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CHAPTER 1

Functional analysis and convex geometry

Geometric functional analysis studies high dimensional linear structures.
Some examples of such structures are Euclidean and Banach spaces, convex
sets and linear operators in high dimensions. A central question of geomet-
ric functional analysis is: what do typical n-dimensional structures look like
when n grows to infinity? One of the main tools of geometric functional
analysis is the theory of concentration of measure, which offers a geomet-
ric view on the limit theorems of probability theory. Geometric functional
analysis thus bridges three areas – functional analysis, convex geometry and
probability theory. The course is a systematic introduction to the main
techniques and results of geometric functional analysis.

1. Preliminaries on Banach spaces and linear operators

We begin by briefly recalling some basic notions of functional analysis.
A norm defined on a linear vector space X is a function ‖ · ‖ : X → R that
satisfies

(1) nonnegativity: ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 iff x = 0;
(2) homogeneity: ‖λx‖ = |λ|‖x‖ for all λ ∈ R and for all x ∈ X;
(3) triangle inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.

A Banach space is a complete normed space. We now recall some examples
of classical Banach spaces.

Examples 1.1. 1. The space of continuous functions C[0, 1] consists of
the functions f : [0, 1] → R that are continuous. It is a Banach space with
respect to the sup-norm

‖f‖∞ = sup
t∈[0,1]

|f(t)|.

2. For 1 ≤ p <∞, the space of p-integrable functions Lp[0, 1] consists of
the functions f : [0, 1]→ R such that |f |p is Lebesgue integrable on [0, 1]. It
is a Banach space with respect to the norm

‖f‖p =
(∫ 1

0
|f(t)|p dt

)1/p
.

3. The space of essentially bounded functions L∞[0, 1] consists of all
Lebesgue measurable functions f : [0, 1]→ R such that

‖f‖∞ = esssup
t∈[0,1]

|f(t)| = inf
f=g a.e.

sup
t∈[0,1]

|g(t)| <∞.

5



6 1. FUNCTIONAL ANALYSIS AND CONVEX GEOMETRY

It is a Banach space with respect to this norm.
4. For 1 ≤ p <∞, The space of p-summable sequences `p consists of all

sequences of real numbers x = (xi) such that the series
∑

i |xi|p converges.
It is a Banach space with respect to the norm

‖x‖p =
( ∞∑
i=1

|xi|p
)1/p

.

5. The space of bounded sequences `∞ consists of all sequences of real
numbers x = (xi) such that

‖x‖∞ = sup
i∈N
|xi|.

It is a Banach space with respect to this norm.
6. Every Hilbert space H is a Banach space with the norm ‖x‖ =√
〈x, x〉, where 〈·, ·〉 denotes the inner product on H.

Let X,Y be Banach spaces. A linear operator is a map T : X → Y
that satisfies T (ax + by) = aT (x) + bT (y) for all x, y ∈ X and a, b ∈ R. In
particular, if Y = R, then T is called a linear functional. A linear operator
T : X → Y is bounded if there exists some M > 0 such that ‖Tx‖ ≤M‖x‖
for every x ∈ X. The infimum of such numbers M is called the norm of T :

‖T‖ = sup
x∈X\{0}

‖Tx‖
‖x‖

= sup
‖x‖=1

‖Tx‖.

A linear operator T is continuous if and only if it is bounded.
A linear operator T : X → Y is called an isomorphism if it is bijective

and both T and T−1 are bounded. The Open Mapping Theorem actually
implies that if T is bijective and bounded then so it T−1. An isomorphism T
is called an isometry if ‖T‖ = ‖T−1‖ = 1, or equivalently if ‖Tx‖ = ‖x‖ for
all x ∈ X. Banach spaces X and Y are called isomorphic (resp. isometric)
if there exists an isomorphism (resp. isometry) T : X → Y . Any two finite
dimensional Banach spaces of the same dimension are isomorphic, but not
necessarily isometric.

Many arguments in functional analysis are based on duality. It provides
a convenient tool: when two objects are in dual relation, one can study
one of them and deduce properties of the other one using duality. If X
is a normed space, then its dual space X∗ consists of all continuous linear
functionals on X, equipped with the operator norm. The dual space X∗

is always a Banach space. The dual spaces of some classical spaces can be
described via the known representation theorems.

Examples 1.2. 1. (Lp[0, 1])∗ = Lq[0, 1] for p, q ∈ (1,∞) such that
1/p + 1/q = 1, and also for p = 1, q = ∞. Specifically, every continuous
linear functional F ∈ (Lp[0, 1])∗ has the form

F (f) =
∫ 1

0
f(t)g(t) dt, f ∈ Lp[0, 1]
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for some function g ∈ Lq[0, 1].
2. (`p)∗ = `q for the same pairs p, q as in the previous example. Specifi-

cally, every continuous linear functional F ∈ (`p)∗ has the form

F (x) =
∞∑
i=1

xiyi, x ∈ Lp[0, 1]

for some function y ∈ Lq[0, 1].
3. Riesz representation theorem states for every Hilbert space H one

has H∗ = H. Specifically, every continuous linear functional F ∈ H∗ has
the form

F (x) = 〈x, y〉, x ∈ H
for some vector y ∈ H.

Duality is also defined for linear operators T : X → Y . For a linear
operator T : X → Y , the adjoint operator is a linear operator T ∗ : Y ∗ → X∗

defined by (T ∗f)(x) = f(Tx) for all f ∈ Y ∗ and x ∈ X. If T is bounded
then so is T ∗, and we have ‖T ∗‖ = ‖T‖.

There are two natural classes of Banach spaces associated with a Banach
space X: closed linear subspaces E ⊆ X (with the norm induced from X)
and quotient spaces X/E. The quotient space is defined using the following
equivalence relation on X: x ∼ y iff x − y ∈ E. The quotient space X/E
then consists of the equivalence classes

[x] = {y ∈ X : y ∼ x} = {x+ e : e ∈ E}.

X/E is a Banach space equipped with the norm

‖[x]‖ = inf
y∈[x]
‖y‖ = distX(0, [x]) = inf

e∈E
‖x− e‖.

Figure 1 illustrates the concept of quotient space.

Figure 1. Quotient space X/E

Subspaces and quotient spaces are in duality relation. Recall that the
annihilator of E ⊂ X is a subspace in X∗ defined as E⊥ = {f ∈ X∗ :
f(e) = 0 ∀e ∈ E}. The next proposition says that the dual of a subspace
is isometric to a quotient space (of the dual space), and the dual of a quotient
space is isometric to a subspace (of the dual space).
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Proposition 1.3 (Duality between subspaces and quotients). Let E ⊂
X be a linear subspace. Then

(i) E∗ is isometric to X∗/E⊥;
(ii) (X/E)∗ is isometric to E⊥.

For the proof, see [?, Exercise 9.10.25].

As we said, geometric functional analysis studies finite-dimensional normed
spaces. Such spaces are always complete, and all their linear subspaces are
closed. All n-dimensional Banach spaces are isomorphic to each other (but
not isometric!) All linear operators on such spaces are bounded.

Classical examples of finite dimenisonal spaces are the n-dimensional
versions of the spaces `p, which are denoted by `np . Thus `np is the linear
vector space Rn equipped with the norm

‖x‖p =
( n∑
i=1

|xi|p
)1/p

if 1 ≤ p <∞; ‖x‖∞ = max
i≤n
|xi|.

2. A correspondence between Banach spaces and convex bodies

A set K in Rn is called convex if it contains the interval joining any two
points in K. A vector x is called a convex combination of points x1, . . . , xm
in Rn if it has the form

x =
m∑
i=1

λixi where λi ≥ 0,
m∑
i=1

λi = 1.

A set K is convex if and only if it contains all convex combinations of any
set of points from K.

Convex sets can be constructed from arbitrary sets by taking convex
hulls. The convex hull of a set A in Rn is the minimal convex set con-
taining A, denoted conv(A). Equivalently, conv(A) is the set of all convex
combinations of points from A.

Recall that a convex set K in Rn is called symmetric if K = −K (i.e.
x ∈ K implies −x ∈ K). A bounded convex set with nonempty interior is
called a convex body.

Let X be an n-dimensional Banach space. Choosing a bijective map
X → Rn, we can identify X with the linear vector space Rn equipped with
some norm ‖ · ‖, thus often writing

X = (Rn, ‖ · ‖)
for an arbitrary n-dimensional Banach space X. The following simple propo-
sition establishes a correspondence between finite-dimensional Banach spaces
and symmetric convex bodies in Rn.

Proposition 2.1 (Banach spaces and symmetric convex bodies). 1. Let
X = (Rn, ‖ · ‖) be a Banach space. Then its unit ball BX is a symmetric
convex body in Rn.
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2. Let K be a symmetric convex body in Rn. Then K is the unit ball
of some normed space X = (Rn, ‖ · ‖). Indeed, consider the Minkowski
functional of K defined for all x ∈ Rn as

‖x‖K = inf
{
t > 0 :

x

t
∈ K

}
.

Then ‖ · ‖K defines a norm on Rn, and K is the unit ball of the Banach
space (Rn, ‖ · ‖K).

proof?
Figure 2 illustrates the definition of Minkowski functional.

Figure 2. Minkowski functional

The correspondence between Banach spaces and convex bodies estab-
lished in Proposition 2.1 is a simple but extremely useful tool. It allows
one to use arguments from convex geometry in functional analysis and vice
versa. This correspondence is especially useful for the classical spaces `np .
Their unit balls, denoted by Bn

p , are easy to describe geometrically.

Examples 2.2. 1. The unit ball of the n-dimensional Euclidean space
`n2 is the unit Euclidean ball in Rn.

2. The unit ball of `n1 is the so-called cross-polytope in Rn. The cross-
polytope is the symmetric convex hull of the canonical basis vectors ei in
Rn and their opposites: Bn

1 = conv(±ei : i = 1, . . . , n).
3. The unit ball Bn

∞ of `n∞ is the cube in Rn with center at the origin
and side 2.

Figure 2 illustrates the shapes of the balls Bn
1 , Bn

2 and Bn
∞ in dimension

n = 2.

The concepts of subspaces and quotient spaces can also be interpreted in
the language of convex geometry. Using Proposition 2.1, one can easily show
that subspaces of Banach spaces correspond to sections of convex bodies, and
quotient spaces correspond to projections of convex bodies.

Proposition 2.3 (Subspaces and quotient spaces). Let X = (Rn, ‖ · ‖)
be a Banach space, and let K = BX denote is unit ball. Consider a subspace
E of X. Then:
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Figure 3. Unit balls of `np in dimension n = 2

1. The unit ball of E is the section K ∩ E;
2. The unit ball of the quotient space X/E is isometrically equivalent to

the orthogonal projection of K onto E⊥, denoted PE⊥(K).

The concept of dual space corresponds in convex geometry to the concept
of polar set. Given a subset K of Rn, the polar set K◦ is defined as

K◦ = {y ∈ Rn : 〈x, y〉 ≤ 1 for all x ∈ K}.
Consider a Banach space X = (Rn, ‖ · ‖). By Riesz representation theorem,
every linear functional f ∈ X∗ has the form f(x) = 〈x, y〉 =

∑n
i=1 xiyi for

some y ∈ Rn. Then the unit ball of X∗ is

BX∗ = {y ∈ Rn : 〈x, y〉 ≤ 1 ∀x ∈ BX} = (BX)◦.

In words, the unit ball of the dual space X∗ is the polar of the unit ball of
X.

Examples 2.4. 1. Recall the duality relation (`n1 )∗ = `n∞. This is a
finite dimensional version of the duality considered in Example 1.2. The
corresponding polarity relation is (Bn

1 )◦ = Bn
∞, which says that the polar of

a cross-polytope is a cube.
2. Similarly, (Bn

2 )◦ = Bn
2 , i.e. the polar of a Euclidean ball is a Euclidean

ball.
3. If E is an ellipsoid with semiaxes a1, . . . , an > 0 then Then E◦ is an

ellipsoid with semiaxes 1/a1, . . . , 1/an.
4. If K is a polytope of k vertices and m faces, then K◦ is a polytope

with m vertices and k faces.

Polarity goes well along with set theoretic operations.

Proposition 2.5 (Properties of polar sets). Let K and L be convex sets
in Rn. Then:

1. (K ∪ L)◦ = K◦ ∩ L◦.
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2. (K ∩ L)◦ = conv(K◦ ∪ L◦).
3. If K ⊂ L, then L◦ ⊂ K◦.
4. (Bipolar theorem) If K is closed then K◦◦ = K.

Finally, we interpret the duality between subspaces and quotient spaces
of Banach spaces described in Proposition 1.3 as a polarity relation between
sections and projections of convex bodies.

Proposition 2.6 (Duality between sections and projections). Let K be
a convex body in Rn, and let E ⊆ Rn be a subspace. Let PE denote the
orthogonal projection in Rn onto E. Then:

1. (K ∩ E)◦ = PE(K◦);
2. (PE(K))◦ = K◦ ∩ E.

In both parts, the operation of taking the polar set in the left hand side is
considered in the subspace E.

Proof. The inclusion PE(K◦) ⊆ (K ∩ E)◦ follows when we note that
vectors x ∈ K ∩ E and y ∈ K◦ satisfy 〈x, PEy〉 = 〈PEx, y〉 = 〈x, y〉 ≤ 1.
To prove the reverse inclusion, by Proposition 2.5 it suffices to show that
(PE(K◦))◦ ⊆ K ∩ E. Let x ∈ (PE(K◦))◦; we have 〈x, PEy〉 ≤ 1 for all
y ∈ K◦. Since x ∈ E, we have 1 ≥ 〈x, PEy〉 = 〈PEx, y〉 = 〈x, y〉. It follows
that x ∈ K◦◦ = K. This shows that x ∈ K ∩ E. This completes the proof
of Part 1.

Part 2 follows from part 1 and the bipolar theorem (Proposition 2.5).
Indeed, we have (K◦ ∩E)◦ = PE(K◦◦) = PE(K). This completes the proof.

The following table summarizes the correspondence between functional
analysis and convex geometry that we discussed in this section:

Spaces Unit balls
normed space X, dimX = n symmetric convex body K in Rn

subspace E ⊂ X section K ∩ E
quotient space X/E projection PE⊥(K)

dual space X∗ polar body K◦

3. A first glance at probabilistic methods: an approximate
Caratheodory theorem

Geometric functional analysis heavily relies on probabilistic methods.
In this section we will develop our first and simple probabilistic argument,
which leads to what we might call an approximate Caratheodory’s theorem.

We first recall the classical Caratheodory’s theorem, which is a useful
result in convex geometry.

Theorem 3.1 (Caratheodory’s theorem). Consider a set A in Rn and a
point x ∈ conv(A). There exists a subset A′ ⊆ A of cardinality |A′| ≤ n+ 1
such that x ∈ conv(A′). In other words, every point in the convex hull of A
can be expressed as a convex combination of at most n+ 1 points from A.
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The bound n+1 can not be improved; it is clearly attained for a simplex
A in Rn (a set of n+ 1 points in general position). However, if we only want
to approximate x rather than exactly represent it as a convex combination,
this is possible with much fewer points. Their number does not even depend
on the dimension n, so the result holds in an arbitrary Hilbert space.

Let us fix an appropriate unit for approximation, which is the “radius”
of A defined as

r(A) = sup{‖a‖ : a ∈ A}.

Theorem 3.2 (Approximate Caratheodory’s theorem). Consider a bounded
set A in a Hilbert space and a point x ∈ conv(A). Then, for every N ∈ N,
one can find points x1, . . . , xN ∈ A such that∥∥∥x− 1

N

N∑
i=1

xi

∥∥∥ ≤ r(A)√
N
.

Remarks. 1. Since 1
N

∑N
i=1 xi is a convex combination of the points xi,

the conclusion of Theorem 3.2 implies that the point x almost lies in the
convex hull of N points from A:

dist
(
x, conv(xi)Ni=1

)
≤ r(A)√

N
.

2. Theorem 3.2 has two advantages over the classical Caratheodory
theorem. Firstly, Theorem 3.2 is dimension-free. Secondly, the convex com-
bination to represent the arbitrary point is explicit: all the coefficients equal
1/N . Note however that there may be repetitions among the points xi.

Proof. Let us fix a point x ∈ conv(A). We can express it as a convex
combination of some vectors z1, . . . , zm ∈ A with some coefficients λi ≥ 0,∑m

i=1 λi = 1:

x =
m∑
i=1

λizi.

Consider a random vector Z which takes on the value zi with probability λi
for each i = 1, . . . ,m. Then

EZ =
m∑
i=1

λizi = x.

Let Z1, Z2, . . . be independent copies of Z. By the the law of large numbers
we know that the sum of independent random variables 1

N

∑N
j=1 Zj con-

verges to its mean x weakly (and even strongly) as N goes to infinity. The
reason for this, as we may recall from the classical proof of the weak law of
large numbers, is that the second moment of the difference is easily seen to
converge to zero. Indeed, since the random variables Zi−x are independent
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and have mean zero, we obtain (see Exercise 1) that

E
∥∥∥x− 1

N

N∑
j=1

Zj

∥∥∥2
=

1
N2

E
∥∥∥ N∑
j=1

(Zj − x)
∥∥∥2

=
1
N2

N∑
j=1

E‖Zj − x‖2.

Now, since the random variable X takes on values in A, we can easily bound
each term of the sum (see Exercise 1):

E‖Zj − x‖2 = E‖Z − EZ‖2 = E‖Z‖2 − ‖EZ‖2 ≤ E‖Z‖2 ≤ r(A)2.

This shows that

E
∥∥∥x− 1

N

N∑
j=1

Zj

∥∥∥2
≤ r(A)2

N
.

Therefore there is a realization of the random variables Z1, . . . , ZN (i.e. a
point in the probability space) such that∥∥∥x− 1

N

N∑
j=1

Zj

∥∥∥ ≤ r(A)√
N
.

Since by construction each Zj takes on values in A, the proof is complete.

Exercise 1. 1. Let Z1, . . . , ZN be independent mean zero random vec-
tors in a Hilbert space. Show that

E
∥∥∥ N∑
j=1

Zj

∥∥∥2
=

N∑
j=1

E‖Zj‖2.

2. Let Z be a random vector in a Hilbert space. Show that

E‖Z − EZ‖2 = E‖Z‖2 − ‖EZ‖2.
This is a version of the identity Var(X) = E(X − EX)2 = E(X2) − (EX)2

that holds for random variables X.





CHAPTER 2

Banach-Mazur distance

The concept of distance usually quantifies how far objects are from each
other. Qualitatively, it can be used to distinguish the objects. For example,
if two points in space have distance zero to each other, they are the same
and thus can be identified with each other. The notion of distance is a
quantitative version of identification; not only it can tell whether the objects
are the same but it also measures how different they are.

How one identifies mathematical objects depends on their nature. For
example, in topology, we identify spaces using homeomorphisms; in alge-
bra, we identify groups using homomorphisms; in classical convex geometry,
we may identify polytopes using rigid motions; in functional analysis, we
identify Banach spaces using isomorphisms. The concept of Banach-Mazur
distance which we shall study in this chapter is a quantitative version of the
concept of isomorphism.

1. Definition and properties of Banach-Mazur distance

We will give two equivalent definitions of Banach-Mazur distance, one
in the context of functional analysis, the other in convex geometry.

Definition 1.1. (Analytic): LetX,Y be two isomorphic normed spaces.
The Banach-Mazur distance between X and Y is defined as

d(X,Y ) = inf
{
‖T‖‖T−1‖ : T : X → Y is an isomorphism

}
.

(Geometric): Let K and L be symmetric convex bodies in Rn. The
Banach-Mazur distance between K and L is

d(K,L) = inf
{
ab > 0 :

1
b
L ⊆ TK ⊆ aL for some linear operator T on Rn

}
.

Figure 1 illustrates the definition of Banach-Mazur distance between a
hexagon and a circle.

The analytic and geometric notions of Banach-Mazur distance are con-
nected through the correspondence between normed spaces and symmetric
convex bodies described in Section 2. This way, the (analytic) Banach-
Mazur distance between the spaces X and Y is the same as the (geometric)
Banach-Mazur distance between their unit balls BX and BY .

Remarks. 1. Recall that all finite-dimensional Banach spaces of the
same dimension are isomorphic. Hence the notion of Banach-Mazur distance
is well defined for them.

15
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Figure 1. Banach-Mazur distance

2. Banach-Mazur distance is invariant under invertible linear transfor-
mations S: it is easily seen that d(K,L) = d(SK,SL).

The following easy properties of Banach-Mazur distance follow from the
corresponding properties of linear operators on normed spaces. We leave it
to the reader to check them.

