

 $\mu \iota \alpha$ бvveұns каı вл兀 алعוкоvıбп $p: 2^{\mathbb{N}} \rightarrow X$.

Aлóסcı૬̌n. Claim. There is a sequence $\left\{m_{n}: n \in \mathbb{N}\right\}$ of natural numbers and for each $n \in \mathbb{N}$ a family $\left\{M_{\tau}: \tau \in\{0,1\}^{m_{n}}\right\}$ of closed subsets of X such that
(i) $X=\bigcup\left\{M_{\tau}: \tau \in\{0,1\}^{m_{1}}\right\}$
(ii) For each $n \in \mathbb{N}$ and each $\tau=(\tau(1), \ldots, \tau(n)) \in\{0,1\}^{m_{n}}$, we have

- $\operatorname{diam}\left(M_{\tau}\right) \leq \frac{1}{n}$
- $M_{\tau}=\bigcup\left\{M_{\sigma}: \sigma \in\{0,1\}^{m_{n+1}}\right\}$
where $\sigma(i)=\tau(i)$ for $i \leq m_{n}$ and $\sigma(i)=\tau\left(m_{n}\right)$ for $m_{n}<i<m_{n+1}$.
Proof of the Claim. For $n=1$: The space X is totally bounded, so it can be covered by a finite number of open sets of diameter at most 1 . Allowing repetitions if necessary, we may assume that the required number is $2^{m_{1}}$ for some $m_{1} \in \mathbb{N}$; noting that $2^{m_{1}}$ is the number of points in $\{0,1\}^{m_{1}}$, we may index the closures M_{τ} of these sets by $\tau \in\{0,1\}^{m_{1}}$, so $\tau=\left(\sigma_{1}, \ldots, \sigma_{m_{1}}\right)$ with $\sigma_{i} \in\{0,1\}$.

For $n=2$: Each M_{τ} is totally bounded, so it can be covered by finitely many closed sets $\left\{M_{\tau, \sigma}: \sigma \in\left[2^{k_{1}}\right]\right\}$, each with diameter at most $1 / 2$. Allowing repetitions if necessary, we may assume that each M_{τ} is covered by the same number of sets. So now $(\tau, \sigma) \in\{0,1\}^{m_{1}} \times\{0,1\}^{k_{1}}=\{0,1\}^{m_{2}}$ where $m_{2}=m_{1}+k_{1}$ and $(\tau, \sigma)=\left(\sigma_{1}, \ldots, \sigma_{m_{2}}\right)$ with $\sigma_{i} \in\{0,1\}$.
Induction step: having constructed $\left\{M_{\tau}: \tau \in\{0,1\}^{m_{n}}\right\}$ as in the claim, each M_{τ} is totally bounded, so it can be covered by finitely many closed sets $\left\{M_{\tau, \sigma}: \sigma \in\left[2^{k_{n}}\right]\right\}$, each with diameter at most $\frac{1}{n+1}$. Allowing repetitions if necessary, we may assume that each M_{τ} is covered by the same muber of sets, so we may write $(\tau, \sigma) \in\{0,1\}^{m_{n}} \times\{0,1\}^{k_{n}}=\{0,1\}^{m_{n+1}}$ where $m_{n+1}=m_{n}+k_{n}$.

This proves the Claim. Now for any $\sigma=\left(\sigma_{1}, \sigma_{2}, \ldots\right) \in\{0,1\}^{\mathbb{N}}$ we have a sequence (branch of a tree)

$$
M_{\left(\sigma_{1}, \ldots, \sigma_{m_{1}}\right)} \supseteq M_{\left(\sigma_{1}, \ldots, \sigma_{m_{2}}\right)} \supseteq M_{\left(\sigma_{1}, \ldots, \sigma_{m_{n}}\right)} \supseteq \ldots
$$

of closed sets of diameter $\operatorname{diam}\left(M_{\left(\sigma_{1}, \ldots, \sigma_{m_{n}}\right.}\right) \leq \frac{1}{n}$.
Since X is a compact metric space, by Cantor there is a unique $x_{\sigma} \in X$ such that

$$
\bigcap_{n \in \mathbb{N}} M_{\sigma_{1}, \ldots, \sigma_{m_{n}}}=\left\{x_{\sigma}\right\} .
$$

