Multiple regression

Multiple regression is an extension of the simple regression situation. We are still trying to describe Y as (now) a linear combination of several predictors (X^{\prime} 's). The predictors can be powers of one another $Y=\beta_{\mathrm{o}}+\beta_{1} X_{1}+\beta_{2} X_{1}^{2}+\varepsilon$ or $Y=\beta_{\mathrm{o}}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$ (where $X_{2}=X_{1}^{2}$), or they can be distinct such as $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\ldots+\beta_{k} X_{k}+\varepsilon$. In the first case, the graphical representation of the problem is as follows:

In the second case, the model is harder to visualize, and impossible to do so beyond the twopredictor situation (when the dimension of the problem rises above three).
In all cases, the regression surface (notice we have departed from the simple line) is going to be a hyperplane (a plane in three dimensions). The figure below shows the two-predictor situation.

The least-squares regression surface

The idea for finding the "best" regression surface is identical as the simple linear case. That is, the best surface is the one that minimizes the squared deviations of the estimated values from the observations. That is, the least-squares surface is the one that minimizes

$$
\sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n} \boldsymbol{F}-\hat{Y}_{i} \mathbf{K}^{2}=\sum_{i=1}^{n} \boldsymbol{F}-\hat{\beta}_{\mathrm{o}}-\hat{\beta}_{1} X_{1 i}-\hat{\beta}_{2} X_{2 i} \cdots \hat{\beta}_{\mathrm{k}} X_{k i}{ }_{\mathbf{K}}^{2}
$$

As with simple linear regression, $\hat{Y}_{i}=\hat{\beta}_{\mathrm{o}}+\hat{\beta}_{1} X_{1 i}+\hat{\beta}_{2} X_{2 i}+\cdots+\hat{\beta}_{k} X_{k i}$

Assumptions of multiple regression

1. Independence: The Y observations are statistically independent of each other. Usually this is not the case when multiple measurements are taken on the same subject. Other techniques must then be used that account for this dependency.
2. Linearity: The mean value of Y for each combination of $X_{1}, X_{2}, \ldots, X_{k}$ is a linear combination of them. That is, $E\left(Y_{i}\right)=\mu_{Y \mid X_{1}, X_{2}, \cdots X_{k}}=\beta_{\mathrm{o}}+\beta_{1} X_{1 i}+\cdots \beta_{k} X_{k i}$.
3. Homoskedacity: The variance of Y is the same for any fixed combination of $X_{1}, X_{2}, \ldots, X_{k}$. That is $\sigma_{Y \mid X_{1}, X_{2}, \cdots X_{k}}^{2}=V \mathbb{\bigotimes} \mid X_{1}, X_{2}, \cdots, X_{k} \boldsymbol{j} \equiv \sigma^{2}$ or alternatively, that $\sigma_{\varepsilon \mid X_{1}, X_{2}, \cdots X_{k}}^{2} \equiv \sigma^{2}$.
4. Normality: For any fixed combination of $X_{1}, X_{2}, \ldots, X_{k}$ the variable Y is normally distributed. That is, $\varepsilon \sim N \mid \overline{\operatorname{q}} \sigma^{2} \mathrm{~K}$

Explaining variability

Our task is to explain the variability in the data. Using similar methods as before, we have

$$
\underbrace{\sum_{i=1}^{n} \overline{\mathrm{Y}}-\bar{Y} \mathbf{K}}_{\text {Total sum of squares }}=\underbrace{\sum_{i=1}^{n} \overline{\mathrm{~F}}-\left.\bar{Y}\right|^{2}}_{\text {Regression sum of squares }}+\underbrace{\sum_{i=1}^{n} \overline{\mathbf{K}}-\hat{Y}_{i} \mid 2}_{\text {Residual sum of squares }}
$$

The multiple regression ANOVA table

Source of variability	Sums of squares (SS)	df	Mean squares (MS)	F	Prob > F
Model		k	$M S R=S S R / k$	$F=\frac{M S R}{M S E}$	$P=\mathrm{P}\left(F>F_{k, n-k-1 ; \alpha}\right)$
Residual (error)	$S S E$	$n-k-1$	$M S E=S S E /(n-k-1)$		
Corrected Total	$S S T=\sum_{i=1}^{n} \underset{i}{\mathbb{E}}-\bar{Y} \mathrm{~J}^{2}$	$n-1$			

F tests in multiple regression

Test of significance of overall regression. With similar methods as in the simple linear regression case, we can carry out an overall (omnibus) F test. This is based on the statistic

$$
F=\frac{M S R}{M S E}=\frac{\sum \overline{\hat{H}_{i}}-\left.\bar{Y}\right|_{k} ^{2} / k}{\sum\left|\overrightarrow{F_{F}}-\hat{Y}_{i}\right| 2 /(n-k-1)}=\frac{R^{2} / k}{\left|\underline{4}-R^{2}\right|\langle(n-k-1)}
$$