Proposition 1.1 (Properties of Banach-Mazur distance). Let X,Y, Z
be n-dimensional normed spaces. Then:

1. d(X,Y ) ≥ 1. Furthermore, d(X,Y ) = 1 if and only if X and Y are
isometric;

2. d(X,Y ) = d(Y,X);
3. d(X,Y ) ≤ d(X,Z)d(Z, Y );
4. d(X,Y ) = d(X∗, Y ∗).

The first three properties remind us of the conditions for a metric: non-
negativity, symmetry, and triangle inequality. The only difference is that we
have the above properties in multiplicative form. To get the additive form,
we can simply take the logarithm:

Corollary 1.2 (Banach-Mazur Metric). log d(X,Y ) defines a metric
on the set of all n-dimensional Banach spaces. Equivalently, log d(K,L)
defines a metric on the set of all symmetric convex bodies in Rn.

Since log d(X,Y ) = 0 for isometric spaces X and Y , we feel that all
isometric (but not isomorphic!) spaces should be identified with each other
in geometric functional analysis. Geometrically this means, for example,
that in Rn all ellipsoids are regarded the same, the cubes and paralleletopes
are regarded the same, but an ellipsoid and a cube is not regarded the same.

One can check that the set of all n-dimensional Banach spaces equipped
with the Banach-Mazur metric is a compact metric space. For this reason,
this space is called the Banach-Mazur compactum. Very few properties of
Banach-Mazur compactum are known, since it is usually hard to compute
the Banach-Mazur distance between a given pair of normed spaces. However,
when one of the spaces is `n2 , it is possible to give a tight upper bound

√
n
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on the distance. We will now prove this remarkable result known as John’s
theorem.

2. John’s Theorem

Theorem 2.1 (John’s theorem). Let K be a symmetric convex body in
Rn, and let D be the ellipsoid of maximal volume contained in K. Then

D ⊆ K ⊆
√
nD.

Consequently, for arbitrary n-dimensional normed space one has

d(X, `n2 ) ≤
√
n.

Proof. The second part of the theorem easily follows from the first part
using the correspondence between normed spaces and convex bodies.

We are now set to prove the first part of the theorem. Since, as we
know, Banach-Mazur distance is invariant under invertible linear transfor-
mations, we can assume that D = Bn

2 by applying an appropriate linear
transformation to K and D.

We will proceed by contradiction. Assume that K *
√
nD. Then we

can find x0 ∈ K such that

(1) s := ‖x0‖2 >
√
n.

By applying a rotation in Rn we can assume without loss of generality that
the vector x0 has the form x0 = (s, 0, . . . , 0). By symmetry and convexity
of K, we have

conv{±x0, D} ⊆ K.
We are going to find inside the convex body conv{±x0, D} an ellipsoid

E of volume larger than D, which will contradict the maximality of D. We
will construct E by significantly elongating the ball D in the direction of the
s and slightly suppressing D in the orthogonal directions, see Figure 2.

Figure 2. John’s Theorem

To this end, let us consider the ellipsoid E centered at the origin, and
whose semi-axes aligned in the coordinate directions have lengths (a, b, b, . . . , b).
Here a, b > 0 are parameters that we are going to determine.
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Firstly, we would like to have vol(E) > vol(D). Since D is a unit ball,
we have vol(E) = abn−1 vol(D), which gives our first restriction

abn−1 > 1.

Secondly, we would like to have E ⊆ conv{±x0, D}, which we shall
reformulate as a second constraint on a, b. Since both sides of this con-
tainment are bodies of revolution around the axis x0, the problem becomes
two-dimensional. At this point, the reader is encouraged to complete the
proof independently using only planar geometry. For completeness, we pro-
ceed with the argument. Consider the quarter of any cross-section of these
bodies orthogonal to x0, see Figure 2.

Figure 3. Proof of John’s Theorem

We can clearly assume that both the ball D and the ellipsoid E are
tangent to the boundary of conv{±x0, D}. Let t be the y-intercept of the line
passing through x0 (on x-axis with length s) and tangent to D. Similarity
of triangles gives

(2)
s

t
=
√
s2 − 1

1
.

Next, we are going to use the tangency of conv{p,D} and E . To this end,
we first shrink the picture along the x-axis by the factor b/a, see Figure 2.
This transforms E into the Euclidean ball Ē of radius b, and it transforms s
into s̄ = (b/a) s. Similarity of triangles gives here

b

s̄
=

t√
s̄2 + t2

.
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Figure 4. Proof of John’s Theorem

This is equivalent to s2t2 = b2s2 +a2t2. Dividing both sides by t2 and using
(2) we conclude that a2 = s2(1 − b2) + b2. Let us choose b2 = 1 − ε for
sufficiently small ε > 0; then a2 = 1 + (s2 − 1)ε. Since by our assumption
s >
√
n, we conclude that (1) holds:

a2b2(n−1) > (1 + (n− 1)ε)2(1− (n− 1)ε) ≥ 1.

John’s Theorem is proved.

3. Distance between `np and `nq

John’s theorem is sharp. We will now show that a cube in n dimensions
has the largest possible distance

√
n to the ball.

Proposition 3.1 (Sharpness of John’s theorem). For every n = 1, 2, . . .
we have

d(`n∞, `
n
2 ) =

√
n.

Remarks. 1. By duality (Proposition 1.1), we also have d(`n1 , `
n
2 ) =

√
n.

2. The geometric meaning of Proposition 3.1 is that among all ellipsoids,
the round ball approximates the cube the best. While intuitively simple,
this result is not entirely trivial, and it will be proved by a probabilistic
argument.

Proof. The upper bound d(`n∞, `
n
2 ) ≤

√
n follows easily from the norm

comparison ‖x‖∞ ≤ ‖x‖2 ≤
√
n‖x‖∞, which in turn is a consequence of

Hölder’s inequality.
We are now going to prove the lower bound d(`n∞, `

n
2 ) ≥

√
n. Note that

in the geometric definition of Banach-Mazur distance we can require that
b = 1 by rescaling. So it suffices to show that for every linear operator
T : Rn → Rn satisfying Bn

2 ⊆ T (Bn
∞), we have T (Bn

∞) 6⊆ sBn
2 for any
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s ≤
√
n. The latter simply means that the radius of the parallelopiped

T (Bn
∞) is large:

(3) max
x∈Bn∞

‖Tx‖2 >
√
n.

We are going to prove this by showing that a random vertex of the paral-
lelopiped T (Bn

∞) has length larger than
√
n with positive probability.

The vertices of the cube Bn
∞ have the form x =

∑n
i=1 εiei, where εi ∈

{−1, 1} and ei denote the canonical basis vectors. Denote fi = Tei. Then
the vertices of the parallelopiped T (Bn

∞) have the form

Tx =
n∑
i=1

εiTei =
n∑
i=1

εifi,

see Figure 3. Since Bn
2 ⊆ T (Bn

∞), we must have ‖fi‖2 ≥ 1 for all i (why?).

Figure 5. Banach-Mazur distance between a cube and a ball

Now we choose a random vertex Tx of the parallelepiped. Formally,
choose the signs εi at random, so we let εi be independent symmetric
{−1, 1}-valued random variables: P(εi = 1) = P(εi = −1) = 1/2. By
Exercise 1 and using the lower bound ‖fi‖2 ≥ 1, we can estimate the expec-
tation

E‖Tx‖22 = E
∥∥∥ n∑
i=1

εifi

∥∥∥2

2
=

n∑
i=1

‖fi‖22 ≥ n.

It follows that there exists choice of signs εi for which the random vertex
Tx satisfies ‖Tx‖2 ≥

√
n. This establishes (3) and completes the proof.

As an application of Proposition 3.1, we now compute the distance be-
tween the spaces `np and `nq in the case when the exponents p and q lie on
the same side of 2.

Corollary 3.2 (Distance between `np and `nq ). Let 1 ≤ p ≤ q ≤ 2 or
2 ≤ p ≤ q ≤ ∞. Then for every n = 1, 2, . . . we have

d(`np , `
n
q ) = n1/p−1/q.
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Proof. By duality (Proposition 1.1) we may assume that 2 ≤ p ≤
q ≤ ∞. Then the upper bound d(`np , `

n
q ) ≤ n1/p−1/q follows from the norm

comparison
‖x‖q ≤ ‖x‖p ≤ n1/p−1/q‖x‖q

which in turn is a consequence of Hölder’s inequality.
We will now deduce the lower bound d(`np , `

n
q ) ≥ n1/p−1/q from the lower

bound d(`n2 , `
n
∞) ≥

√
n given by Proposition 3.1. One can do this simply by

comparing the corresponding spaces in the two distance estimates. Indeed,
the two special cases of the upper bound proved above are

d(`n2 , `
n
p ) ≤ n1/2−1/p, d(`nq , `

n
∞) ≤ n1/q.

Therefore, using the submultiplicativity of the Banach-Mazur distance (Propo-
sition 1.1) we have

√
n ≤ d(`n2 , `

n
∞) ≤ d(`n2 , `

n
p ) · d(`np , `

n
q ) · d(`nq , `

n
∞)

≤ n1/2−1/p · d(`np , `
n
q ) · n1/q.

It follows that d(`np , `
n
q ) ≥ n1/p−1/q as required.

It is a bit more difficult to compute the distance in the case when the
exponents p and q lie on different sides of 2, that is for 1 ≤ p ≤ 2 < q ≤ ∞.
The identity map no longer realizes the distance between such spaces. For
example, in the extreme case p = 1 and q = ∞ Hölder’s inequality would
give the upper bound on the distance d(`n1 , `

n
∞) ≤ n, which is far from being

optimal. This distance is actually
√
n up to an absolute constant; it is

achieved by some rotation of the octahedron Bn
1 inside Bn

∞ that maps the
vertices of the octahedron to some vertices of the cube. The general optimal
bound for such range of p and q is

cnα ≤ d(`np , `
n
q ) ≤ Cnα, where α = max(1/p− 1/2, 1/2− 1/q)

and where C, c > 0 are absolute constants, see [?, Proposition 37.6].

As an immediate application of John’s theorem, we obtain a bound on
the distance between any pair of n-dimensional normed spaces.

Corollary 3.3. Let X and Y be n-dimensional normed spaces. Then

d(X,Y ) ≤ n.

Proof. The estimate follows from John’s Theorem 2.1 and the submul-
tiplicativity property of Banach-Mazur distance (Proposition 1.1): d(X,Y ) ≤
d(X, `n2 )d(`n2 , Y ) ≤

√
n ·
√
n = n.

Corollary 3.3 is sharp up to a constant. This highly nontrivial result was
proved by E. Gluskin in 1981. He constructed n-dimensional spaces X and
Y for which d(X,Y ) ≥ cn. Gluskin’s construction is randomized. He defines
the unit ball of X = (Rn, ‖ · ‖) as the convex hull of 2n random points (and
their opposites) on the unit Euclidean sphere of Rn, taken independently
and uniformly with respect to the Lebesgue measure. The second space
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Y is constructed in the same way, independently from X. Heuristically,
Banach-Mazur distance between such spaces X and Y should be large with
high probability. This is because the vertices of BX and BY are typically
totally “mismatched”. The nontrivial part of Gluskin’s argument is to show
that the vertices can not be sufficiently matched by any linear operator T on
Rn, which leads to the large Banach-Mazur distance. A detailed exposition
of Gluskin’s construction, as well as many other results on Banach-Mazur
distance, are in the monograph [?].



Part 1

Concentration of Measure and
Euclidean Sections of Convex

Bodies



The phenomenon of concentration of measure is the driving force of the
early development of our subject – geometric functional analysis. It tells us
that anti-intuitive phenomena occur in high dimensions. For example, we
will see that the mass of a high dimensional ball is concentrated only on a
thin band around any equator. This reflects the philosophy that metric and
measure should be treated very differently: a set can have a large diameter
but carries little mass. As we will see later on in this course, concentration
of measure plays an important role in the cornerstone theorems such as the
Dvoretzky’s theorem and other theorems on sections or projections of convex
bodies. In this lecture, we will study two cases of concentration of measure,
each with a geometric form and a functional form:

• on the sphere
• in the Gauss space

4. Concentration of Measure

4.1. Concentration of measure on the sphere: geometric form.
Consider the unit sphere Sn−1 with normalized Lebesgue measure σ = σn−1.
Denote by E the equator and Eε the ε-neighbourhood of the equator,

Eε = {x ∈ Sn−1 : d(x,E) ≤ ε}.

First, we show that Eε contains almost all the mass on the sphere when
n is large.

Proposition 4.1 (Neighborhood of spherical caps).

σ(Eε) ≥ 1− 2e−nε
2/2.

We will give an easy geometric proof for ε small.

Proof. Let Cε denote the complement set of Eε on the upper sphere.
When ε is small, the “ice-cream” cone generated by Cε is contained in a ball
of radius

√
1− ε2 (See Figure 6):

cone(Cε) ⊂ B
(
O′,
√

1− ε2
)
.

Then,

σ(Cε) =
vol
(
cone(Cε)

)
vol(Bn

2 )
≤

vol
(
B(O′,

√
1− ε2)

)
vol
(
Bn

2

)
=
(√

1− ε2
)n ≤ e−nε2/2.

Exercise 2. Make the treatment of ε rigorous: prove Proposition 4.1
for all ε > 0.
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Figure 6. “ice-cream cone”

Remarks. (1) The proposition implies that a band around the
equator of width ∼ 1/

√
n has constant measure. Hence, as the

dimension n gets larger and larger, the band that contains a fixed
amount of mass becomes thinner and thinner.

(2) For any hemisphere A, we have σ(Aε) ≥ 1 − e−nε
2/2. In fact,

this holds for any subset of measure 1/2 (not necessarily the hemi-
spheres). This follows from the classic isoperimetric inequality on
the sphere.

Theorem 4.2 (Isoperimetric inequality on the sphere: geometric form.
[?], [?]). Among all measurable sets A ⊂ Sn−1 with a given measure, spher-
ical caps minimize the measure of the ε-neighborhood σ(Aε).

Consequently, we have the following theorem of concentration on the
sphere.

Theorem 4.3 (Concentration of measure on the sphere). For an arbi-
trary measurable set A ⊂ Sn−1 with σ(A) ≥ 1

2 ,

σ(Aε) ≥ 1− e−nε2/2.

Remarks. (1) The number 1/2 is not essential. We have the same
concentration phenomenon (up to some constant adjustment) as
long as the given measure is an absolute constant.

(2) The reason why Theorem 4.2 is called ”isoperimetric inequality” is
that, if we consider the measure of the boundary of A,

σn−2(∂A) = lim
ε→0

σ(Aε)− σ(A)
ε

,

then the isoperimetric inequality implies that among all sets of a
given volume, spherical caps have the minimal boundary measure.
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Figure 7. Concentration on the Sphere

(3) The sphere Sn−1 locally looks like the Euclidean space Rn, so we can get
the isoperimetric inequality in Rn from that on the sphere.

Corollary 4.4. (Isoperimetric inequality in Rn) Among all sets of a
given volume in Rn, Euclidean balls minimize the surface area.

Later in this course when we talk about geometric inequalities, we will
come back to these isoperimetric inequalities and concentration of measure
inequalities, and see alternative proofs.

4.2. Concentration of measure on the sphere: functional form.
Concentration of measure is closely related to a special type of functions
called Lipschitz functions. A general idea is that a Lipschitz function de-
pending on many variables is almost a constant. A natural choice for con-
stant is the median of the function. Let us recall some definitions first.

Definition 4.1. Let X,Y be metric spaces. A map f : X → Y is called
L-Lipschitz if

d(f(x), f(y)) ≤ L · d(x, y)

for all x, y ∈ X.

Definition 4.2. Let X be a random variable. Then its median is a
number M that satisfies

Pr(X ≤M) ≥ 1
2

and Pr(X ≥M) ≥ 1
2
.

Consider a 1-Lipschitz function defined on the sphere

f : Sn−1 → R.
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Let M be a median of f . That is,

σ
{
x ∈ Sn−1 : f(x) ≥M

}
≥ 1

2
and σ

{
x ∈ Sn−1 ≥M

}
≥ 1

2
.

Let A = {x ∈ Sn−1 : f(x) ≤ M}. Then σ(A) ≥ 1
2 . By the concentration of

measure on the sphere, we get

σ(Aε) ≥ 1− e−nε2/2.
It is easy to check that f(x) ≤M+ε for all x ∈ Aε by the Lipschitz condition.
Hence,

σ(f ≤M + ε) ≥ 1− enε2/2.
Similarly,

σ(f ≤M − ε) ≥ 1− enε2/2.
Take intersection of the two sets, and we get

σ(|f −M | ≤ ε) ≥ 1− 2e−nε
2/2.

Thus, we have proved the following:

Theorem 4.5. (Concentration of measure on the sphere: functional
form) Let f : Sn−1 → R be 1-Lipschitz with median M . Then,

σ(|f −M | ≤ ε) ≥ 1− 2e−nε
2/2.

Remarks. Roughly speaking, this theorem says that a smooth function
is almost constant on almost the entire sphere.

4.3. Concentration of measure in Gauss space: geometric form.
We should note that in the formulation of the concentration of measure
on the sphere, we did not quite use the geometry of the sphere. So it is
not surprising that the same phenomenon happen in many other metric
probability spaces. A classic example is the Gauss space.

Definition 4.3. Gauss space is Rn equipped with the standard Gauss-
ian measure γ = γn, with density

dγn =
1

(2π)n/2
e−‖x‖

2
2/2 =

n∏
i=1

1√
2π
e−x

2
i /2.

Just as in the case of the sphere, we have an isoperimetric inequality in
the Gauss space.

Theorem 4.6 (Isoperimetric inequality in Gauss space). Among all
measurable sets A ⊂ Rn with a given Gaussian measure, half-spaces mini-
mize γ(Aε).

Let H denote a half space. Then Hε = {x ∈ Rn : x1 ≤ ε}. A simple
computation shows that

γ(Hε) =
1√
2π

∫ ε

−∞
e−x

2
1/2dx1 ≥ 1− e−ε2/2.
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Hence, we have the following concentration of measure theorem in the
Gauss space.

Theorem 4.7 (Concentration of measure in Gauss space: geometric
form). Let A ⊂ Rn be an arbitrary measurable set with γ(A) ≥ 1

2 . Then
γ(At) ≥ 1− e−t2/2.

4.4. Concentration of measure in Gauss space: functional form.
Just as in the case of the sphere, there is a functional form of concentra-
tion for Lipschitz functions in Gauss space. It can be established from the
geometric form in the same way as above.

Theorem 4.8 (Concentration of measure in Gauss space: functional
form). Let f : Rn → R be 1-Lipschitz with median M . Then for any t > 0,

γ(|f −M | ≤ t) ≥ 1− 2e−t
2/2.

Exercise 3. Generalize the above concentration theorems (including
functional forms) to L-Lipschitz functions.

A trouble here is that median is usually hard to compute. We would like
to replace it by the mean for computational purposes. Fortunately, these
two notions of average value are not far apart when the function has certain
concentration properties.

Lemma 4.9. Let X be a random varible with mean EX and median M .
Then M ≤ 2EX.

Proof. By Markov inequaluty,

Pr(X > 2EX) ≤ 1
2
≤ Pr(X ≥M).

If M > 2EX, then

Pr(X > M) ≤ Pr(X > 2EX) <
1
2
.

This contradicts the median definition.

Lemma 4.10 (Mean ≈ Median under concentration hypothesis). Let X
be a random variable with mean EX and median M . Suppose that

Pr(|X −M | > t) ≤ Ce−ct2

for any t > 0. Then
|M − EX| ≤ C1.

Consequently,
Pr(|X − EX| > t) ≤ C2e

−c2t2

for all t > 0, where C1, C2, c2 are constants that depend only on the absolute
constants C, c.
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Proof.

|M − EX| = |E(M −X)| ≤ E|M −X| by Jensen’s inequality

=
∫ ∞

0
Pr(|X −M | > t)dt ≤

∫ ∞
0

Ce−ct
2
dt = C1.

Remarks. Any type of concentration with tail bound that makes the
last integral converge will give the same “mean ≈ median” result up to some
constant.

With this lemma, we have that, under appropriate concentration as-
sumptions,

|X − EX| ≤ |X −M |+ C1.

Assume t > 2C1. This can always be done by choosing C2 sufficiently large.
Then,

Pr(|X − EX| > t) ≤ Pr(|X −M | > t− C1)

≤ Pr
(
|X −M | > t

2
)
≤ Ce−c2t2 .

Hence, concentration of measure results on the sphere and in the Gauss
space still hold when median is replaced by the mean.

Exercise 4. Show that the concentration results actually hold when the
median is replaced by any p-th moment of f , (Efp)1/p for any 0 < p < ∞
and f ≥ 0.

