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Preface

In one sense, mathematics at university follows on directly from school mathemat-
ics. In another sense, university mathematics is self-contained and requires no prior
knowledge. In reality, neither of these descriptions is anything like complete. Although
it would be impossible to study mathematics at Oxford without having studied it be-
fore, there is a marked change of style at university, involving abstraction and rigour.
As an undergraduate in any subject, your pattern and method of study will differ from
your schooldays, and in mathematics you will also have to master new skills such as
interpreting mathematical statements correctly and constructing rigorous proofs.

These notes are an introduction to some of these aspects of studying mathematics
at Oxford. Their purpose is to introduce you to ideas which you are unlikely to have met
at school, and which are not covered in textbooks. It is not expected that you will
understand everything on first reading; for instance, some of the examples may be
taken from topics which you have not covered at school, and some of the material in Part
II needs time to be absorbed. With the exception of a few fleeting references to physical
applied mathematics, the notes discuss topics which are common to all the mathematics
courses in Oxford, so they should be almost as useful for students in Mathematics &
Philosophy and Mathematics & Computation as for those in Mathematics. It is hoped
that after a term or two you will have absorbed all the advice in the notes and that
they will become redundant. For this reason, there is no attempt to cover any topics
which will not arise until later in your course, e.g. examinations and options.

It is important to appreciate that the notes are an introduction to studying math-
ematics, not an introduction to the mathematics; indeed, there is very little genuine
mathematics in the notes. In particular, the notes attempt to answer the question:
How to study mathematics? but not the questions: Why study mathematics? or:
What topics do we study in university mathematics? Occasionally, the notes consider
the question: Why do we do mathematics the way we do? but the emphasis is on How?
not Why? Consequently, the notes have some of the style of a manual, and they will
not make the most exciting of reads. You are therefore recommended to seek another
source for the other questions. At present, the best such book known to me is Alice
in Numberland, by J. Baylis and R. Haggarty (Macmillan). Indeed, I recommend that
you read Alice in Numberland (at least a substantial part of it) before you read these
notes (at least before you read Part II).

Your tutors are likely to offer their own advice which sections of these notes you
should read at what time and what else you should read, and to set you some problems.
I will therefore refrain from proffering guidance except to say that Part I will be most
useful if it is read before your courses start in the first full week after your arrival in
Oxford. It should not take long to read this part as it contains very little mathematics.
Chapter 1 is the only chapter where some of the content is specific to Oxford (on the
other hand, much of its content is not specific to mathematics).

Part I contains many instructions and imperatives: Do this; Do that; You should
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. . . They are to be regarded as recommendations or advice, rather than rules which
must be religiously observed. (Indeed, it is unlikely that anyone would have time or
inclination to carry out all the tasks suggested.) Students differ in temperament and
intellect, so what suits one undergraduate will not necessarily suit another. It is up to
you to work out your own work-style; it is hoped that these notes will assist you. It is
possible that your tutor will disagree with some of the advice. What I have included
is what I regard as good advice in general. I believe that all tutors will agree with
most of what I have written, and I am confident that students who follow most of the
advice will be more successful, in general, than those who ignore it. Nevertheless, any
opinions expressed in these notes are my own (and, in the case of Chapter 3, those of
Nick Woodhouse); they do not necessarily represent the views of any other individual
or institution.

Part II is much more technical than Part I, and will need to be read carefully.
Many of the individual sentences may need to be read several times to understand
their precise meaning and significance. Since some of the ideas are sophisticated, there
may be some points which remain unclear to you even after hard thought, particularly
if you are reading them before the course has started. If so, do not be alarmed–all may
become clear when the course starts and you have a context in which to consider the
point. You should be able to understand later sections without having grasped every
point earlier on. The most difficult sections are probably 4.4, 4.5 and 5.7, so you may
want to start Chapter 5 before tackling Sections 4.4 and 4.5; in Sections 5.2—5.5, it will
be more profitable if you pick out some of the examples which are at the appropriate
level for you than if you work through them all at one reading. Apart from the list
of contents, you can use the summaries at the end of each section to find where a
topic is discussed. In order to facilitate using the notes for reference, there are many
cross-references between sections, and a few places where material is repeated.

Before writing the notes, I read two booklets: Study Skills in Mathematics, edited
by Diana Burkardt and Des Rutherford of the Shell Centre for Mathematical Education
at the University of Nottingham, and Proofs andWhat is a proof? appendices of lecture
notes of La Trobe University, Australia. Although only faint traces of those sources
may appear in these notes, they were very helpful in guiding me where to start and
how to express the ideas. I am grateful to several colleagues for their comments on
earlier drafts, especially to Nick Woodhouse for contributing a chapter explaining the
differences, and many similarities, between pure and applied mathematics.

St. John’s College C.J.K.B.
Oxford April 1994
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PART I

CHAPTER 1

University study

In this chapter, we shall discuss the general way in which you are likely to go about
your academic work.

1.1 Pattern of work

There are three main aspects of university study:

(1) Lectures

(2) Tutorials (or classes)

(3) Private study (reading books, working through lecture notes, doing problems)

This ordering is arbitrary; it corresponds neither to importance nor to duration of these
activities. Tutorials are the most important in terms of the ratio of potential benefit
to duration, but they will occupy the least time, private study the most.

The total amount of time spent on study should be consistent with your status
as a full-time student. This means that it should at least equal the amount of time
that you would work in a full-time job, and the amount of time which you spent at
school, including homework. There are 168 hours in the week, so this leaves plenty of
time for other activities, even after allowing for eating, sleeping, etc. Provided that
you organise your time well, you will be able to socialise and participate in sport, or
arts, or whatever else you want to do, as well as study mathematics successfully.

Where university education differs from school, and from most employment, is that
most of your-working time is organised by yourself. In your first two terms, lectures
will account for 10 hours a week, and tutorials for about 2 hours, at appointed hours.
It is up to you to choose at what time to do your private study. You may like to work
from 9 to 5 Monday to Friday, or you may prefer to work in the early hours of the
morning and at weekends. It is not important when you choose to work, provided that
you meet the following constraints:
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(i) you will have to perform certain tasks between lectures and before tutorials
(see Sections 1.2 and 1.3),

(ii) unless you have exceptional stamina, it is probably not a good idea to work
for very long periods without at least a short break (even if it is only to make
yourself a cup of coffee),

(iii) you should be alert (i.e., not half-asleep) for lectures and tutorials.

Although it is not important when you choose to work, it is vital that you should
get into a regular and full pattern of work soon after your arrival in Oxford (before you
commit yourself to too many other activities). You are recommended to write down
a weekly timetable for yourself. The main purpose of this is to avoid the unhappy
situation, into which too many students fall, where increasing involvement in other
activities, and/or general frittering away of time, erodes your work without you really
noticing it. It will take some experimentation to work your timetable out, but it should
be possible for you to have a tentative timetable within your first week, which you can
adjust as your pattern of activities settles down. It is not expected that you will stick
slavishly to the same timetable week after week. Of course, there will be occasions
when unexpected or irregular events cause you to miss a session when you intended to
work, or when you are feeling under the weather so that working would be pointless. If
you are conscious that you have slipped behind a planned schedule, you are much more
likely to make time to catch up later. You should not be afraid to tell fellow-students
who interrupt your work that you cannot join in social activities for the time being.
You won’t lose any friends by doing this–at any rate, not worthwhile friends!

It is also important that at an early stage you should find a place to work where you
will not be greatly distracted. This is most likely to be your own room in college, but
if you find that your attention drifts too often towards the non-mathematical pursuits
available in the room, or if you are interrupted too often by friends eager to socialise,
you may prefer to work in a library or elsewhere.

Your work is likely to get on better if you discuss mathematics with your peers
(see Section 1.4). So, it will be beneficial to find one or two other mathematicians in
your year with whom you get on sufficiently well that you can discuss any difficulties
which you may have with lectures, exercises, etc.

Summary

1. Your total working-time should be consistent with your status as a full-time stu-
dent.

2. You should get into a regular pattern of work as soon as possible.

3. You should find a regular place to work, free from distractions.

4. Find other students with whom you can discuss your work.
2



1.2 Lectures

In your first two terms, you will have about 10 lectures a week (usually, two or three
lectures a week on each of about four topics). Subsequently, the number of lectures
will tend to decrease gradually. Lectures last a nominal hour; in practice this means
about 50 minutes, to allow time for arrival and departure.

You should go to all the lectures on all your courses. If by necessity you miss
a lecture, get hold of the lecture notes from somebody else and work through them.
(Don’t just photocopy them and file them; that way, you learn nothing.)

During lectures

Many of the lectures will have a rather formal style. The lecturer will speak and
write on the board (some lectures may have interludes such as computer demonstra-
tions, jokes, etc.). You will have to learn by experience what form of notes to take.
Ideally, you should concentrate on trying to follow the mathematical argument, and
take notes only of the essential points; if you succeed in understanding the argument,
you will have no difficulty in filling in the gaps afterwards (provided that you do so
before you have forgotten everything). However, in practice, you may well find that
you often fail to keep up with the lecturer’s reasoning. In that case, rather than coming
out of the lecture with little understood and little written down, you should copy what-
ever is written on the board, plus anything else which seems important. This seems a
crazy, inefficient, way to study–why don’t the lecturers provide handouts of what they
write on the board? The answer is that experience shows that most students do not
work through impersonal handouts thoroughly, whereas the copying method does help
to concentrate the mind, ensures that something is absorbed if only by a process of
osmosis, and provides students with something which they can regard as their personal
version of the mathematics.

The lectures will vary in quality; some will be much more entertaining than others;
some will be much clearer than others; some will be much better prepared than others.
Often, you will lose the thread of the mathematical argument for a while during a
lecture. Whatever happens, you should stick it out, and make as much of the lecture
as you can. In the long run, you often learn more from a lecture which at the time
appeared obscure than from one which was crystal clear. This may be because the
material was deep and difficult, or it may be because you are obliged to work on the
lecture afterwards. You can be sure that it will be much easier to understand the
material by reading a book afterwards if you have been to a lecture (however bad the
lecture may have seemed) than if you skipped the lecture. Reciprocally, it will be much
easier to follow a lecture if you read ahead in a book.

Please do not talk or otherwise disturb the rest of the audience during lectures,
unless you want to ask the lecturer a question. There may be moments when you are
bored and would prefer to chat to your friends, but other people sitting near you may
want to listen to the lecturer and you should let them do so.
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Between lectures

As soon as possible after each lecture, and in any case before the next lecture on
the same course, you should go through your notes carefully and make sure that you
understand them. If the notes are untidy, you may decide to rewrite them completely
(but it is time-consuming if you always do this). Otherwise, annotate your notes
by highlighting the points which seem important, and by adding marginal notes to
clarify anything which is obscure. Compare your notes with corresponding material in
whichever book(s) you are using for the course; you may want to make cross-references.
If the books and notes formulate some result in different ways, make sure that you
understand the relationship between the various versions. (Does each result imply the
other? Is one version more general?) We shall return to this subject in more detail in
Section 2.1.

Next, try some problems which appear to be related to the material in the lecture,
using exercises from textbooks or from problem sheets given to you by the lecturer or
your tutor. Each sheet is likely to cover more than one lecture, so some of the questions
may depend on material which you have not yet covered. Therefore, you should not
spend large amounts of time stuck on one problem–set it aside until after the next
lecture, or until you have read more of the book, when it may become much easier; or
just set it aside until tomorrow, when inspiration may come for no apparent reason.
This method of attempting problems at an early stage may appear to be wasteful of your
time by inducing you to attempt some problems before you have learned the relevant
techniques. However, that time will not be wasted; the surest way of understanding a
piece of theory is to find out how it can be applied to solve a difficult problem which
you have previously attempted unsuccessfully! Moreover, by doing some problems at
each stage, you will make it less likely that you will be short of time before a tutorial.
We shall return to this subject in more detail in Section 2.2.

If you read ahead in a book, you will greatly improve your chances of following
the next lecture, and therefore be likely to benefit much more from the lecture than if
you encounter the material for the first time in the lecture.

Resolving obscure points

It may be that, either during or after a lecture, you will come across something
which you think is wrong (lecturers do make mistakes, some more often than others), or
which you do not understand, even after consulting textbooks. Don’t just put it aside
saying “It’s only a small point; it doesn’t matter”. Do one or more of the following:

(i) interrupt the lecture to ask a question (this takes courage, but it may help
your fellow-students),

(ii) ask the lecturer at the end of the lecture (or the next lecture),

(iii) ask fellow-students (you may find that they do not understand too clearly,
either!),

(iv) ask your tutor in your next tutorial.
4



Summary

1. Go to all the lectures and take notes.

2. After the lecture, work through your notes, make sure that you understand them,
and add clarifications of difficult points.

3. Attempt some problems related to the lecture.

4. Make sure that all points which you cannot work out for yourself are explained to
you.

1.3 Tutorials

The arrangements for tutorials vary from college to college, but you are likely to
have about two tutorials a week. Typically, there are two students (and one tutor) in
each tutorial, but there may be variations. In some colleges, some tutorials may be
replaced by classes of 4—10 students. For brevity, we shall only use the word “tutorial”
here, but almost everything applies equally to classes.

Although you may be doing several lecture courses simultaneously, any one tutorial
is likely to cover at most two of them, with the other courses being deferred until a later
tutorial probably with a different tutor. This means that tutorials on any particular
course will occur at intervals of one or two weeks. However, if you are seriously stuck
on a problem, it is sensible to take any opportunity to get some help, for example by
contacting your tutor between tutorials, or by asking another of your tutors at the end
of a tutorial on other courses.

During the tutorial

The principal function of a tutorial is for the tutor to fill you in on any parts of
the course which are causing you difficulty. It is important to realise that the tutor is
there to help you, and not to examine you. However, in order to help you, the tutor
has to find out what you do not know or do not understand. Naturally, exposure of
your ignorance may make you uncomfortable, particularly if you do not know the tutor
very well, but it is likely to be disastrous if you try to cover up gaps in your knowledge
or understanding, particularly if you succeed for a time. In the long run, you will be
exposed, if not by the tutor, then by the examiner; meanwhile, much time will have
been wasted.

There are various ways in which the tutor may find out what you need to have
explained:

(i) you can tell the tutor (this is the best way–it saves time!),
5



(ii) you may have failed to solve correctly some of the set questions,

(iii) the tutor may ask oral questions.

The purpose of oral questions is to see if you are following the argument, so that the
tutor can recapitulate if necessary, or move on if not. These questions are not intended
to be a test, or to trick you. You should not be afraid to give a partial answer, or
even (after thinking for a while) to say that you do not know the answer or you do not
understand the question. The worst possible outcome is 5 minutes of complete silence
which the tutor is eventually obliged to break by answering his/her own question.

In practice, the majority of any tutorial is likely to be taken up with going through
problems given to you in advance either by the lecturer or by the tutor. However,
there should be an opportunity for you to raise other questions. Occasionally, if time
permits, you may find the tutor takes the initiative to expand on some topic of his/her
own choice. Some tutors will have told you to hand in your work beforehand so that
they can mark it in advance.

You may find that tutors discourage you from taking notes during tutorials, as
they want you to use the time to think about the mathematics. Most tutors will invite
you to take away anything that they have written down on paper during the tutorial (if
they don’t, you should ask for it). There will only be one copy of this, so you will have
to come to an arrangement with your partner about photocopying or about passing
the notes on to each other. Some tutors may use a blackboard or whiteboard (and
may expect you to participate on the board); feel free to ask their advice about taking
notes.

Before the tutorial

However you organise your work, you should start work set for a tutorial well
before it need be completed. If you leave it all until the day before, you will very likely
not leave yourself enough time, and you will certainly not give yourself any chance of
having a second attempt if the first is unsuccessful. If the tutorials on the course are at
fortnightly intervals, you should attempt some of the problems within the first week,
interleaving with your work on other courses, in order to keep up with the lectures and
to prevent a backlog. None of this means that you will have more work in the long
run–you will have to do the problems sometime. It is just a matter of arranging your
schedule in such a way as to get maximum benefit both from your tutorials and also
from working consistently (and deeply) rather than in crises (when inevitably work
tends to become superficial). See Section 1.2 for further comments on the value of
doing problems regularly between lectures.

It is very good practice to meet your tutorial partner shortly before the tutorial to
find out which parts of the set work each of you has done or failed to do. If there is some
problem which your partner has solved and you have not, ask him/her to explain it to
you. If he/she succeeds in this, you will have saved time in the tutorial. Surprisingly
often, you will find that your partner cannot explain it satisfactorily, either because
there is something definitely wrong in the solution, or because he/she does not properly
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understand what he/she is doing. In that case, you will both discover the error or gap
in your partner’s work. Apart from avoiding considerable confusion in the tutorial, this
process will greatly improve the understanding of both of you. Explaining a piece of
mathematics to other people is a very effective way of getting to understand it. We
shall return to this subject in Section 1.4.

If you and your partner have arrived at contradictory solutions, examine each
other’s solutions and see if you can find a mistake. Often, you will both find a mistake!

After the tutorial

As soon as possible after the tutorial (preferably immediately), you should go
through the problems which you failed to solve, and write out proper solutions. Any
notes which you bring out of the tutorial will be sketchy; you should write out detailed
solutions, as this will ensure that you think about the mathematics involved. Finding
out how to solve a problem which had previously defeated you is a highly effective way
of gaining a deep mathematical understanding (which you will retain for future use),
provided that you take the trouble to understand the argument fully. Don’t just file
away the tutor’s notes with your own (failed) solutions–that way, you learn nothing
more.

Arranging tutorials

The timings for tutorials are arranged at the beginning of term, but plans often
have to be changed later. You will have some opportunity to express preferences over
times, but this is likely to be severely restricted by tutors’ many other commitments.
Please don’t say “I can only manage a tutorial at 4 o’clock on Wednesday”; but it is
very proper to say “I’d prefer not to have a tutorial on Thursday, because I have already
arranged one that day with Dr X”; you are likely to find tutors willing to adjust their
arrangements to meet your non-academic commitments, within reason. Some tutors
prefer to teach in the morning, some in the afternoon; you may find they are not keen
to alter such a pattern.

The initial choice of pairings for tutorials in your first term will be highly arbitrary
and experimental, as tutors have little reliable information by which to decide. After a
while, you may find pairings changed as tutors find out who fits well with whom. These
choices depend on many factors; mathematical ability is one of them, but it is certainly
not the only one. Tutors will also take into account personality and compatibility; it
helps if the students in a tutorial are on good terms with each other.

If you have a strong wish not to be paired with some individual, you should let
your tutors know. Please, do not be excessively restrictive–“I refuse to have tutorials
with anybody except Y” may not make you too popular with your tutor, even if it
does please Y! However, it is legitimate to express positive preferences as to tutorial
partners. Often, your preference will be granted, but occasionally the tutor may have
some overriding reason to pair you in some other way.
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Summary

1. Tutorials are intended to fill in gaps in your knowledge, so you should not be afraid
to ask questions or say that you do not understand.

2. Start work for a tutorial well in advance.

3. Discuss with your partner which topics need to be raised in a tutorial.

4. After the tutorial, make sure that you understand everything which was explained
to you.

1.4 Cooperation with fellow-students

We have already described in Sections 1.1 and 1.3 the advantages of constructive
cooperation with your fellow-students. There is no doubt that students who discuss
their work sensibly with their peers enhance their work by doing so. Usually, these
discussions take place in an informal setting, so it helps if you make friends with some
fellow mathematicians. Of course, this does not mean that you should merely copy out
other people’s solutions–such a procedure on its own teaches you almost nothing, and
it may be positively damaging to you if it deceives your tutors and causes tutorials to
be pitched at a higher level than is appropriate for your own ability.

