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INTRODUCTION

The concentration of measure phenomenon was put forward in the seventies by V.
D. Milman in the local theory of Banach spaces. Of isoperimetric inspiration, it is of
powerful interest in applications, in particular in probability theory (probability in
Banach spaces, empirical processes, geometric probabilities, statistical mechanics...)
One main example is the Gaussian concentration property which expresses that,
whenever A is a Borel set in IRn of canonical Gaussian measure γ(A) ≥ 1

2 , for every
r ≥ 0,

γ(Ar) ≥ 1− e−r2/2

where Ar is the r-th Euclidean neighborhood of A. As r increases, the enlargement
Ar thus gets very rapidly a measure close to one. This Gaussian concentration
property can be described equivalently on functions. If F is a Lipschitz map on IRn

with ‖F‖Lip ≤ 1, for every r ≥ 0,

γ
(
F ≥

∫
Fdγ + r

)
≤ e−r2/2.

Together with the same inequality for −F , the Lipschitz function F is seen to be con-
centrated around some mean value with very high probability. These quantitative
estimates are dimension free and extend to arbitrary infinite dimensional Gaussian
measures. As such, they are a main tool in the study of Gaussian processes and
measures.

Simultaneously, hypercontractive estimates and logarithmic Sobolev inequali-
ties came up in quantum field theory with the contributions of E. Nelson and L.
Gross. In particular, L. Gross proved in 1975 a Sobolev inequality for Gaussian
measures of logarithmic type. Namely, for all smooth functions f on IRn,∫

f2 log f2dγ −
∫
f2dγ log

∫
f2dγ ≤ 2

∫
|∇f |2dγ.

This inequality is again independent of the dimension and proved to be a substitute
of the classical Sobolev inequalities in infinite dimensional settings. Logarithmic
Sobolev inequalities have been used extensively in the recent years as a way to
measure the smoothing properties (hypercontractivity) of Markov semigroups. In
particular, they are a basic ingredient in the investigation of the time to equilibrium.

One of the early questions on logarithmic Sobolev inequalities was to determine
which measures, on IRn, satisfy an inequality similar to the one for Gaussian mea-
sures. To this question, raised by L. Gross, I. Herbst (in an unpublished letter to L.



5

Gross) found the following necessary condition: if µ is a probability measure such
that for some C > 0 and every smooth function f on IRn,∫

f2 log f2dµ−
∫
f2dµ log

∫
f2dµ ≤ C

∫
|∇f |2dµ,

then, ∫
eα|x|2dµ(x) <∞

for every α < 1
C . Furthermore, for any Lipschitz function F on IRn with ‖F‖Lip ≤ 1,

and every real λ, ∫
eλF dµ ≤ eλ

∫
Fdµ+Cλ2/4.

By a simple use of Chebyshev’s inequality, the preceding thus relates in an essential
way to the Gaussian concentration phenomenon.

Herbst’s result was mentioned in the early eighties by E. Davies and B. Si-
mon, and has been revived recently by S. Aida, T. Masuda and I. Shigekawa. It
was further developed and refined by S. Aida, S. Bobkov, F. Götze, L. Gross, O.
Rothaus, D. Stroock and the author. Following these authors and their contribu-
tions, the aim of these notes is to present a complete account on the applications of
logarithmic Sobolev inequalities to the concentration of measure phenomenon. We
exploit Herbst’s original argument to deduce from the logarithmic Sobolev inequal-
ities some differential inequalities on the Laplace transforms of Lipschitz functions.
According to the family of entropy-energy inequalities we are dealing with, these dif-
ferential inequalities yield various behaviors of the Laplace transforms of Lipschitz
functions and of their concentration properties. In particular, the basic product
property of entropy allows us to investigate with this tool concentration properties
in product spaces. The principle is rather simple minded, and as such convenient
for applications.

The first part of this set of notes includes a introduction to isoperimetry
and concentration for Gaussian and Boltzmann measures. The second part then
presents spectral gap and logarithmic Sobolev inequalities, and describes Herbst’s
basic Laplace transform argument. In the third part, we investigate by this method
deviation and concentration inequalities for product measures. While concentration
inequalities do not necessarily tensorize, we show that they actually follow from
stronger logarithmic Sobolev inequalities. We thus recover most of M. Talagrand’s
recent results on isoperimetric and concentration inequalities in product spaces. We
briefly mention there the information theoretic inequalities by K. Marton which pro-
vide an alternate approach to concentration also based on entropy, and which seems
to be well suited to dependent structures. We then develop the subject of modified
logarithmic Sobolev inequalities investigated recently in joint works with S. Bobkov.
We examine in this way concentration properties for the product measure of the ex-
ponential distribution, as well as, more generally, of measures satisfying a Poincaré
inequality. In the next section, the analogous questions for discrete gradients are
addressed, with particular emphasis on Bernoulli and Poisson measures. We then
present some applications to large deviation upper bounds and to tail estimates for
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Brownian motion on a manifold. In the final part, we discuss some recent results on
the logarithmic Sobolev constant in Riemannian manifolds with non-negative Ricci
curvature. The last section is an addition of L. Saloff-Coste on the logarithmic
Sobolev constant and the diameter for Markov chains. We sincerely thank him for
this contribution.

It is a pleasure to thank the organizers (in particular M. Scheutzow) and the
participants of the “Graduierten- kolleg” course which was held in Berlin in Novem-
ber 1997 for the opportunity to present, and to prepare, these notes. These notes
would not exist without the collaboration with S. Bobkov which led to the concept
of modified logarithmic Sobolev inequality and whose joint work form most of Parts
4 and 5. Thanks are also due to S. Kwapień for numerous exchanges over the years
on the topic of these notes. D. Piau and D. Steinsaltz were very helpful with their
comments and corrections on the manuscript.

With respect to the paper published in the Séminaire de Probabilités XXXIII,
this version benefited from several corrections by L. Miclo that we warmly thank for
his help.
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1. ISOPERIMETRIC AND CONCENTRATION INEQUALITIES

In this first part, we present the Gaussian isoperimetric inequality as well as a
Gaussian type isoperimetric inequality for a class of Boltzmann measures with a
sufficiently convex potential. Isoperimetry is a natural way to introduce to the con-
centration of measure phenomenon. For completness, we propose a rather short,
self-contained proof of these isoperimetric inequalities following the recent contri-
butions [Bob4], [Ba-L]. Let us mention however that our first goal in these notes is
to produce simpler, more functional arguments to derive concentration properties.
We then present the concentration of measure phenomenon, and discuss a few of its
first properties.

1.1 Introduction

The classical isoperimetric inequality in Euclidean space states that among all sub-
sets with fixed finite volume, balls achieve minimal surface area. In probabilistic,
and also geometric, applications one is often interested in finite measure space, such
as the unit sphere Sn in IRn+1 equipped with its normalized invariant measure σn.
On Sn, (geodesic) balls, or caps, are again the extremal sets, that is achieve minimal
surface measure among sets with fixed measure.

The isoperimetric inequality on the sphere was used by V. D. Milman in the
early seventies as a tool to prove the famous Dvoretzky theorem on Euclidean sec-
tions of convex bodies (cf. [Mi], [M-S]). Actually, V. D. Milman is using the isoperi-
metric property as a concentration property. Namely, in its integrated version, the
isoperimetry inequality states that whenever σn(A) = σn(B) where B is a ball on
Sn, for every r ≥ 0,

σn(Ar) ≥ σn(Br) (1.1)

where Ar (resp. Br) is the neighborhood of order r of A (resp. B) for the geodesic
metric on the sphere. Since, for a set A on Sn with smooth boundary ∂A, the
surface measure σn

s of ∂A can be described by the Minkowski content formula as

σn
s (∂A) = lim inf

r→0

1
r

[
σn(Ar)− σn(A)

]
,

(1.1) is easily seen to be equivalent to the isoperimetric statement. Now, the measure
of a cap may be estimated explicitely. For example, if σn(A) ≥ 1

2 , it follows from
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(1.1) that
σn(Ar) ≥ 1−

√
π
8 e−(n−1)r2/2 (1.2)

for every r ≥ 0. Therefore, if the dimension is large, only a small increase of r (of
the order of 1√

n
) makes the measure of Ar close to 1. In a sense, the measure σn

is concentrated around the equator, and (1.2) describes the so-called concentration
of measure phenomenon of σn. One significant aspect of this concentration phe-
nomenon is that the enlargements are not infinitesimal as for isoperimetry, and that
emphasis is not on extremal sets. These notes will provide a sample of concentration
properties with the functional tool of logarithmic Sobolev inequalities.

1.2 Isoperimetric inequalities for Gaussian and Boltzmann measures

It is well known that uniform measures on n-dimensional spheres with radius
√
n

approximate (when projected on a finite number of coordinates) Gaussian measures
(Poincaré’s lemma). In this sense, the isoperimetric inequality on spheres gives rise
to an isoperimetric inequality for Gaussian measures (cf. [Le3]). Extremal sets are
then half-spaces (which may be considered as balls with centers at infinity). Let,
more precisely, γ = γn be the canonical Gaussian measure on IRn with density

(2π)−n/2 exp(−|x|2/2)

with respect to Lebesgue measure. Define the Gaussian surface measure of a Borel
set A in IRn as

γs(∂A) = lim inf
r→0

1
r

[
γ(Ar)− γ(A)

]
(1.3)

where Ar = {x ∈ IRn; d2(x,A) < r} is the r-Euclidean open neighborhood of A.
Then, if H is a half-space in IRn, that is H = {x ∈ IRn; 〈x, u〉 < a}, where |u| = 1
and a ∈ [−∞,+∞], and if γ(A) = γ(H), then

γs(∂A) ≥ γs(∂H).

Let Φ(t) = (2π)−1/2
∫ t

−∞ e−x2/2dx, t ∈ [−∞,+∞], be the distribution function of
the canonical Gaussian measure in dimension one and let ϕ = Φ′. Then γ(H) = Φ(a)
and γs(∂H) = ϕ(a) so that,

γs(∂A) ≥ ϕ(a) = ϕ ◦ Φ−1
(
γ(A)

)
. (1.4)

Moreover, half-spaces are the extremal sets in this inequality. In this form, the
Gaussian isoperimetric inequality is dimension free.

In applications, the Gaussian isoperimetric inequality is often used in its inte-
grated version. Namely, if γ(A) = γ(H) = Φ(a) (or only γ(A) ≥ Φ(a)), then, for
every r ≥ 0,

γ(Ar) ≥ γ(Hr) = Φ(a+ r). (1.5)

In particular, if γ(A) ≥ 1
2 (= Φ(0)),

γ(Ar) ≥ Φ(r) ≥ 1− e−r2/2. (1.6)
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To see that (1.4) implies (1.5), we may assume, by a simple approximation, that A
is given by a finite union of open balls. The family of such sets A is closed under the
operation A 7→ Ar, r ≥ 0. Then, the lim inf in (1.3) is a true limit. Actually, the
boundary ∂A of A is a finite union of piecewise smooth (n−1)-dimensional surfaces
in IRn and γs(∂A) is given by the integral of the Gaussian density along ∂A with
respect to Lebesgue measure on ∂A. Now, by (1.4), the function v(r) = Φ−1◦γ(Ar),
r ≥ 0, satisfies

v′(r) =
γs(∂Ar)

ϕ ◦ Φ−1(γ(Ar))
≥ 1

so that v(r) = v(0)+
∫

r
0v
′(s)ds ≥ v(0)+r, which is (1.5). (Alternatively, see [Bob3].)

The Euclidean neighborhoodAr of a Borel setA can be viewed as the Minkowski
sum A+ rB2 = {a+ rb ; a ∈ A, b ∈ B2} with B2 the Euclidean open unit ball. If γ
is any (centered) Gaussian measure on IRn, B2 has to be replaced by the ellipsoid
associated to the covariance structure of γ. More precisely, denote by Γ = M tM
the covariance matrix of the Gaussian measure γ on IRn. Then γ is the image of the
canonical Gaussian measure by the linear map M = (Mij)1≤i,j≤n. Set K = M(B2).
Then, if γ(A) ≥ Φ(a), for every r ≥ 0,

γ
(
A+ rK) ≥ Φ(a+ r). (1.7)

In this formulation, the Gaussian isoperimetric inequality extends to infinite dimen-
sional (centered) Gaussian measures, the set K being the unit ball of the reproducing
kernel Hilbert spaceH (the Cameron-Martin space for Wiener measure for example).
Cf. [Bor], [Le3].

To see moreover how (1.6) or (1.7) may be used in applications, let for example
X = (Xt)t∈T be a centered Gaussian process indexed by some, for simplicity, count-
able parameter set T . Assume that supt∈T Xt < ∞ almost surely. Fix t1, . . . , tn
in T and consider the distribution γ of the sample (Xt1 , . . . , Xtn

). Choose m finite
such that IP{supt∈T Xt ≤ m} ≥ 1

2 . In particular, if

A =
{

max
1≤i≤n

Xti
≤ m

}
,

then γ(A) ≥ 1
2 . Therefore, by (1.7) (with a = 0), for every r ≥ 0,

γ
(
A+ rK) ≥ Φ(r) ≥ 1− e−r2/2.

Now, for any h in K = M(B2),

max
1≤i≤n

hi ≤ max
1≤i≤n

( n∑
j=1

M2
ij

)1/2

= max
1≤i≤n

(
IE(X2

ti
)
)1/2

by the Cauchy-Schwarz inequality, so that

A+ rK ⊂
{

max
1≤i≤n

Xti ≤ m+ r max
1≤i≤n

(
IE(X2

ti
)
)1/2}

.
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Set σ = supt∈T (IE(X2
t ))1/2. (It is easily seen that σ is always finite under the

assumption supt∈T Xt < ∞. Let indeed m′ be such that IP{supt∈T Xt ≤ m′} ≥ 3
4 .

Then, if σt = (IE(X2
t ))1/2, m′

σt
≥ Φ−1( 3

4 ) > 0.) It follows from the preceding that

IP
{

max
1≤i≤n

Xti ≤ m+ σr
}
≥ 1− e−r2/2.

By monotone convergence, and taking complements, for every r ≥ 0,

IP
{
sup
t∈T

Xt ≥ m+ σr
}
≤ e−r2/2. (1.8)

This inequality describes the strong integrability properties of almost surely bounded
Gaussian processes. It namely implies in particular (cf. Proposition 1.2 below) that
for every α < 1

2σ2 ,

IE
(
exp

(
α(supt∈T Xt)2

))
<∞. (1.9)

Equivalently, in a large deviation formulation,

lim
r→∞

1
r2

log IP
{
sup
t∈T

Xt ≥ r
}

= − 1
2σ2

. (1.10)

(The lower bound in (1.10) is just that

IP
{
sup
t∈T

Xt ≥ r
}
≥ IP{Xt ≥ r} = 1− Φ

( r

σt

)
≥ e−r2/2σ2

t

√
2π(1 + (r/σt))

for every t ∈ T and r ≥ 0.) But inequality (1.8) actually contains more infor-
mation than just this integrability result. (For example, if Xn is a sequence of
Gaussian processes as before, and if we let ‖Xn‖ = supt∈T X

n
t , n ∈ IN, then

‖Xn‖ → 0 almost surely as soon as IE(‖Xn‖) → 0 and σn
√

log n → 0 where
σn = supt∈T (IE((Xn

t )2))1/2.) (1.8) describes a sharp deviation inequality in terms
of two parameters, m and σ. In this sense, it belongs to the concentration of measure
phenomenon which will be investigated in these notes (cf. Section 1.3). Note that
(1.8), (1.9), (1.10) hold similarly with supt∈T Xt replaced by supt∈T |Xt| (under the
assumption supt∈T |Xt| <∞ almost surely).

The Gaussian isoperimetric inequality was established in 1974 independently
by C. Borell [Bor] and V. N. Sudakov and B. S. Tsirel’son [S-T] on the basis of the
isoperimetric inequality on the sphere and Poincaré’s lemma. A proof using Gaus-
sian symmetrizations was developed by A. Ehrhard in 1983 [Eh]. We present here
a short and self-contained proof of this inequality. Our approach will be functional.
Denote by U = ϕ ◦ Φ−1 the Gaussian isoperimetric function in (1.4). In a recent
striking paper, S. Bobkov [Bob4] showed that for every smooth enough function f
with values in the unit interval [0, 1],

U
(∫

fdγ

)
≤

∫ √
U2(f) + |∇f |2 dγ (1.11)
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where |∇f | denotes the Euclidean length of the gradient ∇f of f . It is easily seen
that (1.11) is a functional version of the Gaussian isoperimetric inequality (1.4).
Namely, if (1.11) holds for all smooth functions, it holds for all Lipschitz functions
with values in [0, 1]. Assume again that the set A in (1.4) is a finite union of
non-empty open balls. In particular, γ(∂A) = 0. Apply then (1.11) to fr(x) =
(1 − 1

r d2(x,A))+ (where d2 is the Euclidean distance function). Then, as r → 0,
fr → IA and U(fr) → 0 almost everywhere since γ(∂A) = 0 and U(0) = U(1) = 0.
Moreover, |∇fr| = 0 on A and on the complement of the closure of Ar, and |∇fr| ≤ 1

r
everywhere. Note that the sets ∂(Ar) are of measure zero for every r ≥ 0. Therefore

U
(
γ(A)

)
≤ lim inf

r→0

∫
|∇fr|dγ ≤ lim inf

r→0

1
r

[
γ(Ar)− γ(A)

]
= γs(∂A).

To prove (1.11), S. Bobkov first establishes the analogous inequality on the
two-point space and then uses the central limit theorem, very much as L. Gross in
his proof of the Gaussian logarithmic Sobolev inequality [Gr1] (cf. Section 2.2). The
proof below is direct. Our main tool will be the so-called Ornstein-Uhlenbeck or
Hermite semigroup with invariant measure the canonical Gaussian measure γ. For
every f , in L1(γ) say, set

Ptf(x) =
∫

IRn

f
(
e−t/2x+ (1− e−t)1/2y

)
dγ(y), x ∈ IRn, t ≥ 0. (1.12)

The operators Pt are contractions on all Lp(γ)-spaces, and are symmetric and in-
variant with respect to γ. That is, for any sufficiently integrable functions f and
g, and every t ≥ 0,

∫
fPtgdγ =

∫
gPtfdγ. The family (Pt)t≥0 is a semigroup

(Ps ◦ Pt = Ps+t). P0 is the identity operator whereas Ptf converges in L2(γ) to-
wards

∫
fdγ as t tends to infinity. All these properties are immediately checked on

the preceding integral representation of Pt together with the elementary properties
of Gaussian measures. The infinitesimal generator of the semigroup (Pt)t≥0, that is
the operator L such that

d

dt
Ptf = PtLf = LPtf,

acts on all smooth functions f on IRn by

Lf(x) = 1
2 ∆f(x)− 1

2 〈x,∇f(x)〉.

In other words, L is the generator of the Ornstein-Uhlenbeck diffusion process
(Xt)t≥0, the solution of the stochastic differential equation dXt = dBt − 1

2Xtdt
where (Bt)t≥0 is standard Brownian motion in IRn. Moreover, the integration by
parts formula for L indicates that, for f and g smooth enough on IRn,∫

f(−Lg)dγ =
1
2

∫
〈∇f,∇g〉dγ. (1.13)

Let now f be a fixed smooth function on IRn with values in [0, 1]. It might
actually be convenient to assume throughout the argument that 0 < ε ≤ f ≤ 1− ε
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and let then ε tend to zero. Recall U = ϕ ◦ Φ−1. To prove (1.11) it will be enough
to show that the function

J(t) =
∫ √

U2(Ptf) + |∇Ptf |2 dγ

is non-increasing in t ≥ 0. Indeed, if this is the case, J(∞) ≤ J(0), which, together
with the elementary properties of Pt recalled above, amounts to (1.11). Towards
this goal, we first emphasize the basic property of the Gaussian isoperimetric func-
tion U that will be used in the argument, namely that U satisfies the fundamental
differential equality UU ′′ = −1 (exercise). We now have

dJ

dt
=

∫
1√

U2(Ptf) + |∇Ptf |2
[
UU ′(Ptf)LPtf + 〈∇(Ptf),∇(LPtf)〉

]
dγ.

To ease the notation, write f for Ptf . We also set K(f) = U2(f)+ |∇f |2. Therefore,

dJ

dt
=

∫
1√
K(f)

[
UU ′(f)Lf + 〈∇f,∇(Lf)〉

]
dγ. (1.14)

For simplicity in the exposition, let us assume that the dimension n is one, the
general case being entirely similar, though notationally a little bit heavier. By the
integration by parts formula (1.13),∫

1√
K(f)

UU ′(f) Lfdγ = −1
2

∫ (
UU ′(f)√
K(f)

)′
f ′dγ

= −1
2

∫
1√
K(f)

[
U ′2(f)− 1

]
f ′

2
dγ

+
1
2

∫
UU ′(f)f ′

K(f)3/2

[
UU ′(f)f ′ + f ′f ′′

]
dγ

where we used that UU ′′ = −1 and that

K(f)′ = 2UU ′(f)f ′ +
(
f ′

2)′ = 2UU ′(f)f ′ + 2f ′f ′′. (1.15)

In order to handle the second term on the right-hand side of (1.14), let us note that

〈∇f,∇(Lf)〉 = 1
2 f

′(f ′′ − xf ′
)′ = − 1

2 f
′2 + f ′Lf ′.

Hence, again by the integration by parts formula (1.13), and by (1.15),∫
1√
K(f)

〈∇f,∇(Lf)〉dγ = −1
2

∫
f ′

2√
K(f)

dγ +
∫

f ′√
K(f)

Lf ′dγ

= −1
2

∫
f ′

2√
K(f)

dγ − 1
2

∫
f ′′

2√
K(f)

dγ

+
1
2

∫
f ′f ′′

K(f)3/2

[
UU ′(f)f ′ + f ′f ′′

]
dγ.
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Putting these equations together, we get, after some algebra,

dJ

dt
= −1

2

∫
1

K(f)3/2

[
U ′2(f)f ′4 − 2UU ′(f)f ′2f ′′ + U2(f)f ′′2

]
dγ

and the result follows since

U ′2(f)f ′4 − 2UU ′(f)f ′2f ′′ + U2(f)f ′′2 =
(
U ′(f)f ′2 − U(f)f ′′

)2

≥ 0.

The preceding proof of the Gaussian isoperimetric inequality came up in the
joint work [Ba-L] with D. Bakry. The argument is developed there in an abstract
framework of Markov diffusion generators and semigroups and applies to a large class
of invariant measures of diffusion generators satisfying a curvature assumption. We
present here this result for some concrete class of Boltzmann measures for which a
Gaussian-like isoperimetric inequality holds.

Let us consider a smooth (C2 say) function W on IRn such that e−W is inte-
grable with respect to Lebesgue measure. Define the so-called Boltzmann measure
as the probability measure

dµ(x) = Z−1e−W (x)dx

where Z is the normalization factor. As is well-known, µ may be described as the
invariant measure of the generator L = 1

2∆ − 1
2∇W · ∇. Alternatively, L is the

generator of the Markov semigroup (Pt)t≥0 of the Kolmogorov process X = (Xt)t≥0

solution of the stochastic differential Langevin equation

dXt = dBt − 1
2 ∇W (Xt)dt.

The choice of W (x) = 1
2 |x|

2 with invariant measure the canonical Gaussian measure
corresponds to the Ornstein-Uhlenbeck process. Denote by W ′′(x) the Hessian of
W at x ∈ IRn.

Theorem 1.1. Assume that, for some c > 0, W ′′(x) ≥ c Id as symmetric matrices,
uniformly in x ∈ IRn. Then, whenever A is a Borel set in IRn with µ(A) ≥ Φ(a), for
any r ≥ 0,

µ(Ar) ≥ Φ(a+
√
c r).

As in the Gaussian case, the inequality of Theorem 1.1 is equivalent to its
infinitesimal version

µs(∂A) ≥
√
cU

(
µ(A)

)
with the corresponding notion of surface measure and to the functional inequality

U
(∫

fdµ

)
≤

∫ √
U2(f) + 1

c |∇f |2 dµ

which is the result we established (at least in one direction) in the proof as before.
Before turning to this proof, let us comment on the Gaussian aspect of the theorem.
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Let F be a Lipschitz map on IRn with Lipschitz coefficient ‖F‖Lip ≤
√
c. Then, the

image measure ν of µ by F is a contraction of the canonical Gaussian measure on IR.
Indeed, we may assume by some standard regularization procedure (cf. [Ba-L]) that
ν is absolutely continuous with respect to Lebesgue measure on IR with a strictly
positive density. Set ν(r) = ν((−∞, r]) so that the measure ν has density ν′. For
r ∈ IR, apply Theorem 1.1, or rather its infinitesimal version, to A = {F ≤ r} to
get U(ν(r)) ≤ ν′(r). Then, setting k = ν−1 ◦ Φ and x = Φ−1 ◦ ν(r), k′(x) ≤ 1 so
that ν is the image of the canonical Gaussian measure on IR by the contraction k.
In particular, in dimension one, every measure satisfying the hypothesis of Theorem
1.1 is a Lipschitz image of the canonical Gaussian measure.

Proof of Theorem 1.1. It is entirely similar to the proof of the Gaussian isoperimet-
ric inequality in Section 1.1. Denote thus by (Pt)t≥0 the Markov semigroup with
generator L = 1

2∆− 1
2∇W · ∇. The integration by parts formula for L reads∫

f(−Lg)dµ =
1
2

∫
〈∇f,∇g〉dµ

for smooth functions f and g. Fix a smooth function f on IRn with 0 ≤ f ≤ 1. As
in the Gaussian case, we aim to show that, under the assumption on W ,

J(t) =
∫ √

U2(Ptf) + 1
c |∇Ptf |2 dµ

is non-increasing in t ≥ 0. Remaining as before in dimension one for notational
simplicity, the argument is the same than in the Gaussian case with now K(f) =
U2(f) + 1

c |∇f |
2 so that

K(f)′ = 2UU ′(f)f ′ + 2
c f

′f ′′.

Similarly,

〈∇f,∇(Lf)〉 = f ′
(

1
2 f

′′ − 1
2 W

′f ′
)′ = − 1

2 W
′′f ′

2 + f ′Lf ′.

Hence, again by the integration by parts formula,∫
1√
K(f)

〈∇f,∇(Lf)〉dγ = −1
2

∫
W ′′f ′

2√
K(f)

dµ+
∫

f ′√
K(f)

Lf ′dµ

= −1
2

∫
W ′′f ′

2√
K(f)

dµ− 1
2

∫
f ′′

2√
K(f)

dµ

+
1
2

∫
f ′f ′′

K(f)3/2

[
UU ′(f)f ′ +

1
c
f ′f ′′

]
dµ.

