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Laboratoire d’Analyse et de Mathématiques Appliquées, UMR CNRS 8050, 5
boulevard Descartes, Champs-sur-Marne, F-77454 Marne-la-Vallée, Cedex 2, France.

E-mail : djalil.chafai(at)univ-mlv.fr

Url : http://perso-math.univ-mlv.fr/users/chafai.djalil/

Olivier Guédon
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INTERACTIONS BETWEEN
COMPRESSED SENSING

RANDOM MATRICES AND
HIGH DIMENSIONAL GEOMETRY

Djalil Chafäı, Olivier Guédon, Guillaume Lecué, Alain Pajor

Abstract. — These notes are an expanded version of short courses given at the oc-
casion of a school held in Université Paris-Est Marne-la-Vallée, 16–20 November 2009,
by Djalil Chafäı, Olivier Guédon, Guillaume Lecué, Alain Pajor, and Shahar Mendel-
son. The central motivation is compressed sensing, involving interactions between
empirical processes, high dimensional geometry, and random matrices.
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INTRODUCTION

Compressed sensing also referred to in the literature as compressive sensing or com-
pressive sampling is a framework that enables to get approximate and exact recon-
struction of sparse signals from incomplete measurements. The existence of efficient
algorithms for the reconstruction, such as the `1-minimization, and the potential of
applications in signal processing and imaging, has led to a fast and wide develop-
ment of the theory after the seminal articles by D. Donoho [Don06], E. Candes, J.
Romberg and T. Tao [CRT06] and E. Candes and T. Tao [CT06].

The ideas and principles underlying the discoveries of these phenomena in high
dimensions are related to problems and progresses from Approximation Theory. One
significant example of such an interaction is the study of Gelfand and Kolmogorov
widths of classical Banach spaces. There is already a large literature on compressed
sensing, on both theoretical and numerical aspects. Our aim is not to survey the
state of the art of this recent field developing with great speed, but to highlight
and to study some interactions with other fields of mathematics, in particular with
asymptotic geometric analysis, random matrices and empirical processes.

To introduce the subject, let T ⊂ RN and let A be an n×N real matrix with rows
Y1, . . . , Yn ∈ RN . Consider the general problem of reconstructing any vector x ∈ T
from the data Ax ∈ Rn, that is from the known measurements

〈Y1, x〉, . . . , 〈Yn, x〉.

Classical linear algebra suggests that the number n of measurements should be at least
as large as its dimension N in order to ensure reconstruction. Compressed sensing
provides a way of reconstructing the original signal x from its compression Ax that
takes only a small amount of linear measurements, that is with n� N . Clearly one
needs some a priori hypothesis on the subset T of signals that we want to reconstruct
and of course, the matrix A should be suitably chosen.

The first point concerns the subset T and is a matter of complexity. Many tools
within this framework were developed in Approximation Theory and in Geometry of
Banach Spaces. This is one of our goal to bring forward these tools.
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The second point is concerned with the design of the measurement matrix A. So
far the only good matrices are random sampling matrices. They are obtained in many
examples by sampling Y1, . . . , Yn ∈ RN in a suitable way. This is where probability
enters. These random sampling matrices will be of Gaussian or Bernoulli (±1) type or
random sub-matrices of the discrete Fourier N ×N matrix (partial Fourier matrices).
There is a huge technical difference in the study of unstructured compressive matrices
(with i.i.d entries) and other case such as partial Fourier matrices. This is one of our
goal to study the main tools from probability theory that fall within this framework.
These are tools from classical probabilistic inequalities, concentration of measure and
empirical processes as well as from random matrix theory.

This is precisely the purpose of Chapter 1 to present some basic tools and prelim-
inary background. This chapter will look briefly at elementary properties of Orlicz
spaces in relation with tail inequalities of random variables. An important connec-
tion between high dimensional geometry and the study of empirical processes comes
from the behavior of the sum of independent centered random variables with sub-
exponential tails. Discretization is an important step in the study of empirical pro-
cesses. One approach is given by a net argument. The size of the discrete space may
be estimated by the covering numbers. The basic tools to estimate covering numbers
from above, such as Sudakov inequality, are presented in the last part of Chapter 1.

Chapter 2 is devoted to compressed sensing. The purpose is to provide some of the
key mathematical insights underlying this new sampling method. We present first
the exact reconstruction problem as introduced above. The a priori hypothesis on the
subset of signals T that we investigate is sparsity. A vector is said to be m-sparse
if it has at most m non-zero coordinates. An important feature of this subset is its
peculiar structure: its intersection with the Euclidean unit sphere is the unions of
unit spheres supported on m-dimensional coordinate subspaces. This set is highly
compact when the degree of compacity is measured in terms of covering numbers. It
makes it a small subset of the sphere as far as m� N , which will be the case.

A fundamental feature of compressive sensing is that practical reconstruction can
be performed by using efficient algorithms such as the `1-minimization method which
consists, for a given data y = Ax, to perform the “linear programming”:

min
t∈RN

N∑
i=1

|ti| subject to At = y.

At this step, the problem comes to find matrices for which this algorithm reconstructs
any m-sparse vectors with m relatively large. A study of the cone of constraints
to ensure that every m-sparse vector can be reconstructed by the `1-minimization
method leads to a necessary and sufficient condition known as the null space property
of order m:

∀h ∈ kerA, h 6= 0, ∀I ⊂ [N ], |I| ≤ m,
∑
i∈I
|hi| <

∑
i∈Ic
|hi|.

This property has a nice geometric interpretation on the structure of faces of random
polytopes called neighborliness. Indeed, if P is the polytope obtained by taking the
symmetric convex hull of the columns of A, the null space property of order m for
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A is equivalent to a neighborliness property of order m for P . This means that the
matrix A which maps the vertices of the cross-polytope

BN1 =
{
t ∈ RN :

N∑
i=1

|ti| ≤ 1
}

onto the vertices of P preserves the structure of k-dimensional faces up to the dimen-
sion k = m; a remarkable connection between compressed sensing and high dimen-
sional geometry due to D. Donoho [Don05].

Unfortunately, the null space property is not easy to verify. An ingenious sufficient
condition is the so-called Restricted Isometry Property (RIP) of order m that requires
that all column sub-matrices of size m of the matrix are well-conditioned. More
precisely, we say that A satisfies the RIP of order p with parameter δ = δp if

1− δp 6 |Ax|22 6 1 + δp

holds for all p-sparse unit vectors x ∈ RN . An important feature of this concept is
that if A satisfies the RIP of order 2m with parameter δ small enough then every
m-sparse vector can be reconstructed by the `1-minimization method. Even if this
RIP condition is difficult to check on a given matrix, it actually holds true with high
probability for certain models of random matrices and is easily checked for some of
them.

Here is the point where probabilistic methods come into play. Among good unstruc-
tured sampling matrices we shall study the case of Gaussian and Bernoulli random
matrices. The case of partial Fourier matrices, which is more delicate will be studied
in Chapter 5. Checking the restricted isometry property for the first two models may
be treated along a simple scheme, namely, the ε net argument presented in Chapter
2.

Another angle to tackle the problem of reconstruction by `1-minimization is to
analyse the Euclidean diameter of the section of the cross-polytope BN1 with the
kernel of A. This study leads to the notion of Gelfand widths, particularly for the
cross-polytope BN1 . Its Gelfand widths are defined by the numbers

dn(BN1 , `
N
2 ) = inf

codimS6n
rad (S ∩BN1 ), n = 1, . . . , N

where rad (S ∩ BN1 ) = max{ |x| : x ∈ S ∩ BN1 } denotes the half Euclidean diameter
of the section of BN1 .

Significant work was done in this direction in the seventies. This viewpoint from
Approximation Theory and Asymptotic Geometric Analysis enlighten a new aspect
of the problem and is based on a celebrated result of B. Kashin [Kaš77] stating that

dn(BN1 , `
N
2 ) 6

C√
n

logO(1)(N/n)

where C is some numerical constant. The relevance of this result in compressed
sensing is highlighted by the following connection.

Let 1 ≤ m ≤ n, if

rad (kerA ∩BN1 ) < 1/2
√
m
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then every m-sparse vectors can be reconstructed by `1-minimization.

From this perspective, the goal is to estimate the diameter rad (kerA ∩ BN1 ) from
above. This is discussed in detail for some model of random matrices. The connection
with the RIP is clarified in the following result.

Assume that A satisfies the RIP of order p with parameter δ, then

rad (kerA ∩BN1 ) ≤ C
√
p

1

1− δ

where C is a numerical constant. Therefore rad (kerA ∩ BN1 ) < 1/2
√
m is

satisfied with m = O(p).

The `1-minimization method extends to the study of approximate reconstruction
of vectors which are not far from sparse vectors. Let x ∈ RN and let x] be a minimizer
of

min
t∈RN

N∑
i=1

|ti| subject to At = Ax.

Again, the notion of width appears very useful. We prove the following:

Assume that rad (kerA∩BN1 ) < 1/4
√
m, then for any I ⊂ {1, . . . , N} such that

|I| 6 m and any x ∈ RN , we have

|x− x]|2 ≤
1√
m

∑
i/∈I

|xi|.

This applies in particular to unit vectors of the space `Np,∞, 0 < p < 1 for which

min|I|6m
∑
i/∈I |xi| is O(m1−1/p).

In the last section of Chapter 2 we introduce the parameter of complexity `∗(T ) of
a subset T ⊂ RN defined by

`∗(T ) = E sup
t∈T

Xt,

where (Xt) is the Gaussian process Xt =
∑N
i=1 giti, indexed by t = (ti)

N
i=1 ∈ T and

g1, ..., gN are independent N(0, 1) Gaussian random variables. This kind of parameter
plays an important role in empirical processes and in Geometry of Banach spaces
([Mil86, PTJ86, Tal87]). It allows to control the size of rad (kerA ∩ T ) which as
we understand is a crucial issue in approximate reconstruction.

This study will be deepen in Chapter 3. In this Chapter we first present classical
results from the Theory of Gaussian processes. To make the link with compressed
sensing, observe that if A is a n × N matrix with row vectors Y1, . . . , Yn, then the
restricted isometry property of order p with parameter δp can be translated in terms
of an empirical process property since

δp = sup
x∈S2(Σp)

∣∣∣ 1
n

n∑
i=1

〈Yi, x〉2 − 1
∣∣∣

where S2(Σp) is the set of unit one p-sparse vectors of RN . While Chapter 2 makes
use of a simple ε net argument to study such process, we present in Chapter 3 the
chaining and generic chaining techniques based on metric complexity measures such
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as the γ2 functional. This γ2 functional is precisely related to the parameter `∗(T ) by
the majorizing measure theorem of M. Talagrand [Tal87]. This technique enables to
provide a criterion implying a restricted isometry property for unstructured models
of random matrices, which include the Bernoulli and Gaussian models.

It is worth noticing that the ε net argument, the chaining argument and the
generic mechanism are all techniques sharing the same couple of ideas: one of
which is the classical trade-off between complexity and concentration and the
other one is an approximation principle. For instance, consider a Gaussian matrix
A = n−1/2(gij)16i6n,16j6N where the gij ’s are i.i.d. standard Gaussian variables.
Let T be a subset of the unit sphere SN−1 of RN . A classical problem is to understand
how A acts on T . In particular, does A preserve the Euclidean norm on T? In the
Compressed Sensing setup, the “input” dimension N is much larger than the number
of measurements n, because A is used as a compression matrix. So clearly A cannot
preserve the Euclidean norm on the whole sphere SN−1. Hence, it is natural to
identify the subsets T of SN−1 such that A acts on T in a norm preserving way. Let
start with a single point x ∈ T . Then for any ε ∈ (0, 1), with probability greater
than 1− 2 exp(−c0nε2),

1− ε 6 |Ax|22 6 1 + ε.

This result is the one expected since E|Ax|22 = |x|22 (we say that the standard Gaussian
measure is isotropic) and the Gaussian measure on RN has strong concentration
properties. Thus proving that A acts in a norm preserving way on a single vector
is only a matter of isotropicity and concentration. Now, we want to see how many
points in T share this property simultaneously. This is where the trade-off between
complexity and concentration is at stack. A simple union bound tells us that if
Λ ⊂ T has a cardinality less than exp(c0nε

2/2), then, with probability greater than
1− 2 exp(−c0nε2/2),

∀x ∈ Λ 1− ε 6 |Ax|22 6 1 + ε.

This means that A preserves the norm of all the vectors in Λ at the same time as
long as |Λ| 6 exp(c0nε

2/2). Have we had other entries in A with other concentration
properties, we will have ended up with other cardinality for |Λ|. As a consequence,
it is possible to control the norm of the images by A of exp(c0nε

2/2) points in T at
the same time. The first way of choosing Λ that may come to mind is to use an ε
net of T with respect to `N2 and then to ask if the norm preserving property of A on
Λ extends to T? Indeed, if m ≤ C(ε)n log−1

(
N/n), there exists an ε net Λ of size

exp(c0nε
2/2) in S2(Σm) for the Euclidean metric. And, by what is now called the ε

net argument, we can describe all the points in S2(Σm) using only the point in Λ:

Λ ⊂ S2(Σm) ⊂ (1− ε)−1conv(Λ).

This allows the norm preserving property of A on Λ to be extended to the entire set
S2(Σm). This was the scheme used in Chapter 2.

But this scheme does not apply to any set T in SN−1. That is why we present in
Chapter 3, the chaining and generic chaining methods. Unlike the ε net argument
which demanded only to know how A acts on a single ε net of T , these two methods
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require to study the action of A on a sequence (Ts) of subsets of T with an exponen-
tially increasing cardinality. In the case of the chaining argument, Ts can be chosen
as an εs net of T where εs is chosen so that |Ts| = 2s and for the generic chaining
argument, the choice of (Ts) is recursive: for large values of s, the set Ts is a maximal
separated set in T of cardinality 22s and for small values of s, the construction of Ts
depends on the sequence (Tr)r>s+1. For these methods, the approximation argument
follows from the fact that d`N2 (t, Ts) tends to zero when s tends to infinity for any

t ∈ T . And, the trade-off complexity/concentration is used at every s stage of the ap-
proximation of T by Ts. The metric complexity parameter coming from the chaining
method is called the Dudley entropy integral∫ ∞

0

√
logN(T, d, ε) dε

while the one coming out of the generic chaining mechanism is the γ2 functional

γ2(T, `N2 ) = inf
(Ts)s

sup
t∈T

∞∑
s=0

2s/2d`N2 (t, Ts)

where the infimum is taken over all sequences (Ts) of subsets of T such that |T0| 6 1
and |Ts| 6 22s for every s > 1. In Chapter 3, we prove that A acts in a norm
preserving way on T with probability exponentially in n close to 1 as long as

γ2(T, `N2 ) = O(
√
n).

In particular, in the case T = S2(Σm) treated in Compressed Sensing, this condition
implies m = O

(
n log−1

(
N/n

))
which is the same condition obtained using the ε net

argument in Chapter 2. That is the reason why, as long as norm preserving properties
of random operator are concerned, the results obtained in Chapter 3 generalizes the
one of Chapter 2. Nevertheless, the norm preserving property of A on a set T implies
an exact reconstruction property of A of all m-sparse vectors by the `1-minimization
method only when T = S2(Σm). In this case, this norm preserving property is the
restricted isometry property of order m.

On the other hand, the Restricted Isometry Property can be translated as a control
on the largest and smallest singular values of all sub-matrices of a certain size. The
singular values of matrices is precisely the subject of Chapter 4. An m× n matrix A
with m 6 n maps the unit sphere to an ellipsoid, and the half lengths of the principle
axes of this ellipsoid are precisely the singular values s1(A) > · · · > sm(A) of A. In
particular,

s1(A) = max
|x|2=1

|Ax|2 = ‖A‖2→2 and sn(A) = min
|x|2=1

|Ax|2.

Geometrically, A is seen as a correspondence–dilation between two orthonormal bases.
In matrix form UAV ∗ = diag(s1(A), . . . , sm(A)) for a couple of unitary matrices U
and V of size m×m and n× n. This is the so called singular value decomposition –
SVD for short – which has a tremendous importance in numerical mathematics. One
can read on the singular values the rank and the norm of the inverse of the matrix.
The singular values are the eigenvalues of the Hermitian matrix

√
AA∗. The largest
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and smallest singular values enter the definition of the condition number s1/sm which
allows to control the behavior of linear systems under perturbations of small norm.

The first part of Chapter 4 is a compendium on the singular values of deterministic
matrices, including main useful perturbation inequalities, mostly without proofs. The
Gram–Schmidt algorithm used for the rows and the columns of A allows to construct
a bidiagonal matrix which is unitary equivalent to A. This structural fact is at the
heart of most numerical algorithms for the actual computation of the singular values.

The second part of Chapter 4 deals with random matrices with i.i.d. entries and
their singular values. The aim is to propose a cultural tour in this vast and growing
subject. This tour begins with Gaussian random matrices with i.i.d. entries forming
the Ginibre Ensemble. The density is proportional to G 7→ exp(−Tr(GG∗)). The
matrix W = GG∗ follows a Wishart law, a sort of multivariate χ2. The unitary bidi-
agonalization allows to compute the density of the singular values of these Gaussian
random matrices, which turns out to be proportional to a function of the form

s 7→
∏
k

sαk e
−s2k

∏
i 6=j

|s2
i − s2

j |β .

The change of variable sk 7→ s2
k reveals Laguerre weights in front of the Vandermonde

determinant, the starting point of an orthogonal polynomials story. As for most
random matrix ensembles, the determinant expresses a logarithmic repulsion. Here it
comes from the Jacobian of the SVD. Such Gaussian models allow explicit yet heavy
computations. Many large dimensional aspects of random matrices depend only on
the first two moments of the entries, and this makes the Gaussian case universal. The
most well known universal asymptotic result is indubitably the Marchenko-Pastur
theorem. More precisely if M is an m×n random matrix with i.i.d. entries of variance
n−1/2 then the empirical counting probability measure of the singular values of M

1

m

m∑
k=1

δsk(M)

tends weakly, when n,m→∞ with m/n→ ρ ∈ (0, 1], to the Marchenko-Pastur law

1

ρπx

√
((x+ 1)2 − ρ)(ρ− (x− 1)2) 1[1−√ρ,1+

√
ρ](x)dx.

We provide a proof of the Marchenko-Pastur theorem by using the methods of mo-
ments. When the entries of M have zero mean and finite fourth moment, the Bai-Yin
theorem furnishes the convergence at the edge of the support, in the sense that

sm(M)→ 1−√ρ and s1(M)→ 1 +
√
ρ.

Chapter 4 simply gives some basic aspects of the study of the singular values of
random matrices, an immense and fascinating subject still under active development.

As Chapter 2 already pointed out, the study of the radius of the section of the cross-
polytope with the kernel of a matrix is central in approximate reconstruction. This
approach is pursued in Chapter 5 on the model of partial discrete Fourier matrices
or Walsh matrices. The discrete Fourier matrix and the Walsh matrix are particular
cases of orthogonal matrices with bounded L∞ entries. More generally, we consider
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matrices whose rows are a system of orthogonal vectors φ1, . . . , φN such that for any
i = 1, . . . , N , |φi|2 = K and |φi|∞ ≤ 1/

√
N . Several other models fall into this

setting. Let Y be the random vector defined by Y = φi with probability 1/N and let
Y1, . . . , Yn be independent copies of Y . One main result of Chapter 5 indicates that
if

m ≤ C1 K
2 n

logN(log n)3

then with probability greater than

1− C2 exp
(
−C3K

2n/m
)

the matrix Φ = (Y1, . . . , Yn)
>

satisfies

rad (ker Φ ∩BN1 ) <
1

2
√
m
.

In Compressed Sensing, n is chosen relatively small with respect to N and the
result is that up to logarithmic factors, if m is of the order of n, the matrix Φ has
the property that every m-sparse vectors can be exactly reconstructed by the `1-
minimization algorithm. The numbers C1, C2 and C3 are numerical constants and
changing C1 by a smaller constant leads to allow approximate reconstruction by the
`1-minimization algorithm. The randomness introduced here is called the empirical
method but it is worth noticing that it can be replaced by the method of selectors,
defining Φ with its row vectors {φi, i ∈ I} where I = {i, δi = 1} and δ1, . . . , δN are
independent identically distributed selectors taking values 1 with probability δ = n/N
and 0 with probability 1− δ. In this case the cardinality of I is approximately n with
high probability.

Within the framework of selection of characters, the situation is different. A useful
observation is that by orthogonality of the system {φ1, . . . , φN}, we have ker Φ =
span {φj}j∈J where {Yi}ni=1 = {φi}i/∈J . Therefore the previous statement is identical
to a result which is to select |J | ≥ N − n vectors in {φ1, . . . , φN} such that the `N1
norm and the `N2 norm are comparable on the vectorial span of these vectors. Indeed,
the conclusion rad (ker Φ ∩BN1 ) < 1

2
√
m

is equivalent to the following inequality

∀(αj)j∈J ,

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
2

≤ 1

2
√
m

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
1

.

At issue is how large can be the cardinality of J so that the comparison between the
`N1 norm and the `N2 norm on the subspace spanned by {φj}j∈J is better than the
trivial Hölder inequality. Choosing n of the order of N/2 gives already a remarkable
result: there exists a subset J of cardinality greater than N/2 such that

∀(αj)j∈J ,
1√
N

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
1

≤

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
2

≤ C4
(logN)2

√
N

∣∣∣∣∣∣
∑
j∈J

αjφj

∣∣∣∣∣∣
1

.

This is a Kashin type result. Nevertheless, it is important to remark that in the state-
ment of Dvoretzky [FLM77] or Kashin [Kaš77] theorem about Euclidean sections
of the cross-polytope, the subspace is such that the `N2 norm and the `N1 norm are
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equivalent (without the factor logN) but has no particular structure. In the setting
of Harmonic Analysis, the issue is to find a subspace with very strong properties. It
should be a coordinates subspace with respect to the basis given by {φ1, . . . , φN}. J.
Bourgain noticed that a factor

√
logN is necessary in the last inequality above. Let

µ being the discrete probability measure on RN with weight 1/N on each vectors of
the canonical basis, the above inequalities tell that for every scalars (αj)j∈J ,∥∥∥∥∥∥

∑
j∈J

αjφj

∥∥∥∥∥∥
L1(µ)

≤

∥∥∥∥∥∥
∑
j∈J

αjφj

∥∥∥∥∥∥
L2(µ)

≤ C4 (logN)2

∥∥∥∥∥∥
∑
j∈J

αjφj

∥∥∥∥∥∥
L1(µ)

.

This explains the deep connection between Compressed Sensing and the problem of
selecting a large part of a system of characters such that on the vectorial span of this
family, the L2(µ) and the L1(µ) norms are as close as possible, where µ is a probability
measure. This subject of Harmonic Analysis goes back to the construction of Λ(p)
sets which are not Λ(q) for q > p where powerful methods of selectors were developed
by J. Bourgain [Bou89]. M. Talagrand proved in [Tal98] that there exists a small
numerical constant δ0 and a subset J of cardinality greater than δ0N such that for
every scalars (αj)j∈J ,∥∥∥∥∥∥

∑
j∈J

αjφj

∥∥∥∥∥∥
L1(µ)

≤

∥∥∥∥∥∥
∑
j∈J

αjφj

∥∥∥∥∥∥
L2(µ)

≤ C5

√
logN log logN

∥∥∥∥∥∥
∑
j∈J

αjφj

∥∥∥∥∥∥
L1(µ)

.

It is the purpose of Chapter 5 to emphasize the connections between Compressed
Sensing and these problems of Harmonic Analysis. Tools of empirical processes are at
the heart of the technics of proof. We will present classical results from the theory of
empirical processes that are needed for the proof of the main results of the chapter.
We will enlighten about how techniques from Geometry of Banach Spaces are relevant
in this setting. We will also present the strategy with regard to extending the result
of M. Talagrand [Tal98] to a Kashin type setting.





CHAPTER 1

EMPIRICAL METHODS AND HIGH DIMENSIONAL
GEOMETRY

This chapter is devoted to the presentation of classical tools that will be used within
this book. We present some elementary properties of Orlicz spaces and develop the
particular case of ψα random variables. Several characterization are given in terms
of tail estimate, Laplace transform and moments behavior. One of the important
connection between high dimensional geometry and the study of empirical processes
comes from the behavior of the sum of (centered) ψα random variables. An important
part of these preliminaries concentrates on this subject. We illustrate these connec-
tions with the presentation of the Johnson-Lindenstrauss lemma. The last part of
this chapter is devoted to the study of covering numbers. We focus our attention on
some elementary properties and on the presentation of methods to estimate upper
bounds of these covering numbers.

1.1. Presentation of the Orlicz spaces

An Orlicz space is a function space which extends naturally the classical Lp spaces
when 1 ≤ p ≤ +∞. A function ψ : [0,∞) → [0,∞) is an Orlicz function if it is a
convex increasing function such that ψ(0) = 0 and ψ(x)→∞ when x→∞.

Definition 1.1.1. — Let ψ be an Orlicz function, for any real random variable X
on a measurable space (Ω, σ, µ), we define its Lψ norm by

‖X‖ψ = inf
{
c > 0 : Eψ

(
|X|/c

)
6 ψ(1)

}
.

The space Lψ(Ω, σ, µ) = {X : ‖X‖ψ <∞} is called the Orlicz space associated to ψ.

It is well known that Lψ is a Banach space. Classical examples of Orlicz functions
are for p > 1 and α > 1

∀x ≥ 0, φp(x) = xp/p and ψα(x) = exp(xα)− 1.

The Orlicz space associated to φp is the classical Lp space. It is also clear by the
theorem of monotone convergence that the infimum in the definition of the Lψ norm
of a random variable X, if finite, is attained at ‖X‖ψ.
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Let ψ be a nonnegative convex function on [0,∞). Its convex conjugate ψ∗ (also
called the Legendre transform) is defined on [0,∞) by:

∀y ≥ 0, ψ∗(y) = sup
x>0
{xy − ψ(x)}.

The convex conjugate of an Orlicz function is also an Orlicz function.

Proposition 1.1.2. — Let ψ be an Orlicz function and ψ∗ be its convex conjugate.
For every real random variables X ∈ Lψ and Y ∈ Lψ∗ ,

E|XY | 6 (ψ(1) + ψ∗(1)) ‖X‖ψ ‖Y ‖ψ∗ .

Proof. — By homogeneity, we can assume ‖X‖ψ = ‖Y ‖ψ∗ = 1. By definition of the
convex conjugate, we have

|XY | 6 ψ (|X|) + ψ∗ (|Y |) .

Taking the expectation, since Eψ(|X|) ≤ ψ(1) and Eψ∗(|Y |) 6 ψ∗(1), we get that
E|XY | ≤ ψ(1) + ψ∗(1).

It is not difficult to observe that if φp(t) = tp/p then φ∗p = φq where p−1 + q−1 = 1
(it is also known as Young’s inequality). In this case, Proposition 1.1.2 corresponds
to Hölder inequality.

Any information about the ψα norm of a random variable is very useful to describe
a tail behavior. This will be explained in Theorem 1.1.5. For instance, we say that
X is a sub-Gaussian random variable when ‖X‖ψ2

< ∞, we say that X is a sub-

exponential random variable when ‖X‖ψ1
< ∞. In general, we say that X is ψα

when ‖X‖ψα < ∞. It is important to notice (see Corollary 1.1.6 and Proposition

1.1.7) that for any 1 ≤ p < +∞, for any α2 > α1 ≥ 1

L∞ ⊂ Lψα2
⊂ Lψα1

⊂ Lp.

One of the main goal of these preliminaries will be to understand the behavior of the
maximum of a family of Lψ-random variables and of the sum and the product of ψα
random variables. We start with a general maximal inequality.

Proposition 1.1.3. — Let ψ be an Orlicz function. Then, for any positive integer
n and any real valued random variables X1, . . . , Xn,

E max
1≤i≤n

|Xi| ≤ ψ−1(nψ(1)) max
1≤i≤n

‖Xi‖ψ,

where ψ−1 is the inverse function of ψ. Moreover if ψ is such that

∃ c > 0, ∀x, y ≥ 1/2, ψ(x)ψ(y) 6 ψ(c x y) (1.1)

then ∥∥∥∥ max
16i6n

|Xi|
∥∥∥∥
ψ

6 c max
{

1/2, ψ−1(2n)
}

max
16i6n

‖Xi‖ψ .

where c is the same as in (1.1).
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Remark 1.1.4. — (i) Since for any x, y ≥ 1/2, (ex − 1)(ey − 1) ≤ ex+y ≤ e4xy ≤
(e8xy−1), we get that for any α ≥ 1, ψα satisfies the assumption (1.1) with c = 81/α.
Moreover, the function ψα is such that ψ−1

α (nψα(1)) ≤ (1+log(n))1/α and ψ−1
α (2n) =

(log(1 + 2n))1/α.
(ii) The assumption (1.1) may be weakened by lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) <∞.
(iii) By monotony of ψ, for n ≥ ψ(1/2)/2, max

{
1/2, ψ−1(2n)

}
= ψ−1(2n).

Proof. — By homogeneity, we can assume that for any i = 1, . . . , n, ‖Xi‖ψ ≤ 1.
The first inequality is a simple consequence of Jensen inequality. Indeed,

ψ(E max
1≤i≤n

|Xi|) ≤ Eψ( max
1≤i≤n

|Xi|) ≤
n∑
i=1

Eψ(|Xi|) ≤ nψ(1).

To prove the second assertion, we define y = max{1/2, ψ−1(2n)}. For any i =
1, . . . , n, let xi = |Xi|/cy. We observe that if xi ≥ 1/2 then we have by (1.1)

ψ (|Xi|/cy) ≤ ψ(|Xi|)
ψ(y)

.

Also note that by monotony of ψ,

ψ( max
1≤i≤n

xi) ≤ ψ(1/2) +

n∑
i=1

ψ(xi)1I{xi ≥ 1/2}.

Therefore, we have

Eψ
(

max
16i6n

|Xi|/cy
)

6 ψ(1/2) +

n∑
i=1

Eψ (|Xi|)/cy) 1I{(|Xi|)/cy) ≥ 1/2}

≤ ψ(1/2) +
1

ψ(y)

n∑
i=1

Eψ(|Xi|) ≤ ψ(1/2) +
nψ(1)

ψ(y)
.

From the convexity of ψ and the fact that ψ(0) = 0, we have ψ(1/2) ≤ ψ(1)/2. The
proof is finished since by definition of y, ψ(y) ≥ 2n.

For every α ≥ 1, there are very precise connections between the ψα norm of a
random variable, the behavior of its Lp norms, the tail estimates and the Laplace
transform. We sum up these connections in the following Theorem.

Theorem 1.1.5. — Let X be a real valued random variable and α > 1. The following
assertions are equivalent:
(1) There exists K1 > 0 such that ‖X‖ψα 6 K1.

(2) There exists K2 > 0 such that for every p ≥ α,

(E|X|p)1/p 6 K2 p
1/α.

(3) There exist K3,K
′
3 > 0 such that for every t ≥ K ′3,

P (|X| > t) 6 exp
(
− tα/Kα

3

)
.

Moreover, we have

K2 ≤ 2eK1,K3 ≤ eK2,K
′
3 ≤ e2K2 and K1 ≤ 2 max(K3,K

′
3).



20 CHAPTER 1. EMPIRICAL METHODS AND HIGH DIMENSIONAL GEOMETRY

In the case α > 1, let β be such that 1/α + 1/β = 1. The preceding assertions are
also equivalent to the following:
(4) There exist K4,K

′
4 > 0 such that for every λ ≥ 1/K ′4,

E exp
(
λ|X|

)
6 exp (λK4)

β
.

Moreover, K4 ≤ K1, K ′4 ≤ K1, K3 ≤ 2K4 and K ′3 ≤ 2Kβ
4 /(K

′
4)α−1.

Proof. — We start by proving that (1) implies (2). By definition of the Lψα norm,
we have

E exp

(
|X|
K1

)α
≤ e.

Moreover, for every positive integer q and every x ≥ 0, expx ≥ xq/q!. Hence

E|X|αq ≤ e q!Kαq
1 ≤ eqqKαq

1 .

For any p ≥ α, let q be the positive integer such that qα ≤ p < (q + 1)α then

(E|X|p)1/p ≤
(
E|X|(q+1)α

)1/(q+1)α

≤ e1/(q+1)αK1(q + 1)1/α

≤ e1/pK1

(
2p

α

)1/α

≤ 2eK1p
1/α

which means that (2) holds true with K2 = 2eK1.
We now prove that (2) implies (3). We apply Markov inequality and the estimate

of (2) to deduce that for every t > 0,

P(|X| ≥ t) ≤ inf
p>0

E|X|p

tp
≤ inf
p≥α

(
K2

t

)p
pp/α = inf

p≥α
exp

(
p log

(
K2p

1/α

t

))
.

Choosing p = (t/eK2)α ≥ α, we get that for t ≥ eK2α
1/α then p ≥ α and we conclude

that

P(|X| ≥ t) ≤ exp (−tα/(K2e)
α) .

Since α ≥ 1, α1/α ≤ e and (3) holds true with K ′3 = e2K2 and K3 = eK2.
To prove that (3) implies (1), assume that (3) holds true and let c = 2 max(K3,K

′
3).

Then by integration by parts, we get

E exp

(
|X|
c

)α
− 1 =

∫ +∞

0

αuα−1eu
α

P(|X| ≥ uc)du

≤
∫ K′3/c

0

αuα−1eu
α

du +

∫ +∞

K′3/c

αuα−1 exp

(
uα
(

1− cα

Kα
3

))
du

= exp

(
K ′3
c

)α
− 1 +

1
cα

Kα
3
− 1

exp

(
−
(
cα

Kα
3

− 1

)(
K ′3
c

)α)
≤ 2 cosh(K ′3/c)

α − 1 ≤ 2 cosh(1/2)− 1 ≤ e− 1

by definition of c and the fact that α ≥ 1. This proves that (1) holds true with
K1 = 2 max(K3,K

′
3).
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We now assume that α > 1 and prove that (4) implies (3). We apply Markov
inequality and the estimate of (4) to get that for every t > 0,

P(|X| > t) 6 inf
λ>0

exp(−λt)E exp
(
λ|X|

)
6 inf
λ≥1/K′4

exp
(
(λK4)β − λt

)
.

Choosing λt = 2(λK4)β we get that if t ≥ 2Kβ
4 /(K

′
4)α−1, then λ ≥ 1/K ′4 and we

conclude that

P(|X| > t) ≤ exp (−tα/(2K4)α) .

This proves that (3) holds true with K3 = 2K4 and K ′3 = 2Kβ
4 /(K

′
4)α−1.

It remains to prove that (1) implies (4). We have already observed that the convex
conjugate of the function φα(t) = tα/α is φβ which implies that for any x, y > 0,

xy ≤ xα

α
+
yβ

β
.

Hence for every λ > 0, by convexity of the exponential

exp(λ|X|) ≤ 1

α
exp

(
|X|
K1

)α
+

1

β
exp (λK1)

β

and taking the expectation, we get by definition of the Lψα norm that

E exp(λ|X|) ≤ e

α
+

1

β
exp (λK1)

β
.

We conclude that if λ ≥ 1/K1 then

E exp(λ|X|) ≤ exp (λK1)
β

which proves that (4) holds true with K4 = K1 and K ′4 = K1.

A simple corollary of Theorem 1.1.5 is the following connection between the Lp norms
of a random variable and its ψα norm.

Corollary 1.1.6. — For every α ≥ 1, for every real random variable X,

1

2e2
‖X‖ψα 6 sup

p>α

(E|X|p)1/p

p1/α
6 2e ‖X‖ψα .

Moreover for any α ≥ 1, L∞ ⊂ Lψα and ‖X‖ψα ≤ ‖X‖L∞ .

Proof. — This follows from the implications (1)⇒ (2)⇒ (3)⇒ (1) in Theorem 1.1.5
and from the computations of the constants K2, K3, K ′3 and K1. The moreover part
is a direct application of the definition of the ψα norm.

We conclude this part with a kind of Hölder inequality for ψα random variables.

Proposition 1.1.7. — Given p, q ∈ [1,+∞] be such that 1/p + 1/q = 1 and two
random variables X ∈ Lψp , Y ∈ Lψq , we have

‖XY ‖ψ1
≤ ‖X‖ψp ‖Y ‖ψq . (1.2)
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Moreover, if 1 ≤ α ≤ β then for every random variable X

‖X‖ψ1
≤ ‖X‖ψα ≤ ‖X‖ψβ .

Proof. — By homogeneity, we assume that ‖X‖ψp = ‖Y ‖ψq = 1. Since p and q are

conjugate, we know by Young inequality that for every x, y ∈ R, |xy| ≤ |x|p
p + |x|q

q .

By convexity of the exponential, we deduce that

E exp(|XY |) ≤ 1

p
E exp |X|p +

1

q
E exp |X|q ≤ e

which proves that ‖XY ‖ψ1
≤ 1.

The moreover part is a consequence of this result. Indeed, by definition of the
ψq-norm, the random variable Y = 1 satisifes ‖Y ‖ψq = 1. Hence applying (1.2) with

p = α and q being the conjugate of p, we get that for every α ≥ 1, ‖X‖ψ1
≤ ‖X‖ψα .

We also observe that for any β ≥ α, if δ ≥ 1 is such that β = αδ then we have

‖X‖αψα = ‖|X|α‖ψ1
≤ ‖|X|α‖ψδ = ‖X‖αψαδ

which proves that ‖X‖ψα ≤ ‖X‖ψβ .

1.2. Linear combination of centered Psi-alpha random variables

In this part we will focus on the case of centered ψα random variables when α ≥ 1.
We will present several results concerning the linear combination of such random
variable. The cases α = 2 and α 6= 2 are different. We will start by looking at
the case α = 2. Even if we will prove a sharp estimate for their linear combination,
we will also consider the simple and well known example of linear combination of
Rademacher. This example will show the limitation of the classification with the
ψα norm of certain random variables. However in the case α 6= 2, different regime
will appear in the tail estimates of such sum. This will be of importance in several
chapters of this book.

The sub-Gaussian case.— We start by taking a look to sums of ψ2 random vari-
ables. The following proposition can be seen as a generalization of the classical Ho-
effding inequality [Hoe63] since L∞ ⊂ Lψ2

.

Theorem 1.2.1. — Let X1, . . . , Xn be independent real valued random variables
such that for any i = 1, . . . , n, EXi = 0. Then∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
ψ2

6 c

(
n∑
i=1

‖Xi‖2ψ2

)1/2

where c ≤ 16.

Before proving the theorem, we start with the following lemma concerning the
Laplace transform of a ψ2 random variable which is centered. The fact that EX = 0
is crucial to improve the assertion (4) of Theorem 1.1.5.
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Lemma 1.2.2. — Let X be a ψ2 centered random variable. Then, for any λ > 0,
the Laplace transform of X satisfies

E exp(λX) 6 exp
(
eλ2 ‖X‖2ψ2

)
.

Proof. — By homogeneity of the statement, we can assume that ‖X‖ψ2 = 1. By the
definition of the Lψ2

norm, we know that

E exp
(
X2
)
≤ e and for any integer k,EX2k ≤ ek!

Let Y be an independent copy of X. By convexity of the exponential and Jensen
inequality, since EY = 0 we have

E exp(λX) ≤ EXEY expλ(X − Y ).

Moreover, the random variable X − Y is symmetric hence

EXEY expλ(X − Y ) = 1 +
λ2

2
EXEY (X − Y )2 +

+∞∑
k=2

λ2k

(2k)!
EXEY (X − Y )2k.

Obviously, EXEY (X − Y )2 = 2EX2 ≤ 2e and EXEY (X − Y )2k ≤ 4kEX2k ≤ e4kk!.
Since the sequence vk = (2k)!/3k(k!)2 is nondecreasing, we know that for k ≥ 2
vk ≥ v2 = 6/32 so that

∀k ≥ 2,
1

(2k)!
EXEY (X − Y )2k ≤ e4kk!

(2k)!
≤ e32

6

(
4

3

)k
1

k!
≤
(

4
√
e√
6

)k
1

k!
≤ ek

k!
.

It follows that for every λ > 0, E exp(λX) ≤ 1 + eλ2 +
∑+∞
k=2

(eλ2)k

k! = exp(eλ2).

Proof of Theorem 1.2.1. — It is enough to get an upper bound of the Laplace trans-
form of the random variable

∣∣∑n
i=1Xi

∣∣. Let Z =
∑n
i=1Xi then by independence of

the Xi’s, we get from Lemma 1.2.2 that for every λ > 0,

E exp(λZ) =
n∏
i=1

E exp(λXi) 6 exp

(
eλ2

n∑
i=1

‖Xi‖2ψ2

)
.

