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In memory of A. Ehrhard

The Gaussian isoperimetric inequality, and its related concentration phenomenon,
is one of the most important properties of Gaussian measures. These notes aim to
present, in a concise and selfcontained form, the fundamental results on Gaussian
processes and measures based on the isoperimetric tool. In particular, our expo-
sition will include, from this modern point of view, some of the by now classical
aspects such as integrability and tail behavior of Gaussian seminorms, large devi-
ations or regularity of Gaussian sample paths. We will also concentrate on some
of the more recent aspects of the theory which deal with small ball probabilities.
Actually, the Gaussian concentration inequality will be the opportunity to develop
some functional analytic ideas around the concentration of measure phenomenon.
In particular, we will see how simple semigroup tools and the geometry of abstract
Markov generator may be used to study concentration and isoperimetric inequalities.
We investigate in this context some of the deep connections between isoperimetric
inequalities and functional inequalities of Sobolev type. We also survey recent work
on concentration inequalities in product spaces. Actually, although the main theme
is Gaussian isoperimetry and analysis, many ideas and results have a much broader
range of applications. We will try to indicate some of the related fields of interest.

The Gaussian isoperimetric and concentration inequalities were developed most
vigorously in the study of the functional analytic aspects of probability theory (prob-
ability in Banach spaces and its relation to geometry and the local theory of Banach
spaces) through the contributions of A. Badrikian, C. Borell, S. Chevet, A. Ehrhard,
X. Fernique, H. J. Landau and L. A. Shepp, B. Maurey, V. D. Milman, G. Pisier,
V. N. Sudakov and B. S. Tsirel’son, M. Talagrand among others. In particular, the
new proof by V. D. Milman of Dvoretzky’s theorem on spherical sections of convex
bodies started the development of the concentration ideas and of their applications
in geometry and probability in Banach spaces. Actually, most of the tools and in-
spiration come from analysis rather than probability. From this analytical point of
view, emphasis is put on inequalities in finite dimension as well as on the fundamen-
tal Gaussian measurable structure consisting of the product measure on IRIN when
each coordinate is endowed with the standard Gaussian measure. It is no surprise
therefore that most of the results, developed in the seventies and eighties, often do
not seem familiar to true probabilists, and even analysts on Wiener spaces. The aim
of this course is to try to advertise these powerful and useful ideas to the probability
community although all the results presented here are known and already appeared
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elsewhere. In particular, M. Talagrand’s ideas and contributions, that strongly in-
fluenced the author’s comprehension of the subject, take an important part in this
exposition.

After a short introduction on isoperimetry, where we present the classical
isoperimetric inequality, the isoperimetric inequality on spheres and the Gaussian
isoperimetric inequality, our first task, in Chapter 2, will be to develop the concen-
tration of measure phenomenon from a functional analytic point of view based on
semigroup theory. In particular we show how the Gaussian concentration inequality
may easily be obtained from the commutation property of the Ornstein-Uhlenbeck
semigroup. In the last chapter, we further investigate the deep connections between
isoperimetric and functional inequalities (Sobolev inequalities, hypercontractivity,
heat kernel estimates...). We follow in this matter the ideas of N. Varopoulos in his
functional approach to isoperimetric inequalities and heat kernel bounds on groups
and manifolds. In Chapter 3, we will survey the remarkable recent isoperimetric
and concentration inequalities for product measures of M. Talagrand. This section
aims to demonstrate the power of abstract concentration arguments and induction
techniques in this setting. These deep ideas appear of potential use in a number
of problems in probability and applied probability. In Chapter 4, we present, from
the concentration viewpoint, the classical integrability properties and tail behaviors
of norms of Gaussian measures or random vectors as well as their large deviations.
We also show how the isoperimetric and concentration ideas allow a nontopological
approach to large deviations of Gaussian measures. The next chapter deals with the
corresponding questions for Wiener chaos as remarkably investigated by C. Borell in
the late seventies and early eighties. In Chapter 6, we provide a complete treatment
of regularity of Gaussian processes based on the results of R. M. Dudley, X. Fernique,
V. N. Sudakov and M. Talagrand. In particular, we present the recent short proof
of M. Talagrand, based on concentration, of the necessity of the majorizing measure
condition for bounded or continuous Gaussian processes. Chapter 7 is devoted to
some of the recent aspects of the study of Gaussian measures, namely small ball
probabilities. We also investigate in this chapter some correlation and conditional
inequalities for norms of Gaussian measures (which have been applied recently to
the support of a diffusion theorem and the Freidlin-Wentzell large deviation princi-
ple for stronger topologies on Wiener space). Finally, and as announced, we come
back in Chapter 8 to a semigroup approach of the Gaussian isoperimetric inequality
based on hypercontractivity. Most chapters are completed with short notes for fur-
ther reading. We also tried to appropriately complete the list of references although
we did not put emphasis on historical details and comments.

I sincerely thank the organizers of the École d’Été de St-Flour for their invita-
tion to present this course. My warmest thanks to Ph. Barbe, M. Capitaine, M. A.
Lifshits and W. Stolz for a careful reading of the early version of these notes and to
C. Borell and S. Kwapień for several helful comments and indications. Many thanks
to P. Baldi, S. Chevet, Ch. Léonard, A. Millet and J. Wellner for their comments, re-
marks and corrections during the school and to all the participants for their interest
in this course.

St-Flour, Toulouse 1994 Michel Ledoux
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1. SOME ISOPERIMETRIC INEQUALITIES

In this first chapter, we present the basic isoperimetric inequalities which form the
geometric background of this study. Although we will not directly be concerned
with true isoperimetric problems and description of extremal sets later on, these
inequalities are at the basis of the concentration inequalities of the next chapter
on which most results of these notes will be based. We introduce the isoperimetric
ideas with the classical isoperimetric inequality on IRn but the main result will
actually be the isoperimetric property on spheres and its limit version, the Gaussian
isoperimetric inequality. More on isoperimetry may be found e.g. in the book [B-Z]
as well as in the survey paper [Os] and the references therein.

The classical isoperimetric inequality in IRn (see e.g. [B-Z], [Ha], [Os]...), which
at least in dimension 2 and for convex sets may be considered as one of the oldest
mathematical statements (cf. [Os]), asserts that among all compact sets A in IRn

with smooth boundary ∂A and with fixed volume, Euclidean balls are the ones with
the minimal surface measure. In other words, whenever voln(A) = voln(B) where B
is a ball (and n > 1),

(1.1) voln−1(∂A) ≥ voln−1(∂B).

There is an equivalent, although less familiar, formulation of this result in terms
of isoperimetric neighborhoods or enlargements which in particular avoids surface
measures and boundary considerations; namely, if Ar denotes the (closed) Euclidean
neighborhood of A of order r ≥ 0, and if B is as before a ball with the same volume
as A, then, for every r ≥ 0,

(1.2) voln(Ar) ≥ voln(Br).

Note that Ar is simply the Minkowski sum A + B(0, r) of A and of the (closed)
Euclidean ball B(0, r) with center the origin and radius r. The equivalence between
(1.1) and (1.2) follows from the Minkowski content formula

voln−1(∂A) = lim inf
r→0

1

r

[
voln(Ar)− voln(A)

]
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(whenever the boundary ∂A of A is regular enough). Actually, if we take the latter
as the definition of voln−1(∂A), it is not too difficult to see that (1.1) and (1.2) are
equivalent for every Borel set A (see Chapter 8 for a related result). The simplest
proof of this isoperimetric inequality goes through the Brunn-Minkowski inequality
which states that if A and B are two compact sets in IRn, then

(1.3) voln(A+B)1/n ≥ voln(A)1/n + voln(B)1/n.

To deduce the isoperimetric inequality (1.2) from the Brunn-Minkowski inequality
(1.3), let r0 > 0 be such that voln(A) = voln(B(0, r0)). Then, by (1.3),

voln(Ar)
1/n = voln

(
A+ B(0, r)

)1/n ≥ voln(A)1/n + voln
(
B(0, r)

)1/n

= voln
(
B(0, r0)

)1/n
+ voln

(
B(0, r)

)1/n

= (r0 + r)voln
(
B(0, 1)

)1/n

= voln
(
B(0, r0 + r)

)1/n
= voln

(
B(0, r0)r

)1/n
.

As an illustration of the methods, let us briefly sketch the proof of the Brunn-
Minkowski inequality (1.3) following [Ha] (for an alternate simple proof, see [Pi3]).
By a simple approximation procedure, we may assume that each of A and B is a
union of finitely many disjoint sets, each of which is a product of intervals with
edges parallel to the coordinate axes. The proof is by induction on the total number
p of these rectangular boxes in A and B. If p = 2, that is if A and B are products
of intervals with sides of length (ai)1≤i≤n and (bi)1≤i≤n respectively, then

voln(A)1/n + voln(B)1/n

voln(A+ B)1/n
=

n∏

i=1

(
ai

ai + bi

)1/n

+

n∏

i=1

(
bi

ai + bi

)1/n

≤ 1

n

n∑

i=1

ai
ai + bi

+
1

n

n∑

i=1

bi
ai + bi

= 1

where we have used the inequality between geometric and arithmetic means. Now,
assume that A and B consist of a total of p > 2 products of intervals and that (1.3)
holds for all sets A′ and B′ which are composed of a total of at most p−1 rectangular
boxes. We may and do assume that the number of rectangular boxes in A is at least
2. Parallel shifts of A and B do not change the volume of A, B or A + B. Take
then a shift of A with the property that one of the coordinate hyperplanes divides
A in such a way that there is at least one rectangular box in A on each side of this
hyperplane. Therefore A is the union of A′ and A′′ where A′ and A′′ are disjoint
unions of a number of rectangular boxes strictly smaller than the number in A. Now
shift B parallel to the coordinate axes in such a manner that the same hyperplane
divides B into B′ and B′′ with

voln(B′)

voln(B)
=

voln(A
′)

voln(A)
= λ.
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Each of B′ and B′′ has at most the same number of products of intervals as B has.
Now, by the induction hypothesis,

voln(A+B)

≥ voln(A
′ +B′) + voln(A

′′ + B′′)

≥
[
voln(A′)1/n + voln(B

′)1/n
]n

+
[
voln(A

′′)1/n + voln(B
′′)1/n

]n

= λ
[
voln(A)1/n + voln(B)1/n

]n
+ (1− λ)

[
voln(A)1/n + voln(B)1/n

]n

=
[
voln(A)1/n + voln(B)1/n

]n

which is the result. Note that, by concavity, (1.3) implies (is actually equivalent to
the fact) that, for every λ in [0, 1],

voln
(
λA+ (1− λ)B

)
≥
[
λvoln(A)1/n+ (1−λ)voln(B)1/n

]n ≥ voln(A)λvoln(B)1−λ.

In the probabilistic applications, it is the isoperimetric inequality on spheres,
rather than the classical isoperimetric inequality, which is of fundamental impor-
tance. The use of the isoperimetric inequality on spheres in analysis and probability
goes back to the new proof, by V. D. Milman [Mi1], [Mi3], of the famous Dvoretzky
theorem on spherical sections of convex bodies [Dv]. Since then, it has been used
extensively in the local theory of Banach spaces (see [F-L-M], [Mi-S], [Pi3]...) and in
probability theory via its Gaussian version (see below). The purpose of this course
is actually to present a complete account on the Gaussian isoperimetric inequality
and its probabilistic applications. For the applications to Banach space theory, we
refer to [Mi-S], [Pi1], [Pi3].

Very much as (1.1), the isoperimetric inequality on spheres expresses that
among all subsets with fixed volume on a sphere, geodesic balls (caps) achieve
the minimal surface measure. This inequality has been established independently
by E. Schmidt [Sch] and P. Lévy [Lé] in the late forties (but apparently for sets
with smooth boundaries). Schmidt’s proof is based on the classical isoperimetric
rearrangement or symmetrization techniques due to J. Steiner (see [F-L-M] for a
complete proof along these lines, perhaps the first in this generality). A nice two-
point symmetrization technique may also be used (see [Be2]). Lévy’s argument,
which applies to more general types of surfaces, uses the modern tools of minimal
hypersurfaces and integral currents. His proof has been generalized to Riemannian
manifolds with positive Ricci curvature by M. Gromov [Gro], [Mi-S], [G-H-L]. Let
M be a compact connected Riemannian manifold of dimension N (≥ 2), and let
d be its Riemannian metric and µ its normalized Riemannian measure. Denote by
R(M) the infimum of the Ricci tensor Ric (·, ·) of M over all unit tangent vectors.
Recall that if SNρ is the sphere of radius ρ > 0 in IRN+1, R(SNρ ) = (N − 1)/ρ2 (see

[G-H-L]). We denote below by σNρ the normalized rotation invariant measure on SNρ .
If A is a subset of M , we let as before Ar = {x ∈M ; d(x,A) ≤ r}, r ≥ 0.

Theorem 1.1. Assume that R(M) = R > 0 and let SNρ be the manifold of constant

curvature equal to R (i.e. ρ is such that R(SNρ ) = (N − 1)/ρ2 = R). Let A be
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measurable inM and letB be a geodesic ball, or cap, of SNρ such that µ(A) ≥ σNρ (B).
Then, for every r ≥ 0,

(1.4) µ(Ar) ≥ σNρ (Br).

Theorem 1.1 of course applies to the sphere SNρ itself. Equality in (1.4) occurs
only if M is a sphere and A a cap on this sphere. Notice furthermore that Theo-
rem 1.1 applied to sets the diameter of which tends to zero contains the classical
isoperimetric inequality in Euclidean space. We refer to [Gro], [Mi-S] or [G-H-L] for
the proof of Theorem 1.1.

Theorem 1.1 is of particular interest in probability theory via its limit version
which gives rise to the Gaussian isoperimetric inequality, our tool of fundamental
importance in this course. The Gaussian isoperimetric inequality may indeed be
considered as the limit of the isoperimetric inequality on the spheres SNρ when the

dimension N and the radius ρ both tend to infinity in the geometric (R(SNρ ) =
(N − 1)/ρ2) and probabilistic ratio ρ2 = N . It has indeed been known for some
time that the measures σN√

N
on SN√

N
, projected on a fixed subspace IRn, converge

when N goes to infinity to the canonical Gaussian measure on IRn. To be more
precise, denote by ΠN+1,n, N ≥ n, the projection from IRN+1 onto IRn. Let γn be
the canonical Gaussian measure on IRn with density ϕn(x) = (2π)−n/2 exp(−|x|2/2)
with respect to Lebesgue measure (where |x| is the Euclidean norm of x ∈ IRn).

Lemma 1.2. For every Borel set A in IRn,

lim
N→∞

σN√
N

(
Π−1
N+1,n(A) ∩ SN√

N

)
= γn(A).

Lemma 1.2 is commonly known as Poincaré’s lemma [MK] although it does
not seem to be due to H. Poincaré (cf. [D-F]). The convergence is better than only
weak convergence of the sequence of measures ΠN+1,n(σ

N√
N

) to γn. Simple analytic

or probabilistic proofs of Lemma 1.2 may be found in the literature ([Eh1], [Gal],
[Fe5], [D-F]...). The following elegant proof was kindly communicated to us by J.
Rosiński.

Proof. Let (gi)i≥1 be a sequence of independent standard normal random variables.

For every integer N ≥ 1, set R2
N = g2

1 + · · ·+ g2
N . Now, (

√
N/RN+1) · (g1, . . . , gN+1)

is equal in distribution to σN√
N

, and thus (
√
N/RN+1) · (g1, . . . , gn) is equal in

distribution to ΠN+1,n(σ
N√
N

) (N ≥ n). Since R2
N/N → 1 almost surely by the

strong law of large numbers, we already get the weak convergence result. Lemma
1.2 is however stronger since convergence is claimed for every Borel set. In order
to get the full conclusion, notice that R2

n, R
2
N+1 − R2

n and (g1, . . . , gn)/Rn are
independent. Therefore R2

n/R
2
N+1 is independent of (g1, . . . , gn)/Rn and has beta

distribution β with parameters n/2, (N + 1− n)/2. Now,

σN√
N

(
Π−1
N+1,n(A) ∩ SN√

N

)
= IP

{ √
N

RN+1
(g1, . . . , gn) ∈ A

}

= IP
{(
N

R2
n

R2
N+1

)1/2

· 1

Rn
(g1, . . . , gn) ∈ A

}
.



10

Therefore,

σN√
N

(
Π−1
N+1,n(A) ∩ SN√

N

)

= β
(
n
2
, N+1−n

2

)−1
∫

Sn−1
1

∫ 1

0

IA
(√
Ntx

)
t

n
2−1(1− t)

N+1−n
2 −1dσn−1

1 (x)dt

= β
(
n
2
, N+1−n

2

)−1 2

Nn/2

∫

Sn−1
1

∫ √
N

0

IA(ux)un−1
(
1− u2

N

)N+1−n
2 −1

dσn−1
1 (x)du

by the change of variables u =
√
Nt. Letting N →∞, the last integral converges by

the dominated convergence theorem to

2

2n/2Γ(n/2)

∫

Sn−1
1

∫ ∞

0

IA(ux)un−1e−u
2/2dσn−1

1 (x)du

which is precisely γn(A) in polar coordinates. The proof of Lemma 1.2 is thus com-
plete. This proof is easily modified to actually yield uniform convergence of densities
on compacts sets ([Eh1], [Gal], [Fe5]) and in the variation metric [D-F].

As we have seen, caps are the extremal sets of the isoperimetric problem on
spheres. Now, a cap may be regarded as the intersection of a sphere and a half-space,
and, by Poincaré’s limit, caps will thus converge to half-spaces. There are therefore
strong indications that half-spaces will be the extremal sets of the isoperimetric
problem for Gaussian measures. A half-space H in IRn is defined as

H = {x ∈ IRn; 〈x, u〉 ≤ a}

for some real number a and some unit vector u in IRn. The isoperimetric inequality
for the canonical Gaussian measure γn in IRn may then be stated as follows. If A is
a set in IRn, Ar denotes below its Euclidean neighborhood of order r ≥ 0.

Theorem 1.3. Let A be a Borel set in IRn and let H be a half-space such that
γn(A) ≥ γn(H). Then, for every r ≥ 0,

γn(Ar) ≥ γn(Hr).

Since γn is both rotation invariant and a product measure, the measure of a
half-space is actually computed in dimension one. Denote by Φ the distribution
function of γ1, that is

Φ(t) =

∫ t

−∞
e−x

2/2 dx√
2π
, t ∈ IR.

Then, if H = {x ∈ IRn; 〈x, u〉 ≤ a}, γn(H) = Φ(a), and Theorem 1.3 expresses
equivalently that when γn(A) ≥ Φ(a), then

(1.5) γn(Ar) ≥ Φ(a+ r)
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for every r ≥ 0. In other words, if Φ−1 is the inverse function of Φ, for every Borel
set A in IRn and every r ≥ 0,

(1.6) Φ−1
(
γn(Ar)

)
≥ Φ−1

(
γn(A)

)
+ r.

The Gaussian isoperimetric inequality is thus essentially dimension free, a charac-
teristic feature of the Gaussian setting.

Proof of Theorem 1.3. We prove (1.5) and use the isoperimetric inequality on spheres
(Theorem 1.1) and Lemma 1.2. We may assume that a = Φ−1(γn(A)) > −∞. Let
then b ∈ (−∞, a). Since γn(A) > Φ(b) = γ1((−∞, b]), by Lemma 1.2, for every N
(≥ n) large enough,

(1.7) σN√
N

(
Π−1
N+1,n(A) ∩ SN√

N

)
> σN√

N

(
Π−1
N+1,1(]−∞, b]) ∩ SN√

N

)
.

It is easy to see that Π−1
N+1,n(Ar) ∩ SN√N ⊃

(
Π−1
N+1,n(A) ∩ SN√

N

)
r

where the neigh-

borhood of order r on the right hand side is understood with respect to the geodesic
distance on SN√

N
. Since Π−1

N+1,1((−∞, b]) ∩ SN√
N

is a cap on SN√
N

, by (1.7) and the

isoperimetric inequality on spheres (Theorem 1.1),

σN√
N

(
Π−1
N+1,n(Ar) ∩ SN√N

)
≥ σN√

N

((
Π−1
N+1,n(A) ∩ SN√

N

)
r

)

≥ σN√
N

((
Π−1
N+1,1((−∞, b]) ∩ SN√

N

)
r

)
.

Now,
(
Π−1
N+1,1((−∞, b]) ∩ SN√

N

)
r

= Π−1
N+1,1((−∞, b + r(N)]) ∩ SN√

N
where (for N

large)

r(N) =
√
N cos

[
arccos

(
b/
√
N
)
− r/

√
N
]
− b.

Since lim r(N) = r, by Lemma 1.2 again, γn(Ar) ≥ Φ(b+r). Since b < a is arbitrary,
the conclusion follows.

Theorem 1.3 is due independently to C. Borell [Bo2] and to V. N. Sudakov
and B. S. Tsirel’son [S-T] with the same proof based on the isoperimetric inequality
on spheres and Poincaré’s limit. A. Ehrhard [Eh2] (see also [Eh3], [Eh5]) gave a
different proof using an intrinsic Gaussian symmetrization procedure similar to the
Steiner symmetrization used by E. Schmidt in his proof of Theorem 1.1. In any case,
Ehrhard’s proof or the proof of isoperimetry on spheres are rather delicate, as it is
usually the case with isoperimetric inequalities and the description of their extremal
sets.

With this same Gaussian symmetrization tool, A. Ehrhard [Eh2] established
furthermore a Brunn-Minkowski type inequality for γn, however only for convex
sets. More precisely, he showed that whenever A and B are convex sets in IRn, for
every λ ∈ [0, 1],

(1.8) Φ−1
(
γn
(
λA+ (1− λ)B

))
≥ λΦ−1

(
γn(A)

)
+ (1− λ)Φ−1

(
γn(B)

)
.

It might be worthwhile noting that if we apply this inequality to B the Euclidean
ball with center the origin and radius r/(1 − λ) and let λ tend to one, we recover
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inequality (1.6) (for A convex). However, it is still an open problem to know whether
(1.8) holds true for every Borel sets A and B and not only convex sets*. It would
improve upon the more classical logconcavity of Gaussian measures (cf. [Bo1]) that
states that, for every Borel sets A and B, and every λ ∈ [0, 1],

(1.9) γn
(
λA+ (1− λ)B

)
≥ γn(A)λγn(B)1−λ.

As another inequality of interest, let us note that if A is a Borel set with
γn(A) = Φ(a), and if h ∈ IRn,

(1.10) γn(A+ h) ≤ Φ
(
a+ |h|

)
.

By rotational invariance, we may assume that h = re1, r = |h|, where e1 is the first
unit vector on IRn, changing A into some new set A′ with γn(A) = γn(A

′) = Φ(a).
Then, by the translation formula for γn,

er
2/2γn(A

′ + h) =

∫

A′
e−rx1dγn(x)

≤
∫

A′∩{x1≤a}
e−rx1dγn(x) + e−raγn

(
A′ ∩ {x1 > a}

)
.

Since γn(A
′ ∩ {x1 > a}) = γn((A

′)c ∩ {x1 ≤ a}) where (A′)c is the complement of
A′,

er
2/2γn(A

′ + h) ≤
∫

A′∩{x1≤a}
e−rx1dγn(x) + e−raγn

(
(A′)c ∩ {x1 ≤ a}

)

≤
∫

{x1≤a}
e−rx1dγn(x)

= er
2/2γn(x;x1 ≤ a+ r) = er

2/2Φ(a+ r).

The claim (1.10) follows.

Notes for further reading. Very recently, S. Bobkov [Bob2] gave a remarkable new
simple proof of the isoperimetric inequality for Gaussian measures based on a sharp
two point isoperimetric inequality (inspired by [Ta11]) and the central limit theorem.
This proof is similar in nature to Gross’ original proof [Gr3] of the logarithmic
Sobolev inequality for Gaussian measures and does not use any kind of isoperimetric
symmetrization or rearrangement (cf. also Chapter 8). In addition to the preceding
open problem (1.8), the following conjecture is still open. Is it true that for every
symmetric closed convex set A in IRn,

(1.11) γn(λA) ≥ γn(λS)

* During the school, R. Lata la [La] proved that (1.8) holds when only one of the two sets A
and B is convex. Thus, due to the preceding comment, the Brunn-Minkowski principle generalizes

to the Gaussian setting.
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for each λ > 1, where S is a symmetric strip such that γn(A) = γn(S)? This con-
jecture has been known since an unpublished preprint by L. Shepp on the existence
of strong exponential moments of Gaussian measures (cf. Chapter 4 and [L-S]). Re-
cent work of S. Kwapień and J. Sawa [K-S] shows that the conjecture is true under
the additional assumption that A is sufficiently symmetric (A is an ellipsoid for
example). Examples of isoperimetric processes in probability theory are presented
in [Bo11], [Bo12].
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2. THE CONCENTRATION OF MEASURE PHENOMENON

In this section, we present the concentration of measure phenomenon which was
most vigourously put forward by V. D. Milman in the local theory of Banach spaces
(cf. [Mi2], [Mi3], [Mi-S]). Isoperimetry is concerned with infinitesimal neighborhoods
and surface areas and with extremal sets. The concentration of measure phenomenon
rather concerns the behavior of “large” isoperimetric neighborhoods. Although of
basic isoperimetric inspiration, the concentration of measure phenomenon is a milder
property that may be shown, as we will see, to be satisfied in a large number of
settings, sometimes rather far from the geometrical frame of isoperimetry. It roughly
states that if a set A ⊂ X has measure at least one half, “most” of the points in
X are “close” to A. The main task is to make precise the meaning of the words
“most” and “close” in the examples of interest. Moreover, new tools may be used
to establish concentration inequalities. In particular, we will present in this chapter
simple semigroup and probabilistic proofs of both the concentration inequalities on
spheres and in Gauss space. In chapter 8, we further develop the functional approach
and try to reach with these tools the full isoperimetric statements.

As we mentioned it at the end of the preceding chapter, isoperimetric inequali-
ties and description of their extremal sets are often rather delicate, if not unknown.
However, in almost all the applications presented here, the Gaussian isoperimetric
inequality is only used in the form of the corresponding concentration inequality.
Since the latter will be established here in an elementary way, it can be freely used
in the applications.

In the setting of Theorem 1.1, if A is a set on M with sufficiently large measure,
for example if µ(A) ≥ 1

2 , then, by the explicit expression of the measure of a cap,
we get that, for every r ≥ 0

(2.1) µ(Ar) ≥ 1− exp

(
−R r2

2

)
,

that is a Gaussian bound, only depending on R, on the complement of the neigh-
borhood of order r of A, uniformly in those A’s such that µ(A) ≥ 1

2 . More precisely,

if µ(A) ≥ 1
2 , for “most” x’s in M , there exists y in A within distance 1/

√
R of x. Of
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course, the ratio 1/
√
R is in general much smaller than the diameter of the manifold

(see below the example of SN1 ). Equivalently, let f be a Lipschitz map on M and
let m be a median of f for µ (i.e. µ(f ≥ m) ≥ 1

2
and µ(f ≤ m) ≥ 1

2
). If we apply

(2.1) to the set A = {f ≤ m}, it easily follows that, for every r ≥ 0,

µ(f ≥ m+ r) ≤ exp

(
− Rr2

2‖f‖2Lip

)
.

Together with the corresponding inequality for A = {f ≥ m}, for every r ≥ 0,

(2.2) µ
(
|f −m| ≥ r

)
≤ 2 exp

(
− Rr2

2‖f‖2Lip

)
.

Thus, f is concentrated around some mean value with a large probability depending
on some exponential of the ratio R/‖f‖2

Lip. This property has taken the name of
concentration of measure phenomenon (cf. [G-M], [Mi-S]).

The preceding bounds are of particular interest for families of probability mea-
sures such as for example the measures σN1 on the unit spheres SN1 as N tends to
infinity for which (2.2) becomes (since R(SN1 ) = N − 1),

σN1
(
|f −m| ≥ r

)
≤ 2 exp

(
− (N − 1)r2

2‖f‖2Lip

)
.

Think thus of the dimension N to be large. Of course, if ‖f‖Lip ≤ 1, for every x, y

in SN1 , |f(x)− f(y)| ≤ π. But the preceding concentration inequality tells us that,
already for r of the order of 1/

√
N , |f(x) − m| ≤ r on a large set (in the sense

of the measure) of x’s. It is then from the interplay, in this inequality, between
N large, r of the order of 1/

√
N and the respective values of m and ‖f‖Lip for f

the gauge of a convex body that V. D. Milman draws the information in order to
choose at random the Euclidean sections of the convex body and to prove in this
way Dvoretzky’s theorem (see [Mi1], [Mi3], [Mi-S]).

Another (this time noncompact) concentration example is of course the Gaus-
sian measure γn on IRn (the canonical Gaussian measure on IRn with density with
respect to Lebesgue measure (2π)−n/2 exp(−|x|2/2)). If γn(A) ≥ 1

2
, we may take

a = 0 in (1.5) and thus, for every r ≥ 0,

(2.3) γn(Ar) ≥ Φ(r) ≥ 1− 1

2
e−r

2/2.

Let f be a Lipschitz function on IRn with Lipschitz (semi-) norm

‖f‖Lip = sup
x6=y

|f(x)− f(y)|
|x− y|

(where | · | is the Euclidean norm on IRn) and let m be a median of f for γn. As
efore, it follows from (2.3) that for every r ≥ 0,

(2.4) γn
(
|f −m| ≥ r

)
≤ 2
(
1− Φ

(
r/‖f‖Lip

))
≤ exp

(
− r2

2‖f‖2Lip

)
.
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Thus, for r of the order of ‖f‖Lip, |f −m| ≤ r on “most” of the space. The word
“most” is described here by a Gaussian bound.

Isoperimetric and concentration inequalities involve both a measure and a met-
ric structure (to define the isoperimetric neighborhoods or enlargements). On an
abstract (Polish) metric space (X, d) equipped with a probability measure µ, or a
family of probability measures, the concentration of measure phenomenon may be
described via the concentration function

α(r) = α
(
(X, d;µ); r

)
= sup

{
1− µ(Ar); A ⊂ X,µ(A) ≥ 1

2

}
, r ≥ 0.

It is a remarkable property that this concentration function may be controlled in a
rather large number of cases, and very often by a Gaussian decay as above. Isoperi-
metric tools are one of the most important and powerful arguments used to establish
concentration inequalities. However, since we are concerned here with enlargements
Ar for (relatively) large values of r rather than infinitesimal values, the study of
the concentration phenomenon can be quite different from the study of isoperimet-
ric inequalities, both in establishing new concentration inequalities and in applying
them. Indeed, the framework of concentration inequalities is less restrictive than the
isoperimetric setting as we will see for example in the next chapter, due mainly to
the fact that we are not looking here for the extremal sets.

New tools to establish concentration inequalities were thus developed. For exam-
ple, M. Gromov and V. D. Milman [G-M] showed that if X is a compact Riemannian
manifold, for every r ≥ 0,

α(r) ≤ C exp
(
−c
√
λ1 r

)

(with C = 3
4

and c = log( 3
2
)) where λ1 is the first nontrivial eigenvalue of the

Laplacian on X (see also [A-M-S] for a similar result in an abstract setting). In case
R(X) > 0, this is however weaker than (2.1). They also developed in this paper [G-
M] several topological applications of concentration such as fixed point theorems. On
the probabilistic side, some martingale inequalities put forward by B. Maurey [Ma1]
have been used in the local theory of Banach spaces in extensions of Dvoretzky’s
theorem (cf. [Ma2], [Mi-S], [Pi1]). The main idea consists in writing, for a well-
behaved function f , the difference f − IE(f) as a sum of martingale differences
di = IE(f |Fi) − IE(f |Fi−1) where (Fi)i is some (finite) filtration. The classical
arguments on sums of independent random variables then show in the same way
that if

∑
i ‖di‖2∞ ≤ 1, for every r ≥ 0,

(2.5) IP
{
|f − IE(f)| ≥ r

}
≤ 2e−r

2/2

([Azu], [Ma1]). As a corollary, one can deduce from this result the concentration of
Haar measure µ on {0, 1}n equipped with the Hamming metric as

α(r) ≤ C exp

(
− r2

Cn

)

for some numerical constant C > 0. This property may be established from the
corresponding isoperimetric inequality ([Har], [W-W]), but V. D. Milman et G.
Schechtman [Mi-S] deduce it from inequality (2.5) (see Chapter 3).
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Our first aim here will be to give a simple proof of the concentration inequality
(2.4). The proof is based on the Hermite or Ornstein-Uhlenbeck semigroup (Pt)t≥0

defined, for every well-behaved function f on IRn, by (Mehler’s formula)

Ptf(x) =

∫

IRn

f
(
e−tx+ (1− e−2t)1/2y

)
dγn(y), x ∈ IRn, t ≥ 0,

and more precisely on its commutation property

(2.6) ∇Ptf = e−tPt(∇f).

The generator L of (Pt)t≥0 is given by Lf(x) = ∆f(x) − 〈x,∇f(x)〉, f smooth
enough on IRn, and we have the integration by parts formula

∫
f(−Lg)dγn =

∫
〈∇f,∇g〉dγn

for all smooth functions f and g on IRn.

Proposition 2.1. Let f be a Lipschitz function on IRn with ‖f‖Lip ≤ 1 and∫
fdγn = 0. Then, for every real number λ,

(2.7)

∫
eλfdγn ≤ eλ

2/2.

Before turning to the proof of this proposition, let us briefly indicate how to
deduce a concentration inequality from (2.7). Let f be any Lipschitz function on
IRn. As a consequence of (2.7), for every real number λ,

∫
exp
(
λ
(
f −

∫
fdγn

))
dγn ≤ exp

(
1

2
λ2‖f‖2Lip

)
.

By Chebyshev’s inequality, for every λ and r ≥ 0,

γn
(
f ≥

∫
fdγn + r

)
≤ exp

(
−λr +

1

2
λ2‖f‖2

Lip

)

and, optimizing in λ,

(2.8) γn
(
f ≥

∫
fdγn + r

)
≤ exp

(
− r2

2‖f‖2Lip

)
.

Applying (2.8) to both f and −f , we get a concentration inequality similar to (2.4)
(around the mean rather than the median)

(2.9) γn
(∣∣f −

∫
fdγn

∣∣ ≥ r
)
≤ 2 exp

(
− r2

2‖f‖2Lip

)
.
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Two parameters are thus entering those concentration inequalities, the median or
the mean of a function f with respect to γn and its Lipschitz norm. These can
be very different. For example, if f is the Euclidean norm on IRn, the median or
the mean of f are of the order of

√
n while ‖f‖Lip = 1. This is one of the main

features of these inequalities (cf. [L-T2]) and is at the basis of the Gaussian proofs
of Dvoretzky’s theorem (see [Pi1], [Pi3]).

Proof of Proposition 2.1. Let f be smooth enough on IRn with mean zero and
‖f‖Lip ≤ 1. For λ fixed, set G(t) =

∫
exp (λPtf)dγn, t ≥ 0. Since ‖f‖Lip ≤ 1,

it follows from (2.6) that |∇(Psf)|2 ≤ e−2s almost everywhere for every s. Since∫
fdγn = 0, G(∞) = 1. Hence, for every t ≥ 0,

G(t) = 1−
∫ ∞

t

G′(s) ds = 1− λ

∫ ∞

t

(∫
L
(
Psf

)
exp
(
λPsf

)
dγn

)
ds

= 1 + λ2

∫ ∞

t

(∫ ∣∣∇
(
Psf

)∣∣2 exp
(
λPsf

)
dγn

)
ds

≤ 1 + λ2

∫ ∞

t

e−2sG(s)ds

where we used integration by parts in the space variable. Let H(t) be the logarithm
of the right hand side of this inequality. Then the preceding inequality tells us that
−H ′(t) ≤ λ2e−2t for every t ≥ 0. Therefore

logG(0) ≤ H(0) = −
∫ ∞

0

H ′(t) dt ≤ λ2

2

which is the claim of the proposition, at least for a smooth function f . The general
case follows from a standard approximation, by considering for example Pεf instead
of f and by letting then ε tend to zero. The proof is complete.