In the same way, we then get

dJ

dt
= − 1

2c

∫
1

K(f)3/2

[
U ′2(f)f ′4 − 2UU ′(f)f ′2f ′′ + U2(f)f ′′2

]
dµ

− 1
2

∫
f ′

2

K(f)3/2

(W ′′

c
− 1

)[
U2(f) +

1
c
f ′

2
]
dµ.

Since W ′′ ≥ c, the conclusion follows. The proof of Theorem 1.1 is complete.
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1.3 Some general facts about concentration

As we have seen in (1.6), one corollary of Gaussian isoperimetry is that whenever
A is a Borel set in IRn with γ(A) ≥ 1

2 for the canonical Gaussian measure γ, then,
for every r ≥ 0,

γ(Ar) ≥ 1− e−r2/2. (1.16)

In other words, starting with a set with positive measure ( 1
2 here), its (Euclidean)

enlargement or neighborhood gets very rapidly a mass close to one (think for ex-
ample of r = 5 or 10). We described with (1.2) a similar property on spheres.
While true isoperimetric inequalities are usually quite difficult to establish, in par-
ticular identification of extremal sets, concentration properties like (1.2) or (1.16)
are milder, and may be established by a variety of arguments, as will be illustrated
in these notes.

The concentration of measure phenomenon, put forward most vigorously by V.
D. Milman in the local theory of Banach spaces (cf. [Mi], [M-S]), may be described
for example on a metric space (X, d) equipped with a probability measure µ on the
Borel sets of (X, d). One is then interested in the concentration function

α(r) = sup
{
1− µ(Ar);µ(A) ≥ 1

2

}
, r ≥ 0,

where Ar = {x ∈ X; d(x,A) < r}. As a consequence of (1.16), α(r) ≤ e−r2/2

in case of the canonical Gaussian measure γ on IRn with respect to the Euclidean
metric. The important feature of this definition is that several measures, as we will
see, do have very small concentration functions α(r) as r becomes “large”. We will
mainly be interested in Gaussian (or at least exponential) concentration functions
throughout these notes. Besides Gaussian measures, Haar measures on spheres were
part of the first examples (1.2). Martingale inequalities also yield family of examples
(cf. [Mau1], [M-S], [Ta7]). In this work, we will encounter further examples, in
particular in the context of product measures.

The concentration of measure phenomenon may also be described on functions.
Let F be a Lipschitz map on X with ‖F‖Lip ≤ 1 (by homogeneity) and let m be a
median of F for µ. Then, since µ(F ≤ m) ≥ 1

2 , and {F ≤ m}r ⊂ {F ≤ m+ r}, we
see that for every r ≥ 0,

µ(F ≥ m+ r) ≤ α(r). (1.17)

When such an inequality holds, we will speak of a deviation inequality for F . To-
gether with the same inequality for −F ,

µ
(
|F −m| ≥ r

)
≤ 2α(r). (1.18)

We then speak of a concentration inequality for F . In particular, the Lipschitz
map F concentrates around some fixed mean value m with a probability estimated
by α. According to the smallness of α as r increases, F may be considered as
almost constant on almost all the space. Note that these deviation or concentration
inequalities on (Lipschitz) functions are actually equivalent to the corresponding
statement on sets. Let A be a Borel set in (X, d) with µ(A) ≥ 1

2 . Set F (x) = d(x,A)
where r > 0. Clearly ‖F‖Lip ≤ 1 while

µ(F > 0) = µ
(
x; d(x,A) > 0

)
≤ 1− µ(A) ≤ 1

2 .
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Hence, 0 is a median of F and thus, by (1.17),

1− µ(Ar) ≤ µ(F ≥ r) ≤ α(r). (1.19)

In the Gaussian case, for every r ≥ 0,

γ(F ≥ m+ r) ≤ e−r2/2 (1.20)

when ‖F‖Lip ≤ 1 and

γ(F ≥ m+ r) ≤ e−r2/2‖F‖2Lip

for arbitrary Lipschitz functions, extending thus the simple case of linear functions.
These inequalities emphasize the two main parameters in a concentration property,
namely some deviation or concentration value m, mean or median, and the Lipschitz
coefficient ‖F‖Lip of F . An example of this type already occured in (1.8) which may
be shown to follow equivalently from (1.20) (consider F (x) = max1≤i≤n(Mx)i). As
a consequence of Theorem 1.1, if µ is a Boltzmann measure with W ′′(x) ≥ c Id for
every x ∈ IRn, and if F is Lipschitz with ‖F‖Lip ≤ 1, we get similarly that for every
r ≥ 0,

µ(F ≥ m+ r) ≤ e−r2/2c. (1.21)

Although this last bound covers an interesting class of measures, it is clear that its
application is fairly limited. It is therefore of interest to investigate new tools, other
than isoperimetric inequalities, to derive concentration inequalities for large families
of measures. This is the task of the next chapters.

It might be worthwhile to note that while we deduced the preceding concentra-
tion inequalities from isoperimetry, one may also adapt the semigroup arguments to
give a direct, simpler, proof of these inequalities. To outline the argument in case of
(1.20), let F on IRn be smooth and such that

∫
Fdγ = 0 and ‖F‖Lip ≤ 1. For fixed

λ ∈ IR, set H(t) =
∫

eλPtF dγ where (Pt)t≥0 is the Ornstein-Uhlenbeck semigroup
(1.12). Since H(∞) = 1, we may write, for every t ≥ 0,

H(t) = 1−
∫ ∞

t

H ′(s)ds

= 1− λ

∫ ∞

t

(∫
LPsF eλPsF dγ

)
ds

= 1 +
λ2

2

∫ ∞

t

(∫
|∇PsF |2eλPsF dγ

)
ds

by the integration by parts formula (1.13). Since ‖F‖Lip ≤ 1, |∇F | ≤ 1 almost
everywhere, so that

|∇PsF |2 =
∣∣e−s/2Ps(∇F )

∣∣2 ≤ e−sPs

(
|∇F |2

)
≤ e−s

almost everywhere. Hence, for t ≥ 0,

H(t) ≤ 1 +
λ2

2

∫ ∞

t

e−sH(s)ds.
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By Gronwall’s lemma,

H(0) =
∫

eλF dγ ≤ eλ2/2.

To deduce the deviation inequality (1.20) from this result, simply apply Chebyshev’s
inequality: for every λ ∈ IR and r ≥ 0,

γ(F ≥ r) ≤ e−λr+λ2/2.

Minimizing in λ (λ = r) yields

γ(F ≥ r) ≤ e−r2/2,

where we recall that F is smooth and such that
∫
Fdγ = 0 and ‖F‖Lip ≤ 1. By a

simple approximation procedure, we therefore get that, for every Lipschitz function
F on IRn such that ‖F‖Lip ≤ 1 and all r ≥ 0,

γ
(
F ≥

∫
Fdγ + r

)
≤ e−r2/2. (1.22)

The same argument would apply for the Boltzmann measures of Theorem 1.1 to
produce (1.21) with the mean instead of a median. We note that this direct proof
of (1.22) is shorter than the proof of the full isoperimetric inequality.

Inequality (1.22) may be used to investigate supremum of Gaussian processes
as (1.7) or (1.20). As before, let (Xt)t∈T be a centered Gaussian process indexed
by some countable set T , and assume that supt∈T Xt < ∞ almost surely. Fix
t1, . . . , tn and denote by Γ = M tM the covariance matrix of the centered Gaussian
sample (Xt1 , . . . , Xtn). This sample thus has distribution Mx under γ(dx). Let
F (x) = max1≤i≤n(Mx)i, x ∈ IRn. Then F is Lipschitz with

‖F‖Lip = max
1≤i≤n

(
IE(X2

ti
)
)1/2 ≤ σ

where σ = supt∈T (IE(X2
t ))1/2. Therefore, by (1.22), for every r ≥ 0,

IP
{

max
1≤i≤n

Xti
≥ IE

(
max

1≤i≤n
Xti

)
+ σr

}
≤ e−r2/2. (1.23)

Similarly for −F ,

IP
{

max
1≤i≤n

Xti ≤ IE
(

max
1≤i≤n

Xti

)
− σr

}
≤ e−r2/2.

Choose now m such that IP{supt∈T Xt ≤ m} ≥ 1
2 and r0 such that e−r2

0/2 < 1
2 .

Then
IP

{
max

1≤i≤n
Xti

≤ m
}
≥ 1

2 .

Intersecting with the preceding probability, we get

IE
(

max
1≤i≤n

Xti

)
≤ m+ σr0



18

independently of t1, . . . , tn in T . In particular, IE(supt∈T Xt) <∞, and by monotone
convergence in (1.23),

IP
{
sup
t∈T

Xt ≥ IE
(
sup
t∈T

Xt

)
+ σr

}
≤ e−r2/2. (1.24)

This inequality is the analogue of (1.8) with the mean instead of the median. Note
that the condition IE(supt∈T Xt) < ∞ came for free in the argument. It thus also
implies (1.9) and (1.10).

This approximation argument may be used in the same way on infinite dimen-
sional Gaussian measures γ with respect to their reproducing kernel Hilbert space
H. If F is Lipschitz with respect to H in the sense that∣∣F (x)− F (y)

∣∣ ≤ |x− y|H,

then
γ(F ≥ m+ r) ≤ e−r2/2 (1.25)

for all r ≥ 0 with m either the mean or a median of F for γ. See [Le3].
The inequalities (1.20) and (1.22) yield deviation inequalities for either a median

or the mean of a Lipschitz function. Up to numerical constants, these are actually
equivalent ([M-S], p. 142). One example was the inequalities (1.8) and (1.24) for
supremum of Gaussian processes, and also (1.25). Let us describe the argument
in some generality for exponential concentration functions. The argument clearly
extends to sufficiently small concentration functions. (We will use this remark in
the sequel.)

Let F be a measurable function on some probability space (X,B, µ) such that,
for some 0 < p <∞, some a ∈ IR and some constants c, d > 0,

µ
(
|F − a| ≥ r

)
≤ 2c e−rp/d (1.26)

for all r ≥ 0. Then, first of all,∫
|F − a|dµ =

∫ ∞

0

µ
(
|F − a| ≥ r

)
dr ≤

∫ ∞

0

2c e−rp/ddr ≤ Cpcd
1/p

where Cp > 0 only depends on p. In particular, |
∫
Fdµ− a| ≤ Cpcd

1/p. Therefore,
for r ≥ 0,

µ
(
F ≥

∫
Fdµ+ r

)
≤ µ(F ≥ a− Cpcd

1/p + r).

According as r ≤ 2Cpcd
1/p or r ≥ 2Cpcd

1/p we easily get that

µ
(
F ≥

∫
Fdµ+ r

)
≤ c′e−rp/d′

where c′ = max(2c, eCp
pcp

) and d′ = 2pd. Together with the same inequality for −F ,
(1.26) thus holds with a the mean of F (and c′ and d′). Similary, if we choose in
(1.26) r = r0 so that

2c e−rp/d < 1
2 ,
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for example rp
0 = d log(8c), we see that µ(|F − a| ≥ r0) < 1

2 . Therefore a median m
of F for µ will satisfy

a− r0 ≤ m ≤ a+ r0.

It is then easy to conclude as previously that, for every r ≥ 0,

µ(F ≥ m+ r) ≤ c′e−rp/d′

where c′ = 8c and d′ = 2pd. We can therefore also choose for a in (1.26) a median
of F .

An alternate argument may be given on the concentration function. For a
probability measure µ on the Borel sets of a metric space (X, d), assume that for
some non-increasing function α on IR+,

µ
(
F ≥ Eµ(F ) + r

)
≤ α(r) (1.27)

for every F with ‖F‖Lip ≤ 1 and every r ≥ 0. Let A with µ(A) > 0 and fix r > 0.
Set F (x) = min(d(x,A), r). Clearly ‖F‖Lip ≤ 1 and

Eµ(F ) ≤
(
1− µ(A)

)
r.

Applying (1.27),

1− µ(Ar) = µ(F ≥ r) ≤ µ
(
F ≥ Eµ(F ) + µ(A)r

)
≤ α

(
µ(A)r

)
. (1.28)

In particular, if µ(A) ≥ 1
2 ,

µ(Ar) ≥ 1− α
(

r
2

)
.

We conclude this section by emphasizing that a concentration inequality of such
as (1.26) of course implies strong integrability properties of the Lipschitz function
F . This is the content of the simple proposition which immediately follows by
integration in r ≥ 0.

Proposition 1.2. Let F be a measurable function on (X,B, µ) such that for some
0 < p <∞, some a ∈ IR and some constants c, d > 0,

µ
(
|F − a| ≥ r

)
≤ 2c e−rp/d

for every r ≥ 0. Then ∫
eα|F |pdµ <∞

for every α < 1
d .

Proof. From the hypothesis, for every r ≥ |a|,
µ
(
|F | ≥ r

)
≤ µ

(
|F − a| ≥ r − |a|

)
≤ 2c e−(r−|a|)p/d.

Now, by Fubini’s theorem,∫
eα|F |pdµ = 1 +

∫ ∞

0

pα rp−1µ
(
|F | ≥ r

)
eαrp

dr

≤ eα|a|p +
∫ ∞

|a|
pα rp−1µ

(
|F | ≥ r

)
eαrp

dr

≤ eα|a|p +
∫ ∞

|a|
pα rp−12c e−(r−|a|)p/deαrp

dr

from which the conclusion follows.
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2. SPECTRAL GAP AND
LOGARITHMIC SOBOLEV INEQUALITIES

We present in this section the basic simple argument that produces Gaussian con-
centration under a logarithmic Sobolev inequality. We try to deal with a rather
general framework in order to include several variations developed in the literature.
Herbst’s original argument, mentioned in [D-S], has been revived recently by S.
Aida, T. Masuda and I. Shigekawa [A-M-S]. Since then, related papers by S. Aida
and D. Stroock [A-S], S. Bobkov and F. Götze [B-G], L. Gross and O. Rothaus
[G-R], O. Rothaus [Ro3] and the author [Le1] further developed the methods and
results. Most of the results presented in these notes are taken from these works. We
will mainly be concerned with Herbst’s original differential argument on the Laplace
transform. The papers [A-S], [Ro3] and [G-R] also deal with moment growth.

We present in the first paragraph a general setting dealing with logarithmic
Sobolev and Poincaré inequalities. We then turn to Herbst’s basic argument which
yields Gaussian concentration under a logarithmic Sobolev inequality. We discuss
next more general entropy-energy inequalities and exponential integrability under
spectral gap inequalities.

2.1 Abstract functional inequalities

In order to develop the functional approach to concentration, we need to introduce
a convenient setting in which most of the known results may be considered. We
will go from a rather abstract and informal framework to more concrete cases and
examples.

Let (X,B, µ) be a probability space. We denote by Eµ integration with respect
to µ, and by (Lp(µ), ‖ · ‖∞) the Lebesgue spaces over (X,B, µ). For any function f
in L2(µ), we further denote by

Varµ(f) = Eµ(f2)−
(
Eµ(f)

)2

the variance of f . If f is a non-negative function on E such that Eµ(f log+ f) <∞,
we introduce the entropy of f with respect to µ as

Entµ(f) = Eµ(f log f)− Eµ(f) log Eµ(f).

(Actually, since the function x log x is bounded below, Entµ(f) < ∞ if and only
if Eµ(f log+ f) < ∞.) Note that Entµ(f) ≥ 0 and that Entµ(αf) = αEntµ(f) for
α ≥ 0. We write E, Var, Ent when there is no confusion with respect to the measure.
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On some subset A of measurable functions f on X, consider now a map, or
energy, E : A → IR+. We say that µ satisfies a spectral gap or Poincaré inequality
with respect to E (on A) if there exists C > 0 such that

Varµ(f) ≤ CE(f) (2.1)

for every function f ∈ A in L2(µ). We say that µ satisfies a logarithmic Sobolev
inequality with respect to E (on A) if there exists C > 0 such that

Entµ(f2) ≤ 2CE(f) (2.2)

for every function f ∈ A with Eµ(f2 log+ f2) < ∞. (The choice of the normal-
ization in (2.2) will become clear with Proposition 2.1 below.) By extension, the
integrability properties on f will be understood when speaking of inequalities (2.1)
and (2.2) for all f in A.

These abstract definitions include a number of cases of interest. For example,
if (X, d) is a metric space equipped with its Borel σ-field B, one may consider the
natural generalization of the modulus of the usual gradient

|∇f(x)| = lim sup
d(x,y)→0

|f(x)− f(y)|
d(x, y)

(2.3)

(with |∇f(x)| = 0 for isolated points x in X). In this case, one may define, for a
probability measure µ on (X,B),

E(f) = Eµ(|∇f |2) (2.4)

on the class A of all, say, (bounded) Lipschitz functions on X. One important
feature of this situation is that ∇ is a derivation in the sense that for a C∞ function
ψ on IR, and f ∈ A, ψ(f) ∈ A and∣∣∇(ψ(f))

∣∣ = |∇f |
∣∣ψ′(f)

∣∣. (2.5)

In particular,
E
(
ψ(f)

)
≤ ‖∇f‖2∞Eµ

(
ψ′(f)2

)
. (2.6)

For example,

E(ef/2) ≤ 1
4
‖∇f‖2∞Eµ(ef ).

Another setting of interest, following [A-S] and [G-R], consists of the gradients
and Dirichlet forms associated to (symmetric) Markov semigroups. On a probability
space (X,B, µ), let pt(x, ·) be a Markov transition probability function on (X,B).
Assume that pt(x, dy)µ(dx) is symmetric in x and y and that, for each bounded
measurable function f on X,

Ptf(x) =
∫
f(y)pt(x, dy)
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converges to f in L2(µ) as t goes to 0. Denote also by Pt the unique bounded
extension of Pt to L2(µ). Then (Pt)t≥0 defines a strongly continuous semigroup on
L2(µ) with Dirichlet form the quadratic form

E(f, f) = lim
t→0

1
2t

∫ ∫ (
f(x)− f(y)

)2
pt(x, dy)µ(dx). (2.7)

Let D(E) be the domain of E (the space of f ∈ L2(µ) for which E(f, f) < ∞). On
the algebra A of bounded measurable functions f of D(E), one may then consider
E(f) = E(f, f). This energy functional does not necessarily satisfy a chain rule
formula of the type of (2.6). However, as was emphasized in [A-S], we still have
that, for every f in A,

E(ef/2) ≤ 1
2
|||f |||2∞Eµ(ef ). (2.8)

Here
|||f |||2∞ = sup

{
E(gf, f)− 1

2 E(g, f2); g ∈ A, ‖g‖1 ≤ 1
}

that may be considered as a generalized norm of a gradient. To establish (2.8), note
that, by symmetry,∫ ∫ (

ef(x)/2 − ef(y)/2
)2
pt(x, dy)µ(dx)

= 2
∫ ∫

{f(x)<f(y)}

(
ef(x)/2 − ef(y)/2

)2
pt(x, dy)µ(dx)

≤ 1
2

∫ ∫ (
f(x)− f(y)

)2ef(y)pt(x, dy)µ(dx).

Now, for every g in A,

lim
t→0

1
2t

∫ ∫
g(x)

(
f(x)− f(y)

)2
pt(x, dy)µ(dx) = E(gf, f)− 1

2 E(g, f2)

from which (2.8) follows.
Examples fitting this general framework are numerous. Let X = IRn and write

∇f for the usual gradient of a smooth function f on IRn. Let

M : IRn → invertible matrices {n× n}

be measurable and locally bounded and let dµ(x) = w(x)dx be a probability measure
on IRn with w > 0. For every C∞ compactly supported function f on IRn, set

E(f, f) =
∫

IRn

〈M(x)∇f(x),M(x)∇f(x)〉dµ(x).

We need not be really concerned here with the semigroup induced by this Dirichlet
form. Ignoring questions on the closure of E , it readily follows that in this case

|||f |||∞ = sup
{∣∣M(x)∇f(x)

∣∣;x ∈ IRn
}
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where | · | is Euclidean length. More generally, if µ is a probability measure on
a Riemannian manifold X, and if E(f, f) =

∫
M
|∇f |2dµ, then one has |||f |||∞ =

‖∇f‖∞.
With this class of examples, we of course rejoin the generalized moduli of gra-

dients (2.3). In this case, the Dirichlet form E is actually local, that is, it satisfies
the chain rule formula (2.6). In particular, (2.8) holds in this case with constant 1

4
(and |||f |||∞ = ‖∇f‖∞). We freely use this observation throughout these notes.

Covering in another way the two preceding settings, one may also consider the
abstract Markov semigroup framework of [Ba1] in which, given a Markov generator
L on some nice algebra A of functions, one defines the carré du champ operator as

Γ(f, g) = 1
2

(
L(fg)− fLg − gLf

)
.

For example, if L is the Laplace-Beltrami operator on a manifold M , then Γ(f, g) =
∇f · ∇g. One may then define

E(f) = Eµ

(
Γ(f, f)

)
on the class A. If L is symmetric, one shows that |||f |||∞ = ‖Γ(f, f)‖∞. Provided L
is a diffusion (that is, it satisfies the change of variables formula Lψ(f) = ψ′(f)Lf+
ψ′′(f)Γ(f, f)) E will satisfy (2.6). A further discussion may be found in [Ba1].

We turn to discrete examples. Let X be a finite or countable set. Let K(x, y) ≥
0 satisfy ∑

y∈X

K(x, y) = 1

for every x ∈ X. Asssume furthermore that there is a symmetric invariant probabil-
ity measure µ on X, that is K(x, y)µ(x) is symmetric in x and y and

∑
xK(x, y)µ(x)

= µ(y) for every y ∈ X. In other words, (K,µ) is a symmetric Markov chain. Define

E(f, f) =
1
2

∑
x,y∈X

(
f(x)− f(y)

)2
K(x, y)µ

(
{x}

)
.

In this case,

|||f |||2∞ =
1
2

sup
x∈X

∑
y∈X

(
f(x)− f(y)

)2
K(x, y).

It might be worthwhile noting that if we let

‖∇f‖∞ = sup
{∣∣f(x)− f(y)

∣∣;K(x, y) > 0
}
,

then, since
∑

y K(x, y) = 1,

|||f |||2∞ ≤ 1
2
‖∇f‖2∞.

It should be clear that the definition of the ||| · |||∞-norm tries to be as close
as possible to the sup-norm of a gradient in a continuous setting. As such however,
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it does not always reflect accurately discrete situations. Discrete gradients may
actually be examined in another way. If f is a function on ZZ, set

Df(x) = f(x+ 1)− f(x), x ∈ ZZ. (2.9)

One may then consider
E(f) = Eµ(|Df |2) (2.10)

for a measure µ on ZZ. This energy will not satisfy (2.6) but satisfies (2.8). For reals
m(x), x ∈ ZZ, let

E(f, f) =
∑
x∈ZZ

Df(x)2m(x)2µ
(
{x}

)
.

One can check that for this Dirichlet form

|||f |||2∞ = sup
x∈ZZ

1
2

(
m(x)2Df(x)2 +m(x− 1)2

µ({x− 1})
µ({x})

Df(x− 1)2
)
. (2.11)

As will be seen in Part 5, this uniform norm of the gradient is actually of little use
in specific examples, such as Poisson measures. It will be more fruitful to consider
supx∈ZZd |Df(x)|. The lack of chain rule (for example, |D(ef )| ≤ |Df |e|Df |ef only
in general) will then have to be handled by other means. The norm ||| · |||∞ is in
fact only well adapted to produce Gaussian bounds as we will see in Section 2.3. It
is actually defined in such a way to produce results similar to those which follows
from a chain rule formula. As such, this norm is not suited to a number of discrete
examples (see also [G-R]).

The preceding example may be further generalized to ZZd. Similarly, in the
context of statistical mechanics, set X = {−1,+1}ZZd

and let

∣∣Df(ω)
∣∣ =

( ∑
k∈ZZd

∣∣∂kf(ω)
∣∣2)1/2

(2.12)

where ∂kf(ω) = f(ωk) − f(ω) where ωk is the element of X obtained from ω by
replacing the k-th coordinate with −ωk.

Logarithmic Sobolev inequalities were introduced to describe smoothing prop-
erties of Markov semigroups, especially in infinite dimensional settings. The key
argument was isolated by L. Gross [Gr1] who showed how a logarithmic Sobolev
inequality is actually equivalent to hypercontractivity of a Markov generator. Pre-
cisely, if (Pt)t≥0 is a symmetric Markov semigroup with invariant measure µ and
Dirichlet form E , then the logarithmic Sobolev inequality

Ent(f2) ≤ 2C E(f, f), f ∈ A,

is equivalent to saying that, whenever 1 < p < q < ∞ and t > 0 are such that
e2t/C ≥ (q − 1)/(p− 1), we have

‖Ptf‖q ≤ ‖f‖p
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for every f ∈ A in Lp(µ) (cf. [Gr1], [Ba1] for the precise statement). Hypercontrac-
tivity is an important tool in deriving sharp estimates on the time to equilibrium of
Pt [S-Z], [St], [D-S] etc.

Now, we mention a simple comparison between spectral and logarithmic Sobolev
inequalities. The hypothesis on E is straightforward in all the previous examples.

Proposition 2.1. Assume that µ satisfies the logarithmic Sobolev inequality

Entµ(f2) ≤ 2 E(f), f ∈ A,

and that af + b ∈ A and E(af + b) = a2E(f) for every f ∈ A and a, b ∈ IR. Then µ
satisfies the spectral gap inequality

Varµ(f2) ≤ E(f), f ∈ A.

Proof. Fix f with Eµ(f) = 0 and Eµ(f2) = 1 and apply the logarithmic Sobolev
inequality to 1 + εf . As ε goes to 0, a Taylor expansion of log(1 + εf) yields the
conclusion.

It might be worthwhile mentioning that the converse to Proposition 2.1 is not
true in general, even within constants. We will have the opportunity to encounter
a number of such cases throughout these notes (cf. Sections 4.1, 5.1 and 7.3).

One important feature of both variance and entropy is their product property.
Assume we are given probability spaces (Xi,Bi, µi), 1 ≤ i ≤ n. Denote by P
the product probability measure P = µ1 ⊗ · · · ⊗ µn on the product space X =
X1 × · · · ×Xn equipped with the product σ-field B. Given f on the product space,
we write furthermore fi, 1 ≤ i ≤ n, for the function on Xi defined by

fi(xi) = f(x1, . . . , xi−1, xi, xi+1, . . . , xn),

with x1, . . . , xi−1, xi+1, . . . , xn fixed.

Proposition 2.2. Under appropriate integrability conditions,

VarP (f) ≤
n∑

i=1

EP

(
Varµi(fi)

)
and

EntP (f) ≤
n∑

i=1

EP

(
Entµi(fi)

)
.

Proof. Let us prove the assertion concerning entropy, the one for variance being
(simpler and) similar. Recall first that for a non-negative function f on (X,B, µ),

Entµ(f) = sup
{
Eµ(fg); Eµ(eg) ≤ 1

}
. (2.13)

Indeed, assume by homogeneity that Eµ(f) = 1. By Young’s inequality

uv ≤ u log u− u+ ev, u ≥ 0, v ∈ IR,
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we get, for Eµ(eg) ≤ 1,

Eµ(fg) ≤ Eµ(f log f)− 1 + Eµ(eg) ≤ Eµ(f log f).