For the same reason, E exp(−λZ) 6 exp
(
eλ2

∑n
i=1 ‖Xi‖2ψ2

)
. Thus,

E exp(λ|Z|) 6 2 exp

(
3λ2

n∑
i=1

‖Xi‖2ψ2

)
.

We conclude that for any λ ≥ 1/
(∑n

i=1 ‖Xi‖2ψ2

)1/2

,

E exp(λ|Z|) 6 exp

(
4λ2

n∑
i=1

‖Xi‖2ψ2

)
and using the implication ((4) ⇒ (1)) in Theorem 1.1.5 with α = β = 2 (with the

estimates of the constants), we get that ‖Z‖ψ2
≤ c(

∑n
i=1 ‖Xi‖2ψ2

)1/2 with c ≤ 16.
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Now, we take a particular look to Rademacher processes. Indeed, Rademacher
variables are the simplest example of bounded (hence ψ2) random variables. We
denote by ε1, . . . , εn independent random variables taking values ±1 with probability
1/2. By definition of Lψ2

, for any (a1, . . . , an) ∈ Rn, the random variable aiεi is
centered and has ψ2 norm equal to |ai|. We apply Theorem 1.2.1 to deduce that∥∥∥∥∥

n∑
i=1

aiεi

∥∥∥∥∥
ψ2

≤ c|a|2 = c

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

.

Therefore we get from Theorem 1.1.5 that for any p ≥ 2,E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

≤

(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤ 2c
√
p

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

. (1.3)

This is the Khinchine’s inequality. It is not difficult to extend it to the case 0 < q ≤ 2
by using Hölder inequality: for any random variable Z, if 0 < q ≤ 2 and λ = q/(4−q)
then (

E|Z|2
)1/2 ≤ (E|Z|q)λ/q

(
E|Z|4

)(1−λ)/4
.

Let Z =
∑n
i=1 aiεi, we apply (1.3) to the case p = 4 to deduce that for any 0 < q ≤ 2,(

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
q)1/q

≤

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

≤ (4c)2(2−q)/q

(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
q)1/q

.

Since for any x ≥ 0, ex
2 − 1 ≥ x2, we also observe that

(e− 1)

∥∥∥∥∥
n∑
i=1

aiεi

∥∥∥∥∥
ψ2

≥

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
2
1/2

.

However the precise knowledge of the ψ2 norm of the random variable
∑n
i=1 aiεi is

not enough to understand correctly the behavior of its Lp norms and consequently of
its tail estimate. Indeed, a more precise statement holds true.

Theorem 1.2.3. — Let p > 2, let a1, . . . , an be real numbers and let ε1, . . . , εn be
independent Rademacher variables. We have(

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤
∑
i6p

a∗i + 2c
√
p

∑
i>p

a∗2i

1/2

,

where (a∗1, . . . , a
∗
n) is the non-increasing rearrangement of (|a1|, . . . , |an|). Moreover,

the estimate is sharp, up to a multiplicative factor.

Remark 1.2.4. — We will not present the proof of the lower bound even if it is the
difficult part of the Theorem. It is beyond the scope of this chapter.
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Proof. — Since Rademacher random variables are bounded by 1, we also have the
trivial upper bound: (

E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

≤
n∑
i=1

|ai|. (1.4)

By independence and by symmetry of the Rademacher we have(
E

∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣
p)1/p

=

(
E

∣∣∣∣∣
n∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

.

Splitting the sum into two parts, we get that(
E

∣∣∣∣∣
n∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

≤

(
E

∣∣∣∣∣
p∑
i=1

a∗i εi

∣∣∣∣∣
p)1/p

+

E

∣∣∣∣∣∣
∑
i>p

a∗i εi

∣∣∣∣∣∣
p1/p

.

We conclude by applying (1.4) to the first term and (1.3) to the second one.

This provides a good example of one of the main drawback of this classification with
ψα-norm. Indeed, being a ψα random variable allows only one type of tail estimate.
In the sense that, if Z ∈ Lψα then the tail decay of Z behaves like exp(−Ktα) for
t large enough, but this result is sometimes too weak for a precise study of the Lp
norm of Z.

Bernstein’s type inequalities, the case α = 1. — We start this section with
the well known Bernstein’s inequalities which hold for an empirical mean of bounded
random variables.

Theorem 1.2.5. — Let X1, . . . , Xn be n independent random variables and M be a
positive number such that for any i = 1, . . . , n, EXi = 0 and |Xi| 6M almost surely.
Set σ2 = n−1

∑n
i=1 EX2

i . For any t > 0, we have

P

(
1

n

n∑
i=1

Xi > t

)
6 exp

(
−nσ

2

M2
h

(
Mt

σ2

))
,

where h(u) = (1 + u) log(1 + u)− u for all u > 0.

Proof. — Let t > 0, by Markov inequality and by independence we have

P

(
1

n

n∑
i=1

Xi > t

)
6 inf
λ>0

exp(−λt)E exp

(
λ

n

n∑
i=1

Xi

)

= inf
λ>0

exp(−λt)
n∏
i=1

E exp

(
λXi

n

)
. (1.5)
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Since for any i = 1, . . . , n, EXi = 0 and |Xi| ≤M ,

E exp

(
λXi

n

)
= 1 +

∑
k>2

λkEXk
i

nkk!
≤ 1 + EX2

i

∑
k>2

λkMk−2

nkk!

= 1 +
EX2

i

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

)
.

Using the fact that 1 + u 6 exp(u) for all u ∈ R, we get that

n∏
i=1

E exp

(
λXi

n

)
≤ exp

(∑n
i=1 EX2

i

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

))
.

By definition of σ and by (1.5), we conclude that for any t > 0,

P

(
1

n

n∑
i=1

Xi > t

)
≤ inf
λ>0

exp

(
nσ2

M2

(
exp

(
λM

n

)
−
(
λM

n

)
− 1

)
− λt

)
.

The claim follows by choosing λ such that (1 + tM/σ2) = exp(λM/n).

Using Taylor expansion, it is not difficult to see that for every u > 0 we have h(u) >
u2/(2 + 2u/3). This proves that if u ≥ 1, h(u) ≥ 3u/8 and if u ≤ 1, h(u) ≥ 3u2/8.
Therefore the classical Bernstein’s inequality for bounded random variables is an
immediate corollary of this result.

Theorem 1.2.6. — Let X1, . . . , Xn be n independent random variables such that for
all i = 1, . . . , n, EXi = 0 and |Xi| 6M almost surely. Then, for every t > 0,

P

(
1

n

n∑
i=1

Xi > t

)
6 exp

(
−3n

8
min

(
t2

σ2
,
t

M

))
,

where σ2 =
1

n

n∑
i=1

EX2
i .

From Bernstein’s inequality, we can deduce that the tail behavior of a sum of centered,
bounded random variables has two regimes. There is a sub-exponential regime with
respect to M for large values of t (t > σ2/M) and a sub-Gaussian behavior with
respect to σ2 for small values of t (t 6 σ2/M). Moreover, this inequality is always
stronger than the tail estimate that we could deduce from Theorem 1.2.1 (which is
only sub-Gaussian with respect to M2).

Now, we turn to the important case of sum of sub-exponential centered random
variables.

Theorem 1.2.7. — Let X1, . . . , Xn be n independent centered ψ1 random variables.
Then, for every t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > t

)
6 2 exp

(
−c nmin

(
t2

σ2
1

,
t

M1

))
,
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where M1 = max
16i6n

‖Xi‖ψ1
, σ2

1 =
1

n

n∑
i=1

‖Xi‖2ψ1
and c is a number that can be taken

equal to (e− 1)/2e(2e− 1).

Proof. — Since for every x ≥ 0 and any positive natural integer k, ex ≥ xk/k!, we
get by definition of the ψ1 norm that for any integer k ≥ 1 and any i = 1, . . . , n,

E|Xi|k 6 ek! ‖Xi‖kψ1
.

Moreover EXi = 0 for any i = 1, . . . , n and using Taylor expansion of the exponential,
we deduce that for every λ > 0 such that λ ‖Xi‖ψ1

≤ λM1 < n,

E exp

(
λ

n
Xi

)
6 1 +

∑
k>2

λkE|Xi|k

nkk!
6 1 +

eλ2 ‖Xi‖2ψ1

n2
(

1− λ
n ‖Xi‖ψ1

) ≤ 1 +
eλ2 ‖Xi‖2ψ1

n2
(
1− λM1

n

) .
Let Z = n−1

∑n
i=1Xi. Since for any real number x, 1+x ≤ ex, we get by independence

of the Xi’s that for every λ > 0 such that λM1 < n

E exp(λZ) ≤ exp

(
eλ2

n2
(
1− λM1

n

) n∑
i=1

‖Xi‖2ψ1

)
= exp

(
eλ2σ2

1

n− λM1

)
.

We conclude by Markov inequality that for every t > 0,

P(Z ≥ t) ≤ inf
0<λ<n/M1

exp

(
−λ t+

eλ2σ2
1

n− λM1

)
.

We consider two cases. If t ≤ σ2
1/M1, we choose λ = nt/2eσ2

1 ≤ n/2eM1. A simple
computation gives that

P(Z ≥ t) ≤ exp

(
− e− 1

2e(2e− 1)

n t2

σ2
1

)
.

If t > σ2
1/M1, we choose λ = n/2eM1. This time, we get

P(Z ≥ t) ≤ exp

(
− e− 1

2e(2e− 1)

n t

M1

)
.

We can do the same argument for −Z and this concludes the proof of the announced
result.

The ψα case: α > 1. — In this part we will focus on the case α 6= 2 and α > 1.
Our goal is to explain the behavior of the tail estimate of a sum of independent ψα
centered random variables. As in Bernstein inequalities, there will be two different
regimes depending on the level of deviation t.

Theorem 1.2.8. — Let α > 1 and β be such that α−1 +β−1 = 1. Given X1, . . . , Xn

be independent mean zero ψα real-valued random variables, set

A1 =

(
n∑
i=1

‖Xi‖2ψ1

)1/2

and Bα =

(
n∑
i=1

‖Xi‖βψα

)1/β

.
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Then, for every t > 0,

P

(∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤


2 exp

(
−cα min

(
t2

A2
1

,
tα

Bαα

))
if α < 2,

2 exp

(
−cα max

(
t2

B2
α

,
tα

Bαα

))
if α > 2

where cα is a number depending only on α.

Remark 1.2.9. — We can stated the result with the same normalization as in Bern-
stein inequalities. Let σ2

1 = 1
n

∑n
i=1 ‖Xi‖2ψ1

and Mβ
α = 1

n

∑n
i=1 ‖Xi‖βψα , then we have

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi

∣∣∣∣∣ > t

)
≤


2 exp

(
−cαnmin

(
t2

σ2
1

,
tα

Mα
α

))
if α < 2,

2 exp

(
−cαnmax

(
t2

M2
α

,
tα

Mα
α

))
if α > 2.

Before proving Theorem 1.2.8, we start by exhibiting a sub-Gaussian behavior of
the Laplace transform of any ψ1 centered random variable.

Lemma 1.2.10. — Given X a ψ1 mean-zero random variable, for every λ such that

0 ≤ λ 6
(

2 ‖X‖ψ1

)−1

we have

E exp (λX) 6 exp
(

4(e− 1)λ2 ‖X‖2ψ1

)
.

Proof. — Let X ′ be an independent copie of X and denote Y = X −X ′. Since X is
centered, by Jensen inequality,

E expλX = E exp(λ(X − EX ′)) 6 E expλ(X −X ′) = E expλY.

The random variable Y is symmetric thus, for every λ, E expλY = E coshλY and
using the Taylor expansion,

E expλY = 1 +
∑
k≥1

λ2k

(2k)!
EY 2k = 1 + λ2

∑
k≥1

λ2(k−1)

(2k)!
EY 2k.

By definition of Y , for every k ≥ 1, EY 2k ≤ 22kEX2k. Hence, for every 0 ≤ λ 6(
2 ‖X‖ψ1

)−1

, we get that

E expλY ≤ 1 + 4λ2‖X‖2ψ1

∑
k≥1

EX2k

(2k)!‖X‖2kψ1

≤ 1 + 4λ2‖X‖2ψ1

(
E exp

(
|X|
‖X‖ψ1

)
− 1

)
.

By definition of the ψ1 norm, we conclude that for every 0 ≤ λ 6
(

2 ‖X‖ψ1

)−1

E expλX ≤ 1 + 4(e− 1)λ2‖X‖2ψ1
≤ exp

(
4(e− 1)λ2 ‖X‖2ψ1

)
.
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Proof of Theorem 1.2.8. — We start with the case 1 < α < 2.
For every 1 = 1, . . . , n, Xi is a ψα random variable with α > 1. Then it is a ψ1

random variable (see Proposition 1.1.7) and from Lemma 1.2.10, we get that

∀ 0 ≤ λ ≤ 1/2 ‖Xi‖ψ1
, E expλXi ≤ exp

(
4(e− 1)λ2 ‖Xi‖2ψ1

)
.

Moreover, from Theorem 1.1.5, we get also that

∀λ ≥ 1/‖Xi‖ψα , E expλXi ≤ exp
(
λ ‖Xi‖ψα

)β
.

Since 1 < α < 2 then β > 2 and it is easy to conclude that for c = 4(e− 1) we have

∀λ > 0, E expλXi ≤ exp
(
c
(
λ2‖Xi‖2ψ1

+ λβ‖Xi‖βψα
))

. (1.6)

Indeed when ‖Xi‖ψα > 2‖Xi‖ψ1
, we just have to glue the two estimates. Otherwise,

we have ‖Xi‖ψα ≤ 2‖Xi‖ψ1
and for every λ ∈

(
1/2 ‖Xi‖ψ1

, 1/‖Xi‖ψα
)

, we get by

Hölder inequality,

E expλXi ≤
(
E exp

(
Xi

‖Xi‖ψα

))λ‖Xi‖ψα
≤ exp (λ‖X‖ψα) ≤ exp

(
λ24‖Xi‖2ψ1

)
.

Let Z =
∑n
i=1Xi, we deduce from (1.6) that for every λ > 0,

E expλZ ≤ exp
(
c
(
A2

1λ
2 +Bβαλ

β
))
.

From Markov inequality, we have

P(Z ≥ t) ≤ inf
λ>0

e−λtE expλZ ≤ inf
λ>0

(
c
(
A2

1λ
2 +Bβαλ

β
)
− λt

)
. (1.7)

If (t/A1)2 ≥ (t/Bα)α then we have t2−α ≥ A2
1/B

α
α and we choose λ = tα−1

4cBαα
.

Therefore,

λt =
tα

4cBαα
, Bβαλ

β =
tα

(4c)βBαα
≤ tα

(4c)2Bαα
, and

A2
1λ

2 =
tα

(4c)2Bαα

tα−2A2
1

Bαα
≤ tα

(4c)2Bαα
.

We conclude from (1.7) that

P(Z ≥ t) ≤ exp

(
− 1

8c

tα

Bαα

)
.

If (t/A1)2 ≤ (t/Bα)α then we have t2−α ≤ A2
1/B

α
α and since (2− α)β/α = (β − 2)

we also have tβ−2 ≤ Bβα/A
2(β−1)
1 . We choose λ = t

4cA2
1

therefore,

λt =
t2

4cA2
1

, A2
1λ

2 =
t2

(4c)2A2
1

and Bβαλ
β =

t2

(4c)βA2
1

tβ−2Bβα

A
2(β−1)
1

≤ t2

(4c)2A2
1

.

We conclude from (1.7) that

P(Z ≥ t) ≤ exp

(
− 1

8c

t2

A2
1

)
.
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The proof is complete with cα = 1/4c = 1/16(e− 1).
In the case α > 2, we have 1 < β < 2 and the estimate (1.6) for the Laplace

transform of each random variable Xi has to be replaced by

∀λ > 0, E expλXi ≤ exp
(
cλ2‖Xi‖2ψα

)
and E expλXi ≤ exp

(
cλβ‖Xi‖βψα

)
.

Indeed, when λ ‖X‖ψ1
≤ 1/2 then (λ ‖X‖ψ1

)2 ≤ (λ ‖X‖ψ1
)β ≤ (λ ‖X‖ψα)β and when

λ ‖X‖ψα ≥ 1 then (λ ‖X‖ψα)β ≤ (λ ‖X‖ψα)2. Therefore both inequalities hold true.

We conclude as before that for Z =
∑n
i=1Xi, for every λ > 0,

E expλZ ≤ exp
(
cmin

(
B2
αλ

2, Bβαλ
β
))
.

The rest is identical to the preceding proof.

1.3. A geometric application: the Johnson-Lindenstrauss lemma

The Johnson-Lindenstrauss lemma [JL84] is a result concerning low-distortion em-
beddings of points from a high-dimensional Euclidean space into low-dimensional Eu-
clidean space. The lemma states that a finite number of points in a high-dimensional
space can be embedded into a space of much lower dimension (which depends of the
cardinality of the set) in such a way that distances between the points are nearly
preserved. The map used for the embedding is a linear map and can even be taken
to be an orthogonal projection. We present here an approach using random Gaussian
matrices.

Let G1, . . . , Gk be k independent Gaussian vectors in Rn distributed according to
the normal law N (0, Id). Let Γ : Rn → Rk be the random operator defined for every
x ∈ Rn by

Γx =

 〈G1, x〉
...

〈Gk, x〉

 ∈ Rk. (1.8)

We will prove that with high probability, this Gaussian random matrix satisfies the
desired property in the Johnson-Lindenstrauss lemma.

Lemma 1.3.1. — There exists a numerical constant C such that, given 0 < ε < 1,
a set T of N distinct points in Rn and an integer k > k0 = C log(N)/ε2 then there
exists a linear operator A : Rn → Rk such that for every x, y ∈ T ,

√
1− ε |x− y|2 ≤ |A(x− y)|2 ≤

√
1 + ε |x− y|2.

Proof. — Let Γ be defined by (1.8). For any vector z ∈ Rn and every i = 1, . . . , k,
we have E〈Gi, z〉2 = |z|22. Therefore, for every x, y ∈ T ,∣∣∣∣Γ(x− y)√

k

∣∣∣∣2
2

− |x− y|22 =
1

k

k∑
i=1

〈Gi, x− y〉2 − E〈Gi, x− y〉2.
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For every i = 1, . . . , k, we define the random variable Xi by Xi = 〈Gi, x − y〉2 −
E〈Gi, x − y〉2. It is a centered random variable. Since eu ≥ 1 + u, we know that
E〈Gi, x− y〉2 ≤ (e− 1)

∥∥〈Gi, x− y〉2∥∥ψ1
. Hence by definition of the ψ2 norm,

‖Xi‖ψ1
≤ 2(e− 1)

∥∥〈Gi, x− y〉2∥∥ψ1
= 2(e− 1) ‖〈Gi, x− y〉‖2ψ2

. (1.9)

By definition of the Gaussian law, 〈Gi, x− y〉 is distributed like |x− y|2 g where g is a
standard real Gaussian variable. It is not difficult to check that with our definition of
the ψ2 norm, ‖g‖2ψ2

= 2e2/(e2 − 1). We will call c20 this number and c21 = 2(e− 1)c20.

We conclude that ‖〈Gi, x− y〉‖2ψ2
= c20 |x−y|22 and that ‖Xi‖ψ1

≤ c21 |x−y|22. We apply

Theorem 1.2.7. In this case, M1 = σ1 = c21 |x− y|22 and we get that for t = ε|x− y|22
with 0 < ε < 1,

P

(∣∣∣∣∣1k
k∑
i=1

〈Gi, x− y〉2 − E〈Gi, x− y〉2
∣∣∣∣∣ > ε|x− y|22

)
≤ 2 exp(−c′ k ε2)

since t ≤ |x−y|22 ≤ c21 |x−y|22 ≤ σ2
1/M1. The constant c′ is defined by c′ = c/c41 where

c comes from Theorem 1.2.7. Since the cardinality of the set {(x, y) : x ∈ T, y ∈ T}
is less than N2, we get by the union bound that

P

(
∃x, y ∈ T :

∣∣∣∣∣
∣∣∣∣Γ(x− y)√

k

∣∣∣∣2
2

− |x− y|22

∣∣∣∣∣ > ε|x− y|22

)
≤ N2 exp(−c′ k ε2)

and if k > k0 = log(N2)/c′ε2 then the probability of this event is strictly less than

one. This means that there exists a realization of the matrix Γ/
√
k that defines A

and that satisfies the contrary i.e.

∀x, y ∈ T,
√

1− ε |x− y|2 ≤ |A(x− y)|2 ≤
√

1 + ε |x− y|2.

Remark 1.3.2. — The value of C is less than 1800.
In fact, the proof uses only the ψ2 behavior of 〈Gi, x〉. We could replace the Gaussian
vectors by any copies of an isotropic vector Y with independent entries with bounded
ψ2 norms, like e.g. a random vector with independent Rademacher coordinates. In-
deed, by Theorem 1.2.1, ‖〈Y, x − y〉‖ψ2 ≤ c|x − y|2 which gives an estimate of (1.9).
The rest of the proof is identical.

1.4. Complexity and covering numbers

The study of covering and packing numbers is a wide subject. We will only present
some basic estimates needed for the purpose of this book.

In approximation theory, in compressed sensing, in statistics, it is of importance to
measure the complexity of a set. An important notion is the entropy number which
measures the compactness of a set. Given U and V two sets of Rn, we define the
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covering number N(U, V ) to be the minimum of translates of V needed to cover U .
The formal definition is

N(U, V ) = inf

{
N : ∃x1, . . . , xN ∈ Rn, U ⊂

N⋃
i=1

(xi + V )

}
.

If moreover V is a symmetric convex set, the packing number M(U, V ) is the maximal
number of points in U that are 1-separated for the norm induced by the convex set
V . Formally, for every sets U, V ⊂ Rn,

M(U, V ) = sup

{
N : ∃x1, . . . , xN ∈ U,∀i 6= j, xi − xj /∈ V

}
.

If V is a symmetric convex set (we always mean symmetric with respect to the origin),
we can define the norm associated to V : for every x ∈ Rn

‖x‖V = inf{t > 0, x ∈ tV }.

Hence xi− xj /∈ V is equivalent to say that ‖xi− xj‖V > 1. For any positive number
ε, we will also use the notation

N(U, ε, ‖ · ‖V )

for N(U, εV ). Moreover, the family x1, . . . , xN is said to be an ε-net if it is such that

U ⊂
⋃N
i=1 (xi + εV ). Also if we define the polar of V by

V o = {y ∈ Rn : ∀x ∈ V, 〈x, y〉 ≤ 1}

then the dual of the vectorial normed space (Rn, ‖ · ‖V ) is isometric to (Rn, ‖ · ‖V o).
In the case V being a symmetric convex set, the notions of packing and covering

numbers are closely related.

Proposition 1.4.1. — If U, V ⊂ Rn and 0 ∈ V then N(U, V ) ≤M(U, V ).
If U is a convex set and V is a symmetric convex set then M(U, V ) ≤ N(U, V/2).

Proof. — Let N = M(U, V ) be the maximal number of points x1, . . . , xN in U such
that for every i 6= j, xi − xj /∈ V . Let u ∈ U \ {x1, . . . , xN} then {x1, . . . , xN , u}
is not 1-separated in V and this means that there exists i ∈ {1, . . . , N} such that

u− xi ∈ V . Consequently U ⊂
⋃N
i=1 (xi + V ), since 0 ∈ V , and N(U, V ) ≤M(U, V ).

Let x1, . . . , xM be a family of vectors of U that are 1-separated. Let z1, . . . , zN
be a family of vectors such that U ⊂

⋃N
i=1 (zi + V/2). Since for every i = 1, . . . ,M ,

xi ∈ U , we can define an application j : {1, . . . ,M} → {1, . . . , N} where j(i) is such
that xi ∈ zj(i) + V/2. If j(i1) = j(i2) then xi1 − xi2 ∈ V/2− V/2. By convexity and
symmetry of V , V/2 − V/2 = V hence xi1 − xi2 ∈ V . But the family x1, . . . , xM is
1-separated in V hence necessarily i1 = i2. This proves that the map j is injective
and this implies that M(U, V ) ≤ N(U, V/2).

Moreover, it is not difficult to check that for any U , V , W convex bodies N(U,W ) ≤
N(U, V )N(V,W ). We have the following simple and important volumetric estimate.
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Lemma 1.4.2. — Given V a symmetric convex set in Rn, for every ε > 0,

N(V, εV ) ≤
(

1 +
2

ε

)n
.

Proof. — By Proposition 1.4.1, N(V, εV ) ≤ M(V, εV ). Let M = M(V, εV ) be the
maximal number of points x1, . . . , xM in V such that for every i 6= j, xi − xj /∈ εV .
Since V is a symmetric convex set, the sets xi + εV/2 are disjoint and

M⋃
i=1

(xi + εV/2) ⊂ V + εV/2 =
(

1 +
ε

2

)
V.

By taking the volume, we get that

M
(ε

2

)n
≤
(

1 +
ε

2

)n
which proves the desired estimate.

Another important parameter that will be used to measure the size of a subset T
of Rn is `∗(T ), defined by

`∗(T ) = E sup
t∈T
〈G, t〉

where G is a Gaussian vector in Rn distributed according to the normal law N (0, Id).
By definition, `∗(T ) = `∗(conv T ) where conv T denotes the convex hull of T .

We will present some classical tools to estimate the covering numbers of the unit
ball of `n1 by parallelepipeds and some classical estimates relating covering numbers
of T by a multiple of the Euclidean ball and `∗(T ) or `∗(T

o).

The empirical method. — We will introduce this method through a concrete
example. Let d be a positive integer and Φ be an d× d matrix. We assume that the
entries of Φ are such that for all i, j ∈ {1, . . . , d},

|Φij | 6
K√
d

(1.10)

where K > 0 is an absolute constant.
We denote by Φ1, . . . ,Φd the row vectors of Φ and we define for all p ∈ {1, . . . , d}

the semi-norm ‖·‖∞,p for all x ∈ Rd by

‖x‖∞,p = max
16j6p

| 〈Φj , x〉 |.

Its unit ball is denoted by B∞,p. If E = span{Φ1, . . . ,Φp} and PE is the orthogonal
projection on E then we have B∞,p = PEB∞,p + E⊥. Moreover, PEB∞,p is a paral-
lelepiped in E. In the next theorem, we obtain an upper bound of the logarithm of
the covering numbers of the unit ball of `d1, denoted by Bd1 , by a multiple of B∞,p.
Observe that from the hypothesis (1.10) on the entries of the matrix Φ, we get that

for any x ∈ Bd1 and any j = 1, . . . , p, |〈Φj , x〉| ≤ |Φj |∞|x|1 ≤ K/
√
d. Therefore

Bd1 ⊂
K√
d
B∞,p (1.11)

and for any ε ≥ K/
√
d, N(Bd1 , εB∞,p) = 1.
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Theorem 1.4.3. — With the preceding notations, we have for any 0 < t < 1,

logN

(
Bd1 ,

tK√
d
B∞,p

)
6 min

{
c0

log(p) log(2d+ 1)

t2
, p log

(
1 +

2

t

)}
where c0 is an absolute constant.

The first estimate is proven using an empirical method, while the second one is based
on the volumetric estimate.

Proof. — Let x be in Bd1 and define the random variable Z by

P
(
Z = Sign(xi)ei

)
= |xi| for all i = 1, . . . , d and P(Z = 0) = 1− |x|1

where (e1, . . . , ed) is the canonical basis of Rd. Observe that we have EZ = x.
We use a well known symmetrization argument, see Chapter 5. Take m to be

chosen later and Z1, . . . , Zm, Z
′
1, . . . , Z

′
m be i.i.d. copies of Z. We have by Jensen

inequality

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

=

∥∥∥∥∥ 1

m

m∑
i=1

E′Z ′i − Zi

∥∥∥∥∥
∞,p

≤ EE′
∥∥∥∥∥ 1

m

m∑
i=1

Z ′i − Zi

∥∥∥∥∥
∞,p

.

The random variable Z ′i−Zi is symmetric hence it has the same law than εi(Z
′
i−Zi)

where ε1, . . . , εm are i.i.d. Rademacher random variables. Therefore, by the triangle
inequality

EE′
∥∥∥∥∥ 1

m

m∑
i=1

Z ′i − Zi

∥∥∥∥∥
∞,p

=
1

m
EE′Eε

∥∥∥∥∥
m∑
i=1

εi(Z
′
i − Zi)

∥∥∥∥∥
∞,p

≤ 2

m
EEε

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
∞,p

.

We conclude that

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

≤ 2

m
EEε

∥∥∥∥∥
m∑
i=1

εiZi

∥∥∥∥∥
∞,p

=
2

m
EEε max

1≤j≤p

∣∣∣∣∣
m∑
i=1

εi〈Zi,Φj〉

∣∣∣∣∣ . (1.12)

By definition of Z and by (1.10), we know that |〈Zi,Φj〉| ≤ K/
√
d. Let aij be a

sequence of real number such that |aij | ≤ K/
√
d. For any j, let Xj be the random

variable Xj =
∑m
i=1 aijεi. From Theorem 1.2.1, we deduce that

∀j = 1, . . . , p, ‖Xj‖ψ2
≤ c

(
m∑
i=1

a2
ij

)1/2

≤ cK
√
m√
d
.

Therefore, by Proposition 1.1.3 (and the remark after it), we get

E max
1≤j≤p

|Xj | ≤ c
√

(1 + log p)
K
√
m√
d
.
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From (1.12) and the preceding argument, we conclude that

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

≤
2 cK

√
(1 + log p)√
md

Let m be the integer such that

4c2(1 + log p)

t2
≤ m ≤ 4c2(1 + log p)

t2
+ 1

For this choice of m we have

E

∥∥∥∥∥x− 1

m

m∑
i=1

Zi

∥∥∥∥∥
∞,p

6
tK√
d
.

In particular, there exists ω ∈ Ω such that∥∥∥∥∥x− 1

m

m∑
i=1

Zi(ω)

∥∥∥∥∥
∞,p

6
tK√
d

and so the set { 1

m

m∑
i=1

zi : z1, . . . , zm ∈ {±e1, . . . ,±ed} ∪ {0}
}

is a tK/
√
d-net of Bd1 with respect to ‖·‖∞,p. Since its cardinality is less than (2d+1)m,

we get the first estimate:

logN

(
Bd1 ,

tK√
d
B∞,p

)
6
c0(1 + log p) log(2d+ 1)

t2

where c0 is an absolute constant.
To prove the second estimate, we recall by (1.11) that Bd1 ⊂ K/

√
dB∞,p. Hence

N

(
Bd1 ,

tK√
d
B∞,p

)
≤ N

(
K√
d
B∞,p,

tK√
d
B∞,p

)
= N (B∞,p, tB∞,p) .

Moreover, we have already observed that B∞,p = PEB∞,p + E⊥ which means that

N (B∞,p, tB∞,p) = N(V, tV )

where V is the symmetric convex set PEB∞,p. Since dimE ≤ p, we apply Lemma
1.4.2 to conclude that

N

(
Bd1 ,

tK√
d
B∞,p

)
≤
(

1 +
2

t

)p
.
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Sudakov’s inequality and dual Sudakov’s inequality. — Classical tools for the
computation of the covering numbers of a set by Euclidean balls or in a dual situation,
covering numbers of a Euclidean ball by translates of a symmetric convex set are the
Sudakov and dual Sudakov inequalities. They relate these covering numbers with the
complexity `∗ of the sets.

Theorem 1.4.4. — Let T be a subset of RN and V be a symmetric convex set in
RN . Then, the following inequalities hold:

sup
ε>0

ε
√

logN(T, εBN2 ) 6 c `∗(T ) (1.13)

and

sup
ε>0

ε
√

logN(BN2 , εV ) 6 c `∗(V
o) (1.14)

where for a normal Gaussian vector G ∈ RN , `∗(T ) = E supt∈T 〈G, t〉 and `∗(V
o) =

E supt∈V o〈G, t〉 = E‖G‖V .

The proof of the Sudakov inequality (1.13) is based on comparison properties be-
tween Gaussian processes. We recall the Slepian comparison lemma without proving
it.

Lemma 1.4.5. — Let X1, . . . , XM and Y1, . . . , YM be Gaussian random variables
such that for all i, j = 1, . . . ,M

E|Yi − Yj |2 ≤ E|Xi −Xj |2

then
E max

1≤k≤M
Yk ≤ 2E max

1≤k≤M
Xk.

Proof of Theorem 1.4.4. — We start by proving (1.13). Let x1, . . . , xM be M points
of T that are ε-separated with respect to the Euclidean norm | · |2 and define for every
i = 1, . . . ,M , the Gaussian variables Xi = 〈xi, G〉 where G is a standard Gaussian
vector in RN . We have

E|Xi −Xj |2 = |xi − xj |22 ≥ ε2 for all i 6= j.

Let g1, . . . , gM be M standard independent Gaussian random variables and for every
i = 1, . . . ,M let Yi be defined by Yi = ε√

2
gi. We have for all i 6= j

E|Yi − Yj |2 = ε2

and we conclude from Lemma 1.4.5 that
ε√
2
E max

1≤k≤M
gk ≤ 2E max

1≤k≤M
〈xk, G〉 ≤ 2`(T ).

Moreover there exists a constant c > 0 such that for every positive integer M

E max
1≤k≤M

gk ≥
√

logM
/
c (1.15)

and this proves that ε
√

logM ≤ 2c
√

2`(T ). By Proposition 1.4.1, the proof of inequal-
ity (1.13) is complete. The lower bound (1.15) is a classical exercise about Gaussian
random variables. First, we observe that Emax(g1, g2) is computable, it is equal to
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1/
√
π. Hence we can assume that M is large enough (say greater than 104). In this

case, we observe that

2E max
1≤k≤M

gk ≥ E max
1≤k≤M

|gk| − E|g1|.

Indeed,

E max
1≤k≤M

gk = E max
1≤k≤M

(gk − g1) = E max
1≤k≤M

max((gk − g1), 0)

and by symmetry of the gi’s,

E max
1≤k≤M

|gk − g1| ≤ E max
1≤k≤M

max((gk − g1), 0) + E max
1≤k≤M

max((g1 − gk), 0)

= 2E max
1≤k≤M

(gk − g1) = 2E max
1≤k≤M

gk.

But, by independence of the gi’s

E max
1≤k≤M

|gk| =
∫ +∞

0

P
(

max
1≤k≤M

|gk| > t

)
dt =

∫ +∞

0

(
1− P

(
max

1≤k≤M
|gk| ≤ t

))
dt

=

∫ +∞

0

1−

(
1−

√
2

π

∫ +∞

t

e−u
2/2du

)M dt

and it is easy to see that for every t > 0,∫ +∞

t

e−u
2/2du ≥ e−(t+1)2/2.

Let t0 + 1 =
√

2 logM then

E max
1≤k≤M

|gk| ≥
∫ t0

0

1−

(
1−

√
2

π

∫ +∞

t

e−u
2/2du

)M dt

≥ t0

1−

(
1−

√
2

M
√
π

)M ≥ t0(1− e−
√

2/π)

which concludes the proof of (1.15).
We will now prove the dual Sudakov inequality (1.14). The argument is very

similar to the volumetric argument introduced in Lemma 1.4.2, replacing the Lebesgue
measure by the Gaussian measure. Let r > 0 to be chosen later. Observe that
N(BN2 , εV ) = N(rBN2 , rεV ) and let x1, . . . , xM be M points in rBN2 that are rε
separated for the norm induced by the symmetric convex set V . By Proposition
1.4.1, it is enough to prove that

ε
√

logM ≤ c `∗(V o).
The balls centered at the points xi and of radius rε/2 are disjoints and by taking the
Gaussian measure of the union of these sets, we get that

γN

(
M⋃
i=1

(xi + rε/2V )

)
=

M∑
i=1

∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
≤ 1.



38 CHAPTER 1. EMPIRICAL METHODS AND HIGH DIMENSIONAL GEOMETRY

However, by the change of variable z − xi = ui, we have∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
= e−|xi|

2
2/2

∫
‖ui‖V ≤rε/2

e−|ui|
2
2/2e−〈ui,xi〉

dui
(2π)N/2

and from Jensen inequality and the fact that V has barycenter at the origin,

1

γN
(
rε
2 V

) ∫
‖z−xi‖V ≤rε/2

e−|z|
2
2/2

dz

(2π)N/2
≥ e−|xi|

2
2/2.

Since xi ∈ rBN2 , we have proved that

M e−r
2/2 γN

(rε
2
V
)
≤ 1.

To conclude, we choose r such that rε/2 = 2`∗(V
o). Hence by Markov inequality,

γN
(
rε
2 V

)
≥ 1/2 and we have proved that M ≤ 2er

2/2 which means that for a constant
c,

ε
√

logM ≤ c `∗(V o).

The metric entropy of the Schatten balls. — To finish this chapter, we show
how to apply Sudakov and dual Sudakov inequalities to compute the metric entropy
of Schatten balls with respect to Schatten norms. We denote by Bm,np the unit ball
of the Banach spaces of matrices in Mm,n endowed with the Schatten norm ‖·‖Sp
defined for any A ∈Mm,n by

‖A‖Sp =
(

tr(A∗A)p/2
)1/p

.

It is also the `p-norm of the singular values of A and we refer to Chapter 4 for more
informations about the singular values of a matrix.

Proposition 1.4.6. — For every m ≥ n > 1, p, q ∈ [1,+∞] and ε > 0,

ε
√

logN(Bm,np , εBm,n2 ) 6 c1
√
m n(1−1/p) (1.16)

and

ε
√

logN(Bm,n2 , εBm,nq ) 6 c2
√
m n1/q (1.17)

where c1 and c2 are numerical constants. Moreover, for n ≥ m ≥ 1 the same result
holds by exchanging m and n.

Proof. — We start by proving a rough upper bound of the operator norm of a Gaus-
sian random matrix Γ ∈ Mm,n i.e. a matrix with independent standard Gaussian
entries:

E ‖Γ‖S∞ ≤ c(
√
n+
√
m) (1.18)

for some numerical constant C. Let Xu,v be the Gaussian process defined for any
u ∈ Bm2 , v ∈ Bn2 by

Xu,v = 〈Γv, u〉.
It is defined such that

E ‖Γ‖S∞ = E sup
u∈Bm2 ,v∈Bn2

Xu,v.
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From Lemma 1.4.2, there exist Λ ⊂ Bm2 and Λ′ ⊂ Bn2 , (1/4)-net of Bm2 and Bn2
respectively, for their own metric, such that |Λ| 6 9m and |Λ′| 6 9n . Let u ∈ Bm2
and u′ ∈ Λ such that |u− u′|2 < 1/4 and similarly, let v ∈ Bn2 and v′ ∈ Λ′ such that
|v − v′|2 < 1/4, then we have

|Xu,v −Xu′,v′ | = |〈Γv, u− u′〉+ 〈Γ(v − v′), u′〉| ≤ ‖Γ‖S∞ |u− u
′|2 + ‖Γ‖S∞ |v − v

′|2.

We deduce that ‖Γ‖S∞ 6 supu′∈Λ,v′∈Λ′ |Xu′,v′ |+ (1/2) ‖Γ‖S∞ and therefore

‖Γ‖S∞ 6 2 sup
u′∈Λ,v′∈Λ′

|Xu′,v′ |.

Now Xu′,v′ is a Gaussian centered random variable with variance |u′|22|v′|22 6 1. By
Lemma 1.1.3,

E sup
u′∈Λ,v′∈Λ′

|Xu′,v′ | 6 c
√

log |Λ||Λ′| ≤ c
√

log 9 (
√
m+

√
n)

and Equation 1.18 follows.
We first prove (1.16) in the case m ≥ n ≥ 1. Using Sudakov inequality (1.13), we

have for all ε > 0,

ε
√

logN(Bm,np , εBm,n2 ) 6 c`∗(B
m,n
p ).

However

`∗(B
m,n
p ) = E sup

A∈Bm,np

〈Γ, A〉

where 〈Γ, A〉 = Tr(ΓA∗). If p′ is such that 1/p+ 1/p′ = 1 then we have by the trace
duality

〈Γ, A〉 ≤ ‖Γ‖Sp′ ‖A‖Sp 6 n1/p′ ‖Γ‖S∞ ‖A‖Sp .
By taking the supremum over A ∈ Bm,np , the expectation and using (1.18), we deduce
that

`∗(B
m,n
p ) ≤ n1/p′E ‖Γ‖S∞ ≤ c

√
m n1/p′

which ends the proof of (1.16)
We prove (1.17) in the case m ≥ n ≥ 1. Using the dual Sudakov inequality (1.14)

and (1.18) we get that for any q ∈ [1,+∞]:

ε
√

logN(Bm,n2 , εBm,nq ) 6 cE ‖Γ‖Sq 6 c n1/qE ‖Γ‖S∞ 6 c′n1/q
√
m.