Inequalities (2.8) and (2.9) will be our key argument in the study of integra-
bility properties and tail behavior of Gaussian random vectors, as well as in the
various applications throughout these notes. While the concentration inequalities
(2.4) of isoperimetric nature may of course be used equivalently, we would like to
emphasize here the simple proof of Proposition 2.1 from which (2.8) and (2.9) follow.
Proposition 2.1 is due to I. A. Ibragimov, V. N. Sudakov and B. S. Tsirel’son [I-S-T]
(see also B. Maurey [Pi1, p. 181]). Their argument is actually of more probabilistic
nature. For every smooth enough function f on IRn, write

f
(
W (1)

)
− IEf

(
W (1)

)
=

∫ 1

0

〈∇T1−tf
(
W (t)

)
dW (t)〉

where (W (t))t≥0 is Brownian motion on IRn starting at the origin and where (Tt)t≥0

denotes its associated semigroup (the heat semigroup), with the probabilistic nor-
malization. Note then that the above stochastic integral has the same distribu-
tion as β(τ) where (β(t))t≥0 is a one-dimensional Brownian motion and where
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τ =
∫ 1

0
|∇T1−tf(W (t))|2 dt. Therefore, for every Lipschitz function f such that

‖f‖Lip ≤ 1, τ ≤ 1 almost surely so that, for all r ≥ 0,

IP
{
f
(
W (1)

)
− IEf

(
W (1)

)
≥ r
}
≤ IP

{
max
0≤t≤1

β(t) ≥ r
}

= 2

∫ ∞

r

e−x
2/2 dx√

2π
≤ e−r

2/2.

Since W (1) has distribution γn, this is thus simply (2.8).

Proposition 2.1 and its proof may actually be extended to a larger setting to
yield for example a simple proof of the concentration (2.2) (up to some numerical
constants) on spheres or on Riemannian manifolds M with positive curvature R(M).
The proof uses the heat semigroup on M and Bochner’s formula. It is inspired by
the work of D. Bakry and M. Émery [B-É] (cf. also [D-S]) on hypercontractivity and
logarithmic Sobolev inequalities. We will come back to this observation in Chapter
8. We establish the following fact (cf. [Led4]).

Proposition 2.2. Let M be a compact Riemannian manifold of dimension N (≥ 2)
and with R(M) = R > 0. Let f be a Lipschitz function on M with ‖f‖Lip ≤ 1 and

assume that
∫
fdµ = 0. Then, for every real number λ,

∫
eλfdµ ≤ eλ

2/2R.

Proof. Let ∇ be the gradient on M and ∆ be the Laplace-Beltrami operator. By
Bochner’s formula (see e.g. [G-H-L]), for every smooth function f on M , pointwise

1

2
∆
(
|∇f |2

)
− 〈∇f,∇(∆f)〉 = Ric(∇f,∇f) +

∥∥Hess(f)
∥∥2

2
.

In particular,

(2.10)
1

2
∆
(
|∇f |2

)
− 〈∇f,∇(∆f)〉 ≥ R |∇f |2 +

1

N
(∆f)2.

The dimensional term in this inequality will actually not be used and we will only
be concerned here with the inequality

(2.11)
1

2
∆
(
|∇f |2

)
− 〈∇f,∇(∆f)〉 ≥ R |∇f |2.

Now, consider the heat semigroup Pt = et∆, t ≥ 0, and let f be smooth on M .
Let further s > 0 be fixed and set, for every t ≤ s, F (t) = Pt(|∇(Ps−tf)|2). It is
an immediate consequence of (2.11) applied to Ps−tf that F ′(t) ≥ 2RF (t), t ≤ s.
Hence, the function e−2RtF (t) is increasing on the interval [0, s] and we have thus
that, for every s ≥ 0,

(2.12)
∣∣∇
(
Psf

)∣∣2 ≤ e−2RsPs
(
|∇f |2

)
.
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This relation, which is actually equivalent to (2.11), expresses a commutation prop-
erty between the respective actions of the semigroup and the gradient (cf. (2.6)). It
is the only property which is used in the proof itself which is now exactly as the
proof of Proposition 2.1. Let f be smooth on M with ‖f‖Lip ≤ 1 and

∫
fdµ = 0. For

λ fixed, set G(t) =
∫

exp (λPtf)dµ, t ≥ 0. Since ‖f‖Lip ≤ 1, it follows from (2.12)

that |∇(Psf)|2 ≤ e−2Rs almost everywhere for every s. Since
∫
fdµ = 0, G(∞) = 1.

Hence, for every t ≥ 0,

G(t) = 1−
∫ ∞

t

G′(s) ds = 1− λ

∫ ∞

t

(∫
∆
(
Psf

)
exp
(
λPsf

)
dµ

)
ds

= 1 + λ2

∫ ∞

t

(∫ ∣∣∇
(
Psf

)∣∣2 exp
(
λPsf

)
dµ

)
ds

≤ 1 + λ2

∫ ∞

t

e−2RsG(s)ds

where we used integration by parts in the space variable. The proof is completed as
in Proposition 2.1.

The commutation formula ∇Ptf = e−tPt(∇f) of the Ornstein-Uhlenbeck semi-
group expresses equivalently a Bochner formula for the second order generator L
of infinite dimension (N = ∞) and constant curvature 1 (limit of R(SN√

N
) when N

goes to infinity) of the type (2.10) or (2.11)

1

2
L
(
|∇f |2

)
− 〈∇f,∇(Lf)〉 ≥ (Lf)2.

The geometry of the Ornstein-Uhlenbeck generator is thus purely infinite dimen-
sional, even on a finite dimensional state space (as the Gaussian isoperimetric in-
equality itself, cf. Chapter 1). The abstract consequences of these observations are
at the origin of the study by D. Bakry and M. Émery of hypercontractive diffu-
sions under curvature-dimension hypotheses [B-É], [Bak]. We will come back to this
question in Chapter 8 and actually show, according to [A-M-S], that (2.7) can be
deduced directly from hypercontractivity.

At this point, we realized that simple semigroup arguments may be used to
establish concentration properties, however on Lipschitz functions rather than sets.
It is not difficult however to deduce from Propositions 2.1 and 2.2 inequalities on sets
very close to the inequalities which follow from isoperimetry (but still for “large”
neighborhoods). We briefly indicate the procedure in the Gaussian setting.

Let A be a Borel set in IRn with canonical Gaussian measure γn(A) > 0. For
every u ≥ 0, let

fA,u(x) = min
(
d(x,A), u

)

where d(x,A) is the Euclidean distance from the point x to the set A. Clearly
‖fA,u‖Lip ≤ 1 so that we may apply inequality (2.8) to this family of Lipschitz

functions when u varies. Let EA,u =
∫
fA,udγn. Inequality (2.8) applied to fA,u and

r = u− EA,u yields

γn
(
x ∈ IRn; min

(
d(x,A), u

)
≥ u

)
≤ exp

(
−1

2
(u− EA,u)

2

)
,
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that is

(2.13) γn
(
x;x /∈ Au

)
≤ exp

(
−1

2
(u−EA,u)

2

)

since d(x,A) > u if and only if x /∈ Au. We have now to appropriately control the
expectations EA,u =

∫
fA,udγn, possibly only with u and the measure of A. A first

bound is simply EA,u ≤ u γ(Ac) which already yields,

γn
(
x;x /∈ Au

)
≤ exp

(
−1

2
u2γn(A)2

)

for every u ≥ 0. This inequality may already be compared to (2.3). However, if we
use this estimate recursively, we get

EA,u =

∫ u

0

γn
(
x; d(x,A) > t

)
dt ≤

∫ u

0

min
(
γn(A

c), e−t
2γn(A)2/2

)
dt.

If we let then δ(v) be the decreasing function on (0, 1] defined by

(2.14) δ(v) =

∫ ∞

0

min
(
1− v, e−t

2v2/2
)
dt,

we have EA,u ≤ δ(γn(A)) uniformly in u. Hence, from (2.13), for every u ≥ 0,

γn
(
x;x /∈ Au

)
≤ exp

(
−u

2

2
+ uEA,u

)
≤ exp

(
−u

2

2
+ uδ

(
γn(A)

))
.

In conclusion, we obtained from Proposition 2.1 and inequality (2.8) that, for every
r ≥ 0,

(2.15) γn(Ar) ≥ 1− exp

(
−r

2

2
+ rδ

(
γn(A)

))
.

This simple argument thus yields an inequality very similar in nature to the isoperi-
metric bound (2.3), with however the extra factor rδ(γn(A)). (Using the preceding
recursive argument, one may of course improve further and further this estimate.)
Due to the fact that δ(γn(A)) → 0 as γn(A) → 1, this result can be used exactly as
the isoperimetric inequality in almost all the applications presented in these notes.
We will come back to this in Chapter 4 for example, and we will always use (2.15)
rather than isoperimetry in the applications.

We conclude this chapter with a proposition closely related to Proposition 2.1
and the proof of which is similar. It will be used in Chapter 4 in some large devia-
tion statement for the Ornstein-Uhlenbeck process. We only consider the Gaussian
setting.
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Proposition 2.3. Let f be a Lipschitz function on IRn with ‖f‖Lip ≤ 1. Then, for
every real number λ and every t ≥ 0,

∫ ∫
exp
(
λ
[
f
(
e−tx+ (1− e−2t)1/2y

)
− f(x)

])
dγn(x)dγn(y) ≤ exp

(
λ2(1− e−t)

)
.

Proposition 2.3 will be used for the small values of the time t. When t→∞, it
is somewhat weaker than Proposition 2.1. The stochastic version of this proposition
is inspired from the forward and backward martingales of T. Lyons and W. Zheng
[L-Z] (see [Tak], [Fa]).

Proof. The left hand side of the inequality of Proposition 2.3 may be rewritten as

G(t) =

∫
e−λfPt

(
eλf
)
dγn.

Let λ be fixed and f be smooth enough. For every t ≥ 0,

G(t) = 1 +

∫ t

0

G′(s) ds = 1 +

∫ t

0

(∫
e−λfLPs

(
eλf
)
dγn

)
ds

= 1 + λ2

∫ t

0

e−s
(∫

e−λf 〈∇f, Ps
(
eλf∇f

)
〉dγn

)

≤ 1 + λ2

∫ t

0

e−sG(s)ds

since |∇f | ≤ 1 almost everywhere. Let H(t) = log(1 + λ2
∫ t
0

e−sG(s)ds), t ≥ 0. We
just showed that H ′(t) ≤ λ2e−t for every t ≥ 0. Hence,

H(t) =

∫ t

0

H ′(s) ds ≤ λ2

∫ t

0

e−s ds = λ2(1− e−t)

and the proof is complete.

If A and B are subsets of IRn, and if t ≥ 0, set

Kt(A,B) =

∫

A

Pt(IB) dγn

(
=

∫

B

Pt(IA) dγn

)

where IA is the indicator function of the set A. Assume that d(A,B) > r > 0 (for
the Euclidean distance on IRn). In particular, B ⊂ (Ar)

c
so that

Kt(A,B) ≤ Kt

(
A, (Ar)

c)
.

Apply then Proposition 2.3 to the Lipschitz map f(x) = d(x,A). For every t ≥ 0
and every λ ≥ 0,

Kt

(
A, (Ar)

c)
=

∫

A

Pt
(
I(Ar)c

)
dγn ≤ e−λr

∫

A

e−λfPt
(
eλf
)
dγn
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since I(Ar)c ≤ e−λreλf . Hence

Kt

(
A, (Ar)

c) ≤ e−λreλ
2(1−e−t).

Optimizing in λ yields

(2.16) Kt(A,B) ≤ Kt

(
A, (Ar)

c) ≤ exp

(
− r2

4(1− e−t)

)
.

Formula (2.16) will thus be used in Chapter 4 in applications to large deviations for
the Ornstein-Uhlenbeck process.
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3. ISOPERIMETRIC AND CONCENTRATION

INEQUALITIES FOR PRODUCT MEASURES

In this chapter, we present several isoperimetric and concentration inequalities for
product measures due to M. Talagrand. On the basis of the product structure of the
canonical Gaussian measure γn and various open problems on sums of independent
vector valued random variables, M. Talagrand developed in the past years new in-
equalities in products of probability spaces by defining several different notions of
isoperimetric enlargement in this setting. These results appear as a striking illustra-
tion of the power of abstract concentration ideas which can be developed far beyond
the framework of the classical geometrical isoperimetric inequalities. One of the main
applications of his powerful techniques and results concerns tail behaviors and limit
properties of sums of independent Banach space valued random variables. It partly
motivated the writing of the book [L-T2] and we thus refer the interested reader
to this reference for this kind of applications. New applications concern geometric
probabilities, percolation, statistical mechanics... We will concentrate here on some
of the theoretical inequalities and their relations with the Gaussian isoperimetric
inequality, as well as on some recent and new aspects of the work of M. Talagrand
[Ta16]. We actually refer to [Ta16] for complete proofs and details of some of the
main results we present here. The reader that is interested first in the applications
of the Gaussian isoperimetric and concentration inequalities may skip this chapter
and come back to it after Chapter 7.

One first example studied by M. Talagrand is uniform measure on {0, 1}IN. For
this example, he established a concentration inequality independent of the dimension
[Ta3]. More importantly, he developed a new powerful scheme of proof based on
induction on the number of coordinates. This technique allowed him to investigate
isoperimetric and concentration inequalities in abstract product spaces.

Let (Ω,Σ, µ) be a (fixed but arbitrary) probability space and let P be the prod-
uct measure µ⊗n on Ωn. A point x in Ωn has coordinates x = (x1, . . . , xn). (In the
results which we present, one should notice that one does not increase the generality
with arbitrary products spaces

(
Πn
i=1Ωi,

⊗n
i=1 µi

)
. Since the crucial inequalities will

not depend on n, we need simply towork on products of (Ω̃, µ̃) =
(
Πn
i=1Ωi,

⊗n
i=1 µi

)
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with itself and consider the coordinate map

x̃ = (x̃1, . . . , x̃n) ∈ Ω̃n → (x̃i)i ∈ Ωi, x̃i = ((x̃i)1, . . . , (x̃i)n) ∈ Ω̃,

that only depends on the i-th factor.)
The Hamming distance on Ωn is defined by

d(x, y) = Card{1 ≤ i ≤ n; xi 6= yi}.

The concentration function α of Ωn for d satisfies, for every product probability P ,

(3.1) α(r) ≤ C exp

(
− r2

Cn

)
, r ≥ 0,

where C > 0 is numerical. In particular, if P (A) ≥ 1
2
, for most of the elements x in

Ωn, there exists y ∈ A within distance
√
n of x. On the two point space, this may

be shown to follow from the corresponding isoperimetric inequality [Har], [W-W].
A proof using the martingale inequality (2.4) is given in [Mi-S] (see also [MD] for
a version with a better constant). As we will see later on, one can actually give an
elementary proof of this result by induction on n. It might be important for the
sequel to briefly indicate the procedure. If A is a subset of Ωn and x ∈ Ωn, denote
by ϕ1

A(x) the Hamming distance from x to A thus defined by

ϕ1
A(x) = inf

{
k ≥ 0; ∃ y ∈ A, Card{1 ≤ i ≤ n; xi 6= yi} ≤ k

}
.

(Although this is nothing more than d(x,A), this notation will be of better use in
the subsequent developments.) M. Talagrand’s approach [Ta3], [Ta16] then consists
in showing that, for every λ > 0 and every product probability P ,

(3.2)

∫
eλϕ

1
A dP ≤ 1

P (A)
enλ

2/4.

In particular, by Chebyshev’s inequality, for every integer k,

P (ϕ1
A ≥ k) ≤ 1

P (A)
e−k

2/n,

that is the concentration (3.1). The same proof actually applies to all the Hamming
metrics

da(x, y) =
n∑

i=1

aiI{xi 6=yi}, a = (a1, . . . , an) ∈ IRn+,

with |a|2 =
∑n
i=1 a

2
i instead of n in the right hand side of (3.2). One can improve

this result by studying functions of the probability of A in (3.2) such as P (A)−γ .

Optimizing in γ > 0, it is then shown in [Ta16] that for k ≥
(
n
2 log 1

P (A)

)1/2
,

P (ϕ1
A ≥ k) ≤ exp

(
− 2

n

[
k −

(
n

2
log

1

P (A)

)1/2]2)
,
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which is close to the best exponent −2k2/n ([MD]).
Note that various measurability questions arise on ϕ1

A. These are actually com-
pletely unessential and will be ignored in what follows (start for example with a
finite probability space Ω).

The previous definition of ϕ1
A allows one to investigate various and very different

ways to measure the “distance” of a point x to a set A. In particular, this need not
anymore be metric. The functional ϕ1

A controls a point x in Ωn by a single point in A.
Besides this function, M. Talagrand defines two new main controls, or enlargement
functions: one using several points in A, and one using a convex hull procedure. In
each case, a Gaussian concentration will be proved.

The convex hull control is defined with the metric ϕcA(x) = sup|a|=1 da(x,A).
However, this definition somewhat hides the convexity properties of the functional
ϕcA which will be needed in its investigation. For a subset A ⊂ Ωn and x ∈ Ωn, let

UA(x) =
{
s = (si)1≤i≤n ∈ {0, 1}n; ∃ y ∈ A such that yi = xi if si = 0

}
.

(One can use instead the collection of the indicator functions I{xi 6=yi}, y ∈ A.)
Denote by VA(x) the convex hull of UA(x) as a subset of IRn. Note that 0 ∈ VA(x) if
and only if x ∈ A. One may then measure the distance from x to A by the Euclidean
distance d(0, VA(x)) from 0 to VA(x). It is easily seen that d(0, VA(x)) = ϕcA(x). If
d(0, VA(x)) ≤ r, there exists z in VA(x) with |z| ≤ r. Let a ∈ IRn+ with |a| = 1. Then

inf
y∈VA(x)

〈a, y〉 ≤ 〈a, z〉 ≤ |z| ≤ r.

Since
inf

y∈VA(x)
〈a, y〉 = inf

s∈UA(x)
〈a, s〉 = da(x,A),

ϕcA(x) ≤ r. The converse, that is not needed below, follows from Hahn-Banach’s
theorem.

The functional ϕcA(x) is a kind of uniform control in the Hamming metrics
da, |a| = 1. The next theorem [Ta6], [Ta16] extends the concentration (3.2) to this
uniformity.

Theorem 3.1. For every subset A of Ωn, and every product probability P ,

∫
exp
(1

4

(
ϕcA
)2)

dP ≤ 1

P (A)
.

In particular, for every r ≥ 0,

P (ϕcA ≥ r) ≤ 1

P (A)
e−r

2/4.

To briefly describe the general scheme of proofs by induction on the number of
coordinates, we present the proof of Theorem 3.1. The main difficulty in this type
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of statements is to find the adapted recurrence hypothesis expressed here by the
exponential integral inequalities.

Proof. The case n = 1 is easy. To go from n to n+ 1, let A be a subset of Ωn+1 and
let B be its projection on Ωn. Let furthermore, for ω ∈ Ω, A(ω) be the section of A
along ω. If x ∈ Ωn and ω ∈ Ω, set z = (x, ω). The key observation is the following:
if s ∈ UA(ω)(x), then (s, 0) ∈ UA(z), and if t ∈ UB(x), then (t, 1) ∈ UA(z). It follows
that if u ∈ VA(ω)(x), v ∈ VB(x) and 0 ≤ λ ≤ 1, then (λu+ (1− λ)v, 1− λ) ∈ VA(z).
By definition of ϕcA and convexity of the square function,

ϕcA(z)2 ≤ (1− λ)2 +
∣∣λu+ (1− λ)v

∣∣2 ≤ (1− λ)2 + λ|u|2 + (1− λ)|v|2.

Hence,

ϕcA(z)2 ≤ (1− λ)2 + λϕcA(ω)(x)
2 + (1− λ)ϕcB(x)2.

Now, by Hölder’s inequality and the induction hypothesis, for every ω in Ω,

∫

Ωn

exp
(1

4

(
ϕcA(x, ω)

)2)
dP (x)

≤ e(1−λ)2/4

(∫

Ωn

exp
(1

4

(
ϕcA(ω)

)2)
dP

)λ(∫

Ωn

exp
(1

4

(
ϕcB
)2)

dP

)1−λ

≤ e(1−λ)2/4

(
1

P (A(ω))

)λ(
1

P (B)

)1−λ

that is,

∫

Ωn

exp
(1

4

(
ϕcA(x, ω)

)2)
dP (x) ≤ 1

P (B)
e(1−λ)2/4

(
P (A(ω))

P (B)

)−λ
.

Optimize now in λ (cf. [Ta16]) to get that

∫

Ωn

exp
(1

4

(
ϕcA(x, ω)

)2)
dP (x) ≤ 1

P (B)

(
2− P (A(ω))

P (B)

)
.

To conclude, integrate in ω, and, by Fubini’s theorem,

∫

Ωn+1

exp
(1

4

(
ϕcA(x, ω)

)2)
dP (x)dµ(ω) ≤ 1

P (B)

(
2− P ⊗ µ(A)

P (B)

)
≤ 1

P ⊗ µ(A)

since u(2− u) ≤ 1 for every real number u. Theorem 3.1 is established.

It is easy to check that if Ω = [0, 1] and if dA is the Euclidean distance to the
convex hull Conv(A) of A, then dA ≤ ϕcA. Let then f be a convex function on [0, 1]n

such that‖f‖Lip ≤ 1, and let m be a median of f for P and A = {f ≤ m}. Since f
is convex, f ≤ m on Conv(A). Using that ‖f‖Lip ≤ 1, we see that f(x) < m+ r for

every x such that dA(x) < r, r ≥ 0. Hence, by Theorem 3.1, P (f ≥ m+r) ≤ 2e−r
2/4.
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On the other hand, let B = {f ≤ m − r}. As above, dB(x) < r implies f(x) < m.
By definition of the median, it follows from Theorem 3.1 again that

1− 1

P (B)
e−r

2/4 ≤ P (dB < r) ≤ P (f < m) ≤ 1

2
.

Hence P (f ≤ m− r) ≤ 2e−r
2/4. Therefore

(3.3) P
(
|f −m| ≥ r

)
≤ 4 e−r

2/4

for every r ≥ 0 and every probability measure µ on [0, 1]. The numerical constant
4 in the exponent may be improved to get close to the best possible value 2. This
concentration inequality (3.3) is very similar to the Gaussian concentration (2.4) or
(2.9), with however f convex. It applies to norms of vector valued sums

∑
i ϕiei with

coefficients ei in a Banach space E where the ϕi’s are independent real valued uni-
formly bounded random variables on some probability space (Ω,A, IP). This applies
in particular to independent symmetric Bernoulli (or Rademacher) random variables
and (3.3) allows us in particular to recover and improve the pioneer inequalities by
J.-P. Kahane [Ka1], [Ka2] (cf. also Chapter 4). More precisely, if ‖ϕi‖∞ ≤ 1 for all
i’s and if S =

∑
i ϕiei is almost surely convergent in E, for every r ≥ 0,

(3.4) IP
(∣∣‖S‖ −m

∣∣ ≥ r
)
≤ 4 e−r

2/16σ2

where m is a median of ‖S‖ and where

σ = sup
ξ∈E∗,‖ξ‖≤1

(∑

i

〈ξ, ei〉2
)1/2

.

Typically, the martingale inequality (2.5) would only yield a similar inequality but
with σ replaced by the larger quantity

∑
i ‖ei‖2. This result is the exact analogue of

what we will obtain on Gaussian series in the next chapter through isoperimetric and
concentration inequalities. It shows how powerful the preceding induction techniques
can be. In particular, we may integrate by parts (3.4) to see that IE exp(α‖S‖2) <∞
for every α (cf. [L-T2]). Furthermore, for every p > 0,

(3.5)
(
IE‖S‖p

)1/p ≤ m+ Cpσ

where Cp is of the order of
√
p as p→∞.

When the ϕi’s are Rademacher random variables, by the classical Khintchine
inequalities, one easily sees that σ ≤ 2

√
2m′ for every m′ such that IP{‖S‖ ≥ m′} ≤

1
8

(see [L-T2], p. 99). Since m ≤ m′ ≤ (8IE‖S‖q)1/q for every 0 < q < ∞, we also
deduce from (3.5) the moment equivalences for ‖S‖: for every 0 < p, q < ∞, there
exists Cp,q > 0 only depending on p and q such that

(3.6)
(
IE‖S‖p

)1/p ≤ Cp,q
(
IE‖S‖q

)1/q
.
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By the classical central limit theorem, these inequalities imply the corresponding
ones for Gaussian averages (see (4.5)). In the case of the two point space, the method
of proof by induction on the dimension is very similar to hypercontractivity tech-
niques [Bon], [Gr3], [Be1] (which, in particular, also show (3.6) [Bo6]). Some further
connections on the basis of this observation are developed in [Ta11] in analogy with
the Gaussian example (Chapter 8). See also [Bo8]. It was recently shown in [L-O]
that C2,1 =

√
2 as in the real case [Sz].

We turn to the control by a finite number of points. If q is an integer ≥ 2 and
if A1, . . . , Aq are subsets of Ωn, let, for every x = (x1, . . . , xn) in Ωn,

ϕq(x) = ϕqA1,...,Aq(x) = inf
{
k ≥ 0; ∃ y1 ∈ A1, . . . , ∃ yq ∈ Aq such that

Card
{
1 ≤ i ≤ n; xi /∈ {y1

i , . . . , y
q
i }
}
≤ k

}
.

(We agree that ϕq = ∞ if one of the Ai’s is empty.) If, for every i = 1, . . . , n, Ai = A
for some A ⊂ Ωn, ϕq(x) ≤ k means that the coordinates of x may be copied, at
the exception of k of them, by the coordinates of q elements in A. Using again a
proof by induction on the number of coordinates, M. Talagrand [Ta16] established
the following result.

Theorem 3.2. Under the previous notations,

∫
qϕ

q(x) dP (x) ≤
q∏

i=1

1

P (Ai)
.

In particular, for every integer k,

P (ϕq ≥ k) ≤ q−k
q∏

i=1

1

P (Ai)
.

Proof. One first observes that if g is a function on Ω such that 1
q ≤ g ≤ 1, then

(3.7)

∫
1

g
dµ

(∫
gdµ

)q
≤ 1.

Since logu ≤ u− 1, it suffices to show that
∫

1

g
dµ+ q

∫
gdµ =

∫ (1

g
+ qg

)
dµ ≤ q + 1.

But this is obvious since 1
u

+ qu ≤ q + 1 for 1
q
≤ u ≤ 1.

Let gi, i = 1, . . . , q, be functions on Ω such that 0 ≤ gi ≤ 1. Applying (3.7) to
g given by 1

g
= min(q,min1≤i≤q

1
gi

) yields

(3.8)

∫
min

(
q, min

1≤i≤q

1

gi

)
dµ

( q∏

i=1

∫
gidµ

)
≤ 1
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since gi ≤ g for every i = 1, . . . , q.
We prove the theorem by induction over n. If n = 1, the result follows from

(3.8) by taking gi = IAi . Assume Theorem 3.2 has been proved for n and let us
prove it for n + 1. Consider sets A1, . . . , Aq of Ωn+1. For ω ∈ Ω, consider Ai(ω),
i = 1, . . . , q, as well as the projections Bi of Ai on Ωn, i = 1, . . . , q. Note that if we
set gi = P (Ai(ω))/P (Bi) in (3.8), we get by Fubini’s theorem that

(3.9)

∫
min

(
q

q∏

i=1

1

P (Bi)
, min
1≤j≤q

q∏

i=1

1

P (Cij)

)
dµ ≤

q∏

i=1

1

P ⊗ µ(Ai)

where Cij = Bi if i 6= j and Cii = Ai(ω). The basic observation is now the following:
for (x, ω) ∈ Ωn × Ω,

ϕqA1,...,Aq(x, ω) ≤ 1 + ϕqB1,...,Bq (x)

and, for every 1 ≤ j ≤ q,

ϕqA1,...,Aq (x, ω) ≤ ϕqC1j ,...,Cqj (x).

It follows that
∫

Ωn+1

q
ϕq

A1,...,Aq (x,ω)
dP (x)dµ(ω)

≤
∫

Ωn+1

min
(
q q

ϕq

B1,...,Bq (x)
, min
1≤j≤q

q
ϕq

C1j ,...,Cqj
(x))

dP (x)dµ(ω)

≤
∫

Ω

min

(
q

∫

Ωn

q
ϕq

B1,...,Bq (x)
dP (x), min

1≤j≤q

∫

Ωn

q
ϕq

C1j ,...,Cqj
(x)
dP (x)

)
dµ(ω)

≤
∫

Ω

min

(
q

q∏

i=1

1

P (Bi)
, min
1≤j≤q

q∏

i=1

1

P (Cij)

)
dµ(ω)

by the recurrence hypothesis. The conclusion follows from (3.9).

In the applications, q is usually fixed, for example equal to 2. Theorem 3.2 then
shows how to control, with a fixed subset A, arbitrary samples with an exponential
decay of the probability in the number of coordinates which are neglected. Theorem
3.2 was first proved by delicate rearrangement techniques (of isoperimetric flavor)
in [Ta5]. It allowed M. Talagrand to solve a number of open questions in probability
in Banach spaces (and may be considered at the origin of the subsequent abstract
developments, see [Ta5], [Ta16], [L-T2]). To briefly illustrate how Theorem 3.2 is
used in the applications, let us consider a sum S = X1 + · · ·+ Xn of independent
nonnegative random variables on some probability space (Ω,A, IP). In the preceding
language, we may simply equip [0,∞)n with the product P of the laws of the Xi’s.
Let A =

{∑n
i=1 xi ≤ m

}
where m is such that, for example, P (A) ≥ 1

2 . Let
ϕq = ϕqA,...,A. If x ∈ {ϕq ≤ k}, there exist y1, . . . , yq in A such that Card I ≤ k where

I = {1 ≤ i ≤ n; xi 6∈ {y1
i , . . . , y

q
i }}. Take then a partition (Jj)1≤j≤q of {1, . . . , n} \ I

such that xi = yji if i ∈ Jj . Then,

∑

i6∈I
xi =

q∑

j=1

∑

i∈Jj

yji ≤
q∑

j=1

n∑

i=1

yji ≤ qm
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where we are using a crucial monotonicity property since the coordinates are non-
negative. It follows that

n∑

i=1

xi ≤ qm+

k∑

i=1

x∗i

where {x∗1, . . . , x∗n} is the nonincreasing rearrangement of the sample {x1, . . . , xn}.
Hence, according to Theorem 3.2, for every integers k, q ≥ 1, and every t ≥ 0,

(3.10) IP{S ≥ qm+ t} ≤ 2qq−(k+1) + IP

{ k∑

i=1

X∗
i ≥ t

}
.

Let F be a family of n-tuples α = (αi)1≤i≤n, αi ≥ 0. It is plain that the
preceding argument leading to (3.10) applies in the same way to

S = sup
α∈F

n∑

i=1

αiXi

to yield

IP{S ≥ qm+ t} ≤ 2qq−(k+1) + IP

{
σ

k∑

i=1

X∗
i ≥ t

}

where σ = sup{αi; 1 ≤ i ≤ n, α ∈ F}.
Now, in probability in Banach spaces or in the study of empirical processes,

one does not usually deal with nonnegative summands. One general situation is the
following (cf. [L-T2], [Ta13] for the notations and further details). Let X1, . . . , Xn

be independent random variables taking values in some space S and consider say a
countable family F of (measurable) real valued functions on S. We are interested in
bounds on the tail of

∥∥∥∥
n∑

i=1

f(Xi)

∥∥∥∥
F

= sup
f∈F

∣∣∣∣
n∑

i=1

f(Xi)

∣∣∣∣.

If IEf(Xi) = 0 for every 1 ≤ i ≤ n and every f ∈ F , standard symmetrization
techniques (cf. [L-T2]) reduce to the investigation of

∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F

where (εi)1≤i≤n are independent symmetric Bernoulli random variables independent
of the Xi’s. Although the isoperimetric approach applies in the same way, we may
not use directly here the crucial monotonicity property on the coordinates. We
turn over this difficulty via a symmetrization procedure with Rademacher random
variables which was developed first in the study of the law of the iterated logarithm
[L-T1]. One writes

∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F

=

(∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F
− IEε

∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F

)
+ IEε

∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F
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where IEε is partial integration with respect to the Bernoulli variables ε1, . . . , εn.
Now, on IEε‖

∑n
i=1 εif(Xi)‖F the monotonicity property is satisfied, since, by Jen-

sen’s inequality and independence, for every subset I ⊂ {1, . . . , n},

IEε

∥∥∥∥
∑

i∈I
εif(Xi)

∥∥∥∥
F
≤ IEε

∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F
.

Therefore, the isoperimetric method may be used efficiently on this term. The re-
mainder term ∥∥∥∥

n∑

i=1

εif(Xi)

∥∥∥∥
F
− IEε

∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F

is bounded, conditionally on the Xi’s, with the deviation inequality (3.4) by a Gaus-
sian tail involving

sup
f∈F

n∑

i=1

f(Xi)
2

which will again satisfy this monotonicity property. The proper details are presented
in [L-T2], p. 166-169. Combining the arguments yields the inequality, for nonnegative
integers k, q and real numbers s, t ≥ 0,

IP

{∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F
≥8qM + s+ t

}

≤ 2qq−k + IP

{ k∑

i=1

∥∥f(Xi)
∥∥∗
F ≥ s

}
+ 2 exp

(
− t2

128qm2

)

where

M = IE

∥∥∥∥
n∑

i=1

εif(Xi)

∥∥∥∥
F
, m = IE

(
sup
f∈F

( n∑

i=1

f(Xi)
2

)1/2)

and where (‖f(Xi)‖∗F )1≤i≤n denotes the nonincreasing rearrangement of the sample
(‖f(Xi)‖F )1≤i≤n. (Of course, if the functions f of F are such that |f | ≤ 1, one may
choose for example s = k.) We find again in this type of inequalities the basic
parameters of concentration inequalities of Gaussian type.

This approach to bounds on sums of independent Banach space valued random
variables (or empirical processes) is today one of the main successful tools in the
study of integrability and limit properties of these sums. The results which may be
obtained with this isoperimetric technique are rather sharp and often improve even
the scalar case. The range of applications appears to be much broader than what
can be obtained for example from the martingale inequalities (2.5). We refer to the
monograph [L-T2] for a complete exposition of these applications in the context of
probability in Banach spaces.

In his recent developments, M. Talagrand further analyzes the control function-
als ϕ1, ϕq and ϕc and extends their potential use and interest by a new concept
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of penalty. Indeed, in the functional ϕ1 for example, the coordinates of x which
differ from the coordinates of a point in A are accounted for one. One may therefore
imagine a more precise measure of this control with some adapted weight. Let, for
a nonnegative function h on Ω×Ω such that h(ω, ω) = 0, and for A ⊂ Ωn, x ∈ Ωn,

ϕ1,h
A (x) = inf

{ n∑

i=1

h(xi, yi); y ∈ A
}
.

When h(ω, ω′) = 1 if ω 6= ω′, we simply recover the Hamming metric ϕ1
A. The new

functional ϕ1,h
A thus puts a variable penalty h(x, y) on the coordinates of x and y

which differ.
Provided with these functionals, one may therefore take again the preceding

study and obtain, by the same method of proof based on induction on the number
of coordinates, several new and important concentration inequalities. The first re-
sult resembles Bernstein’s classical exponential bound. Denote by ‖h‖2 and ‖h‖∞
respectively the L2 and L∞-norms of h with respect to µ⊗ µ.

Theorem 3.3. For each subset A of Ωn and every product probability P , and every
r ≥ 0,

P
(
ϕ1,h
A ≥ r

)
≤ 1

P (A)
exp

(
−min

(
r2

8n‖h‖2
2

,
r

2‖h‖∞

))
.

