The mean ergodic theorem of von Neumann: a very elementary proof

Let $^{1}T: H \to H$ be any map on a Hilbert space and let

$$Fix(T) = \{x \in H : Tx = x\}$$

be the fixed point set of T. If $x \in Fix(T)$, then the iterates $T^k x$ are all equal to x, hence $T^k x \to x$. On the other hand, if T is continuous and $(T^n x)$ converges to some y, then $Ty = T(\lim_n T^n x) = \lim_n T(T^n x) = \lim_n T^{n+1}x = y$, so $y \in Fix(T)$.

But, even for a unitary operator T, it can happen that the sequence $(T^n x)$ converges only in the trivial case x = 0. Example: the bilateral shift.

The situation is much better if we take averages:

Theorem 1 Let $T \in \mathcal{B}(H)$ be a contraction. If

$$S_n = \frac{1}{n} \sum_{k=0}^{n-1} T^k \quad (n = 0, 1, \dots)$$

are the averages of the iterates T^k of T, then

- (i) (S_n) converges strongly (i.e. pointwise) and
- (ii) its limit is the orthogonal projection F onto the fixed point set

$$Fix(T) = \ker(I - T) = \{x \in H : Tx = x\}.$$

Proof. (a) Suppose first that x = (I - T)(H), hence there exists $y \in H$ with x = (I - T)y. Then for each $k \in \mathbb{Z}_+$ we have $T^k x = T^k y - T^{k+1}y$, therefore

$$S_n x = \frac{1}{n} (y - T^n y)$$

hence $||S_n x|| \le \frac{1}{n} ||y - T^n y|| \le \frac{2 ||y||}{n} \to 0.$

Thus $S^n x \to 0$ for all x = (I - T)(H).

(b) It follows that for all $x \in \overline{(I-T)(H)}$ we have $S^n x \to 0$. Indeed given $\varepsilon > 0$ choose $z = (I-T)y \in (I-T)(H)$ so that $||x-z|| < \varepsilon$, and then choose $n_0 \in \mathbb{N}$ such that $||S_n z|| < \varepsilon$ for all $n \ge n_0$.

If $n \ge n_0$ then, since each S_n is a contraction,

$$||S_n x|| \le ||S_n (x - z)|| + ||S_n z|| \le ||x - z|| + ||S_n z|| < 2\varepsilon.$$

(c) It remains to consider the case $x \in \overline{(I-T)(H)}^{\perp} = \ker(I-T^*)$, i.e. $x = T^*x$. But then x = Tx: indeed

$$||x - Tx||^{2} = ||x||^{2} + ||Tx||^{2} - 2\operatorname{Re}\langle x, Tx\rangle$$

= $||x||^{2} + ||Tx||^{2} - 2\operatorname{Re}\langle T^{*}x, x\rangle = ||x||^{2} + ||Tx||^{2} - 2||x||^{2} \le 0$

because T is a contraction; hence $||x - Tx||^2 = 0$.

Thus $x \in Fix(T)$ and so, as noted above, $S_n x = x$ for all n, hence $\lim S_n x = x$. Therefore for all $x \in H$,

$$\lim_{n} S_n x = \lim_{n} S_n F x + \lim_{n} S_n F^{\perp} x = F x + 0. \qquad \Box$$

See also the very interesting blog, Terry Tao: The mean Ergodic Theorem.

¹meanergo, A. Katavolos, 31 Jan 2012