The proof of the case n ≥ m is completely similar.

Concentration of norms of Gaussian vectors. — We finish this chapter by an
other important property of Gaussian processes, a concentration of measure inequality
which will be used in the next chapter. It is stated without proof. The reader is
referred to the book [Pis89] to learn more about this.

Theorem 1.4.7. — Let G ∈ Rn be a Gaussian vector distributed according to the
normal law N (0, Id). Let T ⊂ Rn and let

σ(T ) = sup
t∈T
{
(
E〈G, t〉|2

)1/2}.
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We have

∀u > 0 P
(∣∣∣∣sup

t∈T
〈G, t〉 − E sup

t∈T
〈G, t〉

∣∣∣∣ > u

)
≤ 2 exp

(
−cu2/σ2(T )

)
(1.19)

where c is a numerical constant.

1.5. Notes and comments

We focused in this chapter on the study of some very particular concentration
inequalities. Of course, there exist different and powerful other type of concentration
inequalities. Several books and surveys are devoted to this subject and we refer for
example to [LT91, vdVW96, Led01, BBL04, Mas07] for the interested reader.
The classical references for the study of Orlicz spaces are [KR61, LT77, LT79,
RR91, RR02].

Tail and moment estimates for Rademacher averages are well understood. Theorem
1.2.3 is due to Montgomery-Smith [MS90] and several extensions to the vector valued
case are known [DMS93, MS95]. The case of sum of independent random variables
with logarithmically concave tails has been studied by Gluskin and Kwapien [GK95].
For the proof of Theorem 1.2.8, we could have followed a classical probabilistic trick
which reduces the proof of the result to the case of Weibull random variables. These
variables are defined such that the tails are equals to e−t

α

. Hence, the tails are
logarithmically concave and the result is a corollary of the results of Gluskin and
Kwapien [GK95]. We have presented here an approach which follows the line of
[Tal94]. The results are only written for random variables with densities cαe

−tα , but
the proofs work in the general context of ψα random variables.

Originally, Lemma 1.3.1 is proved in [JL84] and the operator is chosen at random
in the set of orthogonal projections onto a random k-dimensional subspace of `2,
uniformly according to the Haar measure on the Grassman manifold Gn,k.

The classical references for the study of entropy numbers are [Pie72, Pie80,
Pis89, CS90]. The method of proof of Theorem 1.4.3 has been introduced by Mau-
rey, in particular for studying entropy numbers of operators from `d1 into a Banach
space of type p. This was published in [Pis81]. The method was extended and devel-
oped by Carl in [Car85]. Sudakov inequality 1.13 is due to Sudakov [Sud71] while
the dual Sudakov inequality 1.14 is due to Pajor and Tomczak-Jaegermann [PTJ86].
The proof that we presented follows the lines of Ledoux-Talagrand [LT91]. We have
made the choice to speak only about Slepian inequality, Lemma 1.4.5. The result of
Slepian [Sle62] is more general, it tells about distribution inequality. In the context
of Lemma 1.4.5, Fernique [Fer74] proved that the constant 2 can be replaced by 1
and Gordon [Gor85, Gor87] extended these results to min-max of some Gaussian
processes. About the covering numbers of the Schatten balls, Proposition 1.4.6 is due
to Pajor [Paj99]. Theorem 1.4.7 is due to Maurey and Pisier (see the book [Pis89]
and [Pis86] for variations on the same theme).



CHAPTER 2

COMPRESSED SENSING AND GELFAND WIDTHS

2.1. Short introduction to compressed sensing

Compressed Sensing is a quite new framework that enables to get approximate and
exact reconstruction of sparse signals from incomplete measurements. The ideas and
principles are strongly related to other problems coming from different fields such as
approximation theory, in particular to the study of Gelfand and Kolmogorov width of
classical Banach spaces (diameter of sections). Since the seventies an important work
was done in that direction, in Approximation Theory and in Asymptotic Geometric
Analysis (called Geometry of Banach spaces at that time).

It is not in our aim to give here an introduction to compressed sensing, there
are many good references for that, but mainly to emphasize some interactions with
other fields of mathematics, in particular with asymptotic geometric analysis, random
matrices and empirical processes. The possibility of reconstructing any vector from
a given subset is highly related to the complexity of this subset and in the field of
Geometry of Banach spaces, many tools were developed to analyze various concepts
of complexity.

In this introduction to compressive sensing, for simplicity, we will consider the real
case, real vectors and real matrices. Let 1 ≤ n ≤ N be integers. We are given a
rectangular n × N real matrix A. One should think of N � n; we have in mind to
compress some vectors from RN for large N into vectors in Rn. Let X1, . . . , XN ∈ Rn
be the columns of A and let Y1, .., Yn ∈ RN its rows. One has

A =
(
X1 · · · · · · · · ·XN

)
=


Y1

Y2

...
Yn

 .

We are also given a subset T ⊂ RN of vectors. Now let x ∈ T be an unknown
vector. The data one is given are n linear measurements of x (again, think of N � n)

〈Y1, x〉, . . . , 〈Yn, x〉
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or equivalently

y = Ax.

We wish to recover x or more precisely to reconstruct x, exactly or approximately,
within a given accuracy and in an efficient way (fast algorithm).

2.2. The exact reconstruction problem

Let us first discuss the exact reconstruction question. Let x ∈ T be unknown and
recall that the given data is y = Ax. When N � n, the problem is ill-posed because
the system At = y, t ∈ RN is highly under-determined. Thus if we want to recover
x we need some more information on its nature. Moreover if we want to recover any
x from T , one should have some a priori information on the set T , on its complexity
whatever it means at this stage. We shall see various parameters of complexity in
these notes. The a priori hypothesis that we investigate now is sparsity.

Sparsity. — We first introduce some notation. We equip Rn and RN with the
canonical scalar product 〈 ·, ·〉 and Euclidean norm | · |2. We use the notation | · |
to denote the cardinality of a set. By BN2 we denote the unit Euclidean ball and by
Sn−1 its unit sphere.

Definition 2.2.1. — Let 0 ≤ m ≤ N be integers. For any x = (x1, . . . , xN ) ∈ RN ,
denote by suppx = {k : 1 ≤ k ≤ N, xk 6= 0} the subset of non-zero coordinate of x.
The vector x is said m-sparse if |suppx| ≤ m. The subset of m-sparse vectors of RN
is denoted by Σm = Σm(RN ) and its unit sphere by

S2(Σm) = {x ∈ RN : |x|2 = 1 and |suppx| ≤ m}.

Similarly let

B2(Σm) = {x ∈ RN : |x|2 ≤ 1 and |suppx| ≤ m}.

Note that Σm is not a linear subspace and that B2(Σm) is not convex.

Problem 2.2.2. — The exact reconstruction problem. We wish to reconstruct
exactly any m-sparse vector x ∈ Σm from the given data y = Ax. Thus we are looking
for a decoder ∆ such that

∀x ∈ Σm, ∆(A,Ax) = x.

Claim 2.2.3. — Linear algebra tells us that such a decoder ∆ exists iff

kerA ∩ Σ2m = {0}.

Example 2.2.4. — Let m ≥ 1, N ≥ 2m and 0 < a1 < · · · < aN = 1. Let n = 2m
and build the Vandermonde matrix A = (ai−1

j ), 1 ≤ i ≤ n, 1 ≤ j ≤ N . Clearly all the
2m × 2m minors of A are non singular Vandermonde matrices. Unfortunately it is
known that such matrices are ill-conditioned. Therefore reconstructing x ∈ Σm from
y = Ax is numerically unstable.
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Metric entropy. — As already said, there are many different approaches to seize
and measure complexity of a metric space. The most simple is probably to estimate
a degree of compactness via the so-called covering and packing numbers.

Since all the metric spaces we will consider here are subsets of normed spaces, we
restrict to this setting.

Definition 2.2.5. — Let B and C be subsets of a vector space and let ε > 0. An
ε-net of B by translates of εC is a subset Λ of B such that for every x ∈ B, there
exits y ∈ Λ and z ∈ C such that x = y + εz. In other words, one has

B ⊂ Λ + εC =
⋃
x∈Λ

(x+ εC) ,

where Λ + εC := {a+ εc : a ∈ Λ, c ∈ C} is the Minkowski sum of the sets Λ and εC.
The covering number of B by εC is the smallest cardinality of such an ε-net and is
denoted by N(B, εC). The function ε→ logN(B, εC) is called the metric entropy of
B by C.

Remark 2.2.6. — If (B, d) is a metric space, an ε-net of (B, d) is a covering of B
by balls of radius ε for the metric d. The covering number is the smallest cardinality
of an ε-net and is denoted by N(B, d, ε). In our setting, the metric d will be defined
by a norm with unit ball say C. Then x+ εC is a ball of radius ε centered at x.

Let us start by an easy but important fact. Let C ⊂ RN be a symmetric convex
body, that is a symmetric convex compact subset of RN , with non-empty interior
(that is, the unit ball of a norm on RN ). Consider a subset Λ ⊂ C of maximal
cardinality such that the points of Λ are εC-apart in the sense that:

∀x 6= y, x, y ∈ Λ, one has x− y 6∈ εC

(recall that C = −C). It is clear that Λ is an ε-net of C by εC. Moreover the balls

(x+ (ε/2)C)x∈Λ

of radius (ε/2) centered at the points of Λ are pairwise disjoint and their union is a
subset of (1 + (ε/2))C (this is where convexity is involved). Taking volume of this

union, we get that N(C, εC) ≤ (1 + (2/ε))
N
. Let us conclude:

Proposition 2.2.7. — Let ε ∈ (0, 1). Let C ⊂ RN be a symmetric convex body (the
unit ball of a norm). There exists an ε-net Λ of C by translates of εC such that
|Λ| ≤ (1 + 2/ε)N . Moreover Λ ⊂ C ⊂ (1− ε)−1 conv (Λ).

Let us prove the moreover part of the Proposition by successive approximation.

Proof. — Since Λ is an ε-net of C by translates of εC, every z ∈ C can be written
as z = x0 + εz1, where x0 ∈ Λ and z1 ∈ C. Iterating, it follows that z = x0 + εx1 +
ε2x2 + . . ., with xi ∈ Λ, which implies by convexity that C ⊂ (1− ε)−1conv (Λ).

This gives the first claim:
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Claim 2.2.8. — Covering the unit Euclidean sphere by Euclidean balls of radius ε.
One has

∀ε ∈ (0, 1), N(SN−1, εBN2 ) ≤
(

3

ε

)N
.

Now, since S2(Σm) is the union of spheres of dimension m,

N(S2(Σm), εBN2 ) ≤
(
N

m

)
N(Sm−1, εBm2 ).

Using
(
N
m

)
≤ (eN/m)m, we get:

Claim 2.2.9. — Covering the set of sparse unit vectors by Euclidean balls of radius
ε: let 1 ≤ m ≤ N and ε ∈ (0, 1), then

N(S2(Σm), εBN2 ) ≤
(

3eN

mε

)m
.

The `1-minimization method. — Coming back to the exact reconstruction prob-
lem, if we want to solve the system

At = y

where y = Ax is given and x is m-sparse, it is tempting to test all possible support
of the unknown vector x. This is the so-called `0-method. But there are

(
N
m

)
possible

supports, too many to answer the request of a fast algorithm. A more clever approach
was proposed, namely the convex relaxation of the `0-method. Let x be the unknown
vector. The given data is y = Ax. For t = (ti) ∈ RN denote by

|t|1 =

N∑
i=1

|ti|

its `1 norm. The `1-minimization method (also called basis-pursuit) is the following
program:

(P ) min
t∈RN

|t|1 subject to At = y.

This program may be recast as a linear programming by

min

N∑
i=1

si, subject to s ≥ 0,−s ≤ t ≤ s,At = y.

Definition 2.2.10. — Exact reconstruction by `1-minimization. We say that
the matrix A has the exact reconstruction property of order m by `1-minimization if
for every x ∈ Σm the problem

(P ) min
t∈RN

|t|1 subject to At = Ax has a unique solution equal to x. (2.1)



2.2. THE EXACT RECONSTRUCTION PROBLEM 45

Note that the above property is not specific to the matrix A but rather a property
of its null space. In order to emphasize this point, let us introduce some notation.

For any subset I ⊂ [N ] where [N ] = {1, . . . , N}, let Ic be its complement and for
any x ∈ RN , let us write xI for the vector in RN with the same coordinates as x for
indices in I and 0 for indices in Ic. We are ready for a criterium on the null space.

Proposition 2.2.11. — The null space property. The following are equivalent

i) For any x ∈ Σm, the problem

(P ) min
t∈RN

|t|1 subject to At = Ax

has a unique solution equal to x (that is A has the exact reconstruction property
of order m by `1-minimization)

ii)

∀h ∈ kerA, h 6= 0,∀I ⊂ [N ], |I| ≤ m, |hI |1 < |hIc |1. (2.2)

Proof. — On one side, let h ∈ kerA, h 6= 0 and I ⊂ [N ], |I| ≤ m. Put x = −hI . Then
x ∈ Σm and (2.1) implies that |x+ h|1 > |x|1, that is |hIc |1 > |hI |1.

For the reverse implication, suppose that

∀h ∈ kerA, h 6= 0,∀I ⊂ [N ], |I| ≤ m, |hI |1 < |hIc |1.

Let x ∈ Σm and let I = supp(x). Then |I| ≤ m and

|x+ h|1 = |xI + hI |1 + |hIc |1 > |xI + hI |1 + |hI |1 ≥ |x|1.

Definition 2.2.12. — We say that A satisfies the null space property of order m if
(2.2) is satisfied.

This property has a nice geometric interpretation. To introduce it, we need some
more notation. Let (ei)1≤i≤N be the canonical basis of RN . Let `N1 be the N -
dimensional space RN equipped with the `1-norm and BN1 be its unit ball. Denote
also

S1(Σm) = {x ∈ Σm : |x|1 = 1} and B1(Σm) = {x ∈ Σm : |x|1 ≤ 1}.

Let 1 ≤ m ≤ N . Any (m − 1)-dimensional face of BN1 is of the form conv({εiei :
i ∈ I}) with I ⊂ [N ], |I| = m and (εi) ∈ {−1, 1}I , where we denoted by conv( · )
the convex hull. ¿From the geometric point of view, S1(Σm) is the union of all the
(m− 1)-dimensional faces of BN1 .

Let A be an n × N matrix and X1, . . . , XN ∈ Rn be its columns. A polytope
P ⊂ Rn is said centrally symmetric if P = −P . Observe that

A(BN1 ) = conv(±X1, . . . ,±XN ).

Proposition 2.2.11 can be reformulated in the following geometric language:
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Proposition 2.2.13. — The geometry of faces of A(BN1 ). Let 1 ≤ m ≤ n ≤ N .
Let A be an n×N matrix with columns X1, . . . , XN ∈ Rn. Then A satisfies the null
space property (2.2) iff one has

∀I ⊂ [N ], 1 ≤ |I| ≤ m,∀(εi) ∈ {−1, 1}I ,
conv({εiXi : i ∈ I}) ∩ conv({±Xj : j /∈ I}) = ∅ (2.3)

Taking advantage of the symmetries, property (2.3) is equivalent to the following:

∀I ⊂ [N ], 1 ≤ |I| ≤ m,∀(εi) ∈ {−1, 1}I ,
Aff({εiXi : i ∈ I}) ∩ conv({±Xj : j /∈ I}) = ∅ (2.4)

where Aff({εiXi : i ∈ I}) denotes the affine subspace generated by {εiXi : i ∈ I}.
The proof of this equivalence is left as exercise.

Definition 2.2.14. — Let 1 ≤ m ≤ n. A centrally symmetric polytope P ⊂ Rn
is said to be symmetric m-neighborly if every set of m of its vertices, containing no
antipodal pair, is the set of all vertices of some face of P .

Note that any centrally symmetric polytope is symmetric 1-neighborly. Neigh-
borliness property becomes non-trivial when m ≥ 2. In that case, observe that
A(BN1 ) = conv(±X1, . . . ,±XN ) has {±X1, . . . ,±XN} as vertices AND is symmetric
m-neighborly iff A maps every (m−1)-dimensional face of BN1 onto a (m−1) dimen-
sional face of conv(±X1, . . . ,±XN ). From (2.3) and (2.4), we deduce the following
criterium.

Proposition 2.2.15. — Let 1 ≤ m ≤ N . The matrix A has the null space property
of order m iff its columns ±X1, . . . ,±XN are the 2N vertices of A(BN1 ) and A(BN1 )
is m-neighborly.

Consider the quotient map

Q : `N1 −→ `N1 / kerA

If A has maximum rank n, then `N1 / kerA is n-dimensional. Denote by ‖ . ‖ the
quotient norm on `N1 / kerA defined by

‖Qx‖ = min
h∈kerA

|x+ h|1.

Property (2.1) implies that Q is norm preserving on Σm. Since Σbm/2c−Σbm/2c ⊂ Σm,
Q is an isometry on Σbm/2c equipped with the `1 metric. In other words,

∀x, y ∈ Σbm/2c ‖Qx−Qy‖ = |x− y|1.
As it is classical in approximation theory, we can take benefit of such an isometric
embedding to bound the complexity by comparing the metric entropy of the source
space (Σbm/2c, `

N
1 ) with the target space, which lives in a much lower dimension.

The following lemma is a well known fact on packing.

Lemma 2.2.16. — There exists a family Λ of subset of [N ] with cardinality m 6

N/2 such that for every I, J ∈ Λ, I 6= J, |I ∩ J | ≤ bm/2c and |Λ| ≥
⌊

N
32em

⌋bm/2c
.
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Proof. — We use successive enumeration of the subsets of cardinality m and exclusion
of wrong items. Without loss of generality, assume that m/2 is an integer. Pick any
subset I1 of {1, ..., N} of cardinality m and throw away all subsets J of {1, ..., N}
of size m such that the Hamming distance |I1 M J | ≤ m, where ∆ stands for the
symmetrical difference. There are at most

m∑
k=m/2

(
m

k

)(
N −m
m− k

)
such subsets and since m ≤ N/2 we have

m∑
k=m/2

(
m

k

)(
N −m
m− k

)
≤ 2m max

m/2≤k≤m

(
N −m
m− k

)
≤ 2m

(
N

m/2

)
.

Now, select a new subset I2 of size m from the remaining subsets. Repeating this
argument, we obtain a family Λ = {I1, I2, . . . , Ip}, p = |Λ|, of subsets of cardinality
m which are (m/2)-separated in the Hamming metric and such that

|Λ| ≥
⌊(

N

m

)/
2m
(
N

m/2

)⌋
.

Since for m ≤ N/2 we have
(
N
2m

)m ≤ (Nm) ≤ ( eNm )m, we get that

|Λ| ≥
⌊

(N/2m)m

2m(Ne/(m/2))(m/2)

⌋
≥

⌊(
N

32em

)m/2⌋
≥
⌊

N

32em

⌋bm/2c
which concludes the proof.

Let Λ be the family constructed in the previous lemma. For every I ∈ Λ, define
x(I) = 1

m

∑
i∈I ei. Then x(I) ∈ S1(Σm) and for every I, J ∈ Λ, I 6= J

|x(I)− x(J)|1 = 2

(
1− |I ∩ J |

m

)
> 2

(
1− [m/2]

m

)
≥ 1.

If the matrix A has the exact reconstruction property of order m, then

∀I, J ∈ Λ I 6= J, ‖Q(x(I))−Q(x(J))‖ = ‖Q(x(I)− x(J))‖ = |x(I)− x(J)|1 ≥ 1.

On one side |Λ| ≥
⌊
C N

[m/2]

⌋[m/2]

, but on the other side, the cardinality of the set

(Q(x(I)))I∈Λ cannot be too big. Indeed, it is a subset of the unit ball Q(BN1 ) of the
quotient space and we already saw that the maximum cardinality of a set of points
of a unit ball which are 1-apart is less than 3n. It follows that

bN/32emcbm/2c ≤ 3n.

Proposition 2.2.17. — If the matrix A has the exact reconstruction property of
order m by `1-minimization, then

m log(cN/m) ≤ Cn.

where C, c > 0 are universal constants.



48 CHAPTER 2. COMPRESSED SENSING AND GELFAND WIDTHS

Whatever is the matrix A, this proposition gives an upper bound on the size
m of sparsity such that any vectors from Σm can be exactly reconstructed by `1-
minimization method.

2.3. The restricted isometry property

So far, we do not know of any “simple” condition in order to check whether a matrix
A satisfies the exact reconstruction property (2.1). Let us start with the following
definition which plays an important role in compressed sensing.

Definition 2.3.1. — Let A be a n ×N matrix. For any 0 ≤ p ≤ N , the restricted
isometry constant of order p of A is the smallest number δp = δp(A) such that

(1− δp)|x|22 ≤ |Ax|22 ≤ (1 + δp)|x|22
for all p-sparse vectors x ∈ RN . Let δ ∈ (0, 1). We say that the matrix A satisfies
the Restricted Isometry Property of order p with parameter δ, shortly RIPp(δ), if
0 6 δp(A) < δ.

The relevance of the Restricted Isometry parameter is revealed in the following
result:

Theorem 2.3.2. — Let 1 6 m 6 N/2. Let A be an n×N matrix. If

δ2m (A) <
√

2− 1.

then A satisfies the exact reconstruction property of order m by `1-minimization.

For simplicity, we shall discuss an other parameter involving a more general con-
cept. The aim is to relax the constraint δ2m (A) <

√
2− 1, in Theorem 2.3.2 and still

get an exact reconstruction property of a certain order by `1-minimization.

Definition 2.3.3. — Let 0 ≤ p ≤ n be integers and let A be an n×N matrix. Define
αp = αp(A) and βp = βp(A) as the best constants such that

∀x ∈ Σp, αp|x|2 ≤ |Ax|2 ≤ βp|x|2.
Thus βp = max{|Ax|2 : x ∈ Σp |x|2 = 1} and αp = min{|Ax|2 : x ∈ Σp |x|2 = 1}.
Now we define the parameter γp = γp(A) by

γp(A) :=
βp(A)

αp(A)
·

In other words, let I ⊂ [N ] with |I| = p. Denote by AI the n × p matrix with
columns (Xi)i∈I obtained by extracting from A the columns Xi with index i ∈ I.
Then αp is the smallest singular value among all the block matrices AI with |I| = p,
and βp is the largest. In other words, denoting by B> the transposed matrix of a
matrix B and λmin((AI)>AI), respectively λmax((AI)>AI), the smallest and largest
eigenvalues of (AI)>AI , then

α2
p = α2

p(A) = min
I⊂[N ],|I|=p

λmin((AI)>AI)
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whereas
β2
p = β2

p(A) = max
I⊂[N ],|I|=p

λmax((AI)>AI).

Of course, if A satisfies RIPp(δ), then γp(A)2 ≤ 1+δ
1−δ . The concept of RIP is

not homogenous, in the sense that A may satisfy RIPp(δ) but not a multiple of A.
One can “rescale” the matrix to satisfy a Restricted Isometry Property. This does
not ensure that the new matrix, say A′ will satisfy δ2m (A′) <

√
2 − 1 and will not

allow us to conclude to an exact reconstruction from Theorem 2.3.2 (compare with
Corollary 2.4.3 in the next section). Also note that the Restricted Isometry Property
for A can be written

∀x ∈ S2(Σp)
∣∣|Ax|22 − 1

∣∣ ≤ δ
expressing a form of concentration property of |Ax|2. Such a property may not be
satisfied despite the fact that A does satisfy the exact reconstruction property of order
p by `1-minimization (see Example 2.6.6).

2.4. The geometry of the null space

Let 1 6 m 6 p 6 N . Let h ∈ RN and let ϕ = ϕh : [N ] → [N ] be a one-to-
one mapping associated to a non-increasing rearrangement of (|hi|); in others words
|hϕ(1)| ≥ |hϕ(2)| ≥ · · · ≥ |hϕ(N)|. Denote by I1 = ϕh({1, . . . ,m}) (a subset of indices
of the largest m coordinates of (|hi|)) then by I2 = ϕh({m+ 1, . . . ,m+ p}) (a subset
of indices of the next p largest coordinates of (|hi|)) and iterate Ik+1 = ϕh({m+ (k−
1)p + 1, . . . ,m + kp}), for k ≥ 2, as far as m + kp ≤ N , in order to partition [N ] in
subsets of cardinality p, except the first one, I1 which has cardinality m and the last
one, which may have cardinality not greater than p.

Claim 2.4.1. — Let h ∈ RN . Suppose that 1 6 m 6 p 6 N and N ≥ m+ p. With
the previous notation, we have

∀k ≥ 2, |hIk+1
|2 ≤

1
√
p
|hIk |1

and ∑
k≥3

|hIk |2 ≤
1
√
p
|hIc1 |1.

Proof. — Let k ≥ 1. We have

|hIk+1
|2 ≤

√
|Ik+1| max{|hi| : i ∈ Ik+1}

and
max{|hi| : i ∈ Ik+1} ≤ min{|hi| : i ∈ Ik} ≤ |hIk |1/|Ik|.

We deduce that

∀k ≥ 1 |hIk+1
|2 ≤

√
|Ik+1|
|Ik|

|hIk |1.

Adding up these inequalities for all k ≥ 2, for which
√
|Ik+1|/|Ik| 6 1/

√
p, this prove

the claim.
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We are ready for the main Theorem of this section

Theorem 2.4.2. — Let 1 6 m 6 p 6 N and N ≥ m+p. Let A be an n×N matrix.
Then

∀h ∈ kerA, h 6= 0, ∀I ⊂ [N ], |I| ≤ m, |hI |1 <
√
m

p
γ2p(A) |hIc |1 (2.5)

and ∀h ∈ kerA, h 6= 0, ∀I ⊂ [N ], |I| ≤ m,

|h|2 ≤

√
1 + γ2

2p(A)

p
|hIc1 |1 ≤

√
1 + γ2

2p(A)

p
|h|1. (2.6)

In particular,

rad (kerA ∩BN1 ) ≤

√
1 + γ2

2p(A)

p

where rad (B) = supx∈B |x|2.

Proof. — Let h ∈ kerA, h 6= 0 and organize the coordinates of h as above. By
definition of α2p (see 2.3.3), one has

|hI1 + hI2 |2 ≤
1

α2p
|A(hI1 + hI2)|2.

Using that h ∈ kerA we obtain

|hI1 + hI2 |2 ≤
1

α2p
|A(hI1 + hI2 − h)|2 =

1

α2p
|A(−

∑
k≥3

hIk)|2.

Then from the definition of βp and γp (2.3.3), using Claim 2.4.1, we get

|hI1 |2 < |hI1 + hI2 |2 ≤
βp
α2p

∑
k≥3

|hIk |2 ≤
γ2p(A)
√
p
|hIc1 |1. (2.7)

This inequality is strict because hI2 = 0 would imply hIc1 = 0 and subsequently
hI1 = 0. To conclude the proof of (2.5), note that for any subset I ⊂ [N ], |I| ≤ m,
|hIc1 |1 ≤ |hIc |1 and |hI |1 ≤ |hI1 |1 ≤

√
m|hI1 |2.

To prove (2.6), we start from

|h|22 = |h− hI1 − hI2 |22 + |hI1 + hI2 |22
Using Claim (2.4.1), the first term satisfies

|h− hI1 − hI2 |2 ≤
∑
k≥3

|hIk |2 ≤
1
√
p
|hIc1 |1.

From(2.7), |hI1 + hI2 |2 ≤
γ2p(A)√

p |hIc1 |1 and putting things together, we derive that

|h|2 ≤

√
1 + γ2

2p(A)

p
|hIc1 |1 ≤

√
1 + γ2

2p(A)

p
|h|1.
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¿From relation (2.5) and the null space property (Proposition 2.2.11) we derive the
following corollary.

Corollary 2.4.3. — Let 1 6 p 6 N/2. Let A be a n ×N matrix. If γ2p(A) ≤ √p,
then A satisfies the exact reconstruction property of order m by `1-minimization with

m =
⌊
p
/
γ2

2p(A)
⌋
.

Our main goal now is to find p such that γ2p is bounded by some numerical constant.
This means that we need a uniform control of the smallest and largest singular values
of all block matrices of A with 2p columns. By Corollary 2.4.3 this is a sufficient
condition for the exact reconstruction of m-sparse vectors by `1-minimization with
m ∼ p. When |Ax|2 satisfies good concentration properties, the restricted isometry
property is more adapted. In this situation, γ2p ∼ 1. When the isometry constant
δ2p is sufficiently small, A satisfies the exact reconstruction of m-sparse vectors with
m = p (see Theorem 2.3.2).

Similarly, an estimate of rad (kerA ∩BN1 ) gives an estimate of the size of sparsity
of vectors which can be reconstructed by `1-minimization.

Proposition 2.4.4. — Let A be an n×N matrix and let 1 ≤ m. If

rad (kerA ∩BN1 ) <
1

2
√
m

then the matrix A satisfies the exact reconstruction property of order m by `1-
minimization.

Proof. — Let h ∈ kerA and I ⊂ [N ], |I| ≤ m. By our assumption, we have that

∀h ∈ kerA, h 6= 0 |h|2 < |h|1/2
√
m.

Thus |hI |1 ≤
√
m |hI |2 ≤

√
m |h|2 < |h|1/2 and |hI |1 < |hIc |1. We conclude using

the null space property (Proposition 2.2.11).

To conclude the section, note that 2.6 implies that if a n×N matrix A satisfies a

restricted isometry property of order m ≥ 1, then rad (kerA ∩BN1 ) = O(1)√
m
.

2.5. Gelfand widths

The study of the previous section leads to the notion of Gelfand widths.

Definition 2.5.1. — Let T be a bounded subset of a normed space E. Let k ≥ 0 be
an integer. Its k-th Gelfand width is defined as

dk(T,E) := inf
S

sup
x∈S∩T

‖x‖E ,

where ‖ . ‖E denotes the norm of E and where the infimum is taken over all linear
subspaces S of codimension ≤ k.
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A different notation is used in Banach space and Operator Theory. Let u : X −→ Y
be an operator between two normed spaces X and Y . The k-th Gelfand number is
defined by

ck(u) = inf{‖ u|S ‖ : S ⊂ X, codimS < k}
where u|S denotes the restriction of the operator u under S. This reads equivalently
as

ck(u) = inf
S

sup
x∈S∩BX

‖u(x)‖Y ,

where BX denotes the unit ball of X and the infimum is taken over all subspaces S
of X with codimension < k. Thus, the different notation are related by

ck+1(u) = dk(u(BX), Y ).

If F is a linear space (RN for instance) equipped with two norms defining two normed
spaces X and Y and if id : X → Y is the identity mapping of F considered from the
normed spaces X to Y , then

dk(BX , Y ) = ck+1(id : X → Y ).

As a particular but important instance, we have

dk(BN1 , `
N
2 ) = ck+1(id : `N1 → `N2 ) = inf

codimS6k
rad (S ∩BN1 ).

The study of these numbers attracted a lot of attention during the seventies and
the eighties. An important result is the following

Theorem 2.5.2. — There exist c, C > 0 such that for any integers 1 ≤ k ≤ N ,

cmin

{
1,

√
log(N/k)

k

}
≤ ck(id : `N1 → `N2 ) ≤ C min

{
1,

√
log(N/k)

k

}
.

Moreover, if P is the rotation invariant probability measure on the Grassmann mani-
fold of subspaces S of RN with codim(S) = k − 1, then

P

(
rad (S ∩BN1 ) ≤ C min

{
1,

√
log(N/k)

k

})
≥ 1− exp(−ck).

Coming back to compressed sensing, let 1 6 m 6 n and let us assume that

dn(BN1 , `
N
2 ) <

1

2
√
m
.

In other words, we assume that there is a subspace S ⊂ RN of codimension 6 n such
that rad (S ∩BN1 ) < 1

2
√
m

. Choose any n×N matrix A such that kerA = S, then

rad (kerA ∩BN1 ) <
1

2
√
m
.

Proposition 2.4.4 shows A satisfies the exact reconstruction property of order m by
`1-minimization.
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We deduce from Theorem 2.5.2 that there exists a matrix A satisfying the exact
reconstruction property of order

bc1n/ log(c2N/n)c

where c1, c2 are universal constants. From Proposition 2.2.17 it is the optimal order.

2.6. Gaussian random matrices satisfy a RIP

So far, we did not give yet any example of matrices satisfying the exact recon-
struction property of order m with large m. It is known that with high probability
Gaussian matrices do satisfy this property.

The subgaussian Ensemble. — We consider a probability P on the space of real
n×N matrices M(n,N) satisfying the following concentration inequality: there exists
an absolute constant c0 such that for every x ∈ RN we have

P
(
{A :

∣∣|Ax|22 − |x|22∣∣ ≥ t|x|22}) ≤ 2e−c0t
2n for all 0 < t ≤ 1. (2.8)

Definition 2.6.1. — For a real random variable Z we define the ψ2-norm by

‖Z‖ψ2
= inf

{
s > 0 : E exp (|Z|/s)2 6 e

}
.

We say that a random vector Y ∈ RN is isotropic if it is centered and

∀y ∈ RN , E|〈Y, y〉|2 = |y|22.

A random vector Y ∈ RN satisfies a ψ2 estimate with constant α (shortly Y is ψ2

with constant α) if

∀y ∈ RN , ‖〈Y, y〉‖ψ2
6 α|y|2.

It is well-known that a real random variable Z is ψ2 (with some constant) if and
only if it satisfies a subgaussian tail estimate. In particular if Z is a real random
variable with ‖Z‖ψ2 ≤ α, then for every t ≥ 0,

P(|Z| ≥ t) ≤ e−(t/α)2+1

This ψ2 property can also be characterized by the growth of moments. Well known
examples are Gaussian random variables and bounded centered random variables (see
Chapter 1 for details).

Let us consider Y1, . . . , Yn ∈ RN be i.i.d. isotropic random vectors which are ψ2

with the same constant α. Let A be the matrix with Y1, . . . , Yn ∈ RN as rows. We
consider the probability P on the space of matrices M(n,N) induced by the mapping
(Y1, . . . , Yn)→ A.

Let us recall Bernstein’s inequality (see Chapter 1). For y ∈ SN−1 consider the
average of n independent copies of the random variable 〈Y1, y〉2. Then for every t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

〈Yi, y〉2 − 1

∣∣∣∣∣ > t

)
6 2 exp

(
−cnmin

{
t2

α4
,
t

α2

})
,
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where c is an absolute constant. Note that since E〈Y1, y〉2 = 1, one has α > 1 and

that
∣∣∣Ay√n ∣∣∣22 = 1

n

∑n
i=1〈Yi, y〉2. This shows the next claim:

Claim 2.6.2. — Let Y1, . . . , Yn ∈ RN be i.i.d. isotropic random vectors that are ψ2

with constant α. Let P be the probability induced on M(n,N). Then for every x ∈ RN
we have

P
(∣∣∣∣∣∣ A√

n
x
∣∣∣2
2
− |x|22

∣∣∣ ≥ t|x|22) ≤ 2e−
c
α4 t

2n for all 0 < t ≤ 1

where c > 0 is an absolute constant.

The most important examples for us of model of random matrices satisfying (2.8)
are matrices with independent subgaussian rows, normalized in the right way.

Example 2.6.3. — Some classical examples:

– Y1, . . . , Yn ∈ RN are independent copies of the Gaussian vector Y = (g1, . . . , gN )
where the gi’s are independent N (0, 1) Gaussian variables

– Y1, . . . , Yn ∈ RN are independent copies of the random sign vector Y =
(ε1, . . . , εN ) where the εi’s are independent, symmetric ±1 (Bernoulli) random
variables

– Y1, . . . , Yn ∈ RN are independent copies of a random vector uniformly distributed
on the Euclidean sphere of radius

√
N .

In all these cases the (Yi) are isotropic with a ψ2 constant α, for a suitable α > 1.
For the last case see e.g. [LT91]. For more details on Orlicz norm and probabilistic
inequalities used here see Chapter 1.

Sub-Gaussian matrices are almost norm preserving on Σm. — An important
feature of Σm and its subsets S2(Σm) and B2(Σm) is their peculiar structure: the two
last are the unions of the unit spheres, and unit balls, respectively, supported on
m-dimensional coordinate subspaces of RN .

We begin with the following well known lemma (see Chapter 1) which allows to
step up from an ε-net to the whole unit sphere.

Lemma 2.6.4. — Let m ≥ 1 be an integer, ‖ . ‖ be a semi-norm in Rm and ε ∈
(0, 1/3). Let Λ ⊂ Sm−1 be an ε-net of Sm−1 by εBm2 . If

∀y ∈ Λ 1− ε ≤ ‖y‖ ≤ 1 + ε,

then

∀y ∈ Sm−1 1− 3ε

1− ε
≤ ‖y‖ ≤ 1 + ε

1− ε
.

Proof. — Proposition 2.2.7 implies that Sm−1 ⊂ (1− ε)−1conv Λ. Therefore we have

sup
y∈Sm−1

‖y‖ ≤ (1 + ε)(1− ε)−1.

To get a lower estimate, write any y ∈ Sm−1 as y = y1 + εy2, with y1 ∈ Λ and
y2 ∈ Bm2 . Then ‖y‖ ≥ ‖y1‖ − ε‖y2‖ ≥ (1− ε)− ε(1 + ε)(1− ε)−1 = (1− 3ε)/(1− ε)
which proves the claim.
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We can give now a simple proof that subgaussian matrices satisfy the exact recon-
struction property of order m by `1-minimization with large m.

Theorem 2.6.5. — Let P be a probability on M(n,N) satisfying (2.8). Then there
exist positive constants c1, c2 and c3 depending only on c0 from (2.8), for which the
following holds: with probability at least 1− 2 exp(−c3n), A satisfies the exact recon-
struction property of order m by `1-minimization with

m =

⌊
c1n

log (c2N/n)

⌋
.

Moreover, A satisfies RIPm(δ) for any δ ∈ (0, 1) with m ∼ cδ2n/ log(CN/δ3n) where
c and C depend only on c0.

Proof. — Let ε ∈ (0, 1/3) to be fixed later. Let 1 ≤ p ≤ N/2. Let yi, i = 1, 2, . . . , n,
be the rows of A. For every subset I of [N ] of cardinality 2p let ΛI be an ε-net of

the unit sphere of RI by εBI2 satisfying Claim 2.2.8, that is with |ΛI | ≤
(

3
ε

)2p
. Apply

Lemma 2.6.4 to the semi-norm

||y|| :=

(
1

n

n∑
i=1

〈yi, y〉2
)1/2

on the unit sphere of RI . Let Λ ⊂ RN be the union of all these ΛI for |I| = 2p.
Suppose that

sup
y∈Λ

∣∣∣ 1
n

n∑
i=1

(〈yi, y〉2 − 1)
∣∣∣ ≤ ε,

then

∀y ∈ S2(Σ2p)
1− 3ε

1− ε
≤ 1√

n

( n∑
i=1

〈yi, y〉2
)1/2 ≤ 1 + ε

1− ε
.

Note that there is nothing random in that relation. This is why we change the notation
of the rows from (Yi) to (yi). Thus checking how well the matrix A defined by the
rows (yi) is acting on Σ2p is reduced to checking that on the finite set Λ. Now recall

that |Λ| ≤
(
N
2p

) (
3
ε

)2p ≤ exp
(

2p log
(

3eN
2pε

))
.

Given a probability P on M(n,N) satisfying (2.8), and using a union bound esti-
mate, we get that the inequalities

∀x ∈ S2(Σ2p)
1− 3ε

1− ε
≤ |Ax|2 ≤

1 + ε

1− ε
hold with probability at least

1− 2|Λ|e−c0ε
2n ≥ 1− 2 exp

(
2p log

(
3eN

2pε

))
e−c0ε

2n ≥ 1− 2e−c0ε
2n/2

whenever

2p log

(
3eN

2pε

)
≤ c0ε2n/2.
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Assuming these inequalities, we get

γ2p(A) ≤ (1 + ε)/(1− 3ε)

with probability larger than 1 − exp(−c0ε2n/2). ¿From Corollary 2.4.3, we deduce
that A satisfies the exact reconstruction property of order m by `1-minimization with

m = bp/γ2p(A)2c.

