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Abstract Let G be a group and E an idempotent matrix with entries in the group
algebra CG. In this paper, we consider the embedding of CG into the von Neumann
algebra N G and use the center-valued trace on the latter, in order to obtain some
information about the coefficients of the Hattori-Stallings rank of E . Our results
generalize the inequalities obtained previously by Kaplansky [11], Passi, Pass-
mann, Luthar and Alexander [1,10,12], while providing at the same time a unified
and coherent presentation of these, via the notion of moments that are associated
with E .
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0 Introduction

Let G be a group and CG the associated group algebra. A very useful tool in the
study of the K-theory group K0(CG) is the universal trace defined by Hattori [7]
and Stallings [15]

rH S : K0(CG) −→ CG/[CG, CG].
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710 I. Emmanouil

Since the vector space CG/[CG, CG] has a basis consisting of the set C(G) of
G-conjugacy classes, the Hattori-Stallings rank rH S(E) of an idempotent N × N
matrix E with entries in CG can be expressed as a linear combination of the form∑

[g]∈C(G) rg(E)[g], where rg(E) ∈ C for all g ∈ G. The use of analytic tech-
niques in the study of E was pioneered by Kaplansky [11], who proved that r1(E)
is a totally real number, which satisfies the inequalities

0 ≤ r1(E) ≤ N (1)

and vanishes only if E = 0. Kaplansky’s proof used the embedding of the group
algebra CG into the reduced group C∗-algebra C∗

r G of G and employed the canoni-
cal trace τ on the latter. In fact, all known proofs of the implication [r1(E) = 0]�⇒
[E = 0] involve analytic arguments (cf. [13]). Kaplansky’s result was comple-
mented by Zaleskii [17], who used reduction to positive characteristic in order to
prove that r1(E) ∈ Q. Zaleskii’s technique was subsequently used by Bass, who
proved in [2] that the coefficients rg(E) are algebraic numbers for all g ∈ G. On
the other hand, a modification of Kaplansky’s trace argument was used by Weiss
[16], in order to prove that for any idempotent e ∈ CG and any element g ∈ G we
have

|rg(e) |2 ≤ [G : Cg] · r1(e),

where Cg denotes the centralizer of g in G. Of course, the inequality above has
a substance only if the index [G : Cg] is finite, i.e. only if g has finitely many
conjugates in G. Weiss’ inequality was generalized by Passi and Passman [12],
who proved that

∑

[g]∈C f (G)

|rg(e) |2
[G : Cg] ≤ r1(e)

for any idempotent e ∈ CG; here, C f (G) denotes the subset of C(G) consisting
of the finite conjugacy classes. This latter inequality was extended to idempotent
matrices by Alexander in [1]; if E is an idempotent N × N matrix with entries in
CG, then

∑

[g]∈C f (G)

|rg(E) |2
[G : Cg] ≤ N · r1(E). (2)

Moreover, Alexander showed that the inequality above is an equality if and only if
the matrix E is central in MN (CG) (i.e. if and only if E = cIN for some central
idempotent c ∈ CG). In the special case where G is a finite group, Alexander’s
inequality was proved by Luthar and Passi in [10].

Our goal in this paper is to present a general scheme that enables one to obtain
various inequalities involving the coefficients rg(E) of the Hattori-Stallings rank
of an idempotent matrix E with entries in the group algebra of a group G, for ele-
ments g ∈ G that have only finitely many conjugates. In particular, we generalize
and obtain a unified presentation of the inequalities (1) and (2). To that end, we
follow Kaplansky and consider the embedding of the group algebra CG into the
von Neumann algebra N G. In this context, the embedding of CG into N G has
been also considered by Eckmann [4,5] and Schafer [14]. On the other hand, the
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same idea of embedding into the von Neumann algebra has been extensively used
in the recent literature, in order to study conjectures by Atiyah, Singer, Baum and
Connes (cf. [9]). By means of this embedding, an idempotent N × N matrix E
with entries in CG may be viewed as an idempotent in the von Neumann algebra
MN (N G). This latter von Neumann algebra is finite, whereas its center is identi-
fied with the center ZG of N G; therefore, we may consider the center-valued trace
a(E) ∈ ZG of E (cf. [8, Chapter 8]). The abelian von Neumann algebra ZG is
isomorphic with the algebra of essentially bounded measurable functions on some
probability space (�, P), in such a way that the restriction of the canonical trace τ
on ZG is identified with the expectation (integration) operator. Hence, any opera-
tor c ∈ ZG may be viewed as an integrable random variable ĉ on (�, P), whereas
τ(c) is the expectation E(̂c) = ∫

ĉ d P . With that in mind, if a(E) ∈ ZG is the
center-valued trace of an idempotent matrix E as above, we define the sequence
of moments (µn(E))n of E , by letting µn(E) = τ(a(E)n) for all n. We prove that
the sequence (µn(E))n is a decreasing sequence of non-negative real numbers; in
particular, 0 ≤ µn(E) ≤ 1 for all n. These moments can be expressed in terms of
the coefficients of the Hattori-Stallings rank rH S(E) = ∑

[g]∈C(G) rg(E)[g] of E ;
it turns out that

µ1(E) = 1

N
r1(E) and µ2(E) = 1

N 2

∑

[g]∈C f (G)

|rg(E) |2
[G : Cg] .

In this way, Kaplansky’s inequalities (1) are equivalent to the assertion that µ1(E) ∈
[0, 1], whereas Alexander’s inequality (2) is the assertion that µ2(E) ≤ µ1(E).
Besides the inequalities that involve the higher moments of E , we may use the
analytic properties of the center-valued trace a(E) in order to obtain bounds for
the absolute value of the coefficients of the Hattori-Stallings rank rH S(E). More-
over, the study of the asymptotic behavior of the moments of E gives information
about its global behavior: If e ∈ CG is an idempotent then the limit limn µn(e)
is a measure of the relative size of the two-sided ideal I generated by e inside the
group algebra CG (cf. Remark 6.5).

The contents of the paper are as follows: In the first Section, we use a result
of Bass, in order to conclude that the coefficients rg(E) ∈ C vanish for any group
element g ∈ G of infinite order that has finitely many conjugates. In Section 2,
we consider the von Neumann algebra MN (N G) and obtain a formula for the
center-valued trace a(E) of an idempotent matrix E ∈ MN (CG) ⊆ MN (N G), in
terms of the Hattori-Stallings rank rH S(E). In the following Section, we use that
formula in order to bound the absolute value of the coefficients of rH S(E). The
resulting inequalities are local, in the sense that they involve either a single group
element or the elements in a finite cyclic subgroup of G. In Section 4, we introduce
the moments of an idempotent matrix E as above and express them in terms of
the coefficients of the Hattori-Stallings rank rH S(E). Using elementary (determin-
istic) inequalities among the powers of the random variable which is associated
with the operator a(E), we obtain a sequence of inequalities among the rg(E)’s
that generalize those of Kaplansky and Alexander. In the following Section, we
study the differences between consecutive moments and provide lower bounds
for them. Finally, in Section 6, we study the geometric significance of the limit
limn µn(E) and obtain a lower bound for it, in terms of E . We conclude the paper
with an Appendix, where we extend Alexander’s version of the inequality (2) for
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semi-simple elements in matrix rings over group algebras, by considering the higher
moments of the idempotent matrices that are involved.

Notations and terminology. For any element g of a group G we denote by [g] its
conjugacy class and let Cg = {x ∈ G : xg = gx} be its centralizer. The set of all
conjugacy classes in G is denoted by C(G), whereas C f (G) ⊆ C(G) is the subset
consisting of the finite ones. The subset (normal subgroup) of G consisting of those
elements that have only finitely many conjugates is denoted by G f ; in other words,
G f = {g ∈ G : [g] ∈ C f (G)} = {g ∈ G : [G : Cg] < ∞}.

1 A consequence of Bass’ vanishing criterion

For any ring R we consider the additive subgroup [R, R] ⊆ R generated by the
commutators rr ′ − r ′r , r, r ′ ∈ R. The Hattori-Stallings rank rH S(E) of an idem-
potent matrix E with entries in R is the residue class of the trace tr(E) ∈ R in the
quotient group T (R) = R/[R, R] (cf. [7,15]). Then, rH S(E) depends only upon
the class of E in the K-theory group K0(R).

We are interested in the special case where R = CG is the group algebra of
a group G. Then, T (CG) = CG/[CG, CG] is a vector space with basis the set
C(G) of G-conjugacy classes and hence the rank rH S(E) of an idempotent matrix
E with entries in CG can be viewed as a complex-valued function on G, which
is constant on conjugacy classes and vanishes in all but finitely many of them.
If we denote by rg(E) the value of that function on the conjugacy class [g] of
any element g ∈ G, then we can write rH S(E) = ∑

[g]∈C(G) rg(E)[g]. Working
by reduction to positive characteristic, Zaleskii proved in [17] that the coefficient
r1(E) is always a rational number. Bass used the same technique and proved in [2]
that the coefficients rg(E) are algebraic numbers for all g ∈ G, obtaining at the
same time a criterion for them to vanish.

