Notes on the von Neumann algebra of a group

Ioannis Emmanouil

Contents

1 The strong and weak operator topologies on $\mathcal{B}(\mathcal{H})$ 1
2 The von Neumann algebra of a group 4
3 The center of $\mathcal{N} G$ 6
4 The center-valued trace on $\mathcal{N} G$ 9
5 Exercises 19

1 The strong and weak operator topologies on $\mathcal{B}(\mathcal{H})$

Let \mathcal{H} be a Hilbert space. Besides the operator norm topology, the algebra $\mathcal{B}(\mathcal{H})$ can be also endowed with the strong operator topology (SOT). The latter is the locally convex topology which is induced by the family of semi-norms $\left(Q_{\xi}\right)_{\xi \in \mathcal{H}}$, where

$$
Q_{\xi}(a)=\|a(\xi)\|
$$

for all $\xi \in \mathcal{H}$ and $a \in \mathcal{B}(\mathcal{H})$. Hence, a net of operators $\left(a_{\lambda}\right)_{\lambda}$ in $\mathcal{B}(\mathcal{H})$ is SOT-convergent to 0 if and only if $\lim _{\lambda} a_{\lambda}(\xi)=0$ for all $\xi \in \mathcal{H}$. The weak operator topology (WOT) on $\mathcal{B}(\mathcal{H})$ is the locally convex topology which is induced by the family of semi-norms $\left(P_{\xi, \eta}\right)_{\xi, \eta \in \mathcal{H}}$, where

$$
P_{\xi, \eta}(a)=|<a(\xi), \eta>|
$$

for all $\xi, \eta \in \mathcal{H}$ and $a \in \mathcal{B}(\mathcal{H})$. In other words, a net of operators $\left(a_{\lambda}\right)_{\lambda}$ in $\mathcal{B}(\mathcal{H})$ is WOTconvergent to 0 if and only if $\lim _{\lambda}<a_{\lambda}(\xi), \eta>=0$ for all $\xi, \eta \in \mathcal{H}$.

Remarks 1.1 (i) Let $\left(a_{\lambda}\right)_{\lambda}$ be a net of operators on \mathcal{H}. Then, we have

$$
\|\cdot\|-\lim _{\lambda} a_{\lambda}=0 \Longrightarrow \mathrm{SOT}-\lim _{\lambda} a_{\lambda}=0 \Longrightarrow \mathrm{WOT}-\lim _{\lambda} a_{\lambda}=0
$$

If the Hilbert space \mathcal{H} is not finite dimensional, none of the implications above can be reversed (cf. Exercise 5.1).
(ii) For any $a \in \mathcal{B}(\mathcal{H})$ we consider the left (resp. right) multiplication operator

$$
\left.L_{a}: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H}) \text { (resp. } R_{a}: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H})\right)
$$

which is defined by letting $L_{a}(b)=a b$ (resp. $R_{a}(b)=b a$) for all $b \in \mathcal{B}(\mathcal{H})$. It is easily seen that the operators L_{a} and R_{a} are WOT-continuous. On the other hand, if the Hilbert space \mathcal{H} is not finite dimensional, then the multiplication in $\mathcal{B}(\mathcal{H})$ is not (jointly) WOT-continuous (cf. Exercise 5.1).
(iii) The adjoint operator

$$
(-)^{*}: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H}),
$$

which is defined by $a \mapsto a^{*}, a \in \mathcal{B}(\mathcal{H})$, is WOT-continuous.
Proposition 1.2 Let $\left(a_{\lambda}\right)_{\lambda}$ be a bounded net of operators on \mathcal{H}. Then, the following conditions are equivalent:
(i) $W O T-\lim _{\lambda} a_{\lambda}=0$.
(ii) There is an orthonormal basis $\left(e_{i}\right)_{i}$ of the Hilbert space \mathcal{H}, such that for all i, j we have $\lim _{\lambda}<a_{\lambda}\left(e_{i}\right), e_{j}>=0$.
(iii) There is a subset $B \subseteq \mathcal{H}$, whose closed linear span is \mathcal{H}, such that for all $\xi, \eta \in B$ we have $\lim _{\lambda}<a_{\lambda}(\xi), \eta>=0$.
(iv) There is a dense subset $X \subseteq \mathcal{H}$, such that $\lim _{\lambda}<a_{\lambda}(\xi), \eta>=0$ for all $\xi, \eta \in X$.

Proof. It is clear that (i) \rightarrow (ii) \rightarrow (iii), whereas the implication (iii) \rightarrow (iv) follows by letting X be the (algebraic) linear span of B. It only remains to show that (iv) \rightarrow (i). To that end, assume that $M>0$ is such that $\left\|a_{\lambda}\right\| \leq M$ for all λ and consider two vectors $\xi, \eta \in \mathcal{H}$. For any positive ϵ we may choose two vectors $\xi^{\prime}, \eta^{\prime} \in X$, such that $\left\|\xi-\xi^{\prime}\right\|<\epsilon$ and $\left\|\eta-\eta^{\prime}\right\|<\epsilon$. Since

$$
<a_{\lambda}(\xi), \eta>-<a_{\lambda}\left(\xi^{\prime}\right), \eta^{\prime}>=<a_{\lambda}\left(\xi-\xi^{\prime}\right), \eta>+<a_{\lambda}\left(\xi^{\prime}\right), \eta-\eta^{\prime}>
$$

it follows that

$$
\begin{aligned}
\left|<a_{\lambda}(\xi), \eta>-<a_{\lambda}\left(\xi^{\prime}\right), \eta^{\prime}>\right| & \leq\left|<a_{\lambda}\left(\xi-\xi^{\prime}\right), \eta>\left|+\left|<a_{\lambda}\left(\xi^{\prime}\right), \eta-\eta^{\prime}>\right|\right.\right. \\
\leq & \left\|a_{\lambda}\right\| \cdot\left\|\xi-\xi^{\prime}\right\| \cdot\|\eta\|+ \\
& \left\|a_{\lambda}\right\| \cdot\left\|\xi^{\prime}\right\| \cdot\left\|\eta-\eta^{\prime}\right\| \\
\leq & M \epsilon(\|\xi\|+\|\eta\|+\epsilon) .
\end{aligned}
$$

Since $\lim _{\lambda}<a_{\lambda}\left(\xi^{\prime}\right), \eta^{\prime}>=0$, we may choose λ_{0} such that $\left|<a_{\lambda}\left(\xi^{\prime}\right), \eta^{\prime}>\right|<\epsilon$ for all $\lambda \geq \lambda_{0}$. Then, $\left|<a_{\lambda}(\xi), \eta>\right|<\epsilon\left(1+M(\|\xi\|+\|\eta\|+\epsilon)\right.$) for all $\lambda \geq \lambda_{0}$ and hence $\lim _{\lambda}<a_{\lambda}(\xi), \eta>$ $=0$, as needed.

Theorem 1.3 Let \mathcal{H} be a separable Hilbert space, r a positive real number and $\mathcal{B}(\mathcal{H})_{r}=$ $\{a \in \mathcal{B}(\mathcal{H}):\|a\| \leq r\}$ the closed r-ball of $\mathcal{B}(\mathcal{H})$. Then, the topological space $\left(\mathcal{B}(\mathcal{H})_{r}\right.$, WOT $)$ is compact and metrizable.

Proof. In order to prove compactness, we consider for any $\xi, \eta \in \mathcal{H}$ the closed disc

$$
D_{\xi, \eta}=\{z \in \mathbf{C}:|z| \leq r\|\xi\| \cdot\|\eta\|\} \subseteq \mathbf{C}
$$

and the product space $\prod_{\xi, \eta \in \mathcal{H}} D_{\xi, \eta}$. In view of Tychonoff's theorem, the latter space is compact. We now define the map

$$
f: \mathcal{B}(\mathcal{H})_{r} \longrightarrow \prod_{\xi, \eta \in \mathcal{H}} D_{\xi, \eta}
$$

by letting $f(a)=(<a(\xi), \eta>)_{\xi, \eta}$ for all $a \in \mathcal{B}(\mathcal{H})_{r}$. It is clear that f is a homeomorphism of $\left(\mathcal{B}(\mathcal{H})_{r}, \mathrm{WOT}\right)$ onto its image. Therefore, the compactness of $\left(\mathcal{B}(\mathcal{H})_{r}\right.$, WOT $)$ will follow, as soon as we prove that the image $\operatorname{im} f$ of f is closed in $\prod_{\xi, \eta \in \mathcal{H}} D_{\xi, \eta}$. To that end, let $\left(z_{\xi, \eta}\right)_{\xi, \eta}$ be an element in the closure of $\operatorname{im} f$. Then, the family $\left(z_{\xi, \eta}\right)_{\xi, \eta}$ is easily seen to be linear in ξ and quasi-linear in η, whereas $\left|z_{\xi, \eta}\right| \leq r\|\xi\| \cdot\|\eta\|$ for all ξ, η. Hence, there is a vector $a_{\xi} \in \mathcal{H}$ with $\left\|a_{\xi}\right\| \leq r\|\xi\|$, such that $z_{\xi, \eta}=<a_{\xi}, \eta>$ for all $\xi, \eta \in \mathcal{H}$. Using the linearity of the family $\left(z_{\xi, \eta}\right)_{\xi, \eta}$ in the first variable, it follows that there is an operator $a \in \mathcal{B}(\mathcal{H})_{r}$, such that $a_{\xi}=a(\xi)$ for all $\xi \in \mathcal{H}$. Then, $\left(z_{\xi, \eta}\right)_{\xi, \eta}=f(a) \in \operatorname{im} f$, as needed.

In order to prove metrizability, we fix an orthonormal basis $\left(e_{n}\right)_{n=0}^{\infty}$ of the separable Hilbert space \mathcal{H} and define for any $a, b \in \mathcal{B}(\mathcal{H})_{r}$

$$
d_{r}(a, b)=\sum_{n, m} \frac{1}{2^{n+m}}\left|<(b-a)\left(e_{n}\right), e_{m}>\right|
$$

It is easily seen that d_{r} is a metric on $\mathcal{B}(\mathcal{H})_{r}$, which induces, in view of Proposition 1.2 , the weak operator topology on $\mathcal{B}(\mathcal{H})_{r}$.

Our next goal is to prove a result of von Neumann, describing the closure of unital selfadjoint subalgebras of $\mathcal{B}(\mathcal{H})$ in the weak and strong operator topologies in purely algebraic terms. To that end, we consider for any subset $X \subseteq \mathcal{B}(\mathcal{H})$ the commutant

$$
X^{\prime}=\{a \in \mathcal{B}(\mathcal{H}): a x=x a \text { for all } x \in X\}
$$

The bicommutant $X^{\prime \prime}$ of X is the commutant of X^{\prime}. It is clear that $X \subseteq X^{\prime \prime}$.
Lemma 1.4 For any $X \subseteq \mathcal{B}(\mathcal{H})$ the commutant X^{\prime} is WOT-closed.

Proof. For any operator $x \in \mathcal{B}(\mathcal{H})$ we consider the linear endomorphisms L_{x} and R_{x} of $\mathcal{B}(\mathcal{H})$, which are given by left and right multiplication with x respectively. Then, $X^{\prime}=$ $\bigcap_{x \in X} \operatorname{ker}\left(L_{x}-R_{x}\right)$ and hence the result follows from Remark 1.1(ii).

If n is a positive integer and $X \subseteq \mathcal{B}(\mathcal{H})$ a set of operators, we shall consider the set $X \cdot I_{n}=\left\{x I_{n}: x \in X\right\} \subseteq \mathbf{M}_{n}(\mathcal{B}(\mathcal{H})) \simeq \mathcal{B}\left(\mathcal{H}^{n}\right)$. Then, the following two properties are easily verified (cf. Exercise 5.2):
(i) The commutant $\left(X \cdot I_{n}\right)^{\prime}$ of $X \cdot I_{n}$ in $\mathbf{M}_{n}(\mathcal{B}(\mathcal{H})) \simeq \mathcal{B}\left(\mathcal{H}^{n}\right)$ is the set $\mathbf{M}_{n}\left(X^{\prime}\right)$ of matrices with entries in the commutant X^{\prime} of X in $\mathcal{B}(\mathcal{H})$.
(ii) The bicommutant $\left(X \cdot I_{n}\right)^{\prime \prime}$ of $X \cdot I_{n}$ in $\mathbf{M}_{n}(\mathcal{B}(\mathcal{H})) \simeq \mathcal{B}\left(\mathcal{H}^{n}\right)$ is the set $X^{\prime \prime} \cdot I_{n}$, where $X^{\prime \prime}$ is the bicommutant of X in $\mathcal{B}(\mathcal{H})$.

Lemma 1.5 Let \mathcal{A} be a self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ and $V \subseteq \mathcal{H}$ a closed \mathcal{A}-invariant subspace. Then:
(i) The orthogonal complement V^{\perp} is \mathcal{A}-invariant.
(ii) If p is the orthogonal projection onto V, then $p \in \mathcal{A}^{\prime}$.
(iii) The subspace V is $\mathcal{A}^{\prime \prime}$-invariant.

