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Preface

In this book we give an overview of major results, methods and ideas of convex and
discrete geometry and their applications. Besides being a graduate-level introduction
to the field, the book is a practical source of information and orientation for convex
geometers. It should also be of use to people working in other areas of mathematics
and in the applied fields.

We hope to convince the reader that convexity is one of those happy notions of
mathematics which, like group or measure, satisfy a genuine demand, are sufficiently
general to apply to numerous situations and, at the same time, sufficiently special to
admit interesting, non-trivial results. It is our aim to present convexity as a branch of
mathematics with a multitude of relations to other areas.

Convex geometry dates back to antiquity. Results and hints to problems which are
of interest even today can already be found in the works of Archimedes, Euclid and
Zenodorus. We mention the Platonic solids, the isoperimetric problem, rigidity of
polytopal convex surfaces and the problem of the volume of pyramids as examples.
Contributions to convexity in modern times started with the geometric and analytic
work of Galileo, the Bernoullis, Cauchy and Steiner on the problems from antiquity.
These problems were solved only in the nineteenth and early twentieth century by
Cauchy, Schwarz and Dehn. Results without antecedents in antiquity include Euler’s
polytope formula and Brunn’s inequality. Much of modern convexity came into being
with Minkowski. Important later contributors are Blaschke, Hadwiger, Alexandrov,
Pogorelov, and Klee, Groemer, Schneider, McMullen together with many further
living mathematicians. Modern aspects of the subject include surface and curva-
ture measures, the local theory of normed spaces, best and random approximation,
affine-geometric features, valuations, combinatorial and algebraic polytope theory,
algorithmic and complexity problems.

Kepler was the first to consider problems of discrete geometry, in particular pack-
ing of balls and tiling. His work was continued by Thue, but the systematic research
began with Fejes Tóth in the late 1940s. The Hungarian school deals mainly with
packing and covering problems. Amongst numerous other contributors we mention
Rogers, Penrose and Sloane. Tiling problems are a classical and also a modern topic.
The ball packing problem with its connections to number theory, coding and the
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theory of finite groups always was and still is of great importance. More recent is the
research on arrangements, matroids and the relations to graph theory.

The geometry of numbers, the elegant older sister of discrete geometry, was cre-
ated by Lagrange, Gauss, Korkin, Zolotarev, Fedorov, the leading figures Minkowski
and Voronoı̆, by Blichfeldt, by Delone, Ryshkov and the Russian school, by Siegel,
Hlawka, Schmidt, Davenport, Mahler, Rogers and others. Central problems of mod-
ern research are the theory of positive definite quadratic forms, including reduction,
algorithmic questions and the lattice ball packing problem.

From tiny branches of geometry and number theory a hundred years ago, con-
vexity, discrete geometry and geometry of numbers developed into well-established
areas of mathematics. Now their doors are wide open to other parts of mathematics
and a number of applied fields. These include algebraic geometry, number theory,
in particular Diophantine approximation and algebraic number theory, theta series,
error correcting codes, groups, functional analysis, in particular the local theory of
normed spaces, the calculus of variations, eigenvalue theory in the context of partial
differential equations, further areas of analysis such as geometric measure theory,
potential theory, and also computational geometry, optimization and econometrics,
crystallography, tomography and mathematical physics.

We start with convexity in the context of real functions. Then convex bodies in
Euclidean space are investigated, making use of analytic tools and, in some cases, of
discrete and combinatorial ideas. Next, various aspects of convex polytopes are stud-
ied. Finally, we consider geometry of numbers and discrete geometry, both from a
rather geometric point of view. For more detailed descriptions of the contents of this
book see the introductions of the individual chapters. Applications deal with measure
theory, the calculus of variations, complex function theory, potential theory, numer-
ical integration, Diophantine approximation, matrices, polynomials and systems of
polynomials, isoperimetric problems of mathematical physics, crystallography, data
transmission, optimization and other areas.

When writing the book, I became aware of the following phenomena in convex
and discrete geometry. (a) Convex functions and bodies which have certain prop-
erties, have these properties often in a particularly strong form. (b) In complicated
situations, the average object has often almost extremal properties. (c) In simple
situations, extremal configurations are often regular or close to regular. The reader
will find numerous examples confirming these statements.