Theorem 1.1 (cf. [2, Theorem 8.1(c)]) Let G be a group, E an idempotent matrix
with entries in the group algebra CG and rH S(E) = ∑

[g]∈C(G) rg(E)[g] its Hat-
tori-Stallings rank. Then, there is a positive integer u such that for any element
g ∈ G with rg(E) 
= 0, we have [g] =[

g pu ]∈ C(G) for all but finitely many prime
numbers p. ��

Corollary 1.2 Let G be a group, E an idempotent matrix with entries in the group
algebra CG and rH S(E) = ∑

[g]∈C(G) rg(E)[g] its Hattori-Stallings rank. If g ∈
G f is an element of infinite order, then rg(E) = 0.

Proof We argue by contradiction, assuming that there exists an element g ∈ G f
of infinite order such that rg(E) 
= 0. In that case, Theorem 1.1 implies that there
is a prime number p and a positive integer u such that [g] = [

g pu ]∈ C(G); then,
[g] = [

g pnu ]∈ C(G) and hence g pnu ∈ [g] for all n ≥ 1. Since g is an element of
infinite order, it follows that its conjugacy class is an infinite set. But this is absurd,
since g ∈ G f . ��
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2 The center-valued trace on Mn(N G)

Let H be a Hilbert space and B(H) the algebra of bounded linear operators on it.
The weak operator topology (WOT) on B(H) is the locally convex topology defined
by the family of semi-norms (Pξ,η)ξ,η∈H, where Pξ,η(a) = | 〈a(ξ), η〉 | for any
two vectors ξ, η ∈ H and any operator a ∈ B(H). We consider a von Neumann
algebra N ⊆ B(H); in other words, N is a WOT-closed ∗-subalgebra of B(H) (cf.
[8, Chapter 6]). A vector ξ ∈ H is called separating for N if the evaluation map
evξ : N −→ H is injective. Two projections e, f ∈ N are called equivalent in
N if there is a partial isometry u ∈ N such that u∗u = e and uu∗ = f . The von
Neumann algebra N is called finite if there is no projection e ∈ N with e 
= 1,
which is equivalent to 1 in N . A finite von Neumann algebra N has a center-valued
trace, as stated in the following result.

Theorem 2.1 (cf. [8, Chapter 8]) Let N be a finite von Neumann algebra with
center Z . Then, there is a linear map t : N −→ Z having the following properties:

(i) t is a trace, i.e. t (ab) = t (ba) for all a, b ∈ N .
(ii) t (a) = a for all a ∈ Z .
(iii) The element t (a∗a) ∈ Z is self-adjoint and t (a∗a) > 0 for all a ∈ N \{0}.
(iv) t is a Z-module map, i.e. t (ab) = at (b) for all a ∈ Z and b ∈ N .
(v) If τ : N −→ C is a norm-continuous trace functional then τ = τ ′ ◦ t ,

where τ ′ is the restriction of τ to Z .
The linear map t is uniquely characterized by properties (i), (ii) and (iii). ��

Remarks 2.2 (i) Let N be a finite von Neumann algebra with center Z and consider
its center-valued trace t . If e ∈ N is an idempotent then the element t (e) ∈ Z is
self-adjoint and satisfies the inequalities 0 ≤ t (e) ≤ 1. Moreover, t (e) = 0 (resp.
t (e) = 1) if and only if e = 0 (resp. e = 1). In order to verify these assertions,
we fix a projection p ∈ N such that e = pe and p = ep.1 Since t is a trace, we
have t (e) = t (p); on the other hand, p = p∗ p and hence the element t (p) ∈ Z
is self-adjoint with t (p) ≥ 0 (cf. Theorem 2.1 (iii)). If t (e) = 0 then t (p) = 0
and hence p = 0 (loc.cit.); therefore, it follows that e = pe = 0. Considering the
idempotent 1 − e, we conclude that t (e) ≤ 1 with strict inequality if e 
= 1.

(ii) Let N be a finite von Neumann algebra with center Z and consider its
center-valued trace t . If e ∈ N is an idempotent such that t (e) ∈ Z is also an
idempotent, then e ∈ Z (and hence t (e) = e).2 Indeed, if t (e)2 = t (e) then the
element e′ = e − et (e) = e(1 − t (e)) is idempotent and

t (e′) = t (e) − t (et (e)) = t (e) − t (e)t (e) = t (e) − t (e)2 = 0,

where the second equality follows since t is a Z-module map (cf. Theorem 2.1
(iv)). In view of (i) above, we conclude that e′ = 0 and hence e = et (e); therefore,

1 One can find such a projection p for any idempotent e in a C∗-algebra; this can be shown,
for example, by using the argument employed in the proof of [3, Theorem 3.1].

2 Conversely, if the idempotent e ∈ N is central then t (e) = e and hence t (e) ∈ Z is an
idempotent.
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it follows that the element e′′ = t (e) − e is idempotent. Since t is the identity on
Z (cf. Theorem 2.1 (ii)), we have

t (e′′) = t (t (e)) − t (e) = t (e) − t (e) = 0.

Invoking (i) above once again, we conclude that e′′ = 0 and hence e = t (e) ∈ Z .
(iii) Let N be a von Neumann algebra with center Z and assume that there

is a linear map t : N −→ Z , having properties (i) and (iii) in the statement of
Theorem 2.1. Then, the algebra N is finite. Indeed, let e ∈ N be a projection which
is equivalent to 1 in N . This means that there is a partial isometry u ∈ N such that
e = u∗u and 1 = uu∗. Then, the element 1 − e ∈ N is a projection and

t (1 − e) = t (1) − t (e) = t (uu∗) − t (u∗u) = 0,

where the last equality follows from the trace property of t . In view of the faithful-
ness of t , we have 1 − e = 0 and hence e = 1.

Let N be a von Neumann algebra of operators acting on the Hilbert space H with
center Z . Then, for any positive integer n the algebra Mn(N ) of n × n matrices
with entries in N is a von Neumann algebra of operators acting on the n-fold
direct sum H ⊕ · · · ⊕ H with center Zn = {aIn : a ∈ Z}. We note that the map
aIn �→ a, aIn ∈ Zn , is an isometric isomorphism Zn

∼−→ Z; in the sequel, we
identify Zn with Z by means of this isomorphism. If the algebra N is finite then
the center-valued trace t : N −→ Z induces a trace

tn : Mn(N ) −→ Z,

which maps any matrix A = (ai j )i, j ∈ Mn(N ) onto
∑n

i=1 t (aii ) ∈ Z for all
n ≥ 1.

Proposition 2.3 Let N be a finite von Neumann algebra with center Z . We fix an
integer n ≥ 1 and consider the matrix algebra Mn(N ) and the trace tn defined
above. Then, the von Neumann algebra Mn(N ) is finite, whereas its own center-
valued trace t(n) maps any matrix A = (ai j )i, j ∈ Mn(N ) onto 1

n tn(A) ∈ Z .

Proof It is easily seen that the map A �→ 1
n tn(A), A ∈ Mn(N ), has properties (i),

(ii) and (iii) in the statement of Theorem 2.1; hence, Mn(N ) is finite (cf. Remark 2.2
(iii)). The proof is now finished by invoking the uniqueness assertion of Theorem
2.1. ��
Let G be a group and consider its action on the Hilbert space �2G by left transla-
tions. The associated algebra homomorphism

L : CG −→ B(�2G)

identifies CG with the ∗-algebra L(CG) = {La : a ∈ CG} of operators on �2G, in
such a way that L∗

g = Lg−1 for any element g ∈ G. Then, the group von Neumann
algebra N G is defined as the WOT-closure of L(CG) in B(�2G). We consider the
linear functional

τ : N G −→ C,
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which is defined by letting τ(a) = 〈a(δ1), δ1〉 for all a ∈ N G; here, δ1 denotes the
vector of the canonical orthonormal basis (δg)g∈G of �2G that corresponds to the
element 1 ∈ G. We record for future reference the following well-known result:

Lemma 2.4 Let G be a group, N G the associated von Neumann algebra and τ
the linear functional defined above. Then:

(i) τ is a WOT-continuous trace with τ(I ) = 1, where I ∈ N G is the identity
operator.

(ii) The vector δ1 ∈ �2G is separating for N G.
(iii) τ is positive and faithful, i.e. τ(a∗a) > 0 for all a ∈ N G \ {0}.

