Operator Theory - Spring 2010 - Summary
 Week 4: Mar. 10-11

3 The functional calculus (continued)

Fix $A=A^{*} \in \mathcal{B}(\mathcal{H})$. We wish to define $f(A)$ for appropriate f.
Recall that

$$
\sigma(A) \subseteq[a, b] \subseteq[-\|A\|,\|A\|]
$$

where $a=\inf \{\langle A x, x\rangle:\|x\|=1\}$ and $b=\sup \{\langle A x, x\rangle:\|x\|=1\}$.

3.2 Continuous Functions on $\sigma(A)$

If $p(t)=c_{0}+c_{1} t+\cdots+c_{n} t^{n}\left(c_{k} \in \mathbb{C}\right)$ is a poly of a real variable, then $p(A)=c_{0} I+$ $c_{1} A+\cdots+c_{n} A^{n}$. The map $\quad \Phi_{0}: p \rightarrow p(A) \quad$ from the algebra of polynomials into $\mathcal{B}(\mathcal{H})$ preserves the algebraic operations $+, \cdot, *$ where $p^{*}(t)=\bar{p}(t)=\bar{c}_{0}+\bar{c}_{1} t+\cdots+\bar{c}_{n} t^{n}$.

To extend to functions that are "limits" of polynomials, need some sort of "continuity" of Φ_{0} :

Lemma 6 (Spectral Mapping Lemma) $\sigma(p(A))=p(\sigma(A))=\{p(\lambda): \lambda \in \sigma(A)\}$.
Proposition $7\|p(A)\|_{\mathcal{B}(\mathcal{H})}=\sup \{|p(\lambda)|: \lambda \in \sigma(A)\} \equiv\|p\|_{\sigma(A)}$.
For some purposes, it is sufficient to know a weaker estimate:
Lemma 8 (Nelson, p. 67) ${ }^{1}$ Let $p(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ be a polynomial. For all $x \in \mathcal{H},\|p(A) x\| \leq \max \{|p(t)|: t \in[-\|A\|,\|A\|]\}\|x\|$. Hence

$$
\begin{equation*}
\left.\|p(A)\|_{\mathcal{B}(\mathcal{H}}\right) \leq \max \{|p(t)|: t \in[-\|A\|,\|A\|]\} \tag{1}
\end{equation*}
$$

Proof Let $M:=\operatorname{span}\left\{x, A x, \ldots, A^{n} x\right\}$; this is a finite dimensional subspace of \mathcal{H} (automatically closed). Let E be the orthogonal projection onto M. Then, since $A^{k} x \in M$ when $k=0, \ldots, n$, we have $p(A) x \in M$ and

$$
p(A) x=E p(A) E x=p(E A E) x
$$

(verify!) $)^{2}$ Since $E A E$ is a selfadjoint operator on the finite-dimensional space M, we may apply the spectral theorem for finite dimensional spaces to get

$$
E A E=\sum \lambda_{k} P_{\lambda_{k}} \quad \text { and } \quad I=\sum P_{\lambda_{k}}
$$

where the $\lambda_{k}^{\prime} s$ are the eigenvalues with associated projections $P_{\lambda_{k}}$. It follows that

$$
p(A) x=p\left(\sum \lambda_{k} P_{\lambda_{k}}\right) x=\left(\sum p\left(\lambda_{k}\right) P_{\lambda_{k}}\right) x
$$

[^0]and by Pythagoras' theorem,
\[

$$
\begin{aligned}
\|p(A) x\|^{2} & =\sum\left|p\left(\lambda_{k}\right)\right|^{2}\left\|P_{\lambda_{k}} x\right\|^{2} \\
& \leq \max _{k}\left|p\left(\lambda_{k}\right)\right|^{2} \sum\left\|P_{\lambda_{k}} x\right\|^{2}=\max _{k}\left|p\left(\lambda_{k}\right)\right|^{2}\|x\|^{2}
\end{aligned}
$$
\]

since $\sum\left\|P_{\lambda_{k}} x\right\|^{2}=\|x\|^{2}$. But each λ_{k} satisfies $\left|\lambda_{k}\right| \leq\|E A E\| \leq\|A\|$, hence is in the interval $[-\|A\|,\|A\|]$; therefore

$$
\|p(A) x\| \leq \max \{|p(\lambda)|: \lambda \in[-\|A\|,\|A\|]\}\|x\|
$$

Remark 9 In general, the inequality may be strict: for example suppose A is a nonzero orthogonal projection, so $\sigma(A)=\{0,1\}$ and let $p(t)=t-t^{2}$. Then $p(A)=A-A^{2}=0$ while $\max \{|p(\lambda)|: \lambda \in[-\|A\|,\|A\|]\}=p(1 / 2)=1 / 4$. However here $\max \{|p(\lambda)|: \lambda \in$ $\sigma(A)\}=0$ as in Proposition 7.

