
On the Riesz-Markov Representation Theorem

1. Let X be a compact Hausdorff space. Each positive regular Borel measure μ on X defines
a positive linear form

ϕμ ∶ C(X) → ℂ ∶ f ↦∫
X

fdμ .

(Recall that ϕμ is automatically ‖⋅‖∞-continuous and ‖
‖ϕμ

‖
‖ = ϕμ(1).)

2. Uniqueness The measure μ is uniquely determined by ϕμ. In other words,

Πρόταση 1. If μ and ν are regular Borel measures on X and

∫
X

fdμ = ∫
X

fdν for all f ∈ C(X)

then μ = ν.

Απόδειξη. Let A ⊆ X be a Borel set. We show that μ(A) = ν(A).
Given ε > 0, by regularity of μ there is a compact set Kμ and an open set Vμ such that
Kμ ⊆ A ⊆ Vμ and μ(Vμ) − μ(Kμ) < ε (recall that μ is finite); and likewise for ν. Replacing Kμ
and Kν be their union K, and replacing Vμ and Vν by their intersection V, we have a compact
set K and an open set V such that

K ⊆ A ⊆ V and μ(V) − μ(K) < ε and ν(V) − ν(K) < ε.

By Urysohn, there is a continuous function f ∶ X → [0, 1] such that
• f|K = 1 so χK ≤ f, and
• f|Vc = 0 so f ≤ χV.
Since χK ≤ f ≤ χV and the measures are positive, we get

μ(K) = ∫ χKdμ ≤ ∫ fdμ ≤ ∫ χVdμ = μ(V) .

Combining with μ(K) ≤ μ(A) ≤ μ(V) yields
|||∫ fdμ − μ(A)||| ≤ μ(V) − μ(K) < ε

and similarly,
|||∫ fdν − ν(A)||| ≤ ν(V) − ν(K) < ε .

But since ∫X fdμ = ∫X fdν, these inequalities give

|μ(A) − ν(A)| < 2ε.
Αφου το ε ηταν τυχον, δειξαμε οτι μ(A) = ν(A), οπως θελαμε.

We would like to prove the converse of (1):



Θεώρημα 2. If X is a compact Hausdorff space and ϕ ∶ C(X) → ℂ a positive linear form, there
is a (unique) positive regular Borel measure μ on X such that

ϕ = ∫
X

fdμ for all f ∈ C(X).

For convenience, henceforth we normalize ϕ (dividing by ϕ(1) if needed) so that

ϕ(1) = 1

and then the required μ should be a probability measure.

3. The case of a discrete X
Now X = {x1,… , xn} for some n ∈ ℕ (X is compact and discrete). Every function on X is
continuous, so C(X) = ℓ∞[n] = ℂn. Thus every f ∈ C(X) is determined by a finite sequence

f ; (f(x1),… , f(xn)) ∈ ℓ∞n

and ϕ is determined by its values on the usual basis of ℓ∞n

ϕ ; (ϕ(e1),… ,ϕ(en)) ∈ ℓ1n

where ej(x) = 1 when x = xj and ej(x) = 0 otherwise (i.e. ej = χ{xj}). Indeed,

ϕ(f) = ϕ(∑
j

f(xj)ej) = ∑
j

f(xj)ϕ(ej) .

Positivity of ϕ is equivalent to ϕ(ej) ≥ 0 for all j. If we define

μ({xj}) = ϕ(ej) for all j,

equivalently,
μ(A) = ∑{ϕ(ej) ∶ xj ∈ A}

for every subset A of X, then we have

ϕ(f) = ∑
j

f(xj)ϕ(ej) = ∑
j

f(xj)μ({xj}) = ∫ fdμ

for every f ∈ C(X), as required.

Remark The crucial point is that C(X) contains ‘enough’ characteristic functions (they span
C(X) linearly).
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4. The case X = 2ℕ ¹

The space
X = {x ∶ ℕ → {0, 1}}

is the Cartesian product of a countable number of discrete spaces, hence a compact metrisable
space with the product topology. This is the weakest topology on X making all the coordinate
projections continuous; equivalently it is the weakest topology on X making all the projections

πn ∶ 2ℕ → 2n ∶ (x(k)) ↦ (x(1),… , x(n))
continuous.
Define the algebra 𝒜 of all cylinder sets

𝒜 ∶= ⋃
n∈ℕ

{π−1
n (En) ∶ En ⊆ 2n} .

Note that since 2n is discrete, every En ⊆ 2n is open and closed (hence Borel). Clearly 𝒜 is an
algebra of sets (closed under finite unions, intersections and complements) since the power set
of every 2n is an algebra of sets.
Since every A ∈ 𝒜 is open and closed, its characteristic function is continuous: χA ∈ C(X),
hence we may define

μ0(A) ∶= ϕ(χA), A ∈ 𝒜 .
It is clear that the set function μ0 is positive, finitely additive on 𝒜 and μ0(∅) = ϕ(0) = 0.