The trace τ is called the canonical trace on N G. ��
An immediate consequence of Lemma 2.4 is that the von Neumann algebra N G
associated with a group G is finite. This follows by repeating the argument used in
Remark 2.2 (iii), with the canonical trace τ in the place of t therein. In order to iden-
tify the corresponding center-valued trace, we note that the center Z(L(CG)) of the
algebra L(CG) is contained in the center ZG of N G.3 Indeed, if a ∈ Z(L(CG))
then we have ab = ba for all b ∈ L(CG). Since multiplication in B(�2G) is
separately WOT-continuous, it follows that ab = ba for all b ∈ N G and hence
a ∈ ZG. On the other hand, for any g ∈ G f the element c(g) = ∑

x∈[g] x is easily
seen to be central in CG; in fact, the set {c(g) : [g] ∈ C f (G)} is a basis of the center
Z(CG) of CG. It follows that the operator Lc(g) = ∑

x∈[g] Lx is central in L(CG)

and hence Lc(g) ∈ Z(L(CG)) ⊆ ZG for any g ∈ G f . We can obtain an explicit
formula for the center-valued trace on elements of the subalgebra L(CG) ⊆ N G
in terms of these operators; the reader may find a proof of the next result in [6,
Proposition 2.7].

Proposition 2.5 Let G be a group and consider an element g ∈ G and the center-
valued trace t on the von Neumann algebra N G.

(i) If g ∈ G f then t (Lg) is the operator 1
[G:Cg] Lc(g) = 1

[G:Cg]
∑

x∈[g] Lx .

(ii) If g /∈ G f then t (Lg) = 0. ��
Let G be a group. For any positive integer n we consider the composition

Mn(CG)
Ln−→ Mn(N G)

t(n)−→ ZG, (3)

where Ln is the homomorphism induced by L , ZG the center of N G and t(n) = 1
n tn

the center-valued trace of the von Neumann algebra Mn(N G) (cf. Proposition 2.3).
We also consider the Hattori-Stallings trace maps rH S : Mn(CG) −→ T (CG) and
rH S : Mn(N G) −→ T (N G). Then, there is a commutative diagram

Mn(CG)
Ln−→ Mn(N G)

t(n)−→ ZG
rH S ↓ rH S ↓ ‖

T (CG)
T (L)−→ T (N G)

1
n t−→ ZG

(4)

where T (L) is the map induced from L by passage to the quotients and t is that
induced by the center-valued trace t on N G.

3 One can show that ZG coincides with the WOT-closure of Z(L(CG)) in B(�2G), but we
shall not make any use of this fact below.
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Proposition 2.6 (cf. [9, §9.5.2]) Let G be a group and CG the associated group
algebra. We consider the von Neumann algebra N G, its center ZG and fix a
positive integer n. Then, the image of an idempotent matrix E ∈ Mn(CG) with
Hattori-Stallings rank rH S(E) = ∑

[g]∈C(G) rg(E)[g] under the composition (3)
is the operator

a = 1

n

∑

g∈G f

rg(E)

[G : Cg] Lg = 1

n

∑

g∈G f,tor

rg(E)

[G : Cg] Lg ∈ ZG,

where G f,tor ⊆ G f is the subset consisting of the torsion elements g ∈ G f .

Proof We compute
(
t(n) ◦ Ln

)
(E) = 1

n

(
t ◦ T (L) ◦ rH S

)
(E)

= 1
n

(
t ◦ T (L)

)
(

∑

[g]∈C(G)

rg(E)[g]
)

= 1
n

∑

[g]∈C(G)

rg(E)
(
t ◦ T (L)

)[g]
= 1

n

∑

[g]∈C(G)

rg(E) t (Lg)

= 1
n

∑

[g]∈C f (G)

rg(E)

[G:Cg] Lc(g)

= 1
n

∑

g∈G f

rg(E)

[G:Cg] Lg.

In the above chain of equalities, the first one follows from the commutativity of
diagram (4) and the fifth one from Proposition 2.5. This completes the proof, in
view of Corollary 1.2. ��
Theorem 2.7 Let G be a group, CG the associated group algebra, n a positive inte-
ger and E ∈ Mn(CG) an idempotent matrix with Hattori-Stallings rank rH S(E) =∑

[g]∈C(G) rg(E)[g]. We consider the von Neumann algebra N G and let

a = a(E) = 1

n

∑

g∈G f

rg(E)

[G : Cg] Lg = 1

n

∑

g∈G f,tor

rg(E)

[G : Cg] Lg ∈ N G,

where G f,tor ⊆ G f is the subset consisting of the torsion elements g ∈ G f . Then:
(i) The operator a ∈ N G is central, self-adjoint and satisfies the inequalities

0 ≤ a ≤ I .
(ii) a = 0 (resp. a = I ) if and only if E = 0 (resp. E = In).

(iii) a = a2 if and only if E = cIn for some central idempotent c ∈ CG.

Proof Let E ′ = Ln(E) ∈ Mn(N G) be the idempotent matrix obtained from E
by applying the homomorphism L to its entries. Then, Proposition 2.6 implies
that a = t(n)(E ′), where t(n) is the center-valued trace on Mn(N G). Therefore,
assertions (i) and (ii) are immediate consequences of Remark 2.2 (i). Moreover, it
follows from Remark 2.2 (ii) that the operator a is idempotent if and only if the
matrix E ′ is central in Mn(N G). Since the inverse image L−1(ZG) ⊆ CG of
the center ZG of N G is the center of the group algebra, this latter condition is
equivalent to the existence of a central element c ∈ CG, such that E = cIn . ��
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As a prelude to the results that will be obtained in the following Sections, we
conclude the present one by stating an immediate consequence of Theorem 2.7.

Corollary 2.8 (cf. [16, proof of Theorem 2]) Let G be a group, E an idempotent
matrix with entries in the group algebra CG and rH S(E) = ∑

[g]∈C(G) rg(E)[g]
its Hattori-Stallings rank. Then, rg−1(E) = rg(E) for all g ∈ G f .

Proof It follows from Theorem 2.7 that the operator
∑

g∈G f

rg(E)

[G:Cg] Lg ∈ B(�2G) is

self-adjoint. Since Cg = Cg−1 , we conclude that rg−1(E) = rg(E) for any element
g ∈ G f . ��

Remarks 2.9 Let G be a group, E an idempotent matrix with entries in CG and
rH S(E) = ∑

[g]∈C(G) rg(E)[g] its Hattori-Stallings rank.
(i) As we have already noted, Bass has proved in [2] that the complex number

rg(E) is algebraic for all g ∈ G. In the special case where the element g has finitely
many conjugates, this result is an immediate consequence of Corollary 2.8. More-
over, in that case, the algebraic number rg(E) has totally real modulus. Indeed, let
us consider an element g ∈ G f and the complex number x = rg(E). Then, for
any automorphism σ of the field C we have

σ(x)=σ
(

rg(E)
)
=σ

(
rg−1(E)

)=rg−1(σ (E))=rg(σ (E))=σ
(
rg(E)

)=σ(x),

where σ(E) is the idempotent matrix obtained from E by applying σ to the com-
plex numbers that are involved in its entries. Since there are both real and non-real
transcendental numbers, whereas the group Aut (C) acts transitively on them, it
follows that x is algebraic. Moreover, if y = √

xx is the modulus of x , then for
any σ ∈ Aut (C)

σ (y)2 = σ(y2) = σ(xx)= σ(x) σ (x)= σ(x) σ (x)

is a non-negative real number and hence σ(y) ∈ R. Therefore, y is totally real.4

(ii) If g ∈ G f is an element which is conjugate to its inverse, then Corollary
2.8 implies that the complex number rg(E) is real (and hence totally real, in view
of (i) above). In particular, rg(E) is totally real if g ∈ G f is an element of order 2.

3 Local inequalities

Let G be a group and consider an idempotent matrix E with entries in the group
algebra CG and an element g ∈ G f . In this Section, we prove certain inequalities
involving the absolute value of the coefficient rg(E) ∈ C of the Hattori-Stallings
rank rH S(E) of E . In view of Corollary 1.2, the interesting case is that where g is
an element of finite order.

