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1. The General Plan

This lecture series will be devoted to duality phenomena in Convex Geometry.
The notion of duality is one of the most important notions in mathematics. It is

playing a central role in Functional Analysis and Convex Geometry. It is hard to
believe, but there are still a number of ”classical” open problems tightly connected to
this notion. Our main goal here is to discuss some of these problems.

We start with the review of some classical background. In this lecture series we will
frequently use theorems, facts and general techniques from [Ba4, Ga1, Ga2, K5, KY,
MS, Pi, Sc2, Web]. In first lectures we will refresh some facts from Convex Geometry.
In particular we will remind F. John Theorem and Brunn-Minkowski Inequality.

Next, we will discuss the notion of duality and the volume product, we will also prove
Santalo inequality. We continue our discussion with the Mahler conjecture, asking about
the minimum of the volume product of a convex body and its polar. The conjecture
is open (even in the three-dimensional case) since 1939, and has been confirmed only
for some particular classes of bodies. We will present solution to two-dimensional case
and the case of absolutely symmetric bodies. We will also discuss some new results and
show that the unit cube is the local minimizer for the volume product

After that we will give the definition of Zonotopes and Zonoids. This class would be
one our main playground to check different conjectures for correctness, for example, we
will verify the Mahler’s conjecture for the case of Zonoids.

Harmonic Analysis, is an extremely helpful tool to understand behavior of volume
under duality: we will discuss Koldobsky’s method of representing the Spherical Radon
and the Cosine transforms using the language of the Fourier transform of distributions.
As an application we will present results on the local characterization of Zonoids.

We will also talk about questions of unique determination of convex bodies from the
volumes of the projections and sections. In particular, we will discuss recent solutions
of problems of Bonnensen and Klee.

We will finish the lectures by presenting Nazarov’s proof of the Bourgain-Milman
inequality, which is an isomorphic version of the Mahler conjecture.

In many cases, writing down all details would take us away from the main point.
Therefore, when the details become too tedious, we prefer to provide the reader with the
exact reference to the book or the paper, where the rigorous proof of the corresponding
fact can be found.

2



To help the reader with the understanding of the material, we include in the text
many exercises of different difficulty.

2. Short Introduction

2.1. Main definitions and facts. As usual, Sn−1 denotes the unit sphere, Bn
2 the unit

Euclidean ball, 0 is the origin, and | · | the norm in Euclidean n-space Rn. If x, y ∈ Rn,
then x · y is the inner product of x and y and [x, y] denotes the line segment with
endpoints x and y.

If X is a set, dim(X) is its dimension, that is, the dimension of its affine hull, and
∂X is its boundary. A set is o-symmetric if it is centrally symmetric, with center at the
origin.

If X and Y are sets in Rn, then

X + Y = {x+ y : x ∈ X, y ∈ Y }
is the Minkowski sum of X and Y .

A body is a compact set equal to the closure of its interior. A body K ⊂ Rn is called
star-shaped if every straight line through the origin intersects the boundary of K at
exactly two points different from the origin and the Minkowski functional of K:

‖x‖K = min{a > 0 : x ∈ aK},
is a continuous function on Rn. A radial function ρK(x) : Rn \ {0} → R+ is defined by

ρ(x) = ‖x‖−1
K .

For k dimensional set A ⊂ Rn we write |A| for k-dimensional Lebesgue measure in
Rn, k = 1, . . . , n. If K is a k-dimensional body in Rn, then we refer to |K| as its volume.

A set K ⊂ Rn is called convex, if [x, y] ⊂ K, for all x, y ∈ K. A set in Rn is called a
convex body if it is convex and compact with nonempty interior. We denote by conv(A)
the closed convex hull of a set A ⊂ Rn, and conv(A,B,C, . . . ) the closed convex hull of
A ∪B ∪ C, . . . .
Exercise 2.1. Show that K is a convex symmetric body iff ‖x‖K is a norm on Rn.
Show that x ∈ K iff ‖x‖K ≤ 1.

Exercise 2.2. Show that if K and L are star-shaped bodies, then K ⊂ L iff ‖x‖K ≥
‖x‖L, or, equivalently ρK(x) ≤ ρL(x).

We denote by

Bn
∞ = {x ∈ Rn : |xi| ≤ 1} and Bn

p = {x ∈ Rn :
n∑
i=1

|xi|p ≤ 1}, for 1 ≤ p <∞.

Exercise 2.3. Show that

|Bn
p | =

(
2Γ
(

1 + 1
p

))n
Γ(1 + n

p
)

,

also show that |Sn−1| = n|Bn
2 |. Hint: Use two ways to compute

∫
Rn e

−∑ |xi|pdx, see [Pi]
page 11.
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The set of convex bodies is ”huge” so for many problems we would like to make it
”smaller”, and to study convex bodies up to linear transforms.

Definition 2.1. Consider K,L ⊂ Rn, symmetric convex bodies. Then Banach-Mazur
distance between those bodies is defined by

dBM(K,L) = min{d > 0 : K ⊂ TL ⊂ dK;T ∈ GL(n)}.
Exercise 2.4. Show that dBM(K,L) ≤ dBM(K,M)dBM(M,L).

We will frequently use the following theorem, which will help us to approximate a
convex Symmetric body by an Ellipsoid. One of the consequences of the theorem below
is that the set of convex (symmetric) bodies in Rn is compact with respect to the
Banach-Mazur distance.

Theorem 2.1. (F. John) For any convex symmetric body K ⊂ Rn, we get

dBM(K,Bn
2 ) ≤ √n.

Proof. Let E be an ellipsoid of maximal volume inscribed in K, i.e. E ⊂ K and

|E| = max{|D| : Dis an Ellipsoid and D ⊂ K}.
Our goal is to show that K ⊂ √nE. The Banach-Mazur distance is invariant under
linear transformations, so we may assume that E = Bn

2 . If K 6⊂ √nBn
2 , then there

exists p ∈ K so that |p| > √n. Applying convexity and symmetry of K we get that

D = conv (Bn
2 , p,−p) ⊂ K.

We would like to show that D (and thus K) contains an ellipsoid of volume large then
Bn

2 , that would contradict an assumption that Bn
2 is an ellipsoid of maximal volume

in K. Without loss of generality we may assume that p = (d, 0, . . . , 0) and d >
√
n.

Consider an ellipsoid

E ′ = {x ∈ Rn :
x2

1

a2
+

n∑
i=2

x2
i

b2
≤ 1}.

Then |E ′| = abn−1|Bn
2 | and if a2

d2
+ (1− 1

d2
)b2 ≤ 1, then E ′ ⊂ D. Indeed, E ′ and D are

rotation invariant around x1, thus to check E ′ ⊂ D we need to make two dimensional
calculation in (x1, x2).

It is easy to check that a = d/
√
n, b =

√
1− 1/n/

√
1− 1/d2 satisfies this last

condition and abn−1 > 1. �

Exercise 2.5. Prove that dBM(Bn
∞, B

n
2 ) =

√
n.

Exercise 2.6. Prove that min
x∈Rn

dBM(K + x,Bn
2 ) ≤ n, for K ⊂ Rn, where K is convex,

but not necessary symmetric.

Definition 2.2. The support function hK : Rn → R+ of a convex body K ⊂ Rn is
defined by

hK(x) = max
y∈K

x · y.

Lemma 2.1. If K and L are convex bodies in Rn then

hK+L = hK + hL.
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Exercise 2.7. Prove Lemma 2.1

Exercise 2.8. Show that for a convex body K, x ∈ K iff for all y ∈ Rn we have
x · y ≤ hK(y). Also prove that if K, L are convex bodies then K ⊂ L iff hK(x) ≤ hL(x),
for all x ∈ Rn.

Exercise 2.9. Consider a convex body K ⊂ Rn. Show that ∇hK(ξ) exists for almost
all ξ ∈ Sn−1 and, moreover, if it exists, then ∇hK(ξ) ∈ ∂K and ξ is a normal vector to
K at ∇hK(ξ).

2.2. Brunn-Minkowski inequality.

Theorem 2.2. (Brunn-Minkowski inequality) Let, A,B be two measurable, non-empty
sets in Rn. Then,

(1) |A+B|1/n ≥ |A|1/n + |B|1/n.
Equivalently, for all λ ∈ [0, 1]

(2) |λA+ (1− λ)B| ≥ |A|λ|B|1−λ, for all λ ∈ [0, 1].

Proof. We will sketch the proof of (1) due to Lusternik [Lus]. We refer to [Ga2] for other
proofs. We first consider the case when A,B are n-dimensional boxes. The volume is
invariant under the translation, so we may assume that one of the vertices of A and B
is the origin:

A =
n∏
i=1

[0, ai] and B =
n∏
i=1

[0, bi]

Thus A+B =
n∏
i=1

[0, ai + bi]. But then

( |A|
|A+B|

) 1
n

+

( |B|
|A+B|

) 1
n

=

(
n∏
i=1

ai
ai + bi

) 1
n

+

(
n∏
i=1

bi
ai + bi

) 1
n

≤ 1

n

(
n∑
i=1

ai
ai + bi

)
+

1

n

(
n∑
i=1

bi
ai + bi

)
= 1.

Now suppose that A is the union of m1 disjoint rectangular boxes and B is the union
of m2 disjoint rectangular boxes. We will prove (1) by the induction on the number
m1 + m2. The case m1 + m2 = 2 is checked so we may assume m1 + m2 > 2 and that
A contains at least 2 disjoint boxes.

Again, (1) is invariant under the translation. So we may assume that at least two
boxes of A is separated by the coordinate plane xn = 0. Let A+ = {x ∈ A : xn ≥ 0}
and A− = {x ∈ A : x ≤ 0}. By the construction, the number of boxes in each A+ and
A− is smaller than m1.

Next, translate B so that

|A+|
|A| =

|B+|
|B| and, thus

|A−|
|A| =

|B−|
|B| ,
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where B+ = {x ∈ B : xn ≥ 0} and B− = {x ∈ B : x ≤ 0}. Notice that the sets
A+ +B+ and A− +B− are disjoint (up to a set of volume zero) and(

A+ +B+
)
∪
(
A− +B−

)
⊂ A+B.

Moreover, we can apply the induction hypothesis to A+ +B+ and A− +B− to get

|A+B| ≥ |A+ +B+|+ |A− +B−| ≥
(
|A+|1/n + |B+|1/n

)n
+
(
|A−|1/n + |B−|1/n

)n
= |A+|

(
1 +
|B+|1/n
|A+|1/n

)n
+ |A−|

(
1 +
|B−|1/n
|A−|1/n

)n
= |A+|

(
1 +
|B|1/n
|A|1/n

)n
+ |A−|

(
1 +
|B|1/n
|A|1/n

)n
=
(
|A|1/n + |B|1/n

)n
.

�

Exercise 2.10. Finish the proof of Brunn-Minkowski inequality, i.e. show that it is
enough to prove (1) for A and B that are disjoint union of boxes.

Exercise 2.11. Note that (2) easily follows from (1). Prove that the reverse direction
is, unexpectedly, also true. Hint: use (2) with A = K/|K|1/n, B = L/|L|1/n and
λ = |K|1/n/(|K|1/n + |L|1/n).

The Brunn-Minkowski inequality gives a number of properties of convex bodies that
will be extremely useful for us. We will give just a few examples of such applications.

For direction ξ ∈ Sn−1, we denote by ξ⊥ the hyperplane perpendicular to ξ, i.e.

ξ⊥ = {x ∈ Rn : x · ξ = 0}.
Definition 2.3. Consider a body K ⊂ Rn, and a direction ξ ∈ Sn−1 then we define a
function AK,ξ(t) : R→ R+ such that

AK,ξ(t) = |K ∩ {ξ⊥ + tξ}|.

Corollary 2.1. (Brunn’s Theorem) Consider a convex body K ⊂ Rn, then A
1

n−1

K,ξ (t)
is concave on its support. Moreover, if K is symmetric then AK,ξ(0) ≥ AK,ξ(t), for all
t ∈ R.

Proof. It is enough to note that from convexity of the body K we get

λ
(
K ∩ {ξ⊥ + t1ξ}

)
+ (1− λ)

(
K ∩ {ξ⊥ + t2ξ}

)
⊂
(
K ∩ {ξ⊥ + [λt1 + (1− λ)t2]ξ}

)
.

�

Exercise 2.12. Is it possible to guarantee the convexity of K from the concavity of

A
1

n−1

K,ξ (t)? More precisely:

• Show that if K ⊂ R2 is a star shaped body and AK,ξ(t) is concave on its support,
then K is convex.
• Show that the above statement is not true in R3, i.e. construct an example of

a non-convex star-shaped origin-symmetric body K ⊂ R3 such that its section

function A
1
2
K,ξ(t) is concave on it’s support for every fixed direction ξ ∈ S2. Hint:

Use rotation invariant bodies, see more formulas in [GR].
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Definition 2.4. Assume K ⊂ Rn, and that the boundary ∂K of K is smooth. Then
the Minkowski volume of ∂K is defined by

|∂K| = lim
t→0

|K + tBn
2 | − |K|
t

,

given that the limit exists.

Exercise 2.13. Consider a convex polytope P ⊂ Rn, with n − 1 dimensional faces
{Fi}mi=1. Show that the Minkowski volume of ∂K is

∑ |Fi|.
Corollary 2.2. Assume |K| = |Bn

2 |, then |∂K| ≥ |Sn−1|.
Proof. Corollary follows from the definition of |∂K| and Brunn-Minkowski inequality:

|∂K| = lim
t→0

|K + tBn
2 | − |K|
t

≥ lim
t→0

(
(
|K|1/n + |tBn

2 |1/n
)n − |K|

t
(3)

= n|K|n−1
n |Bn

2 |1/n = |Sn−1|,(4)

where we used that |Sn−1| = n|Bn
2 |. �

A consequence of the Minkowski theorem, (Theorem 5.1.6 in [Sc2]), tells us that if
K,L ⊂ Rn are convex bodies then |K + tL| is a polynomial, with positive coefficients,
for t ≥ 0:

|K + tL| =
n∑
k=0

(
n

k

)
Vk(K,L)tk.

Here Vi(K,L) is called the i-th mixed volume of K and L. We will not need the above
identity in this lecture notes, but we will use analytic properties of V1(K,L), for which
we may give an alternative definition:

Definition 2.5. If K and L are convex bodies in Rn, the mixed volume V1(K,L) is
equal to

V1(K,L) =
1

n
lim
t→0

|K + tL| − |K|
t

.

Applying the Brunn-Minkowski inequality, as in the proof of Corollary 2.2, we get:

Corollary 2.3. (First Minkowski Inequality) For any convex bodies K,L ⊂ Rn

V1(K,L) ≥ |K|n−1
n |L| 1n .

Consider a convex polytope P ⊂ Rn, with n − 1 dimensional faces {Fi}mi=1 and
corresponding normal vectors ui ∈ Sn−1. Using the formula for the volume of the
pyramid and the definition of the support function hP we get

(5) |P | = 1

n

m∑
i=1

hP (ui)|Fi|.

Let K|θ⊥ be the orthogonal projection of K onto hyperplane perpendicular to the unit
vector θ. It is easy to see that then |Fi|θ⊥| = |ui · θ||Fi| (indeed, ui · θ is just a cosine of

7



the angle between normal vector ui and direction θ). This gives the well-known Cauchy
formula:

(6) |P |θ⊥| = 1

2

m∑
i=1

|Fi|θ⊥| =
1

2

m∑
i=1

|ui · θ||Fi|.

Exercise 2.14. Find among Bn
∞|ξ⊥ the one with maximal volume? minimal volume?

Do the same for the projections of Bn
1 .

Finally, we can also create a formula for V1(P,L). Indeed, it is enough to understand
how the volume of P is changing under the addition of tL, for very small t. Moreover,
we only need to consider the rate of change of the volume of the order t (the rate t2 will
be canceled after taking the limit). When we add tL to P , each face Fi moves outward
by thL(ui) in the direction of ui, adding up those changes we get

(7) V1(P,L) =
1

n

m∑
i=1

hL(ui)|Fi|.

Formulas (5), (6) and (7) are extremely useful for our lecture notes. Moreover, we will
need to use their generalizations from polytopes to the case of general convex bodies.
This can be done by using the approximation argument for which we need to generalize
the notion of the volume measure of the face.

Definition 2.6. The surface area measure S(K, ·) of a convex body K in Rn is a finite
Borel measure on Sn−1, such that for every Borel set E ⊂ Sn−1, S(K,E) is the volume
of the part of ∂K where normal vector belongs to E. If S(K, ·) is absolutely continuous
with respect to the Lebesque measure on Sn−1, then the density fK of S(K, ·) is called
curvature function.

Exercise 2.15. Consider a polytope P , compute S(P, ·).

Exercise 2.16. Let K be a convex body with C2-smooth boundary. Assume also that
the gaussian curvature at each point of ∂K is positive. Prove that S(K, ·) is absolutely
continuous. Hint: in this case the surface area measure is the reciprocal of the Gaussian
curvature, viewed as a function of the unit normal vector.

Exercise 2.17. Compute fBnp , for p ∈ (1,∞). Hint: see [KRZ].

Using the approximation argument and the above definition we get the following
theorem:

Theorem 2.3. Consider a convex body in K ⊂ Rn, then

(1) |K| = 1
n

∫
Sn−1

hK(u)dS(K, u).

(2) |K|θ⊥| = 1
2

∫
Sn−1

|u · θ|dS(K, u).

(3) V1(K,L) = 1
n

∫
Sn−1

hL(u)dS(K, u).
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3. Duality and Volume, the first look

Consider a convex body K ⊂ Rn, containing the origin in its interior. We define a
polar body K◦ of K as

K◦ = {y ∈ Rn : y · x ≤ 1 for all x ∈ K}.
Clearly ‖x‖K◦ = ‖x‖∗K or hK = ‖x‖K◦ = ρ−1

K◦(x).
One can also give the definition of the duality for non-symmetric case: polar body Kz

of a convex body K with center of polarity z is defined by

Kz = {y ∈ Rn : (y − z) · (x− z) ≤ 1 for all x ∈ K}.
If the center of polarity is taken to be the origin, we denote by K◦ the polar body of
K, thus Kz = (K − z)◦ + z.

A well known result of Santaló [Sa] (see also [Sc2], p. 419) states that in every convex
body K in Rn, there exists a unique point s(K), called the Santaló point of K, such
that

|Ks(K)| = min
z∈int(K)

|Kz|.

Definition 3.1. The volume product of K is defined by

P(K) = inf{|K||Kz| : z ∈ int(K)} = |K| |Ks(K)|,
thus if K is a symmetric convex body then

P(K) = |K| |K◦|.
Lemma 3.1. Here we list the main properties of duality and volume product for convex
bodies containing the origin in their interior.

(1) We have (K◦)◦ = K.
(2) If K ⊂ L, then L◦ ⊂ K◦.
(3) The volume product is invariant under the non-degenerate linear transforma-

tions, that is, (TK)◦ = (T ∗)−1K◦ and thus P(T (K)) = P(K) , for all T ∈
GL(n).

(4) We have
(
K ∩ ξ⊥

)◦
= K◦

∣∣ξ⊥.

Remark 3.1. We note that the property
(
K ∩ ξ⊥

)◦
= K◦

∣∣ξ⊥ shows that the operation
of duality transforms sections of the given body into projections of the dual one. It
is the origin for understanding of statements of duality between subspaces and quotient
spaces in Functional Analysis.

Exercise 3.1. Let K = [−5,−4], find (K◦)◦.

Exercise 3.2. Prove Lemma 3.1. Note that (3) follows from the fact that Tx·(T ∗)−1y =
x · y, for T ∈ GL(n).

Exercise 3.3. Show that for convex, symmetric bodies K,L ⊂ Rn

(K ∩ L)◦ = conv (K◦, L◦) .

Exercise 3.4. Let K,L ⊂ Rn be a convex symmetric bodies. Show that

dBM(K,L) = dBM(K◦, L◦).
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The set of all convex bodies in Rn is compact with the respect to the Banach-Mazur
distance and K 7→ P(K) is continuous (this follows from the F. John theorem and the
continuity of Volume), so that it is natural to ask for a maximal and minimal values of
P(K). We start with the maximum, which is given by the following Blaschke-Santaló
inequality

Theorem 3.1. For any convex symmetric body K ⊂ Rn:

P(K) ≤ P(Bn
2 ).

Proof. We will present the proof from [MePa] and [Ba]. The main tool is the Stiener
Symmetrization which in one co-dimensional case can be described as follows: Consider
a (convex) body K ⊂ Rn and a hyperplane u⊥, where u ∈ Sn−1. To get Su⊥(K) perform
the following algorithm: for each point p ∈ u⊥ let lp be a line through p perpendicular
to u⊥ (i.e. lp = p + tu, t ∈ R). If K ∩ lp = ∅ - do nothing, otherwise translate the
segment K ∩ lp along lp until its midpoint belongs to u⊥ (see the Figure 1).

u⊥

u

p

lp

p+ t1u

p+ t2u

p+ t1−t2
2

u

p− t1−t2
2

u

K

Su⊥(K)

Figure 1. Steiner Symmetrization in R2.

