Operator Theory – Spring 2010 – Summary Week 3: Mar. 3-4

2 Bounded Operators (continued)

2.3 Invariant subspaces

Definition. Example: eigenspaces.

 $A(M) \subseteq M \iff AP = PAP \iff A \simeq \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$ $A^*(M) \subseteq M \iff PA = PAP \iff A \simeq \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \iff A(M^{\perp}) \subseteq M^{\perp}$

both: A reduces $M \iff AP = PA \iff A \simeq \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$

If $Alg(M) = \{A \in \mathcal{B}(\mathcal{H}) : A(M) \subseteq M\}$ the map $A \to PAP|_M$ preserves products on Alg(M), not *

The map $A \to P^{\perp}AP^{\perp}|_{M^{\perp}}$ preserves products on $Alg(M^{\perp})$, not *

If A reduces M then both these maps preserve products AND *, on $Alg(M, M^{\perp}) = \{A \in \mathcal{B}(\mathcal{H}) : A(M) \subseteq M \text{ and } A(M^{\perp}) \subseteq M^{\perp}\}.$

More generally:

Let M_1, M_2 be closed orthogonal subspaces, $M = M_1 \oplus M_2$ and $P = P(M_2)$. If $\mathcal{A} = Alg(M_1, M) = \{A \in \mathcal{B}(\mathcal{H}) : A(M_1) \subseteq M_1 \text{ and } A(M) \subseteq M\}$, the map $A \to PAP|_{M_2}$ preserves products on \mathcal{A} , not *. [*Exercise*]

Conversely, if $\mathcal{A} \subseteq \mathcal{B}(\mathcal{H})$ is a subalgebra and P = P(N) a projection such that $A \to PAP$ preserves products on \mathcal{A} , then the closed subspace N is **semi-invariant** for \mathcal{A} , i.e. there are \mathcal{A} -invariant subspaces $L \subseteq K$ such that $N = K \cap L^{\perp}$. [Exercise]

2.4 The Spectral Theorem in finite dimensions

Remark A diagonal operator D_a on ℓ^2 is normal. Ditto for a *diagonalisable* operator on a Hilbert space. Partial (!) converse:

Theorem 1 If dim $\mathcal{H} < \infty$, a normal operator A on \mathcal{H} is diagonalisable, i.e. there is an orthonormal basis of \mathcal{H} consisting of e-vectors of A.

Equivalently, if $\sigma_p(A) = \{\lambda \in \mathbb{C} : \ker(\lambda - A) \neq \{0\}\}$ is the (nonempty!) finite set of e-values of A, and if P_{λ} denotes the projection onto the e-space corresponding to λ , then

$$A = \sum_{\lambda \in \sigma_p(A)} \lambda P_{\lambda}$$
 and $I = \sum_{\lambda \in \sigma_p(A)} P_{\lambda}$.

Uses:

Lemma 2 If T is a normal operator on any Hilbert space, if $\lambda, \mu \in \sigma_p(T)$ and M_{λ}, M_{μ} are the corresponding e-spaces, then

(i) $Tx = \lambda x$ implies $T^*x = \overline{\lambda}x$; (ii) M_{λ} reduces T;

(iii) if $\lambda \neq \mu$ then $M_{\lambda} \perp M_{\mu}$.

However if dim $\mathcal{H} = \infty$ then $\sigma_p(T)$ may be empty. **Example** Let $T \in \mathcal{B}(L^2([0,1])$ be given by Tf(t) = tf(t) [*Exercise*]. Generalisation:

2.5 The Spectrum of a bounded operator

Definition: If $A \in \mathcal{B}(\mathcal{H})$,

 $\sigma(A) = \{\lambda \in \mathbb{C} : \lambda - A \text{ not invertible}\} \text{ the spectrum of } A$ $\rho(A) = \mathbb{C} \setminus \sigma(A) \text{ the resolvent of } A$

Remark By the open mapping theorem, if T is bijective it is a homeo [requires completeness!]. Thus $\lambda \in \sigma(A)$ iff $\lambda - A$ is not bijective.

Lemma 3 If ||T|| < 1 then I - T is invertible. [Geometric series!]

Proposition 4 The spectrum of A is a nonempty and compact subset of \mathbb{C} and the $\mathcal{B}(\mathcal{H})$ valued map $z \to (z - A)^{-1}$ is holomorphic on $\rho(A)$. In fact: (i) $\sigma(A) \subseteq \{z \in \mathbb{C} : |z| \le ||A||\}$, so $\sigma(A)$ is bounded (ii) If $\lambda \in \rho(A)$ and $|z| < ||(\lambda - A)^{-1}||^{-1}$, then $\lambda + z \in \rho(A)$ (so $\sigma(A)$ is closed) and (iii) the function $z \to (z - A)^{-1}$ has a power series expansion in a disk centered at λ of radius $||(\lambda - A)^{-1}||^{-1}$. (iv) $\sigma(A) \neq \emptyset$.

Remark The resolvent identity: If $\lambda, \mu \in \rho(A)$ are distinct,

$$\frac{(\lambda - A)^{-1} - (\mu - A)^{-1}}{\lambda - \mu} = -(\lambda - A)^{-1}(\mu - A)^{-1}$$

shows (again) that the resolvent $\mu \to (\mu - A)^{-1}$ is norm-differentiable on $\rho(A)$ and its derivative is $-(\mu - A)^{-2}$.

Lemma 5 (i) $\ker(A) = (A^*(\mathcal{H}))^{\perp}$ and $\overline{A(\mathcal{H})} = \ker(A^*)^{\perp}$. (ii) If $A = A^* \in \mathcal{B}(\mathcal{H})$ then $\sigma(A) \subseteq [a, b]$ where $a = \inf\{\langle Ax, x \rangle : ||x|| = 1\}$ and $b = \sup\{\langle Ax, x \rangle : ||x|| = 1\}$ [Exercise]. In particular, $\sigma(A) \subseteq \mathbb{R}$. (iii) If $U \in \mathcal{B}(\mathcal{H})$ is unitary, then $\sigma(U) \subseteq \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$.

3 The functional calculus: continuous functions of a bounded selfadjoint operator

Fix $A = A^* \in \mathcal{B}(\mathcal{H})$. We wish to define f(A) for appropriate f.

3.1 Polynomials

If $p(t) = c_0 + c_1 t + \cdots + c_n t^n$ ($c_k \in \mathbb{C}$) is a poly of a real variable, then $p(A) = c_0 I + c_1 A + \cdots + c_n A^n$. The map $\Phi_0 : p \to p(A)$ from the algebra of polynomials into $\mathcal{B}(\mathcal{H})$ preserves the algebraic operations $+, \cdot, *$ where $p^*(t) = \bar{p}(t) = \bar{c}_0 + \bar{c}_1 t + \cdots + \bar{c}_n t^n$.

To extend to the "closure" of the algebra of polynomials, need some sort of "continuity" of Φ_0 (for which topologies?).

Lemma 6 (Spectral Mapping Lemma) $\sigma(p(A)) = p(\sigma(A)) = \{p(\lambda) : \lambda \in \sigma(A)\}.$

Proposition 7 $||p(A)||_{\mathcal{B}(\mathcal{H})} = \sup\{|p(\lambda)| : \lambda \in \sigma(A)\} \equiv ||p||_{\sigma(A)}.$

Note $||p||_{\sigma(A)} \leq \sup\{|p(\lambda)| : \lambda \in [a, b]\}$ with a, b as in Lemma 5.