To better analyze the conditions on the penalty function h, set, for B ⊂ Ω and
ω ∈ Ω,

h(ω,B) = inf
{
h(ω, ω′); ω′ ∈ B

}
.

Assume that for all B ⊂ Ω,

∫
e2h(ω,B) dµ(ω) ≤ e

µ(B)
.

A typical statement of [Ta16] is then that, for every 0 ≤ λ ≤ 1,

(3.11)

∫
eλϕ

1,h
A dP ≤ 1

P (A)
eCnλ

2

where C > 0 is a numerical constant. With respect to (3.2), we easily see how
successful (3.11) can be for an appropriate choice of the penalty function h. One
may also prove extensions where, as we already mentioned it, the probability of A is
replaced by more complicated functions of this probability (related of course to h.)
The penalty or interacting functions h which are used in such a result are of various
types. For example, on IR, one may take h(ω, ω′) = |ω−ω′| or h(ω, ω′) = (ω−ω′)+.
One of the striking observations by M. Talagrand is the dissymmetric behavior of
the two variables of h, that is on the point x that we would like to control and the
point y in the fixed set A. For example, if h only depends on the first coordinate,
then it should be bounded; if it only depends on the second coordinate, only weak
integrability properties (with respect to µ) are required.
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These extensions can also be performed on the functionals ϕq and ϕc, the latter
being probably the most interesting for the applications. For a nonnegative penalty
function h as before, let, for A ⊂ Ωn and x ∈ Ω,

UA(x) =
{
s = (si)1≤i≤n ∈ IRn+;∃ y ∈ A such that

si ≥ h(xi, yi) for every i = 1, . . . , n
}
.

Denote by VA(x) the convex hull of UA(x). To measure the “distance” from 0 to
VA(x), let us consider a function ψ on IR with ψ(0) = 0 and such that ψ(t) ≤ t2 if
t ≤ 1 and ψ(t) ≥ t if t ≥ 1. Then, let

ϕc,h,ψA (x) = inf

{ n∑

i=1

ψ(si); s = (si)1≤i≤n ∈ VA(x)

}
.

The metric ϕc thus simply corresponds to h(ω, ω′) = 1 if ω 6= ω′ and ψ(t) = t2.
Again by induction on the dimension, M. Talagrand [Ta16] then establishes a general
form of Theorem 3.2. He shows that, for some constant α > 0,

∫
exp
(
αϕc,h,ψA

)
≤ exp

(
θ
(
P (A)

))

under various conditions connecting µ, h and ψ to the function θ of the probability
of A. The proof is of course more involved due to the level of generality.

This abstract study of isoperimetry and concentration in product spaces is mo-
tivated by the large number of applications, both in theoretical and more applied
probabilistic topics proposed today by M. Talagrand [Ta16]. Most often, the preced-
ing inequalities allow one to establish a concentration inequality once an appropriate
mean or median is known. To briefly present such an example of application, let us
deal with first passage time in percolation theory. Let G = (V, E) be a graph with
vertices V and edges E . Let, on some probability space (Ω,A, IP), (Xe)e∈E be a fam-
ily of nonnegative independent and identically distributed random variables with
the same distribution as X. Xe represents the passage time through the edge e. Let
T be a family of (finite) subsets of E , and, for T ∈ T , set XT =

∑
e∈T Xe. If T is

made of contiguous edges, XT represents the passage time through the path T . Set
ZT = infT∈T XT and D = supT∈T Card(T ), and let m be a median of ZT . As a
corollary of his penalty theorems, M. Talagrand [Ta16] proved the following result.

Theorem 3.4. There exists a numerical constant c > 0 such that, if IE(ecX) ≤ 2,
for every r ≥ 0,

IP
(
|ZT −m| ≥ r

)
≤ exp

(
−c min

(r2
D
, r
))

.

When V is ZZ2 and E the edges connecting two adjacent points, and when
T = Tn is the set of all selfavoiding paths connecting the origin to the point (0, n),
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H. Kesten [Ke] showed that, when 0 ≤ X ≤ 1 almost surely and IP(X = 0) < 1
2

(percolation), one may reduce, in ZT , to paths with length less than some multiple
of n. Together with this result, Theorem 3.4 indicates that

IP
(
|ZTn

−m| ≥ r
)
≤ 5 exp

(
− r2

Cn

)

for every r ≤ n/C where C > 0 is a constant independent of n. This result strength-
ens the previous estimate by H. Kesten [Ke] which was of the order of r/C

√
n in

the exponent and the proof of which was based on martingale inequalities.
Let us mention to conclude a further application of these methods to spin

glasses. Consider a sequence (εi)i∈IN of independent symmetric random variables
taking values ±1. Each εi represents the spin of particule i. Consider then interac-
tions Hij , i < j, between spins. For some parameter β > 0 (that plays the role of
the inverse of the temperature), the so-called partition function is defined by

Zn = Zn(β) = IEε

(
exp

(
β√
n

∑

1≤i<j≤n
Hijεiεj

))
, n ≥ 2,

where IEε is integration with respect to the ε′is. In the model we study, the inter-
actions Hij are random and the Hij ’s will be assumed independent and identically
distributed. We assume that, for every i < j,

IE(Hij) = IE(H3
ij) = 0, IE(H2

ij) = 1,

and

IE
(
exp(±Hij)

)
≤ 2

(for normalization purposes). The typical example is of course the example of a
standard Gaussian sequence. In this case, it was shown in [A-L-R] and [C-N] that
for β < 1, the sequence

logZn −
β2n

4
, n ≥ 2,

converges in distribution to a (nonstandard) centered Gaussian variable. Of equal
interest, but of rather different nature, is a concentration result of logZn around
β2n
4

for n fixed, that M. Talagrand deduces from its penalty theorems [Ta16].

Theorem 3.5. There is a numerical constant C > 1 such that for 0 ≤ r ≤ n/C and
β < 1,

IP

{∣∣∣∣logZn −
β2n

4

∣∣∣ ≥ C

(
r +

(
log

C

1− β2

)1/2)√
n

}
≤ 4e−r

2

.

In particular,

− C√
n

(
log

C

1− β2

)1/2

≤ 1

n
IE(logZn)−

β2

4
≤ C

n
.
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In case the interactions Hij , i < j, are independent standard Gaussian, The-
orem 3.5 immediately follows from the Gaussian concentration inequalities. Let in-
deed, on IRk, k = (n(n− 1)/2,

f(x) = log IEε

(
exp

(
β√
n

∑

1≤i<j≤n
xijεiεj

))
, x = (xij)1≤i<j≤n .

It is easily seen that ‖f‖Lip ≤ β
√

(n− 1)/2 so that, by (2.9), for every r ≥ 0,

(3.12) IP
{∣∣logZn − IE(logZn)

∣∣ ≥ r
}
≤ 2 exp

(
− r2

β2(n− 1)

)
.

Now IE(logZn) ≤ log IE(Zn) = β2(n− 1)/4. Conversely, it may easily be shown (cf.
[Ta16]) that

(3.13) IE(Z2
n) =

(
IE(Zn)

)2
e−β

2/2IE

(
exp

(
β2

2n

( n∑

i=1

εi

)2))
.

In particular (using the subgaussian inequality for sums of Rademacher random
variables [L-T2], p. 90), if β < 1,

IE(Z2
n) ≤

3

1− β2

(
IE(Zn)

)2
.

Hence, by the Paley-Zygmund inequality ([L-T2], p. 92),

IP
{
Zn ≥

1

2
IE(Zn)

}
≥
(
IE(Zn)

)2

4IE(Z2
n)

≥ 1− β2

12
.

Assume first that r = log( 1
2 IE(Zn))− IE(logZn) > 0. Then, by (3.12) applied to this

r,
1− β2

12
≤ IP

{
logZn ≥ log

(1

2
IE(Zn)

)}

≤ IP
{
logZn ≥ IE(logZn) + r

}
≤ 2 exp

(
− r2

β2(n− 1)

)

so that

r ≤ √
n

(
log

24

1− β2

)1/2

.

Hence, in any case,

β2(n− 1)

4
≥ IE(logZn) ≥ log

(1

2
IE(Zn)

)
−
√
n

(
log

24

1− β2

)1/2

≥ β2(n− 1)

4
− 2

√
n

(
log

24

1− β2

)1/2



37

and the theorem follows in this case.
Note that, by (3.12) and the Borel-Cantelli lemma, for any β > 0,

lim
n→∞

∣∣∣ 1
n

logZn −
1

n
IE(logZn)

∣∣∣ = 0

almost surely. In particular,

0 ≤ lim sup
n→∞

1

n
logZn ≤

β2

4

almost surely. This supports the conjecture that 1
n

logZn should converge in an
appropriate sense for every β > 0 (cf. [A-L-R] and [Co] for precise bounds using
different techniques).

As we have seen, the application to probability in Banach spaces is one main
topic in which these isoperimetric and concentration inequalities for product mea-
sures prove all their strength and efficiency. Besides, M. Talagrand has thus shown
how these tools may be used in a variety of problems (random subsequences, random
graphs, percolation, geometric probability, spin glasses...). We refer the interested
reader to his important contribution [Ta16].

Notes for further reading. As already mentioned, the interested reader may find
in the book [L-T2] an extensive description of the application of the isoperimetric
inequalities for product measures to probability in Banach spaces (integrability of
the norm of sums of independent Banach space valued random variables, strong
limit theorems such as laws of large numbers and laws of the iterated logarithm...).
Sharper bounds for empirical processes using these methods, and based on Gaus-
sian ideas, are obtained in [Ta13]. The recent paper [Ta16] produces new fields of
potential interest for applications of these ideas. [Ta17] provides further sharpenings
with approximations by very many points.
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4. INTEGRABILITY AND LARGE DEVIATIONS

OF GAUSSIAN MEASURES

In this chapter, we make use of the isoperimetric and concentration inequalities of
Chapters 1 and 2 to study the integrability properties of functionals of a Gaussian
measure as well as large deviation statements. In particular, we will only use in
this study the concentration inequalities which were obtained by rather elementary
arguments in Chapter 2 so that the results presented here actually proceed from
a very simple scheme. We first establish the, by now classical, strong integrability
theorems of norms of Gaussian measures. In a second part, we present, on the
basis of the Gaussian isoperimetric and concentration inequalities, a large deviation
theorem for Gaussian measures without topology. We conclude this chapter with a
large deviation statement for the Ornstein-Uhlenbeck process.

A Gaussian measure µ on a real separable Banach space E equipped with its
Borel σ-algebra B and with norm ‖ · ‖ is a Borel probability measure on (E,B) such
that the law of each continuous linear functional on E is Gaussian. Throughout this
work, we only consider centered Gaussian measures or random variables. Although
the study of the integrability properties may be developed in a single step from
the isoperimetric or concentration inequalities of Chapters 1 and 2, we prefer to
decompose the procedure, for pedagogical reasons, in two separate arguments.

Let thus µ be a centered Gaussian measure on (E,B). We first claim that

(4.1) σ = sup
ξ∈E∗,‖ξ‖≤1

(∫
〈ξ, x〉2dµ(x)

)1/2

<∞.

Indeed, if we denote by j the injection map from E∗ into L2(µ) = L2(E,B, µ; IR),
‖j‖ = σ and j is bounded by the closed graph theorem. Alternatively, let m > 0
be such that µ(x; ‖x‖ ≤ m) ≥ 1

2
. Then, for every element ξ in E∗ with ‖ξ‖ ≤ 1,

µ(x; |〈ξ, x〉| ≤ m) ≥ 1
2 . Now, under µ, 〈ξ, x〉 is Gaussian with variance

∫
〈ξ, x〉2dµ(x).

Since 2[1− Φ( 1
2
)] > 1

2
, it immediately follows that (

∫
〈ξ, x〉2dµ(x))1/2 ≤ 2m.

Since E is separable, the norm ‖ · ‖ on E may be described as a supremum over
a countable set (ξn)n≥1 of elements of the unit ball of the dual space E∗, that is,
for every x in E,

‖x‖ = sup
n≥1

〈ξn, x〉.
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In particular, the norm ‖ · ‖ can freely be used as a measurable map on (E,B). Let
Ξ = {ξ1, . . . , ξn} be a finite subset of (ξn)n≥1. Denote by Γ = M tM the (semi-)
positive definite covariance matrix of the Gaussian vector (〈ξ1, x〉, . . . , 〈ξn, x〉) on
IRn. This random vector has the same distribution as MΛ where Λ is distributed
according to the canonical Gaussian measure γn. Let then f : IRn → IR be defined
by

f(z) = max
1≤i≤n

M(z)i, z = (z1, . . . , zn) ∈ IRn.

It is easily seen that the Lipschitz norm ‖f‖Lip of f is less than or equal to the
norm ‖M‖ of M as an operator from IRn equipped with the Euclidean norm into
IRn with the supnorm, and that furthermore this operator norm ‖M‖ is equal, by
construction, to

max
1≤i≤n

(∫
〈ξi, x〉2 dµ(x)

)1/2

≤ σ.

Therefore, inequality (2.8) applied to this Lipschitz function f yields, for every r ≥ 0,

(4.2) µ

(
x; sup

ξ∈Ξ
〈ξ, x〉 ≥

∫
sup
ξ∈Ξ

〈ξ, x〉dµ(x) + r

)
≤ exp

(
− r2

2σ2

)
.

The same inequality applied to −f yields

(4.3) µ

(
x; sup

ξ∈Ξ
〈ξ, x〉+ r ≤

∫
sup
ξ∈Ξ

〈ξ, x〉dµ(x)

)
≤ exp

(
− r2

2σ2

)
.

Let then r0 be large enough so that exp(−r20/2σ2) < 1
2 . Let also m be large enough

in order that µ(x; ‖x‖ ≤ m) ≥ 1
2
. Intersecting this probability with the one in (4.3)

for r = r0, we see that ∫
sup
ξ∈Ξ

〈ξ, x〉 dµ(x) ≤ r0 +m.

Since m and r0 have been chosen independently of Ξ, we already notice that

∫
‖x‖ dµ(x) <∞.

Now, one can use monotone convergence in (4.2) and thus one obtains that, for
every r ≥ 0,

(4.4) µ
(
x; ‖x‖ ≥

∫
‖x‖dµ(x) + r

)
≤ e−r

2/2σ2

.

Note that an entirely similar result may be obtained exactly in the same way (even
simpler) from the concentration inequality (2.4) around the median of a Lipschitz
function. As an immediate consequence of (4.4), we may already state the basic
theorem about the integrability properties of norms of Gaussian measures. The
lower bound and necessity part easily follow from the scalar case. As we have seen
in Chapter 2, the two parameters

∫
‖x‖dµ(x) and σ in inequality (4.4) may be very
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different so that this inequality is a much stronger result than the following well-
known consequence.

Theorem 4.1. Let µ be a centered Gaussian measure on a separable Banach space
E with norm ‖ · ‖. Then

lim
r→∞

1

r2
log µ

(
x; ‖x‖ ≥ r

)
= − 1

2σ2
.

In other words,

∫
exp
(
α‖x‖2

)
dµ(x) <∞ if and only if α <

1

2σ2
.

The question of the integrability (actually only the square integrability) of the
norm of a Gaussian measure was first raised by L. Gross [Gr1], [Gr2]. In 1969, A. V.
Skorohod [Sk] was able to show that

∫
exp(α‖x‖) dµ(x) <∞ (for every α > 0) using

the strong Markov property of Brownian motion. The existence of some α > 0 for
which

∫
exp(α‖x‖2) dµ(x) < ∞ was then established independently by X. Fernique

[Fe2] and H. J. Landau and L. A. Shepp [L-S] (with a proof already isoperimetric
in nature). It may also be shown to follow from Skorokod’s early result. The best
possible value for α was first obtained in [M-S]. Recently, S. Kwapień mentioned to
me that J.-P. Kahane, back in 1964 [Ka1] (cf. [Ka2]), proved an inequality on norms
of Rademacher series which, together with a simple central limit theorem argument,
already implied that

∫
exp(α‖x‖) dµ(x) <∞ for every α > 0.

From inequality (4.4), we may also mention the equivalence of all moments of
norms of Gaussian measures: for every 0 < p, q <∞, there exists a constant Cp,q > 0
only depending on p and q such that

(4.5)

(∫
‖x‖p dµ(x)

)1/p

≤ Cp,q

(∫
‖x‖q dµ(x)

)1/q

.

For the proof, simply integrate by parts inequality (4.4) together with the fact that
σ ≤ Cq(

∫
‖x‖q dµ(x))1/q for every q > 0 by the one-dimensional equivalence of

Gaussian moments. This yields (4.5) for every q ≥ 1. When 0 < q ≤ 1, simply note

that if m = (2C2,1)
2/q
(∫
‖x‖qdµ(x)

)1/q
,

∫
‖x‖dµ(x) ≤ m+ µ

(
x; ‖x‖ ≥ m

)1/2
(∫

‖x‖2 dµ(x)

)1/2

≤ m+ C2,1µ
(
x; ‖x‖ ≥ m

)1/2
∫
‖x‖dµ(x)

≤ 2(2C2,1)
2/q

(∫
‖x‖qdµ(x)

)1/q

since C2,1µ(x; ‖x‖ ≥ m)1/2 ≤ 1
2 . Note that Cp,2 (for example) is of the order of

√
p

as p goes to infinity. We will come back to this remark in the last chapter where we
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will relate (4.5) to hypercontractivity. It is conjectured that C2,1 =
√
π/2 (that is,

the constant of the real case). S. Szarek recently noticed that if conjecture (1.11)
holds, then the best possible Cp,q are given by the real case.

The preceding integrability properties may also be applied in the context of
almost surely bounded Gaussian processes. Let X = (Xt)t∈T be a centered Gaus-
sian process indexed by a set T on some probability space (Ω,A, IP) such that
supt∈T Xt(ω) < ∞ for almost all ω in Ω (or supt∈T |Xt(ω)| < ∞, which, by sym-
metry, is equivalent to the preceding, at least if the process is separable). Then, the
same proof as above shows in particular that

sup
{
IE
(
sup
t∈U

Xt

)
;U finite in T

}
<∞.

We will actually take this as the definition of an almost surely bounded Gaussian
process in Chapter 6. Under a separability assumption on the process, one can
actually formulate the analogue of Theorem 4.1 in this context. Assume there exists
a countable subset S of T such that the set {ω; supt∈T Xt 6= supt∈S Xt} is negligible.
Set ‖X‖ = supt∈S Xt. Then, provided ‖X‖ <∞ almost surely,

IE
(
exp
(
α‖X‖2

))
<∞ if and only if α <

1

2σ2

with σ2 = supt∈S IE(X2
t ) (= supt∈T IE(X2

t )).
As still another remark, notice that the proof of Theorem 4.1 also shows that

whenever X = (X1, . . . , Xn) is a centered Gaussian random vector in IRn, then

var
(

max
1≤i≤n

Xi

)
≤ max

1≤i≤n
var(Xi).

(Use again the Lipschitz map f(z) = max1≤i≤nM(z)i where Γ = M tM is the
covariance matrix of X with however (2.4) instead of (2.8).) This inequality may
however be deduced directly from the Poincaré type inequality

∫ ∣∣f −
∫
fdγn

∣∣2dγn ≤
∫
|∇f |2dγn (≤ ‖f‖2

Lip)

which is elementary (by an expansion in Hermite polynomials for example).

Our aim will now be to extend the isoperimetric and concentration inequali-
ties to the setting of an infinite dimensional Gaussian measure µ as before. Let us
mention however before that the fundamental inequalities are the ones in finite di-
mension and that the infinite dimensional extensions we will present actually follow
in a rather classical and straightforward manner from the finite dimensional case.
The main tool will be the concept of abstract Wiener space and reproducing kernel
Hilbert space which will define the isoperimetric neighborhoods or enlargements in
this framework. We follow essentially C. Borell [Bo3] in the construction below.

Let µ be a mean zero Gaussian measure on a real separable Banach space E.
Consider then the abstract Wiener space factorization [Gr1], [B-C], [Ku], [Bo3] (for
recent accounts, cf. [Bog], [Lif3]),

E∗
j−→ L2(µ)

j∗−→ E.
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First note that since E is separable and µ is a Borel probability measure on E, µ is
Radon, that is, for every ε > 0 there is a compact set K in E such that µ(K) ≥ 1−ε.
Let (Kn)n∈IN be a sequence of compact sets such that µ(Kn) → 1. If ϕ is an element
of L2(µ), j∗(ϕIKn

) belongs to E since it may be identified with the expectation,
in the strong sense,

∫
Kn
xϕ(x)dµ(x). Now, the sequence (

∫
Kn
xϕ(x)dµ(x))

n∈IN
is

Cauchy in E since,

sup
ξ∈E∗,‖ξ‖≤1

〈ξ,
∫
Kn
xϕ(x)dµ(x)−

∫
Km

xϕ(x)dµ(x)〉 ≤ σ

(∫
ϕ2|IKn

−IKm
|dµ
)1/2

→ 0.

It therefore converges in E to the weak integral
∫
xϕ(x)dµ(x) = j∗(ϕ) ∈ E.

Define now the reproducing kernel Hilbert spaceH of µ as the subspace j∗(L2(µ))
of E. Since j(E∗)⊥ = Ker(j∗), j∗ restricted to the closure E∗2 of E∗ in L2(µ)

is linear and bijective onto H. For simplicity in the notation, we set below h̃ =
(j∗|E∗

2
)−1(h). Under µ, h̃ is Gaussian with variance |h|2. Note that σ of (4.1) is then

also supx∈K ‖x‖ where K is the closed unit ball of H for its Hilbert space scalar
product given by

〈j∗(ϕ), j∗(ψ)〉H = 〈ϕ, ψ〉L2(µ), ϕ, ψ ∈ L2(µ).

In particular, for every x in H, ‖x‖ ≤ σ|x| where |x| = |x|H = 〈x, x〉1/2H . Moreover,
K is a compact subset of E. Indeed, if (ξn)n∈IN is a sequence in the unit ball of
E∗, there is a subsequence (ξn′)n′∈IN which converges weakly to some ξ in E∗. Now,
since the ξn are Gaussian under µ, ξn′ → ξ in L2(µ) so that j is a compact operator.
Hence j∗ is also a compact operator which is the claim.

For γn the canonical Gaussian measure on IRn (equipped with some arbitrary
norm), it is plain that H = IRn with its Euclidean structure, that is K is the
Euclidean unit ball B(0, 1). If X = (X1, . . . , Xn) is a centered Gaussian measure
on IRn with nondegenerate covariance matrix Γ = M tM , it is easily seen that the
unit ball K of the reproducing kernel Hilbert space associated to the distribution
of X is the ellipsoid M(B(0, 1)). As another example, let us mention the classical
Wiener space associated with Brownian motion, say on [0,1] and with real values for
simplicity. Let thus E be the Banach space C0([0, 1]) of all real continuous functions
x on [0,1] vanishing at the origin equipped with the supnorm (the Wiener space)
and let µ be the distribution of a standard Brownian motion, or Wiener process,
W = (W (t))t∈[0,1] starting at the origin (the Wiener measure). If m is a finitely

supported measure on [0,1], m =
∑
i ciδti , ci ∈ IR, ti ∈ [0, 1], clearly h = j∗j(m) is

the element of E given by

h(t) =
∑

i

ci(ti ∧ t), t ∈ [0, 1];

it satisfies ∫ 1

0

h′(t)2 dt =

∫
〈m,x〉2dµ(x) = |h|2H.
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By a standard extension, the reproducing kernel Hilbert space H associated to the
Wiener measure µ on E may then be identified with the Cameron-Martin Hilbert
space of the absolutely continuous elements h of C0([0, 1]) such that

∫ 1

0

h′(t)2 dt <∞.

Moreover, if h ∈ H, h̃ = (j∗|E∗

2
)−1(h) =

∫ 1

0
h′(t)dW (t). While we equipped the

Wiener space C0([0, 1]) with the uniform topology, other choices are possible. Let F
be a separable Banach space such that the Wiener process W belongs almost surely
to F . Using probabilistic notation, we know from the previous abstract Wiener
space theory that if ϕ is a real valued random variable with IE(ϕ2) < ∞, then
h = IE(Wϕ) ∈ F . Since IP{W ∈ F ∩C0([0, 1])} = 1, it immediately follows that the
Cameron-Martin Hilbert space may be identified with a subset of F and is also the
reproducing kernel Hilbert space of Wiener measure on F . For h in the Cameron-

Martin space, h̃ = (j∗|F∗

2
)−1(h) may be identified with

∫ 1

0
h′(t)dW (t) as soon as

there is a sequence (ξn)n∈IN in F ∗ such that

IE

(∣∣∣∣
∫ 1

0

h′(t)dW (t)− 〈ξn,W 〉
∣∣∣∣
2)

→ 0.

This is the case if, for every t ∈ [0, 1], there is (ξn)n∈IN in F ∗ with

IE
(∣∣W (t)− 〈ξn,W 〉

∣∣2)→ 0.

Examples include the Lebesgue spaces Lp([0, 1]), 1 ≤ p < ∞, or the Hölder spaces
(see below). Actually, since the preceding holds for the L1-norm, this will be the case

for a norm ‖·‖ on C0([0, 1]) as soon as, for some constant C > 0, ‖x‖ ≥ C
∫ 1

0
|x(t)|dt

for every x in C0([0, 1]).
The next proposition is a useful series representation of Gaussian measures

and random vectors which can be used efficiently in proofs by finite dimensional
approximation. This proposition puts forward the fundamental Gaussian measur-
able structure consisting of the canonical Gaussian product measure on IRIN with
reproducing kernel Hilbert space `2.

Proposition 4.2. Let µ be as before. Let (gi)i≥1 denote an orthonormal basis of

the closure E∗2 of E∗ in L2(µ) and set ei = j∗(gi), i ≥ 1. Then (ei)i≥1 defines

an orthonormal basis of H and the series X =
∑∞
i=1 giei converges in E µ-almost

everywhere and in every Lp and is distributed as µ.

Proof. Since µ is a Radon measure, the space L2(µ) is separable and E∗2 consists of
Gaussian random variables on the probability space (E,B, µ). Hence, (gi)i≥1 defines
on this space a sequence of independent standard Gaussian random variables. The
sequence (ei)i≥1 is clearly a basis in H. Recall from Theorem 4.1 that the integral∫
‖x‖dµ(x) is finite. Denote then by Bn the σ-algebra generated by g1, . . . , gn. It

is easily seen that the conditional expectation of the identity map on (E, µ) with
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respect to Bn is equal to Xn =
∑n
i=1 giei. By the vector valued martingale con-

vergence theorem (cf. [Ne2]), the series
∑∞

i=1 giei converges almost surely. Since∫
‖x‖pdµ(x) <∞ for every p > 0, the convergence also takes place in any Lp-space.

Since moreover

∫
〈ξ,X〉2dµ =

∞∑

i=1

〈ξ, ei〉2 =
∞∑

i=1

〈j(ξ), gi〉2 =

∫
〈ξ, x〉2dµ(x)

for every ξ in E∗, X has law µ. Proposition 4.2 is proved.

According to Proposition 4.2, we use from time to time below more convenient
probabilistic notation and consider (gi)i≥1 as a sequence of independent standard
Gaussian random variables on some probability space (Ω,A, IP) and X as a random
variable on (Ω,A, IP) with values in E and law µ.

As a consequence of Proposition 4.2, note that the closure H of H in E coin-
cides with the support of µ (for the topology given by the norm on E). Indeed, by
Proposition 4.2, supp(µ) ⊂ H. Conversely, it suffices to prove that µ(B(h, η)) > 0
for every h in H and every η > 0 where B(h, η) is the ball in E with center h
and radius η. By the Cameron-Martin translation formula (see below), it suffices to
prove it for h = 0. Now, for every a ∈ E, by symmetry and independence,

µ
(
B(a, η)

)2
= µ

(
x; ‖x− a‖ ≤ η

)
µ
(
x; ‖x+ a‖ ≤ η

)

≤ µ⊗ µ
(
(x, y);

∥∥(x− a) + (y + a)
∥∥ ≤ 2η

)

= µ
(
B(0, η

√
2)
)

since x+y under µ⊗µ is distributed as
√

2x under µ. Now, assume that µ(B(h, η0)) =
0 for some η0 > 0. Since µ is Radon, there is a sequence (an)n∈IN in E such that

µ
(
x; ∃n, ‖x− an‖ ≤ η0/

√
2
)

= 1.

Then,

1 ≤
∑

n

µ
(
B(an, η0/

√
2)
)
≤
∑

n

µ
(
B(0, η0)

)1/2
= 0

which is a contradiction (cf. also [D-HJ-S]).
To complete this brief description of the reproducing kernel Hilbert space of

a Gaussian measure, let us mention the dual point of view more commonly used
by analysts on Wiener spaces (see [Ku], [Bog] for further details). Let H be a real
separable Hilbert space with norm | · | and let e1, e2, . . . be an orthormal basis of H.
Define a simple additive measure ν on the cylinder sets in H by

ν
(
x ∈ H;

(
〈x, e1〉, . . . , 〈x, en〉

)
∈ A

)
= γn(A)

for all Borel sets A in IRn. Let ‖ · ‖ be a measurable seminorm on H and denote by
E the completion of H with respect to ‖·‖. Then (E, ‖·‖) is a real separable Banach
space. If ξ ∈ E∗, we consider ξ|H : H → IR that we identify with an element h in
H = H∗ (in our language, h = j∗j(ξ)). Let then µ be the (σ-additive) extension of ν
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on the Borel sets of E. In particular, the distribution of ξ ∈ E∗ under µ is Gaussian
with mean zero and variance |h|2. Therefore, µ is a Gaussian Radon measure on
E with reproducing kernel Hilbert space H. With respect to this approach, our
construction priviledges the point of view of the measure.

We are now ready to state and prove the isoperimetric inequality in (E,H, µ).
As announced, the isoperimetric neighborhoods Ar, r ≥ 0, of a set A in E will be
understood in this setting as the Minkowski sum A+ rK = {x+ ry;x ∈ A, y ∈ K}
where we recall that K is the unit ball of the reproducing kernel Hilbert space H
associated to the Gaussian measure µ. In this form, the result is due to C. Borell
[Bo2].

Theorem 4.3. Let A be a Borel set in E such that µ(A) ≥ Φ(a) for some real
number a. Then, for every r ≥ 0

µ∗(A+ rK) ≥ Φ(a+ r).

It might be worthwhile mentioning that if the support of µ is infinite dimen-
sional, µ(H) = 0 so that the infinite dimensional version of the Gaussian isoperi-
metric inequality might be somewhat more surprising than its finite dimensional
statement. [The use of inner measure in Theorem 4.3 is not stricly necessary since
at it is known from the specialists, somewhat deep arguments from measure theory
may be used to show that A + rK is actually µ-measurable in this setting. These
arguments are however completely out of the scope of this work, and anyway, The-
orem 4.3 as stated is the best possible inequality one may hope for. We therefore do
not push further in these measurability questions and use below inner measure. Of
course, for example, if A is closed, A + rK is also closed (since K is compact) and
thus measurable.]

Proof. As announced, it is based on a classical finite dimensional approximation
procedure. We use the series representation X =

∑∞
i=1 giei of Proposition 4.2 and,

accordingly, probabilistic notations. We may assume that −∞ < a < +∞. Let r ≥ 0
be fixed. Let also ε > 0. Since µ is a Radon measure, there exists a compact set
K ⊂ A such that

IP{X ∈ K} = µ(K) ≥ Φ(a− ε).

For every η > 0, letKη = {x ∈ E; infy∈K ‖x−y‖ ≤ η}. RecallXn =
∑n
i=1 giei. Since

IP{‖X −Xn‖ > η} → 0, for some n0 and every n ≥ n0, IP{Xn ∈ Kη} ≥ Φ(a− 2ε)
and

IP{X ∈ K3η + rK} ≥ IP{Xn ∈ K2η + rK} − ε.

Now, let Kn be the unit ball of the reproducing kernel Hilbert space of the (finite
dimensional) Gaussian random vector Xn, or rather of its distribution on E. Kn
consists of those elements in E of the form IE(Xnϕ) with ‖ϕ‖2 ≤ 1. Clearly,

∥∥IE(Xϕ)− IE(Xnϕ)
∥∥ ≤

(
IE‖X −Xn‖2

)1/2 → 0
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independently of ϕ, ‖ϕ‖2 ≤ 1. Hence, for some n1 ≥ n0, and every n ≥ n1,

IP{X ∈ K3η + rK} ≥ IP{Xn ∈ Kη + rKn} − ε.

Let Q be the map from IRn into E defined by Q(z) =
∑n
i=1 ziei, z = (z1, . . . , zn).

Therefore

γn
(
Q−1(Kη)

)
= IP{Xn ∈ Kη} ≥ Φ(a− 2ε).

Since the distribution of Xn is the image by Q of γn and since similarly Kn is the
image by Q of the Euclidean unit ball, it follows from Theorem 1.3 that

IP{Xn ∈ Kη + rKn} = γn
((
Q−1(Kη)

)
r

)
≥ Φ(a− 2ε+ r).

Summarizing, for every η > 0,

µ(K3η + rK) ≥ Φ(a− 2ε+ r)− ε.

Since K and K are compact in E, letting η decrease to zero yields

µ∗(A+ rK) ≥ µ(K + rK) ≥ Φ(a− 2ε+ r)− ε.

Since ε > 0 is arbitrary, the theorem is proved.

The approximation procedure developed in the proof of Theorem 4.3 may be
used exactly in the same way on the basis of inequality (2.15) to show that, for every
r ≥ 0,

(4.6) µ∗(A+ rK) ≥ 1− exp

(
−r

2

2
+ rδ

(
µ(A)

))

where we recall that

δ(v) =

∫ ∞

0

min
(
1− v, e−t

2v2/2
)
dt, 0 ≤ v ≤ 1.

The point here is that inequality (2.15) (and thus also inequality (4.6)) was obtained
at the very cheap price of Proposition 2.1. In what follows, inequality (4.6) will be
good enough for almost all the applications we have in mind.

Theorem 4.3, or inequality (4.6), of course allows us to recover the integrability
properties described in Theorem 4.1. For example, if f : E → IR is measurable and
Lipschitz in the direction of H, that is

(4.7)
∣∣f(x+ h)− f(x)

∣∣ ≤ |h| for all x ∈ E, h ∈ H,

and if m is median of f for µ, exactly as in the finite dimensional case (2.4),

(4.8) µ(f ≥ m+ r) ≤ 1− Φ(r) ≤ e−r
2/2
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for every r ≥ 0. In the same way, a finite dimensional argument on (2.8) shows that∫
fdµ exists and that, for all r ≥ 0,

(4.9) µ
(
f ≥

∫
fdµ+ r

)
≤ e−r

2/2.

Indeed, assume first that f is bounded. We follow Proposition 4.2 and its notation.
Let fn, n ≥ 1, be the conditional expectation of f with respect to Bn. Define
f̃n : IRn → IR by

f̃n(z) =

∫
f

( n∑

i=1

ziei + y

)
dµn(y), z = (z1, . . . , zn) ∈ IRn,

where µn is the distribution of
∑∞
i=n+1 giei. Then fn under µ has the same distri-

bution as f̃n under γn. Moreover, it is clear by (4.7) that f̃n is Lipschitz in the usual

sense on IRn with ‖f̃n‖Lip ≤ 1. Therefore, by (2.8) applied to f̃n, for every r ≥ 0,

µ
(
fn ≥

∫
fndµ+ r

)
≤ e−r

2/2.

Letting n tend to infinity, we see that (4.9) is satisfied for bounded functionals f on
E satisfying (4.7). When f is not bounded, set, for every integer N ,

fN = min
(
max(f,−N), N

)
.

Then fN still satisfies (4.7) for each N so that

µ
(
fN ≥

∫
fNdµ+ r

)
≤ e−r

2/2

for every r ≥ 0. Of course, the same result holds for |fN |. Let then m be such that
µ(|f | ≤ m) ≥ 3

4
. There exists N0 such that for every N ≥ N0, µ(|fN | ≤ m+1) ≥ 1

2
.