Proof. (i) Let $\xi \in V^{\perp}$ and $a \in \mathcal{A}$. Then, for any vector $\eta \in V$ we have $a^{*}(\eta) \in \mathcal{A} V \subseteq V$ and hence $<a(\xi), \eta>=<\xi, a^{*}(\eta)>=0$. Therefore, it follows that $a(\xi) \in V^{\perp}$.
(ii) We fix an operator $a \in \mathcal{A}$ and note that the subspaces V and V^{\perp} are a-invariant, in view of our assumption and (i) above. It follows easily from this that the operators $a p$ and $p a$ coincide on both V and V^{\perp}. Hence, $a p=p a$.
(iii) Let $\xi \in V, a^{\prime \prime} \in \mathcal{A}^{\prime \prime}$ and consider the orthogonal projection p onto V. In view of (ii) above, we have $a^{\prime \prime} p=p a^{\prime \prime}$ and hence $a^{\prime \prime}(\xi)=a^{\prime \prime} p(\xi)=p a^{\prime \prime}(\xi) \in V$, as needed.

We are now ready to state and prove von Neumann's theorem.
Theorem 1.6 (von Neumann bicommutant theorem) Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a self-adjoint subalgebra containing the identity operator. Then, $\overline{\mathcal{A}}^{S O T}=\overline{\mathcal{A}}^{W O T}=\mathcal{A}^{\prime \prime}$, where we denote by $\overline{\mathcal{A}}^{\text {SOT }}$ (resp. $\overline{\mathcal{A}}^{W O T}$) the SOT-closure (resp. WOT-closure) of \mathcal{A} in $\mathcal{B}(\mathcal{H})$.
Proof. It is clear that $\overline{\mathcal{A}}^{S O T} \subseteq \overline{\mathcal{A}}^{W O T}$. Since $\mathcal{A} \subseteq \mathcal{A}^{\prime \prime}$, it follows from Lemma 1.4 that $\overline{\mathcal{A}}^{W O T} \subseteq \mathcal{A}^{\prime \prime}$. Hence, it only remains to show that $\mathcal{A}^{\prime \prime} \subseteq \overline{\mathcal{A}}^{S O T}$. In order to verify this, we consider an operator $a^{\prime \prime} \in \mathcal{A}^{\prime \prime}$, a positive real number ϵ, a positive integer n and vectors $\xi_{1}, \ldots, \xi_{n} \in \mathcal{H}$. We have to show that the SOT-neighborhood

$$
\mathcal{N}_{\epsilon, \xi_{1}, \ldots, \xi_{n}}\left(a^{\prime \prime}\right)=\left\{a \in \mathcal{B}(\mathcal{H}):\left\|\left(a-a^{\prime \prime}\right) \xi_{i}\right\|<\epsilon \text { for all } i=1, \ldots, n\right\}
$$

of $a^{\prime \prime}$ intersects \mathcal{A} non-trivially. To that end, we consider the self-adjoint subalgebra $\mathcal{A} \cdot I_{n} \subseteq$ $\mathbf{M}_{n}(\mathcal{B}(\mathcal{H}))$ acting on the Hilbert space \mathcal{H}^{n} by left multiplication and the closed subspace

$$
V=\overline{\left\{\left(a\left(\xi_{1}\right), \ldots, a\left(\xi_{n}\right)\right): a \in \mathcal{A}\right\}} \subseteq \mathcal{H}^{n}
$$

It is clear that V is $\mathcal{A} \cdot I_{n}$-invariant. Invoking Lemma 1.5 (iii) and the discussion preceding it, we conclude that the subspace V is left invariant under the action of the operator $a^{\prime \prime} I_{n} \in$ $\mathbf{M}_{n}(\mathcal{B}(\mathcal{H}))$. Since $1 \in \mathcal{A}$, we have $\left(\xi_{1}, \ldots, \xi_{n}\right) \in V$ and hence $\left(a^{\prime \prime}\left(\xi_{1}\right), \ldots, a^{\prime \prime}\left(\xi_{n}\right)\right) \in V$. Therefore, there is an operator $a \in \mathcal{A}$, such that

$$
\left\|\left(a^{\prime \prime}\left(\xi_{1}\right), \ldots, a^{\prime \prime}\left(\xi_{n}\right)\right)-\left(a\left(\xi_{1}\right), \ldots, a\left(\xi_{n}\right)\right)\right\|<\epsilon
$$

Then, $\left\|a^{\prime \prime}\left(\xi_{i}\right)-a\left(\xi_{i}\right)\right\|<\epsilon$ for all $i=1, \ldots, n$ and hence $a \in \mathcal{N}_{\epsilon, \xi_{1}, \ldots, \xi_{n}}\left(a^{\prime \prime}\right)$, as needed.
A von Neumann algebra of operators acting on \mathcal{H} is a self-adjoint subalgebra $\mathcal{N} \subseteq \mathcal{B}(\mathcal{H})$, which is WOT-closed and contains the identity 1. Equivalently, in view of von Neumann's bicommutant theorem, a von Neumann algebra \mathcal{N} is a self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$, such that $\mathcal{N}=\mathcal{N}^{\prime \prime}$. It is clear that any von Neumann algebra \mathcal{N} as above is closed under the operator norm topology of $\mathcal{B}(\mathcal{H})$; in particular, \mathcal{N} is a unital C^{*}-algebra.

Lemma 1.7 Let \mathcal{A} be a von Neumann algebra of operators acting on the Hilbert space \mathcal{H}. For any idempotent $e \in \mathcal{A}$ there is a projection $f \in \mathcal{A}$, such that $e f=f$ and $f e=e$.
Proof. Since $e \in \operatorname{Idem}(\mathcal{A})$, the subspace $V=\operatorname{im} e$ is easily seen to be closed and \mathcal{A}^{\prime}-invariant. Therefore, Lemma 1.5(ii) implies that the orthogonal projection f onto V is contained in $\mathcal{A}^{\prime \prime}$. Invoking Theorem 1.6, we conclude that $f \in \mathcal{A}$. The equalities $e f=f$ and $f e=e$ follow since e and f are idempotent operators on \mathcal{H} with the same image.

Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be a self-adjoint algebra of operators containing 1 and \mathcal{N} its WOT-closure. Then, any operator $a \in \mathcal{N}$ can be approximated (in the weak operator topology) by a net $\left(a_{\lambda}\right)_{\lambda}$ of operators from \mathcal{A}. The following result, which is cited without proof, implies that the net $\left(a_{\lambda}\right)_{\lambda}$ can be chosen to be bounded.

Theorem 1.8 (Kaplansky density theorem) Let \mathcal{A} be a self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$ containing 1 and \mathcal{N} its WOT-closure. Then, for any positive real number r the r-ball $\mathcal{A}_{r}=\mathcal{A} \cap \mathcal{B}(\mathcal{H})_{r}$ of \mathcal{A} is WOT-dense in the r-ball $\mathcal{N}_{r}=\mathcal{N} \cap \mathcal{B}(\mathcal{H})_{r}$ of \mathcal{N}.

2 The von Neumann algebra of a group

Given a (discrete) group G, we consider the Hilbert space $\ell^{2} G$ of square summable complexvalued functions on G with canonical orthonormal basis $\left(\delta_{g}\right)_{g \in G}$. In other words, $\ell^{2} G$ consists of vectors of the form $\sum_{g \in G} r_{g} \delta_{g}$, where the r_{g} 's are complex numbers such that $\sum_{g \in G}\left|r_{g}\right|^{2}<\infty$. The inner product of two vectors $\xi=\sum_{g \in G} r_{g} \delta_{g}$ and $\xi^{\prime}=\sum_{g \in G} r_{g}^{\prime} \delta_{g}$ is given by

$$
<\xi, \xi^{\prime}>=\sum_{g \in G} r_{g} \overline{r_{g}^{\prime}} .
$$

For any element $g \in G$ we consider the linear endomorphism L_{g} of $\ell^{2} G$, which is defined by letting

$$
L_{g}\left(\sum_{x \in G} r_{x} \delta_{x}\right)=\sum_{x \in G} r_{x} \delta_{g x}
$$

for any vector $\sum_{x \in G} r_{x} \delta_{x} \in \ell^{2} G$. It is easily seen that $L_{1}=1$ and $L_{g h}=L_{g} L_{h}$ for all $g, h \in G$. Moreover, L_{g} is an isometry and hence $L_{g}^{*}=L_{g}^{-1}=L_{g^{-1}}$ for all $g \in G$. We shall consider the \mathbf{C}-linear map

$$
L: \mathbf{C} G \longrightarrow \mathcal{B}\left(\ell^{2} G\right),
$$

which extends the map $g \mapsto L_{g}, g \in G$. For any element $a \in \mathbf{C} G$ we shall denote its image in $\mathcal{B}\left(\ell^{2} G\right)$ by L_{a}. We note that the group algebra $\mathbf{C} G$ can be endowed with the structure of a $*$-algebra, by letting $\left(\sum_{g \in G} a_{g} g\right)^{*}=\sum_{g \in G} \overline{a_{g}} g^{-1}$ for all $\sum_{g \in G} \lambda_{g} g \in \mathbf{C} G$.

Lemma 2.1 Let G be a group and $L: \mathbf{C} G \longrightarrow \mathcal{B}\left(\ell^{2} G\right)$ the linear map defined above. Then, L is an injective *-algebra homomorphism and hence the subalgebra $L(\mathbf{C} G) \subseteq \mathcal{B}\left(\ell^{2} G\right)$ is self-adjoint.

Proof. It is clear that L is an algebra homomorphism. For any $a=\sum_{g \in G} a_{g} g \in \mathbf{C} G$, where $a_{g} \in \mathbf{C}$ for all $g \in G$, we have $L_{a}=\sum_{g \in G} a_{g} L_{g}$ and hence $L_{a}\left(\delta_{1}\right)=\sum_{g \in G} a_{g} \delta_{g} \in \ell^{2} G$. It follows readily from this that L is injective. We now let $a=\sum_{g \in G} a_{g} g \in \mathbf{C} G$, where $a_{g} \in \mathbf{C}$ for all $g \in G$, and consider the associated operator $L_{a}=\sum_{g \in G} a_{g} L_{g} \in L(\mathbf{C} G)$. Since $L_{g}^{*}=L_{g^{-1}}$ for all $g \in G$, it follows that $L_{a}^{*}=\sum_{g \in G} \overline{g_{g}} L_{g^{-1}}=L_{a^{*}} \in L(\mathbf{C} G)$.

We define the reduced C^{*}-algebra $C_{r}^{*} G$ of G to be the operator norm closure of $L(\mathbf{C} G)$ in $\mathcal{B}\left(\ell^{2} G\right)$; then, $C_{r}^{*} G$ is a unital C^{*}-algebra We also define the group von Neumann algebra $\mathcal{N} G$ as the WOT-closure of $L(\mathbf{C} G)$ in $\mathcal{B}\left(\ell^{2} G\right)$. Since $\mathcal{N} G$ is closed under the operator norm topology, it contains $C_{r}^{*} G$; hence, there are inclusions $L(\mathbf{C} G) \subseteq C_{r}^{*} G \subseteq \mathcal{N} G \subseteq \mathcal{B}\left(\ell^{2} G\right)$.

Remark 2.2 Assume that the group G is finite of order n. Then, the Hilbert space $\ell^{2} G$ is identified with \mathbf{C}^{n} and hence $\mathcal{B}\left(\ell^{2} G\right) \simeq \mathbf{M}_{n}(\mathbf{C})$. Moreover, all three topologies defined above on $\mathcal{B}\left(\ell^{2} G\right)$ (i.e. operator norm topology, SOT and WOT) coincide with the standard Cartesian product topology on $\mathbf{M}_{n}(\mathbf{C}) \simeq \mathbf{C}^{n^{2}}$. Since any linear subspace is closed therein, it follows that $L(\mathbf{C} G)=C_{r}^{*} G=\mathcal{N} G$.

In the following lemma we describe certain properties that are satisfied by the operators in the von Neumann algebra $\mathcal{N} G$.

Lemma 2.3 Let G be a group and consider an operator $a \in \mathcal{N} G$.
(i) If $\left(\delta_{g}\right)_{g \in G}$ denotes the canonical orthonormal basis of $\ell^{2} G$, then we have $<a\left(\delta_{g}\right), \delta_{h g}>$ $=<a\left(\delta_{1}\right), \delta_{h}>$ for all $g, h \in G .{ }^{1}$
(ii) For any vector $\xi \in \ell^{2} G$ and any group element $g \in G$ the family of complex numbers $\left(<a\left(\delta_{1}\right), \delta_{x}>\cdot<\xi, \delta_{x^{-1} g}>\right)_{x}$ is summable and

$$
\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>\cdot<\xi, \delta_{x^{-1} g}>=<a(\xi), \delta_{g}>
$$

(iii) If $a\left(\delta_{1}\right)=0 \in \ell^{2} G$ then a is the zero operator.