Cooperation between students can be highly constructive if it is done selectively.
You should always try the problems on your own first, but if you are seriously stuck,
try asking other students. Preferably, you should first explain to them what you have
tried–sometimes, the act of doing this makes the way forward obvious–then you
should ask for a hint or sketch of the solution. If you do have to go so far as asking
another student to tell you the full answer, you should ask him/her to explain things
orally (simultaneously writing down formulae, etc.), rather than asking for the written
solution to be handed over. This process of explaining a solution can be very valuable
for both parties, as it encourages them both to understand the mathematics involved.
Cooperation can only be two-sided, so you should be prepared to help other students in
a constructive way–make sure that they have made a decent attempt at the problems.

As mentioned in Section 1.3, it is particularly beneficial if you discuss work with
your tutorial partner, especially if you discover beforehand which topics need to be
raised in each tutorial.

Summary

1. You are recommended to discuss your work with fellow-students, in a constructive
way.
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2. Do not ride on other students’ backs by using their answers without making a
determined effort yourself.

1.5 Books and libraries

Students sometimes seem to think that a complete set of lecture notes removes the
need for books, or vice versa. This is a mistake; the content of books and lecture notes
often overlap, but they fulfil different roles. Books last; lectures end within an hour.
Books have room for more material than can be fitted into lectures, so you will often
find extra explanation or information in the books; on the other hand lecturers can use
tools such as vocal emphasis and visual aids to bring out points which are difficult to
put across in print. While doing problems, you will sometimes find that you want to
look up something which is not in, or not easily found in, your lecture notes; or perhaps
you will just want to look in a book to see if you can find some useful idea (see Section
2.2 for more discussion of doing problems). Moreover, it can be a very valuable exercise
to compare two or more different formulations of a result, one in your lecture notes and
others in books, and to work out the relationship between them (see also Section 1.2).

In order to use books efficiently, it is necessary that you should have them readily
to hand. Although college libraries will have a copy of all the basic undergraduate
textbooks, they are likely to have only one copy of each book, so not all undergraduates
can have access to the right library books at the right time. For these reasons, it is
highly desirable that you should obtain your own copies of some books. You will
be given lists of recommended books, and tutors will advise you which are essential.
Both Blackwells and Dillons shops in Oxford are likely to have these books in stock
when you arrive in Oxford (but they may disappear quickly); you may be able to buy
second-hand copies, for example from Blackwells second-hand department, or from the
book sale usually held in the Mathematical Institute a few days after your arrival (but
second-hand copies will disappear extremely quickly).

You will probably find that some of the books which you are recommended to
obtain during your first term will immediately be of great value for the courses being
given at that time, while others appear at first not to be so relevant, and perhaps appear
to be rather too advanced. Books in the former category will often only be useful for
one particular course, while those in the latter category are likely to be important in
the long run as reference texts which you may use intermittently for various courses
throughout your undergraduate career.

Apart from college libraries, you can use the Radcliffe Science Library for reference
and the Hooke Library for borrowing. The RSL and the Hooke are both parts of the
Bodleian Library, although they are in separate buildings. In order to use the RSL
or the Hooke, it is necessary to register at the Bodleian. Since you never know when
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you will want to use these libraries, it is advisable to register there when you have the
opportunity to do so during your first week in Oxford.

Summary

1. Books play a valuable role in studying mathematics, beyond that of lecture notes.

2. Obtain your own copy of the important books, so that you always have them
readily available.

1.6 Vacation work

“Vacation” and “holiday” are far from synonymous. You are expected to do some
academic work during each vacation, although this will certainly be at a reduced level
of intensity and the vacation may well include a period of holiday.

You will be given specific guidance about vacation work by your tutors, but the
following are general principles:

(i) First, complete work on the courses which were being given at the end of term;
for example, you may have problem sheets still to do. These tasks should be
done during the first week of the vacation.

(ii) Next, recapitulate the whole of the courses which you did during the term. A
good way to do this is to do some old examination questions on the course.

(iii) Finally, read ahead for next term’s courses.

To encourage you to carry out these tasks, particularly (ii), tutors will sometimes set
“Collections” (informal college examinations) at the beginning of term.

Summary

1. Use the vacations to consolidate what you have done during the preceding term,
and to read ahead for the coming term.
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CHAPTER 2

University mathematics

Mathematics at university level involves (a) studying the theory, and (b) solving
problems; you cannot be a good mathematician without mastering both these skills.
Although there is, in some respects, a fairly clear distinction between these two aspects
of university mathematics, it is wrong to think of them as separate activities. In order
to solve any problem, you are likely to have to apply some theory, and it is essential that
you understand the theory properly, both in order that you know which piece of theory
to apply, and also to ensure that you do not misapply it. Moreover, many problems will
themselves be rather theoretical, requiring you to prove things about general classes of
mathematical objects, not just specific examples. It is equally true (but less obvious)
that, in order to understand the theory in a way which impresses on you its significance
and which will therefore lodge itself in your mind (as opposed to merely understanding
the statements line-by-line), it is essential to solve some problems which either apply
the theory or extend it in some direction.

In this chapter, we shall give some general guidance about these two aspects of
mathematics, and about the need for good exposition in written work. In the next
chapter, you will find an applied mathematician’s version of similar topics. In Part
II of the notes, we shall discuss in more detail two particular aspects of the theory
of (pure) mathematics (the correct interpretation and formulation of mathematical
statements, and proofs and their construction) which frequently cause difficulty for
new undergraduates. Many aspects of Part II will also be relevant to problem-solving
and exposition.

2.1 Studying the theory

There are two words which are commonly used to sum up the difference between
university mathematics and school mathematics: abstraction and rigour. University
mathematics is abstract in the sense that, most of the time, we do not study spe-
cific examples (and perform calculations involving numbers), but we study classes of
mathematical objects such as functions, matrices, vectors, and groups (and perform
calculations involving symbols and variables, such as f, x,A, aij , V,v, G, g, . . . , whose
values are never specified). Our mathematics is rigorous in the sense that most of what
we say or write has to be proved to be true.
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The purpose of abstraction in mathematics (as opposed to arithmetical calcula-
tions) is to obtain general results which can be applied over and over again to many
different problems. This is far more efficient in the long run than developing methods
ad hoc for each different problem, or repeating similar calculations many times. An
example which occurs in school mathematics is the formula for the roots of a quadratic
equation. Apart from a few carefully-chosen examples, it is much quicker to apply the
formula than it is to solve an equation by experimentation.

The purpose of rigour is partly to assure ourselves (and anyone who might want to
apply our results, and is sufficiently interested) that our results are correct, partly to
ensure that we understand why our results are true sufficiently well that we can adapt
them to other situations which may arise, and partly to enable students to learn how
to prove things in mathematics so that they can go on to prove new things. It is not
essential that everyone who drives a car should understand the detailed workings of the
internal combustion engine. However, it is essential that there should be designers and
mechanics who do understand the engine, in order to be sure that the engine works
properly, that it can be adapted to correct faults, and that its design can be improved.
Analogously, it is not essential that every physicist, engineer, economist, or computer
programmer who uses the products of mathematics should understand the detailed
mathematics, but it is essential that there should be trained mathematicians available
to help with these applications in times of need.

Your lectures and books will contain many, many, theorems and proofs, particularly
in pure mathematics. Theorems are a convenient way to formulate in writing the
mathematical ideas and theories which the course will explain to you; they are also
important tools in solving problems (see Section 2.2). The abstraction is built into the
formulation of the theorems, and the rigour appears in the proofs of the theorems and
also in the precision with which they are stated. The fact that the roots of the quadratic
equation are given by the formula is itself a theorem, but you will soon see that it is a
rather elementary theorem. (A much more interesting theorem, which appears in the
third year of the Oxford course, is that there is, in general, no formula of this type for
the roots of a “quintic”, a polynomial of degree 5.)

Some of the theorems will state things which seem to be obvious (for example,
that every positive real number has a positive square root), some of them will state
things which you have been told some time ago, but have never known why they are
true (for example, you may be aware that every polynomial has a complex root, but
do you know why?), and some of them will state things which are far from obvious
and which you would never have guessed in a month of Sundays, either because the
statement is too complicated for you to have an immediate insight into it, or because
it is a genuinely surprising fact (is it not surprising that there there is no formula for
the roots of a quintic, when there are formulae for the roots of quadratics, cubics, and
quartics?).

Some courses in applied mathematics (mechanics, methods, etc.) will not contain
many theorems, and will have more of the flavour of school mathematics. They will be
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developing “theory”, some of which could be formulated as theorems if you wished, and
they will frequently be applying theorems from pure mathematics, without necessarily
making this explicit. For more information about applied mathematics, see Chapter 3.
The various degree courses contain different selections of topics in applied mathematics,
and Part II of these notes is directed primarily towards topics in pure mathematics
which are common to all mathematics degree courses.

You will have two main sources for the theory, lectures and books (see Sections
1.2 and 1.5), and you should use them both. In the case of theory presented to you in
a lecture, you should sit down afterwards to compare the material with the textbooks,
and to work around the theorems in the ways which are described below. When you
are learning from books without lectures, you should sit at a desk with pen and paper
to hand so that you can try out the ideas listed below.

The best way to get to understand theory is to experiment with it, and then to do
some problems. When studying a theorem, you should aim to do as many as possible
of the following:

(i) Make sure that you understand the formal statement (see Chapter 4).

(ii) Compare different versions of the theorem; does each imply the other? is one
version more general?

(iii) Try to prove the theorem yourself without reading any given proof.

(iv) Make sure that you understand the given proof line-by-line, i.e. you under-
stand the meaning of each statement, and why it follows from the previous
statements.

(v) Identify where in the proof each assumption is used.

(vi) Identify the crucial ideas in the proof (mark them in the margin of your lecture
notes, or note them on a separate sheet; this will be useful for revision).

(vii) Try omitting one of the assumptions; does the conclusion of the theorem still
hold? can you find an example to show that it does not?

The importance of (i) should be self-evident; Chapter 4 will give some guidance about
difficulties which you may encounter. Steps (ii) and (vii) will help you to understand
the significance of the hypotheses and the generality of the conclusions; (vii) will also
give you practice in the skill of constructing counterexamples (see Section 5.1). The
best way to understand a proof is to find it yourself, which explains (iii). The purposes
of (iv) are to convince yourself that the theorem is true (if you are not already satisfied)
and to teach yourself how to set out a proof accurately, clearly, and unambiguously.
When you are reading somebody else’s proof, you should think consciously about the
author’s reasons for writing the proof as he/she did, and you should look out for the
points of difficulty such as those which will be discussed in Chapter 4. Step (v) will
assist your general understanding of the theorem and its proof.

The purpose of (vi) is to develop your insight, and to enable you to reconstruct the
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proof, and to construct variants of it, if required to do so. Any proof, however long it
may be, depends on only one or two crucial ideas; the rest of the argument consists of
details. It is futile (and counter-productive) to try to remember by heart all the details
of all the hundreds of proofs which you will see, so the only practical way is to get to
grips with the proof sufficiently deeply that you appreciate the essential ideas. These
crucial ideas may be hidden in some preliminary lemma or proposition, so you may
need to look around. If you can recall them (even if you have forgotten the details),
you will be able to reconstruct the proof when required, and you will have improved
your insight into the mathematics.

Let us illustrate this last point by considering the following standard proof that√
2 is irrational.

Suppose that
√
2 is rational. Then

√
2 = m

n , where m,n are positive
integers. By dividing m and n by powers of 2, we may assume that they are
not both even. Now m =

√
2n, so m2 = 2n2. Thus m2 is even, so m is even.

Therefore m = 2k for some integer k, so 4k2 = 2n2. Hence, n2 = 2k2, so n is
even. Thus both m and n are even, a contradiction.

Hence, our assumption must be false, so
√
2 is irrational.

The essential idea of this proof is that it is an argument by contradiction; the main
subsidiary idea is that we can assume that m and n are not both even. The rest of the
proof (everything after the first three sentences) is routine manipulation which follows
naturally. If you remember the essential and subsidiary idea, you will undoubtedly be
able to reconstruct the whole proof.

Let us return to the list (i)—(vii) above. You should be aware of the difference
between (v) and (vii). The fact that a proof uses an assumption does not necessarily
mean that the assumption is essential for the theorem; the theorem may be true even
if the assumption is omitted, because there might be a cleverer proof which does not
require the assumption. We shall return to this point in Section 5.1.

Finally, when you think that you have mastered the theorem (or a piece of theory),
do some problems on it, before going on to the next topic.

Summary

1. Mathematical theory at this level is usually abstract and rigorous.

2. When studying theory, carry out the tasks listed in (i)—(vii) above, to improve
your insight into the theory and the proof.

3. If you understand the essential ideas of a proof, you are likely to be able to recon-
struct the whole proof when required, and to construct variants of it.

4. When reading a proof line-by-line, think consciously about why the proof is written
as it is.

5. When you think that you have understood a piece of theory, try some relevant
14



problems, to test yourself, and to improve further your understanding of the sig-
nificance of the theory, and its applicability.

2.2 Problem-solving

Since one cannot be a mathematician without solving problems, you should do
some at every occasion, between lectures, and at frequent intervals while reading. They
may be exercises from a book, or problems from a sheet which you have been given.
Where you get the problems from is not so important, provided that they span a range
of difficulty, so that there are some which you expect to solve, and some which will
really stretch you.

In solving a mathematical problem, there are usually three stages:

(1) understanding the problem;

(2) experimentation (to find a method which looks likely to work);

(3) verifying and writing out the solution.

These stages will be examined more closely in Chapters 3 and 5, but for the moment
we will merely make outline some general principles.

Suppose then that you are faced with a taxing problem. Here are some guidelines
as to how you might proceed if you find the problem difficult. These suggestions are
listed in roughly the order in which they should be tried, but not all of them will be
suitable for any given problem.

(i) While searching for a method, do not worry about details; fill them in later,
if you can.

(ii) Try working backwards from the answer (if this is given); this may show you
the connection between the assumptions and the conclusion; eventually, you
will have to turn the argument around so that it runs in the right direction.

(iii) Draw a diagram, if appropriate (many students are very reluctant to do this).
Although diagrams rarely constitute a solution in themselves, they often show
you something which you would not otherwise have noticed.

(iv) If the problem is a general one, try special cases, or simpler versions of the
problem.

(v) Make sure that you have read as much as possible of the relevant theory. Re-
read your lecture notes and books; write down on a single sheet of paper all
the information which appears to be relevant.
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(vi) Look in your notes and books for similar worked examples.

(vii) If you are still stuck, put the problem aside and come back to it later (e.g.
the next day). Surprisingly often, the solution will then stare you in the face.

(viii) If you are still stuck, ask your fellow-students (see Section 1.4).

(ix) If the worst comes to the worst, ask your tutor.

Let’s be cheerful, and suppose that somehow or other you have found a method
which you think may work. Inevitably, there will be some details which you have
skipped over, or which you are not completely confident about, so there remains the
task of writing out a complete and accurate solution. For example, you may have to
reverse the direction of your argument, or you may have to set out a formal proof by
induction. This stage also serves to verify your solution, in the sense that it shows you
whether the method actually works. It may be that when you try to write the solution
out, you find there is some unexpected difficulty which you had overlooked, in which
case you will have to return to experimentation. We shall describe some of the general
principles of writing mathematics in Section 2.3, and some particular aspects will be
discussed in detail in Chapters 4 and 5.

Even if you think that you have solved a problem correctly and arrived at the
correct answer, pay attention to any solution given in the back of the book or in
tutorials. If the other solution looks different from yours, think about whether yours is
equally valid; if your solution now looks dubious, make sure that you understand what
is wrong.

Summary

1. While studying mathematics in any form, always do some problems at frequent
intervals.

2. When attempting a difficult problem, try the methods listed in this section ((i)—
(ix)).

2.3 Writing mathematics

The third aspect of doing mathematics is the written exposition of your work. As
a student, you should always aim to write out your work in a complete, accurate, and
clear fashion. This applies equally to writing out theory and to solutions of problems.

There are several reasons why good exposition is important. Firstly, when you
come to write down details of problems, you may find some difficulties which you had
overlooked in your rough working. Secondly, any tutor or examiner who is going to read
your work will need evidence that you really understood what you were doing. Thirdly,
you should aim to acquire the ability to communicate mathematics to other people; this
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will obviously be a valuable skill if you follow a career which involves mathematics, and
it will also enhance your ability to write unambiguously and logically in any occupation.
In mathematics, accuracy is much more important than literary quality!

Although your work may be read only by your tutor, it is a good idea, when you
are writing your solutions, to imagine that you are writing for a reader who has a
similar level of mathematical knowledge to yourself but who has not encountered the
argument which you are writing down. Such a reader should be able to understand
what you have written without danger of ambiguity, to see that it is correct, and to
see why it is correct.

The English language (in common with other languages) is prone to ambiguity, and
mathematicians have to be particularly careful to use language (and symbols, which
are part of mathematical language) in an unambiguous way. Good punctuation can
be very helpful; for example, commas can be used to separate clauses. Sometimes,
mathematicians go beyond normal punctuation by using brackets to remove ambiguity.
The use of brackets inside algebraic expressions is commonplace (consider the difference
in meaning between (xy) + z and x(y + z); it is a mathematical convention that the
unbracketed expression xy + z means (xy) + z, so if we mean x(y + z), we have to
include the brackets). However, brackets can also be used around entire clauses, to
remove ambiguity. For example, the statement:

x = 0 and y = 1 or z = 2 and t = 3,

is highly ambiguous, but the following are not:

[x = 0 and y = 1] or [z = 2 and t = 3],

x = 0, and [y = 1 or z = 2], and t = 3.

When you write out your final solution, make sure that it is fully comprehensible,
and that each step follows logically from previous ones. What you write should be clear,
intelligible and unambiguous, as well as being logically correct and mathematically
accurate. In particular, when all the symbols are converted into English, your script
should consist of complete sentences. You should pay particular attention to points
such as the following:

(i) If you are arguing by contradiction or induction (see Sections 5.7 and 5.8),
say so clearly.

(ii) If you make some assumptions, say so clearly, by including phrases such as
“Suppose that . . . ”.

(iii) Be careful to use phrases such as “if”, “only if”, “if and only if”, correctly (see
Section 4.2). If you use symbols such as =⇒ , ⇐= , and ⇐⇒ , make sure
that they go in the direction which is both logically correct and relevant to the
problem (this may be the opposite of the direction in your rough working).

(iv) Include phrases such as “and”, “or”, “for all”, “for some” (see Sections 4.3
and 4.4); you cannot expect the reader to know which you mean if you omit
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these phrases.

(v) Make sure that your argument shows correctly which quantities depend on
which other quantities (see Section 4.5).

(vi) If the statement which you are writing down depends on something several
lines earlier, make this clear to the reader, for example by labelling the earlier
statement with (*) and writing “It follows from (*) that . . . ”.

(vii) If your proof involves a division into two or more cases, make it clear what
the different cases are (see Section 4.3).

See Chapter 4 for further discussion of several of these points.

Summary

1. When writing out a solution, ensure that your argument is complete and accurate,
and that, when the symbols are converted into English, what you have written
makes full sense grammatically and is logically correct.

2. When writing out a solution, pay attention to the points listed above ((i)—(vii)).

3. Good punctuation, particularly the use of commas and brackets, may remove am-
biguities.
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CHAPTER 3

The perspective of applied mathematics

by Nick Woodhouse

This chapter describes some of the differences between pure and applied mathe-
matics. Nevertheless, almost all the advice is relevant to all branches of the subject.

