On the Riesz-Markov Representation Theorem

1. Let X be a compact Hausdorff space. Each *positive* regular Borel measure μ on X defines a *positive* linear form

$$\varphi_{\mu}$$
: $C(X) \to \mathbb{C}$: $f \mapsto \int_X f d\mu$.

(Recall that φ_{μ} is automatically $\|\cdot\|_{\infty}$ -continuous and $\|\varphi_{\mu}\| = \varphi_{\mu}(1)$.)

2. Uniqueness The measure μ is uniquely determined by φ_{μ} . In other words,

Πρόταση 1. If μ and ν are regular Borel measures on X and

$$\int_X f d\mu = \int_X f d\nu \quad \text{for all } f \in C(X)$$

then $\mu = v$.

Απόδειξn. Let *A* ⊆ *X* be a Borel set. We show that $\mu(A) = \nu(A)$.

Given $\varepsilon > 0$, by regularity of μ there is a compact set K_{μ} and an open set V_{μ} such that $K_{\mu} \subseteq A \subseteq V_{\mu}$ and $\mu(V_{\mu}) - \mu(K_{\mu}) < \varepsilon$ (recall that μ is finite); and likewise for v. Replacing K_{μ} and K_{ν} be their union K, and replacing V_{μ} and V_{ν} by their intersection V, we have a compact set K and an open set V such that

$$K \subseteq A \subseteq V$$
 and $\mu(V) - \mu(K) < \varepsilon$ and $\nu(V) - \nu(K) < \varepsilon$.

By Urysohn, there is a continuous function $f : X \to [0,1]$ such that $f \cdot f|_K = 1$ so $\chi_K \leq f$, and

• $f|_{V^c} = 0$ so $f \leq \chi_V$.

Since $\chi_K \leq f \leq \chi_V$ and the measures are positive, we get

$$\mu(K) = \int \chi_K d\mu \le \int f d\mu \le \int \chi_V d\mu = \mu(V).$$

Combining with $\mu(K) \leq \mu(A) \leq \mu(V)$ yields

$$\left|\int f d\mu - \mu(A)\right| \le \mu(V) - \mu(K) < \varepsilon$$

and similarly,

$$\left|\int f dv - v(A)\right| \le v(V) - v(K) < \varepsilon$$

But since $\int_X f d\mu = \int_X f d\nu$, these inequalities give

$$|\mu(A) - \nu(A)| < 2\varepsilon.$$

Afou to ε itan tucon, deixame oti $\mu(A) = \nu(A)$, otiwe Jelame.

We would like to prove the converse of (1):

Θεώρημα 2. If X is a compact Hausdorff space and φ : $C(X) \to \mathbb{C}$ a positive linear form, there is a (unique) positive regular Borel measure μ on X such that

$$\phi = \int_X f d\mu \quad \text{for all } f \in C(X).$$

For convenience, henceforth we normalize φ (dividing by $\varphi(1)$ if needed) so that

$$\phi(1) = 1$$

and then the required μ should be a probability measure.

3. The case of a discrete X

Now $X = \{x_1, ..., x_n\}$ for some $n \in \mathbb{N}$ (X is compact and discrete). Every function on X is continuous, so $C(X) = \ell^{\infty}[n] = \mathbb{C}^n$. Thus every $f \in C(X)$ is determined by a finite sequence

$$f \rightsquigarrow (f(x_1), \dots, f(x_n)) \in \ell_n^{\infty}$$

and φ is determined by its values on the usual basis of ℓ_n^{∞}

$$\phi \rightsquigarrow (\phi(e_1), \dots, \phi(e_n)) \in \ell_n^1$$

where $e_j(x) = 1$ when $x = x_j$ and $e_j(x) = 0$ otherwise (i.e. $e_j = \chi_{\{x_j\}}$). Indeed,

$$\varphi(f) = \varphi(\sum_j f(x_j)e_j) = \sum_j f(x_j)\varphi(e_j).$$

Positivity of φ is equivalent to $\varphi(e_j) \ge 0$ for all *j*. If we define

$$\mu(\{x_i\}) = \varphi(e_i) \quad \text{for all } j,$$

equivalently,

$$\mu(A) = \sum \{ \varphi(e_j) : x_j \in A \}$$

for every subset A of X, then we have

$$\varphi(f) = \sum_{j} f(x_j)\varphi(e_j) = \sum_{j} f(x_j)\mu(\{x_j\}) = \int f d\mu$$

for every $f \in C(X)$, as required.