Let r0 ≥ 0 be such that e−r
2
0/2 < 1

2 . Together with the preceding inequality for |fN |,
we thus get that for every N ≥ N0,

∫
|fN |dµ ≤ m+ 1 + r0.

Moreover, µ(|fN | ≥ m + 1 + r0 + r) ≤ e−r
2/2, r ≥ 0. Hence, in particular, the

supremum supN
∫
|fN |2dµ is finite. The announced claim (4.9) now easily follows

by uniform integrability.
Let us also mention that the preceding inequalities (4.8) and (4.9) may of course

be applied to f(x) = ‖x‖, x ∈ E, since, as we have seen,

∣∣‖x+ h‖ − ‖x‖
∣∣ ≤ ‖h‖ ≤ σ|h|, x ∈ E, h ∈ H.

It should be noticed that the H-Lipschitz hypothesis (4.7) has recently been
shown [E-S] to be equivalent to the fact that the Malliavin derivative Df of f
exists and satisfies ‖|Df |H‖∞ ≤ 1. (Due to the preceding simple arguments, the
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hypothesis that f be in L2(µ) in the paper [E-S] is easily seen to be superfluous.)
But actually, that (4.7) holds when ‖|Df |H‖∞ ≤ 1 is the easy part of the argument
so that the preceding result is as general as possible. One could also prove (4.9)
along the lines of Proposition 2.1 in infinite dimension with the Ornstein-Uhlenbeck
semigroup associated to µ. One however runs into the question of differentiability
in infinite dimension (Gross-Malliavin derivatives) that is not really needed here.

In the preceding spirit, it might be worthwhile to briefly describe some related
inequalities due to B. Maurey and G. Pisier [Pi1]. Let f be of class C1 on IRn with
gradient ∇f . Let furthermore V be a convex function on IR. To avoid integrability
questions, assume first that f is bounded. By Jensen’s inequality,

∫
V
(
f −

∫
fdγn

)
dγn ≤

∫ ∫
V
(
f(x)− f(y)

)
dγn(x)dγn(y).

Now, for x, y in IRn, and every real number θ, set

x(θ) = x sin θ + y cos θ, x′(θ) = x cos θ − y sin θ.

We have

f(x)− f(y) =

∫ π/2

0

d

dθ
f
(
x(θ)

)
dθ =

∫ π/2

0

〈∇f
(
x(θ)

)
, x′(θ)〉dθ.

Hence, using Jensen’s inequality one more time but now with respect to the variable
θ,

∫
V
(
f −

∫
fdγn

)
dγn ≤

2

π

∫ π/2

0

∫ ∫
V
(π

2
〈∇f

(
x(θ)

)
, x′(θ)〉

)
dγn(x)dγn(y)dθ.

By the fundamental rotational invariance of Gaussian measures, for any θ, the couple
(x(θ), x′(θ)) has the same distribution as the original independent couple (x, y).
Therefore, we obtained that

(4.10)

∫
V
(
f −

∫
fdγn

)
dγn ≤

∫ ∫
V
(π

2
〈∇f(x), y〉

)
dγn(x)dγn(y).

We leave it to the interested reader to properly extend this type of inequality to un-
bounded functions. It also easily extends to infinite dimensional Gaussian measures
µ. Indeed, let f be smooth enough, more precisely differentiable in the direction of
H or in the sense of Gross-Malliavin (cf. e.g. [Bel], [Wa], [Nu]...). With the same
notation as in the proof of (4.9),

∇f̃n = (De1f, . . . , Den
f),

where Dhf is the derivative of f in the direction of h ∈ H. Therefore, for every n,

∫
V
(
fn −

∫
fndµ

)
dµ ≤

∫ ∫
V

(
π

2

n∑

i=1

yiDei
f(x)

)
dµ(x)dγn(y).
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Hence, by Fatou’s lemma and Jensen’s inequality, (4.10) yields in an infinite dimen-
sional setting that

∫
V
(
f −

∫
fdµ

)
dµ ≤

∫ ∫
V

(
π

2

∞∑

i=1

yiDei
f(x)

)
dµ(x)dγ∞(y)

where γ∞ is the canonical Gaussian product measure on IRIN. If V is an exponential
function eλx, we may perform partial integration in the variable y to get that

∫
exp
[
λ
(
f −

∫
fdµ

)]
dµ ≤

∫
exp

(
λ2π2

4
|Df |2H

)
dµ.

In particular, if f is Lipschitz, we recover in this way an inequality similar to (2.8)
(or (4.9)) with however a worse constant. Inequality (4.10) is however more general
and applies moreover to vector valued functions (cf. [Pi1]).

So far, we only used isoperimetry and concentration in a very mild way for the
application to the integrability properties. As we have seen, there is however a strong
difference between these integrability properties (Theorem 4.1) and, for example,
inequalities (4.4), (4.8) or (4.9). In these inequalities indeed, two parameters, and
not only one, on the Gaussian measure enter into the problem, namely the median
or the mean of the H-Lipschitz map f and its Lipschitz norm (the supremum σ of
weak variances in the case of a norm). These can be very different even in simple
examples.

We now present another application of the Gaussian isoperimetric inequality
due to M. Talagrand [Ta1]. It is a powerful strengthening on Theorem 4.1 that makes
critical use of the preceding comment. (See also [G-K1] for some refinement.) More
on Theorem 4.4 may be found in Chapter 7.

Theorem 4.4. Let µ be a Gaussian measure on E. For every ε > 0, there exists
r0 = r0(ε) such that for every r ≥ r0,

µ
(
x; ‖x‖ ≥ ε+ σr

)
≤ exp

(
−r

2

2
+ εr

)
.

Ehrhard’s inequality (1.8) (or rather its infinite dimensional extension) indicates
that the map F (r) = Φ−1(µ(x; ‖x‖ ≤ r)), r ≥ 0, is concave. While Theorem 4.1
expresses that limr→∞ F (r)/r = 0, Theorem 4.4 yields limr→∞[F (r)− (r/σ)] = 1

σ
.

In other words, the line r/σ is an asymptote at infinity to F . Notice furthermore
that Theorem 4.4 implies (is equivalent to saying) that

∫
exp

(
1

2σ2

(
‖x‖ − ε

)2
)
dµ(x) <∞

for all ε > 0.

Proof. Recall the series X =
∑∞
i=1 giei of Proposition 4.2 which we consider on some

probability space (Ω,A, IP). Let Xn =
∑n
i=1 giei and Xn = X − Xn, n ≥ 1. Let
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ε > 0 be fixed and set A = {x ∈ E; ‖x‖ < ε}. For every r ≥ 0 and every integer
n ≥ 1, we can write

IP
{
‖X‖ ≥ ε+ σr

}
≤ IP{X /∈ A+ rK}
≤ IP

{
|Xn| > r

}
+ IP

{
|Xn| ≤ r,X /∈ A+ rK

}
.

On the set {|Xn| ≤ r}, X /∈ A+ rK implies that

Xn /∈ A+
(
r2 − |Xn|2

)1/2Kn

where Kn is the unit ball of the reproducing kernel Hilbert space associated to the
distribution of Xn. Indeed, if this is not the case,

Xn = a+
(
r2 − |Xn|2

)1/2
hn

for some a ∈ A and hn ∈ Kn. This would imply that

X = Xn +Xn = a+Xn +
(
r2 − |Xn|2

)1/2
hn = a+ k

where, by orthogonality, |k| ≤ r. Therefore,

IP{X /∈ A+ rK} ≤ IP
{
|Xn| > r

}
+ IP

{
|Xn| ≤ r,Xn /∈ A+

(
r2 − |Xn|2

)1/2Kn
}
.

Recall now the function δ of (2.12) or (4.6) and choose n large enough in order that

δ(IP{‖Xn‖ < ε}) ≤ ε. Now, Xn and Xn are independent and |Xn| =
(∑n

i=1 g
2
i

)1/2
.

Hence, by inequality (4.6),

IP
{
|Xn| ≤ r,Xn /∈A+

(
r2 − |Xn|2

)1/2Kn
}

≤
∫

{|Xn|≤r}
exp

(
−1

2

(
r2 − |Xn|2

)
+ ε
(
r2 − |Xn|2

)1/2
)
dIP

≤ Cnr
n exp

(
−r

2

2
+ εr

)

where Cn > 0 only depends on n. In summary,

IP
{
‖X‖ ≥ ε+ σr

}
≤ IP

{ n∑

i=1

g2
i > r2

}
+ Cnr

n exp

(
−r

2

2
+ εr

)

from which the conclusion immediately follows. Theorem 4.4 is established.

We now present some further applications of isoperimetry and concentration
to the study of large deviations of Gaussian measures. As an introduction to these
ideas, we first present the elementary concentration proof, due to S. Chevet [Che],
of the upper bound in the large deviation principle for Gaussian measures.
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Let µ be as before a mean zero Gaussian measure on a separable Banach space
E with reproducing kernel Hilbert space H. For a subset A of E, let

I(A) = inf
{

1
2 |h|2;h ∈ A ∩ H

}

be the classical large deviation rate functional in this setting. Set µε(·) = µ(ε−1(·)),
ε > 0. Let now A be closed in E and take r such that 0 < r < I(A). By the very
definition of I(A),

A ∩
√

2rK = ∅.
Since A is closed and the balls in H are compact in E, there exists η > 0 such that
we still have

A ∩
[√

2rK+ BE(0, η)
]

= ∅
where BE(0, η) is the ball with center the origin and with radius η for the norm ‖ · ‖
in E. Since

lim
ε→0

µ
(
BE(0, ε−1η)

)
= lim
ε→0

µε
(
BE(0, η)

)
= 1,

it is then an immediate consequence of (4.6) (or Theorem 4.3) that for every ε > 0
small enough

µε(A) ≤ µ
([
ε−1

√
2rK+ BE(0, ε−1η)

]c) ≤ exp

(
− r

ε2
+

√
2r

ε

)
.

Therefore, since r < I(A) is arbitrary,

lim sup
ε→0

ε2 logµε(A) ≤ −I(A).

This simple proof may easily be modified to yield some version of the large
deviation theorem with only “measurable operations” on the sets. One may indeed
ask about the role of the topology in a large deviation statement. As we will see, the
isoperimetric and concentration ideas in this Gaussian setting are powerful enough
to state a large deviation principle without any topological operations of closure or
interior.

Let, as before, (E,H, µ) be an abstract Wiener space. If A and B are subsets
of E, and if λ is a real number, we set

λA+B = {λx+ y;x ∈ A, y ∈ B},
A	B = {x ∈ A;x+ B ⊂ A}.

Crucial to the approach is the class V of all Borel subsets V of E such that

lim inf
ε→0

µε(V ) > 0.

Notice that if V ∈ V, then λV ∈ V for every λ > 0. Typically, the balls BE(0, η),
η > 0, for the norm ‖ · ‖ on E belong to V while the balls in the reproducing kernel
Hilbert space H do not (when the support of µ is infinite dimensional). A starlike
subset V of E of positive measure belongs to V.
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In the example of Wiener measure on C0([0, 1]), the balls centered at the origin
for the Hölder norm ‖ · ‖α of exponent α, 0 < α < 1

2 , given by

‖x‖α = sup
0≤s6=t≤1

|x(s)− x(t)|
|s− t|α , x ∈ C0([0, 1]),

do belong to the class V. Actually, the balls of any reasonable norm on Wiener space
for which Wiener measure is Radon are in V. Using the properties of the Brownian
paths, many other examples of elements of V may be imagined (cf. [B-BA-K]).

Provided with the preceding notation, we introduce new rate functionals, on
the subsets of E rather than the points. For a Borel subset A of E, set

r(A) = sup
{
r ≥ 0; ∃V ∈ V, (V + rK) ∩ A = ∅

}

(r(A) = 0 if { } = ∅) and

s(A) = inf
{
s ≥ 0; ∃V ∈ V, (A	 V ) ∩ (sK) 6= ∅

}

(s(A) = ∞ if { } = ∅). The functionals r(·) and s(·) are decreasing for the inclusion.
Furthermore, it is elementary to check that 1

2r(A)2 ≥ I(A) when A is closed in
(E, ‖ · ‖) and that 1

2 s(A)2 ≤ I(A) when A is open. These inequalities correspond to
the choice of a ball BE(0, η) as an element of V in the definitions of r(A) and s(A)
(cf. also the previous elementary proof of the classical large deviation principle).
Let us briefly verify this claim. Assume first that A is closed and let r be such that
0 < r < I(A) (there is nothing to prove if I(A) = 0). Then A∩ rK = ∅ and since A
is closed and K is compact in E, there exists η > 0 such that A∩ (rK+BE(0, η)) is
still empty. Now BE(0, η) ∈ V so that r(A) ≥

√
2r. Since r < I(A) is arbitrary, the

first assertion follows. When A is open, let h be in A∩H (there is nothing to prove
if there is no such h). There exists η > 0 such that BE(h, η) ⊂ A which means that

(
A	 BE(0, η)

)
∩
(
|h|K

)
6= ∅.

Therefore, s(A) ≤ |h| and since h is arbitrary in A ∩ H, 1
2s(A)2 ≤ I(A). It should

be noticed that the compactness of K is only used in the argument concerning the
functional r(·). One may also note that if we restrict (without loss of generality)
the class V to those elements V for which 0 ∈ V , then for any set A, 1

2r(A)2 ≤
I(A) ≤ 1

2
s(A)2. In particular, 1

2
r(A)2 (respectively 1

2
s(A)2) coincide with I(A) if A

is closed (respectively open).
The next theorem [BA-L1] is the main result concerning the measurable large

deviation principle. The proof of the upper bound is entirely similar to the pre-
ceeding sketch of proof of the classical large deviation theorem. The lower bound
amounts to the classical argument based on Cameron-Martin translates. Recall that
the Cameron-Martin translation formula [C-M] (cf. [Ne1], [Ku], [Fe5], [Lif3]...) indi-
cates that, for any h in H, the probability measure µ(h+ ·) is absolutely continuous
with respect to µ with density given by the formula

(4.11) µ(h+ A) = exp

(
−|h|

2

2

)∫

A

exp
(
−h̃
)
dµ
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for every Borel set A in E (where we recall that h̃ = (j∗|E∗

2
)−1(h)).

Theorem 4.5. For every Borel set A in E,

(4.12) lim sup
ε→0

ε2 logµε(A) ≤ − 1
2
r(A)2

and

(4.13) lim inf
ε→0

ε2 logµε(A) ≥ − 1
2s(A)2.

By the preceding comments, this result generalizes the classical large deviations
theorem for the Gaussian measure µ (due to M. Schilder [Sc] for Wiener measure
and to M. Donsker and S. R. S. Varadhan [D-V] in general – see e.g. [Az], [D-S],
[Var]...) which expresses that

(4.14) lim sup
ε→0

ε2 logµε(A) ≤ −I(Ā),

where Ā is the closure of A (in (E, ‖ · ‖)) and

(4.15) lim inf
ε→0

ε2 logµε(A) ≥ −I(Å)

where Å is the interior of A. It is rather easy to find examples of sets A such that
1
2r(A)2 > I(Ā) and 1

2s(A)2 < I(Å). (For example, if we fix the uniform topology
on Wiener space, and if A = {x; ‖x‖α ≥ 1} where ‖ · ‖α is the Hölder norm of index
α, then r(A) > 0 but I(Ā) = 0. (In this case of course, one can simply consider
Wiener measure on the corresponding Hölder space.) More significant examples are
described in [B-BA-K].) Therefore, Theorem 4.5 improves upon the classical large
deviations for Gaussian measures.

Proof of Theorem 4.5. We start with (4.12). Let r ≥ 0 be such that (V +rK)∩A = ∅
for some V in V. Then

µε(A) = µ(ε−1A) ≤ 1− µ∗
(
ε−1V + ε−1rK

)
.

Since V ∈ V, there exists α > 0 such that µ(ε−1V ) ≥ α for every ε > 0 small
enough. Hence, by (4.6) (or Theorem 4.3),

µε(A) ≤ exp

(
− r2

2ε2
+
r

ε
δ(α)

)

from which (4.12) immediately follows in the limit.
As announced, the proof of (4.13) is classical. Let s ≥ 0 be such that

(A	 V ) ∩ (sK) 6= ∅

for some V in V. Therefore, there exists h in H with |h| ≤ s such that h+ V ⊂ A.
Hence, for every ε > 0,

µε(A) = µ(ε−1A) ≥ µ
(
ε−1(h+ V )

)
.
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By Cameron-Martin’s formula (4.11) (one could also use (1.10) in this argument),

µ
(
ε−1(h+ V )

)
= exp

(
−|h|

2

2ε2

)∫

ε−1V

exp

(
− h̃
ε

)
dµ.

Since V ∈ V, there exists α > 0 such that µ(ε−1V ) ≥ α for every ε > 0 small
enough. By Jensen’s inequality,

∫

ε−1V

exp

(
− h̃
ε

)
dµ ≥ µ(ε−1V ) exp

(
−
∫

ε−1V

h̃

ε
· dµ

µ(ε−1V )

)
.

Now, ∫

ε−1V

h̃ dµ ≤
∫
|h̃|dµ ≤

(∫
h̃2dµ

)1/2

= |h|.

We have thus obtained that, for every ε > 0 small enough,

µε(A) ≥ µ
(
ε−1(h+ V )

)
≥ α exp

(
−|h|

2

2ε2
− |h|
αε

)

from which we deduce that

lim inf
ε→0

ε2 logµε(A) ≥ −1

2
|h|2 ≥ −1

2
s2.

The claim (4.13) follows since s may be chosen arbitrary less than s(A). The proof
of Theorem 4.5 is complete.

It is a classical result in the theory of large deviations, due to S. R. S. Varad-
han (cf. [Az], [D-S], [Var]...), that the statements (4.14) and (4.15) on sets may be
translated essentially equivalently on functions. More precisely, if F : E → IR is
bounded and continuous on E,

lim
ε→0

ε2 log

(∫
exp
(
− 1

ε2
F (εx)

)
dµ(x)

)
= − inf

x∈E

(
F (x) + I(x)

)
.

One consequence of measurable large deviations is that it allows us to weaken the
continuity hypothesis into a continuity “in probability”.

Corollary 4.6. Let F : E → IR be measurable and bounded on E and such that,
for every r > 0 and every η > 0,

lim sup
ε→0

µ
(
x; sup
|h|≤r

∣∣F (h+ εx)− F (h)
∣∣ > η

)
< 1.

Then,

lim
ε→0

ε2 log

(∫
exp
(
− 1

ε2
F (εx)

)
dµ(x)

)
= − inf

x∈E

(
F (x) + I(x)

)
.
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It has to be mentioned that the continuity assumption in Corollary 4.6 is not
of the Malliavin calculus type since limits are taken along the elements of E and
not the elements of H.

Proof. Set

L(ε) =

∫
exp
(
− 1

ε2
F (εx)

)
dµ(x), ε > 0.

By a simple translation, we may assume that F ≥ 0. For simplicity in the notation,
let us assume moreover that 0 ≤ F ≤ 1. For every integer n ≥ 1, set

Ank =
{
k−1
n < F ≤ k

n

}
, k = 2, . . . , n, An1 =

{
F ≤ 1

n

}
.

Since

L(ε) ≤
n∑

k=1

exp
(
−k − 1

ε2n

)
µε
(
Ank
)
,

we get that

lim sup
ε→0

ε2 logL(ε) ≤ −min
k

(k − 1

n
+

1

2
r
(
Ank
)2)

.

Since r(Ank) ≥ r({F ≤ k
n}) and since n is arbitrary, it follows that

(4.16) lim sup
ε→0

ε2 logL(ε) ≤ − inf
t∈IR

(
t+

1

2
r
(
{F ≤ t}

)2)
.

Now, we show that the right hand side of (4.16) is less than or equal to

− inf
x∈E

(F (x) + I(x)).

Let t ∈ IR be fixed. Let η > 0 and r > r({F ≤ t}) (assumed to be finite). Set

V =
{
x; sup
|h|≤r

∣∣F (h+ x)− F (h)
∣∣ ≤ η

}
.

By the hypothesis, V ∈ V. By the definition of r,

(
V + rK

)
∩ {F ≤ t} 6= ∅.

Therefore, there exist v in V and |h| ≤ r such that F (h + v) ≤ t. By definition of
V , F (h) ≤ t+ η. Hence

inf
x∈E

(
F (x) + I(x)

)
≤ t+ η +

r2

2
.

Since η > 0 and r > r({F ≤ t}) are arbitrary, the claim follows and thus, together
with (4.16),

(4.17) lim sup
ε→0

ε2 logL(ε) ≤ − inf
x∈E

(
F (x) + I(x)

)
.
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The proof of the lower bound is similar. We have, for every n ≥ 1,

L(ε) ≥
n∑

k=1

exp
(
− k

ε2n

)
µε
(
Ank
)

≥
n−1∑

k=1

[
exp
(
− k

ε2n

)
− exp

(
−k + 1

ε2n

)]
µε
(
{F ≤ k

n
}
)

≥ 1

2

n−1∑

k=1

exp
(
− k

ε2n

)
µε
(
{F ≤ k

n
}
)

at least for all ε > 0 small enough. Therefore,

(4.18) lim inf
ε→0

L(ε) ≥ − inf
t∈IR

(
t+

1

2
s
(
{F ≤ t}

)2)
.

Now, let h be in H and set t = F (h). Let η > 0 and 0 < s < s({F ≤ t + η}). We
will show that |h| > s. Let

V =
{
x;F (h+ x) ≤ F (h) + η

}
.

By the hypothesis, V ∈ V and by the definition of s,

(
{F ≤ t+ η} 	 V

)
∩ (sK) = ∅.

It is clear that h ∈ {F ≤ t+ η}	V . Hence |h| > s, and since s is arbitrary, we have
|h| ≥ s({F ≤ t+ η}). Now, if t > −∞,

t+
1

2
s
(
{F ≤ t+ η}

)2 ≤ F (h) + I(h).

If t = −∞, 0 ≤ s({F = −∞}) ≤ |h| <∞, and the preceding also holds. In any case,

− inf
t∈IR

(
t+

1

2
s
(
{F ≤ t}

)2) ≤ inf
x∈E

(
F (x) + I(x)

)
.

Together with (4.18) and (4.17), the proof of Corollary 4.6 is complete.

In the last part of this chapter, we prove a large deviation principle for the
Ornstein-Uhlenbeck process due to S. Kusuoka [Kus]. If µ is a Gaussian measure on
E, define, for every say bounded measurable function f on E, and every x ∈ E and
t ≥ 0,

Ptf(x) =

∫

E

f
(
e−tx+ (1− e−2t)1/2y

)
dµ(y).

If A and B are Borel subsets of E, set then, as at the end of Chapter 2,

Kt(A,B) =

∫

A

Pt(IB)dµ, t ≥ 0.
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We will be interested in the large deviation behavior of Kt(A,B) in terms of the
H-distance between A and B. Set indeed

dH(A,B) = inf
{
|h− k|;h ∈ A, k ∈ B, h− k ∈ H

}
.

One defines in the same way dH(x,A), x ∈ E, and notices that dH(x,A) < ∞ µ-
almost everywhere if and only if µ(A+H) = 1. By the isoperimetric inequality, this
is immediately the case as soon as µ(A) > 0.

The main result is the following. S. Kusuoka’s proof uses the wave equation.
We folllow here the approach by S. Fang [Fa] (who actually establishes a somewhat
stronger statement by using a slightly different distance on the subsets of E).

Theorem 4.7. Let A and B be Borel subsets in E such that µ(A) > 0 and µ(B) > 0.
Then

lim sup
t→0

4t logKt(A,B) ≤ −dH(A,B)2.

If moreover A and B are open, then

lim inf
t→0

4t logKt(A,B) ≥ −dH(A,B)2.

Proof. We start with the upper bound which is thus based on Proposition 2.3. We use
the same approximation procedure as the one described in the proof of Theorem 4.3
and, accordingly the probabilistic notation put forward in Proposition 4.2. Denote
in particular by Y an independent copy of X (with thus distribution µ). Assume
that dH(A,B) > r > 0. Choose K ⊂ A and L ⊂ B compact subsets of positive
measure. Let t ≥ 0 be fixed and let ε > 0. We can write that, for every n ≥ n0 large
enough,

IP
{
X ∈ K, e−tX + (1− e−2t)1/2Y /∈ K3ε + rK

}

≤ IP
{
Xn ∈ Kε, e−tXn + (1− e−2t)1/2Yn /∈ K2ε + rK

}
+ ε

≤ IP
{
Xn ∈ Kε, e−tXn + (1− e−2t)1/2Yn /∈ Kε + rKn

}
+ ε.

Hence, according to (2.16) of Chapter 2,

IP
{
X ∈ K, e−tX + (1− e−2t)1/2Y /∈ K3ε + rK

}
≤ exp

(
− r2

4(1− e−t)

)
+ ε.

Letting ε decrease to zero, by compactness,

IP
{
X ∈ K, e−tX + (1− e−2t)1/2Y /∈ K + rK

}
≤ exp

(
− r2

4(1− e−t)

)

and thus, by definition of r,

IP
{
X ∈ K, e−tX + (1− e−2t)1/2Y ∈ L} ≤ exp

(
− r2

4(1− e−t)

)
.
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The first claim of Theorem 4.7 is proved.
The lower bound relies on Cameron-Martin translates. Let r = dH(A,B) ≥ 0

(assumed to be finite). Let also h ∈ A∩H and k ∈ B ∩H. Since A and B are open,
there exists η > 0 such that BE(h, 2η) ⊂ A and BE(k, 2η) ⊂ B. Therefore, for every
t ≥ 0,

Kt(A,B) ≥ Kt

(
BE(h, 2η), BE(k, 2η)

)
.

By the Cameron-Martin translation formula (4.11),

Kt

(
BE(h, 2η), BE(k, 2η)

)

= exp

(
− |h− k|2

2(1− e−2t)

)∫

(x,y)∈C
exp

(
h̃(y)− k̃(y)

(1− e−2t)1/2

)
dµ(x)dµ(y)

where C = {(x, y) ∈ E×E;x ∈ BE(h, 2η), e−tx+(1−e−2t)1/2y ∈ BE(h, 2η)}. Now,
for t ≤ t0(η, h) small enough,

BE(h, η)×BE(0, 1) ⊂ C

so that

Kt(A,B) ≥ exp

(
− |h− k|2

2(1− e−2t)

)
µ
(
BE(h, η)

) ∫

BE(0,1)

exp

(
h̃− k̃

(1− e−2t)1/2

)
dµ

≥ exp

(
− |h− k|2

2(1− e−2t)

)
µ
(
BE(h, η)

)
µ
(
BE(0, 1)

)

by Jensen’s inequality. Therefore,

lim inf
t→0

4t logKt(A,B) ≥ −|h− k|2

and the result follows since h and k are arbitrary in A and B respectively. The proof
of Theorem 4.7 is complete.

Notes for further reading. There is an extensive literature on precise estimates on
the tail behavior of norms of Gaussian random vectors (involving in particular the
tool of entropy – cf. Chapter 6). We refer in particular the interested reader to
the works [Ta4], [Ta13], [Lif2] and the references therein (see also [Lif3]). In the
paper [Lif2], a Laplace method is developed to yield some unexpected irregular
behaviors. Large deviations without topology may be applied to Strassen’s law of
the iterated logarithm for Brownian motion [B-BA-K], [BA-L1], [D-L]. In [D-L], a
complete description of norms on Wiener space for which the law of the iterated
logarithm holds is provided.
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5. LARGE DEVIATIONS OF WIENER CHAOS

The purpose of this chapter is to further demonstrate the usefulness and interest
of isoperimetric and concentration methods in large deviation theorems in the con-
text of Wiener chaos. This chapter intends actually to present some aspects of the
remarkable work of C. Borell on homogeneous chaos whose early ideas strongly influ-
enced the subsequent developments. We present here, closely following the material
in [Bo5], [Bo9], a simple isoperimetric proof of the large deviations properties of
homogeneous Gaussian chaos (even vector valued). We take again the exposition of
[Led2].

Let, as in the preceding chapter, (E,H, µ) be an abstract Wiener space. Ac-
cording to Proposition 4.2, for any orthonormal basis (gi)i∈IN of the closure E∗2 of
E∗ in L2(µ), µ has the same distribution as the series

∑
i gij

∗(gi). It will be con-
venient here (although this is not strictly necessary) to consider this basis in E∗.
Let thus (ξi)i∈IN ⊂ E∗ be any fixed orthonormal basis of E∗2 (take any weak-star
dense sequence of the unit ball of E∗ and orthonormalize it with respect to µ us-
ing the Gram-Schmidt procedure). Denote by (hk)k∈IN the sequence of the Hermite
polynomials defined from the generating series

eλx−λ
2/2 =

∞∑

k=0

λkhk(x), λ, x ∈ IR.

(
√
k!hk)k∈IN is an orthonormal basis of L2(γ1) where γ1 is the canonical Gaussian

measure on IR. If α = (α0, α1, . . .) ∈ IN(IN), i.e. |α| = α0 + α1 + · · · <∞, set

Hα =
√
α!
∏

i

hαi
◦ ξi

(where α! = α0!α1! · · · ). Then the family (Hα) constitutes an orthonormal basis of
L2(µ).

Let now B be a real separable Banach space with norm ‖ · ‖ (we denote in
the same way the norm on E and the norm on B). Lp((E,B, µ);B) = Lp(µ;B)
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(0 ≤ p < ∞) is the space of all Bochner measurable functions F on (E, µ) with
values in B (p = 0) such that

∫
‖F‖pdµ < ∞ (0 < p < ∞). For each integer d ≥ 1,

set

W(d)(µ;B) =
{
F ∈ L2(µ;B); 〈F,Hα〉 =

∫
FHαdµ = 0 for all α such that |α| 6= d

}
.

W(d)(µ;B) defines the B-valued homogeneous Wiener chaos of degree d [Wi]. An
element Ψ of W(d)(µ;B) can be written as

Ψ =
∑

|α|=d
〈Ψ, Hα〉Hα

where the multiple sum is convergent (for any finite filtering) µ-almost everywhere
and in L2(µ;B). (Actually, as a consequence of [Bo5], [Bo9] (see also [L-T2], or the
subsequent main result), this convergence also takes place in Lp(µ;B) for any p.)
To see it, we simply follow the proof of Proposition 4.2. Let, for each n, Bn be the
sub-σ-algebra of B generated by the functions ξ0, . . . , ξn on E and let Ψn be the
conditional expectation of Ψ with respect to Bn. Recall that B may be assumed to
be generated by (ξi)i∈IN. Then

(5.1) Ψn =
∑

|α|=d
αk=0,k>n

〈Ψ, Hα〉Hα

as can be checked on linear functionals, and therefore, by the vector valued mar-
tingale convergence theorem (cf. [Ne2]), the claim follows. One could actually take
this series representation as the definition of a homogeneous chaos, which would
avoid the assumption F ∈ L2(µ;B) in W(d)(µ;B). By the preceding comment, both
definitions actually agree (cf. [Bo5], [Bo9]).

As a consequence of the Cameron-Martin formula, we may define for every F
in L0(µ;B) and every h in H, a new element F (·+ h) of L0(µ;B). Furthermore, if
F is in L2(µ;B), for any h ∈ H,

(5.2)

∫ ∥∥F (x+ h)
∥∥ dµ(x) ≤ exp

( |h|2
2

)(∫ ∥∥F (x)
∥∥2
dµ(x)

)1/2

.

Indeed, ∫ ∥∥F (x+ h)
∥∥ dµ(x) =

∫
exp

(
−h̃(x)− |h|2

2

)∥∥F (x)
∥∥dµ(x)

from which (5.2) follows by Cauchy-Schwarz inequality and the fact that h̃ =
(j∗|E∗

2
)−1(h) is Gaussian with variance |h|2.
Let F be in L2(µ;B). By (5.2), for any h in H, we can define an element F (d)(h)

of B by setting

F (d)(h) =

∫
F (x+ h)dµ(x).
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If Ψ ∈ W(d)(µ;B), Ψ(d)(h) is homogeneous of degree d. To see it, we can work by
approximation on the Ψn’s and use then the easy fact (checked on the generating
series for example) that, for any real number λ and any integer k,

∫
hk(x+ λ)dγ1(x) =

1

k!
λk.

Actually, Ψ(d)(h) can be written as the convergent multiple sum

Ψ(d)(h) =
∑

|α|=d

1

α!
〈Ψ, Hα〉hα

where hα is meant as 〈ξ0, h〉α0〈ξ1, h〉α1 · · · .
Given thus Ψ in W(d)(µ;B), for any s in B, set IΨ(s) = inf{ 1

2 |h|2; s = Ψ(d)(h)}
if there exists h in H such that s = Ψ(d)(h), IΨ(s) = ∞ otherwise. For a subset A
of B, set IΨ(A) = infs∈A IΨ(s).

We can now state the large deviation properties for the elements Ψ ofW (d)(µ;B).
The case d = 1 of course corresponds to the classical large deviation result for Gaus-
sian measures (cf. (4.14) and (4.15) for B = E and Ψ the identity map on E). From
the point of view of isoperimetry and concentration, the proof for higher order chaos
is actually only the appropriate extension of the case d = 1.

Theorem 5.1. Let µε(·) = µ(ε−1(·)), ε > 0. Let d be an integer and let Ψ be an
element of W(d)(µ;B). Then, if A is a closed subset of B,

(5.3) lim sup
ε→0

ε2 log µε
(
x; Ψ(x) ∈ A

)
≤ −IΨ(A).

If A is an open subset of B,

(5.4) lim inf
ε→0

ε2 logµε
(
x; Ψ(x) ∈ A

)
≥ −IΨ(A).

The proof of (5.4) follows rather easily from the Cameron-Martin translation
formula. (5.3) is rather easy too, but our approach thus rests on the tool of isoperi-
metric and concentration inequalities. The proof of (5.3) also sheds some light on
the structure of Gaussian polynomials as developed by C. Borell, and in particular
the homogeneous structures. As it is clear indeed from [Bo5] (and the proof below),
the theorem may be shown to hold for all Gaussian polynomials, i.e. elements of
the closure in L0(µ;B) of all continuous polynomials from E into B of degree less
than or equal to d. As we will see, W (d)(µ;B) may be considered as a subspace
of the closure of all homogeneous Gaussian polynomials of degree d (at least if the
support of µ is infinite dimensional), and hence, the elements of W (d)(µ;B) are µ-
almost everywhere d-homogeneous. In particular, (5.3) and (5.4) of the theorem are
equivalent to saying that (changing moreover ε into t−1)

(5.5) lim sup
t→∞

1

t2
logµ

(
x; Ψ(x) ∈ tdA

)
≤ −IΨ(A)
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(A closed) and

(5.6) lim inf
t→∞

1

t2
logµ

(
x; Ψ(x) ∈ tdA

)
≥ −IΨ(A),

(A open) and these are the properties we will actually establish.

Before turning to the proof of Theorem 5.1, let us mention some application.
If we take A in the theorem to be the complement U c of the (open or closed) unit
ball U of B, one immediately checks that

IΨ(U c) =
1

2

(
sup
h∈K

∥∥Ψ(d)(h)
∥∥)−2/d

.

We may therefore state the following corollary of Theorem 5.1 which was actually
established directly from the isoperimetric inequality by C. Borell [Bo5] (see also
[Bo8], [L-T2]). It is the analogue for chaos of Theorem 4.1.

Corollary 5.2. Let Ψ be an element of W(d)(µ;B). Then

lim
t→∞

1

t2/d
logµ

(
x;
∥∥Ψ(x)

∥∥ ≥ t
)

= −1

2

(
sup
h∈K

∥∥Ψ(d)(h)
∥∥)−2/d

.

As in Theorem 4.1, we have that

∫
exp
(
α‖Ψ‖2/d

)
dµ <∞ if and only if α <

1

2

(
sup
h∈K

‖Ψ(d)(h)‖
)−2/d

.