The converse is obvious.
To prove Proposition 2.2, given g on (X,B, P ) such that EP (eg) ≤ 1, set, for

every i = 1 . . . , n,

gi(xi, . . . , xn) = log
(∫

eg(x1,...,xn)dµ1(x1) · · · dµi−1(xi−1)∫
eg(x1,...,xn)dµ1(x1) · · · dµi(xi)

)
.

Then g ≤
∑n

i=1 g
i and Eµi(e

(gi)i) = 1. Therefore,

EP (fg) ≤
n∑

i=1

EP (fgi) =
n∑

i=1

EP

(
Eµi

(
fi(gi)i

))
≤

n∑
i=1

EP

(
Entµi

(fi)
)

which is the result. Proposition 2.2 is established.

What Proposition 2.2 will tell us in applications is that, whenever the energy
on the product space is the sum of the energies on each coordinates, in order to
establish a Poincaré or logarithmic Sobolev inequality in product spaces, it will
be enough to deal with the dimension one. In particular, these inequalities will be
independent of the dimension of the product space. This is why logarithmic Sobolev
inequalities are such powerful tools in infinite dimensional analysis.

2.2 Examples of logarithmic Sobolev inequalities

The first examples of logarithmic Sobolev inequalities were discovered by L. Gross
in 1975 [Gr1]. They concerned the two-point space and the canonical Gaussian
measure. For the two point space {0, 1} with uniform (Bernoulli) measure µ =
1
2δ0 + 1

2δ1, L. Gross showed that for every f on {0, 1},

Entµ(f2) ≤ 1
2

Eµ

(
|Df |2

)
(2.14)

where Df(x) = f(1) − f(0), x ∈ {0, 1}. The constant is optimal. In its equivalent
hypercontractive form, this inequality actually goes back to A. Bonami [Bon]. Due
to Proposition 2.2, if µn is the n-fold product measure of µ on {0, 1}n, for every f
on {0, 1}n,

Entµn(f2) ≤ 1
2

Eµn

( n∑
i=1

|Dif |2
)

where, for x = (x1, . . . , xn) ∈ {0, 1}n and i = 1, . . . , n, Dif(x) = Dfi(xi). Applying
this inequality to

f(x1, . . . , xn) = ϕ
(x1 + · · ·+ xn − n

2√
n
4

)



27

for some smooth ϕ on IR, L. Gross deduced, with the classical central limit theorem,
a logarithmic Sobolev inequality for the canonical Gaussian measure γ on IR in the
form of

Entγ(ϕ2) ≤ 2 Eγ

(
ϕ′

2)
.

By the product property of entropy, if γ is the canonical Gaussian measure on IRn,
for every f on IRn with gradient in L2(γ),

Entγ(f2) ≤ 2 Eγ

(
|∇f |2

)
. (2.15)

Inequality (2.15) may be considered as the prototype of logarithmic Sobolev
inequalities. The constant in (2.15) is optimal as can be checked for example on
exponential functions eλx, which actually saturate this inequality. This observation
is a first indication on the Laplace transform approach we will develop next. Several
simple, alternative proofs of this inequality have been developed in the literature.
For our purposes, it might be worthwhile noting that it may be seen as consequence
of the Gaussian isoperimetric inequality itself. This has been noticed first in [Le1]
but recently, W. Beckner [Be] kindly communicated to the author a simple direct
argument on the basis of the functional inequality (1.11). Namely, let g be smooth
with

∫
g2dγ = 1 and apply (1.11) to f = εg2 with ε→ 0. We get that

1 ≤
∫ √

U2(εg2)
U2(ε)

+
4ε2

U2(ε)
g2|∇g|2dγ.

Noticing that U2(ε) ∼ ε2 log( 1
ε2 ) as ε→ 0, we see that

1 ≤
∫
g2

√
1− 1

M
log g2 +

2
M

|∇g|2
g2

+ o
( 1
M

)
dγ

where M = M(ε) = log( 1
ε ) →∞ as ε→ 0. Hence

1 ≤
∫
g2

(
1− 1

2M
log g2 +

1
M

|∇g|2

g2

)
dγ + o

( 1
M

)
from which the Gaussian logartihmic Sobolev inequality (2.15) follows. The same
argument works for the Boltzmann measures of Theorem 1.1. On the other hand,
the semigroup arguments leading to the Gaussian isoperimetric inequality may also
be adapted to give a direct, simpler proof of the logarithmic Sobolev inequality
(2.15) [Ba1], [Le3]. To briefly sketch the argument (following the same notation),
let f be smooth and non-negative on IR. Then write

Entγ(f) = −
∫ ∞

0

d

dt
Eγ(Ptf logPtf)dt

(with (Pt)t≥0 the Ornstein-Uhlenbeck semigroup (1.12)). By the chain rule formula,

d

dt
Eγ(Ptf logPtf) = Eγ(LPtf logPtf) + Eγ(LPtf) = −1

2
Eγ

( (Ptf)′2

Ptf

)
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since γ is invariant under the action of Pt and thus Eγ(LPtf) = 0. Now, (Ptf)′ =
e−t/2Ptf

′ so that, by the Cauchy-Schwarz inequality for Pt,

(Ptf
′)2 ≤ Ptf Pt

(f ′2
f

)
.

Summarizing,

Entγ(f) ≤ 1
2

∫ ∞

0

e−t Eγ

(
Pt

(f ′2
f

))
dt =

1
2

Eγ

(f ′2
f

)
which, by the change of f into f2, is (2.15) in dimension one.

The preceding proof may be shown to imply in the same way the Poincaré
inequality for Gaussian measures

Varγ(f) ≤ Eγ

(
|∇f |2

)
. (2.16)

(Write, in dimension one for simplicity,

Varγ(f) = −
∫ ∞

0

d

dt
Eγ

(
(Ptf)2

)
dt = −2

∫ ∞

0

E(PtfLPtf)dt

=
∫ ∞

0

Eγ

(
(Ptf)′2

)
dt

=
∫ ∞

0

e−tEγ

(
(Ptf

′)2
)
dt

≤
∫ ∞

0

e−tEγ

(
f ′

2)
dt = Eγ

(
f ′

2)
.)

It may also be seen as a consequence of the logarithmic Sobolev inequality (2.15)
by Proposition 2.1. Actually, (2.16) is a straigthforward consequence of a series
expansion in Hermite polynomials, and may be found, in this form, in the physics
literature of the thirties.

Both the (dimension free) logarithmic Sobolev and Poincaré inequalities (2.15)
and (2.16) extend to infinite dimensional Gaussian measures replacing the gradient
by the Gross-Malliavin derivatives along the directions of the reproducing kernel
Hilbert space. This is easily seen by a finite dimensional approximation (cf. [Le3]).

The preceding semigroup proofs also apply to Boltzmann measures as studied
in Section 1.2. In particular, under the curvature assumption of Theorem 1.1, these
measures satisfy the logarithmic Sobolev inequality

Entµ(f2) ≤ 2
c

Eµ

(
|∇f |2

)
. (2.17)

As we have seen, this inequality may also be shown to follow from Theorem 1.1 (cf.
also [Ba-L]). We discuss in Section 7.1 logarithmic Sobolev inequalities for a more
general class of potentials.
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Further logarithmic Sobolev inequalities have been established and studied
throughout the literature, mainly for their hypercontractive content. We refer to
the survey [Gr2] for more information. We investigate here logarithmic Sobolev
inequalities for their applications to the concentration of measure phenomenon.

2.3 The Herbst argument

In this section, we illustrate how concentration properties may follow from a logarith-
mic Sobolev inequality. Although rather elementary, this observation is a powerful
scheme which allows us to establish some new concentration inequalities. Indeed, as
illustrated in particular in the next chapter, convexity of entropy allows to tensorize
one-dimensional inequalities to produce concentration properties in product spaces
whereas concentration itself does not usually tensorize.

To clarify the further developments, we first present Herbst’s argument (or
what we believe Herbst’s argument was) in the original simple case. Let thus µ be
a probability measure on IRn such that for some C > 0 and all smooth f on IRn,

Ent(f2) ≤ 2C E
(
|∇f |2

)
(2.18)

(where ∇f is the usual gradient of f). Let now F be smooth (and bounded) such
that ‖F‖Lip ≤ 1. In particular, since we assume F to be regular enough, we can
have that |∇F | ≤ 1 at every point. Apply now (2.18) to f2 = eλF for every λ ∈ IR.
We have

E
(
|∇f |2

)
=
λ2

4
E

(
|∇F |2eλF

)
≤ λ2

4
E(eλF ).

Setting H(λ) = Eµ(eλF ), λ ∈ IR, we get by the definition of entropy,

λH ′(λ)−H(λ) logH(λ) ≤ Cλ2

2
H(λ).

In other words, if K(λ) = 1
λ logH(λ) (with K(0) = H ′(0)/H(0) = Eµ(F )),

K ′(λ) ≤ C

2

for every λ. Therefore,

K(λ) = K(0) +
∫ λ

0

K ′(u)du ≤ Eµ(F ) +
Cλ

2

and hence, for every λ,

H(λ) = Eµ(eλF ) ≤ eλEµ(F )+Cλ2/2. (2.19)

Replacing F by a smooth convolution, (2.19) extends to all Lipschitz functions with
‖F‖Lip ≤ 1 (see below). By Chebyshev’s inequality, for every λ, r ≥ 0,

µ
(
F ≥ Eµ(F ) + r

)
≤ e−λr+Cr2/2
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and optimizing in λ, for every r ≥ 0,

µ
(
F ≥ Eµ(F ) + r

)
≤ e−r2/2C .

The same inequality holds for −F .
The next proposition is some abstract formulation on the preceding argument.

It aims to cover several situations at once so that it may look akward at first. The
subsequent results will take a simpler form. At this point, they all yield Gaussian
concentration under logarithmic Sobolev inequalities. In the next section, we study
non-Gaussian tails which arise from more general entropy-energy inequalities, or
from the lack of chain rule for discrete gradients (cf. Part 5).

Let (X,B, µ) be a probability space. We write E for Eµ, and similarly Var,
Ent. Let A be a subset of L1(µ). For every f in A, let N(f) ≥ 0. Typically N(f)
will be our Lipschitz norm or generalized sup-norm of the gradient. For example,
N(f) = ‖∇f‖∞ in (2.4), or |||f |||∞ in (2.8), or supx∈ZZ |Df(x)| in (2.10).

Proposition 2.3. Let A and N be such that, for every f ∈ A and λ ∈ IR, λf ∈ A,
E(eλf ) <∞ and N(λf) = |λ|N(f). Assume that for every f ∈ A,

Ent(ef ) ≤ 1
2
N(f)2 E(ef ).

Then, whenever F in A is such that N(F ) ≤ 1, then

E(eλF ) ≤ eλE(F )+λ2/2 (2.20)

for every λ ∈ IR. Furthermore, for every r ≥ 0,

µ
(
F ≥ E(F ) + r

)
≤ e−r2/2, (2.21)

and similarly for −F .

Proof. It just reproduces the proof of (2.19). Fix F ∈ A with N(F ) ≤ 1 and write
H(λ) = E(eλF ), λ ≥ 0. Similarly, set K(λ) = 1

λ logH(λ), K(0) = E(F ). Applying
the logarithmic Sobolev inequality of the statement to λF , λ ≥ 0, we get K ′(λ) ≤ 1

2
for λ ≥ 0. Therefore,

K(λ) = K(0) +
∫ λ

0

K ′(u)du ≤ E(F ) +
λ

2

and hence, for every λ ≥ 0,

H(λ) ≤ eλE(F )+λ2/2.

Changing F into −F yields (2.20). The proof is completed similarly.

We begin by adding several comments to Proposition 2.3.
If N(F ) ≤ c in Proposition 2.3, then, by homogeneity,

µ
(
F ≥ E(F ) + r

)
≤ e−r2/2c2

, r ≥ 0.
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Sometimes the class A in Proposition 2.3 only includes λf when f ∈ A and
λ ≥ 0. The proof above was written so as to show that (2.20) then only holds for all
λ ≥ 0. Such a modification can be proposed similarly on the subsequent statements.
We use these remarks freely throughout this work.

Very often, the logarithmic Sobolev inequality is only available on a class A
densely defined in some larger, more convenient, class. The class of cylindrical
functions on an abstract Wiener space is one typical and important example. In
particular, this class might consist of bounded functions, so that the integrability
assumptions in Proposition 2.3 are immediate. The conclusions however are only
of interest for unbounded functions. Rather than extend the logarithmic Sobolev
inequality itself, one may note that the corresponding concentration inequality easily
extends. Let us agree that a function f on X satisfies N(f) ≤ 1 if there is a sequence
of functions (fn)n∈IN in A with N(fn) ≤ 1 (or, more generally, N(fn) ≤ 1+ 1

n ) that
converge µ-almost everywhere to f . For example, under some stability properties of
A, fn could be fn = max(−n,min(f, n)) which thus define a sequence of bounded
functions converging to f . Dirichlet forms associated to Markov semigroups are
stable by Lipschitz functions and E(fn, fn) ≤ E(f, f), thus falling into this case.
Energies given by generalized moduli of gradients (2.4) may also be considered.
Then, if F on X is such that N(F ) ≤ 1, F is integrable and the conclusions of
Proposition 2.3 holds. To see this, let (Fn)n∈IN be a sequence in A with N(Fn) ≤ 1
such that Fn → F almost everywhere. By Proposition 2.3, for every n and r ≥ 0,

µ
(∣∣Fn − E(Fn)

∣∣ ≥ r
)
≤ 2 e−r2/2. (2.22)

Let m be large enough that µ(|F | ≤ m) ≥ 3
4 . Then, for some n0 and every n ≥ n0,

µ(|Fn| ≤ m + 1) ≥ 1
2 . Choose furthermore r0 > 0 with 2e−r2

0/2 < 1
2 . Therefore,

intersecting the sets {|Fn| ≤ m+ 1} and {|Fn − E(Fn)| ≥ r0}, we see that∣∣E(Fn)
∣∣ ≤ r0 +m+ 1

for every n ≥ n0 thus. Hence, by (2.22) again,

µ
(
|Fn| ≥ r + r0 +m+ 1

)
≤ 2 e−r2/2

for every r ≥ 0 and n ≥ n0. In particular supn E(F 2
n) < ∞ so that, by uniform

integrability, E(|F |) < ∞ and E(Fn) → E(F ). Then, by Fatou’s lemma, for every
λ ∈ IR,

E(eλF ) ≤ lim inf
n→∞

E(eλFn) ≤ lim inf
n→∞

eλE(Fn)+λ2/2 = eλE(F )+λ2/2.

One then concludes as in Proposition 2.3. We emphasize that the integrability of F
came for free. A similar reasoning was used in (1.24)

Note furthermore that, in the preceding setting, if N(F ) ≤ 1, then

E
(
eαF 2)

<∞ (2.23)

for every α < 1
2 . As will be seen below, this condition is optimal. (2.23) is a

consequence of Proposition 1.2. A beautiful alternate argument in this case was
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suggested by L. Gross (cf. [A-M-S]) on the basis of (2.20). If γ is the canonical
Gaussian measure on IR, by Fubini’s theorem,

E
(
eαF 2)

= E
(∫

IR

e
√

2αxF dγ(x)
)

≤
∫

IR

e
√

2αxE(F )+αx2
dγ(x)

=
1√

1− 2α
eαE(F )2/(1−2α).

The bound is optimal as can be seen from the example F (x) = x (with respect to
γ).

We now show how the preceding statement may be applied to the settings
presented in Section 2.1 for logarithmic Sobolev inequalities in their more classical
form. The results below are taken from [A-M-S], [A-S], [G-R], [Le1], [Ro3].

In the context of Dirichlet forms (2.7) associated to Markov semigroup, let A
be the algebra of bounded functions on (X,B) in the domain D(E) of the Dirichlet
form. Take N(f) = ||| · |||∞, and let us agree, as above, that a measurable function f
on X is such that ||| · |||∞ ≤ 1 if there is a sequence (fn)n∈IN in A with |||fn|||∞ ≤ 1
that converge µ-almost everywhere to f .

Corollary 2.4. Assume that for some C > 0 and every f in A

Ent(f2) ≤ 2CE(f).

Then, whenever F is such that |||F |||∞ ≤ 1, we have E(|F |) < ∞ and, for every
r ≥ 0,

µ
(
F ≥ E(F ) + r

)
≤ e−r2/4C .

Proof. Apply the logarithmic Sobolev inequality to ef/2 to get, according to (2.8),

Ent(ef ) ≤ C|||f |||2∞ E(ef ).

The conclusion then follows from Proposition 2.3 (and homogeneity).

As a second set of examples, consider an operator Γ on some class A such that
Γ(f) ≥ 0 and Γ(λf) = λ2Γ(f) for every f in A. As a typical example, Γ(f) = |∇f |2
for a generalized modulus of gradient, or Γ(f) = Γ(f, f) for a more general carré
du champ. One may also choose Γ(f) = |Df |2 for a discrete gradient such as (2.9).
Keeping with the preceding comments, we agree that a function f on X is such that
N(f) = ‖Γ(f)‖∞ ≤ 1 if there is a sequence (fn)n∈IN in A converging to f such that
‖Γ(fn)‖∞ ≤ 1 for every n. The following corollary to Proposition 2.3 is immediate.

Corollary 2.5. Let A be such that, for every f ∈ A and λ ∈ IR, λf ∈ A,
E(eλf ) <∞. Assume that for some C > 0 and every f ∈ A,

Ent(ef ) ≤ C

2
E

(
Γ(f) ef

)
.
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Then, whenever F is such that ‖Γ(f)‖∞ ≤ 1, we have E(|F |) <∞ and

µ
(
F ≥ E(F ) + r

)
≤ e−r2/2C

for every r ≥ 0.

In case of a local gradient operator Γ(f) = |∇f |2 (2.3) on a metric space X, d)
satisfying the chain rule formula (2.5), a logarithmic Sobolev inequality of the type

Ent(f2) ≤ 2C E
(
|∇f |2

)
is actually equivalent to the logarithmic Sobolev inequality

Ent(ef ) ≤ C

2
E

(
|∇f |2ef ) (2.24)

of Corollary 2.5 (on some appropriate class of functions A stable by the operations
required for this equivalence to hold). As we will see, this is no more true for non-
local gradients. Even in case of a local gradient, it may also happen that (2.20) holds
for some class of functions for which the classical logarithmic Sobolev inequality is
not satisfied. In the next statement, we do not specify the stability properties on
A.

Corollary 2.6. Assume that for some C > 0 and all f in A

Ent(f2) ≤ 2C E
(
|∇f |2

)
.

Then, whenever F is such that ‖∇F‖∞ ≤ 1, we have E(|F |) < ∞ and, for every
r ≥ 0,

µ
(
F ≥ E(F ) + r

)
≤ e−r2/2C .

Together with (1.28), for every set A with µ(A) > 0,

µ(Ar) ≥ 1− e−µ(A)2r2/2C (2.25)

for every r ≥ 0.
Let us consider, for example, in Corollary 2.6, the Gaussian measure γ on IRn.

The logarithmic Sobolev inequality (2.15) holds for all almost everywhere differen-
tiable functions with gradients in L2(γ). Let A be the class of bounded Lipschitz
functions on IRn. Let F be a Lipschitz function on IRn. For any n ∈ IN, set
Fn = max(−n,min(F, n)). Then Fn is bounded Lipschitz and converges almost ev-
erywhere to F . Moreover, if ‖F‖Lip ≤ 1, ‖Fn‖Lip ≤ 1 for every n. By Rademacher’s
theorem, Fn is almost everywhere differentiable with |∇Fn| ≤ 1 almost everywhere.
Therefore, as an application of Corollary 2.6, we thus recover that for any Lipschitz
F with ‖F‖Lip ≤ 1,

γ
(
F ≥ Eγ(F ) + r

)
≤ e−r2/2, r ≥ 0,
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which is the concentration property (1.22). In particular, the optimal constant
in the exponent has been preserved throughout this procedure. We thus see how
a logarithmic Sobolev inequality always determines a Gaussian concentration of
isoperimetric nature.

The previous comment applies exactly similarly for the class of Boltzmann
measures investigated in Theorem 1.1 (see also (2.17)). Moreover, the approximation
procedure just described may be performed similarly for generalized gradients, on
manifolds for example. Similarly, a cylindrical approximation would yield (1.25) for
an infinite dimensional Gaussian measure from the Gaussian logarithmic Sobolev
inequality. (1.25) would also follow from the logarithmic Sobolev inequality for
infinite dimensional Gaussian measures, although the extension scheme is much
simpler at the level of concentration inequalities.

We present next an application in a non-local setting following [A-S]. Recall
the “gradient” (2.12) for a function f on X = {−1,+1}ZZd

. Let µ be a Gibbs state
on X corresponding to a finite range potential J . It was shown by D. Stroock
and B. Zegarlinski [S-Z] that the Dobrushin-Shlosman mixing condition ensures a
logarithmic Sobolev inequality for µ

Entµ(f2) ≤ 2C E
(
|Df |2

)
for some C > 0. Assume moreover that J is shift-invariant. Let ψ be a continuous
function on X for which Eµ(ψ) = 0 and

β =
∑

k∈ZZd

‖∂kψ‖∞ <∞.

Let finally (ak)k∈ZZd be a sequence of real numbers with

α2 =
∑

k∈ZZd

a2
k <∞.

For Sj the natural shift on ZZd (defined by Sj(ωk) = ωj+k for all k), consider then
a function F of the form

F =
∑

j∈ZZd

ajψ ◦ Sj .

Such a function is actually defined as the limit in quadratic mean of the partial
sums. As such, it is easily seen that

|||F |||∞ ≤ αβ.

The preceding results (Corollary 2.4) apply to yield concentration and integrability
properties of such functions F . In particular, for every r ≥ 0,

µ
(
F ≥ Eµ(F ) + r

)
≤ e−r2/4Cα2β2

.

These results are thus very similar to the ones one gets in the non-interacting case
(that is when µ is a product measure on {−1,+1}ZZd

).
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Before turning to variations of the previous basic argument to non-Gaussian
tails in the next section, we present a recent result of S. Bobkov and F. Götze [B-G]
which bounds, in this context, the Laplace transform of a function f in terms of
some integral of its gradient. Up to numerical constants, this is an improvement
upon the preceding statements. The proof however relies on the same ideas.

Let us consider, as in Corollary 2.5, an operator Γ on some class A in L1(µ)
such that Γ(λf) = λ2Γ(f) ≥ 0 for every f ∈ A and λ ∈ IR.

Theorem 2.7. Let A be such that, for every f ∈ A and λ ∈ IR (or only λ ∈
[−1,+1]), λf ∈ A, E(eλf ) <∞ and E(eλΓ(f)) <∞. Assume that for every f ∈ A,

Ent(ef ) ≤ 1
2

E
(
Γ(f) ef

)
.

Then, for every f ∈ A
E(ef−E(f)) ≤ E

(
eΓ(f)

)
.

Proof. Let, for every f , g = Γ(f)− log E(eΓ(f)), so that E(eg) = 1. By (2.13),

E
(
Γ(f) ef

)
− E(ef ) log E

(
eΓ(f)

)
≤ Ent(ef ).

Together with the hypothesis E(Γ(f)ef ) ≥ 2 Ent(ef ), we get, for every f in A,

Ent(ef ) ≤ E(ef ) log E
(
eΓ(f)

)
.

Apply this inequality to λf for every λ. With the notation of the proof of Proposition
2.3, for every λ ∈ IR,

K ′(λ) ≤ 1
λ2

ψ(λ2)

where ψ(λ) = log E(eλΓ(f)). Now, ψ is non-negative, non-decreasing and convex,
and ψ(0) = 0. Therefore ψ(λ)/λ is non-decreasing in λ ≥ 0. Recalling that K(0) =
E(F ), it follows that

K(1) ≤ K(0) +
∫ 1

0

1
λ2

ψ(λ2) dλ ≤ E(F ) + ψ(1)

which is the result. Theorem 2.7 is established.

2.4 Entropy-energy inequalities and non-Gaussian tails

The preceding basic argument admits a number of variations, some of which will be
developed in the next chapters. We investigate first the case of defective logarithmic
Sobolev inequality.

A defective logarithmic Sobolev inequality is of the type

Entµ(f2) ≤ aEµ(f2) + 2E(f), f ∈ A (2.26)
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where a ≥ 0. Of course, if a = 0, this is just a classical logarithmic Sobolev
inequality. We would like to know if the preceding concentration inequalities of
Gaussian type still hold under such a defective inequality, and whether the latter
again determines the best exponential integrability in (2.23). According to the
discussion in the preceding section, it will be enough to deal with the setting of
Proposition 2.3.

Proposition 2.8. In the framework of Proposition 2.3, assume that for some a > 0
and for every f ∈ A,

Ent(ef ) ≤ aE(ef ) +
1
2
N(f)2 E(ef ).

Then, whenever N(F ) ≤ 1,

E
(
eαF 2)

<∞

for every α < 1
2 .

Proof. Working first with a sequence (Fn)n∈IN in A such that Fn → F , we may and
do assume that F ∈ A. Apply the defective logarithmic Sobolev inequality to λF
for every λ ∈ IR. Letting as before H(λ) = E(eλF ), we get

λH ′(λ)−H(λ) logH(λ) ≤
(
a+

λ2

2

)
H(λ).

If K(λ) = 1
λ logH(λ), we see that, for every λ > 0,

K ′(λ) ≤ a

λ2
+

1
2
.

Hence, for every λ ≥ 1,

K(λ) = K(1) +
∫ λ

1

K ′(u)du ≤ K(1) + a+
λ

2
.

It follows that, for λ ≥ 1,

E(eλF ) ≤
(
E(eF )

)λeaλ+λ2/2. (2.27)

Let us choose first λ = 2. Then E(e2F ) ≤ AE(eF )2 with A = e2(a+1). Let m be
large enough so that µ(|F | ≥ m) ≤ 1/4A. Then µ(eF ≥ em) < 1/4A and

E(eF ) ≤ em + µ(eF ≥ em)1/2
(
E(e2F )

)1/2

≤ em +
√
Aµ(eF ≥ em)1/2E(eF )

≤ 2 em.

Coming back to (2.27), for every λ ≥ 1,

E(eλF ) ≤ 2λe(m+a)λ+λ2/2 = eBλ+λ2/2
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where B = m+ a+ log 2. By Chebyshev’s inequality,

µ(F ≥ r) ≤ eBr−r2/2

for every r ≥ A + 1. Together with the same inequality for −F , the conclusion
follows from the proof of Proposition 1.2. Proposition 2.8 is therefore established.