More precisely: Let K ⊂ Rn be a convex body and U be a subspace of Rn and U⊥ its
orthogonal complement, then we define the Stiener symmetrization SU⊥(K) of K with
respect to U⊥ to be the set of points x ∈ Rn for which there are p ∈ U⊥ and v, w ∈ U
such that

• x = p+ v−w
2

• p+ v, p+ w ∈ K.

We will need the following useful facts: Assume that K,L are convex symmetric bodies
in Rn, then

(a) SU⊥(K) is also a symmetric, convex body.
(b) SU⊥(·) is a monotone operation, i.e. SU⊥(L) ⊂ SU⊥(K), for all L ⊂ K.
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(c) SU⊥(λK) = λSU⊥(K), for all λ > 0.
(d) SU⊥(Bn

2 ) = Bn
2 .

(e) |SU⊥(K)| ≥ |K|.
(f) SU(K◦) ⊂ (SU⊥(K))◦.
(g) P(K) ≤ P(SU⊥(K)).

It is easy to check that SU⊥(K) is convex and moreover

(8) [SU⊥(K)− p] ∩ U =
1

2
[(K − p) ∩ U − (K − p) ∩ U ] .

Thus, (e) follows from Fubini Theorem, (8). Brunn-Minkowski inequality (Theorem
2.2). Now consider x ∈ SU⊥(K) and y ∈ SU(K◦). Then

x = p+
1

2
(v − w), y = z +

1

2
(s− t),

where p, s, t ∈ U⊥; z, v, w ∈ U ; p + v, p + w ∈ K and z + s, z + t ∈ K◦. Moreover,
p · z = 0, (v − w) · (s− t) = 0 and

x · y =
1

2
p · (s− t) +

1

2
(v − w) · z =

1

2
(p+ v) · (z + s)− 1

2
(p+ w) · (z + t).

This gives |x · y| ≤ 1, which implies (f). To prove (g) we apply (e) and consider Steiner
symmetrization of K and K◦ with respect to U⊥ and U . We also use (f):

P(K) = |K||K◦| ≤ |SU⊥(K)||SU(K◦)| ≤ |SU⊥(K)|| (SU⊥(K))◦ | = P(SU⊥(K)).

Another well known fact (see Theorem 6.6.6 [Web]) is that for any convex body K ⊂ Rn

there is a sequence of Sξ⊥i (K), ξi ∈ Sn−1 which converges to the closed ball of volume

|K|.
Thus, Theorem 3.1 follows immediately from (f).

�

Exercise 3.5. Show that for two convex bodies K,L ⊂ Rn we have

SU⊥(K) + SU⊥(L) ⊂ SU⊥(K + L).

Use the above inclusion to prove Brunn-Minkowski inequality for convex bodies.

The minimality of P(K), turns out to the much harder question which is still open!
It is often called the Mahler’s conjecture ([Ma1, Ma2]), which states that, for every
convex body K in Rn,

(9) P(K) ≥ P(∆n) =
(n+ 1)n+1

(n!)2
,

where ∆n is an n-dimensional simplex. It is also conjectured that equality in (9) is
attained only if K is a simplex.

Exercise 3.6. Show that

P(∆n) =
(n+ 1)n+1

(n!)2
.
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In our lectures we will concentrate on the symmetric case of Mahler conjecture, which
states that for every convex symmetric body K ⊂ Rn:

(10) P(K) ≥ P(Bn
∞) = P(Bn

1 ) =
4n

n!
.

Exercise 3.7. Try to prove directly, using Exercise 2.3 that

P(Bn
p ) ≥ P(Bn

∞), for p ≥ 1.

Note, that this fact follows immediately from Theorem 3.3 (see below).

The conjecture is confirmed in R2. We will sketch this fact in the next section as well
as give a complete proof as part of the ”local” minima result, (see Theorem 3.4 below).

3.1. R2 -case. We would like to show that

Theorem 3.2. (Mahler) P(P ) ≥ P(B2
∞) for all symmetric convex polygons P ⊂ R2.

Proof. (Sketch) The main idea is to ”remove/glue” vertices. Let Pk be any given sym-
metric polygon with k vertices. Following Mahler, we will construct a sequence of
transformations of polygon Pk: Pk → Pk−2 → Pk−4 → ... → P4, such that

P(Pk) ≥ P(Pk−2) ≥ P(Pk−4) ≥ ... ≥ P(P4) = P(B2
∞).

Where the last inequality follows from invariance of P under linear transformations
(Lemma 3.1). On each step of the construction, we will have |Pk| = |Pk−2| and |P ◦k | ≥
|P ◦k−2|. In fact, the procedure is just to reduce the question to a comparison of the area
of triangle and ”dual” triangle.

The duality operation K → K◦ does not work ”well” on polygons (bodies) that does
not contain the origin (see Exercise 3.1). To overcome this difficulty, Mahler introduced
another ”duality like” operation:

Definition 3.2. Let K be a convex polytope with faces f1, ..., fm. Then K̃ is a polytope
that has vertices ṽ1, ..., ṽm such that ṽm ⊥ fm and dist(ṽm, 0) · dist(fk, 0) = 1.

It is not hard to see that if a polytope K contains the origin, then K̃ = K◦.

Exercise 3.8. Let v1, v2, v3 be the vertices of a triangle conv(v1, v2, v3) such that 0 6∈
conv(v1, v2, v3). Find ṽ1, ṽ2 and ṽ3 the vertices of triangle ˜conv(v1, v2, v3).

Consider a polygon Pk with vertices v1, v2, v3, ..., vk, written in the clockwise order.
Let l be a line passing through v2 parallel to the segment v1, v3, and let v be any point
on l. Then

Exercise 3.9. As long as v stays on l between lines lv3,v4, lvk,v1 (passing through v3, v4

and vk, v1 respectively), we have |Pk| = |Pk(v)|, where Pk(v) := conv{v1, v, v3, ..., vk}.
See Figure 2.

The main observation in this construction is

Exercise 3.10. Prove that

(11) Pk(v) = Pk−1 ∪4(v), P̃k(v) = P̃k−1 \ 4̃(v),

12



v1

v2

v3

v4

vk vl

vr

lvk ,v1

l

lv3,v4
v

0

Figure 2. Moving vertex v2 to vertex v along the line l, keeping |Pk(v)| constant.

where

(12) 4(v) = conv{v1, v, v3}, and Pk−1 = conv{v1, v3, ..., vk}.

Also prove that (11), (12) imply

(13) |Pk(v)| = |Pk−1|+ |4(v)|,

(14) |P̃k(v)| = |P̃k−1| − |4̃(v)|.

and thus |4̃(v)| ≥ |4̃(v2)| gives |P̃k(v)| ≤ |P̃k(v2)| = |P̃k|.

Let vl = l ∩ lvk,v1 and vr = l ∩ lv3,v4 (See Figure 2). To finish the proof it is enough to
show that

(15) max{|4̃(vl)|, |4̃(vr)|} ≥ |4̃(v2)|

Indeed Pk(vl) and Pk(vr) have k− 1 vertices, and from Exercise 3.10 and (15) follows
that P(Pk) ≥ min{P(Pk(vl)),P(Pk(vr))}.

To prove (15) we need to show that the function f(v) = |4̃(v)| attend its maximum at
the end points of interval [vl, vr]. This can be done by using Exercise 3.8 and computing
the exact formula for f(v).

�
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3.2. Absolutely symmetric case. Let us also note note that if the conjecture is true
in the symmetric case, then for n ≥ 4, Bn

∞ and Bn
1 is not the only minimal pair. For

sets K ⊂ Rn1 and L ⊂ Rn2 we denote by K ⊕ L their direct sum, i.e.

K ⊕ L = {(x, y) ∈ Rn1+n2 : x ∈ K, y ∈ L}.
Lemma 3.2. Consider two convex symmetric bodies K ⊂ Rn1 and L ⊂ Rn2. Then

P(K ⊕ L) =
n1!n2!

(n1 + n2)!
P(K)P(L).

In particular,

P(Bn1
1 ⊕Bn2

1 ) = P(Bn1+n2
1 ).

Proof. We first notice that |K ⊕L| = |K||L|. For convex bodies A ⊂ Rn1 and B ⊂ Rn2

define a new convex body A⊕1 B ⊂ Rn1+n2 using its Minkowsky functional:

‖(x1, x2)‖A⊕1B = ‖x1‖A + ‖x2‖B, for x1 ∈ Rn1 , x2 ∈ Rn2 .

Then

(K ⊕ L)◦ = K◦ ⊕1 L
◦.

Finally, Lemma 3.2 follows from

(16) |A| = 1

n!

∫
Rn

e−‖x‖Adx, for A ⊂ Rn, A is convex, symmetric body.

Indeed,∫
Rn

e−‖x‖Adx =

∫
Rn

∞∫
‖x‖A

e−tdtdx =

∞∫
0

∫
‖x‖A≤t

e−tdxdt =

∞∫
0

|tA|e−tdt = n!|A|.

�

Open Problem 3.1. Does there exist a convex symmetric body K ⊂ R3, such that

P(K) = P(B3
∞),

but K is not a linear image of B3
1 or B3

∞?

Open Problem 3.2. Does there exist a convex body K ⊂ Rn, n ≥ 3 such that

P(K) = P(∆n),

but K is not an affine image of ∆n?

Definition 3.3. K ⊂ Rn is called unconditional if for any x = (x1, x2, . . . , xn) ∈ K we
have (±x1,±x2, . . . ,±xn) ∈ K.

The following theorem is due to Saint-Raymond [SR]. We present here a proof due
to Meyer [Me]:

Theorem 3.3. Let K be an unconditional convex body in Rn, then

P(K) ≥ P(Bn
∞).

14



Proof. It is clear that the theorem (as well as the Mahler conjecture) is true in R.
Indeed, then K = [−a, a] and K◦ = [−1/a, 1/a] for a > 0, from this we get

P(K) = 4, for all K ⊂ R;K is convex and symmetric.

We will prove the theorem by induction. Define

K+ = K ∩ Rn
+ = {x ∈ K : xi ≥ 0, for i = 1, . . . , n}.

Consider x ∈ K+ and consider n pyramids created as the convex hull of x and intersec-
tion of K+ with coordinate planes. More precisely, let

K+
i = conv{x,K+ ∩ e⊥i },

where e1, . . . en is the standard basis of Rn. Note that the intersection of K+
i and K+

j

has a zero volume for i 6= j (see Figure 3).

x

e1

e2

x2

x1

K

K+

K+
1

K+
2

Figure 3. Construction of K+
i .

Then, using the unconditionality of K:

|K| = 2n|K+| ≥ 2n|
n⋃
i=1

K+
i | = 2n

n∑
i=1

1

n
xi
|K ∩ e⊥i |

2n−1
=

n∑
i=1

xi

(
2

n
|K ∩ e⊥i |

)
.

The above inequality can be rewritten as

(17)
n∑
i=1

xi

(
2|K ∩ e⊥i |
n|K|

)
≤ 1, for all x ∈ K+, and thus for all x ∈ K.

Now (17) immediately yields the fact that the vector

(18)

{
2|K ∩ e⊥i |
n|K|

}n
i=1

∈ K◦.

15



Applying the same argument to K◦ we get

(19)

{
2|K◦ ∩ e⊥i |
n|K◦|

}n
i=1

∈ K.

From the definition of polarity, we know, that x · y ≤ 1, for all x ∈ K and y ∈ K◦, thus
from (18) and (19) we get:

(20)
n∑
i=1

2|K ∩ e⊥i |
n|K| · 2|K◦ ∩ e⊥i |

n|K◦| ≤ 1.

Next we notice that property (4) of Lemma 3.1 gives

(21) K◦ ∩ e⊥i = (K|e⊥i )◦ = (K ∩ e⊥i )◦,

where the second equality follows from the fact that K is absolutely symmetric. Finally,
we use (20), (21) and the inductive hypothesis to obtain

|K||K◦| ≥ 4

n2

n∑
i=1

|K ∩ e⊥i | · |(K ∩ e⊥i )◦| ≥ 4

n2
n

4n−1

(n− 1)!
=

4n

n!
.

�

3.3. Local Minimum. In his blog on the Mahler conjecture T. Tao [T] asked whether
the cube Bn

∞ is a local minimizer. More precisely, is it possible to select δ > 0 such that
if

Uδ(B
n
∞) := {K convex, symmetric body : dBM(Bn

∞, K) ≤ 1 + δ},
then the Mahler conjecture is true for all K ∈ Uδ(B

n
∞). The following theorem from

[NPRZ] answers his question:

Theorem 3.4. Let K ⊂ Rn be an origin-symmetric convex body. Then

P(K) ≥ P(Bn
∞),

provided that dBM(K,Bn
∞) ≤ 1 + δ, and δ = δ(n) > 0 is small enough. Moreover, the

equality holds only if dBM(K,Bn
∞) = 1, i.e., if K is a parallelepiped.

The proof of the above theorem is quite involved. We will split in several lemmata.
The first difficulty in proving local minimality of the unit cube is that there are plenty

of small (linear) perturbations with the same volume product, namely all close paral-
lelepipeds. We will overcome this difficulty by choosing a “canonical representative”
in each class of affinely equivalent convex bodies. More precisely, we consider only the
bodies K for which the unit cube is a parallelepiped of the least volume containing K.
In addition to taking care of all close parallelepipeds, it allows us to fix 2n points on
the boundary of K and K◦ (the centers of the (n− 1)-dimensional faces of Bn

∞).

Lemma 3.3. Let P be a parallelepiped of minimal volume containing a convex origin-
symmetric body K. Let T : Rn → Rn be a linear transformation such that P = TBn

∞.
Then T−1K ⊂ Bn

∞ and ±ej ∈ ∂T−1K, j = 1, ..., n.

16



Proof. Note that Bn
∞ is a parallelepiped of minimal volume containing T−1K. If ej 6∈

T−1K, then there exists an affine hyperplane H 3 ej such that H ∩ T−1K = ∅. Note
that the volume of the parallelepiped bounded by H,−H, and the affine hyperplanes
{x : x · ei = ±1}, i 6= j, equals |Bn

∞|, and that this parallelepiped still contains K. But
then we can shift H and −H towards K a little bit and a get a new parallelepiped of
smaller volume containing K. �

Exercise 3.11. Let S be a simplex of minimal volume containing convex (not necessary
symmetric) body K. Show that all the centroids of facets of S belong to K (see [Kl] for
a solution).

From the statement of the theorem we see that we need to use the parallelepiped
closest toK in Banach-Mazur distance, which is not necessary should be a parallelepiped
of minimal volume. We solve this problem by using the following two lemmata:

Lemma 3.4. Let Π ⊂ Rn be a star-shaped (with respect to the origin) polytope such that
every (n−1)-dimensional face F of Π has area at least A and satisfies dist(aff(F ), 0) ≥
r, where dist denotes the Euclidean distance and aff(F ) the minimal affine subspace
containing F . Let x 6∈ (1 + µ)Π for some µ > 0. Then

|conv(Π, x)| ≥ |Π|+ µrA

n
.

Proof. Let y = ∂Π ∩ [0, x]. Let F be a face of Π containing y. Then conv(Π, x) \ Π
contains the pyramid with base F and apex x. The assumptions of the lemma imply
that the height of this pyramid is at least µ dist(aff(F ), 0) ≥ µr, so its volume is at least
δrA
n

. �

If K is sufficiently close to Bn
∞, then K is also close to any parallelepiped of minimal

volume containing K.

Lemma 3.5. Let K be a convex body satisfying

(22) (1− δ)Bn
∞ ⊂ K ⊂ Bn

∞.

Then there exist a constant C and a linear operator T such that

(1− Cδ)Bn
∞ ⊂ T−1K ⊂ Bn

∞,

and ±ei ∈ T−1K.

Proof. Let as before P = TBn
∞ be a parallelepiped of minimal volume containing K.

Then K ⊂ P and our goal is to show that there is C > 0 such that (1 − Cδ)P ⊂ K.
Applying (22) we see that it is enough to show that (1 − Cδ)P ⊂ (1 − δ)Bn

∞ or that
there is a small κ such that P ⊂ (1 + κ0)(1− δ)Bn

∞.
Note that |P | ≤ 2n (indeed, K ⊂ Bn

∞, so, by minimality, |P | ≤ |Bn
∞|). On the other

hand, if x ∈ P \ (1 +κ)(1− δ)Bn
∞, then, by Lemma 3.4, with Π = (1− δ)Bn

∞, r = 1− δ,
A = |(1− δ)Bn−1

∞ | and µ = κ,

|P | ≥ |(1− δ)Bn
∞|+

κ(1− δ)
n

|(1− δ)Bn−1
∞ | = 2n(1− δ)n + κ

2n−1

n
(1− δ)n.
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The right hand side is greater than 2n if κ > κ0 = 2n((1 − δ)−n − 1). Thus, P ⊂
(1 + κ0)(1 − δ)Bn

∞, and thereby (1 − κ0)P ⊂ (1 − δ)Bn
∞ ⊂ K. It remains to note that

κ0 ≤ 4n2δ for sufficiently small δ > 0. �

Thus, replacing K by its suitable linear image we may assume everywhere below
that K ⊂ Bn

∞, ±ej ∈ ∂K, j = 1, . . . , n. Let δ > 0 be the minimal number such that
(1− δ)Bn

∞ ⊂ K.

Exercise 3.12. Study the geometric and combinatorial properties of a polytope and its
polar:

• Let Fi be a face of Bn
∞, dim(Fi) = i, i = 0, . . . , n− 1. Show that there is a face

F ∗i of Bn
1 such that x · y = 1 for all x ∈ Fi, y ∈ F ∗i and dim(F ∗i ) = n− 1− i.

• Generalize this statement to the case of general convex polytopes P and P ◦ in Rn,
such that 0 is interior point of P . More precisely show that if Fi is i-dimensional
face of P , then

F ∗i = {y ∈ P ◦ : x · y = 1, for all x ∈ Fi}
is n − 1 − i dimensional face of P ◦. Moreover, the mapping Ψ(Fi) = F ∗i is
one-to-one mapping between faces of P and P ◦ and Ψ(Ψ(Fi)) = Fi (see Chapter
3.4 in [Gru]).

The next construction and the lemma will give the first idea of how we will ap-
proximate K and K◦ by polytopes. Consider flag F = {F0, F1, . . . , Fn−1} such that
F0 ⊂ F1 ⊂ · · ·Fn−1 are faces of Bn

∞, i.e. F0 is a vertex (0-dimensional face). We will
denote by c(Fi) a center of face Fi and by c∗(Fi) a center of the dual face to Fi, i.e.
the center of the face F ∗i of Bn

1 such that a · b = 1 for all a ∈ Fi and b ∈ F ∗i , then
c∗(Fi) = 1

n−dimFi
c(Fi).

For each i ∈ 0, . . . , n− 1 fix two vectors yi, y
∗
i having the same direction as c(Fi) such

that yi · y∗i = 1 ( yi = αic(Fi) and y∗i = α∗i c
∗(Fi), where αi, α

∗
i > 0 and αiα

∗
i = 1) and

consider two simplexes:

Sy(F) = conv{0, y0, . . . , yn−1} and Sy∗(F) = conv{0, y∗0, . . . , y∗n−1}.
Now consider

Q =
⋃
F
Sy(F) and Q′ =

⋃
F
Sy∗(F),

where the union is taken over all 2nn! flags of Bn
∞.

Lemma 3.6.

|Q||Q′| ≥ P(Bn
∞).

Proof. We first notice that |Sy(F)||Sy∗(F)| = 1/(n!)3. Indeed, consider a simplex ∆ =
conv{0, c(F0), . . . , c(Fn−1)}, then |∆| = 1/n!. To get the volume of Sy(F) or Sy∗(F) we
apply to ∆ a linear transformation (see the definition of those simplexes).

We finish the proof of the lemma applying:

l∑
i=1

di

l∑
i=1

d−1
i ≥ l2, for any d1, . . . , dl > 0.
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Indeed, then

|Q||Q′| =
(∑
F
|Sy(F)|

)(∑
F
|Sy∗(F)|

)
=

1

(n!)3

(∑
F
|Sy(F)|

)(∑
F
|Sy(F)|−1

)

≥ (2nn!)2

(n!)3
= P(Bn

∞).

�

We are now ready to start the construction of polytopes approximating K and K◦

and having properties similar to the polytopes used in Lemma 3.6.
We will first consider a simple two-dimensional case (which will not even require K

to be close to B2
∞ and actually gives yet another solution to the Mahler conjecture in

R2):
Two dimensional case. Assume that B2

∞ is a parallelogram of maximal area contain-
ing K. Then from Lemma 3.3 we get that ±e1,±e2 ∈ K ∩B2

∞.
We will now construct polytopes P and P ′ ”approximating” K and K◦ respectively.