To prove Proposition 7, use
Proposition 10 Let $A=A^{*} \in \mathcal{B}(\mathcal{H})$. Then one of the numbers $\|A\|$ or $-\|A\|$ must belong to $\sigma(A)$. In particular,

$$
\sup \{|\lambda|: \lambda \in \sigma(A)\}=\|A\| .
$$

Proof We will prove that the number $\|A\|^{2}$ is in $\sigma\left(A^{2}\right)$. It will follow that the product $(A-\|A\| I)(A+\|A\| I)=\left(A^{2}-\|A\|^{2} I\right)$ cannot be invertible, and hence the operators $(A-\|A\| I)$ and $(A+\|A\| I)$ cannot both be invertible, as required.

For each $\lambda \in \mathbb{R}$ and each $x \in \mathcal{H}$, since $\left\langle A^{2} x, \lambda^{2} x\right\rangle \in \mathbb{R}$, we have

$$
\begin{aligned}
\left\|A^{2} x-\lambda^{2} x\right\|^{2} & =\left\langle A^{2} x-\lambda^{2} x, A^{2} x-\lambda^{2} x\right\rangle=\left\|A^{2} x\right\|^{2}-2\left\langle A^{2} x, \lambda^{2} x\right\rangle+\left\|\lambda^{2} x\right\|^{2} \\
& =\left\|A^{2} x\right\|^{2}-2 \lambda^{2}\|A x\|^{2}+\lambda^{4}\|x\|^{2}
\end{aligned}
$$

But since $\|A\|=\sup \{\|A x\|:\|x\|=1\}$, there is a sequence $\left(x_{n}\right)$ with $\left\|x_{n}\right\|=1$ and $\left\|A x_{n}\right\| \rightarrow\|A\|$. Using the previous equality with $x=x_{n}$ and $\lambda=\|A\|$, we obtain

$$
\begin{aligned}
\left\|A^{2} x_{n}-\lambda^{2} x_{n}\right\|^{2} & =\left\|A^{2} x_{n}\right\|^{2}-2 \lambda^{2}\left\|A x_{n}\right\|^{2}+\lambda^{4} \\
& \leq\left(\|A\|\left\|A x_{n}\right\|\right)^{2}-2 \lambda^{2}\left\|A x_{n}\right\|^{2}+\lambda^{4}=\lambda^{4}-\lambda^{2}\left\|A x_{n}\right\|^{2} \rightarrow 0
\end{aligned}
$$

This shows that the operator $A^{2}-\lambda^{2} I$ cannot be invertible (why?) and hence $\lambda^{2}=$ $\|A\|^{2} \in \sigma\left(A^{2}\right)$.

Proof of Proposition 7 The idea is to reduce to the selfadjoint case and use the C^{*}-property for the norm: Observe that if $p(t)=\sum_{k=0}^{n} a_{k} t^{k}$, then

$$
p(A)^{*} p(A)=\left(\sum_{k=0}^{n} a_{k} A^{k}\right)^{*}\left(\sum_{r=0}^{n} a_{r} A^{r}\right)=\left(\sum_{k=0}^{n} \bar{a}_{k} A^{k}\right)\left(\sum_{r=0}^{n} a_{r} A^{r}\right)=q(A)
$$

(since $A=A^{*}$) where q is the polynomial $q(t)=\bar{p}(t) p(t)$. Now $q(A)$ is selfadjoint so by Proposition 10 we get

$$
\|q(A)\|=\sup \{|\mu|: \mu \in \sigma(q(A))\}
$$

But $\sigma(q(A))=q(\sigma(A))=\{q(\lambda): \lambda \in \sigma(A)\}$ by the spectral mapping lemma, and so

$$
\|q(A)\|=\sup \{|q(\lambda)|: \lambda \in \sigma(A)\}
$$

But the C^{*}-property gives $\|p(A)\|^{2}=\left\|p(A)^{*} p(A)\right\|=\|q(A)\|$ and so

$$
\begin{aligned}
\|p(A)\|^{2} & =\|q(A)\|=\sup \{|q(\lambda)|: \lambda \in \sigma(A)\} \\
& =\sup \{|\bar{p}(\lambda) p(\lambda)|: \lambda \in \sigma(A)\}=(\sup \{|p(\lambda)|: \lambda \in \sigma(A)\})^{2}
\end{aligned}
$$

The proof is complete.