Furthermore, the proof of the theorem will show that all moments of Ψ are equivalent
(see also Chapter 8, (8.23)).

In the setting of the classical Wiener space E = C0([0, 1]) equipped with the
Wiener measure µ, and when B = E, K. Itô [It] (see also [Ne1] and the recent
approach [Str]) identified the elements Ψ of W (d)(µ;E) with the multiple stochastic
integrals

Ψ =

(∫ t

0

∫ t1

0

· · ·
∫ td−1

0

k(t1, . . . , td) dW (t1) · · ·dW (td)

)

t∈[0,1]

where k deterministic is such that

∫ 1

0

∫ t1

0

· · ·
∫ td−1

0

k(t1, . . . , td)
2dt1 · · ·dtd <∞.

If h belongs to the reproducing kernel Hilbert space of the Wiener measure, then

Ψ(d)(h) =

(∫ t

0

∫ t1

0

· · ·
∫ td−1

0

k(t1, . . . , td)h
′(t1) · · ·h′(td) dt1 · · ·dtd

)

t∈[0,1]

.
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Proof of Theorem 5.1. Let us start with the simpler property (5.4). Recall Ψn from
(5.1). We can write (explicitly on the Hermite polynomials), for all x in E, h in H
and t real number,

Ψn(x+ th) =

d∑

k=0

tkΨ(k)
n (x, h).

If P (t) = a0 + a1t+ · · ·+ adt
d is a polynomial of degree d in t ∈ IR with vector coef-

ficients a0, a1, . . . , ad, there exist real constants c(i, k, d), 0 ≤ i, k ≤ d, independent
of P , such that, for every k = 0, . . . , d,

ak = c(0, k, d)P (0) +
d∑

i=1

c(i, k, d)P (2i−1).

Hence, for every h ∈ H,

Ψ(k)
n (·, h) = c(0, k, d)Ψn(·) +

d∑

i=1

c(i, k, d)Ψn(·+ 2i−1h)

from which we deduce together with (5.2) that, for every k = 0, . . . , d,

∫ ∥∥Ψ(k)
n (x, h)

∥∥ dµ(x) ≤ C(k, d;h)

(∫ ∥∥Ψn(x)
∥∥2
dµ(x)

)1/2

for some constants C(k, d;h) thus only depending on k, d and h ∈ H. In the limit,
we conclude that there exist, for every h in H and k = 0, . . . , d, elements Ψ(k)(·, h)
of L1(µ;B) such that

Ψ(·+ th) =
d∑

k=0

tkΨ(k)(·, h)

for every t ∈ IR, with

∫ ∥∥Ψ(k)(x, h)
∥∥ dµ(x) ≤ C(k, d;h)

(∫ ∥∥Ψ(x)
∥∥2
dµ(x)

)1/2

and Ψ(0)(·, h) = f(·), Ψ(d)(·, h) = Ψ(d)(h) (since
∫
f(x+ th) dµ(x) = tdf (d)(h)). As

a main consequence, we get that, for every h in H,

(5.7) lim
t→∞

1

td

∫ ∥∥Ψ(x+ th)− tdΨ(d)(h)
∥∥dµ(x) = 0.

This limit can be made uniform in h ∈ K but we will not use this observation in this
form later (that is in the proof of (5.3); we use instead a stronger property, (5.9)
below).

To establish (5.4), let A be open in B and let s = Ψ(d)(h), h ∈ H, belong to A
(if no such s exists, then IΨ(A) = ∞ and (5.4) then holds trivially). Since A is open,
there is η > 0 such that the ball B(s, η) in B with center s and radius η is contained
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in A. Therefore, if V = V (t) = {x ∈ E; Ψ(x) ∈ tdB(s, η)}, by the Cameron-Martin
translation formula (4.11),

µ
(
x; Ψ(x) ∈ tdA

)
≥ µ(V ) =

∫

V−th
exp

(
th̃− t2|h|2

2

)
dµ.

Furthermore, by Jensen’s inequality,

µ(V ) ≥ exp

(
− t

2|h|2
2

)
µ(V − th) exp

(
t

µ(V − th)

∫

V−th
h̃dµ

)
.

By (5.7),

µ(V − th) = µ
(
x;
∥∥Ψ(x+ th)− tdΨ(d)(h)

∥∥ ≤ ηtd
)
≥ 1

2

for all t ≥ t0 large enough. We have

∫

V−th
h̃dµ ≥ −

∫
|h̃|dµ ≥ −

(∫
h̃2dµ

)1/2

= −|h|.

Thus, for all t ≥ t0,
t

µ(V − th)

∫

V−th
h̃dµ ≥ −2t|h|,

and hence, summarizing,

µ
(
x; Ψ(x) ∈ tdA

)
≥ 1

2
exp

(
− t

2|h|2
2

− 2t|h|
)
.

It follows that

lim inf
t→∞

1

t2
logµ

(
x; Ψ(x) ∈ tdA

)
≥ −1

2
|h|2 = −IΨ(s)

and since s is arbritrary in A, property (5.6) is satisfied. As a consequence of what
we will develop now, (5.4) will be satisfied as well.

Now, we turn to (5.3) and in the first part of this investigation, we closely follow
C. Borell [Bo5], [Bo9]. We start by showing that every element Ψ of W (d)(µ;B) is
limit (at least if the dimension of the support of µ is infinite), µ-almost everywhere
and in L2(µ;B), of a sequence of d-homogeneous polynomials. In particular, Ψ is
µ-almost everywhere d-homogeneous justifying therefore the equivalences between
(5.3) and (5.4) and respectively (5.5) and (5.6). Assume thus in the following that µ
is infinite dimensional. We can actually always reduce to this case by appropriately
tensorizing µ, for example with the canonical Gaussian measure on IRIN. Recall that
Ψ is limit almost surely and in L2(µ;B) of the Ψn’s of (5.1). The finite sums Ψn

can be decomposed into their homogeneous components as

Ψn = Ψ(d)
n + Ψ(d−2)

n + · · · ,
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where, for any x in E,

(5.8) Ψ(k)
n (x) =

∞∑

i1,...,ik=0

bi1,...,ik 〈ξi1 , x〉〈ξi2 , x〉 · · · 〈ξik , x〉

with only finitely many bi1,...,ik in B nonzero. The main observation is that the
constant 1 is limit of homogeneous polynomials of degree 2: indeed, simply take by
the law of large numbers

pn(x) =
1

n+ 1

n∑

k=0

〈ξk, x〉2.

Since pn and Ψ
(k)
n belong to Lp(µ) and Lp(µ;B) respectively for every p, and since

pn − 1 tends there to 0, it is easily seen that there exists a subsequence mn of

the integers such that (pmn
− 1)(Ψ

(d−2)
n + Ψ

(d−4)
n + · · ·) converges to 0 in L2(µ;B).

This means that Ψ is the limit in L2(µ;B) of Ψ
(d)
n + pmn

(Ψ
(d−2)
n + Ψ

(d−4)
n + · · ·),

that is limit of a sequence of polynomials Ψ′
n whose decomposition in homogeneous

polynomials
Ψ′
n = Ψ′

n
(d) + Ψ′

n
(d−2) + · · ·

is such that Ψ′
n

(1), or Ψ′
n

(0) and Ψ′
n

(2), according as d is odd or even, can be taken
to be 0. Repeating this procedure, Ψ is indeed seen to be the limit in L2(µ;B) of a
sequence (Ψ′

n) of d-homogeneous polynomials (i.e. polynomials of the type (5.8)).
The important property in order to establish (5.5) is the following. It improves

upon (5.7) and claims that, in the preceding notations, i.e. if Ψ is limit of the
sequence (Ψ′

n) of d-homogeneous polynomials,

(5.9) lim
t→∞

1

t2d
sup
n

∫
sup
h∈K

∥∥Ψ′
n(x+ th)− tdΨ′

n(h)
∥∥2
dµ(x) = 0

where we recall that K is the unit ball of the reproducing kernel Hilbert space H of
µ. To establish this property, given

Ψ′
n(x) =

∞∑

i1,...,id=0

bni1,...,id 〈ξi1 , x〉〈ξi2, x〉 · · · 〈ξid , x〉

(with only finitely many bni1,...,id nonzero), let us consider the (unique) multilinear

symmetric polynomial Ψ̂′
n on Ed such that Ψ̂′

n(x, . . . , x) = Ψ′
n(x); Ψ̂′

n is given by

Ψ̂′
n(x1, . . . , xd) =

∞∑

i1,...,id=0

b̂ni1,...,id 〈ξi1 , x1〉 · · · 〈ξid , xd〉, x1, . . . , xd ∈ E,

where

b̂ni1,...,id =
1

d!

∑

σ

bnσ(i1),...,σ(id),
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the sum running over all permutations σ of {1, . . . , d}. We use the following polar-
ization formula: letting ε1, . . . , εd be independent random variables taking values
±1 with probability 1

2
and denoting by IE expectation with respect to them,

(5.10) Ψ̂′
n(x1, . . . , xd) =

1

d!
IE
(
Ψ′
n(ε1x1 + · · ·+ εdxd) ε1 · · · εd

)
.

We adopt the notation xd−kyk for the element (x, . . . , x, y, . . . , y) in Ed where x is
repeated (d− k)-times and y k-times. Then, for any x, y in E, we have

(5.11) Ψ′
n(x+ y) =

d∑

k=0

(
d

k

)
Ψ̂′
n

(
xd−kyk

)
.

To establish (5.9), we see from (5.11) that it suffices to show that for all k =
1, . . . , d− 1,

(5.12) sup
n

∫
sup
h∈K

∥∥Ψ̂′
n(xd−khk)

∥∥2
dµ(x) <∞.

Let k be fixed. By orthogonality,

sup
h∈K

∥∥Ψ̂′
n(x

d−khk)
∥∥2

≤ sup
‖ζ‖≤1

sup
h1,...,hk∈K

〈ζ, Ψ̂′
n(x, . . . , x, h1, . . . , hk)〉2

≤ sup
‖ζ‖≤1

∞∑

id−k+1,...,id=0

∣∣∣∣∣

∞∑

i1,...,id−k=0

〈ζ, b̂ni1,...,id〉〈ξi1 , x〉 · · · 〈ξid−k
, x〉
∣∣∣∣∣

2

= sup
‖ζ‖≤1

∫
· · ·
∫
〈ζ, Ψ̂′

n(x, . . . , x, y1, . . . , yk)〉2 dµ(y1) · · ·dµ(yk)

≤
∫
· · ·
∫ ∥∥Ψ̂′

n(x, . . . , x, y1, . . . , yk)
∥∥2
dµ(y1) · · ·dµ(yk).

By the polarization formula (5.10),

Ψ̂′
n(x, . . . , x,y1, . . . , yk)

=
1

d!
IE
(
Ψ′
n

(
(εk+1 + · · ·+ εd)x+ ε1y1 + · · ·+ εkyk

)
ε1 · · · εd

)
.

Therefore, we obtain from the rotational invariance of Gaussian distributions and
homogeneity that

(d !)2
∫

sup
h∈K

∥∥Ψ̂′
n(xd−khk)

∥∥2
dµ(x)

≤IE

∫ ∫
· · ·
∫ ∥∥Ψ′

n

(
(εk+1 + · · ·+ εd)x+ ε1y1 + · · ·+ εkyk

)∥∥2
dµ(x)dµ(y1) · · ·dµ(yk)

=IE

∫ ∥∥Ψ′
n

((
(εk+1 + · · ·+ εd)

2 + k
)1/2

x
)∥∥2

dµ(x)

=IE
((

(εk+1 + · · ·+ εd)
2 + k

)d)
∫ ∥∥Ψ′

n(x)
∥∥2
dµ(x).
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Hence (5.12) and therefore (5.9) are established.
We can now conclude the proof of (5.5) and thus of the theorem. It is intuitively

clear that

(5.13) lim
n→∞

sup
h∈K

∥∥Ψ′
n(h)−Ψ(d)(h)

∥∥ = 0.

This property is an easy consequence of (5.9). Indeed, for all n and t > 0,

sup
h∈K

∥∥Ψ′
n(h)−Ψ(d)(h)

∥∥

≤ sup
m

sup
h∈K

∥∥Ψ′
m(h)− t−d

∫
Ψ′
m(x+ th)dµ(x)

∥∥∥

+ sup
h∈K

t−d
∥∥∥∥
∫

Ψ′
n(x+ th)−Ψ(x+ th)

∥∥∥∥ dµ(x)

≤ sup
m

∫
sup
h∈K

∥∥Ψ′
m(h)− t−dΨ′

m(x+ th)
∥∥dµ(x)

+ sup
h∈K

t−d
∫ ∥∥Ψ′

n(x+ th)−Ψ(x+ th)
∥∥ dµ(x)

and, using (5.2) and (5.9), the limit in n and then in t yields (5.13). Let now A
be closed in B and take 0 < r < IΨ(A). The definition of IΨ(A) indicates that
(2r)d/2Ψ(d)(K) ∩ A = ∅ where we recall that the unit ball K of H is a compact
subset of E. Therefore, since Ψ(d)(K) is clearly seen to be compact in B by (5.13),
and since A is closed, one can find η > 0 such that

(5.14)
(
(2r)d/2Ψ(d)(K) +B(0, 2η)

)
∩
(
A+ B(0, η)

)
= ∅.

By (5.13), there exists n0 = n0(η) large enough such that for every n ≥ n0,

(5.15) (2r)d/2Ψ′
n(K) ⊂ (2r)d/2Ψ(d)(K) +B(0, η).

Let thus n ≥ n0. For any t > 0, we can write

(5.16)

µ
(
x; Ψ(x) ∈ tdA

)

≤µ
(
x;
∥∥Ψ(x)−Ψ′

n(x)
∥∥ > ηtd

)
+ µ

(
x; Ψ′

n(x) ∈ td
(
A+B(0, η)

))

≤µ
(
x;
∥∥Ψ(x)−Ψ′

n(x)
∥∥ > ηtd) + µ∗

(
x;x /∈ V + t

√
2rK

)

where

V = V (t, n) =
{
v; sup
h∈K

t−d
∥∥Ψ′

n

(
v + t

√
2rh
)
− td(2r)d/2Ψ′

n(h)
∥∥ ≤ η

}
.

To justify the second inequality in (5.16), observe that if x = v+ t
√

2rh with v ∈ V
and h ∈ K, then

t−dΨ′
n(x) = t−d

[
Ψ′
n

(
v + t

√
2rh
)
− td(2r)d/2Ψ′

n(h)
]
+ (2r)d/2Ψ′

n(h),
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so that the claim follows by (5.14), (5.15) and the definition of V . By (5.9), let now
t0 = t0(η) be large enough so that, for all t ≥ t0,

sup
n

1

td

∫
sup
h∈K

∥∥Ψ′
n

(
x+ t

√
2rh
)
− td(2r)d/2Ψ′

n(h)
∥∥2
dµ(x) ≤ η2

2
.

That is, for every n and every t ≥ t0, µ(V (t, n)) ≥ 1
2 . By Theorem 4.3 (one could

use equivalently (4.6)), it follows that

(5.17) µ∗
(
x;x /∈ V + t

√
2rK

)
≤ e−rt

2

.

Fix now t ≥ t0 = t0(η). Choose n = n(t) ≥ n0 = n0(η) large enough in order that

µ
(
x;
∥∥Ψ(x)−Ψ′

n(x)
∥∥ > ηtd

)
≤ e−rt

2

.

Together with (5.16) and (5.17), it follows that for every t ≥ t0,

µ
(
x; Ψ(x) ∈ tdA

)
≤ 2e−rt

2

.

Since r < IΨ(A) is arbitrary, the proof of (5.5) and therefore of Theorem 5.1 is
complete.

Note that it would of course have been possible to work directly on Ψ rather
than on the approximating sequence (Ψ′

n) in the preceding proof. This approach
however avoids several measurability questions and makes everything more explicit.

It is probably possible to develop, as in Chapter 4, a nontopological approach
to large deviations of Wiener chaos.

Notes for further reading. The reader may consult the recent paper [MW-N-PA] for
a different approach to the results presented in this chapter, however also based on
Borell’s main contribution (Corollary 5.2). Borell’s articles [Bo8], [Bo9]... contain
further interesting results on chaos. See also [A-G], [G-K2], [L-T2]...
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6. REGULARITY OF GAUSSIAN PROCESSES

In this chapter, we provide a complete treatment of boundedness and continuity
of Gaussian processes via the tool of majorizing measures. After the work of R. M.
Dudley, V. Strassen, V. N. Sudakov and X. Fernique on entropy, M. Talagrand [Ta2]
gave, in 1987, necessary and sufficient conditions on the covariance structure of a
Gaussian process in order that it is almost surely bounded or continuous. These
necessary and sufficient conditions are based on the concept of majorizing measure
introduced in the early seventies by X. Fernique and C. Preston, and inspired in
particular by the “real variable lemma” of A. M. Garsia, E. Rodemich and H. Rum-
sey Jr. [G-R-R]. Recently, M. Talagrand [Ta7] gave a simple proof of his theorem
on necessity of majorizing measures based on the concentration phenomenon for
Gaussian measures. We follow this approach here. The aim of this chapter is in
fact to demonstrate the actual simplicity of majorizing measures that are usually
considered as difficult and obscure.

Let T be a set. A Gaussian random process (or better, random function) X =
(Xt)t∈T is a family, indexed by T , of random variables on some probability space
(Ω,A, IP) such that the law of each finite family (Xt1 , . . . , Xtn), t1, . . . , tn ∈ T ,
is centered Gaussian on IRn. Throughout this work, Gaussian will always mean
centered Gaussian. In particular, the law (the distributions of the finite dimensional
marginals) of the process X is uniquely determined by the covariance structure
IE(XsXt), s, t ∈ T . Our aim will be to characterize almost sure boundedness and
continuity (whenever T is a topological space) of the Gaussian process X in terms
of an as simple as possible criterion on this covariance structure. Actually, the main
point in this study will be the question of boundedness. As we will see indeed, once
the appropriate bounds for the supremum of X are obtained, the characterization
of continuity easily follows. Due to the integrability properties of norms of Gaussian
random vectors or supremum of Gaussian processes (Theorem 4.1), we will avoid,
at a first stage, various cumbersome and unessential measurability questions, by
considering the supremum functional

F (T ) = sup
{
IE
(
sup
t∈U

Xt

)
;U finite in T

}
.



70

(If S ⊂ T , we define in the same way F (S).) Thus, F (T ) < ∞ if and only if X is
almost surely bounded in any reasonable sense. In particular, we already see that
the main question will reduce to a uniform control of F (U) over the finite subsets
U of T .

After various preliminary results [Fe1], [De]..., the first main idea in the study
of regularity of Gaussian processes is the introduction (in the probabilistic area),
by R. M. Dudley, V. Strassen and V. N. Sudakov (cf. [Du1], [Du2], [Su1-4]), of the
notion of ε-entropy. The idea consists in connecting the regularity of the Gaussian
process X = (Xt)t∈T to the size of the parameter set T for the L2-metric induced
by the process itself and given by

d(s, t) =
(
IE|Xs −Xt|2

)1/2
, s, t ∈ T.

Note that this metric is entirely characterized by the covariance structure of the
process. It does not necessarily separate points in T but this is of no importance.
The size of T is more precisely estimated by the entropy numbers: for every ε > 0,
let N(T, d; ε) denote the minimal number of (open to fix the idea) balls of radius
ε for the metric d that are necessary to cover T . The two main results concerning
regularity of Gaussian processes under entropy conditions, due to R. M. Dudley
[Du1] for the upper bound and V. N. Sudakov [Su3] for the lower bound (cf. [Du2],
[Fe4]), are summarized in the following statement.

Theorem 6.1. There are numerical constants C1 > 0 and C2 > 0 such that for all
Gaussian processes X = (Xt)t∈T ,

(6.1) C−1
1 sup

ε>0
ε
(
logN(T, d; ε)

)1/2 ≤ F (T ) ≤ C2

∫ ∞

0

(
logN(T, d; ε)

)1/2
dε.

As possible numerical values for C1 and C2, one may take C1 = 6 and C2 = 42
(see below). The convergence of the entropy integral is understood for the small
values of ε since it stops at the diameter D(T ) = sup{d(s, t); s, t ∈ T}. Actually,
if any of the three terms of (6.1) is finite, then (T, d) is totally bounded and in
particular D(T ) < ∞. We will show in more generality below that the process
X = (Xt)t∈T actually admits an almost surely continuous version when the entropy
integral is finite. Conversely, if X = (Xt)t∈T is continuous, one can show that

limε→0 ε(logN(T, d; ε))1/2 = 0 (cf. [Fe4]).
For the matter of comparison with the more refined tool of majorizing measures

we will study next, we present a sketch of the proof of Theorem 6.1.

Proof. We start with the upper bound. We may and do assume that T is finite
(although this is not strictly necessary). Let q > 1 (usually an integer). (We will
consider q as a power of discretization; a posteriori, its value is completely arbitrary.)
Let n0 be the largest integer n in ZZ such thatN(T, d; q−n) = 1. For every n ≥ n0, we
consider a family of cardinality N(T, d; q−n) = N(n) of balls of radius q−n covering
T . One may therefore construct a partition An of T of cardinality N(n) on the basis
of this covering with sets of diameter less than 2q−n. In each A of An, fix a point of
T and denote by Tn the collection of these points. For each t in T , denote by An(t)
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the element of An that contains t. For every t and every n, let then sn(t) be the
element of Tn such that t ∈ An(sn(t)). Note that d(t, sn(t)) ≤ 2q−n for every t and
n ≥ n0.

The main argument of the proof is the so-called chaining argument (which goes
back to A. N. Kolmogorov in his proof of continuity of paths of processes under
Lp-control of their increments): for every t,

(6.2) Xt = Xs0 +
∑

n>n0

(
Xsn(t) −Xsn−1(t)

)

where s0 = sn0
(t) may be chosen independent of t ∈ T . Note that

d
(
sn(t), sn−1(t)

)
≤ 2q−n + 2q−n+1 = 2(q + 1)q−n.

Let cn = 4(q + 1)q−n(logN(n))1/2, n > n0. It follows from (6.2) that

F (T ) = IE
(
sup
t∈T

Xt

)

≤
∑

n>n0

cn + IE

(
sup
t∈T

∑

n>n0

∣∣Xsn(t) −Xsn−1(t)

∣∣I{|Xsn(t)−Xsn−1(t)|>cn}

)

≤
∑

n>n0

cn + IE

(∑

n>n0

∑

u,v∈Hn

∣∣Xu −Xv

∣∣I{|Xu−Xv|>cn}

)

where Hn = {(u, v) ∈ Tn × Tn−1; d(u, v) ≤ 2(q + 1)q−n}. If G is a real centered
Gaussian variable with variance less than or equal to σ2, for every c > 0

IE
(
|G|I{|G|>c}

)
≤ σe−c

2/2σ2

.

Hence,

F (T ) ≤
∑

n>n0

cn +
∑

n>n0

Card(Hn)2(q + 1)q−n exp
(
−c2n/8(q + 1)2q−2n

)

≤
∑

n>n0

4(q + 1)q−n
(
logN(n)

)1/2
+
∑

n>n0

2(q + 1)q−n

≤ 7(q + 1)
∑

n>n0

q−n
(
logN(n)

)1/2

where we used that Card(Hn) ≤ N(n)2. Since

∫ ∞

0

(
logN(T, d; ε)

)1/2
dε ≥

∑

n>n0

∫ q−n

q−n−1

(
logN(T, d; ε)

)1/2
dε

≥ (1− q−1)
∑

n>n0

q−n
(
logN(n)

)1/2
,

the conclusion follows. If q = 2, we may take C2 = 42.
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The proof of the lower bound relies on a comparison principle known as Slepian’s
lemma [Sl]. We use it in the following modified form due to V. N. Sudakov, S.
Chevet and X. Fernique (cf. [Su1], [Su2], [Fe4], [L-T2]): if Y = (Y1, . . . , Yn) and
Z = (Z1, . . . , Zn) are two Gaussian random vectors in IRn such that IE|Yi − Yj |2 ≤
IE|Zi − Zj |2 for all i, j, then

(6.3) IE
(

max
1≤i≤n

Yi
)
≤ IE

(
max

1≤i≤n
Zi
)
.

Fix ε > 0 and let n ≤ N(T, d; ε). There exist therefore t1, . . . , tn in T such that
d(ti, tj) ≥ ε. Let then g1, . . . , gn be independent standard normal random variables.
We have, for every i, j = 1, . . . , n,

IE

∣∣∣∣
ε√
2
gi −

ε√
2
gj

∣∣∣∣
2

= ε2 ≤ d(ti, tj) = IE|Xti −Xtj |2.

Therefore, by (6.3),

F (T ) ≥ IE
(

max
1≤i≤n

Xti

)
≥ ε√

2
IE
(

max
1≤i≤n

gi
)
.

Now, it is classical and easily seen that

IE
(

max
1≤i≤n

gi
)
≥ c (logn)1/2

for some numerical c > 0 (one may choose c such that
√

2/c ≤ 6). Since n is
arbitrary less than or equal to N(T, d; ε), the conclusion trivially follows. Theorem
6.1 is established.

As an important remark for further purposes, note that simple proofs of Su-
dakov’s minoration avoiding the rather rigid Slepian’s lemma are now available.
These are based on a dual Sudakov inequality [L-T2], p. 82-83, and duality of en-
tropy numbers [TJ].They allow the investigation of minoration inequalities outside
the Gaussian setting (cf. [Ta10], [Ta12]). Note furthermore that we will only use the
Sudakov inequality in the proof of the majorizing measure minoration principle (cf.
Lemma 6.4).

A simple example of application of Theorem 6.1 is Brownian motion (W (t))0≤t≤1

on T = [0, 1]. Since d(s, t) =
√
|s− t|, the entropy numbers N(T, d; ε) are of the

order of ε−2 as ε goes to zero and the entropy integral is trivially convergent. To-
gether with the proof of continuity presented below in the framework of majorizing
measures, Theorem 6.1 is certainly the shortest way to prove boundedness and con-
tinuity of the Brownian paths.

In Theorem 6.1, the difference between the upper and lower bounds is rather
tight. It however exists. The examples of a standard orthogaussian sequence or
of the canonical Gaussian process indexed by an ellipsoid in a Hilbert space (see
[Du1], [Du2], [L-T2], [Ta13]) are already instructive. We will see later on that the
convergence of Dudley’s entropy integral however characterizes F (T ) when T has a



73

group structure and the metric d is translation invariant, an important result of X.
Fernique [Fe4].

If one tries to imagine what can be used instead of the entropy numbers in order
to sharpen the conclusions of Theorem 6.1, one realizes that one feature of entropy
is that is attributes an equal weight to each piece of the parameter set T . One is then
naturally led to the possible following definition. Let, as in the proof of Theorem
6.1, q be (an integer) larger than 1. Let A = (An)n∈ZZ be an increasing sequence
(i.e. each A ∈ An+1 is contained in some B ∈ An) of finite partitions of T such that
the diameter D(A) of each element A of An is less than or equal to 2q−n. If t ∈ T ,
denote by An(t) the element of An that contains t. Now, for each partition An, one
may consider nonnegative weights αn(A), A ∈ An, such that

∑
A∈An

αn(A) ≤ 1.
Set then

(6.4) ΘA,α = sup
t∈T

∑

n

q−n
(

log
1

αn(An(t))

)1/2

.

It is worthwhile mentioning that for 2q−n ≥ D(T ), one can take An = {T} and
αn(T ) = 1. Denote by Θ(T ) the infimum of the functional ΘA,α over all possible
choices of partitions (An)n∈ZZ and weights αn(A). In this definition, we may take
equivalently

ΘA,m = sup
t∈T

∑

n

q−n
(

log
1

m(An(t))

)1/2

where m is a probability measure on (T, d). Indeed, if ΘA,α < ∞, it is easily seen
that D(T ) <∞. Let then n0 be the largest integer n in ZZ such that 2q−n ≤ D(T ).
Fix a point in each element of An and denote by Tn, n ≥ n0, the collection of these
points. It is then clear that if m is a (discrete) probability measure such that

m ≥ (1− q−1)
∑

n≥n0

q−n+n0

∑

t∈Tn

αn
(
An(t)

)
δt,

where δt is point mass at t, the functional ΘA,m is of the same order as ΘA,α (see
also below). We need not actually be concerned with these technical details and
consider for simplicity the functionals ΘA,α. Furthermore, the number q > 1 should
be thought as a universal constant.

The condition Θ(T ) <∞ is called a majorizing measure condition and the main
result of this section is that C−1Θ(T ) ≤ F (T ) ≤ CΘ(T ) for some constant C > 0
only depending on q. In order to fully appreciate this definition, it is worthwhile
comparing it to the entropy integral. As we used it in the proof of Theorem 6.1, the
entropy integral is equivalent (for any q) to the series

∑

n>n0

q−n
(
logN(T, d; q−n)

)1/2
.

We then construct an associated sequence (An)n∈ZZ of increasing partitions of T
and weights αn(A) in the following way. Let An = {T} and αn(T ) = 1 for every
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n ≤ n0. Once An (n > n0) has been constructed, partition each element A of An
with a covering of A of cardinality at most N(A, d; q−n−1) ≤ N(T, d; q−n−1) and
let An+1 be the collection of all the subsets of T obtained in this way. To each A in
An, n > n0, we give the weight

αn(A) =

( n∏

i=n0+1

N(T, d; q−i)

)−1

(α(T ) = 1). Clearly
∑
A∈An

αn(A) ≤ 1. Moreover, for each t in T ,

∑

n>n0

q−n
(

log
1

α(An(t))

)1/2

≤
∑

n>n0

n∑

i=n0+1

q−n
(
logN(T, d; q−i)

)1/2

≤ (q − 1)−1
∑

i>n0

q−i
(
logN(T, d; q−i)

)1/2
.

In other words,

Θ(T ) ≤ C

∫ ∞

0

(
logN(T, d; ε)

)1/2
dε

where C > 0 only depends on q > 1.
It is clear from this construction how entropy numbers give a uniform weight

to each subset of T and how the possible refined tool of majorizing measures can
allow a better understanding of the metric properties of T . (Actually, one has rather
to think about entropy numbers as the equal weight that is put on each piece of
a partition of the parameter set T .) This is what we will investigate now. First
however, we would like to briefly comment on the name “majorizing measure” as
well as the dependence on q > 1 in the definition of the functional Θ(T ). Classically,
a majorizing measure m on T is a probability measure on the Borel sets of T such
that

(6.5) sup
t∈T

∫ ∞

0

(
log

1

m(B(t, ε))

)1/2

dε <∞

where B(t, ε) is the ball in T with center t and radius ε > 0. As the definition of the
entropy integral, a majorizing measure condition only relies on the metric structure
of T and the convergence of the integral is for the small values of ε. In order to
connect this definition with the preceding one (6.4), let q > 1 and let (An)n∈ZZ be
an increasing sequence of finite partitions of T such that the diameter D(A) of each
element A of An is less than or equal to 2q−n. Let furthermore m be a probability
measure on T . Note that An(t) ⊂ B(t, 2q−n) for every t. Therefore

∫ ∞

0

(
log

1

m(B(t, ε))

)1/2

dε ≤ C
∑

n

q−n
(

log
1

m(B(t, 2q−n))

)1/2

≤ C
∑

n

q−n
(

log
1

m(An(t))

)1/2
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where C > 0 only depends on q. Since m is a probability measure, we can set
αn(A) = m(A) for every A in An and every n. It immediately follows that, for every
q > 1,

inf
m

sup
t∈T

∫ ∞

0

(
log

1

m(B(t, ε))

)1/2

dε ≤ CΘ(T )

where C only depends on q. One can prove the reverse inequality in the same spirit
with the help however of a somewhat technical and actually nontrivial discretization
lemma (cf. [L-T2], Proposition 11.10). In particular, the various functionals Θ(T )
when q varies are all equivalent. We actually need not really be concerned with these
technical details since our aim is to show that F (T ) and Θ(T ) are of the same order
(for some q > 1). (It will actually follow from the proofs presented below that the
functionals Θ(T ) are equivalent up to constants depending only on q ≥ q0 for some
universal q0 large enough.)

Now, we start our investigation of the regularity properties of a Gaussian pro-
cess X = (Xt)t∈T under majorizing measure conditions. The first part of our study
concerns upper bounds and sufficient conditions for boundedness and continuity of
X. The following theorem is due, in this form and with this proof, to X. Fernique
[Fe3], [Fe4]. It follows independently from the work of C. Preston [Pr1], [Pr2].

Theorem 6.2. Let X = (Xt)t∈T be a Gaussian process indexed by a set T . Then,
for every q > 1,

F (T ) ≤ CΘ(T )

where C > 0 only depends on q. If, in addition to ΘA,α < ∞ for some partition A
and weights α, one has

(6.6) lim
k→∞

sup
t∈T

∑

n≥k
q−n

(
log

1

α(An(t))

)1/2

= 0,

then X admits a version with almost all sample paths bounded and uniformly con-
tinuous on (T, d).

Proof. It is very similar to the proof of the upper bound in Theorem 6.1. We first
establish the inequality F (T ) ≤ CΘA,α(T ) for any partition A and any family of
weights α. We may asssume that T is finite. Let n0 be the largest integer n in ZZ
such that the diameter D(T ) of T is less than or equal to 2q−n. For every n ≥ n0, fix
a point in each element of the partition An and denote by Tn the (finite) collection
of these points. We may take Tn0

= {s0} for some fixed s0 in T . For every t in T ,
denote by sn(t) the element of Tn which belongs to An(t). As in (6.2), for every t,

Xt = Xs0 +
∑

n>n0

(
Xsn(t) −Xsn−1(t)

)
.

Since the partitions An are increasing,

sn(t) ∈ An−1

(
sn(t)

)
= An−1(t), n > n0.
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In particular, d(sn(t), sn−1(t)) ≤ 2q−n+1. Now, for every t in T and every n > n0,
let

cn(t) = 2
√

2q−n+1

(
log

1

α(An(t))

)1/2

.

With respect to the entropic proof, note here the dependence of cn on t which is the
main feature of the majorizing measure technique. Actually, the partitions A and
weights α are used to bound, in the chaining argument, the “heaviest” portions of
the process. We can now write, almost as in the proof of Theorem 6.1,

F (T )

≤ sup
t∈T

∑

n>n0

cn(t) + IE

(
sup
t∈T

∑

n>n0

∣∣Xsn(t) −Xsn−1(t)

∣∣I{|Xsn(t)−Xsn−1(t)|>cn(t)}

)

≤ sup
t∈T

∑

n>n0

cn(t) + IE

(∑

n>n0

∑

u∈Tn

∣∣Xu −Xsn−1(u)

∣∣I{|Xu−Xsn−1(u)|>cn(u)}

)

≤ sup
t∈T

∑

n>n0

cn(t) +
∑

n>n0

∑

u∈Tn

2q−n+1 exp
(
−c2n(u)/8q−2n+2

)
.

Therefore
F (T ) ≤ sup

t∈T

∑

n>n0

cn(t) +
∑

n>n0

2q−n+1
∑

u∈Tn

α
(
An(u)

)

≤ sup
t∈T

∑

n>n0

cn(t) + 2(q − 1)−1q−n0+1.

Since

ΘA,α ≥ (log 2)1/2q−n0−1,

the first claim of Theorem 6.2 follows.
We turn to the sample path continuity. Let η > 0. For each k (> n0), set

V = Vk =
{
(x, y) ∈ Tk × Tk; ∃u, v in T such that

d(u, v) ≤ η and sk(u) = x, sk(v) = y
}
.

If (x, y) ∈ V , we fix ux,y, vx,y in T such that sk(ux,y) = x, sk(vx,y) = y and
d(ux,y, vx,y) ≤ η. Now, let s, t in T with d(s, t) ≤ η. Set x = sk(s), y = sk(t).
Clearly (x, y) ∈ V . By the triangle inequality,

|Xs −Xt| ≤ |Xs −Xsk(s)|+ |Xsk(s) −Xux,y
|+ |Xux,y

−Xvx,y
|

+ |Xvx,y
−Xsk(t)|+ |Xsk(t) −Xt|

≤ sup
(x,y)∈V

|Xux,y
−Xvx,y

|+ 4 sup
r∈T

|Xr −Xsk(r)|.

