Operator Theory – Spring 2010 – Summary Week 4: Mar. 10-11

3 The functional calculus (continued)

Fix $A = A^* \in \mathcal{B}(\mathcal{H})$. We wish to define f(A) for appropriate f. Recall that

 $\sigma(A) \subseteq [a,b] \subseteq [- \left\|A\right\|, \left\|A\right\|]$

where $a = \inf\{\langle Ax, x \rangle : ||x|| = 1\}$ and $b = \sup\{\langle Ax, x \rangle : ||x|| = 1\}.$

3.2 Continuous Functions on $\sigma(A)$

If $p(t) = c_0 + c_1 t + \dots + c_n t^n (c_k \in \mathbb{C})$ is a poly of a real variable, then $p(A) = c_0 I + c_1 A + \dots + c_n A^n$. The map $\Phi_0 : p \to p(A)$ from the algebra of polynomials into $\mathcal{B}(\mathcal{H})$ preserves the algebraic operations $+, \cdot, *$ where $p^*(t) = \bar{p}(t) = \bar{c}_0 + \bar{c}_1 t + \dots + \bar{c}_n t^n$.

To extend to functions that are "limits" of polynomials, need some sort of "continuity" of Φ_0 :

Lemma 6 (Spectral Mapping Lemma) $\sigma(p(A)) = p(\sigma(A)) = \{p(\lambda) : \lambda \in \sigma(A)\}.$

Proposition 7 $||p(A)||_{\mathcal{B}(\mathcal{H})} = \sup\{|p(\lambda)| : \lambda \in \sigma(A)\} \equiv ||p||_{\sigma(A)}.$

For some purposes, it is sufficient to know a weaker estimate:

Lemma 8 (Nelson, p. 67) ¹ Let $p(t) = a_0 + a_1 t + \dots + a_n t^n$ be a polynomial. For all $x \in \mathcal{H}, ||p(A)x|| \le \max\{|p(t)| : t \in [-||A||, ||A||]\} ||x||$. Hence

$$\|p(A)\|_{\mathcal{B}(\mathcal{H})} \le \max\{|p(t)| : t \in [-\|A\|, \|A\|]\}.$$
(1)

Proof Let $M := span\{x, Ax, \ldots, A^nx\}$; this is a finite dimensional subspace of \mathcal{H} (automatically closed). Let E be the orthogonal projection onto M. Then, since $A^k x \in M$ when $k = 0, \ldots, n$, we have $p(A)x \in M$ and

$$p(A)x = Ep(A)Ex = p(EAE)x$$

 $(verify!)^2$ Since EAE is a selfadjoint operator on the finite-dimensional space M, we may apply the spectral theorem for finite dimensional spaces to get

$$EAE = \sum \lambda_k P_{\lambda_k}$$
 and $I = \sum P_{\lambda_k}$

where the $\lambda'_k s$ are the eigenvalues with associated projections P_{λ_k} . It follows that

$$p(A)x = p(\sum \lambda_k P_{\lambda_k})x = \left(\sum p(\lambda_k)P_{\lambda_k}\right)x$$

¹E. Nelson, Topics in Dynamics I: Flows, Princeton Univ. Press and the University of Tokyo Press, 1969

²Note that M is not in general A-invariant.

and by Pythagoras' theorem,

$$||p(A)x||^{2} = \sum_{k} |p(\lambda_{k})|^{2} ||P_{\lambda_{k}}x||^{2}$$

$$\leq \max_{k} |p(\lambda_{k})|^{2} \sum_{k} ||P_{\lambda_{k}}x||^{2} = \max_{k} |p(\lambda_{k})|^{2} ||x||^{2}$$

since $\sum \|P_{\lambda_k}x\|^2 = \|x\|^2$. But each λ_k satisfies $|\lambda_k| \leq \|EAE\| \leq \|A\|$, hence is in the interval $[-\|A\|, \|A\|]$; therefore

$$||p(A)x|| \le \max\{|p(\lambda)| : \lambda \in [-||A||, ||A||]\} ||x||.$$

Remark 9 In general, the inequality may be strict: for example suppose A is a nonzero orthogonal projection, so $\sigma(A) = \{0, 1\}$ and let $p(t) = t - t^2$. Then $p(A) = A - A^2 = 0$ while $\max\{|p(\lambda)| : \lambda \in [-\|A\|, \|A\|]\} = p(1/2) = 1/4$. However here $\max\{|p(\lambda)| : \lambda \in \sigma(A)\} = 0$ as in Proposition 7.

To prove Proposition 7, use

Proposition 10 Let $A = A^* \in \mathcal{B}(\mathcal{H})$. Then one of the numbers ||A|| or -||A|| must belong to $\sigma(A)$. In particular,

$$\sup\{|\lambda|:\lambda\in\sigma(A)\}=\|A\|.$$

Proof We will prove that the number $||A||^2$ is in $\sigma(A^2)$. It will follow that the product $(A - ||A||I)(A + ||A||I) = (A^2 - ||A||^2I)$ cannot be invertible, and hence the operators (A - ||A||I) and (A + ||A||I) cannot both be invertible, as required.

