On the Riesz-Markov Representation Theorem

1. Let X be a compact Hausdorff space. Each positive regular Borel measure μ on X defines a positive linear form

$$
\varphi_{\mu}: C(X) \rightarrow \mathbb{C}: f \mapsto \int_{X} f d \mu .
$$

(Recall that ϕ_{μ} is automatically $\|\cdot\|_{\infty}$-continuous and $\left\|\varphi_{\mu}\right\|=\phi_{\mu}(1)$.)
2. Uniqueness The measure μ is uniquely determined by ϕ_{μ}. In other words,

П@ótaбn 1. If μ and v are regular Borel measures on X and

$$
\int_{X} f d \mu=\int_{X} f d v \quad \text { for all } f \in C(X)
$$

then $\mu=v$.
$A \pi o ́ \delta \varepsilon ı \xi n$. Let $A \subseteq X$ be a Borel set. We show that $\mu(A)=v(A)$.
Given $\varepsilon>0$, by regularity of μ there is a compact set K_{μ} and an open set V_{μ} such that $K_{\mu} \subseteq A \subseteq V_{\mu}$ and $\mu\left(V_{\mu}\right)-\mu\left(K_{\mu}\right)<\varepsilon$ (recall that μ is finite); and likewise for v. Replacing K_{μ} and K_{ν} be their union K, and replacing V_{μ} and V_{v} by their intersection V, we have a compact set K and an open set V such that

$$
K \subseteq A \subseteq V \text { and } \mu(V)-\mu(K)<\varepsilon \text { and } v(V)-v(K)<\varepsilon .
$$

By Urysohn, there is a continuous function $f: X \rightarrow[0,1]$ such that

- $\left.f\right|_{K}=1$ so $\chi_{K} \leq f$, and
- $\left.f\right|_{V^{c}}=0$ so $f \leq \chi_{V}$.

Since $\chi_{K} \leq f \leq \chi_{V}$ and the measures are positive, we get

$$
\mu(K)=\int \chi_{K} d \mu \leq \int f d \mu \leq \int \chi_{V} d \mu=\mu(V) .
$$

Combining with $\mu(K) \leq \mu(A) \leq \mu(V)$ yields

$$
\left|\int f d \mu-\mu(A)\right| \leq \mu(V)-\mu(K)<\varepsilon
$$

and similarly,

$$
\left|\int f d v-v(A)\right| \leq v(V)-v(K)<\varepsilon .
$$

But since $\int_{X} f d \mu=\int_{X} f d v$, these inequalities give

$$
|\mu(A)-v(A)|<2 \varepsilon
$$

We would like to prove the converse of (1):

Өع由@nua 2. If X is a compact Hausdorff space and $\varphi: C(X) \rightarrow \mathbb{C}$ a positive linear form, there is a (unique) positive regular Borel measure μ on X such that

$$
\varphi=\int_{X} f d \mu \text { for all } f \in C(X)
$$

For convenience, henceforth we normalize φ (dividing by $\varphi(1)$ if needed) so that

$$
\varphi(1)=1
$$

and then the required μ should be a probability measure.

3. The case of a discrete X

Now $X=\left\{x_{1}, \ldots, x_{n}\right\}$ for some $n \in \mathbb{N}$ (X is compact and discrete). Every function on X is continuous, so $C(X)=\ell^{\infty}[n]=\mathbb{C}^{n}$. Thus every $f \in C(X)$ is determined by a finite sequence

$$
f \leadsto\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right) \in \ell_{n}^{\infty}
$$

and φ is determined by its values on the usual basis of ℓ_{n}^{∞}

$$
\varphi \leadsto\left(\varphi\left(e_{1}\right), \ldots, \varphi\left(e_{n}\right)\right) \in \ell_{n}^{1}
$$

where $e_{j}(x)=1$ when $x=x_{j}$ and $e_{j}(x)=0$ otherwise (i.e. $e_{j}=\chi_{\left\{x_{j}\right\}}$). Indeed,

$$
\varphi(f)=\phi\left(\sum_{j} f\left(x_{j}\right) e_{j}\right)=\sum_{j} f\left(x_{j}\right) \varphi\left(e_{j}\right) .
$$

Positivity of φ is equivalent to $\varphi\left(e_{j}\right) \geq 0$ for all j. If we define

$$
\mu\left(\left\{x_{j}\right\}\right)=\phi\left(e_{j}\right) \quad \text { for all } j,
$$

equivalently,

$$
\mu(A)=\sum\left\{\varphi\left(e_{j}\right): x_{j} \in A\right\}
$$

for every subset A of X, then we have

$$
\varphi(f)=\sum_{j} f\left(x_{j}\right) \varphi\left(e_{j}\right)=\sum_{j} f\left(x_{j}\right) \mu\left(\left\{x_{j}\right\}\right)=\int f d \mu
$$

for every $f \in C(X)$, as required.
Remark The crucial point is that $C(X)$ contains 'enough' characteristic functions (they span $C(X)$ linearly).