Clearly,

IE
(

sup
(x,y)∈V

|Xux,y
−Xvx,y

|
)
≤ η

(
Card(Tk)

)2
.
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Now, the chaining argument in the proof of boundedness similarly shows that

IE
(
sup
t∈T

|Xt −Xsk(t)|
)
≤ C sup

t∈T

∑

n≥k
q−n

(
log

1

α(An(t))

)1/2

for some constant C > 0 (independent of k). Therefore, hypothesis (6.6) and the
preceding inequalities ensure that for each ε > 0 there exists η > 0 such that, for
every finite and thus also countable subset U of T ,

IE
(

sup
s,t∈U,d(s,t)≤η

|Xs −Xt|
)
≤ ε.

Since (T, d) is totally bounded, there exists U countable and dense in T . Then, set

X̃t = Xt if t ∈ U and X̃t = limXt where the limit, in probability or in L1, is
taken for u→ t, u ∈ U . Then (X̃t)t∈T is a version of the process X with uniformly
continuous sample paths on (T, d). Indeed, let, for each integer n, ηn > 0 be such
that

IE
(

sup
d(s,t)≤ηn

∣∣X̃s − X̃t

∣∣) ≤ 4−n.

Then, if Cn = {supd(s,t)≤ηn
|X̃s−X̃t| ≥ 2−n},∑n IP(Cn) <∞ and the claim follows

from the Borel-Cantelli lemma. The proof of Theorem 6.2 is complete.

We now turn to the theorem of M. Talagrand [Ta2] on necessity of majorizing
measures. This result was conjectured by X. Fernique back in 1974. As announced,
we follow the simplified proof of the author [Ta7] based on concentration of Gaussian
measures. This new proof moreover allows us to get some insight on the weights α
of the “minorizing” measure.

Theorem 6.3. There exists a universal value q0 ≥ 2 such that for every q ≥ q0 and
every Gaussian process X = (Xt)t∈T indexed by T ,

Θ(T ) ≤ CF (T )

where C > 0 is a constant only depending on q.

Proof. The key step is provided by the following minoration principle based on con-
centration and Sudakov’s inequality. It may actually be considered as a strengthen-
ing of the latter.

Lemma 6.4. There exists a numerical constant 0 < c < 1
2

with the following
property. If ε > 0 and if t1, . . . , tN are points in T such that d(tk, t`) ≥ ε, k 6= `,
N ≥ 2, and if B1, . . . , BN are subsets of T such that Bk ⊂ B(tk, cε), k = 1, . . .N ,
we have

IE
(

max
1≤k≤N

sup
t∈Bk

Xt

)
≥ cε(logN)1/2 + min

1≤k≤N
IE
(
sup
t∈Bk

Xt

)
.

Proof. We may assume that Bk is finite for every k. Set Yk = supt∈Bk
(Xt − Xtk),

k = 1, . . . , N . Then,

sup
t∈Bk

Xt = (Yk − IEYk) + IEYk +Xtk
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and thus

(6.7) max
1≤k≤N

Xtk ≤ max
1≤k≤N

sup
t∈Bk

Xt + max
1≤k≤N

|Yk − IEYk| − min
1≤k≤N

IE
(
sup
t∈Bk

Xt

)
.

Integrate both sides of this inequality. By Sudakov’s minoration (Theorem 6.1),

IE
(

max
1≤k≤N

Xtk

)
≥ C−1

1 ε(logN)1/2.

Furthermore, the concentration inequalities, in the form for example of (2.9) or (4.2),
(4.3), show that, for every r ≥ 0, and every k,

IP
{
|Yk − IEYk| ≥ r

}
≤ 2e−r

2/2c2ε2 .

This estimate easily and classically implies that

IE
(

max
1≤k≤N

|Yk − IEYk|
)
≤ C3cε(logN)1/2

where C3 > 0 is numerical. Indeed, by the integration by parts formula, for every
δ > 0,

IE
(

max
1≤k≤N

|Yk − IEYk|
)
≤ δ +

∫ ∞

δ

IP
{

max
1≤k≤N

|Yk − IEYk| ≥ r
}
dr

≤ δ + 2N

∫ ∞

δ

e−r
2/2c2ε2dr

and the conclusion follows by letting δ be of the order of cε(logN)1/2. Hence, coming
back to (6.7), we see that if c > 0 is such that 1

C1
−cC3 = c, the minoration inequality

of the lemma holds. The value of q0 in Theorem 6.3 only depends on this choice.
(Since we may take C1 = 6 and C3 = 20 (for example), we see that c = .007 will
work.) Lemma 6.4 is proved.

We now start the proof of Theorem 6.3 itself and the construction of a partition
A and weights α. Assume that F (T ) < ∞ otherwise there is nothing to prove. In
particular, (T, d) is totally bounded. We further assume that q ≥ q0 where q0 = c−1

has been determined by Lemma 6.4.
For each n and each subset of T of diameter less than or equal to 2q−n, we will

construct an associated partition in sets of diameter less than or equal to 2q−n−1.
Let thus S be a subset of T with D(S) ≤ 2q−n. We first construct by induction a
(finite) sequence (tk)k≥1 of points in S. t1 is chosen so that F (S ∩ B(t1, q

−n−2)) is
maximal. Assume that t1, . . . , tk−1 have been constructed and set

Hk =
⋃

`<k

(
S ∩ B(t`, q

−n−1)
)
.

If Hk = S, the construction stops (and it will eventually stop since (T, d) is totally
bounded). If not, choose tk in S \ Hk such that F (Bk) is maximal where we set
Bk = (S \Hk) ∩ B(tk, q

−n−2). For every k, let

Ak = (S \Hk) ∩B(tk, q
−n−1).
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ClearlyD(Ak) ≤ 2q−n−1 and the Ak’s define a partition of S. One important feature
of this construction is that, for every t in Ak,

(6.8) F
(
Ak ∩ B(t, q−n−2)

)
≤ F (Bk).

On the other hand, the minoration lemma 6.4 applied with ε = q−n−1 yields (since
q ≥ c−1), for every k,

(6.9) F (S) ≥ cq−n−1(log k)1/2 + F (Bk).

We denote by A(S) this ordered finite partition {A1, . . . , Ak, . . .} of S. (6.8) and
(6.9) together yield: for every Ak ∈ A(S) and every U ∈ A(Ak),

(6.10) F (S) ≥ cq−n−1(log k)1/2 + F (U).

We now complete the construction. Let n0 be the largest in ZZ with D(T ) ≤
2q−n0 . Set An = {T} and αn(T ) = 1 for every n ≤ n0. Suppose that An and αn(S),
S ∈ An, n > n0, have been constructed. We define

An+1 =
⋃{

A(S);S ∈ An
}
.

If U ∈ An+1, there exists S ∈ An such that U = Ak ∈ A(S). We then set αn+1(U) =
αn(A)/2k2. Let t be fixed in T . With this notation, (6.10) means that for all n ≥ n0,

F
(
An(t)

)
≥ c 2−1/2q−n−1

(
log

αn(An(t))

2αn+1(An+1(t))

)1/2

+ F
(
An+2(t)

)

where we recall that we denote by An(t) the element of An that contains t. Summing
these inequalities separately on the even and odd integers, we get

2F (T ) ≥ c 2−1/2
∑

n>n0

q−n−1

(
log

αn(An(t))

2αn+1(An+1(t))

)1/2

and thus

c(q − 1)−1q−n0 + 2F (T ) ≥ c 2−1/2(1− q−1)
∑

n>n0

q−n
(

log
1

αn(An(t))

)1/2

.

Since 2q−n0 ≤ D(T ), and since

2F (T ) = sup
{
IE
(

sup
s,t∈U

|Xs −Xt|
)
;U finite in T

}

≥ sup
s,t∈T

IE|Xs −Xt| =
(

2√
π

)1/2

D(T ),
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it follows that, for some constant C > 0 only depending on q,

CF (T ) ≥ c
∑

n>n0

q−n
(

log
1

αn(An(t))

)1/2

.

Theorem 6.3 is therefore established.

It may be shown that if the Gaussian process X in Theorem 6.3 is almost surely
continuous on (T, d), then there is a majorizing measure satisfying (6.6). We refer
to [Ta2] or [L-T2] for the details.

Theorem 6.3 thus solved the question of the regularity properties of any Gaus-
sian process. Prior to this result however, X. Fernique showed [Fe4] that the conver-
gence of Dudley’s entropy integral was necessary for a stationary Gaussian process
to be almost surely bounded or continuous. One can actually easily show (cf. [L-T2])
that, in this case, the entropy integral coincides with a majorizing measure integral
with respect to the Haar measure on the underlying parameter set T endowed with
a group structure. One may however also provide a direct and transparent proof of
the stationary case on the basis of the above minoration principle (Lemma 6.4). We
would like to conclude this chapter with a brief sketch of this proof.

Let thus T be a locally compact Abelian group. LetX = (Xt)t∈T be a stationary
centered Gaussian process indexed by T , in the sense that the L2-metric d induced
by X is translation invariant on T . As announced, we aim to prove directly that for
some numerical constant C > 0,

∫ ∞

0

(
logN(T, d; ε)

)1/2
dε ≤ CF (T ).

(cf. [Fe4], [M-P], [L-T2] for more general statements along these lines.) Since d is
translation invariant,

IE
(

sup
s∈B(t,ε)

Xs

)
and N

(
B(t, ε), d; η

)
, ε, η > 0,

are independent of the point t. They will therefore be simpler denoted as

IE
(

sup
s∈B(ε)

Xs

)
and N

(
B(ε), d; η

)
.

Let n ∈ ZZ. Choose in a ball B(q−n) a maximal family (t1, . . . , tM ) under the
relations d(tk, t`) ≥ q−n−1, k 6= `. Then the balls B(tk, q

−n−1), 1 ≤ k ≤ M , cover
B(q−n) so that M ≥ N(B(q−n), d; q−n−1). Apply then Lemma 6.4 with ε = q−n−1,
q ≥ q0 = c−1 and Bk = B(tk, q

−n−2). We thus get

IE
(

sup
t∈B(q−n)

Xt

)
≥ cq−n−1

(
logN(B(q−n), d; q−n−1)

)1/2
+ IE

(
sup

t∈B(q−n−2)

Xt

)
.

Summing as before these inequalities along the even and the odd integers yields

F (T ) ≥ C−1
∑

n

q−n
(
logN(B(q−n), d; q−n−1)1/2.
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Since
N(T, d; q−n−1) ≤ N(T, d; q−n)N

(
B(q−n), d; q−n−1)

)
,

the proof is complete.
To conclude, let us mention the following challenging open problem. Let xi,

i ∈ IN, be real valued functions on a set T such that
∑

i xi(t)
2 < ∞ for every

t ∈ T . Let furthermore (εi)i∈IN be a sequence of independent symmetric Bernoulli
random variables and set, for each t ∈ T , Xt =

∑
i εixi(t) which converges almost

surely. The question of characterizing those “Bernoulli” processes (Xt)t∈T which are
almost surely bounded is almost completely open (cf. [L-T2], [Ta14]). The Gaussian
study of this chapter of course corresponds to the choice for (εi)i∈IN of a standard
Gaussian sequence.

Notes for further reading. On the history of entropy and majorizing measures, one
may consult respectively [Du2], [Fe4] and [He], [Fe4], [Ta2], [Ta18]. The first proof
of Theorem 6.3 by M. Talagrand [Ta2] was quite different from the proof presented
here following [Ta7]. Another proof may be found in [L-T2]. These proofs are based
on the fundamental principle, somewhat hidden here, that the size of a metric space
with respect to the existence of a majorizing measure can be measured by the size of
the well separated subsets it contains (see [Ta10], [Ta12] for more on this principle).
More on majorizing measures and minoration of random processes may be found
in [L-T2] and in the papers [Ta10], [Ta12], and in the recent survey [Ta18] where
in particular new examples of applications are described. It is shown in [L-T2] how
the upper bound techniques based on entropy or majorizing measures (Theorems
6.1 and 6.2) can yield deviation inequalities of the type (4.2), which are optimal by
Theorem 6.3. Sharp bounds on the tail of the supremum of a Gaussian process can be
obtained with these methods (see e.g. [Ta13], [Lif2], [Lif3] and the many references
therein). On construction of majorizing measures, see [L-T2], [Ta14], [Ta18]. For the
applications of the Dudley-Fernique theorem on stationary Gaussian processes to
random Fourier series, see [M-P], [L-T2].
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7. SMALL BALL PROBABILITIES FOR GAUSSIAN MEASURES

AND RELATED INEQUALITIES AND APPLICATIONS

While, as we saw in Chapter 4, the behavior of (the complement of) large balls
for Gaussian measures is relatively well described, small ball probabilities are much
less known. This problem has gone recently a quick development and we intend to
present in this chapter some significant recent results, although it seems that there
is still a long way to the final word (if there is any). In the first part of this chapter,
we describe a simple method to evaluate small Brownian balls and to establish
various sharper concentration inequalities. Then, we present some more abstract
and general results (due to J. Kuelbs and W. Li and M. Talagrand) which show
in particular, on the basis of the isoperimetric tool, that small ball probabilities
for Gaussian measures are closely related to some entropy numbers. In particular,
we establish an important concentration inequality for enlarged balls due to M.
Talagrand. To conclude this chapter, we briefly discuss some correlation inequalities
which have been used recently to extend the support of a diffusion theorem, the
large deviations of dynamical systems as well as the existence of Onsager-Machlup
functionals for stronger norms or topologies on Wiener space.

We introduce the question of small ball probabilities for Gaussian measures
with the example of Wiener measure. Let W = (W (t))t≥0 be Brownian motion

with values in IRd. Denote by ‖x‖∞ = supt∈[0,1] |x(t)| the supnorm on the space

of continuous functions C0([0, 1]; IRd) (vanishing at the origin) where we equip, for
example, IRd with its usual Euclidean norm | · |. Let ε > 0. By the scaling property,
for every λ > 0,

IP
{
‖W‖∞ ≤ ε

}
= IP

{
sup

0≤t≤λ
|W (t)| ≤ ε

√
λ
}
.

Choosing λ = ε−2, we see that

IP
{
‖W‖∞ ≤ ε

}
= IP

{
τ ≥ ε−2

}

where τ is the exit time of W from the unit ball B of IRd. It is known (cf. [I-W])
that u(t, x) = IE(f(W (t)+x)I{τ≥t}), x ∈ B, t ≥ 0, is the solution of the initial value
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Dirichlet problem

∂u

∂t
=

1

2
∆u in B, u|∂B = 0, u|t=0 = f.

Therefore

u(t, x) =
∞∑

n=1

e−λntφn(x)

∫

B

φn(y)f(y)dy,

where 0 < λ1 ≤ λ2 ≤ . . . are eigenvalues and φ1, φ2, . . . are corresponding eigen-
functions of the eigenvalue problem

1

2
∆φ+ λφ = 0 in B, φ|∂B = 0.

In particular

IP
{
τ ≥ ε−2

}
=

∞∑

n=1

e−λn/ε
2

φn(0)

∫

B

φn(y)dy

and thus

(7.1) IP
{
‖W‖∞ ≤ ε

}
∼ e−λ1/ε

2

φ1(0)

∫

B

φ1(y)dy.

In particular, it is known that λ1 = π2/8 for d = 1.
While the proof of (7.1) relies on some very specific properties of both the

Brownian paths and the supnorm, one may wonder for the behavior of small ball
probabilities for some other norms on Wiener space, such as for example Lp-norms
or the classical Hölder norms of index α for every 0 < α < 1

2
. In what follows,

we will describe some small ball Brownian probabilities, including the ones just
mentioned, using some more abstract tools (which could eventually generalize to
other Gaussian measures). We will however only work at the logarithmic scale. We
use series expansions of Brownian motion in the Haar basis of [0, 1]. We present
the various results following the exposition of W. Stolz [St1], inspired by the works
[B-R], [Ta9] and [Ta14] (among others). For simplicity, we work below with a one-
dimensional Brownian motion and write C0([0, 1]) for C0([0, 1]; IR).

We only concentrate here on the Brownian case. We mention at the end of the
chapter references of extensions to some more general processes. Of course, a lot
is known on small Hilbert balls for arbitrary Gaussian measures (cf. e.g. [Sy], [Zo],
[K-L-L], [Li]...).

Let h0, hm, m = 2n + k − 1, n ≥ 0, k = 1, . . . , 2n be the Haar functions on
[0, 1]. That is, h0 ≡ 1,

h1 = I[0,1/2) − I[1/2,1],

and, for every m = 2n + k − 1, n ≥ 1, k = 1, . . . , 2n,

hm(t) = 2n/2h1(2
nt− k + 1), 0 ≤ t ≤ 1.

Define then the Schauder functions ϕm, m ∈ IN, on [0, 1] by setting ϕm(t) =∫ t
0
hm(s)ds. The Schauder functions form a basis of the space of continous functions
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on [0, 1]. In particular, Lévy’s representation of Brownian motion may be expressed
by saying that, almost surely,

(7.2) W (t) =

∞∑

m=0

gmϕm(t), t ∈ [0, 1],

where (gm)m∈IN is a standard Gaussian sequence and where the convergence takes
place uniformly on [0, 1] (cf. Proposition 4.2).

In what follows, ‖ · ‖ is a measurable norm on C0([0, 1]) for which the Wiener
measure is a Radon measure, in other words for which the series (7.2) converges
almost surely (cf. Proposition 4.2).

Theorem 7.1. Let 0 ≤ α < 1
2
. If, for some constant C > 0,

∥∥∥∥
2n∑

k=1

akϕ2n+k−1

∥∥∥∥ ≤ C2−( 1
2−α)n max

1≤k≤2n
|ak|

for all real numbers a1, . . . , a2n and every n ≥ 0, then

log IP
{
‖W‖ ≤ ε

}
≥ −C ′ε−2/1−2α, 0 < ε ≤ 1,

where C ′ > 0 only depends on α and C.

Proof. We simply replace the ball {‖W‖ ≤ ε} by an appropriate cube in IRIN through
the representation (7.2). For q integer ≥ 1, define

bn = bn(q) =

{
2( 3

4−α
2 )(n−q) if n ≤ q,

2( 1
4−α

2 )(n−q) if n > q.

The choice of this sequence is not unique. If |a2n+k| ≤ bn for every n ≥ 0 and
k = 1, . . . , 2n, and |a0| ≤ b0, by the triangle inequality and the hypothesis,

∥∥∥∥
∞∑

m=0

amϕm

∥∥∥∥ ≤ C12
−( 1

2−α)q

for some constant C1 only depending on α. Therefore,

IP
{
‖W‖ ≤ C12

−( 1
2−α)p

}
≥ IP

{
|g0| ≤ b0, |g2n+k−1| ≤ bn, n ≥ 0, k = 1, . . . , 2n

}

= IP
{
|g| ≤ b0

} ∞∏

n=0

IP
{
|g| ≤ bn

}2n

where g is a standard normal variable. Now, we simply need evaluate this infinite
product. To this aim, we use that

(7.3) IP
{
|g| ≤ u

}
≥ u

3
if |u| ≤ 1
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and

(7.4) IP
{
|g| ≤ u

}
≥ 1− 1

2
2e−u

2/2 ≥ exp
(
−2e−u

2/2
)

if |u| ≥ 1.

It easily follows, after some elementary computations, that

IP
{
‖W‖ ≤ C12

−( 1
2−α)q

}
≥ exp (−C22

q)

from which Theorem 7.1 immediately follows.

The next theorem gives an upper bound of the small ball probabilities under
hypotheses dual to those of Theorem 7.1.

Theorem 7.2. Let 0 ≤ α < 1
2
. If, for some constant C > 0,

∥∥∥∥
2n∑

k=1

akϕ2n+k−1

∥∥∥∥ ≥
1

C
2−( 1

2−α)n

(
2−n

2n∑

k=1

|ak|
)

for all real numbers a1, . . . , a2n and every n ≥ 0, then

log IP
{
‖W‖ ≤ ε

}
≤ − 1

C ′′
ε−2/1−2α, 0 < ε ≤ 1,

where C ′′ > 0 only depends on α and C.

Proof. First recall Anderson’s inequality [An]. Let µ be a centered Gaussian measure
on a Banach space E as in Chapter 4. Then, for every convex symmetric subset A
of E and every x in E,

(7.5) µ(x+ A) ≤ µ(A).

Note that (7.5) is an easy consequence of (1.8) or the logconcavity of Gaussian
measures (1.9) (cf. [Bo1], [Bo3], [D-HJ-S]...). Indeed, the set

Z =
{
a ∈ E; µ(a+ A) ≤ µ(x+ A)

}

is symmetric and convex by (1.9). Now x ∈ Z, so that −x ∈ Z by symmetry, and, by
convexity, 0 = 1

2
x+ 1

2
(−x) ∈ Z which is the result (7.5). By the series representation

(7.2), independence and Fubini’s theorem, it follows that

IP
{
‖W‖ ≤ ε

}
≤ IP

{∥∥∥∥
2n∑

k=1

gk ϕ2n+k−1

∥∥∥∥ ≤ ε

}

for every ε > 0 and every n ≥ 0. Therefore, by the hypothesis,

IP
{
‖W‖ ≤ ε

}
≤ IP

{ 2n∑

k=1

|gk| ≤ εC2( 1
2−α)n2n

}
.
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By Chebyshev’s exponential inequality, for every integer N ≥ 1,

IP

{ N∑

k=1

|gk| ≤ cN

}
≤ ecN

(
IE(e−|g|)

)N ≤ e−cN

where c > 0 is such that e−2c = IE(e−|g|) < 1. Take then n to be the largest integer

such that εC2( 1
2−α)n ≤ c. The conclusion easily follows. The proof of Theorem 7.2

is complete.

The main interest of Theorems 7.1 and 7.2 lies in the examples for which the
hypotheses may easily be checked. Let us consider Lp-norms ‖ · ‖p, 1 ≤ p < ∞, on
[0, 1] for which

∥∥∥∥
2n∑

k=1

akϕ2n+k−1

∥∥∥∥
p

=
1

2
(p+ 1)−1/p2−n/2

(
2−n

2n∑

k=1

|ak|p
)1/p

for all real numbers a1, . . . , a2n. Since

2−n
2n∑

k=1

|ak| ≤
(

2−n
2n∑

k=1

|ak|p
)1/p

≤ max
1≤k≤2n

|ak|,

we deduce from Theorem 7.1 and 7.2 that, for some constant C > 0 only depending
on p and every 0 < ε ≤ 1,

(7.6) −Cε−2 ≤ log IP
{
‖W‖p ≤ ε

}
≤ −C−1ε−2.

More precise estimates on the constant C are obtained in [B-M].
In the same way, let ‖ · ‖α be the Hölder norm of index 0 < α < 1

2 defined by

‖x‖α = sup
0≤s6=t≤1

|x(s)− x(t)|
|s− t|α .

Again, it is easily seen that for every a1, . . . , a2n ∈ IR,

1

2
2−( 1

2−α)n max
1≤k≤2n

|ak| ≤
∥∥∥∥

2n∑

k=1

akϕ2n+k−1

∥∥∥∥
α

≤
√

2 2−( 1
2−α)n max

1≤k≤2n
|ak|.

Hence, for some constant C > 0 only depending on α, for every 0 < ε ≤ 1,

(7.7) −Cε−2/1−2α ≤ log IP
{
‖W‖α ≤ ε

}
≤ −C−1ε−2/1−2α.

This result is due to P. Baldi and B. Roynette [B-R].
Note that the supnorm may be included in either p = ∞ in (7.6) or α = 0 in

(7.7) so that we recover (7.1) with these elementary arguments, with however worse
constants. More examples may be treated by these methods such as Besov’s norm
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or Sobolev norms on the Wiener space. We refer to [St1] and [Li-S] for more details
along these lines.

To try to investigate some further cases with these tools, let us consider, on
some probability space (Ω,A, IP), a sequence (Gm)m∈IN of independent standard one
dimensional Brownian motions (on [0, 1]). Replace then, in the series representation
(7.2), the standard Gaussian sequence by this sequence of independent Brownian
motions. We define in this way a Brownian motion S with values in C0([0, 1]) and
with “reference measure” the Wiener measure itself. This is one way of defining
the Wiener sheet which thus turns out to be a centered Gaussian process S =
(S(s, t))s,t∈[0,1] with covariance

IE
(
S(s, t)S(s′, t′)

)
= min(s, s′) min(t, t′).

In this framework, we may thus ask for the behavior of IP{‖S‖∞ ≤ ε}, 0 < ε ≤ 1, for
the supnorm on [0, 1]2. Since this norm is also the supremum norm of W considered
as a one dimensional process with values in C0([0, 1]) (equipped with the supnorm),
some of the preceding material may be used in this investigation. In particular,
we can replace, in the proof of Theorem 7.1, (7.3) by the small ball behavior of
Brownian motion (7.1). By Theorem 4.1, the large ball behavior (7.4) is unchanged
at the exception of possibly different numerical constants. The argument of Theorem
7.3 then implies, exactly in the same way, that for some constant C > 0, and every
0 < ε ≤ 1,

log IP
{
‖S‖∞ ≤ ε

}
≥ −Cε−2

(
log ε−1

)3
.

A similar vector valued extension of Theorem 7.2 however only yields that

log IP
{
‖S‖∞ ≤ ε

}
≤ −C−1ε−2

(
log ε−1

)
.

These estimates, which go back to M. A. Lifshits [Lif-T] (see also [Bas]), only rely
on the small ball behavior (7.1) and are best possible among all Gaussian measures
having this small ball behavior. For the special case of Wiener measure and the
Wiener sheet, M. Talagrand [Ta15] however proved the striking following theorem.
The proof is based on a new wavelet decomposition of the space L2([0, 1]2) and
various combinatorial arguments from Banach space theory. The method does not
allow any precise information on constants. We refer to [Ta15] for the proof.

Theorem 7.3. There is a numerical constant C > 0 such that, for every 0 < ε ≤ 1,

−Cε−2
(
log ε−1

)3 ≤ log IP
{
‖S‖∞ ≤ ε

}
≤ −C−1ε−2

(
log ε−1

)3
.

In this framework of small ball probabilities for Gaussian measures, let us now
come back to some of the concentration inequalities of Chapters 2 and 4. There, we
studied inequalities for general sets A and their enlargements Ar. Now, we try to
take advantage of some geometric structures on A, such as for example being a ball
(convex and symmetric with respect to the origin). In a first step, we will notice how
some of the preceding tools may be applied successfully to improve, for example,



88

a statement such as Theorem 4.4. In particular, we aim to prove inequalities for
subsets A with small measure and to be able to keep the dependence in this measure.
The next statement (cf. [Ta8]) is a first example of what can be accomplished for
various norms on the Wiener space. Recall the unit ball K of the Cameron-Martin
Hilbert space H of absolutely continuous functions on [0, 1] whose almost everywhere
derivative is in L2.

Theorem 7.4. Let ‖ · ‖ be a norm on C0([0, 1]) for which Wiener measure is a
Radon measure. Denote by U the unit ball of ‖ · ‖. Let furthermore 0 ≤ α < 1

2 and
assume that, for some constant C > 0,

∥∥∥∥
2n∑

k=1

akϕ2n+k−1

∥∥∥∥ ≤ C2−( 1
2−α)n max

1≤k≤2n
|ak|

for all real numbers a1, . . . , a2n and every n ≥ 0. Then, for every ε > 0 and every
r ≥ 0,

IP{W ∈ εU + rK} ≥ 1− exp

(
C ′

ε2/1−2α
− εr

2σ
− r2

2σ2

)

where C ′ > 0 only depends on α and C where we recall that σ = supx∈K ‖x‖.

Proof. We take again the notation of Theorem 7.1. First note that since K ⊂ σU ,

εU + rK ⊃ ε

2
U +

(
r +

ε

2σ

)
K.

(The choice of ε/2 is rather arbitrary here.) Set r′ = r + ε
2σ

. Recall the sequence
(bn)n∈IN of the proof of Theorem 7.1 which depends on some integer q ≥ 1. Define
a sequence of real numbers (cm)m∈IN by setting

c0 = b0, c2n+k−1 = bn for all k = 1, . . . , 2n, n ≥ 0.

Consider the set V = Vq of all functions ϕ on [0, 1] that can be written as ϕ =∑∞
m=0 amϕm where |am| ≤ cm for every m. By the hypothesis on the norm ‖ · ‖ and

the triangle inequality, V ⊂ C12
−( 1

2−α)qU for some constant C1 > 0. Therefore, if q
is the smallest integer such that 2C12

−( 1
2−α)q ≤ ε, then εU + rK ⊃ V + r′K. Hence,

by the series representation (7.2),

IP{W ∈ εU + rK} ≥ IP{W ∈ V + r′K} = γ∞(Q+ r′σ−1B2)

where γ∞ is the canonical Gaussian measure on IRIN, B2 the unit ball of the repro-
ducing kernel of γ∞, that is the unit ball of `2, and Q the “cube” in IRIN

Q =
{
x = (xm)m∈IN ∈ IRIN; |xm| ≤ cm, m ∈ IN

}
.

Consider the function on IRIN given by d(x) = inf{u ≥ 0;x ∈ Q+ uB2}. Note that
γ∞(Q+ uB2) = γ∞(d < u). By Chebyshev’s inequality,

γ∞(d ≥ u) ≤ e−u
2/2

∫
ed

2/2dγ∞.
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For every m ≥ 0, let dm(x) = (|xm| − cm)+. Then

∫
ed

2
m/2dγ∞ =

2√
2π

∫ ∞

0

exp

(
1

2

(
(|t| − cm)+

)2 − t2

2

)
dt

≤ 1 +
2√
2π

∫ ∞

cm

exp

(
1

2
(|t| − cm)2 − t2

2

)
dt

≤ 1 +

∫ ∞

cm

exp

(
−cmt+

c2m
2

)
dt = 1 +

1

cm
e−c

2
m/2.

Now, the nice feature of this geometric construction is that d2 =
∑∞
m=0 d

2
m. There-

fore, it follows from the preceding that, for every u ≥ 0,

γ∞(d ≥ u) ≤
∞∏

m=0

(
1 +

1

cm
e−c

2
m/2

)
e−u

2/2.

To conclude the proof, we need simply estimate this infinite product. By the defini-
tion of the sequence (cm)m∈IN, we see that

∞∏

m=0

(
1 +

1

cm
e−c

2
m/2

)
=

∞∏

n=0

(
1 +

1

bn
e−b

2
n/2

)2n

.

Now, the very definition of the sequence (bn)n∈IN implies, after elementary, though
somewhat tedious, computations that the preceding infinite product is bounded
above by exp(C22

p) for some numerical constant C2 > 0. By the choice of q, this
completes the proof of Theorem 7.4 .

With respect to the classical isoperimetric and concentration inequalities usu-
ally stated for sets with measure larger than 1

2 , we note here that the probability
IP{W ∈ εU} can be very small as ε → 0. Moreover, according to Theorem 7.1,
the first term in the exponential extimate of Theorem 7.4 is precisely the order of
IP{W ∈ εU}. Theorem 7.4 applies to the supnorm and the Hölder norms and may be
used in the study of rates of convergence in Strassen’s law of the iterated logarithm.
Let for example

Zn(t) =

(
W (nt)√
2nLLn

)

t∈[0,1]

, n ≥ 1,

where LLn = log log n if n ≥ 3, LLn = 1 if n = 1, 2. It is shown in [Ta8] using
Theorem 7.4 that, almost surely,

0 < lim sup
n→∞

(LLn)2/3d
(
Zn,K

)
<∞

where d(·,K) is the uniform distance to the Strassen set (Cameron-Martin unit ball)
on C0([0, 1]). See also [Gri] for an alternate proof and [Ta9] for further results.

Recently, M. Talagrand [Ta9] proved a deep extension of Theorem 7.4 in the
abstract setting of enlarged balls. We now would like to present this statement.
We will state and prove the main result for the canonical Gaussian measure γn on
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IRn. As in the preceding chapters, this is again the main inequality and standard
tools may then be used to extend it to arbitrary Gaussian measures as in Chapter
4. The isoperimetric and concentration inequalities for γn yield powerful bounds
of the measure of an enlarged set Ar, especially when r is large. However, the
extremal sets of Gaussian isoperimetry are the half-spaces and it may well be that
the concentration properties could be sharpened for sets with special geometrical
structures such as for example convex symmetric bodies. The next theorem [Ta10]
answers this problem.

Theorem 7.5. Let C be a closed convex symmetric subset of IRn. Assume that the
polar C◦ of C may be covered byN sets (Ti)1≤i≤N such that

∫
supy∈Ti

〈x, y〉dγn(x) ≤
1
2 . Then, for every r ≥ 1,

γn(Cr) ≥ 1− 4N log(er)e−r
2/2.

Proof. Denote for simplicity by B the closed Euclidean unit ball in IRn. Since C is
closed and B is compact, Cr = C+rB is closed. By the bipolar theorem, C+rB = U ◦

where U = (C + rB)◦. By definition,

U =
{
x ∈ IRn; ∀ y ∈ C, ∀ z ∈ B,

∣∣〈x, y〉+ r〈x, z〉
∣∣ ≤ 1

}
.

Setting ‖x‖C = supy∈C〈x, y〉 = supy∈C |〈x, y〉|, we see that

(7.8) U =
{
x ∈ IRn; ‖x‖C + r|x| ≤ 1

}
.

Observe also by the definition of the polar that x ∈ ‖x‖CC◦. If T is a subset of IRn,
we set

E(T ) =

∫
sup
y∈T

〈x, y〉dγn(x).

Let p0 be the largest integer p such that 2p−1 ≤ r2. In particular, p0 ≤ 1+4 log r.
Now, set

U0 =
{
x ∈ U ; |x| ≥ r−1(1− r−2)

}

and, for 1 ≤ p ≤ p0,

Up =
{
x ∈ U ; r−1(1− r−22p) ≤ |x| ≤ r−1(1− r−22p−1)

}
.

Thus we have U ⊂ ⋃
0≤p≤p0 Up. Moreover, for x ∈ Up, by (7.8), ‖x‖C ≤ r−22p.

Therefore, Up ⊂ r−22pC◦. It thus follows from the hypothesis on C◦ that Up can be
covered by subsets (Tp,i)1≤i≤N where Tp,i = r−22pTi∩Up. Hence E(Tp,i) ≤ r−22p−1.

The essential step of the proof is concentration. From (4.3) for example, we get
that, for every subset T of IRn and every t ≥ E(T ),

(7.9) γn
(
x; sup
y∈T

〈y, x〉 ≥ t
)
≤ exp

(
− (t−E(T ))2

2σ2

)
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where σ = σ(T ) = supx∈T |x|. Note that for p ≤ p0, E(Tp,i) ≤ r−22p−1 ≤ 1. Hence,
using (7.9) for t = 1, we get, for every 0 ≤ p ≤ p0, 1 ≤ i ≤ N ,

(7.10) γn
(
x; sup
y∈Tp,i

〈y, x〉 ≥ 1
)
≤ exp

(
− (1− r−22p−1)2

2σ(Tp,i)2

)
.

We first consider the case p = 0. We have σ(T0,i) ≤ r−1 so that, by summation over
1 ≤ i ≤ N ,

γn
(
x; sup
y∈U0

〈y, x〉 ≥ 1
)
≤ N exp

(
−r

2

2

(
1− r−2

)2
)
≤ Ne e−r

2/2.

For p ≥ 1, by definition of Up, we have σ(Tp,i) ≤ r−1(1 − r−22p−1), so that, by
summation of (7.10) over 1 ≤ i ≤ N , we get

γn
(
x; sup
y∈Up

〈y, x〉 ≥ 1
)
≤ N e−r

2/2.