Proof. (i) First of all, let us consider the case where $a=L_{x}$ for some $x \in G$. In that case, we have to prove that $\left\langle\delta_{x g}, \delta_{h g}\right\rangle=\left\langle\delta_{x}, \delta_{h}\right\rangle$. But this equality is obvious, since $x g=h g$ if and only if $x=h$. Both sides of the formula to be proved are linear and WOT-continuous in a and hence the result follows from the special case considered above, since $\mathcal{N} G$ is the WOT-closure of the linear span of the set $\left\{L_{x}: x \in G\right\}$.
(ii) Since $\xi=\sum_{x}<\xi, \delta_{x}>\delta_{x}$, it follows that $a(\xi)=\sum_{x}<\xi, \delta_{x}>a\left(\delta_{x}\right)$. In view of the linearity and continuity of the inner product, we conclude that

$$
\begin{aligned}
<a(\xi), \delta_{g}> & =\sum_{x}<\xi, \delta_{x}>\cdot<a\left(\delta_{x}\right), \delta_{g}> \\
& =\sum_{x}<\xi, \delta_{x}>\cdot<a\left(\delta_{1}\right), \delta_{g x^{-1}}> \\
& =\sum_{y}<\xi, \delta_{y^{-1} g}>\cdot<a\left(\delta_{1}\right), \delta_{y}>
\end{aligned}
$$

where the second equality follows from (i) above.
(iii) If $a\left(\delta_{1}\right)=0$, then the equality of (ii) above implies that the inner product $\left\langle a(\xi), \delta_{g}\right\rangle$ vanishes for all vectors $\xi \in \ell^{2} G$ and all group elements $g \in G$. It follows readily from this that $a=0$.

[^0]We note that the linear functional $r_{1}: \mathbf{C} G \longrightarrow \mathbf{C}$, which maps an element $a \in \mathbf{C} G$ onto the coefficient of $1 \in G$ in a, extends to a linear functional

$$
\tau: \mathcal{N} G \longrightarrow \mathbf{C},
$$

by letting $\tau(a)=<a\left(\delta_{1}\right), \delta_{1}>$ for all $a \in \mathcal{N} G$.
Remark 2.4 Let G be a group and τ the linear functional defined above. Then, the assertion of Lemma 2.3(i) implies that $\tau(a)=<a\left(\delta_{g}\right), \delta_{g}>$ for all $a \in \mathcal{N} G$ and $g \in G$.

Proposition 2.5 Let G be a group and τ the linear functional defined above. Then:
(i) τ is a WOT-continuous trace.
(ii) τ is positive and faithful, i.e. $\tau\left(a^{*} a\right) \geq 0$ for all $a \in \mathcal{N} G$, whereas $\tau\left(a^{*} a\right)=0$ if and only if $a=0$.
(iii) τ is normalized, i.e. $\tau(1)=1$, where $1 \in \mathcal{N} G$ is the identity operator. The trace τ will be referred to as the canonical trace on the von Neumann algebra $\mathcal{N} G$.
Proof. (i) It is clear that τ is WOT-continuous. In order to show that τ is a trace, we fix an operator $a \in \mathcal{N} G$ and note that for any $g \in G$ we have

$$
<a L_{g}\left(\delta_{g^{-1}}\right), \delta_{g^{-1}}>=<a\left(\delta_{1}\right), \delta_{g^{-1}}>=<a\left(\delta_{1}\right), L_{g}^{*}\left(\delta_{1}\right)>=<L_{g} a\left(\delta_{1}\right), \delta_{1}>
$$

where the second equality follows since $L_{g}^{*}=L_{g^{-1}}$. Invoking Remark 2.4, we conclude that $\tau\left(a L_{g}\right)=\tau\left(L_{g} a\right)$. This being the case for all $g \in G$, it follows that $\tau\left(a a^{\prime}\right)=\tau\left(a^{\prime} a\right)$ for all $a^{\prime} \in L(\mathbf{C} G)$. Since multiplication in $\mathcal{B}\left(\ell^{2} G\right)$ is separately WOT-continuous (cf. Remark 1.1(ii)), the WOT-continuity of τ implies that $\tau\left(a a^{\prime}\right)=\tau\left(a^{\prime} a\right)$ for all $a^{\prime} \in \mathcal{N} G$.
(ii) For any $a \in \mathcal{N} G$ we have

$$
\tau\left(a^{*} a\right)=<a^{*} a\left(\delta_{1}\right), \delta_{1}>=<a\left(\delta_{1}\right), a\left(\delta_{1}\right)>=\left\|a\left(\delta_{1}\right)\right\|^{2} \geq 0 .
$$

In particular, $\tau\left(a^{*} a\right)=0$ if and only if $a\left(\delta_{1}\right)=0$; this proves the final assertion, in view of Lemma 2.3(iii).
(iii) We compute $\tau(1)=<\delta_{1}, \delta_{1}>=\left\|\delta_{1}\right\|^{2}=1$.

3 The center of $\mathcal{N} G$

Let us consider the subset $G_{f} \subseteq G$, which consists of all elements $g \in G$ that have finitely many conjugates. Since the cardinality of the conjugacy class $[g]$ of any element $g \in G$ is equal to the index of the centralizer C_{g} of g in G, it follows that $G_{f}=\left\{g \in G:\left[G: C_{g}\right]<\infty\right\}$. We shall denote by $\mathcal{C}(G)$ the set of conjugacy classes of the elements of G and let $\mathcal{C}_{f}(G)$ be the subset of $\mathcal{C}(G)$ that consists of those conjugacy classes $[g]$, for which $g \in G_{f}$.

Lemma 3.1 Let G_{f} and $\mathcal{C}_{f}(G)$ be the sets defined above. Then:
(i) G_{f} is a characteristic (and hence normal) subgroup of G.
(ii) For any commutative ring k the center $Z(k G)$ of the group algebra $k G$ is a free k-module with basis consisting of the elements $\zeta_{[g]}=\sum\{x: x \in[g]\},[g] \in \mathcal{C}_{f}(G)$.
Proof. (i) It is clear that G_{f} is non-empty, since $1 \in G_{f}$. We note that for any two elements $g_{1}, g_{2} \in G$ the intersection $C_{g_{1}} \cap C_{g_{2}}$ is contained in the centralizer of the product $g_{1} g_{2}$. In particular, if $g_{1}, g_{2} \in G_{f}$ then

$$
\left[G: C_{g_{1} g_{2}}\right] \leq\left[G: C_{g_{1}} \cap C_{g_{2}}\right] \leq\left[G: C_{g_{1}}\right]\left[G: C_{g_{2}}\right]<\infty
$$

and hence $g_{1} g_{2} \in G_{f}$. For any element $g \in G$ we have $C_{g}=C_{g^{-1}}$; therefore, $g^{-1} \in G_{f}$ if $g \in G_{f}$. We have proved that G_{f} is a subgroup of G. In order to prove that G_{f} is characteristic in G, let us consider an automorphism $\sigma: G \longrightarrow G$. Then, σ restricts to a bijection between the conjugacy classes $[g]$ and $[\sigma(g)]$ for any element $g \in G$. In particular, $g \in G_{f}$ if and only if $\sigma(g) \in G_{f}$.
(ii) It is clear that the subset $\left\{\zeta_{[g]}:[g] \in \mathcal{C}_{f}(G)\right\} \subseteq k G$ is linearly independent over k. Moreover, $x \zeta_{[g]} x^{-1}=\zeta_{[g]}$ for all $x \in G$ and hence $\zeta_{[g]} \in Z(k G)$ for all $[g] \in \mathcal{C}_{f}(G)$. In order to show that the $\zeta_{[g]}$'s form a basis of $Z(k G)$, let us consider a central element $a=\sum_{g \in G} a_{g} g \in k G$, where $a_{g} \in k$ for all $g \in G$. Then, $a=x a x^{-1}$ for all $x \in G$ and hence $a_{g}=a_{x^{-1} g x}$ for all $g, x \in G$. Therefore, the function $g \mapsto a_{g}, g \in G$, is constant on conjugacy classes. Since its support is finite, that function must vanish on the infinite conjugacy classes. It follows that a is a linear combination of the $\zeta_{[g]}$'s, as needed.

Let $\mathcal{Z} G$ be the center of the von Neumann algebra $\mathcal{N} G$; it is clear that $\mathcal{Z} G=\mathcal{N} G \cap(\mathcal{N} G)^{\prime}$, being WOT-closed, is itself a von Neumann algebra of operators on $\ell^{2} G$. Our next goal is to identify $\mathcal{Z} G$ with the WOT-closure of the self-adjoint subalgebra $Z(L(\mathbf{C} G)) \subseteq \mathcal{B}\left(\ell^{2} G\right)$. We note that

$$
Z(L(\mathbf{C} G))=L(\mathbf{C} G) \cap(L(\mathbf{C} G))^{\prime} \subseteq L(\mathbf{C} G)^{\prime \prime} \cap(L(\mathbf{C} G))^{\prime \prime \prime}=\mathcal{N} G \cap(\mathcal{N} G)^{\prime}
$$

Hence, $\mathcal{Z} G$ being WOT-closed, we have $\overline{Z(L(\mathbf{C} G))^{W O T}} \subseteq \mathcal{Z} G$. In order to prove the reverse inclusion, we shall need a couple of auxiliary results.

Lemma 3.2 Let $a \in \mathcal{Z} G$ be an operator in the center of $\mathcal{N} G$. Then:
(i) For all $g, h \in G$ we have $\left\langle a\left(\delta_{1}\right), \delta_{g^{-1} h g}\right\rangle=\left\langle a\left(\delta_{1}\right), \delta_{h}\right\rangle$.
(ii) The inner product $\left\langle a\left(\delta_{1}\right), \delta_{g}\right\rangle$ depends only upon the conjugacy class $[g] \in \mathcal{C}(G)$ and vanishes if $g \notin G_{f}$.
(iii) For any $g \in G$ we have

$$
a\left(\delta_{g}\right)=\sum_{[x] \in \mathcal{C}_{f}(G)}<a\left(\delta_{1}\right), \delta_{x}>L_{\zeta_{[x]}}\left(\delta_{g}\right) \in \ell^{2} G .
$$

Proof. (i) We fix the elements $g, h \in G$ and compute

$$
\begin{aligned}
<a\left(\delta_{1}\right), \delta_{g^{-1} h g}> & =<a\left(\delta_{1}\right), L_{g^{-1}}\left(\delta_{h g}\right)> \\
& =<L_{g^{-1}}^{*} a\left(\delta_{1}\right), \delta_{h g}> \\
& =<L_{g} a\left(\delta_{1}\right), \delta_{h g}> \\
& =<a L_{g}\left(\delta_{1}\right), \delta_{h g}> \\
& =<a\left(\delta_{g}\right), \delta_{h g}> \\
& =<a\left(\delta_{1}\right), \delta_{h}>
\end{aligned}
$$

In the above chain of equalities, the third one follows since $L_{g^{-1}}^{*}=L_{g}$, the fourth one since a commutes with L_{g}, whereas the last one was established in Lemma 2.3(i).
(ii) It follows from (i) that the function $g \mapsto<a\left(\delta_{1}\right), \delta_{g}>, g \in G$, is constant on conjugacy classes. Being square-summable, that function must vanish on those elements $g \in G$ with infinitely many conjugates.
(iii) It follows from (i) and (ii) above that

$$
\begin{align*}
a\left(\delta_{1}\right) & =\sum_{[x] \in \mathcal{C}_{f}(G)}<a\left(\delta_{1}\right), \delta_{x}>\sum_{\left.\left\{\delta_{x^{\prime}}: x^{\prime} \in[x]\right)\right\}}=\sum_{[x] \in \mathcal{C}_{f}(G)}<a\left(\delta_{1}\right), \delta_{x}>L_{\zeta_{[x]}}\left(\delta_{1}\right) . \tag{1}
\end{align*}
$$

On the other hand, for any $g \in G$ the operator L_{g} commutes with a (since $a \in \mathcal{Z} G$) and $L_{\zeta_{[x]}}$ for any $x \in G_{f}$ (since the $L_{\zeta_{[x]}}$'s are central in $L(\mathbf{C} G)$; cf. Lemma 3.1(ii)). Therefore, we have

$$
\begin{aligned}
a\left(\delta_{g}\right) & =a L_{g}\left(\delta_{1}\right) \\
& =L_{g} a\left(\delta_{1}\right) \\
& =\sum_{[x] \in \mathcal{C}_{f}(G)}<a\left(\delta_{1}\right), \delta_{x}>L_{g} L_{\zeta_{[x]}}\left(\delta_{1}\right) \\
& =\sum_{[x] \in \mathcal{C}_{f}(G)}<a\left(\delta_{1}\right), \delta_{x}>L_{\zeta_{[x]}} L_{g}\left(\delta_{1}\right) \\
& =\sum_{[x] \in \mathcal{C}_{f}(G)}<a\left(\delta_{1}\right), \delta_{x}>L_{\zeta_{[x]}}\left(\delta_{g}\right) .
\end{aligned}
$$

In the above chain of equalities, the third one follows from Eq.(1), in view of the continuity of L_{g}.