In general typical, rather than refined results and proofs are presented, even if
more sophisticated versions are available in the literature. For some results more
than one proof is given. This was done when each proof sheds different light on the
problem. Tools from other areas are used freely. The reader will note that the proofs
vary a lot. While in the geometry of numbers and in some more analytic branches of
convex geometry most proofs are crystal clear and complete, in other cases details
are left out in order to make the ideas of the proofs better visible. Sometimes we used
more intuitive arguments which, of course, can be made precise by inserting addi-
tional detail or by referring to known results. The reader should keep in mind that all
this is typical of the various branches of convex and discrete geometry. Some proofs
are longer than in the original literature. While most results are proved, there are
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some important theorems, the proofs of which are regrettably omitted. Some of the
proofs given are complicated and we suggest skipping these at a first reading. There
are plenty of comments, some stating the author’s personal opinions. The emphasis
is more on the systematic aspect of convexity theory. This means that many interest-
ing results are not even mentioned. In several cases we study a notion in the context
of convexity in one section (e.g. Jordan measure) and apply additional properties of
it in another section (e.g. Fubini’s theorem). We have tried to make the attributions
to the best of our knowledge, but the history of convexity would form a complicated
book. In spite of this, historical remarks and quotations are dispersed throughout the
book. The selection of the material shows the author’s view of convexity. Several
sub-branches of convex and discrete geometry are not touched at all, for example
axiomatic and abstract convexity, arrangements and matroids, and finite packings,
others are barely mentioned.

I started to work in the geometry of numbers as a student and became fascinated
by convex and discrete geometry slightly later. My interest was greatly increased by
the study of the seminal little books of Blaschke, Fejes Tóth, Hadwiger and Rogers,
and I have been working in these fields ever since.

For her great help in the preparation of the manuscript I am obliged to Edith
Rosta and also to Franziska Berger who produced most of the figures. Kenneth
Stephenson provided the figures in the context of Thurston’s algorithm. The whole
manuscript or part of it was read by Iskander Aliev, Keith Ball, Károly Böröczky
Jr., Gábor Fejes Tóth, August Florian, Richard Gardner, Helmut Groemer, Christoph
Haberl, Rajinder Hans-Gill, Martin Henk and his students Eva Linke and Matthias
Henze, Jiřı́ Matoušek, Peter McMullen, Matthias Reitzner, Rolf Schneider, Franz
Schuster, Tony Thompson, Jörg Wills, Günter Ziegler and Chuanming Zong and his
students. Useful suggestions are due to Peter Engel, Hendrik Lenstra, Peter Mani and
Alexander Schrijver. I thank all these colleagues, students and friends for their efforts
in correcting mathematical and linguistic errors, for pointing out relevant results and
references which I had missed, and for their expert advice. Thanks in particular are
due to Paul Goodey for his help.

I am indebted to numerous mathematicians for discussions, side remarks,
questions, correct and false conjectures, references to the literature, orthodox and,
sometimes, unorthodox views, and interesting lectures over many years. The book
reflects much of this. Most of these friends, colleagues and students are mentioned
in the book via their work. I finally remember with gratitude my teacher, colleague
and friend Edmund Hlawka and my late senior friends László Fejes Tóth and Hans
Zassenhaus.

Special thanks go to Springer. For their expert advice and help I thank, in
particular, Catriona Byrne, Stefanie Zoeller and Joachim Heinze.

Vienna, January 2007 Peter M. Gruber



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V

Convex Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1 Convex Functions of One Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Continuity, Support and Differentiability . . . . . . . . . . . . . . . . . 4
1.3 Convexity Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Jensen’s and Other Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Bohr and Mollerup’s Characterization of Γ . . . . . . . . . . . . . . 16

2 Convex Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1 Continuity, Support and First-Order Differentiability,

and a Heuristic Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2 Alexandrov’s Theorem on Second-Order Differentiability . . 27
2.3 A Convexity Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 A Stone–Weierstrass Type Theorem. . . . . . . . . . . . . . . . . . . . . 34
2.5 A Sufficient Condition of Courant and Hilbert

in the Calculus of Variations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Convex Bodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3 Convex Sets, Convex Bodies and Convex Hulls . . . . . . . . . . . . . . . . . 40