This gives the announced result by fixing ε (say ε = 1/4) and solving 2p log
(

3eN
2pε

)
≤

c0ε
2n/2.

The strategy that we used in the proof of Theorem 2.6.5 is the following:

– discretization: discretization of the set Σ2p, it is a net argument
– concentration: |Ax|2 concentrates around its mean for each individual x of the

net
– union bound: concentration should be good enough to balance the cardinality of

the net and to conclude to a uniform concentration on the net of |Ax|2 around
its mean

– from the net to the whole set, that is checking RIP, is obtained by Lemma 2.6.4.

We conclude this section by an example of an n × N matrix A which is a good
compressed sensing matrix but none of the n×N matrices with the same kernel as A
satisfy a restricted isometry property of any order ≥ 1 with good parameter. As we
already noticed, if A has parameter γp, one can find t0 > 0 and rescale the matrix so
that δp(t0A) = γ2

p − 1/γ2
p + 1 ∈ [0, 1). In this example, γp is large, δp(t0A) ∼ 1 and

one cannot deduce any result about exact reconstruction from Theorem 2.3.2.

Example 2.6.6. — Let 1 ≤ n ≤ N . Let δ ∈ (0, 1). There exists an n×N matrix A
such that for any p ≤ cn/ log(CN/n), one has γ2p(A)2 ≤ c′(1− δ)−1. Thus, for any
m ≤ c”(1− δ)n/ log(CN/n), the matrix A satisfies the exact reconstruction property
of m-sparse vectors by `1-minimization. Nevertheless, for any n × n matrix U , the
restricted isometry constant of order 1 of UA satisfies, δ1(UA) ≥ δ (think of δ ≥ 1/2).
Here, C, c, c′, c” > 0 are universal constants.

The proof is left as exercise.

2.7. RIP for other “simple” subsets: almost sparse vectors

As already mentioned, various “random projection” operators may act as “almost
norm preserving” on “thin” subsets of the sphere. We analyze a simple structure of
the metric entropy of a set T ⊂ RN in order that, with high probability, (a multiple
of) Gaussian or subgaussian matrices act almost like an isometry on T . This will
apply to a more general case than sparse vectors.

Theorem 2.7.1. — Consider a probability on the space of n×N matrices satisfying

∀x ∈ RN P
(∣∣|Ax|22 − |x|22∣∣ ≥ t|x|22) ≤ 2e−c0t

2n for all 0 < t ≤ 1.

Let T ⊂ SN−1 and 0 < ε < 1/15. Assume the following:
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(i) There exists an ε-net Λ ⊂ SN−1 of T satisfying |Λ| ≤ exp(c0ε
2n/2)

(ii) There exists a subset Λ′ of εBN2 such that (T − T ) ∩ εBN2 ⊂ 2 conv Λ′ and
|Λ′| ≤ exp(c0n/2).

Then with probability at least 1− 3 exp(−c0ε2n/2), one has that for all x ∈ T ,

1− 15ε ≤ |Ax|22 ≤ 1 + 15ε. (2.9)

Proof. — The idea is to show that A acts on Λ in an almost norm preserving way.
This is the case because the degree of concentration of each variable |Ax|22 around its
mean defeats the cardinality of Λ. Then one shows that A(conv Λ′) is contained in a
small ball - thanks to a similar argument.

Consider the set Ω of matrices A such that

||Ax0|2 − 1| ≤
∣∣|Ax0|22 − 1

∣∣ ≤ ε for all x0 ∈ Λ, (2.10)

and

|Az|2 ≤ 2ε for all z ∈ Λ′. (2.11)

¿From our assumption (2.8), i) and ii)

P(Ω) ≥ 1− 2 exp(−c0ε2n/2)− exp(−c0n/2) ≥ 1− 3 exp(−c0ε2n/2).

Let x ∈ T and consider x0 ∈ Λ such that |x− x0|2 ≤ ε. Then for every A ∈ Ω

|Ax0|2 − |A(x− x0)|2 ≤ |Ax|2 ≤ |Ax0|2 + |A(x− x0)|2 .

Since x− x0 ∈ (T − T ) ∩ εBN2 , property ii) and (2.11) give that

|A(x− x0)|2 ≤ 2 sup
z∈conv Λ′

|Az|2 = 2 sup
z∈Λ′
|Az|2 ≤ 4ε. (2.12)

Combining this with (2.10) implies that 1 − 5ε ≤ |Ax|2 ≤ 1 + 5ε. The proof is
completed by squaring.

Approximate reconstruction of almost sparse vectors. — After analyzing
the restricted isometry property for thin sets of the type of Σm, we look again at the
`1-minimization method in order to get approximate reconstruction of vectors which
are not far from sparse vectors. As well as for the exact reconstruction, approximate
reconstruction depends on a null-space property.

Proposition 2.7.2. — Let A be a n×N matrix and λ ∈ (0, 1). Assume that

∀h ∈ kerA, h 6= 0,∀I ⊂ [N ], |I| ≤ m, |hI |1 6 λ|hIc |1. (2.13)

Let x ∈ RN and let x] be a minimizer of

(P ) min
t∈RN

|t|1 subject to At = Ax.

Then for any I ⊂ [N ], |I| 6 m,

|x− x]|1 ≤ 2
1 + λ

1− λ
|x− xI |1.
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Proof. — Let x] be a minimizer of (P ) and set h = x] − x ∈ kerA. Let m > 1 and
I ⊂ [N ] such that |I| 6 m. Observe that

|x|1 ≥ |x+ h|1 = |xI + hI |1 + |xIc + hIc |1 ≥ |xI |1 − |hI |1 + |hIc |1 − |xIc |1
and thus

|hIc |1 ≤ |hI |1 + 2|xIc |1.
On the other hand, from the null space assumption, we get

|hIc |1 ≤ |hI |1 + 2|xIc |1 ≤ λ|hIc |1 + 2|xIc |1.

Therefore

|hIc |1 ≤
2

1− λ
|xIc |1.

Since the null space assumption reads equivalently |h|1 6 (1 + λ) |hIc |1, we can con-
clude the proof.

Note that the minimum of |x−xI |1 over all subsets I such that |I| ≤ m, is obtained
when I is the support of the m-largest coordinates of x. The vector xI is henceforth
the best m-sparse approximation of x (in the `1 norm). Note also that if x is m-sparse
then we go back to the exact reconstruction scheme.

Property (2.13), which is a strong form of the null space property, may be stud-
ied by means of parameters such as the Gelfand diameters. This gives us the next
proposition.

Proposition 2.7.3. — Let A be a n ×N matrix and 1 ≤ m ≤ n. Let x ∈ RN and
let x] be a minimizer of

(P ) min
t∈RN

|t|1 subject to At = Ax.

Let ρ = rad (BN1 ∩ kerA) = supx∈BN1 ∩kerA |x|2. Assume that ρ 6 1/4
√
m then for

any I ⊂ [N ], |I| 6 m,

|x− x]|1 ≤ 4 |x− xI |1
and

|x− x]|2 ≤
1√
m
|x− xI |1.

Proof. — Let h ∈ kerA. We have

|hI |1 ≤
√
m |hI |2 6

√
m |h|2 6

√
mρ|h|1.

Therefore

|hI |1 ≤
ρ
√
m

1− ρ
√
m
|hIc |1

whenever ρ
√
m < 1. We deduce that Property (2.13) is satisfied with λ = ρ

√
m

1−ρ
√
m

.

The inequality |x− x]|1 ≤ 4 |x− xI |1 follows directly from Proposition 2.7.2 and the
assumption ρ 6 1/4

√
m. The relation |h|2 6 ρ|h|1 ≤ 4ρ|x− xI |1 concludes the proof

of the last inequality.
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Let 1 ≤ m ≤ p ≤ n and N > m+ p. The last proposition could be reformulated in
terms of the constant of the restricted isometry property or in terms of the parameter
γp, since from (2.6),

ρ ≤

√
1 + γ2

2p(A)

p
,

but we shall not go any further ahead.

Remark 2.7.4. — To sum up, Theorem 2.4.2 shows that if a n×N matrix A satisfies
a restricted isometry property of order m ≥ 1, then

rad (kerA ∩BN1 ) =
O(1)√
m
. (2.14)

On the other hand, Propositions 2.4.4 and 2.7.3 show that if a n×N matrix A satisfies
(2.14), then the matrix A satisfies the exact reconstruction property of order O(m) by
`1-minimization as well as an approximate reconstruction property.

Based on this remark, we could focus on estimates of the diameters, but the exam-
ple of Gaussian matrices shows that it may be easier to prove a restricted isometry
property than computing widths. We conclude this section by an application of
Proposition 2.7.3.

Corollary 2.7.5. — Let 0 < p < 1 and consider

T = BNp,∞ =
{
x = (x1, . . . , xN ) ∈ RN : |{i : |xi| ≥ s}| ≤ s−p for all s > 0

}
the unit ball of `Np,∞. Let A be a n×N matrix and 1 ≤ m ≤ n. Let x ∈ T and let x]

be a minimizer of

(P ) min
t∈RN

|t|1 subject to At = Ax.

Let ρ = rad (BN1 ∩ kerA) = supx∈BN1 ∩kerA |x|2 and assume that ρ 6 1/4
√
m, then

|x− x]|2 6 ((1/p)− 1)−1m1/2−1/p.

Proof. — Observe that for any x ∈ BNp,∞, one has x∗i ≤ 1/i1/p, for every i ≥ 1,

where (x∗i )
N
i=1 is a non-increasing rearrangement of (|xi|)Ni=1. Let I ⊂ [N ], such that

|I| = m and let xI be the best m-sparse approximation of x. Note that
∑
i>m i

−1/p ≤
(1/p − 1)−1m1−1/p. ¿From Proposition 2.7.3, we get that if ρ 6 1/4

√
m and if x] is

a minimizer of (P ), then

|x− x]|2 ≤
1√
m
|x− xI |1 6 ((1/p)− 1)−1m1/2−1/p.
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Reducing the computation of Gelfand widths by truncation. — We begin
with a simple principle which reduces the computation of Gelfand widths to the width
of a truncated set.

Definition 2.7.6. — We say that a subset T ⊂ RN is star-shaped in 0 or shortly,
star-shaped, if λT ⊂ T for every 0 ≤ λ ≤ 1. Let ρ > 0 and let T ⊂ RN be star-shaped,
we denote by Tρ the subset

Tρ = T ∩ ρSN−1.

Recall that rad (S) = supx∈S |x|2.

Lemma 2.7.7. — Let ρ > 0 and let T ⊂ RN be star-shaped. Then for any linear
subspace E ⊂ RN such that E ∩ Tρ = ∅ we have rad (E ∩ T ) < ρ.

Proof. — If rad (E ∩ T ) > ρ, there would be x ∈ E ∩ T of norm greater or equal to
ρ. Since T is star-shaped, so is E ∩ T and thus x/|x|2 ∈ E ∩ Tρ; a contradiction.

This easy lemma will be a useful tool in the next sections and in Chapter 5. The
subspace E will be the kernel of our matrix A, ρ a parameter that we try to estimate
as small as possible such that kerA ∩ Tρ = ∅, that is such that Ax 6= 0 for all x ∈ T
with |x|2 = ρ. This will be in particular the case if A or a multiple of A acts on Tρ in
an almost norm preserving way.

With Theorem 2.7.1 in mind, we apply this plan to subsets T like Σm.

Corollary 2.7.8. — Let P be a probability on M(n,N) satisfying (2.8). Consider
a star-shaped set T ⊂ RN and let ρ > 0. Assume that 1

ρ Tρ ⊂ SN−1 satisfies the

hypothesis of Theorem 2.7.1 for some 0 < ε < 1/15. Then rad (kerA ∩ T ) < ρ, with
probability at least 1− 2 exp(−cn) where c > 0 is an absolute constant.

Application to subsets related to `p unit balls. — To illustrate this method,
we consider some examples of set T , for 0 < p < 2:

– the unit ball of `N1 , denoted by BN1
– the unit ball BNp = {x ∈ RN :

∑N
1 |xi|p ≤ 1} of `Np , 0 < p < 1

– the unit ball BNp,∞ =
{
x ∈ RN : |{i : |xi| ≥ s}| ≤ s−p for all s > 0

}
of `Np,∞

(weak `Np ), for 0 < p < 1.

Note that for 0 < p < 1, the “unit ball” BNp is not convex and that BNp ⊂ BNp,∞,

so that for estimating Gelfand widths, we can restrict to the balls BNp,∞.

We need two lemmas. The first uses the following classical fact:

Claim 2.7.9. — Let (ai), (bi) two sequences of positive numbers such that (ai) is
non-increasing. Then the sum

∑
aibπ(i) is maximized over all permutations π of the

index set, if bπ(1) ≥ bπ(2) ≥ . . ..
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Lemma 2.7.10. — Let 0 < p < 1, 1 6 m 6 N and set r = (1/p − 1)m1/p−1/2.
Then, for every x ∈ RN ,

sup
z∈rBNp,∞∩BN2

〈x, z〉 6 2

(
m∑
i=1

x∗i
2

)1/2

,

where (x∗i )
N
i=1 is a non-increasing rearrangement of (|xi|)Ni=1. Equivalently,

rBNp,∞ ∩BN2 ⊂ 2 conv (S2(Σm)). (2.15)

Moreover one has √
mBN1 ∩BN2 ⊂ 2 conv (S2(Σm)). (2.16)

Proof. — We treat only the case of BNp,∞, 0 < p < 1. The case of BN1 is similar. Note

first that if z ∈ BNp,∞, then for any i ≥ 1, z∗i ≤ 1/i1/p, where (z∗i )Ni=1 is a non-increasing

rearrangement of (|zi|)Ni=1. Using Claim 2.7.9 we get that for any r > 0,m ≥ 1 and
z ∈ rBNp,∞ ∩BN2 ,

〈x, z〉 6

(
m∑
i=1

x∗i
2

)1/2

+
∑
i>m

rx∗i
i1/p

6

(
m∑
i=1

x∗i
2

)1/2(
1 +

r√
m

∑
i>m

1

i1/p

)

6

(
m∑
i=1

x∗i
2

)1/2(
1 +

(
1

p
− 1

)−1
r

m1/p−1/2

)
.

By the definition of r, this completes the proof.

The second lemma shows that m1/p−1/2BNp,∞ ∩ SN−1 is well approximated by
vectors on the sphere with short support.

Lemma 2.7.11. — Let 0 < p < 2 and δ > 0, and set ε = 2(2/p − 1)−1/2δ1/p−1/2.
Let 1 ≤ m ≤ N . Then S2(Σdm/δe) is an ε-net of m1/p−1/2BNp,∞ ∩ SN−1 with respect
to the Euclidean metric.

Proof. — Let x ∈ m1/p−1/2BNp,∞ ∩ SN−1 and assume without loss of generality that
x1 ≥ x2 ≥ . . . ≥ xn ≥ 0. Define z′ by z′i = xi for 1 ≤ i ≤ dm/δe and z′i = 0 otherwise.
Then

|x− z′|22 =
∑
i>m/δ

|xi|2 ≤ m2/p−1
∑
i>m/δ

1/i2/p < (2/p− 1)−1 δ2/p−1.

Thus 1 ≥ |z′|2 ≥ 1 − (2/p − 1)−1/2 δ1/p−1/2. Put z = z′/|z′|2. Then z ∈ S2(Σdm/δe)
and

|z − z′|2 = 1− |z′|2 ≤ (2/p− 1)−1/2 δ1/p−1/2.

By the triangle inequality |x− z|2 < ε, completing the proof.
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The preceding lemmas are used to show that the hypothesis of Theorem 2.7.1 are
satisfied for an appropriate choice of T and ρ. Before that, property ii) of Theo-
rem 2.7.1, brings us to the following definition.

Definition 2.7.12. — We say that a subset T of RN is quasi-convex with constant
a ≥ 1, if T is star-shaped and T + T ⊂ 2aT .

Let us note the following easy fact.

Claim 2.7.13. — Let 0 < p < 1, then BNp,∞ and BNp are quasi-convex with constant

2(1/p)−1.

We come up now with the main claim:

Claim 2.7.14. — Let 0 < p < 1 and T = BNp,∞. Then (1/ρ)Tρ satisfies properties
i) and ii) of Theorem 2.7.1 with

ρ = Cp

(
n

log(cN/n)

)1/p−1/2

where Cp depends only on p and c > 0 is an absolute constant. Moreover if T = BN1 ,
then (1/ρ)Tρ satisfies properties i) and ii) of Theorem 2.7.1 with

ρ =

(
c1n

log(c2N/n)

)1/2

where c1, c2 are positive absolute constants.

Proof. — We consider only the case of T = BNp,∞, 0 < p < 1. The case of BN1 is
similar. Since the mechanism has already been developed in details, we will only
indicate the different steps. Fix ε0 = 1/20. To get i) we use Lemma 2.7.11 with
ε = ε0/2 and δ obtained from the equation ε0/2 = 2(2/p − 1)−1/2δ1/p−1/2. Let
1 ≤ m ≤ N . We get that S2(Σdm/δe) is an (ε0/2)-net of m1/p−1/2BNp,∞ ∩ SN−1 with
respect to the Euclidean metric. Set m′ = dm/δe. By Claim 2.2.9, we have

N(S2(Σm′),
ε0

2
BN2 ) ≤

(
3eN

m′(ε0/2)

)m′
=

(
6eN

m′ε0

)m′
.

Thus, by the triangle inequality, we have

N(m1/p−1/2BNp,∞ ∩ SN−1, ε0B
N
2 ) ≤

(
6eN

m′ε0

)m′
so that

N(m1/p−1/2BNp,∞ ∩ SN−1, ε0B
N
2 ) ≤ exp(c0n/2)

whenever (
6eN

m′ε0

)m′
≤ exp(c0n/2).

This shows that under this condition on m′ (that is on m), the set m1/p−1/2BNp,∞ ∩
SN−1 satisfies i).
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In order to tackle ii), recall that Bp,∞ is quasi-convex with constant 21/p−1 (Claim
2.7.13. By symmetry, we have

BNp,∞ −BNp,∞ ⊂ 21/pBNp,∞.

Let r = (1/p− 1)m1/p−1/2. From Lemma 2.7.10, one has

rBNp,∞ ∩BN2 ⊂ 2 convS2(Σm).

As we saw previously,

N(S2(Σm),
1

2
BN2 ) ≤

(
3eN

m(1/2)

)m
=

(
6eN

m

)m
and by Claim 2.2.9 there exists a subset Λ′ ⊂ SN−1 with |Λ′| ≤ N(S2(Σm), 1

2 B
N
2 )

such that S2(Σm) ⊂ 2 conv Λ′. We arrive at

ε02−1/p
(
rBNp,∞ − rBNp,∞

)
∩ ε0B

N
2 ⊂ ε0

(
rBNp,∞ ∩BN2

)
⊂

⊂ 4ε0 conv Λ′ ⊂ 2 conv (Λ′ ∪ −Λ′).

Therefore ε02−1/prBNp,∞ ∩ SN−1 satisfies ii) whenever 2 (6eN/m)
m ≤ exp(c0n/2).

Finally ε02−1/prBNp,∞ ∩ SN−1 satisfies i) and ii) whenever the two conditions on
m are verified, that is when cm log(CN/m) ≤ c0n/2 where c, C > 0 are absolute
constants. We compute m and r and set ρ = ε02−1/pr to conclude.

Now we can apply Corollary 2.7.8, to conclude

Theorem 2.7.15. — Let P be a probability satisfying (2.8) on the space of n × N
matrices and let 0 < p < 1. There exist cp depending only on p, c′ depending on c0
and an absolute constant c such that the set Ω of n×N matrices A satisfying

rad
(
kerA ∩BNp

)
6 rad

(
kerA ∩BNp,∞

)
6 cp

(
log(cN/n)

n

)1/p−1/2

.

has probability at least 1− exp(−c′n).
In particular, if A ∈ Ω and if x′, x ∈ Bnp,∞ are such that Ax′ = Ax then

|x′ − x|2 6 c′p

(
log(c1N/n)

n

)1/p−1/2

.

An analogous result holds for the ball BN1 .

2.8. An other complexity measure

In the last section, we introduce a new parameter `∗(T ) which is a complexity
measure of a set T ⊂ RN . We define

`∗(T ) = E sup
t∈T

∣∣∣∣∣
N∑
i=1

giti

∣∣∣∣∣ , (2.17)

where t = (ti)
N
i=1 ∈ RN and g1, ..., gN are independent N(0, 1) Gaussian random

variables. This kind of parameter plays an important role in empirical processes (see
Chapter 1) and in Geometry of Banach spaces.
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Theorem 2.8.1. — There exist absolute constants c, c′ > 0 for which the following
holds. Let 1 ≤ n ≤ N . Let A be a Gaussian matrix with i.i.d. entries that are centered
and variance one Gaussian random variables. Let T ⊂ SN−1 be a star-shaped set.
Then, with probability at least 1− exp(−c′n),

rad (kerA ∩ T ) ≤ c `∗(T )/
√
n.

Proof. — The plan of the proof consists first to prove a restricted isometry property,
then to argue as in Lemma 2.7.7. Let δ ∈ (0, 1). The restricted isometry property is
proved using a discretization by a net argument and an approximation argument. For
any θ > 0, let Λ(θ) ⊂ T be a θ-net of T for the Euclidean metric. Let πθ : T → Λ(θ)
be a mapping such that for every t ∈ T , |t−πθ(t)|2 6 θ. By the triangular inequality,
we have

sup
t∈T

∣∣∣∣ |At|22n
− E|〈Y, t〉|2

∣∣∣∣ 6 sup
s∈Λ(θ)

∣∣∣∣ |As|22n
− E|〈Y, s〉|2

∣∣∣∣+ sup
t∈T

∣∣∣∣ |At|22n
− |Aπθ(t)|

2
2

n

∣∣∣∣ .
– First step. Entropy estimate via Sudakov minoration. Let s ∈ T . Let (Yi) be

the rows of A and let Y be a Gaussian random vector with the identity as covariance
matrix. Thus 〈Y, s〉 is ψ1 with respect to some absolute constant. Thus Bernstein
inequality from Theorem 1.2.7 applies and gives that∣∣∣∣ |As|22n

− E|〈Y, s〉|2
∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
1

(〈Yi, s〉2 − E|〈Y, s〉|2)

∣∣∣∣∣ 6 δ/2

with probability larger than 1 − 2 exp(−cnδ2), where c > 0 is a numerical constant.
Let θ > 0. A union bound principle ensures that

sup
s∈Λ(θ)

∣∣∣∣ |As|22n
− E|〈Y, s〉|2

∣∣∣∣ 6 δ/2

holds with probability larger than 1− 2 exp(−cnδ2 + log |Λ(θ)|).
From Sudakov inequality (1.13) (Theorem 1.4.4), there exists c′ > 0 such that, if

θ = c′
`∗(T )

δ
√
n

then log |Λ(θ)| 6 c nδ2/2. Therefore we get that

sup
s∈Λ(θ)

∣∣∣∣ |As|22n
− 1

∣∣∣∣ 6 δ/2

holds with probability larger than 1− 2 exp(−c nδ2/2).
– Second step. The approximation term. To begin with, observe that for any

s, t ∈ T ,
∣∣|As|22 − |At|22∣∣ 6 |A(s− t)|2 |A(s+ t)|2. Thus

sup
t∈T

∣∣|At|22 − |Aπθ(t)|22∣∣ 6 2 sup
t∈T (θ)

|At|2 sup
t∈T
|At|2

where T (θ) = {s− t ; s, t ∈ T, |s− t|2 6 θ}. In order to estimate these two norms of
the matrix A, we consider a (1/2)-net of the unit Euclidean sphere of Rn. According
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to Proposition 2.2.7, there exists such a net N with cardinality not larger than 5n

and such that Bn2 ⊂ 2 conv(N ). Therefore

sup
t∈T
|At|2 = sup

t∈T
sup
|u|261

|〈At, u〉| 6 2 sup
u∈N

sup
t∈T
|〈t, A>u〉|.

Since A is a standard Gaussian matrix with i.i.d. entries, centered and with variance
one, for every u ∈ N , A>u is a standard Gaussian vector and

E sup
t∈T
〈t, A>u〉 = `∗(T ).

It follows from Theorem 1.4.7 of Chapter 1 that for any fixed u ∈ N ,

∀z > 0 P
(∣∣∣∣sup

t∈T
〈t, A>u〉 − E sup

t∈T
〈t, A>u〉

∣∣∣∣ > z

)
≤ 2 exp

(
−c′′z2/σ2(T )

)
for some numerical constant c′′, where σ(T ) = supt∈T {

(
E〈t, A>u〉|2

)1/2}.
Combining a union bound inequality and the estimate on the cardinality of the

net, we get

∀z > 0 P
(

sup
u∈N

sup
t∈T
〈A>u, t〉 ≥ `∗(T ) + zσ(T )

√
n

)
≤ 2 exp (−c′′n( z2 − log 5 )) .

We deduce that
sup
t∈T
|At|2 6 2

(
`∗(T ) + zσ(T )

√
n
)

with probability larger than 1− 2 exp (−c′′n( z2 − log 5 )).
This reasoning applies as well to T (θ). In our case, σ(T ) = 1 and σ(T (θ)) 6 θ.

Therefore,

sup
t∈T

∣∣|At|22 − |Aπθ(t)|22∣∣ ≤ 8
(
`∗(T ) + z

√
n
) (
`∗(T ) + zθ

√
n
)

with probability larger than 1− 4 exp (−c′′n( z2 − log 5 )).

– Third step. The restricted isometry property. Set z =
√

log 5/
√

2, say. Plugging
the value of θ, we get that with high probability

sup
t∈T

∣∣|At|22 − |Aπθ(t)|22∣∣ 6 8
(
`∗(T ) + z

√
n
)(

`∗(T ) + zc′
`∗(T )

δ

)
and

sup
t∈T

∣∣∣∣ |At|22n
− 1

∣∣∣∣ 6 δ

2
+ c′′′

(
`∗(T )2

n
+ z2 `∗(T )

δ
√
n

)
for some new constant c′′′. It is clear that one can choose c′′′′ such that, whenever

`∗(T ) 6 c′′′′δ2
√
n

then

sup
t∈T

∣∣∣∣ |At|22n
− 1

∣∣∣∣ 6 δ

with probability larger than 1− 2 exp(−c nδ2/2)− 4 exp(−c′′nz2/2).
– Last step. Estimating the width. Applying the previous estimate with δ = 1/2

to the subset 1
ρT ∩S

N−1, we get that with high probability, kerA∩
(

1
ρT ∩ S

N−1
)

= ∅



66 CHAPTER 2. COMPRESSED SENSING AND GELFAND WIDTHS

whenever `∗

(
1
ρT ∩ S

N−1
)
6 `∗(T )

ρ < c′′′′δ2
√
n. The conclusion follows from Lemma

2.7.7.

Remark 2.8.2. — The proof of Theorem 2.8.1 generalizes to the case of a matrix
with independent sub-Gaussian rows. Only the second step has to be modified by
using the majorizing measure theorem which precisely allows to compare deviation
inequalities of supremum of sub-Gaussian processes to their equivalent in the Gaussian
case. We will not give here the proof of this result, see Theorem 3.2.1 in Chapter 3,
where an other approach will be developed.

We show now how Theorem 2.8.1 applies to some sets T .

Corollary 2.8.3. — There exist absolute constants c, c′ > 0 such that the following
holds. Let 1 6 n 6 N and let A be as in Theorem 2.8.1. Let λ > 0. Let T ⊂ SN−1

and assume that T ⊂ 2 conv Λ for some Λ ⊂ BN2 with |Λ| ≤ exp(λ2n). Then with
probability at least 1− exp(−c′n),

rad (kerA ∩ T ) ≤ cλ.

Remark 2.8.4. — Constant 2 in the inclusion T ⊂ 2 conv Λ is not significant.

Proof. — The main point in the proof is that if T ⊂ 2 conv Λ, Λ ⊂ BN2 and we have a
reasonable control of |Λ|, then `∗(T ) can be bounded from above. The rest is a direct
application of Theorem 2.8.1. Let c, c′ > 0 be constants from Theorem 2.8.1. It is
well known (see Chapter 3) that there exists an absolute constant c′′ > 0 such that
for every Λ ⊂ BN2 ,

`∗(conv Λ) = `∗(Λ) 6 c′′
√

log(|Λ|) ,
and since T ⊂ 2 conv Λ,

`∗(T ) ≤ 2`∗(conv Λ) 6 2c′′
(
λ2n

)1/2
.

The conclusion follows from Theorem 2.8.1.

2.9. Notes and comments

For further information on the origin and the genesis of compressed sensing and
on the `1-minimization method, the reader may consult the articles by D. Donoho
[Don06], E. Candes, J. Romberg and T. Tao [CRT06] and E. Candes and T. Tao
[CT06]. For further and more advanced studies on compressed sensing, see the book
[FR11].

Proposition 2.2.15 is due to D. Donoho [Don05]. Proposition 2.2.17 and its proof
is a particular case of a more general result from [FPRU10]. See also [LN06] where
the analogous problem for neighborliness is studied.

The definition 2.3.1 of the Restricted Isometry Property was introduced in [CT05]
and plays an important role in compressed sensing. The relevance of the Restricted
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Isometry parameter for the reconstruction property was for instance revealed in
[CT06], [CT05], where it was shown that if

δm(A) + δ2m(A) + δ3m(A) < 1

then the encoding matrix A has the exact reconstruction property of order m. This
result was improved in [Can08] to δ2m(A) <

√
2−1 as stated in Theorem 2.3.2. This

constant
√

2 − 1 was recently improved in [FL09]. In the same paper these authors
introduced the parameter γp from Definition 2.3.3.

The proofs of results of Section 2.4 are following lines from [CT05], [CDD09],
[FL09], [FPRU10] and [KT07]. Relation (2.5) was proved in [FL09] with a bet-
ter numerical constant. Theorem 2.5.2 from [GG84] gives the optimal behavior of
the Gelfand widths of the cross-polytope. This completes a celebrated result from
[Kaš77]. The result of [Kaš77] was proved using Kolmogorov widths (dual to the
Gelfand widths) and with a non-optimal power of the logarithm (power 3/2 instead of
1/2 later improved in [GG84]). The upper bound of Kolmogorov widths was obtained
via random matrices with i.i.d. Bernoulli entries, whereas [Glu83] and [GG84] used
properties of random Gaussian matrices.

The simple proof of Theorem 2.6.5 stating that subgaussian matrices satisfy the
exact reconstruction property of order m by `1-minimization with large m is taken
from [BDDW08] and [MPTJ08]. The strategy of this proof is very classical in
Approximation Theory, see [Kaš77] and in Banach space theory where it has played
an important role in quantitative version of Dvoretsky’s theorem on almost spherical
sections, see [FLM77] and [MS86].

Section 2.7 follows the lines of [MPTJ08]. Proposition 2.7.3 from [KT07] is
stated in terms of Gelfand width rather than in terms of constants of isometry as in
[Can08] and [CDD09]. The principle of reducing the computation of Gelfand widths
by truncation as stated in Subsection 2.7 goes back to [Glu83]. The parameter `∗(T )
defined in Section 2.8 plays an important role in Geometry of Banach spaces (see
[Pis89]). Theorem 2.8.1 is from [PTJ86].

The restricted isometry property for the model of partial discrete Fourier matrices
will be studied in Chapter 5. There exists many other interesting model of ran-
dom sensing matrices (see [FR11]). Random matrices with i.i.d. entries satisfying
uniformly a sub-exponential tail inequality or with i.i.d. columns with log-concave
density, the so-called log-concave Ensemble, have been studied in [ALPTJ10] and in
[ALPTJ09] where it is shown that they also satisfy a RIP with m ∼ n/ log2(2N/n).





CHAPTER 3

INTRODUCTION TO CHAINING METHODS

The restricted isometry property has been introduced in Chapter 2 in order to
provide a simple way of showing that a n×N matrix A satisfies an exact reconstruction
property. Indeed, if A is a n×N matrix such that for every 2m-sparse vector x ∈ RN ,

(1− δ2m)|x|22 6 |Ax|22 6 (1 + δ2m)|x|22
where δ2m <

√
2 − 1 then A satisfies the exact reconstruction property of order m

by `1-minimization (cf. Chapter 2). In particular, if A is a random matrix with rows
vectors n−1/2Y1, . . . , n

−1/2Yn, this property can be translated in terms of an empirical
processes property since

δ2m = sup
x∈S2(Σ2m)

∣∣∣ 1
n

n∑
i=1

〈Yi, x〉2 − 1
∣∣∣. (3.1)

If we show an upper bound on the supremum (3.1) smaller than
√

2 − 1, this will
prove that the matrix A has the exact reconstruction property of order m by `1-
minimization. In Chapter 2, it was shown that matrices from the subgaussian En-
semble satisfy the restricted isometry property (with high probability) thanks to a
technique called the epsilon-net argument. In this chapter, we present a technique
called the chaining method used to obtain upper bounds on the supremum of stochas-
tic processes.

3.1. The chaining method

The chaining mechanism is a technique used to obtain upper bounds on the supre-
mum supt∈T Xt of a stochastic process (Xt)t∈T indexed by a set T . These upper
bounds are usually expressed in terms of some metric complexity measure of T .

One key idea behind the chaining method is the trade-off between the deviation or
concentration estimates of the increments of the process (Xt)t∈T and the complexity
of T endowed with a metric structure connected with the stochastic process (Xt)t∈T .

As an introduction, we show an upper bound on the supremum supt∈T Xt in terms
of an entropy integral known as the Dudley entropy integral. This entropy integral is
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based on some metric quantities of T that were introduced in Chapter 1 and that we
recall now.

Definition 3.1.1. — Let (T, d) be a semi-metric space (that is for every x, y and z
in T , d(x, y) = d(y, x) and d(x, y) 6 d(x, z)+d(z, y)). For every ε > 0, the ε-covering
number N(T, d, ε) of (T, d) is the minimal number of open balls for the semi-metric d
of radius ε needed to cover T . The metric entropy is the logarithm of the ε-covering
number as a function of ε.

We develop the chaining argument under a subgaussian assumption on the incre-
ments of the process (Xt)t∈T saying that for every s, t ∈ T and u > 0,

P
[
|Xs −Xt| > ud(s, t)

]
6 2 exp(−cu2), (3.2)

where d is a semi-metric on T and c is an absolute positive constant. To avoid
some technical complications that are less important from our point of view,
we will only consider processes indexed by finite sets T . To handle more gen-
eral sets one may study the random variables sup

T ′⊂T :T ′ finite supt∈T ′ |Xt| or

supT ′⊂T :T ′ finite supt,s∈T ′ |Xt −Xs| which suffices for our goals.

Theorem 3.1.2. — There exist absolute constants c0, c1, c2 and c3 for which the
following holds. Let (T, d) be a semi-metric space and assume that (Xt)t∈T is a
stochastic process with increments satisfying the subgaussian condition (3.2). Then,
for every v > c0, with probability greater than 1− c1 exp(−c2v2)

sup
s,t∈T

|Xt −Xs| 6 c3v

∫ ∞
0

√
logN(T, d, ε) dε.

In particular,

E sup
s,t∈T

|Xt −Xs| 6 c3

∫ ∞
0

√
logN(T, d, ε) dε.

Proof. — Put η−1 = diam(T, d) and for every integer i > 0 set

ηi = inf
{
η > 0 : N(T, d, η) 6 22i

}
.

Let (Ti)i>0 be a sequence of subsets of T where T0 is a subset of T containing only
one element and for every i > 0, by definition of ηi, we take Ti+1 as a subset of T of

cardinality smaller than 22i+1

such that

T ⊂
⋃

x∈Ti+1

(
x+ ηiBd

)
,

where Bd is the unit ball associated with the semi-metric d. For every t ∈ T and
integer i, put πi(t) a nearest point to t in Ti. In particular, d(t, πi(t)) 6 ηi−1.

Since T is finite, then for every t ∈ T ,

Xt −Xπ0(t) =

∞∑
i=0

Xπi+1(t) −Xπi(t). (3.3)
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Let i ∈ N and t ∈ T . By the subgaussian assumption (3.2), for every u > 0, with
probability greater than 1− 2 exp(−cu2),

|Xπi+1(t) −Xπi(t)| 6 ud(πi+1(t), πi(t)) 6 u(ηi−1 + ηi) 6 2uηi−1. (3.4)

To get this result uniformly over every links (πi+1(t), πi(t)) for t ∈ T at level i, we

use an union bound (note that there are at most |Ti+1||Ti| 6 23.2i such links): with
probability greater than 1 − 2|Ti+1||Ti| exp(−cu2) > 1 − 2 exp

(
3.2i log 2 − cu2)

)
, for

every t ∈ T
|Xπi+1(t) −Xπi(t)| 6 2uηi−1.

To balance the “complexity” of the set of “links” with our deviation estimate, we take
u = v2i/2, where v is larger than

√
(6 log 2)/c. Thus, for the level i, we obtain with

probability greater than 1− 2 exp
(
− (c/2)v22i

)
, for all t ∈ T ,

|Xπi+1(t) −Xπi(t)| 6 2v2i/2ηi−1,

for every v larger than an absolute constant.
By (3.3) and summing over all levels i ∈ N, we have with probability greater than

1− 2
∑∞
i=0 exp

(
− (c/2)v22i

)
> 1− c1 exp(−c2v2), for every t ∈ T ,

|Xt −Xπ0(t)| 6 2v

∞∑
i=0

2i/2ηi−1 = 23/2v

∞∑
i=−1

2i/2ηi. (3.5)

Observe that if i ∈ N and η < ηi then N(T, d, η) > 22i . Hence N(T, d, η) > 22i + 1
and thus √

log(1 + 22i)(ηi − ηi+1) 6
∫ ηi

ηi+1

√
logN(T, d, η)dη,

and since log(1 + 22i) > 2i log 2 then summing over all i > −1,√
log 2

∞∑
i=−1

2i/2(ηi − ηi+1) 6
∫ η−1

0

√
logN(T, d, η)dη

and
∞∑

i=−1

2i/2(ηi − ηi+1) =

∞∑
i=−1

2i/2ηi −
∞∑
i=0

2(i−1)/2ηi >
(

1− 1√
2

) ∞∑
i=−1

2i/2ηi.

This proves that
∞∑

i=−1

2i/2ηi 6 c3

∫ ∞
0

√
logN(T, d, η)dη. (3.6)

We conclude that, for every v larger than
√

(6 log 2)/c, with probability greater
than 1− c1 exp(−c2v2), we have

sup
t∈T
|Xt −Xπ0(t)| 6 c4v

∫ ∞
0

√
logN(T, d, η)dη.
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Integrating the tail estimate,

E sup
t∈T
|Xt −Xπ0(t)| =

∫ ∞
0

P
[

sup
t∈T
|Xt −Xπ0(t)| > u

]
du

6 c5

∫ ∞
0

√
logN(T, d, ε)dε.

Finally, since |T0| = 1, it follows that, for every t, s ∈ T ,

|Xt −Xs| 6 |Xt −Xπ0(t)|+ |Xs −Xπ0(s)|

and the theorem is shown.

In the case of a stochastic process with subgaussian increments (cf. condition (3.2)),
the entropy integral ∫ ∞

0

√
logN(T, d, ε)dε

is called the Dudley entropy integral.
A careful look at the previous proof reveals one potential source of looseness. At

each level of the chaining mechanism, we used a uniform bound (depending only on
the level) to control each link. Instead, one can use “individual” bounds for every link
rather than the worst at every level. This idea is the basis of what is now called the
generic chaining. The natural metric complexity measure coming out of this method
is the γ2-functional which is now introduced.

Definition 3.1.3. — Let (T, d) be a semi-metric space. A sequence (Ts)s>0 of sub-

sets of T is admissible if |T0| 6 1 and |Ts| 6 22s for every s > 1. The γ2-functional
of (T, d) is

γ2(T, d) = inf
(Ts)

sup
t∈T

( ∞∑
s=0

2s/2d(t, Ts)
)

where the infimum is taken over all admissible sequences (Ts)s∈N and d(t, Ts) =
miny∈Ts d(t, y) for every t ∈ T and s ∈ N.

We note that the γ2-functional is upper bounded by the Dudley entropy integral:

γ2(T, d) 6 c0

∫ ∞
0

√
logN(T, d, ε)dε, (3.7)

where c0 is an absolute positive constant. Indeed, we construct an admissible sequence
(Ts)s∈N in the following way: let T0 be a subset of T containing one element and for

every s ∈ N, let Ts+1 be a subset of T of cardinality smaller than 22s+1

such that for
every t ∈ T there exists x ∈ Ti+1 satisfying d(t, x) 6 ηs, where ηs is defined by

ηs = inf
(
η > 0 : N(T, d, η) 6 22s

)
.