Corollary 3.3 Let $a \in \mathcal{Z} G$ be an operator in the center of $\mathcal{N} G$ and $b \in(Z(L(\mathbf{C} G)))^{\prime}$ an operator in the commutant of $Z(L(\mathbf{C} G))$ in $\mathcal{B}\left(\ell^{2} G\right)$. Then, for any two elements $g, h \in G$ the family of complex numbers $\left(<a\left(\delta_{1}\right), \delta_{x}>\cdot<b\left(\delta_{g}\right), \delta_{x^{-1} h}>\right)_{x \in G}$ is summable and

$$
\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>\cdot<b\left(\delta_{g}\right), \delta_{x^{-1} h}>=<b a\left(\delta_{g}\right), \delta_{h}>
$$

Proof. In view of the continuity of b, Lemma 3.2(iii) implies that

$$
\begin{aligned}
b a\left(\delta_{g}\right) & =\sum_{[x] \in \mathcal{C}_{f}(G)}<a\left(\delta_{1}\right), \delta_{x}>b L_{\zeta_{[x]}}\left(\delta_{g}\right) \\
& =\sum_{[x] \in \mathcal{C}_{f}(G)}<a\left(\delta_{1}\right), \delta_{x}>L_{\zeta_{[x]}} b\left(\delta_{g}\right) \\
& =\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>L_{x} b\left(\delta_{g}\right)
\end{aligned}
$$

In the above chain of equalities, the second one follows since b commutes with $L_{\zeta_{[x]}} \in$ $Z(L(\mathbf{C} G))$ for all $[x] \in \mathcal{C}_{f}(G)$ (cf. Lemma 3.1(ii)), whereas the last one is a consequence of Lemma 3.2(ii). Therefore, we have

$$
\begin{aligned}
<b a\left(\delta_{g}\right), \delta_{h}> & =\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>\cdot<L_{x} b\left(\delta_{g}\right), \delta_{h}> \\
& =\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>\cdot<b\left(\delta_{g}\right), L_{x}^{*}\left(\delta_{h}\right)> \\
& =\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>\cdot<b\left(\delta_{g}\right), L_{x^{-1}}\left(\delta_{h}\right)> \\
& =\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>\cdot<b\left(\delta_{g}\right), \delta_{x^{-1} h}>
\end{aligned}
$$

where the first equality follows from the continuity of the inner product $<_{-}, \delta_{h}>$ and the third one from the equalities $L_{x}^{*}=L_{x^{-1}}, x \in G$.

We are now ready to prove the following result, describing the center of the von Neumann algebra $\mathcal{N} G$.

Proposition 3.4 The center $\mathcal{Z} G$ of the von Neumann algebra $\mathcal{N} G$ is the WOT-closure in $\mathcal{B}\left(\ell^{2} G\right)$ of the center $Z(L(\mathbf{C} G))$ of the algebra $L(\mathbf{C} G)$.
Proof. As we have already noted, the von Neumann algebra $\mathcal{Z} G$ contains the WOT-closure of $Z(L(\mathbf{C} G))$. On the other hand, the WOT-closure of the $*$-algebra $Z(L(\mathbf{C} G))$ coincides with its bicommutant in $\mathcal{B}\left(\ell^{2} G\right)$ (cf. Theorem 1.6). Hence, it only remains to show that $\mathcal{Z} G \subseteq(Z(L(\mathbf{C} G)))^{\prime \prime}$, i.e. that any $a \in \mathcal{Z} G$ commutes with any $b \in(Z(L(\mathbf{C} G)))^{\prime}$. Let us fix such a pair of operators a, b. Since $a \in \mathcal{Z} G \subseteq \mathcal{N} G$, we have

$$
<a(\xi), \delta_{h}>=\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>\cdot<\xi, \delta_{x^{-1} h}>
$$

for all $\xi \in \ell^{2} G$ and $h \in G$ (cf. Lemma 2.3(ii)). In particular, we have

$$
<a b\left(\delta_{g}\right), \delta_{h}>=\sum_{x \in G}<a\left(\delta_{1}\right), \delta_{x}>\cdot<b\left(\delta_{g}\right), \delta_{x^{-1} h}>
$$

for all $g, h \in G$. Therefore, Corollary 3.3 implies that

$$
<a b\left(\delta_{g}\right), \delta_{h}>=<b a\left(\delta_{g}\right), \delta_{h}>
$$

for all $g, h \in G$ and hence $a b=b a$, as needed.
Remark 3.5 Let \mathcal{H} be a Hilbert space, $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ a unital self-adjoint subalgebra and \mathcal{N} its WOT-closure. Even though the center $Z(\mathcal{N})$ of \mathcal{N} always contains the WOT-closure of the center $Z(\mathcal{A})$ of \mathcal{A}, the inclusion $\overline{Z(\mathcal{A})}{ }^{\text {WOT }} \subseteq Z(\mathcal{N})$ may be proper (in contrast to the situation described in Proposition 3.4); cf. Exercise 5.4.

4 The center-valued trace on $\mathcal{N} G$

Our goal is to construct a trace

$$
t=t_{G}: \mathcal{N} G \longrightarrow \mathcal{Z} G
$$

which is WOT-continuous on bounded sets, maps $\mathcal{Z} G$ identically onto itself and is closely related to the canonical trace τ.
I. The trace on $\mathbf{C} G$. We shall begin by defining t on the group algebra $\mathbf{C} G$. More precisely, we define the linear map

$$
t_{0}: \mathbf{C} G \longrightarrow Z(\mathbf{C} G),
$$

by letting $t_{0}(g)=0$ if $g \notin G_{f}$ and $t_{0}(g)=\frac{1}{\left[G: C_{g}\right]} \zeta_{[g]}$ if $g \in G_{f} .{ }^{2}$
Proposition 4.1 Let $t_{0}: \mathbf{C} G \longrightarrow Z(\mathbf{C} G)$ be the \mathbf{C}-linear map defined above. Then:
(i) t_{0} is a trace with values in $Z(\mathbf{C} G)$,
(ii) $t_{0}(a)=a$ for all $a \in Z(\mathbf{C} G)$,
(iii) $t_{0}\left(a a^{\prime}\right)=a t_{0}\left(a^{\prime}\right)$ for all $a \in Z(\mathbf{C} G)$ and $a^{\prime} \in \mathbf{C} G$ (i.e. t_{0} is $Z(\mathbf{C} G)$-linear),
(iv) $t_{0}\left(a^{*}\right)=t_{0}(a)^{*}$ for all $a \in \mathbf{C} G$ and
(v) the trace functional r_{1} on $\mathbf{C} G$ factors as the composition

$$
\mathbf{C} G \xrightarrow{t_{0}} Z(\mathbf{C} G) \xrightarrow{r_{1}^{\prime}} \mathbf{C}
$$

where r_{1}^{\prime} is the restriction of r_{1} to the center $Z(\mathbf{C} G)$.
Proof. (i) Since t_{0} is C-linear, it suffices to show that $t_{0}(g)=t_{0}\left(g^{\prime}\right)$ whenever $[g]=\left[g^{\prime}\right] \in$ $\mathcal{C}(G)$. But this is an immediate consequence of the definition of t_{0}.
(ii) We consider an element $g \in G_{f}$ with $\left[G: C_{g}\right]=n$ and let $[g]=\left\{g_{1}, \ldots, g_{n}\right\}$. Then, $t_{0}\left(g_{i}\right)=t_{0}(g)$ for all $i=1, \ldots, n$ and hence

$$
t_{0}\left(\zeta_{[g]}\right)=t_{0}\left(\sum_{i=1}^{n} g_{i}\right)=\sum_{i=1}^{n} t_{0}\left(g_{i}\right)=n t_{0}(g)=\zeta_{[g]} .
$$

[^1]Since t_{0} is C-linear, the proof is finished by invoking Lemma 3.1(ii).
(iii) We consider an element $g \in G_{f}$ with $\left[G: C_{g}\right]=n$ and let $[g]=\left\{g_{1}, \ldots, g_{n}\right\}$; then, $g_{i} \in G_{f}$ for all $i=1, \ldots, n$. If $g^{\prime} \in G$ is an element with $g^{\prime} \notin G_{f}$, then (G_{f} being a subgroup of G, in view of Lemma 3.1(i)) $g_{i} g^{\prime} \notin G_{f}$ for all $i=1, \ldots, n$. In particular,

$$
t_{0}\left(\zeta_{[g]} g^{\prime}\right)=t_{0}\left(\sum_{i=1}^{n} g_{i} g^{\prime}\right)=\sum_{i=1}^{n} t_{0}\left(g_{i} g^{\prime}\right)=0=\zeta_{[g]} t_{0}\left(g^{\prime}\right) .
$$

We now assume that $g^{\prime} \in G_{f}$ and consider the conjugacy class $\left[g^{\prime}\right]=\left\{g_{1}^{\prime}, \ldots, g_{m}^{\prime}\right\}$, where $m=\left[G: C_{g^{\prime}}\right]$. Then, for any $j=1, \ldots, m$ there exists an element $x_{j} \in G$, such that $g_{j}^{\prime}=x_{j} g^{\prime} x_{j}^{-1}$. Since $\zeta_{[g]}$ is central in $\mathbf{C} G$, we have $\zeta_{[g]} g_{j}^{\prime}=x_{j} \zeta_{[g]} g^{\prime} x_{j}^{-1}$ and hence (t_{0} being a trace, in view of (i) above) $t_{0}\left(\zeta_{[g]} g_{j}^{\prime}\right)=t_{0}\left(\zeta_{[g]} g^{\prime}\right)$ for all $j=i, \ldots, m$. It follows that

$$
\zeta_{[g]} \zeta_{\left[g^{\prime}\right]}=t_{0}\left(\zeta_{[g]} \zeta_{\left[g^{\prime}\right]}\right)=t_{0}\left(\sum_{j=1}^{m} \zeta_{[g]} g_{j}^{\prime}\right)=\sum_{j=1}^{m} t_{0}\left(\zeta_{[g]} g_{j}^{\prime}\right)=m t_{0}\left(\zeta_{[g]} g^{\prime}\right),
$$

where the first equality is a consequence of (ii) above, since the element $\zeta_{[g]} \zeta_{\left[g^{\prime}\right]}$ is central in $\mathbf{C} G$. We conclude that

$$
t_{0}\left(\zeta_{[g]} g^{\prime}\right)=\frac{1}{m} \zeta_{[g]} \zeta_{\left[g^{\prime}\right]}=\zeta_{[g]} t_{0}\left(g^{\prime}\right)
$$

in this case as well. Therefore, we have proved that $t_{0}\left(\zeta_{[g]} g^{\prime}\right)=\zeta_{[g]} t_{0}\left(g^{\prime}\right)$ for all $g^{\prime} \in G$. Since this is the case for any $g \in G_{f}$, the linearity of t_{0}, combined with Lemma 3.1(ii), finishes the proof.
(iv) Since both sides of the equality to be proved are conjugate linear in a, it suffices to consider the case where $a=g$, for some element $g \in G$. In that case, we have $a^{*}=g^{-1}$. If $g \in G_{f}$ and $[g]=\left\{g_{1}, \ldots, g_{n}\right\}$, then $g^{-1} \in G_{f}$ and $\left[g^{-1}\right]=\left\{g_{1}^{-1}, \ldots, g_{n}^{-1}\right\}$. Therefore, we have

$$
t_{0}\left(a^{*}\right)=t_{0}\left(g^{-1}\right)=\sum_{i=1}^{n} g_{i}^{-1}=\left(\sum_{i=1}^{n} g_{i}\right)^{*}=t_{0}(g)^{*}=t_{0}(a)^{*} .
$$

If g is not contained in G_{f}, which is a subgroup of G, then g^{-1} is not contained in G_{f} either and hence both $t_{0}(a)^{*}=t_{0}(g)^{*}$ and $t_{0}\left(a^{*}\right)=t_{0}\left(g^{-1}\right)$ vanish.
(v) It suffices to verify that the linear functionals $r_{1}^{\prime} \circ t_{0}$ and r_{1} have the same value on g for all $g \in G$. But this follows immediately from the definitions.
II. A factorization of the trace on $\mathbf{C} G$. In order to extend the trace t_{0} defined above to the von Neumann algebra $\mathcal{N} G$, we shall consider the linear maps

$$
\Delta: \mathbf{C} G \longrightarrow \mathbf{C} G_{f} \text { and } c: \mathbf{C} G_{f} \longrightarrow Z(\mathbf{C} G)
$$

which are defined by letting Δ map any group element $g \in G$ onto g (resp. onto 0) if $g \in G_{f}$ (resp. if $g \notin G_{f}$) and c map any $g \in G_{f}$ onto $\frac{1}{\left[G: C_{g}\right]} \zeta_{[g]}$. Then, t_{0} can be expressed as the composition

$$
\mathbf{C} G \xrightarrow{\Delta} \mathbf{C} G_{f} \xrightarrow{c} Z(\mathbf{C} G) .
$$