Inequality (2.25) actually fits into the more general framework of inequalities
between entropy and energy introduced in [Ba1]. Given a non-negative function Ψ
on IR+, let us say that we have an entropy-energy inequality whenever for all f in
A with Eµ(f2) = 1,

Entµ(f2) ≤ Ψ
(
E(f)

)
. (2.28)

By homogeneity, logarithmic Sobolev inequalities correspond to linear functions Ψ
whereas defective logarithmic Sobolev inequalities correspond to affine Ψ’s. Assume
Ψ to be concave. Then (2.28) is equivalent to a family of defective logarithmic
Sobolev inequalities

Entµ(f2) ≤ εEµ(f2) + C(ε)E(f), ε ≥ 0. (2.29)

It is plain that, in the various settings studied above, the Laplace transform approach
may be adapted to such an entropy-energy function. Depending upon to the rate at
which Ψ increases to infinity, or, equivalently upon the behavior of C(ε) as ε → 0,
various integrability results on Lipschitz functions may be obtained. It may even
happen that Lipschitz functions are bounded if Ψ does not increase too quickly.

On the pattern of Proposition 2.3, we describe a general result that yields
a variety of Laplace transform and tail inequalities for Lipschitz functions under
some entropy-energy inequality. An alternate description of the next statement is
presented in the paper [G-R] on the basis of (2.29). As will be studied in Parts 4 and
5, the form of the entropy-energy inequalities of Proposition 2.9 below is adapted
to the concept of modified logarithmic Sobolev inequalities which often arise when
the chain rule formula for the energy fails.

Let A be a class of functions in L1(µ). For every f in A, let N(f) ≥ 0.
According to the argument developed for Proposition 2.3, the proof of the following
statement is straighforward.

Proposition 2.9. Let A be such that, for every f ∈ A and λ ∈ IR, λf ∈ A,
E(eλf ) <∞ and N(λf) = |λ|N(f). Assume there is a measurable function B(λ) ≥
0 on IR+ such that for every f ∈ A with N(f) ≤ λ,

Ent(ef ) ≤ B(λ) E(ef ).

Then, for every F in A such that N(F ) ≤ 1,

E(eλF ) ≤ exp
(
λE(F ) + λ

∫ λ

0

B(s)
s2

ds

)
for every λ ∈ IR.
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By homogeneity ofN , Proposition 2.3 corresponds to the choice ofB(λ) = λ2/2,
λ ≥ 0.

The various examples discussed on the basis of Proposition 2.3 may also be
reconsidered in this context. Suppose, for example, that, for some generalized mod-
ulus of gradient |∇f |, the entropy-energy inequality (2.28) holds. Then, by the
change of variable formula, for every f with ‖∇f‖∞ ≤ λ,

Ent(ef ) ≤ Ψ
(λ2

4

)
E(ef ).

Now, depending upon how B(λ) grows as λ goes to infinity, Proposition 2.9 will
describe various tail estimates of Lipschitz functions. Rather than to discuss this in
detail, let us briefly examine three specific behaviors of B(λ).

Corollary 2.10. In the setting of Proposition 2.9, if∫ ∞ B(λ)
λ2

dλ <∞, (2.30)

then there exists C > 0 such that ‖F‖∞ ≤ C for every F such that N(F ) ≤ 1.

Proof. It is an easy matter to see from (2.30) and Proposition 2.9, that

E(eλ|F |) ≤ eCλ

for some C > 0 and all λ ≥ 0 large enough. By Chebyshev’s inequality, this implies
that

µ
(
|F | ≥ 2C

)
≤ e−Cλ → 0

as λ → ∞. Corollary 2.10 is proved. Actually, if N is the Lipschitz norm on a
metric space (X, d), the diameter of X will be finite (less than or equal to 2C), see
[Le2].

In the second example, we consider a Gaussian behavior only for the small
values of λ. The statement describes the typical tail of the exponential distribution
(cf. Section 4.1).

Corollary 2.11. In the setting of Proposition 2.9, assume that for some c > 0 and
λ0 > 0,

B(λ) ≤ cλ2 (2.31)

for every 0 ≤ λ ≤ λ0. Then, if F is such that N(F ) ≤ 1, we have E(|F |) <∞ and,
for every r ≥ 0,

µ
(
F ≥ E(F ) + r

)
≤ exp

(
−min

(
λ0r

2
,
r2

4c

))
.

Proof. Arguing as next to Proposition 2.3, we may assume that F ∈ A. With the
notation of the proof of Proposition 2.3, for every 0 ≤ λ ≤ λ0,

K ′(λ) ≤ cλ2.
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Therefore K(λ) ≤ K(0) + cλ so that

E(eλF ) ≤ eλE(F )+cλ2

for every 0 ≤ λ ≤ λ0 thus. By Chebyshev’s inequality,

µ
(
F ≥ E(F ) + r) ≤ e−λr+cλ2

.

If r ≤ 2cλ0, choose λ = r
2c while if r ≤ 2cλ0, we simply take λ = λ0. The conclusion

easily follows.
A third example of interest concerns Poisson tails on which we will come back

in Part 5.

Corollary 2.12. In the setting of Proposition 2.9, assume that for some c, d > 0,

B(λ) ≤ cλ2 edλ (2.32)

for every λ ≥ 0. Then, if F is such that N(F ) ≤ 1, we have E(|F |) < ∞ and, for
every r ≥ 0,

µ
(
F ≥ E(F ) + r

)
≤ exp

(
− r

4d
log

(
1 +

dr

2c

))
.

In particular, E(eα|F | log+ |F |) <∞ for sufficiently small α > 0.

Proof. It is similar to the preceding ones. We have

K ′(λ) ≤ c edλ, λ ≥ 0.

Hence, K(λ) ≤ K(0) + c
d (edλ − 1), that is

E(eλF ) ≤ eλE(F )+ cλ
d (edλ−1), λ ≥ 0.

By Chebyschev’s inequality, for every r ≥ 0 and λ ≥ 0,

µ
(
F ≥ E(F ) + r

)
≤ e−λr+ cλ

d (edλ−1).

When r ≤ 4c
d (the constants are not sharp), choose λ = r

4c so that

e−λr+ cλ
d (edλ−1) ≤ e−λr+2cλ2

= e−
r2
8c ,

while, when r ≥ 4c
d , choose λ = 1

d log(dr
2c ) for which

e−λr+ cλ
d (edλ−1) ≤ e−

r
2d log( dr

2c ).

These two estimates together yield the inequality of Corollary 2.11. The proof is
complete.
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The inequality of Corollary 2.12 describes the classic Gaussian tail behavior for
the small values of r and the Poisson behavior for the large values of r (with respect
to the ratio c

d ). The constants have no reason to be sharp.
We refer to the recent work [G-R] for further examples in this line of investiga-

tion.

2.5 Poincaré inequalities and concentration

In the last section, we apply the preceding functional approach in case of a spectral
gap inequality. As we have seen (Proposition 2.1), spectral gap inequalities are
usually weaker than logarithmic Sobolev inequalities, and, as a result, they only
imply exponential integrability of Lipschitz functions. The result goes back to M.
Gromov and V. Milman [G-M] (on a compact Riemannian manifold but with an
argument that works similarly in a more general setting; see also [Br]). It has been
investigated recently in [A-M-S] and [A-S] using moment bounds, and in [Sc] using
a differential inequality on Laplace transforms similar to Herbst’s argument. We
follow here the approach of S. Aida and D. Stroock [A-S].

Assume that for some energy function E on a class A,

Var(f) ≤ CE(f).

Apply this inequality to ef/2. If E is the Dirichlet form associated to a symmetric
Markov semigroup (2.7), we can apply (2.8) to get

E(ef )− E(ef/2)2 ≤ C

2
|||f |||2∞ E(ef ).

In case E is the energy of a local gradient satisfying the chain rule formula, the
constant 1

2 is improved to 1
4 . The following statement thus summarizes the various

instances which may be considered.
Let again A be a subset of L1(µ). For every f ∈ A, let N(f) ≥ 0. We agree

that N(f) ≤ 1 for some function f on X if f is the limit of a sequence of functions
(fn)n∈IN in A with N(fn) ≤ 1 for every n.

Proposition 2.13. Let A be such that, for every f ∈ A and every λ ∈ IR, E(eλf ) <
∞ and N(λf) = |λ|N(f). Assume that for some C > 0 and every f ∈ A,

E(ef )− E(ef/2)2 ≤ CN(f)2E(ef ). (2.33)

Then, for every F such that N(F ) ≤ 1, E(|F |) <∞ and

E(eλ(F−E(F ))) ≤
∞∏

k=0

(
1

1− Cλ2

4k

)2k

(2.34)

for all |λ| < 1/
√
C. In particular,

E(eα|F |) <∞
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for every α < 1/
√
C.

Proof. Assume first F ∈ A with N(F ) ≤ 1. Set H(λ) = E(eλF ), λ ≥ 0. Applying
(2.33) to λF yields

H(λ)−H
(λ

2

)2

≤ Cλ2H(λ).

Hence, for every λ < 1/
√
C,

H(λ) ≤ 1
1− Cλ2

H
(λ

2

)2

.

Applying the same inequality for λ/2 and iterating, yields, after n steps,

H(λ) ≤
n−1∏
k=0

(
1

1− Cλ2

4k

)2k

H
( λ

2n

)2n

.

Now H(λ/α)α → eλE(F ) as α → ∞. Hence, (2.34) is satisfied for this F which we
assumed in A. In particular, if 0 < λ0 < 1/

√
C, and if

K0 = K0(λ0) =
∞∏

k=0

(
1

1− Cλ2
0

4k

)2k

<∞,

then
µ
(∣∣F − E(F )

∣∣ ≥ r
)
≤ 2K0 e−λ0r (2.35)

for every r ≥ 0. Applying (2.35) to a sequence (Fn)n∈IN converging to F with
N(Fn) ≤ 1, and arguing as next to Proposition 2.3 immediately yields the full
conclusion of the Proposition. The proof is thus complete.

The infinite product (2.34) has been estimated in [B-L1] by

1 +
√
C

1−
√
C
.

The example of the exponential measure investigated in Section 4.1 below shows
that the condition |λ| < 1/

√
C in Proposition 2.13 is optimal. Namely, let ν be the

measure with density 1
2 e−|x| with respect to Lebesgue measure on IR. Then, by

Lemma 4.1,
Varν(f) ≤ 4 Eν

(
f ′

2)
for every smooth f . Therefore, if N(f) = ‖f ′‖∞, (2.33) holds with C = 1, which is
optimal as shown by the case f(x) = x.

Proposition 2.13 actually strengthens the early observation by R. Brooks [Br].
Namely, if M is a complete Riemannian manifold with finite volume V (M), and if
V (x, r) is the volume of the ball B(x, r) with center x and radius r ≥ 0, then M
has spectral gap zero as soon as

lim inf
r→∞

−1
r

log
[
V (M)− V (x, r)

]
= 0 (2.36)

for some (all) x in M .
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3. DEVIATION INEQUALITIES FOR PRODUCT MEASURES

In the recent years, M. Talagrand has developed striking new methods for inves-
tigating the concentration of measure phenomenon for product measures. These
ideas led to significant progress in an number of various areas such as probability
in Banach spaces, empirical processes, geometric probability, statistical mechanics...
The interested reader will find in the important contribution [Ta6] a complete ac-
count of these methods and results (see also [Ta7]). In this chapter, we indicate an
alternate approach to some of Talagrand’s inequalities based on logarithmic Sobolev
inequalities and the methods of Chapter 2. The main point is that while concen-
tration inequalities do not necessarily tensorize, the results follow from stronger
logarithmic Sobolev inequalities which, as we know, do tensorize. In particular, we
emphasize dimension free results.

The main deviation inequalities for convex functions form the core of Section
3.2, introduced by the discrete concentration property with respect to the Hamming
metric in 3.1. Applications to sharp bounds on empirical processes conclude the
chapter.

While it is uncertain whether this approach could recover Talagrand’s abstract
principles, the deviation inequalities themselves follow rather easily from it. On the
abstract inequalities themselves, let us mention here the recent alternate approach
by K. Marton [Mar1], [Mar2] and A. Dembo [De] (see also [D-Z]) based on informa-
tion inequalities and coupling in which the concept of entropy also plays a crucial
role. Hypercontraction methods were already used in [Kw-S] to study integrability
of norms of sums of independent vector valued random variables. The work by K.
Marton also involves Markov chains. Her arguments have been brought into rela-
tion recently with the logarithmic Sobolev inequality approach, and her results have
been extended to larger classes of Markov chains, by P.-M. Samson [Sa]. We review
some of these ideas in Section 3.3.

3.1 Concentration with respect to the Hamming metric

A first result on concentration in product spaces is the following. Let (Xi,Bi, µi),
i = 1, . . . , n, be are arbitrary probability space, and let P = µ1 ⊗ · · · ⊗ µn be a
product measure on the product space X = X1 × · · · ×Xn. A generic point in X is
denoted by x = (x1, . . . , xn). Then, for every F on X such that |F (x)− F (y)| ≤ 1
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whenever x = (x1, . . . , xn) and y = (y1, . . . , yn) only differ by one coordinate,

P
(
F ≥ EP (F ) + r

)
≤ e−r2/2n. (3.1)

This inequality can be established by rather elementary martingale arguments [Mau1],
[M-S], and was important in the early developments of concentration in product
spaces (cf. [Ta6]). Our first aim will be to realize that it is also an elementary
consequence of the logarithmic Sobolev approach developed in Section 2.3. We owe
this observation to S. Kwapień.

Let f on the product space X. Recall we define fi on Xi, i = 1, . . . , n, by
fi(xi) = f(x1, . . . , xi−1, xi, xi+1, . . . , xn) with x1, . . . , xi−1, xi+1, . . . , xn fixed.

Proposition 3.1. For every f on the product space X,

EntP (ef ) ≤ 1
2

n∑
i=1

EP

(∫ ∫ (
fi(xi)− fi(yi)

)2efi(xi)dµi(xi)dµi(yi)
)
.

Proof. The proof is elementary. We may assume f bounded. By the product
property of entropy, it is enough to deal with the case n = 1. By Jensen’s inequality,

EntP (ef ) ≤ EP (fef )− EP (ef )EP (f).

The right-hand-side of the latter may then be rewritten as

1
2

∫ ∫ (
f(x)− f(y)

)(
ef(x) − ef(y)

)
dP (x)dP (y).

Since
(u− v)(eu − ev) ≤ 1

2 (u− v)2(eu + ev), u, v ∈ IR,

the conclusion easily follows.

As a consequence of Proposition 3.1, if

N(f) = sup
x∈X

(∫ n∑
i=1

(
fi(xi)− fi(yi)

)2
dµi(yi)

)1/2

,

then
EntP (ef ) ≤ 1

2
N(f)2EP (ef ).

Therefore, applying Proposition 2.3, if F is a Lipschitz function on X such that

|F (x)− F (y)| ≤ Card{1 ≤ i ≤ n;xi 6= yi},

then N(F ) ≤
√
n from which (3.1) follows.

This basic example actually indicates the route we will follow next, in particular
with convex functions. Before turning to this case, let us mention that Proposition
3.1 has a clear analogue for variance that states that

VarP (f) ≤ 1
2

n∑
i=1

EP

(∫ ∫ (
fi(xi)− fi(yi)

)2
dµi(xi)dµi(yi)

)
. (3.2)
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3.2 Deviation inequalities for convex functions

One of the first important results underlying M. Talagrand’s developments is the
following inequality for arbitrary product measures [Ta1], [J-S] (see also [Mau2]).
Let F be a convex Lipschitz function on IRn with ‖F‖Lip ≤ 1. Let µi, i = 1, . . . , n,
be probability measures on [0, 1] and denote by P the product probability measure
µ1 ⊗ · · · ⊗ µn. Then, for every t ≥ 0,

P (F ≥ m+ t) ≤ 2 e−t2/4 (3.3)

where m is a median of F for P . As in the Gaussian case (1.20), this bound is
dimension free, a feature of fundamental importance in this investigation. However,
contrary to the Gaussian case, it is known that the convexity assumption on F is
essential (cf. [L-T], p. 25). The proof of (3.3) [in the preceding references] is based
on the inequality ∫

e
1
4 d(·,Conv(A))2dP ≤ 1

P (A)

(where d is the Euclidean distance) which is established by geometric arguments
and a simple induction on the number of coordinates. It has since been embedded
in an abstract framework which M. Talagrand calls convex hull approximation (cf.
[Ta6], [Ta7]). M. Talagrand also introduced the concept of approximation by a finite
number of points [Ta2], [Ta6], [Ta7]. These powerful abstract tools have been used
in particular to study sharp deviations inequalities for large classes of functions (cf.
Section 3.4).

The aim of this section is to provide a simple proof of inequality (3.3) based on
the functional inequalities presented in Part 2. The point is that while the deviation
inequality (3.3) has no reason to be tensorizable, it is actually a consequence of a
logarithmic Sobolev inequality, which only needs to be proved in dimension one.
The main result in this direction is the following statement. Let thus µ1, . . . , µn

be arbitrary probability measures on [0, 1] and let P be the product probability
P = µ1 ⊗ · · · ⊗ µn. We say that a function f on IRn is separately convex if it is
convex in each coordinate. Recall that a convex function on IR is continuous and
almost everywhere differentiable. We denote by ∇f the usual gradient of f on IRn

and by |∇f | its Euclidean length.

Theorem 3.2. Let f be a function on IRn such that log f2 is separately convex
(f2 > 0). Then, for any product probability P on [0, 1]n,

EntP (f2) ≤ 4 EP

(
|∇f |2

)
Notice that Theorem 3.2 amounts to saying that for every separately convex

function f on IRn,
EntP (ef ) ≤ EP

(
|∇f |2ef

)
. (3.4)

Proof. By a simple approximation, it is enough to deal with sufficiently smooth
functions. We establish a somewhat stronger result, namely that for any product
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probability P on IRn, and any smooth separately convex function f ,

EntP (ef ) ≤
∫ ∫ n∑

i=1

(xi − yi)2(∂if)2(x) ef(x)dP (x)dP (y). (3.5)

By Proposition 3.1, it is enough to show that for every i = 1, . . . , n,

1
2

∫ ∫ (
fi(xi)− fi(yi)

)2efi(xi)dµi(xi)dµi(yi)

≤
∫ ∫

(xi − yi)2fi
′(xi)2 efi(xi)dµi(xi)dµi(yi).

We may thus assume that n = 1. Now,

1
2

∫ ∫ (
f(x)− f(y)

)2ef(x)dµ(x)dµ(y)

≤
∫ ∫

{f(x)≥f(y)}

(
f(x)− f(y)

)2ef(x)dµ(x)dµ(y).

Since f is convex, for all x, y ∈ IR,

f(x)− f(y) ≤ (x− y)f ′(x).

The proof is easily completed. Theorem 3.2 is established.

It should be emphasized that inequality (3.5), established in the preceding proof
for arbitrary product measures on IRn is actually a stronger version of Theorem 3.2
which is particulary used for norms of sums of independent random vectors (Section
3.4). This inequality puts forward the generalized gradient (in dimension one)

∣∣∇f(x)
∣∣ =

(∫
(x− y)2f ′(y)2dµ(y)

)1/2

of statistical interest.
With a little more effort, the constant of the logarithmic Sobolev inequality of

Theorem 3.2 may be improved to 2 (which is probably the optimal constant). We
need simply improve the estimate of the entropy in dimension one. To this end,
recall the variational caracterization of entropy ([H-S]) as

Ent(ef ) = inf
c>0

EP

(
fef − (log c+ 1) ef + c

)
. (3.6)

Let P be a probability measure concentrated on [0, 1]. Let f be (smooth and) convex
on IR. Let then y ∈ [0, 1] be a point at which f is minimum and take c = ef(y) (in
(3.6)). For every x ∈ [0, 1],

f(x) ef(x) − (log c+ 1) ef(x) + c =
[
f(x)− f(y)

]
ef(x) −

[
ef(x) − ef(y)

]
=

[(
f(x)− f(y)

)
− 1 + e−(f(x)−f(y))

]
ef(x)

≤ 1
2

[
f(x)− f(y)

]2ef(x)
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since u− 1 + e−u ≤ u2

2 for every u ≥ 0. Hence, by convexity, and since x, y ∈ [0, 1],

f(x) ef(x) − (log c+ 1) ef(x) + c ≤ 1
2
f ′(x)2ef(x)

from which we deduce, together with (3.6), that

EntP (ef ) ≤ 1
2

EP

(
f ′

2ef
)
.

We may now apply the results of Section 2.3 to get Gaussian deviation in-
equalities for convex Lipschitz functions with respect to product measures. (On the
discrete cube, see also [Bob1]).

Corollary 3.3. Let F be a separately convex Lipschitz function on IRn with Lip-
schitz constant ‖F‖Lip ≤ 1. Then, for every product probability P on [0, 1]n, and
every r ≥ 0,

P
(
F ≥ EP (F ) + r

)
≤ e−r2/2.

This inequality is the analogue of (3.3) with the mean instead of the (a) median
m and the improved bound e−t2/2.

The proof of Corollary 3.3 is a direct application of Corollary 2.5. Only some
regularization procedure has to be made precise. Replacing F by a convolution with
a Gaussian kernel, we may actually suppose that |∇F | ≤ 1 everywhere. Then, the
argument is entirely similar to the one detailed, for example in the Gaussian case
(after Corollary 2.6). The result follows by approximation.

M. Talagrand [Ta1] (see also [J-S], [Mau2], [Ta6], [Ta7]) actually showed devi-
ation inequalities under the level m, that is an inequality for −F (F convex). It
yields a concentration result of the type

P
(
|F −m| ≥ r

)
≤ 4 e−r2/4, r ≥ 0. (3.7)

It does not seem that such a deviation inequality for −F , F convex, follows from
the preceding approach (since e−F need not be convex). At a weak level though, we
may use Poincaré inequalities. Indeed, we may first state the analogue of Theorem
3.2 for variance, whose proof is similar. This result was first mentioned in [Bob2].

Proposition 3.4. Let f be a separately convex function on IRn. Then, for any
product probability P on [0, 1]n,

VarP (f) ≤ EP

(
|∇f |2).

Therefore, for any separately convex function F with ‖F‖Lip ≤ 1,

P
(∣∣F − EP (F )

∣∣ ≥ r
)
≤ 1
r2

for every r ≥ 0. As seems to be indicated by the results in the next section, the con-
vexity in each coordinate might not be enough to ensure deviation under the mean
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or the median. Using alternate methods, we will see indeed that sharp deviation in-
equalities do hold for concave functions, even under less stringent assumptions than
Lipschitz. Although deviation inequalities above the mean or the median are the
useful inequalities in probability and its applications, concentration inequalities are
sometimes important issues (e.g. in geometry of Banach spaces [M-S], percolation,
spin glasses... [Ta6]).

Corollary 3.3 of course extends to probability measures µi supported on [ai, bi],
i = 1, . . . , n, (following for example (3.5) of the proof of Theorem 3.2, or by scaling).
In particular, if P is a product measure on [a, b]n and if F is separately convex on
IRn with Lipschitz constant less than or equal to 1, for every r ≥ 0,

P
(
F ≥ EP (F ) + r

)
≤ e−r2/2(b−a)2 .

Let us also recall one typical application of these deviation inequalities to norms
of random series. Let ηi, i = 1, . . . , n, be independent random variables on some
probability space (Ω,A, IP) with |ηi| ≤ 1 almost surely. Let vi, i = 1, . . . , n, be
vectors in some arbitrary Banach space E with norm ‖ · ‖. Then, for every r ≥ 0,

IP
(∥∥∥∥ n∑

i=1

ηivi

∥∥∥∥ ≥ IE
∥∥∥∥ n∑

i=1

ηivi

∥∥∥∥ + r

)
≤ e−r2/8σ2

where

σ2 = sup
‖ξ‖≤1

n∑
i=1

〈ξ, vi〉2.

This inequality is the analogue of the Gaussian deviation inequalities (1.8) and
(1.24). For the proof, simply consider F on IRn defined by

F (x) =
∥∥∥∥ n∑

i=1

xivi

∥∥∥∥, x = (x1, . . . , xn) ∈ IRn.

Then, by duality, for x, y ∈ IRn,

∣∣F (x)− F (y)
∣∣ ≤ ∥∥∥∥ n∑

i=1

(xi − yi)vi

∥∥∥∥ = sup
‖ξ‖≤1

n∑
i=1

(xi − yi)〈ξ, vi〉 ≤ σ|x− y|,

where the last step is obtained from the Cauchy-Schwarz inequality.

3.3 Information inequalities and concentration

Recently, K. Marton [Mar1], [Mar2] (see also [Mar3]) studied the preceding con-
centration inequalities in the context of contracting Markov chains. Her approach
is based on information inequalities and coupling ideas. Specifically, she is using
convexity of entropy together with Pinsker’s inequality [Pi]

‖µ− ν‖T.V. ≤

√
1
2

Entµ

(dν
dµ

)
(3.8)



48

where the probability measure ν is assumed to be absolutely continuous with respect
to µ with density dν

dµ . That such an inequality entails concentration properties may
be shown in the following way. Given a separable metric space (X, d) and two Borel
probability measures µ and ν on X, set

W1(µ, ν) = inf
∫ ∫

d(x, y)dπ(x, y)

where the infimum runs over all probability measures π on the product space X×X
with marginals µ and ν. Consider now the inequality

W1(µ, ν) ≤

√
2C Entµ

(dν
dµ

)
(3.9)

for some C > 0. By the coupling characterization of the total variation distance,
Pinsker’s inequality corresponds to the trivial distance on X (and to C = 1

4 ). Let
then A and B with µ(A), µ(B) > 0, and consider the conditional probabilities
µA = µ(·|A) and µB = µ(·|B). By the triangle inequality and (3.9),

W1(µA, µB) ≤W1(µ, µA) +W1(µ, µB)

≤

√
2C Entµ

(dµA

dµ

)
+

√
2C Entµ

(dµB

dµ

)
=

√
2C log

1
µ(A)

+

√
2C log

1
µ(B)

.

(3.10)

Now, all measures with marginals µA and µB must be supported on A×B, so that,
by the definition of W1,

W1(µA, µB) ≥ d(A,B) = inf
{
d(x, y);x ∈ A, y ∈ B

}
.

Then (3.10) implies a concentration inequality. Fix A with, say, µ(A) ≥ 1
2 and take

B the complement of Ar for r ≥ 0. Then d(A,B) ≥ r so that

r ≤

√
2C log

1
µ(A)

+

√
2C log

1
1− µ(Ar)

≤
√

2C log 2 +

√
2C log

1
1− µ(Ar)

.

Hence, whenever r ≥ 2
√

2C log 2 for example,

1− µ(Ar) ≤ e−r2/8C .