Inequality (3.7) follows from (3.6) and

sup
t∈T

( ∞∑
s=0

2s/2d(t, Ts)
)
6
∞∑
s=0

2s/2 sup
t∈T

d(t, Ts) 6
∞∑
s=0

2s/2ηs−1.
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Now, we apply the generic chaining mechanism to show an upper bound on the
supremum of processes whose increments satisfy the subgaussian assumption (3.2).

Theorem 3.1.4. — There exist absolute constants c0, c1, c2 and c3 such that the
following holds. Let (T, d) be a semi-metric space. Let (Xt)t∈T be a stochastic process
satisfying the subgaussian condition (3.2). For every v > c0, with probability greater
than 1− c1 exp(−c2v2)

sup
s,t∈T

|Xt −Xs| 6 c3vγ2(T, d)

and

E sup
s,t∈T

|Xt −Xs| 6 c3γ2(T, d).

Proof. — Let (Ts)s∈N be an admissible sequence. For every t ∈ T and s ∈ N denote
by πs(t) one point in Ts such that d(t, Ts) = d(t, πs(t)). Since T is finite, we can write
for every t ∈ T ,

|Xt −Xπ0(t)| 6
∞∑
s=0

|Xπs+1(t) −Xπs(t)|. (3.8)

Let s ∈ N. For every t ∈ T and v > 0, with probability greater than 1 −
2 exp(−c02sv2),

|Xπs+1(t) −Xπs(t)| 6 v2s/2d(πs+1(t), πs(t)).

We extend the last inequality to every link of the chains at level s by using an union
bound: for every v > c1, with probability greater than 1− 2 exp(−c22sv2), for every
t ∈ T ,

|Xπs+1(t) −Xπs(t)| 6 v2s/2d(πs+1(t), πs(t)).

An union bound on every level s ∈ N yields: for every v > c1, with probability
greater than 1− 2

∑∞
s=0 exp(−c22sv2), for every t ∈ T ,

|Xt −Xπ0(t)| 6 c2v
∞∑
s=0

2s/2d(πs(t), πs+1(t)) 6 c3v
∞∑
s=0

2s/2d(t, Ts).

The claim follows since the sum in the last probability estimate is comparable to its
first term.

For Gaussian processes, the upper bound in expectation obtained in Theorem 3.1.4
is sharp up to some absolute constants. This deep result, called the Majorizing
measure theorem, makes an equivalence between two different quantities measuring
the complexity of a set T ⊂ RN :

1. a metric complexity measure given by the γ2 functional

γ2(T, `N2 ) = inf
(Ts)

sup
t∈T

∞∑
s=0

2s/2d`N2 (t, Ts),

where the infimum is taken over all admissible sequences (Ts)s∈N of T ;
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2. a probabilistic complexity measure given by the expectation of the supremum
of the canonical Gaussian process indexed by T :

`∗(T ) = E sup
t∈T

∣∣∣ N∑
i=1

giti

∣∣∣,
where g1, . . . , gN are N i.i.d. standard Gaussian variables.

Theorem 3.1.5 (Majorizing measure Theorem). — There exist two absolute
positive constants c0 and c1 such that for every subset T of RN ,

c0`∗(T ) 6 γ2(T, `N2 ) 6 c1`∗(T ).

3.2. An example of a more sophisticated chaining argument

In this section, we show upper bounds on the supremum

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ , (3.9)

where X1, . . . , Xn are n i.i.d. random variables with values in a measurable space X
and F is a class of real-valued functions defined on X .

In Chapter 2, this bound is used to show the restricted isometry property in The-
orem 2.7.1. In this example, the class F is a class of linear functions indexed by a
set of sparse vectors. In particular, for this example, the class F is not uniformly
bounded.

In general, when ‖F‖∞ = supf∈F ‖f‖L∞(µ) < ∞, a bound on (3.9) follows from

a symmetrization argument combined with the contraction principle. In the present
study, we do not assume that F is uniformly bounded but we only assume that F has

a finite diameter in Lψ2(µ) where µ is the probability distribution of X
d
= X1. This

means that the norm

‖f‖ψ2(µ) = inf
(
c > 0 : E exp

(
|f(X)|2/c2

)
6 e
)

is uniformly bounded over every f in F . We denote this bound by α and thus we
assume that

α = diam(F,ψ2(µ)) = sup
f∈F
‖f‖ψ2(µ) <∞. (3.10)

In terms of random variables, Assumption (3.10) means that for all f ∈ F , f(X) has
a subgaussian behaviour and its ψ2 norm is uniformly bounded over F .

Under (3.10), we can apply the classical generic chaining mechanism and obtain
a bound on (3.9). Indeed, denote by (Xf )f∈F the empirical process where Xf =
n−1

∑n
i=1 f

2(Xi) − Ef2(X) for every f ∈ F . Assume that for every f and g in F ,
Ef2(X) = Eg2(X). In this case, the increments of the process (Xf )f∈F are

Xf −Xg =
1

n

n∑
i=1

f2(Xi)− g2(Xi)
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and we have (cf. Chapter 1)∥∥f2 − g2
∥∥
ψ1(µ)

6 ‖f + g‖ψ2(µ) ‖f − g‖ψ2(µ) 6 2α ‖f − g‖ψ2(µ) . (3.11)

In particular, the increment Xf − Xg is a sum of i.i.d. mean-zero ψ1 random vari-
ables. Hence, the concentration properties of the increments of (Xf )f∈F follow from
Theorem 1.2.7. Provided that for some f0 ∈ F , we have Xf0 = 0 or (Xf )f∈F is a
symmetric process then running the classical generic chaining mechanism with this
increment condition yields the following: for every u > c0, with probability greater
than 1− c1 exp(−c2u),

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3uα

(
γ2(F,ψ2(µ))√

n
+
γ1(F,ψ2(µ))

n

)
(3.12)

for some absolute positive constants c0, c1, c2 and c3 and with

γ1(F,ψ2(µ)) = inf
(Fs)

sup
f∈F

( ∞∑
s=0

2sdψ2(µ)(f, Fs)
)

where the infimum is taken over all admissible sequences (Fs)s∈N and dψ2(µ)(f, Fs) =
ming∈Fs ‖f − g‖ψ2(µ) for every f ∈ F and s ∈ N. Result (3.12) can be derived from

theorem 1.2.7 of [Tal05].
In some cases, computing γ1(F, d) for some metric d can be involved and only weak

estimates can be shown. Obtaining upper bounds on (3.9) which does not require
the computation of γ1(F,ψ2(µ)) can be of importance. In particular, upper bounds
depending only on γ2(F,ψ2(µ)) can be useful when the metrics Lψ2

(µ) and L2(µ) are
equivalent on F because of the Majorizing measure theorem (cf. Theorem 3.1.5). In
the next result, we show an upper bound on the supremum (3.9) depending only on
the ψ2(µ) diameter of F and on the complexity measure γ2(F,ψ2(µ)).

Theorem 3.2.1. — There exists absolute constants c0, c1, c2 and c3 such that the
following holds. Let F be a finite class of real-valued functions in S(L2(µ)), the unit
sphere of L2(µ) and denote by α the diameter diam(F,ψ2). Then, with probability at

least 1− c1 exp
(
− (c2/α

2) min
(
nα2, γ2(F,ψ2)2

))
,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3 max

(
α
γ2(F,ψ2)√

n
,
γ2(F,ψ2)2

n

)
.

Moreover, if F is a symmetric subset of S(L2(µ)) then,

E sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ 6 c3 max

(
α
γ2(F,ψ2)√

n
,
γ2(F,ψ2)2

n

)
.

To show Theorem 3.2.1, we introduce the following notation. For every f ∈ L2(µ),
we set

Z(f) =
1

n

n∑
i=1

f2(Xi)− Ef2(X) and W (f) =
( 1

n

n∑
i=1

f2(Xi)
)1/2

. (3.13)
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Moreover, for the sake of shortness, in what follows, L2, ψ2 and ψ1 stand for the
spaces L2(µ), ψ1(µ) and ψ2(µ), for which we omit to write the probability measure
µ.

To obtain upper bounds on the supremum (3.9) we study the deviation behaviour
of the increments of the underlying process. Namely, we need deviation results for
Z(f) − Z(g) for every f, g ∈ F . Moreover, since the “end of the chains” will be
analysed by different means, the deviation behaviour of the increments W (f − g) will
be of importance as well.

Lemma 3.2.2. — There exists an absolute constant C1 such that the following holds.
Let F ⊂ S(L2(µ)). Denote by α the diameter diam(F,ψ2). For every f, g ∈ F , we
have:

1. for every u > 2,

P
[
W (f − g) > u ‖f − g‖ψ2

]
6 2 exp

(
− C1nu

2
)

2. for every u > 0,

P
[
|Z(f)− Z(g)| > uα ‖f − g‖ψ2

]
6 2 exp

(
− C1nmin(u, u2)

)
and for every u > 0,

P
[
|Z(f)| > uα2

]
6 2 exp

(
− C1nmin(u, u2)

)
.

Proof. — Let f, g ∈ F . Since f, g ∈ Lψ2
, we have

∥∥(f − g)2
∥∥
ψ1

= ‖f − g‖2ψ2
and by

Theorem 1.2.7, for every t > 1,

P
[ 1

n

n∑
i=1

(f − g)2(Xi)− ‖f − g‖2L2
> t ‖f − g‖2ψ2

]
6 2 exp(−c1nt). (3.14)

Using ‖f − g‖ψ2
>
√
e− 1 ‖f − g‖L2

together with Equation (3.14), it is easy to get
for every u > 2,

P
[
W (f − g) > u ‖f − g‖ψ2

]
6 P

[ 1

n

n∑
i=1

(f − g)2(Xi)− ‖f − g‖2L2
> (u2 − (e− 1)) ‖f − g‖2ψ2

]
6 2 exp

(
− c2nu2

)
.

For the second statement, since Ef2 = Eg2, the increments are

Z(f)− Z(g) =
1

n

n∑
i=1

f2(Xi)− g2(Xi).

Thanks to (3.11), Z(f)−Z(g) is a sum of mean-zero ψ1 random variables and the result
follows from Theorem 1.2.7. The last statement is also a consequence of Theorem 1.2.7
and (3.11).
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Once obtained the deviation properties of the increments of the underlying pro-
cess(es) (that is (Z(f))f∈F and (W (f))f∈F ), we use the generic chaining mechanism
to obtain a uniform bound on (3.9). Since we work in a special framework (sum
of squares of ψ2 random variables), we will perform a particular chaining argument
which will allow us to avoid the γ1(F,ψ2) term coming from the classical generic
chaining (cf. (3.12)).

If γ2(F,ψ2) = ∞ then the upper bound of Theorem 3.2.1 is trivial, otherwise
consider an almost optimal admissible sequence (Fs)s∈N of F with respect to ψ2(µ).
That is an admissible sequence (Fs)s∈N such that

γ2(F,ψ2) >
1

2
sup
f∈F

( ∞∑
s=0

2s/2dψ2
(f, Fs)

)
.

For every f ∈ F and integer s, put πs(f) a nearest point to f in Fs.
The idea of the proof is for every f ∈ F to analyze the links πs+1(f) − πs(f) for

s ∈ N of the chain (πs(f))s∈N in three different regions - values of the level s in [0, s1],
[s1 + 1, s0 − 1] or [s0,∞) for some well chosen s1 ans s0 - depending on the deviation
properties of the increments of the underlying process(es) at the s stage:

1. The end of the chain: we study the link f − πs0(f). In this part of the
chain, we work with the process (W (f − πs0(f)))f∈F which is subgaussian (cf.
Lemma 3.2.2). Thanks to this remark, we can avoid the sub-exponential be-
haviour of the process (Z(f))f∈F and thus the term γ1(F,ψ2) appearing in
(3.12);

2. The middle of the chain: we work at these stages with the process (Z(πs0−1(f))−
Z(πs1(f)))f∈F which has subgaussian increments in this range;

3. The beginning of the chain: we study the process (Z(πs1(f))f∈F . For this part
of the chain, the complexity of Fs1 is so small that a trivial comparison of the
process with the ψ2-diameter of F will be enough.

Proposition 3.2.3 (End of the chain). — There exist absolute constant c0, c1, c2
and c3 for which the following holds. Let F ⊂ S(L2(µ)) and α = diam(F,ψ2). For
every v > c0, with probability greater than 1− c1 exp(−c2nv),

sup
f∈F

W (f − πs0(f)) 6 c3
√
v
γ2(F,ψ2)√

n
,

where s0 = min
(
s > 0 : 2s > n

)
.

Proof. — Let f be in F . Since F is finite, we can write

f − πs0(f) =

∞∑
s=s0

πs+1(f)− πs(f),

and, since W is the empirical L2(Pn) norm (where Pn is the empirical distribution
n−1

∑n
i=1 δXi), it is sub-additive and so

W (f − πs0(f)) 6
∞∑
s=s0

W (πs+1(f)− πs(f)).
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Now, fix a level s > s0. Using a union bound on the set of links {(πs+1(f), πs(f)) :
f ∈ F} (note that there are at most |Fs+1||Fs| such links) and the subgaussian
property of W (i.e. Lemma 3.2.2), we get, for every u > 2, with probability greater
than 1− 2|Fs+1||Fs| exp(−C1nu

2), for every f ∈ F ,

W (πs+1(f)− πs(f)) 6 u ‖πs+1(f)− πs(f)‖ψ2
.

Then, note that for every s ∈ N, |Fs+1||Fs| 6 22s22s+1

= 23.2s so that a union bound
over all the levels s > s0 yields for every u such that u22s0 is larger than some absolute
constant, with probability greater than 1− 2

∑∞
s=s0
|Fs+1||Fs| exp(−C1n2su2) > 1−

c1 exp(−c0nu22s0), for every f ∈ F ,

W (f − πs0(f)) 6
∞∑
s=s0

W (πs+1(f)− πs(f)) 6
∞∑
s=s0

u2s/2 ‖πs+1(f)− πs(f)‖ψ2

6 2u

∞∑
s=s0

2s/2dψ2
(f, Fs).

We conclude with v = u22s0 for v large enough, s0 such that 2s0 ∼ n and with the
quasi-optimality of the admissible sequence (Fs)s>0.

Proposition 3.2.4 (Middle of the chain). — There exist absolute constants c0,
c1, c2 and c3 for which the following holds. Let s1 ∈ N be such that s1 6 s0 (where s0

has been defined in Proposition 3.2.3). Let F ⊂ S(L2(µ)) and α = diam(F,ψ2). For
every u > c0, with probability greater than 1− c1 exp(−c22s1u),

sup
f∈F

∣∣Z(πs0(f))− Z(πs1(f))
∣∣ 6 c3uα

γ2(F,ψ2)√
n

.

Proof. — For every f ∈ F , we write

Z(πs0−1(f))− Z(πs1(f)) =

s0−1∑
s=s1+1

Z(πs(f))− Z(πs−1(f)).

Let s1 6 s 6 s2 and u > 0. Thanks to the second deviation result of Lemma 3.2.2,
with probability greater than 1− 2 exp

(
− C1nmin

(
(u2s/2/

√
n), (u22s/n)

))
,

|Z(πs(f))− Z(πs−1(f))| 6 u2s/2√
n
α ‖πs(f)− πs−1(f)‖ψ2

. (3.15)

Now, s 6 s0, thus 2s/n 6 2 and so min
(
u2s/2/

√
n, u22s/n

)
> min(u, u2)(2s/(2n)).

In particular, (3.15) holds with probability greater than

1− 2 exp
(
− C12s min(u, u2)

))
.

Now, a union bound on the set of links for every levels s = s1, . . . , s0 − 1
yields, for any u > 0, with probability greater than 1 − 2

∑s0−1
s=s1+1 |Fs+1||Fs| exp

(
−

C12s min(u, u2)
)
, for every f ∈ F ,∣∣Z(πs0(f))− Z(πs1(f))

∣∣ 6 s0−1∑
s=s1+1

u2s/2√
n
α ‖πs(f)− πs−1(f)‖ψ2

.
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The result follows since |Fs||Fs+1| 6 23.2s for every integer s and for u large enough.

Proposition 3.2.5 (Beginning of the chain). — There exist c0, c1 > 0 such that
the following holds. Let w > 0 and s1 be such that 2s1 < (C1/2)nmin(w,w2)
(where C1 is the constant appearing in Lemma 3.2.2). Let F ⊂ S(L2(µ)) and
α = diam(F,ψ2). With probability greater than 1− c0 exp(−c1nmin(w,w2)),

sup
f∈F

∣∣Z(πs1(f))
∣∣ 6 wα2.

Proof. — It follows from the third deviation result of Lemma 3.2.2 and a union bound
over Fs1 , that with probability greater than 1 − 2|Fs1 | exp

(
− C1nmin(w,w2)

)
, for

every f ∈ F ,
|Z(πs1(f)| 6 wα2.

Since |Fs1 | 6 22s1 < exp
(
(C1/2)nmin(w,w2)

)
, the result follows.

Proof of Theorem 3.2.1. — Denote by (Fs)s∈N an almost optimal admissible se-
quence of F with respect to the ψ2-norm and, for every s ∈ N and f ∈ F , denote by
πs(f) one of the closest point of f in Fs with respect to ψ2. Let s0 ∈ N be such that
s0 = min

(
s > 0 : 2s > n

)
. We have, for every f ∈ F ,

|Z(f)| =
∣∣∣ 1
n

n∑
i=1

f2(Xi)− Ef2(X)
∣∣∣ =

∣∣∣ 1
n

n∑
i=1

(f − πs0(f) + πs0(f))2(Xi)− Ef2(X)
∣∣∣

=
∣∣∣Pn(f − πs0(f))2 + 2Pn(f − πs0(f))πs0(f) + Pnπs0(f)2 − Eπs0(f)2

∣∣∣
6W (f − πs0(f))2 + 2W (f − πs0(f))W (πs0(f)) + |Z(πs0(f))|

6W (f − πs0(f))2 + 2W (f − πs0(f))
(
Z(πs0(f)) + 1)1/2 + |Z(πs0(f))|

6 3W (f − πs0(f))2 + 2W (f − πs0(f)) + 3|Z(πs0(f))| (3.16)

where we used ‖πs0(f)‖L2
= 1 = ‖f‖L2

and the notation Pn stands for the empirical

probability distribution n−1
∑n
i=1 δXi .

Thanks to Proposition 3.2.3 for v = 1, with probability greater than 1 −
c0 exp(−c1n), for every f ∈ F ,

W (f − πs0(f))2 6 c2
γ2(F,ψ2)2

n
. (3.17)

Let w > 0 to be chosen later and take s1 ∈ N such that

s1 = max
(
s > 0 : 2s 6 min

(
2s0 , (C1/2)nmin(w,w2)

))
(3.18)

where C1 is the constant defined in Lemma 3.2.2. We apply Proposition 3.2.4 with
u = 1 and Proposition 3.2.5 to get, with probability greater than 1− c3 exp(−c42s1)
that for every f ∈ F ,

|Z(πs0(f))| 6 |Z(πs0(f))− Z(πs1(f))|+ |Z(πs1(f))|

6 c5α
γ2(F,ψ2)√

n
+ α2w. (3.19)
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We combine Equation (3.16), (3.17) and (3.19) to get, with probability greater than
1− c6 exp(−c72s1) that for every f ∈ F ,

|Z(f)| 6 c8
γ2(F,ψ2)2

n
+ c9

γ2(F,ψ2)√
n

+ c10α
γ2(F,ψ2)√

n
+ 3α2w.

First statement of Theorem 3.2.1 follows for

w = max
(γ2(F,ψ2)

α
√
n

,
γ2(F,ψ2)2

α2n

)
. (3.20)

For the last statement, we use Proposition 3.2.3 to get

E sup
f∈F

W (f − πs0(f))2 =

∫ ∞
0

P
[

sup
f∈F

W (f − πs0(f))2 > t
]
dt 6 c11

γ2(F,ψ2)2

n
(3.21)

and

E sup
f∈F

W (f − πs0(f)) 6 c12
γ2(F,ψ2)√

n
. (3.22)

It follows from Propositions 3.2.4 and 3.2.5 for s1 and w defined in (3.18) and (3.20)
that

E sup
f∈F
|Z(πs0(f))| 6 E sup

f∈F
|Z(πs0(f))− Z(πs1(f))|+ E sup

f∈F
|Z(πs1(f))|

6
∫ ∞

0

P
[

sup
f∈F
|Z(πs0(f))− Z(πs1(f))| > t

]
dt+

∫ ∞
0

P
[

sup
f∈F
|Z(πs0(f))| > t

]
dt

6 cα
γ2(F,ψ2)√

n
. (3.23)

The claim follows by combining equations (3.21), (3.22) and (3.23) in Equation (3.16).

3.3. Application to Compressed Sensing

In this section, we apply Theorem 3.2.1 to prove that a n × N random matrix
with i.i.d. isotropic rows vectors which are ψ2 with constant α satisfies RIP2m(δ)
with overwhelming probability under suitable assumptions on n,N,m and δ. Let A
be such a matrix and denote by n−1/2Y1, . . . , n

−1/2Yn its rows vectors distributed
according to a probability measure µ.

For a functions class F in S(L2(µ)), it follows from Theorem 3.2.1 that with prob-

ability greater than 1− c1 exp
(
− (c2/α

2) min
(
nα2, γ2(F,ψ2)2

))
,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f2(Yi)− Ef2(Y )

∣∣∣∣∣ 6 c3 max

(
α
γ2(F,ψ2)√

n
,
γ2(F,ψ2)2

n

)
.

where α = diam(F,ψ2(µ)). In particular, for a class F of linear functions indexed by
a subset T of SN−1, the ψ2(µ) norm and the L2(µ) norm are equivalent on F and so
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with probability greater than 1− c1 exp
(
− c2 min

(
n, γ2(T, `N2 )2

))
,

sup
x∈T

∣∣∣∣∣ 1n
n∑
i=1

〈Yi, x〉2 − 1

∣∣∣∣∣ 6 c3α
2 max

(
γ2(T, `N2 )√

n
,
γ2(T, `N2 )2

n

)
. (3.24)

A bound on the restricted isometry constant δ2m follows from (3.24). Indeed let
T = S2(Σ2m) then with probability greater than

1− c1 exp
(
− c2 min

(
n, γ2(S2(Σ2m), `N2 )2

))
,

δ2m 6 c3α
2 max

(
γ2(S2(Σ2m), `N2 )√

n
,
γ2(S2(Σ2m), `N2 )2

n

)
.

Now, it remains to bound γ2(S2(Σ2m), `N2 ). Such a bound may follow from the Ma-
jorizing measure theorem (cf. Theorem 3.1.5):

γ2(S2(Σ2m), `N2 ) ∼ `∗(S2(Σ2m)).

Since S2(Σ2m) can be written as a union of sphere with short support, it is easy to
obtain

`∗(S2(Σ2m)) = E
( 2m∑
i=1

(g∗i )2
)1/2

(3.25)

where g1, . . . , gN are N i.i.d. standard Gaussian variables and (g∗i )Ni=1 is a non-
decreasing rearrangement of (|gi|)Ni=1. A bound on (3.25) follows from the following
result.

Lemma 3.3.1. — There exist absolute positive constants c1, c2 and c3 such that the
following holds. Let (gi)

N
i=1 be a family of N i.i.d. standard Gaussian variables.

Denote by (g∗i )Ni=1 a non-increasing rearrangement of (|gi|)Ni=1. For any k = 1, . . . , N ,
we have √

c1 log
(c2N

k

)
6 E

(1

k

k∑
i=1

(g∗i )2
)1/2

6

√
log
(c3N

k

)
.

Proof. — Let g be a standard real-valued Gaussian variable and take c0 > 0 such
that E exp(g2) 6 c0. By convexity, it follows that

exp
(
E
(1

k

k∑
i=1

(g∗i )2
))

6
1

k

k∑
i=1

E exp
(
(g∗i )2

)
6

1

k

N∑
i=1

E exp(g2
i ) 6

c0N

k
.

Finally,

E
(1

k

k∑
i=1

(g∗i )2
)1/2

6
(
E

1

k

k∑
i=1

(g∗i )2
)1/2

6
√

log
(
c0N/k

)
.

For the lower bound, we note that for any x > 0,√
2

π

∫ ∞
x

exp(−s2/2)ds >

√
2

π

∫ 2x

x

exp(−s2/2)ds >

√
2

π
x exp(−2x2).
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In particular, for any c0 > 0, c1 > e and 1 6 k 6 N ,

P
[
|g| >

√
c0 log

(
c1N/k

)]
>

√
2c0
π

log
(c1N

k

)( k

c1N

)2c0
. (3.26)

It follows from Markov inequality that

E
(1

k

k∑
i=1

(g∗i )2
)1/2

> Eg∗k >
√
c0 log

(
c1N/k

)
P
[
g∗k >

√
c0 log

(
c1N/k

)]
=
√
c0 log

(
c1N/k

)
P
[ N∑
i=1

I
(
|gi| >

√
c0 log

(
c1N/k

))
> k

]
=
√
c0 log

(
c1N/k

)
P
[ N∑
i=1

δi > k
]

where I(·) denotes the indicator function and δi = I
(
|gi| >

√
2 log

(
c1N/k

))
for

every i = 1, . . . , N . Since (δi)
N
i=1 is a family of i.i.d. Bernoulli variables with mean

δ = P
[
|g| >

√
2 log

(
c1N/k

)]
, it follows from Bernstein inequality (cf. Theorem 1.2.6)

that, as long as k 6 δN/2 and Nδ > 10 log 4,

P
[ N∑
i=1

δi > k
]
> P

[ 1

N

N∑
i=1

δi − δ >
−δ
2

]
> 1/2.

Thanks to (3.26), it is easy to check that for c0 = 1/4 and c1 = 4, we have k 6
δN/2.

It is now possible to obtain the result announced at the beginning of the section.

Theorem 3.3.2. — There exist absolute positive constants c0, c1, c2 and c3 such
that the following holds. Let A be a n × N random matrix with rows vectors
n−1/2Y1, . . . , n

−1/2Yn. Assume that Y1, . . . , Yn are i.i.d. isotropic vectors of RN ,
which are ψ2 with constant α. Let m be an integer and δ ∈ (0, 1) such that

m log
(
c0N/m

)
= c1nδ

2,

then, with probability greater than 1−c2 exp(−c3nδ2/α4), the restricted isometry con-
stant of order 2m of A is such that δ2m 6 δ.

3.4. Notes and comments

Dudley entropy bound (cf. Theorem 3.1.2) can be found in [Dud67]. Other
Dudley type entropy bounds for processes (Xt)t∈T with Orlicz norm of the increments
satisfying, for every s, t ∈ T ,

‖Xt −Xs‖ψ 6 d(s, t) (3.27)
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may be obtained (see [Pis80] and [Kôn80]). Under the increment condition (3.27),
the Dudley entropy integral ∫ ∞

0

ψ−1
(
N(T, d, ε)

)
dε,

where ψ−1 is the inverse function of the Orlicz function ψ, is an upper bound on
E supt∈T coming out of the chaining argument.

For the partition scheme method used in the generic chaining mechanism of Theo-
rem 3.1.4, we refer to [Tal05] and [Tal01]. The generic chaining mechanism was first
introduced using majorizing measures. This tool was introduced in [Fer74, Fer75]
and is implicit in earlier work by Preston based on an important result of Garcia,
Rodemich and Rumsey. In [Tal87], the author proves that majorizing measures are
the key quantities to analyze the supremum of Gaussian processes. In particular, the
majorizing measure theorem (cf. Theorem 3.1.5) is shown in [Tal87]. More about ma-
jorizing measures and majorizing measure theorems for other processes than Gaussian
processes can be found in [Tal96a] and [Tal95]. Connections between the majorizing
measures and partition schemes have been showed in [Tal05] and [Tal01].

The upper bounds on the process

sup
f∈F

∣∣∣ 1
n

n∑
i=1

f2(Xi)− Ef2(X)
∣∣∣ (3.28)

developed in Section 3.2 follow the line of [MPTJ07]. Other bounds on (3.28) can
be found in the next chapter (cf. Theorem 5.3.14).





CHAPTER 4

SINGULAR VALUES

The singular values of a matrix are very natural geometrical quantities which play
an important role in pure and applied mathematics. The first part of this chapter
is a compendium on the singular values of matrices. The second part of the chapter
concerns random matrices, and constitutes a quick tour in this vast subject. It starts
with important facts on Gaussian random matrices, gives a proof of the universal
Marchenko-Pastur theorem regarding the counting probability measure of the singular
values, and ends with the Bai-Yin theorem statement on the extremal singular values.

For every square matrix A ∈Mn,n(C), we denote by λ1(A), . . . , λn(A) the eigenval-
ues of A which are the roots in C of the characteristic polynomial det(A−ZI) ∈ C[Z].
We label the eigenvalues of A so that |λ1(A)| > · · · > |λn(A)|. In all this chapter, K
stands for R or C, and we say that U ∈Mn,n(K) is K-unitary when UU∗ = I.

4.1. The notion of singular values

This section gathers a selection of classical results from linear algebra. We begin
with the Singular Value Decomposition (SVD), a fundamental tool in matrix analysis,
which expresses a diagonalization up to unitary transformations of the space.

Theorem 4.1.1 (Singular Value Decomposition). — For every A ∈Mm,n(K),
there exists a couple of K–unitary matrices U (m×m) and V (n×n) and a sequence
of real numbers s1 > · · · > sm∧n > 0 such that

U∗AV = diag(s1, . . . , sm∧n) ∈Mm,n(K).

This sequence of real numbers does not depend on the particular choice of U, V .

Proof. — Let v ∈ Kn be such that |Av|2 = max|x|2=1 |Ax|2 = ‖A‖2→2 = s. If |v|2 = 0
then A = 0 and the desired result is trivial. If s > 0 then let us define u = Av/s.
One can find a K-unitary m ×m matrix U with first column vector equal to u, and
a K-unitary n× n matrix V with first column vector equal to v. It follows that

U∗AV =

(
s w∗

0 B

)
= A1
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for some w ∈ Mn−1,1(K) and B ∈ Mm−1,n−1(K). If t is the first row of A1 then

|A1t
∗|22 > (s2 + |w|22)2 and therefore ‖A1‖22→2 > s2 + |w|22 > ‖A‖22→2. On the other

hand, since A and A1 are unitary equivalent, we have ‖A1‖2→2 = ‖A‖2→2. Therefore
w = 0, and the desired decomposition follows by a simple induction.

If one sees the diagonal matrix D := diag(s1(A)2, . . . , sm∧n(A)2) as an element of
Mm,m(K) or Mn,n(K) by appending as much zeros as needed, we have

U∗AA∗U = D and V ∗A∗AV = D.

The positive semidefinite Hermitian matrices AA∗ ∈Mm,m(K) and A∗A ∈Mn,n(K)
share the same sequence of eigenvalues, up to the multiplicity of the eigenvalue 0, and
for every k ∈ {1, . . . ,m ∧ n},

sk(A) = λk(
√
AA∗) =

√
λk(AA∗) =

√
λk(A∗A) = λk(

√
A∗A) = sk(A∗).

This shows the uniqueness of s1, . . . , sm∧n. The columns of U and V are the eigen-
vectors of the positive semidefinite Hermitian matrices AA∗ and A∗A.

The numbers sk(A) := sk for k ∈ {1, . . . ,m ∧ n} are called the singular values of
A. It is sometimes convenient to use the convention sk(A) = 0 if k > m ∧ n. For
any A ∈Mm,n(K), the matrices A, Ā, A>, A∗, UA, AV share the same sequences of
singular values, for any K–unitary matrices U, V .

Remark 4.1.2 (Normal matrices). — When A is normal (i.e. AA∗ = A∗A) then
m = n and sk(A) = |λk(A)| for every k ∈ {1, . . . , n}. Hermitian matrices are normal.
Note also that sk(Ar) = sk(A)r for any r > 1 (not true in general if A is not normal).

Remark 4.1.3 (Hermitization). — For any A ∈Mm,n(K), the eigenvalues of the
(m+ n)× (m+ n) Hermitian matrix

H =

(
0 A∗

A 0

)
are given by +s1(A),−s1(A), . . . ,+sm∧n(A),−sm∧n(A), 0, . . . , 0 where the notation
0, . . . , 0 stands for a sequence of 0’s of length m+n−2(m∧n) = (m∨n)−(m∧n). One
may deduce the singular values of A from the eigenvalues of H, and H2 = A∗A⊕AA∗.
If m = n and Ai,j ∈ {0, 1} for all i, j, then A is the adjacency matrix of an oriented
graph, and H is the adjacency matrix of a compagnon nonoriented bipartite graph.

Remark 4.1.4 (Left and right eigenvectors). — If u1 ⊥ · · · ⊥ um ∈ Km and
v1 ⊥ · · · ⊥ vn ∈ Kn are the columns of U, V then for every k ∈ {1, . . . ,m ∧ n},

Avk = sk(A)uk and A∗uk = sk(A)vk (4.1)

while Avk = 0 and A∗uk = 0 for k > m ∧ n. The SVD gives an intuitive geometrical
interpretation of A and A∗ as a dual correspondence/dilation between two orthonormal
bases known as the left and right eigenvectors of A and A∗. Additionally, A has exactly
r = rank(A) nonzero singular values s1(A), . . . , sr(A) and

A =

r∑
k=1

sk(A)ukv
∗
k and

{
kernel(A) = span{vr+1, . . . , vn},
range(A) = span{u1, . . . , ur}.
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We have also sk(A) = |Avk|2 = |A∗uk|2 for every k ∈ {1, . . . ,m ∧ n}.

Condition number. — The condition number of A ∈Mn,n(K) is given by

κ(A) = ‖A‖2→2

∥∥A−1
∥∥

2→2
=
s1(A)

sn(A)
.

The condition number quantifies the numerical sensitivity of linear systems involving
A. For instance, if x ∈ Kn is the solution of the linear equation Ax = b then x = A−1b.
If b is known up to precision δ ∈ Kn then x is known up to precision A−1δ. Therefore,
the ratio of relative errors for the determination of x is given by

R(b, δ) =

∣∣A−1δ
∣∣
2
/
∣∣A−1b

∣∣
2

|δ|2/|b|2
=

∣∣A−1δ
∣∣
2

|δ|2
|b|2
|A−1b|2

.

Consequently, we obtain

max
b 6=0,δ 6=0

R(b, δ) =
∥∥A−1

∥∥
2→2
‖A‖2→2 = κ(A).

Geometrically, κ(A) measures the “spherical defect” of the ellipsoid in figure (1).

Basic properties. — The eigenvalues of a Hermitian matrix can be expressed in
terms of the entries of the matrix via minimax variational formulas. The follow-
ing theorem is the counterpart for the singular values. It can be deduced from its
Hermitian cousin.

Theorem 4.1.5 (Courant–Fischer variational formulas for singular values)
For every A ∈Mm,n(K) and every k ∈ {1, . . . ,m ∧ n},

sk(A) = max
V ∈Gn,k

min
x∈V
|x|2=1

|Ax|2 = min
V ∈Gn,n−k+1

max
x∈V
|x|2=1

|Ax|2

where Gn,k is the set of all subspaces of Kn of dimension k. In particular, we have

s1(A) = max
x∈Kn
|x|2=1

|Ax|2 and sm∧n(A) = min
x∈Kn
|x|2=1

|Ax|2.

We have also the following alternative formulas, for every k ∈ {1, . . . ,m ∧ n},
sk(A) = max

V ∈Gn,k
W∈Gm,k

min
(x,y)∈V×W
|x|2=|y|2=1

〈Ax, y〉.

As an exercise, one can check that if A ∈ Mm,n(R) then the variational formulas
for K = C, if one sees A as an element of Mm,n(C), coincide actually with the
formulas for K = R. Geometrically, the matrix A maps the Euclidean unit ball to an
ellipsoid, and the singular values of A are exactly the half lengths of the m∧n largest
principal axes of this ellipsoid, see figure 1. The remaining axes have a zero length.
In particular, for A ∈ Mn,n(K), the variational formulas for the extremal singular
values s1(A) and sn(A) correspond to the half length of the longest and shortest axes.

From the Courant–Fischer variational formulas, the largest singular value is the
operator norm of A for the Euclidean norm |·|2, namely

s1(A) = ‖A‖2→2 .
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A

Figure 1. Largest and smallest singular values of A ∈ M2,2(R).

The map A 7→ s1(A) is Lipschitz and convex. In the same spirit, if U, V are the couple
of K–unitary matrices from an SVD of A, then for any k ∈ {1, . . . , rank(A)},

sk(A) = min
B∈Mm,n(K)
rank(B)=k−1

‖A−B‖2→2 = ‖A−Ak‖2→2 where Ak =

k−1∑
i=1

si(A)uiv
∗
i

with ui, vi as in (4.1). Let A ∈ Mn,n(K) be a square matrix. If A is invertible then
the singular values of A−1 are the inverses of the singular values of A, in other words

∀k ∈ {1, . . . , n}, sk(A−1) = sn−k+1(A)−1.

Moreover, a square matrix A ∈Mn,n(K) is invertible iff sn(A) > 0, and in this case

sn(A) = s1(A−1)−1 =
∥∥A−1

∥∥−1

2→2
.

Contrary to the map A 7→ s1(A), the map A 7→ sn(A) is Lipschitz but is not convex
when n > 2. Regarding the Lipschitz nature of the singular values, the Courant–
Fischer variational formulas provide the following more general result, which has a
Hermitian counterpart.

Theorem 4.1.6 (Additive perturbations). — If A,B ∈Mm,n(K) then for every
i, j ∈ {1, . . . ,m ∧ n} with i+ j 6 1 + (m ∧ n),

si+j−1(A) 6 si(B) + sj(A−B).

Theorem 4.1.6 implies that A 7→ s(A) := (s1(A), . . . , sn(A)) is 1-Lipschitz from
(Mm,n(K), ‖·‖2→2) to (Rm∧n+ , ‖·‖∞) since

max
16k6m∧n

|sk(A)− sk(B)| 6 ‖A−B‖2→2 .

From the Courant–Fischer variational formulas we obtain also the following result.

Theorem 4.1.7 (Interlacing by rows deletion). — Let A ∈ Mm,n(K) and k ∈
{1, 2, . . .} with 1 6 k 6 m 6 n and let B ∈ Mm−k,n(K) be a matrix obtained from A
by deleting k rows. Then for every i ∈ {1, . . . ,m− k},

si(A) > si(B) > si+k(A).

Theorem 4.1.7 implies [sm−k(B), s1(B)] ⊂ [sm(A), s1(A)]. Row deletions produce a
compression of the singular values interval. Another way to express this phenomenon
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consists in saying that if we add a row to B then the largest singular value increases
while the smallest singular value is diminished.

The following result is an immediate consequence of theorem 4.1.6. It is used in the
proof of the Marchenko-Pastur theorem 4.3.1 for a rank one additive perturbation.
We recall that the cumulative distribution function of a probability measure µ on R
is the function Fµ : R→ [0, 1] defined by Fµ(t) := µ((−∞, t]) for every t ∈ R.

Theorem 4.1.8 (Rank inequality). — If A,B ∈ Mm,n(K) and if FµA and FµB
denote the cumulative distribution functions of the counting probability measures
µA := 1

m

∑m
k=1 δλk(AA∗) and µB := 1

m

∑m
k=1 δλk(BB∗) then

‖FµA − FµB‖∞ 6
rank(A−B)

m
.

Hilbert-Schmidt norm. — For every A ∈Mm,n(K) we set

‖A‖2HS := Tr(AA∗) = Tr(A∗A) =

n∑
i,j=1

|Ai,j |2 = s1(A)2 + · · ·+ sm∧n(A)2.

This defines the so called Hilbert–Schmidt or Frobenius norm ‖·‖HS. We have always

‖A‖2→2 6 ‖A‖HS 6
√

rank(A) ‖A‖2→2

where equalities are achieved when rank(A) = 1 and A = λI ∈Mm,n(K) with λ ∈ K
respectively. The advantage of ‖·‖HS over ‖·‖2→2 lies in its convenient expression
in terms of the matrix entries. Actually, the Frobenius norm is Hilbertian for the
Hermitian product

〈A,B〉 = Tr(AB∗).