Now, summation over 0 ≤ p ≤ p0 and the fact that p0 ≤ 1 + 4 log r yield

γn
(
x; sup
y∈U

〈y, x〉 ≥ 1
)
≤ N(e + 1 + 4 log r) e−r

2/2

≤ 4N log(er) e−r
2/2.

Since C + rB = U◦, the result follows. The proof of Theorem 7.5 is complete.

Of course, Theorem 7.5 can be useful in applications only if the number N of
the statement may be appropriately bounded. We will not go far in the technical
details, but one of the main conclusions of the important paper [Ta9] is that N
may actually be controlled by the behavior of γn(εA) for the small values of ε > 0.
Actually, this observation is strongly related to a remarkable result of J. Kuelbs
and W. Li [K-L2] connecting the small ball probabilities to some entropy numbers
related to N . We now turn to this discussion. Related work of M. A. Lifshits [Lif1]
deals with the geometric tool of Kolmogorov’s widths.

Given two (convex) sets A and B in IRn (or more generaly in a linear vector
space), denote by N(A,B) the smallest number of translates of B which are needed
to cover A. Now, let, as in Theorem 7.5, C be a closed convex symmetric set and
let B be the Euclidean unit ball in IRn. If x ∈ IRn is such that (x+ εB) ∩ C◦ 6= ∅,
for y ∈ (x+ εB) ∩ C◦ we have

(x+ εB) ∩ C◦ ⊂ (y + 2εB) ∩ C◦ ⊂ y + (2εB ∩ 2C◦).

Hence, if ε is such that E(C◦∩εB) ≤ 1
8 , then the number N in Theorem 7.5 satisfies

N ≤ N(C◦, εB). Now, it has been observed in local theory of Banach spaces [TJ]
that the growth of the entropy numbers N(C◦, εB) is very similar to the growth
of the dual entropy numbers N(B, εC) (cf. [L-T2], p. 82-83). The observation of J.
Kuelbs and W. Li is precisely that the behavior of the small ball probabilities γn(εA)
is related to these dual entropy numbers N(B, εC). They established namely the
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following theorem. One crucial argument in the proof is the Gaussian isoperimetric
inequality. A prior partial result appeared in [Go2].

Theorem 7.6. Under the preceding notation, if C is compact, convex and symmet-
ric, and if t = (2 log(γn(C)−1))−1/2 > 0, then

1

2γn(2C)
≤ N(B, tC) ≤ 1

2γn(C/2)2
.

Proof. First note, as a consequence of Cameron-Martin’s formula (in finite dimen-
sion) and Anderson’s inequality (7.5), that for every x ∈ IRn,

(7.11) e−|x|
2/2γn(C) ≤ γn(x+ C) ≤ γn(C).

Consider now u > 0 and a finite subset F of uB such that for any two distinct points
of F , the translates of C by these points are disjoints. By (7.11), for every x in F ,

γn(x+ C) ≥ e−u
2/2γn(C).

It follows that Card(F ) ≤ γn(C)−1eu
2/2. When F is maximal, the sets (x+ 2C)x∈F

cover uB so that
N(uB, 2C) ≤ γn(C)−1eu

2/2.

(When γn(C) ≥ 1
2
, this is how the dual Sudakov inequality is proved in [L-T2], p.

83.) If we choose u = t−1 = (2 log(γn(C)−1))1/2, we have N(uB, 2C) ≤ γn(C)−2.
Since N(uB,C) = N(B, tC), the right hand side of Theorem 7.6 follows by replacing
C by 1

2
C.

Conversely, by (7.11) again,

N(uB,C)γn(2C) ≥ N(C + uB, 2C)γn(2C) ≥ γn(C + uB).

Now, by the isoperimetric inequality (Theorem 1.3),

Φ−1
(
γn(C + uB)

)
≥ Φ−1

(
γn(C)

)
+ u.

Let again u = t−1 = (2 log(γn(C)−1))1/2. Since Φ(−u) ≤ e−u
2/2 = γn(C), the

isoperimetric inequality implies that Φ−1(γn(C+uB)) ≥ 0 that is, γn(C+uB) ≥ 1
2
.

The left hand side of the inequality of the theorem is thus also satisfied. The proof
is complete.

If we set

ϕ(ε) =

(
2 log

1

γn(εC)

)1/2

, ε > 0,

we see from Theorem 7.6 that

1

2
exp

(
ϕ(2ε)2

2

)
≤ N

(
B,

ε

ϕ(ε)

)
≤ exp

(
ϕ
( ε

2

)2)
.
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Therefore, if ϕ is regularly varying, its behavior is essentially given by the behavior
of the entropy numbers N(B, εC) (and conversely). Much more on the structure
of C is thus involved with respect for example with the large ball behavior (cf.
Chapter 4). While Theorem 7.6 and its proof are presented in finite dimension,
the infinite dimensional extension yields a rather precise equivalence between small
ball probabilities for a Gaussian measure µ on a Banach space E and the entropy
numbers N(K, εU) where K is the unit ball of the reproducing kernel Hilbert space
H and U the unit ball of E. It has been shown by J. Kuelbs and W. Li [K-L2] to
have striking consequences in approximation theory. For example, using the small
ball behaviors for Wiener measure, we see that if K is the unit ball of the Cameron-
Martin Hilbert space and C the Lp-ball on ([0, 1], dt), 1 ≤ p ≤ ∞, then

logN(K, εC) ∼ 1

ε
as ε→ 0.

Theorem 7.3 similarly shows that for K the unit ball of the Cameron-Martin space
associated to the Wiener sheet and for C the uniform unit ball on C([0, 1]2; IR),

logN(K, εC) ∼ 1

ε

(
log

1

ε

)3/2

as ε→ 0.

This deep connection between entropy numbers and small ball probabilities is further
investigated in [K-L2] and [Ta9]. In particular, in [Ta9], the author obtains very
general rates for the variables (2 logn)−1/2Xn to cluster to K, when (Xn)n∈IN is a
sequence of independent identically distributed sequence with distribution µ. These
rates depend only on the behavior of the small ball probabilities µ(εU). These results
have applications to rates of convergence in Strassen’s law of the iterated logarithm
for Brownian motion. Prior results on the convergence of (2 logn)−1/2Xn to K at
the origin of this study are due to V. Goodman [Go1].

In [Ta9], M. Talagrand also established a general lower bound on supremum
of Gaussian processes under entropy conditions. At the present time, it is one of
the only few general results available in this subject of small ball probabilities. We
briefly describe one simple statement. Let (Xt)t∈T be a (centered) Gaussian process
as in Chapter 6. Recall also from this chapter the entropy numbers N(T, d; ε), ε > 0,
for the Dudley metric d(s, t) = (IE|Xs −Xt|2)1/2, s, t ∈ T . Assume that there is a
nonnegative function ψ on IR+ such that

(7.11) N(T, d; ε) ≤ ψ(ε), ε > 0,

and such that for some constants 1 < c1 ≤ c2 <∞ and all ε > 0

(7.12) c1ψ(ε) ≤ ψ
( ε

2

)
≤ c2ψ(ε).

We thus have in mind a power type behavior ψ(ε) = ε−a of the entropy numbers.
Then, for some K > 0 and every ε > 0,

(7.13) IP
{

sup
s,t∈T

|Xs −Xt| ≤ ε
}
≥ exp

(
−Kψ(ε)

)
.
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We prove this result following the notations introduced in the previous chapter. Let
n0 be the largest n in ZZ such that 2−n ≥ D(T ) where D(T ) is the diameter of
T , assumed to be finite (we may actually start with T finite). For every n ≥ n0,
consider a subset Tn of T of cardinality N(n) = N(T, d; 2−n) such that each point
of T is within distance 2−n of Tn. We let Tn0

= {t0} where t0 is any fixed point in
T . For n > n0, choose sn−1(t) ∈ Tn−1 such that d(t, sn−1(t)) ≤ 2−n+1 and set

Y = {Xt −Xsn−1(t); t ∈ Tn}.

Note that ‖Y ‖2 ≤ 2−n+1 for every Y in Y. Clearly, each Xt can be written as

Xt = Xt0 +
∑

n>n0

Yn

where Yn ∈ Y, n > n0. Therefore, if (bn)n>n0
is a sequence of positive numbers with∑

n>n0
bn ≤ u

2 , u > 0,

(7.14)

IP
{

sup
s,t∈T

|Xs −Xt| ≤ u
}
≥ IP

{
∀n > n0, ∀Y ∈ Y, |Yn| ≤ bn

}

≥
∏

n>n0

(
IP
{
|g| ≤ bn2

n−1
})N(n)

where g is a standard normal variable. We used here the following consequence of the
main inequality of [Kh], [Sc], [Si]... (see (7.16) below): if (Z1, . . . , Zn) is a (centered)
Gaussian random vector, for every λ1, . . . , λn ≥ 0,

IP
{
|Z1| ≤ λ1, . . . , |Zn| ≤ λn

}
≥

n∏

i=1

IP
{
|Zi| ≤ λi

}
.

Let q be an integer with q > n0 and set

bn = bn(q) =

{
2−

3q
2 + n

2 +1 if n0 < n ≤ q,
2−

q
2−n

2 +1 if n > q.

Then
∑

n>n0
bn ≤ 2−q+3. Apply then (7.14) with u = 2−q+3. Using (7.3) and (7.4)

and the hypothesis N(n) ≤ ψ(2−n), we get

IP
{

sup
s,t∈T

|Xs −Xt| ≤ u
}
≥

∏

n0<n≤q

(
3−12−3(n−q)/2)ψ(2−n) ∏

n>q

exp
(
−2ψ(2−n)e−2n−q)

.

Now, by (7.12),

∑

n0<n≤q
ψ(2−n) log

(
3−123(n−q)/2) ≤ ψ(2−q)

∑

n0<n≤q
cn−q1 log

(
3−123(n−q)/2)

≤ K(c1)ψ(2−q)
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while ∑

n>q

ψ(2−n) e−2n−q ≤ ψ(2−q)
∑

n>q

cn−q2 e−2n−q

≤ K(c2)ψ(2−q)

where K(c1), K(c2) > 0 only depend on c1 and c2 respectively. It follows that

IP
{

sup
s,t∈T

|Xs −Xt| ≤ 2−q+3
}
≥ exp

(
−Kψ(2−q)

)

where q > n0. Let ε ≤ 8D(T ) and let q > n0 be the largest integer such that
2−q+4 ≥ ε (ε ≤ 8D(T ) ≤ 2−n0+3, 2−q+3 ≤ ε). Then

IP
{

sup
s,t∈T

|Xs −Xt| ≤ ε
}
≥ exp

(
−Kψ(2−q)

)
≥ exp

(
−Kψ(ε)

)
.

When ε ≥ 8D(T ), by concentration,

IP
{

sup
s,t∈T

|Xs −Xt| ≤ ε
}
≥ 1− 2 exp

(
ε2

2D(T )2

)
≥ 1

2
≥ exp

(
−ψ(ε)

)

since ψ(ε) ≥ N(T, d; ε) ≥ 1. (7.13) thus is established.

To conclude this chapter, we mention some related correlation and conditional
inequalities and their applications. These results have been used recently in various
topological questions on Wiener space briefly discussed below.

The next inequality seems to mix small ball and large ball behaviors and might
be of some interest in other contexts. It is related to conjecture (7.17) below. Let
W = (W (t))t≥0 be Brownian motion starting at the origin with values in IRd. By
Lévy’s modulus of continuity of Brownian motion, one may consider some stronger
topologies on the Wiener space C0([0, 1]; IRd), such as Hölder topologies. For every
function x : [0, 1] → IRd, recall the Hölder norm of index 0 < α < 1 defined as

‖x‖α = sup
0≤s6=t≤1

|x(s)− x(t)|
|s− t|α .

It is known, and due to Z. Ciesielski [Ci1], that these Hölder norms are equivalent
to sequence norms. More precisely, for every continuous function x : [0, 1] → IRd

such that x(0) = 0, let, for m = 2n + k − 1, n ≥ 0, k = 1, . . . , 2n,

ξm(x) = ξ2n+k−1(x) = 2n/2
[
2x
(2k − 1

2n+1

)
− x
( k

2n

)
− x
(k − 1

2n

)]

and ξ0(x) = x(1), be the evaluation of x in the Schauder basis on C0([0, 1]; IRd). Set

‖x‖′α = sup
m≥0

(m+ 1)α−
1
2

∣∣ξm(x)
∣∣.
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Then, for every 0 < α < 1, there exists Cdα > 0 such that, for all x ∈ C0([0, 1]; IRd),

(7.15) (Cdα)−1‖x‖′α ≤ ‖x‖α ≤ Cdα‖x‖′α.

Note also that Wiener measure is a Radon measure on the subspace of the space of
Hölder functions x such that

lim
η→0

sup
|s−t|≤η
0≤s6=t≤1

|x(s)− x(t)|
|s− t|α = 0.

The next proposition is the main conditional Gaussian inequality we would like
to emphasize. It evaluates large oscillations of the Brownian paths conditionally on
the fact that these paths are bounded [BA-G-L].

Proposition 7.7. Let 0 < α < 1
2
. There exists a constant C > 0 only depending

on d and α such that for every u > 0 and v > 0,

IP
{
‖W‖α ≥ u

∣∣ ‖W‖∞ ≤ v
}
≤ Cmax

(
1,
(u
v

)1/α
)

exp

(
− u1/α

Cv(1/α)−2

)
.

Proof. We use (7.15) to write that, for u, v > 0,

IP
{
‖W‖′α ≥ u

∣∣ ‖W‖∞ ≤ v
}
≤
∑

m≥0

IP
{∣∣ξm(W )

∣∣ ≥ u(m+ 1)
1
2−α | ‖W‖∞ ≤ v

}

≤
∑

m≥m0

IP
{∣∣ξm(W )

∣∣ ≥ u(m+ 1)
1
2−α | ‖W‖∞ ≤ v

}

where m0 = max(0, (u/4v)1/α − 1) since, on {‖W‖∞ ≤ v}, |ξm(W )| ≤ 4v
√
m+ 1.

Now, if a > 0 and if A is a convex symmetric subset of IRn, it has been shown in
[Kh], [Si], [Sco]... (see also [DG-E-...]) that

(7.16) γn(A ∩ S) ≥ γn(A)γn(S)

where, as usual, γn is the canonical Gaussian measure on IRn and where S is the
strip {x ∈ IRn; |x1| ≤ a}. Since the ξm are continuous linear functionals on the
Wiener space, a simple finite dimensional approximation on (7.16) (in the spirit, for
example, of the approximation procedures described in Chapter 4) then shows that

IP
{∣∣ξm(W )

∣∣ ≥ u(m+ 1)
1
2−α

∣∣ ‖W‖∞ ≤ v
}
≤ IP

{∣∣ξm(W )
∣∣ ≥ u(m+ 1)

1
2−α

}

for every m. Hence,

IP
{
‖W‖′α ≥ u

∣∣ ‖W‖∞ ≤ v
}
≤
∑

m≥m0

IP
{∣∣ξm(W )

∣∣ ≥ u(m+ 1)
1
2−α

}
.
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Now, the variables ξm(W ) are distributed according to γd on IRd. By the classical
Gaussian exponential bound,

IP
{
‖W‖′α ≥ u

∣∣ ‖W‖∞ ≤ v
}
≤
∑

m≥m0

exp

(
− 1

Cd
u2(m+ 1)1−2α

)

where Cd > 0 only depends on d. The conclusion then easily follows after some
elementary computations. Proposition 7.7 is established.

It might be worthwhile noting that we obtain a weaker, although already useful
result, by replacing in Proposition 7.7 the conditional probability by the probability
of the intersection, that is

IP
{
‖W‖α ≥ u, ‖W‖∞ ≤ v

}
.

The proof for this quantity is in fact easier since it does not use (7.16). M. A. Lifshits
recently mentioned to me that the bound of Proposition 7.7 is actually two-sided
at the logarithmic scale as the ratio u1/α/v(1/α)−2 is large. His argument is based
on a delicate partitioning and clever use of the Markov property. One may ask for a
general version of Proposition 7.7 dealing with some arbitrary norms on a Gaussian
space.

In the proof of Proposition 7.7, we made crucial use of the correlation inequal-
ity (7.16). More generally than (7.16), one may ask whether, given two symmetric
convex bodies A and B in IRn,

(7.17) γn(A ∩ B) ≥ γn(A)γn(B).

This was established when n = 2 by L. Pitt [Pit], and thus for arbitrary n when
B is a symmetric strip in [Kh], [Si], [Sco] (see also [DG-E-...], [Bo7]...). The general
case is so far open.

Proposition 7.7 was used recently in [BA-G-L] to extend the Stroock-Varadhan
support of a diffusion theorem (cf. [I-W]) to the stronger Hölder topology of index
0 < α < 1

2 on Wiener space. This result was obtained independently in [A-K-S]
and [M-SS] by other methods. It was further used in [BA-L2] to extend to this
topology the Freidlin-Wentzell large deviation principle for small perturbations of
dynamical systems. These results may appear as attempts to understand the role
of the topolgy in these classical statements. In this direction, the support theorem
is established in [G-N-SS] (see also [Me]) for fairly general modulus norms (related
to the description of the natural functional norms on the Brownian paths given in
[Ci2]). In the context of large deviations, one may wonder for example whether some
analogue of Theorem 4.5 holds for diffusion processes. An even more precise result
would be a concentration inequality for diffusions.

The next theorem is due to C. Borell [Bo4] in 1977 with a proof using the
logconcavity (1.9) of Gaussian measures. We follow here the alternate proof of [S-
Z1] based on the correlation inequality (7.16). This result may be used to establish
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conditional exponential inequalities that allow one to prove existence of Onsager-
Machlup functionals for tubes around every element in the Cameron-Martin space.

Theorem 7.8. Let (E,H, µ) be an abstract Wiener space and let h ∈ H. Then

lim
ε→0

µ(h+ B(0, ε))

µ(B(0, ε))
= e−|h|

2/2

where B(0, ε) is the (closed) ball with center the origin and radius ε > 0 for the
norm on E. Equivalently, by Cameron-Martin’s formula (4.11),

lim
ε→0

1

µ(B(0, ε))

∫

B(0,ε)

eh̃dµ = 1

where we recall that h̃ = (j∗|E∗

2
)−1(h).

On the Wiener space C0([0, 1]) (with the supnorm), if h is an element of the

Cameron-Martin Hilbert space, we know that h̃ =
∫ 1

0
h′(t)dW (t). As we have seen

in Chapter 4, this is still the case for a norm ‖ ·‖ on C0([0, 1] such that, for example,

‖x‖ ≥ C
∫ 1

0
|x(t)|dt for every x in C0([0, 1] and some constant C > 0. See [Bog] for

further results and improvements in this direction.

Proof. By symmetry and Jensen’s inequality, for each ε > 0,

1

µ(B(0, ε))

∫

B(0,ε)

eh̃dµ ≥ 1.

Therefore, it suffices to show that

(7.18) lim sup
ε→0

1

µ(B(0, ε))

∫

B(0,ε)

eh̃dµ ≤ 1.

It is plain that (7.18) holds when h = j∗j(ξ) for some ξ ∈ E∗, in other words,

h̃(·) = j(ξ)(·) = 〈ξ, ·〉 (considered as an element of L2(µ)). Now, since H = j∗(E∗2),
where we recall that E∗2 is the closure of E∗ in L2(µ) (cf. Chapter 4), there is a

sequence (ξn)n∈IN in E∗ such that limn→∞ ‖h̃ − j(ξn)‖L2(µ) = 0. By the Cauchy-
Schwarz inequality, for every ε > 0 and every n,

∫

B(0,ε)

eh̃dµ ≤
(∫

B(0,ε)

e2j(ξn)dµ

)1/2(∫

B(0,ε)

e2(h̃−j(ξn))dµ

)1/2

.

The result will therefore be established if we show that, for every ε > 0 and every
k in H,

(7.19)
1

µ(B(0, ε))

∫

B(0,ε)

ek̃dµ ≤
∫

e|k̃|dµ.
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Indeed, if this is the case, let k = kn = 2(h−j∗j(ξn)). Then k̃n is a Gaussian random

variable on the probability space (E,B, µ) with variance 4‖h̃ − j(ξn)‖2L2(µ) → 0.
Therefore, by the dominated convergence theorem,

lim
n→∞

∫
e|k̃n|dµ = 1.

Hence, letting ε tend to zero and then n tend to infinity yields the result. We are
left with the proof of (7.19). We will actually establish that, for every t ≥ 0,

(7.20) µ
(∣∣k̃
∣∣ ≥ t

∣∣B(0, ε)
)
≤ µ

(∣∣k̃
∣∣ ≥ t

)

from which (7.19) immediately follows by integration by parts. To this purpose,
assume that |k| = 1. We may choose an orthonormal basis (ei)i≥1 of H such that

e1 = k. Recall from Proposition 4.2 that the gi = (j∗|E∗

2
)−1(ei) = ẽi, i ≥ 1, are inde-

pendent standard Gaussian random variables. By (7.16), for every convex symmetric
set B in IRn, and every t ≥ 0,

IP
{
|g1| < t, (g1, . . . , gn) ∈ B

}
≥ IP

{
|g1| < t

}
IP
{
(g1, . . . , gn) ∈ B

}
.

If we let then B = {x ∈ IRn; ‖∑n
i=1 xiei‖ ≤ ε}, (7.20) immediately follows from this

inequality by Proposition 4.2. The proof of Theorem 7.8 is complete.

Note that the proof of Theorem 7.8 also applies to |h̃| and ch̃2 (with c < 1/2|h|2)
instead of h̃. With this tool, L. A. Shepp and O. Zeitouni initiated in [S-Z2] the study
of Onsager-Machlup functionals for some completely symmetric norms on Wiener
space. In [Ca], a general result in this direction is proved for rotational invariant
norms with a known small ball behavior (including in particular Hölder norms and
various Sobolev type norms).

Notes for further reading. More on small ball probabilities for Gaussian measures
may be found in [D-HJ-S] and in the more recent papers [Gri], [K-L2], [K-L-L],
[K-L-S], [K-L-T], [Li], [Lif3], [M-R], [Sh], [S-W], [St2]... In particular, in the latter
papers, the small ball behaviors are used in the study of rates of convergence in
both Strassen’s and Chung’s law of the iterated logarithm. Some general statements
towards this goal are stated in [Ta9]. Recall also the paper [D-L] on Strassen’s
law of the iterated logarithm for Brownian motion for arbitrary seminorms. See
also the recent reference [Lif3]. More on the support of a diffusion theorem, small
perturbations of dynamical systems and Onsager-Machlup functionals in stronger
topologies on Wiener space can be found in the afore mentioned references [A-K-S],
[B-R], [BA-G-L], [BA-L2], [Bog], [Ca], [Ci2], [G-N-SS], [Me], [M-SS], [S-Z1], [S-Z2]...
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8. ISOPERIMETRY AND HYPERCONTRACTIVITY

In this last chapter, we further investigate the tight relationships between isoperime-
try and semigroup techniques as started in Chapter 2. More precisely, we present
some of the semigroup tools which may be used to investigate the isoperimetric
inequality in Euclidean and Gauss space. In particular, we will concentrate on the
isoperimetric and concentration inequalities for Gaussian measures and show how
these relate to hypercontractivity of the Ornstein-Uhlenbeck semigroup. The overw-
hole approach is inspired by the work of N. Varopoulos in his functional approach to
isoperimetric inequalities on groups and manifolds. To better illustrate the scheme of
proofs, we start with the classical isoperimetry in IRn and observe, in particular, that
the isoperimetric inequality in IRn is equivalent to saying that the L2-norm of the
heat semigroup acting on characteristic functions of sets increases under isoperimet-
ric rearrangement. Then, we investigate the analogous situation with respect to the
canonical Gaussian measure γn. As for the concentration of measure phenomenon,
we will discover how the various properties of the Ornstein-Uhlenbeck semigroup
such as the commutation property or hypercontractivity can yield in a simple way
(a form of) the isoperimetric inequality for Gaussian measures.

Recall from Chapter 1 that the classical isoperimetric inequality in IRn states
that among all compact subsets A with fixed volume voln(A) and smooth boundary
∂A, Euclidean balls minimize the surface measure of the boundary. In other words,
whenever voln(A) = voln(B) where B is a ball with some radius r (and n > 1),

(8.1) voln−1(∂A) ≥ voln−1(∂B).

Now, voln−1(∂B) = nrn−1ωn where ωn is the volume of the ball of radius 1 so that
(8.1) is equivalent to saying that

(8.2) voln−1(∂A) ≥ nω1/n
n voln(A)(n−1)/n.

The function nω
1/n
n x(n−1)/n on IR+ is the isoperimetric function of the classical

isoperimetric problem on IRn. Euclidean balls are the extremal sets and achieve
equality in (8.2).
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It is well-known that (8.2) may be expressed equivalently on functions by means
of the coarea formula [Fed], [Maz2], [Os]. After integration by parts (see e.g. [Maz2],
p. ...), it yields

(8.3) nω1/n‖f‖n/n−1 ≤
∥∥|∇f |

∥∥
1

for every C∞ compactly supported function f on IRn. This inequality is equivalent
to (8.2) by letting f approximate the characterisitic function IA of a set A whose
boundary ∂A is smooth enough so that

∫
|∇f | dx approaches voln−1(∂A). For sim-

plicity, smoothness properties will be understood in this way here. Inequality (8.3) is
due independently to E. Gagliardo [Ga] and L. Nirenberg [Ni] with a nice inductive
proof on the dimension. This proof, however, does not seem to yield the optimal
constant, and therefore the extremal character of balls. The connection between
(8.2) and (8.3) through the coarea formula seems to be due to H. Federer and W.
H. Fleming [F-F] and V. G. Maz’ja [Maz1] (cf. [Os]).

Inequality (8.3) of course belongs to the family of Sobolev inequalities. Replac-
ing f (positive) by fα for some appropriate α easily yields after an application of
Hölder’s inequality that, for every C∞ compactly supported function f on IRn,

(8.4) ‖f‖q ≤ C(n, p, q)
∥∥|∇f |

∥∥
p

with 1
q = 1

p − 1
n and C(n, p, q) > 0 a constant only depending on n, p, q, 1 ≤ p < n.

The family of inequalities (8.4) with 1 < p < n goes back to S. Sobolev [So], the
inequality for p = 1 (which implies the others) having thus been established later
on. Of particular interest is the value p = 2 which may be expressed equivalently by
integration by parts as (n > 2)

(8.5) ‖f‖22n/n−2 ≤ C

∫
|∇f |2dx = C

∫
f(−∆f)dx

where ∆ is the usual Laplacian on IRn. As developed in an abstract setting by
N. Varopoulos [Va2] (cf. [Va5], [V-SC-C]), this Dirichlet type inequality (8.5) is
closely related to the behavior of the heat semigroup Tt = et∆, t ≥ 0, as ‖Ttf‖∞ ≤
Ct−n/2‖f‖1, t > 0. We will come back to this below.

Our first task will be to describe, in this concrete setting, some aspects of the
semigroup techniques of [Va2], [Va3], and to show how these can yield, in a very
simple way, (a form of) the isoperimetric inequality. We will work with the integral
representation of the heat semigroup Tt = et∆, t ≥ 0, as

Ttf(x) =

∫

IRn

f
(
x+

√
2t y
)
dγn(y), x ∈ IRn, f ∈ L1(dx),

where γn is the canonical Gaussian measure on IRn.
The following proposition is crucial for the understanding of the general prin-

ciple. Set, for Borel subsets A, B in IRn, and t ≥ 0,

KT
t (A,B) =

∫

B

Tt(IA)dx.
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Ac denotes below the complement of A.

Proposition 8.1. For every compact set A in IRn with smooth boundary ∂A and
every t ≥ 0,

KT
t (A,Ac) ≤

( t
π

)1/2

voln−1(∂A).

Proof. Let f, g be smooth functions on IRn. For every t ≥ 0, we can write

∫
g (Ttf − f)dx =

∫ t

0

(∫
g∆Tsf dx

)
ds

= −
∫ t

0

(∫
〈∇Tsg,∇f〉 dx

)
ds.

Now, by integration by parts,

∇Tsg =
1√
2s

∫

IRn

y g
(
x+

√
2s y

)
dγn(y) .

Hence

∫
g(Ttf − f)dx = −

∫ t

0

1√
2s

∫ ∫
〈∇f(x), y〉 g

(
x+

√
2s y

)
dxdγn(y)ds.

This inequality of course extends to g = IAc . Since

∫ ∫
〈∇f(x), y〉dxdγn(y) = 0,

we see that, for every s,

−
∫ ∫

〈∇f(x), y〉 IAc

(
x+

√
2s y

)
dxdγn(y) ≤

∫ ∫ (
〈∇f(x), y〉

)−
dxdγn(y)

=
1

2

∫ ∫ ∣∣〈∇f(x), y〉
∣∣dxdγn(y)

=
1√
2π

∫
|∇f |dx

by partial integration with respect with respect to dγn(y). The conclusion follows
since, by letting f approximate IA,

∫
|∇f | dx approaches voln−1(∂A). The proof of

Proposition 8.1 is complete.

Proposition 8.1 is sharp since it may be tested on balls. Namely, if B is an
Euclidean ball, one may check that

(8.6) lim
t→0

(π
t

)1/2

KT
t (B,Bc) = voln−1(∂B).



103

By translation invariance and homogeneity, one may assume that B is the unit ball
with center the origin and radius 1. Then, for t > 0,

KT
t (B,Bc) =

∫

{|x|>1}
γn
(
y ∈ IRn;

∣∣x+
√

2t y
∣∣ ≤ 1

)
dx.

Using polar coordinates and the rotational invariance of γn,

KT
t (B,Bc) =

∫ ∞

1

∫

ω∈∂B
ρn−1γn

(
y;
∣∣ρω +

√
2t y
∣∣ ≤ 1

)
dρdω

= voln−1(∂B)

∫ ∞

1

ρn−1γ1 ⊗ γn−1

(
(y1, ỹ);

∣∣ρ+
√

2ty1
∣∣2 + 2t|ỹ|2 ≤ 1

)
dρ

where y = (y1, ỹ), y1 ∈ IR, ỹ ∈ IRn−1. We then use Fubini’s theorem to write

KT
t (B,Bc) = voln−1(∂B)

∫
Jt(y1, ỹ)dγ1(y1)dγn−1(ỹ)

where

Jt(y1, ỹ) = I{2t|ỹ|2≤1;
√

2ty1≤
√

1−2t|ỹ|2−1}

∫ ∞

1

ρn−1I{|ρ+
√

2ty1|2≤1−2t|ỹ|2}dρ.

By a simple integration of the preceding, it is easily seen that

lim
t→0

1√
t
Jt(y1, ỹ) = −

√
2 y1I{y1≤0}

so that, by dominated convergence,

lim
t→0

1√
t
KT
t (B,Bc) = − voln−1(∂B)

∫ 0

−∞

√
2 y1dγ1(y1) =

1√
π

voln−1(∂B)

which is the claim (8.6).
As a consequence of (8.6), the isoperimetric inequality (8.2) is equivalent to

saying that, for every t ≥ 0 and every compact subset A with smooth boundary,
KT
t (A,A) ≤ KT

t (B,B) whenever B is a ball with the same volume as A. In other

words, since KT
t (A,A) = ‖Tt/2(IA)‖2

2
,

(8.7)
∥∥Tt(IA)

∥∥
2
≤
∥∥Tt(IB)

∥∥
2
, t ≥ 0.

Indeed, under such a property, by Proposition 8.1, for every t > 0,

voln−1(∂A) ≥
(π
t

)1/2

KT
t (A,Ac) ≥

(π
t

)1/2

KT
t (B,Bc)

and, when t→ 0, voln−1(∂A) ≥ voln−1(∂B) by (8.6).



104

Inequality (8.7) is part of the Riesz-Sobolev rearrangement inequalities (cf. e.g.
[B-L-L]). While we noticed its equivalence with isoperimetry, one may wonder for
an independent analytic proof of (8.7).

If one does not mind bad constants, one can actually deduce (a form of)
isoperimetry from Proposition 8.1 in an elementary way. We will use below this sim-
pler argument in the context of Riemannian manifolds. Note from the uniform esti-
mate ‖Ttf‖∞ ≤ Ct−n/2‖f‖1, t > 0, that, by interpolation, ‖Ttf‖2 ≤

√
Ct−n/4‖f‖1,

t > 0, for every f in L1(dx). Hence, by Proposition 8.1, for every compact subset A
in IRn with smooth boundary ∂A, and every t > 0,

voln−1(∂A) ≥
(π
t

)1/2

KT
t (A,Ac)

≥
(π
t

)1/2[
voln(A)− ‖Tt/2(IA)‖2

2

]

≥
(π
t

)1/2[
voln(A)− C

( t
2

)−n/2
voln(A)2

]
.

Optimizing over t > 0 then yields

voln−1(∂A) ≥ C ′voln(A)(n−1)/n

hence (8.2), with however a worse constant. This easy proof could appear even
simpler than the one by E. Gagliardo and L. Nirenberg.

These elementary arguments may be used in the same way in greater generality,
for example in Riemannian manifolds. Following [Va2], [Va3], we briefly describe how
the arguments should be developed in this case.

It is known ([C-L-Y], [Va1]) that an isoperimetric inequality on a Riemannian
manifold M , for example, always forces some control on the heat kernel of M . More
precisely, let M be a complete connected Riemannian manifold of dimension N , and,
say, noncompact and of infinite volume. Let furthermore ∆ be the Laplace-Beltrami
operator on M and denote by (Pt)t≥0 the heat semigroup with kernel pt(x, y).

Theorem 8.2. Assume that there exist n > 1 and C > 0 such that for all compacts
subsets A of M with smooth boundary ∂A,

(8.8) vol(A)(n−1)/n ≤ C vol(∂A).

Then, for some constant C ′ > 0,

(8.9) pt(x, y) ≤
C ′

tn/2

for every t > 0 and every x, y ∈M . Furthermore, for each δ > 0, there exists Cδ > 0
such that

(8.10) pt(x, y) ≤
Cδ
tn/2

exp

(
− d(x, y)2

4(1 + δ)t2

)
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for every t > 0 and every x, y ∈M .

The proof of this theorem is entirely similar to the Euclidean case. We compare
both (8.8) and (8.9) on the scale of Sobolev inequalities. One of the main points
is the formal equivalence, due to N. Varopoulos [Va2] (cf. [Va5], [V-SC-C] and the
references therein), of the L2-Sobolev inequality (8.5) and the uniform control of the
heat semigroup or kernel

(8.11) ‖Ptf‖∞ ≤ C

tn/2
‖f‖1, t > 0, f ∈ C∞o (M).

This result, inspired from the work of J. Nash [Na] and J. Moser [Mo] on the reg-
ularity of solutions of parabolic differential equations, is the main link between
analysis and geometry. Various techniques then allow one to deduce from the uni-
form control (8.11) of the kernel the Gaussian off-diagonal estimates (8.10) (cf. [Da],
[L-Y], [Va4]...). Theorem 8.2 may be localized in small time (from an isoperimetric
inequality on sets of small volume), or in large time [C-F] (sets of large volume).

As we have seen in the classical case, it is sometimes possible to reverse the
preceding procedure and to deduce some isoperimetric property from a (uniform)
control of the heat kernel. To emphasize the methods rather than the result itself,
let us consider only, for simplicity, Riemannian manifolds with nonnegative Ricci
curvature. Owing to the Euclidean example, we need to understand how we should
complement a Sobolev inequality at the level L2 (8.5) in order to reach the level
L1 (8.3) and therefore isoperimetry. In this Riemannian setting, this step may be
performed with a fundamental inequality due to P. Li et S.-T. Yau [L-Y] in their
study of parabolic Harnack inequalities. This inequality is a functional translation
of curvature and its proof (see e.g. [Da]) is only based, as in Chapter 2, on Bochner
formula and the related curvature-dimension inequalities (cf. Proposition 2.2). We
only state it in manifolds with nonnegative Ricci curvature.