3.1 Basic Concepts and Simple Properties . . . . . . . . . . . . . . . . . . . 41
3.2 An Excursion into Combinatorial Geometry: The Theorems
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Convex Functions

Convex functions came to the face rather late. Early contributions are due to Stolz
[972], Brunn [174], Hadamard [459] and Jensen [544] around the beginning of the
twentieth century. The systematic study of convex functions dealing with continuity
and differentiability properties, with variants of the fundamental notions and with
inequalities began only in the twentieth century. The unpublished seminal lecture
notes of Fenchel [334] in the early 1950s led to convex analysis, a careful study of
analytic properties of convex functions related to optimization. Major contributions
were made by Moreau, Rockafellar and Phelps.

Convex functions appear and are useful in many areas of mathematics, including
the calculus of variations, control theory, inequalities and functional equations, opti-
mization and econometrics. On the other hand, investigation of convex functions per
se has led to a rich and voluminous theory.

This chapter contains basic geometric and analytic properties of convex func-
tions of one and of several variables, related to convex geometry. A highlight
is Alexandrov’s theorem on second-order differentiability almost everywhere of a
convex function. A further result is of Stone–Weierstrass type. Applications treat
inequalities, the characterization of the gamma function by Bohr and Mollerup, and
a sufficient condition in the calculus of variations due to Courant and Hilbert.

For more detailed expositions and references on convex functions with an em-
phasis on convexity, consult the articles and books of Beckenbach [87], Roberts
and Varberg [841], Roberts [840] and also Giles [379], Van Tiel [1006] and
Czerwik [234].

We will not treat convex functions in the sense of convex analysis and general
analysis. For material in this direction, see Moreau [755], Rockafellar [843] and
Phelps [800], Giles [379], Van Tiel [1006], Borwein and Lewis [158], Hiriart-Urruty
and Lemaréchal [505], Magaril-Il’yaev and Tikhomirov [678] and Niculescu and
Persson [770].

Throughout the book, vectors are columns, unless stated otherwise, but for con-
venience, we write vectors as rows as usual. If there is need to stress, that a row
actually means a column, the superscript T is added.



2 Convex Functions

1 Convex Functions of One Variable

Convex functions of one variable are important for analytic inequalities of various
sorts, for functional equations and for special functions. The convexity of a function
of one variable has far reaching analytic and geometric consequences. For example,
each convex function is almost everywhere twice differentiable.

In this section we first consider continuity, affine support, and differentiability
properties. Then classical inequalities are given. Finally, we present the characteri-
zation of the gamma function due to Bohr and Mollerup together with Artin’s elegant
proof.

For references to the literature, see the books and surveys cited above.

1.1 Preliminaries

This section contains the basic definitions of convex sets and convex functions and
the relation between these two notions via epigraphs. The setting is Euclidean d-
space E

d .

Convex Sets and Convex Functions

Let C be a set in E
d . The set C is convex if it contains with any two points x, y also

the line segment [x, y] with endpoints x, y. In other words, C is convex, if

(1− λ)x + λy ∈ C for x, y ∈ C, 0 ≤ λ ≤ 1.

C is strictly convex, if it is closed and

(1− λ)x + λy ∈ int C for x, y ∈ C, x �= y, 0 < λ < 1,

where int stands for interior. It is obvious that each strictly convex set is convex
(Figs. 1.1 and 1.2).

Examples of convex sets are solid regular polytopes, Euclidean balls and ellip-
soids.

Next, let f : C → R be a real function on C . The function f is convex if C is
convex and

f
(
(1− λ)x + λy

) ≤ (1− λ) f (x)+ λ f (y) for x, y ∈ C, 0 ≤ λ ≤ 1.

non-convexconvex

Fig. 1.1. Convex and non-convex sets
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f

C C

f

Fig. 1.2. Convex and strictly convex functions

Thus f is convex if any line segment in E
d × R with endpoints on the graph of f

is on or above the graph of f . Call f strictly convex if C is convex (not necessarily
strictly) and

f
(
(1− λ)x + λy

)
< (1− λ) f (x)+ λ f (y) for x, y ∈ C, x �= y, 0 < λ < 1.