Consider a flag of faces F = {F0 ⊂ F1}, where F1 is just a side of B2
∞ and F0 is one of

the vertices belonging to F1. Define x1 = c(F1) ∈ {±e1,±e2}. We will now construct
a point x0 corresponding to F0. Consider a tangent line l to K perpendicular to c(F0).
Let x0 be a tangent point of l and K (see Figure 4). Notice it is not necessary at all
that x0 and c(F0) are parallel! This is why we make things look harder and do not
immediately use notation of Lemma 3.6

x0

x1 = c(F1) = e2

e10

l

SF

Figure 4. Construction of polytope P .

Let SF = conv{0, x0, x1} and

P =
⋃
F
SF ,

Where P is the union of all (eight) simplexes defined by flags of B2
∞. Notice that P ⊂ K

and that in the two dimensional case P is convex (this will not be the case in higher
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dimension!). Now we will create P ′ ⊂ K◦. Again, P ′ will be the union of simplexes: as
before, consider a flag of faces F of B2

∞ , also consider points x0, x1. Let x∗i be a dual
point to xi. More precisely, x∗i is parallel to the normal vector to K at point xi and
xi · x∗i = 1. Thus x∗i ∈ K◦. We also note that x∗1 = x1 ∈ {±e1,±e2} (see Figure 5).

l

x0

x∗
0

c(F0)
x∗
1 = x1 = c(F1) = e2

e10

Figure 5. Construction of polytopes P and P ′.

Let S ′F = conv{0, x∗0, x∗1} and

P ′ =
⋃
F
S ′F .

By construction we have P(K) ≥ |P ||P ′|, thus we could finish the proof if we would be
apple to apply Lemma 3.6 to P and P ′ as Q and Q′. The only obstacle is that for each
flag F points x0 from above may not be parallel to c(F0)! (notice that x∗0 is in the right
place). The solution is to move them! This reminds the original Mahler’s proof of the
two-dimensional case, see Theorem 3.2.

Indeed, moving those points along tangent line l will not change the volume of P .
This follows from the simple observation described in Exercise 3.9: consider triangle
ABC, moving vertex C along the line parallel to AB would not change the area of the
triangle. In our case we take C = x0 and A,B ∈ {±e1,±e2}, so that A,B are vertices
of P adjacent to x0 and notice that the line l is parallel to AB (See Figure 6).
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l

x0y0

c(F0)
y∗1 = y1 = x∗

1 = x1 = c(F1) = e2

e10

Figure 6. Moving x0 to y0 (triangle e1, x0, e2 to triangle e1, y0, e2).

Thus, we may move x0 to y0 which is the point of intersection of l and [0, c(F0)]:

l

x0

y0
x∗
0 = y∗0

c(F0)
y∗1 = y1 = x∗

1 = x1 = c(F1) = e2

e10

Figure 7. Now we have Q and Q′ as in Lemma 3.6.

Finally, we apply Lemma 3.6 with P ′ = Q′ and Q is P with vertices x0 moved to y0

(see Figure 7). This concludes the proof of two-dimensional case.
The main difficulty of the case n > 2 is that SF will have more then one vertices that

needs to be moved and some of them will have to be moved not exactly parallel to the
base. Now, to make a move and not to change the volume of P (and P ′) by much we
are required to assume that K is close to Bn

∞.
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General case. We first outline the plan. We use Lemma 3.5 to get that ±e1, · · ·±en ∈
K ∩ Bn

∞. As before we need to select other points on the boundary of K and K◦ and
to construct two (not necessarily convex!) polytopes P ⊂ K and P ′ ⊂ K◦ such that

|P ||P ′| ≥ P(Bn
∞)− Cδ2,

where δ is the least positive number for which (1 − δ)Bn
∞ ⊂ K. We conclude that Bn

∞
is a lower semi-stationary point for the volume product functional P . This means that
the perturbation of Bn

∞ by δ in the Banach-Mazur distance may result in decreasing
the product volume only by δ2, i.e., in the second order rather than in the first. Our
last step is to show that either K contains a point outside (1 + cδ)P or K◦ contains a
point outside (1 + cδ)P ′ for some small positive c. This allows us to apply Lemma 3.4
to conclude that P(K) exceeds |P ||P ′| by at least cδ and get the final estimate

P(K) ≥ P(Bn
∞) + cδ − Cδ2

from which the strict local minimality follows immediately.
We first prove two lemmata which would allow us to move vertices of a simplex

similarly as we did in the dimension 2. As before, given a set F ⊂ Rn, we define af(F )
to be an affine subspace of minimal dimension containing F .

Lemma 3.7. Let D ⊂ Rn be a compact convex set with a non-empty interior, and let
dim(af(D)) = n− 1. If f(x) = |conv(x,D)|, then ∇f(x) is parallel to the unit normal
vector nD of af(D).

Proof. We can assume that D ⊂ {y ∈ Rn : yn = 0}, and xn > 0. Then

f(x) = xn
|D|
n
, ∇f(x) = (0, ..., 0,

|D|
n

).

�

It is clear that f(x) = f(y) = 0, provided (x − y) · nD = 0. The next lemma will
allow us to move vertices of simplex along an affine hyperplane ”almost” parallel to the
base opposite of the moved vertex, so that the change in the volume is of the order δ2.

Lemma 3.8. Let f be as above, and let δ > 0 be small enough. If |y − x| = O(δ), and
|n| = 1 is such that |n− nD| = O(δ), (x− y) · n = 0, then |f(x)− f(y)| = O(δ2).

Proof. By the previous lemma, ∇f(y)/|∇f(y)| = nD. Hence,

f(x)− f(y) = |∇f(y)|(nD − n) · (x− y) + |∇f(y)|n · (x− y) +O(|x− y|2) =

|∇f(y)|(nD − n) · (x− y) +O(|x− y|2).

Applying the Cauchy-Schwartz inequality, we get the result. �

Next we will define vertices of polytopes P ⊂ K and P ′ ⊂ K◦ and show that they
can be moved to ”the right place”.

Let F be a face of Bn
∞ and F ∗ ⊂ Bn

1 be a corresponding dual face (see Exercise 3.12).
As before let cF be a center of face F and c∗F = 1

n−dimF
cF be a center of F ∗.

Let F⊥ = {y ∈ Rn : x ·y = 0, for all x ∈ F}, where dim(F⊥) = n−1−dim(F ). Con-
sider αF > 0 such that αF cF +F⊥ is tangent to K. We define xF to be a corresponding
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tangent point. We also set yF = αF cF . Notice that from (1− δ)Bn
∞ ⊂ K ⊂ Bn

∞ we get
1− δ ≤ αF ≤ 1.

Now we switch to the dual face F ∗. The same way as above, we define points x∗F
and y∗F = α∗F c

∗
F by replacing F , K and Bn

∞ by F ∗, K◦ and Bn
1 , respectively. In Lemma

3.9 below we will present properties of xF , yF , x∗F and y∗F which are essential for our
construction, but before let us suggest the following continuation of Exercise 3.12:

Exercise 3.13. Let P ⊂ Rn be a convex polytope. Such that 0 is an interior point of
P . Consider face F of P and a dual face F ∗ of P ◦. Let l(F ) be the the linear subspace
parallel to a face F of P , such that dim(F ) = dim(l(F )). Prove the following relations:

• x ⊥ l(F ∗), for all x ∈ F and thus l(F ∗) ⊂ F⊥.
• x∗ ⊥ l(F ), for all x∗ ∈ F ∗ and thus l(F ) ⊂ (F ∗)⊥.
• F⊥ = l(F ∗).
• (F ∗)⊥ = l(F ).
• l(F ) ⊥ l(F ∗).

Lemma 3.9. Let F be a face of Bn
∞. Suppose that (1− δ)Bn

∞ ⊂ K ⊂ Bn
∞. Then

(1) (xF − yF ) ⊥ cF and (x∗F − y∗F ) ⊥ c∗F ,
(2) xF · x∗F = 1 and yF · y∗F = 1, (i.e. αFα

∗
F = 1),

(3) |xF − yF | = O(δ) and |x∗F − y∗F | = O(δ).

Proof. We note that xF = yF + hF and x∗F = y∗F + h∗F , where hF ∈ F⊥ and h∗F ∈ (F ∗)⊥

thus (1) follows immediately from cF ∈ F and c∗F ∈ F ∗.
Next we will prove (2). Consider a hyperplane H tangent to K at point xF , note

αF cF + F⊥ ⊂ H. Consider point w ”dual” to H, i.e. such that w · z = 1 for every
z ∈ H. Thus w ∈ ∂K◦. Also note that αFw · u = 1 for all u ∈ cF +F⊥. Using Exercise
3.9 and cF is parallel to c∗F we notice that

cF ∗ + (F ∗)⊥ = {q ∈ Rn : q · u = 1, ∀u ∈ cF + F⊥}.
Which implies αFw ∈ cF ∗ + (F ∗)⊥. Thus w ∈ ( 1

αF
cF ∗ + (F ∗)⊥) ∩ ∂K◦ which implies

α∗F = 1/αF .
To prove (3) we denote by U a minimal subspace containing αF cF + F⊥. Then

dimU = dimF⊥ + 1 and that Bn
∞ ∩ U is a dimU dimensional unit cube with a vertex

cF . Thus, using that the distance from αF cF + F⊥ to cF is O(δ), we get

|xF − yF | ≤ diam
(
(αF cF + F⊥

)
∩Bn

∞) = diam
(
(αF cF + F⊥

)
∩ U ∩Bn

∞) = O(δ).

Similarly, using Bn
1 ⊂ K◦ ⊂ 1

1−δB
n
1 and α∗F = 1/αF , we get |x∗F − y∗F | = O(δ). �

Remark 3.2. Notice that the estimate in (3) from Lemma 3.9 is exactly the reason, we
use F⊥ and not tangent hyperplane to define xF .

Remark 3.3. We refer the reader to Lemma 6 in [NPRZ] for much more general
formulation of Lemma 3.9. This may be useful to study other possible local minimizers
of the volume product (see Lemma 3.2 and Open Problem 3.3).

Consider flag F = {F0, F1, . . . , Fn−1} of faces of Bn
∞. Since ±ej ∈ ∂K and ±ej ∈ ∂K◦

(see Lemma 3.5), we will choose xFn−1 = yFn−1 = x∗Fn−1
= y∗Fn−1

= cFn−1 = c∗Fn−1
.
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For each other face F ∈ F , we consider four points xF , x∗F , yF and y∗F defined in
Lemma 3.9. These points induce the following four polytopes (in general, not convex!):

P = ∪Fconv(0, xF0 , . . . , xFn−1) and P ′ = ∪Fconv(0, x∗F0
, . . . , x∗Fn−1

),

Q = ∪Fconv(0, yF0 , . . . , yFn−1) and Q′ = ∪Fconv(0, y∗F0
, . . . , y∗Fn−1

).

Thus by Lemmata 3.9, 3.8 (applying them to each simplex in construction of P and
P ′) we get

|voln(P )− voln(Q)| ≤ Cδ2 and |voln(P ′)− voln(Q′)| ≤ Cδ2,

whence, by Lemma 3.6

(23) voln(P )voln(P ′) ≥ voln(Q)voln(Q′)− Cδ2 ≥ P(Bn
∞)− Cδ2.

To prove the theorem we need to show that there is a reasonable gap in volumes of
K and P or in volumes of K◦ and P ′, more precisely

(24) |K| ≥ |P |+ c′δ or |K◦| ≥ |P |+ c′δ, for some c′ > 0.

Indeed, (24) together with (23) yields

P(K) ≥ P(Bn
∞) + c′′δ − Cδ2 > P(Bn

∞),

provided that δ > 0 is small enough.
Since K ⊃ P and K◦ ⊃ P ′, to prove (24) we need to show that for some c > 0, either

K 6⊂ (1 + cδ)P , or K◦ 6⊂ (1 + cδ)P ′. Then, by Lemma 3.4, we will get (24).
The conclusion of the proof: Note that at least one of the coordinates of one of the

xF̃ , where F̃ is a vertex of Bn
∞ is at most 1 − δ. Indeed, assume that all coordinates

are greater then (1 − δ′) in absolute value with some δ′ < δ. Define D = conv{xF :
F is a vertex of Bn

∞} ⊂ K. Consider z ∈ D∗, then 1 ≥ xF · z for all vertices F . Choose
vertex F so that (xF )jzj ≥ 0 for all j = 1, . . . , n. Then

1 ≥ xF · z ≥ (1− δ′)
∑
j

|zj|.

Thus, D∗ ⊂ (1− δ′)−1Bn
1 and D ⊃ (1− δ′)Bn

∞, contradicting the minimality of δ.

Due to symmetry, we may assume without loss of generality that F̃ = (1, . . . , 1) and
that (xF̃ )1 ≤ 1 − δ. Let us explain idea of the next construction. Note that, as we
mentioned above, if K 6⊂ (1 + cδ)P then there is a gap of volume cδ between K and P
(see Figure 8).
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xF̃
δ

F̃=(1,1,. . . , 1)
x∗
Fn−1

= xFn−1 = c(Fn−1) = en

P

K

Pyramid of volume ≈ cδ

Figure 8. K 6⊂ (1 + cδ)P .

Thus we need to consider the case K ⊂ (1 + cδ)P and to show that there is a gap of
volume cδ between K◦ and P ′. In this case we notice that K is close to P and thus has
a part of the boundary which ”looks like” a face of P . Such a part, containing xF̃ , will
produce a dual point which belongs to K◦ but ”far” from P ′ (see Figure 9).

xF̃
δ

F̃=(1,1,. . . , 1)
x∗
Fn−1

= xFn−1 = c(Fn−1) = en

P

K

A part of ∂K is close to the face of ∂P

This gives x̃ ∈ K◦, which is far from P ′

Figure 9. K ⊂ (1 + cδ)P .
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Now we are ready to present a detailed proof. Assume that

K ⊂ (1 + cδ)P, and thus
1

1 + cδ
P ◦ ⊂ K◦.

We will now find a point x̃ such that x̃ ∈ K◦ but x̃ 6∈ (1 + cδ)P ′.
We will consider x̃ to be a point ”close” to vertex (1, 0, . . . , 0) of Bn

1 . More precisely,
let x̃ = (1 − δ, c′δ, . . . , c′δ), where c′ = 1/(n − 5

4
). Then x̃ ∈ (1 − c′′δ)P ◦, where

c′′ = 1/(4n− 5). Indeed, it is enough to check that x̃ ·xF ≤ 1− c′′δ for all vertices xF of
P . If F 6= (1, . . . , 1), then all coordinates of xF do not exceed 1 and at least one does
not exceed 1/2 (otherwise, xF will be to far from F ). Thus, if δ is small enough, we get

x̃ · xF ≤ (1− δ) + (n− 2)c′δ +
c′δ

2
= 1− δ + (n− 3

2
)c′δ = 1− c′′δ.

If F if the vertex (1, . . . , 1), then

x̃ · xF ≤ (1− δ)2 + (n− 1)c′δ = 1− 2δ +
n− 1

n− 5
4

δ + δ2 ≤ 1− 2δ +
4

3
δ + δ2 ≤ 1− c′′δ,

provided that δ > 0 is small enough. Therefore if c < c′′, we get

x̃ ∈ (1− c′′δ)P ◦ ⊂ 1

1 + cδ
P ◦ ⊂ K◦.

Now we will show that we may select c small enough such that x̃ 6∈ (1 + cδ)P ′. Note
that for every x ∈ P ′, we have

|x1|+ (1− C ′δ)
∑
j≥2

|xj| ≤ 1,

provided C ′ is chosen large enough. Indeed, again it is enough to check this for the
vertices x∗F of P ′. From P ′ ⊂ K◦ ⊂ 1

1−δB
n
1 we get that∑

j≥1

|(x∗F )j| ≤ 1 + Cδ.

If cF 6= (±1, 0, . . . , 0) we have
∑
j≥2

|(x∗F )j| ≥ 1/3, so

|(x∗F )1|+ (1− C ′δ)
∑
j≥2

|(x∗F )j| ≤
∑
j≥1

|(x∗F )j| − C ′δ
∑
j≥2

|(x∗F )j| ≤ 1 + Cδ − C ′δ

3
≤ 1,

provided that C ′ ≥ 3C. If cF = (±1, 0 . . . , 0), then xF = ±e1 and the inequality is
trivial.

Now it remains to note that

|x̃1|+ (1−C ′δ)
∑
j≥2

|x̃j| = 1− δ+ (1−C ′δ)(n− 1)c′δ = 1 + c′′δ−C ′(n− 1)c′δ2 > 1 + cδ,

provided that c < c′′/2 and δ is small enough, whence x̃ 6∈ (1 + cδ)P ′.

Open Problem 3.3. It was shown in Lemma 3.2) that there are convex bodies K ⊂ Rn

for n ≥ 4, such that P(K) = P(Bn
∞). Show that those K are local minimizers for P(K).
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4. Zonoids and Zonotopes

Definition 4.1. A Minkowski sum of line segments in Rn is called a zonotope, i.e.
Z ⊂ Rn is a zonotope if there exists a set of segments {[−vi, vi]}mi=1 ⊂ Rn, such that

Z =
m∑
i=1

[−vi, vi].

Zonoid is a limit of zonotopes in Hausdorff metric.

Exercise 4.1. Show that any face of a zonotope is again a zonotope and thus must be
symmetric. (Hint: See [Bl], [Sc2].)

Exercise 4.2. Show that a projection of a zonotope (zonoid) is again a zonotope
(zonoid).

Exercise 4.3. Show that any symmetric polygon in R2 is a zonotope (and thus any
symmetric convex body in R2 is a zonoid). We will give a Harmonic Analysis proof of
this fact later, (see Corollary 5.1).

Assume that αi = |vi| > 0 and define ui = vi/|vi| ∈ Sn−1. Then, from the definition
and the properties of the support function we get

hZ(x) =
m∑
i=1

h[−vi,vi](x) =
m∑
i=1

αi|x · ui|.

Taking the limit we obtain

Lemma 4.1. Z is a zonoid iff there exists an even measure µ (called generating measure
of Z) on Sn−1 such that

hZ(x) =

∫
Sn−1

|x · u|dµ(u).

Exercise 4.4. Check which of Bn
p p ≥ 1 are zonoids:

• Show that Bn
∞ is a zonoid.

• Show that Bn
2 is a zonoid.

• Show that Bn
1 is not a zonoid for n ≥ 3.

• Show that a zonotope is a linear image of BN
∞, for N big enough.

• Show that a polytope P is the polar of a zonoid if and only if it is a central
section of BN

1 , for N big enough.
• It is also true that Bn

p is a zonoid for any p ≥ 2 and not a zonoid for any p ∈ [1, 2)
and n ≥ 3, but this fact requires a non-trivial use of Harmonic Analysis, see [K5].

Lemma 4.1 allows us to give a quite useful formula for the volume of zonoids, indeed,
from Theorem 2.3 we get

|Z| = 1

n

∫
Sn−1

hZ(θ)dS(Z, θ) =
1

n

∫
Sn−1

∫
Sn−1

|ξ · θ|dµ(ξ)dS(Z, θ)

=
1

n

∫
Sn−1

∫
Sn−1

|ξ · θ|dS(Z, θ)dµ(ξ) =
2

n

∫
Sn−1

|Z|ξ⊥|dµ(ξ).
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Lemma 4.2. let Z ⊂ Rn be a zonoid with the generating measure µ, then

|Z| = 2

n

∫
Sn−1

|Z|ξ⊥|dµ(ξ).

Let us present an example of the application of Lemma 4.2. The Shephard problem
[Shep] can be stated as follows. let K,L be convex symmetric bodies in Rn such that

(25) |K|ξ⊥| ≤ |L|ξ⊥|, for all ξ ∈ Sn−1.

Does it follow that

|K| ≤ |L|.
Theorem 4.1. (Shephard problem - Affirmative case [Sc1]). Consider convex symmet-
ric bodies K and L in Rn such that they satisfy the condition (25). In addition assume
that L is a zonoid, then |K| ≤ |L|.
Proof. Let µ be a generating measure of L, then

(26)

∫
Sn−1

|K|ξ⊥|dµ ≤
∫

Sn−1

|L|ξ⊥|dµ.

From Lemma 4.2 we see that the right hand side of the above inequality is just n
2
|L|.

Thus, we need to work on the left hand side:∫
Sn−1

|K|ξ⊥|dµ =
1

2

∫
Sn−1

∫
Sn−1

|ξ ·θ|dS(K, θ)dµ(ξ) =
1

2

∫
Sn−1

hL(θ)dS(K, θ) =
n

2
V1(K,L),

and we got (26) is equivalent to

V1(K,L) ≤ |L|.
Now we apply First Minkowski inequity (Corollary 2.3) to finish the proof. �

Theorem 4.1 together with Exercise 4.3 gives an affirmative answer to the Shephard
problem in R2.

Exercise 4.5. Give a direct solution of Shephard problem in R2.

Exercise 4.6. Show that the Shephard problem has a negative answer in Rn, n ≥ 3.
Hint: Consider bodies of revolution, take K = Bn

2 and L to be rotation of a cube around
its diagonal. To construct a counterexample, make a suitable transformation to L so
that K and L satisfy (25) but |K| > |L|.