This statistic is compared against the tail of the F distribution with k and $n-k-1$ degrees of freedom. The regression sum of squares $(S S R)$ receives contributions from all the predictors. However, not all contributions are equally important. Another problem involves the fact that the predictors themselves may be correlated to one another. Thus, including one predictor in the model provides some information about the other predictor as well. Then, when the second predictor is included, its individual contribution (in the presence of the first predictor) may not be as significant as it would have been if the second were the only predictor in the model. We formalize these ideas below.

Partial F tests. The partial contributions by each individual predictor to the regression (model) sum of squares can be explored by partial F tests. As we see in the table above, the predictors can be included in the model sequentially. Thus, X_{1} is entered first, then X_{2}, and so on up to X_{k}. These partial F tests are called variables-added-in-order or Type I F tests. Note that the order of addition of variable in the model is critically important when computing these partial F tests. The model sum of squares can be broken up into the following parts:

1. $S S\left(\beta_{1}\right)$ is the sum of squares (variability in Y) explained by only using X_{1} to predict Y.
2. $S S\left(\beta_{2} \mid \beta_{1}\right)$ is the additional variability in Y explained by adding X_{2} into the model after X_{1}.
3. $S S\left(\beta_{k} \mid \beta_{1}, \beta_{2}, \ldots, \beta_{k-1}\right)$ is the additional variability explained by X_{k} after $X_{1}, X_{2}, \ldots, X_{k-1}$ are already in the model.

We cannot decompose the model sum of squares into k separate sums of squares (i.e., unconditional sums of squares) because the predictors are not independent from one another (we can redefine the predictors and obtain an "orthogonal" decomposition but this is beyond the scope of this lecture).

Type I F tests (continued):

1. This test addresses the question of whether X_{1} alone can significantly predict Y. It can also be obtained by a simple regression with X_{1} as the only predictor.
2. The sum of squares addresses the question of whether adding X_{2} significantly contributes to the prediction of Y after accounting for the contribution of X_{1}. To test we use a partial F test:

$$
F=\frac{\text { Regression } S S\left(\beta_{1}, \beta_{2}\right)-\text { Regression } S S\left(\beta_{1}\right)}{\text { Residual } S S\left(\beta_{1}, \beta_{2}\right) /(n-k-1)}=\frac{\text { Residual } S S\left(\beta_{1}\right)-\text { Residual } S S\left(\beta_{1}, \beta_{2}\right)}{\operatorname{Residual} S S\left(\beta_{1}, \beta_{2}\right) /(n-k-1)}
$$

The Regression $S S\left(\beta_{1}, \beta_{2}\right)$ and Residual $S S\left(\beta_{1}, \beta_{2}\right)$ are derived from a model with both X_{1} and X_{2}, while the Regression $S S\left(\beta_{1}\right)$ and Residual $S S\left(\beta_{1}\right)$ come from the simple linear regression model.
3. In general, to answer whether a contribution of a single variable or a number of variables contributes significantly in the prediction of Y after controlling for a number of other predictors is given by the (multiple) partial F test,

The \boldsymbol{t} test as an alternative to a partial \boldsymbol{F} test

Another way to test whether the addition of a new variable X^{*}, after p variables $X_{1}, X_{2}, \ldots, X_{p}$ already in the model, significantly predicts Y, is to use a t test (recall that a t test is equivalent to an F test with 1 degree of freedom in the numerator). This test is defined as follows:

1. $H_{0}: \beta^{*}=0$ (i.e., addition of X^{*} to the model does not add significantly to the prediction of Y)
2. $H_{a}: \boldsymbol{\beta}^{*}>0$ Two- sided test
3. Specify the significance level $(1-\alpha) \%$
4. The test statistic is $T=\frac{\hat{\beta}^{*}}{S_{\beta^{*}}} \sim t_{n-p-2}$

Notice that $T^{2}=\operatorname{partial} \mathrm{F}\left(X^{*} \mid X_{1}, X_{2}, \ldots, X_{p}\right)$.