Now, the product property of entropy allows us to tensorize Pinsker-type in-
equalities to produce concentration in product spaces. For example, this simple
scheme may be used to recover, even with sharp constants, the concentration (3.1)
with respect to the Hamming metric. Indeed, if we let d be the Hamming metric
on the product space X = X1 × · · · ×Xn, starting with (3.8), convexity of entropy
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shows that for any probability measure Q on X absolutely continuous with respect
to the product measure P = µ1 ⊗ · · · ⊗ µn,

W1(P,Q) ≤
√
n

2
EntP

(dQ
dP

)
from which (3.1) follows according to the preceding argument.

It might be worthwhile noting that S. Bobkov and F. Götze [B-G] recently
proved that an inequality such as (3.9) holding for all measures ν absolutely conti-
nous with respect to µ is actually equivalent to the Gaussian bound

Eµ(eλF ) ≤ eλEµ(F )+Cλ2/2

on the Lipschitz functions F on (X, d) with ‖F‖Lip ≤ 1. This observation connects
the information theory approach to the logarithmic Sobolev approach emphasized
in this work. It also shows that a logarithmic Sobolev inequality in this case is a
stronger statement than a Pinsker-type inequality.

For the Gaussian measure γ on IRn equipped with the Euclidean distance d2,
M. Talagrand [Ta9] proved that, not only (3.9) holds but

W2(γ, ν) ≤

√
2 Entγ

(dν
dγ

)
(3.11)

where now

W2(γ, ν) = inf
(∫ ∫

d2(x, y)2dπ(x, y)
)1/2

.

He further investigated in this paper the case of the exponential distribution to
recover its concentration properties (cf. Section 4.1). Recently, it was proved in
[O-V] that (3.11) may be shown to follow from the Gaussian logarithmic Sobolev
inequality (2.15).

In order to cover with these methods the inequalities for convex functions of
Section 3.2, K. Marton [Mar2] introduced another metric on measures in the form
of

d2(µ, ν) = Eµ

((
1− dν

dµ

)2

+

)1/2

.

This distance is analogous to the variational distance and one can actually show
that

d2(µ, ν) = inf
(∫

IP
(
ξ 6= y | ζ = y

)2
dν(y)

)1/2

where the infimum is over all couples of random variables (ξ, ζ) such that ξ has
distribution µ and ζ distribution ν. Note that d2(µ, ν) is not symmetric in µ, ν.
Together with the appropriate information inequality on d2 and convexity of relative
entropy, she proved in this way the concentration inequalities for convex functions
of the preceding section. Her arguments has been further developed by A. Dembo
[De] to recover in this way most of M. Talagrand’s abstract inequalities.
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But K. Marton’s approach was initially devoted to some non-product Markov
chains for which it appears to be a powerful tool. More precisely, let P be a Markov
chain on [0, 1]n with transition kernels Ki, i = 1, . . . , n, that is

dP (x1, . . . , xn) = Kn(xn−1, dxn) · · ·K2(x1, dx2)K1(dx1).

Assume that, for some 0 ≤ a < 1, for every i = 1, . . . , n, and every x, y ∈ [0, 1],∥∥Ki(x, ·)−Ki(y, ·)
∥∥

T.V.
≤ a. (3.12)

The case a = 0 of course corresponds to independent kernels Ki. The main result
of [Mar2] (expressed on functions) is the following.

Theorem 3.5. Let P be a Markov chain on [0, 1]n satisfying (3.12) for some
0 ≤ a < 1. For every convex Lipschitz map F on IRn with ‖F‖Lip ≤ 1,

P
(
F ≥ EP (F ) + r

)
≤ e−(1−

√
a)2r2/4

for every r ≥ 0 and similarly for −F .

This result has been extended in [Mar4] and, independently in [Sa], to larger
classes of dependent processes. Moreover, in [Sa], P.-M. Samson brings into relation
the information approach with the logarithmic Sobolev approach. Let P and Q be
probability measures on IRn. Following the one-dimensional definition of d2, set

d2(P,Q) = inf sup
α

∫ ∫ n∑
i=1

αi(y)Ixi 6=yi
dπ(x, y)

where the infimum is over all probability measures π on IRn × IRn with marginals
P and Q and the supremum runs over all α = (α1, . . . , αn) where the αi’s are
non-negative functions on IRn such that∫ n∑

i=1

α2
i (y)dQ(y) ≤ 1.

As shown by K. Marton, we have similarly a coupling description as

d2(P,Q) = inf
(∫ n∑

i=1

IP
(
ξi 6= yi | ζi = yi

)2
dQ(y)

)1/2

where the infimum runs over all random variables ξ = (ξ1, . . . , ξn) and ζ = (ζ1, . . . , ζn)
such that ξ has distribution P and ζ distribution Q.

Let now P denote the distribution of a sample X1, . . . , Xn of real random
variables. Following Marton’s techniques, for any Q absolutely continuous with
respect to P ,

max
(
d2(P,Q), d2(Q,P )

)
≤

√
2‖M‖EntP

(dQ
dP

)
(3.13)
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where ‖M‖ is the operator norm of a certain mixing matrix M that measures the
L2-dependence of the variables X1, . . . , Xn. Now, ‖M‖may be shown to be bounded
independently of the dimension in a number of interesting cases, including Doeblin
recurrent Markov chains and Φ-mixing processes (cf. [Mar4], [Sa]). (3.13) then
yields concentration inequalities for new classes of measures and processes.

Moreover, it is shown in [Sa] how (3.13) may be considered as a kind of dual
version of the logarithmic Sobolev inequalities for convex (and concave) functions of
Section 3.2 above. Let f be (smooth and) convex on [0, 1]n. By Jensen’s inequality,

EntP (ef )
EP (ef )

≤
∫
f(x)

ef(x)

EP (ef )
dP (x)−

∫
f(y)dP (y).

Let P f be the probability measure on [0, 1]n whose density with respect to P is
ef/EP (ef ). Let π be a probability measure on IRn × IRn with marginals P and P f .
Then,

EntP (ef )
EP (ef )

≤
∫ ∫ [

f(y)− f(x)
]
dπ(x, y).

Since f is convex, for every x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ [0, 1]n,

f(x)− f(y) ≤
n∑

i=1

|xi − yi|
∣∣∂if(x)

∣∣ ≤ n∑
i=1

∣∣∂if(x)
∣∣Ixi 6=yi .

As a consequence, for all probability measures π on IRn× IRn with marginals P and
P f ,

EntP (ef )
EP (ef )

≤
∫ ∫ n∑

i=1

∣∣∂if(x)
∣∣Ixi 6=yi

dπ(x, y).

According to the definition of d2(P, P f ), and by the Cauchy-Schwarz inequality,

EntP (ef )
EP (ef )

≤ d2(P, P f )
( n∑

i=1

∫ ∣∣∂if(x)
∣∣2dP f (x)

)1/2

. (3.14)

Since
dP f

dP
=

ef

EP (ef )

we get from (3.13) and (3.14) that

EntP (ef )
EP (ef )

≤ ‖M‖1/2

(
2

EntP (ef )
EP (ef )

)1/2(∫
|∇f |2 ef

EP (ef )
dP

)1/2

.

It follows that for every (smooth) convex function on [0, 1]n,

EntP (ef ) ≤ 2‖M‖EP

(
|∇f |2ef

)
(3.15)

which amounts to the inequality of Theorem 3.2.
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It is worthwhile noting that the same proof for a concave function f yields
instead of (3.15)

EntP (ef ) ≤ 2‖M‖EP

(
|∇f |2

)
EP (ef ). (3.16)

These observations clarify the discussion on separately convex or concave functions
in Section 3.2. In contrast to Theorem 3.2, the proof of these results fully uses the
convexity or concavity assumptions on f rather than only convexity in each coordi-
nate. Together with Herbst’s argument, these inequalities imply the conclusions of
Theorem 3.5. On the other hand, deviation inequalities under the mean for concave
functions F only require EP (|∇F |2) ≤ 1.

3.4 Applications to bounds on empirical processes

Sums of independent random variables are a natural application of the preceding
deviation inequalities for product measures. In this section, we survey some of these
applications, with a particular emphasis on bounds for empirical processes.

Tail probabilities for sums of independent random variables have been exten-
sively studied in classical Probability theory. One finished result is the so-called
Bennett inequality (after contributions by Bernstein, Kolmogorov, Prohorov, Ho-
effding etc). Let X1, . . . , Xn be independent mean-zero real-valued random vari-
ables on some probability space (Ω,A, IP) such that |Xi| ≤ C, i = 1, . . . , n, and∑n

i=1 IE(X2
i ) ≤ σ2. Set Sn = X1 + · · ·+Xn. Then, for every r ≥ 0,

IP(Sn ≥ r) ≤ exp
(
− r

2C
log

(
1 +

Cr

σ2

))
. (3.17)

Such an inequality describes the Gaussian tail for the values of r which are small
with respect to σ2, and the Poisson behavior for the large values (think, for example,
of a sample of independent Bernoulli variables, with probability of success either 1

2
or on the order of 1

n .)
Now, in statistical applications, one is interested in such a bound uniformly

over classes of functions, and importance of such inequalities has been emphasized
recently in the statistical treatment of selection of models by L. Birgé and P. Mas-
sart [B-M1], [B-M2], [B-B-M]. More precisely, let X1, X2, . . . , Xn, . . . be independent
random variables with values in some measurable space (S,S) with identical distri-
bution P, and let, for n ≥ 1,

Pn =
1
n

n∑
i=1

δXi

be the empirical measures (on P). A class F of real measurable functions on S
is said to be a Glivenko-Cantelli class if supf∈F |Pn(f) − P(f)| converges almost
surely to 0. It is a Donsker class if, in a sense to be made precise,

√
n(Pn(f) −

P(f)), f ∈ F , converges in distribution toward a centered Gaussian process with
covariance function P(fg)−P(f)P(g), f, g ∈ F . These definitions naturally extend
the classic example of the class of all indicator functions of intervals (−∞, t], t ∈ IR
(studied precisely by Glivenko-Cantelli and Donsker). These asymptotic properties
however often need to be turned into tail inequalities at fixed n on classes F which
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are as rich as possible (to determine accurate approximation by empirical models).
In particular, these bounds aim to be as close as possible to the one-dimensional
inequality (3.17) (corresponding to a class F reduced to only one function).

Sharp bounds for empirical processes have been obtained by M. Talagrand
[Ta5], [Ta8] as a consequence of his abstract inequalities for product measures. We
observe here that the functional approach based on logarithmic Sobolev inequalities
developed in the preceding sections may be use to produce similar bounds. The
key idea is to exploit the logarithmic Sobolev inequality (3.5) emphasized in the
proof of Theorem 3.2 and to apply it to norm of sums of independent vector valued
random variables. The convexity properties of the norm of a sum allow us to easily
estimate the gradient on the right-hand side of (3.5). It yields to the following result
for which we refer to [Le4] for further details. Let as before Xi, i = 1, . . . , n, be
independent random variables with values in some space S, and let F be a countable
class of measurable functions on S. Set

Z = sup
f∈F

∣∣∣∣ n∑
i=1

f(Xi)
∣∣∣∣.

Theorem 3.6. If |f | ≤ C for every f in F , and if IEf(Xi) = 0 for every f ∈ F and
i = 1, . . . , n, then, for all r ≥ 0,

IP
(
Z ≥ IE(Z) + r

)
≤ 3 exp

(
− r

KC
log

(
1 +

Cr

σ2 + CIE(Z)

))
where σ2 = supf∈F

∑n
i=1 IEf2(Xi) and K > 0 is a numerical constant.

This statement is as close as possible to (3.17). With respect to this inequality,
the main feature is the deviation property with respect to the mean IE(Z). Such
an inequality of course belongs to the concentration phenomenon, with the two
parameters IE(Z) and σ2 which are similar to the Gaussian case (1.24). Bounds on
IE(Z) require different tools (chaining, entropy, majorizing measures cf. [L-T]). The
proof of Theorem 3.6 is a rather easy consequence of (3.5) for the Gaussian tail. It
is a little bit more difficult for the Poissonian part. It is based on the integration of
the following differential inequality, consequence of a logarithmic Sobolev inequality
for convex functionals,

λH ′(λ)−H(λ) logH(λ) ≤ λ2IE
(

sup
f∈F

n∑
i=1

(
f(Xi)− f(Yi)

)2eλZ

)
(3.18)

for λ ≥ 0, where, as usual, H(λ) = IE(eλZ), and where (Yi)1≤i≤n is an independent
copy of the sequence (Xi)1≤i≤n (cf. [Le4]). Integration of this inequality is per-
formed in an improved way in [Mas] yielding sharper numerical constants, that are
even optimal in the case of a class consisting of non-negative functions.

Deviations under the mean (i.e. bounds for IP{Z ≤ IE(Z)−r}) may be deduced
similarly from the logarithmic Sobolev approach. This was overlooked in [Le4] and
we are grateful to P.-M. Samson for pointing out that the argument in [Le4] actually
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also yields such a conclusion. Namely, since the functions in F are assumed to be
(uniformly) bounded (by C), an elementary inspection of the arguments of [Le4]
shows that (3.18) for λ ≤ 0 holds with λ2 replaced by λ2e−2Cλ in front of the right-
hand term. Since the Gaussian bounds (where deviation above or under the mean
is really sensible) only require (3.18) for the small values of λ, the same argument
is actually enough to conclude to a deviation under the mean. In particular, the
bound of Theorem 3.6 also controls IP{|Z−IE(Z)| ≥ r} (up to numerical constants).
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4. MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES
FOR LOCAL GRADIENTS

M. Talagrand discovered a few years ago [Ta3] that products of the usual exponen-
tial distribution somewhat surprisingly satisfy a concentration property which, in
some respect, is stronger than Gaussian concentration. Our first aim here will be to
show, following [B-L1], that this result can be seen as a consequence of some appro-
priate logarithmic Sobolev inequality which we call modified. Modified logarithmic
Sobolev inequalities actually appear in various contexts and further examples will
be presented, for discrete gradients, in the next chapter. Their main interest is that
they tensorize with two parameters on the gradient, one on its supremum norm,
and one on the usual quadratic norm. This feature is the appropriate explanation
for the concentration property of the exponential measure.

The first paragraph is devoted to the modified logarithmic Sobolev inequality
for the exponential measure. We then describe the product properties of modified
logarithmic Sobolev inequalities. In the last section, we show, in a general setting,
that all measures with a spectral gap (with respect to a local gradient) do satisfy
the same modified inequality as the exponential distribution. Most of the results
presented here are taken from the joint paper [B-L1] with S. Bobkov.

4.1 The exponential measure

In the paper [Ta3], M. Talagrand proved an isoperimetric inequality for the product
measure of the exponential distribution which implies the following concentration
property. Let νn be the product measure on IRn when each factor is endowed with
the measure ν of density 1

2e−|x| with respect to Lebesgue measure. Then, for every
Borel set A with νn(A) ≥ 1

2 and every r ≥ 0,

νn
(
A+

√
rB2 + rB1

)
≥ 1− e−r/K (4.1)

for some numerical constant K > 0 where B2 is the Euclidean unit ball and B1 is
the `1 unit ball in IRn, i.e.

B1 =
{
x = (x1, . . . , xn) ∈ IRn;

n∑
i=1

|xi| < 1
}
.

A striking feature of (4.1) is that it may be used to improve some aspects of the
Gaussian concentration (1.10) especially for cubes [Ta3], [Ta4]. Consider indeed the



56

increasing map ψ : IR → IR that transform ν into the one-dimensional canonical
Gaussian measure γ. It is a simple matter to check that∣∣ψ(x)− ψ(y)

∣∣ ≤ Cmin
(
|x− y|, |x− y|1/2

)
, x, y ∈ IR, (4.2)

for some numerical constant C > 0. The map Ψ : IRn → IRn defined by Ψ(x) =
(ψ(xi))1≤i≤n transforms νn into γn. Consider now Borel a set A of IRn such that
γn(A) ≥ 1

2 . Then

γn
(
Ψ

(
Ψ−1(A) +

√
rB2 + rB1

))
= νn

(
Ψ−1(A) +

√
rB2 + rB1

)
≥ 1− e−r/K .

However, it follows from (4.2) that

Ψ
(
Ψ−1(A) +

√
rB2 + rB1

)
⊂ A+ C ′

√
rB2.

Thus (4.1) improves upon (1.6). To illustrate the improvement, let

A =
{
x ∈ IRn; max

1≤i≤n
|xi| ≤ m

}
where m = m(n) is chosen so that γn(A) ≥ 1

2 (and hence m(n) is of order
√

log n).
Then, when r ≥ 1 is very small compared to log n, it is easily seen that actually

Ψ
(
Ψ−1(A) +

√
rB2 + rB1

)
⊂ A+ C1

( √
r√

log n
B2 +

r√
log n

B1

)
⊂ A+ C2

√
r

log n
√
rB2.

As for Gaussian concentration, inequality (4.1) may be translated equivalently
on functions in the following way (see the end of the section for details). For every
real-valued function F on IRn such that ‖F‖Lip ≤ α and

∣∣F (x)− F (y)
∣∣ ≤ β

n∑
i=1

|xi − yi|, x, y ∈ IRn,

for every r ≥ 0,

νn(F ≥ m+ r) ≤ exp
(
− 1
K

min
(
r

β
,
r2

α2

))
(4.3)

for some numerical constant K > 0 where m is either the mean or a median of F
for νn. Again, this inequality extends in the appropriate sense the case of linear
functions F . By Rademacher’s theorem, the hypotheses on F are equivalent to
saying that F is almost everywhere differentiable with

n∑
i=1

|∂iF |2 ≤ α2 and max
1≤i≤n

|∂iF | ≤ β a.e..



57

Our first aim here will be to present an elementary proof of (4.3) (and thus
(4.1)) based on logarithmic Sobolev inequalities. An alternate proof, however close
to Talagrand’s ideas, has already been given by B. Maurey using inf-convolution
[Mau2] (see also [Ta6]). M. Talagrand himself obtained recently another proof as a
consequence of a stronger transportation cost inequality [Ta9] (cf. Section 3.3). Our
approach is simpler even than the transportation method and is based on the results
of Section 2.3. Following the procedure there in case of the exponential distribution
would require to determine the appropriate logarithmic Sobolev inequality satisfied
by νn. We cannot hope for an inequality such as the Gaussian logarithmic Sobolev
inequality (2.15) to hold simply because it would imply that linear functions have
a Gaussian tail for νn. To investigate logarithmic Sobolev inequalities for νn, it is
enough, by the fundamental product property of entropy, to deal with the dimension
one. One first inequality may be deduced from the Gaussian logarithmic Sobolev
inequality. Given a smooth function f on IR, apply (2.15) in dimension 2 to g(x, y) =
f(x2+y2

2 ). Let ν̃ denote the one-sided exponential distribution with density e−x with
respect to Lebesgue measure on IR+, and let ν̃n denote the product measure on IRn

+.
Then

Entν̃(f2) ≤ 4
∫
xf ′(x)2dν̃(x).

Hence, for every smooth f on IRn
+,

Entν̃n(f2) ≤ 4
∫ n∑

i=1

xi

∣∣∂if(x)
∣∣2dν̃n(x). (4.4)

It does not seem however that this logarithmic Sobolev inequality (4.4) can yield
the concentration property (4.3) via the Laplace transform approach of Section 2.3.
In a sense, this negative observation is compatible with the fact that (4.3) improves
upon some aspects of the Gaussian concentration. We thus have to look for some
other version of the logarithmic Sobolev inequality for the exponential distribution.
To this aim, let us observe that, at the level of Poincaré inequalities, there are two
distinct inequalities. For simplicity, let us deal again only with n = 1. The first one,
in the spirit of (4.4), is

Varν̃(f) ≤
∫
xf ′(x)2dν̃(x). (4.5)

This may be shown, either from the Gaussian Poincaré inequality as before, with
however a worse constant, or by noting that the first eigenvalue of the Laguerre
generator with invariant measure ν̃ is 1 (cf. [K-S]. By the way, that 4 is the best
constant in (4.4) is an easy consequence of our arguments. Namely, if (4.4) holds
with a constant C < 4, a function f , on IR+ for simplicity, such that xf ′(x)2 ≤ 1
almost everywhere would be such that

∫
ef2/4dν̃1 < ∞ by Corollary 2.6. But the

example of f(x) = 2
√
x contradicts this consequence. We thus recover in this simple

way the main result of [K-S].) The second Poincaré inequality appeared in the work
by M. Talagrand [Ta3], actually going back to [Kl], and states that

Varν̃(f) ≤ 4 Eν̃

(
f ′

2)
. (4.6)
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These two inequalities are not comparable and, in a sense, we are looking for an
analogue of (4.6) for entropy.

To introduce this result, let us first recall the proof of (4.6). We will work with
the double exponential distribution ν. It is plain that all the results hold, with the
obvious modifications, for the one-sided exponential distribution ν̃. Denote by Ln

the space of all continuous almost everywhere differentiable functions f : IRn → IR
such that

∫
|f |dνn <∞,

∫
|∇f |dνn <∞ and limxi→±∞ e−|xi|f(x1, . . . , xi, . . . xn) =

0 for every i = 1, . . . , n and x1, . . . , xi−1, xi+1, . . . , xn ∈ IR. The main argument of
the proof is the following simple observation. If ϕ ∈ L1, by the integration by parts
formula, ∫

ϕdν = ϕ(0) +
∫

sgn(x)ϕ′(x)dν(x). (4.7)

Lemma 4.1. For every f ∈ L1,

Varν(f) ≤ 4 Eν

(
f ′

2)
.

Proof. Set g(x) = f(x)− f(0). Then, by (4.7) and the Cauchy-Schwarz inequality,

Eν(g2) = 2
∫

sgn(x)g′(x)g(x)dν(x) ≤ 2
(
Eν(g′2)

)1/2(Eν(g2)
)1/2

.

Since Varν(f) = Varν(g) ≤ Eν(g2), and g′ = f ′, the lemma follows.

We turn to the corresponding inequality for entropy and the main result of this
section.

Theorem 4.2. For every 0 < c < 1 and every Lipschitz function f on IR such that
|f ′| ≤ c < 1 almost everywhere,

Entν

(
ef

)
≤ 2

1− c
Eν

(
f ′

2ef
)
.

Note that Theorem 4.2, when applied to functions εf as ε→ 0, implies Lemma
4.1. Theorem 4.2 is the first example of what we will call a modified logarithmic
Sobolev inequality. We only use Theorem 4.2 for some fixed valued of c, for example
c = 1

2 .

Proof. Changing f into f + const we may assume that f(0) = 0. Since

u log u ≥ u− 1, u ≥ 0,

we have
Entν

(
ef

)
≤ Eν(fef − ef + 1).

Since |f ′| ≤ λ < 1 almost everywhere, the functions ef , fef and f2ef all belong to
L1. Therefore, by repeated use of (4.7),

Eν(fef − ef + 1) =
∫

sgn(x)f ′(x)f(x)ef(x)dν(x)
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and

Eν(f2ef ) = 2
∫

sgn(x)f ′(x)f(x)ef(x)dν(x) +
∫

sgn(x)f ′(x)f(x)2ef(x)dν(x).

By the Cauchy-Schwarz inequality and the assumption on f ′,

Eν(f2ef ) ≤ 2
(
Eν

(
f ′

2ef
))1/2(Eν(f2ef )

)1/2 + cEν(f2ef )

so that

Eν(f2ef ) ≤
(

2
1− c

)2

Eν

(
f ′

2ef
)
.

Now, by the Cauchy-Schwarz inequality again,

Entν1

(
ef

)
≤

∫
sgn(x)f ′(x)f(x)ef(x)dν1(x)

≤
(
Eν

(
f ′

2ef
))1/2(Eν(f2ef )

)1/2 ≤ 2
1− c

Eν

(
f ′

2ef
)

which is the result. Theorem 4.2 is established.

We are now ready to describe the application to Talagrand’s concentration
inequality (4.3). As a consequence of Theorem 4.2 and of the product property of
entropy (Proposition 2.2), for every smooth enough function F on IRn such that
max1≤i≤n |∂iF | ≤ 1 almost everywhere and every λ, |λ| ≤ c < 1,

Entνn

(
eλF

)
≤ 2λ2

1− c
Eνn

( n∑
i=1

(∂iF )2eλF

)
. (4.8)

Let us take for simplicity c = 1
2 (although c < 1 might improve some numerical

constants below). Assume now moreover that
∑n

i=1(∂iF )2 ≤ α2 almost everywhere.
Then, by (4.8),

Entνn(eλF ) ≤ 4α2λ2Eνn(eλF )

for every |λ| ≤ 1
2 . As a consequence of Corollary 2.11, we get that

νn
(
F ≥ Eνn(F ) + r

)
≤ exp

(
−1

4
min

(
r,

r2

4α2

))
(4.9)

for every r ≥ 0. By homogeneity, this inequality amounts to (4.3) (with K = 16)
and our claim is proved. As already mentioned, we have a similar result for the
one-sided exponential measure.

To complete this section, let us sketch the equivalence between (4.1) and (4.3).
(Although we present the argument for νn only, it extends to more general situations,
as will be used in the next section.) To see that (4.1) implies (4.3), simply apply
(4.1) to A = {F ≤ m} where m is a median of F for νn and note that

A+
√
rB2 + rB1 ⊂

{
F ≤ m+ α

√
r + βr

}
.
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Using a routine argument (cf. the end of Section 1.3), the deviation inequality (4.3)
from either the median or the mean are equivalent up to numerical constants (with
possibly a further constant in front of the exponential function). Now starting from
(4.3) with m the mean for example, consider, for A ⊂ IRn and x = (x1, . . . , xn) ∈
IRn,

FA(x) = inf
a∈A

n∑
i=1

min
(
|xi − ai|, |xi − ai|2

)
.

For r > 0, set then F = min(FA, r). We have
∑n

i=1 |∂iF |2 ≤ 4r and max1≤i≤n |∂iF | ≤
2 almost everywhere. Indeed, it is enough to prove this result for G = min(Ga, r)
for every fixed a where

Ga(x) =
n∑

i=1

min
(
|xi − ai|, |xi − ai|2

)
.

Now, almost everywhere, and for every i = 1, . . . , n, |∂iGa(x)| ≤ 2|xi − ai| if |xi −
ai| ≤ 1 whereas |∂iGa(x)| ≤ 1 if |xi − ai| > 1. Therefore, max1≤i≤n |∂iGa(x)| ≤ 2
and

n∑
i=1

∣∣∂iGa(x)
∣∣2 ≤ 4

n∑
i=1

min
(
|xi − ai|, |xi − ai|2

)
= 4Ga(x)

which yields the announced claim. Now, if νn(A) ≥ 1
2 ,

Eνn(F ) ≤ r
(
1− νn(A)

)
≤ r

2
.

It then follows from (4.3) that

νn(FA ≥ r) = νn(F ≥ r) ≤ νn
(
F ≥ Eνn(F ) + r

2

)
≤ e−r/16K .

Since {FA ≤ r} ⊂ A+
√
rB2 + rB1, the result follows.