The Busemann-Petty problem (the section analog of the Shephard problem) asks a
similar question for sections of convex symmetric bodies. In this case the answer is
affirmative for n < 5 and negative starting from the dimension 5 (see [K5]).

Exercise 4.7. Show that if L is a star-shaped body such that

|Bn
2 ∩ ξ⊥| ≤ |L ∩ ξ⊥|, for all ξ ∈ Sn−1,

then |Bn
2 | ≤ |L|.
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Open Problem 4.1. Let K,L, be convex symmetric bodies in Rn, n ≥ 5. Assume that

|K|ξ⊥| ≤ |L|ξ⊥| and |K ∩ ξ⊥| ≤ |L ∩ ξ⊥|, for all ξ ∈ Sn−1.

Is it true that |K| ≤ |L|?
4.1. Mahler conjecture: case of zonoids. In this section we give an affirmative
answer to the Mahler conjecture in the special case of zonoids.

Theorem 4.2. (S. Reisner, [R1]) Let Z ⊂ Rn be a zonoid, then

P(Z) ≥ P(Bn
∞).

We will present the proof from [GMR], we will start with the following lemmata

Lemma 4.3. Let Z be a zonoid in Rn with the generating measure µ. Then

(n+ 1)|Z|
∫

Sn−1

∫
Z◦

|x · y|dy

 dµ(x) = 2|Z◦|
∫

Sn−1

|Z|x⊥|dµ(x),

in particular, for some x0 ∈ Sn−1 we have

(n+ 1)|Z|
∫
Z◦

|x0 · y|dy ≥ 2|Z◦||Z|x⊥0 |.

Proof. We use Fubini theorem to see that∫
Sn−1

∫
Z◦

|x · y|dy

 dµ(x) =

∫
Z◦

 ∫
Sn−1

|x · y|dµ(x)

 dy =

∫
Z◦

hZ(y)dy =

∫
Z◦

‖y‖Z◦dy

=

∫
Sn−1

‖θ‖Z◦
∫ ‖y‖−1

Z◦

0

rndθ =
1

n+ 1

∫
Sn−1

‖θ‖−nZ◦ dθ =
n

n+ 1
|Z◦|.

To finish the proof we multiply the last equality by the volume formula for Z (see
Lemma 4.2). �

Lemma 4.4. Let f : R+ → R+ satisfy f(0) = 1,
∫
f(x)dx > 0 and for some p > 0,

f 1/p is concave on the support of f . Then

∞∫
0

tf(t)dt ≤ p+ 1

p+ 2

 ∞∫
0

f(t)dt

2

.

Proof. Let a > 0 be such that

∞∫
0

f(t)dt =

∞∫
0

(1− at)p+dt =
1

a(p+ 1)
.
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Let g(x) = f(x) − (1 − ax)p+. Since g(0) = 0,
∫
g(x)dx = 0, and f 1/p is concave, there

exists a point x0 ∈ R+ such that g(x) ≥ 0 for x ∈ [0, x0] and g(x) ≤ 0, for x ≥ x0.
Thus,

∞∫
x

g(x) ≤ 0 for all x ∈ R+,

and
∞∫

0

tf(t)dt =

∞∫
0

∫ ∞
x

f(t)dtdx ≤
∞∫

0

∫ ∞
x

(1− at)p+dtdx

=
1

(p+ 1)(p+ 2)a2
=
p+ 1

p+ 2

 ∞∫
0

f(t)dt

2

.

�

Lemma 4.5. Let K be a convex symmetric body in Rn, then∫
K

|x · y|dy ≤ n

2(n+ 1)

|K|2
|K ∩ x⊥| , for all x ∈ Sn−1.

Proof. Consider the section function AK,ξ(t) = |K ∩ {ξ⊥ + tξ}| (see Definition 2.3).
Then by Fubini theorem,∫

K

|x · y|dy = 2

∞∫
0

tAK,ξ(t)dt and |K| = 2

∞∫
0

AK,ξ(t)dt.

Moreover, applying Corollary 2.1 we get that A
1/(n−1)
K,ξ (t) is concave on its support. We

finish the proof by applying Lemma 4.4 with f = AK,ξ(t)/AK,ξ(0) and p = n− 1. �

Proof. We will prove Theorem 4.2 by induction. The Mahler conjecture is true in R.
Let Z be a zonoid in Rn. By Lemmata 4.3 and 4.5 we get that for some x0 ∈ Sn−1:

|Z◦||Z|x⊥0 | ≤
n+ 1

2
|Z|
∫
Z◦

|x0 · y|dy ≤
n

4

|Z||Z◦|2
|Z◦ ∩ x⊥0 |

.

Simplifying the above inequality we get

|Z◦ ∩ x⊥0 ||Z|x⊥0 | ≤
n

4
|Z||Z◦|.

Using the fact that the projection of zonoid is again a zonoid and applying (3) from
Lemma 3.1 together with the induction hypothesis we get

|Z||Z◦| ≥ 4

n
|(Z|x⊥0 )◦||Z|x⊥0 | ≥

4n

n!
.

�

Remark 4.1. Notice that Exercise 4.3 together with Theorem 4.2 gives, yet another,
affirmative solution to the Mahler conjecture in R2.
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5. Radon and Cosine Transforms

We have already met the Radon and the Cosine transforms in previous sections, when
we defined the volumes of projections and sections. Here we would like to give formal
definitions and provide the reader with very useful formulas connecting those transforms
to the Fourier Transform of distributions.

Definition 5.1. Let φ be an integrable function on Rn, which is also integrable on
every hyperplane. The Radon Transform of φ is defined as a function of hyperplane
H(ξ, t) = {x ∈ Rn : x · ξ = t}, where ξ ∈ Rn and t ∈ R:

Rφ(ξ, t) =

∫
H(ξ,t)

φ(x)dx.

The Spherical Radon transform R : C(Sn−1)→ C(Sn−1) is defined by

Rf(ξ) =

∫
Sn−1∩ξ⊥

f(θ)dθ.

Finally, the Cosine transform Cos : C(Sn−1)→ C(Sn−1) is defined by

Cosf(ξ) =

∫
Sn−1

|θ · ξ|f(θ)dθ.

Exercise 5.1. Show that

AK,ξ(0) = |K ∩ ξ⊥| = 1

n− 1
R(‖ · ‖−n+1

K )(ξ).

Also prove that if K is convex and smooth enough then,

|K
∣∣ξ⊥| = 1

2
Cos(fK)(ξ).

The next lemma shows that Spherical Radon and Cosine transforms are self-adjoint:

Lemma 5.1. For functions f, g ∈ C(Sn−1):∫
Sn−1

Cosf(ξ)g(ξ)dξ =

∫
Sn−1

f(ξ)Cosg(ξ)dξ,∫
Sn−1

Rf(ξ)g(ξ)dξ =

∫
Sn−1

f(ξ)Rg(ξ)dξ,

Proof. The self-adjointness of the Spherical Cosine transform follows immediately from
the Fubini theorem. The self-adjointness of the Spherical Radon transform is not so
straightforward. One can prove it by noticing that uniformly in ξ

Rf(ξ) = lim
ε→0

1

2ε

∫
Sn−1∩{|θ·ξ|≤ε}

f(θ)dθ.

�
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The following lemma connects regular Radon transform to the Fourer transform. It
will help us in the future to link the Sperical Radon and Cosine transforms to the Fourier
transform of distributions.

Lemma 5.2. Let φ ∈ L1(Rn). Then

R̂φ(ξ, t)(z) = φ̂(zξ), for all z ∈ R, ξ ∈ Rn,

where φ̂ is n-dimensional Fourier transform of φ and R̂φ(ξ, t)(z) is the one-dimensional
Fourier transform of the function Rφ(ξ, t) with respect to t ∈ R.

Proof. By Fubini Theorem,

φ̂(zξ) =

∫
Rn

φ(x)e−iz(x·ξ)dx =

∫
R
e−izt

 ∫
H(ξ,t)

φ(x)dx

 dt = R̂φ(ξ, t)(z).

�

We denote by S the space of rapidly decreasing infinitely differentiable functions (test
functions) on Rn with values in C. By S ′ we denote the space of distributions over S.
Every locally integrable real valued function f on Rn with power growth at infinity
represents a distribution acting by integration: for every φ ∈ S,

〈f, φ〉 =

∫
Rn
f(x)φ(x)dx.

The Fourier transform of a distribution f is defined by

〈f̂ , φ̂〉 = (2π)n〈f, φ〉,
for every test function φ.

We refer the reader to the books by Rudin [Ru] and Gelfand and Shilov [GS] for
details about distributions.

The next Lemma is the link between the Spherical Radon transform and the Fourier
transform of distributions:

Lemma 5.3. Let f be an even homogeneous of degree −n+ 1 function, continuous on
Rn \ {0}. Then the Fourier transform of f is an even homogeneous function of degree
−1, continuous on Rn \ {0}, whose restriction to the sphere equals

Rf(ξ) =
1

π
f̂(ξ),∀ξ ∈ Sn−1.

Proof. Since f is even, it is enough to consider only even test functions φ ∈ S:

〈f̂ , φ〉 = 〈f, φ̂〉 =

∫
Rn
f(x)φ̂(x)dx =

∫
Sn−1

f(θ)

(∫ ∞
0

φ̂(tθ)dt

)
dθ.

Next we notice that (since φ even):∫ ∞
0

φ̂(tθ)dt =
1

2

∫ ∞
−∞

φ̂(tθ)dt =
1

2

[
φ̂(tθ)

]∧
t

(0) = π

∫
{x∈Rn: x·θ=0}

φ(x)dx = (∗),
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where the third equality follows from Lemma 5.2. Next, passing to the polar coordinates
in θ⊥, we get

(∗) = π

∫
Sn−1∩θ⊥

∫ ∞
0

rn−2φ(rξ)drdξ = R
[∫ ∞

0

rn−2φ(rξ)dr

]
(θ).

Thus, applying Lemma 5.1 we get

〈f̂ , φ〉 = π

∫
Sn−1

Rf(ξ)

(∫ ∞
0

rn−2φ(rξ)dr

)
dξ = π

∫
Rn
|x|−1

2 Rf
(
x

|x|

)
φ(x)dx.

�

The following two theorems are immediate corollaries of Lemma 5.3:

Theorem 5.1. Consider a symmetric, star-shaped body K ⊂ Rn, then

|K ∩ ξ⊥| = 1

π(n− 1)
(‖ · ‖−n+1

K )∧(ξ).

Theorem 5.2. (Minkowski’s uniqueness Theorem). Let K and L be origin-
symmetric star-shaped bodies in Rn such that

|K ∩ θ⊥| = |L ∩ θ⊥|, for all θ ∈ Sn−1.

Then K = L.

Exercise 5.2. Consider a positive even continuous function f : Rn → R. Let K,L ⊂ Rn

be origin-symmetric star-shaped bodies such that∫
K∩θ⊥

f(x)dx =

∫
L∩θ⊥

f(x)dx, for all θ ∈ Sn−1.

Then K = L. Hint: see [Z].

Observe that Theorem 5.1 yelds (‖ · ‖−n+1
K )∧(ξ) = π(n− 1)AK,ξ(0). This fact can be

generalized to the Fourier transform of the general powers of the norming functional:

Theorem 5.3. Let D be an origin-symmetric convex infinitely smooth body in Rn. Then
∀ξ ∈ Sn−1 and k ∈ N, k 6= n− 1,

(27) ̂‖ · ‖−n+k+1
D (ξ) = (−1)k/2π(n− k − 1)A

(k)
D,ξ(0),

when k is even, and
(28)

̂‖ · ‖−n+k+1
D (ξ) = (−1)

k+1
2 2(n− k − 1)k!

∫ ∞
0

AD,ξ(z)− AD,ξ(0)− ...− A(k−1)
D,ξ (0) zk−1

(k−1)!

zk+1
dz,

when k is odd.

The proof of the above Theorem 5.3 can be found in [K5] and [KY].
A slightly more complicated but similar technique is needed to produce a Fourier

type formula for the Cosine transform. We consider test functions supported outside of
the origin, for which 〈r−2, φ(rξ)〉 =

∫
R r
−2 φ(rξ) dr.
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If µ is absolutely continuous with the density g ∈ L1(Sn−1), we define the extension
g(x), x ∈ Rn\{0}, as a homogeneous function of degree −n−1: g(x) = |x|−n−1g(x/|x|),
and identify µ̂e with ĝ.

The following fact is the Cosine transform analog of Lemma 5.3, (for the proof see
[K5]):

Lemma 5.4. For every θ ∈ Sn−1,

µ̂e(θ) = −π
2

∫
Sn−1

|θ · y|dµ(y) = −π
2
Cosµ(θ).

In particular, if µ is absolutely continuous with the density g ∈ L1(Sn−1), then

ĝ(θ) = −π
2
Cosg(θ).

Remark 5.1. Lemma 5.4 helps to invert the Cosine transform. Indeed, since the
Fourier transform is self-inverting for even functions (up to constant (2π)n), one has

(29) Cos−1f(θ) = −π
2

1

(2π)n
f̂(θ).

The above Lemma 5.4 and Theorem 2.3 give the following result (see [KRZ]):

Theorem 5.4. Let L be a convex origin symmetric body in Rn. Then

Ŝe(L, ·)(θ) = −πVoln−1

(
L
∣∣∣θ⊥) , ∀θ ∈ Sn−1.

In particular, if the body L has a curvature function fL then

f̂L(θ) = −πVoln−1

(
L
∣∣∣θ⊥) , ∀θ ∈ Sn−1.

The next theorem is a projection version of Theorem 5.2 . The first step in the proof
is the use of Theorem 5.4. But it requires an additional step which is quite involved.
This step guarantees that from S(K, ·) = S(L, ·) we get K = L, (we refer to [Sc2] for
the detailed proof).

Theorem 5.5. (Alexandrov uniqueness Theorem). Let K and L be origin-symmetric
convex bodies in Rn such that

|K|θ⊥| = |L|θ⊥|, for all θ ∈ Sn−1.

Then K = L.

Open Problem 5.1. Let γn(A) = (2π)−n/2
∫
A
e−|x|

2/2dx be a standard Gaussian mea-
sure. Consider two, convex symmetric bodies K,L ⊂ Rn such that

γn−1(K|θ⊥) = γn−1(L|θ⊥), for all θ ∈ Sn−1.

Is it true that then K = L?

Lemma 5.4 and the Remark after it give the Fourier analytic characterization of
Zonoids:
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Theorem 5.6. An origin symmetric convex body L in Rn is zonoid if and only if there
exists a measure µ on Sn−1 so that

(30) ĥL = −µe.
Now we are ready to provide the reader with a link connecting the Fourier transform

of the support function of a Zonoid to the section function of its dual.
Suppose that an origin symmetric convex body L ⊂ Rn has the property that hL is

an infinitely differentiable function on the sphere Sn−1. This, in particular, means that
the polar body L◦ is infinitely smooth (recall that hL = ‖ · ‖L◦). Putting k = n, D = L◦

in Theorem 5.3, we get:

Theorem 5.7. Consider an infinitely smooth convex symmetric body L ∈ Rn. Then,
for every ξ ∈ Sn−1,

(31) ĥL(ξ) = (−1)1+n/2πA
(n)
L◦,ξ(0), provided n is even,

ĥL(ξ) =(32)

(−1)(n−1)/22n!

∫ ∞
0

AL◦,ξ(z)− AL◦,ξ(0)− ...− A(n−1)
L◦,ξ (0) zn−1

(n−1)!

zn+1
dz,

provided n is odd.

The next result (from [KRZ]) gives the characterization of zonoids in terms of the
sections of the polar body.

Theorem 5.8. Let L be an origin symmetric convex body in Rn so that hL is infinitely
differentiable on Sn−1. The body L is a zonoid if and only if for every ξ ∈ Sn−1,
(i) if n is even

(−1)n/2A
(n)
L◦,ξ(0) ≥ 0;

(ii) if n is odd

(−1)(n+1)/2

∫ ∞
0

AL◦,ξ(z)− AL◦,ξ(0)− ...− A(n−1)
L◦,ξ (0) zn−1

(n−1)!

zn+1
dz ≥ 0.

Corollary 5.1. Every symmetric convex body in R2 is a zonoid.

Proof. We will prove the Corollary only in the case of an infinitely smooth body L ⊂ R2.
We use Theorem 5.8 with n = 2 to get that symmetric convex body L in R2 is a zonoid
if and only if

A
′′
L◦,ξ(0) ≤ 0.

But by Brunn’s theorem (Corollary 2.1), the central section has the maximal volume
among all hyperplane sections perpendicular to a fixed direction. Therefore, for every
ξ the function Aξ has maximum at zero and A

′′
L∗,ξ(0) ≤ 0. �

Exercise 5.3. Use Theorem 5.8 to show that there are convex symmetric bodies in Rn,
n ≥ 3, which are not zonoids. Hint: To construct L◦, consider a body of revolution, for
example rotate function f around direction x1. Notice that you need to find only one
”bad” direction, i.e. you do not need to compute AL◦,ξ(z) for all direction ξ. Computing
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AL◦,e1(z) is not hard and you may select a proper function f to get a negative sign in
Theorem 5.8. Also note that using a perturbation argument, we may always assume that
L is infinitely smooth with positive Gaussian curvature.

6. Local and Equatorial characterization of Zonoids

As we discussed in the previous section, there exist convex symmetric bodies in Rn,
n ≥ 3, which are not zonoids. It is quite an interesting question of how to decide if the
given body is a zonoid or not. The next lemma (see [Sc2]) gives an interesting geometric
characterization for Zonotopes:

Lemma 6.1. A convex polytope is a zonotope if and only if all of its two-dimensional
faces are centrally symmetric.

It is natural to ask if Lemma 6.1 can be generalized to the case of zonoids, i.e. can
a zonoid be determined from local information? This question was posed repeatedly
(see [Sc2] for the history of the problem), however W. Weil showed [W] that a local
characterization of zonoids does not exist. In particular, he showed that there exists
an origin-symmetric convex C∞ body K ⊂ Rn, n ≥ 3, that is not a zonoid but has the
following property: for each u ∈ Sn−1 there exists a zonoid Zu with center at the origin
and a neighborhood Uu ⊂ Sn−1 of u such that the boundaries of K and Zu coincide at
all points where the exterior unit normal vectors belong to Uu.

Thus, no characterization of zonoids that involves only arbitrarily small neighbor-
hoods of boundary points is possible. We will present a proof of this result in section
6.3.

Exercise 6.1. Show that zonotopes can be locally characterized: Consider a polytope
P ⊂ Rn such that for each u ∈ Sn−1 there exists a zonotope Zu with center at the origin
and a neighborhood Uu ⊂ Sn−1 of u such that the boundaries of P and Zu coincide at all
points where the exterior unit normal vectors belong to Uu. Prove that P is a zonotope.

Exercise 6.2. Consider a body K ⊂ Rn, such that for any point u ∈ Sn−1 there exists
an Ellipsoid Eu a neighborhood Uu ⊂ Sn−1 of u such that the boundaries of K and Eu
coincide at all points where the exterior unit normal vectors belong to Eu. Prove that
K is an Ellipsoid.

In 1977, W. Weil (see [W]) proposed the following conjecture about local equatorial
characterization of zonoids. Let L ⊂ Rn be an origin-symmetric convex body and assume
that for any equator σ ⊂ Sn−1, there exists a zonoid Zσ and a neighborhood Eσ of σ
such that the boundaries of L and Zσ coincide at all points where the exterior unit vector
belongs to Eσ; then L is a zonoid.

Exercise 6.3. Show that the local equatorial characterization naturally arrises from the
following property of zonotopes: Consider a zonotope Z =

∑m
i=1[−vi, vi], and S be one

of [−vi, vi]. Also consider the equator ES = {u ∈ Sn−1 : u ⊥ S}. Prove that each
support set

F (Z, u) = {x ∈ Z : hZ(u) = x · u} = Facet of Z with normal vector u,

where u ∈ ES contains a translate of S.
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Conclude that
⋃

u∈ES
F (Z, u) makes up a zone in ∂Z. This explains the name ”zono-

tope”.

Affirmative answers for even dimensions were given independently by G. Panina [Pan]
in 1988 and Goodey and Weil [GW] in 1993.

Finally, it was proved in [NRZ] using the Fourier Analytic approach (via Theorem
5.8) that the answer to the conjecture in odd dimensions is negative.

In this section we will describe the solution for Local and Local equatorial charac-
terization. Let us start with the following example which was proposed by F. Nazarov
(see [Schl]):

6.1. A motivating example. Why there should be no local characterization of Zonoids?

Exercise 6.4. Let f ∈ L1([−π, π]) be a real valued, even, 2π-periodic function that
“locally” coincide with a function having non-negative Fourier coefficients. Is it true
that f has non-negative Fourier coefficients?

Solution: We remind that

f̂(j) =
1

2π

∫ π

−π
f(t)e−ijtdt, for each j ∈ Z.