As a point x in Gauss space is a random vector with independent stan-
dard Gaussian coordinates, we can derive a deviation inequality for certain
functions of i.i.d Gaussian random variables. For a more detailed treatment
on this topic, see [?].

Corollary 4.11 (Deviation Inequality). Let g1, · · · , gn be independent
standard Gaussian random variables. Let f : Rn → R be 1-Lipschitz. Then
the random vector X = f(g1, · · · , gn) satisfies the deviation inequality

Pr(|X − EX| > t) ≤ 2e−t
2/2 ∀t > 0.

Example 4.12. Consider the random variable

X =
n∑
i=1

aigi,

where
∑n

i=1 a
2
i = 1. It is easy to see that the linear functional

f(x) =
n∑
i=1

aixi
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is 1-Lipschitz. By Corollary 4.11, the normalized sum X satisfies the devi-
ation inequality

Pr(|X| > t) ≤ 2e−t
2/2 ∀t > 0.

This is a well-known fact, since normalized sum of standard Gaussians is
standard Gaussian.

Remarks. (1) The significance in this corollary is that the func-
tion f only needs to be “smooth”: it does not have to be linear.
Roughly speaking, this corollary says that a random variable that
is a smooth function of many independent Gaussians strongly con-
centrates around its mean.

(2) Talagrand [?] proved a version of Corollary 4.11 for bounded ran-
dom variales |ξi| ≤ c.

(3) Other versions of Corollary 4.11 still remain open, even for subgaus-
sians. A possible reason is that Lipschitz functions deal with Eu-
clidean distances, and we lack a version of isoperimetry for subgaus-
sian spaces. Another reason is that in Gauss space, there is usually
heavy dependence on the rotation invariance of the Gaussian mea-
sure. However, for subgaussians, the group of symmetry is too
small (usually only reflections, permutation of coordiantes). There
may be hope if one can bypass the rotation invariance property
to obtain concentration properties, for example, via log Sobolev
ienqualities, etc.

5. Johnson-Lindenstrauss Flattening Lemma

Johnson-Lindenstrauss Flattening Lemma was motivated by data com-
pression, or “dimension reduction.” A lot of times, we need to store a large
set of data in a complicated metric space. This would require a huge amount
of space. For example, if we have n vectors in Rn, we would need n2 bits for
exact storage. To reduce the complexity while still preserve the essential in-
formation of the original data set, we would love to embed the metric space
into a simpler metric space almost isometrically. Here, “simpler” means
smaller dimension. The question is, how far can we push the dimension
down without losing the essential information? Johnson-Lindenstrauss flat-
tening lemma tells us that to preserve the pairwise distance between the
data points, the dimension can go down to the log level.

As a preliminary, we introduce a notion called “Lipschitz embedding” in
metric spaces.

Definition 5.1 (Lipschitz Embedding). Let X,Y be metric spaces. A
map T : X → Y is called a Lipschitz embedding of X into Y if there exists
L > 0 such that

1
L
· d(x, y) ≤ d(Tx, Ty) ≤ L · d(x, y) ∀x, y ∈ X.
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In other words, both T and T−1 (restricted on the image of T ) are L-
Lipschitz. Sometimes, such T is called bi-Lipschitz.

For example, all isometries are 1-embedding, for d(Tx, Ty) = d(x, y) for
all x, y ∈ X. An “almost isometric embeddings” means a (1 + ε)-embedding
for small ε > 0.

Now we are ready to state the flattening lemma.

Theorem 5.1 (Johnson-Lindenstrauss Flattening Lemma). Let X be an
n-point set in a Hilbert space. For any ε > 0, there exists a (1+ε)-embedding
of X into `k2, where k ≥ Cε−2 log n.

Remarks. Here, we consider the dimension reduction in `2. We want to
preserve the pairwise Euclidean distances among all the data points. Note
that we can always embed X in span(X) whose dimension ≤ n. To store
all pairwise distances in X, we would need

(
n
2

)
∼ n2 numbers. Moreover,

to store X itself, we would need n · n = n2 numbers (assuming each vector
is n-dimensional). However, after embedding into `k2, we only need to store
n log n numbers while still preserving all pairwise distances within ε-error.

However, mo similar result holds in `1: one cannot do dimension reduc-
tion in `1. See [?].

We will use a linear operator G (in general, emeddings do not have to
be linear), and our construction will be non-adaptive: it is independent of
the geometry of X. This non-adaptivity is the radical idea of this proof.
Note that in general, a good embedding should be adaptive. For example, if
X consists of n co-linear points, then we do not want this line contained in
ker(G): it would be perfect isometric embedding if this line is perpendicular
to the kernel.

Proof. Without loss of generality, assume that X ⊂ `n2 . We need a
map G : `n2 → `k2 which is a (1 + ε)-embedding when restricted to X. In this
proof, we will use an k × n random Gaussian matrix G. Here is the plan of
the proof. We first fix a pair x, y ∈ X and check that

‖G(x− y)‖2 ≈ ‖x− y‖2.
Then, we take union bound over all n2 pairwise distances.
Step 1: Fixed vector.
Let x ∈ Sn−1. Then

E‖Gx‖22 = E
k∑
i=1

〈γi, x〉2 where γi’s are the row vectors of G

= kE〈γ, x〉2 where γ is a standard Gaussian vector in Rn,
= k.

Now, consider the function defined on the Gauss space Rkn:

f : Rkn → R, G = (gij)n×n 7→ ‖Gx‖2.
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We claim that f is 1-Lipschitz. In fact,

|f(G)− f(H)| ≤ |‖Gx‖x − ‖Hx‖x| ≤ ‖(G−H)x‖2
≤ ‖G−H‖ ≤ ‖G−H‖HS = d(G,H),

where d(G,H) is the Euclidean distance of G and H when they are treated
as elements of Rkn.

Then, by Corollary 4.8, we have that, for every x ∈ Sn−1,

Pr
(∣∣∣‖Gx‖2 −√E‖Gx‖2

∣∣∣ > t
)
≤ 2e−t

2/2 ∀t > 0,

where we have used the p-th moment replacement of the median in the
concentration. That is,

Pr
(
|‖Gx‖2 −

√
k| > t

)
≤ 2e−t

2/2 ∀t > 0.

Let t = ε
√
k and replace G by T := G/

√
k. We get

Pr (|‖Tx‖2 − 1| > ε) ≤ 2e−ε
2k/2.

Therefore, for arbitrary x 6= 0, we have

(4) Pr (|‖Tx‖2 − ‖x‖2| > ε‖x‖2) ≤ 2e−ε
2k/2.

Step 2: Union bound.
Apply (4) to all x := u− v, where u, v ∈ X. We get

(5) Pr (∃u, v ∈ X : |‖T (u− v)‖2 − ‖u− v‖2| > ε‖u− v‖2) ≤ n2 · 2e−ε2k/2

As long as the RHS is less than 1, that is, as long as k ≥ Cε−2 log n, there
exists a desired almost isometric embedding.

Remarks. (1) G can also be a random Bernoulli ±1 matrix, as
well as a sparse 0/1-matrix.

(2) Not much is know on derandomization of this argument.

Next, we introduce an alternative proof based on concentration of mea-
sure on the sphere. See section 15.2 in [?]. In this method, T will be an
orthogonal projection in Rn onto a random k-dimensional subspace. First,
let us be more explicit in what it means by a “random subspace.”

Definition 5.2 (Grassmannian). The Grassmannian Gn,k is the collec-
tion of all k-dimensional subspaces of Rn.

We will equip Gn,k with a probability measure. For this purpose, we
need the concept of Haar measure defined on a compact metric space.

Let (M,d) be a compact metric space, and let G be a group whose mem-
bers act isometrically on M , i.e. d(gx, gy) = d(x, y) for all x, y ∈ M
and g ∈ G. For example, M = Gn,k equipped with Hausdorff distance
(“angle” between the “orientations” of subspaces). Then G = O(n) =
{rotations and reflections}, or one can take G = SO(n) = {rotations}.
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Theorem 5.2 (Haar measure). (1) (Existence) There exists a Borel
probability measure µ on M called Haar measure which is invariant
under the action of G:

µ(gA) = µ(A) ∀g ∈ G,A ⊆M.

(2) (Uniqueness) If the G-action is transitive, i.e. for any x, y ∈ M
there exists g ∈ G such that y = gx, then the probability Haar
measure is unique.

Example 5.3. M = Sn−1, G = O(n). Then the Haar measure on M is
the normalized Lebesgue measure.

Example 5.4. M = O(n) = G. Then the Haar measure on M defines
what we call “random rotations.”

Example 5.5. M = Gn,k, G = O(n). The Haar measure defines what
we call “random subspaces.”

Exercise 5. Let U be a uniformly random rotation in O(n) (i.e. pick
a matrix from O(n) uniformly at random).

(1) Let x ∈ Sn−1 be fixed. Show that Ux is a a random vector uni-
formly distributed on Sn−1.
Hint: Use the uniqueness of Haar measure on the sphere and show
that Ux is rotation-invariant.

(2) Let E ∈ Gn,k. Show that U(E) is a random subspace uniformly
distributed in Gn,k.

Now we are ready to show the alternative proof of the Johnson-Lindenstrauss
lemma. Let T be a projection onto a random k-dimensional subspace. By
the exercise above, this projection is equivalent to a random rotation of an
orthogonal projection onto any fixed k-dimensional subspace. Hence, T can
be realized as U∗PkU , where U is uniformly random in O(n), and Pk is the
orthogonal projection onto Rk. Moreover, for any fixed x ∈ Sn−1, Ux is
uniformly random on Sn−1. Therefore,

E‖Tx‖22 = E‖U∗PkUx‖22 = E‖Pkz‖22 = E〈z, Pkz〉 = tr(Pk) = k.

This recovers the fixed vector step in the Gaussian proof above. The rest of
the proof will be very similar to the Gaussian proof. That is, we apply the
functional form of the concentration result on the sphere to the 1-Lipschitz
function f : Sn−1 → R defined by f(x) = ‖Tx‖2, and then take union bound
over all x := u− v. We leave the details to the reader.

6. Dvoretzky Theorem

6.1. Introduction. In the effort to understand the geometry of Banach
spaces, it was noticed that not every Banach space has Hilbert subspaces
(up to isomorphism). In particular, any subspace of `p has a further sub-
space isomorphic to `p, so `p has no Hilbert subspaces for p 6= 2, as every
subspace of a Hilbert space is Hilbert.
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Grothendieck’s problem then asks, does every infinite dimensional Banach
space have a finite dimensional subspace whose distance from a Hilbert space
is at most of constant order, and whose dimension can be arbitrarily large?

In the early 1960’s, Dvoretzky gave a positive answer to this question.

Theorem 6.1 (Dvoretzky’s theorem). Let X be an n-dimensional Ba-
nach space. Given any ε > 0, there exists a subspace E of X of dimension
k = k(n, ε)→∞ as n→∞ such that d(E, `k2) ≤ 1 + ε.

Remarks. We will see in the proof that k can be as large as C(ε) log n.
Moreover, we will show that this is optimal for X = `n∞.

One can interpret Dvoretzky’s theorem geometrically as follows:

Theorem 6.2 (Geometric version of Dvoretzky’s theorem). Let K be a
symmetric convex body in Rn. Given any ε > 0, there exists a section K∩E
of K by a subspace E of Rn of dimension k = k(n, ε)→∞ as n→∞ such
that E ⊆ K ⊆ (1 + ε)E for some ellipsoid E.

Remarks. One can also insist that E is a round ball. See Lemma 14.4.1
in [?].

By using the duality between sections and projections (See the Prelimi-
naries part of this course), we get a dual version of the Dvoretzky’s theorem.
This is obtained by interpreting the above theorem in the dual space.

Theorem 6.3 (Dual version of Dvoretzky’s theorem). Let X be an n-
dimensional Banach space. Given any ε > 0, there exists a quotient space
X/F of dimension k = k(n, ε)→∞ as n→∞ such that d(X/F, `k2) ≤ 1+ε.

The rest of this section will be organized as follows. We will first prove
an intermediate result called the General Dvoretzky Theorem. It is a direct
result of the concentration of measure on the sphere. This result gives the
critical dimension of an almost Euclidean subspace in terms of the “average
norm,” the average value of the norm over the unit sphere. This is an intrin-
sic geometric attribute of the given normed space. Then, we will estimate
the average norm in `np , and apply this General Dvoretzky Theorem to ob-
tain some results regarding Euclidean subspaces of `np . In particular, we will
show that an n-dimensional cube has Euclidean sections of dimension up to
c log n. To show that a general finite dimensional normed space admits an
almost Euclidean subspace of large dimesion, all left to do is show that the
average norm cannot be too small. To this end, we introduce the Dvoretzky-
Rogers Lemma, which allows us to get a cube section of dimension up to
n/2. Finally, by using the known result for `n∞, we will obtain Dvoretzky
Theorem.

6.2. General Dvoretzky Theorem. In our first attempt to prove
Dvoretzky’s theorem, we will introduce an extra parameter called the “av-
erage norm” in the expression of the subspace dimension. This becomes
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very natural when we apply the concentration of measure on the sphere.

Without loss of generality, assume X = (Rn, ‖ · ‖) and ‖x‖ ≤ ‖x‖2 ∀x ∈ Rn.
In other words, we assume that the unit Euclidean ball is contained in the
unit ball of X. Then, consider the function f : Sn−1 → R defined by
f(x) = ‖x‖. Then f is 1-Lipschitz by our assumptions. By concentra-
tion of measure on the sphere, f(x) concentrates closely around its average∫
Sn−1 ‖x‖dσ. This is what we refer to as the “average norm.” Let us give

the statement of the General Dvoretzky Theorem now.

Theorem 6.4 (General Dvoretzky’s theorem). Let X = (Rn, ‖ · ‖) be a
normed space such that ‖x‖ ≤ ‖x‖2 for all x ∈ Rn. Consider the average
norm M =

∫
Sn−1 ‖x‖dσ(x). Then there exists a subspace E of dimension

k = c(ε)nM2 such that

(1− ε)M‖x‖2 ≤ ‖x‖ ≤ (1 + ε)M‖x‖2

for all x ∈ Rn. Consequently,

d(E, `k2) ≤ 1 + ε

1− ε
.

The proof uses an important discretization argument. We will discretize
the sphere using what we call “ε-net,” and use this net to approximate the
entire sphere. The advantage of discretization by nets is that if we have good
control over the size of the net, then we can use union bound to get from
a fixed vector case to the general case. We have seen this line of thoughts
before in the proof of Johnson-Lindenstrauss lemma.

Let us first pick up all the parts we will use later in the proof.

Definition 6.1. Let (M, d) be a metric space, and let ε > 0. A subset
N of M is an ε-net if for all x ∈ M, there exists some y ∈ N such that
d(x, y) ≤ ε.

Remarks. (1) Equivalently, N is an ε-net of M if M can be cov-
ered by ε-balls centered at N .

(2) M is compact if and only if it has a finite ε-net.

Now we have the question: when M is compact, what is the minimal
cardinality of an ε-net? In particular, here we are interested in the case
where M is the unit ball Bn

2 or the unit sphere Sn−1.

Lemma 6.5 (cardinality of ε-net of the ball). Let ε > 0. Then there
exists an ε-net N of Bn

2 of cardinality

|N | ≤
(

1 +
2
ε

)n
.
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Remarks. Just by comparing the volume, we can get a matching lower
bound on the cardinality of an ε-net, which is also exponential in the dimen-
sion. Hence, the cardinality of a good ε-net of the unit ball is exponential
in the dimension.

The proof of this lemma uses the correspondence between minimal cov-
ering and maximal packing.

Proof. Let N be a maximal ε-separated subset of Bn
2 . That is,

d(x, y) ≥ ε ∀x, y ∈ N .

We claim that N is an ε-net of Bn
2 . This can be easily justified by contra-

diction (otherwise, the maximality of the separated subset would be contra-
dicted). Note that the balls with centers in N and radius ε/2 are disjoint.
Moreover, all these balls are contained (1 + ε/2)Bn

2 . Hence, by volume com-
parison, we have

|N | · vol
( ε

2
Bn

2

)
≤ vol

((
1 +

ε

2

)
Bn

2

)
.

This gives the desired upper bound on |N |.

Remarks. The same argument works for any unit ball K (instead of
Bn

2 ) covered by its homothetic copy εK.

Exercise 6. Show that the same result holds for the unit sphere Sn−1.

Next, we want to approximate the operator norm using only the vectors
in the net.

Lemma 6.6 (Computing operator norms on nets). Let T : X → Y be a
linear operator between normed spaces X and Y . Let N be a δ-net of the
“sphere” SX := {x ∈ X : ‖x‖ = 1}. Then,

‖T‖ ≤ 1
1− δ

sup
x∈N
‖Tx‖.

Proof. For every y ∈ SX , there exist x ∈ N , 0 ≤ ρ ≤ δ and u ∈ SX
such that y = x+ δu. Then,

‖T‖ = sup
y∈SX

‖Ty‖

≤ sup
x∈N
‖Tx‖+ ρ sup

u∈SX
‖Tu‖

≤ sup
x∈N
‖Tx‖+ δ‖T‖.

The lemma easily follows.

As a corollary of the lemma, we can also approximate infy∈SX ‖Ty‖ using
nets:

(6) inf
y∈SX

‖Ty‖ ≥ inf
x∈N
‖Tx‖ − δ‖T‖.



6. DVORETZKY THEOREM 37

Remarks. Since ‖T−1‖ = 1/ infx∈SX ‖Tx‖, we see that nets are useful
when we try to bound the condition number of T (which is defined as ‖T‖ ·
‖T−1‖).

The next corollary shows that if we get good control of vector norms
on a net of the unit sphere, then we also have good control of vector norms
over the entire unit sphere.

Corollary 6.7 (From nets to the sphere). Let ‖·‖ be a norm on Rn, and
let N be a δ-net of the unit sphere Sn−1. Suppose that for some 0 < ε < 1
and some M > 0, (1− ε)M ≤ ‖x‖ ≤ (1 + ε)M for all x ∈ N . Then,

(1− ε− 2δ)M ≤ ‖x‖ ≤
(

1 + ε

1− δ

)
M

We leave it to the reader to work out the details of the proof. (Hint:
The right hand side follows from Lemma 6.6, where we take T to be the
identity operator from (Rn, ‖ · ‖2) to (Rn, ‖ · ‖). For the left hand side, use
(6).)

Exercise 7. We see that the upper bound is multiplicative while the
lower bound is additive. Why can’t we get a multiplicative lower bound
such as c(δ) · (1− ε)M?

Now we are ready to assemble all the parts in the proof of the General
Dvoretzky Theorem.

Proof of General Dvoretzky Theorem. The proof will be com-
pleted in three steps.
Step 1: Control of a fixed vector norm by concentration.
The function f : Sn−1 → R defined by f(x) = ‖x‖ is 1-Lipschitz by the
assumption that ‖x‖ ≤ ‖x‖2. By the functional concentration of measure
on Sn−1, we have

σ (|‖x‖ −M | > t) ≤ 2 exp
(
−nt

2

2

)
,

where M = MX =
∫
Sn−1 ‖x‖dσ(x) is the average norm over the unit sphere.

Choose t = εM to get

σ (|‖x‖ −M | > εM) ≤ 2 exp
(
−nM

2ε2

2

)
.

In other words, the two sided estimate (1− ε)M ≤ ‖x‖ ≤ (1 + ε)M holds for
a random point uniformly distributed over Sn−1 with probability at least
1− 2 exp

(
−nM2ε2/2

)
. Step 2: Union bound over a δ-net.

Let N be a δ-net of Sk−1 with cardinality

|N | ≤
(

1 +
2
δ

)k
≤
(

3
δ

)k
.
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Let U ∈ O(n) be uniformly random. Then for any fixed x ∈ Sn−1, Ux is
uniformly random on the unit sphere Sn−1. In particular, Ux is uniformly
random for any x ∈ N . Step 1 gives that

(1− ε)M ≤ ‖Ux‖ ≤ (1 + ε)M

with probability at least 1− 2 exp
(
−nM2ε2/2

)
. Take union bound over N ,

and we obtain

(1− ε)M ≤ ‖Ux‖ ≤ (1 + ε)M for all x ∈ N
with probability at least 1−|N |·2 exp

(
−nM2ε2/2

)
. By the bound of N , this

probability ≥ 1 − (3/δ)k · 2 exp
(
−nM2ε2/2

)
. This is at least 1/2 provided

that δ = ε and

(7) k =
cε2

log(3/ε)
nM2 = c(ε)nM2.

