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3.1 Dvoretzky{like theorems 253.2 Fine embeddings of subspaces of Lp in lnp 273.3 Selecting good substructures 31References 321 Introduction: approximate isoperimetric inequalities and con-centrationLet (
;F ; �) be a probability space where F is the Borel �-�eld with respectto a metric d on 
 . The isoperimetric problem for the probability metric space(
;F ; �; d) is: Given 0 < a < 1 and � > 0, what isinff�(A�); A 2 F ; �(A) = ag?and for what A is it attained. Here A�, the � neighborhood of A, is de�ned asA� = f! 2 
 ; d(!;A) < �g.There are relatively few interesting cases, some of which will be described be-low, in which the answer to this question is known. However, it turns out thatfor many applications a solution to a somewhat weaker question is su�cient:Instead of �nding the actual in�mum of the quantity above it is enough to�nd a good lower bound to �(A�), subject to �(A) = a. We shall refer to sucha lower bound as a solution to the approximate isoperimetric inequality (forthe given space and parameters) provided the solution is optimal except forabsolute constants in the \right places".Let us illustrate the above by the example most relevant for us. The spaceunder question will be (Sn�1;F ; �; d). Here Sn�1 is the unit sphere in Rn , d thegeodesic distance, F the Borel �-�eld and � the normalized Haar measure (theunique probability measure on Sn�1 which is invariant under the orthogonalgroup). P. L�evy [35] stated and sketched a proof of the isoperimetric inequalityfor this space. For every a and � the minimal set is an (arbitrary) cap (i.e.,a d-ball) of measure a. For a cap B of measure 12 , B� is a cap of radius�2 + �. A standard computation then implies that, for a = 12 , say, and any ��(A�) � �(B�) � 1 � q�=8 e��2n=2 for any Bore set A � Sn�1 of measure 12 .Any inequality, �(A�) � 1 � e�c�2n, holding for all A with �(A) = 12 , withc an absolute constant, will be referred to as an approximate isoperimetricinequality (for sets of measure 12) in this case. As we shall see below theseinequalities are extremely powerful, the value of the constant c is of little2



importance for the applications we have in mind, and it is much easier toprove the approximate inequality than the isoperimetric one. Moreover, severalproofs of the approximate isoperimetric inequality in this case (and there aremany of them) can be generalized to other situations in which no isoperimetricinequality is known.The importance of the approximate isoperimetric inequalities stems from thefact that they imply the following concentration phenomenon.In the setup above, if �(A�) � 1��=2 for all A with �(A) � 12 and if f : 
! Ris a function with Lipschitz constant 1, i.e., jf(x) � f(y)j � d(x; y) for allx; y 2 
, then �(fx ; jf(x)�M j � �g) � �.Here M denotes the median of the function f , i.e., is de�ned by �(ff �Mg),�(ff �Mg) � 12 . This is easily seen (and �rst noticed by L�evy in the settingof Sn�1) by applying the inequality �(A�) � 1��=2 once for the set ff �Mgand once for ff � Mg. If � is small this is interpreted as \any such f isalmost a constant on almost all of 
". For example, in the example abovewe get that any Lipschitz function of constant one, f : Sn�1 ! R, satis�es�(fx 2 Sn�1 ; jf(x)�M j � �g) � 2 e��2n=2, which is quite counterintuitive.The median M can be replaced by the expectation of f , Ef = RSn�1 f d� pro-vided we change the constants 2; 12 to other absolute constants. Furthermore,each of these two concentration inequalities is also equivalent (with a changeof constants) to ���(f(x; y) 2 Sn�1�Sn�1 ; jf(x)� f(y)j � �g) � C e�c�2n :This holds not only in this particular example but in great generality (see forexample [40] V.4).The opposite statement to the one in the second to last paragraph also holds.Concentration implies approximate isoperimetric inequality:If �(fx ; jf(x) �M j � �g) � � for all Lipschitz function with constant onethen �(A�) > 1� � for all sets A of measure at least 12 .This follows easily by considering the function f(x) = d(x;A).Vitali Milman realized the relevance of L�evy's concentration inequality toproblems in Geometry and Functional Analysis. Using it he found in [39] a newproof of Dvoretzky's theorem [11] on Euclidean section of convex bodies whichwas much more accessible than the complicated original proof. Much moreimportantly, his proof is subject to vast variations and generalizations. SeeSection 3.1 for this proof. Except for using the idea of concentration in manyinstances himself, Milman also promoted the search for new concentrationinequalities and new applications of them.3



In this article we survey many (but not all) of the methods of proof of concen-tration and approximate isoperimetric inequalities. We tried to concentratemostly on methods which are quite general or that we feel were not exploredenough and should become more general. There are many di�erent such meth-ods with some overlap as to the inequalities they prove. Section 2 contains thissurvey.In Section 3 we give a sample of applications of concentration inequalities.There are many more such applications. At some points our presentation isvery sketchy since on one hand many of the applications need the introductionof quite a lot of tools not directly connected to the main theme here and onthe other hand some of the subjects dealt with in this application section arealso dealt with, with more details in other articles in this handbook. We hopewe give enough to wet the reader's appetite to search for more in the originalsources or the other articles of this handbook.We would like to emphasize that this is far from being a comprehensive surveyof the topic of concentration. This author has a soft point for new ideas inproofs and in many instances below preferred to give a glimpse into theseideas by treating a special case or a version of the relevant result which isnot necessarily the last word on it rather than to give all the details on thesubject.2 Methods of proof2.1 Isoperimetric inequalities, Brunn{Minkowski inequalityWe start by stating two forms of the classical Brunn{Minkowski inequality.Here j � j denotes Lebesgue measure in Rn and A+B denotes the Minkowski'saddition of sets in Rn ; A+B = fa+ b; a 2 A; b 2 Bg.Theorem 1 (i) For every n and every two nonempty measurable subsets ofRn A and B, jA+Bj1=n � jAj1=n + jBj1=n: (1)(ii) For every n, every two nonempty measurable subsets of Rn A and B andevery 0 < � < 1, j�A+ (1� �)Bj � jAj�jBj1��: (2)Equality in either inequality holds if and only if A and B are homothetic.4



Theorem 1 has many di�erent proofs. We refer to [51] for two of them and foran extensive discussion concerning this theorem. A variation of this theoremwas proved by Pr�ekopa and Leindler [45], [33]. One possible proof of theirtheorem is by induction on the dimension (see e.g. [44]). Theorem 1 is a simpleconsequence of this theorem.Theorem 2 Let f; g; h be integrable non-negative valued functions on Rn andlet 0 < � < 1. Assumeh(�x + (1� �)y) � f(x)�g(y)1��; for all x; y 2 Rn (3)then ZRn h � 0@ZRn f1A�0@ZRn g1A1�� : (4)Theorem 1 provides a simple proof of the classical isoperimetric inequality inRn . To avoid restricting ourselves to bodies for whose surface area is de�nablewe prefer to state it as: for every 0 < a <1 and every � > 0, among all bodiesof volume a in Rn the ones for which the volume of A� is minimal are exactlyballs of volume A.Maurey [38] noticed that Theorem 2 can be used to give a simple proof ofthe approximate isoperimetric inequality on the sphere (or equivalently forthe canonical Gaussian measure on Rn). Recently, Arias-de-Renya, Ball andVilla [4] discovered an even more direct proof of the approximate isoperimetricinequality on the sphere, using Theorem 1. Their proof actually establishes afar reaching generalization originally due to Gromov and Milman [19]. We referto [23] for a discussion of the notion of uniform convexity. We only recall thefollowing (equivalent) de�nition for the modulus of convexity � of a normedspace (X; k � k):�(�) = inf �1� x + y2  ; kxk; kyk � 1; kx� yk � �� : (5)Given a norm k � k on Rn we consider, in the following theorem, the set S =fx 2 Rn ; kxk = 1g with the metric d(x; y) = kx�yk and the Borel probabilitymeasure �(A) = jftA; 0�t�1gjjfx; kxk�1gj .Theorem 3 Let k � k be a norm on Rn and let � be the modulus of convexityof (Rn ; k � k). Then for any Borel set A � S and any � > 0,�(A�) > 1� 2�(A)�1e�2n�(�=2): (6)5