3.1 Pure and applied mathematics

Although the other chapters of these notes are written mainly from the viewpoint
of pure mathematics, much of what is said is also relevant to applied mathematics.
Nonetheless there are some important points of difference, and you should bear these
in mind when you start working for tutorials in applied mathematics.

The first is an obvious point about motivation. Pure mathematicians solve prob-
lems to answer questions in mathematics, applied mathematicians solve problems to
answer questions outside mathematics–in physics, biology, economics, and so on. How-
ever, this distinction is often blurred and in many cases amounts to no more than a
difference of emphasis. It is certainly not one of mathematical content: questions about
differential equations in physics generated the development of new fields of pure mathe-
matics; questions in logic about the axiomatic foundations of mathematics sparked the
development of the computer industry. You will not see at university the clear bound-
aries between ‘pure’ and ‘applied’ that were familiar to you in your schoolwork, and
some of the lectures (for example, on geometry) will be hard to classify as belonging
exclusively to one camp or the other.

The same problem can be considered from both a ‘pure’ and an ‘applied’ perspec-
tive. Pure mathematics will be more concerned to answer questions like: What is going
on here? How does it fit in with the rest of mathematics? Does the result generalize?
This leads to an emphasis on establishing general propositions, and on the importance
of precise formulation and of formal proof. Applied mathematics will concentrate more
on questions like: What can I do with this? Is it a useful technique?. But different
questions can often lead in the same direction.

The second point is that ‘applied mathematics’ covers a very wide range of disci-
plines. At one extreme, it is not very different from pure mathematics: you are studying
questions that have been thrown up by particular practical problems, but which are
of such universal importance and are so intriguing to mathematicians that they have
taken on a life of their own and are no longer treated in the context of the original
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applications. The theory of differential equations is a good example. At the other ex-
treme, there are subjects like statistics and numerical analysis, where the applications
are always at the forefront. Here very considerable skill is often needed to formulate
the questions in appropriate mathematical terms.

With this diversity goes a wide range of reasons for including ‘applications’ in
the undergraduate syllabus. First, there is the ‘cultural’ one. Mathematics is not
a pure and abstract creation: every branch can be traced back, ultimately, to some
practical problem. Good mathematicians should be aware of the origins of their subject.
Much of modern mathematics (including calculus) has its roots in the classical areas of
applied mathematics that you study in the first year (mechanics, heat, gravity, and so
on). Second, it is there to develop skill in ‘methods’, such as algebraic manipulation,
integration, equation solving, and geometric reasoning. These are skills that are needed
to underpin all later development in mathematics, pure or applied. Third, it is there to
develop skills in modelling–in translating into mathematical language problems posed
in non-mathematical terms.

Summary

1. The difference between pure and applied mathematics is often one of motivation
and emphasis, rather than mathematical content.

2. In pure mathematics, you will concentrate on techniques for developing proofs. In
applied mathematics you will concentrate on modelling and methods of problem
solving. The two disciplines are not disjoint.

3.2 Solving problems in applied mathematics

The general principles described in Section 2.2, apply to all of mathematics. In
particular, there are three stages in problem-solving:

(1) understanding the problem;

(2) experimentation;

(3) writing out the solution.

Parallel with these there are three different levels of understanding the solution: first,
seeing the solution for yourself; second, seeing the solution clearly enough to explain it
to a friend; and, third, seeing it clearly enough to write it down in good mathematical
style.

Understanding the problem

Whereas in pure mathematics, stage (1) is often just a matter of understanding a
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formal statement (see Section 5.3), in applied mathematics it can be more complicated,
and it often contains the main content of the question. You have to understand the
terms and to identify what it is you are being asked to do, but in addition, you may
well have to begin by translating the problem into mathematical language. Sometimes
this involves a simple ‘decoding’ of a fairly standardized description. For example, if
you are told that a rod is “light”, then you set its mass to zero; if you are told that
something is chosen “at random”, then it means that all choices are equally probable.
At other times, you will not be given in explicit terms all the information that you
need, and you will have to decide for yourself on the most appropriate assumptions.
For example, you may be asked to find the frequencies at which a violin string can
oscillate. You will have to think out for yourself that it is sensible to assume that the
endpoints of the string are fixed, that the tension and density are constant along the
string, and that the transverse displacement is small compared with the length of the
string.

Setting up the problem in mathematical language will involve introducing notation.
Clumsy notation can mislead you and can make it hard for others to understand your
work. Follow standard conventions wherever possible (“m” is a mass, “F” is a force,
not the other way round). Explain your notation clearly, if possible at the beginning
of your solution (“Let A denote the event that . . . ”). Respect the symmetries of the
problem: if, for example, you are considering the motion of three particles with very
similar equations of motion, it will be more helpful to denote their masses by m1, m2,
m3 than by m,M and x. Otherwise, at a later stage, you may find yourself writing out
the same argument three times over, and may miss the opportunity to take a shortcut
by saying “by permuting the subscripts, . . . ”. Remember that notation is your servant,
not your master. You do not have to use the same notation as the lecturer if you do
not like it, and you should not hesitate to rework a problem in a different notation if
your initial choices have not turned out well.

A very important rule is to keep clear in your mind the distinction between setting
up a problem and solving it. If, for example, you are set a probability problem about
rolling dice, you will find it very difficult to think clearly and to express yourself clearly
if you write things like

P(Three sixes given the first throw was 2) = . . . .

This will look messy and long-winded. Abbreviation will lead to a lack of precision,
and to mistakes. You will be shown in the lectures how to set up a problem like this
in the language of probability theory. You will be shown how to begin your solution
by introducing a probability space and defining the relevant events as subsets of the
probability space (e.g. “A is the event that there are three sixes in the first four throws”).
The mathematical argument will then be within the framework of abstract probability
theory. You will write things like,

P(A|B) = . . . ,
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and the logical basis of your argument will be very much clearer. (The “ | ” in the
expression on the LHS denotes conditional probability: you read it as “the probability
of A given B”.)

Similarly, in mechanics, you should keep separate the physical principles that you
need to translate the problem (which usually involves setting up a system of differential
equations), and the subsequent analysis (solving them). For example, if you start by
translating Newton’s second law into a differential equation such as

m
d2x

dt2
= − k

x2
,

you should not, if you subsequently get stuck, inject into the argument at a later point

“by conservation of energy,
1

2
mẋ2 − k

x
= constant”

because this is actually a consequence of the original second-order equation. Of course,
it is perfectly acceptable to prove from the second-order equation that the expression
1
2mẋ2 − k/x is constant, or to quote a theorem about second-order equations that im-
plies that it is constant. It is also helpful to point out that the conserved quantity is
the total energy. If the wording of the problem allowed it, you could also use energy
conservation instead of Newton’s second law to make the initial translation into mathe-
matical language. The mistake is to confuse the process of setting up the model with the
mathematical analysis, by using a physical argument in the middle of a mathematical
argument. The price you pay for such confusion is to lose track of the assumptions from
which your conclusions are drawn; you also risk making contradictory assumptions.

At the end of the setting up process, you should have something that looks much
more like a mathematical question. For example, a problem about smooth rods and
particles has now been translated into a more straightforward instruction: “Solve the
following differential equations subject to the following initial conditions”. In other
contexts, where you have been set an exercise in method as opposed to application, the
problem may be given to you in this form in the first place.

Before launching into the ‘experimental’ stage, you should first ask “is it plausible
that this problem has a solution?” One very important guide, which can be used in
a wide variety of situations, is to see if the number of equations matches the number
of unknowns. If you have introduced three coordinates to describe the position of a
particle, and your application of Newton’s second law has given you only two differential
equations, then no amount of manipulation will enable you to solve the problem. Go
back and see where the extra information is going to come from. If you have more
equations than unknowns, then it is possible that the equations are inconsistent. Double
check!

Experimentation

The advice given in Section 2.2 applies to both pure and applied mathematicians.
“Try some special cases, examples, or simpler versions of the problem” is especially
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good advice for applied mathematicians. If you cannot solve a differential equation as
set, try putting some of the parameters to zero or dropping an awkward term. This
may suggest a clever substitution that solves the original problem. If you are set a
complicated probability question involving the tossing of n coins, get a feel for the
problem by solving it first when n has some definite low value.

I shall just add a few tips on how to avoid one trap that undergraduate mathe-
maticians often fall into: covering many sheets of paper with long calculations that do
not seem to get anywhere. You will meet very few problems in your first year that
cannot be solved on a single side of A4.

(i) If you seem to be getting nowhere, pause and check that what you are trying
to do is sensible. Are you trying to solve a system of equations with more
unknowns than equations? Is what you are trying to show obviously untrue,
because of the existence of a simple counterexample? Are you, for example,
trying to find an algebraic expression for a transcendental function? Has the
problem been carelessly set? (This happens from time to time–you must
learn to spot nonsense problems, so that you do not waste time.) If it is
not sensible, go back to the beginning and check that you have not missed
something in the first stage.

(ii) If what you are trying does not seem to work, do not tear it up. Try a few
other approaches, and compare them.

(iii) It is very easy, when you are not fully confident about what you are doing, to
rush and calculate carelessly. There is no cure for this–it is human nature–
but remember that you waste far more time trying to track down mistakes
than in carrying out the calculation slowly and carefully in the first place.

(iv) Check that you are not trying to do more than you have been asked to do.
Two examples will illustrate this. In probability theory, there are some very
slick methods for finding expectations of random variables without first finding
their distributions (for example, by using indicator random variables). If you
try to find a distribution when all you are asked for is an expectation, you may
be adding unnecessarily to your task. In the theory of central orbits, you can
often find the perihelion (point of closest approach to the centre) by deriving
conservation of energy and then setting the radial velocity to zero, instead of
following what can be a very much harder route of finding the trajectory and
then minimizing the radial distance.

(v) Put the problem aside and come back to it the next day. (This is one of many
reasons for not leaving your work until the last minute.)

(vi) Ask a friend or go and knock on your tutor’s door.

Remember: the Oxford course is designed to stretch very able students. You learn
more from solving one hard problem for yourself, even if it takes several days, than in
knocking off twenty easy ones.
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Summary

1. In applied mathematics, understanding the problem is often the main task.

2. Separate the stage of setting up the problem from the stage of solving it.

3. Check that you have enough information to solve the problem.

4. Do not pursue long calculations if you are not making progress.

3.3 Writing out the solution

Section 2.3 discusses in general terms the task of writing out the solution accurately
and completely. When you read Chapter 5, you will find some examples taken mainly
from pure mathematics, where the task is to write out a proof at the appropriate level
of ‘rigour’. In applied mathematics, very little (but still some) of your work will involve
writing out formal proofs of precisely formulated general propositions. You will spend
much more time developing techniques to solve particular problems, without trying to
push up against the limits of their applicability. Aiming for rigour in your applied work
can lead you into inappropriate and distracting arguments.

In your analysis courses you may well work through proofs of very simple and
familiar propositions, such as that the derivative of the function x 7→ x2 is the function
x 7→ 2x. It takes a while to see why it is important to do this: it is that you need
to put the foundations of calculus on a sound basis in order to build on them later.
If you rely on intuitive and vague definitions of concepts like limit and derivative,
you will eventually come up against the same barriers that stalled the development of
mathematics in the eighteenth century. In pure mathematics, the danger is that, in
exploring the foundations, you accidently allow in intuitive arguments based on your
informal understanding of the concepts you are playing with. Hence the emphasis
on the discipline of rigour, of taking great care to check that your argument follows
logically, step-by-step from the definitions. There is a corresponding danger in your
applied work that you will be so unnerved by concern for rigour that you will be unable
to write down “if f(x) = x2, then f 0(x) = 2x” without proving it. Taken to its extreme,
this attitude would imply that you could not use integrals at all in your first two terms
because you do not begin the rigorous theory of integration until your third term.1

This would be to misunderstand the purpose of rigour, which is precisely to allow you
to use the familiar rules of calculus (and the less familiar ones that you will meet in
the coming year) with confidence. The purpose is to reinforce that confidence, not to
undermine it.

1I am told that there is a French mathematical text that does take this attitude to its extreme,
by apologising at the beginning of the book for using the natural numbers to label the pages before
they have been defined.
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It is very easy to misinterpret these remarks as saying that “rigour has no place in
applied mathematics; any argument, however sloppy, will do”. That is wrong. All that
is being said is that to sum up the instructions for writing good applied mathematics
under the heading of ‘rigour’ would be misleading. The important point is that your
written work should be clear, accurate, and concise (I shall expand on this below).
Rigour is, in any case, a relative term. One of the disconcerting lessons of twentieth
century mathematics is that, if you insist on proving everything by strict rules of
inference from a finite set of axioms, then your mathematical horizons will be very
limited. A celebrated theorem of Gödel’s implies that you will not even be able to
prove rigorously all the propositions in arithmetic that you know to be true by informal
argument. In almost all your work, pure and applied, you will construct arguments by
building on other results that you take for granted. Read what is said about this in
Section 5.6 and look carefully at some of the examples in Chapter 5 when you work
through them. In your applied work, you will build on the results you prove in your
pure work.

Clear writing

A solution to a mathematical problem takes the form of an argument. It should
be written in good grammatical English with correct punctuation. It should make
sense when you read it out loud. This applies to the mathematical expressions as well
as to the explanatory parts of the solution. A solution should never take the form
of a disconnected sequence of equations. When you are writing up a calculation, you
must make clear the logical connection between successive lines (does the first equation
imply the second, or the other way around?), and you must make the equations fit in a
coherent way into your sentences and paragraphs (see the remarks in Section 5.5). One
minor point: many mathematicians are poor spellers. If you are not confident about
your spelling, keep a dictionary on your desk, and use it. A good way to improve your
style is to browse occasionally in Fowler’s Modern English usage.

You will never write a clear argument unless you are clear in your own mind what it
is it that the argument is proving, and you make this clear to your reader. Sometimes
it is simplest to do this by using the ‘proposition-proof’ style of pure mathematics,
but more often this is inappropriate in applied mathematics (it looks very artificial
to formulate as a ‘proposition’ a result that is special to a particular problem). It is
very helpful, both for yourself and for your reader, to say what you are going to do
before you do it, for example, by writing something like “We shall now show that every
function given by an expression of the form . . . satisfies the differential equation”. It
is also helpful to break up a long argument into short steps by using sub-headings. For
example, if you are asked to show that “X is true if and only if Y is true”, then you
might head the first part the argument with “Proof that X implies Y ” and the second
with “Proof that Y implies X” (see Section 4.2).

Of course it is in the nature of much of applied mathematics that you have to
do quite a lot of thinking to extract from the original formulation of the problem the
precise statements that you have to establish. Even something as apparently simple as
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Solve the equation y00 = y

contains potential pitfalls. The correct answer is: y = Aex+Be−x, where A and B are
arbitrary constants. Your argument in this case will establish two things: first, that
every function of the form y = Aex + Be−x satisfies the equation, and, second, that
every function that satisfies the equation is of the form y = Aex +Be−x. In a simple
example like this, you can establish both statements by the same short calculation, and
it would be rather fussy to break the argument up into two parts. But you do not have
to go much further to find an example in which you can go badly wrong if you simply
manipulate without thinking. Consider the following problem.

Solve the simultaneous differential equations y0 = z, z0 = y.

If you ignore what has been said above, you might be tempted to write the following.

Solution.

y0 = z, z0 = y

y00 = z0, z00 = y0

y00 = y, z00 = z

Answer y = Aex +Be−x, z = Cex +De−x.

However, if you take particular values for the ‘arbitrary constants’ A, B, C, D, say,
A = 1, B = 0, C = 0, D = 0, then you rapidly find that your ‘answer’ does not work.
The problem is that it is not clear what the ‘argument’ in the solution is establishing.
If you look carefully, you will see that the first line implies the second line, that the
first two lines together imply the third, and that the third implies the fourth. However,
when you try to go backwards, you cannot get from the second line to the first. To
solve this problem without confusing yourself and your reader, you should break it up
into two parts, along the following lines.

Solution. Suppose that y and z are functions such that y0 = z and z0 = y.
Then

y00 = z0 = y, z00 = y0 = z.

But the general solution to the differential equation y00 = y is y = Aex+Be−x,
where A and B are constant. Therefore y and z must be of the form

y = Aex +Be−x, z = Cex +De−x,

for some constants A, B, C and D. [This does not say that all y and z of this
form are solutions.]

Conversely, suppose that y and z are of this form. Then

y0 = Aex −Be−x, z0 = Cex −De−x.

Therefore y0 = z and z0 = y if A = C and B = −D.
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We conclude that the general solution is y = Aex+Be−x, z = Aex−Be−x,
where A and B are arbitrary constants.

Even in such a very simple problem, you must think carefully about the logical structure
of your argument if you are going to avoid mistakes. Two final remarks: (1) you should
have spotted in the initial stage of thinking about this problem that the solution would
contain two arbitrary constants, and not four; (2) if you think about rigour, then there
are a lot of other questions that come up here, such as “What are the domains of the
functions? Are they twice differentiable?”, and so on. A skill that you must learn by
practice is that of finding the appropriate level of rigour. There are no absolute rules.
What is appropriate depends on the context. Too little rigour, and you will end up
saying things that are untrue; too much will be distracting.

Accurate manipulation

For the most part, this is a matter of taking trouble, and giving yourself time to
check your work carefully. However, the following tips may help.

(i) If you have sketched out a solution in rough, do not just make a fair copy of
your notes. Having seen how to solve the problem in rough, put you notes
aside, and write out the argument from scratch, checking each step carefully
as you go. It is very hard to see mistakes when you are simply copying, rather
than reworking.

(ii) If you are prone to making careless slips, treat your work with suspicion, and
look for ways of seeing that bits of it must be wrong. In mechanics problems,
you can often pick up sign errors by thinking about whether your answer
makes good physical sense. If your trajectory for a projectile implies that it
falls upwards rather than downwards, then you have made a mistake. If you
have found a formula involving parameters for the probability of some event,
check that it always gives an answer between 0 and 1. If a particular choice of
parameter values gives a negative probability, then you have made a mistake.
Test your conclusions against common sense. If you calculation gives 2.31 as
the expected number of tosses of a coin needed to get three heads in a row,
then you have made a mistake.

(iii) Wherever possible, check your answer. For example, always substitute your
solution back into a differential equation (this will also pick up the sort of
problem we met in the example above). If this is too messy, try doing it with
special values of the constants. It may be too much of a labour to check that

y = cos−1
¡p

k log(sec2x+ xx) + x2
¢

satisfies some complicated differential equation, but it may be much easier
when the constant k vanishes.

(iv) Never bring a rough and sloppy piece of work to a tutorial in the hope that
your tutor will not spot the mistakes. The chances are that your tutor will not
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spot the mistakes, in which case nobody learns anything; if your tutor does
spot them, then your tutor learns something about you, but you learn little
about mathematics. If you are uncertain about something you have written,
even after spending a lot of time on it, draw it to your tutor’s attention, and
ask to go through it carefully together.

Concise writing

Pascal wrote in a letter to a friend “I have made this letter longer than usual,
only because I have not had time to make it shorter”. Long-winded arguments in
mathematics are hard to follow. It is well worth spending time and effort to extract
the essential steps from your original rough notes and to present your argument in as
concise as form as is consistent with clarity. But do not be surprised if you find it hard
work, sometimes much harder than spotting the solution in the first place.