We have seen that a matrix A ∈Mm,n(K) has exactly r = rank(A) non zero singular
values. If k ∈ {0, 1, . . . , r} and if Ak is obtained from the SVD of A by forcing si = 0
for all i > k then we have the Eckart and Young observation:

min
B∈Mm,n(K)
rank(B)=k

‖A−B‖2HS = ‖A−Ak‖2HS = sk+1(A)2 + · · ·+ sr(A)2.

The following result shows that A 7→ s(A) is 1-Lipschitz for ‖·‖HS and ‖·‖2.

Theorem 4.1.9 (Hoffman-Wielandt). — If A,B ∈Mm,n(K) then

m∧n∑
k=1

(sk(A)− sk(B))2 6 ‖A−B‖2HS .

The following result is used for the proof of the Marchenko-Pastur theorem 4.3.1.

Theorem 4.1.10 (Lévy distance inequality). — If A,B ∈Mm,n(K) and if FµA
and FµB are the cumulative distribution functions of the counting probability measures
µA := 1

m

∑m
k=1 δλk(AA∗) and µB := 1

m

∑m
k=1 δλk(BB∗) then

L(µA, µB) 6

(
2

m2
(‖A‖2HS + ‖B‖2HS) ‖A−B‖2HS

)1/4
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where L(µA, µB) is the Lévy distance between µA and µB defined by

L(µA, µB) = inf{ε > 0 : FµA(· − ε)− ε 6 FµB (·) 6 FµA(·+ ε) + ε}.

We end up with an inequality due to von Neumann.

Theorem 4.1.11 (von Neumann inequality). — If A,B ∈Mm,n(K) then

|Tr(AB∗)| 6
m∧n∑
k=1

sk(A)sk(B).

Remark 4.1.12 (Unitary invariance). — For every k ∈ {1, . . . ,m ∧ n} and any
real number p > 1, the map A ∈Mm,n(K) 7→ (s1(A)p + · · ·+ sk(A)p)1/p is a unitary
invariant norm on Mm,n(K). We recover the operator norm ‖A‖2→2 for k = 1 and
the Frobenius norm ‖A‖HS for (k, p) = (m∧n, 2). The special case (k, p) = (m∧n, 1)
gives the Ky Fan norms, while the special case k = m ∧ n gives the Schatten norms,
a concept already considered in the first chapter.

Basic relationships between eigenvalues and singular values. — We know
that if A ∈ Mn,n(K) is normal (i.e. AA∗ = A∗A) then sk(A) = |λk(A)| for every
k ∈ {1, . . . , n}. Beyond normal matrices, for every A ∈ Mn,n(K) with row vectors
R1, . . . , Rn, we have, by viewing |det(A)| as the volume of a parallelepiped,

|det(A)| =
n∏
k=1

|λk(A)| =
n∏
k=1

sk(A) =

n∏
k=1

dist(Rk, span{R1, . . . , Rk−1}) (4.2)

(basis × height etc). The following result, due to Weyl, is less global and more subtle.

Theorem 4.1.13 (Weyl inequalities). — If A ∈Mn,n(K), then

∀k ∈ {1, . . . , n},
k∏
i=1

|λi(A)| 6
k∏
i=1

si(A) and

n∏
i=k

si(A) 6
n∏
i=k

|λi(A)| (4.3)

Moreover, for every increasing function ϕ from (0,∞) to (0,∞) such that t 7→ ϕ(et)
is convex on (0,∞) and ϕ(0) := limt→0+ ϕ(t) = 0, we have

∀k ∈ {1, . . . , n},
k∑
i=1

ϕ(|λi(A)|2) 6
k∑
i=1

ϕ(si(A)2). (4.4)

Observe that from (4.4) with ϕ(t) = t for every t > 0 and k = n, we obtain
n∑
k=1

|λk(A)|2 6
n∑
k=1

sk(A)2 = Tr(AA∗) =

n∑
i,j=1

|Ai,j |2 = Tr(AA∗) = ‖A‖2HS . (4.5)

The following result, due to Horn, constitutes a converse to Weyl inequalities 4.2. It
explains why so many generic relationships between eigenvalues and singular values
are consequences of (4.2), for instance via majorization inequalities and techniques.

Theorem 4.1.14 (Horn inverse problem). — If λ ∈ Cn and s ∈ [0,∞)n satisfy
|λ1| > · · · > |λn| and s1 > · · · > sn and the Weyl relationships (4.3) then there exists
A ∈Mn,n(C) such that λi(A) = λi and si(A) = si for every i ∈ {1, . . . , n}.
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From (4.2) we get sn(A) 6 |λn(A)| 6 |λ1(A)| 6 s1(A) for any A ∈ Mn,n(K). In
particular, we have the following spectral radius / operator norm comparison:

ρ(A) = |λ1(A)| 6 s1(A) = ‖A‖2→2 .

In this spirit, the following result, due to Gelfand, allows to estimate the spectral
radius ρ(A) with the singular values of the powers of A.

Theorem 4.1.15 (Gelfand spectral radius formula). — Let ‖·‖ be a submulti-
plicative matrix norm onMn,n(K) such as the operator norm ‖·‖2→2 or the Frobenius
norm ‖·‖HS. Then for every matrix A ∈Mn,n(K) we have

ρ(A) := |λ1(A)| = lim
k→∞

k

√
‖Ak‖.

The eigenvalues of non normal matrices are far more sensitive to perturbations
than the singular values, and this is captured by the notion of pseudo spectrum:

pseudospecε(A) :=
⋃

‖B−A‖2→26ε

{λ1(B), . . . , λn(B)}.

If A is normal then pseudospecε(A) is the ε-neighborhood of the spectrum of A.

Relation with rows distances. — The following couple of lemmas relate the
singular values of matrices to distances between rows (or columns). For square random
matrices, they provide a convenient control on the operator norm and Frobenius norm
of the inverse respectively.

Lemma 4.1.16 (Rows and operator norm). — If A ∈ Mm,n(K) has row vec-
tors R1, . . . , Rm, then, denoting R−i = span{Rj : j 6= i}, we have

m−1/2 min
16i6m

dist2(Ri, R−i) 6 sm∧n(A) 6 min
16i6m

dist2(Ri, R−i).

Proof. — Since A and A> have same singular values, we can prove the statement for
the column vectors C1, . . . , Cn of A (swap m and n). For every x ∈ Kn and every
i ∈ {1, . . . , n}, the triangle inequality and the identity Ax = x1C1 + · · ·+ xnCn give

|Ax|2 > dist2(Ax,C−i) = min
y∈C−i

|Ax− y|2 = min
y∈C−i

|xiCi − y|2 = |xi|dist2(Ci, C−i).

If |x|2 = 1 then necessarily |xi| > n−1/2 for some i ∈ {1, . . . , n}, and therefore

sm∧n(A) = min
|x|2=1

|Ax|2 > n−1/2 min
16i6n

dist2(Ci, C−i).

Conversely, for any i ∈ {1, . . . , n}, there exists a vector y ∈ Kn with yi = 1 such that

dist2(Ci, C−i) = |y1C1 + · · ·+ ynCn|2 = |Ay|2 > |y|2 min
|x|2=1

|Ax|2 > sm∧n(A)

where we used the fact that |y|22 = |y1|2 + · · ·+ |yn|2 > |yi|2 = 1.
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Lemma 4.1.17 (Rows and trace norm). — If A ∈ Mm,n(K) with m 6 n has
rows R1, . . . , Rm and if rank(A) = m then, denoting R−i = span{Rj : j 6= i},

m∑
i=1

s−2
i (A) =

m∑
i=1

dist2(Ri, R−i)
−2.

Proof. — The orthogonal projection of R∗i on R∗−i is B∗(BB∗)−1BR∗i where B is the
(m− 1)× n matrix obtained from A by removing the row Ri. In particular, we have

|Ri|22 − dist2(Ri, R−i)
2 =

∣∣B∗(BB∗)−1BR∗i
∣∣2
2

= (BR∗i )
∗(BB∗)−1BR∗i

by the Pythagoras theorem. On the other hand, the Schur bloc inversion formula
states that if M is an m×m matrix then for every partition {1, . . . ,m} = I ∪ Ic,

(M−1)I,I = (MI,I −MI,Ic(MIc,Ic)
−1MIc,I)

−1.

Now we take M = AA∗ and I = {i}, and we note that (AA∗)i,j = RiR
∗
j , which gives

((AA∗)−1)i,i = (RiR
∗
i − (BR∗i )

∗(BB∗)−1BR∗i )
−1 = dist2(Ri, R−i)

−2.

The desired formula follows by taking the sum over i ∈ {1, . . . ,m}.

Unitary bidiagonalization and computation of the SVD. — To compute the
SVD of A ∈Mm,n(K) one can diagonalize AA∗ or diagonalize the Hermitian matrix
H defined in remark 4.1.3. Unfortunately, this approach can lead to a loss of precision
numerically. In practice, and up to machine precision, the SVD is better computed
by using for instance a variant of the QR algorithm after unitary bidiagonalization.

Let us explain how works the unitary bidiagonalization of a matrix A ∈Mm,n(K)
with m 6 n. If r1 is the first row of A, the Gram–Schmidt (or Householder) algorithm
provides an m × m K–unitary matrix V1 which maps r∗1 to a multiple of e1. Since
V1 is unitary the matrix AV ∗1 has first row equal to |r1|−1

2 e1. Now one can construct
similarly a n × n K–unitary matrix U1 with first row and column equal to e1 which
maps the first row of AV ∗1 to an element of span(e1, e2). This gives to U1AV

∗
1 a

nice structure and suggests a recursion on the dimension m. Indeed by induction
one may construct m ×m bloc diagonal K–unitary matrices U1, . . . , Um−2 and bloc
diagonal n × n K–unitary matrices V1, . . . , Vm−1 such that if U := Um−2 · · ·U1 and
V := V ∗1 · · ·V ∗m−1 then the matrix

B = UAV (4.6)

is real m×n lower triangular bidiagonal i.e. Bi,j = 0 for every i and every j 6∈ {i, i+1}.
If A is symmetric or Hermitian then taking U = V provides a symmetric or Hermitian
tridiagonal matrix B = UAU∗ having the same spectrum as A.

4.2. Gaussian random matrices

This section gathers some facts concerning random matrices with i.i.d. Gaussian
entries. The standard Gaussian law on K is N (0, 1) if K = R and N (0, 1

2I2) if

K = C = R2. If Z is a standard Gaussian random variable on K then

Var(Z) := E(|Z − EZ|2) = E(|Z|2) = 1.
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Let (Gi,j)i,j>1 be i.i.d. standard Gaussian random variables on K. For any m,n > 1,

G := (Gi,j)16i6m, 16j6n

is a random m× n matrix with density in Mm,n(K) ≡ Knm proportional to

G 7→ exp

−β
2

m∑
i=1

n∑
j=1

|Gi,j |2
 = exp

(
−β

2
Tr(GG∗)

)
= exp

(
−β

2
‖G‖2HS

)
where

β :=

{
1 if K = R,

2 if K = C.

The law of G is unitary invariant in the sense that UGV
d
= G for every deterministic

K–unitary matrices U (m×m) and V (n×n). We say that the random m×n matrix
G belongs to the Ginibre Ensemble, real if β = 1 and complex if β = 2.

Remark 4.2.1 (Complex Ginibre and the GUE). — If m = n and β = 2 then
H1 = (G+G∗)/2 and H2 = (G−G∗)/2 are independent and in the Gaussian Unitary
Ensemble (GUE). Conversely, if H1 and H2 are two m × m independent random
matrices in the GUE then H1 +

√
−1H2 has the law of G with m = n and β = 2.

Theorem 4.2.2 (Wishart). — Let S+
m be the cone of m × m Hermitian positive

definite matrices. If m 6 n then the law of the random Hermitian matrix W = GG∗

is a Wishart distribution with Lebesgue density on S+
m proportional to

W 7→ det(W )β(n−m+1)/2−1 exp

(
−β

2
Tr(W )

)
.

Idea of the proof. — The Gram–Schmidt algorithm for the rows ofG furnishes a n×m
matrix V such that T := GV is m×m lower triangular with a real positive diagonal.
Note that V can be completed into an n× n K–unitary matrix. We have

W = GV V ∗G∗ = TT ∗, det(W ) = det(T )2 =

m∏
k=1

T 2
k,k, Tr(W ) =

m∑
i,j=1

|Ti,j |2.

The desired result follows from the formulas for the Jacobian of the change of variables
G 7→ (T, V ) and T 7→ TT ∗ and the integration of the independent variable V .

The Wishart distribution can be understood as a sort of multivariate χ2 distribu-
tion. The correlation between the entries of the random matrix W = GG∗ is captured
by the determinent det(W β(n−m+1)/2−1), which disappears when n = m+ (2− β)/β.

Theorem 4.2.3 (Bidiagonalization). — If m 6 n then there exists two random
K–unitary matrices U (m×m) and V (n× n) such that B :=

√
βUGV ∈ Mm,n(K)
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is lower triangular and bidiagonal with independent real entries of law

χβn 0 0 0 · · · 0
χβ(m−1) χβ(n−1) 0 0 · · · 0

0 χβ(m−2) χβ(n−2) 0 · · · 0

0 0
. . .

. . . · · · 0
...

... · · · 0
0 0 0 · · · 0 χβ χβ(n−(m−1)) 0 · · · 0


.

Recall that if X1, . . . , X` are independent and identically distributed with law
N (0, 1) then ‖X‖22 = X2

1 + · · · + X2
` ∼ χ2

` and ‖X‖2 =
√
X2

1 + · · ·+X2
` ∼ χ`. The

densities of χ2
` and χ` are proportional to t 7→ t`/2−1e−t/2 and t 7→ t`−1e−t

2/2.

Proof. — The desired result follows from 4.6 and basic properties of Gaussian laws
(Cochran’s theorem on the orthogonal Gaussian projections).

Here is an application of theorem 4.2.3 : since B and G have same singular values,
one may use B for their simulation, reducing the dimension from nm to 2m− 1.

Theorem 4.2.4 (Laguerre Ensembles). — If m 6 n then the random vector

(s2
1(G), . . . , s2

m(G)) = (λ1(GG∗), . . . , λm(GG∗))

admits a density on {λ ∈ [0,∞)m : λ1 > · · · > λn} proportional to

λ 7→ exp

(
−β

2

m∑
i=1

λi

)
m∏
i=1

λ
β(n−m+1)/2−1
i

∏
16i<j6m

|λi − λj |β .

The correlation is captured by the Vandermonde determinant and expresses an elec-
trostatic logarithmic repulsive potential. We recognize the Laguerre weight t 7→ tαe−t.
Also we say that GG∗ belongs to the β–Laguerre ensemble or Laguerre Orthogonal
Ensemble (LOE) for β = 1 and Laguerre Unitary Ensemble (LUE) for β = 2.

Proof. — Let us consider the m×m tridiagonal real symmetric matrix

T =


am bm−1

bm−1 am−1 bm−2

. . .
. . .

. . .

b2 a2 b1
b1 a1

 .

We denote by λ1, . . . , λm ∈ R its eigenvalues. Let v1, . . . , vm be an orthonormal
system of eigenvectors. If V is the m×m orthogonal matrix with columns v1, . . . , vm
then T = VDiag(λ1, . . . , λm)V >. For every k ∈ {1, . . . ,m}, the equation Tvk = λkvk
writes, for every i ∈ {1, . . . ,m}, with the convention b0 = bm = vk,0 = vk,m+1 = 0,

bm−i+1vk,i−1 + am−i+1vk,i + bm−i+1vk,i+1 = λkvk,i.

It follows from these recursive equations that the matrix V is entirely determined by
its first row r = (r1, . . . , rm) = (v1,1, . . . , vm,1) and λ1, . . . , λm. From now on, we
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assume that λi 6= λj for every i 6= j and that r1 > 0, . . . , rm > 0, which makes V
unique. Our first goal is to compute the Jacobian of the change of variable

(a, b) 7→ (λ, r).

Note that r2
1 + · · ·+ r2

m = 1. For every λ 6∈ {λ1, . . . , λm} we have

((T − λI)−1)1,1 =

m∑
i=1

r2
i

λi − λ
.

On the other hand, for every m×m matrix A with det(A) 6= 0, we have

(A−1)1,1 =
det(Am−1)

det(A)

where Ak stands for the k × k right bottom sub matrix Ak := (Ai,j)m−k+16i,j6m. If
λk,1, . . . , λk,k are the eigenvalues of Tk, then we obtain, with A = T − λI,∏m−1

i=1 (λm−1,i − λ)∏m
i=1(λi − λ)

=

m∑
i=1

r2
i

λi − λ
.

Recall that λ1, . . . , λm are all distinct. By denoting Pk(λ) :=
∏k
i=1(λ − λk,i) the

characteristic polynomial of Tk, we get, for every i ∈ {1, . . . ,m},
Pm−1(λi)

P ′m(λi)
= r2

i .

Since P ′m(λi) =
∏

16j 6=i6m(λi − λj) we obtain

m∏
i=1

r2
i =

∏m
i=1 |Pm−1(λi)|∏

16i<j6m(λi − λj)2
.

Let us rewrite the numerator of the right hand side. By expanding the first row in
the determinant det(λI − T ) = Pm(λ), we get, with P−1 := 0 and P0 := 1,

Pm(λ) = (λ− am)Pm−1(λ)− b2m−1Pm−2(λ).

This shows that the spectrum of Tm = T does not depend on the signs of b1, . . . , bm−1.
We can then safely assume that b1 > 0, . . . , bm−1 > 0. Additionally, we obtain

m−1∏
i=1

|Pm(λm−1,i)| = b
2(m−1)
m−1

m−1∏
i=1

|Pm−2(λm−1,i)|.

Now the observation
m−1∏
i=1

|Pm−2(λm−1,i)| =
m−1∏
i=1

m−2∏
j=1

|λm−2,j − λm−1,i| =
m−2∏
j=1

|Pm−1(λm−2,j)|

leads by induction to the identity

m−1∏
i=1

|Pm(λm−1,i)| =
m−1∏
i=1

b2ii .
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Finally, we have shown that ∏
16i<j6m

(λi − λj)2 =

∏m−1
i=1 b2ii∏m
i=1 r

2
i

. (4.7)

To compute the Jacobian of the change of variable (a, b) 7→ (λ, r), we start from

((I − λT )−1)1,1 =

m∑
i=1

r2
i

1− λλi

with |λ| < 1/max(λ1, . . . , λm) (this gives ‖λT‖2→2 < 1). By expanding both sides in
power series of λ and identifying the coefficients, we get the system of equations

(T k)1,1 =

m∑
i=1

r2
i λ

k
i where k ∈ {0, 1, . . . , 2m− 1}.

Since (T k)1,1 =
〈
T ke1, e1

〉
and since T is tridiagonal, we see that this system of

equations is triangular with respect to the variables am, bm−1, am−1, bm−2, . . .. The
first equation is 1 = r2

1 + · · ·+r2
m and gives −rmdrm = r1dr1 + · · ·+rm−1drm−1. This

identity and the remaining triangular equations give, after some tedious calculus,

dadb = ± 1

rm

∏m−1
i=1 bi∏m
i=1 ri

( ∏m
i=1 r

2
i∏m−1

i=1 b2ii

)2 ∏
16i<j6m

(λi − λj)4 dλdr.

which gives, using (4.7),

dadb = ± 1

rm

∏m−1
i=1 bi∏m
i=1 ri

dλdr. (4.8)

Let us consider now the m× n lower triangular bidiagonal real matrix (m 6 n)

B =


xn
ym−1 xn−1

. . .
. . .

y1 xn−(m−1)


The matrix T = BB> is m×m symmetric tridiagonal and for i ∈ {1, . . . ,m− 1},

am = x2
n, ai = y2

i + x2
n−(m−i), bi = yixn−(m−i)+1. (4.9)

Let us assume that B has real non negative entries. We get, after some calculus,

dxdy =

(
2nxn−(m−1)

m−2∏
i=0

x2
n−i

)−1

dadb.

From theorem 4.2.3 we have, with a normalizing constant cm,n,β ,

dB = cm,n,β

m−1∏
i=0

x
β(n−i)−1
n−i

m−1∏
i=1

yβi−1
i exp

(
−β

2

m−1∑
i=0

x2
n−i −

β

2

m−1∑
i=1

y2
i

)
dxdy.
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Let us consider T as a function of λ and r. We first note that

m−1∑
i=0

x2
n−i +

m−1∑
i=1

y2
i = Tr(BB>) = Tr(T ) =

m∑
i=1

λi.

The unitary invariance of the law of B implies that r is uniform and that with prob-
ability one the component of λ are all distinct. Using equations (4.8-4.9), we obtain

dB = cm,n,β

∏m−1
i=0 x

β(n−i)−2
n−i

∏m−1
i=1 yβii

rm
∏m
i=1 ri

exp

(
−β

2

m∑
i=1

λi

)
dλdr.

But using equation (4.7-4.9) we have

∏
16i<j6m

|λi − λj | =
∏m−1
i=1 bii∏m
i=1 ri

=

∏m−1
i=1 yiix

i
n−(m−i)+1∏m

i=1 ri
=

∏m−1
i=0 xm−i−1

n−i
∏m−1
i=1 yii∏m

i=1 ri

and therefore

dB = cm,n,β

(∏m−1
i=0 x2

n−i

) 1
2β(n−m+1)−1

rm
∏m
i=1 ri

∏
16i<j6m

|λi − λj |β exp

(
−β

2

m∑
i=1

λi

)
dλdr.

Now it remains to use the identity
∏m−1
i=0 x2

n−i = det(B)2 = det(T ) =
∏m
i=1 λi to get

only (λ, r) variables, and to eliminate the r variable by separation and integration.

Remark 4.2.5 (Universality of Gaussian models). — Gaussian models of ran-
dom matrices have the advantage to allow explicit computations. However, in some
applications such as in compressed sensing, Gaussian models can be less relevant than
discrete models such as Bernoulli/Rademacher models. It turns out that most large
dimensional properties are the same, such as in the Marchenko-Pastur theorem.

4.3. The Marchenko-Pastur theorem

The Marchenko-Pastur theorem concerns the asymptotics of the counting proba-
bility measure of the singular values of large random rectangular matrices, with i.i.d.
entries, when the aspect ratio (number of rows over number of columns) of the matrix
converges to a finite positive real number.

Theorem 4.3.1 (Marchenko-Pastur). — Let (Mi,j)i,j>1 be an infinite table of
i.i.d. random variables on K with unit variance and arbitrary mean. Let

νm,n =
1

m

m∑
k=1

δsk( 1√
n
M) =

1

m

m∑
k=1

δ
λk(
√

1
nMM∗)

be the counting probability measure of the singular values of the m×n random matrix

1√
n
M =

(
1√
n
Mi,j

)
16i6m,16j6n

.
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Suppose that m = mn depends on n in such a way that

lim
n→∞

mn

n
= ρ ∈ (0,∞).

Then with probability one, for any bounded continuous function f : R+ → R,∫
f dνm,n −→

n→+∞

∫
f dνρ

where νρ is the Marchenko-Pastur law with shape parameter ρ given by(
1− 1

ρ

)
+

δ0 +
1

ρπx

√
(b− x2)(x2 − a) 1[

√
a,
√
b](x)dx. (4.10)

where a = (1−√ρ)2 and b = (1 +
√
ρ)2 (atom at point 0 if and only if ρ > 1).

Theorem 4.3.1 is a sort of strong law of large numbers: it states the almost sure
convergence of the sequence (νm,n)n>1 to a deterministic probability measure νρ.

Remark 4.3.2 (Weak convergence). — Recall that for probability measures, the
weak convergence with respect to bounded continuous functions is equivalent to the
pointwise convergence of cumulative distribution functions at every continuity point
of the limit. This convergence, known as the narrow convergence, corresponds also
to the convergence in law of random variables. Consequently, the Marchenko-Pastur
theorem 4.3.1 states that if m depends on n with limn→∞m/n = ρ ∈ (0,∞) then with
probability one, for every x ∈ R (x 6= 0 if ρ > 1) denoting I = (−∞, x],

lim
n→∞

νm,n(I) = νρ(I).

Remark 4.3.3 (Atom at 0). — The atom at 0 in νρ when ρ > 1 can be understood
by the fact that sk(M) = 0 for any k > m ∧ n. If m > n then νρ({0}) > (m− n)/m.

Remark 4.3.4 (Quarter circle law). — When ρ = 1 then M is asymptotically
square, a = 0, b = 4, and ν1 is the so called quarter circle law

1

π

√
4− x2 1[0,2](x)dx.

Actually, the normalization factor makes it an ellipse instead of a circle.

Alternate formulation. — Recall that s2
k( 1√

n
M) = λk( 1

nMM∗) for every k ∈
{1, . . . ,m}. The image of νm,n by the map x 7→ x2 is the probability measure

µm,n =
1

m

m∑
k=1

δλk( 1
nMM∗).

Similarly, the image µρ of νρ by the map x 7→ x2 is given by(
1− 1

ρ

)
+

δ0 +
1

ρ2πx

√
(b− x)(x− a) 1[a,b](x)dx (4.11)

where a = (1−√ρ)2 and b = (1 +
√
ρ)2 as in theorem 4.3.1. As an immediate conse-

quence, the Marchenko-Pastur theorem 4.3.1 can be usefully rephrased as follows:
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Theorem 4.3.5 (Marchenko-Pastur). — Let (Mi,j)i,j>1 be an infinite table of
i.i.d. random variables on K with unit variance and arbitrary mean. Let

µm,n =
1

m

m∑
k=1

δλk( 1
nMM∗)

be the counting probability measure of the eigenvalues of the m ×m random matrix
1
nMM∗ where M = (Mi,j)16i6m,16j6n. Suppose that m = mn depends on n with

lim
n→∞

mn

n
= ρ ∈ (0,∞)

then with probability one, for any bounded continuous function f : R+ → R,∫
f dµm,n −→

n→+∞

∫
f dµρ

where µρ is the Marchenko-Pastur law defined by (4.11).

Remark 4.3.6 (First moment and tightness). — By the strong law of large
numbers, we have, with probability one,∫

x dµm,n(x) =
1

m

m∑
k=1

s2
k(

1√
n
M)

=
1

m
Tr

(
1

n
MM∗

)
=

1

nm

∑
16i6m
16j6n

|Mij |2 −→
n,m→+∞

1.

This shows the almost sure convergence of the first moment in the Marchenko-Pastur
theorem. Moreover, by Markov’s inequality, for any r > 0, we have

µm,n([0, r]c) 6
1

r

∫
x dµm,n(x).

This shows that almost surely the sequence (µmn,n)n>1 is tight.

Remark 4.3.7 (Covariance matrices). — Suppose that M has centered entries.
The column vectors C1, . . . , Cn of M are independent and identically distributed ran-
dom vectors of Rm with mean 0 and covariance Im, and 1

nMM∗ is the empirical
covariance matrix of this sequence of vectors seen as a sample of N (0, Im). We have

1

n
MM∗ =

1

n

n∑
k=1

CkCk
∗.

Also, if m is fixed then by the strong law of large numbers, with probability one,
limn→∞

1
nMM∗ = E(C1C1

∗) = Im. This is outside the regime of the Marchenko-
Pastur theorem, for which m depends on n in such a way that limn→∞m/n ∈ (0,∞).
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Figure 2. Absolutely continuous parts of the Marchenko-Pastur laws νρ
(4.10) and µρ (4.11) for different values of the shape parameter ρ. These
graphics were produced with the wxMaxima free software package.
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4.4. Proof of the Marchenko-Pastur theorem

This section is devoted to a proof of theorem 4.3.1. We will actually provide a
proof of the equivalent version formulated in theorem 4.3.5, by using the method of

moments. Let us define the truncated matrix M̃ = (M̃i,j)16i6m,16j6n where

M̃i,j = Mi,j1{|Mi,j |6C}

with C > 0. By theorem 4.1.10 we have

L4(µ 1√
n
M , µ 1√

n
M̃

) 6
2

(nm)2

∑
16i6m
16j6n

(
|Mi,j |2 + |M̃i,j |2

) ∑
16i6m
16j6n

|Mi,j |21{|Mi,j |>C}.

Now, by the strong law of large numbers, with probability one,

lim sup
m,n→∞

L4(µ 1√
n
M , µ 1√

n
M̃

) 6 4E(|M1,1|21{|M1,1|>C}).

The right hand side can be made arbitrarily close to zero by choosing C large enough,
and since the convergence for the Lévy distance implies the weak convergence with
respect to bounded continuous functions, one may assume that the entries of M have
bounded support (remark that by scaling, one may take entries of arbitrary variance).
Let us define the m× n centered matrix M = M − E(M). By theorem 4.1.8 we have

‖Fµ 1√
n
M
− Fµ 1√

n
M
‖∞ 6

rank(E(M))

m
6

1

m
.

Consequently, one may assume that M has mean 0. Additionally, lemma 4.4.1 below
reduces the problem to the convergence of Eµm,n to µρ (via the first Borel-Cantelli
lemma and the countable test functions f = 1(−∞,x] with x rational). Next, lemmas
4.4.4 and 4.4.5 below reduce in turn the problem to the convergence of the moments
of Eµm,n to the ones of µρ computed in lemma 4.4.6 below.

Summarizing, it remains to show that if M has i.i.d. entries of mean 0, variance 1,
and support [−C,C], and if limn→∞m/n = ρ ∈ (0,∞), then, for every r > 1,

lim
n→∞

E
∫
xr dµm,n =

r−1∑
k=0

ρk

k + 1

(
r

k

)(
r − 1

k

)
. (4.12)

The result is immediate for the first moment (r = 1) since

E
∫
x dµm,n =

1

mn
E

m∑
k=1

λk(MM∗)

=
1

nm
ETr(MM∗)

=
1

nm

∑
16i6m
16j6n

E(|Mi,j |2) = 1.
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This show actually that Eµm,n and µρ have even the same first moment for all values
of m and n. The convergence of the second moment (r = 2) is far more subtle:

E
∫
x2 dµm,n =

1

mn2
E

m∑
k=1

λ2
k(MM∗)

=
1

mn2
ETr(MM∗MM∗)

=
1

mn2

∑
16i,k6m
16j,l6n

E(MijMkjMklM il).

If an element of {(ij), (kj), (kl), (il)} appears one time and exactly one in the prod-
uct MijMkjMklM il then by the assumptions of independence and mean 0 we get

E(MijMkjMklM il) = 0. The case when the four elements are the same appears with
mn possibilities and is thus asymptotically negligible. It remains only to consider
the cases where two different elements appear two times. The case (ij) = (kj) and
(kl) = (il) gives i = k and contributes E(|Mij |2|Mil|2) = 1 with m(n2−n) possibilities
(here j 6= l since the case j = l was already considered). The case (ij) = (kl) and
(kj) = (il) gives i = j = k = l which was already considered. The case (ij) = (il)
and (kj) = (kl) gives j = l and contributes E(|Mij |2|Mkj |2) = 1 with n2(m2 − m)
possibilities (here i 6= k since the case i = k was already considered). We used here
the assumptions of independence, mean 0, and variance 1. At the end, the second
moment of Eµm,n tends to limn→∞(m(n2−n) +n(m2−m))/(mn2) = 1 + ρ which is
the second moment of µρ. We have actually in hand a method reducing the proof of
(4.12) to combinatorial arguments. Namely, for all r > 1, we write∫

xr dµm,n(x) =
1

mnr

m∑
k=1

λk(MM∗)r =
1

mnr
Tr((MM∗)r)

which gives

E
∫
xr dµm,n(x) =

1

mnr

∑
16i1,...,ir6m
16j1,...,jr6n

E(Mi1j1M i2j1Mi2j2M i3j2 · · ·MirjrM i1jr ).

Draw i1, . . . , ir on a horizontal line representing N and j1, . . . , jr on another parallel
horizontal line below the previous one representing another copy of N. Draw r down
edges from is to js and r up edges from js to is+1, with the convention ir+1 = i1, for
all s = 1, . . . , r. This produces an oriented “MP” graph with possibly multiple edges
between two nodes (certain vertices or edges of this graph may have a degree larger
that one due to the possible coincidence of certain values of is or of js). We have

E
∫
xr dµm,n(x) =

1

nrm

∑
G

EMG

where the sum
∑
G runs over the set of MP graphs and whereMG is the product ofMab

or Mab over the edges ab of G. We say that two MP graphs are equivalent when they
are identical up to a permutation of {1, . . . ,m} and {1, . . . , n}. Each equivalent class
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contains a unique canonical graph such that i1 = j1 = 1 and is 6 max{i1, . . . , is−1}+1
and js 6 max{j1, . . . , js−1} + 1 for all s. A canonical graph possesses α + 1 distinct
i-vertices and β distinct j-vertices with 0 6 α 6 r − 1 and 1 6 β 6 r. We say that
such a canonical graph is T (α, β), and we distinguish three types :

– T1(α, β) : T (α, β) graphs for which each down edge coincides with one and only
one up edge. We have necessarily α+ β = r and we abridge T1(α, β) into T1(α)

– T2(α, β) : T (α, β) graphs with at least one edge of multiplicity exactly 1
– T3(α, β) : T (α, β) graphs which are not T1(α, β) nor T2(α, β)

We admit the following combinatorial facts :

(C1) the cardinal of the equivalent class of each T (α, β) canonical graph is

m(m− 1) · · · (m− α)n(n− 1) · · · (n− β + 1).

(C2) each T3(α, β) canonical graph has at most r distinct vertices (i.e. α+ β < r).
(C3) the number of T1(α, β) canonical graphs is

1

α+ 1

(
r

α

)(
r − 1

α

)
.

The quantity E(MG) depends only on the equivalent class of G. We denote by
E(MT (α,β)) the common value to all T (α, β) canonical graphs. We get, using (C1),

1

nrm

∑
G

MG =
1

nrm

∑
T (α,β)

m(m− 1) · · · (m− α)n(n− 1) · · · (n− β + 1)E(MT (α,β))

where the sum runs over the set of all canonical graphs. The contribution of T2 graphs
is zero thanks to the assumption of independence and mean 0. The contribution of
T3 graphs is asymptotically negligible since there are few of them. Namely, by the
bounded support assumption we have |MT3(α,β)| 6 C2r, and thanks to (C2) we obtain

1

nrm

∑
T3(α,β)

m(m− 1) · · · (m− α)n(n− 1) · · · (n− β + 1)E(MT (α,β))

6
r2

nrm
C2rmα+1nβ = O(n−1).

Therefore we know now that only T1 graphs contributes asymptotically. Let us con-
sider a T1(α, β) = T1(α) canonical graph (β = r − α). Since MT (α,β) = MT (α) is a
product of squared modules of distinct entries of M , which are independent, of mean
0, and variance 1, we have E(MT (α)) = 1. Consequently, using (C3) we obtain

1

nrm

∑
T1(α)

m(m− 1) · · · (m− α)n(n− 1) · · · (n− r + α+ 1)E(MT (α,r−α))

=

r−1∑
α=0

1

1 + α

(
r

α

)(
r − 1

α

)
1

nrm
m(m− 1) · · · (m− α)n(n− 1) · · · (n− r + α+ 1)

=

r−1∑
α=0

1

1 + α

(
r

α

)(
r − 1

α

) α∏
i=1

(
m

n
− i

n

) r−α+1∏
i=1

(
1− i− 1

n

)
.
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Therefore, denoting ρn = m/n, we have

E
∫
xr dµn(x) =

r−1∑
α=0

ραn
α+ 1

(
r

α

)(
r − 1

α

)
+O(n−1).

This achieves the proof of (4.12), and thus of the Marchenko-Pastur theorem 4.3.5.

Concentration for empirical spectral distributions. — This section is devoted
to the proof of lemma 4.4.1 below. The total variation of f : R→ R is

‖f‖TV := sup
(xk)k∈Z

∑
k∈Z
|f(xk+1)− f(xk)|,

where the supremum runs over all non decreasing sequences (xk)k∈Z. If f is differ-
entiable with f ′ ∈ L1(R) then ‖f‖TV = ‖f ′‖1. If f = 1(−∞,s] for a real s then
‖f‖TV = 1, and consequently, for probability measures, the weak convergence with
respect to bounded continuous functions can be checked on measurable test functions
with ‖·‖TV 6 1 (or even = 1).

Lemma 4.4.1 (Concentration). — Let M be an m × n complex random matrix
with independent rows. Let f : R→ R be a measurable function such that ‖f‖TV 6 1.

Assume that E
∣∣∫ f dµM ∣∣ < ∞ where µM := 1

m

∑m
k=1 δλk(MM∗). This always holds

true for instance when f is bounded. Then for any r > 0,

P
(∣∣∣∣∫ f dµM − E

∫
f dµM

∣∣∣∣ > r

)
6 2 exp

(
−2mr2

)
.

Proof. — Let A and B be two m× n complex matrices and let FµA and FµB be the
cumulative distributions functions of µA = 1

m

∑m
k=1 δs2k(A) and µB = 1

m

∑m
k=1 δs2k(B).

For any differentiable function f : R → R such that f ′ ∈ L1(R), an integration by
parts and theorem 4.1.8 give∣∣∣∣∫ f dµA − ∫ f dµB∣∣∣∣ =

∣∣∣∣∫
R
f ′(t)(FµA(t)− FµB (t)) dt

∣∣∣∣ 6 rank(A−B)

m

∫
R
|f ′(t)| dt.

Since the left hand side depends on at most 2m points, we get, by approximation, for
every measurable function f : R→ R with ‖f‖TV 6 1,∣∣∣∣∫ f dµA − ∫ f dµB∣∣∣∣ 6 rank(A−B)

m
.

From now on, f : R → R is a fixed measurable function with ‖f‖TV 6 1. For every
row vectors x1, . . . , xm in Cn, we denote by A(x1, . . . , xm) the m×n matrix with row
vectors x1, . . . , xm and we define F : (Cn)m → R by

F (x1, . . . , xm) :=

∫
f dµA(x1,...,xm).

For any i ∈ {1, . . . ,m} and any row vectors x1, . . . , xm, x
′
i of Cn, we have

rank(A(x1, . . . , xi−1, xi, xi+1, . . . , xm)−A(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)) 6 1
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and thus

|F (x1, . . . , xi−1, xi, xi+1, . . . , xm)− F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| 6 1

m
.

Finally, the desired concentration result follows from McDiarmid’s lemma 4.4.2 used
for the random variable X = F (R1, . . . , Rm) where R1, . . . , Rm are the rows of M .

Lemma 4.4.2 (McDiarmid). — Let R1, . . . , Rn be independent random variables
taking values in E1, . . . , En. Let F : E1×· · ·×En → R be a measurable function such
that the random variable X = F (R1, . . . , Rn) is integrable. Then for any r > 0,

P(|X − E(X)| > r) 6 2 exp

(
− 2r2

c21 + · · ·+ c2n

)
where ck = sup(x,x′)∈Dk |F (x)− F (x′)| and Dk = {(x, x′) : xi = x′i for all i 6= k}.

Proof. — Let R′1, . . . , R
′
n be an independent copy of R1, . . . , Rn. If Fk stands for the

σ-field generated by R1, . . . , Rk then for every 1 6 k 6 n we have, with F0 = {∅,Ω},
E(X | Fk−1) = E(F (R1, . . . , Rk, . . . , Rn) | Fk−1) = E(F (R1, . . . , R

′
k, . . . , Rn) | Fk).

Now the desired result follows from the Azuma-Hoeffding lemma 4.4.3 since

dk = E(X | Fk)− E(X | Fk−1)

= E(F (R1, . . . , Rk, . . . , Rn)− F (R1, . . . , R
′
k, . . . , Rn) | Fk)

gives ‖dk‖∞ 6 ck for every 1 6 k 6 n.

The following lemma on concentration of measure for sums of bounded differences
is close in spirit to theorem 1.2.1. The condition on the oscillation (support diameter)
rather than on the variance (second moment) is typical of Hoeffding type statements.

Lemma 4.4.3 (Azuma-Hoeffding). — If X ∈ L1(Ω,F ,P) then for every r > 0

P(|X − E(X)| > r) 6 2 exp

(
− 2r2

‖d1‖2∞ + · · ·+ ‖dn‖2∞

)
where dk = E(X | Fk)− E(X | Fk−1) for an arbitrary filtration

{∅,Ω} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = F .

Proof. — If U is a random variable with E(U) = 0 and a 6 U 6 b, then, by convexity,
etx 6 x−a

b−a e
tb + b−x

b−ae
ta for all t > 0 and a 6 x 6 b, which gives after some analysis

E(etU ) 6
b

b− a
eta − a

b− a
etb 6 e

t2

8 (b−a)2 .

Used with U = dk = E(X | Fk)− E(X | Fk−1) conditional on Fk−1, this gives

E(etdk | Fk−1) 6 e
t2

8 ‖dk‖
2
∞ .