4.2 Modified logarithmic Sobolev inequalities

The inequality put forward in Theorem 4.2 for the exponential measure is a first
example of what we call modified logarithmic Sobolev inequalities. In order to
describe this notion in some generality, we take again the general setting of Part 2.
Let thus (X,B, µ) be a probability space, and let A be a subset of L1(µ). Consider
a “gradient” operator Γ on A such that Γ(f) ≥ 0 and Γ(λf) = λ2Γ(f) for every
f ∈ A and λ ∈ IR. Examples are Γ(f) = |∇f |2 for a generalized modulus of gradient
(2.3), or Γ(f) = |Df |2 for a discrete gradient (such as (2.9)).

Definition 4.3. We say that µ satisfies a modified logarithmic Sobolev inequality
with respect to Γ (on A) if there is a function B(λ) ≥ 0 on IR+ such that, whenever

‖Γ(f)‖1/2
∞ ≤ λ,

Entµ(ef ) ≤ B(λ) Eµ

(
Γ(f) ef

)
for all f in A such that Eµ(ef ) <∞.
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According to Theorem 4.2, the exponential measure ν on the line satisfies a
modified logarithmic Sobolev inequality with respect to the usual gradient with
B(λ) bounded for the small values of λ. On the other hand, the Gaussian measure
γ satisfies a modified logarithmic Sobolev inequality with B(λ) = 1

2 , λ ≥ 0.
Definition 4.3 might appear very similar to the inequalities investigated via

Proposition 2.9. Actually, Definition 4.3 implies that

Entµ(ef ) ≤ λ2B(λ) Eµ(ef )

for every f with ‖Γ(f)‖∞ ≤ λ. In particular, if B(λ) is bounded for the small values
of λ, Lipschitz functions will have an exponential tail according to Corollary 2.11.

The main new feature here is that the modified logarithmic Sobolev inequality
of Definition 4.3 tensorizes in terms of two parameters rather than only the Lipschitz
bound. This property is summarized in the next proposition which is an elementary
consequence of the product property of entropy (Proposition 2.2).

Let (Xi,Bi, µi), i = 1, . . . , n, be probability spaces and denote by P = µ1 ⊗
· · · ⊗µn on the product space X = X1× · · · ×Xn. Consider operators Γi on classes
Ai, i = 1, . . . , n. If f is a function on the product space, for each i, fi is the function
f depending on the i-th variable with the other coordinates fixed.

Proposition 4.4. Assume that for every f on (Xi,Bi, µi) such that ‖Γi(f)‖1/2
∞ ≤ λ,

Entµi
(ef ) ≤ B(λ) Eµi

(
Γi(f) ef

)
,

i = 1, . . . , n. Then, for every f on the product space such that max1≤i≤n ‖Γi(fi)‖1/2
∞

≤ λ,

EntP (ef ) ≤ B(λ) EP

( n∑
i=1

Γi(fi) ef

)
.

According to the behavior of B(λ), this proposition yields concentration prop-
erties in terms of two parameters,

max
1≤i≤n

‖Γi(fi)‖1/2
∞ and

∥∥∥∥ n∑
i=1

Γi(fi)
∥∥∥∥
∞
.

For example, if B(λ) ≤ c for 0 ≤ λ ≤ λ0, following the proof of (4.9), the product
measure P will satisfy the same concentration inequality as the one for the exponen-
tial measure (4.3). In the next chapter, we investigate cases such as B(λ) ≤ cedλ,
λ ≥ 0, related to the Poisson measure. Rather than to discuss some further abstract
result according to the behavior of B(λ) (in the spirit of Corollaries 2.11 and 2.12),
we refer to Corollary 4.6 and Theorem 5.5 for examples of applications.

4.3 Poincaré inequalities and modified logarithmic Sobolev inequalities

In this section, we show that the concentration properties of the exponential measure
described in Section 4.1 is actually shared by all measures satisfying a Poincaré
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inequality (with respect to a local gradient). More precisely, we show, following [B-
L1], that every such measure satisfies the modified logarithmic Sobolev inequality
of Theorem 4.2.

Let thus |∇f | be a generalized modulus of gradient on a metric space (X, d),
satisfying thus the chain rule formula (2.5). Throughout this paragraph, we assume
that µ is a probability measure on X equipped with the Borel σ-field B such that
for some C > 0 and all f in L2(µ),

Varµ(f) ≤ C Eµ

(
|∇f |2

)
. (4.10)

We already know from Proposition 2.13 that such a spectral gap inequality implies
exponential integrability of Lipschitz functions. We actually show that it also implies
a modified logarithmic Sobolev inequality which yields concentration properties for
the product measures µn.

Theorem 4.5. For any function f on X such that ‖∇f‖∞ ≤ λ < 2/
√
C,

Entµ

(
ef

)
≤ B(λ) Eµ

(
|∇f |2ef

)
where

B(λ) =
C

2

(
2 + λ

√
C

2− λ
√
C

)2

e
√

5Cλ.

We refer to the paper [B-L1] for the proof of Theorem 4.5.
Now, B(λ) is uniformly bounded for the small values of λ, for example B(λ) ≤

3e5C/2 when λ ≤ 1/
√
C. As a corollary, we obtain, following the proof of (4.9) and

the discussion on Proposition 4.4, a concentration inequality of Talagrand’s type for
the product measure µn of µ on Xn. If f is a function on the product space Xn,
denote by |∇if | the length of the gradient with respect to the i-th coordinate.

Corollary 4.6. Denote by µn the product of µ on Xn. Then, for every function F
on Xn such that

n∑
i=1

|∇iF |2 ≤ α2 and max
1≤i≤n

|∇iF | ≤ β

µ-almost everywhere, Eµn(|F |) <∞ and

µn
(
F ≥ Eµn(F ) + r

)
≤ exp

(
− 1
K

min
(
r

β
,
r2

α2

))
where K > 0 only depends on the constant C in the Poincaré inequality (4.10).

One may obtain a similar statement for products of possibly different measures
µ with a uniform lower bound on the constants in the Poincaré inequalities (4.10).

Following the argument at the end of Section 4.1, Corollary 4.6 may be turned
into an inequality on sets such as (4.1). More precisely, if µn(A) ≥ 1

2 , for every
r ≥ 0 and some numerical constant K > 0,

µn
(
Fh

A ≥ r
)
≤ e−r/K
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where h(x, y) = min(d(x, y), d(x, y)2), x, y ∈ X, and, for x = (x1, . . . , xn) ∈ Xn and
A ⊂ Xn,

Fh
A(x) = inf

a∈A

n∑
i=1

h(xi, ai).

Using analogues of the norm ||| · |||∞, Theorem 4.5 and Corollary 4.6 have been
recently extended in [H-T] to the example of the invariant measure of a reversible
Markov chain on a finite state space. The main idea consists in showing that the
various uses of the chain rule formula in the proof of Theorem 4.5 may be properly
extended to this case (see also [A-S] for extensions of the chain rule formula).

Let us observe that for the case of the exponential measure ν, C = 4 by Lemma
4.1 so that, for λ < 1,

B(λ) = 2
(

1 + λ

1− λ

)2

e2
√

5λ

which is somewhat worse than the constant given by Theorem 4.2.
In any case, an important feature of the constant B(λ) of Theorem 4.5 is that

B(λ) → C/2 as λ → 0. In particular (and as in Theorem 4.2), the modified
logarithmic Sobolev inequality of Theorem 4.5 implies the Poincaré inequality (4.10)
by applying it to functions εf with ε → 0. Poincaré inequality and the modified
logarithmic Sobolev inequality of Theorem 4.5 are thus equivalent.

On the other hand, let us consider the case of the canonical Gaussian measure
γ on the real line for which, by (2.16),

Varγ(f) ≤ Eγ

(
f ′

2)
.

Let ϕ be a smooth function on IR, for example C2 with bounded derivatives. Apply
the multidimensional analogue (Proposition 4.4) of Theorem 4.5 to the functions

f(x) = ϕ
(x1 + · · ·+ xn√

n

)
, x = (x1, . . . , xn) ∈ IRn,

for which max1≤i≤n |∂if | ≤ ‖ϕ‖Lip/
√
n = βn < 2 for n large enough. By the

rotational invariance of Gaussian measures, and since βn → 0, we get in the limit

Entγ(eϕ) ≤ 1
2

Eγ

(
ϕ′

2eϕ
)

that is (after the change of functions eϕ = g2) Gross’s logarithmic Sobolev inequality
(2.15) with optimal constant. Therefore, for the Gaussian measure, Poincaré and
logarithmic Sobolev inequalities are in a sense equivalent.
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5. MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES

IN DISCRETE SETTINGS

We investigate here concentration and logarithmic Sobolev inequalities for discrete
gradients which typically do not satisfy a chain rule formula. One such example
considered here is Df(x) = f(x+ 1)− f(x), x ∈ IN. With respect to such gradient,
natural measures such as Poisson measures do not satisfy a logarithmic Sobolev
inequality in its classical formulation, but rather some modified inequality. Following
the recent works [B-L2] and [G-R] on the subject, we study mainly here Poisson type
logarithmic Sobolev inequalities and their related concentration properties. The
results of this part are taken from the paper [B-L2] with S. Bobkov.

5.1 Logarithmic Sobolev inequality for Bernoulli and Poisson measures

As was presented in Section 2.2, in his seminal 1975 paper, L. Gross [Gr1] proved a
logarithmic Sobolev inequality on the two-point space. Namely, let µ be the uniform
measure on {0, 1}. Then, for any f on {0, 1},

Entµ(f2) ≤ 1
2

Eµ

(
|Df |2

)
(5.1)

where ∣∣Df(x)
∣∣ =

∣∣f(1)− f(0)
∣∣ =

∣∣f(x+ 1)− f(x)
∣∣

(x modulo 2). It is easily seen that the constant 1
2 is optimal.

The question of the best constant in the previous logarithmic Sobolev inequality
for non-symmetric Bernoulli measure was settled seemingly only quite recently. Let
µp be the Bernoulli measure on {0, 1} with µp({1}) = p and µp({0}) = q = 1 − p.
Then, for any f on {0, 1},

Entµp
(f2) ≤ pq

log p− log q
p− q

Eµp

(
|Df |2

)
. (5.2)

The constant is optimal, and is equal to 1
2 when p = q = 1

2 . This result is mentioned
in [H-Y] without proof, and worked out in [D-SC]. A simple proof, due S. Bobkov, is
presented in the notes [SC2]. O. Rothaus mentioned to the authors of [D-SC] that
he computed this constant several years back from now. The main feature of this



65

constant is that, when p 6= q, it significantly differs from the spectral gap given by
the inequality

Varµp
(f) ≤ pqEµp

(
|Df |2

)
. (5.3)

Although inequality (5.2) is optimal, it presents a number of weak points. First
of all, the product property of entropy which allows us, together with the central
limit theorem, to deduce the logarithmic Sobolev inequality for Gaussian measures
from the one for Bernoulli is optimal in the symmetric case. As soon as p 6= q,
the central limit theorem on the basis of (5.2) only yields the Gaussian logarithmic
Sobolev inequality (2.15) with a worse constant. A second limit theorem of interest
is of course the Poisson limit. However, after tensorization, (5.2) cannot yield a
logarithmic Sobolev inequality for Poisson measures. (Although the constant in
(5.2) is bounded as p → 0, we would need it to be of the order of p for p → 0.)
There is of course a good reason at that, namely that Poisson measures do not
satisfy logarithmic Sobolev inequalities! This is well known to a number of people
but let us briefly convince ourselves of this claim. Denote thus by πθ the Poisson
measure on IN with parameter θ > 0 and let us assume that, for some constant
C > 0, and all f , say bounded, on IN,

Entπθ
(f2) ≤ C Eπθ

(
|Df |2

)
(5.4)

where here Df(x) = f(x+ 1)− f(x), x ∈ IN. Apply (5.4) to the indicator function
of the interval [k + 1,∞) for each k ∈ IN. We get

−πθ

(
[k + 1,∞)

)
log πθ

(
[k + 1,∞)

)
≤ Cπθ

(
{k}

)
which is clearly impossible as k goes to infinity. Similarly, (5.4) cannot hold with the
addition of an extra CEθ(f2) on the right-hand side. It is important for the further
developments to notice, according to [G-R], that the exponential integrability results
of Section 2.3 with the norm ||| · |||∞ cannot be used at this point to rule out (5.4).
Indeed, (5.4) implies via (2.8) that

Entπθ
(ef ) ≤ C

2
|||f |||2∞Eπθ

(ef ).

By (2.11),
|||f |||2∞ = sup

x∈IN

(
Df(x)2 +

x

θ
Df(x− 1)2

)
.

As an application of Corollary 2.4, if F on IN is such that |||F |||∞ ≤ 1, we would
conclude from the logarithmic Sobolev inequality (5.4) that Eπθ

(eαF 2
) <∞ for some

α > 0. But now, if |||F |||∞ ≤ 1, then DF (x) ≤
√

θ
x+1 for every x. This directly

implies that Eπθ
(eαF 2

) <∞ for every α which thus would not contradict Corollary
2.4. The norm |||F |||∞ is therefore not well adapted to our purposes here, and
we will rather consider supx∈IN |DF (x)| under which we will describe exponential
integrability of Poisson type.

One may therefore be led to consider some variations of inequality (5.2) that
could behave better under the preceding limits, in particular one could think of
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modified logarithmic Sobolev inequalities. However, we follow a somewhat different
route and turn to an alternate variation of possible own interest.

An equivalent formulation of the Gaussian logarithmic Sobolev inequality (2.15),
on the line for simplicity, is that, for any smooth f on IR with strictly positive values,

Entγ(f) ≤ 1
2

Eγ

( 1
f
f ′

2
)
. (5.5)

That (5.5) is equivalent to (2.15) simply follows from a change of functions together
with the chain rule formula for the usual gradient on IR. Of course, such a change
may not be performed equivalently on discrete gradients, so that there is some
interest to study an inequality such as

Entµp
(f) ≤ C Eµp

( 1
f
|Df |2

)
(5.6)

on {0, 1} for the Bernoulli measure µp and to ask for the best constant C as a
function of p. Our first result will be to show that the best constant C in (5.6) is
pq. The behavior in p is thus much better than in (5.2) as p → 0 or 1, and will
allow us to derive a modified logarithmic Sobolev inequality for Poisson measure in
the limit. The following is taken from the recent work [B-L2]. An alternate proof
of Theorem 5.1 and Corollary 5.3 below using the Γ2 calculus of [Ba1], [Ba2] may
be found in [A-L].

For any n ≥ 1, we denote by µn
p the product measure of µp on {0, 1}n. If f is

a function on {0, 1}n, and x = (x1, . . . , xn) ∈ {0, 1}n, set

|Df |2(x) =
n∑

i=1

∣∣f(x+ ei)− f(x)
∣∣2

where (e1, . . . , en) is the canonical basis of IRn and the addition is modulo 2. p is
arbitrary in [0, 1], and q = 1− p.

Theorem 5.1. For any positive function f on {0, 1}n,

Entµn
p
(f) ≤ pqEµn

p

( 1
f
|Df |2

)
.

Proof. By the product property of entropy, it is enough to deal with the case n = 1.
The proof is based on the following calculus lemma.

Lemma 5.2 Consider a function

U(p) = Entµp(f)− pqEµp(g), 0 ≤ p ≤ 1,

where f and g are arbitrary non-negative functions on {0, 1}. Then U(p) ≤ 0 for
every p if and only if

(5.7) U ′(0) ≤ 0 ≤ U ′(1).
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If, additionally, f(0) ≥ f(1) and g(0) ≥ g(1) (respectively f(0) ≤ f(1) and g(0) ≤
g(1)), then the condition (5.7) may be weakened into U ′(0) ≤ 0 (respectively U ′(1) ≥
0).

Proof. Set a = f(1), b = f(0), α = g(1), β = g(0), so that

U(p) = (pa log a+ qb log b)− (pa+ qb) log(pa+ qb)− pq(pα+ qβ).

Since U(0) = U(1) = 0, the condition (5.7) is necessary for U to be non-positive.
Now, assume (5.7) is fulfilled. Differentiating in p, we have

U ′(p) = (a log a− b log b)− (a− b)
(
log(pa+ qb) + 1

)
+ (p− q)(pα+ qβ)− pq(α− β),

U ′′(p) = −(a− b)2(pa+ qb)−1 + 2(pα+ qβ) + 2(p− q)(α− β),

U ′′′(p) = (a− b)3(pa+ qb)−2 + 6(α− β),

U ′′′′(p) = −2(a− b)4(pa+ qb)−3.

Since U ′′′′ ≤ 0, U ′′ is concave. Hence, formally three situations are possible.
1) U ′′ ≥ 0 on [0,1]. In this case, U is convex and thus U ≤ 0 on [0,1] in view of

U(0) = U(1) = 0.
2) U ′′ ≤ 0 on [0,1]. By (5.7), this case is not possible unless U is identically 0.
3) For some 0 ≤ p0 < p1 ≤ 1, U ′′ ≤ 0 on [0, p0], U ′′ ≥ 0 on [p0, p1], and

U ′′ ≤ 0 on [p1, 1]. In this case, U is concave on [0, p0], and, due to the assumption
U ′(0) ≤ 0, one may conclude that U is non-increasing on [0, p0]. In particular, U ≤ 0
on [0, p0]. It is then necessary that U(p1) ≤ 0. Indeed, U is concave on [p1, 1], hence
the assumption U(p1) > 0 together with U(1) = 0 would imply U ′(1) < 0 which
contradicts (5.7). As a result, by convexity of U on [p0, p1], we get U ≤ 0 on [p0, p1].
At last, U ≤ 0 on [p1, 1], since U is concave on [p1, 1], U(p1) ≤ 0 and U ′(1) ≥ 0 (in
particular, U is non-decreasing on this interval). The first part of Lemma 2 is thus
proved.

We turn to the second part. Again, since U(0) = U(1) = 0, any of the conditions
U ′(0) ≤ 0 or U ′(1) ≥ 0 is necessary for U to be non-positive on [0, 1]. Now, assume
that a ≥ b, α ≥ β, and U ′(0) ≤ 0 (the other case is similar). Then U ′′′ ≥ 0, and
hence U ′′ is non-decreasing on [0,1]. Again three cases are formally possible.

1) U ′′ ≥ 0 on [0,1]. In this case, U is convex, and thus U ≤ 0 on [0,1] in view
of U(0) = U(1) = 0.

2) U ′′ ≤ 0 on [0,1]. This can only occur if U ≡ 0.
3) For some 0 ≤ p0 ≤ 1, U ′′ ≤ 0 on [0, p0] and U ′′ ≥ 0 on [p0, 1]. In this case,

U is concave on [0, p0], and, due to the fact that U ′(0) ≤ 0, one may conclude that
U is non-increasing on [0, p0]. In particular U ≤ 0 on [0, p0]. At last, U ≤ 0 on
[p0, 1] since U is convex on this interval and U(p0) ≤ 0 and U(1) = 0. Lemma 2 is
established.

We turn to the proof of Theorem 5.1. Note first the following. In the notation
of the proof of Lemma 5.2, set

R(a, b) = a log a
b − (a− b).
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Clearly, R(a, b) ≥ 0 for all a, b > 0. Then,

U ′(0) ≤ 0 if and only if β ≥ R(a, b) (5.8)

while
U ′(1) ≥ 0 if and only if α ≥ R(b, a) (5.9)

Fix f with stricly positive values on {0, 1}. Apply then Lemma 5.2 to g = δ/f ,
δ > 0. According to (5.8) and (5.9), the optimal value of δ > 0 in the inequality

Entµp
(f) ≤ δpqEµp

( 1
f

)
(5.10)

provided p ∈ [0, 1] is arbitrary is given by

δ = max
{
bR(a, b), aR(b, a)

}
,

where a = f(1), b = f(0). By symmetry, one may assume that a ≥ b ≥ 0. Then,
bR(a, b) ≤ aR(b, a). Indeed, for fixed b > 0, the function ρ(a) = aR(b, a)− bR(a, b)
has derivative ρ′(a) = 2R(b, a) ≥ 0. Hence, ρ(a) ≥ ρ(b) = 0. Thus, δ = aR(b, a),
a > b > 0. Now, fixing b > 0, consider

u(a) = aR(b, a) = a
(
b log b

a − (b− a)
)
, a > b.

We have u′(a) = b log b
a − 2(b− a), thus u(b) = u′(b) = 0 and, for every a > 0,

u′′(a) = 2− b

a
≤ 2.

Hence, by a Taylor expansion, denoting by a0 some middle point between a and b,
we get

δ = u(a) = u(b) + u′(b)(a− b) +
1
2
u′′(a0)(a− b)2 ≤

(
1− b

2a

)
(a− b)2.

Therefore, δ ≤ (a− b)2 = |f(1)− f(0)|2 in (5.10) which is the result. Theorem 5.1
is established.

Observe that in the process of the proof of Theorem 5.1, we actually proved a
somewhat better inequality. Namely, for any positive function f on {0, 1},

Entµp
(f) ≤ pq

(
1− 1

2M(f)

)
Eµp

( 1
f
|Df |2

)
where

M(f) = max
{
f(1)
f(0)

,
f(0)
f(1)

}
.

By the product property of entropy, for any f with strictly positive values on {0, 1}n,

Entµn
p
(f) ≤ pq

(
1− 1

2M(f)

)
Eµn

p

( 1
f
|Df |2

)
(5.11)
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where

M(f) = max
x∈{0,1}n

max
1≤i≤n

f(x+ ei)
f(x)

.

As announced, the logarithmic Sobolev inequality of Theorem 5.1 may be used
in the limit to yield a logarithmic Sobolev inequality for Poisson measure. Take
namely ϕ on IN such that 0 < c ≤ ϕ ≤ C <∞ and apply Theorem 1 to

f(x) = f(x1, . . . , xn) = ϕ(x1 + · · ·+ xn), x = (x1, . . . , xn) ∈ {0, 1}n,

with this time p = θ
n , θ > 0 (for every n large enough). Then, setting Sn =

x1 + · · ·+ xn,

|Df |2(x) = (n− Sn)
[
ϕ(Sn + 1)− ϕ(Sn)

]2 + Sn

[
ϕ(Sn)− ϕ(Sn − 1)

]2
.

Therefore,

Entµn
p

(
ϕ(Sn)

)
≤ θ

n

(
1− θ

n

)
Eµn

p

(
1

ϕ(Sn)

(
(n−Sn)

[
ϕ(Sn + 1)− ϕ(Sn)

]2
+ Sn

[
ϕ(Sn)− ϕ(Sn − 1)

]2))
.

The distribution of Sn under µn
θ/n converges to πθ. Using that 0 < c ≤ ϕ ≤ C <∞

and that 1
nEµn

p
(Sn) → 0, we immediately obtains the following corollary.

Corollary 5.3. For any f on IN with strictly positive values,

Entπθ
(f) ≤ θEπθ

( 1
f
|Df |2

)
where we recall that here Df(x) = f(x+ 1)− f(x), x ∈ IN.

The example of f(x) = e−cx, x ∈ IN, as c → ∞ shows that one cannot expect
a better factor of θ in the preceding corollary.

Theorem 5.1 may also be used to imply the Gaussian logarithmic Sobolev in-
equality up to a constant 2. Actually, using the refined inequality (5.11), we can
reach the optimal constant. Let indeed ϕ > 0 be smooth enough on IR, for example
C2 with bounded derivatives, and apply (5.11) to

f(x1, . . . , xn) = ϕ
(x1 + · · ·+ xn − np

√
npq

)
for fixed p, 0 < p < 1. Under the smoothness properties on ϕ, it is easily seen that
M(f) → 1 as n→∞. Therefore, by the Gaussian central limit theorem, we deduce
in the classical way inequality (5.5) for ϕ. Changing ϕ into ϕ2, and using a standard
approximation procedure, we get Gross’s logarithmic Sobolev inequality (2.15) with
its best constant. Another consequences of this sharp form are the spectral gap
inequalities for µn

p and πθ. Applying (5.11) to 1 + εf and letting ε go to 0, we get,
since M(1 + εf) → 1,

Varµn
p
(f) ≤ pqEµn

p

(
|Df |2

)
(5.12)
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and
Varπθ

(f) ≤ θEπθ

(
|Df |2

)
. (5.13)

5.2 Modified logarithmic Sobolev inequalities and Poisson tails

In analogy with the Gaussian concentration properties of Section 2.3, the logarithmic
Sobolev inequalities of the type of those of Theorem 5.1 and Corollary 5.3 entail
some information on the Poisson behavior of Lipschitz functions. For simplicity, we
only deal with the case of measures on IN. According to the preceding section, the
results below apply in particular to the Poisson measure πθ.

Let µ be a probability measure on IN such that, for some constant C > 0,

Entµ(f) ≤ C Eµ

( 1
f
|Df |2

)
(5.14)

for all functions f on IN with positive values, where Df(x) = f(x + 1) − f(x),
x ∈ IN. As usual, we would like to apply (5.14) to ef . In this discrete setting,
|D(ef )| ≤ |Df |ef is obviously false in general. However,∣∣D(ef )

∣∣ ≤ |Df | e|Df |ef . (5.15)

Indeed, for every x ∈ IN,∣∣D(ef )(x)
∣∣ =

∣∣ef(x+1) − ef(x)
∣∣ =

∣∣Df(x)
∣∣eτ

for some τ ∈]f(x), f(x+1)[ or ]f(x+1), f(x)[. Since τ ≤ f(x)+ |Df(x)|, the claims
follows. Let now f on IN be such that supx∈IN |Df(x)| ≤ λ. It follows from (5.14)
and (5.15) that

Entµ(ef ) ≤ Ce2λEµ

(
|Df |2ef

)
. (5.16)

In particular,
Entµ(ef ) ≤ Cλ2e2λEµ(ef ). (5.17)

As a consequence of Corollary 2.12, we obtain a first result on Poisson tails of
Lipschitz functions.

Proposition 5.4. Let µ be a probability measure on IN such that, for some constant
C > 0,

Entµ(f) ≤ C Eµ

( 1
f
|Df |2

)
for all functions f on IN with positive values, where Df(x) = f(x+1)−f(x), x ∈ IN.
Then, for any F such that supx∈IN |DF (x)| ≤ 1, we have Eµ(|F |) < ∞ and, for all
r ≥ 0,

µ
(
F ≥ Eµ(F ) + r

)
≤ exp

(
−r

8
log

(
1 +

r

C

))
.

In particular, Eµ(eα|F | log+ |F |) <∞ for sufficiently small α > 0.
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The inequality of Proposition 5.4 describes the classical Gaussian tail behavior
for the small values of r and the Poisson behavior for the large values of r (with
respect to C). The constants have no reason to be sharp.

Of course, inequality (5.16) is part of the family of modified logarithmic Sobolev
inequalities investigated in Section 4.2, with a function B(λ) of the order of e2λ,
λ ≥ 0. According to Proposition 4.4, it may be tensorized in terms of two distinct
norms on the gradients. The following statement is then an easy consequence of
this observation.