Remark The crucial point is that C(X) contains 'enough' characteristic functions (they span C(X) linearly).

4. The case $X = 2^{\mathbb{N}^{-1}}$

The space

$$X = \{x : \mathbb{N} \to \{0, 1\}\}$$

is the Cartesian product of a countable number of discrete spaces, hence a compact metrisable space with the product topology. This is the weakest topology on X making all the coordinate projections continuous; equivalently it is the weakest topology on X making all the projections

$$\pi_n: \mathbf{2}^{\mathbb{N}} \to \mathbf{2}^n: (x(k)) \mapsto (x(1), \dots, x(n))$$

continuous.

Define the algebra \mathcal{A} of all cylinder sets

$$\mathcal{A} := \bigcup_{n \in \mathbb{N}} \{ \pi_n^{-1}(E_n) : E_n \subseteq \mathbf{2}^n \}.$$

Note that since 2^n is discrete, every $E_n \subseteq 2^n$ is open and closed (hence Borel). Clearly \mathcal{A} is an algebra of sets (closed under finite unions, intersections and complements) since the power set of every 2^n is an algebra of sets.

Since every $A \in \mathcal{A}$ is open and closed, its characteristic function is continuous: $\chi_A \in C(X)$, hence we may define

$$\mu_0(A) := \varphi(\chi_A), \quad A \in \mathcal{A}$$

It is clear that the set function μ_0 is positive, finitely additive on \mathcal{A} and $\mu_0(\emptyset) = \varphi(0) = 0$.

Claim The set function μ_0 is countably additive on \mathcal{A} .

Proof Let $A_n \in \mathcal{A}$, $n \in \mathbb{N}$ be pairwise disjoint and suppose that their union

$$A := \bigcup_{n=1}^{\infty} A_n$$

belongs to \mathcal{A} . Then A is a closed, hence a *compact* set, and $\{A_n : n \in \mathbb{N}\}$ is a cover of A by *open* sets (recall that \mathcal{A} consists of *clopen* sets). Hence it must have a finite subcover: there exists $N \in \mathbb{N}$ so that

$$A = \bigcup_{n=1}^{N} A_n$$

Hence

$$\mu_0(A) = \sum_{n=1}^N \mu_0(A_n)$$

by finite additivity of μ_0 . But since the family $\{A_n : n \in \mathbb{N}\}$ is pairwise disjoint and its first N members already cover A, the remaining $\{A_n : n \ge N+1\}$ must all be empty and so $\mu_0(A_n) = 0$ for all $n \ge N+1$. Thus the last equality gives

$$\mu_0(A) = \sum_{n=1}^N \mu_0(A_n) = \sum_{n=1}^\infty \mu_0(A_n)$$

¹not discrete, but totally disconnected

which proves countable additivity of μ_0 on \mathcal{A} .

Now apply *Caratheodory's Extension Theorem* [Fol, Theorem 4.14]: There exists a unique (recall that $\mu_0(X) < \infty$) positive countably additive measure μ defined on the Borel subsets of X which extends μ_0 , i.e. satisfies

$$\mu(A) = \mu_0(A)$$
 for all $A \in \mathcal{A}$.

Regularity of μ is automatic: every Borel measure on a compact metric space is regular [KouNeg, Theorem 4.17].