Step 3: Approximation of the sphere by the δ-net.
Take the subspace E to be the image U(Rk) (so E is a random subspace).
It is easy to check that U(N ) is an ε-net of Sn−1 ∩ E (recall that δ = ε is
our choice from Step 2). By Cor 6.7,

(1− 3ε)M ≤ ‖z‖ ≤ 1 + ε

1− ε
M for all z ∈ Sn−1 ∩ E.

Thus,

d(E, `k2) ≤ 1 + ε

(1− ε)(1− 3ε)
≤ 1 + 10ε

for our choice of k as in (7). This finishes the proof of the general Dvoretzky
theorem.

Remarks. (1) Later we will show that

M ≥
√

log n
n

for any symmetric convex body so that k ∼ log n.
(2) Notice that if M ≤ 1/

√
n, then the theorem is meaningless because

k would be a constant. Thanks to John’s theorem, we need not
worry about this. By John’s theorem, we always have

1√
n
‖x‖2 ≤ ‖x‖ ≤ ‖x‖2

, so that M ≥ 1/
√
n.

(3) Dvoretzky’s theorem actually holds for “most” subspaces E in the
sense that, if E is random from Gn,k, then the theorem holds with
probability at least 1− exp (−c(ε)k).

(4) The optimal dependence on ε is still open. The proof provides the
dependence

c(ε) ∼ ε2

log
(

1
ε

) .
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(5) The ”average norm” can actually be replaced by any p-th moment
of the norm

(∫
Sn−1 ‖x‖pdσ(x)

)1/p.
(6) If we slightly relax the assumption to ‖x‖ ≤ b‖x‖2 for all x ∈ Rn,

then Dvoretzk’s theorem holds with

k ≤ c(ε)n
(
M

b

)k
.

(7) Given ε > 0, the best k-value is called the Dvoretzky dimension of
the space X, denoted by k(X). It is the dimension of the largest
Euclidean subspace that is (1 + ε)-close to a subspace of X.

Exercise 8. We can also obtain Dvoretzky’s theorem by working with
Gauss space instead of the unit sphere. Consider `X :=

(∫
Rn ‖x‖

2dγn(x)
)1/2 =(

E‖g‖2
)1/2, where g is the standard Gaussian vector in Rn. Prove that

`X =
√
n

(∫
Sn−1

‖x‖2dσ(x)
)1/2

∼
√
nMX .

In fact, show that we can take `X = (E‖g‖p)1/p for any p > 1, since(
E‖g‖2

)1/2 ∼ (E‖g‖p)1/p for any p > 1.

Corollary 6.8 (General Dvoretzky Theorem: Gaussian formulation).
Let X = (Rn, ‖ · ‖) be a normed space such that ‖x‖ ≤ b‖x‖2 for some b > 0
and for all x ∈ Rn. Let `X =

(
E‖g‖2

)1/2, where g is the standard Gaussian
vector in Rn. Then there exists a subspace E of dimension k = c(ε) (`X/b)

2

such that
(1− ε)`X‖x‖2 ≤ ‖x‖ ≤ (1 + ε)`X‖x‖2

for all x ∈ Rn.

6.3. Euclidean subspaces of `np . As we mentioned earlier, to get from
General Dvoretzky Theorem to Dvoretzky Theorem, we only need to esti-
mate the average norm. In this section, we will compute the average norm in
`np spaces and find the corresponding Dvoretzky dimensions. Note that we
use the Gaussian formulation (Corollary 6.8) for computational purposes.
We start from `n1 , a widely used structure in optimization problems.

Corollary 6.9 (Almost Euclidean subspace of `n1 ). There exists an al-
most Euclidean subspace of `n1 of dimension proportional to n. To be precise,
there exists a subspace E of Rn of dimension k ≥ c(ε)n such that

(1− ε)‖x‖2 ≤
‖x‖1√
n
≤ (1 + ε)‖x‖2 for all x ∈ E.

Proof. Note that

‖x‖1 ≤
√
n‖x‖2 for all x ∈ Rn,
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so b =
√
n in Corollary 6.8. Moreover,

`X = E‖g‖1 =
n∑
i=1

E|gi| =
√
π

2
n.

Hence, the Dvoretzky dimension for `n1 is

k(`n1 ) = c(ε)
(
`X
b

)2

= c(ε)n.

By duality, we immediately get the following:

Corollary 6.10 (Almost Euclidean quotient space of `n∞). There exists
an almost Euclidean quotient space of `n∞ of dimension proportional to n.
Equivalently, there exists an orthogonal projection of the unit cube [−1, 1]n

onto a k-dimensional subspace which is (1 + ε)-close to the Euclidean ball of
radius

√
n, where k = c(ε)n.

Exercise 9. Show that k(`np ) = cn for any 1 ≤ p ≤ 2.

Next, we will find the Dvoretzky dimension of `nq for q ≥ 2.

Corollary 6.11 (Almost Euclidean subspaces of `nq , q ≥ 2). There
exists an almost Euclidean subspace of `nq (q ≥ 2) of dimension k = c(ε)n2/q.

Proof. Note that

`X =
(
E‖g‖qq

)1/q =

(
n∑
i=1

E|gi|q
)1/q

= mqn
1/q,

where mq = (E|g1|q)1/q is the qth moment of the standard Gaussian random
variable, which is about

√
q. Hence, by Corollary 6.8,

k(X) = c(ε)q · n2/q.

As a summary of Euclidean subspaces of `np spaces, we have the following.

Corollary 6.12 (Almost Euclidean Subspaces of `np ). Let X be a finite
dimensional normed space. Denote by k(X) the dimension of the largest
Euclidean space that is (1 + ε)-isomorphic to a subspace of X. Then,

• k(`np ) ≥ c(ε)n, 1 ≤ p ≤ 2
• k(`nq ) ≥ c(ε)q · n2/q, 2 ≤ q <∞.

Remarks. Both inequalities are sharp. See Section 5.4 in [?].

Next, we will obtain some results on the Dvoretzky dimension when we
pair up a normed space with its dual space.

Proposition 6.13 (MM∗ − estimate). Let X = (Rn, ‖ · ‖) be a finite
dimensional normed space, and X∗ = (Rn, ‖ ·‖∗) be the dual space of X. Let
M = MX =

∫
Sn−1 ‖x‖dσ(x) and M∗ = MX∗. Then MM∗ ≥ 1.
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Proof. By Hölder’s inequality,

(MM∗)1/2 =
(∫

Sn−1

‖x‖dσ
)1/2(∫

Sn−1

‖x‖∗dσ
)1/2

≥
∫
Sn−1

(‖x‖‖x‖∗)1/2 dσ ≥
∫
Xn−1

〈x, x〉1/2dσ = 1.

Here, we have used the fact that ‖x‖∗ can be recognized as the operator
norm of the linear functional f(z) = 〈z, x〉 for all z ∈ Rn.

Corollary 6.14. Let k(X) and k(X∗) denote the Dvoretzky dimensions
of X and its dual space X∗, respectively. Then

k(X)k(X∗) ≥ cn2

d(X, `n2 )2
.

Proof. Assume that

a‖x‖2 ≤ ‖x‖ ≤ b‖x‖2
for some a, b > 0 such that

d(X, `n2 ) =
b

a
.

Then, by duality,
1
b
‖x‖2 ≤ ‖x‖∗ ≤

1
a
‖x‖2.

By General Dvoretzky Theorem,

k(X) ≥ c(ε)n
(
M

b

)2

and

k(X∗) ≥ c(ε)n
(
M∗

1/a

)2

.

Hence,

k(X)k(X∗) ≥ c(ε)n2

(
MM∗

b/a

)2

≥ cn2

d(X, `n2 )2

by Proposition 6.13.

Remarks. By John’s theorem, we always have d(X, `n2 ) ≤
√
n. Hence,

k(X)k(X∗) ≥ cn

for some absolute constant c > 0. Consequently, for any finite dimensional
normed space X, either

k(X) ≥ c
√
n

or
k(X∗) ≥ c

√
n.
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Moreover, this conclusion is sharp: there exists an n-dimensional Banach
space X such that both k(X) and k(X∗) are no less than c

√
n. See Section

3 in [?].

Finally, let us examine the Dvoretzky dimension of `n∞. This will show
the sharpness of Dvoretzky’s Theorem. As a first step, we give a lower bound
on k(`n∞).

Proposition 6.15. k(`n∞) ≥ c log n, where c > 0 is an absolute constant.

Proof. Note that
‖x‖∞ ≤ ‖x‖2

for all x ∈ R. So b = 1 in Corollary 6.8. We claim that

(8) `X = E max
i≤n
|gi| ≥ c

√
log n.

To show that the expectation is large, it suffices to show the quantity is
small only on a small portion of the space. Note that

Pr(max |gi| ≤ t) = Pr(|gi| ≤ t for all i)

= Pr(|g1| ≤ t)n

≤

[
1−

√
2
π

e−t
2/2

t

]n
.

By taking t = c′
√

log n we may obtain (8). Then, apply Corollary 6.8, and
we get the desired lower bound on k(`n∞).

Let us close this section with a summary for the Dvoretzky dimensions
of `np for all 1 ≤ p ≤ ∞.

• k(`np ) ∼ n if 1 ≤ p ≤ 2;
• k(`nq ) ∼ q · n2/q if 2 ≤ q <∞;
• k(`∞) ∼ log n.

Remarks. We have shown that k(`n∞) ≥ c log n. We will establish the
other direction k(`n∞) ≤ c log n in the next section.

6.4. Many faces of symmetric polytopes. In this section, we will
show that for a convex symmetric polytope to well-approximate the Eu-
clidean ball, it must have exponentially (in dimension) many faces. As a
result, any symmetric convex polytope must have either ∼ e

√
n vertices or

∼ esqrtn faces.
We start with two classic embedding theorems.

Proposition 6.16 (Embedding into `∞). (1) Every separable Ba-
nach space X is isometric to a subspace of `∞(possibly infinite di-
mensional).

(2) Ever Banach space X of dimension k ∼ c(ε) log n is (1+ε)-isomorphic
to a subspace of `n∞.
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Proof. (1) We need to find a linear isometric embedding T : X →
`∞.
Let SX = {x ∈ X : ‖x‖ = 1} denote the unit sphere of X. Since
X is separable, there exists a countable, dense subset (xi)∞i=1 of
SX . By Hahn-Banach theorem, there exist (ui)∞i=1 in SX∗ such
that ui(xi) = 1 for all i.
Define Tx =

∑∞
i=1〈x, ui〉ei, where (ei) is the standard basis vectors

in `∞. Then, for every x ∈ SX , one can easily check that

‖Tx‖∞ = sup
i
|〈x, ui〉| = sup

i
|〈xk, ui〉 = 1,

where xk approximates x. Hence, T is an isometry, as desired.
(2) The proof is similar to the first. Here, we take

N = {xi, i = 1, . . . , n}

to be an ε-net of SX of cardinality

|N | = n ≤
(

3
ε

)k
.

We leave the details to the reader.

Remarks. It is well-known that every k-dimensional convex symmetric
polytope with 2n faces is equivalent to a k-dimensional section of an n-
dimensional cube. Hence, the second part of the proposition is equivalent
to the following:

Every symmetric convex body of dimension k = c(ε) log n is
(1 + ε)-isomorphic to a symmetric polytope with 2n faces.

A key ingredient in proving Dvoretzky’s theorem is to reduce the general
problem to the special case of the cube (i.e. `n∞). We have obtained a lower
bound on the Dvoretzky dimension in Proposition 6.15. Now we will derive
a matching upper bound in order to conclude that k(`n∞) = c log n.

Proposition 6.17. k(`n∞) ≤ c log n.

Proof. We want to find the right dimension k so that a k-section of the
n-cube is (1 + ε)-isomorphic to the k-dimensional Euclidean ball. Assume
that P is a convex symmetric polytope in Rk such that

Bk
2 ⊆ P ⊆ CBk

2

for some constant C > 0. There exist ui ∈ Rk (normal vectors to the faces)
such that

P = {x ∈ Rk : |〈x, ui〉| ≤ 1, i = 1, · · · , n}.
Since Bk

2 ⊆ P , we have
‖ui‖2 ≤ 1
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for every i. On the other hand, as P ⊆ CBk
2 , there exists some i such that

|〈x, ui〉| ≥ 1

for every ‖x‖2 ≥ C. Equivalently, for every x ∈ Sk−1, there exists i such
that

|〈x, ui〉| ≥
1
C
.

Without loss of generality, assume ‖ui‖2 = 1 for all i. Consider the 1/C-caps

Ci =
{
x ∈ Sk−1 : 〈x, ui〉 ≥

1
C

}
.

Figure 8. Many Faces of Symmetric Polytopes

Note that the unit sphere can be covered by n such caps, each corre-
sponding to a face of the polytope P :

Sk−1 ⊆
⋃
i

Ci.

It is not hard to check that

σ(Ci) ≤ eck,

where c depends on C only. By comparing the volume, we will need n ≥ eck
caps, and equivalently, this many faces.

Remarks. Consequently, the Euclidean ball Bk
2 can be well approxi-

mated by a convex symmetric polytope with eck faces and no fewer. If we
combine this fact and Corollary 6.14, we obtain the following result, which
says that, given any n-dimensional convex symmetric polytope, either itself
or its polar polytope has many faces.
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Corollary 6.18 (Many faces of convex symmetric polytopes; [?]). Let
P be a convex symmetric polytope in Rn. Suppose that P has v vertices
and f faces (that is, (n− 1)-dimensional faces). Then there is an abosolute
constant c > 0 such that

log v · log f ≥ cn.

Proof. By the duality between vertices and faces, we know that the
polar polytope P ◦ has v faces and f vertices. By Proposition 6.17, we have
that

k(P ) = k(`f∞) ≤ c log f,
and

k(P ◦) = k(`v∞) ≤ c log v.
Hence,

log f · log v ≥ ck(P )k(P ◦) ≥ cn.

6.5. Dvoretzky-Rogers Lemma. The last ingredient we need in the
proof of Dvoretzky Theorem is Dvoretzky-Rogers Lemma. It helps to reduce
the general problem to the case of `n∞. It tries to “squeeze” an arbitrary
Banach space between a cube from the outside and a Euclidean ball from
the inside. In some sense, these two bodies are the two extremes in terms of
Dvoretzky’s dimension, `n2 being the best, and `n∞ the worst. Unfortunately,
we cannot always ”squeeze” the entire(meaning full-dimension) convex body
like this. The factorization

`n2 → X → `n∞

with T : `n2 → X, S : X → `n∞ and ‖T‖ · ‖S‖ = O(1) does not always
happen. See [?]. However, if we replace X with some subspace, we do have
such factorization. Moreover, the subspace can have dimension up to n

2 .
This is done in Dvoretzky-Rogers Lemma.

Lemma 6.19 (Dvoretzky-Rogers Lemma). Let X = (Rn, ‖ · ‖) be a
normed space. Assume that Bn

2 is the ellipsoid of maximum volume in the
unit ball BX . Then there exists an orthonormal system {ui : i = 1, · · · , n/2}
in X such that

‖ui‖ ≥
1
4

for all i = 1, · · · , n/2.

Remarks. Note that ‖ui‖ ≥ 1/4 means that ui ∈ Sn−1 cannot be too
“deep” inside K: the deepest it can go is 1/4 of the radius of K along this
direction. In other words, the boundary point of K along the direction of
ui has Euclidean length at most 4. Therefore, the conclusion of Dvoretzky-
Rogers lemma means that the section K ∩ span{ui, i = 1, . . . , n/2} must be
contained in the cube [−4u1, 4u1]× · · · × [−4un/2, 4un/2].
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Figure 9. Dvoretzky-Rogers

Proof. We will first construct the orthonormal system inductively. Let
u1 ∈ Sn−1 be any vector with the maximum norm in X. Clearly, ‖u1‖ = 1,
meaning that it is a contact point of BX and Bn

2 . Subsequently, for any
k ≥ 2, let uk ∈ Sn−1 ∩ span{ui, i = 1, . . . , k − 1}⊥ be any vector with the
maximum norm in X. Hence,

1 = ‖u1‖ ≥ ‖u2‖ ≥ · · · ≥ ‖un‖.
The rest of the proof resembles the proof of John’s theorem. The idea is that
if ‖ui‖ is too small for some i, then ‖uj‖ would be too small for all j > i,
which makes Bn

2 too “deep” inside BX in the directions of uj for j > i.
This would contradict the assumption that Bn

2 is the ellipsoid of maximum
volume: we could extend it in these directions and get an ellipsoid still
contained in BX but of larger volume.

Consider the following ellipsoid:

E =


n∑
j=1

ajuj :

∑
j≤n/2 a

2
j

a2
+

∑
j>n/2 a

2
j

b2
≤ 1

 ,

where a = 1/2 and b = 1/(2‖un/2‖). We claim that E ⊂ BX . Then, since
Bn

2 has the maximal volume as an ellipsoid contained in BX , we have

vol(E) = an/2bn/2 vol(Bn
2 ) ≤ vol(Bn

2 ).

This gives our desired lower bound on ‖ui‖’s by plugging in the prescribed
values for a and b.

It remains to prove the claim that E ⊆ BX . Let
∑n

j=1 ajuj ∈ E . Then,∑
j≤n/2

ajuj ∈ Bn
2 ⊂ BX

and ∑
j>n/2

ajuj ∈ bBn
2 .
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It follows that ∥∥∥ ∑
j≤n/2

ajuj

∥∥∥ ≤ a =
1
2

and ∥∥∥ ∑
j>n/2

ajuj

∥∥∥ ≤ b‖un/2‖,
since un/2 was chosen to maximize the norm in X in span{uj , j > 2/n} ∩
Sn−1. Then the claim follows directly from the triangle inequality.

6.6. Dvoretzky Theorem. Now we have all the ingredients in the
proof of Dvoretzky Theorem. Just for recap: First, we proved the General
Dvoretzky Theorem. It gives the Dvoretzky dimension of any n-dimensional
Banach space in terms of an average norm:

k(X) = c(ε)n(MX/b)2,

or equivalently,
k(X) = c(ε)(`X/b)2,

where MX is the average norm over Sn−1, and `X is the expected norm of a
standard Gaussian vector. Then we showed that the Dvoretzky dimension
of `n∞ is c(ε) log n. Later, we proved the Dvoretzky-Rogers Lemma, which
allows us to embed an n/2-dimensional subspace of X into `n∞. Hence,
we can transfer our knowledge about `n∞ to X. In this section, we will
complete this transfer and prove Dvoretzky Theorem. As we did before, it
only remains to come up with the right estimate on `X .

Lemma 6.20 (`X from Dvor-Rogers lemma). Let X = (Rn, ‖ · ‖) be a
normed space. Assume that Bn

2 is the ellipsoid of maximum volume in the
unit ball BX . Then

`X ≥ c
√

log n,
where `X = E‖g‖.

Proof. Let E = span{ui : i ≤ n/2}, where uj ’s are from Dvoretzky-
Rogers Lemma. Then, since gi’s are identically distributed as εigi, where
εi’s are independent ±1 equal probability Bernoulli random variables, we
have

`E = E‖
n/2∑
n=1

εigiui‖

≥ E max
1≤i≤n/2

‖giui‖(9)

≥ 1
4

E max
1≤i≤n/2

|gi|(10)

≥ c
√

log n.
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Inequality (9) comes from conditioning on the gi’s and applications of
Fubini and Jensen’s inequality. Note that

E1,...,n/2

∥∥∥ n/2∑
i=1

εivi

∥∥∥ = E1E2,...,n/2

∥∥∥ n/2∑
i=1

εivi

∥∥∥
≥ E1

∥∥∥ε1v1 + E2,...,n/2

n/2∑
i=2

εivi

∥∥∥
= E1‖ε1v1‖ = ‖v1‖.

This works for any vi, so we get (9). The second inequality (10) is a result
of Dvoretzky-Rogers lemma. Hence, the proof is complete.

Now, Dvoretzky’s theorem is immediate. The theorem asserts that the
Dvoretzky dimension of an arbitrary n-dimensional normed space X is at
least c(ε) log n.

Proof of Theorem 6.2. By Lemma 6.20,

`X ≥ c
√

log n.

Then, General Dvoretzky’s theorem gives

k(X) ≥ c(ε)`2X ≥ c(ε) log n.

7. Volume Ratio Theorem

In Dvoretzky’s theorem, we see that every n-dimensional Banach space
has an almost Euclidean subspace of logarithmic dimension. There we sacri-
fice on the dimension in order to get the subspace 1+ε-close to Euclidean for
any prescribed value of ε. In this section, we will explore the other direction
of the same picture: what if we would like to sacrifice on the distance to
Euclidean in order to make the subspace almost full-dimension? This was
first examined by Kashin in 1977, then simplified and generalized by Szarek
in 1979. We will present an exposition inspired by [?] based on covering
numbers.