There are two points to keep in mind here: first, tutors very rarely criticise under-
graduate work for being over-concise. Second, a good test to apply is the ‘text-book
test’: “if my solution were printed as a worked example in a text-book, would I find it
helpful and easy to follow”

Diagrams

One other topic needs special mention: the use of diagrams. It is a classic howler,
and one that is almost too easy for a tutor to spot, to argue “from the diagram it is
obvious that . . . ”. If you try it, you will be left in no doubt that such arguments cannot
be rigorous (incidentally, you should in any case avoid phrases like “it is obvious that”:
either it is obvious, in which case you do not have to say that it is obvious, or it is not,
in which case you should be more honest). Undergraduates who have been chastened
by the scornful reaction to a ‘diagramatic’ proof sometimes draw the false conclusion
that diagrams have no place in mathematics. This is quite wrong. First, you should
use diagrams freely in the experimentation stage. Second, it is quite legitimate to use
diagrams to help your reader to follow an argument, even in the most abstract parts of
pure mathematics. The mistake is to make deductions from a diagram. It is similar to
the mistake of arguing a general proposition from a single example. In fact, it is bad
practice to suppress diagrams which have played an important part in the construction
of your solution, particularly if you give away the fact that you have a diagram in mind
by using phrases like “above the x-axis” or “in the upper half-plane”. Finally, it is quite
legitimate to use a diagram to set up notation. For example, there is nothing wrong
with using a diagram in a geometric proof to specify the labelling of points (“where A,
B, C are as shown . . . ”); or in analytical proof to give the definition of a function that
takes different constant values in different ranges (a picture here may be much easier
to take in at a glance than a long sequence of expressions with inequalities defining
the various parts of the domain). The only test you must satisfy is: is the use of the
diagram clear and unambiguous?

Summary
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1. In applied mathematics, write your solutions in a way which makes it clear what
you are showing, but avoid excessive concern for rigour.

2. Write your answers grammatically and concisely.

3. Check the accuracy of your calculations by verifying that the answer is sensible.

4. Use diagrams freely for experimentation and illustration, but not for deduction.
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PART II

CHAPTER 4

The formulation of mathematical statements

In everyday language, many statements do not mean literally what they say, either
by design or by oversight on the part of the speaker or writer. For example, “I’ll be with
you in a second” never means that the speaker will be available in exactly one second;
after all, it takes more than a second to say it. However, the situation in mathematics
is very different–mathematical statements have very precise meanings, and there is
no room for metaphor, hyperbole, or other figures of speech. Moreover, some of the
terms used will have specific mathematical meanings, which should have been defined
(for example, “vector”, “group”, “continuous function”), while others will express the
same logical concepts as in ordinary English language, but be used in a very precise
way (for example “if”, “for all”, “or”). The statements are often quite complicated in
structure, with several dependent clauses; a small change in the syntax of a statement
often produces a large change in the mathematical meaning, which may change a true
statement into a fallacy. At first, undergraduates often have difficulty grasping the
precise meaning of mathematical statements made in their courses, but it is extremely
important to learn to master the formulation of mathematical statements, both in order
to understand the meaning of statements made in books and lectures, and also in order
to write down mathematics accurately and unambiguously. In this chapter, we discuss
various points concerning the way mathematical statements are commonly formulated,
in particular the precise use of everyday words to express logical ideas.

There are two points of detail which we should make about the material in this
chapter. Firstly, the phrase “mathematical statement” or “statement” is not intended
to encompass everything that is written in a textbook or said in a lecture or tutorial.
It refers only to formal mathematical statements, such as the statement of a theorem,
proposition, lemma, or corollary, or part of a formal proof, or a formal definition, or
certain other statements. Books and lectures will include other material whose role
is to motivate the theory, or to explain it informally; this material may include some
imprecise statements. Tutorials, and other forms of discussion of mathematics, may
well include many very imprecise statements!

Secondly, we shall sometimes refer to two statements, A and B, as having the same
meaning, or being synonyms. This indicates that the statements are equivalent for
purely formal logical reasons, involving only use of language, notation, and definitions;
it has nothing to do with any mathematical content of the statement. In other words,
A and B are different ways of expressing the same logical concept. This concept may
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or may not be true. However, if A is true then B must be true (because they have
the same meaning); if A is false, then B is false. Any statement can be expressed in
many different ways in English (i.e., there are many statements which have the same
meaning); in our examples, we shall only be able to mention a few.

To assist the reader, we shall label synonymous statements in the form S1a, S1b,
S1c, . . . whereas statements with different meanings will have different numbers (e.g.
S1a and S2).

4.1 Hypotheses and conclusions

Most mathematical statements, in particular most theorems, take the form of mak-
ing certain assumptions (hypotheses) and drawing certain conclusions (consequences).
The hypotheses and/or conclusions may be quite complicated; each may come in sev-
eral parts. For ease of language, the statement may involve several sentences, and the
hypotheses and/or conclusions may themselves be spread over more than one sentence.
The statement is true provided that whenever all the hypotheses are satisfied then all
the conclusions are satisfied.

For example, consider the following statements:

S1a: Every positive real number has a unique positive square root.

S1b: Let x > 0. There exists a unique y > 0 such that y2 = x.

Provided that the reader is aware that the context of S1b is real numbers, these state-
ments are synonymous, because, for example, a square root of x is, by definition, a
number y such that y2 = x, and “x > 0” is conventional notation for “x is a positive
real number”. Because S1a and S1b mean the same, it follows (without thinking about
the mathematical truth of the statements) that if one of them is a true mathematical
statement, then so is the other. Of course, as you well know, both statements are true,
but that is a special fact about real numbers. Indeed the following statement, which is
very similar to S1a in structure, is false:

S2: Every positive rational number has a unique positive rational square root.

Thus, the fact that S1a and S1b are true is a fact of mathematics, depending on
properties of the real numbers, while the fact that they are synonyms is a fact of
language and logic (given the definitions and notation).

Statement S1b is rather more formal than S1a, and the distinction between the
hypothesis (x > 0) and conclusion (there exists a unique y > 0 such that y2 = x)
is clearer in S1b; nevertheless, S1a has the same hypothesis as S1b, and the same
conclusion as S1b. Moreover, S1a has the merit of mentioning explicitly the context of
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real numbers. Which you choose to write is mainly a matter of taste and context.

You should be aware that the conclusion of statement S1b (or S1a) actually says
two things:

(i) there exists at least one y > 0 such that y2 = x (existence),

(ii) there exists at most one y > 0 such that y2 = x (uniqueness).

Statements S1a and S1b are not only true statements, they are theorems, or more
precisely two equivalent statements of the same theorem. You may be surprised about
this: the existence of square roots of positive real numbers is not a law of nature,
but is something which can be deduced from a few axioms about the system of real
numbers. (Most of the axioms are simple laws of arithmetic, e.g. a(b + c) = ab + ac,
or laws concerning the ordering, e.g. if a ≤ b and 0 ≤ c, then ac ≤ bc; however, there
is one more complicated axiom which distinguishes the real numbers from the rational
numbers, say–see Alice in Numberland, Chapter 8, for example.)

To show that S1a and S1b are true statements, it is necessary to prove the theorem.
Since the statements have the same meaning, it is sufficient to prove one of them. Since
the conclusion has two parts, (i) and (ii) above, the proof will also have two parts. The
proof of (i) depends on the complicated axiom of the real numbers, and we will not
give it here. However, the proof of (ii) is quite short, and uses only the simple axioms,
or familiar properties of real numbers easily derived from the axioms, so we will give
the proof here, for the interest of readers who may be becoming bored by the absence
of mathematics.

Suppose that y1 > 0, y21 = x, y2 > 0, and y22 = x. [Our objective is to
show that y1 = y2, which will complete the proof of (ii).] Then

0 = x− x = y21 − y22 = (y1 − y2)(y1 + y2).

But y1 + y2 > 0 (since y1 > 0 and y2 > 0). Since y1 + y2 6= 0, we may divide
by y1 + y2, and deduce that 0 = y1 − y2, so y1 = y2, as required.

To show that S2 is false, it is sufficient to give one example which satisfies the
hypothesis of S2, but not the conclusion. In other words, it is sufficient to exhibit one
positive rational number x which does not have a (unique, positive) rational square
root. This can be achieved by taking x = 2. For completeness, we should prove that 2
does not have a rational square root (in common parlance, that

√
2 is irrational), but

the reader probably knows how to do this, and the argument was given in Section 2.1.

Another aspect of S1b which merits comment is the use of the word “Let” in the
phrase “Let x > 0”. This is shorthand notation for “Let x be a positive real number”,
but what does this mean? It tells the reader that we are going to consider one positive
real number, which we will call x, but we do not know which positive real number
number it is. In other words, x is an arbitrary positive real number x. Similarly, the
statement

S3: Let x be a real number such that 0 < x < 1
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tells the reader that we are going to consider one real number which we will call x, that x
lies (strictly) between 0 and 1, but that otherwise x is arbitrary.

Consider the statements:

S4a: Let R be the set of real numbers;

S5a: Let A be a set of real numbers.

These statements are almost identical, but their meanings are different; S4a means that R
is the set of all real numbers, while S5a means that A is a set of some real numbers. The
clue here is the use of "the" in S4a, indicating that we are discussing a unique set, while
"a" in S5a indicates that A is one of many possible sets. Actually instead of S4a and S5a,
it would be better to write:

S4b: Let R be the set of real numbers;

S5b: Let A be a subset of R.

[The notation R is standard for the set of all real numbers.]

We have already pointed out that the hypotheses of a statement may be spread over
several sentences. One particular trap that may catch you out is that sometimes a standing
hypothesis may be made, which is not repeated in every theorem. For example, consider
the following statement:

S6: Suppose that f (0) < 0 and f (1) > 0. Then there exists a such that 0 < a < 1 and
f (a) = 0.

When you read S6, it is natural to assume that f is a real-valued function of a real variable
between 0 and 1, i.e. that f specifies a real number f (x) for each value of x with 0 6 x 6 1.
However, if that is all that you assume, apart from the hypotheses f (0) < 0 and f (1) > 0
which are given explicitly, then S6 is false. Indeed, one may take

f (x) =

½
−1 for 0 6 x 6 1

2

1 for 1
2
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Graph of a continuous f (x)

Clearly f satisfies the hypotheses of S6, but not its conclusion. Thus S6 is false.

However, suppose that the writer of S6 had at some previous stage, maybe many pages
earlier, written: From now on, f will be a continuous function. Then S6 would be a true
statement. This is a theorem which is sufficiently deep to have a name (the Intermediate
Value Theorem), and the proof is beyond us here. It is one of those theorems which appears
obvious (if you have to get from below the x-axis to above it with a continuous curve, then
you have to cross the x -axis somewhere – see the diagram on the right), but one cannot
even begin to prove it until one has made a precise definition of continuous.
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This shows that it is very important to identify all the hypotheses in a statement.
You will also need to distinguish correctly between the hypotheses and the conclusions,
both when reading mathematics, and when writing. This may sound like a simple task,
but there are many pitfalls surrounding the word “if”, which we shall discuss in the
next section.

Summary

1. Mathematical statements have very precise meanings.

2. Typically, a mathematical statement has certain hypotheses and certain conclu-
sions. The statement is true if, whenever the hypotheses are satisfied, then the
conclusions are satisfied.

3. A hypothesis such as “Let x be a whatsit” means that x is one of many whatsits,
but we do not specify which whatsit.

4. The hypotheses of a statement may be spread over several sentences, and may
include standing hypotheses made a long time earlier.

4.2 “If”, “only if”, and “if and only if”

Suppose that we wish to formulate a statement in which we make some hypotheses
and draw certain conclusions from them. Let P stand for all the hypotheses and Q for
all the conclusions. For example, in S1b, P stands for: x > 0 and Q for: there exists a
unique y > 0 such that y2 = x. We can then write our desired statement as:

S7a: If P, then Q.

Thus we can rewrite S1a and S1b in the format of S7a:

S1c: If x > 0, then there exists a unique y > 0 such that y2 = x.

In principle, any statement with a set of hypotheses and a set of conclusions can
be written in the form S7a, but in practice it may be clumsy to do this, especially if
P and/or Q is complicated. In this section, we are going to discuss logical aspects of
statements containing the word “if”.

As we mentioned in Section 4.1, the statement S7a is true provided that whenever
the hypotheses P are satisfied, then the conclusions Q are satisfied. In mathematics,
to avoid ambiguity we have to stick rigidly to this principle. This differs from every-
day conversation, where people often do not distinguish carefully between S7a and its
converse:

S8a: If Q, then P.
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A synonymous way of expressing the converse is:

S8b: If P does not hold, then Q does not hold.

(The statement P does not hold or P is false is known as the negation of P; we shall
have more to say about negations in Section 5.7.)

For example, a statement such as:

S9: If you get three As in A Level, I’ll buy you a computer

is often taken to include the converse (if you don’t get three As, I won’t buy you a
computer). In fact, strictly speaking (and mathematicians often have to speak strictly),
there is no reason to infer the converse from S9, so if someone did make the statement
S9 to you and you did not get three As, you are quite entitled to ask them whether they
are going to buy you a computer. On the other hand, if someone made this statement
and you did get three As, then you are entitled to demand your computer.

Since mathematics is a very precise subject, we do have to be very careful what
is meant when reading, and more particularly when writing, mathematics. So, we can
write:

S10: If x > 1, then x2 > 1

(a true statement), but we should not get confused and write the converse:

S11: If x2 > 1, then x > 1

(a false statement). Equally, we should not confuse the following two statements, which
are converses of each other:

S12: If x > 0, then there exists y > 0 such that y2 = x.

S13: If there exists y > 0 such that y2 = x, then x > 0.

Both S12 and S13 are true, but they have different meanings.

There are many statements which have the same meaning as S7a. For example,
the following are all synonyms:

S7a: If P, then Q.

S7b: P implies Q.

S7c: Let P hold. Then Q holds.

S7d: P only if Q.

S7e: P is a sufficient condition for Q (or: In order that Q holds, it is sufficient that
P holds).

S7f: Q is a necessary condition for P (or: In order that P holds, it is necessary
that Q holds).

S7g: If Q does not hold, then P does not hold.
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When making a mathematical statement, the choice of format for the statement
is up to the writer, but one should try to choose a style which is readable, clear, and
unambiguous. Depending on the context, some of the formats listed above are likely
to be unsuitable, and there may be convenient formats which are not listed.

To revert to a particular example, the following are all synonymous with S1a:

S1a: Every positive real number has a unique positive square root.

S1c: If x > 0, then there exists a unique y > 0 such that y2 = x.

S1b: Let x > 0. Then there exists a unique y > 0 such that y2 = x.

S1d: x > 0 only if there exists a unique y > 0 such that y2 = x.

S1e: x > 0 =⇒ there exists a unique y > 0 such that y2 = x.

S1f: In order that there exists a unique y > 0 such that y2 = x, it is sufficient that
x > 0.

S1g: A necessary condition that x > 0 is that there exists a unique y > 0 such that
y2 = x.

S1h: If there does not exist a unique y > 0 such that y2 = x, then x ≤ 0.
Take your pick! Both S1d and S1g are very peculiar ways to make this statement, and
you are unlikely to choose them.

We have mentioned above that S7a is synonymous with S7d. Interchanging the
roles of P and Q, we see that

S8c: Q only if P

is synonymous with S8a. Thus S8c is the converse of S7a. In short, “only if” is the
converse of “if”. In practice, the phrase “only if” is rarely used on its own, but it is
often used in the phrase “if and only if”.

If one wishes to make a statement “If P, then Q” and its converse “If Q, then P”
simultaneously, one may write

S14: P if and only if Q.

(occasionally, you may see this abbreviated to “P iff Q”). Thus S14 is really two state-
ments. So, to prove S14, you will usually have to give two separate proofs, one of “If
P, then Q” and one of “If Q, then P”; only rarely is it possible to prove both parts
simultaneously (see also Section 5.7). Note that S14 is synonymous with “Q if and only
if P”.

For example, we could combine the statements S12 and S13 into a single statement:

S15: There exists y > 0 such that y2 = x if and only if x > 0.

However, S15 could be ambiguous; it might mean (as it is supposed to):
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S16a: [There exists y > 0 such that y2 = x] if and only if [x > 0],

or it might mean:

S17: There exists y > 0 such that [y2 = x if and only if x > 0].

The reader could probably work out that we do not mean S17, either from the context,
or by observing that S17 is false (S17 implies that there is some positive number whose
square equals all positive numbers, which is clearly nonsense). Nevertheless, we should
try to avoid ambiguity if it is possible to do so without becoming unreadable, so instead
of S15, it would be better to write S16a or one of the following:

S16b: x > 0 if and only if there exists y > 0 such that y2 = x,

S16c: A necessary and sufficient condition that there exists y > 0 such that y2 = x
is that x > 0,

S16d: The following are equivalent:

(i) x > 0,

(ii) there exists y > 0 such that y2 = x.

The format of S16d is most appropriate for complicated statements, or if there are
more than two equivalent statements ((i),(ii),(iii), . . . ).

In Section 2.3, we discussed the need to choose language and punctuation in such
a way as to remove ambiguity. One useful tip is that any statement starting with “If”
should have a matching “then”. This makes it clear when the hypotheses are completed
and the conclusions start. For example, what does the following mean?

S18: If n is prime, n 6= 2, n is odd.
It could mean:

S19: If n is prime, then n 6= 2 and n is odd,
or

S20: If n is prime and n 6= 2, then n is odd.

Of course, S19 is false and S20 is true, so you (an educated mathematician) know
which interpretation to take. However, there is no point in only making statements
whose truth is obvious to the reader (it frequently happens that mathematicians find
statements which they wrote themselves are far from obvious after an interval in which
they have forgotten the context). An uneducated person might misinterpret S18, by
taking it to mean S19 or even

S21: If n is prime or n 6= 2, then n is odd,

or

S22: If n is prime, then n 6= 2 or n is odd.
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So the moral is that you should include all those little words like “then”, “and”, “or”,
etc.

Summary

1. Distinguish carefully between a statement “If P, then Q”, its converse “If Q, then
P” and the combined statement “P if and only if Q”.

2. The same statement may be written in many different ways.

3. To avoid ambiguity when writing mathematics, construct your statements carefully
and include words such as “then”, “and”, “or”, etc.

4.3 “And” and “or”

A mathematical statement is likely to have various clauses, linked by logical con-
junctions such as “if” and “then” discussed in Section 4.2. Another common pair of
logical conjunctions are “and” and “or”, which arose briefly at the end of Section 4.2.
For example in a statement of the form “If P, then Q” the hypotheses P and/or the
conclusions Q may be composed of smaller clauses linked by these words. For example,
consider the statement

S23: If p is prime and p divides n2 − 1, then p divides n− 1 or p divides n+ 1.
Here, the hypothesis consists of two parts, “p is prime” and “p divides n2 − 1” linked
by “and”. This means that we assume that both parts of the hypothesis are true
simultaneously. The conclusion also consists of two parts “p divides n − 1” and “p
divides “n+ 1”, but they are linked by “or”. This means that the conclusion is that p
divides at least one of n− 1 and n+ 1.

In S23, it is implicit that p and n are positive integers and that “prime” and
“divides” have their usual meanings. Then statement S23 is true (you should be able
to see why). However if either clause of the hypothesis were omitted, then the statement
would be false. If p is a non-prime which divides n2 − 1, then p may not divide either
n− 1 or n+ 1 (e.g., p = 8, n = 5). Hence the statement

S24: If p divides n2 − 1, then p divides n− 1 or p divides n+ 1
is false. (However, if it had already been established that p is prime, then S24 would
be true; if other constraints on p and n had been established, then S24 might be true.)
Similarly, the statement

S25: If p is a prime and p divides n2 − 1, then p divides n− 1
is false (unless some suitable constraints on p and n had previously been established)–
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consider p = 3, n = 2, for example.