4. The case $X=2^{\mathbb{N}}$

The space

$$
X=\{x: \mathbb{N} \rightarrow\{0,1\}\}
$$

is the Cartesian product of a countable number of discrete spaces, hence a compact metrisable space with the product topology. This is the weakest topology on X making all the coordinate projections continuous; equivalently it is the weakest topology on X making all the projections

$$
\pi_{n}: 2^{\mathbb{N}} \rightarrow 2^{n}:(x(k)) \mapsto(x(1), \ldots, x(n))
$$

continuous.
Define the algebra \mathcal{A} of all cylinder sets

$$
\mathcal{A}:=\bigcup_{n \in \mathbb{N}}\left\{\pi_{n}^{-1}\left(E_{n}\right): E_{n} \subseteq \mathbf{2}^{n}\right\} .
$$

Note that since $\mathbf{2}^{n}$ is discrete, every $E_{n} \subseteq \mathbf{2}^{n}$ is open and closed (hence Borel). Clearly \mathcal{A} is an algebra of sets (closed under finite unions, intersections and complements) since the power set of every 2^{n} is an algebra of sets.
Since every $A \in \mathcal{A}$ is open and closed, its characteristic function is continuous: $\chi_{A} \in C(X)$, hence we may define

$$
\mu_{0}(A):=\varphi\left(\chi_{A}\right), \quad A \in \mathcal{A} .
$$

It is clear that the set function μ_{0} is positive, finitely additive on \mathcal{A} and $\mu_{0}(\varnothing)=\varphi(0)=0$.
Claim The set function μ_{0} is countably additive on \mathcal{A}.
Proof Let $A_{n} \in \mathcal{A}, n \in \mathbb{N}$ be pairwise disjoint and suppose that their union

$$
A:=\bigcup_{n=1}^{\infty} A_{n}
$$

belongs to \mathcal{A}. Then A is a closed, hence a compact set, and $\left\{A_{n}: n \in \mathbb{N}\right\}$ is a cover of A by open sets (recall that \mathcal{A} consists of clopen sets). Hence it must have a finite subcover: there exists $N \in \mathbb{N}$ so that

$$
A=\bigcup_{n=1}^{N} A_{n}
$$

Hence

$$
\mu_{0}(A)=\sum_{n=1}^{N} \mu_{0}\left(A_{n}\right)
$$

by finite additivity of μ_{0}. But since the family $\left\{A_{n}: n \in \mathbb{N}\right\}$ is pairwise disjoint and its first N members already cover A, the remaining $\left\{A_{n}: n \geq N+1\right\}$ must all be empty and so $\mu_{0}\left(A_{n}\right)=0$ for all $n \geq N+1$. Thus the last equality gives

$$
\mu_{0}(A)=\sum_{n=1}^{N} \mu_{0}\left(A_{n}\right)=\sum_{n=1}^{\infty} \mu_{0}\left(A_{n}\right)
$$

which proves countable additivity of μ_{0} on \mathcal{A}.
Now apply Caratheodory's Extension Theorem [Fol, Theorem 4.14]: There exists a unique (recall that $\left.\mu_{0}(X)<\infty\right)$ positive countably additive measure μ defined on the Borel subsets of X which extends μ_{0}, i.e. satisfies

$$
\mu(A)=\mu_{0}(A) \quad \text { for all } A \in \mathcal{A} .
$$

Regularity of μ is automatic: every Borel measure on a compact metric space is regular [KouNeg, Theorem 4.17].