4 This argument was communicated to me by T. Schick.
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Lemma 3.1 Let G be a group and consider the canonical trace τ on the von Neu-
mann algebra N G. Let e ∈ N G be an idempotent and a a self-adjoint operator
in the center ZG of N G, such that 0 ≤ a ≤ I , where I ∈ N G is the identity
operator. Then, the complex number τ(ea) is real and

max{0, τ (a) + τ(e) − 1} ≤ τ(ea) ≤ min{τ(e), τ (a)}.
Proof Since the element e ∈ N G is idempotent, its center-valued trace t (e) ∈ ZG
is self-adjoint and ≥ 0 (cf. Remark 2.2 (i)). It follows that 0 ≤ t (e)a ≤ t (e) and
hence we may invoke the positivity of τ in order to conclude that 0 ≤ τ(t (e)a) ≤
τ(t (e)). On the other hand, we have τ(t (e)a) = τ(t (ea)) = τ(ea) and τ(t (e)) =
τ(e) (cf. Theorem 2.1 (iv), (v)). Hence, we have proved that

0 ≤ τ(ea) ≤ τ(e). (5)

Replacing e by the complementary idempotent I − e, we obtain the inequalities

0 ≤ τ((I − e)a) ≤ τ(I − e). (6)

It is easily seen that the combination of (5) and (6) above gives precisely the
inequalities in the statement. ��
Proposition 3.2 Let G be a group and a a self-adjoint operator in the center
of the von Neumann algebra N G, such that 0 ≤ a ≤ I , where I ∈ N G is
the identity operator. For any element g ∈ G we consider the complex number
ag = 〈a(δ1), δg〉; in particular, a1 = τ(a), where τ is the canonical trace on N G.
If g ∈ G is an element of finite order n and ζ ∈ C an n-th root of unity, then the
complex number

∑n−1
i=1 ζ i agi is real and

− min{a1, (n − 1)(1 − a1)} ≤
n−1∑

i=1

ζ i agi ≤ min{1 − a1, (n − 1)a1}.

Proof We consider the element e = 1
n

∑n−1
i=0 ζ−i Lgi ∈ N G; it is easily seen that

e is an idempotent with τ(e) = 1
n . On the other hand, we have

τ(ea) = 1
n

n−1∑

i=0
ζ−iτ(Lgi a)

= 1
n

n−1∑

i=0
ζ−i 〈Lgi a(δ1), δ1〉

= 1
n

n−1∑

i=0
ζ−i 〈a(δ1), L∗

gi (δ1)〉

= 1
n

n−1∑

i=0
ζ−i 〈a(δ1), δg−i 〉

= 1
n

n−1∑

i=0
ζ−i ag−i

= 1
n

n−1∑

i=0
ζ i agi .
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Therefore, Lemma 3.1 implies that

max

{

0, a1 + 1

n
− 1

}

≤ 1

n

n−1∑

i=0

ζ i agi ≤ min

{
1

n
, a1

}

and hence

max{0, na1 + 1 − n} ≤
n−1∑

i=0

ζ i agi ≤ min{1, na1}.

It is easily seen that the inequalities in the statement follow from the ones above
by subtracting a1 from all sides. ��
Corollary 3.3 Let G be a group and CG the associated group algebra. We fix a
positive integer N and consider an idempotent matrix E ∈ MN (CG) with Hattor-
i-Stallings rank rH S(E) = ∑

[g]∈C(G) rg(E)[g]. If g ∈ G f is an element of finite

order n and ζ ∈ C an n-th root of unity, then the complex number
∑n−1

i=1 ζ i rgi (E)

[G:Cgi ]
is real and

− min{r1(E), (n − 1)(N − r1(E))} ≤
n−1∑

i=1

ζ i rgi (E)

[G : Cgi ]
≤ min{N − r1(E), (n − 1)r1(E)}.

Proof Let a = 1
N

∑
g∈G f

rg(E)

[G:Cg] Lg ∈ N G be the operator which is associated
with E as in Theorem 2.7. Then, the proof is finished by applying Proposition 3.2
to a and multiplying through the resulting inequalities by N . ��
Remarks 3.4 (i) Let n be a positive integer and fix a primitive n-th root of unity
ζ ∈ C and complex numbers s0, s1 . . . , sn−1. If we define the complex numbers
σ0, σ1, . . . , σn−1 by letting σ j = ∑n−1

i=0 ζ i j si for all j , then it is easily seen that
si = 1

n

∑n−1
j=0 ζ−i jσ j for all i .

(ii) Let G be a group, CG the associated group algebra and E ∈ MN (CG)
an idempotent matrix with Hattori-Stallings rank rH S(E) = ∑

[g]∈C(G) rg(E)[g].
We consider an element g ∈ G f of order n > 1 and a primitive n-th root of unity

ζ ∈ C. If we define ρ j = ∑n−1
i=0 ζ i j rgi (E)

[G:Cgi ] for all j = 0, 1, . . . , n − 1, then we

have rg(E)

[G:Cg] = 1
n

∑n−1
j=0 ζ− jρ j (cf. (i) above). Therefore, the inequalities of Cor-

ollary 3.3 imply that |rg(E)|
[G:Cg] ≤ min{N , nr1(E)} and hence, considering the matrix

IN − E , we conclude that |rg(E)|
[G:Cg] ≤ min{N , nr1(E), n(N − r1(E))}.

Lemma 3.5 Let G be a group and τ the canonical trace on the von Neumann alge-
bra N G. We consider two operators b, c ∈ N G and assume that c is self-adjoint
and ≥ 0. Then, we have |τ(bc) | ≤ ‖b‖ τ(c).
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Proof Using the Cauchy-Schwartz inequality, we have

|τ(d∗bd) | = | 〈d∗bd(δ1), δ1〉 |
= | 〈bd(δ1), d(δ1)〉 |
≤ ‖bd(δ1)‖ · ‖d(δ1)‖
≤ ‖b‖ · ‖d(δ1)‖2

= ‖b‖ 〈d(δ1), d(δ1)〉
= ‖b‖ 〈d∗d(δ1), δ1〉
= ‖b‖ τ(d∗d)

For all b, d ∈ N G. Hence, τ being a trace, we have | τ(bdd∗) |≤‖b ‖ τ(dd∗) for
all b, d ∈ N G. This finishes the proof, since any self-adjoint operator c in N G
with c ≥ 0 is equal to dd∗ for a suitable d ∈ N G. ��
Corollary 3.6 Let G be a group and CG the associated group algebra. We consider
a positive integer N and let E ∈ MN (CG) be an idempotent matrix with Hattor-

i-Stallings rank rH S(E) = ∑
[g]∈C(G) rg(E)[g]. Then,

|rg(E)|
[G:Cg] ≤ min{r1(E), N −

r1(E)} for all g ∈ G f \ {1}.
Proof Let a = 1

N

∑
g∈G f

rg(E)

[G:Cg] Lg ∈ N G be the operator which is associated
with E as in Theorem 2.7 and fix an element g ∈ G f \ {1}. Since a is self-adjoint
and ≥ 0, Lemma 3.5 implies that

1

N

|rg(E) |
[G : Cg] = |〈a(δ1), δg〉 | = |〈a(δ1), Lg(δ1)〉 |= |τ(L∗

ga) | ≤ τ(a) = 1

N
r1(E),

i.e. that |rg(E)|
[G:Cg] ≤ r1(E). Considering the complementary idempotent IN − E , it

follows that |rg(E)|
[G:Cg] ≤ N − r1(E). ��

Remark 3.7 Let n, N be positive integers and r a real number with r ∈ [0, N ].
Then, it is easily seen that

min{r, N − r} ≤ min{N , nr, n(N − r)}.
Hence, it follows that the inequalities of Corollary 3.6 are sharper than those result-
ing from Corollary 3.3 (cf. Remark 3.4 (ii)).

4 Moment inequalities

The Gelfand representation theorem asserts that any commutative C∗-algebra is
isomorphic with the algebra of continuous complex-valued functions on some
compact space. The following result is a representation theorem of the same type,
identifying any abelian von Neumann algebra with the algebra of equivalence clas-
ses of essentially bounded measurable functions on some measure space.

Theorem 4.1 (cf. [8]) Let H be a Hilbert space and Z ⊆ B(H) an abelian von
Neumann algebra with separating vector ξ of norm 1. Then, there is a probabil-
ity space (�, P) and an isometric ∗-isomorphism φ : L∞(�) −→ Z , such that∫

f d P = 〈φ( f )(ξ), ξ〉 for any f ∈ L∞(�). ��
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We are interested in the special case where Z is the center ZG of the von Neumann
algebra N G of a group G. We recall that the unit vector δ1 ∈ �2G is a separating
vector for N G (cf. Lemma 2.4 (ii)) and hence for ZG as well.

Corollary 4.2 Let G be a group, ZG the center of the von Neumann algebra N G
and τ the canonical trace on the latter. Then, there is a probability space (�, P) and
an isometric ∗-isomorphism φ : L∞(�) −→ ZG, such that

∫
f d P = τ(φ( f ))

for any f ∈ L∞(�). ��
In view of Corollary 4.2, any operator a ∈ ZG may be regarded as an integrable
random variable f on some probability space (�, P), in such a way that the se-
quence (τ (an))n coincides with the sequence of moments (E( f n))n = (∫

f n d P
)

n
of f . By an obvious abuse of language, we shall refer to the sequence (τ (an))n as
the sequence of moments of a. Our goal in this Section is to study the sequence of
moments of the operator which is induced from an idempotent matrix with entries
in the group algebra CG, as in Theorem 2.7.