Thus we have a well defined map

$$
p: 2^{\mathbb{N}} \rightarrow X: \sigma \mapsto x_{\sigma} .
$$

$\Theta \alpha$ סкí乡 ω ótı n p eıval $\varepsilon \pi i ́ ~ \tau o v ~ X . ~$

Let $x \in X$. Since $X=\bigcup\left\{M_{\tau}: \tau \in\{0,1\}^{m_{1}}\right\}$, there exists a (not necessarily unique) $\tau \in\{0,1\}^{m_{1}}$ s.t. $x \in M_{\tau}=M_{\left(\sigma_{1}, \ldots, \sigma_{m_{1}}\right)}$. Since $\left\{M_{\tau, \sigma}: \sigma \in\left[2^{k_{1}}\right]\right\}$ is a cover for this M_{τ}, there exists a $\sigma \in\left[2^{k_{1}}\right]$ so that $x \in M_{\tau, \sigma}=M_{\left(\sigma_{1}, \ldots, \sigma_{m_{2}}\right)}$.
Continuing inductively we see that there exists $\sigma=\left(\sigma_{1}, \ldots, \sigma_{n}, \ldots\right) \in \mathbf{2}^{\mathbb{N}}$ such that for every $n \in \mathbb{N}$ we have $x \in M_{\left(\sigma_{1}, \ldots, \sigma_{m_{n}}\right)}$ and so

$$
x \in \bigcap_{n \in \mathbb{N}} M_{\left(\sigma_{1}, \ldots, \sigma_{m_{n}}\right)}=\left\{x_{\sigma}\right\}=\{p(\sigma)\} .
$$

Thus $x=p(\sigma) ; p$ is a surjection.
$\Theta \alpha$ סeís ω ótı n p eıval $\sigma v v \varepsilon \chi n s$.
Suppose $\left(\sigma^{i}\right)$ is a sequence of elements of $2^{\mathbb{N}}$ which converges to $\sigma \in 2^{\mathbb{N}}$. This means equivalently, by definition of the product topology, that $\left|\sigma_{n}^{i}-\sigma_{n}\right| \rightarrow 0$ for all $n \in \mathbb{N}$.
We will show that

$$
\lim _{i} d\left(p\left(\sigma^{i}\right), p(\sigma)\right)=0
$$

where d is the metric on X.
Since $\left|\sigma_{n}^{i}-\sigma_{n}\right| \rightarrow 0$ for all n, there is i_{n} such that $\left|\sigma_{n}^{i}-\sigma_{n}\right|<\frac{1}{2}$ when $i \geq i_{n}$ and hence $\left|\sigma_{n}^{i}-\sigma_{n}\right|=0$ when $i \geq i_{n}$ (because $\left|\sigma_{n}^{i}-\sigma_{n}\right| \in\{0,1\}$).
Let $\varepsilon>0$. Choose $k \in \mathbb{N}$ with $\frac{1}{k}<\varepsilon$ and let $j_{k}:=\max \left\{i_{n}: n \leq m_{k}\right\}$. Thus we have

$$
i \geq j_{k} \Rightarrow \sigma_{n}^{i}=\sigma_{n} \text { for } n \leq m_{k}
$$

But then

$$
M_{\sigma_{1}, \sigma_{2}^{i}, \ldots, \sigma_{m_{k}}^{i}}=M_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m_{k}}}
$$

and therefore, by the definition of the function p,

$$
p\left(\sigma^{i}\right) \in M_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m_{k}}}
$$

for all $i \geq j_{k}$. Since both $p\left(\sigma^{i}\right)$ and $p(\sigma)$ belong to $M_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m_{k}}}$, it follows that

$$
d\left(p\left(\sigma^{i}\right), p(\sigma)\right) \leq \operatorname{diam}\left(M_{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m_{k}}}\right) \leq \frac{1}{k}<\varepsilon .
$$

We have shown that given $\varepsilon>0$ there exists $j_{k} \in \mathbb{N}$ (depending on ε) such that

$$
i \geq j_{k} \Rightarrow d\left(p\left(\sigma^{i}\right), p(\sigma)\right)<\varepsilon
$$

о́т $\omega \varsigma$ Э $̇ \lambda \alpha \mu \varepsilon$.