Viewing the algebras above as algebras of operators acting on $\ell^{2} G$ by left translations, we shall study the continuity properties of Δ and c and show that both of them extend to the respective WOT-closures.
III. The map Δ. We begin by considering a (possibly infinite) family $\left(\mathcal{H}_{s}\right)_{s \in S}$ of Hilbert spaces and define \mathcal{H} to be the corresponding Hilbert space direct sum. Then, $\mathcal{H}=\bigoplus_{s \in S} \mathcal{H}_{s}$
consists of those elements $\xi=\left(\xi_{s}\right)_{s} \in \prod_{s \in S} \mathcal{H}_{s}$, for which the series $\sum_{s \in S}\left\|\xi_{s}\right\|_{s}^{2}$ is convergent. (Here, we denote for any $s \in S$ by $\|\cdot\|_{s}$ the norm of the Hilbert space \mathcal{H}_{s}.) The inner product on \mathcal{H} is defined by letting $\langle\xi, \eta\rangle=\sum_{s \in S}\left\langle\xi_{s}, \eta_{s}\right\rangle_{s}$ for any two vectors $\xi=\left(\xi_{s}\right)_{s}$ and $\eta=\left(\eta_{s}\right)_{s}$ of \mathcal{H}, where $\left\langle_{-},\right\rangle_{s}$ denotes the inner product of \mathcal{H}_{s} for all $s \in S$. The Hilbert spaces $\mathcal{H}_{s}, s \in S$, admit isometric embeddings as closed orthogonal subspaces of \mathcal{H} by means of the operators $\iota_{s}: \mathcal{H}_{s} \longrightarrow \mathcal{H}$, which map an element $\xi_{s} \in \mathcal{H}_{s}$ onto the element $\iota_{s}\left(\xi_{s}\right)=\left(\eta_{s^{\prime}}\right)_{s^{\prime}} \in \mathcal{H}$ with $\eta_{s}=\xi_{s}$ and $\eta_{s^{\prime}}=0$ for $s^{\prime} \neq s$. Then, the Hilbert space \mathcal{H} is the closed linear span of the subspaces $\iota_{s}\left(\mathcal{H}_{s}\right), s \in S$. For any index $s \in S$ we shall also consider the projection $P_{s}: \mathcal{H} \longrightarrow \mathcal{H}_{s}$, which maps an element $\xi=\left(\xi_{s^{\prime}}\right)_{s^{\prime}} \in \mathcal{H}$ onto $\xi_{s} \in \mathcal{H}_{s}$. It is clear that P_{s} is a continuous linear map with $\left\|P_{s}\right\| \leq 1$ for all $s \in S$. Moreover, for any vectors $\xi \in \mathcal{H}$ and $\eta_{s} \in \mathcal{H}_{s}$ we have $\left\langle P_{s}(\xi), \eta_{s}\right\rangle_{s}=\left\langle\xi, \iota_{s}\left(\eta_{s}\right)\right\rangle$; therefore, $P_{s}=\iota_{s}^{*}$ is the adjoint of ι_{s} for all $s \in S$.

Let us consider a bounded operator $a \in \mathcal{B}(\mathcal{H})$ and a vector $\xi=\left(\xi_{s}\right)_{s} \in \mathcal{H}$. Then, the family $\left(P_{s} a \iota_{s}\left(\xi_{s}\right)\right)_{s} \in \prod_{s \in S} \mathcal{H}_{s}$ is also a vector in \mathcal{H}, since

$$
\begin{align*}
\sum_{s \in S}\left\|P_{s} a \iota_{s}\left(\xi_{s}\right)\right\|_{s}^{2} & \leq \sum_{s \in S}\left\|a \iota_{s}\left(\xi_{s}\right)\right\|^{2} \tag{2}\\
& \leq\|a\|^{2} \sum_{s \in S}\left\|\iota_{s}\left(\xi_{s}\right)\right\|^{2} \\
& =\|a\|^{2} \sum_{s \in S}\left\|\xi_{s}\right\|_{s}^{2} \\
& =\|a\|^{2}\|\xi\|^{2} .
\end{align*}
$$

This is the case for any $\xi \in \mathcal{H}$ and hence we may consider the map

$$
\Delta(a): \mathcal{H} \longrightarrow \mathcal{H},
$$

which maps an element $\xi=\left(\xi_{s}\right)_{s} \in \mathcal{H}$ onto $\Delta(a)(\xi)=\left(P_{s} a l_{s}\left(\xi_{s}\right)\right)_{s} \in \mathcal{H}$. Itcis clear that the map $\Delta(a)$ is linear. Moreover, it follows from (2) that $\Delta(a)$ is a bounded operator; in fact, we have $\|\Delta(a)\| \leq\|a\|$. Therefore, we may consider the map

$$
\Delta: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}(\mathcal{H})
$$

which is given by $a \mapsto \Delta(a), a \in \mathcal{B}(\mathcal{H})$. The map Δ is linear and continuous with respect to the operator norm topology on $\mathcal{B}(\mathcal{H})$; in fact, $\|\Delta\| \leq 1 .{ }^{3}$ It is easily seen that

$$
\begin{equation*}
\Delta(a) \iota_{s}=\iota_{s} P_{s} a \iota_{s} \tag{3}
\end{equation*}
$$

for all $a \in \mathcal{B}(\mathcal{H})$ and all indices $s \in S$. Since Δ is a contraction, it induces by restriction to the r-ball a map

$$
\Delta_{r}:(\mathcal{B}(\mathcal{H}))_{r} \longrightarrow(\mathcal{B}(\mathcal{H}))_{r}
$$

for any radius r. Of course, Δ_{r} is continuous with respect to the operator norm topology on $(\mathcal{B}(\mathcal{H}))_{r}$.

Lemma 4.2 The map Δ_{r} defined above is WOT-continuous for any r.
Proof. Let $\left(a_{\lambda}\right)_{\lambda}$ be a bounded net of operators in $\mathcal{B}(\mathcal{H})$, which is WOT-convergent to 0 . In order to show that the net $\left(\Delta\left(a_{\lambda}\right)\right)_{\lambda}$ of operators in $\mathcal{B}(\mathcal{H})$ is WOT-convergent to 0 as well, it suffices, in view of Proposition 1.2, to show that $\lim _{\lambda}\left\langle\Delta\left(a_{\lambda}\right)(\xi), \eta\right\rangle=0$, whenever

[^2]there are two indices $s, s^{\prime} \in S$ and vectors $\xi_{s} \in \mathcal{H}_{s}$ and $\eta_{s^{\prime}} \in \mathcal{H}_{s^{\prime}}$, such that $\xi=\iota_{s}\left(\xi_{s}\right)$ and $\eta=\iota_{s^{\prime}}\left(\eta_{s^{\prime}}\right)$. Since
$$
\Delta\left(a_{\lambda}\right)(\xi)=\Delta\left(a_{\lambda}\right) \iota_{s}\left(\xi_{s}\right)=\iota_{s} P_{s} a_{\lambda} \iota_{s}\left(\xi_{s}\right)
$$
(cf. Eq.(3)), the inner product $\left\langle\Delta\left(a_{\lambda}\right)(\xi), \eta>=\left\langle\Delta\left(a_{\lambda}\right)(\xi), \iota_{s^{\prime}}\left(\eta_{s^{\prime}}\right)>\right.\right.$ vanishes if $s \neq s^{\prime}$. On the other hand, if $s=s^{\prime}$ we have
\[

$$
\begin{aligned}
<\Delta\left(a_{\lambda}\right)(\xi), \eta> & =<\iota_{s} P_{s} a_{\lambda} \iota_{s}\left(\xi_{s}\right), \iota_{s}\left(\eta_{s}\right)> \\
& =<P_{s} a_{\lambda} \iota_{s}\left(\xi_{s}\right), \eta_{s}>s \\
& =<a_{\lambda} \iota_{s}\left(\xi_{s}\right), \iota_{s}\left(\eta_{s}\right)>,
\end{aligned}
$$
\]

where the last equality follows since $P_{s}=\iota_{s}^{*}$. Since WOT- $\lim _{\lambda} a_{\lambda}=0$, we conclude that $\lim _{\lambda}\left\langle\Delta\left(a_{\lambda}\right)(\xi), \eta\right\rangle=0$ in this case as well.

In order to apply the conclusion of Lemma 4.2, we consider the group G and a subgroup $H \leq G$. If S is a set of representatives of the left cosets of H in G, then the decomposition of G into the disjoint union of the cosets $H s, s \in S$, induces a Hilbert space decomposition $\ell^{2} G=\oplus_{s \in S} \ell^{2}(H s)$. We consider the operator

$$
\Delta: \mathcal{B}\left(\ell^{2} G\right) \longrightarrow \mathcal{B}\left(\ell^{2} G\right)
$$

which is associated with that decomposition as above. In particular, let us fix an element $g \in G$ and try to identify the operator $\Delta\left(L_{g}\right) \in \mathcal{B}\left(\ell^{2} G\right)$. For any $x \in G$ there is a unique $s=s(x) \in S$, such that $x \in H s$. Then,

$$
\Delta\left(L_{g}\right)\left(\delta_{x}\right)=\Delta\left(L_{g}\right) \iota_{s}\left(\delta_{x}\right)=\iota_{s} P_{s} L_{g} \iota_{s}\left(\delta_{x}\right)=\iota_{s} P_{s} L_{g}\left(\delta_{x}\right)=\iota_{s} P_{s}\left(\delta_{g x}\right),
$$

where the second equality follows from Eq.(3). We note that $g x \in H s$ if and only if $g \in H$ and hence $\Delta\left(L_{g}\right)\left(\delta_{x}\right)$ is equal to $\iota_{s}\left(\delta_{g x}\right)=\delta_{g x}$ if $g \in H$ and vanishes if $g \notin H$. Since this is the case for all $x \in G$, we conclude that

$$
\Delta\left(L_{g}\right)=\left\{\begin{array}{cl}
L_{g} & \text { if } g \in H \\
0 & \text { if } g \notin H
\end{array}\right.
$$

In particular, $\Delta\left(L_{g}\right)$ is an element of the subalgebra $L(\mathbf{C} H) \subseteq \mathcal{B}\left(\ell^{2} G\right)$. (We note that here $L(\mathbf{C} H)$ is viewed as an algebra of operators acting on $\ell^{2} G$.) Hence, Δ restricts to a linear map

$$
\Delta: L(\mathbf{C} G) \longrightarrow L(\mathbf{C} H) \subseteq \mathcal{B}\left(\ell^{2} G\right)
$$

Corollary 4.3 Let H be a subgroup of G and consider the linear operator

$$
\Delta: L(\mathbf{C} G) \longrightarrow L(\mathbf{C} H) \subseteq \mathcal{B}\left(\ell^{2} G\right)
$$

which is defined above. Then:
(i) The operator Δ is a contraction.
(ii) The map

$$
\Delta_{r}:(L(\mathbf{C} G))_{r} \longrightarrow(L(\mathbf{C} H))_{r} \subseteq\left(\mathcal{B}\left(\ell^{2} G\right)\right)_{r},
$$

induced from Δ by restriction to the respective r-balls, is WOT-continuous for any r.
IV. The map c. We shall begin by considering a group N together with an automorphism $\phi: N \longrightarrow N$. Then, ϕ extends by linearity to an automorphism of the complex group algebra $\mathbf{C} N$, which will be still denoted (by an obvious abuse of notation) by ϕ. We shall also consider the associated automorphism L_{ϕ} of the algebra of operators $L(\mathbf{C N}) \subseteq \mathcal{B}\left(\ell^{2} N\right)$, which is defined by letting $L_{\phi}\left(L_{a}\right)=L_{\phi(a)}$ for all $a \in \mathbf{C N}$. On the other hand, there is a unitary operator $\Phi \in \mathcal{B}\left(\ell^{2} N\right)$, such that $\Phi\left(\delta_{x}\right)=\delta_{\phi(x)}$ for all $x \in N$; here, we denote by $\left(\delta_{x}\right)_{x \in N}$ the canonical orthonormal basis of $\ell^{2} N$.

Lemma 4.4 Let N be a group and ϕ an automorphism of N.
(i) The associated isometry Φ of the Hilbert space $\ell^{2} N$ is such that $L_{\phi(a)} \circ \Phi=\Phi \circ L_{a} \in$ $\mathcal{B}\left(\ell^{2} N\right)$ for all $a \in \mathbf{C} N$.
(ii) The automorphism L_{ϕ} of $L(\mathbf{C N})$ is norm-preserving and WOT-continuous.

Proof. (i) By linearity, it suffices to verify that $L_{\phi(x)} \circ \Phi=\Phi \circ L_{x}$ for all $x \in N$. For any element $y \in N$ we have

$$
\left(L_{\phi(x)} \circ \Phi\right)\left(\delta_{y}\right)=L_{\phi(x)}\left(\delta_{\phi(y)}\right)=\delta_{\phi(x) \phi(y)}=\delta_{\phi(x y)}=\Phi\left(\delta_{x y}\right)=\left(\Phi \circ L_{x}\right)\left(\delta_{y}\right) .
$$

Since the bounded operators $L_{\phi(x)} \circ \Phi$ and $\Phi \circ L_{x}$ agree on the orthonormal basis $\left\{\delta_{y}: y \in N\right\}$ of the Hilbert space $\ell^{2} N$, they are equal.
(ii) For any $a \in \mathbf{C N}$ we have $L_{\phi(a)}=\Phi \circ L_{a} \circ \Phi^{-1}$, in view of (i) above. Since Φ is unitary, it follows that $\left\|L_{\phi(a)}\right\|=\left\|L_{a}\right\|$ for all $a \in \mathbf{C} N$ and hence L_{ϕ} is norm-preserving. On the other hand, the map $b \mapsto \Phi \circ b \circ \Phi^{-1}, b \in \mathcal{B}\left(\ell^{2} N\right)$, is WOT-continuous (cf. Remark 1.1(ii)). Being a restriction of it, L_{ϕ} is WOT-continuous as well.