7.1. Covering numbers.

Definition 7.1 (Covering number). Let K, D be two sets in Rn. The
covering number N(K,D) is the minimum number of traslates of D needed
to cover K.

Note that covering number is closely related to the notion of an ε-net.

Example 7.1. N(K, εBn
2 ) = minimum cardinality of an ε-net of K in

Euclidean metric.
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Proposition 7.2 (Covering number estimate). Let K ⊂ Rn, and let
D ⊂ Rn be a convex symmetric set. Then

vol(K)
vol(D)

≤ N(K,D) ≤
vol(K + 1

2D)
vol(1

2D)
.

Proof. The lower bound follows directly from a volume comparison.
K can be covered by N(K,D) translates of D, so

vol(K) ≤ N(K,D) vol(D).

The upper bound can be obtained in a similar way to the estimate on the
cardinality of ε-nets. See the proof of Lemma 6.5.

As an immediate consequence, we can get an estimate on the covering
number of a convex body covered by its homothetic copies.

Corollary 7.3. For any symmetric convex set K ⊂ Rn and every
ε > 0, (

1
ε

)n
≤ N(K, εK) ≤

(
2 +

1
ε

)n
.

7.2. Volume ratio theorem via entropy: local version. As we
mentioned in the introduction part of this section, we want the dimension
of the subspace arbitrarily close to full dimension, and find out how much
we need to sacrifice on the “Euclideanness” of that subspace. It turns out
that our sacrifice depends on a geometric quantity of the space called the
“volume ratio.”

Theorem 7.4 (Volume ratio theorem (VRT for short)). Let K be a
convex symmetric body in Rn. Suppose that Bn

2 ⊂ K. Define the volume
ratio by

v(K) :=
(

vol(K)
vol(Bn

2 )

) 1
n

.

Then, for every δ ∈ (0, 1), there exists a subspace E of dimension (1 − δ)n
such that

diam(K ∩ E) ≤ (cv(K))
1
δ .

Equivalently,
Bn

2 ∩ E ⊆ K ∩ E ⊆ (cv(K))
1
δ Bn

2 ∩ E.

Remarks. (1) It is easy to see that the volume ratio is the same
for all homothetic copies of a convex body.

(2) It implies that the section K ∩E is within distance (cv(K))
1
δ from

Euclidean.
(3) Note that the conclusion only depends on the volume ratio v(K)

and δ, not on the dimension n.
(4) The proof will show that VRT actually holds for a random subspace

E ∈ Gn,(1−δ)n with high probability (exponential in n).
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(5) It is still open whether we can achieve a polynomial dependence on
δ if K is first put in a nice position. For example, is it true if K is
in John’s position, meaning that the ellipsoid of maximum volume
is Bn

2 ? In general, this is not true: one can check that e will get
exponential dependence when K is an ellipsoid with a degenerated
direction (i.e. K looks like a “sausage”).

The following corollary is simply a re-interpretation of VRT.

Corollary 7.5 (Almost Euclidean subspaces of finite-dimensional normed
spaces). Let X be an n-dimensional Banach space. Consider the volume ra-
tio

v(X) = inf
{

vol(BX)
vol(E)

: E ⊂ BX is an ellipsoid
}
.

Then, for every δ ∈ (0, 1), there exists a subspace E ⊂ X of dimension
(1− δ)n such that d(E, `(1−δ)n2 ) ≤ (cv(X))

1
δ .

As we announced earlier, we will derive VRT from the view of covering
numbers (sometimes referred to as “entropy”). The following theorem on
entropy is the main step toward VRT.

Theorem 7.6 (Entropy). Let K be a symmetric convex body in Rn. Let
v be the number such that

vn = N(K,Bn
2 ).

Then for any δ ∈ (0, 1), there exists a subspace E of dimension (1 − δ)n
such that

diam(K ∩ E) ≤ (cv)
1
δ .

Remarks. The proof will show that, in fact, a random subspace E
satisfies this with high probability.

First, let us see how this theorem immediately implies V.R.T.

Proof from entropy to VRT. By Theorem 7.6, it suffices to show
v ≤ Cv(K). That is,

N(K,Bn
2 ) ≤ vol(CK)

vol(Bn
2 )
.

This follows easily from Proposition 7.2and the fact that Bn
2 ⊂ K.

N(K,Bn
2 ) ≤

vol(K + 1
2B

n
2 )

vol(1
2B

n
2 )

≤
vol(3

2K)
vol(1

2B
n
2 )

=
3n vol(K)
vol(Bn

2 )
= (3v(K))n .

In other words, we have v ≤ 3v(K).
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Remarks. The other side of Proposition 7.2 gives that v(K) ≤ v. So
we actually have

v(K) ≤ v ≤ 3v(K).
Hence, the two notions v and v(K) are equivalent.

Before we go on to the proof of the entropy theorem, let us first picture
the ideas. From the volume distribution in convex bodies (which decays
exponentially away from the center), we can safely think of a high dimen-
sional convex body as a ball with a few “tentacles” – points in the convex
body that have large Euclidean norm. See Figure 10. The conclusion of the
entropy theorem guarantees that there is a subspace that does not intersect
any of these tentacles. In fact, by the remark following Theorem 7.6, most
subspaces avoid these tentacles.

Figure 10. Central Ball and Tentacles

Here is the plan of the proof: First, we cover the tantacles by “not too
many” unit balls, using the assumption that N(K,Bn

2 ) = vn; then we show
that a random subspace E is disjoint from any given covering ball with high
probability; lastly, we use union bound over all covering balls to get that a
random subspace E is disjoint from all the covering balls with positive (in
fact, high) probability.

We have everything ready to realize this plan except the second step. In-
formally, it says that a random subspace is, with high probability, not too
close to a fixed point.

Proposition 7.7 (Distance of a Random Subspace to a Fixed Point).
Let E ∈ Gn,n−k be a random subspace (codimE = k). Let x ∈ Sk−1 be
arbitrary (but fixed). Then,

(1)
(
E dist(x,E)2

) 1
2 =

√
k
n ;

(2) Pr
(

dist(x,E) ≤ ε
√

k
n

)
≤ (cε)k for any ε > 0.
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We will present the proof of the first part, and leave the second as an
exercise.

Proof. We will use an equivalent model: by the uniqueness of Haar
measure, consider E as a fixed subspace, say E = Rn−k and x ∈ Sn−1 a
random uniform vector.

(1) Let x = (xi)ni=1 ∈ Sn−1. Note that all coordinates of x are identi-
cally distributed (but not independent). Then,

1 = ‖x‖22 = E‖x‖22 = nEx2
1,

so that Ex2
1 = 1

n . Hence,

E dist(x,E) = E‖Pkx‖x = E
k∑
i=1

x2
j = kEx2

1 =
k

n
,

where Pk is the orthogonal projection onto the k-dimensional sub-
space E⊥.

(2) Consider the k-dimensional ”band” around the (n−k)-dimensional
equator Sn−k on Sn−1:

Pr
(

dist(x,E) ≤ ε
√
k

n

)
= σ

{
dist(x,Rn−k < ε

√
k

n

}
.

Exercise 10. Show that σ(A) ∼ (cε)k, where

A = {x ∈ Sn−1 : dist(x,E) ≤ ε
√
k

n
}.

(Hint: Use polar coordinate.) For sharp estimate of σ(A), see [?].

Now, we are ready to realize our plan for the proof of VRT.

Proof of VRT. Let ε > 0 be fixed. Later, we will choose ε such that

1
ε

= (cv)
1
δ .

We want to show

K ∩ E ⊂ 1
ε
Bn

2 .

Equivalently,

K ∩ 1
ε
Sn−1 ∩ E = ∅.

We will prove this in three steps.
Step 1: Discretize tentacles.
Let N be a 1-net of K ∩ 1

εS
n−1 in the Euclidean metric. Then,

|N | ≤ N(K,Bn
2 ) = vn.
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Step 2: Fixed vector.
Given any x ∈ K ∩ 1

εS
n−1, we show that a random subspace E is far from

x with high probability. By Prop 7.7

Pr
(

(x+Bn
2 ) ∩ E 6= ∅

)
= Pr

(
dist(x,E) ≤ 1

)
= Pr

(
dist

(
x

‖x‖2
, E

)
< ε
)

≤
(
Cε

√
n

k

)k
=
(Cε√

δ

)δn
.

Step 3: Union bound.

Pr
(
∀x ∈ N , (x+Bn

2 ) ∩ E = ∅
)
≥ 1− |N |

(
Cε√
δ

)δn
≥ 1−

[
v

(
Cε√
δ

)δ]n
≥ 1− e−n,

provided that v
(
Cε/
√
δ
)δ
≤ 1/δ. Choose ε = 1/(Cv)1/δ, and this completes

the proof.

Example 7.8 (Euclidean sections of `n1 ). First, we show that `n1 has
uniformly bounded volume ratio. To this end, we need to compute vol(Bn

1 )
and vol(Bn

2 ).

vol(Bn
1 ) = 2n, vol(Tn) =

2n

n!
,

where Tn denotes the standard n-dimensional simplex conv{0, e1, . . . , en}.
Next,

vol(Bn
2 ) ≥ vol

(
1√
n
Bn
∞

)
=
(

2√
n

)n
.

Let K =
√
nBn

1 so that Bn
2 is the ellipsoid of maximum volume. Then

vol(K) =
2nnn/2

n!
∼
(

c√
n

)n
,

and thus

v(K) =
(

vol(K)
vol(Bn

2

)
)1/n

≤ constant.

Hence, by VRT, for any 0 < δ < 1, there exists a subspace E of `n1 whose
dimension is (1− δ)n such that

d
(
E, `

(1−δ)n
2

)
≤ constant.

This was observed by Kashin in 1977.
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Corollary 7.9 (Kashin). For every δ ∈ (0, 1), a random subspace E ⊂
Rn of codimension δn satisfies the following with probability at least 1−e−n:

Bn
2 ∩ E ⊂

√
nBn

1 ∩ E ⊂ C
1
δBn

2 ∩ E.
Remarks. (1) Equivalently,

C−
1
δ ‖x‖2 ≤

‖x‖1√
n
≤ ‖x‖2

for all x ∈ E.
(2) Similar result holds for all `np , 1 ≤ p ≤ 2.
(3) We only used the bounded volume ratio property of `n1 to get

Kashin’s result (geometry of `n1 is never used), so the same result
holds for any space with good volume ratio property.

Another important consequence of VRT is the following splitting theo-
rem due to Kashin.

Corollary 7.10 (Kashin’s Splitting). There exists an orthogonal de-
composition Rn = E1 ⊕ E2 into n/2-dimensional subspaces such that both
E1 and E2, as subspaces of `n1 , are within constant distance from Euclidean.

Sketch of proof. Note that if a subspace E of dimension n
2 is uni-

formly distributed over the Grassmannian Gn,n/2, then so is its orthogonal
complement E⊥. Hence, both E and E⊥ satisfies VRT with high prob-
ability, meaning that they are simultaneously almost Euclidean with high
probability.

7.3. Volume ratio theorem: global version. There are two branches
of study in Banach spaces: local theory and global theory. “Local” usually
refers to sections (subspaces) or projections (quotients), while “global” usu-
ally refers to the study of the entire space or intersections of different spaces.
We have just presented the VRT in its local version. In this section, we will
establish the global version.

Theorem 7.11 (Global VRT). Let K be a symmetric convex body in
Rn. Suppose that Bn

2 ⊂ K. Let v(K) be the volume ratio. Then there exists
U ∈ O(n) such that

diam(K ∩ UK) ≤ (c · v(K))
1
2 .

Equivalently,

max {‖x‖K , ‖x‖UK} ≥ (c · v(K))−
1
2 ‖x‖2.

Proof. (See Chapter 6 in [?]) Consider a Kashin’s splitting Rn = E1⊕
E2 with

dimE1 = dimE2 =
n

2
such that VRT holds for both E1 and E2. Then,

‖x‖K ≥ (c · v(K))−
1
2 for all x ∈ E1 ∪ E2.
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Let P1 and P2 be orthogonal projections onto E1 and E2, respectively. Let
U = P1 − P2. It is easy to see that U ∈ O(n). Then,

max {‖x‖K , ‖Ux‖K} ≥
1
2

(‖x‖K + ‖x‖UK)

=
1
2

(‖P1x+ P2x‖K + ‖P1x− P2x‖K)

≥ max {‖P1x‖K , ‖P2x‖K} (by triangle inequality)

≥ (cv(K))−
1
2 max {‖P1x‖2, ‖P2x‖2}

≥ cv(K)−
1
2

√
‖P1x‖22 + ‖P2x‖22 = cv(K)−

1
2 ‖x‖2.

Remarks. Note that max {‖x‖K , ‖x‖UK} = ‖x‖K∩UK .





Part 2

Metric Entropy and Applications



8. Diameters of Projections of Convex Sets

Let K be a convex body in Rn, and let P be a random projection onto
a subspace of dimension k, that is, a projection onto a random subspace of
dimension k. How does this projection change the shape of K? It is easy
to see that a projection only catches the ”extremal points” of K. Hence, a
quantity affected by projections is the diameter of the body. In this section,
we will examine how diam(PK) looks.

Figure 11. Diameters under Projections

Example 8.1. (1) K = [−1/2, 1/2]. Then, by the estimate on the
distance from a random vector to a random subspace,

diam(PK) ∼
√
k

n
∼
√
k

n
diam(K).

(2) K = Bn
2 . As any projection of a Euclidean ball is still Euclidean

and does not change the diameter,

diam(PK) = diam(K).

¿From these two examples, we see two kinds of behavior of the diameter
under projections: it “shrinks” by a factor of

√
n/k in the first example,

while it does not “shrink” at all in the second example. Surprisingly, those
are essentially the only two possible types of projection effect on the diameter
of a high-dimensional convex body. In order to explain this phenomenon,
we first introduce the following notion called the “mean width” of a convex
body.
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Definition 8.1. The mean width M∗(K) of a symmetric convex body
K in Rn is the expected value of the dual norm over the unit sphere (with
respect to the normalized Haar measure). That is,

M∗(K) =
∫
Sn−1

‖x‖K∗dσ(x) =
∫
sn−1

max
y∈K
〈x, y〉dσ(x).

Remarks. (1) We can think of he mean width as the average
”thickness” measured from the center of the convex body.

(2) The mean width of a symmetric convex body is the mean norm of
its polar:

M∗(K) = M(K◦).

(3) Recall that

M(K) ∼ `(K)√
n
,

where `(K) = E‖g‖K , and g is a standard Gaussian vector in Rn.
Hence,

M∗(K) = M(K◦) =
`(K◦)√

n
=
`∗(K)√

n
,

where `∗(K) = E‖g‖K◦ = E maxy∈K〈g, y〉. The duality often makes
the computation easier. We will see this in the following examples.

Example 8.2 (Mean width of Bn
p ). (1) Mean width of the cube.

M∗(Bn
∞) = M(Bn

1 ) ∼ `(Bn
1 )√
n
∼ n√

n
=
√
n ∼ diam(Bn

∞).

(2) Mean width of the crosspolytope.

M∗(Bn
1 ) = M(Bn

∞) ∼ `(Bn
∞)√
n
∼
√

log n
n

.

Hence, the mean width of Bn
1 is only logarithmically larger than

the diameter of the inscribed ball, whereas the mean width of the
cube is polynomially larger (

√
n) than its inscribed ball (as shown

in the first example) . This is due to the contribution of very few
vertices (2n vertices instead of 2n vertices as in the cube).

(3) For any 1 < p ≤ ∞, let q be such that 1/p+ 1/q = 1. Then,

M∗(Bn
p ) = M(Bn

q ) ∼
Bn
q√
n
∼ n

1
q
− 1

2 = n
1
2
− 1
p

∼
{

diam(inscribed ball), 1 < p ≤ 2;
diam(circumscribed ball), p ≥ 2.

Now, if we apply the General Dvoretzky Theorem in the dual space, we
get the following:
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Theorem 8.3 (Dual Version of General Dvoretzky Theorem). Let K be
a (symmetric) convex body in Rn with diam(K) ≤ 1. Let

k∗ = c(ε)M∗(K)2n.

Then a random projection P in Rn onto a k∗-dimensional subspace satisfies
the following with exponentially high probability:

(1− ε)M∗(K) · P (Bn
2 ) ⊆ P (K) ⊆ (1 + ε)M∗(K) · P (Bn

2 ).

Hence, the projection of K onto a k∗-dimensional subspace looks like a
Euclidean ball of radius M∗(K). Since the Euclidean ball is preserved by
projections, any further projection will not change the diameter: PK will
remain Euclidean for projections P onto subspaces of dimension k ≤ k∗. But
what happens for projections onto subspaces of dimension k > k∗? It turns
out that diam(PK) will shrink by

√
n/k, just as in the case K = [−1/2, 1/2].

Theorem 8.4 (Diameters under Random Projections, [?]). Let K be a
symmetric convex body in Rn, and let P be a projection in Rn onto a random
subspace of dimension k. Then, with probability at least 1− e−k,

diam(PK) ≤ C
(
M∗(K) +

√
k

n
diam(K)

)
.

Proof. Without loss of generality, we may assume that diam(K) = 2,
i.e. K ⊆ Bn

2 . Let E ∈ Gn,k be a random subspace. Then, E can be viewed
as the image of Rk under a random orthogonal transformation U ∈ O(n).
Therefore, the orthogonal projection P onto E can be viewed as the first k
rows of U , and let us call it Q. Then diam(PK) is distributed identically
with diam(QK). Note that

diam(QK) = 2 max
x∈K
‖Qx‖2,

and that for any u ∈ Rk,

‖u‖2 = max
z∈Sk−1

〈u, z〉 ≤ 2 max
z∈N
〈u, z〉,

where N is a 1
2 -net of Sk−1. Choose N such that |N | ≤ eck.Then we have

diam(QK) ≤ 4 max
z∈N

max
x∈K
〈Qx, z〉.

Note that for fixed z and x,

〈Qx, z〉 = 〈x,Q∗z〉 = 〈x, u〉,

where u is uniform random on Sn−1. This is because the adjoint Q∗ is a
random embedding of Rk into Rn, which puts any fixed z ∈ Sk−1 uniformly
distributed on Sn−1. Thus,

E max
x∈K
〈x, u〉 = M∗(K).
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It is easy to see the function u 7→ maxx∈K〈x, u〉 is 1-Lipschitz on Sn−1. By
concentration of measure on the sphere,

Pr
(

max
x∈K
〈x, u〉 ≥M∗(K) + t

)
≤ e−t2n/2 ∀t > 0.

Take union bound over N , and we get

Pr
(

max
z∈N

max
x∈K
〈x, u〉 ≥M∗(K) + t

)
≤ |N |e−t2n/2 ≤ eck−t2n/2 ≤ e−k,

provided that t = c
√
k/n. Hence,

Pr

(
diam(QK) ≥ C

(
M∗(K) +

√
k

n

))
≤ e−k.

Remarks. (1) If we let diam(K) = 1 and k∗ := M∗(K)2n, then,
with probability at least 1− e−k,

diam(PK) ≤

{
C
√

k
n , k ≥ k∗;

M∗(K), k ≤ k∗.

We see a “phase transition” at k∗: when k > k∗, the diameter of K
shrinks by

√
n/k under projection (as if K were an interval); when

k ≤ k∗, the diameter stabilizes since PK is already Euclidean.
(2) The result is sharp. See [?].

Corollary 8.5. Let T be a linear operator on `n2 , and let P be the
orthogonal projection onto a random subspace in the Grassmanian Gn,k.
Then, with probability at least 1− e−k,

‖PT‖ ≤ C
( 1√

n
‖T‖HS +

√
k

n
‖T‖

)
.

Proof. We apply Theorem 8.4 for the ellipsoid K := TBn
2 . It is an

exercise to check that M∗(K) ≈ 1√
n
‖T‖HS and diam(K) = ‖T‖.

Remarks. There is a version of this corollary for projections onto ran-
dom coordinate subspaces, see [M. Rudelson, R. Vershynin, Sampling from
large matrices: an approach through geometric functional analysis, Journal
of the ACM (2007), Art. 21, 19 pp].

Exercise 11. Get an estimate on the diameter under a random projec-
tion for

(1) K = Bn
p , 1 < p ≤ 2.