Proposition 4.3 Let G be a group and τ the canonical trace on the von Neumann
algebra N G. We consider a self-adjoint operator a ∈ N G, such that 0 ≤ a ≤ I ,
where I ∈ N G is the identity operator. Then:

(i) The sequence (τ (an))n is a decreasing sequence of non-negative real num-
bers; in particular, 0 ≤ τ(an) ≤ 1 for all n.

(ii) Let n be a positive integer. Then, τ(an) = 0 (resp. τ(an) = 1) if and only if
a = 0 (resp. a = I ). Moreover, τ(an) = τ(an+1) if and only if a = a2.

(iii) For all n ≥ 1 we have 0 ≤ τ(an) − τ(an+1) ≤ nn

(n+1)n+1 .

Proof We note that, using the Gelfand representation theorem, the self-adjoint
operator a may be viewed as a function with values in [0, 1].

(i) In view of our assumption, the operator an is self-adjoint and satisfies the
inequality 0 ≤ an ≤ I for all n, whereas the sequence (an)n is operator-decreas-
ing. Taking into account the positivity of τ (cf. Lemma 2.4 (iii)), we conclude that
τ(an) is a real number contained in the interval [0, 1] for all n, while the sequence
(τ (an))n is decreasing.

(ii) Since an = 0 (resp. an = 1) if and only if a = 0 (resp. a = 1), the first
part is an immediate consequence of the faithfulness of τ (loc.cit.). Now assume
that τ(an) = τ(an+1); then, an − an+1 ≥ 0 and τ(an − an+1) = 0. Invoking the
faithfulness of τ again, we conclude that an − an+1 = 0 and hence an = an+1.
This latter equality is clearly equivalent to the equality a = a2.

(iii) Using elementary calculus, it is easily seen that 0 ≤ xn − xn+1 ≤ nn

(n+1)n+1

for any number x ∈ [0, 1] (the maximum is obtained when x = n
n+1 ). It follows

that 0 ≤ an − an+1 ≤ nn

(n+1)n+1 I . The proof is therefore finished, invoking the
positivity of τ . ��
In order to apply the inequalities of Proposition 4.3 to the operator which is induced
from an idempotent matrix with entries in the group algebra of a group G as in The-
orem 2.7, we need a formulary for the moments of an operator in L(CG) ⊆ N G.
To that end, we consider an element ρ = ∑

g ρgg ∈ CG, where ρg ∈ C for all
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g ∈ G, and the associated operator � = Lρ = ∑
g ρg Lg ∈ N G. Then, for any

element g ∈ G we compute

τ
(
Lg�

n
) = 〈Lg�

n(δ1), δ1〉
= 〈�n(δ1), L∗

g(δ1)〉
= 〈�n(δ1), δg−1〉
= ∑{ρg1ρg2 · · · ρgn : (g1, g2, . . . , gn) ∈ Gn and g1g2 · · · gn = g−1}

(7)

for all n ≥ 1. In particular,

τ
(
�n)=

∑
{ρg1ρg2 · · · ρgn : (g1, g2, . . . , gn) ∈ Gn and g1g2 · · · gn = 1}.

Theorem 4.4 Let G be a group, N a positive integer and E ∈ MN (CG) an
idempotent matrix with Hattori-Stallings rank rH S(E) = ∑

[g]∈C(G) rg(E)[g]. We
consider the sequence (µn)n, which is defined by letting µ0 = 1 and

µn = 1

N n

∑ {
rg1(E)

[G : Cg1]
rg2(E)

[G : Cg2 ]
· · · rgn (E)

[G : Cgn ]
: (g1, g2, . . . , gn) ∈ Gn

f

and g1g2 · · · gn = 1

}

for all n ≥ 1. Then:
(i) The sequence (µn)n is a decreasing sequence of non-negative real numbers;

in particular, 0 ≤ µn ≤ 1 for all n.
(ii) Let n be a positive integer. Then, µn = 0 (resp. µn = 1) if and only if E = 0

(resp. E = IN ). Moreover, µn = µn+1 if and only if E = cIN for some central
idempotent c ∈ CG.

(iii) For all n ≥ 1 we have µn+1 ≤ µn ≤ µn+1 + nn

(n+1)n+1 .
The sequence (µn)n = (µn(E))n will be referred to as the sequence of moments
of the idempotent matrix E.

Proof Let N G be the von Neumann algebra of G and consider the operator

a = 1

N

∑

g∈G f

rg(E)

[G : Cg] Lg ∈ N G.

Then, the sequence (µn)n is precisely the sequence of moments (τ (an))n of a and
hence the result follows from Proposition 4.3, in view of Theorem 2.7. ��
We shall now make explicit the inequalities obtained above for small values of the
parameter n. Part (i) of the result below is due to Kaplansky (cf. [11]), whereas
two thirds of part (ii) are due to Alexander [1] (see also [10] and [12]).

Corollary 4.5 Let G be a group, CG the associated group algebra, N a posi-
tive integer and E ∈ MN (CG) an idempotent matrix with Hattori-Stallings rank
rH S(E) = ∑

[g]∈C(G) rg(E)[g]. Then:
(i) The complex numberr1(E) is real and 0 ≤ r1(E) ≤ N; moreover, r1(E) = 0

(resp. r1(E) = N) if and only if E = 0 (resp. E = IN ).
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(ii) We have

∑

[g]∈C f (G)

|rg(E) |2
[G : Cg]

(∗)≤ Nr1(E) ≤
∑

[g]∈C f (G)

|rg(E) |2
[G : Cg] + N 2

4
;

moreover, the inequality (∗) is an equality if and only if E = cIN for some central
idempotent c ∈ CG.

Proof Let (µn)n be the sequence of moments of E , as defined in Theorem 4.4. We
note that µ1 = 1

N r1(E), whereas

µ2 = 1

N 2

∑

g∈G f

rg(E)

[G : Cg]
rg−1(E)

[G : Cg−1]

= 1

N 2

∑

g∈G f

|rg(E) |2
[G : Cg]2

= 1

N 2

∑

[g]∈C f (G)

|rg(E) |2
[G : Cg]

(cf. Corollary 2.8). Therefore, (i) follows since µ1 ∈ [0, 1], whereas µ1 = 0 (resp.
µ1 = 1) if and only if E = 0 (resp. E = IN ). In the same way, (ii) follows since
µ2 ≤ µ1 ≤ µ2 + 1

4 , whereas µ2 = µ1 if and only if E is central. ��
Remarks 4.6 Let G be a group, CG the associated group algebra and N G the
von Neumann algebra of G. We consider a positive integer N and an idempotent
matrix E ∈ MN (CG) with Hattori-Stallings rank rH S(E) = ∑

[g]∈C(G) rg(E)[g].
We also consider the induced idempotent matrix E ′ ∈ MN (N G), the center-valued
trace

a = t(N )(E ′) = 1

N

∑

g∈G f

rg(E)

[G : Cg] Lg ∈ N G

(cf. Theorem 2.7) and the sequence of moments (µn)n of E , defined in Theorem
4.4.

(i) Since a is a central operator in N G, we may apply Corollary 4.2 in order
to identify a with an integrable random variable f = φ−1(a) on some probability
space (�, P). The variance var( f ) of f is equal to µ2 − µ2

1 and hence

var( f ) = 1

N 2

∑

[g]∈C f (G)\{[1]}

|rg(E) |2
[G : Cg] .

In particular, it follows that var( f ) = 0 if and only if rg(E) = 0 for any ele-
ment g ∈ G f \ {1}. Invoking Zaleskii’s theorem on the rationality of r1(E) (cf.
[17]) and the criterion of [6, Proposition 2.3 (ii)], we conclude that var( f ) = 0
if and only if there is a positive integer n such that the block diagonal matrix
E ′ ⊕ E ′ ⊕ · · · ⊕ E ′ ∈ MnN (N G) is unitarily equivalent with a diagonal matrix
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with zeroes and ones along the diagonal. Equivalently, var( f ) = 0 if and only if
the class of E ′ has finite order in the reduced K-theory group K̃0(N G).