We are given that f is such that for all x ∈ [−π, π] there exists ε > 0 and a 2π-periodic,
real valued, even function gx ∈ L1([−π, π]) such that

• ĝx(j) ≥ 0 for all j ∈ Z;
• gx ≡ f on Uε(x) = (x− ε, x+ ε) ∩ [−π, π].

So the question is whether f̂(j) ≥ 0 for all j ∈ Z.
One can easily see the parallel between this question and the aforementioned question

about characterization of zonoids. We claim that there exists a 2π-periodic real valued,
even function f ∈ L1([−π, π]) that “locally” has non-negative Fourier coefficients but
actually has at least one negative Fourier coefficient.

The idea is to start with a 2π-periodic, even, real valued function g, supported around
zero, having large Fourier coefficients and then to perturb it.

A classical example example of a localized function with all non-negative Fourier
coefficients would be a δ0 measure, or ”functional” version of it, Fejer type kernel. In
our case we take g(t) such that g(t) = 0 for |t| ∈ [π/4, π] and g(t) = − 4

π
|t| + 1 for

|t| ∈ [0, π/4].

−π ππ
4

−π
4

1 g(t)
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Observe that ĝ(j) = 1
π

π/4∫
0

− 4
π
t cos jt+ cos jtdt = 4

π2j2
(1− cos π

4
j).

Now we define our function f as a perturbation of g, f = g(t) + α(t) for t ∈ [−π, π],
where α(t) = sin 2|t| for |t| ∈ [π/2, π] and α(t) = 0 otherwise.

−π ππ
4

−π
4

π
2

−π
2

1 f(t) = g(t) + α(t)

Notice that, f̂(0) =
∫ π
−π f(t)dt < 0.

We have to show that f coincides locally with functions having all non-negative
Fourier coefficients. First, consider x ∈ [−π, π]. If |x| < π/2, then take ε > 0 such that
Uε(x) ⊂ [−π/2, π/2] and take gx(t) = g(t), clearly, gx(t) = f(t) for t ∈ Uε(x). Next,
consider |x| ∈ [π/2, π]. In this case we choose ε = π/4 and ”add δ0-measure to f(t)”:
gx(t) = bg(t) + α(t),

−π ππ
4

−π
4

π
2

−π
2

b

gx(t) = bg(t) + α(t)

x

where b is selected large enough so that ĝx(j) ≥ 0 for all j ∈ Z. Again, gx(t) = f(t) for
t ∈ Uε(x), this finishes the construction.

6.2. Local equatorial characterization. For 0 < ε < 1 and ξ ∈ Sn−1, we denote by
Uε(ξ) the union of caps centered at ξ and −ξ,

Uε(ξ) := {θ ∈ Sn−1 : |θ · ξ| ≥
√

1− ε2}.

We denote by Eε(ξ), 0 < ε < 1, the neighborhood of the equator Sn−1 ∩ ξ⊥:

Eε(ξ) := {θ ∈ Sn−1 : |θ · ξ| < ε}.
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We see from Theorem 5.8 that for n even, the characterization of zonoids is defined
in properties by the properties of the derivatives of the section function AL◦,ξ(0), i.e.
around the equator Sn−1 ∩ ξ⊥. This gives:

Theorem 6.1. Let n be even and let L ⊂ Rn be an origin-symmetric convex body.
Assume that for any great sphere ξ⊥∩Sn−1, there exists a zonoid Zξ and a neighborhood
Eε(ξ)(ξ) of ξ⊥ ∩ Sn−1 such that the boundaries of K and Zξ coincide at all points where
the exterior unit vector belong to Eε(ξ)(ξ); then L is a zonoid.

Again, studying statement of Theorem 5.8 for n odd, we see that zonoids depend
on the global properties of the function AL◦,ξ(t). This will be the main idea for a
construction a counterexample. We will need the following lemmata:

Lemma 6.2. Let n ≥ 3 be odd. Then ∀ε > 0 small enough and for any fixed x, ξ ∈ Sn−1,
there exists an even function fx,ξ on Sn−1 such that fx,ξ = 0 on Eε(x), but Cos−1fx,ξ ≥
c > 0 on Uε(ξ).

Proof. First, we fix x, ξ ∈ Sn−1 and find ε = ε(x, ξ) and c = c(x, ξ) satisfying the
requirements of the lemma. Then, we use a compactness argument to produce absolute
ε and c.

For fixed x, ξ ∈ Sn−1 and some small ε > 0 there exist two infinitely smooth symmetric
star bodiesM,Q, such that ‖·‖M = ‖·‖Q on the closure of Eε(ξ)∪Eε(x), and ‖·‖M > ‖·‖Q
otherwise (thus Q ⊂M). Set fx,ξ(·) = (−1)

n+1
2 (‖ · ‖M − ‖ · ‖Q).

Then fx,ξ is an even infinitely differentiable function such that fx,ξ = 0 on Eε(x).

Also ‖ · ‖M = ‖ · ‖Q on Eε(ξ) implies A
(k)
M,ξ(0) = A

(k)
Q,ξ(0), k = 0, 1, ..., n − 1 because

differentiability at zero is a local property. Thus, by Lemma 5.4, the Remark after it,
and Theorem 5.3, we get

Cos−1fx,ξ(ξ) = (−1)
n+1
2

[
Cos−1(‖ · ‖M)(ξ)− Cos−1(‖ · ‖Q)(ξ)

]
= −(−1)

n+1
2 cn(‖̂ · ‖M(ξ)− ‖̂ · ‖Q(ξ))

= c′n

∫ ∞
0

AM,ξ(z)− AQ,ξ(z)

zn+1
dz, where cn, c

′
n > 0.(33)

The integral in the last line is strictly positive. Indeed AQ,ξ = AM,ξ near zero and
AM,ξ > AQ,ξ elsewhere on the union of their supports because the boundaries ofQ andM
agree on Eε(ξ) and Q (M . Hence the integral is strictly positive. So, we have exhibited
that for fixed x, ξ ∈ Sn−1 there exists ε′ = ε′(x, ξ) > 0 and c′ = c′(x, ξ) such that there
exists an even function fx,ξ satisfying fx,ξ = 0 on Eε(x), and Cos−1fx,ξ(ξ) ≥ c′ > 0.

The function Cos−1fx,ξ is continuous on Sn−1 since M,Q are infinitely smooth. Hence,
Cos−1fx,ξ ≥ c > 0 on Uε′′(ξ), for some ε′′ > 0 and c = c(x, ξ). Put ε̃ = ε̃(x, ξ) =
min(ε′, ε′′). We proved that for any x and ξ, there is ε̃ = ε̃(x, ξ) > 0 and a function fx,ξ
such that fx,ξ = 0 on Eε̃(x), but Cos−1fx,ξ ≥ c on Uε̃(ξ), c = c(x, ξ).

Now we use the compactness argument to show that we can choose ε and c inde-
pendent of x and ξ. We choose a finite set of pairs {xi, ξi}mi=1 such that {Uε̃i/2(xi) ×
Uε̃i/2(ξi)}mi=1 cover Sn−1 × Sn−1. We take

ε =
1

2
min

1≤i≤m
ε̃i and c = min

1≤i≤m
c(xi, ξi).
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Then, for any (x, ξ), there is a pair (xi, ξi) such that (x, ξ) ∈ Uε̃i/2(xi) × Uε̃i/2(ξi) and
thereby

Eε(x)× Uε(ξ) ⊂ Eε̃i(xi)× Uε̃i(ξi).
Finally, we may define fx,ξ = fxi,ξi . �

Remark 6.1. Note that dilating M and Q (and thus functions fx,ξ) we may assume
that c is as large as we want. By the technical reasons we take c = 2Cos−11. Moreover,
we can assume that the set of functions {fx,ξ}x,ξ∈Sn−1 in the lemma is finite.

Lemma 6.3. Let n ≥ 3. For any point ξ0 ∈ Sn−1 there exists a zonoid K̃ ∈ C∞+ such
that Cos−1hK̃(ξ) is strictly positive for all ξ 6= ±ξ0, and Cos−1hK̃(±ξ0) = 0.

Proof. Fix n ≥ 3. Then there exists convex symmetric body M ⊂ Rn which is C∞

smooth and with positive curvature such that Cos−1hM is sign-changing (see Exercise
5.3 or [K5], page 161, for a construction of a such non-zonoid body).

For t ∈ [0, 1] consider the Minkowski sum K(t) = tBn
2 + (1 − t)M . Then hK(t) =

thBn2 + (1 − t)hM is a C∞-function, Cos−1hK(0)(ξ) is sign-changing and there exists
Λ′ ⊂ Sn−1 such that Cos−1hK(0)(ξ) < 0, ∀ξ ∈ Λ′. On the other hand, Cos−1hK(1)(ξ) > 0,
∀ξ ∈ Sn−1. The map t → Cos−1hK(t) is continuous, since Cos is a continuous bijection
of C∞(Sn−1) into itself, ([Ga2], page 381). Hence, there is t0 ∈ [0, 1] such that

Cos−1hK(t0) ≥ 0, and Cos−1hK(t0)(ξ) = 0,∀ξ ∈ Λ ⊂ Sn−1

and some Λ 6= ∅. Fix any ξ0 ∈ Λ. Consider an even C∞ smooth function g on Sn−1

such that
g(x) > 0,∀x 6= ±ξ0 and g(±ξ0) = 0.

For ε > 0 define a body K̃:

Cos−1hK̃(ξ) = Cos−1hK(t0)(ξ) + εg(ξ).

Note that Cos−1hK̃(ξ) is strictly positive for all ξ 6= ±ξ0, and Cos−1hK̃(±ξ0) = 0.
Moreover,

hK̃ = hK(t0) + εCosg.
Since Cosg is a continuous function and K(t0) ∈ C∞+ , we may choose ε small enough so

that K̃ ∈ C∞+ . Using the rotation argument, we can take ξ0 to be arbitrary. �

Theorem 6.2. Let n ≥ 3 be odd. There exists ε > 0 and a convex body K which is not
a zonoid, but nevertheless ∀x ∈ Sn−1 there exists a zonoid Lx such that hK = hLx on
Eε(x).

Proof. We define a convex body K and a family of convex bodies {Lx}x∈Sn−1 using

the zonoid K̃ and functions fx,ξ0 from Lemma 6.2. We fix some small ε satisfying the
requirements of Lemma 6.2 with c = 2Cos−11 (see Remark after Lemma 6.2). Then,
define K = Kδ,ξ0 via hK = hK̃ + δ, where for the moment δ > 0 is assumed to be
so small that K ∈ C∞+ and Cos−1hK is strictly positive outside Uε(ξ0). Note that
Cos−1hK(ξ0) < 0 and thus K is not a zonoid.

Now we define a family of convex bodies {Lx}x∈Sn−1 . Since K̃ ∈ C∞+ , we take δ so
small that hLx := hK̃ − δ+ δfx,ξ0 > 0 on Sn−1 and Lx is convex. Observe that hLx = hK
on Eε(x) for any x ∈ Sn−1.
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We can assume that δ is so small that

Cos−1hLx = Cos−1hK̃ − δCos−11 + δCos−1fx,ξ0 > 0

on Sn−1 \ Uε(ξ0), since Cos−1hK̃ > 0 on Sn−1 \ Uε(ξ0).
To show that bodies Lx are zonoids ∀x ∈ Sn−1, it is enough to prove that Cos−1hLx >

0 on Uε(ξ0). By the Remark after Lemma 6.2, minx∈Sn−1 Cos−1fx,ξ0 > 2Cos−11 on Uε(ξ0),
hence

Cos−1hLx = Cos−1hK̃ − δCos−11 + δCos−1fx,ξ0 ≥ δCos−11 > 0

on Uε(ξ0), and the result follows. �

Open Problem 6.1. What is the smallest ε > 0 we should choose in order to obtain
an an affirmative answer to Weyl’s question on local equatorial characterization? Is it
possible to take ε slightly smaller then 1/2?

6.3. Local characterization. In this section we prove the result of W. Weil [W] for
zonoids. Our proof is different from the one of W. Weil and follows [NRZ]. We show
that, given x, ξ ∈ Sn−1, one can construct a function f which is zero around x, but such
that the inverse Cosine transform of f is positive around ξ. Notice that if the dimension
is odd, since there is no local equatorial characterization of zonoids, there cannot be a
local characterization of zonoids. For convenience of the reader we split the proof of
this result (compare Lemma 6.8 with Lemma 6.2) into four statements. We will use the
following notation

=ε,x = {f ∈ C∞(Sn−1) even : f = 0 on Uε(x)}, 0 < ε < 1.

Lemma 6.4. Cos−1 commutes with rotations. That is Cos−1(f ◦ ρ) ≡ (Cos−1f) ◦ ρ for
all f ∈ C∞(Sn−1) and for all ρ ∈ SO(n).

Lemma 6.5. Let n ≥ 3, and let ξ, x ∈ Sn−1 be two orthogonal vectors. Assume that any
f ∈ =1/4,x satisfies Cos−1f(ξ) = 0. Then for any pair of orthogonal vectors u, v ∈ Sn−1

we have f ∈ =1/4,u implies Cos−1f(v) = 0.

Proof. For any two pairs of orthogonal unit vectors (ξ, x), (u, v) there exists a rotation
ρ ∈ SO(n) satisfying u = ρ(x), v = ρ(ξ). Since Cos−1 commutes with rotations, the
result follows. �

Lemma 6.6. Let n ≥ 3, and let ξ ∈ x⊥. Assume that any f ∈ =1/4,x satisfies
Cos−1f(ξ) = 0. Then Cos−1(=1/2,x) ⊂ =1/4,ξ.

Proof. Take any u ∈ U1/4(ξ). Let ρ ∈ SO(n), ρ(ξ) = u, where ξ is rotated into u
inside U1/4(ξ) in the plane containing ξ, u and the origin. Then ρ(x) ∈ U1/4(x), and
=1/2,x ⊂ =1/4,ρ(x). Moreover, Cos−1f(u) = 0 since Cos−1 commutes with rotations. The
point u was chosen arbitrarily in U1/4(ξ), hence Cos−1(=1/2,x) ⊂ =1/4,ξ. �

Lemma 6.7. Let n ≥ 3, and let ξ ∈ x⊥. Then there exists a function f = fx,ξ on Sn−1

satisfying fx,ξ = 0 on U1/4(x), but Cos−1fx,ξ(ξ) 6= 0.

Proof. Assume the contrary. Then Cos−1(=1/2,x) ⊂ =1/4,ξ by Lemma 6.6. Take any
vector y ∈ Sn−1, and find a vector q ∈ x⊥ ∩ y⊥. Let ρ ∈ SO(n) be such that ρ(x) =
x, ρ(ξ) = q. Observe that f ∈ =ε,x implies f(ρ(·)) ∈ =ε,x. Since Cos−1 commutes
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with rotations, Cos−1(=1/2,x) ⊂ =1/4,ξ yields Cos−1(=1/2,x) ⊂ =1/4,q. Take two pairs of
orthogonal vectors (x, q) and (q, y). By Lemma 6.5, we have Cos−2f(y) = 0. Thus,
Cos−2f ≡ 0, a contradiction. �

Lemma 6.8. Let n ≥ 3. Then there exists an ε > 0 and an absolute constant c > 0
such that for any x, ξ ∈ Sn−1, there exists an even function fx,ξ satisfying fx,ξ = 0 on
Uε(x), and Cos−1fx,ξ ≥ c on Uε(ξ).

Remark 6.2. If n is odd then this lemma is true by Lemma 6.2. So for the proof
assume that n is even.

Proof. We fix points x and ξ, and provide an ε > 0, and c > 0 depending on x, ξ such
that there is a function fx,ξ satisfying fx,ξ = 0 on Uε(x), and Cos−1fx,ξ ≥ c > 0 on
Uε(ξ). Then we use the compactness argument to prove the statement of the lemma.

Let ξ 6∈ x⊥. Then there exists an ε > 0, such that ξ /∈ Eε(x). For any function g by
the even part of Theorem 5.7 the values of Cos(g) on Uε(x) depend only on the values
of g on Eε(x). Hence, we may consider an even C∞-function g such that g(±ξ) > 0 and
g(ν) = 0, for ν ∈ Eε(x) and define fx,ξ = Cos(g)(x).

Let ξ ∈ x⊥. Then Lemma 6.7 implies the existence of ε = ε(x, ξ) = 1/8, and a
function f = fx,ξ on Sn−1 satisfying fx,ξ = 0 on Uε(x), but Cos−1fx,ξ(ξ) > 0 (change the
sign of fx,ξ if necessary).

Thus, we proved that for any x and ξ, there is ε′ = ε′(x, ξ) > 0 and there is a function
fx,ξ such that fx,ξ = 0 on Uε′(x), but Cos−1fx,ξ(±ξ) ≥ c′, c′ = c′(x, ξ) > 0. From the
continuity of the function Cos−1fx,ξ we get that Cos−1fx,ξ ≥ c, c = c(x, ξ) > 0 on Uε′′(ξ),
for some ε′′ > 0. Take ε̃ = ε̃(x, ξ) = min(ε′, ε′′). We show that for any x and ξ, there is
ε̃ = ε̃(x, ξ) > 0 and there is a function fx,ξ such that fx,ξ = 0 on Uε̃(x), but Cos−1fx,ξ ≥ c
on Uε̃(ξ), c = c(x, ξ) > 0.

Now we use the compactness argument to prove that we can choose an ε and c
independent of x and ξ. We choose a finite set of {xi, ξi}mi=1 such that {Uε̃i/2(xi) ×
Uε̃i/2(ξi)}mi=1 covers Sn−1 × Sn−1. We take

ε =
1

2
min

1≤i≤m
ε̃i and c = min

1≤i≤m
c(xi, ξi).

Then for any (x, ξ) there is a (xi, ξi) such that

Uε(x)× Uε(ξ) ⊂ Uε̃i(xi)× Uε̃i(ξi),
and we may define fx,ξ = fxi,ξi . �

Theorem 6.3. Let n ≥ 3. There exists a convex body K that is not a Zonoid, such
that for all x ∈ Sn−1 there exists an ε(x) and a zonoid Lx hK = hLx on Uε(x)(x).

Proof. Repeat the proof of Theorem 6.2. �

7. What information can uniquely define a convex body?

We discussed in Section 5 that a convex symmetric body can be uniquely defined
from the volume of its hyperplane projections or sections. One can guess that situation
changes when we drop the assumption that the body must be symmetric. Indeed, the
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Spherical Radon (or Cosine) transform of an odd function is zero, thus these transforms
can not provide ”exact” information about functions that are not even.

Exercise 7.1. Construct a convex body in R2 such that |K|ξ⊥| = const, but K is not a
shift of a dilate of B2

2 .

Exercise 7.2. Construct a convex body in R2 such that |K ∩ ξ⊥| = const, but K is not
a dilate of B2

2 .

Exercise 7.3. Generalize two previous Exercises to the case of Rn. Hint: see [Ga1]
for solution.

It is a very interesting question if it is still possible to ”save” the situation and find
some information that would be sufficient.

Definition 7.1. Consider a body K ⊂ Rn and a direction u ∈ Sn−1. We define the
maximal section function MK(u) : Sn−1 → R+,

(34) MK(u) = max
t∈R
|K ∩ (u⊥ + tu)| = max

t∈R
AK,u(t), u ∈ Sn−1,

and the projection function PK : Sn−1 → R+,

(35) PK(u) = |K|u⊥|, u ∈ Sn−1.

Observe that AK,u(0) ≤MK(u) ≤ PK(u). In addition, from Brunn’s Theorem (Corol-
lary 2.1), MK(u) = AK,u(0) for symmetric, convex body K. Thus, for two symmetric
convex bodies K1 and K2 such that

MK1(u) = MK2(u) ∀u ∈ Sn−1,

and (or!)

PK1(u) = PK2(u) ∀u ∈ Sn−1,

we get K1 = K2.
Below, we will address the (im)possibility of analogous results for not necessarily

symmetric convex bodies.

Exercise 7.4. Construct a convex body K ⊂ R2 that is a not disc, but nevertheless
satisfy MK(u) = PK(u) = 1 for all u ∈ S1.

We start with classical affirmative result ([Mart]) and show that the statement in
Exercise 7.4 can not be generalized to R3. We will prove that among three-dimensional
convex bodies the Euclidean Ball is the only body having the same projections and
maximal sections in all directions. The construction below was communicated to us by
Fedor Nazarov.

Theorem 7.1. Let K ⊂ R3 be a convex body containing the origin in its interior and
such that

K ∩ ξ⊥ = K|ξ⊥, ∀ξ ∈ S2.

Then K = B3
2 .
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Corollary 7.1. Let K ⊂ R3 be a convex body containing the origin in its interior and
such that

|K ∩ ξ⊥| = |K|ξ⊥|, ∀ξ ∈ S2.

Then K = B3
2 .

Exercise 7.5. Prove that if all line containing normals to smooth closed connected
surface in R3 pass through a fixed point then the surface is a Sphere centered at this
point.