(2) K = Bn
p , 2 ≤ p <∞.
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9. Metric Entropy. Sudakov and Dual Sudakov Inequalities

One of the big open problems in geometric functional analysis is the
duality conjecture. Recall that, given two convex bodies K and L, the
covering number of K by L, denoted N(K,L), is the minimum number
of copies of L needed to cover K. The duality problem asks whether the
covering number of K by L is equivalent to the covering number of L◦ by
K◦. Note that just for the dimension effect on the volume, we should expect
a generic covering number exponential in the dimension. Hence, sometimes
it is easier to work with logN(K,L), which we refer to as the metric entropy
of K with respect to L. Now, we may phrase the duality problem as follows.

Conjecture 9.1 (Entropy duality). There exist absolute constants C, c >
0 such that for every symmetric convex sets K,L ⊂ Rn,

c logN(L◦, C ·K◦) ≤ logN(K,L) ≤ C logN(L◦, c ·K◦).

Remarks. (1) Clearly, for all K,L, the left hand side follows from
the right hand side, and vice versa.

(2) It was recently solved for L being an ellipsoid. See [?].

There are two common ways to compute metric entropy:
(1) By volume ratio estimate

N(K,D) ≤
vol
(
K + 1

2D
)

vol
(

1
2D
) .

However, this estimate can be very insensitive. One can see this
through the example where K is a “lean sausage” and D a Eu-
clidean ball.

(2) By the mean width. We will focus on this approach here.
Recall that `∗(K) = E‖g‖K◦ = E maxx∈K〈g, x〉. It turns out that the

metric entropy and this Gaussian mean width are closely related.

Theorem 9.2 (Sudakov Inequalities). For every symmetric convex set
K in Rn,

(1) Sudakov inequality:
√

logN(K,Bn
2 ) ≤ C · `∗(K);

(2) Dual Sudakov inequality:
√

logN(Bn
2 ,K

◦) ≤ C · `∗(K).

Remarks. (1) Note that the two inequalities are equivalent by the
solved case of the duality conjecture. That is, when L is a Euclidean
ball. See [?].

(2) More generally,√
logN(K, εBn

2 ) =

√
logN

(
1
ε
K,Bn

2

)
≤ C · `

∗(K)
ε

,

and √
logN(Bn

2 , εK
◦) ≤ C · `

∗(K)
ε

.
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As the two inequalities implies each other, it suffices to prove only one
of them. We will prove the dual Sudakov inequality. For reference, see
Section 3.3 in [?]. We will imitate the proof of the volumetric bound for
covering numbers. Recall that minimal covering is equivalent to maximal
packing. Let {xi, i = 1, . . . , N} be a maximal 1-separated set in Bn

2 in the
norm induced by K◦, then {xi + K◦} is a covering of Bn

2 by maximality.
Thus

N(Bn
2 ,K

◦) ≤ N.
Moreover, the sets xi + K◦/2 are disjoint (also from maximality), so they
form a packing in the Gauss space (Rn, γn). Hence,

1 = γn(Rn) ≥ γn
(
Bn

2 +
1
2
K◦
)
≥

N∑
i=1

γn

(
xi +

1
2
K◦
)
.

The difficulty here is that the Gaussian measure is NOT translation invari-
ant: the summand measures are not all the same. Fortunately, we have
the following nice estimates for the Gaussian measure under translation and
dilation.

Lemma 9.3 (Gaussian Measure of Translates). For every symmetric set
T ⊂ Rn and every z ∈ Rn,

γn(z + T ) ≥ e−‖z‖22/2γn(T ).

Proof. First, note that γn/γn(T ) defines a probability measure on T .
Hence,

γn(z + T ) = (2π)−n/2
∫
z+T

e−‖x‖
2
2/2dx

= (2π)−n/2
∫
T
e−‖y+z‖

2
2/2dy

= e−‖z‖
2
2/2

∫
T
e−〈z,y〉dγn(y)

= e−‖z‖
2
2/2γn(T )

∫
T
e−〈z,y〉dγn(y)/γn(T )

≥ e−‖z‖22/2γn(T )e−E〈z,y〉dγn(y) by Jensen’s inequality

= e−‖z‖
2
2/2γn(T )e−〈z,Ey〉dγn(y)

= e−‖z‖
2
2/2γn(T )

Lemma 9.4 (Gaussian Measure of Dilations). For any t > 1,

γn (t`∗(K) ·K◦) ≥ 1− 1
t
.
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Proof. Note that `∗(K) = E‖g‖K◦ . By Markov inequality,

Pr (‖g‖K◦ > t`∗(K)) ≤ E‖g‖K◦
t`∗(K)

=
1
t
.

Then,

γn (t`∗(K) ·K◦) = Pr (g ∈ t`∗(K) ·K◦) = Pr (‖g‖K◦ ≤ t`∗(K)) ≤ 1− 1
t
.

Let t = 1/2. Then we have

(11) γn(2`∗(K) ·K◦) ≥ 1
2
.

Now we are in a position to prove dual Sudakov inequality.

Proof of dual Sudakov. Let a = `∗(K)/4. Note that

N := N(Bn
2 ,K

◦) = N(aBn
2 , aK

◦).

Then there exists {xi, i = 1, . . . , N} such that xi + (a/2)K◦ are pairwise
disjoint. Then, by Lemma 9.3 and inequality (11),

1 ≥
N∑
i=1

γn(xi +
a

2
K◦) ≥

N∑
i=1

e−‖xi‖
2
2/2γn(

a

2
K◦)

≥
N∑
i=1

e−a
2/2 · 1

2
≥ 1

2
e−a

2/2N.

Hence, N ≤ 2ea
2/2, and thus

√
logN ≤ C`∗(K).

Next, we will prove a weak form of the duality of metric entropy, which
is sufficient for the equivalence of Sudakov and dual Sudakov inequalities.

Lemma 9.5 (Weak Entropy Duality). For any symmetric convex set K
in Rn,

sup
ε>0

ε
√

logN(K, εBn
2 ) ≤ 8 sup

ε>0
ε
√

logN(Bn
2 , εK

◦).

We will need a couple of easy facts in the proof of this lemma.

Proposition 9.6. For any t, s > 0 and any symmetric convex body K
in Rn,

tK ∩ sK◦ ⊆
√
tsBn

2 .

Proof. For any x ∈ tK ∩ sK◦, ‖x‖22 = 〈x, x〉 ≤ ‖x‖K‖x‖K◦ ≤ ts.

Proposition 9.7. Let K,L ⊂ Rn. Suppose that K is symmetric (i.e.K =
−K). Then, N(K,L) ≥ N(K, 2K ∩ L).
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Proof. Let N = N(K,L). Then, there exist {xi}Ni=1 ⊂ K such that

K ⊂
N⋃
i=1

xi + L.

Then, for any y ∈ K, there exists some i ≤ N such that y − xi ∈ L. Note
that by symmetry of K, y − xi ∈ K +K = 2K. Hence,

K ⊂

(
N⋃
i=1

xi

)
+ (2K ∩ L) ,

and thus N(K, 2K ∩ L) ≤ N.

Proof of dual Sudakov inequality. By Proposition 9.6 and Propo-
sition 9.7,

N (K, εBn
2 ) ≤ N

(
K, 2K ∩ ε

2

2
K◦
)

≤ N
(
K,

ε2

2

)
≤ N (K, 2εBn

2 ) ·N
(

2εBn
2 ,
ε2

2
K◦
)

= N (K, 2εBn
2 ) ·N

(
Bn

2 ,
ε

4
K◦
)
.

Taking log, square root, and multiplying both sides by ε, with the fact that√
a+ b ≤

√
a+
√
b, we get

ε
√

logN(K, εBn
2 ) ≤ ε

√
logN(K,

ε

2
Bn

2 ) + sup
ε>0

ε

√
logN(Bn

2 ,
ε

4
).

Let f(ε) = ε
√

logN(K, εBn
2 ) and M = supε>0 ε

√
logN(Bn

2 , εK
◦). Then,

f(ε) ≤ 1
2
f(2ε) + 4M.

We leave it as an exercise to check that supε>0 f(ε) ≤ 8M.

Exercise 12. If a function satisfies
(1) f(ε) ≤ 1

2f(2ε) + 4M ;
(2) limε→∞ f(ε) = 0,

then supε>0 f(ε) ≤ 8M.

Example 9.8. K = Bn
1 . Clearly, N(K, εBn

2 ) ≥ 2n for all ε ≤ 1 just to
cover the vertices. By Sudakov inequalities,

N(Bn
1 , εB

n
2 ) ≤ ec`∗(K)2/ε2 ≤ nc/ε2 ,

as `∗(K) ∼
√

log n. The significance is this upper bound is polynomial in n,
which matches the lower bound.
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Exercise 13. Prove that for any polytope K in Rd with n vertices can
be covered by polyε(n) Euclidean balls of diameter ≤ ε · diam(K). (Hint:
Realize K as some projection of Bn

1 from Rn to Rd.)

Remarks. See Section 3.3 in [?] for a different proof under a reformu-
lation for Gaussian processes.

10. Low M∗-estimate. `-position

In the previous section, we saw how diameter behaves under a random
orthogonal projection. In this section, we will look at the dual case. We will
see how diameter behaves in a random section.

Theorem 10.1 (Low M∗-estimate; Theorem 18.2 in [?]; [?]; [?]). Let K
be a symmetric convex body in Rn, and let E ∈ Gn,n−k be a random subspace
of codimension k. Then, with probability at least 1− e−k,

diam(K ∩ E) ≤ C
√
n

k
M∗(K).

Remarks. (1) The diameter estimate was first given by Milman
with linear dependence on n, and later improved by Pajor and
Tomczak ([?]).

(2) As `∗(K) ∼
√
nM∗(K), we have a dimension-free version

diam(K ∩ E) ≤ C√
k
`∗(K).

Proof. We will follow a standard discretization argument.
Step 1:Discretizing K using Sudakov inequality.
Let

t = c

√
n

k
M∗(K).

For computational purposes, we will take c =
√

10. By Sudakov inequality,
there exists a t-net N of K in Euclidean metric of cardinality

|N | ≤ exp
(
C
`∗(K)2

t2

)
∼ exp

(
nM∗(K)2

t2

)
= ek/10.

Step 2: Fixed vector: diameter of random projection.
Let x ∈ K ∩ E. Then there exists y ∈ N with ‖x − y‖2 ≤ t. Consider the
orthogonal projection P onto E⊥ ∈ Gn,k. Then x ∈ kerP , and thus

‖Py‖2 = ‖P (x− y)‖2.

Moreover, since K is convex and symmetric,

x− y ∈ 2K.

Hence,
x− y ∈ tBn

2 ∩ 2K.



10. LOW M∗-ESTIMATE. `-POSITION 67

By Theorem 8.4, we have that, with probability at least 1− e−k,

diam (P (tBn
2 ∩ 2K)) ≤ C

(
M∗(K) + t

√
k

n

)
≤ CM∗(K),

using our prescribed value for t in the beginning of Step 1. Choose a real-
ization of P that satisfies this. Then, for all x ∈ K ∩ E, there exists y ∈ N
such that

(12) ‖Py‖2 ≤ ‖P (x− y)‖2 ≤ diam (P (tBn
2 ∩K)) ≤ CM∗(K).

Step 3: Norm under random projection and union bound.
Recall that for any fixed y ∈ Rn and for a random projection onto a k-
dimensional subspace,

‖Py‖2 ≥ c
√
k

n
‖y‖2

with probability at least 1− e−k. Hence, by taking union bound over N , we
get

(13) ‖Py‖2 ≥ c
√
k

n
‖y‖2

for all y ∈ N with probability at least 1 − |N | · 2e−k > 1 − e−ck, using the
bound on |N | in the first step.
Step 4: Approximation.
Combine the upper and lower bounds from (12) and (13), and we get that
for all y ∈ N , ‖y‖2 ≤ C

√
nkM∗(K). Hence, for all x ∈ K,

‖x‖2 ≤ C
√
n

k
M∗(K) + t ≤ C

√
n

k
M∗(K)

by our choice of t.

As an example, we now apply this lowM∗-estimate to examine Euclidean
subspaces of `np of arbitrary dimensions.

Example 10.2. Bn
p , 1 < p ≤ 2.

Note that

M∗(Bn
p ) ≈ diameter of its inscribed ball ∼ n

1
2
− 1
p .

Consider K = n
1
2
− 1
pBn

p so that Bn
2 is the inscribed ball. Then

M∗(K) ∼ constant.

By low M∗-estimate, for a random E ∈ Gn,n/2,

diam(K ∩ E) ∼ constant.

So the random section K ∩ E is Euclidean.
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Corollary 10.3. (Euclidean subspaces of `np , 1 < p ≤ 2) A random
subspace E ∈ Gn,n−k of `np , 1 < p ≤ 2 satisfies

d(E, `np ) ≤ Cp
√
n

k

with probability at least 1− e−k.

Remarks. (1) This is not sharp for k = 1 (small codimensional
subspaces):

d(E, `n−1
2 ) ≈ d(`np , `

n) ∼ n
1
p
− 1

2 � Cp
√
n.

(2) A similar result follows from the volume ratio theorem since

v(`np ) ∼ constant

for 1 ≤ p ≤ 2. However, the volume ratio theorem gives an expo-
nential dependence of d(E, `n−k2 ) on the aspect ratio:

d(E, `n−k2 ) ≤ C
n
k ,

whereas the low M∗-estimate gives a polynomial dependence.
(3) For new developments on this, see [?] and [?], where asymptotic

formula for E diam(K ∩ E) are given in terms of M∗(K ∩ rBn
2 ),

where r = r(k/n).

Example 10.4. Bn
1 .

Consider K =
√
nBn

1 . We have seen before that

M∗(K) ∼
√

log n.

Hence, the low M∗-estimate implies

d(E, `n−k2 ) ≤ C
√
k

n
log n.

Remarks. A more accurate estimate, with log n
k factor instead of log n,

was obtained in [?]. We will quote it here without proof.

Theorem 10.5 (Diameter of Euclidean sections of Bn
1 ; [?]). A random

subspace E ∈ Gn,n−k of `n1 satisfies the following with probability at least
1− e−ck:

diam(E ∩
√
nBn

1 ) ≤ C
√
n

k
log

n

k
.

A position of a convex body is a linear transformation of the body.
For example, John’s position of a convex body K is the linear image TK
such that the ellipsoid of maximal volume in K is Bn

2 . It is the position that
minimizes the volume ratio of K. In general, choice of a position of a convex
body corresponds to choice of a coordinate system to work with. That is,
we are choosing a Euclidean structure on the linear space that contains K.
This is extremely convenient especially when the initial setup is in some
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abstract linear space without a coordinate system. In this section, we will
discuss an important position of convex bodies called the `-position.

Definition 10.1 (`-position; [?]). An `-position of a convex body K
minimizes the product M(TK)M∗(TK) over all positions TK of K.

Recall that M(K)M∗(K) ≥ 1 for any convex body K. However, the
converse does not hold: M(K)M∗(K) can be arbitrarily large.

Exercise 14. Show that M(K)M∗(K) can be arbitrarily large in Rn.

The good news is that if we are allowed position K, then we have an
upper bound for MM∗. The following result is given without proof. See [?]
and Chapter 15 in [?].

Theorem 10.6 (Upper Bound for MM∗). For every symmetric convex
body K in Rn, there exists a position TK such that

M(TK)M∗(TK) ≤ C log 2d(K,Bn
2 ) ≤ C log n,

where the last inequality is immediate from John’s theorem.

Remarks. (1) The result would fail if the convex body is non-
symmetric. It is still an open problem when K is non-symmetric.
The best known bound is O∗(n4/3) by Rudelson [?].

(2) The result of the theorem is sharp. We leave this as an exercise.
Hence, we also call the position in the theorem an `-position of K.

Exercise 15. Prove sharpness of this theorem. That is, find some K
such that M(K)M∗(K) ∼ log n.
Hint: For K = Bn

1 , we have

M(K) ∼
√
n and M∗(K) ∼

√
log n
n

so that MM∗ ∼
√

log n. If there could be a
√

log n factor in both M(K) and
M∗(K), then we would be done. Is there a way to modify Bn

1 so this can
happen?

11. Quotient of Subspace Theorem

In this section, we will see that every symmetric convex body in a finite
dimensional normed space contains a Euclidean structure. We have already
seen that convex bodies such as Bn

1 has large Euclidean sections, while
convex bodies such as Bn

∞ has large Euclidean projections. It is then natural
to think that, given any symmetric convex body, we could end up with some
large Euclidean structure if we compose these two operations. This idea is
confirmed by the Quotient of Subspace Theorem (QS Theorem for short).
We will follow [?].
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Theorem 11.1 (Quotient of Subspace theorem). Let K be a symmetric
convex body in Rn, and let δ ∈ (0, 1). Then there exist subspaces F ⊂ E ⊂
Rn with k = dimF ≥ (1− δ)n such that

d
(
PF (K ∩ E), `k2

)
≤ C

δ
log

1
δ
.

Equivalently, let X be an n-dimensional normed space. Let δ ∈ (0, 1). Then
there exist subspaces H ⊂ E ⊂ X with k = dim(E/H) ≥ (1− δ)n such that

d
(
E/H, `k2

)
≤ C

δ
log

1
δ
.

Let us sketch the idea of the proof first. Recall that a quotient of a
subspace and a subspace of a quotient are related by duality, and that
M∗(K◦) = M(K). Then,

K ∩ E ⊆M∗(K) ·Bn
2 iff PE(K) ⊇ 1

M∗(K)
·Bn

2 .

Similarly, if we take a further section of the projection,

PE(K) ∩ F ⊆M(K) ·Bn
2 .

Hence,
d(PE(K) ∩ F, `k2) ≤M(K)M∗(K) ≤ log d(K,Bn

2 ).
This means that the distance from Euclidean drops logarithmetically after
we take a composition of quotient and subspace operation. We then may
hope that the distance can drop to constant order after a few iterations.

Proof. We will proceed by steps.
Step 1: Double application of low M∗-estimate.
By low M∗-estimate, there exists a subspace E with dimE = (1− δ)n such
that

K ∩ E ⊆ C√
δ
M∗(K) ·Bn

2 ∩ E.

By duality,

PE(K◦) ⊇ c
√
δ

1
M∗(K)

·Bn
2 ∩ E.

Now, apply low M∗-estimate again, and we get a further subspace F ⊂ E
with dimF = (1− δ) dimE = (1− δ)2n such that

PE(K◦) ∩ F ⊆ C√
δ
M∗(PE(K◦)) ·Bn

2 ∩ F.

Note that by duality, M∗(PE(K◦)) = M(K∩E), and we leave it an exercise
to show that M(K ∩ E) ≤M(K). Thus,

c
√
δ

1
M∗(K)

·Bn
2 ∩ F ⊆ PE(K◦) ∩ F ⊆ C√

δ
M(K) ·Bn

2 ∩ F.

Hence,

d(PE(K◦) ∩ F, `k2) ≤ C

δ
M(K)M∗(K) ≤ C

δ
log 2d(K, `n2 )
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by MM∗-estimate. Recall that d(X,Y ) = d(X∗, Y ∗) for any Banach spaces
X and Y . Hence, we have shown that

d(PF (K ∩ E), `k2) ≤ C

δ
log 2d(K, `n2 ).

Step 2: Iteration.
Consider

QS(K) := { projections of sections of K}.
Define f : (0, 1)→ R+ by

f(α) = inf{d(L, `k2 : L ∈ QS(K), k = dimL ≥ αn}.
We have shown in the first step that f satisfies the following recursive rela-
tion:

f((1− δ)2α) ≤ C

δ
log(2f(α)), ∀α ∈ (0, 1) ∀δ ∈ (0, 1).

It can then be shown that functions satisfying this must satisfy

f(α) ≤ C

1− α
log

1
1− α

.

See Section 5.9 in [?] for details.

Exercise 16. Prove that M(K∩E) ≤M(K) for any symmetric convex
body K in Rn and any subspace E.





Part 3

Geometric Inequalities



In the last part of this course, we will see a series of geometric inequal-
ities involving volumes and their applications in geometric functional anal-
ysis. For example, isoperimetric inequalities and concentration of measure
inequalities can be recovered from Brunn-Minkowski inequality. Moreover,
we will learn a new position of convex bodies called the notion in establish-
ing the inverse inequalities to the classic ones such as Brunn-Minkowski and
Santalo inequalities. We will also revisit the entropy duality problem and
the quotient of subspace theorem, as a result of these geometric inequalities.

12. Brunn-Minkowski Inequality

12.1. Brunn-Minkowski inequality. Brunn-Minkowski inequality is
one of the most fundamental results in convex geometry. As we have seen all
along this course, the correspondence between convex geometry and func-
tional analysis produces better understanding of the whole picture. Hence,
we should expect that Brunn-Minkowski inequality has influential conse-
quences in geometric functional analysis. It turns out that the results on
concentration of measure in various spaces we saw in the beginning of the
course can actually be derived from Brunn-Minkowski inequality. Although
it has profound consequences, the form of the inequality is extremely simple.