A statement of the form “P and Q” is true if (and only if) both P and Q are
true, simultaneously; “P or Q” is true if (and only if) at least one of P and Q is true.
Note that it is a mathematical convention that “or” is used inclusively, so that “P
or Q” means “P or Q or both”. (Occasionally, this convention may be breached; in
such circumstances, the writer should give explicit warning to the reader.) Thus the
following statements are true:

S26: Everyone in Britain is a European or a foreigner,

S27: If x is a real number, then x > 0 or x < 1,

while the following is false:

S28: If −2 < x < 1 or −1 < x < 2, then 1 ≤ |x| ≤ 2.
The logical concept of “and” or “or” is often implicit in a mathematical statement,

without the words appearing explicitly. Consider the following two problems:

Example 1. Solve the simultaneous equations:

(x− 1)(x− y) = 0,(1)

(y − 3)(x2 − y2 + 1)y = 0.(2)

Neither the word “and” nor “or” appears in the problem, but both concepts emerge in
the solution below.

Solution. Firstly, we are told that the solutions are simultaneous. This means
that we should assume (1) and (2), and see what we can deduce about x and
y.

Now, (1) tells us that x−1 = 0 or x−y = 0, and (2) tells us that y−3 = 0
or x2 − y2 + 1 = 0 or y = 0. So there are two possibilities for (1) and three
(independent) possibilities for (2), making six in all.

Case 1: x− 1 = 0 and y − 3 = 0. This gives one solution: x = 1 and y = 3.
Case 2: x− 1 = 0 and x2 − y2 +1 = 0. This gives x = 1 and y2 = 2, so x = 1
and [y =

√
2 or y = −

√
2]. This provides two solutions: x = 1 and y =

√
2;

x = 1 and y = −
√
2.

Case 3: x− 1 = 0 and y = 0. This gives one solution: x = 1 and y = 0.
Case 4: x− y = 0 and y − 3 = 0. This gives x = y and y = 3, which provides
one solution: x = 3 and y = 3.

Case 5: x− y = 0 and x2 − y2 + 1 = 0. This gives x = y and 1 = 0, which is
impossible! There are no solutions in this case.

Case 6: x− y = 0 and y = 0. This gives one solution: x = 0 and y = 0.
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The six cases were independent alternatives, so any solution of any of the six
cases is a solution of the original problem, and any solution of the original
problem is a solution of at least one of the six cases. Counting up, we find
that there are six solutions in all:

(x, y) = (1, 3) or (1,
√
2) or (1,−

√
2) or (1, 0) or (3, 3) or (0, 0).

Note that although the total number of solutions equals the total number of cases,
we did not find one solution for each case; the equality is just a coincidence.

Example 2. Which real numbers x satisfy the following inequality?

(*) 4|x+ 1|+ 5 > 3|x+ 2|+ 2|x− 1|

It is not easy to manipulate the modulus function |y|, because its definition has
different forms for positive and negative values of y:

|y| =
½ −y if y < 0

y if y ≥ 0.

The easiest way to handle it is to consider the cases y < 0 and y ≥ 0 separately. In
this example, we therefore consider various cases, depending on whether x+ 1, x+ 2,
and x− 1 are positive or negative.

Solution. We shall divide the solution into four cases: (1) x < −2, (2) −2 ≤
x < −1, (3) −1 ≤ x < 1, (4) x ≥ 1.
Case 1: Suppose that x < −2. Then |x+ 1| = −x− 1, |x+ 2| = −x− 2, and
|x− 1| = 1− x. Thus (*) becomes:

4(−x− 1) + 5 > 3(−x− 2) + 2(1− x).

Rearrangement gives: x > −5. We are also assuming that x < −2, so the
solutions of (*) in this case are the real numbers satisfying x < −2 and x > −5,
in other words those x such that −5 < x < −2.
Case 2: Suppose that −2 ≤ x < −1. Then (*) becomes:

4(−x− 1) + 5 > 3(x+ 2) + 2(1− x).

Rearrangement gives: −7 > 5x. In this case, the solutions are the real num-
bers x satisfying −2 ≤ x < −1 and x < −7/5, in other words those x such
that −2 ≤ x < −7/5.
Case 3: Suppose that −1 ≤ x < 1. Then (*) becomes:

4(x+ 1) + 5 > 3(x+ 2) + 2(1− x).
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Rearrangement gives 3x > −1. In this case, the solutions are the real numbers x
satisfying −1 6 x < 1 and x > −1/3, in other words those x such that −1/3 < x < 1.

Case 4: Suppose that x > 1. Then (*) becomes:

4 (x+ 1) + 5 > 3 (x+ 2) + 2 (x− 1) .

Rearrangement gives: 5 > x. In this case, the solutions are the real numbers x satisfying
x > 1 and x < 5, in other words those x such that 1 6 x < 5.

Now for any number x, exactly one of the four cases applies. Hence x satisfies (*) if
−5 < x < −2 or −2 6 x < −7/5 or −1/3 < x < 1 or 1 6 x < 5; otherwise x does not
satisfy (*). Thus, x satisfies (*) if and only if either −5 < x < −7/5 or −1/3 < x < 5.

Our solution is confirmed by the diagram below of the graphs of each side of (*).

- 6 - 4 - 2 2 4 6
x

5

1 0

1 5

2 0

2 5

3 0

3 5

y

The solutions to Examples 1 and 2 both involved a separation into a number of cases.
This is quite common in mathematics. It is note possible to give hard and fast rules as to
when this is likely to happen, but it is almost inevitable that it will occur when you are
required to prove a statement of the form:

S29: If P or P 0, then Q,

when you will probably divide your argument into two cases (Case 1 being when P holds,
and Case 2 when P 0 holds). In some problems such as Examples 1 and 2 above, and "or"
occurs naturally at some intermediate point of the argument, and then the argument is
divided into cases. In some problems, you may choose to divide the argument into cases
even though no "or" has explicitly appeared.

The logical concepts of "and" and "or" are in some sense dual to each other. The
situation dual to a proof of S29 concerns a statement of the form:

S30: If P , then Q and Q0.

To prove S30, it is likely that your argument will consist of two parts, one part proving Q
and the other part provind Q0 (in both cases assuming P ). It may be easier to prove Q
first, because this will help you to prove Q0, or it may be easier to prove Q0 first, because
this will help to prove Q, or it may not make any difference which you prove first.
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Summary

1. Look out for situations where mathematical statements are linked (implicitly or
explicitly) by “and” or “or”.

2. “P or Q” means “P or Q or both”.

3. Problems involving “or” may need to be solved by division into cases.

4. Problems where the conclusion has more than one part may need separate proofs
of the various parts.

4.4 “For all” and “there exists”

Two other phrases which occur frequently in mathematics are “for all” (and its
synonyms) and “there exists” (and its synonyms). The typical structure of a statement
containing them is:

S31a: For all x ∈ S, P(x) holds.

S32: There exists x ∈ S such that P(x) holds.

Here, S is some set, ∈ is the standard set-theoretic symbol denoting either “belonging
to” or “belongs to”, and P(x) is a statement which depends on some parameter x. For
example, if S is the set of all real numbers, and P(x) is the statement x2 = 2, then
S31a becomes the false statement:

S33a: For all real numbers x, x2 = 2,

and S32a becomes the true statement:

S34a: There exists a real number x such that x2 = 2.

Often, the distinction between “for all” and “there exists” is very clear, for example
in S33a and S34a, and in the following:

S35: All undergraduates are female;

S36: There exist undergraduates who are female.

However, with complicated mathematical statements, mistakes are sometimes made, so
you need to be careful when reading. Moreover, you cannot expect the reader to guess
which quantifier you mean, so you should always include them (or some equivalent
wording) in your written work.

The phrases “for all” and “there exists” (and their synonyms) are known as quan-
tifiers; they are often denoted by the symbols ∀ and ∃, respectively. In S31a and S32a,
the variable x is said to be subordinate to the quantifier; the set S is known as the

42



range of the quantifier. Any statement containing the quantifier ∀ or ∃ should
include a subordinate variable and a range. You are recommended not to use
these symbols as general abbreviations for “all” and “exists”.

In both S33a and S34a, the variable is x and the range is the set R of all real
numbers. Thus, S33a and S34a may be rewritten as:

S33b: [∀x ∈ R] x2 = 2,
S34b: ∃x ∈ R such that x2 = 2.

Phrases which may be synonymous with “for all” include

Given, whenever, for any, every, for each, etc.

Phrases which may be synonymous with “there exists” include

for some, for at least one, there is, has, etc.

It is also possible to rewrite S31a in an “If . . . , then . . . ” format (see Section 4.2 for
further reformulations):

S31b: If x ∈ S, then P(x) holds.

Note that in statements S31a and S32, x is merely a dummy variable, and can
be replaced by any other symbol representing a variable, provided that this is done
consistently and provided that the new symbol is not used for any other purpose.
Thus, S31a is synonymous with:

S31c: For all y ∈ S, P(y) holds.

When writing mathematics, it is important to observe the following general prin-
ciple:

The name (i.e. symbol) given to a variable subordinate to a
quantifier may be chosen arbitrarily, provided that the name chosen
is not already in use in the argument.

It is particularly important to observe this principle in the case of the quantifier ∃,
when all sorts of logical chaos is likely to break out if the principle is not observed. For
example, the following is a true statement:

S37: For any integer n ≥ 2, there is a prime p which divides n.
However, the following argument becomes gobbledygook:

S38: Let n be any integer with n ≥ 2, and let p be any prime. By S37, there is a
prime p which divides n.

At this point, there is a danger that you will deduce that the arbitrary prime p divides
n, i.e. that n is divisible by all primes! Instead of S38, one should write:

S39: Let n be any integer with n ≥ 2, and let p be any prime. By S37, there is a
prime q which divides n.
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S39 is true, and clear, even if it is not very interesting.

In advanced mathematics, one often comes across statements with several quanti-
fiers embedded inside each other. For example, the following is a typical mathematical
statement:

S40a: Given � > 0, there exists δ > 0 such that |f(y)−f(x)| < � whenever |y−x| < δ.

S40a includes one explicit “there exists” and two implicit “for all”s, signalled by “given”
and “whenever”. We can write S40a in the following formal fashion:

S40b: ∀� > 0 ∃δ > 0 such that ∀ [(x, y) such that |y − x| < δ] |f(y)− f(x)| < �.

In S40b, it is presumed that f is a function (of one variable) which has already been
introduced; � and δ, and the pair x, y are variables which are subordinate to quantifiers,
so they can be replaced by other symbols if you wish, provided this is done consistently.
The range of �, and the range of δ, are both the set of all positive real numbers; the
range of the pair x, y is the set of all pairs of real numbers satisfying |y − x| < δ.

In fact, in saying that S40a and S40b are synonymous, we have cheated slightly.
This is correct, provided that neither x nor y has already been introduced. In that
case, they are both subordinate to the quantifier “whenever”, and rewriting S40a as
S40b is correct. However, if x had been introduced at some stage before S40a is stated
(but y had not been), then x cannot be subordinate to the quantifier. In that case,
S40a should be rewritten as:

S41: ∀� > 0 ∃δ > 0 such that ∀ [y such that |y − x| < δ] |f(y)− f(x)| < �.

This apparently small change affects the meaning of the statement significantly. We
shall return to this subtle, but important, point in the next section.

Summary

1. Many mathematical statements involve the quantifiers “for all” and “there exists”,
but they may be disguised.

2. Every quantifier has a subordinate variable and a range, both of which should be
given explicitly if the symbol ∀ or ∃ is used.

3. The meaning of a statement is unchanged if the name of a variable which is sub-
ordinate to a quantifier is changed, provided that every occurrence of the variable
is changed in the same way, and the new name is not used for any other purpose.

4. When writing a statement involving the quantifier ∃, choose a name (symbol) for
the subordinate variable which is not already in use.

5. If a variable has been introduced before a statement, then that variable cannot be
subordinate to any of the quantifiers in the statement.

6. All relevant quantifiers should be included in your written work.
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4.5 What depends on what?

Consider the following statement:

S42: ∀x > 0 ∃y > 0 such that y2 = x.

Is it synonymous with the following statement?

S43: ∃y > 0 such that ∀x > 0 y2 = x.

Of course not! When you convert the symbols into English, it should be clear that S42
is the true statement that every positive number has a positive square root. However,
S43 is the nonsensical statement that there is one positive number whose square equals
all positive real numbers simultaneously.

This example shows that in statements involving quantifiers, the order in which
the variables are introduced matters crucially. This is not really a point of mathematics
at all, merely one of languauge, but it is of great significance for mathematicians, and
it often causes difficulty for undergraduates.

In S42, the clause ∃y > 0 appears after the introduction of the variable x. It
therefore follows from the structure of the sentence (“For all x, there exists y such that
. . . ”) that the variable may depend on x. Similarly, in S40a, S40b, and S41, δ may
depend on �. On the other hand in S43 (“There exists y such that for all x . . . ”), y
cannot possibly depend on x, because x has not even been introduced to the reader’s
mind when y is supposed to be determined. We can summarise this principle:

A variable subordinate to a quantifier ∃ (“there exists”, “for
some”, etc.) may depend on variables which have been introduced
earlier.

For example, consider the statement:

S44a: Every undergraduate in my college owns a bicycle.

This can be formalised as:

S44b: ∀x ∈ {undergraduates in my college} ∃y ∈ {bicycles} such that x owns y.
Of course, the bicycle y depends on the undergraduate x. Since the undergraduate is
introduced in the statement before the bicycle, this is consistent with the principle. On
the other hand, in the statement:

S45: Every college has a library which is available for all students in the college,

the library depends on the college (introduced earlier) but not on the student (intro-
duced later in the statement).

This principle applies even when the other variables have been introduced in earlier
sentences, including those which appeared considerably earlier. For example, consider
the following statement (compare S40a and S41):

S46: Let x ∈ R. A function f : R → R is said to be continuous at x if, for all
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� > 0, there exists δ > 0 such that |f(y)− f(x)| < � whenever |y − x| < δ.

Here, δ may depend on x, f and � (all previously introduced), but not on y (introduced
later). On the other hand, in the statement:

S47: Let f : R→ R be a function. Then f is said to be uniformly continuous if, for
all � > 0, there exists δ > 0 such that |f(y)− f(x)| < � whenever |y − x| < δ,

δ should be independent of both x and y (not previously introduced), but δ may depend
on f and �.

To avoid ambiguity, and to stress what depends on what, you may find that authors
write a statement such as S40a in the form:

S40c: Given � > 0, there exists δ = δ� > 0 such that |f(y) − f(x)| < � whenever
|y − x| < δ.

This is a notational device which can be helpful in reminding both the writer and the
reader that δ may depend on �. Sometimes, the author might mention explicitly that,
in S47, δ is independent of x and y. These are good practices to adopt yourself in
your notes and written solutions, at least until you are confident that you will not get
confused.

Incidentally, understanding why S46 is a sensible definition of continuity is outside
the theme of these notes, but you might like to think about it (see Alice in Numberland,
Chapter 11, for example).

Summary

1. In statements involving the quantifier “there exists”, the subordinate variable(s)
may depend on variables which have already been introduced, but must be inde-
pendent of any variables introduced later in the statement.

2. If you think that you might get confused, include reminders such as “δ = δ�” or
“independent of x and y” in your written work.
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CHAPTER 5

Proofs

Apart from understanding the statements of abstract theorems (see Chapter 4),
you should become used to proving them rigorously. The most important theorems
will be proved in books and lectures, but you may be asked to reproduce the proofs
in examinations. Moreover, you will frequently be set problems which require you to
prove abstract statements which you have not seen before. In all cases, the aim will
be to write out accurate and efficient proofs. There are three basic skills concerning
proofs:

(i) identifying the essential points of a standard proof,

(ii) constructing proofs of facts which were previously unknown to you,

(iii) setting out proofs accurately, clearly, and efficiently.

We have discussed (i) in Section 2.1, and (iii) in Section 2.3. Many of the principles
described in Section 2.2 are applicable to (ii) (see Section 5.4), but this chapter will
be devoted to a more detailed discussion of (ii). The examples in Section 5.5 will also
serve to illustrate (iii).

5.1 Counterexamples

In real-life problems, you do not know the answer until you have solved the prob-
lem. Undergraduate mathematics is rather different, in that in many problems you are
told the answer, and required only to find out why it is the answer. However, from time
to time, you will be asked questions in which you are required to determine whether
a given statement is true or false. In these cases, it is always implicit that you should
justify your answer (there are no prizes for guessing correctly). This means that if the
statement is true, then you have to prove it; if the statement is false, then you have
to disprove it. We shall give you some ideas in the subsequent sections of this chapter
how to go about proving things, but in this section we tell you how to disprove (false)
statements.

Suppose that you are considering a typical mathematical statement which assumes
some hypotheses and claims some conclusion (see Section 4.2); suppose moreover that
you think that the statement may be false. In order to disprove it, all you have to do
is to provide a single counterexample to the statement, i.e. a single example where all
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the hypotheses of the statement are satisfied, but the conclusion is not. In principle,
you may have to prove that your example satisfies the hypotheses and does not satisfy
the conclusion, but this will often be self-evident. For example, in order to show that
the statement:

If m and n are positive integers such that m divides n2−1, then m divides
n− 1 or m divides n+ 1

is false, it is enough to observe that takingm = 8 and n = 5 produces a counterexample
(see S34 in Section 4.3).

Although it sounds easy to find just one example (much easier than giving a
complete proof), most students find it difficult, even if they are told to look for a
counterexample. When they are not told whether the statement is true or false, students
have even more difficulty deciding, particularly when the statement is in fact false.

The skill of deciding whether a statement is true or false depends largely on mathe-
matical insight, which can only be acquired gradually by doing mathematics over a long
and continuous period. Otherwise, the best advice that can be given is that you should
first try to prove the statement; if you run into difficulties, look for a counterexample–
the difficulties which you encountered in trying to prove the statement should tell you
where to start looking. If you run into difficulties looking for a counterexample, you
may acquire new ideas for a proof. If they do not work, the new difficulties may give
you new ideas for a counterexample . . . etc., etc. Advice on how to set about searching
for a proof is given in Sections 2.2 and 5.2—5.5.

For example, you may be asked to determine whether the following is true:

Let S be the set of all numbers of the form a + b
√
2 where a and b are

rational. Let f : S → R be a function such that f(x + y) = f(x) + f(y) for
all x and y in S. Then f(x) = f(1)x for all x ∈ S.

On trying to prove the statement, you may succeed in proving that f(a) = f(1)a
for all rational a (see Example 6 in Sections 5.2—5.5), and perhaps go on to prove
that f(a + b

√
2) = f(1)a + f(

√
2)b for all rational a and b. At this point, you may

notice that it would suffice to prove that f(
√
2) = f(1)

√
2. After a brief period of

experimentation, you should come to realise that there is no way of proving this from
the given information, and that you can show the statement to be false, by choosing
f(1) and f(

√
2) in such a way that f(

√
2) 6= f(1)

√
2. Thus, you can write down your

solution:

The statement is false. Let f be the function defined by f(a+ b
√
2) = a

for rationals a, b. Then f(x + y) = f(x) + f(y) for all x, y in S. However,
f(
√
2) = 0 6=

√
2 = f(1)

√
2.

