O $2^{\mathbb{N}}$ ειναι «καθολικος» συμπαγης μετρικος χωρος

Πρόταση 1. *Καθε συμπαγης μετρικος χωρος X ειναι συνεχης εικονα του συνολου* $2^{\mathbb{N}}$: υπαρχει μια συνεχης και επι απεικονιση $p: 2^{\mathbb{N}} \to X$.

Απόδειξn. Claim. There is a sequence $\{m_n : n \in \mathbb{N}\}$ of natural numbers and for each $n \in \mathbb{N}$ a family $\{M_{\tau} : \tau \in \{0,1\}^{m_n}\}$ of closed subsets of X such that

(i) $X = \bigcup \{ M_{\tau} : \tau \in \{0, 1\}^{m_1} \}$

(ii) For each $n \in \mathbb{N}$ and each $\tau = (\tau(1), \dots, \tau(n)) \in \{0, 1\}^{m_n}$, we have

• diam
$$(M_{\tau}) \leq \frac{1}{n}$$

• $M_{\tau} = \bigcup \{M_{\sigma} : \sigma \in \{0, 1\}^{m_{n+1}}\}$

where $\sigma(i) = \tau(i)$ for $i \le m_n$ and $\sigma(i) = \tau(m_n)$ for $m_n < i < m_{n+1}$.

Proof of the Claim. For n = 1: The space X is totally bounded, so it can be covered by a finite number of open sets of diameter at most 1. Allowing repetitions if necessary, we may assume that the required number is 2^{m_1} for some $m_1 \in \mathbb{N}$; noting that 2^{m_1} is the number of points in $\{0,1\}^{m_1}$, we may index the closures M_{τ} of these sets by $\tau \in \{0,1\}^{m_1}$, so $\tau = (\sigma_1, \dots, \sigma_{m_1})$ with $\sigma_i \in \{0,1\}$.

For n = 2: Each M_{τ} is totally bounded, so it can be covered by finitely many closed sets $\{M_{\tau,\sigma} : \sigma \in [2^{k_1}]\}$, each with diameter at most 1/2. Allowing repetitions if necessary, we may assume that each M_{τ} is covered by the same number of sets. So now

 $(\tau, \sigma) \in \{0, 1\}^{m_1} \times \{0, 1\}^{k_1} = \{0, 1\}^{m_2}$ where $m_2 = m_1 + k_1$ and $(\tau, \sigma) = (\sigma_1, \dots, \sigma_{m_2})$ with $\sigma_i \in \{0, 1\}$.

Induction step: having constructed $\{M_{\tau} : \tau \in \{0,1\}^{m_n}\}$ as in the claim, each M_{τ} is totally bounded, so it can be covered by finitely many closed sets $\{M_{\tau,\sigma} : \sigma \in [2^{k_n}]\}$, each with diameter at most $\frac{1}{n+1}$. Allowing repetitions if necessary, we may assume that each M_{τ} is covered by the same muber of sets, so we may write

$$(\tau, \sigma) \in \{0, 1\}^{m_n} \times \{0, 1\}^{k_n} = \{0, 1\}^{m_{n+1}}$$
 where $m_{n+1} = m_n + k_n$.

This proves the Claim. Now for any $\sigma = (\sigma_1, \sigma_2, ...) \in \{0, 1\}^{\mathbb{N}}$ we have a sequence (branch of a tree)

$$M_{(\sigma_1,\ldots,\sigma_{m_1})} \supseteq M_{(\sigma_1,\ldots,\sigma_{m_2})} \supseteq M_{(\sigma_1,\ldots,\sigma_{m_n})} \supseteq \ldots$$

of closed sets of diameter diam $(M_{(\sigma_1,\ldots,\sigma_{m_n})}) \leq \frac{1}{n}$.

Since X is a compact metric space, by Cantor there is a unique $x_{\sigma} \in X$ such that

$$\bigcap_{n\in\mathbb{N}}M_{\sigma_1,\ldots,\sigma_{m_n}}=\{x_\sigma\}.$$

Thus we have a well defined map

$$p: \mathbf{2}^{\mathbb{N}} \to X: \sigma \mapsto x_{\sigma}.$$

Θα δείξω ότι η ρ ειναι επί του Χ.

Let $x \in X$. Since $X = \bigcup \{M_{\tau} : \tau \in \{0, 1\}^{m_1}\}$, there exists a (not necessarily unique) $\tau \in \{0, 1\}^{m_1}$ s.t. $x \in M_{\tau} = M_{(\sigma_1, \dots, \sigma_{m_1})}$. Since $\{M_{\tau, \sigma} : \sigma \in [2^{k_1}]\}$ is a cover for this M_{τ} , there exists a $\sigma \in [2^{k_1}]$ so that $x \in M_{\tau, \sigma} = M_{(\sigma_1, \dots, \sigma_{m_2})}$.

Continuing inductively we see that there exists $\sigma = (\sigma_1, ..., \sigma_n, ...) \in \mathbf{2}^{\mathbb{N}}$ such that for every $n \in \mathbb{N}$ we have $x \in M_{(\sigma_1,...,\sigma_{m_n})}$ and so

$$x \in \bigcap_{n \in \mathbb{N}} M_{(\sigma_1, \dots, \sigma_{m_n})} = \{x_\sigma\} = \{p(\sigma)\}.$$

Thus $x = p(\sigma)$; *p* is a surjection.

Θα δείξω ότι η ρ ειναι συνεχης.

Suppose (σ^i) is a sequence of elements of $\mathbf{2}^{\mathbb{N}}$ which converges to $\sigma \in \mathbf{2}^{\mathbb{N}}$. This means equivalently, by definition of the product topology, that $|\sigma_n^i - \sigma_n| \to 0$ for all $n \in \mathbb{N}$.

We will show that

$$\lim_{i} d(p(\sigma^{i}), p(\sigma)) = 0$$

where d is the metric on X.

Since $|\sigma_n^i - \sigma_n| \to 0$ for all *n*, there is i_n such that $|\sigma_n^i - \sigma_n| < \frac{1}{2}$ when $i \ge i_n$ and hence $|\sigma_n^i - \sigma_n| = 0$ when $i \ge i_n$ (because $|\sigma_n^i - \sigma_n| \in \{0, 1\}$).

Let $\varepsilon > 0$. Choose $k \in \mathbb{N}$ with $\frac{1}{k} < \varepsilon$ and let $j_k := \max\{i_n : n \le m_k\}$. Thus we have

$$i \ge j_k \Rightarrow \sigma_n^i = \sigma_n \text{ for } n \le m_k$$

But then

$$M_{\sigma_1^i,\sigma_2^i,\ldots,\sigma_{m_k}^i} = M_{\sigma_1,\sigma_2,\ldots,\sigma_{m_k}}$$

and therefore, by the definition of the function p,

$$p(\sigma^i) \in M_{\sigma_1, \sigma_2, \dots, \sigma_m}$$

for all $i \ge j_k$. Since both $p(\sigma^i)$ and $p(\sigma)$ belong to $M_{\sigma_1,\sigma_2,\ldots,\sigma_{m_k}}$, it follows that

$$d(p(\sigma^{i}), p(\sigma)) \leq \operatorname{diam}(M_{\sigma_{1}, \sigma_{2}, \dots, \sigma_{m_{k}}}) \leq \frac{1}{k} < \varepsilon$$

We have shown that given $\varepsilon > 0$ there exists $j_k \in \mathbb{N}$ (depending on ε) such that

$$i \ge j_k \Rightarrow d(p(\sigma^i), p(\sigma)) < \varepsilon,$$

όπως θέλαμε.