(ii) Let n be a positive integer. It follows from the proof of Proposition 4.3
(iii) and the faithfulness of the canonical trace τ that the inequality µn ≤ µn+1 +

nn

(n+1)n+1 of Theorem 4.4 (iii) is an equality if and only if a = n
n+1 I , where I ∈ N G

is the identity operator. Therefore, using again [6, Proposition 2.3 (ii)], we conclude
that µn = µn+1 + nn

(n+1)n+1 if and only if the block diagonal matrix E ′ ⊕ E ′ ⊕
· · · ⊕ E ′ ∈ M(n+1)N (N G) is unitarily equivalent (in M(n+1)N (N G)) with a diag-
onal matrix with N zeroes and nN ones along the diagonal. This latter condition is
equivalent to the equality (n+1)[E ′] = n[IN ] ∈ K0(N G). In particular, it follows

that µ1 = µ2 + 1
4 if and only if the matrices

(
E ′ 0
0 E ′

)

,

(
IN 0
0 0

)

∈ M2N (N G) are

unitarily equivalent, i.e if and only if 2[E ′] = [IN ] ∈ K0(N G).

5 The gaps between consecutive moments

Let G be a group and E an idempotent N × N matrix with entries in the group
algebra CG. The inequalities of Theorem 4.4 (iii) provide us with an upper bound
for the difference µn −µn+1 between two consecutive moments of E . These upper
bounds are absolute, in the sense that they don’t depend on E , and optimal, in the
sense that they are attained for certain E’s (cf. Remark 4.6 (ii)). Since any two
consecutive moments are equal if the matrix E is central in MN (CG) (cf. Theorem
4.4 (ii)), the only non-negative absolute lower bound for these differences is 0.

Our next goal is to obtain lower bounds for the difference between consecutive
moments that depend on E . To that end, we consider the Hattori-Stallings rank
rH S(E) = ∑

[g]∈C(G) rg(E)[g] and the operator a = ∑
g∈G f

ag Lg ∈ N G, where

ag = 1
N

rg(E)

[G:Cg] for all g ∈ G f (cf. Theorem 2.7). Let

X = {g ∈ G f : ag 
= 0} = {g ∈ G f : rg(E) 
= 0};
then, Corollary 2.8 implies that for any element g ∈ G f we have g ∈ X if and
only if g−1 ∈ X . We consider the cardinality

λ = λ(E) = card X =
∑

{[G : Cg] : [g] ∈ C f (G) and rg(E) 
= 0} (8)

and the complex number

σ = σ(E) =
∑

g∈G f

ag = 1

N

∑

g∈G f

rg(E)

[G : Cg] = 1

N

∑

[g]∈C f (G)

rg(E). (9)

Remarks 5.1 Let G be a group, E ∈ MN (CG) an idempotent matrix and X ⊆ G f
the set defined above.

(i) In view of Kaplansky’s theorem (Corollary 4.5 (i)), the non-negative integer
λ defined in Eq. (8) vanishes (i.e. X = ∅) if and only if E = 0.

(ii) Since G f is a normal subgroup of G, we may consider the quotient group
G = G/G f . The natural map G −→ G induces a homomorphism between the
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associated group algebras and hence a homomorphism MN (CG) −→ MN
(
CG

)
;

let E be the image of E under this latter homomorphism. Since r1

(
E

)
is equal

to the sum
∑

[g]∈C f (G) rg(E), we may apply the theorems of Zaleskii [17] and

Kaplansky (Corollary 4.5 (i)) to E , in order to conclude that the complex number
σ defined in Eq. (9) above is rational and contained in the interval [0, 1].
Using the set X introduced above, we shall now define the sequence (Xn)n≥0 of
subsets of G, by letting X0 = {1} and Xn = {g1g2 · · · gn : g1, g2, . . . , gn ∈ X}
for all n ≥ 1; in particular, X1 = X .

Lemma 5.2 Let G be a group, CG the associated group algebra and τ the canon-
ical trace on the von Neumann algebra N G. We consider an idempotent matrix E
with entries in CG, the operator a ∈ N G defined in Theorem 2.7 and the sequence
(Xn)n of subsets of G defined above. Then:

(i) If E 
= 0 then the sequence (Xn)n is increasing, i.e. Xn ⊆ Xn+1 for all n.
(ii) Let n be a non-negative integer and g ∈ G f a group element such that

τ(Lgan) 
= 0. Then, g ∈ Xn.
(iii) Let n be a non-negative integer, Y ⊆ G f a subset containing Xn and σ the

complex number defined in Eq. (9). Then,
∑

g∈Y τ(Lgan) = σ n.

Proof (i) Since E 
= 0, Kaplansky’s theorem (Corollary 4.5 (i)) implies that
r1(E) 
= 0 and hence 1 ∈ X . Then, the inclusions Xn ⊆ Xn+1, n ≥ 0, follow
immediately from the definitions.

(ii) In view of Eq.(7), we have

τ
(
Lgan) =

∑
{ag1ag2 · · · agn : (g1, g2, . . . , gn) ∈ Gn

f

and g1g2 · · · gn = g−1}.

Since τ
(
Lgan

) 
= 0, we conclude that there are g1, g2, . . . , gn ∈ X such that g−1 =
g1g2 · · · gn . The set X is closed under inversion and hence g−1

1 , g−1
2 , . . . , g−1

n ∈ X
as well; it follows that g = g−1

n · · · g−1
2 g−1

1 ∈ Xn .
(iii) We compute

∑

g∈Y
τ(Lgan) = ∑

g∈G f

τ(Lgan)

= ∑

g∈G f

∑{ag1ag2 · · · agn : (g1, g2, . . . , gn) ∈ Gn
f

and g1g2 · · · gn = g−1}
= ∑{ag1ag2 · · · agn : (g1, g2, . . . , gn) ∈ Gn

f }
=

(
∑

g∈G f

ag

)

n

= σ n .

In the above chain of equalities, the first one is an immediate consequence of (ii)
above, in view of our assumption that Y ⊇ Xn , whereas the second one follows
from Eq. (7). ��
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Proposition 5.3 Let G be a group, E a non-zero idempotent matrix with entries
in the group algebra CG and (µn)n the associated sequence of moments, defined
in Theorem 4.4. Then,

0 ≤ σ n − σ n+1

λn+1 ≤ µn − µn+1

for all n ≥ 0, where the numbers λ, σ are defined in Eqs. (8) and (9) respectively.

Proof Let N G be the von Neumann algebra of G and a ∈ N G the operator asso-
ciated with E as in Theorem 2.7. Then, µn = τ(an) for all n, where τ is the
canonical trace on N G. We consider the sequence (Xn)n of subsets of G, which
is defined in the paragraph before Lemma 5.2, and fix a non-negative integer n. If
bn+1 = ∑

g∈Xn+1
Lg ∈ N G then

‖bn+1 ‖ ≤
∑

g∈Xn+1

‖ Lg ‖= card Xn+1 ≤ λn+1.

Since the operator an − an+1 ∈ N G is self-adjoint and ≥ 0, Lemma 3.5 implies
that

|τ(bn+1(a
n − an+1)) | ≤ ‖bn+1 ‖ τ(an − an+1)

= ‖bn+1 ‖ (µn − µn+1)

≤ λn+1(µn − µn+1).

On the other hand, we have

τ(bn+1(an − an+1)) = τ(bn+1an) − τ(bn+1an+1)

= ∑

g∈Xn+1

τ(Lgan) − ∑

g∈Xn+1

τ(Lgan+1)

= σ n − σ n+1,

where the last equality follows from Lemma 5.2 (i), (iii). This finishes the proof,
since the complex number σ n − σ n+1 is real and non-negative (cf. Remark 5.1
(ii)). ��
It is clear that the inequalities of Proposition 5.3 complement those of Theorem 4.4
(iii). In particular, the following result complements the inequality(∗) of Corollary
4.5 (ii).

Corollary 5.4 Let G be a group, CG the associated group algebra, N a posi-
tive integer and E ∈ MN (CG) an idempotent matrix with Hattori-Stallings rank
rH S(E) = ∑

[g]∈C(G) rg(E)[g].
(i) If ς = ∑

[g]∈C f (G) rg(E) then ς is a rational number with 0 ≤ ς ≤ N.
(ii) We have

ς(N − ς)

λ2 +
∑

[g]∈C f (G)

|rg(E) |2
[G : Cg] ≤ Nr1(E),

where the integer λ is defined in Eq. (8).
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Proof (i) Both claims follow from Remark 5.1 (ii), since ς = Nσ , where σ is the
number defined in Eq. (9). (In fact, ς = r1

(
E

)
in the notation of loc.cit.)

(ii) This follows from Proposition 5.3 by letting n = 1 therein, in view of the
formulae for µ1 and µ2 given in the proof of Corollary 4.5. ��

6 The mass of the central carrier

Let H be a Hilbert space and N ⊆ B(H) a von Neumann algebra with center Z .
For any projection p ∈ N the central carrier c(p) of p is the smallest projection
of Z which dominates p (cf. [8, Chapter 6]); in other words,

c(p) = inf{q ∈ Z : q is a projection and p ≤ q}.
Let V = [N p(H)]− be the closed linear span of the set N p(H) = {ap(ξ) : a ∈
N , ξ ∈ H}. It is easily seen that V has the following properties:

(i) V is invariant under the action of both N and its commutant N ′,
(ii) V contains the subspace im p = p(H) and

(iii) V is the smallest closed subspace of H having properties (i) and (ii).