Theorem 11 The map Φ_{0} extends uniquely to an isometric *-homomorphism

$$
\Phi_{c}:\left(C(\sigma(A)),\|\cdot\|_{\sigma(A)}\right) \rightarrow(\mathcal{B}(\mathcal{H}),\|\cdot\|)
$$

For $f \in C(\sigma(A))$, we write $f(A)$ for $\Phi_{c}(f)$.
Thus $\quad f(a)=\lim p_{n}(A)$ where $\left(p_{n}\right)$ is any sequence of polynomials converging to f uniformly on $\sigma(A)$.

4 Unbounded operators

4.1 Definitions

\mathcal{H}, \mathcal{K} are Hilbert (or Banach) spaces. An operator from \mathcal{H} to \mathcal{K} is a pair $(\mathcal{D}(T), T)$ where $D(T) \subseteq \mathcal{H}$ is a linear manifold and $T: \mathcal{D}(T) \rightarrow \mathcal{K}$ is a linear map. We say that T is densely defined if its domain $\mathcal{D}(T)$ is dense in \mathcal{H}. Note that if T is densely defined and continuous, it admits a unique extension to a map defined on \mathcal{H}, with the same norm; but if T is not continuous, it cannot be extended continuously to the whole of \mathcal{H}. If T, S are operators from \mathcal{H} to \mathcal{K}, we say S extends T and we write $T \subset S$ if $\mathcal{D}(T) \subseteq \mathcal{D}(S)$ and $\left.S\right|_{\mathcal{D}(T)}=T$.

Example 12 (The "position operator" of Quantum Mechanics)

Let $\mathcal{H}=L^{2}(\mathbb{R})$ (Lebesgue measure understood), $\mathcal{D}(Q)=\{f \in \mathcal{H}: t \rightarrow t f(t)$ is in $\mathcal{H}\}$ and define $Q: \mathcal{D}(Q) \rightarrow \mathcal{H}$ by $(Q f)(t)=t f(t), f \in \mathcal{D}(Q)$. Then Q is unbounded, but its graph is a closed subspace of $\mathcal{H} \oplus \mathcal{H}$.

Definition 4.1 The graph of a linear operator $T: \mathcal{D}(T) \rightarrow \mathcal{K}$ is the following subspace of $\mathcal{H} \oplus \mathcal{K}$:

$$
G r(T)=\{x \oplus T x: x \in \mathcal{D}(T)\}
$$

This is of course a linear manifold. We say T is a closed operator when $\operatorname{Gr}(T)$ is a closed subspace of $\mathcal{H} \oplus \mathcal{K}$. The set of all closed operators is denoted $\mathcal{C}(\mathcal{H}, \mathcal{K})$.

We say T is closable when the subspace $\overline{G r(T)}$ is the graph of some linear operator. This operator (if it exists) is unique and is denoted \bar{T}. Clearly $T \subset \bar{T}$.

Example 13 If $\mathcal{D}\left(Q_{o}\right)=\{f \in \mathcal{H}: f$ has compact support $\}$ and $Q_{o}: \mathcal{D}\left(Q_{o}\right) \rightarrow \mathcal{H}$ is given by $\left(Q_{o} f\right)(t)=t f(t), f \in \mathcal{D}\left(Q_{o}\right)$, then Q_{o} is closable and its closure is Q.

A closed, everywhere defined operator is necessarily bounded (closed graph theorem!); so being closed is a (useful) weakening of continuity.

[^0]: ${ }^{1}$ E. Nelson, Topics in Dynamics I: Flows, Princeton Univ. Press and the University of Tokyo Press, 1969
 ${ }^{2}$ Note that M is not in general A-invariant.