Claim For all $f \in C(X)$,

$$
\varphi(f)=\int_{X} f d \mu
$$

Proof The measure μ defines a positive linear functional φ_{μ} on $C(X)$ by integration. The given functional ϕ agrees with ϕ_{μ} on all characteristic functions of sets in \mathcal{A} by the definition of μ_{0} :

$$
\varphi\left(\chi_{A}\right)=\mu_{0}(A)=\mu(A)=\int_{X} \chi_{A} d \mu, \quad A \in \mathcal{A}
$$

Hence, by linearity, $\varphi(f)=\varphi_{\mu}(f)$ for all $f \in \operatorname{span}(\mathcal{A})$. But
The space $\operatorname{span}(\mathcal{A}) \subseteq C(X)$:

- is an algebra (since $\chi_{A} \chi_{B}=\chi_{A \cap B}$ and $\chi_{A}+\chi_{B}=\chi_{A}+\chi_{B}-\chi_{A} \chi_{B}$)
- contains constants (since $1=\chi_{X}$ and $X \in \mathcal{A}$)
- is selfadjoint (since it is the linear span of the selfadjoint elements $\chi_{A}, A \in \mathcal{A}$)
- separates points of X (since if $x, y \in X$ are distinct, there is an $n \in \mathbb{N}$ such that $\pi_{n}(x) \neq \pi_{n}(y)$, so taking $A=\pi_{n}^{-1}\left(E_{n}\right)$ where $E_{n}=\left\{\pi_{n}(x)\right\}$ we have $\chi_{A}(x)=1$ while $\left.\chi_{A}(y)=0\right)$.
Therefore, by the Stone - Weierstarss Theorem, $\operatorname{span}(\mathcal{A})$ is sup-norm dense in $C(X)$.
Since both φ and φ_{μ} are continuous on $C(X)$ and agree on the dense space $\operatorname{span}(\mathcal{A})$, they must

Remark The crucial point is that $C(X)$ contains 'enough' characteristic functions (they span a dense subspace of $C(X)$).

5. The case of a compact metric space X

There exists a continuous surjection

$$
p: 2^{\mathbb{N}} \rightarrow X
$$

(see cpctmetric.pdf). In the sequel we write Y for $2^{\mathbb{N}}$ for brevity.
The map p induces a map

$$
p^{*}: C(X) \rightarrow C(Y): f \mapsto f \circ p .
$$

This is clearly a *-homomorphism, and it is $1-1$, since p is onto (verifications are immediate).

Considering $C(X)$ as a C^{*}-subalgebra of $C(Y)$ (via $\left.p^{*}\right)$, the map

$$
\varphi: C(X) \rightarrow \mathbb{C}
$$

has a linear Hahn-Banach extension

$$
\widetilde{\Phi}: C(Y) \rightarrow \mathbb{C}
$$

with the same norm: $\|\widetilde{\varphi}\|=\|\varphi\|=1$. Thus $\widetilde{\varphi}(1)=\varphi(1)=1$. As we know, ${ }^{2}$ the equality $\|\widetilde{\varphi}\|=\widetilde{\varphi}(1)$ implies that the functional $\widetilde{\boldsymbol{\phi}}$ is positive.
Therefore, since $Y=\mathbf{2}^{\mathbb{N}}$, by Case 4 there exists a Borel probability measure $\widetilde{\mu}$ on Y such that

$$
\widetilde{\varphi}(g)=\int_{Y} g(y) d \widetilde{\mu}(y) \quad \text { for all } g \in C(Y) .
$$

Now for each $f \in C(X)$ we have (noting that we have identified $C(X)$ with its image $p^{*}(C(X))$ in $C(Y)$)

$$
\begin{aligned}
\varphi(f)=\widetilde{\phi}\left(p^{*}(f)\right) & =\int_{Y} p^{*}(f) d \widetilde{\mu} \\
& =\int_{Y}(f \circ p) d \widetilde{\mu} \\
& =\int_{X} f d\left(\widetilde{\mu} \circ p^{-1}\right)
\end{aligned}
$$

where in the last line we have used the familiar 'change of variable' formula which is easily verified. ${ }^{3}$

Therefore if we define the Borel probability measure μ on X by

$$
\mu(A):=\widetilde{\mu}\left(p^{-1}(A)\right), \quad A \subseteq X \text { Borel }
$$

we finally have the required equality

$$
\varphi(f)=\int_{X} f d \mu \quad \text { for all } f \in C(X)
$$

Avapo@źs

[Fol] Gerald B. Folland. Real analysis. Pure and Applied Mathematics (New York). John Wiley \& Sons, Inc., New York, second edition, 1999.
[KouNeg] George Koumoullis, Stelios Negrepontis, Measure Theory, Symmetria Publications, Athens 2005.

[^0]
[^0]: ${ }^{2}$ see for example arvext23.pdf, П@ótaon 1
 ${ }^{3}$ It suffices to check the equality $\int_{Y}(f \circ p) d \widetilde{\mu}=\int_{X} f d\left(\widetilde{\mu} \circ p^{-1}\right)$ when f is the characteristic function of a Borel subset of X, in which case it follows immediately from the definitions.