Variables-added-last or Type III F tests

A final type of partial F tests that we will review is the "variables-added-last" or "Type III" F tests. These are tests based on the sums of squares of each variable conditional (or accounting for) all other variables in the model. In other words, if we have k variables in the model, the Type III F tests are given as follows:

$$
\begin{aligned}
& X_{1}: S S \mathrm{Fr}_{1} \mid X_{2} X_{3}, \cdots, X_{k} \mathbf{k} \\
& X_{2}: S S \mathrm{~F}_{2} \mid X_{1} X_{3}, \cdots, X_{k} \mathrm{k} \\
& \vdots \\
& X_{k}: S S \mathrm{FH}_{k} \mid X_{1} X_{2}, \cdots, X_{k-1} \mathrm{k}
\end{aligned}
$$

These sums of squares can be computed in models where the variable in question is added last, that is, after all the others are already present in the model. The primary advantage of these sums of squares is that order of entry into the model is no longer important.

Criteria of inclusion of additional variables in the model

1. Variables added in order:
i. The order of addition is specified
ii. The significance of the (straight-line) model involving only the first variable is assessed
iii. The significance of adding the second variable to the model involving only the first variable is assessed
iv. The significance of adding the third variable to the model containing the first and second variables is assessed; and so on.
2. Variables added last:
i. An initial model containing several (more than one) variables is specified.
ii. The significance of each variable in the model is assessed separately, as if it were the last variable added to the model (thus, k variables-added-last tests are carried out, as many as the variables under review).

Example: The weight (wgt), height (hgt) and age (age) data (Table 8-1, page 112).
. list

	wgt	hgt	age	age2
1.	64	57	8	64
2.	71	59	10	100
3.	53	49	6	36
4.	67	62	11	121
5.	55	51	8	64
6.	58	50	7	49
7.	77	55	10	100
8.	57	48	9	81
9.	56	42	10	100
10.	51	42	6	36
11.	76	61	12	144
12.	68	57	9	81

Model 1: $\mathbf{W G T}=\beta_{0}+\beta_{1} \mathbf{H G T}+\varepsilon$

Model 2: $\mathbf{W G T}=\beta_{0}+\beta_{2} \mathbf{A G E}+\varepsilon$

Model 3: $\mathbf{W G T}=\beta_{0}+\beta_{3}(\mathbf{A G E})^{2}+\varepsilon$

- anova wgt age2, continuous (age2) regress

Source	SS	df	MS
Model	521.932047	1	521.932047
Residual	366.317953	10	36.6317953
Total	888.25	11	80.75

Number of obs	$=$	12
F (1, 10)	$=14.25$	
Prob $>$ F	$=0.0036$	
R-squared	$=0.5876$	
Adj R-squared	$=0.5464$	
Root MSE	$=6.0524$	

	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
_cons	45.99764	4.76964	9.644	0.000	35.37022	56.62506
age2	. 2059716	. 0545669	3.775	0.004	. 0843889	. 3275543

. anova, sequential

	$\begin{array}{rlr} \text { Number of obs } & = & 12 \\ \text { Root MSE } & =6.05242 \end{array}$		$\begin{array}{rr} 12 & \mathrm{R} \\ 5242 & \mathrm{~A} \end{array}$	R-squared	$\begin{aligned} & =0.5876 \\ & =0.5464 \end{aligned}$
Source	Seq. SS	df	MS	F	Prob > F
Model	521.932047	1	521.932047	14.25	0.0036
age2	521.932047	1	521.932047	14.25	0.0036
Residual	366.317953	10	36.6317953		
Total	888.25	11	80.75		

Model 4:WGT $=\beta_{\mathbf{0}}+\beta_{\mathbf{1}} \mathbf{H G T}+\boldsymbol{\beta}_{\mathbf{2}} \mathbf{A G E}+\varepsilon$

Model 5: $\mathbf{W G T}=\beta_{0}+\beta_{1} \mathbf{H G T}+\beta_{3}(\mathbf{A G E})^{2}+\varepsilon$

Model 6: $\mathbf{W G T}=\beta_{0}+\beta_{1} \mathbf{H G T}+\beta_{2} \mathbf{A G E}+\beta_{3}(\mathbf{A G E})^{2}+\varepsilon$

Source	SS	df MS		regress \quad Number of obs $=\quad 12$			
					F(3, 8)	$=$	9.47
Model	693.060463	323	31.020154		Prob > F	$=0.0052$	
Residual	195.189537	824.3986921			R-squared	$=0.7803$	0.7803
					Adj R-squared	=	0.6978
Total	888.25	11	80.75		Root MSE	$=4.9395$	
wgt	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf. Interval]		
_cons	3.438426	33.61082	0.102	0.921	-74.06826		80.94512
hgt	. 7236902	. 2769632	2.613	0.031	. 085012		1.362368
age	2.776875	7.427279	0.374	0.718	-14.35046		19.90421
age2	-. 0417067	. 4224071	-0.099	0.924	-1.015779		. 9323659