Claim For all $f \in C(X)$,

$$\varphi(f) = \int_X f d\mu \,.$$

Proof The measure μ defines a positive linear functional φ_{μ} on C(X) by integration. The given functional φ agrees with φ_{μ} on all characteristic functions of sets in \mathcal{A} by the definition of μ_0 :

$$\varphi(\chi_A) = \mu_0(A) = \mu(A) = \int_X \chi_A d\mu, \quad A \in \mathcal{A}$$

Hence, by linearity, $\varphi(f) = \varphi_{\mu}(f)$ for all $f \in \text{span}(\mathcal{A})$. But

The space $\operatorname{span}(\mathcal{A}) \subseteq C(X)$:

- is an algebra (since $\chi_A \chi_B = \chi_{A \cap B}$ and $\chi_A + \chi_B = \chi_A + \chi_B \chi_A \chi_B$)
- contains constants (since $1 = \chi_X$ and $X \in \mathcal{A}$)
- is selfadjoint (since it is the linear span of the selfadjoint elements $\chi_A, A \in \mathcal{A}$)
- separates points of X (since if $x, y \in X$ are distinct, there is an $n \in \mathbb{N}$ such that $\pi_n(x) \neq \pi_n(y)$, so taking $A = \pi_n^{-1}(E_n)$ where $E_n = \{\pi_n(x)\}$ we have $\chi_A(x) = 1$ while $\chi_A(y) = 0$).

Therefore, by the Stone - Weierstarss Theorem, span(A) is sup-norm dense in C(X).

Since both φ and φ_{μ} are *continuous on* C(X) and agree on the dense space span(\mathcal{A}), they must be equal, $\delta \pi \omega \varsigma \ \vartheta \epsilon \lambda \alpha \mu \epsilon$.

Remark The crucial point is that C(X) contains 'enough' characteristic functions (they span a dense subspace of C(X)).

5. The case of a compact *metric* space X

There exists a continuous surjection

$$p: \mathbf{2}^{\mathbb{N}} \to X$$

(see cpctmetric.pdf). In the sequel we write Y for $2^{\mathbb{N}}$ for brevity.

The map *p* induces a map

$$p^* : C(X) \to C(Y) : f \mapsto f \circ p$$
.

This is clearly a *-homomorphism, and it is 1-1, since p is onto (verifications are immediate).

Considering C(X) as a C*-subalgebra of C(Y) (via p^*), the map

$$\varphi \,:\, C(X) \to \mathbb{C}$$

has a linear Hahn-Banach extension

$$\widetilde{\varphi}: C(Y) \to \mathbb{C}$$

with the same norm: $\|\tilde{\varphi}\| = \|\varphi\| = 1$. Thus $\tilde{\varphi}(1) = \varphi(1) = 1$. As we know, ² the equality $\|\tilde{\varphi}\| = \tilde{\varphi}(1)$ implies that the functional $\tilde{\varphi}$ is *positive*.

Therefore, since $Y = 2^{\mathbb{N}}$, by *Case 4* there exists a Borel probability measure $\tilde{\mu}$ on Y such that

$$\widetilde{\varphi}(g) = \int_Y g(y) d\widetilde{\mu}(y) \text{ for all } g \in C(Y).$$

Now for each $f \in C(X)$ we have (noting that we have identified C(X) with its image $p^*(C(X))$ in C(Y))

$$\begin{split} \varphi(f) &= \widetilde{\varphi}(p^*(f)) = \int_Y p^*(f) d\widetilde{\mu} \\ &= \int_Y (f \circ p) d\widetilde{\mu} \\ &= \int_X f d(\widetilde{\mu} \circ p^{-1}) \end{split}$$

where in the last line we have used the familiar 'change of variable' formula which is easily verified. 3

Therefore if we define the Borel probability measure μ on X by

$$\mu(A) := \tilde{\mu}(p^{-1}(A)), \quad A \subseteq X \text{ Borel}$$

we finally have the required equality

$$\varphi(f) = \int_X f d\mu$$
 for all $f \in C(X)$.

Αναφορές

- [Fol] Gerald B. Folland. *Real analysis*. Pure and Applied Mathematics (New York). John Wiley & Sons, Inc., New York, second edition, 1999.
- [KouNeg] George Koumoullis, Stelios Negrepontis, *Measure Theory*, Symmetria Publications, Athens 2005.

²see for example arvext23.pdf, Πρόταση 1

³It suffices to check the equality $\int_{Y} (f \circ p) d\tilde{\mu} = \int_{X} f d(\tilde{\mu} \circ p^{-1})$ when f is the characteristic function of a Borel subset of X, in which case it follows immediately from the definitions.