Proof. Let K = fx; kxk � 1g and � the normalized Lebesgue measure onK. By considering the set ftA; 12 � t � 1g it is clearly enough to prove that,for B � K, �(B�) > 1� �(B)�1e�2n�(�).Put C = fx 2 K; d(x;B) � �g then, for all x 2 B; y 2 C, x+y2  � 1� �(�),i.e., B + C2 � (1� �(�))Ktherefore, by the Brunn{Minkowski inequality,�(B)�(C) � (1� �(�))2n � e�2n�(�):
Since for the Euclidean norm on Rn , �(�) � �2=8, we get a simple proof of theapproximate isoperimetric inequality for the sphere Sn�1 (with the Euclideanor geodesic distance and Haar measure) discussed in the introduction.Corollary 4 If A � Sn�1 and � > 0 then�(A�) > 1� 2�(A)�1e�n�2=16:Consequently, if f : Sn�1 ! R is a function with Lipschitz constant 1 then�(fx ; jf(x)�M j � �g) � 8e�n�2=16:There are several ways to prove the isoperimetric inequality (as opposed toapproximate isoperimetric inequalities) on the sphere. Some of them generalizeto give isoperimetric inequalities in other situations. We refer to Appendix I in[40] in which Gromov presents a generalization based on Levy's original proofand proves an isoperimetric inequality for Riemannian manifolds in term oftheir Ricci curvature. A particularly useful instance of this generalization isthe case of O(n) equipped with its Haar measure and Euclidean metric (i.e.the Hilbert-Schmidt norm). [13] contains a relatively easy and self containedproof of the isoperimetric inequalities on the sphere by symmetrization. Itseems however to be very special to Sn�1. We now sketch very briey a proof byanother method of symmetrization which is not very well known and which wethink deserves to be better known. It seems to have the potential to generalizeto other situations. It is due to Baernstein II and Taylor [6] and is written indetail with indications towards generalizations in [7].6



Sketch of proof of Levy's isoperimetric inequality. Given a HyperplaneH through zero in Rn we denote S0 = Sn�1 \ H and by S+ and S� the twoopen half spheres in the complement of H. Let also � = �H be the reectionwith respect to H. Of course � is an isometry with respect to the (Euclideanor geodesic) metric on Sn�1, it satis�es �2 = identity and preserves the Haarmeasure. It also satis�es that if x; y 2 S+ then d(x; y) � d(x; �(y)).Given a set A � Sn�1 we de�ne its two point symmetrization A� with respectto the above decomposition asA� = [A \ (S+ [ S0)] [ [A \ S� \ �(A \ S+)] [ [�(A \ S� n �(A \ S+))]i.e., we \push up" elements of A \ S� into S+ using � whenever there isspace available. The term symmetrization seems a bit misleading since wedesymmetrize as far as symmetry with respect to H is concerned. The pointof course is that A� is closer to cap than A is and in that sense is moresymmetric.Note that if A is Borel, �(A�) = �(A). It is also easy to prove that for every� > 0 and for every A � Sn�1 (A�)� � (A�)�:In particular, �((A�)�) � �((A�)�) � �(A�):The de�nition of the symmetrization procedure and the last property holdfor any metric probability space (K;�) admitting an isometric and measurepreserving involution � and any partition of the complement of K0 = fx; x =�(x)g into K�; K+ provided this involution and partition satisfy the followingproperties: K+ = �(K�) and d(x; y) � d(x; �(y)) for all x; y 2 K+.To prove the isoperimetric inequality we would like to apply the operationA ! A� with respect to many hyperplanes, reach a set so that no fartherapplication of this operation improves �(A�) and prove that such a set mustbe a cap. We'll sketch in a minute how to do that for Sn�1 but we would liketo emphasis again that this seems plausible in other situations as well and wethink it deserves further investigation.Consider the metric space C of all closed subsets of Sn�1 with the Housdor�metric. Fix A 2 C and consider the set B � C of all sets B 2 C satisfying:{ For all � > 0 �(B�) � �(A�) and 7



{ �(B) = �(A).One checks that the set B is closed in C.Fix a point x0 2 Sn�1 and let C be the closed cap centered at x0 with measure�(A). It is enough to prove that C 2 B. For any hyperplane H with x0 =2 Hwe denote by S+ the open half sphere containing x0. One now proves thatB ! �(B\C) is upper semi continuous on C. Consequently, �(B\C) attainsits maximum on B, say at B. We shall show that B � C which will provethe claim. If this is not the case then �(B n C) = �(C n B) > 0. Let x 2B n C and y 2 C n B be points of density of the respective sets and let Hbe the hyperplane perpendicular to the segment [x; y] and crossing it at themidpoint (x + y)=2. Let B(x; r) � S�, B(y; r) � S+ be small balls such that�(B(x; r)\(BnC)) > 0:99�(B(x; r)) and �(B(y; r)\(CnB)) > 0:99�(B(y; r)).Applying the symmetrizationB ! B� with respect to this hyperplane, most ofB(x; r) will be transferred into B(y; r) while no point of C \B is transferredto a point which is not in C. Thus, �(B� \ C) > �(B \ C). Since B� alsobelongs to B we get a contradiction.With a bit more e�ort the proof above can be adjusted to show that caps arethe only solutions to the isoperimetric problem in Sn�1.2.2 MartingalesRecall that for f 2 L1(
;F ; P ) and for G, a sub �-algebra of F , the conditionalexpectation, E (f jG), of f given G is the unique h 2 L1(
;G; PjG) satisfyingZA hdP = ZA fdP for all A 2 G: (7)(h is the Radon-Nikod�ym derivative of the measure �(A) = RA fdP on G withrespect to PjG.)The correspondence f ! E (f jG) is a linear positive operator of norm one onall the spaces Lp(
;F ; P ), 1 � p � 1. Some additional properties of thisoperator are:{ If G 0 � G is a sub �-algebra then E (E (f jG)jG 0) = E (f jG 0).{ If g 2 L1(
;G; P ) then E (fgjG) = gE(f jG).{ For the trivial �-algebra G = f;;
g, E (f jG) = Ef , the expectation of f .Given a �nite or in�nite sequence of �-algebras, F0;F1; : : :, a sequence ofelements of L1(
;F ; P ), f0; f1; : : :, is said to be a martingale with respect to8



F0;F1; : : : if fi = E (fj jFi) for all i � j. We shall always assume here thatF0 is the trivial �-algebra f;;
g and that the sequence is �nite with the lastterms being fn = f and Fn = F . Then, fi = E (f jFi), i = 0; 1; : : : ; n. Wealso denote di = fi � fi�1, i = 1; 2; : : : ; n, and call the sequence fdigni=1 themartingale di�erence sequence. One set of examples of a martingale is thefollowing: Let Xi be a sequence of mean zero independent random variablesand put fi = Pij=0Xj, then ffig is a martingale with respect to fFig where Fiis the smallest �-algebra with respect to which X0; : : : ; Xi are measurable. Ina lot of senses a general martingale resembles this particular set of examples.There are many inequalities estimating the probability of the deviation off = fn from f0 = Ef in terms of the behavior of the sequence fdig. In thenext proposition we gather some of them. (i) is due to K. Azuma [5] or[52]p. 238. (ii) and (iii) are due to Pisier [42], (ii) was �rst used in [24]. (iv) is ageneralization to the martingale case of Prokhorov's inequality. In a somewhatweaker form it �rst appears in [27]. The form here is from [21]Proposition 5 (i) For all t > 0,P (f!; jf(!)� Ef j � tg) � 2exp(�t2=2 nXi=1 kdik21): (8)(ii) For all 1 < p < 2 and t > 0,P (f!; jf(!)� Ef j � tg) � Kexp(��(t=kfkdik1gkp;1)q) (9)where q�1 + p�1 = 1, K and � depend only on p and kfaigni=1kp;1 =max1�j�n j1=pa�j with fa�jg denoting the decreasing rearrangement of thesequence fjajjg.(iii) For all t > 0,P (f!; jf(!)� Ef j � tg) � Kexp(�exp(�t=kfkdik1gk1;1)) (10)where K and � are absolute constants.(iv) Put M = max1�i�n kdik1 and S2 = kPni=1 E (d2i jFi�1)k1. Then, for allt > 0, P (f!; jf(!)� Ef j � tg) � 2exp�� t2M � arc sinh�Mt2S2�� : (11)The proofs of these and similar inequalities are usually quite simple. Let ussketch the proof of (i). If Fi is \rich" enough, extreme points in the setfd 2 L1(
;Fi; P ); E (djFi�1) = 0; jdj � ag have constant absolute valueequal to a. Consequently for all � 2 R,E (e�di jFi�1) � cosh�kdik1 � e�2kdik21=2: (12)9