Proof. (of the Theoreom 7.1). Assume that ∂K is C2 smooth with everywhere
positive Gaussian curvature. Then for every direction u ∈ S2, the set K ∩ {x ∈ R3 :
x · u = hK(u)} consists of one point, say x ∈ ∂K.

Let x ∈ ∂K, and u is a normal vector to ∂K at x. Denote by lx, the line, passing
through x, having the direction u.

Consider the two-dimensional sections of K parallel to lx. Observe that the plane
containing the maximal section also contains lx, since x belongs to projection on the
plane of the maximal section.

Observe also that any two such lines, say lx and ly intersect. Indeed, let H be the
plane parallel to lx and ly. Then, the projections of both point x and y must belong
to H. On the other hand, they both must belong to a maximal section parallel to H.
Hence lx and ly belong to this maximal section, and lx and ly intersect.

Finally, observe that in R3 (this is a crucial step that distinguishes R3 from R2) the
following is true: if we have a collection of lines (in almost every direction), such that
any pair of them intersect, then they all intersect in one point.

Thus, all lines lx intersect in one point. We finish the proof applying Exercise 7.5. �

Exercise 7.6. Observe that if K ∩ ξ⊥ = K|ξ⊥, then K ∩ ξ⊥ is maximal in area among
all sections of K orthogonal to ξ. Prove

• If all maximal sections of convex body intersect at one point then the body is
symmetric with respect to this point. Hint: see [MMO].
• Conclude that if all maximal sections of a body K are of the same volume and

intersect at one point, then the body is an Euclidean Ball.

7.1. Questions of Bonnensen and Klee. In 1929 T. Bonnesen asked whether every
convex body K ⊂ R3 is uniquely defined by PK and MK , (see [BF], page 51).

Open Problem 7.1. Let n ≥ 3. Are the conditions MK ≡ c1, PK ≡ c2 compatible for
c1 < c2, or not?

In 1969 V. Klee asked whether the condition MK1 ≡ MK2 implies K1 = K2, or, at
least, whether the condition MK ≡ c implies that K is a Euclidean ball, [Kl1], [Kl2].

Two bodies of revolution K1, K2 such that K1 is origin-symmetric, K2 is not origin-
symmetric, but MK1 ≡MK2 , were recently constructed (see [GRYZ]).

In 2011 the following two results were presented, [NRZ2]:

Theorem 7.2. If n ≥ 3, there exists a convex body of revolution K ⊂ Rn satisfying
MK ≡ const, that is not a Euclidean ball.
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Theorem 7.3. If n ≥ 4 is even, there exist two essentially different convex bodies of
revolution K1, K2 ⊂ Rn such that AK1,·(0) ≡ AK2,·(0), MK1 ≡MK2, and PK1 ≡ PK2.

Theorem 7.2 answers the question of Klee, and Theorem 7.3 answers the analogue of
the question of Bonnesen in even dimensions. The proofs of the above theorem is quite
involved! But a special case of R4 shows the general idea of the construction and is
much (technically) simpler. We will present it below.

As in many places in these notes, we are again going to reduce the geometric question
to a question in analysis. We will translate the problem into to a language of integral
equations. From now on, we assume that n ≥ 3. We will be dealing with the bodies of
revolution

Kf = {x ∈ Rn : x2
2 + x2

3 + ...+ x2
n ≤ f 2(x1)},

obtained by the rotation of a smooth concave function f supported on [−1, 1] about the
x1-axis.

Note that K is rotation invariant, thus every its hyperplane section is equivalent to
a section by a hyperplane with normal vector in the (x1, x2)-plane.

Before the proceeds with the next statement we recommend the following example
suggested by Alexey Goncharov.

Exercise 7.7. Let K ⊂ R3 be a convex body of revolution which is a union of two
half-ellipsoids of revolution,

Ka = {(x1, x2, x3) ∈ R3 :
x2

1

a2
+ x2

2 + x2
3 ≤ 1, x1 ≥ 0},

Kb = {(x1, x2, x3) ∈ R3 :
x2

1

b2
+ x2

2 + x2
3 ≤ 1, x1 ≤ 0},

where a+ b = 2. Prove that

|K ∩
(
ξ⊥ + tξ

)
| = a(cos2 α + a2 sin2 α− t2)

(cos2 α + a2 sin2 α)3/2

(π
2

+ arcsin
ta sinα

cosα
√

cos2 α + a2 sin2 α− t2
)

− b(cos2 α + b2 sin2 α− t2)

(cos2 α + b2 sin2 α)3/2

(
− π

2
+ arcsin

tb sinα

cosα
√

cos2 α + b2 sin2 α− t2
)

+
t sinα

√
a2 cos2 α− t2a2

cos2 α(cos2 α + a2 sin2 α)
− t sinα

√
b2 cos2 α− t2b2

cos2 α(cos2 α + b2 sin2 α)
,

where ξ = (sinα, cosα, 0). Is it possible to prove or disprove directly that the maximal
sections in every direction are of the same area?

The above exercise shows how hard it is to compute the maxima sections even in the
”simplest” case. The lemmata below shows how to avoid those computations.

Lemma 7.1. Let L(ξ) = L(s, h, ξ) = sξ + h be the linear function with slope s, and let
H(L) = {x ∈ Rn : x2 = L(x1)} be the corresponding hyperplane, (see Figure 10). Then
the corresponding section K ∩H(L) is of maximal volume iff

(36)

y∫
−x

(f 2 − L2)(n−4)/2L = 0.
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x1

x2

(y, f(y))

(−x,−f(−x))

−x y
h(s)

L

f

−f

Figure 10. View of K and H(L) in (x1, x2)-plane.

Proof. Fix s > 0. Observe that the slice K ∩H(L)∩Hξ of K ∩H(L) by the hyperplane
Hξ = {x ∈ Rn : x1 = ξ}, −1 < ξ < 1, is the (n − 2)-dimensional Euclidean ball

{(x3, x4, ...xd) : x2
3 + ...+ x2

n ≤ r2} of radius r =
√
f 2(ξ)− L2(ξ). Hence,

(37) |K ∩H(L)| = |Bn−2
2 |
√

1 + s2

y(s)∫
−x(s)

(f 2(ξ)− L2(ξ))(n−2)/2dξ.

The section K ∩H(L) is of maximal volume iff

d

dh
|K ∩H(L)| = 0,

where in the only if part we use Brunn’s Theorem (Corollary 2.1). Computing the
derivative, we conclude that for a given s ∈ R, the section K ∩ H(L) is of maximal
volume iff (36) holds. �

Lemma 7.2. Let L(s, ξ) = sξ + h(s) be a family of linear functions parameterized by
the slope s. For each L in our family, define the hyperplane H(L) by H(L) = {x ∈
Rn : x2 = L(x1)}, (see Figure 10). The corresponding family of sections is of constant
volume |Bn−1

2 | iff

(38)

y∫
−x

(f 2 − L2)(n−2)/2 =
const√
1 + s2

, for all s > 0.

Proof. The right hand side in (37) is constant iff (38) holds. �
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Now we observe that the system of equations (36), (38) simplifies considerably when
n = 4. In this case we will show that the maximal sections correspond to level intervals,
see Proposition 7.1 below. We will also prove that the values of the maximal section
function MK depend on the distribution function t → |{f > t}| only. More precisely,
we have

Theorem 7.4. Let d = 4, K = {x ∈ R4 : x2
2 + x2

3 + x2
4 ≤ f 2(x1)}, and let

u = u(s) = (− s√
1 + s2

,
1√

1 + s2
, 0, 0) ∈ S3, s > 0.

Then,

(39) MKf (u) = π
(2

3
t2 |{f > t}|+

∞∫
t

2τ |{f > τ}|dτ
)
,

where t is the unique solution of the equation s = 2t/|{f > t}|.
In particular, if f1 and f2 are equimeasurable (i.e., for every τ > 0, we have |{f1 >

τ}| = |{f2 > τ}|), then MKf1
≡MKf2

.

Theorem 7.4 is a simple consequence of the following two propositions.

Proposition 7.1. Let f, s, u(s) be as in Theorem 7.4. Then the section of maximal
volume in the direction u(s) is the one that corresponds to the line joining (−x,−t) and
(y, t), where t is such that s = 2t/|{f > t}|, 0 < t < max

ξ∈[−1,1]
f(ξ), (see Figure 11).

(−x, t)
(y, t)

(−x,−t)

−x y

L

f

−f

Figure 11. Maximal slice in R4
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Proof. Fix s > 0. Since the distribution function is decreasing to 0, there exists a unique
t satisfying s = 2t/|{f > t}|. To prove that

y∫
−x

L(ξ)dξ = 0

observe that two shaded triangles are congruent, (see Figure 11). �

Proposition 7.2. Let K, f, t, x, y be as in the previous proposition, and let the line L
be passing through the points (−x,−t), (y, t). Then (39) holds.

Proof. Note that
y∫

−x

L2 = (x+ y)
t2

3
=
t2

3
|{f > t}|,

and
y∫

−x

f 2 =

∫
{f>t}

f 2 = t2|{f > t}|+
∞∫
t

2τ |{f > τ}|dτ.

�

Proof of Theorem 7.2. Let fo(ξ) =
√

1− ξ2, ξ ∈ [−1, 1]. Take a concave function
f on [−1, 1] such that f 6= fo and f is equimeasurable with fo.

Exercise 7.8. Adjust the Exercise 7.7 to R4.

• Compute the slicing function of K. Is it possible to see the result of Theorem
7.2 directly?
• Now take a different road. Compute a function f such that K = Kf .
• Prove that f is equimesurable with fo.

Proof of Theorem 7.3. Let ϕ and ψ be two smooth functions supported by the
intervals D = [1

2
− δ, 1

2
+ δ] and E = [1− δ, 1] respectively, where 0 < δ < 1

4
. Define

f+(ξ) = fo(ξ) + εϕ(ξ) + εψ(ξ),

and
f−(ξ) = fo(ξ) + εϕ(−ξ) + εψ(ξ),

where ε > 0 is so small that f± are concave on [−1, 1], (see Figure 12).
Define K1 = Kf+ and K2 = Kf− .
Observe that f+(ξ) = f−(ξ) ∀ξ ∈ [−1, 1]\ (D∪ (−D)), and f+(ξ) = f−(−ξ) ∀ξ ∈ D∪

(−D). Hence, f+ and f− are equimeasurable. By Proposition 7.1 we have MK1 ≡MK2 .
Observe that we have hK1(u) = hK2(u) and ρK1(u) = ρK2(u) for all directions u =

(ξ,
√

1− ξ2, 0, 0) ∈ S3, ξ ∈ [0, 1]\D. Observe also that hK1(u) = hK2(−u) and ρK1(u) =

ρK2(−u) for all directions u = (ξ,
√

1− ξ2, 0, 0) ∈ S3, ξ ∈ D. Hence, the non-ordered
pairs

{hK1(u), hK1(−u)}, {hK2(u), hK2(−u)}
coincide for all u ∈ S3, and so do the pairs

{ρK1(u), ρK1(−u)}, {ρK2(u), ρK2(−u)}.
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f+f−

0 1−1 1
2

−1
2

E−D D

Figure 12. Graph of functions f±

By the result of Goodey, Schneider and Weil, we have PK1 ≡ PK2 , [GSW]. Also,

AK1,θ(0) =
1

3

∫
S3∩θ⊥

ρ3
K1

(−u) + ρ3
K1

(u)

2
du =

1

3

∫
S3∩θ⊥

ρ3
K2

(−u) + ρ3
K2

(u)

2
du = AK2,θ(0)

for all θ ∈ S3.

8. Isomorphic version of the Mahler conjecture

8.1. Introduction. In this section we will discuss the strongest result related to the
Mahler conjecture: the Burgain-Milman inequality. We first notice that by the result
of F. John (Theorem 2.1) we get that for any convex symmetric K ⊂ Rn, there exists a
T ∈ GL(n) such that Bn

2 ⊂ TK ⊂ √nBn
2 and thus 1√

n
Bn

2 ⊂ (TK)◦ ⊂ Bn
2 , which gives

P(K) ≥ 1

nn/2
P(Bn

2 ) ≥ 1

nn/2
P(Bn

∞).

Exercise 8.1. Show that there is an absolute constant c > 0 such that

P(Bn
2 ) ≥ P(Bn

∞) ≥ cnP(Bn
2 ).

Theorem 8.1. (Bourgain-Milman inequality) There exists an absolute constant c > 0
such that for all convex symmetric K ⊂ Rn:

P(K) ≥ cnP(Bn
∞).

The original proof can be found in [BM], (see also [Pi], p.100) for more detailed
version. Kuperberg [Ku] gave a new proof of this result with a better constant c = π/4.

We will present here the Fourier Analytic proof due to Nazarov [Naz], which gives
a slightly worse constant c = (π/4)3. The proof is another example of the interplay
between convex geometry and the Fourier analysis.

Before giving the proof let us explain why the improvement from (1/
√
n)n to cn is

the best possible step one can make, before actually proving (or disproving) the Mahler
conjecture.
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Indeed, assume we can achieve an asymptotic behavior better then cn, but there is
a dimension, say Rl, such that the Mahler conjecture is false in this dimension. Thus
there exists a convex symmetric body K ⊂ Rl such that P(K) < P(Bl

∞) or

P(K) ≤ cP(Bl
∞), for some c < 1.

Taking m-times the direct sum of copies of K, and iterating Lemma 3.2 we get

(40) P(K ⊕ · · · ⊕K) ≤ cmP(Bl×m
∞ ) = (c1/l)l×mP(Bl×m

∞ ).

Thus, we get a contradiction with isomorphic Mahler conjecture in Rl×m, for m big
enough if we know Bourgain-Milman type inequality for c(n) behaves better then cn.

Now let us get back to Nazarov’s construction. To distinguish between n-dimensional
volume in Rn and 2n-dimensional volume in Cn we will denote the first by vn and the
second by v2n.

The proof is divided into several parts. Here is a short plan (all definitions and details
will be provided below).

Part I. Main Idea: the application of the Paley-Wiener Theorem.
Part II. The adjustment of the main idea to the context of Bergman spaces A2(TK),

where TK is a tube domain,

TK = {z ∈ Cn : z = x+ iy, y ∈ K},
and the reduction of the proof to the lower estimate on the Bergman kernel KTK (0, 0).
More precisely, the functional

(41) FPW : K → vn(K)vn(K◦) = P(K)

that ”goes along” with the Paley-Wiener space, is replaced by the ”Bergman Space
functional”

(42) FB : K → v2n(KC)KTK (0, 0).

Here

KC = {z ∈ Cn : |z · t| ≤ 1 for all t ∈ K◦} ⊂ K ×K, vn(K) = 1,

and the last inclusion is the inclusion of subsets in R2n.
Part III. A certain auxiliary construction that includes a pluri-sub-harmonic function

φ defined on TK, and a Mexican-hat function C∞-function g supported on KC.
Part IV. The final part of the proof. We apply the Theorem of Hörmander to the

construction of the analytic function F = F (φ, g) ∈ A2(TK), satisfying F (0) = 1, and
connecting the quantities KTK (0, 0), v2n(KC) with vn(K◦). We prove

(43) vn(K◦) ≥ (2π)n

2nn!
v2n(KC)KTK (0, 0),

together with the sharp lower estimate for v2n(KC)KTK (0, 0):

(44) v2n(KC)KTK (0, 0) ≥
(π2

16

)n
,

which yields the final estimate

(45) vn(K◦) ≥
(π

4

)3n4n

n!
.

50



We will elaborate on each part step by step. Since we are going to use many facts
related to the Paley-Wiener Theorem, the Bergman Spaces, and the Hörmander theo-
rem, we decided to collect the necessary background material separately in Appendices
A, B and C. We strongly recommend the reader to look at Appendices before he/she
starts reading Nazarov’s proof. For convenience many parts of the proof are split into
Exercises.

9. Part I. Main Idea: the application of the Paley-Wiener Theorem

Heuristics. The Paley-Wiener Theorem tells us that the Fourier Transform of the
characteristic function of the convex body, is the characteristic function of its polar, see
Appendix A.

If f ∈ PW(K) is the Fourier transform of g, then, by Plancherel’s formula, ‖f‖2
L2(Rn) =

(2π)n‖g‖2
L2(K◦). By the Cauchy-Schwarz inequality, we have

|f(0)|2 =
∣∣∣∫
K◦
g dvn

∣∣∣2 ≤ vn(K◦)‖g‖2
L2(K◦) =

1

(2π)n
vn(K◦)‖f‖2

L2(Rn)

and that the equality sign is attained when g = 1 in K◦. Thus,

(46) vn(K◦) = (2π)n sup
f∈PW(K)

|f(0)|2 · ‖f‖−2
L2(Rn) .

Remark 9.1. Let vn(K) = 1. Note that the quantity on the right does not include
include K◦ formally, so the problem of proving a lower bound for vn(K◦) has been thus
transformed into the problem of finding an example of an entire function f ∈ PW(K)
that has not too small value at the origin and not too large L2(Rn)-norm.

Exercise 9.1. Let n = 1, K = (−1/2, 1/2). Then K◦ = (−2, 2). Prove that for the
analytic function

f(z) =

∫
R

1K◦(t)e
−z· t dv1(t),

we have equality in (46). Prove the analogous result for the cube (−1/2, 1/2)n. Hint:

Check that f(0) = 4, and use
∫∞

0
sin2 t
t2
dt = π

2
.

Open Problem 9.1. Find the analytic function that does the job for n ≥ 2.

Remark 9.2. The construction of fast decaying on Rn analytic functions of several
complex variables is quite a non-trivial task by itself, and we do not know how to do
it in the context of the Paley-Wiener space. The remarkable theorem of Hörmander
allows, however, as Nazarov puts it, ”to conjure up” such functions in Bergman type
spaces L2(TK , e

−φ dv2n) with a suitable pluri-sub-harmonic φ.

Remark 9.3. In the remaining part of the proof we will try to trade the quantity in
(50) for √√√√∫

TK

|f(z)|2e−φ(z)dv2n(z).
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Here TK is a tube domain, φ(z) is a pluri-sub-harmonic function we are going to con-
struct, and f is analytic function from the Bergman space (see Appendix B). As a result,
we will substitute P(K) with v2n(KC)KTK (0, 0), where KTK is the Bergman kernel. We
loose the precision in the final estimate when we pass from the Paley-Wiener space to
the Bergman Space.

10. Part II. The adjustment of the main idea to the context of the
Bergman space A2(TK)

Let K be any strictly convex open subset of Rn and let A2(TK) be the Bergman space
(see Appendix B) in the tube domain TK = {x+ iy : x ∈ Rn, y ∈ K} ⊂ Cn.

10.1. The Rothaus-Korányi-Hsin formula for the reproducing kernel in a tube
domain TK.

The next theorem is due to Hsin, [Hs] (see also [R] and [Ko]).

Theorem 10.1. The reproducing kernel K(z, w) = KTK (z, w) associated with the Hilbert
space A2(TK):

K(z, w) =
1

(2π)n

∫
Rn

ei(z−w)·t

JK(t)
dvn(t)

where

JK(t) =

∫
K

e−2x·t dvn(x).

10.2. Estimates related to the Bergman Kernel in the tube domain.

Exercise 10.1. Use the above theorem to prove that if 0 ∈ K, then

K(0, 0) =
1

(2π)n

∫
Rn

dvn(t)

JK(t)
.

Exercise 10.2. Prove that

JK(t) ≥ 2−nvn(K)e‖−t‖K◦ .

Hint: Since (x + y)/2 ∈ K for all x, y ∈ K, and since the function x 7→ e−x· t is
convex, one can write

JK(t) ≥ 2−n
∫
K

e−x· t−y· t dvn(x) ≥ 2−nvn(K)e−y· t

for all y ∈ K. Maximize this quantity over y.

Exercise 10.3. Prove that∫
Rn

dvn(t)

JK(t)
≤ 2nvn(K)−1

∫
Rn
e−‖t‖K◦ dvn(t) = 2nn!vn(K◦)vn(K)−1.

Conclude that

vn(K◦) ≥ (2π)n

2nn!
K(0, 0),

provided vn(K) = 1.
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Hint: For the computation of the last integral see the proof of Lemma 3.2.

Remark 10.1. Let vn(K) = 1. Our goal is to estimate KTK (0, 0) from below. We
remark that the part of the imprecision in the final constant in (45) has already come
from the estimate in Exercise 10.3.

Exercise 10.4. Show that for all F ∈ A2(TK), we have

|F (0)|2 ≤ K(0, 0)‖F‖2
A2(TK).

Conclude that

K(0, 0) = sup
F∈A2(TK)

|F (0)|2
‖F‖2

A2(TK)

,

(cf. (46)).

Hint: Use property c) of Theorem B.2 twice together with b) and the Cauchy-Schwarz

inequality. Take F (ζ) = K(0, ζ) to make a conclusion.