Actually, to be truly complete, you should show that this example satisfies the identity
f(x + y) = f(x) + f(y) (by putting x = a + b

√
2, y = c + d

√
2, and doing some

manipulations), but we will omit this detail.
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Apart from acquiring good mathematical insight, which is a process which it is not
easy to hasten, there is only one good way to learn the skill of constructing counterex-
amples. That is to practise it yourself; seeing somebody else provide counterexamples
is not the same thing at all. This is one reason why we have recommended (Section
2.1) that you should take standard theorems, omit part of the hypotheses, and try to
find an example to show that the conclusion of the theorem becomes false. This is not
always easy, so if you have difficulty finding such counterexamples, do not be afraid to
ask your tutor or fellow-students.

Students often make the mistake of trying to disprove a statement by discussing
some argument which might be hoped to provide a proof, and saying this “This does
not work because . . . ”, or words to that effect. This is not adequate to show the
statement to be false, because it could be that you overlooked a cleverer argument
which would in fact have produced a proof. Thus to disprove a statement, one should
always provide a counterexample. (In fact, there are certain situations in advanced
mathematics where one can prove a statement to be false by an indirect argument,
without being able to provide a specific counterexample. However, you are unlikely to
encounter such a situation in undergraduate work, certainly not in the first year.)

To illustrate the difference between failure of an attempted proof, and disproof, we
can recall two famous mathematical problems. The first is the Four Colour Theorem
(that every map can be coloured in such a way that no two adjacent countries have
the same colour, using only four colours). A “proof” of this was published by Kempe
in 1879. In 1890, Heawood pointed out that Kempe’s proof contained a gap, but that
it could be modified to prove the Five Colour Theorem. The fact that the proposed
proof of the Four Colour Theorem failed did not mean that the Four Colour Theorem
was false–to establish that, it would have been necessary to give an example of a map
which could not be coloured in four colours (and show that it could not be). Indeed, the
truth or falsity of the Four Colour Theorem was not resolved until 1976, when it was
proved to be true. Remarkably, the basic idea of the proof was the same as Kempe’s,
but the argument was much more complicated, requiring many hours of computer time
to check various cases.

The second example is Fermat’s Last “Theorem”, which states that, for n ≥ 3,
there do not exist positive integers x, y, and z, such that xn + yn = zn. Although
Fermat (1601?—1665) made a note that he was able to prove this, he did not write
down the proof and nobody has subsequently been able to find one. It has been shown
to be true for all n ≤ 100, 000, and for many larger values of n. Thousands of “proofs” of
Fermat’s Last Theorem have been put forward, but so far all of them have been found to
contain errors.2 None of this means that Fermat’s Last Theorem is false. In fact, most
mathematicians would be extremely surprised if it were shown to be false, even though

2One of the most publicised instances occurred in June 1993 when AndrewWiles, a former Oxford
undergraduate (and tutorial partner of the author of these notes), announced a “proof”. Although the
mathematical community at first thought it likely that he was right, he announced five months later
that there was a gap in his argument. At the time of writing these notes, the gap has not been filled,
although Wiles’s method represents a great advance.
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they may be sceptical about Fermat’s famous claim to have found a proof. To show
Fermat’s Last Theorem to be false, somebody would have to provide a counterexample
(which would involve gigantic numbers) or provide a rigorous indirect argument that a
counterexample must exist. Meanwhile, the search for a proof continues.

Summary

1. To disprove a mathematical statement, you should provide a specific counterex-
ample.

2. If asked to decide whether a given statement is true or false and if your insight does
not immediately provide the answer, try to prove the statement; then use your
experience of the difficulties encountered to try to construct a counterexample;
then use your experience of those difficulties to try again to prove the statement,
etc.

3. To gain experience in constructing counterexamples, you should practise by taking
standard theorems, omitting part of the hypothesis, and trying to find counterex-
amples to the conclusions.

5.2 Constructing proofs

In pure mathematics, a typical problem is quite theoretical, requiring you to prove
something of greater or lesser generality. We saw in Section 2.2 that problem-solving
involves three stages which in this context can best be described as:

(i) understanding the problem (understanding the statement, and what is to be
proved);

(ii) experimentation (to find a method which looks likely to work);

(iii) making the proof precise (making sure that the proof does work, and writing
it out accurately and completely).

We shall discuss these three stages in turn in the next three sections. Meanwhile, we
take the opportunity here to introduce several examples which we will use in the next
three sections. These examples are arranged roughly in increasing order of sophistica-
tion. It is not expected that you will be able to solve all these problems,
or even to understand all of them, on first reading of these notes. Do not
despair: part of the purpose is to illustrate the need to find out what the statements
mean before you start to prove them (see Section 5.3); some of the examples may be
left until a second reading. The next two paragraphs give you more guidance how you
might use the examples.
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First, read the examples. It is likely that you will understand the statements of
some of them (you may even be familiar with some of the results). For each of those
examples, try to solve the problem before you read Sections 5.3—5.5. If you succeed,
write out a careful solution of your own, and then compare it with the solution given in
Section 5.5. If you cannot solve the problem after several attempts, read the discussion
of the example in Section 5.3 to make sure that you have understood it correctly. Then
read the treatment of the example in Sections 5.4 and 5.5.

There will probably be some examples whose statements you do not understand
(e.g., the “trace” of a matrix in Example 8 may be unfamiliar). Choose one (or two)
of them (preferably the first). Read that example in Section 5.3 to try to understand
the problem (if the difficulty is notational, look also in the Appendix). Then try to
solve the problem before looking at the solution in Sections 5.4 and 5.5. Ignore any
remaining examples until a later reading of the notes.

Example 1. Let A, B, and C be sets. Prove that (A ∪B) ∩ (A ∪ C) = A ∪ (B ∩ C).
Example 2. Let a, b, c and d be positive real numbers. Prove that

a+ b+ c+ d

4
≥ (abcd)1/4.

Example 3. Let n be a positive integer, and suppose that 2n− 1 is prime. Prove that
n is prime.

Example 4. Let n ≥ 1. Prove that
³
1− x

n

´n
≤ e−x whenever 0 ≤ x ≤ n.

Example 5. Show that | sinx− sin y| ≤ |x− y| whenever x, y ∈ R.
Example 6. Let f : Q → R be a function such that f(x + y) = f(x) + f(y) for all
x, y ∈ Q. Prove that f(mn ) =

m
n f(1) for all integers m and all strictly positive integers

n.

Example 7. Let (an)n≥0 be a sequence of positive real numbers defined recursively
by:

(*) a0 = 1, an+1 =
√
2 + an.

Prove that an converges to a limit as n→∞, and find the value of that limit.
Example 8. Let A and B be n × n matrices. Prove that the traces of AB and BA
are equal.

5.3 Understanding the problem
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The main things to be done here are:

(i) Look up the definition of any terms (words or symbols) about which you
are uncertain. Likely places to look are your lecture notes, and textbooks;
the index of a textbook usually includes a reference to each definition; some
textbooks have a separate index of symbols. By the time that you have done
this, you should be able to translate the statement into ordinary English.

(ii) Decide which parts of the statement are hypotheses which you are supposed
to assume. Write them down (“We assume that . . . ”); include any refor-
mulations of the hypotheses which look as though they might be useful; for
example, you may replace a technical mathematical term by its definition.

(iii) Identify the conclusions which you are supposed to prove; write them down
(“We have to prove that . . . ”). If there is more than one part to the conclu-
sion, write them down separately. If appropriate, write down any reformula-
tions of the conclusion which appear promising; for example, it may be useful
to put the conclusion in a more mathematical form, by replacing technical
terms by their definitions.

Now, we consider the examples introduced in Section 5.2.

Example 1. Definitions: It is likely that the reader is familiar with the notions of
union and intersection, and the symbols ∪,∩ which denote them.
Hypotheses: The only hypothesis is that A, B and C are sets. (It is implicit that they
are all considered to be subsets of some universal set.)

Conclusions: We have to prove that (A ∪B) ∩ (A ∪C) = A ∪ (B ∩C). To do this, we
should show:

(a) If x ∈ (A ∪B) ∩ (A ∪ C), then x ∈ A ∪ (B ∩ C);
(b) If x ∈ A ∪ (B ∩ C), then x ∈ (A ∪B) ∩ (A ∪ C).

Example 2. Definitions: The reader is unlikely to have any difficulty with the termi-
nology or notation.

Hypotheses: The hypothesis is that a, b, c and d are positive real numbers.

Conclusions: We have to prove that
a+ b+ c+ d

4
≥ (abcd)1/4.

Example 3. Definitions: As usual, a positive integer k is said to be prime if k is not
divisible by any positive integer, except 1 and k.

Hypotheses: The hypotheses are that n is a positive integer and that 2n − 1 is prime.
Conclusions: We have to prove that n is prime; in other words, we have to show that
if n = mk for some positive integers m and k, then m = 1 or k = 1.
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Example 4. Definitions: It is not specified whether n is supposed to be an integer,
or a real number. It is common practice to reserve letters such as j, k, m, n, and r to
denote integers (unless specified otherwise), so we might assume that n is an integer
here. However, in this example, it turns out not to matter whether we assume n is an
integer or allow it be a real number.

The notation e−x represents the exponential of −x.
Hypotheses: The hypotheses are that n ≥ 1 and 0 ≤ x ≤ n.

Conclusions: We have to prove that
³
1− x

n

´n
≤ e−x.

Example 5. Definitions: It is assumed that the reader is familiar with the sine
function. The symbol R denotes the set of all real numbers, and ∈ is the standard
set-theoretic symbol meaning “belongs to”. Thus, “for all x, y ∈ R” means “for all real
numbers x and y”.

Hypotheses: The only hypothesis here is that x and y are real numbers. We have to
prove the conclusion for all such x and y, so we are not allowed to choose them to have
specific values.

Conclusions: The conclusion to be proved is that | sinx− sin y| ≤ |x− y|.

Example 6. Definitions: The symbol Q denotes the set of all rational numbers; R
again denotes the set of all real numbers; the notation f : Q→ R means that, to each
rational number x, f assigns a real value f(x).

Hypotheses: The hypothesis is that f(x+ y) = f(x) + f(y) for all rational numbers x
and y.

Conclusions: We have to prove that f(mn ) =
m
n f(1) for all integers m and strictly

positive integers n, in other words, that f(x) = xf(1) for all rational numbers x.

Example 7. Definitions: The word “recursively” indicates that the value of each ak can
be found by applying the formula an+1 =

√
2 + an successively for n = 0, 1, 2, . . . , k−1.

The concept of convergence to a limit has a precise mathematical definition, which can
be found in textbooks on analysis, but we will not need to know it for this problem.

Hypotheses: The only hypothesis is that (an) is the specific sequence defined by (*).

Conclusions: We have to prove that an converges to a limit l, and we have to find the
value of l.

Example 8. Definitions: The reader may not know the definition of the trace of a
matrix. It can be found in books on linear algebra. The trace of an n× n matrix A is
the sum of the entries on the leading diagonal. If the entry in row i, column j of A is

52



denoted by aij , then

trA = a11 + a22 + · · ·+ ann =
nX
i=1

aii.

Hypotheses: The only hypotheses are that A and B are n× n matrices.

Conclusions: We have to prove that trAB = trBA.

If you failed to solve some of these examples because you did not understand the
statements, you are now recommended to try them again before going on to read the
next two sections.

Summary

1. Look up the definitions of any terms and symbols about which you are doubtful.

2. Identify the hypotheses, write them down, and write down any reformulations
which appear useful.

3. Identify the conclusions to be proved, write them down, separating them into
various parts; write down any reformulations which appear promising.

5.4 Experimentation

This part is the real core to the solution, where you do most of the hard thinking.
What you do at this stage may not form part of your final solution, at least not in the
form in which you do it at this stage, but it should lead you to see why the statement to
be proved is true, and also show you how to put together a rigorous argument. Another
description for “experimentation” might be “rough working”, or “exploration”, but we
have in mind not just calculations and algebraic manipulations, but also the whole
process of finding a method which works to solve the problem.

The general principles which should apply while exploring the problem have al-
ready been listed in Section 2.2. We repeat some of them here:

(i) While searching for a method, do not worry about details.

(ii) Try working backwards from the conclusion.

(iii) Draw a diagram, if appropriate.

(iv) Try some special cases, examples, or simpler versions of the problem.

(v) If appropriate, break the problem up into several cases.
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(vi) Consider the possibility of a proof by contradiction (see Section 5.7).

It is quite likely that your first attempt will not be successful. Keep trying different
methods until you find one which works or until you run out of ideas. Look in your
lecture notes and books for relevant worked examples. If none of this works, put the
problem aside and return to it later.

We now consider the process of experimentation for the examples introduced in
Section 5.2, making use of the clarifications described in Section 5.3. Of course, what
we do here is unlikely to be typical of your work in that we shall not describe many
methods which lead to dead ends!
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Example 1. Let’s draw a Venn diagram of (A ∪B) ∩ (A ∪ C):

A B

C

This is exactly A ∪ (B ∩ C), as required. So, a formal argument should work without
serious difficulty.

Example 2. In this example, there are many things which you might try, but which turn
out to be not very helpful. For example, you might take the fourth powers of both sides
of the inequality, which then becomes:

(a+ b+ c+ d)4 > 256abcd.
Expanding the left-hand side looks hopeless.

After several unsuccessful attempts, you might try some simpler cases. For example,
you could try putting b = c = d = 1, but even this does not seem very promising.

Eventually, you might wonder at the significance of the number 4 in this example. Is
there an analogue with 4 replace by 2? Perhaps the analogue would be:

a+ b

2
> (ab)1/2 . (*)

Can we prove (*)? Squaring and multiplying through by 4, (*) becomes: (a+ b)2 > 4ab.
After some manipulation, this becomes: a2−2ab+b2 > 0, or (a− b)2 > 0. This is certainly
true, so we should be able to prove (*) by reversing the argument.

Replacing a and b by c and d in (*) gives: c+d
2
> (cd)1/2. Hence

a+ b+ c+ d

4
=
1

2

µµ
a+ b

2

¶
+

µ
c+ d

2

¶¶
> (ab)1/2 + (cd)1/2

2
.

Replacing a and b in (*) by (ab)1/2 and (cd)1/2 shows

(ab)1/2 + (cd)1/2

2
> (abcd)1/4 .

Combining these two inequalities gives the required result.

Example 3. Suppose that n can be factorised as n = mk where m and k are integers
greater than 1. Can we factorise 2n − 1? Now,

2n − 1 = 2mk − 1 = (2m)k − 1.
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This is an expression of the form xk − 1. This polynomial has a root x = 1, so it must
have a factor x− 1. A little calculation shows that

xk − 1 = (x− 1)
¡
xk−1 + xk−2 + · · ·+ 1

¢
.

Hence
2n − 1 =

¡
2k − 1

¢ ¡
2m(k−1) + 2m(k−2) + · · ·+ 1

¢
.

Thus, if 2n− 1 is prime, we cannot have such a factorisation, so there cannot be a factori-
sation of n; in other words, n is prime.

Example 4. You might try the binomial expansion of the left-hand side of the inequality,
but this does not prove to be very fruitful.

Let’s look at the simplest case, n = 1. Then we have to prove that 1− x 6 e−x whenever
0 6 x 6 1. A sketch of the graph of e−x shows that this is true; it should be easily proved
by calculus.

For general n, we can take nth roots, so the inequality to be proved becomes: 1− x
n
6 e−x/n.

This can be deduced from the inequality in the preceding paragraph, if we replace x by
x/n.

Example 5. First let’s draw a diagram of the graph of sinx.

0.5 1 1.5 2

-0.2

0.2

0.4

0.6

0.8

1

e−x

1−x

Graph for Example 4

-6 -4 -2 2 4 6
x

-1.5

-1

-0.5

0.5

1

1.5
y

y= x

y =sinx

Graph for Example 5

Doing this may bring two points to mind. Firstly, since the sine function is periodic
(sin (x+ 2π) = sinx), it should be sufficient to assume that 0 6 x, y 6 2π. Secondly, the
inequality |sinx− sin y| 6 |x− y| says that the (modulus of) the gradient of the chord is
less than 1. Since d

dx (sinx) = cosx, the gradient of the tangent lies between −1 and +1,
so the gradient of the chord may well lie in the same range.

Since you probably do not know yet a theorem relating the gradient of the chord to the
gradient of tangents, the argument so far is purely heuristic. To make it rigorous, we shall
have to find a precise analytic argument, and we now experiment to look for this.

To deal with sinx− sin y, it may be useful to use a trigonometric formula. This can be
found from memory, by working it out, or by looking it up in a book:

sinx− sin y = 2 sin
µ
x− y

2

¶
cos

µ
x+ y

2

¶
.
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Hence

| sinx− sin y| = 2
¯̄̄̄
sin

µ
x− y

2

¶¯̄̄̄ ¯̄̄̄
cos

µ
x+ y

2

¶¯̄̄̄
.

Now, the case which is going to cause most difficulty is when |x − y| is small, so x is
close to y. We have to ensure that the right-hand side is small, and what makes that

true is the term

¯̄̄̄
sin

µ
x− y

2

¶¯̄̄̄
. It is therefore not a good idea to replace this term by

1. However, it may not be harmful to replace

¯̄̄̄
cos

µ
x+ y

2

¶¯̄̄̄
by 1. Thus,

| sinx− sin y| ≤ 2
¯̄̄̄
sin

µ
x− y

2

¶¯̄̄̄
.

Now, is it true that 2

¯̄̄̄
sin

µ
x− y

2

¶¯̄̄̄
≤ |x − y|? Yes! Because | sin t| ≤ t for all real

numbers t (you probably know this; if not, look again at the graph of the sine function
and its tangent at the origin). Thus

| sinx− sin y| ≤ 2
¯̄̄̄
x− y

2

¯̄̄̄
= |x− y|,

as required.

Example 6. We want to prove that nf(mn ) = mf(1) for all m and n. Putting n = 1,
we need to show that f(m) = mf(1). We will consider this special case first and then
think about the rest of the problem.

Using the given identity f(x + y) = f(x) + f(y) with x = 1 and y = 1, we find
that f(2) = 2f(1). Then putting x = 2 and y = 1, we get f(3) = f(2) + f(1) = 3f(1).
Iterating this (the formal proof will be by induction), we will get f(m) = mf(1) for all
positive integers m.

What about negative integers? Putting x = y = 0, we find that f(0) = 2f(0),
so f(0) = 0. Now putting x = m and y = −m gives 0 = f(0) = f(m) + f(−m), so
f(−m) = −f(m) = −mf(1) (whenever m is a positive integer).

Now, what about the case n ≥ 2? We want to show that nf(mn ) = f(m). The
argument used to show that f(m) = mf(1) should also show that f(nx) = nf(x) for
any rational x and any positive integer n. Putting x = m

n will then give the result.

Example 7. First, assume that an → l as n → ∞. Then an+1 → l and
√
2 + an →√

2 + l. Hence l =
√
2 + l, so l2 = 2 + l, l2 − l − 2 = 0, (l − 2)(l + 1) = 0, so l = 2 or

l = −1. However, since an > 0 for all n, l cannot be −1. Hence, l = 2.
This argument does not prove that an converges to 2; what it shows is that, if an

converges to anything, then it converges to 2. It still remains to prove that an does
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converge. For this, let’s calculate a few values:

a1 =
√
2 + 1 = 1.732050

a2 =
√
2 + 1.732050 = 1.931851

a3 =
√
2 + 1.931851 = 1.982889

This looks promising. If you carry on for a while, you will find that a15 = 1.999999999
(to 9 decimal places), which looks even more promising, but none of this will constitute
a proof that an converges to 2.

To prove that an does converge to 2, we might consider 2 − an+1. However, this
involves square roots, so it is better to look at 4− a2n+1. Now,

4− a2n+1 = 4− (2 + an) = 2− an,

so

2− an+1 =
2− an
2 + an+1

.