Extending Fi (to become rich enough) if necessary, this inequality holds al-ways. It follows thatEe�Pni=1 di = E �E (e�Pn�1i=1 di jFn�1)� e�2kdnk21=2: (13)Iterating this (by applying E (�jFn�2), then E (�jFn�3)...) we getEe�(f�Ef) � e�2Pni=1 kdik21=2: (14)Applying Chebyshev's inequality we get, for positive �,P (f!; f(!)� Ef � tg) � P (f!; e�(f(!)�Ef)��t � 1g)� e��tEe�(f�Ef) � e��t+�2Pni=1 kdik21=2: (15)Minimizing over positive � and repeating this with negative � we get theresult.V. V. Yurinski [59] was probably the �rst to use martingale inequalities in thecontext of Banach space valued random variables. The point is that if Xi areindependent Banach space valued random variables and we form the martin-gale fi = E (kPnj=1Xjk jFi) then the martingale di�erences satisfy jdij � kXik.This can be used to estimate the tail behavior of kPnj=1Xjk. Maurey [37] no-ticed that martingale deviation inequalities can be used to prove approximateisoperimetric inequality for the interesting case of the permutation group. Wepresent a somewhat simpli�ed version of his proof with some abstractization([46] [40]).The length of a �nite metric space (
; d) is de�ned as the in�mum of ` =(Pni=1 a2i )1=2 over all sequences a1; : : : ; an of positive numbers satisfying: Thereexists a sequence f
kgnk=0 of partitions of 
 with{ 
0 = f
g and 
n = ff!gg!2
.{ 
k re�nes 
k�1, k = 1; : : : ; n.{ If k = 1; : : : ; n, A 2 
k�1, B;C � A and B;C 2 
k then there is a one toone map h from B onto C such that d(!; h(!)) � ak for all ! 2 B.The two basic examples we shall deal with are the Hamming cube, Hn, and thepermutation group, �n. The Hamming cube is the set f0; 1gn with the metricd((�i)ni=1; (�i)ni=1) = #fi; �i 6= �ig. �n is the set of permutations of f1; 2; : : : ; ngwith the metric d(�; ') = #fi; �(i) 6= '(i)g. The length is smaller or equalpn in the �rst case and 2pn� 1 in the second. Let us illustrate this in thesecond example. Fix 1 � k � n � 1 and i1; i2; : : : ; ik distinct elements of10



f1; 2; : : : ; ng. PutAi1;i2;:::;ik = f� 2 �n; �(1) = i1; : : : ; �(k) = ikg (16)and let 
k be the partition whose atoms are all the sets Ai1;i2;:::;ik where(i1; i2; : : : ; ik) ranges over all n!=(n� k)! possibilities. It is clear that the �rsttwo requirements from f
kgn�1k=0 are satis�ed (with n � 1 replacing n). Toshow that the third one is satis�ed with ai = 2 for i = 1; : : : ; n � 1, letA = Ai1;i2;:::;ik�1 2 
k�1 and B = Ai1;i2;:::;ik�1;r; C = Ai1;i2;:::;ik�1;s 2 
k andde�ne h : B ! C by h(�) = (r; s) � � (where (r; s) is the transposition of rand s).We are now ready to state the main theorem of this section.Theorem 6 Let (
; d) be a �nite metric space of length at most `. Let P bethe normalized counting measure on 
. Then,(i) Let f : 
 ! R satisfy jf(x) � f(y)j � d(x; y) for all x; y 2 
. Then forall t > 0, P (f!; jf(!)� Ef j � tg) � 2exp(�t2=2`2): (17)(ii) Let A � 
 with P (A) � 1=2 then for all t > 0P (At) � 1� 2 exp(�t2=8`2): (18)Sketch of proof. Let ` = (Pni=1 a2i )1=2 with ai and 
i, i = 0; : : : ; n, as inthe de�nition of length. Let Fi be the �eld generated by 
i and form themartingale fi = E (f jFi), i = 0; : : : ; n. Note that fi is constant on each atomB of 
i and that this constant is fijB = Avex2Bf(x). If B;C are two atoms of
i contained in an atom A of 
i�1 then by the third property of the sequenceof partitions, jfijB � fijC j = jBj�1 �����Xx2B f(x)� f(h(x))����� � ai: (19)Since fi�1jA is the average of fijB over all atoms B of Fi which are subsets ofA, we get from (19) that jfi�1jA � fijC j � ai and since this holds for all suchA and C, kdik1 � ai. Now apply 5 (i). This proves (i). (ii) follows from (i) asexplained in the introduction.Corollary 7 Let (
; d) be either Hn or �n.(i) Let f : 
 ! R satisfy jf(x) � f(y)j � d(x; y) for all x; y 2 
. Then for11



all t > 0, P (f!; jf(!)� Ef j � tg) � 2exp(�t2=8n): (20)(ii) Let A � 
 with P (A) � 1=2 then for all t > 0P (At) � 1� 2 exp(�t2=32n): (21)By considering a ball in the Hamming metric it is easy to see that, exceptfor the choice of the absolute constants involved, the result for Hn is bestpossible. In this case, the exact solution to the isoperimetric problem is knownas well (and, for sets of measure 2k=2n, is a ball) [20],[14]. For sets of measureof the form 2k=2n this can also be deduced from the method of two pointsymmetrization introduced in the previous section. For �n the solution to theisoperimetric problem is not known. However, again except for the absoluteconstants involved, the corollary gives the right result:Example 8 Let n be odd and de�ne A � �2n byA = f�; �(i) � n for more than n=2 indices i with 1 � i � ng: (22)Then, �(A) = 12 and for all k < n=2,P (Ack) = 1(2n)! P[n2�k]+1l=0 �nl� n!(n�l)! n!l! n!= 1(2nn ) P[n2�k]+1l=0 �nl�2: (23)
For k with k=n bounded away from 0 and 1, a short computation shows thatthis is larger than e��k2=n.It is also not hard to see that, at least for some a and t, balls are not thesolution to the isoperimetric problem inffP (At); P (A) = ag on �n. Wewonder whether there is an equivalent, with constants independent of n, (andhopefully natural) metric on �n for which one can solve the isoperimetricproblem.The advantage of the method described above is in its generality; in principle,whenever we have a metric probability space we can estimate its length bytrying di�erent sequences of partitions and get some approximate isoperimet-ric inequality. In reality it turns out that in most speci�c problems, and inparticular when the space is naturally a product space, one gets better resultsby other methods. 12