Remark 10.2. Let vn(K) = 1. In the last section we will construct an analytic function
F ∈ A2(TK), satisfying F (0) = 1 that will help us to get the following lower bound on
K(0, 0) :

K(0, 0) ≥ 1

(2π)n

(π3

8

)n 1

v2n(KC)
,

where

KC = {z ∈ Cn : |z · t| ≤ 1 for all t ∈ K◦} ⊂ K ×K.
Observe that the estimate could be written in the form

(47) v2n(KC)

∫
Rn

dvn(t)

JK(t)
≥
(π3

8

)n
.

Combining the last estimate with the one in Exercise 10.3, and noting that v2n(KC) ≤ 1,
we obtain (45).

Thus, by Exercise 10.4, we have to construct a function F ∈ A2(TK) with |F (0)| not
too small compared to ‖F‖A2(TK). For this construction, we shall need the celebrated
Hörmander theorem, see Appendix C.

The reader is advised to finish this section by solving two Exercises, showing that
estimate (47) is exact.

Exercise 10.5. Let n = 1 and let K = (−1/2, 1/2). Prove that v2(KC) = π/4, and

JK(t) =
et − e−t

2t
,

∫
R

dt

JK(t)
=
π2

2
.

Conclude that for the interval in R, (and, thereby, for the cube in every dimension), the
equality sign in (47) is attained.
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Hint: Check that∫
R

dt

JK(t)
= 4

∫ ∞
0

t

et − e−t = 4

∫ ∞
0

t
( ∑
k≥1,k odd

e−kt
)
dt

= 4
∑

k≥1,k odd

∫ ∞
0

te−kt dt = 4
∑

k≥1,k odd

1

k2
=
π2

2
.

11. Part III. The auxiliary construction

Let K ⊂ Rn be such that vn(K) = 1. We are going to apply the Hörmander Theorem
(see Appendix C) to construct a certain analytic function F in the tube domain TK ,
that will help us to obtain (47). The construction of F will depend on two auxiliary
functions φ and g, where φ is a pluri-sub-harmonic function defined on TK , and g is a
Mexican-hat function supported on KC.

11.1. The construction of the the pluri-sub-harmonic φ on the tube domain
TK.

Exercise 11.1. Prove that a tube domain TK ⊂ Cn is pseudo-convex, provided K is a
convex domain in Rn; it is strictly pseudo-convex, provided K is strictly convex.

Hint: TK is convex iff K is convex. See Section 3.5.2, page 160, in [Kr] in this
connection.

Exercise 11.2. Let K be an origin-symmetric convex body. Prove that for every t ∈ K◦,
the mapping z → z · t sends TK to the horizontal strip |Imζ| < 1.

Let

Φ(ζ) =
4

π

e
π
2
ζ − 1

e
π
2
ζ + 1

be the standard conformal mapping of |Imζ| < 1 to the disc of radius 4/π centered at
the origin.

Exercise 11.3. Define

φ(z) = R−2|y|2 + 2n log sup
t∈K◦
|Φ(z · t)|, z = x+ iy ∈ Cn,

where R is a positive fixed constant. Prove that φ is pluri-sub-harmonic and satisfies
the conditions of the Hörmander existence theorem with τ = R−2/4.

Hint: Use the fact that a supremum of the family of pluri-sub-harmonic functions is
pluri-sub-harmonic (see [Sh], Property 3◦, page 254).

Exercise 11.4. Prove that

φ(z) ≤ 2n log
4

π
+R−2|y|2.

Exercise 11.5. Prove that e−φ is comparable to |z|−2n near the origin, so e−φ is not
locally integrable at 0.
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Invariance trick. We have e−φ(z) ≈ |z|−2n. Hence, the integral

∫
σδKC\δKC

e−φ(z)dv2n(z) ≈
σδ∫
δ

dr

r
, σ ∈ (1, 2), δ ∈ (0,

1

4
).

is independent of δ. This gives us an additional flexibility. At the very end of the
proof we will make a choice of a very small δ, and σ very close to 1 to make the term
e−2n(log σ+2Cδ), appearing in the lower estimate of K(0, 0), to be of the order e−o(n), (see
(48) and Exercise 12.1).

Exercise 11.6. Let

KC = {z ∈ Cn : |z · t| ≤ 1 for all t ∈ K◦} ⊂ K ×K,

where the last inclusion is between subsets of R2n. Prove that

φ(z) ≥ 2n(log δ − 2Cδ) = 2n log δ − 4Cnδ

in (σδKC) \ (δKC).

Hint: Note that Φ(0) = 0 and Φ′(0) = 1. Show that

| log |Φ(ζ)− log |ζ|| ≤ C |ζ|, for |ζ| ≤ 1

2
with some C ≥ 1.

11.2. The construction of the Mexican-hat function g supported on KC.

11.2.1. Application of John’s Theorem. We assume that our origin-symmetric K is
smooth enough. Since all the quantities we will use change in a very simple way under
linear transformations of Rn, by F. John’s Theorem (see Theorem 2.1), one can replace
K by its suitable linear image to ensure that vn(K) = 1, and that K contains the ball
of radius rK and is contained in the ball of radius RK centered at the origin with the
ratio of radii RK/rK ≤

√
n.

Exercise 11.7. Prove that KC is convex and contains 1√
2
(K × K), which, in turn,

contains the ball of radius rK/
√

2 centered at the origin.
Conclude that one can construct a smooth function g : Cn → [0, 1] such that g = 1 in

δKC, g = 0 outside σδKC, and

|∂̄g| = 1

2
|∇g| ≤

√
2 r−1

K [δ(σ − 1)]−1 .

Exercise 11.8. Prove that∫
TK

|∂̄g|2e−φ dv2n ≤ C(σ, δ)r−2
K σ2nδ2nv2n(KC)e−2n log δ+4Cnδ

= C(σ, δ)r−2
K e2n(log σ+2Cδ)v2n(KC) .
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Exercise 11.9. Apply the Hörmander theorem together with Exercise 11.3 to show that
there exists a solution f of the equation ∂̄f = −∂̄g in TK such that∫

TK

|f |2e−φ dv2n ≤ C(σ, δ)4

(
RK

rK

)2

e2n(log σ+2Cδ)v2n(KC)

≤ C(σ, δ)4ne2n(log σ+2Cδ)v2n(KC) .

Exercise 11.10. Prove that ∂̄f = 0 in δKC, so f is analytic and, thereby, continuous
in δKC. Conclude that f(0) = 0.

Hint: Observe that e−φ is not locally integrable at the origin, but the integral∫
TK
|f |2e−φ dv2n is finite, (cf. Exercise 11.5).

12. Part IV. The construction of the analytic function F that helps
to obtain the sharp lower bound on v2n(KC)K(0, 0)

12.0.2. Almost exact lower bound on v2n(KC)K(0, 0).
We define the function F as F = g+f , where ∂̄f = −∂̄g. By the Hörmander Theorem

F is analytic in TK and satisfies F (0) = g(0) = 1 (see Exercise 11.10). On the other
hand,

‖F‖2
A2(TK) ≤ 2[4neC(σ, δ) + 1]e2n(log σ+2Cδ)

(
4

π

)2n

v2n(KC) .

Indeed, ∫
TK

|F |2 dv2n ≤ 2

∫
TK

|g|2 dv2n + 2

∫
TK

|f |2 dv2n,

where the first integral in the right-hand side does not exceed (σδ)2nv2n(KC) ≤ v2n(KC).
Moreover, we can use the results of Exercises 11.4 and 11.9 to obtain an upper bound
for the second one:∫

TK

|f |2 dv2n ≤ e2n log 4
π

+1

∫
TK

|f |2e−φ dv2n ≤ 4neC(σ, δ)e2n(log σ+2Cδ)

(
4

π

)2n

v2n(KC) .

Now, by Exercise 10.4,

(48) K(0, 0) ≥ c(σ, δ)n−1e−2n(log σ+2Cδ)
(π

4

)2n

v2n(KC)−1 .

Exercise 12.1. Choose δ > 0 very small and σ very close to 1 to make

e−2n(log σ+2Cδ) = e−o(n)

as n→∞.

Using the previous Exercise we can rewrite (48) in the form

v2n(KC)K(0, 0) ≥ e−o(n)
(π

4

)2n

,

which is almost exact as as n→∞, (see Exercise 10.4)). Recalling that

K(0, 0) =
1

(2π)n

∫
Rn

dvn(t)

JK(t)
,
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we get the inequality

v2n(KC)

∫
Rn

dvn(t)

JK(t)
≥ e−o(n)

(
π3

8

)n
as n→∞.

It remains to get rid of the e−o(n) factor.

12.0.3. The exact lower bound on v2n(KC)K(0, 0). The tensor power trick.
Here we will again use the direct product features of P(K) (see Lemma 3.2 or (40)).

Fix n ≥ 1 and the body K ∈ Rn. Choose a very big number m and consider K ′ =
K × · · · ×K︸ ︷︷ ︸

m

⊂ Rmn. Note that K ′C = KC× · · · ×KC and JK′(t1, . . . , tm) = JK(t1) · . . . ·

JK(tm). Applying the above inequality to K ′ instead of K and raising both parts to
the power 1

m
, we get

v2n(KC)

∫
Rn

dvn(t)

JK(t)
≥ e−o(mn)/m

(
π3

8

)n
as m→∞. Since o(mn)/m→ 0 as m→∞ and everything else does not depend on m
at all, we get the clean estimate

v2n(KC)

∫
Rn

dvn(t)

JK(t)
≥
(
π3

8

)n
valid for all origin-symmetric convex bodies K of volume 1 in Rn. This is our desired
estimate (44).

Exercise 12.2. Where does the constant π3/8 come from?

Appendix A. The Paley-Wiener Theorem

The general reference for this part is Theorem 7.3.1 from [Ho3]. We start with the
following

Exercise A.1. Let L be a convex body in Rn, and let

f(z) =

∫
L

e−iz· t dvn(t).

Prove that

|f(iy)| ≤
√
|L|ehL(y).

Theorem A.1. (The Paley-Wiener Theorem) The following two classes of func-
tions are the same:

The class A of all entire finctions f : Cn → C of finite exponential type (i.e., satisfying
the bound |f(z)| ≤ CeC|z| for all z ∈ Cn with some C > 0) such that

(i) their restriction to Rn belongs to L2;
(ii) |f(iy)| ≤ Ce‖y‖K with some C > 0 for all y ∈ Rn.

The class B of the Fourier transforms f(z) =
∫
K◦ g(t)e−iz·t dvn(t) of L2-functions g

supported on K◦.
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Proof. We first prove that B ⊆ A. By Plancherel’s identity, the restriction of f to Rn

belongs to L2. Moreover, from Definition 2.2 we see that hK◦(y) = ‖y‖K , together with
the Cauchy-Schwarz inequality, we obtain

|f(iy)| =
∣∣∣ ∫

K◦
g(t)ey·t dvn(t)

∣∣∣ ≤ ∫
K◦
|g(t)| sup

t∈K◦
ey·t dvn(t) ≤

ehK◦ (y)

∫
K◦
|g(t)| dvn(t) ≤ ‖g‖L2(K◦)

√
|K◦|.

Now we show that A ⊆ B. Assume for a moment that f ∈ A satisfies

(49) |f(z)| ≤ cN
ehK◦ (y)

(1 + |z|)N , ∀z = x+ iy ∈ Cn, N ≥ n+ 2.

Since the restriction of f to Rn belongs to L2, we can write

g(x) = (2π)−n
∫
Rn

eix·ξf(ξ)dξ.

We claim that g(x) = 0 for x /∈ K◦.
By shifting the contour of integration we obtain

g(x) = (2π)−ne−x·η
∫

Rn+iη

eix·ξf(ξ + iη)d(ξ + iη).

Hence, changing η by tη, t > 0, and using (49) we have

|g(x)| ≤ CN
(2π)n

e−t(x·η−hK◦ (η))

∫
Rn

dξ

(1 + |ξ|2)N
.

Sending t to infinity we see that we can have g(x) 6= 0 only provided hK◦(η) ≥ x · η for
all η ∈ Rn. This gives x ∈ K◦.

The removal of the assumption (49) requires some work with distributions. We refer
the reader to Theorem 7.3.1 of [Ho3] for the proof of this technical moment. �

We shall denote the class given by any of these conditions by PW(K), and

(50) ‖f‖PW (K) = sup
y∈Rn

e−‖y‖K

√√√√∫
Rn

|f(x+ iy)|2dx.

Exercise A.2. Prove that the space of f such that ‖f‖PW (K) ≤ ∞ is the Hilbert space.

Appendix B. The Bergman Spaces

The general reference for this part is ([Sh], pages 371-375), see also [Kr].

Definition B.1. Let Ω be a domain in Cn and H(Ω) be the space of holomorphic
functions on Ω. Consider the Hilbert Space of holomorphic functions,

A2(Ω) = {f ∈ H(Ω) : ‖f‖2
Ω =

∫
Ω

|f |2dv2n <∞}
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with the scalar product

(f, g) =

∫
Ω

fḡdv2n.

This is our Bergman space.

Exercise B.1. Prove that A2(Ω) is non-trivial when Ω is bounded.

Exercise B.2. Prove that A2(Ω) is trivial for Ω = Cn.

We will consider only domains for which the Bergman space is non-trivial.

B.1. Reproducing kernel. Fix ζ ∈ Ω. Consider the following problem: minimize
‖f‖A2(Ω) in the class

E = {f ∈ A2(Ω) : f(ζ) = 1}.
Theorem B.1. The extremal function fo(·, ζ) of the above problem exists and unique.

Definition B.2. The kernel function of Ω is defined as

KΩ(z, ζ) =
fo(z, ζ)

‖fo‖2
A2(Ω)

.

We will assume that ‖fo‖A2(Ω) = 1. The proof of the following theorem can be found
[Sh], page 374.

Theorem B.2. The kernel function KΩ(z, ζ) satisfies the following properties:
a) It is holomorphic with respect to z, and anti-holomorphic with respect to ζ;

b) It is antisymmetric: KΩ(z, ζ) = KΩ(ζ, z);
c) It is reproducing: for every f ∈ A2(Ω) at every point z ∈ Ω,

f(z) =

∫
Ω

f(ζ)KΩ(z, ζ)dv2n(ζ).

Appendix C. The Hörmander Theorem and some of its applications

We start with some auxiliary background related to subharmonic and pluri-subharmonic
functions as well as to the notions of convexity and pseudo-convexity. We refer the
reader to the books [Ho4], ([LG], Appendices A, C); [Sh], [Kr], where these notions
are discussed in full detail. Below we present only facts and definitions necessary to
understand Nazarov’s proof of the Bourgain-Milman Theorem.

C.1. Convexity and Pseudo-Convexity. We start with the following exercise show-
ing that the convexity of a domain could be defined using harmonic functions. Let

D = {z ∈ C : |z| < 1}, T = {z ∈ C : |z| = 1}.
Exercise C.1. Let Ω be a connected domain in RN . Then the following conditions are
equivalent:

(i) For every linear map l : [−1, 1]→ RN , l(±1) ∈ Ω, implies l([−1, 1]) ⊂ Ω.
(ii) For every harmonic map h : D→ RN , h(T) ⊂ Ω implies h(D) ⊂ Ω.
Here the coordinates h1, ..., hN of h are harmonic functions.
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Solution: We show (i) implies (ii). Assume Ω is convex and let a harmonic h be
such that h(T) ⊂ Ω. Then, the mean-value formula

h(0) =

∫
T
h(eiθ)dθ

shows that h(0) ∈ Ω. Let a ∈ D, a 6= 0, consider the Mobius map mapping point a to 0:

M : D→ D, M(z) =
z − a
1− āz .

To show h(a) ∈ Ω we apply the mean-value formula to h̃ = h(M−1)

M−1(ξ) =
ξ + a

1 + āξ
.

Since M(T) = T, we have

h(a) = h̃(0) =

∫
T
h̃(eiθ)dθ =

∫
T
h(M−1(eiθ))dθ ∈ Ω.

Now we prove that (i) implies (ii). It is enough to show that for any linear l such
that l(±1) ∈ Ω implies (l(−1) + l(1))/2 ∈ Ω.

We consider an auxiliary harmonic vector uε (i.e. all coordinates of uε are harmonic
functions) that is a convolution of the Poisson kernel with a ”l(−1), l(1) vector-function”.
More precisely, we fix some small ε > 0 and put uε = Pr ∗ P1−ε ∗ fε, 0 ≤ r < 1, where
fε is a continuous vector-function on ∂D defined as follows

fε(e
iθ) = l(−1), for θ ∈ [ε, π − ε], f−ε(e

iθ) = l(1), for θ ∈ [−π + ε,−ε],
and fε is linear on arcs {eiθ : |θ| < ε}, {eiθ : π − ε < |θ| < π}. The idea is that for ε
small enough,

uε(0) =
l(−1) + l(1)

2
+ Aε,

where an error term Aε can be made arbitrary small. If we show that

(51) uε(T) ∈ Ω,

then uε(0) ∈ Ω, and since Ω is open, we have (l(−1) + l(1))/2 ∈ Ω. But

uε(T) = P1−ε ∗ fε(T) = fε(T) +Bε,

where an error Bε is arbitrary small, and the quantities

sup
{θ∈[0,π]}

|fε(eiθ))− l(−1)|, sup
{θ∈[π,2π]}

|fε(eiθ))− l(1)|

are arbitrary small, hence (51) holds.
By the reasons which are similar to those in Exercise C.1, one can define the notion

of strict convexity. Let ∂Ω stand for the boundary of Ω.

Exercise C.2. Let Ω be a convex connected domain in RN . Then the following condi-
tions are equivalent:

(i) For every linear map l : [−1, 1]→ RN , l(±1) ∈ ∂Ω, implies l((−1, 1)) ⊂ Ω.
(ii) For every harmonic map h : D→ RN , h(T) ⊂ ∂Ω implies h(D) ⊂ Ω.
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Definition C.1. A domain Ω ⊂ Cn is called pseudo-convex if for every analytic map
α : D→ Cn, α(T) ⊂ Ω implies α(D) ⊂ Ω.

Since being analytic is a stronger condition than being harmonic, we see that pseudo-
convexity is less restrictive than convexity. In particular, any convex domain Ω ⊂ Cn is
pseudo-convex.

Exercise C.3. Show that the converse is not true.

Hint: For n = 1 it follows from the Riemann Mapping Theorem that any reasonable
domain in C is pseudo-convex, see also Exercise C.7 below. For n > 1 Reinhardt domains
are examples of pseudo-convex domains that are not (in general) convex, see [Sh], [Kr].

Definition C.2. A pseudo-convex domain Ω ⊂ Cn is called strictly pseudo-convex if
for every analytic map α : D→ Cn, α(T) ⊂ Ω implies α(D) ⊂ Ω.

Below we are going to use an equivalent definition of the strict pseudo-convexity,
which is easier to check analytically. To introduce it, we remind briefly the definitions
of sub-harmonic and pluri-sub-harmonic functions, [LG].

Definition C.3. Let Ω be a domain in Rn. A real-valued function φ(x) with values in
[−∞,∞) is called sub-harmonic in Ω, if

(i) φ(x) is upper-semicontinuous and is not equal to −∞ identically;
(ii) for any point x ∈ Ω and for any r < dΩ(x) := inf{‖x−x′‖ : x′ ∈ Ωc} the following

inequality is valid

φ(x) ≤ 1

|Sm−1|

∫
Sm−1

φ(x+ rθ)dσm(θ),

where dσm is a Lebesgue measure on Sm−1.

We will denote the family of all sub-harmonic functions by S(Ω).

Definition C.4. Let Ω be a domain in Cn. A real-valued function φ(z) with values in
[−∞,∞) is called pluri-sub-harmonic in Ω, if

(i) φ(z) is upper-semicontinuous and is not equal to −∞ identically;
(ii) for any r such that {z + uw : |u| ≤ r, u ∈ C} ⊂ Ω the following inequality is

valid

φ(z) ≤ 1

2π

2π∫
0

φ(z + reiθw)dθ.

We will denote the family of pluri-sub-harmonic in Ω functions by PSH(Ω).

Exercise C.4. Let Ω ⊂ Cn. Prove that log |h| is pluri-sub-harmonic, provided h is
analytic in Ω.

Exercise C.5. If Ω ⊆ Cn, then PSH(Ω) ⊂ S(Ω), and if n = 1, then PSH(Ω) = S(Ω).
Hint: see [Sh], Property 5◦ on page 254.

Exercise C.6. A function φ ∈ PSH(Ω) iff φ is upper-semicontinuous , φ is not equal
to −∞ identically, and the restriction of φ onto any complex line l intersecting Ω is
subharmonic, (or φ ≡ −∞), on every open connected component of l ∩ Ω.
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Exercise C.7. Let Ω be any domain in C. Prove that the function

φ(z) = − log inf
z∗∈∂Ω

|z − z∗|

is sub-harmonic in Ω. Conclude that φ1 = ψ(φ) is subharmonic in Ω for any convex ψ,
and that given any a ∈ C∞(Ω) the integral∫

Ω

|a(z)|2e−φ1(z)dv2(z)

can be made convergent by a proper choice of ψ.