- anova, sequential

	$\begin{aligned} \text { Number of obs } & = & 12 \\ \text { Root MSE } & = & 4.9395 \end{aligned}$		$\begin{array}{lr} 12 & \mathrm{R}- \\ 9395 & \text { Ad }- \end{array}$	R-squared	$\begin{aligned} &= 0.7803 \\ & 0.6978 \end{aligned}$
Source	Seq. SS	$d f$	MS	F	Prob > F
Model	693.060463	3	231.020154	9.47	0.0052
hgt	588.922523	1	588.922523	24.14	0.0012
age	103.900083	1	103.900083	4.26	0.0730
age2	. 237856856	1	. 237856856	0.01	0.9238
Residual	195.189537	8	24.3986921		
Total	888.25	11	80.75		

Analysis results

1. Models 1 and 2 show a significant association between weight and height (overall F p-value 0.0013) and between weight and age (overall F p-value 0.0034) respectively.
2. Model 3 shows a significant association between weight and (AGE) ${ }^{2}$ (overall F p-value 0.0036) implying a possible curvilinear (quadratic) relationship.
3. Models 4 and 5 investigate the two-predictor cases, with height as the first predictor entered, and AGE and (AGE) ${ }^{2}$ the second predictors respectively. In both cases the overall F test is highly significant implying that the two variables are significant predictors of weight (p -values are 0.0011 and 0.0012 respectively). Note however, that we have not answered whether addition of the second variable contributes substantially to the prediction of weight beyond the first variable.
4. Model 6 shows the result of adding all three predictors. The overall F test p-value is 0.0052 indicating that a significant part of the variability in the data is explained by the regression model.

Type I F tests

1. To decide whether adding age to the model after controlling for height (age and height should be correlated), we can use a Type I test. The test is computed from models 1 and 4 as follows:

Since $3.36=F_{1,9 ; 0.10}<4.78<F_{1,9 ; 0.05}=5.12$, adding age to the model significantly improves prediction of Y at the $10 \% \alpha$ level, but not at the $5 \% \alpha$ level. Notice that the t test p value for β_{2} (the regression coefficient associated with age, is 0.056 , and $T^{2}=(2.187)^{2}=4.78=F$.
2. To answer the same question about (AGE) ${ }^{2}$ after controlling both for height and age, we consider models 4 and 6. The partial (Type I) F test is computed as above. $F \mathrm{GE}^{2} \mid \mathrm{HGT}, \mathrm{AGE}=0.01$, which is not significant. Thus, even though AGE^{2} was significant as a single predictor of weight, it is not significant after controlling for height and age. Thus, a quadratic relationship between weight and age is probably not born out by the data.

Model 7: $\mathbf{W G T}=\beta_{0}+\beta_{1} \mathbf{H G T}+\beta_{3}(\mathbf{A G E})^{2}+\beta_{2} \mathbf{A G E}+\varepsilon$ (AGE is entered last)

Model 8: $\mathbf{W G T}=\beta_{0}+\beta_{2} \mathbf{A G E}+\beta_{3}(\mathbf{A G E})^{2}+\beta_{1} \mathbf{H G T}+\varepsilon(\mathbf{H G T}$ is entered last)

Model 9: $\mathbf{W G T}=\beta_{0}+\beta_{1} \mathbf{H G T}+\beta_{2} \mathbf{A G E}+\beta_{3}(\mathrm{AGE})^{2}+\varepsilon$

Type III F tests

We can address the same question as 1 and 2 above with Type III partial F tests. These can be derived by running several regressions each time entering the variable in question last. For our example consider models 6,7 and 8. (AGE) ${ }^{2}$, age and height were entered last in each model respectively. We did not print the regression ANOVA table for models 7, 8 and 9 since they are identical to that in model 6. The type sums of squares are derived in each case as follows:
$S S$ @GE $\AA^{2} \mid \mathrm{HGT}, \mathrm{AGE} \mathbf{j}=0.24$. HGT is entered first, then AGE and finally $\boldsymbol{Q G E}_{\mathrm{GE}} \boldsymbol{F}^{(m o d e l} 6$).
$S S \& G E \mid \mathrm{HGT},(\mathrm{AGE})^{2} \mathbf{j}=3.41$. HGT is entered first, then $(\mathrm{AGE})^{2}$ and finally AGE (model 7).
SS ©GT|AGE, (AGE) $)^{2} \dot{\mathbf{|}}=166.58$. AGE is entered first, then (AGE) ${ }^{2}$ and finally HGT (model 8)

The Type III F tests are derived by dividing the above sums of squares by the full model mean

 immediately by specifying the partial option or by not specifying an option at all as partial is the default (model 9).