2.3 Product spaces - InductionIn [53] Talagrand introduced a relatively simple but quite powerful methodto prove concentration inequalities which works in many situations in whichthe probability space is a product space with many components. The proofs,as naive as they may look, are by induction on the number of components.The monograph [57] contains many more instances in which variants of thismethod work. Another feature in Talagrand's work is the deviation from thetraditional way of measuring distances; the \distance" of a point from a setis not always measured by a metric. We start with a small variation on theoriginal theorem of Talagrand taken from [25].Theorem 9 Let 
i � Xi, i = 1; : : : ; n, be compact subsets of normed spaceswith diam(
i) � 1. Consider 
 = 
1 � 
2 � : : : � 
n as a subset of the `2sum (Pni=1�Xi)2. Let �i be a probability measure on 
i, i = 1; : : : ; n, and putP = �1 � �2 � : : : �n. For a compact A � 
 denote the convex hall of A byconv(A) and for x 2 
 put '(x;A) = dist(x; conv(A)) (with respect to themetric in (Pni=1�Xi)2). Then(i) Z e'2(x;A)=4 � 1P (A) : (24)In particular, for all t > 0,P (fx; '(x;A) > tg) � 1P (A)e�t2=4: (25)(ii) If f : 
 ! R is convex and Lipschitz (with respect to the metric of(Pni=1�Xi)2) with constant 1 thenP (fx; jf(x)� Z f j > tg) � 4e�ct2 (26)for all t > 0 and some universal c > 0.Sketch of proof. The proof of the �rst assertion of (i) is by induction. Thesecond assertion of (i) and also (ii) (with a bit more e�ort) follow as in (15).The other theorems in this section are proved similarly. We shall illustratethe induction step. Assume that R e'2(x;A)=4dP (x) � 1P (A) for all compactA � 
 = 
1� : : :�
n and let A � 
�
n+1. For ! 2 
n+1 put A(!) = fx 2
; (x; !) 2 Ag (where, for x = (x1; : : : ; xn) 2 
, (x; !) = (x1; : : : ; xn; !)).Put also B = [!2
n+1A(!). Fix a y = (x; !) 2 
 � 
n+1 and notice that'(y; A) � '(x;A(!)) provided A(!) 6= ;. Also, '(y; A) � '(x;B) + 1. Fromthese two inequalities it is easy to deduce that, for all 0 � � � 1, '2(y; A) ��'2(x;A(!)) + (1� �)'2(x;B) + (1� �)2. Using H�older's inequality and the13



induction hypothesis, one gets, for all ! 2 
n+1,Z
 e'2((x;!);A)=4 � e(1��)2=4P (B)  P (A(!))P (B) !�� : (27)We now use a numerical inequality (which can serve as a good Calculus exer-cise). For all 0 � p � 1, inf0�p�1 p��e(1��)2=4 � 2� p:Using this inequality with p = P (A(!))P (B) and integrating (27) over !, we getZ
n+1 Z
 e'2((x;!);A)=4 � 1P (B)  2� P � �n+1(A)P (B) ! � 1P � �n+1(A) : (28)
Note that if Xi = f�1; 1g with the uniform measure for each i then by Corol-lary 7 the same conclusion as in Theorem 9(ii) holds for any (i.e., not necessar-ily convex) function satisfying jf(x)�f(y)j � n�1=2P jxi�yij. However, for aconvex function, Theorem 9 gives a much better result since n�1=2P jxi�yij �(P jxi � yij)1=2.The theorem above has the disadvantage that, because of the convexity as-sumption, it applies only to 
i's which lie in a linear space. This is taken careof in the next theorem from [57] which surprisingly is extremely applicable.Given probability spaces (
i;Fi; �i), i = 1; : : : ; n, form the product space(
; P ) with 
 = Qni=1
i and P = Q�i. For x; y 2 
 let U(x; y) be thesequence in f0; 1gn which realizes the Hamming distance between x and y,i.e., has 0 exactly in the coordinates i where xi = yi. For a subset A of 
 andfor x 2 
 we set U(x;A) to be the subset of f0; 1gn consisting of all sequencesU(x; y) for some y 2 A, i.e.,U(x;A) = ff�igni=1 2 f0; 1gn; for some y 2 A; yi = xi i� �i = 0g:For x 2 
 and A � 
 let '(x;A) = d(0; conv(U(x;A))). It should be notedthat, in general, '(x;A) is not induced by a metric. i.e., there is no metric don 
 such that '(x;A) = inffd(x; y); y 2 Ag. This is easily seen to be thecase for 
 = f0; 1gn for example. 14



Theorem 10 Let A � 
 thenZ e'2(x;A)=4 � 1P (A) : (29)In particular, for all t > 0,P (fx; '(x;A) > tg) � 1P (A)e�t2=4: (30)Using the Hahn Banach theorem one can show that'(x;A) = supP�2i=1 inff Xfi;yi 6=xig�i; y 2 Ag: (31)Notice that, if h denotes the Hamming distance on 
, i.e., h(x; y) = #fi; yi 6=xig, then formula 31 implies that '(x;A) � h1=2(x;A). Using this inequalityand the martingale method of section 2.2 one gets only P ('(x;A) > t1=2) �Ce�ct2=n while Theorem 10 gives P ('(x;A) > t1=2) < 4e�t=4 � 4e�t2=4n for tin the relevant range, 0 < t < n. This illustrates the possible advantage ofthis inequality over Corollary 7 for Hn. Theorem 10 has many applications.We refer to [57] for some on them. A variant of Theorem 9 and particularlyof (26) was recently proved by M. Ledoux ([30] or [31]). The di�erence isthat the convexity assumption on f is weakened to convexity of each variableseparately but the conclusion is only a one sided deviation inequality:P (fx; f(x)� Z f > tg) � 4e�ct2 : (32)It is unknown whether a similar lower deviation inequality also holds.The next result was �rst proved by Talagrand in [54]. The original proof wasvery complicated but in [57] Talagrand presented a much simpler inductiveproof which we shall sketch here. Consider a product probability space (
 =Qni=1
i; P = Qni=1 �i). Given a q 2 N and q + 1 elements of 
, x; y1; : : : ; yq,we de�ne the \Hamming distance" of x from the q-tuple y1; : : : ; yq byh(x; y1; : : : ; yq) = #fi; xi 62 fy1i ; : : : ; yqi gg: (33)Given q subsets A1; : : : ; Aq of 
, we de�neh(x;A1; : : : ; Aq) = inffh(x; y1; : : : ; yq); y1 2 A1; : : : ; yq 2 Aqg: (34)15



Theorem 11 Z qh(x;A1;:::;Aq) � 1Qqj=1 P (Aj) : (35)In particular, P (fx; h(x;A1; : : : ; Aq) � kg) � 1Qqj=1 P (Aj)q�k (36)for all k 2 N.Sketch of proof of the induction step: For A1; : : : ; Aq � 
 � 
n+1 and! 2 
n+1 put Aj(!) = fy 2 
; (y; !) 2 Ajg; j = 1; : : : ; q (37)and Bj = [u2
n+1Aj(u); j = 1; : : : ; q: (38)Fix ! 2 
 and k 2 f1; : : : ; qg and put alsoCj = 8><>:Bj if j 6= kAk(!) if j = k. (39)One then shows thath((x; !);A1; : : : ; Aq) � minf1 + h(x;B1; : : : ; Bq); h(x;C1; : : : ; Cq)g: (40)It then follows from the induction hypothesis thatZ qh((x;!);A1;:::;Aq) � 1Qqj=1 P (Bj) min(q; min1�k�q P (Bk)P (Ak(!))) : (41)If 0 � hi � 1, i = 1; : : : ; q, are functions on a probability space thenZ minfq; min1�i�q h�1i g � qYi=1(Z hi)�1: (42)16