Exercise C.8. Let Ω be a domain in Cn, and let φ be defined as in the previous exercise.
Is φ pluri-sub-harmonic in Ω?

Hint: The function − log |z − z∗| is harmonic in Ω ⊂ C. Is it harmonic in Ω ∩ l,
Ω ⊂ Cn?

Exercise C.9. Let φ be continuous convex (with respect to real coordinates) function
in Ω. Prove that φ ∈ PSH(Ω).

Hint: Consider the following inequality

φ(x) ≤ 1

2
(φ(x+ y) + φ(x− y)),

change y on yeiθ and integrate with respect to dθ/2π.

Remark C.1. The last exercise shows that convex functions form a (proper) subclass of
pluri-sub-harmonic ones. One can think about these classes of functions in the following
(rather informative) way: convex functions are described by the non-negative Gaussian
curvature, (the determinant of the (complex) Hessian matrix); (pluri)-sub-harmonic
functions are described by the non-negative mean curvature, (the trace of the Hessian
matrix).

Exercise C.10. Prove that φ ∈ C2(Ω) is pluri-sub-harmonic iff

∆uφ(z + uw)
∣∣∣
u=0

= 4
n∑

j,k=1

∂2φ

∂zj∂z̄k
wjw̄k ≥ 0

for any w ∈ Cn.

Hint: See ([LG], Proposition I.5).
Now we are ready for our second definition of strict pseudo-convexity, cf. (52).

Definition C.5. A domain Ω ⊂ Cn is called strictly pseudo-convex if there exists
a positive function γ ∈ PSH(Ω) ∩ C∞(Ω) such that the matrix

∂2γ

∂zj∂z̄k
(z)

is postive-definite at every point z ∈ Ω, and for every r ∈ R the set Ωr = {z ∈ Ω :
γ(z) < r} ⊆ Ω.
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The proof of the following Theorem can be found in ([Sh], pages 238-267). See also
([Kr], Theorem 3.3.5, page 144).

Theorem C.1. Definitions C.2 and C.5 are equivalent.

C.2. Formulation of the Hörmander theorem.

Theorem C.2. (Hörmander) Let Ω be any open domain in Cn, and let φ : Ω → R
be any pluri-subharmonic function in Ω satisfying the inequality

(52)
n∑

k,j=1

∂2φ

∂zj∂z̄k
wjw̄k ≥ τ |w|2

for all w ∈ Cn at every point of Ω with some τ > 0. Then, for every L2
(0,1)(Ω, e

−φ)
closed form

Q(z) =
n∑
j=1

aj(z)dz̄j, (∂̄Q = 0),

(Q is satisfying
∂

∂z̄j
ak(z) =

∂

∂z̄k
aj(z) ∀z ∈ Ω, aj ∈ L2(Ω, e−φ)),

we can solve the equation

(53) ∂̄f = Q,

(or the system):

(54)
∂

∂z̄j
f(z) = aj(z), j = 1, ..., n,

and

(55)

∫
Ω

|f |2e−φdv2n ≤ τ−1

∫
Ω

n∑
j=1

|aj(z)|2e−φdv2n.

Remark C.2. The existence of a pluri-sub-harmonic φ satisfying (52) is a condition on
the domain Ω. This is a different way of saying that Ω is strictly pseudo-convex. One
can find a certain analogy in the formulation of Hörmander’s Theorem with Lemma 2,
page 250, of L. Ahlfors, [AL], where Perron’s method for the solution of the Dirichlet
problem is discussed.

Remark C.3. We assume that aj, j = 1, ..., n, are very smooth and compactly sup-
ported. In the general case, (which is not needed here), it is enough to suppose that the
right-hand side in (55) is finite, ([LG], Lemma III.11).

Remark C.4. Since log |h| is pluri-sub-harmonic in Ω, provided h holomorphic there,
(see Exercise C.4), it is natural to write the weights in estimate (55) in the form e−φ,
with φ pluri-subharmonic.

Remark C.5. Our data consists of the functions aj appearing in the right-hand side
of (54) together with the pluri-sub-harmonic φ satisfying (52). In this notes the main
application of Hörmander’s Theorem will be to construct analytic functions in the tube
domain TK using the properly chosen data.
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C.3. From sub-harmonic to analytic. Examples in the case n = 1.
We put ∂̄ = ∂/∂z̄, ∂ = ∂/∂z.

C.3.1. The example of a non-trivial analytic function F = F (φ, g) obtained after the
application of the Hörmander Theorem, and depending on the sub-harmonic (convex)
φ(z) = |z|2, and an infinitely smooth compactly supported Mexican-hat function g that
is 1 in rB2

2 , r > 0, and 0 outside (r + 1)B2
2 , Ω = C.

If n = 1, then (52) is red as

(56)
∂2φ(z)

∂z∂z̄
≥ τ, τ > 0.

For φ(z) = |z|2 = zz̄ we have τ = ∂∂̄φ(z) = 1 > 0, and we can apply Hörmander’s
Theorem.

Our system (54) and estimate (55) are red as

(57)
∂

∂z̄
f(z) = a(z),

and

(58)

∫
C

|f(z)|2e−|z|2dv2(z) ≤
∫
C

|a(z)|2e−|z|2dv2(z).

Idea: we take an auxiliary function g and will be looking for F in the form F = f+g,
where f is going to be a solution of (57) with a = −∂̄g. Then

∂̄F = ∂̄f + ∂̄g = a+ ∂̄g = −∂̄g + ∂̄g = 0,

hence F is analytic. The point is to choose g in such a way that F would be non-trivial.
In other words, we should choose g such that the equation ∂̄f = −∂̄g would have a
solution different from the trivial one f = −g. To achieve this we will use (58).

Remark C.6. Unfortunately, we will not see F , this construction is very implicit.

We remind that our data consists of the pluri-sub-harmonic function |z|2, and an
infinitely smooth compactly supported Mexican-hat function g that is 1 in rB2

2 , r >
0, and 0 outside (r + 1)B2

2 . We can assume that |∂̄g| ≤ 1, (the width of the ring
(r + 1)B2

2 \ rB2
2).

The introduction of r will give us a certain freedom. We will choose the proper r > 0
at the end.

Trick: Since g is constant outside of the ring (r + 1)B2
2 \ rB2

2 , (it is 1 inside and 0
outside), the derivative function ∂̄g is non-trivial only inside (r + 1)B2

2 \ rB2
2 .

Exercise C.11. Prove that

‖a‖2
L2(e−φ) = ‖∂̄g‖2

L2(e−φ) ≤ e−r
2

π(2r + 1).

F is non-trivial. We claim that for r large enough F (0) > 0. Indeed, F (0) =
f(0) + g(0), g(0) = 1, and it is enough to show that |f(0)| < 1 for r large enough. By
the Hörmander Theorem, (58) yields

‖f‖2
L2(e−φ) ≤ ‖a‖2

L2(e−φ) ≤ e−r
2

π(2r + 1),
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and this is the place, where we can use the freedom in r. Observe that |f(0)| is very
small,

|f(0)|2 ≤ 1

π

∫
D

|f(z)|2dv2(z) ≤ e

π

∫
D

|f(z)|2e−|z|2dv2(z) ≤

e

π

∫
C

|f(z)|2e−|z|2dv2(z) ≤ e

π
e−r

2

π(2r + 1) = (2r + 1)ee−r
2

,

provided r is large enough.
Here the first inequality follows from the analyticity of f in D (∂̄f = −∂̄g = 0 in D),

and the second one is a consequence of the fact that φ(z) ≤ 1 in D.

Remark C.7. Due to Liouville’s Theorem, we may not give any upper bound on the
integral

∫
C
|F (z)|2dv2(z), but we can bound

∫
C
|F (z)|2e−|z|2dv2(z). Observe that we did

not see whether F ≡ Const or not.

Exercise C.12. Let g an infinitely smooth compactly supported function equal to z in
rB2

2 , r > 0, and 0 outside (r + 1)B2
2 . What kind of F will we get?

C.3.2. The above example reworked. We take the same g, but change the sub-harmonic
function on φ(z) = |z|2 + log |z|2, Ω = C.

Exercise C.13. Prove that (56) holds for new φ and we can apply Hörmander’s The-
orem. What is τ?

We put F = g+ f , where f is going to be a solution of (57) with a = −∂̄g, as above.
Trick. Observe that∫

B2
2

|f(z)|2e−|z|2−log |z|2dv2(z) <∞,
∫
B2

2

|g(z)|2e−|z|2−log |z|2dv2(z) =∞.

Indeed, e−φ(z) = e−|z|
2−log |z|2 is not locally integrable near the origin, hence the second

integral is divergent. One the other hand we have

τ

∫
B2

2

|f(z)|2e−|z|2−log |z|2dv2(z) ≤
∫
B2

2

|∂̄g(z)|2e−|z|2−log |z|2dv2(z) <∞.

Exercise C.14. Prove the last statement.

Exercise C.15. Let F, f, g be as above. Prove that f(0) = 0, hence, F (0) = 1, and F
is non-trivial.

Hint: Use the previous exercise.
Additional trick. Our choice of φ(z) = |z|2 + log |z|2 has an additional advantage

over the choice φ(z) = |z|2. Namely, observe that the integral∫
C

e−φ dv2 ≈
(r+1)∫
r

dρ

ρ
=

δ(r+1)∫
δr

dρ

ρ
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is independent on δ. Hence, we could try to get a better upper bound on the integral∫
C
|F (z)|2e−|z|2dv2(z) using the freedom with δ.

Exercise C.16. Take any two different points z1, z2 in C, and consider

φ(z) = |z|2 + log |z − z1|2 + log |z − z2|2.
Choose g̃(z) = α1gz1(z) + α2gz2(z) where gz1 = g(z − z1), gz2 = g(z − z2), α1 6= α2,
and r is chosen in such a way that the supports of gz1, gz2, are disjoint. Prove that
F = F (g̃, φ) satisfies F (z1) = α1, F (z2) = α2.

C.4. The example of a non-trivial analytic function F = F (φ, g) obtained after
the application of the Hörmander Theorem in the strip Ω = TK.

We assume that K = [−1, 1], and put KC = B2
2 ⊂ K ×K.

The idea of the construction of a non-trivial analytic F in the strip (the tube domain)
TK = {z ∈ C : |=z| < 1} is very similar to the one considered above. Since our goal here
to get a good upper bound on

∫
TK

|F (z)|2dv2(z) < ∞, we have to make a more careful

choice of our pluri-sub-harmonic φ. The point is that the function φ(z) = |z|2 + log |z|2
is not bounded in TK , and we are not able to make an estimate∫

TK

|F (z)|2dv2(z) ≤ sup
z∈TK

eφ(z)

∫
TK

|F (z)|2e−φ(z)dv2(z).

We will also adjust our Mexican-hat function g. Namely, we define a smooth function
g : C → [0, 1] such that g = 1 in δKC, g = 0 outside σδKC, (σ = r + 1 > 1 in our
previous notation), and

|∂̄g| = 1

2
|∇g| ≤

√
2 [δ(σ − 1)]−1 .

Getting around the unboundedness of φ in TK . Since the class of pluri-sub-
harmonic functions is invariant under composition with conformal mappings, (see [Sh],
Section 37, page 244), one can try to map TK conformally on the disc of radius 4/π
centered at the origin. Following Nazarov we put

φ(z) = |y|2 + 2 log |Φ(z)|, Φ(z) =
4

π

e
π
2
z − 1

e
π
2
z + 1

.

The normalization is chosen in such a way that Φ′(0) = 1.

Exercise C.17. Prove that ∀z ∈ TK we have

(59) φ(z) ≤ 2 log
4

π
+ |y|2,

and φ is bounded on TK. Observe that the first term |y|2 is added just to make sure that
(56) is satisfied.

Exercise C.18. Prove that

φ(z) ≥ 2(log δ − 2Cδ) = 2 log δ − 4Cδ

in (σδKC) \ (δKC).
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Hint: Note that Φ(0) = 0 and Φ′(0) = 1. Show that

| log |Φ(z)| − log |z|| ≤ C |z|, for |z| ≤ 1

2
with some C ≥ 1.

Exercise C.19. Prove that

‖F‖2
A2(TK) ≤ C v2(KC).

What is C?

Hint: Observe at first that∫
TK

|F |2 dv2 ≤ 2

∫
TK

|g|2 dv2 + 2

∫
TK

|f |2 dv2,

and that the first integral in the right-hand side does not exceed v2(KC). Next, use
Exercise C.18 to prove∫

TK

|f |2e−φ dv2 ≤
1

τ

(σδ)2 − δ2

2(σ − 1)2δ2
v2(KC)e−2 log δ−Cδ ≤ σ + 1

2τ(σ − 1)
e−2 log δ−Cδv2(KC),

and use (59) and (58) to show that∫
TK

|f |2 dv2 ≤ e2 log 4
π

+1 σ + 1

2τ(σ − 1)
e−2 log δ−Cδv2(KC).

Finally, obtain∫
TK

|F |2 dv2 ≤ 2e2 log 4
π

+1v2(KC)
(

(σδ)2 +
σ + 1

2τ(σ − 1)
e−2 log δ−Cδ

)
.

Can we change φ to use a proper τ?

Appendix D. Proof of Hörmander’s Theorem

Main Idea of the proof: In order to show the existence of a solution of PDE, it is
enough to obtain a certain weighted L2 (Hilbert space) estimate.

Main Ingredients of the proof: The proof (roughly) consists of an Elementary
Linear Algebra and Integration by parts.

Basic Linear Algebra Fact: Let A : H → H be a linear operator acting on a
finite-dimensional Hilbert space H. Then

(60) dim(ker(A)) + dim(Im(A)) = dim(H).

One more Linear Algebra Idea: Let A : H → G, where G is a subspace of H. To
show that A is onto, i.e., Im(A) = G, it is enough to check that

(61) ker(A∗) = {0}.
Exercise D.1. Prove the last statement.

Hint: It is enough to show that dim(Im(A)) = dim(G). Since rank(A∗) = rank(A),
(rank(A) = dim(Im(A))), and ker(A∗) = {0} we have

dim(Im(A)) = dim(Im(A∗)) = dim(Im(A∗)) + 0 =

dim(Im(A∗)) + dim(ker(A∗)) = dim(G),
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where in the last equality we used (60) with A = A∗ : G→ H.
Idea: Condition (61) can be reformulated: assume that there exists a constant C > 0

such that

(62) ∀y ∈ G, ‖A∗y‖H ≥ C‖y‖H(= ‖y‖G).

Exercise D.2. Prove the last statement.

Hint: If 0 6= y ∈ kerA∗, then ‖A∗y‖H = 0 implies ‖y‖H = 0, a contradiction.
The next Lemma is an infinitely-dimensional analogue of what was said above. At

first we don’t want to deal with subtleties related to closed densely defined operators,
so we formulate everything ”just for the Hilbert space”.

Lemma D.1. Let G be a closed subspace of H, and let A : H → G ⊆ H be a linear
operator. Assume that there exists a constant C > 0 such that (62) holds. Then,

∀y ∈ G ∃x ∈ H : Ax = y, ‖x‖H ≤ C ‖y‖H .
Idea: The solution x we are looking for will come from the Riesz Theorem (about

linear functionals in Hilbert Spaces) if we construct a certain linear functional L on H1,
L(a) = (x, a). In other words, given f ∈ G, we want x : Ax = f , that is equivalent to
(Ax, y) = (f, y) ∀y ∈ G.

Proof. We are looking for x satisfying x ·A∗y = f · y, and it is natural to define L on H
(more precisely on Im(A∗)) as L(A∗y) = f · y. Then

|L(A∗y)| = |f · y| ≤ ‖f‖‖y‖ ≤ ‖f‖‖A∗y‖,
and we can extend L to H. Now, there exists unique x ∈ H,

f · y = L(A∗y) = x · A∗y = Ax · y,
and we are done.

Finally, we have

‖x‖ = sup
‖A∗y‖=1

x · A∗y = sup
‖A∗y‖=1

Ax · y ≤ ‖Ax‖‖y‖ ≤ C ‖Ax‖‖A∗y‖ ≤ C ‖Ax‖.

�

Finally, the reader is advised to prove (or to read the proof of) the following statement,
which is Lemma III.4 in [LG], page 318.

Lemma D.2. Let A be a closed operator with a dense domain DA in a Hilbert space
H, and let A : DA → G, where G is a closed subspace of H. Then G = A(DA) iff there
exists a constant C > 0 such that (62) is true for all y ∈ G ∩DA∗.

D.0.1. Integration by parts.
We use integration by parts to compute A∗. We assume at first that functions f , g

are continuously differentiable, and φ is twice continuously-differentiable. We have

(∂̄f, g)L2(e−φ) =

∫
C

∂̄f(z)ḡ(z)e−φ(z)dv(z) = −
∫
C

f(z)∂̄
(
ḡ(z)e−φ(z)

)
dv(z) =
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−
∫
C

f(z)Dg(z)e−φ(z)dv(z) = −(f, δg), Dg = ∂g − g∂φ.

Thus,

(63) A∗ = ∂̄∗ = −D, Dg = ∂g − g∂φ.
Observe that if φ(z) =∞ for z ∈ Ωc, then the characteristic function χΩ can be written
as χΩ = e−φ, and we can run the integration by parts argument with Ω ⊆ C instead of
C.

We will see in a moment what conditions we would like to impose on φ and Ω.

D.0.2. We solve ∂̄f = a in L2(Ω, e−φ), n = 1.
Let all functions in question be smooth enough.
By Linear Algebra, to show the existence of the solution of (57) it is enough to prove

that

(64) ∀g ∈ Dom(D), ‖Dg‖L2(Ω,e−φ) ≥ C ‖g‖L2(Ω,e−φ),

where D is conjugate to ∂̄, see (63).
Observe that

∂̄Dg = ∂̄(∂g − g∂φ) = ∂̄∂g − ∂̄g∂φ− g∂̄∂φ, D∂̄g = ∂∂̄g − ∂φ∂̄g,
and ∂∂̄ = ∂̄∂ yields

(65) ∂̄Dg = D∂̄g − (D∂̄g − ∂̄D) = D∂̄g + g∂̄∂φ.

Finally, integration by parts, D∗ = −∂̄ and (65) imply (64):

‖D∗g‖2
L2(e−φ) = (Dg,Dg) = −(g, ∂̄Dg) = −(g,D∂̄g)− (g, (∂̄D −D∂̄)g) =

(∂̄g, ∂̄g) + (g, g∂∂̄φ) ≥ const2‖g‖2
L2(e−φ),

provided φ : ∂∂̄φ(z) ≥ const for every z ∈ Ω. This is our condition on Ω and φ.

Exercise D.3. Prove (58) in the case n = 1, Ω = C.

D.0.3. The multidimensional case, Ω = Cn.
Assume again that all functions in question are smooth enough. Now we have a closed

(0, 1) form

w =
n∑
j=1

ajdz̄j, ∂̄w = 0.

Repeating the one-dimensional argument, for ∂j = ∂/∂z̄j we have

∂̄∗(
n∑
j=1

gjdz̄j) = −
n∑
j=1

Djgjdz̄j Djgj = ∂jgj − gj∂jφj.

Indeed, for two (0, 1) forms,

∂̄f =
n∑
j=1

∂f

∂z̄j
dz̄j, g =

n∑
j=1

gjdz̄j,
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as in the one-dimensional case,

(∂̄f, g) =
n∑
j=1

∫
Ω

∂f(z)

∂z̄j
ḡj(z)e−φ(z)dv2n(z) = −

n∑
j=1

∫
Ω

f(z)D̄j ḡj(z)e−φ(z)dv2n(z).

Now,

(
n∑
j=1

Djgj,

n∑
k=1

Dkgk) =
n∑
j=1

n∑
k=1

(Djgj, Dkgk) =

(we integrate by parts in each variable and use D∗j = ∂̄j),

−
n∑
j=1

n∑
k=1

(gj, ∂̄jDkgk) =
n∑
j=1

n∑
k=1

(gj, (Dk∂̄j − ∂̄jDk)gk) =

n∑
j=1

n∑
k=1

(∂̄kgj, ∂̄jgk) +
n∑
j=1

n∑
k=1

(gj, gk∂̄j∂kφ) ≥ const
n∑
j=1

n∑
k=1

(gj, gk).

Observe that ∂̄w = 0 yields ∂̄kaj = ∂̄jak, hence, for aj = gj, (∂̄kgj, ∂̄jgk) ≥ 0.

Exercise D.4. Prove (58) in the case Ω = Cn.

The proof of the general case of a strictly pseudo-convex domain Ω ⊂ Cn can be
found in [Ho4], [LG], pages 316-327. The idea is to reduce the general case to the
case Ω = Cn by writing the characteristic function χΩ as χΩ = e−ϕ, where a pluri-
subharmonic ϕ(z) =∞ for z /∈ Ω. If the functions aj, j = 1, ..., n, are blowing up near
the boundary of Ω, one can use the idea similar to the one described in Exercise C.7 in
the one-dimensional case, to come up with the proper pluri-subharmonic φ to tame the
growth of ajs.
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