ANOVA/Regression I Session 1 : Simple Linear Regression

In this session we are going to work in STATA and we want to load the sbpage dataset. The next step is to open a log file to save all the text-output, which later can be loaded into a text editor or word processor. To open it click on the Open Log button from the toolbar and give a filename, we can call it labl.log and then click on the Open button, a Stata Log (white) window will appear and in there all the text output will be saved. For now we can close the Stata Log window by clicking on the \mathbf{X} on the top right corner of this window. You can temporarily suspend output from being written to the log by clicking on the Close/Suspend Log button (it is the same as the Open Log button), select the Suspend \log file option and then click OK. Then you can open the log-file again by clicking on the Close/Resume Log button (it is the same as the Open Log button), select Resume suspended log file option and then click OK.

Saving the graph in Word:

A way to save the graph in Word is to copy the graph to the clipboard and then to import it into Word or another Windows application. Follow the below steps:

1. Display your graph in the Stata Graph window.
2. Click on the title bar of the Stata Graph window.
3. Choose Copy Graph from the Edit menu.
4. In the other Windows application, you can then choose Paste from the Edit menu.

Now we have a dataset and a log-file so let's start the analysis.

1. Sbpage Dataset:

To view the data you can type:
list

If the dataset is too big and you don't want to list all the observations you can view the first 10 observations with the following command:
list in 1/10

We have two variables of interest, systolic blood pressure $(s b p)$ and age. We can set labels to the variables $s b p$ and age:
label var sbp "Systolic Blood Pressure (mm Hg)"
label var age "Age (years)"

We want to explore the association between systolic blood pressure and age, so first we produce a scatter diagram:

scatter sbp age

a. From the above scatter-plot what can you tell about the relationship between $s b p$ and age ? What would you suspect to be the sign of the slope?

To regress sbp on age, the command is the following:

```
regress sbp age
\begin{tabular}{|c|c|c|c|}
\hline Source & SS & df & MS \\
\hline Model & 6394.02269 & 1 & 6394.02269 \\
\hline Residual & 8393.44398 & 28 & 299.765856 \\
\hline Total & 14787.4667 & 29 & 509.912644 \\
\hline
\end{tabular}
Number of obs \(=30\)
\(\mathrm{F}(1,28)=21.33\)
Prob \(>\mathrm{F}=0.0001\)
R -squared \(=0.4324\)
Adj \(R\)-squared \(=0.4121\)
Root MSE \(=17.314\)
_-_-_-_-_-_-_-_-_-_-_-_-
[95\% Conf. Interval]
```


b. Please find the following quantities from the output:
$\hat{\beta}_{0}=\quad \hat{\beta}_{1}=$
$\sqrt{M S E}=$
So the estimated least-square line is
Coefficient of Determination or

$$
\begin{aligned}
& \hat{Y}=\quad+\quad X \\
& R^{2}=
\end{aligned}
$$

c. Test the null hypothesis of no linear association. What is the association between the F-test of the model and the t-test of the slope?

STATA by default calculates 95% confidence intervals if we would like to change them to 90% we should add the option $\operatorname{level}(\#)$ after the regress command as following:

d. What did change in the output? Give the new confidence intervals of the slope and the intercept, did they become wider or narrower and why?

We can produce a graph of the estimated regression line on the scatter diagram:

```
twoway (lfit sbp age) (scatter sbp age)
```


We can get the same graph using the fitted values :
predict sbphat
sort sbphat
twoway (scatter sbp age) (line sbphat age)

Now we want to construct 95% confidence intervals about the regression line using fitted values and their standard error $\left(\boldsymbol{S}_{\widehat{y}}\right)$:

```
predict s, stdp
gen ul=sbphat+invttail (28,0.025)*s
gen ll=sbphat-invttail (28,0.025)*s
sort ul
twoway (scatter sbp age) (line sbphat age) (line ll age) ///
(line ul age)
```


We can also use lfitci command in Stata:
twoway (lfitci sbp age, stdp) (scatter sbp age)

In the same way, if we want the 95% confidence intervals of a prediction you type the following set of commands using the standard error of the prediction $\left(\boldsymbol{S}_{\hat{y}_{x_{0}}}\right)$:

```
predict sf, stdf
gen ulpred=sbphat+invttail (28,0.025)*sf
gen llpred=sbphat-invttail(28,0.025)*sf
```

Next the command to get also the prediction bands in the graph follows, using lfitci with option stdf:

```
twoway (lfitci sbp age, stdf) ///
(lfitci sbp age, stdp ciplot(rline) blcolor(blue)) ///
(scatter sbp age)
```


Notice that one point, $(47,220)$, seems quite out of place; such an observation is often called an outlier. One easy way to identify the outlier is to use the "mlabel (id)" option in the "scatter" command.

```
scatter sbp age, mlabel(id)
```

Now we want to refit the model without the outlier one way is the following :

e. Please find again the following quantities from the output. What can you tell this time about the fit of the model?

$$
\begin{array}{ccc}
\hat{\beta}_{0}= & \hat{\beta}_{1}= & \text { So the estimated least-square line is } \hat{Y}=\quad+\quad X \\
\sqrt{M S E}= & \text { Coefficient of Determination or } R^{2}=
\end{array}
$$

ANOVA/Regression I Solutions to Session 1: Simple Linear Regression

1. Sbpage Dataset:

a. The relationship seems to be proportional thus the sign of the slope positive, blood pressure increases with age.
b. $\hat{\beta}_{0}=98.71 . \quad \hat{\beta}_{1}=0.9709 \quad$ So the estimated least-square line is $\hat{Y}=98.71+0.97 X$ $\sqrt{M S E}=17.314$. The coefficient of Determination or $R^{2}=0.4324$ or 43%
c. critical value F : display invFtail $(1,28,0.05)$ p-value: display Ftail(1,28, 21.33)
$\mathrm{F}=21.33>\mathrm{F}_{1,28,0.95}=4.20$ (or p-value=$=0.0001<0.05=\alpha$), thus reject the null hypothesis of no linear association between blood pressure and age. Alternatively, $\mathrm{T}=4.618>\mathrm{t}_{28,0.975}=2.048$ (or p-value $=$ $0.0001<0.05=\alpha$) and again reject the null hypothesis.
critical value T: display invttail(28, 0.025)
p-value: display 2*ttail (28, 4.618)
The association is the following $\mathrm{T}^{2}=(4.618)^{2}=21.33=\mathrm{F}$.
d. Only the confidence intervals of the slope and the intercept changed.
90% CI of slope: $\quad[.61326591 .328475]$
90% CI of intercept: [81.70261 115.7268]
They became narrower since the significance level α increased to 10% and thus the critical values of the t -distribution smaller $\left(\mathrm{t}_{28,0.95}=1.701<\mathrm{t}_{28,0.975}=2.048\right)$.
display invttail (28, 0.05)
display invttail (28, 0.025)
e. $\hat{\beta}_{0}=97.08 \quad \hat{\beta}_{1}=0.9493$ So the estimated least-square line is $\hat{Y}=97.08+0.95 X$ $\sqrt{M S E}=9.563 \quad$ Coefficient of Determination or $R^{2}=0.7122$ or 71%
Now the fit of the model is better, since $\sqrt{M S E}$ is smaller (9.563 vs. 17.314) and R^{2} is greater (43% vs. 71%), this model is more precise and more variability is explained when omitting the outlier from the analysis.