Theorem 5.5. Let µ be some measure on IN. Assume that for every f on IN with
supx∈IN |Df(x)| ≤ λ,

Entµ(ef ) ≤ B(λ) Eµ

(
|Df |2ef ) (5.18)

where, as function of λ ≥ 0,
B(λ) ≤ c edλ

for some c, d > 0. Denote by µn the product measure on INn. Let F be a function
on INn such that, for every x ∈ INn,

n∑
i=1

∣∣F (
x+ ei

)
− F (x)

∣∣2 ≤ α2 and max
1≤i≤n

∣∣F (
x+ ei

)
− F (x)

∣∣ ≤ β.

Then Eµn(|F |) <∞ and, for every r ≥ 0,

µn
(
F ≥ Eµn(F ) + r

)
≤ exp

(
− r

2dβ
log

(
1 +

βdr

4cα2

))
.

Proof. We tensorize (5.18) according to Proposition 4.4 to get that for every f on
INn such that max1≤i≤n |f(x+ ei)− f(x)| ≤ λ for every x ∈ INn,

Entµn(ef ) ≤ B(λ) Eµn

( n∑
i=1

|Dif |2ef

)
(5.19)

where Dif(x) = f(x + ei) − f(x), i = 1, . . . , n. We then proceed exactly as in
Corollary 2.12. Fix F on INn satisfying the hypotheses of the statement. We may
assume, by homogeneity, that β = 1. Furthermore, arguing as in Section 2.3, we
may assume throughout the argument that F is bounded. Apply (5.19) to λF for
every λ ∈ IR. Setting H(λ) = Eµn(eλF ), we get

λH ′(λ)−H(λ) logH(λ) ≤ α2λ2B(λ)H(λ).

Therefore, with, as usual, K(λ) = 1
λ logH(λ),

K ′(λ) ≤ α2B(λ) ≤ α2c edλ.

It follows that, for every λ ≥ 0,

K(λ) ≤ K(0) + α2 c

d
(edλ − 1).
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In other words,
Eµn(eλF ) ≤ eλEµn (F )+cα2λ(edτ−1)/d (5.20)

which holds for every λ ∈ IR (changing F into −F .) We conclude with Chebyshev’s
exponential inequality. For every λ,

µn
(
F ≥ Eµn(F ) + r

)
≤ e−λr+cα2λ(edλ−1)/d.

If dr ≤ 4cα2 (for example), choose λ = r/4cα2 whereas when dr ≥ 4cα2, take

λ =
1
d

log
( dr

2cα2

)
.

The proof is easily completed.

5.3 Sharp bounds

To conclude this work, we study the sharp form of the modified logarithmic Sobolev
inequalities for Bernoulli and Poisson measures. As in Section 5.1, we start with the
Bernoulli measure. The following statement will be our basic result.

Theorem 5.6. For any function f on {0, 1}n,

Entµn
p
(ef ) ≤ pqEµn

p

((
|Df |e|Df | − e|Df | + 1

)
ef

)
.

Proof. It is similar to the proof of Theorem 5.1 and relies on the next lemma.

Lemma 5.7. The optimal constant δ > 0 in the inequality

Entµp
(ef ) ≤ δpqEµp

(ef )

provided p is arbitrary in [0, 1] and f : {0, 1} → IR is fixed is given by

δ = a ea − ea + 1

where a = |f(1)− f(0)|.

Proof One may assume that f(0) = 0 and f(1) = a. The inequality we want to
optimize becomes

p(1 + x) log(1 + x)− (1 + px) log(1 + px) ≤ δpq(1 + px) (5.21)

where x = ea − 1 ≥ 0. Consider the function U = U(p) which is the difference
between the left-hand-side and the right-hand side of (5.21). Then U(0) = U(1) = 0
and U ′′′ ≥ 0. As in the proof of Lemma 5.2, to find the best constant δ amounts to
show the inequality U ′(0) ≤ 0. But

U ′(0) = (1 + x) log(1 + x)− x− δ = a ea − ea + 1− δ
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which is the result.

According to Lemma 5.7, the theorem is proved in dimension one. We now
simply observe that the inequality may be tensorized. By the product property of
entropy, we get namely, for every f on {0, 1}n,

Entµn
p
(ef )

≤ pq

∫ n∑
i=1

(
|f(x+ ei)− f(x)|e|f(x+ei)−f(x)| − e|f(x+ei)−f(x)| + 1

)
ef(x)dµn

p (x)

(5.22)
where we recall that (e1, . . . , en) is the canonical basis of IRn and that x + ei is
understood here modulo 2. The function Q(v) =

√
ve
√

v − e
√

v + 1, v ≥ 0, is
increasing and convex on [0,∞) withQ(0) = 0. Hence, setting ai = |f(x+ei)−f(x)|,
i = 1, . . . , n,

n∑
i=1

Q(a2
i ) ≤ Q

( n∑
i=1

a2
i

)
= Q

(
|Df(x)|2

)
= |Df(x)|e|Df(x)| − e|Df(x)| + 1.

Theorem 5.6 is therefore established.

As for Corollary 5.3, the Poisson limit theorem on (5.22) yields the following
consequence for πθ.

Corollary 5.8. For any function f on IN,

Entπθ
(ef ) ≤ θEπθ

((
|Df |e|Df | − e|Df | + 1

)
ef

)
.

Corollary 5.8 is sharp in many respect. It becomes an equality for linear func-
tions of the type f(x) = cx + d, c ≥ 0. Furthermore, applying Theorem 5.6 and
Corollary 5.8 to εf with ε → 0 yields the Poincaré inequalities (5.12) and (5.13)
for µn

p and πθ respectively. This is easily verified using the fact that aea − ea + 1
behaves like 1

2a
2 for small a.

As announced, the preceding statements actually describe sharp forms of mod-
ified logarithmic Sobolev inequalities in this context. As a consequence of Theorem
5.6 and Corollary 5.8, we namely get

Corollary 5.9. For any function F on {0, 1}n with max1≤i≤n |f(x+ei)−f(x)| ≤ λ
for every x in {0, 1}n,

Entµn
p
(ef ) ≤ pq

λ eλ − eλ + 1
λ2

Eµn
p

(
|Df |2ef

)
.

The case n = 1 is just Lemma 5.7 together with the fact that λ−2[λ eλ− eλ +1]
is non-decreasing in λ ≥ 0. The corollary follows by tensorization. Similarly,

Corollary 5.10. For any function f on IN with supx∈IN |Df(x)| ≤ λ,

Entπθ
(ef ) ≤ θ

λ eλ − eλ + 1
λ2

Eπθ

(
|Df |2ef

)
.
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Again, via the central limit theorem, both Corollary 5.9 and Corollary 5.10 con-
tain the Gaussian logarithmic Sobolev inequality. Let indeed ϕ be smooth enough
on IR and apply Corollary 5.9 to

f(x1, . . . , xn) = ϕ
(x1 + · · ·+ xn − np

√
npq

)
.

Then,

max
1≤i≤n

|f(x+ ei)− f(x)| ≤ 1
√
npq

‖ϕ‖Lip → 0

as n → ∞ and the result follows since aea − ea + 1 ∼ 1
2a

2 as a → 0. The same
argument may be developed on the product form of Corollary 5.10 together with
the central limit theorem for sums of independent Poisson random variables.

Due to the sharp constant in Corollary 5.9, the tail estimate of Theorem 5.5
may be improved. We namely get instead of (5.20) in the proof of Theorem 5.5

Eµn
p
(eλF ) ≤ eλ Eµn

p
(F )+λα2(eλ−1−λ)

.

The same holds for πn
θ and this bound is sharp since, when n = 1 for example, it

becomes an equality for F (x) = x, x ∈ IN. Together with Chebyshev’s inequality
and a straightforward minimization procedure, we get, for F on {0, 1}n say, such
that, for every x = (x1, . . . , xn) ∈ {0, 1}n,

n∑
i=1

∣∣F (
x+ ei

)
− F (x)

∣∣2 ≤ α2 and max
1≤i≤n

∣∣F (
x+ ei

)
− F (x)

∣∣ ≤ β

where (e1, . . . , en) is the canonical basis of IRn, then, for every r ≥ 0,

µn
p

(
F ≥ Eµn

p
(F ) + r

)
≤ exp

(
−

( r
β

+
pqα2

β2

)
log

(
1 +

βr

pqα2

)
+
r

β

)
. (5.23)

A similar inequality thus holds for πn
θ changing pq into θ. Such an inequality may

be considered as an extension of the classical exponential inequalities for sums of
independent random variables with parameters the size and the variance of the
variables, and describing a Gaussian tail for the small values of r and a Poisson tail
for its large values (cf. (3.17). It belongs to the family of concentration inequalities
for product measures deeply investigated by M. Talagrand [Ta6]. With respect to
[Ta6], the study presented here develops some new aspects related to concentration
for Bernoulli measures and penalties [Ta6, §2].
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6. SOME APPLICATIONS TO LARGE DEVIATIONS
AND TO BROWNIAN MOTION ON A MANIFOLD

In this part, we present some applications of the ideas developed around concen-
tration and logarithmic Sobolev inequalities to large deviations and to Brownian
motion on a manifold. We show indeed how logarithmic Sobolev inequalities and
exponential integrability can be reformulated as a large deviation upper bound. We
then discuss some recent logarithmic Sobolev inequality for Wiener measure on the
paths of a Riemannian manifold. We apply it to give a large deviation bound for
the uniform distance of Brownian motion from its starting point on a manifold with
non-negative Ricci curvature.

6.1 Logarithmic Sobolev inequalities and large deviation upper bounds

On some measurable space (X,B), let (µn)n∈IN be a family of probability measures.
Consider some generalized square gradient Γ on a class A of functions on X such
that, for every f ∈ A and λ ∈ IR, Γ(λf) = λ2Γ(f) ≥ 0. Γ could be either the square
of a generalized modulus of gradient (2.3), or of some discrete one (2.9). Assume
now that, for each n ∈ IN, there exists cn > 0 such that, for every f in A,

Entµn
(ef ) ≤ cn

2
Eµn

(
Γ(f) ef

)
. (6.1)

Given two measurable sets A and B in X, set

d(A,B) = inf
x∈A,y∈B

sup
‖Γ(f)‖∞≤1

∣∣f(x)− f(y)
∣∣. (6.2)

Define V the class of all those V ∈ B such that limn→∞ µn(V ) = 1, and for every
A ∈ B, set

r(A) = sup
{
r ≥ 0; there existsV ∈ V such that d(A, V ) ≥ r

}
.

Theorem 6.1. Under (6.1), for every A ∈ B,

lim sup
n→∞

cn
2

logµn(A) ≤ −r(A)2.
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Proof. It is straighforward. Let 0 < r < r(A). Then, for some V in V, and every n,

µn(A) ≤ µn(dV ≥ r).

Denote by dV the distance to the set V , and let FV = min(dV , r). As a consequence
of Corollary 2.5,

µn

(
FV ≥ Eµn

(FV ) + r
)
≤ e−r2/2cn .

Repeating the argument leading to (1.28),

µn(A) ≤ e−µn(V )2r2/2cn

for every n. Since µn(V ) → 1 as n → ∞, the conclusion follows. Theorem 6.1 is
established.

Theorem 6.1 was used in [BA-L] to describe large deviations without topology
for Gaussian measures. The operator Γ in this case relates to the Gross-Malliavin
derivative and distance has to be understood with respect to the reproducing kernel
Hilbert space (cf. [Le3]). In this case, the set functional r(·) is easily seen to
connect with the classical rate functional in abstract Wiener spaces and, provided
a topology has been fixed, coincide with this functional on the closure of A. Let
more precisely µ be a Gaussian measure on the Borel sets B of a Banach space X
with reproducing kernel Hilbert space H. Denote by K the unit ball of H. For every
ε > 0, set µε(·) = µ(ε−1·) and define the class V as those elements V ∈ B such that
limε→0 µε(V ) = 1. In this case,

r(A) = sup
{
r ≥ 0; there existsV ∈ V such that (V + rK) ∩A = ∅

}
.

Then, for any Borel set A,

lim sup
ε→0

ε2 logµε(A) ≤ −1
2
r(A)2.

Similar lower bounds can be described, however as simple consequences of the
Cameron-Martin formula.

6.2 Some tail estimate for Brownian motion on a manifold

We have seen in (1.10) that if (Xt)t∈T is a (centered) Gaussian process such that
supt∈T |Xt| <∞, then

lim
r→∞

1
r2

log IP
{
sup
t∈T

|Xt| ≥ r
}

= − 1
2σ2

where σ = supt∈T (IE(X2
t ))1/2. In particular, if (Bt)t≥0 is Brownian motion in IRn

starting from the origin, for every T > 0,

lim
r→∞

1
r2

log IP
{

sup
0≤t≤T

|Bt| ≥ r
}

= − 1
2T

. (6.3)
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As illustrated by these notes, this result (6.3) may be seen as a consequence
of the logarithmic Sobolev inequality for Gaussian measures (cf. Corollary 2.6 and
Section 1.3). Our aim here will be show that the same method may be followed
for Brownian motion on a manifold. Theorem 6.2 below is known and follows from
the Lyons-Takeda forward and backward martingale method [Ly], [Tak]. We only
aim to show here unity of the method, deriving this large deviation estimate from
logarithmic Sobolev inequalities for heat kernel measures and Wiener measures on
path spaces developed recently by several authors. We actually do not discuss here
analysis on path spaces and only use what will be necessary to this bound. We
refer for example to [Hs2] for details and references. Once the proper logarithmic
Sobolev inequality is released, the proof of the upper bound is straightforward, and
inequality (6.6) might be of independent interest. The lower bound requires classical
volume estimates in Riemannian geometry.

Let thus M be a complete non-compact Riemannian manifold with dimension
n and distance d. Denote by (Bt)t≥0 Brownian motion on M starting from x0 ∈M .

Theorem 6.2. If M has non-negative Ricci curvature, for every T > 0,

lim
r→∞

1
r2

log IP
{

sup
0≤t≤T

d(Bt, x0) ≥ r
}

= − 1
2T

.

As a consequence,

IE
(
exp

(
α(sup0≤t≤T d(Bt, x0))2

))
<∞

for every α < 1
2T .

Proof. . We first establish the upper bound in the preceding limit. Let pt(x, y)
be the heat kernel on M , fundamental solution of the heat equation ∂

∂t = 1
2∆

where ∆ is the Laplace-Beltrami operator on M . For fixed t ≥ 0 and x ∈ M , let
νt = νt(x) be the heat kernel measure pt(x, y)dy. The following is the logarithmic
Sobolev inequality for the heat kernel measure on a Riemannian manifold with Ricci
curvature bounded below [Ba2].

Lemma 6.3. Assume that Ric ≥ −K, K ∈ IR. For every t ≥ 0 and x ∈ M , and
every smooth function f on M ,

Entνt
(f2) ≤ 2C(t) Eνt

(
|∇f |2

)
where

C(t) = CK(t) =
eKt − 1
K

(= t si K = 0).

We now perform a Markov tensorization on entropy to describe, according to
[Hs1], the logarithmic Sobolev inequality for cylindrical functions on the path space
over M . Denote by Wx0(M) the space of continuous functions x : IR+ 7→ M with
x(0) = x0, and by ν the Wiener measure on Wx0(M). A function f is called
cylindrical on Wx0(M), if, for some ϕ on Mn and fixed times 0 ≤ t1 < · · · < tn,
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f(x) = ϕ(xt1 , . . . , xtn
). (It will be called smooth if ϕ is smooth.) If f is a smooth

cylindrical function, we denote with some abuse by ∇if the gradient of ϕ with
respect to the i-th coordinate, i = 1, . . . , n. According to [Hs2], let U = (Ut)t≥0 the
horizontal lift of Brownian motion to the tangent bundle O(M) and let (φs,t)t≥s be
the Ricci flow (matrix-valued process)

d

dt
φs,t = −1

2
RicUtφs,t, φs,s = I .

The following is Lemma 4.1 in [Hs1] to which we refer for the proof.

Lemma 6.4. If Ric ≥ −K, K ∈ IR, for any smooth f on Wx0(M),

Entν(f2) ≤ 2
n∑

i=1

C(ti − ti−1)Eν

(∣∣∣∣ n∑
j=i

φ∗ti,tj
U−1

tj
∇jf

∣∣∣∣2)

where φ∗ is the transpose of φ.

We can now establish the upper bound in the limit of Theorem 6.2. Let F (x) =
max1≤i≤n d(xti

, x0), 0 ≤ t1 < · · · < tn ≤ T . Then∣∣∣∣ n∑
j=i

φ∗ti,tj
U−1

tj
∇jF

∣∣∣∣2 ≤ C(T ). (6.4)

Indeed, for some appropriate partition (Aj)1≤j≤n of Wx0(M), |∇jF | ≤ IAj for every
j. On the other hand, since Ric ≥ −K, |φ∗ti,tj

| ≤ eK(tj−ti)/2, ti < tj . Therefore, the
left-hand side in (6.4) is bounded above by

n∑
i=1

c(ti − ti−1)
n∑

j=i

eK(tj−ti)IAj =
1
K

n∑
j=1

IAj

j∑
i=1

(eK(ti−ti−1) − 1)eK(tj−ti)

=
1
K

n∑
j=1

IAj
eKtj

j∑
i=1

(e−Kti−1 − e−Kti)

=
n∑

j=1

IAj
C(tj)

≤ max
1≤j≤n

C(tj) ≤ C(T )

which is the result.
Now, apply the logarithmic Sobolev inequality of Lemma 6.4 to λF for every

λ ∈ IR. We get
Entν(eλF ) ≤ 2C(T )λ2Eν(eλF ).

We then conclude, as in Section 2.3, that for every r ≥ 0,

ν
(
F ≥ Eν(F ) + r

)
≤ e−r2/2C(T ).
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In other words,

IP
{

max
1≤i≤n

d(Bti , x0) ≥ IE
(

max
1≤i≤n

d(Bti , x0)
)

+ r
}
≤ e−r2/2c(T ). (6.5)

Since sup0≤t≤T d(Bt, x0) < ∞ almost surely, it follows from (6.5), exactly as for
(1.24), that IE(sup0≤t≤T d(Bt, x0)) <∞ and, for every r ≥ 0,

IP
{

sup
0≤t≤T

d(Bt, x0) ≥ IE
(

sup
0≤t≤T

d(Bt, x0)
)

+ r
}
≤ e−r2/2C(T ). (6.6)

When K = 0, it immediately yields that

lim sup
r→∞

1
r2

log IP
{

sup
0≤t≤T

d(Bt, x0) ≥ r
}
≤ − 1

2T
.

We are left with the lower bound that will follow from known heat kernel
minorations. We assume from now on that Ric ≥ 0. For every r ≥ 0,

IP
{

sup
0≤t≤T

d(Bt, x0) ≥ r
}
≥ IP

{
d(BT , x0) ≥ r

}
=

∫
{x;d(x,x0)≥r}

pT (x, x0)dx (6.7)

Since Ric ≥ 0,

pt(x, y) ≥
1

(2πt)n/2
e−d(x,y)2/2t

for every x, y ∈M and t > 0 [Da, p. 173]. Therefore, for every ε > 0,∫
{x;d(x,x0)≥r}

pT (x, x0)dx ≥
∫
{x;r+ε≥d(x,x0)≥r}

1
(2πT )n/2

e−d(x,x0)
2/2T

≥ 1
(2πT )n/2

e−(1+ε)2r2/2T
[
V

(
x0, (1 + ε)r

)
)− V (x0, r)

]
where V (x, s), s ≥ 0 is the Riemannian volume of the (open) geodesic ball B(x, s)
with center x and radius s in M . By the Riemannian volume comparison theorem
(cf. e.g. [Cha2]), for every x in M and 0 < s ≤ t,

V (x, t)
V (x, s)

≤
( t
s

)n

. (6.8)

Let now z on the boundary of B(x0, (1 + ε
2 )r). Since

B
(
z, ε

2 r
)
⊂ B

(
x0, (1 + ε)r

)
\B(x0, r) and B(x0, r) ⊂ B

(
z, (2 + ε

2 )r
)
,

we get by (6.8),

V (x0, r) ≤ V
(
z, (2 + ε

2 )r
)

≤
(4 + ε

ε

)n

B
(
z, ε

2 r
)

≤
(4 + ε

ε

)n[
V

(
x0, (1 + ε)r

)
− V (x0, r)

]
.
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Therefore, [
V

(
x0, (1 + ε)r

)
− V (x0, r)

]
≥

( ε

4 + ε

)n

V (x0, r).

Summarizing, for every r ≥ 0,∫
{x;d(x,x0)≥r}

pT (x, x0)dx ≥
1

(2πT )n/2
e−(1+ε)2r2/2T

( ε

4 + ε

)n

V (x0, r).

It is now a simple matter to conclude from this lower bound and (6.7) that

lim inf
r→∞

1
r2

log IP
{
d(BT , x0) ≥ r

}
≥ − 1

2T
.

Theorem 6.2 is therefore established.
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7. ON REVERSED HERBST’S INEQUALITIES

AND BOUNDS ON THE LOGARITHMIC SOBOLEV CONSTANT

In this chapter, we investigate one instance in which a concentration property,
or rather exponential integrability, implies a logarithmic Sobolev inequality. We
present the result in the context of the Boltzmann measures already considered in
Section 1.2. The argument is based on a recent observation by F.-Y. Wang [Wan]
(see also [Ai]). In a more geometric setting, Wang’s result also leads to dimension
free lower bounds on the logarithmic Sobolev constant in compact manifolds with
non-negative Ricci curvature that we review in the second paragraph. In the next
two sections, we present a new upper bound on the diameter of a compact Rieman-
nian manifold by the logarithmic Sobolev constant, the dimension and the lower
bound on the Ricci curvature. We deduce a sharp upper bound on the logarith-
mic Sobolev constant in spaces with non-negative Ricci curvature. The last section
is due to L. Saloff-Coste. It is shown how the preceding ideas may be developed
similarly for discrete models, leading to estimates between the diameter and the
logarithmic Sobolev constant.

7.1. Reversed Herbst’s inequality

As in Section 1.2, let us consider a C2 function W on IRn such that e−W is integrable
with respect to Lebesgue measure and let

dµ(x) = Z−1e−W (x)dx

where Z is the normalization factor. µ is the invariant measure of the generator
L = 1

2∆− 1
2∇W · ∇. We denote by W ′′(x) the Hessian of W at the point x.

As we have seen in Theorem 1.1 and (2.17), when, for some c > 0, W ′′(x) ≥ c Id
for every x, µ satisfies a Gaussian-type isoperimetric inequality as well as a logarith-
mic Sobolev inequality (with respect to Eµ(|∇f |2), and therefore a concentration
property. In particular, ∫

eα|x|2dµ(x) <∞

for every α < c/2. The following theorem, due to F.-Y. Wang [Wan] (in a more
general setting) is a sort of conserve to this result.
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Theorem 7.1. Assume that for some c ∈ IR, W ′′(x) ≥ c Id for every x and that
for some ε > 0, ∫ ∫

e(c−+ε)|x−y|2dµ(x)dµ(y) <∞

where c− = −min(c, 0). Then µ satisfies the logarithmic Sobolev inequality

Entµ(f2) ≤ C Eµ

(
|∇f |2

)
for some C > 0.

According to (2.17), the theorem is only of interest when c ≤ 0 (which we
assume below). The integrability assumption of the theorem is in particular satisfied
when ∫

e2(c−+ε)|x|2dµ(x) <∞.

As a consequence of Section 4 of [Ba-L], we may also conclude under the assumptions
of Theorem 7.1 to a Gaussian isoperimetric inequality

µs(∂A) ≥
√
c′ U

(
µ(A)

)
for some c′ > 0, in the sense of Section 1. In the recent work [Bob5], the Poincaré
inequality for µ is established when W ′′ ≥ 0 without any further conditions.

Theorem 7.1 allows us to consider cases when the potential W is not convex.
Another instance of this type is provided by the perturbation argument of [H-S].
Assume namely that a Boltzmann measure µ as before satisfies a logarithmic Sobolev
inequality with constant C and let dν = T−1e−V dx be such that ‖W − V ‖∞ ≤ K.
Then ν satisfies a logarithmic Sobolev inequality with constant Ce4K . To prove
it, note first that e−KT ≤ Z ≤ eKT . As put forward in [H-S], for every a, b > 0,
b log b− b log a− b+ a ≥ 0 and

Ent(f2) = inf
a>0

E(f2 log f2 − f2 log a− f2 + a).

Therefore,

Entν(f2) = inf
a>0

Eµ

(
[f2 log f2 − f2 log a− f2 + a] eW−V ZT−1

)
≤ e2KEntµ(f2)

≤ Ce2KEµ

(
|∇f |2

)
≤ Ce2KEν

(
|∇f |2eV−WTZ−1

)
≤ Ce4KEν

(
|∇f |2

)
.

(The same argument applies for the variance and Poincaré inequalities.) One odd
feature of both Theorem 7.1 and this perturbation argument is that they yield rather
poor constants as functions of the dimension (even for simple product measures) and
seem therefore of little use in statistical mechanic applications.
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Proof of Theorem 7.1. The main ingredient of the proof is the following result of
[Wan] which describes a Harnack-type inequality for the Markov semigroup (Pt)t≥0

with generator L = 1
2∆− 1

2∇W · ∇.

Lemma 7.2. Under the hypothesis of the theorem, for every bounded measurable
function f on IRn, every x, y ∈ IRn and every t > 0,

Ptf(x)2 ≤ Pt(f2)(y) ec(ect−1)−1|x−y|2

(where we agree that c(ect − 1)−1 = t−1 when c = 0).

Proof. We may assume f > 0 and smooth. Fix x, y ∈ IRn and t > 0. Let, for
every 0 ≤ s ≤ t, xs = (s/t)x+ (1− (s/t))y. Take also a C1 function h on [0, t] with
non-negative values such that h(0) = 0 and h(t) = t. Set, for 0 ≤ s ≤ t,

ϕ(s) = Ps

(
(Pt−sf)2

)
(xh(s)).

Then,

dϕ

ds
= Ps

(
|∇Pt−sf |2

)
(xh(s)) + t−1h′(s)

〈
x− y,∇Ps

(
(Pt−sf)2

)
(xh(s))

〉
≥ Ps

(
|∇Pt−sf |2

)
(xh(s))− t−1

∣∣h′(s)∣∣|x− y|
∣∣∇Ps

(
(Pt−sf)2

)
(xh(s))

∣∣.
Now, under the assumption W ′′ ≥ c, it is well-known that, for every smooth g and
every u ≥ 0,

|∇Pug| ≤ e−cu/2Pu

(
|∇g|

)
. (7.1)

For example, the condition W ′′ ≥ c may be interpreted as a curvature condition
and (7.1) then follows e.g. from [Ba2], Proposition 2.3. Therefore,

dϕ

ds
≥ Ps

(
|∇Pt−sf |2

)
(xh(s))− t−1

∣∣h′(s)∣∣|x− y| e−cs/2Ps

(∣∣∇(Pt−sf)2
∣∣)(xh(s))

≥ Ps

(
|∇Pt−sf |2 − 2t−1

∣∣h′(s)∣∣|x− y| e−cs/2Pt−sf |∇Pt−sf |
)
(xh(s)).