By writing the Doob martingale telescopic sum X − E(X) = dn + · · ·+ d1, we get

E(et(X−E(X))) = E(et(dn−1+···+d1)E(etdn | Fn−1)) 6 · · · 6 e
t2

8 (‖d1‖2∞+···+‖dn‖2∞).

Now the desired result follows from Markov’s inequality and an optimization of t.
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Moments and weak convergence. — This section is devoted to the proof of
lemmas 4.4.5 and 4.4.6 below. Let P be the set of probability measures µ on R such
that R[X] ⊂ L1(µ). We say that µ1, µ2 ∈ P are equivalent when∫

P dµ1 =

∫
P dµ2

for all P ∈ R[X], in other words µ1 and µ2 have the same moments. We say that µ ∈ P
is characterized by its moments when its equivalent class is a singleton. The celebrated
Carleman theorem states that µ ∈ P is characterized by its moments (κn)n>1 iff∑
n κ
−1/(2n)
2n =∞. Lemma 4.4.4 below provides a simpler sufficient condition, which

is strong enough to imply that every compactly supported probability measure, such
as the Marchenko-Pastur law µρ, is characterized by its moments. Note that by
the Weierstrass theorem on the density of polynomials, we already know that every
compactly supported probability measure is characterized by its moments among the
class of compactly supported probability measures.

Lemma 4.4.4 (Moments and analyticity). — Let µ ∈ P, ϕ(t) =
∫
eitx dµ(x)

and κn =
∫
xn dµ(x). The following three statements are equivalent :

1. ϕ is analytic in a neighborhood of the origin
2. ϕ is analytic on R
3. limn

(
1
n! |κn|

) 1
n <∞.

If these statement hold true then µ is characterized by its moments.
This is the case for instance if µ is compactly supported.

Proof. — For all n we have
∫
|x|n dµ <∞ and thus ϕ is n times differentiable on R.

Moreover, ϕ(n) is continuous on R and for all t ∈ R,

ϕ(n)(t) =

∫
R
(ix)neitx dµ(x).

In particular, ϕ(n)(0) = inκn, and the Taylor series of ϕ at the origin is determined
by (κn)n>1. The convergence radius r of the power series

∑
n anz

n associated to a se-

quence of complex numbers (an)n>0 is given by Hadamard’s formla r−1 = limn |an|
1
n .

This shows the equivalence of properties 1 and 3 by taking an = inκn/n!. Since for
all n ∈ N, s, t ∈ R,∣∣∣∣eisx(eitx − 1− itx

1!
− · · · − (itx)n−1

(n− 1)!

)∣∣∣∣ 6 |tx|nn!
,

we get for all even n ∈ N and all s, t ∈ R,∣∣∣∣ϕ(s+ t)− ϕ(s)− t

1!
ϕ′(s)− · · · − tn−1

(n− 1)!
ϕ(n−1)(s)

∣∣∣∣ 6 κn
|t|n

n!
,

and thus property 3 implies property 2. Since property 2 implies property 1 we get
that properties 1-2-3 are equivalent. If these properties hold then by the preceding
arguments, there exists r > 0 such that the series expansion of ϕ at any x ∈ R has
radius > r, and thus, ϕ is characterized by its sequence of derivatives at point 0. If µ

is compactly supported then supn |κn|
1
n <∞ and thus property 3 holds.
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Lemma 4.4.5 (Moments convergence). — Let µ ∈ P be characterized by its mo-
ments. If (µn)n>1 is a sequence in P such that for every polynomial P ∈ R[X],

lim
n→∞

∫
P dµn =

∫
P dµ

then for every bounded continuous function f : R→ R,

lim
n→∞

∫
f dµn =

∫
f dµ.

Proof. — By assumption, for any P ∈ R[X], we have CP := supn>1

∫
P dµn < ∞,

and therefore, by Markov’s inequality, for any real R > 0,

µn([−R,R]c) 6
CX2

R2
.

This shows that (µn)n>1 is tight. Thanks to Prohorov’s theorem, it suffices then to
show that if a subsequence (µnk)k>1 converges with respect to bounded continuous
functions toward a probability measure ν as k →∞ then ν = µ. Let us fix P ∈ R[X]
and a real number R > 0. Let ϕR : R→ [0, 1] be continuous and such that

1[−R,R] 6 ϕR 6 1[−R−1,R+1].

We have the decomposition∫
P dµnk =

∫
ϕRP dµnk +

∫
(1− ϕR)P dµnk .

Since (µnk)k>1 converges weakly to ν we have

lim
k→∞

∫
ϕRP dµnk =

∫
ϕRP dν.

Moreover, by the Cauchy-Schwarz and Markov inequalities we have∣∣∣∣∫ (1− ϕR)P dµnk

∣∣∣∣2 6 µnk([−R,R]c)

∫
P 2 dµnk 6

CX2CP 2

R2
.

On the other hand, we know that lim
k→∞

∫
P dµnk =

∫
P dµ and thus

lim
R→∞

∫
ϕRP dν =

∫
P dµ.

Using this for P 2 provides via monotone convergence that P ∈ L2(ν) ⊂ L1(ν) and by
dominated convergence that

∫
P dν =

∫
P dµ. Since P is arbitrary and µ is charac-

terized by its moments, we obtain µ = ν.

Lemma 4.4.6 (Moments of the M.-P. law µρ). — The sequence of moments of
the Marchenko-Pastur distribution µρ defined by (4.11) is given for all r > 1 by∫

xr dµρ(x) =

r−1∑
k=0

ρk

k + 1

(
r

k

)(
r − 1

k

)
.

In particular, µρ has mean 1 and variance ρ.
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Proof. — Since a+ b = 2(1 + ρ) and ab = (1− ρ)2 we have

√
(b− x)(x− a) =

√
(a+ b)2

4
− ab−

(
x− a+ b

2

)2

=
√

4ρ− (x− (1 + ρ))2

The change of variable y = (x− (1 + ρ))/
√
ρ gives∫

xr dµρ(x) =

∫
xr dµρ(x) =

1

2π

∫ 2

−2

(
√
ρy + 1 + ρ)r−1

√
4− y2 dy.

Recall that the even moments of the semicircle law are the Catalan numbers :

1

2π

∫ 2

−2

y2k+1
√

4− y2 dy = 0 and
1

2π

∫ 2

−2

y2k
√

4− y2 dy =
1

1 + k

(
2k

k

)
.

By using binomial expansions and the Vandermonde convolution identity,∫
xr dµρ(x) =

b(r−1)/2c∑
k=0

ρk(1 + ρ)r−1−2k

(
r − 1

2k

)(
2k

k

)
1

1 + k

=

b(r−1)/2c∑
k=0

ρk(1 + ρ)r−1−2k (r − 1)!

(r − 1− 2k)!k!(k + 1)!

=

b(r−1)/2c∑
k=0

r−1−2k∑
s=0

ρk+s (r − 1)!

k!(k + 1)!(r − 1− 2k − s)!s!

=

r−1∑
t=0

ρt
min(t,r−1−t)∑

k=0

(r − 1)!

k!(k + 1)!(r − 1− t− k)!(t− k)!

=
1

r

r−1∑
t=0

ρt
(
r

t

)min(t,r−1−t)∑
k=0

(
t

k

)(
r − t
k + 1

)

=
1

r

r−1∑
t=0

ρt
(
r

t

)(
r

t+ 1

)

=

r−1∑
t=0

ρt

t+ 1

(
r

t

)(
r − 1

t

)
.

Other proof of the Marchenko-Pastur theorem. — An alternate proof of the
Marchenko-Pastur theorem 4.3.1 is based on the Cauchy-Stieltjes transform. Recall
that the Cauchy-Stieltjes transform of a probability measure µ on R is

z ∈ C+ = {z ∈ C : Im(z) > 0} 7→ Sµ(z) =

∫
1

x− z
dµ(x).

For instance, the Cauchy-Stieltjes transform of the Marchenko-Pastur law µρ is

Sµρ(z) =
1− ρ− z +

√
(z − 1− ρ)2 − 4ρ

2ρz
.
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The knowledge of Sµ fully characterizes µ, and the pointwise convergence along a
sequence of probability measures implies the weak convergence of the sequence. For
any m×m Hermitian matrix H with spectral distribution µH = 1

m

∑m
k=1 δλk(H), the

Cauchy-Stieltjes transform SµH is the normalized trace of the resolvent of H since

SµH (z) =
1

m
Tr((H − zI)−1).

This makes the Cauchy-Stieltjes transform an analogue of the Fourier transform,
well suited for spectral distributions of matrices. To prove the Marchenko-Pastur
theorem one takes H = 1

nMM∗ and one first shows that SµH − ESµH tends to 0
with probability one as n → ∞. Beware that ESµA 6= SEµA . Next the Schur bloc
inversion allows to deduce a recursive equation for ESµH leading to the fixed point
equation S = 1/(1− z − ρ− ρzS) at the limit. This quadratic equation in S admits
two solutions including the Cauchy-Stieltjes transform Sµρ of the M.-P. law µρ.

The behavior of µH when H is random can by captured by looking at E
∫
f dµH

with a test function f running over a sufficiently large family F . The method of
moments corresponds to the family F = {x 7→ xr : r ∈ N} whereas the Cauchy-
Stieltjes transform method corresponds to the family F = {z 7→ 1/(x− z) : z ∈ C+}.
Each of these allows to prove theorem 4.3.5, with advantages and drawbacks.

4.5. The Bai-Yin theorem

The convergence stated by the Marchenko-Pastur theorem 4.3.1 is too weak to
provide the convergence of the smallest and largest singular values. More precisely,
one can only deduce from theorem 4.3.1 that with probability one,

lim inf
n→∞

sn∧m

(
1√
n
M

)
6
√
a and lim sup

n→∞
s1

(
1√
n
M

)
>
√
b

where a = (1−√ρ)2 and b = (1 +
√
ρ)2. Of course if ρ = 1 then a = 0 and we obtain

limn→∞ sn∧m

(
1√
n
M
)

= 0. The Bai and Yin theorem below provides a complete

answer for any value of ρ when the entries have mean zero and finite fourth moment.

Theorem 4.5.1 (Bai-Yin). — Let (Mi,j)i,j>1 be an infinite table of i.i.d. random
variables on K with mean 0, variance 1 and finite fourth moment : E(|M1,1|4) <∞.
As in the Marchenko-Pastur theorem 4.3.1, let M be the m× n random matrix

M = (Mi,j)16i6m,16j6n.

Suppose that m = mn depends on n in such a way that

lim
n→∞

mn

n
= ρ ∈ (0,∞).

Then with probability one

lim
n→∞

sm∧n

(
1√
n
M

)
=
√
a and lim

n→∞
s1

(
1√
n
M

)
=
√
b.
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Regarding the assumptions, it can be shown that if M is not centered or does not
have finite fourth moment then the largest singular value tends to infinity.

When m < n the Bai-Yin theorem can be roughly rephrased as follows
√
n−
√
m+

√
non→∞(1) 6 sm∧n(M) 6 s1(M) 6

√
n+
√
m+

√
non→∞(1).

The proof of the Bai-Yin theorem is tedious and is outside the scope of this book.
In the Gaussian case, the result may be deduced from theorem 4.2.3. It is worthwhile
to mention that in the Gaussian case, we have the following result due to Gordon:

√
n−
√
m 6 E(sm∧n(M)) 6 E(s1(M)) 6

√
n+
√
m.

Remark 4.5.2 (Jargon). — The Marchenko-Pastur theorem 4.3.1 concerns the
global behavior of the spectrum using the counting probability measure: we say bulk
of the spectrum. The Bai-Yin theorem 4.5.1 concerns the boundary of the spectrum:
we say edge of the spectrum. When ρ = 1 then the left limit

√
a = 0 acts like a hard

wall forcing single sided fluctuations, and we speak about a hard edge. In contrast,
we have a soft edge at

√
b for any ρ and at

√
a for ρ 6= 1 in the sense that the

spectrum can fluctuate around the limit at both sides. The asymptotic fluctuation at
the edge depends on the nature of the edge: soft edges give rise to Tracy-Widom laws,
while hard edges give rise to (deformed) exponential laws (depending on K).

4.6. Notes and comments

The singular values of deterministic matrices are studied in the reference books
[HJ90, HJ94, Bha97, Zha02, BS10] for the static aspects, and [GVL96, CG05]
for the algorithmic aspects. The notion of pseudo-spectrum is studied in [TE05]. The
SVD is typically used for dimension reduction and for regularization. For instance, the
SVD allows to construct the so called Moore–Penrose pseudoinverse [Moo20, Pen56]
of a matrix by replacing the non null singular values by their inverse while leaving in
place the null singular values. Generalized inverses of integral operators were intro-
duced earlier by Fredholm in [Fre03]. Such generalized inverse of matrices provide for
instance least squares solutions to degenerate systems of linear equations. A diagonal
shift in the SVD is used in the so called Tikhonov regularization [Tik43, Tar05] or
ridge regression for solving over determined systems of linear equations. The SVD is
at the heart of the so called principal component analysis (PCA) technique in applied
statistics for multivariate data analysis [Jol02]. The partial least squares (PLS) re-
gression technique is also connected to PCA/SVD. In the last decade, the PCA was
used together with the so called kernel methods in learning theory. Generalizations
of the SVD are used for the regularization of ill posed inverse problems [BB98]. The
couple of lemmas connecting the rows distances of a matrix with the norm of its
inverse are taken from [RV08a] (operator norm) and [TV10] (trace norm).

The study of the singular values of random matrices takes its roots in the works
of Wishart [Wis28] on the empirical covariance matrices of Gaussian samples, and
in the works of von Neumann and Goldstine in numerical analysis [vNG47]. The
singular values of Gaussian random matrices were extensively studied and we refer
to [Jam60, DS01, ER05, HT03, For10]. Our presentation is inspired by [For10].
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For simplicity, we have skipped the link with Laguerre orthogonal polynomials, which
plays an important role in the asymptotic analysis of the extremal singular values.
The bidiagonalization of Gaussian random matrices is due to Silverstein [Sil85]. The
Marchenko-Pastur theorem goes back to Marchenko and Pastur [MP67]. The modern
universal version with minimal moments assumptions was obtained after a sequence
of works including [Gir75] and can be found in the books [PS11, BS10]. Most of
the proof given in this chapter is taken from [BS10]. The argument for the almost
sure convergence based on concentration for finite variation test functions is due to
Bordenave but can be found in [GL09]. The McDiarmid-Azuma-Hoeffding inequal-
ities are taken from [McD89]. An extension to random matrices with independent
row vectors or column vectors is given in [MP06] and [PP09]. In the Gaussian case,
the Marchenko-Pastur theorem can be proved using Laguerre orthogonal polynomials
with an approach due to Haagerup and Thorbjørnsen [HT03] developed in [Led04].

The Bai and Yin theorem was obtained after a series of works by Bai and Yin
[BY93], and is proved in great generality in [BS10]. The non-asymptotic analysis of
the singular values of random matrices is the subject of the recent survey [Ver11].





CHAPTER 5

EMPIRICAL METHODS AND SELECTION OF
CHARACTERS

The purpose of this chapter is to present the connections between two different
topics. The first one is the recent subject about reconstruction of signals with small
supports from a small amount of linear measurements, called also compressed sens-
ing. It has been presented in Chapter 2. A big amount of work was recently made
to develop some strategy to construct an encoder (to compress a signal) and an as-
sociate decoder (to reconstruct exactly or approximately the original signal). Several
deterministic methods are known but recently, some random methods allow the re-
construction of signal with much larger size of support. A lot of ideas are common
with a subject of harmonic analysis, going back to the construction of Λ(p) sets which
are not Λ(q) for q > p. The most powerful method was to select a random choice of
characters via the method of selectors. We will discuss about the problem of selecting
a large part of a bounded orthonormal system such that on the vectorial span of this
family, the L2 and the L1 norms are as close as possible. Solving this type of problems
leads to questions about the Euclidean radius of the intersection of the kernel of a
matrix with the unit ball of a normed space. That is exactly the subject of study of
Gelfand numbers and Kashin splitting theorem. In all this theory, empirical processes
are essential tools. Numerous results of this theory are at the heart of the proofs and
we will present some of them.

Notations. — We briefly indicate some notations that will be used in this section.
For any p ≥ 1 and t ∈ RN , we define its `p-norm by

|t|p =

(
N∑
i=1

|ti|p
)1/p

and its Lp-norm by

‖t‖p =

(
1

N

N∑
i=1

|ti|p
)1/p

.

For p ∈ (0, 1), the definition is still valid but it is not a norm. For p = ∞, |t|∞ =
‖t‖∞ = max{|ti| : i = 1, . . . , n}. We denote by BNp the unit ball of the `p-norm in
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RN . The radius of a set T ⊂ RN is

radT = sup
t∈T
|t|2.

More generally, if µ is a probability measure on a measurable space Ω, for any
p > 0 and any measurable function f , we denote its Lp-norm and its L∞-norm by

‖f‖p =

(∫
|f |pdµ

)1/p

and ‖f‖∞ = sup |f |.

The unit ball of Lp(µ) is denoted by Bp and the unit sphere by Sp. If T ⊂ L2(µ)
then its radius with respect to L2(µ) is defined by

RadT = sup
t∈T
‖t‖2.

Observe that if µ is the probability counting measure on RN , Bp = N1/pBNp and for

a subset T ⊂ L2(µ),
√
N RadT = radT.

The letters c, C are used for numerical constants which do not depend on any
parameter (dimension, size of sparsity, ...). Since the dependence of these parame-
ters is important in this study, it will be always indicated (as precisely as we can).
Sometimes, the value of these numerical constants can change from line to line.

5.1. Selection of characters and the reconstruction property.

Exact and approximate reconstruction.— We start by recalling briefly from
Chapter 2 the `1-minimization method to reconstruct any unknown sparse signal
from a small number of linear measurements. Let U ∈ RN (or CN ) be an unknown
signal. We receive ΦU where Φ is an n×N matrix with row vectors Y1, . . . , Yn ∈ RN
(or CN ) which means that

Φ =

 Y1

...
Yn

 and ΦU = (〈Yi, U〉)1≤i≤n

and we assume that n ≤ N − 1. In this case the linear system to reconstruct U is ill-
posed. However, the main information is that U has a small support in the canonical
basis chosen at the beginning, that is |suppU | ≤ m. We also say that U is m-sparse
and we denote by Σm the set of m-sparse vectors. Our aim is to find conditions on
Φ, m, n and N such that for every U ∈ Σm, the solution of the problem

min
t∈RN

{|t|1 : ΦU = Φt} (5.1)

is unique and equal to U . From Proposition 2.2.11, we know that the property “for
every signal U ∈ Σm, the solution of (5.1) is unique and equal to U” is equivalent to
the following

∀h ∈ ker Φ, h 6= 0,∀I ⊂ [N ], |I| ≤ m,
∑
i∈I
|hi| <

∑
i/∈I

|hi|.
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This property is also called the null space property. Let Cm be the cone

Cm = {h ∈ RN ,∃I ⊂ [N ] with |I| ≤ m, |hIc |1 ≤ |hI |1}.
The null space property is therefore equivalent to ker Φ ∩ Cm = {0}. Taking the
intersection with the Euclidean sphere SN−1, we can say that

“for every signal U ∈ Σm, the solution of (5.1) is unique and equal to U”
if and only if

ker Φ ∩ Cm ∩ SN−1 = ∅.

We observe the following simple fact: if t ∈ Cm ∩ SN−1 then

|t|1 =

N∑
i=1

|ti| =
∑
i∈I
|ti|+

∑
i/∈I

|ti| ≤ 2
∑
i∈I
|ti| ≤ 2

√
m

since |I| ≤ m and |t|2 = 1. This implies that

Cm ∩ SN−1 ⊂ 2
√
mBN1 ∩ SN−1

from which we conclude that if

ker Φ ∩ 2
√
mBN1 ∩ SN−1 = ∅

then “for every U ∈ Σm, the solution of (5.1) is unique and equal to U”. We can now
state the conclusion of this introduction, which is Proposition 2.4.4.

Proposition 5.1.1. — Denote by radT the radius of a set T with respect to the
Euclidean distance: radT = supt∈T |t|2. If

rad (ker Φ ∩BN1 ) < ρ with ρ ≤ 1

2
√
m

(5.2)

then “for every U ∈ Σm, the solution of the basis pursuit algorithm (5.1) is unique
and equal to U”.

It has also been noticed in Chapter 2 that it is very stable and allows approximate
reconstructions. Indeed by Proposition 2.7.3, if U ] is a solution of the minimization
problem (5.1)

min
t∈RN

{|t|1 : ΦU = Φt} .

and if for some integer m such that 1 ≤ m ≤ N , we have

rad (ker Φ ∩BN1 ) ≤ ρ < 1

2
√
m

then for any set I ⊂ {1, . . . , N} of cardinality less than m

|U ] − U |2 ≤ ρ |U ] − U |1 ≤
2ρ

1− 2ρ
√
m
|UIc |1.

In particular: if rad (ker Φ ∩ BN1 ) ≤ 1/4
√
m then for any subset I of cardinality less

than m,

|U ] − U |2 ≤
|U ] − U |1

4
√
m

≤ |UI
c |1√
m

.



116 CHAPTER 5. EMPIRICAL METHODS AND SELECTION OF CHARACTERS

Moreover if U ∈ BNp,∞ i.e. if for all s > 0, |{i, |Ui| ≥ s}| ≤ s−p then

|U ] − U |2 ≤
|U ] − U |1

4
√
m

≤ 1

(1− 1/p)m
1
p−

1
2

.

Another problem coming from Harmonic Analysis. — Let µ be a probability
measure and let (ψ1, . . . , ψN ) be an orthonormal system of L2(µ) bounded in L∞(µ)
i.e. such that for every i ≤ N , ‖ψi‖∞ ≤ 1. Typically, we consider a system of
characters in L2(µ). By the assumptions on {ψ1, . . . , ψN}, it is clear that for any
subset I ⊂ [N ]

∀ (ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

≤

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤
√
|I|

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

The Dvoretky’s theorem proved by Milman asserts that for any ε ∈ (0, 1), there exists
a subspace E ⊂ span{ψ1, . . . , ψN} of dimension dimE = n = c

(
ε2/ log(1 + 2/ε)

)
N

on which the L1 and L2 norms are comparable, that is such that

∀ (ai)
N
i=1 , if x =

N∑
i=1

aiψi ∈ E, then (1− ε) r ‖x‖1 ≤ ‖x‖2 ≤ (1 + ε) r ‖x‖1

where r is a number depending on the dimension N which can be bounded from
above and below by some numerical constants (independent of the dimension N).
Observe that E is a general subspace and the fact that x ∈ E does not say anything
about the number of non zero coordinates. Moreover the constant c which appears in
the dependance of dimE is very small hence this formulation of Dvoretzy’s theorem
does not provide a subspace of say half dimension such that the L1 norm and the L2

norm are comparable up to constant factors. This question was solved by Kashin. He
proved in fact a very strong result which is called now a Kashin decomposition: there

exists a subspace E of dimension [N/2] such that ∀ (ai)
N
i=1,

if x =

N∑
i=1

aiψi ∈ E then ‖x‖1 ≤ ‖x‖2 ≤ C ‖x‖1 ,

and if y =

N∑
i=1

aiψi ∈ E⊥ then ‖y‖1 ≤ ‖y‖2 ≤ C ‖y‖1

where C is a numerical constant. Again the subspaces E and E⊥ have not any
particular structure.

In the setting of Harmonic Analysis, the questions are more related with coordinate
subspaces because it request to find a subset I ⊂ {1, . . . , N} such that the L1 and
L2 norms are well comparable on span {ψi}i∈I . Talagrand, improving a result of
Bourgain, showed that there exists a small constant δ0 such that for any bounded
orthonormal system {ψ1, . . . , ψN}, there exists a subset I of cardinality greater than
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δ0N such that

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ C
√

logN (log logN)

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

. (5.3)

This is a Dvoretzky type theorem. We will present in section 5.5 an extension of
this result to a Kashin type setting. An important observation that relates this
study with Proposition 5.1.1 is the following. Let Ψ be the operator defined on
span {ψ1, . . . , ψN} ⊂ L2(µ) by Ψ(f) = (〈f, ψi〉)i∈I . Because of the orthogonality
condition between the ψi’s, the linear span of {ψi, i ∈ I} is nothing else than the kernel

of Ψ and the inequality (5.3) is equivalent to Rad (ker Ψ∩B1) ≤ C
√

logN (log logN)
where Rad is the Euclidean radius with respect to the norm on L2(µ) and B1 is the
unit ball of L1(µ). The question is reduced to finding the conditions between the size
of I, the dimension N and ρ1 such that Rad (ker Ψ ∩ B1) ≤ ρ1. This is analogous to
the condition (5.2) in Proposition 5.1.1. Just notice that in this situation, we have a
change of normalization because we work in a probability space L2(µ) instead of `N2 .

The strategy. — In conclusion of these two paragraphs, we say that we will focus
on the condition about the radius of the section of the unit ball of `N1 (or B1) with
the kernel of some matrices. As it has been noticed in Chapter 2, the RIP condition
implies a control of this radius. Moreover, the condition (5.2) was deeply studied in
the so called Local Theory of Banach Spaces during the seventies and the eighties
and is connected with the study of Gelfand widths. These notions are presented in
Chapter 2 and we recall that the strategy consists in studying the width of a truncated
set Tρ = T ∩ ρSN−1. Indeed by Proposition 2.7.7, Φ satisfies the condition (5.2) if ρ
is such that ker Φ ∩ Tρ = ∅. This is the purpose of the following proposition.

Proposition 5.1.2. — Let T be a star body with respect to the origin that is a com-
pact subset T of RN such that for any x ∈ T , the segment [0, x] is contained in T .
Let Φ be an n×N matrix with row vectors denoted by Y1, . . . , Yn.

If inf
y∈T∩ρSN−1

n∑
i=1

〈Yi, y〉2 > 0 then rad (ker Φ ∩ T ) < ρ.

Remark 5.1.3. — By a simple compacity argument, the reciprocal of this statement
holds true. We can also replace the Euclidean norm |Φz|2 by any other norm ‖Φz‖
since the hypothesis is just made to ensure that ker Φ ∩ T ∩ ρSN−1 = ∅.

Proof. — The argument is geometric. Indeed, if z ∈ T ∩ ρSN−1 then |Φz|22 > 0 so
z /∈ ker Φ. Since T is star shaped, if y ∈ T and |y|2 ≥ ρ then z = ρy/|y|2 ∈ T ∩ρSN−1

so z and y do not belong to ker Φ.

The vectors Y1, . . . , Yn will be chosen at random and we will find the good con-
ditions such that, in average, the key inequality of Proposition 5.1.2 holds true. An
important case is when the Yi’s are independent copies of a standard random Gaus-
sian vector in RN . It is exactly a way to prove Theorem 2.5.2 with Φ being this
standard random Gaussian matrix. However, in the context of Compressed Sensing
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or Harmonic Analysis, we are looking for more structured matrices, like Fourier or
Walsh matrices.

5.2. A way to construct a random data compression matrix

The setting of the study is the following. We start with a square N×N orthogonal
matrix and we would like to select n rows of this matrix such that the n×N matrix
Φ is a good encoder for every m-sparse vectors. In view of Proposition 5.1.1, we want
to find the conditions on n, N and m such that

rad (ker Φ ∩BN1 ) <
1

2
√
m
.

The main examples are the discrete Fourier matrix with

φk` =
1√
N

ωk` 1 ≤ k, ` ≤ N where ω = exp (−2iπ/N) ,

and the Walsh matrix defined by induction: W1 = 1 and for any p ≥ 2,

Wp =
1√
2

(
Wp−1 Wp−1

−Wp−1 Wp−1

)
.

The matrix Wp is an orthogonal matrix of size N = 2p with entries ±1√
N

. In each

case, the column vectors form an orthonormal basis of `N2 , with `N∞-norm bounded by

1/
√
N . We will consider more generally a system of vectors φ1, . . . , φN such that

(H)

{
it is an orthogonal system of `N2 ,

∀i ≤ N, |φi|∞ ≤ 1/
√
N and |φi|2 = K where K is a fixed number.

The empirical method. — The first definition of randomness is an empirical one.
Let Y be the random vector defined by Y = φi with probability 1/N and let Y1, . . . , Yn
be independent copies of Y . We define the random matrix Φ by

Φ =

 Y1

...
Yn

 .

We have the following properties:

E〈Y, y〉2 =
1

N

N∑
i=1

〈φi, y〉2 =
K2

N
|y|22 and E|Φy|22 =

K2 n

N
|y|22. (5.4)

In view of Proposition 5.1.2, we would like to find ρ such that

E inf
y∈T∩ρSN−1

n∑
i=1

〈Yi, y〉2 > 0.

However it is difficult to study the infimum of an empirical process. We shall prefer
to study

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣
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that is the supremum of the deviation of the empirical process to its mean (because
of (5.4)). We will focus our attention on the following problem.

Problem 5.2.1. — What are the conditions on ρ such that we have

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣ ≤ 2

3

K2 nρ2

N
?

Indeed if this inequality is satisfied then there exists a choice of vectors (Yi)1≤i≤n
such that

∀y ∈ T ∩ ρSN−1,

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2 nρ2

N

∣∣∣∣∣ ≤ 2

3

K2 nρ2

N
,

from which we deduce that

∀y ∈ T ∩ ρSN−1,

n∑
i=1

〈Yi, y〉2 ≥
1

3

K2 nρ2

N
> 0.

Therefore, by Proposition 5.1.2, we conclude that rad (ker Φ ∩ T ) < ρ. Doing this
with T = BN1 , we will conclude by Proposition 5.1.1 that if

m ≤ 1

4ρ2

then the matrix Φ is a good encoder, that is for every U ∈ Σm, the solution of the
basis pursuit algorithm (5.1) is unique and equal to U .

Remark 5.2.2. — The number 2/3 can be replaced by any number strictly less than
1.

The method of selectors. — The second definition of randomness uses the notion
of selectors. Let δ ∈ (0, 1) and let δi be i.i.d. random variables taking the value 1
with probability δ and 0 with probability 1− δ.

We start from the orthogonal matrix with rows φ1, . . . , φN and we select randomly
some rows to construct a matrix Φ with row vectors φi if δi = 1. The random variables
δ1, . . . , δN are called selectors and the number of rows of Φ, equal to |{i : δi = 1}, will
be highly concentrated around δN . The problem 5.2.1 can be stated in the following
way:

Problem 5.2.3. — What are the conditions on ρ such that we have

E sup
y∈T∩ρSN−1

∣∣∣∣∣
N∑
i=1

δi〈φi, y〉2 − δK2ρ2

∣∣∣∣∣ ≤ 2

3
δK2ρ2 ?

The same argument as before shows that if this inequality is satisfied for T = BN1 ,
then there exists a choice of selectors such that rad (ker Φ ∩ BN1 ) < ρ and we will
conclude as before that the matrix Φ is a good encoder.

Before we state and explain the main results, we will need some tools from the
theory of empirical processes to solve Problems 5.2.1 and 5.2.3. Another question
is to prove that the random matrix Φ will be a good decoder with high probability.
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We will also present some concentration inequalities of the supremum of empirical
processes around their mean that will enable us to get better deviation inequality
than the trivial Markov bound.

5.3. Empirical processes

Classical tools. — A lot is known about the supremum of empirical processes and
the connection with Rademacher averages. We refer to chapter 4 of [LT91] for a
detailed description. We recall the important comparison theorem for Rademacher
average.

Theorem 5.3.1. — Let F : R+ → R+ be an increasing convex function, let hi :
R → R be functions such that |hi(s) − hi(t)| ≤ |s − t| and hi(0) = 0. Then for any
separable bounded set T ⊂ Rn,

EF

(
1

2
sup
t∈T

∣∣∣∣∣
n∑
i=1

εihi(ti)

∣∣∣∣∣
)
≤ EF

(
sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣
)
.

The proof of this theorem is however beyond the scope of this chapter. We will
concentrate on the study of the average of the supremum of some empirical processes.
Consider n independent random vectors Y1, . . . , Yn taking values in a measurable
space Ω and F be a class of measurable functions, and define

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ .
The situation will be different from Chapter 1 because the control on the ψα norm of
f(Yi) will not be relevant in our situation. In this case, a classical strategy consists
to “symmetrize” the variable and to introduce Rademacher averages.

Theorem 5.3.2. — Consider n independent random vectors Y1, . . . , Yn taking val-
ues in a measurable space Ω, F be a class of measurable functions and ε1, . . . , εn be
independent Rademacher random variables, independent of the Yi’s. Denote by Eε the
expectation with respect to these Rademacher random variables. Then the following
inequalities hold true:

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ 2EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ , (5.5)

E sup
f∈F

n∑
i=1

|f(Yi)| ≤ sup
f∈F

n∑
i=1

E|f(Yi)|+ 4EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ . (5.6)

Moreover

EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εi(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ . (5.7)
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Proof. — Let Y ′1 , . . . , Y
′
n be independent copies of Y1, . . . , Yn. We replace Ef(Yi)

by E′f(Y ′i ) where E′ denotes the expectation with respect to the random vectors
Y ′1 , . . . , Y

′
n then by Jensen inequality,

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ EE′ sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− f(Y ′i ))

∣∣∣∣∣ .
The variables (f(Yi) − f(Y ′i ))1≤i≤n are independent symmetric hence (f(Yi) −
f(Y ′i ))1≤i≤n has the same law as (εi(f(Yi) − f(Y ′i )))1≤i≤n where ε1, . . . , εn are
independent Rademacher random variables. We deduce that

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)− Ef(Yi))

∣∣∣∣∣ ≤ EE′Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εi(f(Yi)− f(Y ′i ))

∣∣∣∣∣ .
We conclude the proof of (5.5) by using the triangle inequality.
Inequality (5.6) is a consequence of (5.5) when applying it to |f | instead of f , using
the triangle inequality and Theorem 5.3.1 (in the case F (x) = x and hi(x) = |x|) to
deduce that

Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εi|f(Yi)|

∣∣∣∣∣ ≤ 2Eε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ .
For the proof of (5.7), we can assume that Ef(Yi) = 0. We compute the expectation
conditionally with respect to the Bernoulli random variables. Let I = I(ε) = {i, εi =
1} then

EEε sup
f∈F

∣∣∣∣∣
n∑
i=1

εif(Yi)

∣∣∣∣∣ ≤ EεE sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi)−
∑
i/∈I

f(Yi)

∣∣∣∣∣
≤ EεE sup

f∈F

∣∣∣∣∣∑
i∈I

f(Yi)

∣∣∣∣∣+ EεE sup
f∈F

∣∣∣∣∣∑
i/∈I

f(Yi)

∣∣∣∣∣ .
However, since for every i ≤ n, Ef(Yi) = 0 we deduce from Jensen inequality that for
any I ⊂ {1, . . . , n}

E sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi)

∣∣∣∣∣ = E sup
f∈F

∣∣∣∣∣∑
i∈I

f(Yi) +
∑
i/∈I

Ef(Yi)

∣∣∣∣∣ ≤ E sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)

∣∣∣∣∣
which ends the proof of (5.7).

Another simple fact about Rademacher averages is the following comparison be-
tween the supremum of Rademacher processes and the supremum of the same Gaus-
sian processes.

Proposition 5.3.3. — Let ε1, . . . , εn be independent Bernoulli random variables and
g1, . . . , gn be independent Gaussian N (0, 1) random variables, then for any set T ⊂ Rn

E sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ ≤
√

2

π
E sup
t∈T

∣∣∣∣∣
n∑
i=1

giti

∣∣∣∣∣ .
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Proof. — Indeed, (g1, . . . , gn) has the same law as (ε1|g1|, . . . , εn|gn|) and by Jensen
inequality,

EεEg sup
t∈T

∣∣∣∣∣
n∑
i=1

εi|gi|ti

∣∣∣∣∣ ≥ Eε sup
t∈T

∣∣∣∣∣Eg
n∑
i=1

εi|gi|ti

∣∣∣∣∣ =

√
π

2
E sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ .

To conclude this part, we state an important result about the concentration of the
supremum of empirical processes around its mean. This motivates the fact that we
will focus on the estimation of the expectation of the supremum of such empirical
process.

Theorem 5.3.4. — Consider n independent random vectors Y1, . . . , Yn and G a class
of measurable functions. Let

Z = sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)

∣∣∣∣∣ , M = sup
g∈G
‖g‖∞, V = E sup

g∈G

n∑
i=1

g(Yi)
2.

Then for any t > 0, we have

P (|Z − EZ| > t) ≤ C exp

(
−c t

M
log

(
1 +

tM

V

))
.

Sometimes, we need a more simple quantity than V in this concentration inequality.
Let F be a class of measurable functions, and define the function g by g(Y ) = f(Y )−
Ef(Y ) for any f ∈ F . In this situation, we have a very useful estimate for V .

Proposition 5.3.5. — Consider n independent random vectors Y1, . . . , Yn and F a
class of measurable functions. Let

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣ , u = sup
f∈F
‖f‖∞, and

v = sup
f∈F

n∑
i=1

Varf(Yi) + 32uE sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣ .
Then for any t > 0, we have

P (|Z − EZ| > t) ≤ C exp

(
−c t

u
log

(
1 +

tu

v

))
.

Proof. — It is a typical use of the symmetrization principle. Let G be the set of
functions defined by g(Y ) = f(Y ) − Ef(Y ) where f ∈ F . Using Theorem 5.3.4, the
conclusion will follow when estimating

M = sup
g∈G
‖g‖∞ and V = E sup

g∈G

n∑
i=1

g(Yi)
2.
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It is clear that M ≤ 2u and by the triangle inequality we get

E sup
g∈G

n∑
i=1

g(Yi)
2 ≤ E sup

g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)
2 − Eg(Yi)

2

∣∣∣∣∣+ sup
g∈G

n∑
i=1

Eg(Yi)
2.

Using inequality (5.5), we deduce that

E sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)
2 − Eg(Yi)

2

∣∣∣∣∣ ≤ 2EEε sup
g∈G

∣∣∣∣∣
n∑
i=1

εig(Yi)
2

∣∣∣∣∣ = 2EEε sup
t∈T

∣∣∣∣∣
n∑
i=1

εit
2
i

∣∣∣∣∣
where T is the random set {t = (t1, . . . , tn) = (g(Y1), . . . , g(Yn)) : g ∈ G}. Since
T ⊂ [−2u, 2u]n, we deduce that the function h(x) = x2 is 4u-Lipschitz on T . By the
comparison Theorem 5.3.1, we get that

Eε sup
t∈T

∣∣∣∣∣
n∑
i=1

εit
2
i

∣∣∣∣∣ ≤ 8uEε sup
t∈T

∣∣∣∣∣
n∑
i=1

εiti

∣∣∣∣∣ .
Since for every i ≤ n, Eg(Yi) = 0, we deduce from (5.7) that

EEε sup
g∈G

∣∣∣∣∣
n∑
i=1

εig(Yi)
2

∣∣∣∣∣ ≤ 16uE sup
g∈G

∣∣∣∣∣
n∑
i=1

g(Yi)

∣∣∣∣∣ .
This allows to conclude that

V ≤ 32uE sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Yi)− Ef(Yi)

∣∣∣∣∣+ sup
f∈F

n∑
i=1

Varf(Yi).

This ends the proof of the proposition.

The study of the expectation of the supremum of some empirical processes.
— We go back to the study of Problem 5.2.1 with a definition of randomness given
by the empirical method. The situation is similar if we worked with the method
of selectors. For any star body T ⊂ RN , we define the class F of functions in the
following way:

F =

{
fy : RN → R

Y 7→ 〈Y, y〉 : y ∈ T ∩ ρSN−1

}
.

Therefore

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f2(Yi)− Ef2(Yi))

∣∣∣∣∣ = sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ .
Applying the symmetrization procedure to Z (cf (5.5)) and comparing Rademacher
and Gaussian processes, we conclude that

E sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ ≤ 2EEε sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣

≤
√

2πEEg sup
y∈T∩ρSN−1

∣∣∣∣∣
n∑
i=1

gi〈Yi, y〉2
∣∣∣∣∣ .
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We will first get a bound for the Rademacher average (or the Gaussian one) and
then we will take the expectation with respect to the Yi’s. Before working with these
difficult processes, we present a result of Rudelson where the supremum is taken on
the unit sphere SN−1.

Theorem 5.3.6. — For any fixed vectors Y1, . . . , Yn in RN ,

Eε sup
y∈SN−1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣ ≤ C

√
log n max

1≤i≤n
|Yi|2 sup

y∈SN−1

(
n∑
i=1

〈Yi, y〉2
)1/2

.