But an+1 ≥ 0, so 2 + an+1 ≥ 2, so |2− an+1| ≤ 1
2 |2− an| for all n. Iterating this gives

|2− an+1| ≤
µ
1

2

¶n+1
|2− a0| =

µ
1

2

¶n+1
→ 0.

Hence, an+1 → 2, so an → 2.

Example 8. First, consider the case of 2× 2 matrices. Then we may write

A =

µ
a b
c d

¶
B =

µ
w x
y z

¶
.

Then

AB =

µ
aw + by ax+ bz
cw + dy cx+ dz

¶
BA =

µ
wa+ xc wb+ xd
ya+ zc yb+ zd

¶
.

So,

tr(AB) = aw + by + cx+ dz,

tr(BA) = wa+ xc+ yb+ zd.

These agree (since addition and multiplication of real numbers are commutative).

Next, 3× 3 matrices. To avoid using too many letters, let’s write

A =

⎛⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠ B =

⎛⎝ b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞⎠ .

58



Then

AB =

⎛⎝ a11b11 + a12b21 + a13b31 . . . . . .
. . . a21b12 + a22b22 + a23b32 . . .
. . . . . . a31b13 + a32b23 + a33b33

⎞⎠
BA =

⎛⎝ b11a11 + b12a21 + b13a31 . . . . . .
. . . b21a12 + b22a22 + b23a32 . . .
. . . . . . b31a13 + b32a23 + b33a33

⎞⎠
tr(AB) = a11b11 + a12b21 + a13b31 + a21b12 + a22b22 + a23b32 + a31b13 + a32b23 + a33b33,

tr(BA) = b11a11 + b12a21 + b13a31 + b21a12 + b22a22 + b23a32 + b31a13 + b32a23 + b33a33.

These agree. This should be enough to convince you that the result is true, and the
proof is a routine algebraic calculation. The main problem in giving a proof for general
n will be an efficient choice of notation.

Summary

1. The process of experimentation (rough working) varies enormously from problem
to problem. Some general principles are listed in (i)—(vi) in this section.

2. Some of your experimentation may lead to dead ends. Try as many different
approaches as you can think of until you find one that leads forward.

5.5 Making the proof precise

Having found a method which looks as though it will provide the required proof,
the final stage is to fill in the details and to write out a complete proof. Typically,
these two tasks can be carried out simultaneously. It may happen that while you are
doing this, you encounter some difficulty which you had not previously noticed–you
may have made a slip in calculation, or you may have overlooked some logical difficulty,
or you may have knowingly made an unwarranted assumption (for simplicity) which
you now find hard to remove, or there may be a point where you want to reverse your
argument but it is not clear how to do so. If this happens, you will have to return to
experimentation until you find a way around the difficulty.

As explained in Section 2.3, the purpose of writing out a rigorous solution is both to
ensure that you have not made any errors or overlooked any difficulties, and to provide
the reader with an argument which is complete, clear, accurate, and unambiguous.
Your solution should provide a proof which will satisfy someone with a similar level of
mathematical knowledge to yourself (but someone who has not solved the problem).
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In writing your solution, it is a good idea to imagine that you are writing it for such a
person, even if you expect the solution to be read only by your tutor.

In writing your formal solution, you should aim to observe the following general
points:

(i) Each statement should be mathematically accurate; in particular, the princi-
ples of Sections 4.2, 4.3, 4.4, and 4.5 should be observed.

(ii) When the symbols are converted into words, each statement should make
sense as a sentence in English, and be unambiguous.

(iii) Each statement should follow logically from previous statements in your ar-
gument, or from standard results.

(iv) It should be clear to the reader why each statement is true. Where appro-
priate, include phrases such as “By So-and-So’s Theorem, . . . ” or “It follows
from (*) above that . . . ”.

(v) All assumptions being made at any stage should be made clear to the reader.

We can illustrate (v) with two specific cases. If you are arguing by contradiction, write
something like:

The proof will be by contradiction. Suppose that the result is false. Then
. . .

If your argument is divided into several cases, say explicitly what the cases are. For
example:

We shall divide the argument into three cases which together cover all
possible integers n ≥ 2:
Case 1: n has two distinct prime factors p1 and p2,

Case 2: n = 2k for some k ≥ 1,
Case 3: n = pk for some odd prime p, and some k ≥ 1.
Case 1: . . .

What we have said so far in this section concerns your formal solution; this material
must not be omitted from your written solution. However, sometimes it is appropriate
to include some extra explanation which will help the reader understand what you are
doing, even though it is not strictly necessary and may even be imprecisely expressed
(just as books sometimes include informal explanations of their arguments). This may
be a diagram, or it may be some extract from your process of experimentation. Indeed,
including material of this type in your written solutions is to be recommended; if you
make small errors in the solution, your informal comments often satisfy the reader that
they were not errors of substance.

We now give rigorous, complete, solutions to the examples introduced in Section
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5.2. These solutions are based on the informal working carried out in Section 5.4, but
they are set out in a precise and logical way. In these examples, material written in
italics does not form part of the solution; this material contains comments included in
these notes for the purposes of explaining why we are setting out the proof as we are;
in normal circumstances, these comments would be omitted.

Example 1. Let x ∈ (A ∪ B) ∩ (A ∪ C). Then x ∈ A ∪ B and x ∈ A ∪ C. Hence
[x ∈ A or x ∈ B] and (simultaneously) [x ∈ A or x ∈ C]. Thus, if x /∈ A, then x ∈ B
and x ∈ C, so x ∈ B ∩ C. Hence, x ∈ A or x ∈ B ∩ C, so x ∈ A ∪ (B ∩ C). Thus,

(1) (A ∪B) ∩ (A ∪ C) ⊆ A ∪ (B ∩ C).

Conversely, let x ∈ A∪ (B ∩C). Then x ∈ A or x ∈ B ∩C. We consider these two
cases separately. If x ∈ A, then x ∈ A∪B and x ∈ A∪C, so x ∈ (A∪B)∩ (A∪C). If
x ∈ B∩C, then x ∈ B and x ∈ C, so x ∈ A∪B and x ∈ A∪C, so x ∈ (A∪B)∩(A∪C).
In either case, we have shown that x ∈ (A ∪B) ∩ (A ∪ C). Thus,

(2) A ∪ (B ∩ C) ⊆ (A ∪B) ∩ (A ∪ C).

It follows from (1) and (2) that (A ∪B) ∩ (A ∪ C) = A ∪ (B ∩ C), as required.
Note how the unions and intersections in the problem have produced statements involv-
ing “or” and “and”, so we have had to apply the principles of Section 4.3.

It would be sensible to include the Venn diagram given in Section 5.4 with the formal
solution.

Example 2. We first establish a version of the inequality (*) of Section 5.4. Since
we will use this inequality three times, we introduce new variables x and y.

We will first prove that

(1)
x2 + y2

2
≥ xy

for all real numbers x and y. This follows from the inequality

0 ≤ (x− y)2 = x2 − 2xy + y2.

Putting x = a1/2 and y = b1/2 in (1) gives:

(2)
a+ b

2
≥ (ab)1/2.

Similarly,

(3)
c+ d

2
≥ (cd)1/2.
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Now putting x = (ab)1/4 and y = (cd)1/4 in (1), and then using (2) and (3) gives:

(abcd)1/4 ≤ (ab)
1/2 + (cd)1/2

2
≤ a+ b+ c+ d

4
.

There are many other ways of solving this problem.

Example 3. Suppose that 2n − 1 is prime and that n = mk where m and k are
positive integers. We have to show that either m = 1 or k = 1.

Note that
xk − 1 = (x− 1)(xk−1 + xk−2 + · · ·+ 1)

for all x. Hence

2n − 1 = (2m)k − 1 = (2m − 1)(2m(k−1) + 2m(k−2) + · · ·+ 1).

Since 2n − 1 is prime, one of the factors on the right-hand side must equal 1. If
2m− 1 = 1, then m = 1; if 2m(k−1)+2m(k−2)+ · · ·+1 = 1, then k = 1. This completes
the proof.

In the experimentation in Section 5.4, it may have appeared that we were arguing by
contradiction. However, this was due to imagining that m and k were proper factors of
n. In the formal proof, we avoid the need for a contradiction, and thereby simplify the
logic.

Example 4. We first prove that 1 − y ≤ e−y whenever y ≥ 0. Let f(y) = y + e−y.
Then f 0(y) = 1− e−y ≥ 0 for all y ≥ 0, so f is increasing in this range. Now, f(0) = 1,
so 1 ≤ f(y) = y + e−y for all y ≥ 0. This gives the required inequality.

Now suppose that n ≥ 1 and 0 ≤ x ≤ n. Putting y = x/n in the inequality
obtained in the preceding paragraph gives

1− x

n
≤ e−x/n.

Since x ≤ n, the left-hand side of this inequality is non-negative. We may therefore
raise both sides to the power n, to obtain:³

1− x

n

´n
≤ e−x,

as required.

It would be wise to include the sketch given in Section 5.4 with your solution.

Example 5. By a standard trigonometric formula,

sinx− sin y = 2 sin
µ
x− y

2

¶
cos

µ
x+ y

2

¶
.
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Moreover, | cos t| ≤ 1 for all t and | sin t| ≤ |t| for all t, so

| sinx− sin y| ≤ 2
¯̄̄̄
x− y

2

¯̄̄̄
= |x− y|.

You may like to include the diagram shown in Section 5.4.

There are other valid solutions. For example, one can observe that sinx − sin y =R x
y cos t dt and use the inequalities −1 ≤ cos t ≤ 1.

Example 6. Rather than proving first that f(m) = mf(1), and then repeating the
argument to prove that f(nx) = nf(x), it is more efficient to prove the general result
first. For a general discussion of proofs by induction, see Section 5.8.

We assume that

(1) f(x+ y) = f(x) + f(y) for all x, y ∈ Q.

We shall first prove the following, by induction on n:

For any integer n ≥ 1 and any rational x,

(2) f(nx) = nf(x).

For n = 1, (2) is trivial. Suppose that (2) holds for n = k. Then by (1) (with y = kx),

f((k + 1)x) = f(x+ kx) = f(x) + f(kx) = f(x) + kf(x) = (k + 1)f(x).

Thus (2) holds for n = k + 1. By induction, (2) holds for all n ≥ 1. Putting x = 1 in
(2) shows that

(3) f(n) = nf(1).

Now, put x = y = 0 in (1). This gives:

f(0) = f(0 + 0) = f(0) + f(0),

so f(0) = 0. Next, put y = −x in (1). This gives:

f(x) + f(−x) = f(x+ (−x)) = f(0) = 0,

so f(−x) = −f(x). If n is a positive integer, then it follows from this and (3) that
f(−n) = −f(n) = −nf(1). It follows from this and (3) that

(4) f(m) = mf(1)
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for all integers m.

Now let m be any integer and n ≥ 1. Then

mf(1) = f(m) (by (4))

= f(n.mn )

= nf(mn ) (by (2)).

Thus f(mn ) =
m
n f(1). This completes the proof.

Example 7. The first part of the solution is not strictly necessary, but it will help
the reader to see how we found the limit to be 2.

Suppose that an → l. Then an+1 → l, and an+1 =
√
2 + an →

√
2 + l. Hence,

l =
√
2 + l, so l2 = 2 + l. It follows that l = 2 or l = −1. Since an ≥ 0, l ≥ 0. Thus

the only possible value of the limit is 2.

Now

2− an+1 =
4− a2n+1
2 + an+1

=
4− (2 + an)

2 + an+1
=

2− an
2 + an+1

.

Since an+1 ≥ 0, it follows that

|2− an+1| ≤ 1
2 |2− an|.

By iteration,

|2− an+1| ≤ 1
2 |2− an| ≤ 1

4 |2− an−1| · · · ≤
1

2n+1
|2− a0| =

1

2n+1
→ 0.

Thus an+1 → 2, so an → 2.

Example 8. Let aij denote the entry in the ith row, jth column of A, and bij be the
corresponding entry of B. By definition of matrix multiplication, the entry in the ith
row, ith column (the ith entry on the diagonal) of AB is

Pn
j=1 aijbji. Hence

tr(AB) =
nX
i=1

nX
j=1

aijbji.

Similarly,

tr(BA) =
nX
i=1

nX
j=1

bijaji.

In these double sums, i and j are dummy variables which may be replaced by any other
letters. Replacing them by r and s respectively in one case, and by s and r respectively
in the other, gives:

tr(AB) =
nX

r=1

nX
s=1

arsbsr, tr(BA) =
nX
s=1

nX
r=1

bsrars.
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Since addition of real numbers is commutative, we can reverse the order of summation
in the second double sum. Using also the commutativity of multiplication of real
numbers, this gives:

tr(BA) =
nX

r=1

nX
s=1

bsrars =
nX

r=1

nX
s=1

arsbsr = tr(AB),

as required.

Students who are inexperienced with the
P

notation are often puzzled why it is le-
gitimate to replace i and j by r and s in this argument, and why it is legitimate to
reverse the order of the double summation here. As indicated above, the first is jus-
tified because the choice of names for these dummy variables is entirely arbitrary (cf.R
f(x) dx =

R
f(y) dy); the second is justified because all it amounts to is adding up the

same terms in a different order. If you are in any doubt, write out the sums longhand.
For n = 3, this is exactly what we did in Section 5.4; for general n, you would have
to use . . . to denote strings of missing terms and use your imagination to see that the
missing terms match up. It would be legitimate to use such notation in your solution
instead of the

P
signs.

Summary

1. Your final proof should observe the principles described in (i)—(v) in this section.

2. In certain circumstances, it may be useful to include some of your rough working
and/or informal explanation (for example, a diagram) with your formal proof.

5.6 What can you assume?

Students often worry a great deal about this question, particularly in the early
stages of their undergraduate careers. There is indeed some difficulty in judging what
it is permissible to assume, but students are inclined to exaggerate the problem. There
are two reasons for saying this. One is that tutors will be much less concerned about
a solution in which everything is correct except that you have (knowingly) assumed
something which you were really intended to prove than about a solution which contains
fallacies or non-sequiturs.

The second reason is that, in some of the courses in your first term or two, you
will, for a while, be expected to prove things which you have either known for years
(such as the existence of nth roots of positive numbers) or which are in some sense
obvious (such as the fact that a continuous function which takes positive and negative
values must also take the value zero somewhere). Simultaneously, you will be doing
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other (more applied) courses where these and other familiar or obvious facts are freely
used without comment. This can be confusing, but the situation will not last very long.
After a while, all courses will be proving facts which you did not know and which are
not obvious. When you reach that stage, it should be clearer what you can assume and
what you should prove.

Nevertheless, it is possible to give some broad guidelines about this question, all
of which are valid in some situations:

(i) What you are allowed to assume depends on the context; for example, if
you are answering questions on a course which is concerned with deriving
fundamental properties of the real numbers using only basic axioms, then you
should not assume these properties without proof; in courses on mechanics
etc., you may assume such properties.

(ii) When answering tutorial problems, you may assume any results which have
been proved in lectures.

(iii) If you are in doubt, a reasonable compromise is to give a clear statement,
without proof, of what you are assuming.

(iv) If you think carefully about the relationship between various results in lectures
and the question you are required to answer, you may find that the point of
the question becomes clear and that your doubts about what to assume are
resolved.

(v) Use your common sense.

Summary

1. The problem of what can be assumed may be less serious than you imagine.

2. Bear in mind the principles listed in this section ((i)—(v) above).

5.7 Proofs by contradiction

We saw in Section 2.1 one example of a proof by contradiction. This was rather
a simple example–the statement (that

√
2 is irrational) had no hypotheses and a

simple conclusion–so there was no great difficulty in setting up the argument. In
more advanced situations, proof by contradiction can be a powerful method, but it is
a dangerous one, as it is easy to introduce fallacies.

Recall from Section 4.2 that typically one has to prove a statement of the form:

Z1: If P, then Q.

Here, P represents the hypotheses and Q the conclusion. In principle, there are three
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ways in which Z1 can be proved:

(i) Assume that P is true, and deduce by some logical process that Q is true (a
direct proof);

(ii) Assume that Q is false, and deduce that P is false (i.e., prove the contrapositive
of Z1);

(iii) Assume that P is true and Q is false, and deduce some obviously false state-
ment (e.g., 1 = 0) (i.e., proof by reductio ad absurdum).

The term “proof by contradiction” is commonly applied to proofs of type (ii) or (iii)
(although some would say that it should be applied only to (iii)).

Sometimes, it is possible to prove a given statement by two of these three methods,
or even by all three. For example, we will now prove the following statement by each
method in turn:

Z2: If a3 + 3a2 + 3a ≥ 0, then a ≥ 0.
In this statement, it is assumed that a is a real number. The hypothesis is that

a3 + 3a2 + 3a ≥ 0; the conclusion is that a ≥ 0.
First proof: We assume that a3+3a2+3a ≥ 0. Then (a+1)3 = a3+3a2+3a+1 ≥ 1.
Taking cube roots, it follows that a+1 ≥ 1, so a ≥ 0. This completes a direct proof of
Z2.

Second proof: Suppose that a < 0. Then a + 1 < 1. It follows that (a + 1)3 < 1, so
a3+3a2+3a = (a+1)3− 1 < 0. This contradicts the hypothesis of Z2. Thus we have
proved Z2 by proving its contrapositive.

Third proof: Suppose that a3 + 3a2 + 3a ≥ 0 and a < 0. Dividing by the negative
number a gives:

(*) a2 + 3a+ 3 ≤ 0.

But

a2 + 3a+ 3 =

µ
a+

3

2

¶2
+
3

4
≥ 3
4
.

This contradicts (*), so we have proved Z2 by reductio ad absurdum.

If you have Alice in Numberland, you will find (p.6) three proofs of the statement:
If n2 is odd, then n is odd.

A principle which is generally, but not universally, true is that your first approach
should be to look for a proof of type (i) (a direct proof). The reason why this is a good
principle is that both (ii) and (iii) require you to assume the negation of Q, i.e. to assume
that Q is false. Now, Q is likely to be a fairly complicated mathematical statement,
and it is not always easy to write down a mathematical formulation of the negation of
Q. There is one obvious exception to this–when Q is itself a negative statement. For
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example, the conclusion
√
2 is irrational is a negative statement, because, by definition,

it means
√
2 is not rational, and the negation of this is

√
2 is rational. Thus, in this

example, and in others where the conclusion Q is a negative statement, it is natural to
look for a proof by contradiction.

Even where the conclusion Q is a positive statement, you will find many instances
where it just does not seem possible to give a direct proof of Z1, and you are obliged
to consider the possibility of a proof by contradiction. The first problem then is to
formulate the negation of Q correctly, in mathematical terms. We shall devote the
remainder of this section to how to do this. The negation of Q is the statement Q is
false, or Q does not hold, but the problem is to put such a statement in a form which
is suitable for mathematical argument.

The first step is to formulate Q in basic mathematical terms. For example, if
Q is the statement f is continuous, then the negation of Q is f is discontinuous.
However, this is useless for the purpose of proving things, unless we have a mathematical
definition of discontinuous. In fact, continuity is defined mathematically, and then one
has to deduce the definition of discontinuity by taking the negation. The mathematical
definition of f is continuous is:

Z3: For all x, and for all � > 0, there exists δ > 0 such that |f(y) − f(x)| < �
whenever |y − x| < δ.

