likelihood = -8533.9783</pre>					
Cox regression Breslow method for ties					
No. of subjects = 1591 Number of obs = 1591 No. of failures = 1269 Time at risk = 386211					
Log likelihood = -8533.9783	LR chi2(2) = 45.19 Prob > chi2 = 0.0000				
_t _d Haz. Ratio Std. Err. z					
married 1.345394 .0971282 4.110 health 1.17993 .0368631 5.296	0.000 1.167881 1.549889				

sort los

	-	
	los	prsurv
1.	1	.99252899
2.	1	.99252899
3.	1	.99252899
4.	1	.99252899
5.	1	.99252899
б.	1	.99252899
7.	1	.99252899
8.	1	.99252899
9.	1	.99252899
10.	1	.99252899

list los prsurv in 1/10

To get the predicted survival for subgroups we will use the following set of commands:

predict betaz, xb

(**xb** calculates the linear prediction from the estimated model)

gen newterm=exp(betaz)

gen predsurv=prsurv^newterm

 $(S_i(t) = [S_0(t)]^{\exp(\beta Z_i)})$

sort married health los

list married health los predsurv in 1/20

		married	health		ried health los		los	predsurv
1.	Not	Married	Second	Best		1	.9896138	
2.	Not	Married	Second	Best		1	.9896138	
3.	Not	Married	Second	Best		1	.9896138	
4.	Not	Married	Second	Best		1	.9896138	
5.	Not	Married	Second	Best		1	.9896138	
б.	Not	Married	Second	Best		1	.9896138	
7.	Not	Married	Second	Best		1	.9896138	
8.	Not	Married	Second	Best		2	.981557	
9.	Not	Married	Second	Best		2	.981557	
10.	Not	Married	Second	Best		2	.981557	
11.	Not	Married	Second	Best		3	.9772769	
12.	Not	Married	Second	Best		3	.9772769	
13.	Not	Married	Second	Best		4	.9691724	
14.	Not	Married	Second	Best		4	.9691724	
15.	Not	Married	Second	Best		4	.9691724	
16.	Not	Married	Second	Best		5	.9586483	
17.	Not	Married	Second	Best		6	.951448	
18.	Not	Married	Second	Best		6	.951448	
19.	Not	Married	Second	Best		7	.9427774	
20.	Not	Married	Second	Best		8	.9360114	

Next we are going to create the four groups of interest (single+healthy, single+unhealthy, married+healthy and married+unhealthy) :

gen group=1 if married==0 & health==2
(1292 missing values generated)
replace group=2 if married==0 & health==5
(135 real changes made)
replace group=3 if married==1 & health==2
(42 real changes made)
replace group=4 if married==1 & health==5
(33 real changes made)

Then generate the predicted survival for these subgroups:

gen predsur1=predsurv if group==1
(1292 missing values generated)
gen predsur2=predsurv if group==2
(1456 missing values generated)

gen predsur3=predsurv if group==3
(1549 missing values generated)

gen predsur4=predsurv if group==4
(1558 missing values generated)

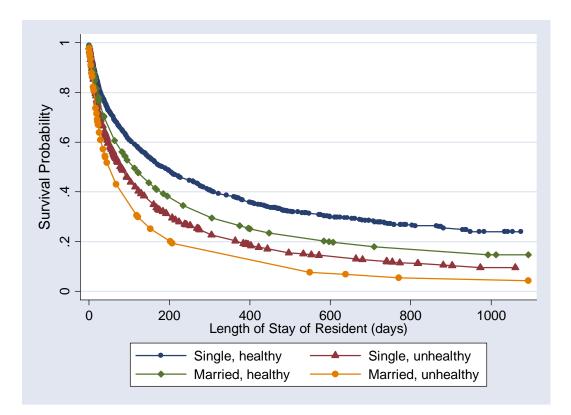
And label the predicted survivals:

lab var predsurl"Single, healthy"
lab var predsur2"Single, unhealthy"
lab var predsur3"Married, healthy"
lab var predsur4 "Married, unhealthy"

If we want to get a visual picture of what the proportional hazards assumption implies for these four subgroups we can use the following command:

sort los

```
scatter predsur1 predsur2 predsur3 predsur4 los, c(l l l l) s(o T
d O) l1(Survival Probability)
```



(e) Which subgroup has the longest length of stay?

To get the predicted medians we can use the following approaches:

Kaplan-Meier Approach:

stsum, by(group)

fa	_d:	fail	
analysis	time	_t:	los

group		incidence	no. of	Su	rvival time	e
	time at risk	rate	subjects	25%	50%	75%
Single,	81792	.0027753	299	43	151	654
Single,	23594	.0051284	135	18	62	240
Married,	9751	.0035894	42	24	95	375
Married,	4313	.0069557	33	8	23	119
total	119450	.0034575	509	27	100	412

Or we can list the predicted survivals of each group around 50% :

list married health los predsur1			redsur1>0.49 & predsur1<0.51
married	health	los	predsur1
1387. Not Married		172	1
1391. Not Married		176	
1392. Not Married		180	
1393. Not Married	Second Best	180	
1394. Not Married	Second Best	182	.5016459
1397. Not Married	Second Best	189	.4968184
1398. Not Married	Second Best	191	. 494399
list married hea	lth los predsur2	if p	redsur2>0.49 & predsur2<0.51
married	health	los	predsur2
1315. Not Married	Worst	78	.5026844
1316. Not Married	Worst	81	.4971449
1317. Not Married	Worst	82	.4943793
1322. Not Married	Worst	83	.4923071
list married healt	h los predsur3 if	preds	ur3>0.49 & predsur3<0.51
married	health	los	predsur3
1342. Married	Second Best	113	.4953526
list married hea	lth los predsur4	if p	redsur4>0.43 & predsur4<0.51
married	health	los	predsur4
1300. Married	Worst	68	.4300353