Equivalently, f is strictly convex if C is convex and if the relative interior of each
proper line segment in E

d × R with endpoints on the graph of f is above the graph.
Clearly, a strictly convex function is convex.

Examples of convex functions are norms, semi-norms, positive definite and semi-
definite quadratic forms on E

d . A positive definite quadratic form is strictly convex,
the other examples are not strictly convex.

A function f : C → R is called concave, respectively, strictly concave if − f is
convex, respectively, strictly convex.

Remark. We point out that in the above definitions E
d may be replaced by a linear

or a linear topological space. Similar remarks hold for some of the notions and results
below.

Epigraphs of Convex Functions

Let C be a set in E
d and f : C → R a real function. The epigraph of f is the set

epi f = {
(x, t) ∈ E

d × R : x ∈ C, t ≥ f (x)
} ⊆ E

d × R = E
d+1.

The following, almost trivial result makes it possible to transfer information on
convex sets to convex functions and vice versa (Fig. 1.3).

Proposition 1.1. Let C ⊆ E
d and f : C → R. Then the following statements are

equivalent:

(i) f is a convex function.

(ii) epi f is a convex set in E
d × R = E

d+1.

Proof. Left to the reader. ��

After having introduced convex sets and convex functions in the context of E
d ,

we consider the case d = 1 in more detail.
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epi f

f

C yx

Fig. 1.3. Epigraph of a strictly convex function

1.2 Continuity, Support and Differentiability

Using tools from real analysis, continuity, affine support and differentiability prop-
erties of convex functions of one variable were investigated thoroughly in the early
twentieth century. It is difficult to make precise attributions.

In the following we present basic pertinent results. It turns out that a convex
function which is continuous or differentiable, is so in a particularly strong sense.

Let I and J denote (bounded or unbounded) intervals in R. By int, cl and bd we
mean interior, closure and boundary.

A Simple Preparatory Result

We start with the following simple, yet useful result (Fig. 1.4).

Lemma 1.1. Let f : I → R be convex. Then

f (y)− f (x)

y − x
≤ f (z)− f (x)

z − x
≤ f (z)− f (y)

z − y
for x, y, z ∈ I, x < y < z.

Proof. Let x, y, z ∈ I , x < y < z, and choose 0 < λ < 1 such that y = (1− λ)x +
λz. The convexity of f then implies the desired inequalities as follows:

f (y)− f (x)

y − x
= f

(
(1− λ)x + λz

)− f (x)

(1− λ)x + λz − x

≤ (1− λ) f (x)+ λ f (z)− f (x)

(1− λ)x + λz − x
= f (z)− f (x)

z − x
,

f (z)− f (y)

z − y
= f (z)− f

(
(1− λ)x + λz

)

z − (1− λ)x − λz

≥ f (z)− (1− λ) f (x)− λ f (z)

z − (1− λ)x − λz
= f (z)− f (x)

z − x
. ��
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x zy

Fig. 1.4. Convex function

Continuity Properties

First, some needed terminology is introduced. Let f : I → R. The function f is
Lipschitz on J ⊆ I if there is a constant L > 0, a Lipschitz constant of f on J , such
that

| f (x)− f (y)| ≤ L|x − y| for x, y ∈ J.

f is absolutely continuous on J , if for every ε > 0, there is a δ > 0 such that if
[ai , bi ], i = 1, . . . , n, is any finite system of non-overlapping intervals in J of total
length less than δ, then ∑

i

| f (bi )− f (ai )| < ε.

Clearly, any Lipschitz function is absolutely continuous and any absolutely con-
tinuous function is continuous. An example of a continuous function, which is
not absolutely continuous, is f : [0, 1] → R, defined by f (0) = 0, f (x) =
x sin( 1

x ) for 0 < x ≤ 1.
The basic continuity properties of a convex function of one variable are the fol-

lowing.

Theorem 1.1. Let f : I → R be convex. Then f is Lipschitz on each compact
interval in int I . Thus, in particular, f is absolutely continuous on each compact
interval in int I and continuous on int I .

Proof. Let J be a compact interval in int I . For the proof it is sufficient to show that
f is Lipschitz on J . Choose u, v, w, z ∈ I, u < v,w < z, where u, v are to the left
of J and w, z to the right. Now, let x, y ∈ J, x < y. Applying Lemma 1.1 to u, v, x
and to v, x, y yields the inequality

f (v)− f (u)

v − u
≤ f (y)− f (x)

y − x
.