Using that X2 − aX ≥ −a2

4 , it follows that

dϕ

ds
≥ −t−2|x− y|2e−csh′(s)2ϕ(s).

Integrating this differential inequality yields

Ptf(x)2 ≤ Pt(f2)(y) exp
(
t−2|x− y|2

∫ t

0
e−csh′(s)2ds

)
.

We then simply optimize the choice of h by taking

h(s) = t(ect − 1)−1(ecs − 1), 0 ≤ s ≤ t.

The proof of Lemma 7.1 is complete.
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In order to prove Theorem 7.1, we will first show that there is a spectral gap
inequality for µ. To this goal, we follow the exposition in [B-L-Q]. Let f be a smooth
function on IRn, with Eµ(f) = 0. By spectral theory, it is easily seen that for every
t ≥ 0,

Eµ(f2) ≤ Eµ

(
(Ptf)2

)
+ 2tEµ

(
f(−Lf)

)
= Eµ

(
(Ptf)2

)
+ tEµ

(
|∇f |2

)
. (7.2)

Since Eµ(f) = 0, for every x,

∣∣Ptf(x)
∣∣ ≤ ∫ ∣∣Ptf(x)− Ptf(y)

∣∣dµ(y). (7.3)

Now, ∣∣Ptf(x)− Ptf(y)
)
| ≤ |x− y|

∣∣∇Ptf(z)
∣∣

for some z on the line joining x to y. By (7.1) and by Lemma 7.2 applied to |∇f |
and to the couple (z, y),∣∣∇Ptf(z)

∣∣ ≤ e−ct/2Pt

(
|∇f |

)
(z) ≤ e−ct/2Pt

(
|∇f |2

)
(y)1/2ec(ect−1)−1|z−y|2/2.

Therefore by the Cauchy-Schwarz inequality (with respect to the variable y),( ∫ ∣∣Ptf(x)− Ptf(y)
∣∣dµ(y)

)2

≤ e−ct Eµ

(
|∇f |2

) ∫
|x− y|2ec(ect−1)−1|x−y|2dµ(y).

Integrating in dµ(x), together with (7.2) and (7.3), we get

Eµ(f2) ≤ e−ct Eµ

(
|∇f |2

) ∫ ∫
|x− y|2ec(ect−1)−1|x−y|2dµ(x)dµ(y) + tEµ

(
|∇f |2

)
.

Letting t be sufficiently large, it easily follows from the hypothesis that

Eµ(f2) ≤ C Eµ

(
|∇f |2

)
(7.4)

for some finite constant C.
It would certainly be possible to prove the logarithmic Sobolev inequality in

the same spirit. There is however a simpler route via hypercontractivity which,
together with the spectral gap, immediately yields the conclusion. Let us consider
again Wang’s inequality of Lemma 7.2. Let 1 < θ < 2 and write, for every f
(bounded to start with) and every t > 0,

Eµ

(
|Ptf |2θ

)
= Eµ

(
|Ptf |θ

(
|Ptf |2

)θ/2
)

≤
∫ ∫ ∣∣Ptf(x)

∣∣θ(Pt(f2)(y)
)θ/2eθc(ect−1)−1|x−y|2/2dµ(x)dµ(y).

By Hölder’s inequality, we get that

‖Ptf‖2θ ≤ N
2−θ
4θ ‖f‖2 (7.5)
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where
N =

∫ ∫
eθ(2−θ)−1c(ect−1)−1|x−y|2dµ(x)dµ(y).

Provided θ is sufficiently close to 1 and t large enough, N is finite by the hypothesis.
Therefore, Pt satisfies a weak form of hypercontractivity which, as is well-known, is
equivalent to a defective logarithmic Sobolev inequality of the type (2.26). We get
namely from (7.5) (see [Gr1] or [DeS]),

Entµ(f2) ≤ θt

θ − 1
Eµ

(
|∇f |2

)
+

2− θ

2(θ − 1)
logN Eµ(f2) (7.6)

for every smooth f . We are left to show that such a defective logarithmic Sobolev
inequality may be turned into a true logarithmic Sobolev inequality with the help
of the spectral gap (7.4). Again, this is a classical fact that relies on the inequality
(cf. [Ro2], [De-S]),

Entµ(f2) ≤ Entµ

(
(f − Eµ(f))2

)
+ 2 Varµ(f). (7.7)

Inequality (7.6) applied to f − Eµ(f) together with (7.7) and (7.4) complete the
proof of the theorem.

Note that N appears in (7.6) in the defective term as logN whereas in the
Poincaré inequality (7.4), it appears as N (or some power of N). This is very
sensible for product measures for which usually N is exponential in the dimension.

7.2 Dimension free lower bounds

In this section, we adopt a more geometric point of view and concentrate on lower
bounds of the logarithmic Sobolev constant of a (compact) Riemannian manifold
M with non-negative Ricci curvature in term of the diameter D of M .

Given some probability measure µ on (X,B), and some energy functional E on
a class A of functions, we introduced in Section 2.1 the definitions of spectral gap
(or Poincaré) and logarithmic Sobolev inequalities. Let us now agree to denote by
λ1 the largest constant λ > 0 such that for every f in A,

λVarµ(f) ≤ E(f),

and by ρ0 the largest ρ > 0 such that for every f in A,

ρEntµ(f2) ≤ 2 E(f).

Although it is usually the case, we cannot always ensure, at this level of generality,
that λ1Var(f) ≤ E(f) and ρ0Ent(f2) ≤ 2E(f) for every f ∈ A. The estimates we
present below are proved using arbitrary λ < λ1 and ρ < ρ0. This will be mostly
understood. By Proposition 2.1, one always has that ρ0 ≤ λ1. Emphasis has been
put in the last years on identifying the logarithmic Sobolev constant and comparing
it to the spectral gap.
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Let M be a complete connected Riemannian manifold with dimension n and
finite volume V (M), and let dµ = dv

V (M) be the normalized Riemannian measure
on M . Compact manifolds are prime examples. Let λ1 and ρ0 be respectively the
spectral gap and the logarithmic Sobolev constant of µ with respect to Dirichlet
form of the Laplace-Beltrami operator ∆ (rather than 1

2∆ here) on M , that is

E(f) = Eµ

(
f(−∆f)

)
= Eµ

(
|∇f |2

)
for every smooth enough function f on M . If M is compact, it is known that
0 < ρ0 ≤ λ1 [Ro1]. Let D be the diameter of M if M is compact.

It is known since [Li], [Z-Y] that when M has non-negative Ricci curvature,

λ1 ≥
π2

D2
. (7.8)

Since λ1 ≥ ρ0, it has been an open question for some time to prove that a similarly
lower bound holds for the logarithmic Sobolev constant ρ0. This has been proved
recently by F.-Y. Wang [Wan] on the basis of his Lemma 7.2. Following [B-L-Q],
we present here a simple proof of a somewhat stronger result.

Theorem 7.3. Let M be a compact Riemannian manifold with diameter D and
non-negative Ricci curvature, and denote by λ1 and ρ0 the spectral gap and the
logarithmic Sobolev constant. Then

ρ0 ≥
λ1

1 + 2D
√
λ1

.

In particular,

ρ0 ≥
π2

(1 + 2π)D2
.

Proof. We use Lemma 7.2 in this geometric context. Under the curvature assump-
tion Ric ≥ 0, it yields similarly that if (Pt)t≥0 is the heat semigroup on M (with
generator ∆), for every f on M , every x, y ∈M and t > 0,

Ptf(x)2 ≤ Ptf
2(y) ed(x,y)2/2t

where d(x, y) is the geodesic distance from x to y. In particular,

‖Pt‖2→∞ ≤ eD2/4t.

By symmetry,
‖Pt‖1→∞ ≤ ‖Pt/2‖1→2

‖Pt/2‖2→∞ ≤ eD2/t. (7.9)

To prove the theorem, we then simply follow the usual route based on the heat
semigroup as developed in [Ba1], and already described in our proof of the Gaussian
logarithmic Sobolev inequality (2.15). Fix f > 0 smooth and t > 0. We write

Eµ(f log f)− Eµ(Ptf logPtf) = −
∫ t

0

Eµ

(
∆Psf logPsf

)
ds

=
∫ t

0

Eµ

( |∇Psf |2

Psf

)
ds.
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Now since Ric ≥ 0, |∇Psf | ≤ Ps(|∇f |) (cf. e.g. [Ba2]). Moreover, by the Cauchy-
Schwarz inequality,

Ps

(
|∇f |)2 ≤ Ps

( |∇f |2
f

)
Psf

so that

Eµ(f log f)− Eµ(Ptf logPtf) ≤
∫ t

0

Eµ

(
Ps

( |∇f |2
f

))
ds = tEµ

( |∇f |2
f

)
.

Now, by (7.9),

Eµ(Ptf logPtf) ≤ Eµ(f) log Eµ(f) +
D2

t
Eµ(f)

(since µ is invariant for Pt). Therefore, for every t > 0,

Entµ(f) ≤ D2

t
Eµ(f) + tEµ

( |∇f |2
f

)
.

Changing f into f2,

Entµ(f2) ≤ D2

t
Eµ(f2) + 4tEµ

(
|∇f |2

)
. (7.10)

As we know, this defective logarithmic Sobolev inequality may then be turned into
a true logarithmic Sobolev inequality with the help of λ1 using (7.7). That is, (7.10)
applied to f − Eµ(f) yields together with (7.7)

Entµ(f2) ≤
(D2

t
+ 2

)
Varµ(f) + 4tEµ

(
|∇f |2

)
≤

(D2

λ1t
+

2
λ1

+ 4t
)
Eµ

(
|∇f |2

)
.

Optimizing in t > 0, the first claim of Theorem 7.3 follows. The second claim is
then a consequence of (7.8). The proof is complete.

Similar results may be obtained in manifolds with Ricci curvature bounded
below. Formulae are however somewhat more complicated (see [Wan], [B-L-Q]).

7.3 Upper bounds on the logarithmic Sobolev constant

We pursue our brief investigation on the spectral gap and logarithmic Sobolev con-
stant by means of upper bounds. This question has mainly be raised in the frame-
work of a Markov generator with associated Dirichlet form E . It covers in particular
Laplace-Beltrami and second-order elliptic operators on manifolds. Let us briefly
review a few examples, some of them already alluded to in the previous chapters.

Spectral gaps and logarithmic Sobolev constants coincide for Gaussian measures
by (2.15) and (2.16). A first example for which ρ0 < λ1 was brought in light in
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the paper [K-S] with the Laguerre generator with invariant measure the one-sided
exponential distribution. As we have seen indeed in (4.4) and (4.5), ρ0 = 1

2 < 1 = λ1.
On the two-point space {0, 1} with measure µp({1}) = p and µp({0}) = q = 1 − p
and energy

E(f) = Eµp

(
|Df |2

)
=

∣∣f(1)− f(0)
∣∣2,

we have seen ((5.2), (5.3)) that λ1 = 1/pq whereas

ρ0 =
2
pq

p− q

log p− log q
.

In particular, ρ0 = λ1 only in the symmetric case p = q = 1
2 . Although rather

recent, this example clearly indicates that, in general ρ0 < λ1. As discussed in Part
5, Poisson measures may be considered as an extreme case for which λ1 is strictly
positive while ρ0 = 0. On the other hand, by (2.15) and (2.16), ρ0 = λ1 = 1 for the
canonical Gaussian measure on IRn.

We turn to another family of examples. Let M be a smooth complete connected
Riemannian manifold with dimension n and finite volume V (M), and let dµ =

dv
V (M) be the normalized Riemannian measure on M . Compact manifolds are prime
examples. Let λ1 and ρ0 be respectively the spectral gap and the logarithmic Sobolev
constant of µ with respect to Dirichlet form of the Laplace-Beltrami ∆ operator on
M . We have seen that when M is compact, 0 < ρ0 ≤ λ1. When Ric ≥ R > 0,
it goes back to A. Lichnerowicz (cf. [Cha1]) that λ1 ≥ Rn where Rn = R

1− 1
n

with
equality if and only if M is a sphere (Obata’s theorem). This lower bound has been
shown to hold similarly for the logarithmic Sobolev constant by D. Bakry and M.
Emery [Ba-E] so that λ1 ≥ ρ0 ≥ Rn. The case of equality for ρ0 is a consequence of
Obata’s theorem due to an improvement of the preceding by O. Rothaus [Ro2] who
showed that when M is compact and Ric ≥ R (R ∈ IR),

ρ0 ≥ αnλ1 + (1− αn)Rn (7.11)

where αn = 4n/(n + 1)2. As examples, ρ0 = λ1 = n on the n-sphere [M-W]. On
the n-dimensional torus, λ1 = ρ0 = 1. The question whether ρ0 < λ1 in this setting
has been open for some time until the geometric investigation by L. Saloff-Coste
[SC1]. He showed that actually the existence of a logarithmic Sobolev inequality
in a Riemannian manifold with finite volume and Ricci curvature bounded below
forces the manifold to be compact whereas it is known that there exists non-compact
manifolds of finite volume with λ1 > 0. In particular, there exist compact manifolds
of constant negative sectional curvature with spectral gaps uniformly bounded away
from zero, and arbitrarily large diameters (cf. [SC1]. This yield examples for which
the ratio ρ0/λ1 can be made arbitrarily small.

Our first result here is a significant improvement of the quantitative bound of
of [SC1].

Theorem 7.4. Assume that Ric ≥ −K, K ≥ 0. If ρ0 > 0, then M is compact.
Furthermore, if D is the diameter of M , there exists a numerical constant C > 0
such that

D ≤ C
√
n max

( 1
√
ρ
0

,

√
K

ρ0

)
.
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It is known from the theory of hypercontractive semigroups (cf. [De-S]) that
conversely there exists C(n,K, ε) such that

ρ0 ≥
C(n,K, ε)

D

when λ1 ≥ ε.
The proof of [SC1] uses refined bounds on heat kernel and volume estimates.

A somewhat shorter proof is provided in [Le2], still based on heat kernel. We
present here a completely elementary argument based on the Riemannian volume
comparison theorems and the concentration properties behind logarithmic Sobolev
inequalities described in Part 2.

Proof. As a consequence of Corollary 2.6 and (2.25), for every measurable set A in
M and every r ≥ 0,

1− µ(Ar) ≤ e−ρ0µ(A)2r2/2 (7.12)

where Ar = {x ∈ M,d(x,A) < r}. This is actually the only property that will be
used throughout the proof.

We show first that M is compact. We proceed by contradiction and assume
that M is not compact. Denote by B(x, u) the geodesic ball in M with center x
and radius u ≥ 0. Choose A = B(x0, r0) a geodesic ball such that µ(A) ≥ 1

2 . By
non-compactness (and completeness), for every r ≥ 0, we can take z at distance
r0 + 2r from x0. In particular, A ⊂ B(z, 2(r0 + r)). By the Riemannian volume
comparison theorem [Cha2], for every x ∈M and 0 < s < t,

V (x, t)
V (x, s)

≤
( t
s

)n

e
√

(n−1)Kt (7.13)

where we recall that V (x, u) is the volume of the ball B(x, u) with center x and
radius u ≥ 0. Therefore,

V (z, r) ≥
( r

2(r0 + r

)n

e−2(r+r0)
√

(n−1)K V
(
z, 2(r0 + r)

)
≥ 1

2

( r

2(r0 + r)

)n

e−2(r0+r)
√

(n−1)K V (M).

Since B(z, r) is included in the complement of Ar = B(x0, r0+r), we get from (7.12)

1
2

( r

2(r0 + r)

)n

e−2(r0+r)
√

(n−1)K ≤ e−ρ0r2/8 (7.14)

which is impossible as r →∞.
Thus M is compact. Denote by D be its diameter. Let x0 ∈ M and let

B(x0,
D
8 ). We distinguish between two cases. If µ(B(x0,

D
8 )) ≥ 1

2 , take A =
B(x0,

D
8 ). By definition of D, we may choose r = r0 = D

8 in (7.14) to get

1
2
· 1
4n

e−
√

(n−1)KD/2 ≤ e−ρ0D2/512.
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If µ(B(x0,
D
8 )) < 1

2 , apply (7.11) to A the complement of B(x0,
D
8 ). The ball

B(x0,
D
16 ) is included in the complement of AD/16. Moreover, by (7.13),

V
(
x0,

D

16

)
≥ 1

16n
e−
√

(n−1)KD V (M).

Therefore, by (7.12) with r = D
16 ,

1
16n

e−
√

(n−1)KD ≤ e−ρ0D2/2048.

In both cases,
ρ0D

2 − C
√

(n− 1)KD − Cn ≤ 0

for some numerical constant C > 0. Hence

D ≤
C

√
(n− 1)K +

√
C2(n− 1)K + 4Cρ0n

2ρ0

and thus

D ≤
C

√
(n− 1)K +

√
Cρ0n

ρ

which yields the conclusion. The theorem is established.

Note that the proof shows, under the assumption of Theorem 7.4, that M is
compact as soon as

lim sup
r→∞

−1
r

log
[
1− µ

(
B(x, r)

)]
= ∞

for some (or all) x ∈M . In particular λ1 > 0 under this condition. This observation
is a kind of converse to (2.36).

Corollary 7.5. Let M be a compact Riemannian manifold with dimension n
and non-negative Ricci curvature. Then

ρ0 ≤
Cn

D2

for some numerical constant C > 0.

Corollary 7.5 has to be compared to Cheng’s upper bound on the spectral gap
[Che] of compact manifolds with non-negative Ricci curvature

λ1 ≤
2n(n+ 4)

D2
(7.15)

so that, generically, the difference between the upper bound on λ1 and ρ0 seems to
be of the order of n. Moreover, it is mentioned in [Che] that there exists examples
with λ1 ≈ n2/D2. Although we are not aware of such examples, they indicate
perhaps that both Rothaus’ lower bound (7.11) and Corollary 7.5 could be sharp.
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Note also that (7.11) together with Corollary 7.5 allows us to recover Cheng’s upper
bound on λ1 of the same order in n. Actually, the proof of Theorem 7.4 together
with the concentration property under the spectral gap (Proposition 2.13) would
also yield Cheng’s inequality (7.15) up to a numerical constant.

Corollary 7.5 is stated for (compact) manifolds without boundary but it also
holds for compact manifolds of non-negative Ricci curvature with convex boundary
(and Neuman’s conditions). In particular, this result applies to convex bounded
domains in IRn equipped with normalized Lebesgue measure. If we indeed closely
inspect the proof of Theorem 7.4 in the latter case for example, we see that what is
only required is (7.12), that holds similarly, and the volume comparisons. These are
however well-known and easy to establish for bounded convex domains in IRn. In
this direction, it might be worthwhile mentioning moreover that the first non-zero
Neumann eigenvalue λ1 of the Laplacian on radial functions on the Euclidean ball B
in IRn behaves as n2. It may be identified indeed as the square of the first positive
zero κn of the Bessel function Jn/2 of order n/2 (cf. [Cha1] e.g.). (On a sphere
of radius r, there will be a factor r−2 by homogeneity.) In particular, standard
methods or references [Wat] show that κn ≈ n as n is large. Denoting by ρ0 the
logarithmic Sobolev constant on radial functions on B, a simple adaption of the
proof of Theorem 7.4 shows that ρ0 ≤ Cn for some numerical constant C > 0.
Actually, ρ0 is of the order of n and this may be shown directly in dimension one by
a simple analysis of the measure with density nxn−1 on the interval [0, 1]. We are
indebted to S. Bobkov for this observation. One can further measure on this example
the difference between the spectral gap and the logarithmic Sobolev constant as the
dimension n is large. (On general functions, λ1 and ρ0 are both of the order of n,
see [Bob5].)

As another application, assume Ric ≥ R > 0. As we have seen, by the Bakry-
Emery inequality [Ba-E], ρ0 ≥ Rn where Rn = R

1− 1
n

. Therefore, by Corollary 7.5,

D ≤ C

√
n− 1
R

.

Up to the numerical constant, this is just Myers’ theorem on the diameter of a

compact manifold D ≤ π
√

n−1
R (cf. [Cha2]). This could suggest that the best

numerical constant in Corollary 7.5 is π2.

7.4 Diameter and logarithmic Sobolev constant for Markov chains

As in Section 2.1, let K(x, y) be a Markov chain on a finite state space X with
symmetric invariant probability measure µ. As before, let ρ0 be the logarithmic
Sobolev constant of (K,µ) defined as the largest ρ > 0 such that

ρEntµ(f2) ≤ 2E(f, f)

for every f on X. Recall that here

E(f, f) =
1
2

∑
x,y∈X

(
f(x)− f(y)

)2
K(x, y)µ

(
{x}

)
.
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Recall also we set

|||f |||2∞ = sup
{
E(gf, f)− 1

2 E(g, f2); ‖g‖1 ≤ 1
}

which, as we have seen, takes here the form

|||f |||2∞ =
1
2

sup
x∈X

∑
y∈X

(
f(x)− f(y)

)2
K(x, y).

As a consequence of Corollary 2.4, for every F such that |||F |||∞ ≤ 1,

µ
(
F ≥ Eµ(F ) + r

)
≤ e−ρ0r2/4 (7.16)

for every r ≥ 0.
The combinatoric distance d associated with the graph with vertex-set X and

edge-set {(x, y) : K(x, y) > 0} can be defined as the minimal number of edges one
has to cross to go from x to y. Equivalently,

d(x, y) = sup
‖∇f‖∞≤1

[
f(x)− f(y)

]
where

‖∇f‖∞ = sup
{∣∣f(x)− f(y)

∣∣;K(x, y) > 0
}
.

Recall, from Section 2.1, that since
∑

y K(x, y) = 1, |||f |||2∞ ≤ 1
2 ‖∇f‖

2
∞. From

(7.16) and (1.28), it then follows that for every set A with µ(A) > 0,

µ(Ar) ≥ 1− e−ρ0µ(A)2r2/2 (7.17)

where Ar = {x; d(x,A) < r}. We are thus exactly in the same setting as in the
proof of Theorem 7.4. Denoting by D the diameter of X for the distance d, we can
state the following consequence.

Proposition 7.6. If µ is nearly constant, that is if there exists C such that,
for every x, µ({x}) ≤ Cminy∈X µ({y}), then

ρ0 ≤
32 log(C|X|)

D2

where |X| is the cardinal of X.

Proof. Consider two points x, y ∈ X such that d(x, y) = D. Let B the ball with
center x and radius D/2. Let A be the set with the largest measure amongst B and
Bc. Then µ(A) ≥ 1/2. Observe that either x or y is in the complement (Ar)c of
Ar with r = D/2. Indeed, if A = B, then (Ar)

c = {z; d(x, z) ≥ D} and y ∈ (Ar)
c

because d(x, y) = D; if A = Bc, x ∈ (Ar)
c since d(x,A) > D/2. Hence (7.17) yields

min
z∈X

µ
(
{z}

)
≤ e−ρ0D2/32 .
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Since, by the hypothesis on µ, minz∈X µ({z}) ≥ (C|X|)−1, the conclusion follows.

Let us now survey a number of examples at the light of Proposition 7.6.
Consider the first the hypercube {0, 1}n with K(x, y) = 1/n if x, y differ by

exactly one coordinate and K(x, y) = 0 otherwise. The reversible measure is the
uniform distribution and ρ0 = 2/n. Proposition 7.6 tells us that ρ0 ≤ 23/n.

Consider the Bernoulli-Laplace model of diffusion. This is a Markov chain
on the n-sets of an N -set with n ≤ N/2. If the current state is an n-set A, we
pick an element x at random in A, an element y at random in Ac and change
A to B = (A \ {x}) ∪ {y}. The kernel K is given by K(A,B) = 1/[n(N − n)] if
|A∩B| = n−2 and K(A,B) = 0 otherwise. The uniform distribution π(A) =

(
N
n

)−1

is the reversible measure. Clearly, D = n. Hence

ρ0 ≤
32 log

(
N
n

)
n2

.

In the limit case, n = N/2, this yields ρ0 ≤ C/n which is the right order of magnitude
[L-Y].

Let now the chain random transpositions on the symmetric group Sn. Here,
K(σ, θ) = 2/[n(n− 1)] if θ = στ for some transposition τ and K(σ, θ) = 0 otherwise
and π ≡ (n!)−1, The diameter is D = n − 1 and one knows that ρ0 is of order
1/n log n [D-SC], [L-Y]. Proposition 7.6 only gives here ρ0 ≤ 32 log(n!)/(n− 1)2. It
might be worthile observing that in this example, ρ0 is of order 1/n log n while it
has been shown by B. Maurey [Mau1] that concentration is satisfied at a rate of the
order of 1/n.

Consider a N -regular graph with N fixed. Let K(x, y) = 1/N if they are
neighbors and K(x, y) = 0 otherwise. Then µ({x}) = 1/|X|. Assume that the
number N(x, t) of elements in the ball B(x, t) with center x and radius t in the
combinatoric metric d satisfies

∀x ∈ X, ∀ t > 0, N(x, 2t) ≤ CN(x, t). (7.18)

Fix x, y ∈ X such that d(x, y) = D. Set A = B(x,D/2), and let 0 < r < D/4.
Then B(y,D/4) is contained in the complement of Ar. Now, by our hypothesis,
N(x,D/2) ≥ C−1|X| and N(y,D/4) ≥ C−2|X| so that

1− µ(Ar) ≥ C−2, µ(A) ≥ C−1.

Reporting in (7.17), we obtain

ρ0 ≤
64C2 logC

D2
.

For N and C fixed, this is the right order of magnitude in the class of Cayley
graphs of finite groups satisfying the volume doubling condition (7.18). See [D-SC,
Theorem 4.1].
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As a last example, consider anyN -regular graph on a finite setX. LetK(x, y) =
1/N if they are neighbors and K(x, y) = 0 otherwise. Then µ({x}) = 1/|X| and
|X| ≤ ND+1 (at least if N ≥ 2). Thus, we get from Proposition 7.6 that

ρ0 ≤
64 logN

D
.

Compare with the results of [D-SC] and Section 7.3. This is, in a sense, optimal
generically. Indeed, if |X| ≥ 4, one also have the lower bound [D-SC]

ρ0 ≥
λ

2D logN

where 1 − λ is the second largest eigenvalue of K. There are many known fami-
lies of N -regular graphs (N fixed) such that |X| → ∞ whereas λ ≥ ε > 0 stays
bounded away from zero (the so-called expanders graphs). Moreover graphs with
this property are “generic” amongst N -regular graphs [Al].
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