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MATHEMATICS: DVORETZKYAND ROGERS PRoc. N. A. S.

ABSOLUTE AND UNCONDITIONAL CONVERGENCE IN
NORMED LINEAR SPACES

By A. DVORETZKY ANr C. A. ROGERS

INSTITUTE FOR ADVANCED STUDY, PRINCETON, N. J.

Communicated by Marston Morse, January 30, 1950

1. Let B be a real Banach space and denote by lxii the norm of an ele-
ment x of B. The series

co

E X,, (X,EB, V 1,2,. ..) (1)
PV = 1

is called absolutely convergent ifE Ix,j < 00; it is called unconditionally
convergent if the series E y, converges whenever the sequence (y,) is a
rearrangement of the sequence (x,). An equivalent definition of un-
conditional convergence of (1) is obtained by requiring E S x, to be con-
vergent for every choice of the signs. There are several other equivalent
definitions; most of these have been discussed by T. H. Hildebrandt.I

It is clear that if B is of finite (linear) dimension then (1) is uncondi-
tionally convergent if and only if it is absolutely convergent. The problemn
of finding the spaces for which these two types of convergence are equiva-
lent is mentioned by S. Banach.2 The primary aim of this note is to settle
this problem by proving the following result.
THEOREM 1. The unconditionally convergent series coincide with the ab-

solutely convergent series if and only if the space B is offinite dimension.
Here the only non-trivial assertion is that, if B is of infinite dimension,

there is a series (1), which is unconditionally but not absolutely convergent.
It is easy to give examples of such series in Hilbert space and similar ex-
amples have been givens for all the usually encountered infinitely dimen-
sional Banach spaces. Interesting partial results on the problem solved by
Theorem 1 have been established by M. E. Munroe4 and S. Karlin.' The
two last mentioned papers treat also some related problems and give vari-
ous consequences of Theorem 1.
Our method of proof yields not only Theorem 1 but also the following re-

sult.
THEOREM 2. IfB is of infinite dimension and Zc, is any convergent series

of positive terms, then there exists an unconditionaly convergent series (1)
satisfying I IX,j 12 = c, for v = 1, 2, ....
Applying this result with c, = v-'[log (1 + v)] -2 we obtain:
COROLLARY: If B is of infinite dimension then there exists an uncondi-

tionally convergent series (1) having the property that E|X,j12 - e =CO for every
e>O.
Theorem 1 is obviously an immediate consequence of this Corollary.

192



VOL. 36, 1950 MATHEMA TICS: DVORETZKY AND ROGERS

If B is a Hilbert space then IIx,'II2 < o for every unconditionally con-
vergent series (1). Thus Theorem 2 and its Corollary are in a certain sense
best possible results.
A result (Lemma 1) concerning convex bodies in Euclidean space is

proved in section 2. In section 3 this lemma is used to prove Theorem 2,
and remarks are made concerning its extension. In section 4 some geomet-
rical properties of convex bodies are obtained from Lemma 1 and from
the construction used to prove this lemma.

2. We consider the n-dimensional Euclidean space of points U =
(u,... ., un) and use the usual vector notation. We first prove our main
lemma.
LEMMA 1. Let C be a body6 which is convex and has the origin 0 as center,

and let r be an integer with 1 < r < n. Then there are n points A1, . . . A.
on the boundary of C such that, if X1, . X., Xr are any r real numbers with
1 < r < n, then the point XiAi+X2A2 + ... + XArAr is in the body XC where

2= [2 + r(r 1)] (X12 + X22±+ + Xr2). (2)

Proof: We inscribe in C an ellipsoid with 0 as center having the largest
possible n-dimensional volume. Since it is enough to establish the lemma
for any affine transform of C, we may assume that this ellipsoid is the
sphere S of unit radius.
We first show that after a suitable orthogonal transformation has been

applied there will be r points A1, ... , A, of contact of C with S, satisfying for
p= 1,29,... ,r

AP= (a.l,,ap2,..., a., 0, .. XO)

apl2+ .+a (l2= -a 2<P- | (3)
P(P-1)

- n

For r = 1 this is clear; assuming it for r = m - < n we prove it for r =
m. The ellipsoid
(1 + E)n m+1(ul2 + ... ± u ,12) +

(1 + + e2) m+l(um2 + ... + Un2) < 1, (e > 0) (4)

has a vQlume larger than that of S. Hence there is a point A = A (e) =

(a, .... an) on the boundary of C in the ellipsoid (4). But, since A being
on the boundary of C is not inside the unit sphere, we have al2 + .*. +
an2> 1. It follows that A satisfies
[(1 + E)n-m+l - l](a12 + . . . + a-.12) +