At this stage, one should forget about the meaning of the statement, and proceed
formally. This may seem surprising advice, but it is the most reliable way of obtaining
the correct negation of a complicated mathematical statement. It is likely that the
statement can be built up out of a few standard constructions such as the following:

Z4: ∀x ∈ S, P(x);

Z5: ∃x ∈ S such that P(x);

Z6: P and P0;

Z7: P or P0.

Here, S denotes a certain set, x is a variable, P(x) is a statement which depends on
the variable x (see Section 4.4), and P and P0 are statements. All the statements P(x),
P and P0 may be complicated, involving several quantifiers ∀ and ∃ as well as “and”
and “or”. The next step is to write Q in a formal fashion using statements of the form
Z4—Z7. For example, we can write Z3 using three constructions of the type Z4 and one
of Z5:

Z8: ∀x ∈ R ∀� > 0, ∃δ > 0 such that ∀y ∈ (x− δ, x+ δ), |f(y)− f(x)| < �.

To find the negation of a statement Q constructed out of components Z4—Z7, it
is enough to know how to negate each of statements Z4—Z7, and then to apply those
principles to each of the components in turn. It is easy to find the negations of Z4—Z7.
Using the notation ∼ P to denote the negation of P, the negations of Z4—Z7 are:
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∼Z4: ∃x ∈ S such that ∼ P(x);
∼Z5: ∀x ∈ S, ∼ P(x);
∼Z6: ∼ P or ∼ P0;
∼Z7: ∼ P and ∼ P0.

It should be clear to you after a little thought that this list is correct. If you are worried,
try taking the following specific examples:

Z9: Every undergraduate in my college is male;

Z10: There is an undergraduate in my college who is less than 10 years old;

Z11: x > 0 and x < 1;

Z12: x > 1 or x < 0.

Now, if Q is composed of several clauses of the type Z4—Z7, we can find the negation
of Q by applying the negation clause by clause until eventually we have only to take
the negation of a simple statement. For example, the statement Z8 has the form:

Z13: ∀x ∈ R, P(x),
where, for the moment, we are not bothered what P(x) is. So the negation of Z13 is:

∼Z13: ∃x ∈ R such that ∼ P(x).
Now, we have to work out what ∼ P(x) is. Since P(x) is of the form:

Z14: ∀� > 0, Q(x, �),
its negation is:

∼Z14: ∃x ∈ R such that ∼ Q(x, �).
Hence, the negation of Z8 is:

Z15: ∃x ∈ R ∃� > 0 such that ∼ Q(x,�).
Continuing in this way, we eventually find that the negation of Z8 is:

∼Z8: ∃x ∈ R ∃� > 0 such that ∀δ > 0 ∃y ∈ (x−δ, x+δ) such that |f(y)−f(x)| ≥ �.

We can convert this back into a more readable form to find what it means to say that
f is discontinuous:

∼Z3: There exist x ∈ R and � > 0 such that, for all δ > 0, there exists y such that
|y − x| < δ and |f(y)− f(x)| ≥ �.

It is very easy to summarise this procedure of taking negations:

1. Convert the statement into basic mathematical form by replacing technical
terms by their definitions.

2. Write the statement in a formal style using the constructions Z4, Z5, Z6, and
Z7.
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3. Change each ∀ to ∃, each ∃ to ∀, each logical “and” to “or”, and each logical
“or” to “and”; take the negations of the remaining simple statements (this
should be easy, for example reversing an inequality).

4. Convert the negation into more readable form.

We should warn you about two points. Firstly, when we say that each “and”
should be replaced by “or”, and vice versa, this applies only when the word “and” or
“or” is used as in Z6 or Z7. It does not apply when “and” or “or” is subordinate to a
quantifier. For example, the negation of the statement:

Z16: For all x ∈ S and all a ∈ A, P(x, a) (formally, ∀x ∈ S ∀a ∈ A, P (x, a))

is:

∼Z16: There exist x ∈ S and a ∈ A such that ∼P(x, a) (formally, ∃x ∈ S ∃a ∈ A
such that ∼ P (x, a).

Secondly, in Section 4.5, we recommended that in a statement such as Z3 or Z8,
you might write δ� instead of δ to remind yourself that δ may depend on �. However,
if you are going to take the negation of the statement, you should not do such a thing;
if you do, the negation will come out somewhat garbled.

At the beginning of this section, we described the three strategies for proving a
statement of the form Z1: If P, then Q (direct, contrapositive, reductio ad absurdum).
Often you will be required to prove a statement of the form:

Z17: P if and only if Q.

This means that you have to prove both of the following (see Section 4.2):

Z1: If P, then Q;

Z18: If Q, then P.

There are three strategies for proving Z1. Whichever way you choose to prove Z1,
you are free to choose any of the three strategies to prove Z18. Thus, there are (at
least) nine different strategies for proving Z176. For example, you might assume P and
deduce Q (a direct proof of Z1), and then assume Q and deduce P (a direct proof of
Z18). Alternatively, you could assume P and deduce Q, then assume that P is false
and deduce that Q is false (a proof of the contrapositive of Z18).

This is an opportunity to repeat a warning made in Section 4.2. It is tempting
to try to save time by proving Z1 and Z18 simultaneously. You are advised to resist
the temptation, as this process very rarely works. Only occasionally is it possible to
give a complete proof which works logically accurately in both directions at once. In
attempting to construct such a proof, you may well confuse yourself and end up by
proving neither direction satisfactorily.

Summary

1. To prove the statement If P, then Q, you may give a direct proof, a proof of the
contrapositive, or a proof by reductio ad absurdum.
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2. To find the negation of a complicated statement, it is advisable to formulate the
statement in a very formal manner and to construct the negation step by step.

3. The negations of the basic statements Z4—Z7 in this section are given by ∼Z4—∼Z7.
4. To prove the statement P if and only if Q, you should give separate proofs of If P,
then Q and of If Q, then P. Each of these may be proved directly, by contrapositive,
or by reductio ad absurdum.

5.8 Proofs by induction

We have seen one example of a proof by induction in Section 5.5 (Example 6).
Here, we want to explain the method in more detail. (Induction is also discussed in
Alice In Numberland, Chapter 5, and in various other books.)

Induction is useful when it is required to prove a statement where the conclusion
is, or can be formulated as:

(*): For all integers n ≥ 1, P(n) holds.
Examples include the following:

Example 1. For n ≥ 1,
nX

r=1

r =
n(n+ 1)

2
;

Example 2. For n ≥ 1,
Z 2π

0

(cos θ)2n dθ =
(2n)!π

22n−1(n!)2
.

Example 3. Let f : Q→ R be a function such that f(x+ y) = f(x) + f(y) for all x
and y in Q. Then f(nx) = nf(x) for all x ∈ Q and all n ≥ 1.
Example 4. Let n be an integer with n ≥ 2. Then n is a product of (one or more)
primes.

Example 5. Suppose that (an)n≥1 is a sequence of real numbers such that a1 = 3,
a2 = 6, and an+2 = an+1+2an− 2n+1 for all n ≥ 1. Then an = 2

n+n for all n ≥ 1.
Example 6. Suppose that n is an integer which is not a perfect square. Then

√
n is

irrational.

The statement in Example 4 is a well-known fact, and the reader may not previ-
ously have thought of it as needing proof.

In some cases such as Example 6, it is not immediately apparent that we are
asked to prove a conclusion of the form (*), until the problem is reformulated. Indeed,
Example 6 is equivalent to:
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Let n ≥ 1. Then √n is either an integer or is irrational.

Simple induction

One way to prove (*) is as follows:

(i) Show that P(1) is true;

(ii) Show that if P(n) is true, then P(n+ 1) is true.

It is easy to see that this is adequate to prove that P(n) is true for all n. Firstly, (i)
ensures that P(1) is true; then, (ii) with n = 1 ensures that P(2) is true; then, (ii) with
n = 2 ensures that P(3) is true, etc. Thus, if someone were to specify a positive integer
(say, 319), you could tell them that P(319) is true, by (i) and 318 applications of (ii).
In other words, P(n) is true for all n = 1, 2, . . . . Note, however, that this method
does not tell you that P(∞) is true, even if the statement P(n) makes sense, when n is
replaced by ∞; the fact that P(n) is true for all finite (but arbitrary) n does not imply
that P(∞) is true.

A proof by this method is known as a proof by (simple) induction, and P(n) is the
inductive statement to be proved. Stage (i) of the proof is known as the base case, and
stage (ii) as the inductive step. At the beginning of the inductive step, one makes the
inductive hypothesis: Suppose that P (n) holds for some n.

You should note that in (*), n is a dummy variable, which can be replaced by
another variable, i.e. proving that P(n) is true for all n is the same as proving that
P(k) is true for all k. When you are presenting a proof by induction, you should make a
clear statement of the inductive hypothesis P(n), and you should make clear the name
of the dummy variable.

Let us see how this method works in some of our examples.

Example 1. We shall prove the following by induction on n:

P(n):
nX

r=1

r =
n(n+ 1)

2
.

Firstly, P(1) holds, since for n = 1 both the left and right hand sides equal 1.

Now, suppose that P(n) holds for some n ≥ 1. Then
n+1X
r=1

r =
nX

r=1

r + (n+ 1) =
n(n+ 1)

2
+ n+ 1 =

(n+ 1)(n+ 2)

2
,

so P(n+ 1) holds.

It follows, by induction, that P(n) holds for all n ≥ 1.
Example 2. We shall prove the following by induction on n:

P(n):

Z 2π

0

(cos θ)2n dθ =
(2n)!π

22n−1(n!)2
.
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For n = 0, the left-hand side of the equation P(0) is:
R 2π
0

dθ = 2π, and the

right-hand side is:
π

2−1
= 2π. Thus, P(0) holds.

Now, suppose that P(n) holds for some n ≥ 0. ThenZ 2π

0

(cos θ)2(n+1) dθ =

Z 2π

0

(cos θ)2n+1 cos θ dθ

=
£
(cos θ)2n+1 sin θ)

¤2π
0
−
Z 2π

0

(2n+ 1)(cos θ)2n(− sin θ) sin θ dθ

= (2n+ 1)

Z 2π

0

(cos θ)2n(sin θ)2 dθ

= (2n+ 1)

Z 2π

0

³
(cos θ)2n − (cos θ)2(n+1)

´
dθ,

where we used integration by parts in the second line and the formula (cos θ)2 +
(sin θ)2 = 1 in the fourth line. Hence,Z 2π

0

(cos θ)2(n+1) dθ =
2n+ 1

2n+ 2

Z 2π

0

(cos θ)2n dθ =
2n+ 1

2n+ 2

(2n)!π

22n−1(n!)2
=

(2n+ 2)!π

22n+1((n+ 1)!)2
,

where we used P(n) in the second equality. Thus P(n+ 1) is true.

It follows by induction that P(n) is true for all n ≥ 1.
For a formal proof of Example 3 by induction, you are referred to Example 6 of

Section 5.5.

Compound induction

Another way to prove that P(n) is true for all positive integers n is as follows:

(i) Show that P(1) is true;

(ii) Show that if P(n) is true for all n = 1, 2, . . . , k, then P(k + 1) is true.

Again, it should be clear that this is adequate to prove that P(n) is true for all integers
n. A proof of this type is said to be a proof by (compound) induction; in this case, the
inductive hypothesis is:

Suppose that P(n) is true for all n = 1, 2, . . . , k.

Indeed, a proof of P(n) by compound induction is essentially the same as a proof of
P(k)* by simple induction, where:

P(k)*: P(n) is true for all n = 1, 2, . . . , k.

Example 4. We shall prove, by induction on n, that every integer n ≥ 2 is a product
of primes.
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For n = 2, this is trivial, since 2 is itself prime.

Now, let k ≥ 2. We assume as inductive hypothesis that every integer n such that
2 ≤ n ≤ k is a product of primes. Now, there are two cases:

Case 1: k + 1 is prime. Then k + 1 is the product of one prime, itself.

Case 2: k + 1 is not prime. Then k + 1 = mn for some m,n ≥ 2. Then m,n ≤ k. By
the inductive hypothesis, m and n are both products of primes, say m = p1p2 . . . pr,
n = q1q2 . . . qs+1. Then k + 1 = p1p2 . . . prq1q2 . . . qs, which is a product of primes.

In each case, we have shown that k + 1 is a product of primes. This completes the
inductive step. It follows, by induction, that every integer n ≥ 2 is a product of primes.
Example 5. We shall prove that an = 2

n+n for n ≥ 1, by induction on n. For n = 1
and n = 2, this is trivial since we are given that a1 = 3 and a2 = 6.

Now suppose that an = 2n + n for all n = 1, 2, . . . , k, for some k ≥ 2. Then, in
particular, ak−1 = 2

k−1 + (k − 1) and ak = 2
k + k. Now taking n = k − 1 in the given

recurrence relation,

ak+1 = ak + 2ak−1 − 2(k − 1) + 1
= 2k + k + 2(2k−1 + k − 1)− 2k + 3
= 2k + 2k + k + 1

= 2k+1 + (k + 1).

This completes the inductive step. Hence, by induction, an = 2
n + n for all n ≥ 1.

Iterative arguments

We have already explained that a proof by induction works because the inductive
step (ii) may be applied iteratively as many times as is needed. For this reason, it is
not surprising that some proofs which might be given by induction (and perhaps should
be given by induction, if one is being extremely fussy) can be set up as arguments by
iteration. An example of this is the proof of Example 2 above, which we now set out
in a slightly less formal way.

Example 2. Let

In =

Z 2π

0

(cos θ)n dθ (n ≥ 0).
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Then

In =

Z 2π

0

(cos θ)2n−1 cos θ dθ

=
£
(cos θ)2n−1 sin θ)

¤2π
0
−
Z 2π

0

(2n− 1)(cos θ)2n−2(− sin θ) sin θ dθ

= (2n− 1)
Z 2π

0

(cos θ)2n−2(sin θ)2 dθ

= (2n− 1)
Z 2π

0

³
(cos θ)2(n−1) − (cos θ)2n

´
dθ,

where we used integration by parts in the second line and the formula (cos θ)2 +
(sin θ)2 = 1 in the fourth line. Hence,

2nIn = (2n− 1)In−1,

and, by iteration,

In =
2n− 1
2n

In−1

=
(2n− 1)(2n− 3)
2n(2n− 2) In−2

. . . . . . . . . .

=
(2n− 1)(2n− 3) . . . 1
2n(2n− 2) . . . 2 I0.

But I0 =
R 2π
0

dθ = 2π, so

In =
2n(2n− 1)(2n− 2)(2n− 3) . . . 2.1
2n(2n)(2n− 2)(2n− 2) . . . 2.2 2π =

(2n)!π

22n−1(n!)2
.

In many examples, the iterative argument is so simple that it would be futile to
formulate it as a proof by induction (see the iteration near the end of Example 7 in
Section 5.5). In some examples such as Example 2 here, there is not much to choose
between the two methods. In other examples where a proof by induction can be given,
it is not feasible to set this out as an iterative argument, e.g., Examples 1 and 5 in
this section. There is no hard-and-fast rule which tells you when an iterative argument
is possible and when it is not. However, the process of experimentation (Section 5.4)
which led you towards a proof by induction or iterative argument, and your attempts
to give a rigorous argument (Section 5.5), should also indicate whether you need to
give a formal proof by induction.

Least criminals
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There is one more variant of induction which is worth mentioning here. Another
way to prove (*) is the following:

Assume that there is a smallest integer k such that P(k) is false, and
deduce a contradiction (e.g., by showing that there is an integer n < k
such that P(n) is false).

This argument is valid because if there were a positive integer n such that P(n) is
false, then there would be a smallest positive integer k such that P(k) is false. If we
call an integer n criminal if P(n) is false, then k is a least criminal, so such a proof is
sometimes known as a least criminal argument. Essentially, a least criminal argument
is what you get by combining the concept of proof by induction with the concept of
proof by contradiction (Section 5.7). An example of a least criminal argument follows.

Example 6. Suppose that there is a positive integer n such that
√
n is neither an

integer nor irrational. Then there is a least such integer k. Now,
√
k must be rational,

but not an integer, so
√
k = m/n, where m and n are positive integers and n ≥ 2.

We may assume that m and n have no common factor. Let p be a prime dividing k.
Then p divides n2k. But n2k = m2, so p divides m2. Since p is prime, it follows that
p divides m. Hence p2 divides n2k. Since m and n are coprime, p2 must divide k.
Thus k = p2a and m = pb for some positive integers a and b. Now

√
a = b/n, which

is neither an integer nor irrational. But a < k. This contradicts the choice of k as the
least such integer. It follows that, for all n ≥ 1, √n is either an integer or is irrational.

Note that this least criminal argument is not the only solution of Example 6. In
principle, it is always possible to reorganise a least criminal argument as induction
(try doing this for Example 6), but there are some cases where least criminals are the
best approach. A striking example is the successful (1976) proof of the Four Colour
Theorem (see Section 5.1).
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Summary

1. To prove that a statement P(n) is true for all positive integers n, it may be ap-
propriate to prove the statement by induction.

2. Proofs by induction may be by simple induction, or compound induction, or may
be formulated as interative arguments or as the least criminal method.

3. When you intend to prove a statement by induction, you should say so clearly, and
you should make it very clear what statement is being proved.
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APPENDIX

Some symbols

This appendix gives some of the standard mathematical symbols which you are likely
to meet early in your course; some of them have been used in the text of these notes.

Greek letters

There are certain conventions which symbols are used for which purpose in mathemat-
ics, for example x and y usually denote real variables; a, b and c usually denote real
constants; i, j, k, m and n usually denote integers. Consequently, we soon exhaust our
usual alphabet and we have to turn to Greek. The following lists those which are used
in mathematics (two lower case letters, omicron and upsilon, and several upper case
letters, are rarely used because of their similarity to other symbols).

Lower case

α alpha ι iota ρ rho
β beta κ kappa σ sigma
γ gamma λ lambda τ tau
δ delta µ mu φ or ϕ phi

� or ε epsilon ν nu χ chi
ζ zeta ξ xi ψ psi
η eta π pi ω omega
θ theta

Upper case

Γ Gamma Ξ Xi Φ Phi
∆ Delta Π Pi Ψ Psi
Θ Theta Σ Sigma Ω Omega
Λ Lambda
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Some special sets

The following are standard ways of denoting some special sets of numbers.

C or C The set of all complex numbers
N or N The set of all positive integers
Q or Q The set of all rational numbers
R or R The set of all real numbers
Z or Z The set of all integers
(a, b) The set of all real numbers x such that a < x < b
[a, b] The set of all real numbers x such that a ≤ x ≤ b

(a,∞) The set of all real numbers x such that a < x

N.B: ∞ is not a real number; it is a symbol used in certain specific contexts with
specific meanings.

Set-theoretic symbols

The following is standard notation for the set of all those elements x which have a given
property P:

{x : x has property P}.

The following is a list of some of the most commonly used set-theoretic symbols.

Symbol Name Example Interpretation

∈ belongs to a ∈ A a is a member of the set A

∪ union A ∪B {x : x ∈ A or x ∈ B}
∩ intersection A ∩B {x : x ∈ A and x ∈ B}
\ difference of sets A \B {x : x ∈ A and x /∈ B}
× product of sets A×B The set of all ordered pairs (a, b),

where a ∈ A and b ∈ B

⊆ subset A ⊆ B A is a subset of B, i.e.
every member of A is a member of B

∅ empty set the set with no members

Other notation

f : A→ B f is a function from A to B, i.e.
to each member a of A, f assigns a value f(a) in B

=⇒ implies (see Section 4.2)

⇐⇒ if and only if (see Section 4.2)

N.B: Do not use =⇒ as shorthand for “Therefore” or “It follows that . . . ”.
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