We now assume that N is a group on which the group G acts by automorphisms. Then, for any $g \in G$ we are given an automorphism $\phi_{g}: N \longrightarrow N$, in such a way that $\phi_{g} \circ \phi_{g^{\prime}}=$ $\phi_{g g^{\prime}}$ for all $g, g^{\prime} \in G$. There is an induced action of G by automorphisms $\left(\phi_{g}\right)_{g}$ on the complex group algebra $\mathbf{C} N$ and a corresponding action of G by automorphisms $\left(L_{\phi_{g}}\right)_{g}$ on the algebra of operators $L(\mathbf{C} N) \subseteq \mathcal{B}\left(\ell^{2} N\right)$. More precisely, for any $g \in G$ the automorphism $\phi_{g}: \mathbf{C} N \longrightarrow \mathbf{C} N$ is the linear extension of $\phi_{g} \in \operatorname{Aut}(N)$, whereas $L_{\phi_{g}}: L(\mathbf{C} N) \longrightarrow L(\mathbf{C} N)$ maps L_{a} onto $L_{\phi_{g}(a)}$ for all $a \in \mathbf{C} N$.

If the G-action on N is such that all orbits are finite (equivalently, if for any element $x \in N$ the stabilizer subgroup Stab_{x} has finite index in G), then we define the linear map

$$
c: L(\mathbf{C} N) \longrightarrow L(\mathbf{C} N)
$$

as follows: For any $x \in N$ with G-orbit $\left\{x_{1}, \ldots, x_{m}\right\} \subseteq N$, where $m=m(x)=\left[G: \operatorname{Stab}_{x}\right]$, we let $c\left(L_{x}\right)=\frac{1}{m} \sum_{i=1}^{m} L_{x_{i}} \in L(\mathbf{C} N)$.

Lemma 4.5 Assume that G acts on a group N by automorphisms, in such a way that all orbits are finite, and consider the linear operator c on $L(\mathbf{C N})$ defined above.
(i) Let x be an element of N and $H \leq G$ a subgroup of finite index with $H \subseteq$ Stab b_{x}. If $[G: H]=k$ and $\left\{g_{1}, \ldots, g_{k}\right\}$ is a set of representatives of the right H-cosets $\{g H: g \in G\}$, then $c\left(L_{x}\right)=\frac{1}{k} \sum_{i=1}^{k} L_{\phi_{g_{i}}(x)}$.
(ii) The operator c is a contraction.
(iii) The map

$$
c_{r}:(L(\mathbf{C} N))_{r} \longrightarrow(L(\mathbf{C} N))_{r},
$$

induced from c by restriction to the r-balls, is WOT-continuous for any r.

Proof. (i) Since H is contained in the stabilizer Stab_{x}, we have $\phi_{g}(x)=\phi_{g^{\prime}}(x) \in N$ if $g H=g^{\prime} H$. Therefore, the right hand side of the equality to be proved doesn't depend upon the choice of the set of representatives of the cosets $\{g H: g \in G\}$. Let $\left\{s_{1}, \ldots, s_{m}\right\}$ be a set of representatives of the cosets $\left\{g \operatorname{Stab}_{x}: g \in G\right\}$, where $m=m(x)=\left[G: \mathrm{Stab}_{x}\right]$. Then, the G-orbit of x is the set $\left\{\phi_{s_{1}}(x), \ldots, \phi_{s_{m}}(x)\right\}$ and hence

$$
c\left(L_{x}\right)=\frac{1}{m} \sum_{i=1}^{m} L_{\phi_{s_{i}}(x)} .
$$

We now let $\left\{u_{1}, \ldots, u_{l}\right\}$ be a set of representatives of the cosets $\left\{g H: g \in \operatorname{Stab}_{x}\right\}$, where $l=\left[\operatorname{Stab}_{x}: H\right]$. Then, the set $\left\{s_{i} u_{j}: 1 \leq i \leq m, 1 \leq j \leq l\right\}$ is a set of representatives of the cosets $\{g H: g \in G\}$. In particular, $k=[G: H]=\left[G: \operatorname{Stab}_{x}\right] \cdot\left[\operatorname{Stab}_{x}: H\right]=m l$. Since the u_{j} 's stabilize x, we have $\phi_{s_{i} u_{j}}(x)=\phi_{s_{i}}(x)$ for all i, j and hence

$$
c\left(L_{x}\right)=\frac{1}{m} \sum_{i=1}^{m} L_{\phi_{s_{i}}(x)}=\frac{l}{k} \sum_{i=1}^{m} L_{\phi_{s_{i}}(x)}=\frac{1}{k} \sum_{i=1}^{m} \sum_{j=1}^{l} L_{\phi_{s_{i} u_{j}}(x)},
$$

as needed.
(ii) Let $a=\sum_{i=1}^{r} a_{i} x_{i} \in \mathbf{C} N$, where $a_{i} \in \mathbf{C}$ and $x_{i} \in N$ for all $i=1, \ldots, r$. We consider the subgroup $H=\bigcap_{i=1}^{r} \operatorname{Stab}_{x_{i}}$, which has finite index in G, and fix a set of representatives $\left\{g_{1}, \ldots, g_{k}\right\}$ of the cosets $\{g H: g \in G\}$. We note that $L_{a}=\sum_{i=1}^{r} a_{i} L_{x_{i}}$, whereas $L_{\phi_{g_{j}}(a)}=\sum_{i=1}^{r} a_{i} L_{\phi_{g_{j}}\left(x_{i}\right)}$ for all $j=1, \ldots, k$. Hence, it follows from (i) above that

$$
c\left(L_{a}\right)=\sum_{i=1}^{r} a_{i} c\left(L_{x_{i}}\right)=\sum_{i=1}^{r} a_{i} \frac{1}{k} \sum_{j=1}^{k} L_{\phi_{g_{j}}\left(x_{i}\right)}=\frac{1}{k} \sum_{j=1}^{k} L_{\phi_{g_{j}}(a)} .
$$

Since $\left\|L_{\phi_{g_{j}}(a)}\right\|=\left\|L_{a}\right\|$ for all $j=1, \ldots, k$ (cf. Lemma 4.4(ii)), we may conclude that $\left\|c\left(L_{a}\right)\right\| \leq\left\|L_{a}\right\|$ and hence c is a contraction.
(iii) Let $\left(a_{\lambda}\right)_{\lambda}$ be a net of elements in the group algebra $\mathbf{C} N$, such that the net of operators $\left(L_{a_{\lambda}}\right)_{\lambda}$ is bounded and WOT-convergent to $0 \in \mathcal{B}\left(\ell^{2} N\right)$. For any index λ we write $a_{\lambda}=\sum_{x \in N} a_{\lambda, x} x$, where the $a_{\lambda, x}$'s are complex numbers, and note that

$$
<L_{a_{\lambda}}\left(\delta_{1}\right), \delta_{x}>=<\sum_{x^{\prime} \in N} a_{\lambda, x^{\prime}} \delta_{x^{\prime}}, \delta_{x}>=a_{\lambda, x}
$$

for all $x \in N$; in particular, it follows that $\lim _{\lambda} a_{\lambda, x}=0$ for all $x \in N$. In order to show that the bounded net $\left(c\left(L_{a_{\lambda}}\right)\right)_{\lambda}$ of operators in $L(\mathbf{C} N) \subseteq \mathcal{B}\left(\ell^{2} N\right)$ is WOT-convergent to 0 as well, it suffices to show that

$$
\lim _{\lambda}<c\left(L_{a_{\lambda}}\right)\left(\delta_{y}\right), \delta_{z}>=0
$$

for all $y, z \in N$ (cf. Proposition 1.2). For any pair of elements $x, x^{\prime} \in N$ we write $x \sim x^{\prime}$ if and only if x and x^{\prime} are in the same orbit under the G-action, whereas $m(x)$ denotes the cardinality of the G-orbit of x. Then,

$$
\begin{aligned}
c\left(L_{a_{\lambda}}\right) & =\sum_{x \in N} a_{\lambda, x} c\left(L_{x}\right) \\
& =\sum_{x \in N} a_{\lambda, x} \frac{1}{m(x)} \sum\left\{L_{x^{\prime}}: x^{\prime} \sim x\right\} \\
& =\sum_{x^{\prime} \in N} \sum\left\{a_{\lambda, x} \frac{1}{m(x)}: x \sim x^{\prime}\right\} L_{x^{\prime}}
\end{aligned}
$$

and hence

$$
<c\left(L_{a_{\lambda}}\right)\left(\delta_{y}\right), \delta_{z}>=\sum\left\{a_{\lambda, x} \frac{1}{m(x)}: x \sim z y^{-1}\right\} .
$$

Since $\lim _{\lambda} a_{\lambda, x}=0$ for each one of the finitely many x 's in the G-orbit of $z y^{-1}$, we conclude that $\lim _{\lambda}<c\left(L_{a_{\lambda}}\right)\left(\delta_{y}\right), \delta_{z}>=0$.

Let \mathcal{H} be a Hilbert space, S a non-empty index set and $\mathcal{H}^{(S)}$ the Hilbert space direct sum of the constant family of Hilbert spaces $\left(\mathcal{H}_{s}\right)_{s \in S}$ with $\mathcal{H}_{s}=\mathcal{H}$ for all $s \in S$. For any bounded operator $a \in \mathcal{B}(\mathcal{H})$ there is an associated linear operator $a^{(S)}: \mathcal{H}^{(S)} \longrightarrow \mathcal{H}^{(S)}$, which maps an element $\left(\xi_{s}\right)_{s} \in \mathcal{H}^{(S)}$ onto $\left(a\left(\xi_{s}\right)\right)_{s}$. The map $a^{(S)}$ is well-defined, since for any $\left(\xi_{s}\right)_{s} \in \mathcal{H}^{(S)}$ we have

$$
\sum_{s \in S}\left\|a\left(\xi_{s}\right)\right\|^{2} \leq \sum_{s \in S}\|a\|^{2}\left\|\xi_{s}\right\|^{2}=\|a\|^{2} \sum_{s \in S}\left\|\xi_{s}\right\|^{2}<\infty .
$$

It follows that the operator $a^{(S)}$ is bounded and $\left\|a^{(S)}\right\| \leq\|a\|$. In fact, we may fix an index $s \in S$ and consider the restriction of $a^{(S)}$ on the subspace $\iota_{s}(\mathcal{H})$, in order to conclude that $\left\|a^{(S)}\right\|=\|a\|$. Hence, the linear map

$$
\nu: \mathcal{B}(\mathcal{H}) \longrightarrow \mathcal{B}\left(\mathcal{H}^{(S)}\right)
$$

which is given by $a \mapsto a^{(S)}, a \in \mathcal{B}(\mathcal{H})$, is an isometry and we may consider its restriction to the r-balls

$$
\nu_{r}:(\mathcal{B}(\mathcal{H}))_{r} \longrightarrow\left(\mathcal{B}\left(\mathcal{H}^{(S)}\right)\right)_{r}
$$

Then, a net $\left(a_{\lambda}\right)_{\lambda}$ in $(\mathcal{B}(\mathcal{H}))_{r}$ is WOT-convergent to 0 if and only if this is the case for the associated net $\left(a_{\lambda}^{(S)}\right)_{\lambda}$ of operators on $\mathcal{H}^{(S)}$. Indeed, if WOT- $\lim _{\lambda} a_{\lambda}^{(S)}=0$, then we may consider the restriction of the $a_{\lambda}^{(S)}$'s on the subspace $\iota_{s}(\mathcal{H}) \subseteq \mathcal{H}^{(S)}$, for some index $s \in S$, in order to conclude that WOT- $\lim _{\lambda} a_{\lambda}=0$. Conversely, assume that the bounded net $\left(a_{\lambda}\right)_{\lambda}$ of operators in $\mathcal{B}(\mathcal{H})$ is WOT-convergent to 0 . Then, for any pair of indices $s, s^{\prime} \in S$ and any vectors $\xi, \xi^{\prime} \in \mathcal{H}$, we have

$$
<a_{\lambda}^{(S)} \iota_{s}(\xi), \iota_{s^{\prime}}\left(\xi^{\prime}\right)>=<\iota_{s} a_{\lambda}(\xi), \iota_{s^{\prime}}\left(\xi^{\prime}\right)>=\left\{\begin{array}{cl}
<a_{\lambda}(\xi), \xi^{\prime}> & \text { if } s=s^{\prime} \\
0 & \text { if } s \neq s^{\prime}
\end{array}\right.
$$

where the first equality follows since $a^{(S)} \iota_{s}=\iota_{s} a$ for any $a \in \mathcal{B}(\mathcal{H})$. In any case, we conclude that $\lim _{\lambda}<a_{\lambda}^{(S)} \iota_{s}(\xi), \iota_{s^{\prime}}\left(\xi^{\prime}\right)>=0$ and hence the bounded net $\left(a_{\lambda}^{(S)}\right)_{\lambda}$ is WOT-convergent to 0 (cf. Proposition 1.2).

