Applied Survival Analysis
 Lab 5: More on Cox Proportional Hazards Model

Today, we are going to see how to construct confidence intervals and tests for hazard ratios. Also, we are going to compare nested models using likelihood ratio tests. Then we are going to learn how to estimate the baseline survival function, predicted medians and P -year survival.

1. C.I., Wald test and Likelihood Ratio test: MAC Dataset

This time we are interested in the time to MAC disease and not in time to death. So we are going to stset the data in the following way:

```
stset mactime, failure(macstat)
    failure event: macstat ~= 0 & macstat ~= .
obs. time interval: (0, mactime]
    exit on or before: failure
```

 1177 total obs.
 26 obs. end on or before enter()
 1151 obs. remaining, representing
 121 failures in single record/single failure data
 489509 total analysis time at risk, at risk from t =
 earliest observed entry \(\mathrm{t}=\mathrm{=} \quad 0\)
 last observed exit \(\mathrm{t}=827\)
 First we are going to fit the following model:
Model 1: $\lambda(t, X)=\lambda_{0}(t) \exp \left(\beta_{1}\right.$ KARNOF $\left.+\beta_{2} R I F+\beta_{3} C L A R I\right)$
stcox karnof rif clari, nohr

(a) What is the hazard ratio of the Karnofsky score status? What is the interpretation of this hazard ratio?
(b) Using $[L, U]=\left[e^{\hat{\beta}-1.96 \operatorname{se}(\hat{\beta})}, e^{\hat{\beta}+1.96 s e(\hat{\beta})}\right]$. Construct the 95% confidence interval of the estimated hazard ratio in (a), interpret your result.
(c) Test the effect of the Karnofsky score using Wald test. State your null and alternative hypothesis. What do you conclude?

Next we want to add the effect of CD4, so we need to fit the following model:
Model 2: $\lambda(t, X)=\lambda_{0}(t) \exp \left(\beta_{1} K A R N O F+\beta_{2} R I F+\beta_{3} C L A R I+\beta_{4} C D 4\right)$
stcox karnof rif clari cd4, nohr

To construct a Likelihood Ratio test comparing this model (saturated) to model 1 (reduced) in STATA, you use the lrtest command. But first you have to fit the saturated (bigger) model, save it and then fit the smaller model to get the right
likelihood ratio test in STATA. So after model 2 we would fit again model 1 ; the sets of commands are the following:

```
stcox karnof rif clari cd4
```

(Model 2)

estimates store B

(specifies that the summary statistics associated with the most recently estimated model are to be saved as name. The saturated model is typically saved by typing "estimates (or just est) store B".)

```
stcox karnof rif clari
```

est store A

lrtest A B

Cox: likelihood-ratio test chi2(1) = 31.73
(Assumption: A nested in B) Prob > chi2 = 0.0000
(d) Compute the likelihood ratio test by hand and confirm that you get the same result as above. What do you conclude from this result?

To conduct an overall test of treatment effect we can use the test command in STATA:
stcox karnof rif clari cd4 (Fit model 2 first to test the treatment effect in this model).
test rif clari
(1) rif $=0.0$
(2) clari $=0.0$

$$
\begin{aligned}
\text { chi2 }(2) & =17.01 \\
\text { Prob }>\text { chi2 } & =0.0002
\end{aligned}
$$

The test command can also be used to test whether there is a difference between the rif and clari treatment arms:

```
test rif=clari
```

```
( 1) rif - clari \(=0.0\)
    chi2 ( 1) = 8.76
    Prob > chi2 = 0.0031
```


2. Survival Function, Predicted Medians and P-year Survival: Nursing Home Data (Morris et al., Case Studies in Biometry, Ch 12)

We are going to consider the same example as last time (nurshome.dta).
Again before starting any analysis we have to stset our data:

stset los, failure(fail)

To predict the baseline survival we use the option basesurv after the stcox command:

sort los
list los prsurv in 1/10

	los	prsurv
1.	1	.99252899
2.	1	.99252899
3.	1	.99252899
4.	1	.99252899
5.	1	.99252899
6.	1	.99252899
7.	1	.99252899
8.	1	.99252899
9.	1	.99252899
10.	1	.99252899

To get the predicted survival for subgroups we will use the following set of commands:
predict betaz, $\mathbf{x b} \quad(\mathbf{x b}$ calculates the linear prediction from the estimated model)

```
gen newterm=exp(betaz)
```

```
gen predsurv=prsurv^newterm
\[
\left(S_{i}(t)=\left[S_{0}(t)\right]^{\exp \left(\beta Z_{i}\right)}\right)
\]
```

sort married health los
list married health los predsurv in 1/20

| | married | health | los |
| :--- | ---: | ---: | ---: | predsurv

Next we are going to create the four groups of interest (single+healthy, single+unhealthy, married+healthy and married+unhealthy) :

```
gen group=1 if married==0 & health==2
(1292 missing values generated)
replace group=2 if married==0 & health==5
(135 real changes made)
replace group=3 if married==1 & health==2
(42 real changes made)
replace group=4 if married==1 & health==5
(33 real changes made)
```

Then generate the predicted survival for these subgroups:

```
gen predsur1=predsurv if group==1
```

(1292 missing values generated)
gen predsur2=predsurv if group==2
(1456 missing values generated)
gen predsur3=predsurv if group==3
(1549 missing values generated)
gen predsur4=predsurv if group==4
(1558 missing values generated)

And label the predicted survivals:
lab var predsur1"Single, healthy"
lab var predsur2"Single, unhealthy"
lab var predsur3"Married, healthy"
lab var predsur4 "Married, unhealthy"

If we want to get a visual picture of what the proportional hazards assumption implies for these four subgroups we can use the following command:
sort los
scatter predsur1 predsur2 predsur3 predsur4 los, c(llll)s(o T d 0) l1(Survival Probability)

(e) Which subgroup has the longest length of stay?

To get the predicted medians we can use the following approaches:

Kaplan-Meier Approach:

```
stsum, by(group)
```


failure _d: fail
 analysis time _t: los

Or we can list the predicted survivals of each group around 50% :
list married health los predsur1 if predsur1>0.49 \& predsur1<0.51

| | married | health | los |
| :--- | ---: | :--- | :--- | predsur1

list married health los predsur2 if predsur2>0.49 \& predsur2<0.51

married	health	los	predsur2
1315. Not Married	Worst	78	.5026844
1316. Not Married	Worst	81	.4971449
1317. Not Married	Worst	82	.4943793
1322. Not Married	Worst	83	.4923071

list married health los predsur3 if predsur3>0.49 \& predsur3<0.51

| | married | health | los |
| ---: | ---: | ---: | ---: | predsur3

list married health los predsur4 if predsur4>0.43 \& predsur4<0.51

	married	health	los
1300.	Marriedsur4		
.4300353			

