The mean ergodic theorem of von Neumann: a very elementary proof

Let $T: H \rightarrow H$ be any map on a Hilbert space and let

$$
\operatorname{Fix}(T)=\{x \in H: T x=x\}
$$

be the fixed point set of T. If $x \in F i x(T)$, then the iterates $T^{k} x$ are all equal to x, hence $T^{k} x \rightarrow x$. On the other hand, if T is continuous and $\left(T^{n} x\right)$ converges to some y, then $T y=T\left(\lim _{n} T^{n} x\right)=\lim _{n} T\left(T^{n} x\right)=\lim _{n} T^{n+1} x=y$, so $y \in \operatorname{Fix}(T)$.

But, even for a unitary operator T, it can happen that the sequence $\left(T^{n} x\right)$ converges only in the trivial case $x=0$. Example: the bilateral shift.

The situation is much better if we take averages:
Theorem 1 Let $T \in \mathcal{B}(H)$ be a contraction. If

$$
S_{n}=\frac{1}{n} \sum_{k=0}^{n-1} T^{k} \quad(n=0,1, \ldots)
$$

are the averages of the iterates T^{k} of T, then
(i) $\left(S_{n}\right)$ converges strongly (i.e. pointwise) and
(ii) its limit is the orthogonal projection F onto the fixed point set

$$
\operatorname{Fix}(T)=\operatorname{ker}(I-T)=\{x \in H: T x=x\} .
$$

Proof. (a) Suppose first that $x=(I-T)(H)$, hence there exists $y \in H$ with $x=$ $(I-T) y$. Then for each $k \in \mathbb{Z}_{+}$we have $T^{k} x=T^{k} y-T^{k+1} y$, therefore

$$
\begin{aligned}
S_{n} x & =\frac{1}{n}\left(y-T^{n} y\right) \\
\text { hence } \quad\left\|S_{n} x\right\| & \leq \frac{1}{n}\left\|y-T^{n} y\right\| \leq \frac{2\|y\|}{n} \rightarrow 0 .
\end{aligned}
$$

Thus $S^{n} x \rightarrow 0$ for all $x=(I-T)(H)$.
(b) It follows that for all $x \in \overline{(I-T)(H)}$ we have $S^{n} x \rightarrow 0$. Indeed given $\varepsilon>0$ choose $z=(I-T) y \in(I-T)(H)$ so that $\|x-z\|<\varepsilon$, and then choose $n_{0} \in \mathbb{N}$ such that $\left\|S_{n} z\right\|<\varepsilon$ for all $n \geq n_{0}$.

If $n \geq n_{0}$ then, since each S_{n} is a contraction,

$$
\left\|S_{n} x\right\| \leq\left\|S_{n}(x-z)\right\|+\left\|S_{n} z\right\| \leq\|x-z\|+\left\|S_{n} z\right\|<2 \varepsilon
$$

(c) It remains to consider the case $x \in \overline{(I-T)(H)}{ }^{\perp}=\operatorname{ker}\left(I-T^{*}\right)$, i.e. $x=T^{*} x$. But then $x=T x$: indeed

$$
\begin{aligned}
\|x-T x\|^{2} & =\|x\|^{2}+\|T x\|^{2}-2 \operatorname{Re}\langle x, T x\rangle \\
& =\|x\|^{2}+\|T x\|^{2}-2 \operatorname{Re}\left\langle T^{*} x, x\right\rangle=\|x\|^{2}+\|T x\|^{2}-2\|x\|^{2} \leq 0
\end{aligned}
$$

because T is a contraction; hence $\|x-T x\|^{2}=0$.
Thus $x \in \operatorname{Fix}(T)$ and so, as noted above, $S_{n} x=x$ for all n, hence $\lim S_{n} x=x$.
Therefore for all $x \in H$,

$$
\lim _{n} S_{n} x=\lim _{n} S_{n} F x+\lim _{n} S_{n} F^{\perp} x=F x+0 .
$$

See also the very interesting blog, Terry Tao: The mean Ergodic Theorem.

[^0]
[^0]: ${ }^{1}$ meanergo, A. Katavolos, 31 Jan 2012