Proposition 8.3. Let M be a Riemannian manifold of dimension N and nonnega-
tive Ricci curvature and let (Pt)t≥0 be the heat semigroup on M . For every strictly
positive function f in C∞o (V ) and every t > 0,

(8.12)
|∇Ptf |2
(Ptf)2

− ∆Ptf

Ptf
≤ N

2t
.

As shown by N. Varopoulos [Va4], one easily deduces from the pointwise in-
equality (8.12) that, for every f smooth enough and every t > 0,

(8.13)
∥∥|∇Ptf |

∥∥
∞ ≤ C√

t
‖f‖∞

for some C only depending on the dimension N , that is a control of the spatial
derivatives of the heat kernel. Indeed, according to (8.12), (∆Ptf)− ≤ N(2t)−1Ptf
so that ‖∆Ptf‖1 ≤ Nt−1‖f‖1. By duality, ‖∆Ptf‖∞ ≤ Nt−1‖f‖∞. This estimate,
used in (8.12) again, then immediately yields (8.13).
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The control (8.13) of the gradient of the semigroup in
√
t (similar to Proposition

8.1) is then the crucial information which, together with (8.11), allows us to reach
isoperimetry. Note that the dimension only comes into (8.11) and that (8.13) is in
a sense independent of this dimension (besides the constant). We will come back to
this comment in the Gaussian setting next. Inequality (8.13) shows that, by duality,
for every f in C∞o (M) and every t > 0,

(8.14) ‖f − Ptf‖1 ≤ C
√
t
∥∥|∇f |

∥∥
1
.

Indeed, for every smooth function g such that ‖g‖∞ ≤ 1,

∫
g (f − Ptf) dx = −

∫ t

0

(∫
g∆Psf dx

)
ds

= −
∫ t

0

(∫
∆Psg f dx

)
ds

=

∫ t

0

(∫
〈∇Psg,∇f〉dx

)
ds ≤

∫ t

0

‖∇Psg‖∞
∥∥|∇f |

∥∥
1
ds.

Now (8.14) together with (8.11) imply, exactly as in the Euclidean setting, that for
some constant C > 0 and every compact subset A of M with smooth boundary ∂A,

vol(A)(n−1)/n ≤ C vol(∂A),

that is the announced isoperimetry. We thus established the following theorem [Va4].

Theorem 8.4. Let M be a Riemannian manifold with nonnegative Ricci curvature.
If for some n > 1 and some C > 0,

pt(x, y) ≤
C

tn/2

uniformly in t > 0 and x, y ∈M , then, for some constant C ′ > 0 and every compact
subset A of M with smooth boundary ∂A

vol(A)(n−1)/n ≤ C ′ vol(∂A).

When the Ricci curvature is only bounded below, the preceding result can only
hold locally. In general, the geometry at infinity of the manifold is such that a heat
kernel estimate of the type (8.11) (for large t’s) only yields isoperimetry for half of
the dimension (cf. [C-L] for further details).

A third most important part of the theory concerns the relation of the preceding
isoperimetric and Sobolev inequalities with minorations of volumes of balls. We refer
to the works of P. Li and S.-T. Yau [L-Y] and N. Varopoulos [Va4], [Va5] and to the
monographs [Da], [V-C-SC].

Now, we turn to the Gaussian isoperimetric inequality and the Ornstein-Uhlen-
beck semigroup. We already saw in Chapter 2 how this semigroup may be used
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in order to describe the concentration properties of Gaussian measures. We use it
here to try to reach the full isoperimetric statement and base our approach on hy-
percontractivity. As we will see indeed, hypercontractivity and logarithmic Sobolev
inequalities may indeed be considered as analogues of heat kernel bounds and L2-
Sobolev inequalities in this context.

Recall the canonical Gaussian measure γn on IRn with density with respect to
Lebesgue measure ϕn(x) = (2π)−n/2 exp(−|x|2/2). Recall also that the isoperimetric
property for γn indicates that if A is a Borel set in IRn and H is a half-space

H = {x ∈ IRn; 〈x, u〉 ≤ a}, |u| = 1, a ∈ IR,

such that γn(A) = γn(H) = Φ(a), then, for any real number r ≥ 0,

γn(Ar) ≥ γn(Hr) = Φ(a+ r).

In the applications to hypercontractivity and logarithmic Sobolev inequalities, we
will use the Gaussian isoperimetric inequality in its infinitesimal formulation con-
necting the “Gaussian volume” of a set to the “Gaussian length” of its boundary
(which is really isoperimetry). More precisely, given a Borel subset A of IRn, define
([Eh3], [Fed]) the Gaussian Minkowski content of its boundary ∂A as

On−1(∂A) = lim inf
r→0

1

r

[
γn(Ar)− γn(A)

]
.

If ∂A is smooth, On−1(∂A) may be obtained as the integral of the Gaussian density
along ∂A (see below). In this langague, the isoperimetric inequality then expresses
that if H is a half-space with the same measure as A, then

On−1(∂A) ≥ On−1(∂H).

Now, one may easily compute (in dimension one) the Minkowski content of a half-
space as

On−1(∂H) = lim inf
r→0

1

r

[
Φ(a+ r)− Φ(a)

]
= ϕ1(a)

where Φ(a) = γn(H) = γn(A) and where ϕ1(x) = (2π)−1/2 exp(−x2/2), x ∈ IR.
Hence, denoting by Φ−1 the inverse function of Φ, we get that for every Borel set
A in IRn,

(8.15) On−1(∂A) ≥ ϕ1 ◦ Φ−1
(
γn(A)

)
.

The function ϕ1 ◦ Φ−1 is the isoperimetric function of the Gauss space (IRn, γn).
It may be compared to the function nω1/nx(n−1)/n of the classical isoperimetric
inequality in IRn. The function ϕ1 ◦ Φ−1 is still concave; it is defined on [0, 1], is
symmetric with respect to the vertical line going through 1

2
with a maximum there

equal to (2π)−1/2, and its behavior at the origin (or at 1 by symmetry) is governed
by the equivalence

(8.16) lim
x→0

ϕ1 ◦ Φ−1(x)

x(2 log(1/x))1/2
= 1.
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This can easily be established by noting that the derivative of ϕ1 ◦ Φ−1 is −Φ−1

and by comparing Φ−1(x) to (2 log(1/x))1/2.
As in the classical case, (8.15) may be expressed equivalently on functions by

means, again, of the coarea formula (see [Fed], [Maz2], [Eh3]). Writing for a smooth
function f on IRn with gradient ∇f that

∫
|∇f |dγn =

∫ ∞

0

(∫

Cs

ϕn(x) dHn−1(x)

)
ds

where Cs = {x ∈ IRn; |f(x)| = s} and where dHn−1 is the Hausdorff measure of
dimension n− 1 on Cs, we deduce from (8.15) that

(8.17)

∫
|∇f |dγn ≥

∫ ∞

0

ϕ1◦Φ−1
(
γn
(
|f | ≥ s

))
ds.

When f is a smooth function approximating the indicator function of a set A, we of
course recover (8.15) from (8.17), at least for subsets A with smooth boundary. Due
to the equivalence (8.16), one sees in particular on (8.17) that a smooth function
f satisfying

∫
|∇f |dγn < ∞ is such that

∫
|f |(log(1 + |f |))1/2dγn < ∞. Indeed, we

first see from (8.17) and (8.16) that for every s0 large enough

∫
|∇f |dγn ≥

∫ ∞

s0

γn
(
|f | ≥ s

)
ds

from which
∫
|f |dγn ≤ C < ∞ by the classical integration by parts formula. For

every s ≥ 0, γn(|f | ≥ s) ≤ C/s so that, by (8.17) and (8.16) again, for every large
s0, ∫

|∇f |dγn ≥
∫ ∞

s0

γn
(
|f | ≥ s

)(
log(s/C)

)1/2
ds

from which the claim immediately follows. In analogy with (8.3), such an inequality
belongs to the family of Sobolev inequalities, but here of logarithmic type.

It is plain that inequalities (8.15) and (8.17) have analogues in infinite dimension
for the appropriate notions of surface measure and gradient (as we did for example
with concentration in Chapter 4). Again, the crucial inequalities are the ones in
finite dimension.

We showed in Chapter 2 how the Ornstein-Uhlenbeck semigroup (Pt)t≥0 (and
for the large values of the time t) may be used to investigate the concentration
phenomenon of Gaussian measures. Our purpose here will be to show, in the same
spirit as what we presented in the classical case, that the behavior of (Pt)t≥0 for
the small values of t together with its hypercontractivity property may properly be
combined to yield (a version of) the infinitesimal version (8.15) of the isoperimetric
inequality. More precisely, we will show, with these tools, that there exists a small
enough numerical constant 0 < c < 1 such that for every A with smooth boundary,

On−1(∂A) ≥ c ϕ1 ◦ Φ−1
(
γn(A)

)
.

We doubt that this approach can lead to the exact constant c = 1. The line of
reasoning will follow the one of the classical case, simply replacing actually the
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classical heat semigroup estimates and Sobolev inequalities on IRn by the hypercon-
tractivity property and logarithmic Sobolev inequalities of the Ornstein-Uhlenbeck
semigroup. We follow [Led5] and now turn to hypercontractivity and logarithmic
Sobolev inequalities.

Let (W (t))t≥0 be a standard Brownian motion starting at the origin with values
in IRn. Consider the stochastic differential equation

dX(t) =
√

2 dW (t)−X(t)dt

with initial condition X(0) = x, whose solution simply is

X(t) = e−t
(
x+

√
2

∫ t

0

esdW (s)

)
, t ≥ 0.

Since
√

2
∫ t
0

esdW (s) has the same distribution as W (e2t−1), the Markov semigroup
(Pt)t≥0 of (X(t))t≥0 is given by

(8.18) Ptf(x) = IE
(
f
(
e−tx+e−tW

(
e2t−1)

))
=

∫

IRn

f
(
e−tx+(1−e−2t)1/2y

)
dγn(y)

for any f in L1(γn) (for example), thus defining the Ornstein-Uhlenbeck or Hermite
semigroup with respect to the Gaussian measure γn. As we have seen in Chapter 2,
(Pt)t≥0 is a Markovian semigroup of contractions on all Lp(γn)-spaces, 1 ≤ p ≤ ∞,
symmetric and invariant with respect to γn, and with generator L which acts on
each smooth function f on IRn as Lf(x) = ∆f(x) − 〈x,∇f(x)〉. The generator L
satisfies the integration by parts formula with respect to γn

∫
f(−Lg) dγn =

∫
〈∇f,∇g〉 dγn

for every smooth functions f, g on IRn.
One of the remarkable properties of the Ornstein-Uhlenbeck semigroup is the

hypercontractivity property discovered by E. Nelson [Nel]: whenever 1 < p < q <∞
and t > 0 satisfy et ≥ [(q − 1)/(p− 1)]1/2, then, for all functions f in Lp(γn),

(8.19) ‖Ptf‖q ≤ ‖f‖p
where (now) ‖ · ‖p is the norm in Lp(γn). In other words, Pt maps Lp(γn) in Lq(γn)
(q > p) with norm one. Many simple proofs of (8.19) have been given in the litera-
ture (see [Gr4]), mainly based on its equivalent formulation as logarithmic Sobolev
inequalities due to L. Gross [Gr3]. Fix p = 2 and take q(t) = 1 + e2t, t ≥ 0. Given
a smooth function f , set Ψ(t) = ‖Ptf‖q(t) where q(t) = 1 + e2t. Under the hy-

percontractivity property (2.2), Ψ(t) ≤ Ψ(0) for every t ≥ 0 and thus Ψ′(0) ≤ 0.
Performing this differentiation, we see that

(8.20)

∫
f2 log |f | dγn −

∫
f2dγn log

(∫
f2dγn

)1/2

≤
∫
|∇f |2 dγn

(
=

∫
f(−Lf)dγn

)
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which in turn implies (8.19) by applying it to (Ptf)p instead of f ≥ 0 for every t and
every p ≥ 1 (cf. [B-É]). The inequality (8.20) is called a logarithmic Sobolev inequal-
ity. One may note, with respect to the classical Sobolev inequalities on IRn, that it
is only of logarithmic type, with however constants independent of the dimension,
a characteristic feature of Gaussian measures.

Simple proofs of (8.20) may be found in e.g. [Ne3], [A-C], [B-É], [Bak]... (cf.
[Gr4]). The one which we present now for completeness already appeared in [Led3]
and only relies (see also [B-É]) on the commutation property (2.6)

∇Ptf = e−tPt(∇f).

That is, the proof we will give of hypercontractivity relies on exactly the same
argument which allowed us to describe the concentration of γn in the form of (2.7)
through Proposition 2.1 and is actually very similar. We will come back to this
important point. In order to establish (8.20), replacing f (positive, or better such
that 0 < a ≤ f ≤ b for constants a, b) by

√
f , it is enough to show that

(8.21)

∫
f log f dγn −

∫
f dγn log

(∫
f dγn

)
≤ 1

2

∫
1

f
|∇f |2 dγn.

To this aim, we can write by the semigroup properties and integration by parts that

∫
f log f dγn −

∫
f dγn log

(∫
f dγn

)
= −

∫ ∞

0

(
d

dt

∫
Ptf logPtf dγn

)
dt

= −
∫ ∞

0

(∫
LPtf logPtf dγn

)
dt

=

∫ ∞

0

(∫
〈∇Ptf,∇(logPtf)〉 dγn

)
dt

=

∫ ∞

0

(∫
1

Ptf
|∇Ptf |2 dγn

)
dt.

Now, setting

F (t) =

∫
1

Ptf
|∇Ptf |2 dγn t ≥ 0,

the commutation property ∇Ptf = e−tPt(∇f) and Cauchy-Schwarz inequality on
the integral representation of Pt show that, for every t ≥ 0,

F (t) = e−2t
n∑

i=1

∫
1

Ptf

(
Pt
∂f

∂xi

)2

dγn

≤ e−2t
n∑

i=1

∫
Pt

(
1

f

(
∂f

∂xi

)2
)
dγn = e−2t

∫
1

f
|∇f |2 dγn

which immediately yields (8.21). Therefore, hypercontractivity is established in this
way.
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While our aim is to investigate isoperimetric inequalities via semigroup tech-
niques, it is of interest however to notice that the Gaussian isoperimetric inequality
(8.15) or (8.17) may be used to establish the logarithmic Sobolev inequality (8.20)
and therefore hypercontractivity. This was observed in [Led1] in analogy with the
classical case discussed in the first part of this chapter. Let f be a smooth positive
function on IRn with ‖f‖2 = 1. Apply then (8.17) to g = f 2(log(1 + f2))1/2. Using
(8.16), one obtains after some elementary, although cumbersome, computations that
for every ε > 0 there exists C(ε) > 0 only depending on ε such that

∫
f2 log(1+f2) dγn ≤ (1+ε)

(
2

∫
|∇f |2dγn

)1/2(∫
f2 log(1+f2) dγn+2

)1/2

+C(ε).

It follows that

2

∫
f2 log f dγn ≤

∫
f2 log(1 + f2) dγn

≤ 2(1 + ε)4
∫
|∇f |2dγn + 2(1 + ε)2

(∫
|∇f |2dγn

)1/2

+ C ′(ε)

where C ′(ε) = (1 + ε)C(ε)/ε. To get rid of the extra terms on the left of this
inequality, we use a tensorization argument of A. Ehrhard [Eh4]: this inequality
namely holds with constants independent of the dimension n; therefore, applying it
to f⊗k in (IRn)

k
= IRnk yields

k

∫
f2 log f dγn ≤ k(1 + ε)4

∫
|∇f |2dγn +

√
k (1 + ε)2

(∫
|∇f |2dγn

)1/2

+ C ′(ε).

Divide then by k, let k tend to infinity and then ε to zero and we obtain (8.20).

Now, we would like to try to understand how hypercontractivity and logarithmic
Sobolev inequalities may be used in order to reach isoperimetry in this Gaussian
setting. Of course, our approach to known results and theorems is only formal, but
it could be of some help in more abstract frameworks.

Before turning to the main argument, let us briefly discuss, on two specific
questions, why hypercontractiviy should be of potential interest to isoperimetry and
concentration. The following comments are not presented in the greatest generality.

Recall the Hermite polynomials {
√
k!hk; k ∈ IN} which forms an orthonormal

basis of L2(γ1) (cf. the introduction of Chapter 5). In the same way, for any fixed
n ≥ 1, set, for every k = (k1, . . . , kn) ∈ INn and every x = (x1, . . . , xn) ∈ IRn,

Hk(x) =
n∏

i=1

√
ki!hki

(xi).

Then, {Hk; k ∈ INn} is an orthonormal basis of L2(γn). Therefore, as in Chapter 5
in greater generality, a function f in L2(γn) can be written as

f =
∑

k∈INn

fkHk
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where fk =
∫
fHkdγn. This sum may also be written as

f =
∞∑

d=0

( ∑

|k|=d
fkHk

)
=

∞∑

d=0

Ψ(d)(f)

where |k| = k1+· · ·+kn. Ψ(d)(f) is known as the chaos of degree d of f . Since h0 ≡ 1,
Ψ(0)(f) is simply the mean of f ; h1(x) = x, so chaos of order or degree 1 are (in
probabilistic notation) Gaussian sums

∑n
i=1 giai (where (g1, . . . , gn) are independent

standard Gaussian random variables and ai real numbers) etc (cf. Chapter 5).
Now, it is easily seen that, for every t ≥ 0,

(8.22) PtΨ
(d)(f) = e−dtΨ(d)(f).

But we can then apply the hypercontractivity property of (Pt)t≥0. Fix for example

p = 2 and let q = q(t) = 1 + e2t. Then, combining (8.22) and (8.19) we get that, for
every q ≥ 2 or t ≥ 0,

(8.23)
(
q − 1

)−d/2∥∥Ψ(d)(f)
∥∥
q

= e−dt
∥∥Ψ(d)(f)

∥∥
q

=
∥∥PtΨ(d)(f)

∥∥
q
≤
∥∥Ψ(d)(f)

∥∥
2

The next step in this development is that (8.23) applies in the same way to vector
valued functions. Let E be a Banach space with norm ‖·‖. Given f on IRn with values
in E, the previous chaotic decomposition is entirely similar. We need then simply
apply hypercontractivity to the real valued function ‖f‖ and Jensen’s inequality
immediately shows that (8.19) also holds for E-valued functions, with the Lp(γn)-
norms replaced by Lp(γn;E)-norms. In particular, if e1, . . . , en are elements of E,
the vector valued version of (8.23) for d = 1 for example implies that, for every
q ≥ 2,

(8.24)

∥∥∥∥
n∑

i=1

giei

∥∥∥∥
q

≤ (q − 1)1/2
∥∥∥∥
n∑

i=1

giei

∥∥∥∥
2

.

These inequalities are exactly the moment equivalences (4.5) which we obtain next
to Theorem 4.1, with the same behavior of the constant as q increases to infinity
(and with even a better numerical value). Since this constant is independent of n,
it is not difficult to see (although we will not go into these details) that (8.24)
essentially allows us to recover the integrability properties and tail behaviors of
norms of Gaussian random vectors (Theorem 4.1) as well as of Wiener chaos (cf.
Chapter 5). This very interesting and powerful line of reasoning was extensively
developed by C. Borell to which we refer the interested reader ([Bo8], [Bo9]). Note
that these hypercontractivity ideas may also be used in the context of the two point
space to recover, for example, inequalities (3.6) [Bon], [Bo6].

Recently, a parallel approach was developed by S. Aida, T. Masuda and I.
Shigekawa [A-M-S], but on the basis of logarithmic Sobolev inequalities rather than
hypercontractivity. As we already noticed it, we established both the concentration
of measure phenomenon for γn (Proposition 2.1) and the logarithmic Sobolev in-
equality (8.20) on the basis of the same commutation property∇Ptf = e−tPt(∇f) of
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the Ornstein-Uhlenbeck semigroup. In [A-M-S], it is actually shown that concentra-
tion follows from a logarithmic Sobolev inequality and hypercontractivity. Although
the paper [A-M-S] is concerned with logarithmic Sobolev inequalities in an abstract
Dirichlet space setting, let us restrict again to the Gaussian case to sketch the idea
and show how (2.7) may be deduced from the logarithmic Sobolev inequality. (The
implication is thus only formal, as this whole chapter actually.) Let thus f be a
Lipschitz map on IRn with ‖f‖Lip ≤ 1 and mean zero. Let us apply the logarithmic

Sobolev inequality (8.20) to eλf/2 for every λ ∈ IR. Setting

ϕ(λ) =

∫
eλfdγn, λ ∈ IR,

we see that

λϕ′(λ)− ϕ(λ) logϕ(λ) ≤ 1
2
λ2ϕ(λ), λ ∈ IR.

We need then simply integrate this differential inequality (this was first done in [Da-
S], originally by I. Herbst). Set ψ(λ) = 1

λ
logϕ(λ), λ > 0. Hence, for every λ > 0,

ψ′(λ) ≤ 1
2 . Since ψ(0) = ϕ′(0)/ϕ(0) =

∫
fdγn = 0, it follows that

ψ(λ) ≤ λ

2

for every λ ≥ 0. Therefore, we have obtained (2.7), that is

∫
eλfdγn ≤ eλ

2/2

for every λ ≥ 0 and, replacing f by −f , also for all λ ∈ IR.

As we discussed it in Chapter 2, there is however a long way from concentra-
tion to true isoperimetry. To complete this chapter, we turn to the isoperimetric
inequality (8.15) itself which we would like to analyze with the Ornstein-Uhlenbeck
semigroup as we did in the classical case in the first part of this chapter. The next
proposition, implicit in [Pi1, p. 180], is the first step towards our goal and is the
analogue of Proposition 8.1. Given Borel sets A,B in IRn and t ≥ 0, we set

Kt(A,B) =

∫

A

Pt(IB) dγn.

Note that Kt(A,A) = ‖Pt/2(IA)‖22. The notation Kt is used in analogy with that of
a kernel. Large deviation estimates of the kernel Kt(A,B) for the Wiener measure
when d(A,B) > 0 are developed at the end of Chapter 4.

Proposition 8.5. For every Borel set A in IRn with smooth boundary ∂A and every
t ≥ 0,

Kt(A,A
c) ≤ (2π)−1/2 arccos(e−t)On−1(∂A).
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Proof. It is similar to the proof of Proposition 8.1. Let f, g be smooth functions on
IRn. For every t ≥ 0, we can write

∫
g (Ptf − f) dγn =

∫ t

0

(∫
g LPsf dγn

)
ds

= −
∫ t

0

(∫
〈∇Psg,∇f〉dγn

)
ds.

Now, by integration by parts on the representation of Ps using the Gaussian density,

∇Psf =
e−s

(1− e−2s)1/2

∫

IRn

y g
(
e−sx+ (1− e−2s)1/2y

)
dγn(y) .

Hence
∫
g(Ptf − f) dγn

= −
∫ t

0

e−s

(1− e−2s)1/2

∫ ∫
〈∇f(x), y〉 g

(
e−sx+ (1− e−2s)1/2y

)
dγn(x)dγn(y)ds.

This identity of course extends to g = IAc . Since

∫ ∫
〈∇f(x), y〉dγn(x)dγn(y) = 0 ,

we see that, for every s,

−
∫ ∫

〈∇f(x), y〉IAc

(
e−sx+ (1−e−2s)1/2y

)
dγn(x)dγn(y)

≤
∫ ∫ (

〈∇f(x), y〉
)−
dγn(x)dγn(y)

=
1

2

∫ ∫ ∣∣〈∇f(x), y〉
∣∣dγn(x)dγn(y)

=
1√
2π

∫
|∇f |dγn .

The conclusion follows by letting f approximate IA since then
∫
|∇f |dγn will ap-

proach On−1(∂A) when ∂A is smooth enough. Proposition 8.5 is established.

The inequality of the proposition is sharp in many respects. When t → ∞, it
reads

(8.25) On−1(∂A) ≥ 2
( 2

π

)1/2

γn(A)
(
1− γn(A)

)
,

that is, when γn(A) = 1
2
, the maximum of the function ϕ1 ◦ Φ−1(x) at x = 1

2
.

Inequality (8.25) may actually be interpreted as Cheeger’s isoperimetric constant
[Ch] of the Gauss space (IRn, γn). It is responsible for the optimal factor π/2 which
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appears in the vector valued inequalities (4.10). Indeed, one may integrate (8.25)
by the coarea formula (see [Ya]) to get that for every smooth function f with mean
zero, ∫

|f | dγn ≤
(π

2

)1/2
∫
|∇f | dγn,

an inequality which is easily seen to be best possible (take n = 1 and f on IR be
defined by f(x) = x/ε for |x| ≤ ε, f(x) = x/|x| elsewhere, and let ε→ 0).

Proposition 8.5 may also be tested on half-spaces, as we did on balls in the
classical case. Namely, if we let H = {x ∈ IRn; 〈x, u〉 ≤ a}, |u| = 1, a ∈ IR, it is
easily checked (start in dimension one and use polar coordinates) that

Kt(H,H
c) =

1

2π

∫ ∫

IR2

e−x
2/2e−y

2/2I{x≤|a|, e−tx+(1−e−2t)1/2y>|a|}dxdy

=
1

2π

∫ 2π

0

∫ ∞

0

ρ e−ρ
2/2I{ρ sin(ϕ)≤|a|, ρ sin(ϕ+θ)>|a|}dϕdρ

=
θ

2π
e−a

2/2 − 1

2π

∫ |a|/ sin((π−θ)/2)

|a|

(
2 arcsin

(
ρ−1|a|

)
+ θ − π

)
ρ e−ρ

2/2dρ

where θ = arccos(e−t). The absolute value of the second term of the latter may be
bounded by

θ

2π

(
e−a

2/2 − e−a
2/2 cos2(θ/2)

)
≤ θ

2π
· a

2

2
tan2

(θ
2

)
e−a

2/2 ≤ θ3

2π
a2 e−a

2/2

at least for all θ small enough. In particular, since θ = arccos(e−t) and thus θ ∼
√

2t
when t→ 0, it follows that

(8.26) lim
t→0

(2π)1/2
[
arccos(e−t)

]−1
Kt(H,H

c) = On−1(∂H).

On the basis of Proposition 8.5, we now would need lower estimates of the
functional Kt(A,A

c) for the small values of t. The typical isoperimetric approach
would be to use a symmetrization result of C. Borell [Bo10], analogous to (8.7),
asserting that if H is a half-space with the same measure as A, then for every t ≥ 0,

(8.27) Kt(A,A) ≤ Kt(H,H).

Hence Kt(A,A
c) ≥ Kt(H,H

c) and we would conclude from Proposition 8.5 and
(8.26) that

On−1(∂A) ≥ On−1(∂H).

In particular, and as in the classical case, isoperimetry is therefore equivalent to
saying that

(8.28)
∥∥Pt(IA)

∥∥
2
≤
∥∥Pt(IH)

∥∥
2
, t ≥ 0 ,

for H a half-space with the same measure as A. This inequality is established in
[Bo10], extending ideas of [Eh2] on Gaussian symmetrization and based on Baern-
stein’s transformation [Ba] developed in the classical case. Borell’s techniques also
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apply to some other diffusion processes [Bo11], [Bo12]. Inequality (8.28) may also
be seen to follow from rearrangement inequalities on the sphere [B-T] via Poincaré’s
limit as was shown in [Ca-L] following indications of [Be3].

Our approach to bound Kt(A,A) will be to use hypercontractivity as the cor-
responding semigroup estimate in this Gaussian setting. Namely, we simply write
for A a Borel set in IRn and p(t) = 1 + e−t that

(8.29) Kt(A,A) =
∥∥Pt/2(IA)

∥∥2

2
≤
∥∥IA

∥∥2

p(t)
, t ≥ 0.

Hence
Kt(A,A

c) ≥ γn(A)
[
1− γn(A)(2/p(t))−1

]
.

Therefore, combined with Proposition 8.5,

On−1(∂A) ≥ (2π)1/2γn(A) sup
t>0

[(
arccos(e−t)

)−1(
1− γn(A)(2/p(t))−1

)]
.

Setting θ = arccos(e−t) ∈ (0, π2 ] we need to evaluate

sup
0<θ≤π

2

1

θ

[
1− exp

(
−1− cos θ

1 + cos θ
log

1

γn(A)

)]
.

To this aim, we can note for example that

1− cos θ

1 + cos θ
≥ θ2

2π
,

and choosing thus θ of the form

θ = (2π)1/2
(

log
1

γn(A)

)−1/2

,

provided that γn(A) ≤ e−8/π, we find that

On−1(∂A) ≥
(

1− 1

e

)
γn(A)

(
log

1

γn(A)

)1/2

.

Due to the equivalence (8.16), there exists δ > 0 such that when γn(A) ≤ δ,

On−1(∂A) ≥ 1

3
ϕ1 ◦ Φ−1

(
γn(A)

)
.

When δ < γn(A) ≤ 1/2, we can always use (8.25) to get

On−1(∂A) ≥
(π

2

)
γn(A) ≥ c(δ)ϕ1 ◦ Φ−1

(
γn(A)

)

for some c(δ) > 0. These two inequalities, together with symmetry, yield that, for
some numerical constant 0 < c < 1 and all subsets A in IRn with smooth boundary,

(8.30) On−1(∂A) ≥ c ϕ1 ◦ Φ−1
(
γn(A)

)
.
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One may try to tighten the preceding computations to reach the value c = 1 in
(8.30). This however does not seem likely and it is certainly in the hypercontractive
estimate (8.29) that a good deal of the best constant is lost. One may wonder why
this is the case. It seems that hypercontractivity, while an equality on exponential
functions, is perhaps not that sharp on indicator functions. This would have to be
understood in connection with (8.28). Note finally that one may easily integrate
back (8.30) to obtain, with these functional tools, the following analogue of the
Gaussian isoperimetric inequality: if γn(A) ≥ Φ(a), for every r ≥ 0,

(8.31) γn(Ar) ≥ Φ(a+ cr).

We briefly sketch one argument taken from [Bob1] (where a related equivalent func-
tional formulation of the Gaussian isoperimetry is studied) that works for arbitrary
measurable sets A. First, if fr(x) = (1− d(x,Ar)/2r)

+, r > 0,

lim
r→0

∫
|∇fr|dγn = On−1(∂A) = lim inf

r→0

1

r

[
γn(Ar)− γn(A)

]

if A is closed. In general, one may note that On−1(∂A) = On−1(∂Ā) if γn(A) =
γn(Ā) and On−1(∂A) = ∞ if not. Now, the family of functions

Rr(p) = Φ
(
Φ−1(p) + r

)
, 0 ≤ p ≤ 1, r ≥ 0,

satisfy Rr1 ◦ Rr2 = Rr1+r2 , r1, r2 ≥ 0. Similarly, (Ar1)r2 = Ar1+r2 . Therefore, if
(8.31) holds for r1 and r2, then it also holds for r1 + r2. Hence, (8.31) is satisfied as
soon as it is satisfied for all r > 0 small enough and this is actually given by (8.30)
since the derivative of Φ−1(γn(Ar)) is

On−1(∂Ar)/ϕ1 ◦Φ−1
(
γn(Ar)

)
.

To be more precise, one should actually work out this argument with the functions
Φ(x/σ), σ > 1, and let then σ tend to one. We refer to [Bob1] for all the details.

It is likely that the preceding approach has some interesting consequences in
more abstract settings.

It might be worthwhile noting finally that Ehrhard’s tensorization argument
together with symmetrization may also be used to establish directly hypercontrac-
tivity, a comment we learned from C. Borell. One approach through logarithmic
Sobolev inequalities is developed in [Eh4]. Alternatively, by the result of [Bo10],

∫
gPtfdγn ≤

∫
g∗Ptf

∗dγ1

for every t ≥ 0 and every f, g say in L2(γn) where f∗ denotes the (one-dimensional)
nonincreasing rearrangement of f with respect to the Gaussian measure γn (see
[Eh3], [Bo10]). If 1 < p < q < ∞ and q < 1 + (p − 1)e2t, a trivial application of
Hölder’s inequality shows that, for every ϕ in Lp(γ1),

‖Ptϕ‖q ≤ C‖ϕ‖p
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for some numerical C > 0. Now, if q′ is the conjugate of q,

∫
gPtfdγn ≤

∫
g∗Ptf

∗dγ1

≤ ‖g∗‖q′‖Ptf∗‖q
≤ C‖g∗‖q′‖f∗‖p ≤ C‖g‖q′‖f‖p

so that, by duality,
‖Ptf‖q ≤ C‖f‖p.

Applying this inequality to f⊗k on (IRn)
k

= IRnk yields

‖Ptf‖q ≤ C1/k‖f‖p.

Letting k tend to infinity, and q to its optimal value 1 + (p − 1)e2t concludes the
proof of the claim.
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[B-É] D. Bakry, M. Émery. Diffusions hypercontractives. Séminaire de Prob-
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Strassen theorem in Hölder norm. Stochastic Processes and Appl. 42,

171–180 (1992).



120

[Bas] R. Bass. Probability estimates for multiparameter Brownian processes.

Ann. Probability 16, 251–264 (1988).

[Be1] W. Beckner. Inequalities in Fourier analysis. Ann. Math. 102, 159–182

(1975).

[Be2] W. Beckner. Unpublished (1982).

[Be3] W. Beckner. Sobolev inequalities, the Poisson semigroup and analysis

on the sphere Sn. Proc. Nat. Acad. Sci. 89, 4816–4819 (1992).

[Bel] D. R. Bell. The Malliavin calculus. Pitman Monographs 34. Longman
(1987).

[BA-L1] G. Ben Arous, M. Ledoux. Schilder’s large deviation principle without

topology. Asymptotic problems in probability theory: Wiener func-
tionals and asymptotics. Pitman Research Notes in Math. Series 284,

107–121 (1993). Longman.

[BA-L2] G. Ben Arous, M. Ledoux. Grandes déviations de Freidlin-Wentzell en
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[Fe3] X. Fernique. Régularité des processus gaussiens. Invent. Math. 12, 304–

320 (1971).
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[G-K2] V. Goodman, J. Kuelbs. Gaussian chaos and functional laws of the
iterated logarithm for Ito-Wiener integrals. Ann. Inst. H. Poincaré 29,
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Springer-Verlag (1957).

[Har] L. H. Harper. Optimal numbering and isoperimetric problems on graphs.

J. Comb. Th. 1, 385–393 (1966).

[He] B. Heinkel. Mesures majorantes et régularité de fonctions aléatoires.

Aspects Statistiques et Aspects Physiques des Processus Gaussiens,
St-Flour 1980. Colloque C.N.R.S. 307, 407–434 (1980).

[I-S-T] I. A. Ibragimov, V. N. Sudakov, B. S. Tsirel’son. Norms of Gaussian
sample functions. Proceedings of the third Japan-USSR Symposium

on Probability Theory. Lecture Notes in Math. 550, 20–41 (1976).

Springer-Verlag.

[I-W] N. Ikeda, S. Watanabe. Stochastic differential equations and diffusion

processes. North-Holland (1989).
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de Probabilités XXIV, Lecture Notes in Math. 1426, 1–14 (1990).

Springer-Verlag.

[Led3] M. Ledoux. On an integral criterion for hypercontractivity of diffu-
sion semigroups and extremal functions. J. Funct. Anal. 105, 444–465

(1992).

[Led4] M. Ledoux. A heat semigroup approach to concentration on the sphere
and on a compact Riemannian manifold. Geom. and Funct. Anal. 2,

221–224 (1992).

[Led5] M. Ledoux. Semigroup proofs of the isoperimetric inequality in Eu-
clidean and Gauss space. Bull. Sci. math. 118, 485–510 (1994).

[L-T1] M. Ledoux, M. Talagrand. Characterization of the law of the iterated

logarithm in Banach spaces. Ann. Probability 16, 1242–1264 (1988).

[L-T2] M. Ledoux, M. Talagrand. Probability in Banach spaces (Isoperimetry
and processes). Ergebnisse der Mathematik und ihrer Grenzgebiete.

Springer-Verlag (1991).



126
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