This follows easily from the inequality R h�1(R h)q � 1 which holds for everyfunction h satisfying q�1 � h � 1. Using (42) and integrating (41) over 
n+1,we get the assertion for n+ 1.We shall see in a minute the big advantage of this theorem over the concen-tration inequality for the Hamming metric. Although it looks like there is notmuch di�erence between h(�;A;A), say, and the Hamming distance of a pointfrom a set (d(�; A) of Section 5), it turns out that the last theorem gives muchbetter concentration when it applies. Theorem 11 is still looking for good ap-plications. As far as we know Theorem 11 has basically one application dealingwith the tail behavior of norms of sums of independent Banach space valuedrandom variables. This is the original application which led Talagrand to provethis result (see [54] and [57], section 13). This particular application also hasa di�erent proof [29].To illustrate the advantage of Theorem 11 over the basic inequality for theHamming metric we de�ne a class of functions and state a corollary whichamounts to a deviation inequality for this class of functions. For I � f1; : : : ; ngdenote 
I =Yi2I
i and 
� = [I�f1;:::;ng
Iand let f : 
� ! R+ . We say that f is monotone ifI � J � f1; ; : : : ; ng implies f((xi)i2I) � f((xj)j2J) (43)for all (xj)j2J 2 
J . We say that f is subadditive if for all I; J disjoint subsetsof f1; ; : : : ; ng and all (xi)i2I[J 2 
I[J ,f((xi)i2I[J) � f((xi)i2I) + f((xj)j2J): (44)Here is an example of such a function: Let 
i be subsets of a normed space(X; k � k) and put f((xi)i2I) = Ave�i=�1kPi2I �ixik.For x 2 
I ; y 2 
J we shall denote by h(x; y) the number of coordinatesin which xi 6= yi including coordinates in which one or both of xi; yi are notde�ned.Corollary 12 Let f : 
� ! R+ be monotone, subadditive and satisfy jf(x)�f(y)j � h(x; y) for all x; y 2 
�. Then, for all a > 0, 1 � k � n and q 2 N,P (fx 2 
; f(x) � (q + 1)a+ kg) � P (f � a)�qq�k: (45)17



For a being the median of f and q = 2, say, one gets P (f � 3a+k) � 42�k. Ifa << k << n this is much better than what one gets for a general Lipschitzfunction from, e.g., the martingale method. There one gets P (f � a + k) �2e�k2=4n.Note the resemblance with the situation concerning Theorem 9: In both caseswe evaluate the probability of deviation of f from its expectation (or median),a quantity which depends only on the behavior of f on 
 (since the probabilitymeasure is supported there). However, by extending f to a larger set (inTheorem 9 the convex hull of 
, here 
�), if possible, using its Lipschitzconstant on the larger set and some additional properties of the extendedfunction (there convexity, here monotonicity and subadditivity) we get, insome cases a stronger concentration result than the basic one.Proof of Corollary 12. For 1 � i � q put Ai = A = fx 2 
; f(x) � ag.Then ff(x) � (q + 1)a+ kg � fh(x;A1; : : : ; Aq) � kg:Indeed, if h(x;A1; : : : ; Aq) < k, let y1; : : : ; yq 2 A be such that, putting I =fi; xi 62 fy1i ; : : : ; yqi gg, #I < k. The complement of I can be written as [kj=1Jjwith Jj � f1; : : : ; ng satisfying xi = yji for i 2 Jj. Then, assuming I is notempty, f(x) � f(xjI) +Pqj=1 f(xjJj)� f(xjI + y1jJ1) +Pqj=1 f(yjjJj)� #I + f(y1jJ1) +Pqj=1 f(yjjJj)� #I + f(y1) +Pqj=1 f(yj)< k + (q + 1)a: (46)
The corollary follows now immediately from Theorem 11.The paper [57] also contains a generalization of the concentration inequalityfor the permutation group, Corollary 7. The (inductive) proof of this result isa bit harder than the other proofs surveyed in this section and we shall notreproduce it. This result also awaits good applications.18



Equip the symmetric group Sn with its natural probability measure, �. For� 2 Sn and A � Sn letf(�;A) = inf ( nXi=1 s2i ; (s1; : : : ; sn) 2 VA(�)) (47)where VA(�) is the convex hall of the setf(s1; : : : ; sn) 2 f0; 1gn; 9� 2 A s:t: 8i � n; si = 0) �(i) = �(i)g:Theorem 13 for every A � Sn, t > 0�(f�; f(�;A) > tg) � 1�(A)e�t=16: (48)The manuscript [57] contains many re�nements of Theorems 10, 11 and 13which we do not reproduce here.2.4 Spectral methodsLet (
;F ; �) be a probability space, A some set of measurable functions andE : A ! R+ some function (which we shall refer to as energy function). Forf 2 L2(
) denote by �2(f) the variance of f ,�2(f) = Z (f � Ef )2d� = Z f 2d�� (Z fd�)2 (49)and, for f 2 L2 logL (i.e. R f 2 log+ fd� < 1), denote by �(f) the entropy off 2, �(f) = Z f 2 log f 2d�� Z f 2d� log(Z f 2d�) (50)(which is necessarily �nite). We say that (A; E) satisfy a Poincar�e inequalitywith constant C if �2(f) � CE(f) for all f 2 A: (51)We say that (A; E) satisfy a logarithmic Sobolev inequality with constant Cif �(f) � CE(f) for all f 2 A: (52)19



The main example of an energy function E is related to the gradient or gener-alization of it. If d is a metric on 
 (and F the Borel �-�eld), de�ne the normof the gradient at x 2 
 byjrf(x)j = lim supy!x jf(x)� f(y)jd(x; y) : (53)Note that rf(x) by itself is not de�ned. The reason for this notation is ofcourse that if (
; d) is a Riemannian manifold (in particular if it is Rn withthe Euclidean distance) and if f is di�erentiable at x then jrf(x)j is theEuclidean norm of the gradient of f at x. De�ne nowE(f) = Z jrf(x)j2d�(x): (54)The classical Poincar�e (or Rayleigh{Ritz) inequality says that, in the case ofa compact Riemannian manifold, (51) is satis�ed with C = ��11 , �1 being the�rst positive eigenvalue of the Laplacian on L2(
; �).We shall only deal here with the energy function (54). [31] contains manyother examples and a comprehensive treatment of the subject of this section.If A is the set of bounded Lipschitz functions on (
; d), the norm of thegradient satis�es the chain rule: If � 2 C1(R) and f 2 
 then � � f 2 
 andjr(� � f)(x)j � jrf(x)jj�0(f(x))j (55)and consequently E(� � f) � kfk2Lip Z j�0(f(x))j2d�(x) (56)where kfkLip denotes the Lipschitz constant of f . The next theorem, basicallydue to Gromov and Milman, shows that Poincar�e inequality implies concen-tration.Theorem 14 Let (
;F ; �; d) be a probability metric space. Let A be the setof bounded Lipschitz functions on (
; d) and let E be de�ned by (54). Assumethat (A; E) satis�es the Poincar�e inequality (51). Then for all j�j < 2=pCand every bounded f with Lipschitz constant 1Ee�(f�Ef) � 2404� C�2 : (57)20



In particular P (jf � Ef j > t) � 240e�p 2C t for all t > 0: (58)Proof. By (51) and (56)Eeg � (Eeg=2)2 � CE(eg=2) � C4 kgkLipEegfor any g 2 A. In particular, for any �,Ee�f � (Ee�2 f)2 � C�24 Ee�for Ee�f � 11� C�24 (Ee�2 f)2:Iterating we get for every n,Ee�f � n�1Yk=o 11� C�24k+1 !2k �Ee �2n f�2nwhich tends to 1Yk=o 11� C�24k+1 !2k e�Ef :
Remark 15 1. A simple limiting argument shows now that the assumptionthat f is bounded is superuous.2. The simple example of the exponential distribution on R shows that (exceptfor the absolute constants involved) one can't improve the concentration func-tion e�ct. As we shall see below, what looks like a slight change, logarithmicSobolev inequality instead of Poincar�e inequality, changes the behavior of theconcentration function from e�ct to e�ct2 .The next theorem is apparently due to Herbst.Theorem 16 Let (
;F ; �; d) be a probability metric space. Let A be the setof bounded Lipschitz functions on (
; d) and let E be de�ned by (54). Assume21