It follows that the central carrier c(p) of p is the orthogonal projection onto V .

Remarks 6.1 Let N ⊆ B(H) be a von Neumann algebra and consider an idempo-
tent e ∈ N .

(i) As we have already noted in Remark 2.2 (i), there exists a projection p ∈ N
with e = pe and p = ep. Then, p(H) = e(H) and hence c(p) is the orthog-
onal projection onto the closed subspace V ⊆ H, which is generated by the set
N e(H) = {ae(ξ) : a ∈ N , ξ ∈ H}. We call c(p) the central carrier of the
idempotent e and denote it by c(e).

(ii) Assume that there is a vector ξ ∈ H, which is both separating and cyclic
for the action of N ; this means that the evaluation map

evξ : N −→ H
is injective and has a dense image. Then, V = [N e(H)]− is easily seen to coincide
with the closed linear span of the set {aeb(ξ) : a, b ∈ N }. In other words, letting
J = N eN be the two-sided ideal of N generated by e, there is a commutative
diagram

J
evξ−→ V

↓ ↓
N evξ−→ H

whose vertical arrows are the inclusion maps and whose horizontal ones are injec-
tive with dense image. Since the central carrier c = c(e) is the orthogonal projection
onto V (cf. (i) above), we may regard it as a measure of the size of V inside H and
hence of the size of the two-sided ideal J = N eN inside N .
We shall now consider the case of a finite von Neumann algebra and obtain a for-
mula for the central carrier of an idempotent, in terms of the center-valued trace.
In order to facilitate the notation in the next Lemma, we denote the WOT-limit
of a (WOT-convergent) sequence (an)n of operators in a Hilbert space simply by
limn an .
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Lemma 6.2 Let H be a Hilbert space and consider a finite von Neumann algebra
N ⊆ B(H) with center Z and an idempotent e ∈ N with center-valued trace
a = t (e) ∈ Z . Then:

(i) The sequence (an)n converges in the weak operator topology to an operator
c ∈ Z .

(ii) The operator c = limn an is the greatest central projection of N which is
≤ a.

(iii) If c(e) ∈ Z is the central carrier of e then c(e) = 1 − limn(1 − a)n.

Proof (i) We know that the operator a ∈ Z is self-adjoint and 0 ≤ a ≤ 1 (cf.
Remark 2.2 (i)). Therefore, the sequence (an)n is a decreasing sequence of positive
operators in the von Neumann algebra Z . As such, it admits a WOT-limit c =
limn an ∈ Z .

(ii) It is clear that the operator c ∈ Z is self-adjoint and 0 ≤ c ≤ a. Since multi-
plication in B(H) is separately WOT-continuous, we have an · c = an · limm am =
limm an+m = limm am = c for all n ≥ 1 and hence c2 = c · c = (limnan)· c =
limn(an · c) = limnc = c. It follows that the operator c ∈ Z is a projection. On
the other hand, if c′ ∈ Z is a projection with c′ ≤ a then c′ = c′n ≤ an for all n
and hence c′ ≤ limn an = c.

(iii) Let p ∈ N be a projection with e = pe and p = ep. Then, t (p) = t (e) =
a, in view of the trace property of t , and c(e) = c(p) (cf. Remark 6.1 (i)). There-
fore, we may replace e by p and assume that e ∈ N is a projection. We claim that
a central projection c′ ∈ N dominates e if and only if a ≤ c′. Indeed, if e ≤ c′
then a = t (e) ≤ t (c′) = c′, in view of the positivity of t . Conversely, if a ≤ c′
then t (e) = a = ac′ = t (e)c′ and hence the projection e − ec′ = e(1 − c′) ∈ N is
such that t (e − ec′) = t (e)− t (ec′) = t (e)− t (e)c′ = 0. Invoking the faithfulness
of t , it follows that e − ec′ = 0 and hence e = ec′ ≤ c′. Having established the
claim, we conclude that the central carrier c(e) is the smallest central projection
which is ≥ a. In other words, 1 − c(e) is the greatest central projection which is
≤ 1 − a. Using (ii) above for the idempotent 1 − e, whose center-valued trace is
t (1 − e) = 1 − a, it follows that 1 − c(e) = limn(1 − a)n . ��
We now specialize the above discussion to the case where N is an algebra of
matrices with entries in the von Neumann algebra of a group.

Proposition 6.3 Let G be a group, N a positive integer and E an idempotent N×N
matrix with entries in the group algebra CG. We consider the von Neumann alge-
bra N G, the induced idempotent matrix E ′ ∈ MN (N G) and let a = t(N )(E ′)
be its center-valued trace and c = c(E ′) its central carrier. Then, τ(c) = 1 −
limn µn(IN − E), where τ is the canonical trace on N G and (µn(IN − E))n
the sequence of moments which is associated with the complementary idempotent
matrix IN − E, as in Theorem 4.4.

Proof Since µn(IN − E) = τ
[
(I − a)n

]
for all n, where I ∈ N G is the identity

operator, the result follows from Lemma 6.2 (iii), in view of the WOT-continuity
of τ . ��
Proposition 6.4 Let G be a group, CG the associated group algebra and N a
positive integer. We consider an idempotent N × N matrix E with entries in CG, its
Hattori-Stallings rank rH S(E) = ∑

[g]∈C(G) rg(E)[g] and let E ′ ∈ MN (N G) be
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the induced matrix with entries in the von Neumann algebra N G. If c = c(E ′) is
the central carrier of E ′ then

τ(c) ≥ σ

λ + σ − 1
,

where τ is the canonical trace on N G and the numbers λ = λ(E) and σ = σ(E)
are those defined in Eqs. (8) and (9) respectively.

Proof The inequality is obviously valid if E = 0 or E = IN and hence we may
assume that E 
= 0, IN . Let (µn(IN − E))n be the sequence of moments of the
idempotent matrix IN − E . It is clear that σ(IN − E) = 1−σ(E) = 1−σ , whereas
our assumption on E implies, in view of Kaplansky’s theorem (cf. Corollary 4.5
(i)), that λ(IN − E) = λ(E) = λ. Therefore, applying the inequality of Proposition
5.3 to the idempotent matrix IN − E , we conclude that

(1 − σ)n − (1 − σ)n+1

λn+1 ≤ µn(IN − E) − µn+1(IN − E)

for all n ≥ 0 and hence

∞∑

n=0

(1 − σ)n − (1 − σ)n+1

λn+1 ≤
∞∑

n=0

[
µn(IN − E) − µn+1(IN − E)

]
.

Summing up the series, it follows that

σ

λ + σ − 1
≤ 1 − limnµn(IN − E).

This finishes the proof, in view of Proposition 6.3. ��
Remark 6.5 Let G be a group, CG the associated group algebra and N G the von
Neumann algebra of G. Then, the composition

CG
L−→ N G

evδ1−→ �2G

is injective and has a dense image; in particular, the separating vector δ1 ∈ �2G for
the action of N G is also cyclic. We consider an idempotent e ∈ CG, the induced
idempotent e′ ∈ N G and its central carrier c = c(e′). Then, τ(c) ∈ [0, 1] is a
numerical measure of the size of V = im c inside �2G. Let I = CG · e · CG be
the two-sided ideal of CG generated by e and J = N G · e′ · N G the two-sided
ideal of N G generated by e′. Applying the considerations of Remark 6.1 (ii) in
this special case, it follows that there is a commutative diagram

I
L−→ J

evδ1−→ V
↓ ↓ ↓

CG
L−→ N G

evδ1−→ �2G

whose vertical arrows are the inclusion maps. We note that both compositions in
the horizontal direction in the diagram above are injective and have dense image.
Therefore, τ(c) (a lower bound for which is provided by Proposition 6.4) may be
regarded as a numerical measure of the size of I inside CG.
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A Semi-simple elements

Our goal in this Appendix is to complement Alexander’s version of the inequality
of Corollary 4.5 (ii) for semi-simple elements in matrix rings over group algebras
(cf. [1]) in two directions:

(i) we replace the group algebra by the associated von Neumann algebra and
(ii) we also consider the higher moments of the idempotents that are involved.

Lemma A.1 Let R be a complex algebra and consider orthogonal idempotents
e1, . . . , em ∈ R and distinct non-zero complex numbers λ1, . . . , λm ∈ C. Then,
the element a = λ1e1 + · · · + λmem is central in R if and only if ei is central in R
for all i = 1, . . . , m.