[(1 + 6 +E2)-m+1 - 1] (am2 + + an2) < 0. (5)

If e 0 through a suitable sequence of positive numbers the corresponding
sequence A (e) will converge to a point Am. It is clear from (4) that Am is
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a point of contact of S and the boundary of C, while from (5) we have in
the limit

(n.- m + 1) (am12 + * + am(m,-)2) +
(-m + 1) (am,2 + ... + am,,2) < 0. (6)

By a suitable orthogonal transformation of the variables um,... ., U,, leav-
ing the points A1,.. , Am.i invariant we may make the last n - m coor-
dinates of Am vanish. Then, using (6) and the equation am12 + . . . +
am.,2 = 1iwe obtain (3) with p = m. Thus (3) is proved for p = 1,2 ...., n

Let X1, . .. , X, be any real numbers. By (3) the square of the distance
from 0 to the point X1A1 + . . . + xrAr is

?I ( 2rpp)<E [k2av r X 2pvXa,.,< F2X,,2a v2+2 Xap,a 1
o P =, a, R= = or + 1

< E 2 [Xv2auv2 + C x )( ar2)]
a=1 ~~~~p= ¢ + 1 r 'r +1

r r min. (-1 -1

-2 E aP2 + E m a7,2 X, 2.

But by (3), the last expression is less than or equal to

2 E (1 + E -) >,p = [2+ sr(r-] X '2 X2

Thus thc point X1iA1 + ... + X,A, is contained in the sphere XS and so is
contained in the body XC. This proves the lemma.

3. Before we prove Theorem 2 it is convenient to obtain the following
consequence of Lemma 1.
LEMMA 2. Let B be a Banach space of infinite dimension and let cl,....

C. be any given positive numbers. Then there exist points xi, . . ., xr in B
uWth IIX,PI12 = C. for p = 1, . . ., r and such that, if E' denotes the sum over
any subset of the numbers 1,... , r, then

<lpl 3E'cp. (7)

Proof: Write n = r(r - 1). As B is of infinite dimension we can
choose n linearly independent enlements zl, . . . , z. Then the points U =
(ul,..., u,) with IIuizi + ... + u&zn4I < 1 form a convex body Cwith the
origin as center in n-dimensional Euclidean space. Let A1, . .. , Ar be the
points given by Lemma 1. Writing Ap = (a,,, .. , apn), we put

xp = cpl/2(apizl + . . . + ap,Zn), p = 1 . . ., r.

Then, as A1, . . ., A, are on the boundary of C, we have IIxpII2 =c,, for
p = 1, ... X r. Further, as the point 'cP,"A. is in XCwhere X2 = 3E Pt
it follows that (7) is satisfied. This proves the lemma.
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Proof of Theorem 2: Choose a strictly increasing sequence n, = 0, n2, n3,
... of integers such that the series

Xrt+l \ /2

E E Cv)r 1 C i r+ 1
is convergent. By Lemma 2 we can choose x, for nr < v < nT+i so that
|x|x12 = c, and IIZ(r)xI12 < 3 (r)c,, the sum E(r) being taken over any sub-
set of the integers v with nr < v < nr+1 Let Ey, be any rearrangement of
the series Ex,. Let e >0 be given. Choose r so large that

X ( np+ 1/2 e
E E c) < 2

p = r Mp +

Choose p so large that the sum E y, includes all the terms x, with v < n,.
< P

Then for any q > p we have

|E y. l< -E jE'P)xV||< E (3 E c,) < e.

Since B is complete it follows that Ey, is convergent. As this is true for
every rearrangement of Ex,the series Ex, is unconditionally convergent and
Theorem 2 is proved.
We note that the completeness of B was used only to deduce the con-

vergence of EYF from its Cauchy convergence. Hence we have (with ob-
vious meaning of unconditional Cauchy convergence)
THEOREM 3. Let N be an infinitely dimensional normed linear space

over the reals and Ecv be any convergent series of positive numbers. Then
there exists an unconditionally Cauchy convergent series EXv of elements of
N satisfying IIkvl 2 = c(v = 1,2, . . . ). In particular there exist such series
uith IIxvjI==

Since a complex Banach space contains a real one, it is clear that Theo-
rems 1 and 2 hold for complex Banach spaces. A similar remark applies
to Theorem 3.

4. In this section we prove some geometrical re.sults. The first result
shows that Lemma 1 can be considerably improved in the special case where
r=nandX = 1L ,...,X= =1.
THEOREM 4. Let C be a convex body with the origin 0 as center. Then

there are points P1, . . . , P. on the boundary of C such that all the 2n points z1
P1 i ... . P,, are in the body 2n'14C.