that (A; E) satis�es the logarithmic Sobolev inequality (52) then for all � 2 Rand every bounded f with Lipschitz constant 1Ee�(f�Ef) � eC�2=4: (59)In particular P (jf � Ef j > t) � 2e�t2=C for all t > 0: (60)Proof. Put h(�) = Ee�f , then�(e�f=2) = E�fe�f � Ee�f log(Ee�f ) = �h0(�)� h(�) log(h(�)): (61)Also, from (56), we get, E(e�f=2) � �24 Ee�f = �24 h(�): (62)Combining (61), (62) and (52) we get�h0(�)� h(�) log(h(�)) � �2C4 h(�)or, putting k(�) = ��1 log h(�) (and, by continuity, k(0) = Ef),k0(�) = 1� h0(�)h(�) � 1�2 logh(�) � C4 ; for all � 2 R:It follows that k(�)� k(0) � C�4 and thusEe�(f�Ef) = e�(k(�)�k(0)) � eC�2=4:
Remark 17 A simple limiting argument shows that here too the assumptionthat f is bounded is superuous.Both Poincar�e inequality and logarithmic Sobolev inequality carry over nicelyto product spaces in the following sense: For i = 1; 2; : : : ; n, let (
i;Fi; �i) be aprobability space, Ai some set of measurable functions on 
i and Ei : Ai ! R+some energy function. Put (
; P ) = Qni=1(
i; �i). Given a function f on 
 wedenote by fi the same function considered as a function of the i-th variable22



only, keeping all other variables �xed. De�ne E(f) = EP Pni=1 Ei(fi). Let Adenote the set of all functions f such that (for all x1; : : : ; xn and) for all i, fiis in Ai.One can prove that�2(f) � EP nXi=1 �2(fi) and �(f) � EP nXi=1 �(fi); (63)from which the following proposition easily follows.Proposition 18 Assume (Ai; Ei), i = 1; : : : ; n, all satisfy Poincar�e inequal-ity (resp. logarithmic Sobolev inequality) with a common constant, C. Then(A; E) satis�es Poincar�e inequality (resp. logarithmic Sobolev inequality) withthe same constant, C.Example 19 The symmetric exponential measure on R, i.e. the measure withdensity 12e�jtj, satis�es Poincar�e inequality with constant 4. Consequently, thesame is true for the measure on Rn which is the n fold product of this measure.The canonical Gaussian measure on R and thus on Rn satis�es logarithmicSobolev inequality with constant 2.The proof of both statements can be found in [31]. The second one is due toGross and, in view of Theorem 16, implies the concentration inequality for n,the Gaussian measure on Rn : If f : Rn ! R is Lipschitz with constant onewith respect to the Euclidean metric thenn �jf � Z f dnj > t� � Ce�ct2 :From this it is not hard to get the concentration inequality for Sn�1. One usesLemma 22 below.We would also like to state a theorem �rst proved by Talagrand [56] which\interpolates" between the last two theorems. See [8] and [31] for a relativelysimple proof along the lines of the proofs of the last two theorems. We state itonly for a speci�c probability measure P on Rn , the product of the measureswith density 12e�jtj on R. See [31] for generalizations.Theorem 20 Let f : Rn ! R be a function satisfyingjf(x)� f(y)j � �kx� yk2 and jf(x)� f(y)j � �kx� yk1 : (64)23



Then, with the probability introduced above,P (jf(x)� Ef j > r) � C exp(�cmin(r=�; r2=�2)) (65)for some absolute positive constants C; c and all r > 0.Remark 21 Although it deals with a di�erent probability measure, Theorem20 also implies the concentration inequality for the Gaussian measure on Rn(and thus, via Lemma 22 below, also for the Haar measure on Sn�1). Thisfollows from a simple transference of the Gaussian measure to the product ofthe symmetrized exponential measure discussed above. Thus, Theorem 20 canbe considered as a strengthening of these inequalities. We refer to [56] and [31]for that and further discussion.Although the methods in this and the previous section are specialized to prod-uct measures, there is a way to transfer such results to some other situations.In particular to the case of unit balls of `np spaces equipped with the normal-ized Lebesgue measure. The basic tool is the following simple result: Considerthe measure �(A) = jftA; 0�t�1gjjfx; kxkp�1gj on the surface of the `np ball, 0 < p <1. Con-sider also n independent random variables X1; X2; : : : ; Xn each with densityfunction cpe�jtjp, t 2 R. (Note that necessarily cp = p=2�(1=p).)Lemma 22 Put S = (Pni=1 jXijp)1=p. Then �X1S ; X2S ; : : : ; XnS � induces themeasure � on @Bnp . Moreover, �X1S ; X2S ; : : : ; XnS � is independent of S.See [49] for a proof. This lemma is used there to compute the tail behaviorof the `q norm on the `np ball. Recently ([50]) this result was strengthen, inthe case p = 1, q = 2, to give a concentration inequality for general Lipschitzfunctions, with respect to the Euclidean metric, on the `n1 ball Bn1 . The proofcombines most of the results of this section and we shall not give it here.Theorem 23 There exist positive constants C; c such that if f : @Bn1 ! Rsatis�es jf(x)� f(y)j � kx� yk2 for all x; y;2 @Bn1 then, for all t > 0,�(fx; jf(x)� Ef j > tg) � C exp(�ctn): (66)2.5 Bounds on Gaussian processesAs we shall see below, in the application sections, concentration inequalitiesare used mostly to �nd a point !, in the metric probability space under con-sideration, in which a big collection of functions fGt(!)gt2T are each close toits mean. There may be other ways to reach such a conclusion. Assuming themeans of all the functions under consideration are zero, it would be enough, for24



example, to prove that E supt2T jGtj is small (then, for a set of !'s of measureat least 1=2, supt2T jGt(!)j is at most 2�small).When T is a metric space and Gt a Gaussian process (meaning that any �nitelinear combination of the Gt's has a Gaussian distribution) the evaluation ofE supt2T jGtj is an extensively studied subject in Probability (having to dowith the existence of a continuous version of the process). See for example[32]. There are well studied connections between the quantity E supt2T jGtjand the entropy (or covering) function of the metric space T as well as withother properties of T . A recent achievement in this area is Talagrand's ma-jorizing measure theorem which relates the boundedness of E supt2T jGtj tothe existence of a certain measure (called majorizing measure) on T and givesnew ways to estimate this quantity. This subject is reviewed in [28] and we'llnot get into it any further here. We only remark that the proofs in this areaare very much connected with concentration properties of Gaussian variables.
2.6 Other toolsWe dealt above mostly with geometric and probabilistic tools to prove con-centration and approximate isoperimetric inequalities. There are many othermethods and results that are not discussed here for lack of space. In partic-ular we didn't discuss at all combinatorial methods. For example the (exact)isoperimetric inequality for the Hamming cube (from which Corollary 7 forthat case follows) was �rst proved by Harper [20] (see also [14] for a simplerproof) by combinatorial methods.There are also geometrical and probabilistic methods we didn't discuss. [43]contains a yet another nice probabilistic proof of Corollary 4 due to Maureyand Pisier. It uses properties very special to Gaussian variables and thus doesnot seem to generalize much.[48] contains a generalization of Corollary 4 to harmonic measures on Sn�1.The proof is by reduction to the Haar measure.A new probabilistic method which emerged recently is that of transportationcost , see [36], [58] and [10]. This seems very much related to Kantorovich'ssolution of Monge's \mass transport" problem although, as far as I know, noconcrete relation has been found yet.This short list is far from exhausting all the sources on this vast subject.25