Proof (cf. the argument used in [1, p. 2430]) It is clear that a is central if the ei ’s are
central. Conversely, let us assume that a is central. In view of our assumption on the
ei ’s, it follows that an = λn

1e1+· · ·+λn
mem for all n ≥ 1. Therefore, for any element

r ∈ R and any integer n ≥ 1 we have λn
1[e1, r ] + · · · + λn

m[em, r ] = [
an, r

]= 0,
where [x, y] = xy − yx for all x, y ∈ R. We conclude that f (λ1)[e1, r ] + · · · +
f (λm)[em, r ] = 0 for any polynomial f (X) ∈ C[X ] with f (0) = 0. In view of our
assumption on the λi ’s, for any i there is an interpolation polynomial fi (X) ∈ C[X ]
with fi (0) = 0, fi (λ j ) = 0 for all j 
= i and fi (λi ) = 1. It follows that [ei , r ] = 0
for all r ∈ R and hence ei is central for all i . ��
Proposition A.2 Let G be a group and τ the canonical trace on the von Neumann
algebra N G. Assume that a1, . . . , am ∈ N G are commuting self-adjoint opera-
tors with ai ≥ 0 for all i and a1 + · · · + am ≤ I , where I ∈ N G is the identity
operator.

(i) If λ1, . . . , λm are complex numbers and a = λ1a1 + · · · + λmam ∈ N G,
then we have τ(a∗a) ≤ |λ1 |2 τ(a1) + · · · + |λm |2 τ(am).

(ii) Assume that the complex numbers λ1, . . . , λm are non-zero and distinct.
Then, the inequality of (i) above is an equality if and only if a1, . . . , am are orthog-
onal projections.

Proof (i) For a fixed index i , we have
∑

j 
=i a j ≤ I − ai and hence
∑

j 
=i ai a j =
ai

∑
j 
=i a j ≤ ai (I − ai ) = ai − a2

i . Therefore, we conclude that

|λi |2 τ




∑

j 
=i

ai a j − ai + a2
i



≤ 0,

i.e. that

|λi |2
∑

j 
=i

τ(ai a j )− |λi |2 τ(ai )+ |λi |2 τ(a2
i ) ≤ 0. (10)

Moreover, we have ai a j ≥ 0 and hence

0 ≤ |λi − λ j |2 τ(ai a j ) (11)
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for all i, j . Adding up the inequalities (10) for all i = 1, . . . , m and the inequalities
(11) for all i, j = 1, . . . , m with i < j , it follows that

∑

i

|λi |2 τ(a2
i ) + 2

∑

i< j

Re
(
λiλ j

)
τ(ai a j ) ≤

∑

i

|λi |2 τ(ai ). (12)

This finishes the proof, since a∗a = ∑
i |λi |2 a2

i + 2
∑

i< j Re
(
λiλ j

)
ai a j .

(ii) In view of our assumption on the λi ’s and the faithfulness of τ , the inequal-
ity (10) (resp. (11)) is an equality for some i (resp. for some pair (i, j) with i 
= j)
if and only if

∑
j 
=i ai a j − ai + a2

i = 0 (resp. if and only if ai a j = 0). It follows

that the inequality (12) is an equality if and only if
∑

j 
=i ai a j − ai + a2
i = 0 for

all i and ai a j = 0 for all i 
= j , i.e. if and only if ai = a2
i for all i and ai a j = 0

for all i 
= j . ��
Corollary A.3 Let G be a group and m, n two positive integers. We consider m
orthogonal idempotent n × n matrices E1, . . . , Em with entries in the von Neu-
mann algebra N G and let a1 = t(n)(E1), . . . , am = t(n)(Em) be their center-val-
ued traces. We also consider m complex numbers λ1, . . . , λm and positive integers
k1, . . . , km.

(i) If a = λ1ak1
1 + · · · + λmakm

m ∈ N G then

τ(a∗a) ≤ |λ1 |2 τ
(

ak1
1

)
+ · · · + |λm |2 τ

(
akm

m

)
,

where τ is the canonical trace on N G.
(ii) Assume that the complex numbers λ1, . . . , λm are non-zero and distinct.

Then, the inequality of (i) above is an equality if and only if the matrix A =
λ1 E1 + · · · + λm Em is central in Mn(N G).

Proof (i) In view of Remark 2.2 (i), the operator ai is central, self-adjoint and satis-
fies the inequalities 0 ≤ ai ≤ I , where I ∈ N G is the identity operator; it follows
that 0 ≤ aki

i ≤ ai for all i = 1, . . . , m. On the other hand, our assumption on the
orthogonality of the Ei ’s implies that the matrix E1 + · · ·+ Em is also idempotent
and hence 0 ≤ a1 + · · · + am ≤ I (loc.cit.). It follows that ak1

1 + · · · + akm
m ≤ I

and hence the result is an immediate consequence of Proposition A.2 (i).
(ii) Since the λi ’s are non-zero and distinct, Lemma A.1 implies that the matrix

A is central if and only if this is the case for the matrices E1, . . . , Em . Since these
idempotent matrices are orthogonal, Remark 2.2 (ii) implies that they are central if
and only if their center-valued traces a1, . . . , am are orthogonal projections. On the
other hand, considering the C∗-algebra generated by the commuting self-adjoint
and non-negative operators a1, . . . , am , we conclude that this latter condition is
equivalent to the condition that the operators ak1

1 , . . . , akm
m be orthogonal projec-

tions. Hence, the proof is finished by invoking Proposition A.2 (ii). ��
Let G be a group and n a positive integer. Then, the canonical trace τ on the von
Neumann algebra N G induces a trace

τn : Mn(N G) −→ C,

which maps any matrix A = (ai j )i, j ∈ Mn(N G) onto
∑n

i=1 τ(aii ) ∈ C. If ZG is
the center of N G and a = t(n)(A) ∈ ZG the center-valued trace of a matrix A as
above, then τn(A) = nτ(a) ∈ C (cf. Theorem 2.1 (v)).



732 I. Emmanouil

Corollary A.4 Let G be a group, n a positive integer and E1, . . . , Em orthog-
onal idempotent n × n matrices with entries in the von Neumann algebra N G.
We fix an m-tuple of complex numbers (λ1, . . . , λm) and consider the matrix A =
λ1 E1 + · · · + λm Em ∈ Mn(N G) and its center-valued trace a = t(n)(A) ∈ ZG,
where ZG is the center of N G. Then,

nτ(a∗a) ≤ |λ1 |2 τn(E1) + · · · + |λm |2 τn(Em),

where τ is the canonical trace on N G and τn its extension to Mn(N G). The
inequality above is an equality if and only if the matrix A is central in Mn(N G).

Proof Without any loss of generality, we may assume that the λi ’s are non-zero and
distinct. Then, the result follows from Corollary A.3 by letting k1 = · · · = km = 1
therein. ��
Let G be a group, n a positive integer and A an n × n matrix with entries in the
group algebra CG. Then, the residue class of the trace tr(A) ∈ CG in the quotient
T (CG) = CG/[CG, CG] can be written as a sum

∑
[g]∈C(G) rg(A)[g], where

rg(A) ∈ C for all g ∈ G. If A′ is the induced n × n matrix with entries in the
von Neumann algebra N G, then r1(A) = τn(A′), where τn is the extension of the
canonical trace τ of N G to the matrix algebra Mn(N G). Moreover, the arguments
in the proof of Proposition 2.6 can be used in order to show that the center-valued
trace a = t(n)(A′) is the operator

a = 1

n

∑

g∈G f

rg(A)

[G : Cg] Lg ∈ N G.

Corollary A.5 (cf. [1]) Let G be a group, n a positive integer and E1, . . . , Em
orthogonal idempotent n × n matrices with entries in the group algebra CG. We
fix an m-tuple of complex numbers (λ1, . . . , λm) and consider the matrix A =
λ1 E1 + · · · + λm Em ∈ Mn(CG). Then, we have

∑

[g]∈C f (G)

|rg(A) |2
[G : Cg] ≤ |λ1 |2 nr1(E1) + · · · + |λm |2 nr1(Em),

with equality holding if and only if the matrix A is central in Mn(CG).

Proof Let E ′
1, . . . , E ′

m and A′ be the matrices with entries in the von Neumann
algebra N G, which are induced from the matrices E1, . . . , Em and A respectively.
Then, τn(E ′

i ) = r1(Ei ) for all i = 1, . . . , m, where τn is the extension of the
canonical trace τ of N G to the matrix algebra Mn(N G), and

τ(a∗a) = ‖a(δ1)‖2 = 1

n2

∑

g∈G f

| rg(A) |2
[G : Cg]2 = 1

n2

∑

[g]∈C f (G)

| rg(A) |2
[G : Cg] ,

where a = t(n)(A′) ∈ N G is the center-valued trace of A′. Since A′ = λ1 E ′
1 +

· · · + λm E ′
m , the result is an immediate consequence of Corollary A.4. ��
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