Corollary 4.6 Assume that G acts on a group N by automorphisms, in such a way that all orbits are finite. We consider a group N^{\prime} containing N as a subgroup and let c be the linear operator on $L(\mathbf{C} N) \subseteq L\left(\mathbf{C} N^{\prime}\right) \subseteq \mathcal{B}\left(\ell^{2} N^{\prime}\right)$, which is defined as in the paragraph before Lemma 4.5. Then:
(i) The operator c is a contraction.
(ii) The map

$$
c_{r}:(L(\mathbf{C} N))_{r} \longrightarrow(L(\mathbf{C} N))_{r}
$$

induced from c by restriction to the r-balls, is continuous with respect to the weak operator topology on $(L(\mathbf{C} N))_{r} \subseteq\left(\mathcal{B}\left(\ell^{2} N^{\prime}\right)\right)_{r}$ for any r.
Proof. For any element $a \in \mathbf{C} N$ we shall denote by L_{a} (resp. L_{a}^{\prime}) the left translation induced by a on the Hilbert space $\ell^{2} N$ (resp. $\ell^{2} N^{\prime}$). If $S \subseteq N^{\prime}$ is a set of representatives of the cosets $\left\{N x: x \in N^{\prime}\right\}$, then the Hilbert space $\ell^{2} N^{\prime}=\bigoplus_{s \in S} \ell^{2}(N s)$ is naturally identified
with $\left(\ell^{2} N\right)^{(S)}$, in such a way that L_{a}^{\prime} is identified with $L_{a}^{(S)}$ for all $a \in \mathbf{C} N$. Therefore, assertions (i) and (ii) are immediate consequences of Lemma 4.5(ii),(iii), in view of the discussion above.
V. The WOT-continuity of the trace on $L(\mathbf{C} G)$. Since $L: \mathbf{C} G \longrightarrow L(\mathbf{C} G)$ is an algebra isomorphism, it follows that the center $Z(L(\mathbf{C} G))$ of $L(\mathbf{C} G)$ coincides with $L(Z(\mathbf{C} G))$, where $Z(\mathbf{C} G)$ is the center of $\mathbf{C} G$. Hence, the linear map $t_{0}: \mathbf{C} G \longrightarrow Z(\mathbf{C} G)$ of Proposition 4.1 induces a linear map

$$
t: L(\mathbf{C} G) \longrightarrow Z(L(\mathbf{C} G))
$$

by letting $t\left(L_{a}\right)=L_{t_{0}(a)}$ for any $a \in \mathbf{C} G$. Using the results obtained above, we can now establish certain key continuity properties of t.

Proposition 4.7 Let $t: L(\mathbf{C} G) \longrightarrow Z(L(\mathbf{C} G))$ be the linear map defined above. Then:
(i) t is a contraction and its restriction

$$
t_{r}:(L(\mathbf{C} G))_{r} \longrightarrow(Z(L(\mathbf{C} G)))_{r}
$$

to the respective r-balls is WOT-continuous for any r,
(ii) t is a trace with values in $Z(L(\mathbf{C} G))$,
(iii) $t\left(L_{a}\right)=L_{a}$ for all $L_{a} \in Z(L(\mathbf{C} G))$,
(iv) $t\left(L_{a} L_{a^{\prime}}\right)=L_{a} t\left(L_{a^{\prime}}\right)$ for all $L_{a} \in Z(L(\mathbf{C} G))$ and $L_{a^{\prime}} \in L(\mathbf{C} G)$ (i.e. t is $Z(L(\mathbf{C} G))$ linear),
(v) $t\left(L_{a}^{*}\right)=t\left(L_{a}\right)^{*}$ for all $L_{a} \in L(\mathbf{C} G)$ and
(vi) the canonical trace functional τ on $L(\mathbf{C} G)$ factors as the composition

$$
L(\mathbf{C} G) \xrightarrow{t} Z(L(\mathbf{C} G)) \xrightarrow{\tau^{\prime}} \mathbf{C},
$$

where τ^{\prime} is the restriction of τ to the center $Z(L(\mathbf{C} G))$.
Proof. (i) Let $G_{f} \unlhd G$ be the normal subgroup consisting of those elements $g \in G$ that have finitely many conjugates and consider the linear map

$$
\Delta: L(\mathbf{C} G) \longrightarrow L\left(\mathbf{C} G_{f}\right)
$$

which is defined on the set of generators $L_{g}, g \in G$, by letting $\Delta\left(L_{g}\right)=L_{g}$ if $g \in G_{f}$ and $\Delta\left(L_{g}\right)=0$ if $g \notin G_{f}$. The orbit of an element $g \in G_{f}$ under the conjugation action of G is the conjugacy class $[g] \in \mathcal{C}(G)$, a finite set with $\left[G: C_{g}\right]$ elements. We consider the linear map

$$
c: L\left(\mathbf{C} G_{f}\right) \longrightarrow L\left(\mathbf{C} G_{f}\right)
$$

which maps L_{g} onto $\frac{1}{\left[G: C_{g}\right]} \sum\left\{L_{x}: x \in[g]\right\}$ for all $g \in G_{f}$. It is clear that the composition

$$
L(\mathbf{C} G) \xrightarrow{\Delta} L\left(\mathbf{C} G_{f}\right) \xrightarrow{c} L\left(\mathbf{C} G_{f}\right)
$$

coincides with the composition

$$
L(\mathbf{C} G) \xrightarrow{t} Z(L(\mathbf{C} G)) \hookrightarrow L\left(\mathbf{C} G_{f}\right) .
$$

Therefore, (i) is a consequence of Corollaries 4.3 and 4.6. The proof of assertions (ii), (iii), (iv), (v) and (vi) follows readily from Proposition 4.1.
VI. The construction of t on $\mathcal{N} G$. Using the results obtained above, we shall now construct the center-valued trace t on the von Neumann algebra $\mathcal{N} G$ of the countable group G. We note that the countability of G implies that the Hilbert space $\ell^{2} G$ is separable. For any radius r we consider the r-ball $\left(\mathcal{B}\left(\ell^{2} G\right)\right)_{r}$ of the algebra of bounded operators on $\ell^{2} G$. Then, the space $\left(\left(\mathcal{B}\left(\ell^{2} G\right)\right)_{r}\right.$, WOT) is compact and metrizable; in fact, we can choose for any r a metric d_{r} on $\left(\left(\mathcal{B}\left(\ell^{2} G\right)\right)_{r}\right.$, WOT), in such a way that

$$
\begin{equation*}
d_{r}\left(a, a^{\prime}\right)=d_{2 r}\left(a^{\prime}-a, 0\right) \tag{4}
\end{equation*}
$$

for all $a, a^{\prime} \in\left(\mathcal{B}\left(\ell^{2} G\right)\right)_{r}($ cf. Theorem 1.3 and its proof). In view of Kaplansky's density theorem (Theorem 1.8), the r-ball $(\mathcal{N} G)_{r}$ is the WOT-closure of the r-ball $(L(\mathbf{C} G))_{r}$. It follows that $\left((\mathcal{N} G)_{r}, \mathrm{WOT}\right)$ is also a compact metric space; in particular, it is a complete metric space. In fact, $\left((\mathcal{N} G)_{r}\right.$, WOT $)$ can be identified with the completion of its dense subspace $\left((L(\mathbf{C} G))_{r}\right.$, WOT $)$. As an immediate consequence of the discussion above, we note that any operator in $\mathcal{N} G$ is the WOT-limit of a bounded sequence of operators in $L(\mathbf{C} G)$. Using a similar argument, combined with Proposition 3.4, we may identify the complete metric space $\left((\mathcal{Z} G)_{r}\right.$, WOT) with the completion of its dense subspace $\left((Z(L(\mathbf{C} G)))_{r}\right.$, WOT $)$. It follows that any operator in $\mathcal{Z} G$ is the WOT-limit of a bounded sequence of operators in $Z(L(\mathbf{C} G))$.

We now consider the linear map $t: L(\mathbf{C} G) \longrightarrow Z(L(\mathbf{C} G))$ of Proposition 4.7. We know that t is a contraction, whereas its restriction t_{r} to the respective r-balls is WOT-continuous for all r. Having fixed the radius r, we note that the continuity of $t_{2 r}$ at 0 implies that for any $\varepsilon>0$ there is $\delta=\delta(r, \varepsilon)>0$, such that

$$
d_{2 r}(a, 0)<\delta \Longrightarrow d_{2 r}(t(a), 0)<\varepsilon
$$

for all $a \in(L(\mathbf{C} G))_{2 r}$. Taking into account the linearity of t and Eq.(4), it follows that

$$
d_{r}\left(a, a^{\prime}\right)<\delta \Longrightarrow d_{r}\left(t(a), t\left(a^{\prime}\right)\right)<\varepsilon
$$

for all $a, a^{\prime} \in(L(\mathbf{C} G))_{r}$. Therefore, the map

$$
t_{r}:\left((L(\mathbf{C} G))_{r}, \mathrm{WOT}\right) \longrightarrow\left((Z(L(\mathbf{C} G)))_{r}, \mathrm{WOT}\right)
$$

is uniformly continuous and hence admits a unique extension to a continuous map between the completions

$$
\begin{equation*}
t_{r}:\left((\mathcal{N} G)_{r}, \mathrm{WOT}\right) \longrightarrow\left((\mathcal{Z} G)_{r}, \mathrm{WOT}\right) \tag{5}
\end{equation*}
$$

Taking into account the uniqueness of these extensions, it follows that there is a well-defined map

$$
t: \mathcal{N} G \longrightarrow \mathcal{Z} G
$$

which is contractive, extends $t: L(\mathbf{C} G) \longrightarrow Z(L(\mathbf{C} G))$ and its restriction to the respective r-balls is the WOT-continuous map t_{r} of (5) for all r.

Theorem 4.8 Let $\mathcal{Z} G$ be the center of the von Neumann algebra $\mathcal{N} G$ and $t: \mathcal{N} G \longrightarrow \mathcal{Z} G$ the map defined above. Then:
(i) t extends the trace $t_{0}: \mathbf{C} G \longrightarrow Z(\mathbf{C} G)$, in the sense that the following diagram is commutative

(ii) t is a contraction and its restriction to bounded sets is WOT-continuous,
(iii) t is \mathbf{C}-linear,
(iv) t is a trace with values in $\mathcal{Z} G$,
(v) $t(a)=a$ for all $a \in \mathcal{Z} G$,
(vi) $t\left(a a^{\prime}\right)=a t\left(a^{\prime}\right)$ for all $a \in \mathcal{Z} G$ and $a^{\prime} \in \mathcal{N} G$ (i.e. t is $\mathcal{Z} G$-linear),
(vii) $t\left(a^{*}\right)=t(a)^{*}$ for all $a \in \mathcal{N} G$,
(viii) the canonical trace functional τ on $\mathcal{N} G$ factors as the composition

$$
\mathcal{N} G \stackrel{t}{\longrightarrow} \mathcal{Z} G \xrightarrow{\tau^{\prime}} \mathbf{C}
$$

where τ^{\prime} is the restriction of τ on $\mathcal{Z} G$.
(ix) $t\left(a^{*} a\right)$ is non-zero and self-adjoint for all $a \in \mathcal{N} G \backslash\{0\}$.