Proof: For n > 1 let q, r, s be the non-negative integers defined by

r(r- 1)<2n<r(r+ 1), n=qr+s, s<r. (8)

Let A1, ... , A, be the points thus denoted in Lemma 1 and for t = 1, 2, ....
n put Pt = A (,), where v(t) -t (mod r) and 1 < v(t) < r.
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Then all 2n points PL ... P areoftheformXiAi+...+ XTA
where the integers X, satisfy the inequalities

JX,,' q + 1 for 1 < P < s, IX,I< q for s < v < r.

Hence, by Lemma 1 all the 2n points considered are in the body uC where

A2 [2 + ] ] X[) < 4 [s(q + 1)2 + (r-s)q2]
n =

Taking account of (8) it is easily checked that s(q + 1)2 + (r -s)2 <n"/q
for n > 1. The theorem being obvious for n = 1, is thus completely proved.
Remark: It is of some interest to find the exact dependence of ,u on n.

Our method, though capable of improving the constant 2 in this theorem,
cannot improve the power in the estimate , < 2n1/. When C is a sphere
then an enlargement by the factor n is sufficient. Perhaps this is gener-
ally true, but we cannot prove it for n > 3.
We give a proof for n = 2 in the hope that it may be generalized to other

values of n. LetB be the two-dimensional Banach space whose unit sphere
is C. Given any point P1 in this space with |PI = 1 there exists, by con-
tinuity, a point P2 satisfying IIP211 = 1 and IIP1 + P2I1 = IIP1- P211. Let
a denote this common norm, then also :1: P1 = P2 = a. Now put
Q= (P1 + P2)/a, Q2 = (P1 - P2)/a, then IIQIII = 1|Q2 = 1 and||Q1
Q21 = 2/a. Since min. (a, 2/a) < 2k/' the proof is completed.
The following results are simple consequences of the construction used

in proving Lemma 1. We include them since they seem to be of some
geometrical interest.
THOREM 5A. Let C be a convex body with the origin as center. Then

there is an ellipsoid 8 contained in C and a parallelopiped (P containing C
with volumes V(8) and V((P) satisfying

V((P) 2" /(n9\

where J. is the volume of the unit n-dimensional sphere.
Proof: Take S to be an ellipsoid with 0 as center having the largest

possible volume. As in the proof of Lemma 1, we may suppose without
loss of generality that S is the unit sphere S and denote by A1,.. , A.
points of contact of C and S satisfying (3). As C contains S the only tac-
plane to C at A, is the plane a.,u1 + . . . + a,,u, = 1. Thus C is contained
in the parallelopiped (P defined by la,iu, + ... + a7rurl < 1, r = 1, 2,.. ., n.
By (3) the volume of (P satisfies

V (() = 2` Iaua2. ..ann l<2n(X) = 2n(nj) V(8)n! J~~~~~-n
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THEOREM 5B. Under the conditions of Theorem 5A there is an ellipsoid S
containing C and an "octahedron" 0 contained in C, with

V(S) < (1/2)nJ (n!nn) 1'.(10)
V(O)-

Proof: The result follows immediately by application of Lemma 3 to
the bodyK which is the polar reciprocal of C.
THEOREM 6. Let C and K be convex bodies uwth the origin as center, which

are polar reciprocal. Then their volumes satisfy

(^z!X'),/2 < V(C) - V(K) < 2nJn, (C) (11)

Proof: By Lemma 3 we may suppose without loss of generality that C
contains the unit sphere S and is contained in a parallelopiped (P with vol-
ume V(@P) satisfying

V((P) < 2" onh (12)

ThenK is contained in S and contains an "octahedron" e with

V(S) 2 (n2n")1' (13)

The inequalities (11) now follow trivially from (12), (13) and the inclusion
relations S C K C ( and t c K c S.
The bounds on the right of (9) and (10) can be written in the form

('y,n)"1' where 'y tends to a positive limit as n tends to infinity. It is easy
to see that it is impossible to obtain such bounds with -y,. tending to zero as
n tends to infinity. The bounds in (11) are considerably closer than those
obtained by K. Mahler7 but they are probably very far from the best pos-
sible.

1 Bull. Am. Math. Soc., 46, 959-962 (1940).
2 Thdorie des Operations Lin&aires, Warsaw, 1932, p. 240.
3 E.g., Orlicz, W., Stud. Math., 4, 51-47 (1933); Macphail, M. S., Bull. Am.

Math. Soc., 53,121-123 (1947).
4 Duke Math. J., 13,351-365 (1946).
5 Ibid., 15, 971-985 (1948).
6 I.e., the closure of a bounded open set.
7 Casopis Pst. Mat. Fys., 68, 93-102 (1939).
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