For each $\lambda \in \mathbb{R}$ and each $x \in \mathcal{H}$, since $\langle A^2 x, \lambda^2 x \rangle \in \mathbb{R}$, we have

$$\begin{split} \|A^{2}x - \lambda^{2}x\|^{2} &= \langle A^{2}x - \lambda^{2}x, A^{2}x - \lambda^{2}x \rangle = \|A^{2}x\|^{2} - 2\langle A^{2}x, \lambda^{2}x \rangle + \|\lambda^{2}x\|^{2} \\ &= \|A^{2}x\|^{2} - 2\lambda^{2}\|Ax\|^{2} + \lambda^{4}\|x\|^{2}. \end{split}$$

But since $||A|| = \sup\{||Ax|| : ||x|| = 1\}$, there is a sequence (x_n) with $||x_n|| = 1$ and $||Ax_n|| \to ||A||$. Using the previous equality with $x = x_n$ and $\lambda = ||A||$, we obtain

$$||A^{2}x_{n} - \lambda^{2}x_{n}||^{2} = ||A^{2}x_{n}||^{2} - 2\lambda^{2}||Ax_{n}||^{2} + \lambda^{4}$$

$$\leq (||A|| ||Ax_{n}||)^{2} - 2\lambda^{2}||Ax_{n}||^{2} + \lambda^{4} = \lambda^{4} - \lambda^{2}||Ax_{n}||^{2} \to 0.$$

This shows that the operator $A^2 - \lambda^2 I$ cannot be invertible (why?) and hence $\lambda^2 = ||A||^2 \in \sigma(A^2)$. \Box

Proof of Proposition 7 The idea is to reduce to the selfadjoint case and use the C*-property for the norm: Observe that if $p(t) = \sum_{k=0}^{n} a_k t^k$, then

$$p(A)^* p(A) = \left(\sum_{k=0}^n a_k A^k\right)^* \left(\sum_{r=0}^n a_r A^r\right) = \left(\sum_{k=0}^n \bar{a}_k A^k\right) \left(\sum_{r=0}^n a_r A^r\right) = q(A)$$

(since $A = A^*$) where q is the polynomial $q(t) = \bar{p}(t)p(t)$. Now q(A) is selfadjoint so by Proposition 10 we get

$$||q(A)|| = \sup\{|\mu| : \mu \in \sigma(q(A))\}.$$

But $\sigma(q(A)) = q(\sigma(A)) = \{q(\lambda) : \lambda \in \sigma(A)\}$ by the spectral mapping lemma, and so

$$q(A)\| = \sup\{|q(\lambda)| : \lambda \in \sigma(A)\}.$$

But the C*-property gives $||p(A)||^2 = ||p(A)^*p(A)|| = ||q(A)||$ and so

$$||p(A)||^{2} = ||q(A)|| = \sup\{|q(\lambda)| : \lambda \in \sigma(A)\}$$

= sup{ $|\bar{p}(\lambda)p(\lambda)| : \lambda \in \sigma(A)\} = (\sup\{|p(\lambda)| : \lambda \in \sigma(A)\})^{2}$

The proof is complete. \Box

Theorem 11 The map Φ_0 extends uniquely to an isometric *-homomorphism

$$\Phi_c: (C(\sigma(A)), \|\cdot\|_{\sigma(A)}) \to (\mathcal{B}(\mathcal{H}), \|\cdot\|)$$

For $f \in C(\sigma(A))$, we write f(A) for $\Phi_c(f)$.

Thus $f(a) = \lim p_n(A)$ where (p_n) is any sequence of polynomials converging to f uniformly on $\sigma(A)$.

4 Unbounded operators

4.1 Definitions

 \mathcal{H}, \mathcal{K} are Hilbert (or Banach) spaces. An **operator** from \mathcal{H} to \mathcal{K} is a pair $(\mathcal{D}(T), T)$ where $D(T) \subseteq \mathcal{H}$ is a linear manifold and $T : \mathcal{D}(T) \to \mathcal{K}$ is a linear map. We say that T is **densely defined** if its domain $\mathcal{D}(T)$ is dense in \mathcal{H} . Note that if T is densely defined and continuous, it admits a unique extension to a map defined on \mathcal{H} , with the same norm; but if T is not continuous, it cannot be extended continuously to the whole of \mathcal{H} . If T, S are operators from \mathcal{H} to \mathcal{K} , we say S extends T and we write $T \subset S$ if $\mathcal{D}(T) \subseteq \mathcal{D}(S)$ and $S|_{\mathcal{D}(T)} = T$.

Example 12 (The "position operator" of Quantum Mechanics)

Let $\mathcal{H} = L^2(\mathbb{R})$ (Lebesgue measure understood), $\mathcal{D}(Q) = \{f \in \mathcal{H} : t \to tf(t) \text{ is in } \mathcal{H}\}$ and define $Q : \mathcal{D}(Q) \to \mathcal{H}$ by $(Qf)(t) = tf(t), f \in \mathcal{D}(Q)$. Then Q is unbounded, but its **graph** is a closed subspace of $\mathcal{H} \oplus \mathcal{H}$.

Definition 4.1 The graph of a linear operator $T : \mathcal{D}(T) \to \mathcal{K}$ is the following subspace of $\mathcal{H} \oplus \mathcal{K}$:

$$Gr(T) = \{x \oplus Tx : x \in \mathcal{D}(T)\}$$

This is of course a linear manifold. We say T is a closed operator when Gr(T) is a closed subspace of $\mathcal{H} \oplus \mathcal{K}$. The set of all closed operators is denoted $\mathcal{C}(\mathcal{H}, \mathcal{K})$.

We say T is closable when the subspace Gr(T) is the graph of some linear operator. This operator (if it exists) is unique and is denoted \overline{T} . Clearly $T \subset \overline{T}$.

Example 13 If $\mathcal{D}(Q_o) = \{f \in \mathcal{H} : f \text{ has compact support }\}$ and $Q_o : \mathcal{D}(Q_o) \to \mathcal{H}$ is given by $(Q_o f)(t) = tf(t), f \in \mathcal{D}(Q_o), \text{ then } Q_o \text{ is closable and its closure is } Q.$

A closed, everywhere defined operator is necessarily bounded (closed graph theorem!); so being closed is a (useful) weakening of continuity.