3 Applications3.1 Dvoretzky{like theoremsThe introduction of the method(s) of concentration of measure into BanachSpace Theory was initiated by Milman in his proof [39] of Dvoretzky's theoremconcerning spherical sections of convex bodies [11]. Although this topic isextensively reviewed in the article [15] in this handbook, I would like to beginthe applications section with a statement of the theorem and a brief descriptionof its proof.Theorem 24 For all � > 0 there exists a constant c = c(�) > 0 such that forany n-dimensional normed space X there exists a subspace Y of dimensionk � c logn such that the Banach{Mazur distance d(Y; `k2) � 1 + �.See [23] for the de�nition of the Banach{Mazur distance. The one to one cor-respondence between n-dimensional normed spaces and n-dimensional sym-metric convex bodies (and the fact that every 2n-dimensional ellipsoid hasan n-dimensional section which is a multiple of the canonical Euclidean ball)easily shows that the theorem above is equivalent to the following geometri-cal statement. By a convex body in Rn we mean a compact convex set withnon-empty interior.Theorem 25 For all � > 0 there exists a constant c = c(�) > 0 such thatevery centrally symmetric convex body K admits a k � c logn central sectionK0 and a positive number r satisfying rB � K0 � (1 + �)rB, where B is thecanonical Euclidean ball in the subspace spanned by K0.Sketch of proof. Since the statement of each of the two theorems is invariantunder invertible linear transformations, we may assume that the unit ball Kof X = (Rn ; k � k) satis�es Bn2 � K and the canonical Euclidean ball Bn2 inRn is (the) ellipsoid of maximal volume among all ellipsoids inscribed in K.(It is a theorem of F. John that the maximal volume ellipsoid is uniquelydetermined but we do not need this fact here.) A relatively easy theorem ofDvoretzky and Rogers [12] (see also [40] p.10) implies now that E = Ek � k =RSn�1 kxkd�(x) > cq lognn for some absolute constant c.Denoting by � the normalized Haar measure on the orthogonal group O(n)and applying Corollary 4 to the function x ! kxk, which is Lipschitz withconstant one, we get that, for every �xed x 2 Sn�1,�(fu; jkuxk � E j > �Eg) =�(fx 2 Sn�1; jkxk � E j > �Eg)26



<e�c�2E2n < e�c�2 log n :Fix a k-dimensional subspace V0 � Rn and an � net N in V0 \ Sn�1 of cardi-nality smaller than (3=�)k. The existence of such a net follows from an easyvolume argument (see [40] p.7). It then follows that if (3=�)ke�c�2 log n < 1, i.e.,if k is no larger than a constant depending on � times logn, then�(fu; jkuxk � E j > �E ; for some x 2 Ng < 1which implies that there is a u 2 O(n) such that(1� �)E � kuxk � (1 + �)E ; for all x 2 N :It now follows from a successive approximation argument that similar inequal-ities hold for all x 2 Sn�1 which implies the conclusion of the theorem for thesubspace uV0.We next state another application of the concentration inequality on the Eu-clidean sphere. This Lemma of Johnson and Lindenstrauss is much simplerbut has a lot of applications including \real life" ones like e�cient algorithmsfor detecting clusters.Theorem 26 Let x1; x2; : : : ; xn be points in some Hilbert space. If k � c�2 logn(with c > 0 an absolute constant), then there are y1; y2; : : : ; yn 2 `k2 satisfyingkxi � xjk � kyi � yjk � (1 + �)kxi � xjk (67)for all 1 � i 6= j � n.Sketch of proof. We may assume that the points xi are in `n2 . Fix a k < nand a rank k orthogonal projection P0 on `n2 . When u ranges over O(n), P =uP0u�1 ranges over all rank k orthogonal projections. It is not hard to checkthat, for all x 2 Sn�1, E = RO(n) kuP0u�1xkd�(u) is of the order qk=n andthus, for every x 2 Sn�1,�(fu; jkuP0u�1xk � E j > �Eg) = �(fx; jkP0xk � E j > �Eg) < e�c�2k:It follows that, if k � C�2 logn, there is a u 2 O(n) for which(1� �)E � uP0u�1  xi � xjkxi � xjk! � (1 + �)E27



for all i 6= j. The range of uP0u�1 is k-dimensional. Take yi = uP0u�1xi(1��)E .3.2 Fine embeddings of subspaces of Lp in lnpWhen specializing the proof of Theorem 24 to the case of X = `nr , one seesquite easily that if 1 � r < 2 then for all � > 0 there exists a constantc = c(r; �) > 0 such that for all n there exists a subspace Y of `nr of dimensionk � cn whose Banach{Mazur distance to Euclidean space, d(Y; `k2) � 1 + �.(For 2 < r < 1 the same holds with k � cn2=r.) This subject is extensivelyreviewed in [15].Since it is known (and follows from the existence of p-stable random variables,see below) that for r < p � 2 `p embeds isometrically into Lr[0; 1], it isnatural to ask whether a similar statement holds with 2 replaced by p, i.e.,whether, for r < p < 2, `kp (1 + �)-embeds into `nr for k proportional ton. Noticing that Gaussian variables are very di�erent from p-stable ones forp < 2 (the �rst decay exponentially while the latter only polynomially), andthat the concentration inequality behind the proof of Theorem 24 has verymuch to do with the exponential decay of Gaussian variables, one's �rst guesswould be that the answer to the question above is negative (and probably thatk can only be some logarithmic function of n).It turns out, however, that the answer to the question above is positive. Itwas proved in [24] that for 1 � p < 2 and for every n and �, `n1 contains asubspace Y with d(Y; `kp) < 1 + � where k � c(p; �)n. This was the �rst resultconcerning \tight embeddings" that didn't deal with Euclidean spaces. It wasproved using certain approximation of p-stable random variables and concen-tration inequalities for martingales as discussed in Section 2.2. This result leadto a series of generalizations and results of similar nature. We refer to [26] fora survey of this topic. Here we only deal with two such examples of general-izations. We would �rst like to mention a result of Pisier [42], generalizing theresult above from the side of the containing space, `n1 .Recall that a random variable h whose characteristic function is given byEeith = e�cjtjp, for some positive constant c, is called (symmetric) p-stable.L�evy proved the existence of such variables for 0 < p � 2. (There are no suchvariables for p > 2.) A p-stable variable has r-th moment for all r < p butdoesn't have p-th moment. For 1 < p < 2 we'll denote from now on by h thep-stable variable whose �rst moment is equal to 1. This de�nes its distributionuniquely. If h; h1; : : : ; hn are independent and identically distributed then itis easy to see (compute the characteristic function) that Pni=1 �ihi also hasthe same distribution as h as long as Pni=1 j�ijp = 1. In particular the span ofh1; : : : ; hn in L1[0; 1] is isometric to `np .28



For 1 < p < 2, the stable type p constant of a Banach space X, denotedSTp(X), is the smallest constant C such that,EkX hixik � Cn1=p sup1�i�n kxik (68)for all �nite sequences fx1; : : : ; xng of elements of X. (This is an equivalentde�nition to the more common one where n1=p sup1�i�n kxik is replaced with(Pni=1 kxikp)1=p.) Pisier's result is:Theorem 27 For each 1 < p < 2 and � > o there is a positive constantc = c(p; �) such that any Banach space X contains a subspace Y satisfyingd(Y; `kp) as long as k < cSTp(X)p=(p�1): (69)Since it is easy to see that STp(`n1 ) � n(p�1)=p, this implies the result of [24]referred to above.A brief sketch of the proof. Pick a �nite sequence, x1; x2; : : : ; xn, of el-ements of X for which max kxik = 1 and EkP hixik � 12n1=pSTp(X). Letu1; u2; : : : be a sequence of independent random variables each uniformly dis-tributed over the set of 2n elements f�x1;�x2; : : : ;�xng. Put also �j =Pji=1Ai, j = 1; 2; : : :, where the Aj's are independent (and independent of thesequence fuig) canonical exponential variables, i.e., P (Ai > t) = e�t, t > 0.We shall use a representation theorem for p-stable variables, due to Lepage,Woodroofe and Zinn [34] which says in particular that, for some constant cpdepending only on p,S = 1Xj=1��1=pj uj has the same distribution as cpn�1=p nXi=1 hixi (70)and in particular, EkSk � cp2 STp(X). Note that for any functional x�, x�(S)is a p-stable variable. If S1; : : : ; Sk are independent and all have the samedistribution as S then it is easily seen that if Pki=1 j�ijp = 1 then Pki=1 �iSihas the same distribution as S and in particular EkPki=1 �iSik = EkSk.The next step is to replace the random coe�cients f��1=pj g with the deter-ministic sequence fj�1=pg. Put R = P1j=1 j�1=puj and let R1; : : : ; Rk be inde-pendent and all have the same distribution as R. A computation using theexplicit distribution of �j shows thatC = EkSi � Rik <129