The trace t is referred to as the center-valued trace on $\mathcal{N} G$.
Proof. Assertions (i) and (ii) follow from the construction of t.
(iii) As we have already noted, for any $a, a^{\prime} \in \mathcal{N} G$ there are bounded sequences $\left(a_{n}\right)_{n}$ and $\left(a_{n}^{\prime}\right)_{n}$ in $L(\mathbf{C} G)$, such that WOT- $\lim _{n} a_{n}=a$ and WOT- $\lim _{n} a_{n}^{\prime}=a^{\prime}$. Then, for any $\lambda, \lambda^{\prime} \in \mathbf{C}$ the sequence $\left(\lambda a_{n}+\lambda^{\prime} a_{n}^{\prime}\right)_{n}$ is bounded and WOT-convergent to $\lambda a+\lambda^{\prime} a^{\prime}$. In view of the linearity of t on $L(\mathbf{C} G)$, we have $t\left(\lambda a_{n}+\lambda^{\prime} a_{n}^{\prime}\right)=\lambda t\left(a_{n}\right)+\lambda^{\prime} t\left(a_{n}^{\prime}\right)$ for all n. Since t is WOT-continuous on bounded sets, it follows that $t\left(\lambda a+\lambda^{\prime} a^{\prime}\right)=\lambda t(a)+\lambda^{\prime} t\left(a^{\prime}\right)$.
(iv) We recall that multiplication in $\mathcal{B}\left(\ell^{2} G\right)$ is separately continuous in the weak operator topology (cf. Remark 1.1(ii)). For any element $a \in L(\mathbf{C} G)$ the map $a^{\prime} \mapsto t\left(a a^{\prime}\right)-t\left(a^{\prime} a\right), a^{\prime} \in$ $\mathcal{N} G$, is WOT-continuous on bounded sets and vanishes on $L(\mathbf{C} G)$, in view of Proposition 4.7(ii). Therefore, approximating any operator of $\mathcal{N} G$ by a bounded sequence in $L(\mathbf{C} G)$, we conclude that $t\left(a a^{\prime}\right)=t\left(a^{\prime} a\right)$ for all $a^{\prime} \in \mathcal{N} G$. We now fix $a^{\prime} \in \mathcal{N} G$ and consider the $\operatorname{map} a \mapsto t\left(a a^{\prime}\right)-t\left(a^{\prime} a\right), a \in \mathcal{N} G$. This latter map is WOT-continuous on bounded sets and vanishes on $L(\mathbf{C} G)$, as we have just proved. Hence, using the same argument as above, we conclude that $t\left(a a^{\prime}\right)=t\left(a^{\prime} a\right)$ for all $a \in \mathcal{N} G$.
(v) We know that any operator $a \in \mathcal{Z} G$ is the WOT-limit of a bounded sequence of operators in $Z(L(\mathbf{C} G))$; therefore, the equality $t(a)=a$ is an immediate consequence of Proposition 4.7(iii), in view of the WOT-continuity of t on bounded sets.
(vi) We fix an operator $a \in Z(L(\mathbf{C} G))$ and consider the map $a^{\prime} \mapsto t\left(a a^{\prime}\right)-a t\left(a^{\prime}\right)$, $a^{\prime} \in \mathcal{N} G$. This map is WOT-continuous on bounded sets and vanishes on $L(\mathbf{C} G)$ (cf. Proposition 4.7(iv)). Approximating any operator of $\mathcal{N} G$ by a bounded sequence in $L(\mathbf{C} G)$, we conclude that $t\left(a a^{\prime}\right)=a t\left(a^{\prime}\right)$ for all $a^{\prime} \in \mathcal{N} G$. We now fix an element $a^{\prime} \in \mathcal{N} G$ and consider the map $a \mapsto t\left(a a^{\prime}\right)-a t\left(a^{\prime}\right), a \in \mathcal{Z} G$. This map is WOT-continuous on bounded sets and vanishes on $Z(L(\mathbf{C} G))$, as we have just proved. Hence, approximating any operator of $\mathcal{Z} G$ by a bounded sequence in $Z(L(\mathbf{C} G))$, it follows that $t\left(a a^{\prime}\right)=a t\left(a^{\prime}\right)$ for all $a \in \mathcal{Z} G$.
(vii) We know that any operator $a \in \mathcal{N} G$ is the WOT-limit of a bounded sequence of operators in $L(\mathbf{C} G)$, whereas the adjoint operator is WOT-continuous on $\mathcal{B}(\mathcal{H})$ (cf. Remark 1.1(iii)). Therefore, the equality $t\left(a^{*}\right)=t(a)^{*}$ is an immediate consequence of Proposition 4.1(v), in view of the WOT-continuity of t on bounded sets.
(viii) Since the trace τ is WOT-continuous, the equality $\tau=\tau^{\prime} \circ t$ follows from the WOTcontinuity of t on bounded sets, combined with Proposition 4.7(vi), by approximating any operator $a \in \mathcal{N} G$ by a bounded sequence of operators in $L(\mathbf{C} G)$.
(ix) In view of (vii) above, the operator $t\left(a^{*} a\right) \in \mathcal{Z} G$ is self-adjoint for all $a \in \mathcal{N} G$. Since $\tau\left(a^{*} a\right)=\tau\left(t\left(a^{*} a\right)\right)$ (cf. (viii)), we may invoke Proposition 2.5(ii) in order to conclude that $t\left(a^{*} a\right)=0$ only if $a=0$.

5 Exercises

1. Let $\ell^{2} \mathbf{N}$ be the Hilbert space of square summable sequences of complex numbers and consider the operators $a, b \in \mathcal{B}\left(\ell^{2} \mathbf{N}\right)$, which are defined by letting $a\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)=$ $\left(\xi_{1}, \xi_{2}, \ldots\right)$ and $b\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)=\left(0, \xi_{0}, \xi_{1}, \xi_{2}, \ldots\right)$ for all $\left(\xi_{0}, \xi_{1}, \xi_{2}, \ldots\right) \in \ell^{2} \mathbf{N}$.
(i) Show that $\left\|a^{n}\right\|=\left\|b^{n}\right\|=1$ for all $n \geq 1$.
(ii) Show that the sequence $\left(a^{n}\right)_{n}$ is SOT-convergent to 0 , but not norm-convergent to 0 . In particular, the sequence $\left(a^{n}\right)_{n}$ is WOT-convergent to 0 .
(iii) Show that the sequence $\left(b^{n}\right)_{n}$ is WOT-convergent to 0 , but not SOT-convergent to 0 .
(iv) Show that the sequence $\left(a^{n} b^{n}\right)_{n}$ is not WOT-convergent to 0 . In particular, multiplication in $\mathcal{B}\left(\ell^{2} \mathbf{N}\right)$ is not jointly WOT-continuous.
2. Let R be a ring, n a positive integer and $\mathbf{M}_{n}(R)$ the corresponding matrix ring. For any subset $X \subseteq R$ we consider the subset $\mathbf{M}_{n}(X)$ (resp. $X \cdot I_{n}$) of $\mathbf{M}_{n}(R)$, which consists of all $n \times n$ matrices with entries in X (resp. of all matrices of the form $x I_{n}$, $x \in X)$. Show that:
(i) The commutant $\left(\mathbf{M}_{n}(X)\right)^{\prime}$ of $\mathbf{M}_{n}(X)$ in $\mathbf{M}_{n}(R)$ is equal to $X^{\prime} \cdot I_{n}$, where X^{\prime} is the commutant of X in R. In particular, the center $Z\left(\mathbf{M}_{n}(R)\right)$ of $\mathbf{M}_{n}(R)$ is equal to $Z(R) \cdot I_{n}$, where $Z(R)$ is the center of R.
(ii) The commutant $\left(X \cdot I_{n}\right)^{\prime}$ of $X \cdot I_{n}$ in $\mathbf{M}_{n}(R)$ is equal to $\mathbf{M}_{n}\left(X^{\prime}\right)$.
3. Let G be a group. The goal of this Exercise is to show that the property of Lemma 2.3 (i) characterizes the operators in the von Neumann algebra $\mathcal{N} G$. To that end, let us fix an operator $a \in \mathcal{B}\left(\ell^{2} G\right)$, for which $<a\left(\delta_{g}\right), \delta_{h g}>=<a\left(\delta_{1}\right), \delta_{h}>$ for all $g, h \in G$.
(i) Show that for any operator $b \in \mathcal{B}\left(\ell^{2} G\right)$ and any elements $g, h \in G$ the families of complex numbers $\left(<a\left(\delta_{1}\right), \delta_{x}>\cdot<b\left(\delta_{g}\right), \delta_{x^{-1} h}>\right)_{x}$ and $\left(<a\left(\delta_{1}\right), \delta_{x}>\cdot<b\left(\delta_{x g}\right), \delta_{h}>\right)_{x}$ are summable with sum $<a b\left(\delta_{g}\right), \delta_{h}>$ and $<b a\left(\delta_{g}\right), \delta_{h}>$ respectively.
(ii) Assume that $b \in \mathcal{B}\left(\ell^{2} G\right)$ is an operator in the commutant $L(\mathbf{C} G)^{\prime}$ of the subalgebra $L(\mathbf{C} G) \subseteq \mathcal{B}\left(\ell^{2} G\right)$. Then, show that $a b=b a$. In particular, conclude that $a \in$ $L(\mathbf{C} G)^{\prime \prime}=\mathcal{N} G$.
4. Let \mathcal{H} be a Hilbert space, $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ a unital self-adjoint subalgebra and $\mathcal{N}=\mathcal{A}^{\prime \prime}$ its WOT-closure. Let $Z(\mathcal{A})$ be the center of \mathcal{A} and $Z(\mathcal{N})$ the center of \mathcal{N}.
(i) Show that $Z(\mathcal{N})$ contains the WOT-closure of $Z(\mathcal{A})$.

In contrast to the situation described in Proposition 3.4, the inclusion $Z(\mathcal{A})^{\prime \prime} \subseteq Z(\mathcal{N})$ may be proper. It is the goal of this Exercise to provide an example, which was communicated to me by E. Katsoulis, where $Z(\mathcal{A})^{\prime \prime} \neq Z(\mathcal{N})$. To that end, we let \mathcal{H}_{0} be an infinite dimensional Hilbert space and consider the Hilbert space $\mathcal{H}=\mathcal{H}_{0} \oplus \mathbf{C}$.
(ii) For any $a \in \mathcal{B}\left(\mathcal{H}_{0}\right)$ and any scalar $\lambda \in \mathbf{C}$ we consider the linear map $T(a, \lambda)$: $\mathcal{H} \longrightarrow \mathcal{H}$, which maps any element $(v, z) \in \mathcal{H}$ onto $(a(v)+\lambda v, \lambda z)$. Show that $T(a, \lambda) \in \mathcal{B}(\mathcal{H})$.
(iii) Consider the ideal $\mathcal{F} \subseteq \mathcal{B}\left(\mathcal{H}_{0}\right)$ of finite rank operators and let

$$
\mathcal{A}=\{T(a, \lambda): a \in \mathcal{F}, \lambda \in \mathbf{C}\}
$$

in the notation of (ii) above. Show that \mathcal{A} is a unital self-adjoint subalgebra of $\mathcal{B}(\mathcal{H})$, whose center $Z(\mathcal{A})$ consists of the scalar multiples of the identity.
(iv) Let $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ be the subalgebra defined in (iii) above. Show that the center $Z\left(\mathcal{A}^{\prime \prime}\right)$ of the bicommutant $\mathcal{A}^{\prime \prime}$ is 2 -dimensional and conclude that the inclusion $Z(\mathcal{A})^{\prime \prime} \subseteq Z\left(\mathcal{A}^{\prime \prime}\right)$ is proper.
5. Let G be a countable group, $\mathcal{N} G$ the associated von Neumann algebra and $\mathcal{Z} G$ its center. We consider a C-linear trace $t^{\prime}: \mathcal{N} G \longrightarrow \mathcal{Z} G$, which is WOT-continuous on bounded sets and maps $\mathcal{Z} G$ identically onto itself. The goal of this Exercise is to show that t^{\prime} coincides with the center-valued trace t constructed in Theorem 4.8.
(i) Let $g \in G$ be an element with finitely many conjugates and C_{g} its centralizer in
G. Show that $t^{\prime}\left(L_{g}\right)=\frac{1}{\left[G: C_{g}\right]} L_{\zeta_{[g]}} \in \mathcal{Z} G$.
(ii) Let $\left(g_{n}\right)_{n}$ be a sequence of distinct elements of G. Show that the sequence of operators $\left(L_{g_{n}}\right)_{n}$ in $\mathcal{B}\left(\ell^{2} G\right)$ is WOT-convergent to 0 .
(iii) Let $g \in G$ be an element with infinitely many conjugates. Show that $t^{\prime}\left(L_{g}\right)=0$.
(iv) Show that $t^{\prime}=t$.
6. (i) Let $R=\mathbf{M}_{n}(\mathbf{C})$ be the algebra of $n \times n$ matrices with entries in \mathbf{C}. Show that there is a unique \mathbf{C}-linear trace $t: R \longrightarrow Z(R)$, which is the identity on $Z(R)$. The trace t is given by letting $t(A)=\frac{\operatorname{tr}(A)}{n} I_{n}$ for all matrices $A \in R$. (Here, we denote by tr the usual trace of a matrix.)
(ii) Let G be a finite group with r mutually non-isomorphic irreducible complex representations V_{1}, \ldots, V_{r} and consider the corresponding characters $\chi_{1}, \ldots, \chi_{r}$ and the dimensions $n_{i}=\operatorname{dim} V_{i}=\chi_{i}(1), i=1, \ldots, r$. Show that the Wedderburn decomposition

$$
\mathbf{C} G \simeq \prod_{i=1}^{r} \mathbf{M}_{n_{i}}(\mathbf{C})
$$

identifies the the center-valued trace $t: \mathcal{N} G \longrightarrow \mathcal{Z} G$ with the map

$$
t: \mathbf{C} G \longrightarrow \prod_{i=1}^{r} \mathbf{C} \cdot I_{n_{i}}
$$

which is defined by letting $t(a)=\left(\frac{\chi_{1}(a)}{n_{1}} I_{n_{1}}, \ldots, \frac{\chi_{r}(a)}{n_{r}} I_{n_{r}}\right)$ for all $a \in \mathbf{C} G$.

[^0]: ${ }^{1}$ In fact, this property characterizes the operators in $\mathcal{N} G$; cf. Exercise 5.3.

[^1]: ${ }^{2}$ This definition is imposed by the requirement that t_{0} extends to a trace on the von Neumann algebra $\mathcal{N} G$ with values in $\mathcal{Z} G$, which is WOT-continuous on bounded sets and maps $\mathcal{Z} G$ identically onto itself; cf. Exercise 5.5.

[^2]: ${ }^{3}$ The decomposition $\mathcal{H}=\bigoplus_{s \in S} \mathcal{H}_{s}$ identifies the algebra $\mathcal{B}(\mathcal{H})$ with a certain algebra of $S \times S$ matrices whose $\left(s, s^{\prime}\right)$-entry consists of bounded operators from $\mathcal{H}_{s^{\prime}}$ to \mathcal{H}_{s} for all $s, s^{\prime} \in S$. Under this identification, the linear map Δ maps any $a=\left(a_{s s^{\prime}}\right)_{s, s^{\prime} \in S}$ onto the diagonal matrix $\operatorname{diag}\left\{a_{s s}: s \in S\right\}$.