Theorem 12.1 (Brunn-Minkowski inequality). For any measurable sets
A,B ⊂ Rn, we have:

(1) (additive form) vol(A+B)1/n ≥ vol(A)1/n + vol(B)1/n;
(2) (multiplicative form) vol(λA+ (1− λ)B) ≥ vol(A)λ vol(B)1−λ.

Moreover, equality holds iff A and B are homothetic.

Remarks. (1) The two versions are equivalent. (1) implies (2)
by replacing A by λA and B by (1 − λB) and then applying the
geometric-arithmetic inequality. For the other direction, we may
apply (2) with

A′ =
A

vol(A)
1
n

, B′ =
B

vol(B)
1
n

, λ =
vol(A)

1
n

vol(A)
1
n + vol(B)

1
n

.

(2) Recall that a log-concave measure µ is a measure that satisfies

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

By the equivalence of these the versions of Brunn-Minkowski in-
equality, we see that any log-concave measure, not just the Lebesgue
measure on Rn, satisfies Brunn-Minkowski inequality.

12.2. Prekopa-Leindler inequality. Brunn-Minkowski inequality is
a special case of Prekopa-Leindler inequality, which can be viewed as a
reverse Hölder inequality.
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Lemma 12.2 (Prekopa-Leindler inequality). Let f, g, h : Rn → [0,∞) be
measurable functions, and let λ ∈ (0, 1). Assume that

(14) h(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ ∀x, y ∈ Rn .

Then, ∫
Rn
h ≥

(∫
Rn
f

)λ(∫
Rn
g

)1−λ
.

Remarks. Prekopa-Leindler inequality immdiately implies Brunn-Minkowski
inequality by taking indicator functions f = 1A, g = 1B, and h = 1λA+(1−λ)B.
Hence, all we need to do is to prove this functional form of Brunn-Minkowski
inequality.

Proof of Prekopa-Leindler. We first use the one-dimensional Brunn-
Minkowski inequality to prove the one-dimensional Prekopa-Leindler in-
equality. Then we will proceed by induction on the dimension.
Step 1: One-dimensional Brunn-Minkowski.
We will show that |A+B| ≥ |A|+ |B|, where | · | denotes the Lebesgue mea-
sure on the real line. Without loss of generality, assume A,B are compact.
As the Lebesgue measure is translation invariant, we can also assume that

supA = 0 = inf B.

Then,
A ⊂ A+B and B ⊂ A+B.

Hence |A+B| ≥ |A|+ |B|.
Step 2:One-dimensional Prekopa-Leindler.
We will reduce the integral to level sets. Note that

(15)
∫
f =

∫ ∞
0
|{f ≥ a}|da.

It is easy to check that

{h ≥ a} ⊇ λ{f ≥ a}+ (1− λ){g ≥ a}.
By one-dimensional Brunn-Minkowski, we have

|{h ≥ a}| ≥ λ|{f ≥ a}|+ (1− λ)|{g ≥ a}|.
Integrate both sides over all a > 0. By (15), we have∫

h ≥ λ
∫
f + (1− λ)

∫
g.

Then, apply arithmetic-geometric mean inequality, and we get∫
h ≥

(∫
f

)λ(∫
g

)1−λ
.

Step 3: Induction on dimension.
Assume that the lemma holds in Rn−1. For t ∈ R, consider the functions

ft, gt, ht : Rn−1 → R
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defined as
ft(x) = f(t, x)

and similarly for gt and ht. Suppose that

t = λt1 + (1− λ)t2.

Then by (14),
ht(λx+ (1− λ)y) ≥ ft1(x)λgt2(y)1−λ.

for all x, y ∈ Rn−1. By induction hypothesis,∫
Rn−1

ht ≥
(∫

Rn−1

ft1

)λ(∫
Rn−1

gt2

)1−λ
.

Now, apply the one-dimensional Prekopa-Leindler, and we get∫
R

(∫
Rn−1

ht

)
≥
(∫

R

(∫
Rn−1

ft1

))λ(∫
R

(∫
Rn−1

gt2

))1−λ
.

This completes the proof.

As we said earlier, Brunn-Minkowski inequality can be obtained as soon
as the Prekopa-Leindler inequality is proved. In the next section, we will
see various consequences of Brunn-Minkowski inequality in not only convex
geometry, but also Banach spaces.

13. Applications of Brunn-Minkowski Inequality

13.1. Brunn’s Principle.

Theorem 13.1. Let K be a convex body in Rn and u ∈ Rn. Consider
the hyperplanes

Ht = {x ∈ Rn : 〈x, u〉 = t}.
Then the function

t 7→ vol(K ∩Ht)
1

n−1

is concave on its support.

Remarks. It is easy to check that if K is a cone, then this function will
be linear.

Proof. Consider the sections Kt = K ∩Ht. Convexity implies that for
any r, s ∈ R and for any λ ∈ (0, 1),

Kλr+(1−λ)s ⊇ λKr + (1− λ)Ks.

By Brunn-Minkowski inequality, we have

vol(Kλr+(1−λ)s)
1

n−1 ≥ λ vol(Kr)
1

n−1 + (1− λ) vol(Ks)
1

n−1 ,

which is exacly what we want.
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Figure 12. Brunn’s Principle

Remarks. (1) One can deduce Brunn-Minkowski inequality for
convex bodies from Brunn’s principle. Note that we state it for
all measurable sets in Theorem 12.1.
We can embed A and B in Rn+1 so that A is at position t = 0 and
B at position t = 1 for the additional dimension t. See Figure 12.
Then the section of the convex hull of A∪B at t = 1−λ corresponds
to the sets λA + (1 − λ)B. Then Brunn-Minkowski inequality is
a direct consequence of Brunn’s principle. We leave the details to
the reader.

(2) Brunn’s principle can also be derived from a direct geometric ar-
gument through Steiner’s symmetrization. See Theorem 3.1 in [?].

13.2. Isoperimetric inequality in Rn. Brunn-Minkowski inequality
also implies the isoperimetric inequality in a very simple way.

Let A be a set in Rn. Recall that the surface area vol(∂A) of A is defined
by

(16) vol(∂A) = lim
ε→0

vol(A+ εBn
2 )− vol(A)
ε

.

Theorem 13.2 (Isoperimetric inequality in Rn). Among all bodies of a
given volume in Rn, Euclidean balls have the least surface area.

Proof. Consider A ⊂ Rn and a Euclidean ball B with vol(A) = vol(B).
We want to show that

vol(∂A) ≥ vol(∂B).
By Brunn-Minkowski inequality, for any ε > 0,

vol(A+ εBn
2 )

1
n ≥ vol(A)

1
n + vol(εBn

2 )
1
n

= vol(B)
1
n + vol(εBn

2 )
1
n

= vol(B + εBn
2 )

1
n ,

since B and εBn
2 are homothetic. Then use surface area formula (16) and

take limit as ε→ 0.
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Remarks. It is still not known how to apply Brunn-Minkowski to get
isoperimetric inquality on the sphere, which is more general situation as
spheres locally look like Rn. The difficulty on the sphere is that subsets may
“curve back” to wrap itself. Recall that in the proof of the one-dimensional
Brunn-Minkowski, we first process the two sets A,B so that they are apart
from each other. This causes a problem on the sphere: it is not always
possible to separate two sets.

13.3. Concentration of measure in the ball, sphere and Gauss
space. We know that isoperimetry on the sphere implies concentration of
measure on the sphere early in this course, but we do not know how to get
isoperimetry on the sphere from Brunn-Minkowski. Hence, in an effort to
go from Brunn-Minkowski inequality to the concentration of measure on the
sphere, we will bypass isoperimetry and take a direct path. Sometimes this
is called “approximate isoperimetry.”

13.3.1. Concentration of measure in the ball. ConsiderBn
2 equipped with

the normalized Lebesgue measure

µ(A) =
vol(A)

vol(Bn
2 )
.

Let
Aε := {x ∈ Bn

2 : d(x,A) ≤ ε}
denote the ε-extension of the set A.

Theorem 13.3 (Concentration in the Ball). Let A ⊂ Bn
2 be a measurable

set. Then
µ(Aε) ≥ 1− C

µ(A)
e−cε

2n

for any ε > 0, where C, c are absolute constants. In particular, if µ(A) ≥
1/2, then

µ(Aε) ≥ 1− 2Ce−cε
2n.

Proof. Consider

B = (Aε)c = {x ∈ Bn
2 : d(x,A) > ε}.

Our goal is to show that

µ(A)µ(B) ≤ Cecε2n.
One can check that µ is a log-concave measure. By Brunn-Minkowski in-
equality for log-concave measures, we have√

µ(A)µ(B) ≤ µ
(
A+B

2

)
.

Hence, it suffices to show that

µ

(
A+B

2

)
≤ Ce−cε2n.

This will be immediate from the following claim.
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Claim: A+B
2 ⊂

√
1− ε2

4 B
n
2 .

Let x ∈ A and y ∈ B. Then d(x, y) > ε. We need to estimate ‖x+y2 ‖.
By the parallelogram law,

‖x+ y

2
‖ =

1
2

√
2(‖x‖2 + ‖y‖2)− ‖x− y‖2

≤
√

1− ε2

4
,

as ‖x‖ ≤ 1, ‖y‖ ≤ 1, and ‖x − y‖ > ε. This finishes the proof of the claim.
Hence,

µ

(
A+B

2

)
≤ µ

(√
1− ε2

4
Bn

2

)

=
(

1− ε2

4

)n/2
≤ e−ε2n/8.

This completes the proof.

13.3.2. Concentration of measure on the sphere. Concentration on the
sphere follows from concentration of measure in the ball. We will leave the
proof to the reader.

Corollary 13.4 (Concentration on the Sphere). Let A ⊂ Sn−1 be mea-
surable, and let σ denote the canonical probability measure over Sn−1. Then

σ(Aε) ≥ 1− C

σ(A)
e−cε

2n

Exercise 17. Prove this corollary.

13.3.3. Concentration of measure in Gauss space. Recall that Gauss
space is just Rn equipped with the standard n-dimensional Gaussian mea-
sure γ. We will deduce concentration of measure in Gauss space directly
from Prekopa-Leindler inequality.

Theorem 13.5 (Concentration of Measure in Gauss Space; [?]). Let
A ⊂ Rn be a measurable set. Let g ∈ Rn be a standard Gaussian vector.
Then

E exp
(
d(g,A)2

4

)
≤ 1
γ(A)

.

In particular,

γ(At) ≥ 1− e−t
2/4

γ(A)
.

Proof. The “in particular” part follows from Markov inequality:

γ(At) = γ{x : d(x,A) > t} ≤ 1
γ(A)

· e−t2/4.
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For the main result, we apply Prekopa-Leindler inequality for with

λ =
1
2

h(x) = (2π)−n/2e−‖x‖
2/2

f(x) = exp
(
d(x,A)2

4

)
· (2π)−n/2e−‖x‖

2/2

g(x) = 1A · (2π)−n/2e−‖x‖
2/2.

It only remains to check that they satisfy the assumption of Prekopa-Leindler:

h

(
x+ y

2

)
≥ f(x)

1
2 · g(x)

1
2

for all x, y. This can be easily checked, where the parallelogram law is used.
(without loss of generality, we may assume y ∈ A.)

Remarks. The proof works for any log-concave density (not just Gauss-
ian density).

13.4. Borell’s inequality. Let us first recall that a measure µ : A → R
is log-concave if the function

A ∈ A 7→ logµ(A)

is concave. That is,

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ

for all A,B ∈ A and for any λ ∈ (0, 1).

Example 13.6 (log-concave measures). (1) Lebesgue measure in Rn.
This follows from Brunn-Minkowski.

(2) Normalized volume on any convex set. µ(A) = vol(A ∩K) is log-
concave. This follows from Prekopa-Leindler with

f = 1A∩K , g = 1B∩K and h = 1λA+(1−λ)B∩K .

(3) Log-concave densities. By a result of C.Borell in 1975 ([?]), any
measure with log-concave density is log-concave.

Theorem 13.7 (Borell’s inequality). Let µ be a log-concave probability
measure on Rn, and let A ⊂ Rn be symmetric and convex with µ(A) ≥ 2

3 .
Then,

µ(tA) ≥ 1− e−ct

for every t > 0.

We will prove a special case where the log-concave measure is the nor-
malized volume on a convex body.
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Theorem 13.8 (Volume Distribution in Convex Sets). Let K ⊂ Rn be
a convex body (not necessarily symmetric). Consider the normalized volume
measure

µ(A) =
vol(A ∩K)

vol(K)
.

Let A be the Euclidean ball with µ(A) = 2
3 . Then

µ ((tA)c) ≤ e−ct.

Figure 13. Volume Distribution of Convex Bodies

Remarks. (1) One can also use this argument for A = the slab
between two hyperplanes with µ(A) = 2

3 and get the same result.
(2) Note that µ ((tA)c) describes the proportion of volume taken by

the “tentacles” of the convex body.

Proof of Theorem 13.8. Without loss of generality, assume that t ≥
1. We will find some convex combination of A and (tA)c that is disjoint from
A. That is, we will find some λ ∈ (0, 1) such that

λA+ (1− λ)(tA)c ⊂ Ac.
It can be easily checked that

λ =
t− 1
t+ 1

works. Then, by Brunn-Minkowski,
1
3
≥ µ(Ac) ≥ µ(λA+ (1− λ)(tA)c) ≥ µ(A)λµ((tA)c)1−λ.

Solve for µ((tA)c), and we get the desired bound.
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Figure 14. Volume Distribution between Hyperplanes

13.5. Urysohn’s inequality. Recall that we discussed the two direc-
tions in considering Euclidean sections or projections of high dimensional
convex bodies. One direction is Dvoretzky-type theorems, which are closely
related to the mean width M∗. The other direction is VRT, which is closely
related to the notion of volume ratio of a convex body. How do these two di-
rections compare? Urysohn’s inequality tells that the volume ratio is always
dominated by the mean width.

Theorem 13.9 (Urysohn’s inequality; Chapter 1 in [?]). Let K ⊂ Rn be
a compact set. Then(

vol(K)
vol(Bn

2 )

) 1
n

≤
∫
Sn−1

‖x‖K◦dσ(x).

As a preliminary to the proof, the following exercise gives alternative
meaning of the mean width.

Exercise 18. Let U ∈ O(n) be random. Then
∫
O(n) U(K)dµ(U) =

M∗(K) ·Bn
2 .

Now we are ready to prove Urysohn’s inequality.

Proof. First, it is not hard to see that Brunn-Minkowski inequality
holds for more than two sets:

vol

(
m∑
i=1

vol(Ki)

) 1
n

≥
m∑
i=1

vol(Ki)
1
n .

In the limit, we see that Brunn-Minkowski holds in integral form:

vol

(∫
O(n)

U(K)dµ(U)

) 1
n

≥
∫
O(n)

vol (U(K))
1
n dµ(U).
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Then, by the exercise preceding this proof, we have

M∗(K) · vol(Bn
2 )

1
n ≥ vol(K)

1
n .

13.6. Santalo inequality. In this application of Brunn-Minkowski in-
equality, we want to consider the “dual volume.” We will discuss how the
volume of a convex body is related to the volume of its polar body. We can
easily picture that the polar set is “small” when the original set is “large”
in terms of the volume, since they are sort of ”inversely” related. One can
see this through the fact that

(aK)◦ =
1
a
K◦.

Hence, we might expect that the product of the two volumes behaves like a
constant. We introduce the notion of Mahler volume for a better formulation
of the problem.

Definition 13.1 (Malher volume). The Mahler volume of a convex body
K is defined as

s(K) = vol(K) · vol(K◦).

Exercise 19. Check that the Mahler volume is invariant under any
linear transformation. For example, it is easy to see that it is invariant
under scaling.

Hence, we may expect that there is an upper and a lower bound for
s(K), regardless of K. As we will see in this and next sections, finding
these bounds are nontrivial. Different symmetrization technieques will be
used in the two directions. The upper estimate uses the classic Steiner’s
symmetrization. For the lower estimate, things get more involved. We will
use Milman’s “isomorphic symmetrization.”

Theorem 13.10 (Santalo inequality: upper estimate for Mahler vol-
ume). Let K be a symmetric convex body in Rn. Then s(K) ≤ s(Bn

2 ).

Remarks. (1) In other words, the Mahler volume is maximized by
Euclidean balls. Moreover, by invariance under linear transforma-
tions, it is also maximized by any ellipsoid.

(2) s(Bn
2 ) = vol(Bn

2 )2 = [(2πe+ o(1))n]−n.

We will present the proof due to Meyer and Pajor [?] using Steiner
symmetrization. The idea is that these symmetrizations can only increase
the Mahler volume, and they bring any symmetric convex body K closer
and closer to the Euclidean ball.

Definition 13.2 (Steiner symmetrization). Let H be a hyperplane in
Rn and K ⊂ Rn. Then, the Steiner symmetrization of K with respect to H
is

KH =
{
x1 − x2

2
: x1, x2 ∈ K,x1 − x2 ⊥ H

}
.
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Figure 15. Steiner Symmetrization

Two main properties of Steiner symmetrizations are listed below. The
reader is encouraged to check them as an exercise.

Proposition 13.11 (Basic Properties of Steiner symmetrization). (1)
Steiner symmetrization is volume-preserving.

(2) There exists a sequence of Steiner symmetrizations of any symmet-
ric convex body K that converges to an Euclidean ball in Hausdorff
metric (also in Banach-Mazur distance).

Now, we will use Steiner symmetrization to prove Santalo inequality.

Proof of Santalo inequality. It suffices to show that

(17) vol((KH)◦) ≥ vol(K◦).

Indeed, if this holds, then

vol(KH) · vol((KH)◦) ≥ vol(K) · vol(K◦),

as vol(KH) = vol(K). Now, by the second property of Steiner symmetriza-
tion, we get that in the limit,

vol(Bn
2 ) · vol(Bn

2 ) ≥ vol(K) · vol(K◦),

which is exactly what we want to show.
Now, to prove (17), we may assume H = Rn−1. Consider the slices

K(s) = {x ∈ Rn−1 : (x, s) ∈ K}.
It suffices to show that

vol(K◦H(s)) ≥ vol(K◦(s))

for all s, as

vol(K◦) =
∫

vol(K◦(y))dy.

It is easy to verify the following:

K◦ = {(y, s) : 〈x, y〉+ ts ≤ 1 ∀(x, t) ∈ K}

KH =
{

(x, t) : t =
t1 − t2

2
, (x, ti) ∈ K

}
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(KH)◦ =
{

(y, s) : 〈x, y〉+
t1 − t2

2
· s ≤ 1 ∀(x, ti) ∈ K

}
.

Then we claim that

K◦H ⊇
K◦(s) +K◦(−s)

2
.

In fact, let y ∈ K◦(s) and z ∈ K◦(−s). That is,

〈x, y〉+ t1s ≤ 1 ∀(x, t1) ∈ K
〈x, z〉 − t2s ≤ 1 ∀(x, t2) ∈ K.

Easy arithmetic operations give

〈x, y + z

2
〉+

t1 − t2
2
· s ≤ 1.

This means
y + z

2
∈ K◦H .

Hence, by Brunn-Minkowski inequality,

vol(K◦H) ≥ vol
(
K◦(s) +K◦(−s)

2

)
≥
√

vol(K◦(s)) · vol(K◦(−s))
= vol(K◦(s)),

as K◦(−s) = −K◦(s) by symmetry.

14. Isomorphic Symmetrizations. Inverse Santalo Inequality

14.1. Inverse Santalo inequality. We have showed in Santalo in-
equality that Euclidean balls maximize the Mahler volume. A natural ques-
tion is, which convex bodies minimize the Mahler volume?

Conjecture 14.1 (Mahler conjecture). Cubes (or octahedra) are min-
imizers of the Mahler volume.

Intuitively, this makes a lot of sense, as cubes and octahedra are the
“farthest” from the Euclidean ball: they are the “pointiest” convex bodies.
It is easy to check that

s(Bn
1 ) = s(Bn

∞) = vol(Bn
1 ) · vol(Bn

∞) = (4e+ o(1))nn−n,

and
s(Bn

2 ) = vol(Bn
2 ) · vol(Bn

2 ) = (2πe+ o(1))nn−n.
Hence, the conjectured lower bound of Mahler volume matches the known
upper bound: s(Bn

1 ) = s(Bn
∞) ∼ cns(Bn

2 ) for some absolute constant c > 0.
For more discussion, See Terry Tao’s blog entry on this topic. Here, we will
give a proof of a joint statement of both Santalo and inverse Santalo inequal-
ities due to Bourgain and Milman. This proof provides some evidence that
cubes and octahedra are good candidates for the minimizer of the Malher
volume.
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Theorem 14.2 (Inverse Santalo inequality; [?]). There exists an absolute
constant c ∈ (0, 1) such that for every symmetric convex body K in Rn,

cn ≤ s(K)
s(Bn

2 )
≤ 1.