Proof. — For every i = 1, . . . , n, we define the self-adjoint rank 1 operators

Ti = Yi ⊗ Yi :

{
RN → RN
y 7→ 〈Yi, y〉Yi

in such a way that

sup
y∈SN−1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣ = sup

y∈SN−1

∣∣∣∣∣〈
n∑
i=1

εiTiy, y〉

∣∣∣∣∣ =

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
2→2

.

Let (λi)1≤i≤N be the eigenvalues of a self-adjoint operator S. By definition of the SNq
norms for any q > 0,

‖S‖2→2 = ‖S‖SN∞ = max
1≤i≤n

|λi| and ‖S‖SNq =

(
N∑
i=1

|λi|q
)1/q

.

Assume that the operator S has rank less than n then for i ≥ n + 1, λi = 0 and we
deduce by Hölder inequality that

‖S‖SN∞ ≤ ‖S‖SNq ≤ n
1/q‖S‖SN∞ ≤ e‖S‖SN∞ for q ≥ log n.

The non-commutative Khinchine inequality of Lust-Piquard and Pisier states that for
any operator T1, . . . , Tn,

Eε

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
SNq

≤ C
√
q max


∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNq

,

∥∥∥∥∥∥
(

n∑
i=1

TiT
∗
i

)1/2
∥∥∥∥∥∥
SNq

 .

In our situation, T ∗i Ti = TiT
∗
i = |Yi|22Ti and S = (

∑n
i=1 T

∗
i Ti)

1/2
has rank less than

n, hence for q = log n,∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNq

≤ e

∥∥∥∥∥∥
(

n∑
i=1

|Yi|22Ti

)1/2
∥∥∥∥∥∥
SN∞

≤ e max
1≤i≤n

|Yi|2

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
1/2

SN∞

.
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Combining all these inequalities, we conclude that for q = log n

Eε

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
SN∞

≤ C
√

log n

∥∥∥∥∥∥
(

n∑
i=1

T ∗i Ti

)1/2
∥∥∥∥∥∥
SNlogn

≤ C e
√

log n max
1≤i≤n

|Yi|2 sup
y∈SN−1

(
n∑
i=1

〈Yi, y〉2
)1/2

.

Remark 5.3.7. — Since the non-commutative Khinchine inequality holds true for
independent Gaussian standard random variables, this result is also valid for Gaussian
instead of Bernoulli.

The proof that we presented here is based on an expression related to some operator
norms and our original question can not be expressed with these tools. The original
proof of Rudelson used the majorizing measure theory. Several improvements are
known and the statements of these results need some definition from the theory of
Banach spaces.

Definition 5.3.8. — A Banach space B is of type 2 if there exists a constant c > 0
such that for every n and every x1, . . . , xn ∈ B,Eε

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
2
1/2

≤ c

(
n∑
i=1

‖xi‖2
)1/2

.

The smallest constant c > 0 satisfying this statement is called the type 2 constant of
B and is denoted by T2(B).

Classical examples are Hilbert spaces and Lq space for 2 ≤ q < +∞. From Theorem
1.2.1 in Chapter 1, we know also that Lψ2

has type 2.

Definition 5.3.9. — A Banach space B has modulus of convexity of power type 2
with constant λ if

∀x, y ∈ B,
∥∥∥∥x+ y

2

∥∥∥∥2

+ λ−2

∥∥∥∥x− y2

∥∥∥∥2

≤ 1

2

(
‖x‖2 + ‖y‖2

)
.

The modulus of convexity of a Banach space B is defined for every ε ∈ (0, 2] by

δB(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≤ ε
}
.

It is obvious that if B has modulus of convexity of power type 2 with constant λ
then δB(ε) ≥ ε2/2λ2 and it is well known that the reverse holds true (with a different
constant than 2). Moreover, for any 1 < p ≤ 2, the Clarkson inequality tells that for
any f, g ∈ Lp, ∥∥∥∥f + g

2

∥∥∥∥2

p

+
p(p− 1)

8

∥∥∥∥f − g2

∥∥∥∥2

p

≤ 1

2
(‖f‖2p + ‖g‖2p).
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This proves that for any p ∈ (1, 2], Lp has modulus of convexity of power type 2 with
λ = c

√
p− 1.

Definition 5.3.10. — A Banach space B has modulus of smoothness of power type
2 with constant µ if

∀x, y ∈ B,
∥∥∥∥x+ y

2

∥∥∥∥2

+ µ2

∥∥∥∥x− y2

∥∥∥∥2

≥ 1

2

(
‖x‖2 + ‖y‖2

)
.

The modulus of smoothness of a Banach space B is defined for every τ > 0 by

ρB(τ) = sup

{
‖x+ τy‖+ ‖x− τy‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.

It is clear that if B has modulus of smoothness of power type 2 with constant µ
then for every τ ∈ (0, 1), ρB(τ) ≤ 2τ2µ2 and it is well known that the reverse holds
true (with a different constant than 2).
More generally, a Banach space B is uniformly convex if for every ε > 0, δB(ε) > 0 and
is uniformly smooth if limτ→0 ρB(τ)/τ = 0. We have the following simple relationship
between these notions.

Proposition 5.3.11. — For every Banach space B, B? being its dual, we have
(i) For every τ > 0, ρB?(τ) = sup{τε/2− δB(ε), 0 < ε ≤ 2}.
(ii) B is uniformly convex if and only if B? is uniformly smooth.
(iii) For any Banach space B, if B has modulus of convexity of power type 2 with
constant λ then B? has modulus of smoothness of power type 2 with constant cλ and
T2(B?) ≤ cλ.

Proof. — The proof of (i) is straightforward, using the definition of duality. We have
for τ > 0,

2ρB?(τ) = sup{‖x? + τy?‖+ ‖x? − τy?‖ − 2 : ‖x?‖ = ‖y?‖ = 1}
= sup{x?(x) + τy?(x) + x?(y)− τy?(y)− 2 : ‖x?‖ = ‖y?‖ = ‖x‖ = ‖y‖ = 1}
= sup{x?(x+ y) + τy?(x− y)− 2 : ‖x?‖ = ‖y?‖ = ‖x‖ = ‖y‖ = 1}
= sup{‖x+ y‖+ τ‖x− y‖ − 2 : ‖x‖ = ‖y‖ = 1}
= sup{‖x+ y‖+ τε− 2 : ‖x‖ = ‖y‖ = 1, ‖x− y‖ ≤ ε, ε ∈ (0, 2]}
= sup{τε− 2δB(ε) : ε ∈ (0, 2]}.

The proof of (ii) follows directly from (i). We will just prove (iii). If B has modulus
of convexity of power type 2 with constant λ then δB(ε) ≥ ε2/2λ2. By (i) we deduce
that ρB?(τ) ≥ τ2λ2/4. It implies that for any x?, y? ∈ B?,∥∥∥∥x? + y?

2

∥∥∥∥2

?

+ (cλ)2

∥∥∥∥x? − y?2

∥∥∥∥2

?

≥ 1

2

(
‖x?‖2? + ‖y?‖2?

)
where c is a positive number. We deduce that for any u?, v? ∈ B?,

Eε‖εu? + v?‖2? =
1

2

(
‖u? + v?‖2? + ‖ − u? + v?‖2?

)
≤ ‖v?‖2? + (cλ)2‖u?‖2?.
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We conclude by induction that for any integer n and any vectors x?1, . . . , x
?
n ∈ B?,

Eε

∥∥∥∥∥
n∑
i=1

εix
?
i

∥∥∥∥∥
2

?

≤ (cλ)2

(
n∑
i=1

‖x?i ‖2?

)

which proves that T2(B?) ≤ cλ.

It is now possible to state the results about the estimate of the average of the
supremum of empirical processes.

Theorem 5.3.12. — If B is a Banach space with modulus of convexity of power type
2 with constant λ then for any integer n and ξ1, . . . ξn ∈ B?,

Eg sup
‖x‖≤1

∣∣∣∣∣
n∑
i=1

gi〈ξi, x〉2
∣∣∣∣∣ ≤ C λ5

√
log n max

1≤i≤n
‖ξi‖? sup

‖x‖≤1

(
n∑
i=1

〈ξi, x〉2
)1/2

where g1, . . . , gn are independent N (0, 1) Gaussian random variables and C is a nu-
merical constant.

Corollary 5.3.13. — Let B be a Banach space with modulus of convexity of power
type 2 with constant λ. Let Y1, . . . , Yn ∈ B? be independent random vectors and denote

K(n, Y ) = 2

√
2

π
Cλ5

√
log n

(
E max

1≤i≤n
‖Yi‖2?

)1/2

and σ2 = sup
‖y‖≤1

n∑
i=1

E〈Yi, y〉2

where C is the numerical constant of Theorem 5.3.12. Then we have

E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ ≤ K(n, Y )2 + K(n, Y )σ.

Proof. — Denote by V2 the expectation of the supremum of the empirical process,
that is

V2 = E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

(
〈Yi, y〉2 − E〈Yi, y〉2

)∣∣∣∣∣ .
We start with a symmetrization argument. By (5.5) and Proposition 5.3.3 we have

V2 ≤ 2 EEε sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

εi〈Yi, y〉2
∣∣∣∣∣ ≤ 2

√
2

π
EEg sup

‖y‖≤1

∣∣∣∣∣
n∑
i=1

gi〈Yi, y〉2
∣∣∣∣∣ .

In view of Theorem 5.3.12, we observe that the crucial quantity in the estimate is

sup‖x‖≤1

(∑n
i=1〈Yi, x〉2

)1/2
. Indeed, by the triangle inequality,

E sup
‖x‖≤1

n∑
i=1

〈Yi, x〉2 ≤ E sup
‖y‖≤1

∣∣∣∣∣
n∑
i=1

(
〈Yi, y〉2 − E〈Yi, y〉2

)∣∣∣∣∣+ sup
‖y‖≤1

n∑
i=1

E〈Yi, y〉2 = V2+σ2.
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Therefore, applying Theorem 5.3.12 and the Cauchy Schwarz inequality, we get

V2 ≤ 2

√
2

π
Cλ5

√
log nE

 max
1≤i≤n

‖Yi‖? sup
‖x‖≤1

(
n∑
i=1

〈Yi, x〉2
)1/2


≤ 2

√
2

π
Cλ5

√
log n

(
E max

1≤i≤n
‖Yi‖2?

)1/2
(
E sup
‖x‖≤1

n∑
i=1

〈Yi, x〉2
)1/2

≤ K(n, Y )
(
V2 + σ2

)1/2
.

We get that

V 2
2 −K(n, Y )2V2 −K(n, Y )2σ2 ≤ 0

from which it is easy to conclude that

V2 ≤ K(n, Y ) (K(n, Y ) + σ) .

The proof of Theorem 5.3.12 is slightly complicated. It involves a specific construc-
tion of majorizing measures and deep results about the duality of covering numbers
(it is where the notion of type is used). We will not present it. However, using simpler
ideas, we can also prove a general result where the assumption that B has a good
modulus of convexity is not needed.

Theorem 5.3.14. — Let B be a Banach space and Y1, . . . , Yn be independent ran-
dom vectors in B?. Let F be a set of functionals on B? with 0 ∈ F . Denote by d∞,n
the random quasi-metric on F defined for every f, f in F by

d∞,n(f, f) = max
1≤i≤n

∣∣f(Yi)− f(Yi)
∣∣ .

We have

E sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Yi)

2 − Ef(Yi)
2
)∣∣∣∣∣ ≤ max(σFUn, U

2
n)

where for a numerical constant C,

Un = C
(
Eγ2

2(F , d∞,n)
)1/2

and σF =

(
sup
f∈F

n∑
i=1

Ef(Yi)
2

)1/2

.

We refer to Definition 3.1.3 in Chapter 3 for the precise definition of γ2(F , d∞,n).

Proof. — As in the proof of Corollary 5.3.13, we need first to get a bound of

Eg sup
f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ .
Let (Xf )f∈F be the Gaussian process defined conditionally with respect to the Yi’s,
Xf =

∑n
i=1 gif(Yi)

2 and indexed by f ∈ F . The quasi-metric d associated to this
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process is given for any f, f ∈ F by

d(f, f)2 = Eg|Xf −Xf |
2 =

n∑
i=1

(
f(Yi)

2 − f(Yi)
2
)2

=

n∑
i=1

(
f(Yi)− f(Yi)

)2 (
f(Yi) + f(Yi)

)2
≤ 2

n∑
i=1

(
f(Yi)− f(Yi)

)2 (
f(Yi)

2 + f(Yi)
2
)

≤ 4 sup
f∈F

(
n∑
i=1

f(Yi)
2

)
max

1≤i≤n
(f(Yi)− f(Yi))

2.

In conclusion, we have proved that for any f, f ∈ F ,

d(f, f) ≤ 2 sup
f∈F

(
n∑
i=1

f(Yi)
2

)1/2

d∞,n(f, f).

By definition of the γ2 functionals, see Chapter 3, we conclude that for every vectors
Y1, . . . , Yn ∈ B?,

Eg sup
f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ ≤ C sup
f∈F

(
n∑
i=1

f(Yi)
2

)1/2

γ2(F , d∞,n)

where C is a universal constant. We repeat the proof of Corollary 5.3.13. Let

V2 = E sup
f∈F

∣∣∣∣∣
n∑
i=1

(
f(Yi)

2 − Ef(Yi)
2
)∣∣∣∣∣ .

By a symmetrization argument and the Cauchy-Schwarz inequality,

V2 ≤ 2

√
2

π
EEg sup

f∈F

∣∣∣∣∣
n∑
i=1

gif(Yi)
2

∣∣∣∣∣ ≤ C (Eγ2(F , d∞,n)2
)1/2(E sup

f∈F

n∑
i=1

f(Yi)
2

)1/2

≤ C
(
Eγ2(F , d∞,n)2

)1/2 (
V2 + σ2

F
)1/2

.

where the last inequality follows from the triangle inequality: E supf∈F
∑n
i=1 f(Yi)

2 ≤
(V2 +σ2

F )2. This shows that V2 satisfies an inequality of degree 2 from which it is easy
to conclude that

V2 ≤ max(σFUn, U
2
n), where Un = C

(
Eγ2(F , d∞,n)2

)1/2
.

5.4. Reconstruction property

We are now able to state one main theorem concerning the reconstruction property
of a random matrix defined by taking empirical copies of the rows of a fixed bounded
orthogonal matrix (or by selecting randomly its rows).
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Theorem 5.4.1. — Let φ1, . . . , φN be an orthogonal system in `N2 such that for a
real number K

∀i ≤ N, |φi|2 = K and |φi|∞ ≤
1√
N
.

Let Y be the random vector defined by Y = φi with probability 1/N and Y1, . . . , Yn be
independent copies of Y . If

m ≤ C1K
2 n

logN(log n)3

then with probability greater than

1− C2 exp(−C3K
2n/m)

the matrix Φ =

 Y1

...
Yn

 is a good reconstruction matrix for sparse signals of size

m, that is for every U ∈ Σm, the basis pursuit algorithm (5.1), min
t∈RN

{|t|1 : ΦU = Φt},
has a unique solution equal to U .

Remark 5.4.2. — (i) By definition of m, the probability of this event is always
greater than 1− C2 exp

(
−C3 logN(log n)3

)
.

(ii) The same result is valid when using the method of selectors.
(iii) As we already mentioned, this theorem covers the case of a lot of classical systems
like the Fourier system or the Walsh system.
(iv) The result is also valid if the orthogonal system φ1, . . . , φN satisfies the weaker
condition that for all i ≤ N , K1 ≤ |φi|2 ≤ K2 and in the statement, K has to be
replaced by K2

2/K1.

Proof. — Observe that E〈Y, y〉2 = K2 |y|22/N . We define the class of functions F in
the following way:

F =

{
fy : RN → R

Y 7→ 〈Y, y〉 , y ∈ BN1 ∩ ρSN−1

}
.

Therefore

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

(f(Yi)
2 − Ef(Yi)

2)

∣∣∣∣∣ = sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ .
With the notation of Theorem 5.3.14, we have

σ2
F = sup

y∈BN1 ∩ρSN−1

n∑
i=1

E〈Yi, y〉2 =
K2nρ2

N
. (5.8)

Moreover, since BN1 ∩ ρSN−1 ⊂ BN1 ,

γ2(BN1 ∩ ρSN−1, d∞,n) ≤ γ2(BN1 , d∞,n).
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It is well known that the γ2 functional is bounded by the Dudley integral (see (3.7)
in Chapter 3):

γ2(BN1 , d∞,n) ≤ C
∫ +∞

0

√
logN(BN1 , ε, d∞,n) dε.

However, for every i ≤ n, |Yi|∞ ≤ 1/
√
N and

sup
y,y∈BN1

d∞,n(y, y) = sup
y,y∈BN1

max
1≤i≤n

|〈Yi, y − y〉| ≤ 2 max
1≤i≤n

|Yi|∞ ≤
2√
N
.

The integral is only computed from 0 to 2/
√
N and by the change of variable t = ε

√
N ,

we deduce that∫ +∞

0

√
logN(BN1 , ε, d∞,n)dε =

1√
N

∫ 2

0

√
logN

(
BN1 ,

t√
N
, d∞,n

)
dt.

From Theorem 1.4.3, since for every i ≤ n, |Yi|∞ ≤ 1/
√
N , we have

√
logN

(
BN1 ,

t√
N
, d∞,n

)
≤


C

t

√
log n

√
logN ,

C

√
n log

(
1 +

3

t

) .

We split the integral into two parts, the one when t ≤ 1/
√
n and the one when

1/
√
n ≤ t ≤ 2.∫ 1/

√
n

0

√
n log

(
1 +

3

t

)
dt =

∫ 1

0

√
log

(
1 +

3
√
n

u

)
du

≤
∫ 1

0

√
log n+ log

(
3

u

)
du ≤ C

√
log n

and since ∫ 2

1/
√
n

1

t
dt ≤ C log n,

we conclude that

γ2(BN1 ∩ ρSN−1, d∞,n) ≤ γ2(BN1 , d∞,n) ≤ C
√

(log n)3 logN

N
. (5.9)

Combining this estimate and (5.8) with Theorem 5.3.14, we get that for a real number
C ≥ 1,

EZ ≤ C max

(
(log n)3 logN

N
, ρK

√
n

N

√
(log n)3 logN

N

)
.

We choose ρ such that

(log n)3 logN ≤ ρK
√
n (log n)3 logN ≤ 1

3C
K2 ρ2 n
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which means that ρ satisfies

K ρ ≥ 3C

√
(log n)3 logN

n
. (5.10)

For this choice of ρ, we conclude that

EZ = E sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ ≤ 1

3

K2nρ2

N
.

We use Proposition 5.3.5 to get a deviation inequality for the random variable Z.
With the notations of Proposition 5.3.5, we have

u = sup
y∈BN1 ∩ρSN−1

max
1≤i≤N

〈φi, y〉2 ≤ max
1≤i≤N

|φi|2∞ ≤
1

N

and

v = sup
y∈BN1 ∩ρSN−1

n∑
i=1

E
(
〈Yi, y〉2 − E〈Yi, y〉2

)2
+ 32uEZ

≤ sup
y∈BN1 ∩ρSN−1

n∑
i=1

E〈Yi, y〉4 +
CK2nρ2

N2
≤ CK2nρ2

N2

since for every y ∈ BN1 , E〈Y, y〉4 ≤ E〈Y, y〉2/N . Using Proposition 5.3.5 with t =
1
3
K2nρ2

N , we conclude that

P
(
Z ≥ 2

3

K2nρ2

N

)
≤ C exp(−cK2 nρ2).

With probability greater than 1− C exp(−cK2 nρ2), we get that

sup
y∈BN1 ∩ρSN−1

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
K2nρ2

N

∣∣∣∣∣ ≤ 2

3

K2nρ2

N

from which it is easy to deduce by Proposition 5.1.2 that

rad
(
ker Φ ∩BN1

)
< ρ.

We choose m = 1/4ρ2 and conclude by Proposition 5.1.1 that with probability greater
than 1− C exp(−cK2n/m), the matrix Φ is a good reconstruction matrix for sparse
signals of size m, that is for every U ∈ Σm, the basis pursuit algorithm (5.1) has
a unique solution equal to U . The condition on m in Theorem 5.4.1 comes from
(5.10).

Remark 5.4.3. — By Proposition 2.7.3, it is clear that the matrix Φ shares also the
property of approximate reconstruction. It is enough to change the choice of m by
m = 1/16ρ2. Therefore, if U is any unknown signal and x a solution of

min
t∈RN
{|t|1,ΦU = Φt}



5.5. RANDOM SELECTION OF CHARACTERS WITHIN A COORDINATE SUBSPACE 133

then for any subset I of cardinality less than m,

|x− U |2 ≤
|x− U |1

4
√
m
≤ |UI

c |1√
m

.

5.5. Random selection of characters within a coordinate subspace

In this part, we consider the problem presented in section 5.1. We briefly recall the
notations. Let µ be a probability measure and let (ψ1, . . . , ψN ) be an orthonormal
system of L2(µ) bounded in L∞ i.e. such that for every i ≤ N , ‖ψi‖∞ ≤ 1 (typically, a
system of characters in L2(µ) like the Fourier or the Walsh system). For a measurable
function f and for p > 0, we denote its Lp norm and its L∞ norm by

‖f‖p =

(∫
|f |pdµ

)1/p

and ‖f‖∞ = sup |f |.

In RN or CN , µ is just the counting probability measure so that the Lp-norm of a
vector x = (x1, . . . , xN ) is defined by

‖x‖p =

(
1

N

N∑
i=1

|xi|p
)1/p

.

The spaces `N∞ and LN∞ coincide and we observe that if (ψ1, . . . , ψN ) is a bounded

orthonormal system in LN2 then (ψ1/
√
N, . . . , ψN/

√
N) is an orthonormal system of

`N2 such that for every i ≤ N , |ψi/
√
N |∞ ≤ 1/

√
N . Therefore the setting is exactly

the same as in the previous part up to a normalization factor of
√
N .

Of course the notation of the radius of a set T will now be adapted to the L2(µ)
Euclidean structure. This means that for a set T , its radius is

RadT = sup
t∈T
‖t‖2.

For any q > 0, we denote by Bq the unit ball of Lq(µ) and by Sq the unit sphere of
Lq(µ). Our question is to find a very large subset I of {1, . . . , N} such that

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ ρ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

with the smallest possible ρ. We already said that Talagrand showed that there exists
a small constant δ0 such that for any bounded orthonormal system {ψ1, . . . , ψN}, there

exists a subset I of cardinality greater than δ0N such that ρ ≤ C
√

logN (log logN).
The proof involves the construction of specific majorizing measures. Moreover, it was
known from Bourgain that the

√
logN is necessary in the estimate. We will now

explain why the strategy that we developed in the previous part is adapted to this
type of question. For example, we will be able to extend the result of Talagrand to a
Kashin type setting, that is for example to find I of cardinality greater than N/2.

We start with the following simple Proposition concerning some properties of a
matrix that we will later define randomly as in Theorem 5.4.1.



134 CHAPTER 5. EMPIRICAL METHODS AND SELECTION OF CHARACTERS

Proposition 5.5.1. — Let µ be a probability measure and let (ψ1, . . . , ψN ) be an
orthonormal system of L2(µ). Let Y1, . . . , Yn be a family of vectors taking values from

the set of vectors {ψ1, . . . , ψN}. Let Ψ be the matrix Ψ =

 Y1

...
Yn

 . Then

(i) ker Ψ = span {{ψ1, . . . , ψN} \ {Yi}ni=1} = span {ψi}i∈I where I is a subset of
cardinality greater than N − n.
(ii) (ker Ψ)⊥ = span {ψi}i/∈I .
(iii) For a star body T , if

sup
y∈T∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ ≤ 1

3

nρ2

N
(5.11)

then Rad (ker Ψ ∩ T ) < ρ.
(iv) If n < 3N/4 and if (5.11) is satisfied then we also have Rad ((ker Ψ)⊥ ∩ T ) < ρ.

Proof. — Since {ψ1, . . . , ψN} is an orthonormal system, the parts (i) and (ii) are
obvious. For the proof of (iii), we first remark that if (5.11) holds true then we get
from the lower bound that for all y ∈ T ∩ ρS2,

n∑
i=1

〈Yi, y〉2 ≥
2

3

nρ2

N

and we deduce as in Proposition 5.1.2 that Rad (ker Ψ ∩ T ) < ρ.
For the proof of (iv), we deduce from the upper bound of (5.11) that for all y ∈ T∩ρS2,∑

i∈I
〈ψi, y〉2 =

N∑
i=1

〈ψi, y〉2 −
n∑
i=1

〈Yi, y〉2 = ‖y‖22 −
n∑
i=1

〈Yi, y〉2

≥ ρ2 − 4

3

nρ2

N
= ρ2

(
1− 4n

3N

)
> 0 since n < 3N/4.

This inequality means that for the matrix Ψ̃ defined by Ψ̃ =

 ·
ψi
·


i∈I

, for every

y ∈ T ∩ ρS2, we have

inf
y∈T∩ρS2

‖Ψ̃y‖22 > 0

and we conclude as in Proposition 5.1.2 that Rad (ker Ψ̃ ∩ T ) < ρ. Moreover, it is

obvious that ker Ψ̃ = (ker Ψ)⊥.

The case of LN2 . — We will now present a result concerning the problem of selection
of characters in LN2 . It is not the most general result but we would like to emphasize
the deep similarity between the proofs of this result and the proof of Theorem 5.4.1.

Theorem 5.5.2. — Let (ψ1, . . . , ψN ) be an orthonormal system of LN2 bounded in
LN∞ i.e. such that for every i ≤ N , ‖ψi‖∞ ≤ 1.
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For any 2 ≤ n ≤ N−1, there exists a subset I ⊂ [N ] of cardinality greater than N−n
such that for all (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

√
N

n

√
logN(log n)3/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

Proof. — Let Y be the random vector defined by Y = ψi with probability 1/N and
let Y1, . . . , Yn be independent copies of Y . Observe that E〈Y, y〉2 = ‖y‖22/N and define

Z = sup
y∈B1∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ .
Following the proof of Theorem 5.4.1 (the normalization is different from a factor√
N), we obtain that if ρ is such that

ρ ≥ C
√
N (log n)3 logN

n

then

P
(
Z ≥ 1

3

nρ2

N

)
≤ C exp

(
−c n ρ

2

N

)
.

Therefore there exists a choice of Y1, . . . , Yn (in fact it is with probability greater than

1− C exp(−c n ρ
2

N )) such that

sup
y∈B1∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣ ≤ 1

3

nρ2

N

and if I is defined by {ψi}i∈I = {ψ1, . . . , ψN}\{Y1, . . . , Yn} then by Proposition 5.5.1
(iii) and (i), we conclude that Rad (span {ψi}i∈I ∩ B1) ≤ ρ and |I| ≥ N − n. This
means that for every (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ ρ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

Remark 5.5.3. — Theorem 5.5.2 implies Theorem 5.4.1. Indeed, if we write the
inequality with the classical `N1 and `N2 norms, we get that∣∣∣∣∣∑

i∈I
aiψi

∣∣∣∣∣
2

≤ C
√

logN

n
(log n)3/2

∣∣∣∣∣∑
i∈I

aiψi

∣∣∣∣∣
1

which means that rad (ker Ψ ∩ BN1 ) ≤ C
√

logN
n (log n)3/2. We conclude about the

reconstruction property by using Proposition 5.1.1.
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The general case of L2(µ). — We can now state a general result about the problem
of selection of characters. It is an extension of (5.3) to the existence of a subset of
arbitrary size, with a slightly worse dependence in log logN .

Theorem 5.5.4. — Let µ be a probability measure and let (ψ1, . . . , ψN ) be an or-
thonormal system of L2(µ) bounded in L∞(µ) i.e. such that for every i ≤ N ,
‖ψi‖∞ ≤ 1.
For any n ≤ N − 1, there exists a subset I ⊂ [N ] of cardinality greater than N − n
such that for all (ai)i∈I ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C γ (log γ)5/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

where γ =
√

N
n

√
log n.

Remark 5.5.5. — (i) If n is chosen to be proportional to N then γ (log γ)5/2 is of
the order of

√
logN (log logN)5/2. However, if n is chosen to be a power of N then

γ (log γ)5/2 is of the order
√

N
n

√
log n(logN)5/2 which is a worse dependence than in

Theorem 5.5.2
(ii) Exactly as in Theorem 5.4.1 we could assume that (ψ1, . . . , ψN ) is an orthogonal
system of L2 such that for every i ≤ N , ‖ψi‖2 = K and ‖ψi‖∞ ≤ 1 for a fixed real
number K.

The second main result is an extension of (5.3) to a Kashin type decomposition.

Theorem 5.5.6. — With the same assumptions as in Theorem 5.5.4, if N is an
even natural integer, there exists a subset I ⊂ [N ] with N

2 − c
√
N ≤ |I| ≤ N

2 + c
√
N

such that for all (ai)
N
i=1∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C
√

logN (log logN)5/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

and ∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
2

≤ C
√

logN (log logN)5/2

∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
1

.

In order to be able to use Theorem 5.3.12 and its Corollary 5.3.13, we would like
to replace the unit ball B1 by a ball which has a good modulus of convexity that is
for example Bp for 1 < p ≤ 2. We start recalling a classical trick that is used very
often when we compare the Lr norms of a measurable functions (for example in the
theory of thin sets in Harmonic Analysis).

Lemma 5.5.7. — Let f be a measurable function with respect to the probability mea-
sure µ. For 1 < p < 2,

if ‖f‖2 ≤ A‖f‖p then ‖f‖2 ≤ A
p

2−p ‖f‖1.
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Proof. — This is just an application of Hölder inequality. Let θ ∈ (0, 1) such that
1/p = (1− θ) + θ/2 that is θ = 2(1− 1/p). By Hölder,

‖f‖p ≤ ‖f‖1−θ1 ‖f‖θ2.

Therefore if ‖f‖2 ≤ A‖f‖p we deduce that ‖f‖2 ≤ A
1

1−θ ‖f‖1.

Proposition 5.5.8. — With the same assumptions as in Theorem 5.5.4, the follow-
ing holds.

1) For any p ∈ (1, 2) and any 2 ≤ n ≤ N − 1 there exists a subset I ⊂ {1, . . . , N}
with |I| ≥ N − n such that for every a = (ai) ∈ CN ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

.

2) Moreover, if N is an even natural integer, there exists a subset I ⊂ {1, . . . , N}
with N/2− c

√
N ≤ |I| ≤ N/2 + c

√
N such that for every a = (ai) ∈ CN ,∥∥∥∥∥∑

i∈I
aiψi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

and ∥∥∥∥∥∑
i/∈I

aiϕi

∥∥∥∥∥
2

≤ C

(p− 1)5/2

√
N/n

√
log n

∥∥∥∥∥∑
i/∈I

aiψi

∥∥∥∥∥
p

.

Combining the first part of Proposition 5.5.8 with Lemma 5.5.7, it is easy to prove
Theorem 5.5.4. Indeed, let γ =

√
N/n

√
log n and choose p = 1 + 1/ log γ. Using

Proposition 5.5.8, there is a subset I of cardinality greater than N − n for which

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ Cp γ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

where Cp = C/(p− 1)5/2. By the choice of p and Lemma 5.5.7,∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ γ Cp/(2−p)p γ2(p−1)/(2−p)

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

≤ C γ (log γ)5/2

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
1

.

The same argument works for the Theorem 5.5.6 using the second part of Propo-
sition 5.5.8.

It remains to prove Proposition 5.5.8.

Proof. — Let Y be the random vector defined by Y = ψi with probability 1/N
and let Y1, . . . , Yn be independent copies of Y . Observe that for any y ∈ L2(µ),
E〈Y, y〉2 = ‖y‖22/N . Let E = span {ψ1, . . . , ψN} and for ρ > 0 let Ep be the vectorial
space E endowed with the norm defined by

‖y‖ =

(
‖y‖2p + ρ−2‖y‖22

2

)1/2

.
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We restrict our study to the vectorial space E and it is clear that

(Bp ∩ ρB2) ⊂ BEp ⊂
√

2(Bp ∩ ρB2) (5.12)

where BEp is the unit ball of Ep. Moreover, the Clarkson inequality tells that for any
f, g ∈ Lp, ∥∥∥∥f + g

2

∥∥∥∥2

p

+
p(p− 1)

8

∥∥∥∥f − g2

∥∥∥∥2

p

≤ 1

2
(‖f‖2p + ‖g‖2p).

It is therefore easy to deduce that Ep is a Banach space with modulus of convexity
of power type 2 with constant λ such that λ−2 = p(p− 1)/8.

We define the random variable

Z = sup
y∈Bp∩ρS2

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 −
nρ2

N

∣∣∣∣∣
and we deduce from (5.12) that

EZ ≤ E sup
y∈BEp

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ .

We use Corollary 5.3.13. We deduce from (5.12) that σ2 = supy∈BEp n‖y‖
2
2/N ≤

2nρ2/N and that for every i ≤ N , ‖ψi‖E?p ≤
√

2‖ψi‖∞ ≤
√

2. By Corollary 5.3.13,
we get

E sup
y∈BEp

∣∣∣∣∣
n∑
i=1

〈Yi, y〉2 − E〈Yi, y〉2
∣∣∣∣∣ ≤ C max

(
λ10 log n, ρλ5

√
n log n

N

)
.

We conclude that

if ρ ≥ Cλ5

√
N log n

n
then EZ ≤ 1

3

nρ2

N

and using Proposition 5.1.2 we get that

Rad (ker Ψ ∩Bp) < ρ

where Ψ =

 Y1

...
Yn

. We choose ρ = Cλ5
√

N logn
n and deduce from Proposition 5.5.1

(iii) and (i) that for I defined by {ψi}i∈I = {ψ1, . . . , ψN} \ {Y1, . . . , Yn} we have

∀(ai)i∈I ,

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
2

≤ ρ

∥∥∥∥∥∑
i∈I

aiψi

∥∥∥∥∥
p

.

This ends the proof of the first part of Proposition 5.5.8.
For the second part, we add the following observation. By a combinatorial argu-

ment, it is not difficult to prove that if n = [δN ] with δ = log 2 < 3/4 then with
probability greater than 3/4,

N/2− c
√
N ≤ |I| = N − |{Y1, . . . , Yn}| ≤ N/2 + c

√
N,
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for some absolute constant c > 0. Hence n < 3N/4 and we can also use part (iv) of
Proposition 5.5.1 which proves that

Rad (ker Ψ ∩Bp) ≤ ρ and Rad ((ker Ψ)⊥ ∩Bp) ≤ ρ.

Since ker Ψ = span {ψi}i∈I and (ker Ψ)⊥ = span {ψi}i/∈I , this ends the proof of the
Proposition.

5.6. Notes and comments

For the study of the supremum of an empirical process and the connection with
Rademacher averages, we already referred to chapter 4 of [LT91]. Theorem 5.3.1 is
due to Talagrand and can be found in theorem 4.12 in [LT91]. Theorem 5.3.2 is
often called a “symmetrization principle”. This strategy is already used by Kahane
in [Kah68] for studying random series on Banach spaces. It was pushed forward by
Giné and Zinn in [GZ84] for studying limit theorem for empirical processes. The
concentration inequality, Theorem 5.3.4, is due to Talagrand [Tal96b]. Several im-
provements and simplifications are known, in particular in the case of independent
identically distributed random variables. We refer to [Rio02, Bou03, Kle02, KR05]
for more precise results. The Proposition 5.3.5 is taken from [Mas00].

Theorem 5.3.6 is due to Rudelson [Rud99]. The proof that we presented was sug-
gested by Pisier to Rudelson. It used a refined version of non-commutative Khinchine
inequality that can be found in [LP86, LPP91, Pis98]. However, it is based on
an expression related to operator norms and we have seen that in other situations,
we need an estimate of the supremum of some empirical processes that can not be
expressed in terms of operator norms. The original proof of Rudelson can be found in
[Rud96] and used the majorizing measure theory. Some improvements of this result
are proved in [GR07] and in [GMPTJ08]. The proof of Theorem 5.3.12 can be
found in [GMPTJ08] and it is based on the same type of construction of majorizing
measures than in [GR07] and on deep results about the duality of covering numbers
[BPSTJ89]. The notions of type and cotype of a Banach space are important in
this study and we refer the interested reader to [Mau03]. The notions of modulus of
convexity and smoothness of a Banach space are classical and we refer the interested
reader to [LT79, Pis75].

Theorem 5.3.14 comes from [GMPTJ07]. It was used to prove some results about
the problem of selection of characters like Theorem 5.5.2. As we have seen, the proof
is very similar to the proof of Theorem 5.4.1 and this result is due to Rudelson and
Vershynin [RV08b]. They improved a result due to Candès and Tao [CT05] and
the strategy of their proofs was to study the RIP condition instead of the size of the
radius of sections of BN1 . Moreover, the probabilistic estimate is slightly better than
in [RV08b] and it was shown to us by Holger Rauhut [Rau10]. We refer to [Rau10,
FR10] for a deeper presentation of the problem of compressed sensing and for several
different points of view. We refer also to [KT07] where connections between the
Compressed Sensing problem and the problem of estimating the Kolmogorov widhts
are discussed and to [CDD09, KT07] for the study of approximate reconstruction.
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For the classical study of local theory of Banach spaces, we refer to [MS86] and
to [Pis89]. Euclidean sections or projections of a convex body are studied in detail
in [FLM77] and the Kashin decomposition can be found in [Kaš77]. About the
question of selection of characters, we refer the interested reader to the paper of
Bourgain [Bou89] where he proved for p > 2 the existence of Λ(p) sets which are
not Λ(r) for r > p. This problem was related to the theory of majorizing measure
in [Tal95]. The existence of a subset of a bounded orthonormal system satisfying
the inequality (5.3) is proved by Talagrand in [Tal98]. Theorems 5.5.4 and 5.5.6 are
taken from [GMPTJ08]. We refer also to that paper for a proof of the fact that the
factor

√
logN is necessary in the estimate.



NOTATIONS

– The sets of numbers are Q, R, C
– For all x ∈ RN and p > 0,

|x|p = (|x1|p + · · ·+ |xN |p)1/p and |x|∞ = max
16i6N

|xi|

– BNp = {x ∈ RN : |x|p ≤ 1}
– Scalar product 〈x, y〉 and x ⊥ y means x · y = 0
– A∗ = Ā> is the conjugate transpose of the matrix A
– s1(A) > · · · > sn(A) are the singular values of the n×N matrix A where n 6 N
– ‖A‖2→2 is the operator norm of A (`2 → `2)
– ‖A‖HS is the Hilbert-Schmidt norm of A
– e1, . . . , en is the canonical basis of Rn

–
d
= stands for the equality in distribution

–
d→ stands for the convergence in distribution

–
w→ stands for weak convergence of measures

– Mm,n(K) are the m× n matrices with entries in K, and Mn(K) =Mn,n(K)
– I is the identity matrix
– x ∧ y = min(x, y) and x ∨ y = max(x, y)
– |S| cardinal of the set S
– dist2(x,E) = infy∈E |x− y|2
– suppx is the subset of non-zero coordinate of x
– The vector x is said to be m-sparse if |suppx| ≤ m.
– Σm = Σm(RN ) m-sparse vectors
– Sp(Σm) = {x ∈ RN : |x|p = 1, |suppx| ≤ m}
– Bp(Σm) = {x ∈ RN : |x|p ≤ 1, |suppx| ≤ m}
– conv(E) is the convex hull of E
– diam(F, ‖·‖) = sup{‖x‖ : x ∈ F}
– For a random variable Z and any α > 1, ‖Z‖ψα = inf {s > 0 ; E exp (|Z|/s)α 6 e}
– `∗(T ) = E supt∈T |

∑N
i=1 giti|2
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[GMPTJ07] O. Guédon, S. Mendelson, A. Pajor & N. Tomczak-Jaegermann
– “Subspaces and orthogonal decompositions generated by bounded orthogonal sys-
tems”, Positivity 11 (2007), no. 2, p. 269–283.

[GMPTJ08] , “Majorizing measures and proportional subsets of bounded or-
thonormal systems”, Rev. Mat. Iberoam. 24 (2008), no. 3, p. 1075–1095.

[Gor85] Y. Gordon – “Some inequalities for Gaussian processes and applications”,
Israel J. Math. 50 (1985), no. 4, p. 265–289.

[Gor87] , “Elliptically contoured distributions”, Probab. Theory Related Fields
76 (1987), no. 4, p. 429–438.
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