and it follows that, if Pki=1 j�ijp = 1,���EkPki=1 �iSik � EkPki=1 �iRik��� � CPki=1 j�ij� Ck(p�1)=p(Pki=1 j�ijp)1=p< Cc(p�1)=pSTp(X) (71)
by the choice of k.Note thatPki=1 j�ijp = 1 implies that kf�ij�1=pgkp;1 = 1 and thus Proposition5(ii) implies that for all such f�ig and for all t > 0,P ����kX�iRik � EkX �iRik��� > t� � K exp (��tp=(p�1)): (72)This last equation is of course the place where the method of concentrationenters, which was the main thing we wanted to illustrate here. The rest of theproof goes along similar lines to the end of the proof of Theorem 24: Note thatit follows from (71), that, for c small enough, EkP �iRik is of order STp(X).Choose an � net in the sphere of `kp of cardinality smaller than (3=�)k. Then,with high probability, kP�iRik is of order STp(X) for all sequences f�ig inthe net. By a successive approximation the same holds now for all sequencesf�ig in the sphere of `np which completes the proof.Another way to generalize the result of Schechtman and Johnson [24] (that `cnpnicely embeds in `n1 ) is from the side of the embedded space, `np . After someinitial work by Schechtman (mostly [47]) on embedding �nite dimensionalsubspaces of Lp[0; 1] in low dimensional `nr spaces in which a new class of\random embeddings" (which were not related to p stable variables) wereintroduced, Bourgain, Lindenstrauss and Milman [9] proved that, for 0 < r <2, every k dimensional subspace of Lr[0; 1] (1+ �)-embeds in `nr provided n=kis at least a certain power of logn times a constant (depending only on r and�). See also [25] for a di�erent proof. All the proofs involved use concentrationin one way or another. The result of [9] mentioned above was improved andsimpli�ed by Talagrand [55]. Since his proof has to do with bounds on Gaussianprocesses and is related to Section 2.5, we would like to briey review it. Aswe have already advertized, the article [26] has more on that subject. Here weshall deal only with the case r = 1.Theorem 28 For every � there is a constant C(�) such that for all n, everyn dimensional subspace Y of L1[0; 1] is (1 + �)-isomorphic to a subspace of`Cn logn1 .We remark in passing that one of the main open problems in this area is30



whether the factor logn is needed. Besides concentration inequalities the proofuses some other heavy tools and is discussed in [26]. We shall only touch theidea involving bounds on Gaussian procceses.The idea of the proof. By crude approximation we may assume that Y isa subspace of `m1 for some �nite (but huge) m. We would like to show that arestriction to a \random" subset of cardinality Cn logn of the coordinates isa good isomorphism when restricted to Y . Of course this is wrong in general(for instance if Y has an element which is supported on only one coordinate,this element would most probably be sent to zero by such a restriction). Theidea is to �rst \change the density" and send Y to an isometric subspacewhose elements are \spread out" over the m coordinates. The idea that thismay work was the point of [47]. It will be dealt with in [26] and will not bediscussed here any further. We'll concentrate in describing how to evaluatethe norm of the random restriction on Y and the norm of its inverse assumingY is already in good position.We do it inductively, restricting �rst to a random set of about half the coordi-nates where each coordinate is choosen with probability 1=2 and the di�erentchoices are independent. Equivalently, let f�igmi=1 be independent variableseach taking the values �1 and 1 with probability 1=2 each. We would like toevaluate the restriction to the set A = fi; �i = 1g. If we could show thatsupx2Y;kxk�1 �����2Xi2A jxij � mXi=1 jxij����� < �(n;m) (73)with �(n;m) \very small" when n=m is small, then this would mean that (2times) the restriction to A is very close to an isometry. Iterating this wouldlead, depending on the behavior of �(n;m), to the desired random restrictiononto a small set of coordinates. Note that the quantity in (73) is equal tosupx2Y;kxk�1 jPmi=1 �ijxijj and in particular is the same for A and its comple-ment. Since we are interested in only one set A, of cardinality at most m=2satisfying (73), it is enough to establishE supx2Y;kxk�1 ����� mXi=1 �ijxij����� � �(n;m): (74)This quantity is dominated by a similar one with independent standard Gaus-sian variables gi's replacing the �i's. So the problem reduces to estimatingE supx2Y;kxk�1 ����� mXi=1 gijxij�����31



i.e. the expectation of the supremum of a speci�c Gaussian process. This makesthe connection with Section 2.5. We shall not go into more details here.Theorem 28 has a nice geometrical interpretation which is obtained by lookingat the polar body to the unit ball of Y .Corollary 29 Let K be the (Minkowski) sum of segments in Rn (or limit ofsuch bodies, these are called zonoids). Then, for every �, there is a body L inRn which is the sum of at most C(�)n logn segments and which � approximatesK in the sense that L � K � (1 + �)L:3.3 Selecting good substructuresGiven a sequence of independent vectors fx1; x2; : : : ; xng in a normed space Xand an � > 0, what is the largest cardinality k such that there are k disjointblocks y1; y2; : : : ; yk which are (1 + �)-unconditional or (1 + �)-symmetric?Recall that by disjoint blocks we mean vectors of the form yi = Pj2�i ajxj,i = 1; : : : ; k, with �1; �2; : : : ; �k disjoint subsets of 1; 2; : : : ; n. y1; y2; : : : ; yk issaid to be (1 + �)-unconditional (resp. (1 + �)-symmetric) ifk kXi=1 �ibiyik � (1 + �)k kXi=1 biyikfor all signs f�ig and all coe�cients fbig. (resp. ifk kXi=1 �ibiy�(i)k � (1 + �)k kXi=1 biyikfor all signs f�ig, all permutations � of 1; 2; : : : ; k and all coe�cients fbig.)These problems and various variations thereof were treated quite successfullyby concentration of measure methods. The point is that, �xing a partition�1; �2; : : : ; �k of f1; 2; : : : ; ng and coe�cients ffajgj2�igki=1, the normsk kXi=1 bieiku = Ave�k kXi=1 bi Xj2�i �jajxjk32



and k kXi=1 bieiks = Ave�;�k kXi=1 bi Xj2�i �ja�(j)xjkon Rn are 1-unconditional and 1-symmetric respectively. If we can �nd signsff�jgj2�igki=1 such that, for all fbig, kPki=1 biPj2�i �jajxjk=kPki=1 bieiku is ap-propriately close to one, then we found disjoint blocks of length k which are(1 + �)-unconditional. A similar statement holds for the symmetric case.For lack of space we shall not review all that is known about this subject. Theunconditional case was �rst treated by Amir and Milman in [2],[3]. Gowersimproved some of their quantitative estimates ([16],[17]) and in some instancesgot, except for possible log factors, the best possible estimates. The symmetriccase was treated by Maurey [37] and was the motivation for proving Corollary7 (for �n).We were dealing here only with applications to functional analysis and convex-ity. There are many applications to other areas which we shall not expend on.There are applications to graph theory (see e.g. the construction of expandergraphs in [1]), to other combinatorial questions, computer science, mathemat-ical physics and probability (in particular to estimating the tail behavior ofrandom variables of the form kP �iXik for independent vector valued randomvariables fXig). [57] contains many applications of the material of Section 2.3.References[1] N. Alon and V. D. Milman, �1; isoperimetric inequalities for graphs, andsuperconcentrators, J. Combin. Theory Ser. B 38 (1985) 73{88.[2] D. Amir, V. D. Milman, Unconditional and symmetric sets in n-dimensionalnormed spaces, Israel J. Math. 37 (1980) 3{20.[3] D. Amir, V. D. Milman, A quantitative �nite-dimensional Krivine theorem, IsraelJ. Math. 50 (1985) 1{12.[4] J. Arias-de-Reyna, K. Ball and R. Villa, Concentration of the distance in �nitedimensional normed spaces.[5] K. Azuma, Weighted sums of certain dependent random variables, Tôhoku Math.J. 19 (1967) 357{367.[6] A. Baernstein II, B. A. Taylor, Spherical rearrangements, subharmonic functions,and �-functions in n-space, Duke Math. J. 43 (1976) 245{268.33
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