In other words,

c ≤
(

vol(K) · vol(K◦)
vol(Bn

2 )2

) 1
n

≤ 1.

The righthand side inequality is just Santalo inequality. Recall that
in proving Santalo inequality, we used Steiner symmetrization, which is
volume-preserving and can only increase the Mahler volume (i.e. increase
the volume of the polar body). Moreover, there exists a sequence of Steiner
symmetrizations that bring a symmetric convex body to a Euclidean ball.
Hence, we cannot expect “exact” symmetrizations (meaning converging to
the exact Euclidean ball) to get the inverse Santalo. Instead, we will have
a sequence of symmetrizations that bring the convex body to C-isomorphic
(instead of “isometric”) to the Euclidean ball: we hope that in the end, we
have

rBn
2 ⊂ Kt ⊂ C · rBn

2

for some r > 0. This way, we will also have
1
rC

Bn
2 ⊂ K◦t ⊂

1
r
Bn

2 ,

so that

(18)
1
Cn

vol(Bn
2 )2 ≤ vol(Kt) vol(K◦t ) ≤ Cn vol(Bn

2 )2.

This is already very close to what we want: the only thing left to do is
to make sure the Mahler volume is well controlled during symmetrization:
s(Kt)

1
n � s(K)

1
n in the sense that there exist constants c1 and c2 such that

(19) cn1s(K) ≤ s(Kt) ≤ cn2s(K).

In summary, we need to control two things in the proof of the inverse
Santalo inequality:

(1) Distance from the Euclidean ball.
We will borrow the idea in the proof of the Quotient of Subspace
Theorem. At each step, if

d(Ki, B
n
2 ) . M(Ki−1)M∗(Ki−1),

then the MM∗-estimate promises logarithmetically dropping dis-
tance.

(2) Volume control.
We will show

e−cins(Ki) ≤ s(Ki−1) ≤ ecins(Ki)
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for some properly chosen constant ci. After iterations, we will get

e−(
P
ci)ns(K) ≤ s(Kt) ≤ e(

P
ci)ns(K),

where our choice of ci guarantees the convergence of the series.
Let us break down the proof into its main pieces, and then assemble

them to form the complete proof. The first and most important piece is the
symmetrization technique called “isomorphic symmetrization” or “convex
surgery,” as first called by Milman.

14.2. Isomorphic symmetrization. We transform K into

K1 = conv
{
K ∩ λupBn

2 ,
1

λdown
Bn

2

}
.

Two operations are involved here to regularize K:
• Cut “tentacles” by intersectingK with a large Euclidean ball λupBn

2 ,
and
• Fill out the interior by taking convex hull with a small Euclidean

ball (1/λdown)Bn
2 . See Figure 16.

Figure 16. Isomorphic Symmetrization

Observe that
1

λdown
Bn

2 ⊂ K1 ⊂ λupBn
2 .

Hence,

(20) d(K1, B
n
2 ) ≤ λup · λdown
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Moreover,

K◦1 = (K ∩ λupBn
2 )◦ ∩ λdownBn

2

= conv
{
K◦,

1
λup

Bn
2

}
∩ λdownBn

2

� conv
{
K◦ ∩ λdownBn

2 ,
1
λup

Bn
2

}
.

For notation convenience, let T = conv
{
K◦ ∩ λdownBn

2 ,
1
λup

Bn
2

}
. We

leave the last step above as an exercise.

Exercise 20. Show that there exists some C ≥ 1 such that

1
C
T ⊂ K◦1 ⊂ CT.

The second piece of the proof of the inverse Santalo inequality is how
to control the volume of our convex bodies during symmetrizations. In par-
ticular, we want to control the volume of intersections and convex hulls of
different convex bodies.

14.3. Volume control lemmas. First, we need to control the volume
of intersections of two convex symmetric bodies.

Lemma 14.3 (Volume of intersections). Let K,D be symmetric convex
bodies in Rn. Then

vol(K) ≤ N(K,D) · vol(K ∩D).

Proof. Consider the covering of K by translates of D. Suppose that

K ⊆
N⋃
i=1

(xi +D),

where xi ∈ K. The reader should check that for any centrally symmetric
convex bodies K and D, and for any x ∈ Rn,

vol
(
(x+D) ∩K

)
≤ vol(D ∩K).

Then, by symmetry and convexity, we have

(x+D) ∩K + (−x+D) ∩K
2

⊆ D ∩K.

Apply Brunn-Minkowski inequality, and we get

vol(D∩K) ≥ vol
(
(x+D)∩K

)1/2 ·vol
(
(−x+D)∩K

)1/2 = vol
(
(x+D)∩K

)
.

Hence, vol(K) ≤ N(K,D) vol(K ∩D).
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We also need to control the volume of convex hulls. We would like to
have the following:

Lemma 14.4 (Volume of Convex Hulls). Let K,D be symmetric convex
bodies in Rn. Then

vol(conv{K,D}) ≤ N(D,K) · vol(K).

In Milman’s paper [?], he proved a weaker result.

Lemma 14.5 (Volume of convex hulls: weaker version). Let K,D be
convex sets in Rn such that D ⊂ bK for some b ≥ 1. Then,

vol(conv{K,D}) ≤ enb ·N(D,K) · vol(K).

We will prove an intermediate result, and leave it as an exercise to get
to Milman’s weaker version from there.

Proposition 14.6. Let K,D ⊂ Rn be convex bodies. Then, for any
λ ∈ (0, 1),

vol(λK + (1− λ)D) ≤ N(D,K) · vol(K).

Proof. Cover D by N = N(K,D) translates of K such that

D ⊂
N⋃
i=1

(xi +K)

for some {xi}Ni=1 ⊂ D. Multiply by (1− λ) and add λK to get

λK + (1− λ)D ⊂ λK +
N⋃
i=1

((1− λ)xi + (1− λ)K) =
N⋃
i=1

(1− λ)xi +K,

where the convexity of K is used in the last equality. Then, compare the
volume.

Exercise 21. Finish the proof for Lemma 14.5.
Hint: Note that

conv{K,D} =
⋃

λ∈[0,1]

λK + (1− λ)D

⊂
⋃

λ∈[0,1]

N⋃
i=1

(1− λ)xi +K

=
N⋃
i=1

[0, xi] +K.

Then one can discretize the interval [0, xi] using ∼ n points and use union
bound.
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14.4. Proof of inverse Santalo inequality. Now we are in a position
to put everything together to prove the inverse Santalo inequality (Theorem
14.2).

Proof of inverse Santalo inequality. We will follow two steps:
isomorphic symmetrization and iterations.
Step 1: First isomorphic symmetrization.
Since the Mahler volume is invariant under linear transformations, we may
assume that K is in an `-position. So we have

M(K)M∗(K) ≤ C log 2d(K,Bn
2 ) ≤ C log n.

Choose
λup = M∗(K)a1 λdown = M(K)a1,

where a1 ≥ 1 is to be determined later.
Consider the isomorphic symmetrization K1 defined as

K1 = conv
{
K ∩ λupBn

2 ,
1

λdown
Bn

2

}
.

We claim that

e−Cn/a
2
1 ≤ vol(K1)

vol(K)
≤ eCn/a2

1 .

In fact, by Lemma 14.3 and Sudakov inequality,

vol(K1) ≥ vol (K ∩ λupBn
2 )

≥ vol(K)
N (K,λupBn

2 )

≥ e−Cn/a2
1 · vol(K).

This is the lower bound. For the upper bound, we use Lemma 14.4 and the
dual Sudakov inequality.

vol(K1) ≤ vol
(

conv
{
K,

1
λdown

Bn
2

})
≤ N

(
1

λdown
Bn

2 ,K

)
· vol(K)

≤ eCn/a2
1 · vol(K).

The same computation can be done for K◦, and we have

e−Cn/a
2
1 ≤ vol(K◦1 )

vol(K◦)
≤ eCn/a2

1 .

Hence,

e−Cn/a
2
1 ≤ s(K1)

s(K)
≤ eCn/a2

1 .
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At the same time, by (20) and MM∗-estimate,

d(K1, B
n
2 ) ≤ λupλdown
≤M∗(K)M(K) · a2

1

≤ Ca2
1 log 2d(K,Bn

2 )

≤ Ca2
1 log n.

Choose a1 = log n, so that

d(K1, B
n
2 ) ≤ C(log n)3.

Step 2: Iteration
We first put K1 in its `-position. Then choose

λup = M∗(K1)a2 λdown = M(K1)a2,

where a2 ≥ 1 is to be determined later.
Define K2 in a similar way as above, and we get

e−Cn/a
2
2 ≤ s(K2)

s(K1)
≤ eCn/a2

2 ,

and

d(K2, B
n
2 ) ≤ λupλdown ≤M∗(K1)M(K1) · a2

2

≤ Ca2
2 log 2d(K1, B

n
2 ) ≤ Ca2

2 log logn.

Choose a2 = log log n, so that

d(K2, B
n
2 ) ≤ C(log log n)3.

After t iterations, we get

e
−Cn

(
1

a21
+···+ 1

a2t

)
≤ s(Kt)
s(K)

≤ e
Cn
(

1

a21
+···+ 1

a2t

)
and

d(K,Bn
2 ) ≤ C

(
log(t) n

)3
,

where log(t) = log log · · · log denotes n iterations of log. Choose t to be the
smallest integer such that

log(t) n < 2.
Then

d(Kt, B
n
2 ) ≤ C1

for some absolute constant C1 > 0. Moreover, since with our choice of the
ai’s, the series

∑
(1/a2

i ) is uniformly convergent, we obtain that for some
absolute constant C2 > 0,

e−C2n ≤ s(Kt)
s(K)

≤ eC2n.

Then, by (18) and (19), the proof is complete.
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An immediate corollary says that the Mahler volume of any symmetric
convex bodies in Rn are equivalent.

Corollary 14.7 (Malher volume of arbitrary symmetric convex bod-
ies). For any symmetric convex bodies K,L ⊂ Rn, there exists an absolute
constant c ∈ (0, 1) such that

cn ≤ s(K)
s(L)

≤ 1
cn
.

15. Applications of Isomorphic Symmetrizations

15.1. Milman’s ellipsoids. The method of isomorphic symmetriza-
tion turns out to be quite flexible. Instead of controlling vol(K) and vol(K◦)
throughout symmetrizations, one can control vol(K + L) for an arbitrary
symmetric convex body L. This idea leads to the existence of so-called
M -ellipsoids.

Theorem 15.1 (M -ellipsoids). For every symmetric convex K ⊂ Rn,
there exists an ellipsoid EK called an M -ellipsoid with the following proper-
ties:

(1) vol(EK) = vol(K);
(2) There exists an absolute constant C ≥ 1 such that

1
Cn

vol(EK + L) ≤ vol(K + L) ≤ Cn vol(EK + L)

for every symmetric convex body L ⊂ Rn.

Remarks. The existence of M -ellipsoids means that a symmetric con-
vex body “behaves” like an ellipsoid.

The proof is similar to the proof of the inverse Santalo inequality in the
previous section. So we will only sketch the proof and leave the details as
an exercise. Before starting the proof, we will have to modify our volume
control lemmas. We encourage the reader to verify them in a similar way to
their original versions.

Lemma 15.2 (Modified volume of intersection).

vol(K + L) ≤ N(K,D) vol(K ∩D + L).

Lemma 15.3 (Modified Volume of Convex Hull).

vol(conv{K,D}+ L) ≤ 2enb ·N(K,D) · vol(K + L).

Proof of Theorem 15.1. Define the isomorphic symmetrizations Ki

the same way as before. At each step, we have

(21) e−Cn/a
2
i ≤ vol(Ki + L)

vol(Ki−1 + L)
≤ eCn/a2

i

and
d(Kt, B

n
2 ) ≤ Ca2

i log d(Ki−1, B − 2n),
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where ai = log(i) n. Hence, we conclude that

e−C1n ≤ vol(Kt + L)
vol(K + L)

≤ eC1n ∀ L,

while d(Kt, B
n
2 ) ≤ C2, which means that Kt is C-isomorphic to some ellip-

soid E . Therefore,

(22) vol(K)
1
n ∼ vol(Kt)

1
n ∼ vol(E)

1
n ,

where the first ∼ follows from (21) and the second ∼ follows from the C-
isomorphism. Now, let EK = ρE such that vol(K) = vol(ρE). By (22), we
see that

ρ ∼ constant.

Since Kt is still O(1)-isomorphic to EK , we can replace Kt by EK in (21).

Remarks. (1) Uniqueness of M -ellipsoids. M -ellipsoid is not unique,
as the constant C is not specified. We leave it an exercise to check
that one can dilate one axis of an M -ellipsoid by 2, and it still
remains an M -ellipsoid.

(2) Duality. Similar with the proof of the inverse Santalo inequality,
one can run isomorphic symmetrizations for K and K◦ in parallel.
This way, one gets

EK◦ = ρ · (EK)◦

in the end, where ρ ∼ constant. Note that one can define M -
ellipsoids in an isomorphic way as

vol(EK) ∼ vol(K),

that is,

1
Cn

vol(K) ≤ vol(EK) ≤ Cn vol(K),

rather than exact equality. Adopting this definition, we have

EK◦ = (EK)◦.

(3) M -position. By Theorem 15.1, we can define a position of a convex
body called an M -position.

Definition 15.1 (M-position). Let K be a convex body in Rn. Then,
K is said to be in an M -position if its M -ellipsoid is an Eucdliean ball.

15.2. Inverse Brunn-Minkowski inequality. Without putting on
extra conditions on the convex bodies, the reader is encouraged to find
examples that fail the inverse Brunn-Minkowski inequality (this is not hard).
However, if we assume in addition that the convex bodies are in M -positions,
then the inverse Brunn-Minkowski is a quick consequence of Theorem 15.1.
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Corollary 15.4 (Inverse Brunn-Minkowski inequality). Let K,L ⊂ Rn

be symmetric convex bodies whose M -ellipsoids are homothetic. Then

vol(K + L)
1
n ≤ C

(
vol(K)

1
n + vol(L)

1
n

)
.

Proof. We will use Theorem 15.1 twice.

vol(K + L)
1
n ≤ C vol(EK + L)

1
n

≤ C2 vol(EK + EL)
1
n

= C2
(

vol(EK)
1
n + vol(EL))

1
n

)
(by homothety).

Remarks. By this corollary, we see that here is always a position of K
such that the reverse Brunn-Minkowski inequality holds.

The following is a consequence of inverse Brunn-Minkowski inequality.

Corollary 15.5. Let K,L ⊂ Rn be symmetric convex bodies with ho-
mothetic M -ellipsoids. Then

vol(K ∩ L)
1
n ≥ c ·min

{
vol(K)

1
n , vol(L)

1
n

}
.

Proof. Let v(K) denote the volume ratio
(

vol(K)/ vol(Bn
2 )
)1/n. Then,

by Santalo and inverse Santalo inequalities, we have v(K◦) ∼ 1/v(K). Then,

1
v(K ∩ L)

∼ v((K ∩ L)◦)

∼ v(K◦ + L◦) (as (K ∩ L)◦ = conv{K◦, L◦} � K◦ + L◦)

∼ v(K◦) + v(L◦) (by BM and reverse BM)

∼ 1
v(K)

+
1

v(L)
(by Santalo and reverse Santalo).

This completes the proof.

Another consequence of inverse Brunn-Minkowski inequality is that the
covering number and the volume ratio of two convex bodies with homothetic
M -ellipsoids are equivalent.

Corollary 15.6 (Covering number and volume ratio). Let K,L ⊂ Rn

be symmetric convex bodies with homothetic M -ellipsoids. Then

vol(K)
vol(L)

≤ N(K,L) ≤ Cnvol(K)
vol(L)

,

provided that vol(K)
vol(L) ≥ 1.
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Proof.

N(K,L)
1
n ≤

vol(K + 1
2L)

vol(1
2L)

(by covering number estimate)

≤ C ·
vol(K)

1
n + vol(1

2L)
1
n

vol(1
2L)

1
n

(by reverse Brunn-Minkowski)

≤ C
(

vol(K)
vol(L)

) 1
n

.

When we consider the covering of a symmetric convex body by its M -
ellipsoid (or vice versa), we have the following result as a direct consequence
of the above corollary.

Corollary 15.7 (Covering number by M -ellipsoids). There exist abso-
lute constants c1, c2 > 0 such that for every symmetric convex body K ⊂ Rn,

N(K, EK) ≤ ec1n N(EK ,K) ≤ ec2n.

15.3. Duality of entropy: on the exponential scale. In this sub-
section, we will present a weak result on the duality of metric entropy. First,
let us see what we have on the duality of volume ratios.

Corollary 15.8 (Volume ratio duality). Let K and L be symmetric
and convex bodies in Rn. Consider the volume ratio defined by

v(K,L) =
(

vol(K)
vol(L)

) 1
n

.

Then, there exists an absolute constant C ≥ 1 such that
1
C
v(L◦,K◦) ≤ v(K,L) ≤ Cv(L◦,K◦).

Sketch of proof. Note that by Theorem 14.2,
v(K,L)
v(L◦,K◦)

= (s(K)s(L))
1
n ∼ constant.

Now, we present a result on the duality of metric entropy due to Konig
and Milman.

Corollary 15.9 (Entropy duality; [?]). Let K,L ⊂ Rn be symmetric
and convex. Then there exists an absolute constant C > 1 such that

1
Cn

N(L◦,K◦) ≤ N(K,L) ≤ CnN(L◦,K◦).

Proof. By Lemma 14.3 and the inverse Santalo inequality,

N(K,L) ≥ vol(K)
vol(K ∩ L)

≥ cnvol(K ∩ L)◦

vol(K◦)
.
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Note that

(K ∩ L)◦ = conv{K◦, L◦} ⊃ K◦ + L◦

2
.

Then,

N(K,L) ≥ cnvol(K◦ + L◦)
vol(K◦/2

≥ cnvol(K◦/2 + L◦)
vol(K◦/2

) ≥ cnN(L◦.K◦),

where the last step follows from the covering number estimate

N(K,L) ≤
vol
(
K + 1

2L
)

vol
(

1
2L
) .

Remarks. This corollary solves a weak form of the duality conjecture

N(L◦, CK◦)c ≤ N(K,L) ≤ N(L◦, cK◦)C

when the covering number N(K,L) ∼ ecn, where an exponential coefficient
does not ruin the order.

15.4. An alternative proof of Quotient of Subspace Theorem.
Our last application is a quotient of subspace theorem where the subspaces
are random. Recall that the QS-theorem we proved in only gives existence
of such subspaces. In this subsection, we will see that it actually holds with
high probability under some M -position assumptions.

Corollary 15.10. (Random Quotient of Subspace theorem) Let K ⊂
Rn be a symmetric convex body in an M -position, let δ ∈ (0, 1), and let E be
a random (1−δ)n-dimensional subspace and F ⊂ E a random k = (1−δ)2n-
dimensional subspace. Then with probability at least 1− e−ck,

d
(
PF (E ∩K), Bk

2

)
≤ C(δ),

where C(δ) is a constant that depends only on δ.

Proof. As K is in an M -position, we may assume that its M -ellipsoid
EK = Bn

2 , and EK◦ = Bn
2 . By Corollary 15.7,

N(K,Bn
2 ) ≤ ec1n N(K◦, Bn

2 ) ≤ ec2n.
Moreover, by Theorem 7.6, a random subspace E of dimension (1 − δ)n
satisfies that, with high probability,

diam(K ∩ E) ≤ C(δ).

That is, K ∩ E ⊂ C(δ) ·Bn
2 ∩ E. By duality, we get

PE(K◦) ⊃ 1
C(δ)

· PE(Bn
2 ).

Hence, we found a Euclidean ball inside a projection of K◦. Clearly,

N
(
PE(K◦), PE(Bn

2 )
)
≤ N(K◦, Bn

2 ) ≤ ec2n.
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Apply entropy theorem again, for PE(K◦) and a random (1−δ)2n-dimensional
subspace F ,

diam(PE(K◦) ∩ F ) ≤ C(δ).
Consequently,

1
C(δ

) ·Bn
2 ∩ F ⊂ PE(K◦) ∩ F ⊂ C(δ) ·Bn

2 ∩ F.

Hence, by duality,

d(PF (K ∩ E), Bk
2 ) = d(PE(K◦) ∩ F,Bk

2 ) ≤ C(δ)2.


