
By a space we will always mean a Hausdorff topological space (X, τ).
A compactification of X is a pair (Y, f) where Y is compact and f :

X → Y is a homeomorphism with dense image. Two compactifications (Y, f)
and (Z, g) of X are equivalent if there is a homeomorphism h : Y → Z that
leaves X ‘pointwise fixed’, i.e. for all x ∈ X, h(f(x)) = g(x).

If (X, τ) is a locally compact (i.e. every point has a compact neighbour-
hood), non-compact space, the one-point compactification (X∞, τ∞) of
(X, τ) is X∞ = X ∪ {∞} where ∞ is a point not in X and

τ∞ = {U ⊆ X : U ∈ τ} ∪ {X∞ \ F : F ⊆ X, compact} ∪ {X∞}.

Alternatively, a base of neighbourhoods at each point x of X is the set
{U ∈ τ : x ∈ U}, while a base of neighbourhoods of ∞ consists of the
complements of compact subsets of X. It is easy to verify that this is a
compactification of (X, τ).

Let (X, τ) be a locally compact, non-compact space. Consider the abelian
C*-algebra

A = C0(X) = {f : X → C continuous s.t. ∀ε > 0∃K compact s.t. ‖f‖Kc < ε}

(here ‖f‖Kc = sup{|f(x)|x ∈ Kc}).
If B = Ã is the unitization of A, we will prove that the character space

(Y,w∗) of B is (a compactification equivalent to) the one-point compactifica-
tion of (X, τ).

Recall that B = A⊕ C is an abelian C*-algebra with the operations

(f, λ) + (g, µ) = (f + g, λ + µ)

(f, λ) · (g, µ) = (fg + µf + λg, λµ)

(f, λ)∗ = (f ∗, λ̄)

and the norm

‖(f, λ)‖ = sup{‖fg + λg‖ : g ∈ A, ‖g‖ ≤ 1}.

Now each f ∈ A extends to a continuous1 function f̃ on X∞ by setting
f̃(∞) = 0. Define a map

π : B → C(X∞) : (f, λ) → f + λ

and verify it is an isometric *-isomorphism (to prove that it is onto, take
g ∈ C(X∞) and define (f, λ) ∈ B by f(x) = g(x) − g(∞) for x ∈ X and
λ = g(∞); continuity of g at ∞ shows that f ∈ C0(x)).

1the condition ‖f‖Kc < ε ensures continuity of f̃ at ∞



Given x ∈ X we define φx to be the character (verify) on B given by
φx(f, λ) = f(x) + λ and we set φ∞(f, λ) = λ.

We claim that
Y = {φx : x ∈ X∞}.

Proof Suppose, by way of contradiction, that there exists

φ ∈ Y \ {φx : x ∈ X∞}

and let J = ker φ. For all x ∈ X∞, since φx 6= φ, there exists ax = (fx, λx) ∈
J such that φx(ax) 6= 0.2 Thus the continuous function gx ≡ f̃x + λx ∈
C(X∞) does not vanish at x. Hence there is an open neighbourhood Ux

of x so that gx|Ux never vanishes. The open cover {Ux : x ∈ X∞} has a fi-
nite subcover, {U1, . . . , Un}. Let {g1, . . . , gn} be the corresponding functions.
Since π(J ) is an ideal, |gk|2 = ḡkgk ∈ π(J ) so g ≡

∑n
k=1 |gk|2 ∈ π(J ). But

g never vanishes; for if x ∈ X∞, there is some k with x ∈ Uk, and then

g(x) ≥ |gk(x)|2 > 0. But then
1

g
is a continuous function on X∞ and so

1 =
1

g
· g ∈ π(J ). This gives φ(1) = 0, a contradiction. 2

Therefore we have a bijection

h : X∞ → Y gievn by h(x) =

{
φx if x ∈ X
φ∞ if x = ∞

We prove that h is continuous. Suppose xi → x in X∞. If x 6= ∞ then
xi ∈ X eventually and so h(xi) = φxi

eventually and h(x) = φx. Now for all
(f, λ) ∈ B we have f(xi) → f(x) by continuity of f and so

φxi
((f, λ)) = f(xi) + λ → f(x) + λ = φx((f, λ))

showing that φxi

w∗→ φx.
If xi → ∞ then for every f ∈ C0(X) we have f̃(xi) → 0. Indeed given

ε > 0 there is a compact set K ⊆ X with ‖f‖Kc < ε; but U ≡ X∞ \K is a

neighbourhood of ∞, so xi ∈ U eventually and thus |f̃(xi)| < ε eventually.
Therefore

φxi
((f, λ)) = f(xi) + λ → 0 + λ = φ∞((f, λ))

so φxi

w∗→ φ∞ which completes the proof that h is continuous on X∞.
Thus h is a continuous bijection between compact spaces, so it must be

a homeomorphism.

2otherwise kerφ ⊆ kerφx which implies that φx = φ (write any a ∈ B as a = (a −
φ(a)1) + φ(a)1, observe that a − φ(a)1 ∈ kerφ ⊆ kerφx so φx(a) = φx(a − φ(a)1) +
φ(a)φx(1) = φ(a)).



Let g : X → Y be the restriction of h to X. Since X is dense in X∞
and h is a homeomorphism it follows that g(X) is dense in Y , so (Y, g) is
a compactification of X. Since h(id(x)) = h(x) = g(x) for all x ∈ X, the
compactifications (Y, g) and (X∞, id) are equivalent.

This concludes the argument.

Two irrelevant remarks 3

Remark 1 If (X, τ) is a locally compact space and F ⊆ U $ X where F is
compact and U is open, there is a compact neighbourhood K of F contained in
U (i.e. F ⊆ Ko ⊆ K ⊆ U) and there is a continuous function f : X → [0, 1]
such that f(x) = 1 for x ∈ F and f(y) = 0 for y /∈ U .

Proof F and F ′ = X∞ \ U are disjoint closed sets in the compact, hence
normal space X∞. Hence there are V, V ′ disjoint open subsets of X∞ such
that F ⊆ V and F ′ ⊆ V ′. Set K = X∞ \ V ′.

To obtain f , apply Urysohn to F and F ′ to find g : X∞ → [0, 1] such
that f(x) = 1 for x ∈ F and f(y) = 0 for y ∈ F ′ and let f = g|X . 2

Remark 2 The topology of a compact space (K, τ) is determined by C(K).
More precisely, if F ⊆ C(K) is a separating family, then the weakest topology
τF on K making all members of F continuous coincides with τ .

Proof Since the elements of F are τ -continuous, clearly τF ≤ τ . Thus the
identity id : (X, τ) → (X, τF ) is continuous. Since every τ -closed set F is
τ -compact, its image under id will be τF -compact. If τF is Hausdorff, then
F will be τF -closed. Hence the two topologies will have the same closed sets,
so they will coincide.

The fact that τF is Hausdorff follows because F separates K. Indeed, if
x 6= y there is f ∈ F such that that f(x) 6= f(y). There are disjoint open
disks Vx, Vy in C such that f(x) ∈ Vx and f(y) ∈ Vy. Then f−1(Vx) and
f−1(Vy) are disjoint τF -open (because f is τF -continuous) neighbourhoods of
x and y. 2

3αφoυ τα εγραψα...