Claim The set function μ0 is countably additive on 𝒜.
Proof Let An ∈ 𝒜, n ∈ ℕ be pairwise disjoint and suppose that their union

A ∶=
∞

⋃
n=1

An

belongs to 𝒜. Then A is a closed, hence a compact set, and {An ∶ n ∈ ℕ} is a cover of A by
open sets (recall that 𝒜 consists of clopen sets). Hence it must have a finite subcover: there
exists N ∈ ℕ so that

A =
N

⋃
n=1

An .

Hence

μ0(A) =
N
∑
n=1

μ0(An)

by finite additivity of μ0. But since the family {An ∶ n ∈ ℕ} is pairwise disjoint and its first N
members already cover A, the remaining {An ∶ n ≥ N+ 1} must all be empty and so μ0(An) = 0
for all n ≥ N + 1. Thus the last equality gives

μ0(A) =
N
∑
n=1

μ0(An) =
∞
∑
n=1

μ0(An)

¹not discrete, but totally disconnected
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which proves countable additivity of μ0 on 𝒜.

Now apply Caratheodory’s Extension Theorem [Fol, Theorem 4.14]: There exists a unique (recall
that μ0(X) < ∞) positive countably additive measure μ defined on the Borel subsets of X which
extends μ0, i.e. satisfies

μ(A) = μ0(A) for all A ∈ 𝒜.
Regularity of μ is automatic: every Borel measure on a compact metric space is regular [KouNeg,
Theorem 4.17].

Claim For all f ∈ C(X),
ϕ(f) = ∫

X
fdμ .

Proof The measure μ defines a positive linear functional ϕμ on C(X) by integration. The given
functional ϕ agrees with ϕμ on all characteristic functions of sets in 𝒜 by the definition of μ0:

ϕ(χA) = μ0(A) = μ(A) = ∫
X

χAdμ, A ∈ 𝒜.

Hence, by linearity, ϕ(f) = ϕμ(f) for all f ∈ span(𝒜). But
The space span(𝒜) ⊆ C(X):
• is an algebra (since χAχB = χA∩B and χA + χB = χA + χB − χAχB)
• contains constants (since 1 = χX and X ∈ 𝒜)
• is selfadjoint (since it is the linear span of the selfadjoint elements χA,A ∈ 𝒜)
• separates points of X (since if x, y ∈ X are distinct, there is an n ∈ ℕ such that πn(x) ≠ πn(y),
so taking A = π−1

n (En) where En = {πn(x)} we have χA(x) = 1 while χA(y) = 0).
Therefore, by the Stone - Weierstarss Theorem, span(𝒜) is sup-norm dense in C(X).
Since both ϕ and ϕμ are continuous on C(X) and agree on the dense space span(𝒜), they must
be equal, όπως θέλαμε.

Remark The crucial point is that C(X) contains ‘enough’ characteristic functions (they span a
dense subspace of C(X)).

5. The case of a compact metric space X

There exists a continuous surjection
p ∶ 2ℕ → X

(see cpctmetric.pdf). In the sequel we write Y for 2ℕ for brevity.
The map p induces a map

p∗ ∶ C(X) → C(Y) ∶ f ↦ f ∘ p .
This is clearly a *-homomorphism, and it is 1-1, since p is onto (verifications are immediate).
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Considering C(X) as a C*-subalgebra of C(Y) (via p∗), the map

ϕ ∶ C(X) → ℂ

has a linear Hahn-Banach extension

ϕ̃ ∶ C(Y) → ℂ

with the same norm: ‖ϕ̃‖ = ‖ϕ‖ = 1. Thus ϕ̃(1) = ϕ(1) = 1. As we know, ² the equality ‖ϕ̃‖ = ϕ̃(1)
implies that the functional ϕ̃ is positive.
Therefore, since Y = 2ℕ, by Case 4 there exists a Borel probability measure μ̃ on Y such that

ϕ̃(g) = ∫
Y

g(y)dμ̃(y) for all g ∈ C(Y).

Now for each f ∈ C(X) we have (noting that we have identified C(X) with its image p∗(C(X))
in C(Y))

ϕ(f) = ϕ̃(p∗(f)) = ∫
Y

p∗(f)dμ̃

= ∫
Y
(f ∘ p)dμ̃

= ∫
X

fd(μ̃ ∘ p−1)

where in the last line we have used the familiar ‘change of variable’ formula which is easily
verified. ³
Therefore if we define the Borel probability measure μ on X by

μ(A) ∶= μ̃(p−1(A)), A ⊆ X Borel

we finally have the required equality

ϕ(f) = ∫
X

fdμ for all f ∈ C(X).
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³It suffices to check the equality ∫Y(f∘p)dμ̃ = ∫X fd(μ̃∘p−1) when f is the characteristic function of a Borel subset

of X, in which case it follows immediately from the definitions.
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