Similarly, applying it to x, y, w and to y, w, z shows that

f (y)− f (x)

y − x
≤ f (z)− f (w)

z − w .
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Together these inequalities imply that

| f (x)− f (y)|
|x − y| ≤ max

{∣∣∣
f (v)− f (u)

v − u

∣∣∣,
∣∣∣

f (z)− f (w)

z − w
∣∣∣
}
= L , say. ��

If a is an endpoint of I , a convex function f : I → R may not be continuous
at a. A simple example is provided by the function f : [0, 1] → R defined by
f (0) = 1, f (x) = 0 for x ∈ (0, 1].

Support Properties

A function f : I → R has affine support at a point x ∈ I if there is an affine function
a : R → R of the form a(y) = f (x) + u(y − x) for y ∈ R where u is a suitable
constant, such that

f (y) ≥ a(y) = f (x)+ u(y − x) for y ∈ I.

The affine function a is called an affine support of f at x . The geometric notion of
affine support is intimately connected with the notion of convexity.

Our first result shows that a convex function has affine support at each point in the
interior of its interval of definition. This result may be considered as a 1-dimensional
Hahn–Banach theorem. The corresponding d-dimensional result is Theorem 2.3 and
Theorem 4.1 is the corresponding result for convex bodies.

Theorem 1.2. Let f : I → R be convex and x ∈ int I . Then f has affine support
at x.

Proof. We may suppose that x = 0 and f (0) = 0. Let w ∈ I, w �= 0. Then the
convexity of f implies that

0 = (λ+ µ) f
( λ

λ+ µ(−µw)+
µ

λ+ µ(λw)
)

≤ λ f (−µw)+ µ f (λw) for λ,µ > 0, where λw,−µw ∈ I,

or − f (−µw)
µ

≤ f (λw)

λ
for λ,µ > 0, where λw,−µw ∈ I.

The supremum (over µ) of the left-hand side is therefore less than or equal to the
infimum (over λ) of the right-hand side. Hence we may choose α ∈ R such that

− f (−µw)
µ

≤ α ≤ f (λw)

λ
for λ,µ > 0, where λw,−µw ∈ I.

Equivalently,
f (λw) ≥ αλ for λ ∈ R ,where λw ∈ I.

Thus a(λw) = αλ for λ ∈ R is an affine support of f at x = 0. ��
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A Characterization of Convex Functions

The concept of affine support can be used to define the convexity of a function, as
the next result shows. Theorem 2.4 is the corresponding d-dimensional result and the
corresponding result for convex bodies is Theorem 4.2.

Theorem 1.3. Let I be open and f : I → R. Then the following statements are
equivalent:

(i) f is convex.

(ii) f has affine support at each x ∈ I .

Proof. (i) ⇒ (ii) This follows from Theorem 1.2.
(ii) ⇒ (i) If f has affine support at each x ∈ I , say ax (·), then clearly,

f (y) = sup{ax (y) : x ∈ I } for y ∈ I.

As the supremum of a family of affine and thus convex functions, f is also convex:

f
(
(1− λ)y + λz

) = sup
{
ax

(
(1− λ)y + λz

) : x ∈ I
}

= sup
{
(1− λ)ax (y)+ λax (z) : x ∈ I

}

≤ (1− λ) sup
{
ax (y) : x ∈ I } + λ sup{ax (z) : x ∈ I

}

= (1− λ) f (y)+ λ f (z) for y, z ∈ I, 0 ≤ λ ≤ 1. ��
It is sufficient in Theorem 1.3 to assume that f is affinely supported locally at

each point of I .

First-Order Differentiability

In the following several well-known results from analysis will be used. A reference
for these is [499].

A theorem of Lebesgue says that an absolutely continuous real function on an
interval is almost everywhere differentiable. This combined with Theorem 1.1 shows
that a convex function f : I → R is almost everywhere differentiable. Yet, as we
shall see below, the convexity of f yields an even stronger result: f is differentiable
at each point of I with, at most, a countable set of exceptions.

In order to state this result in a precise form we need the notions of left and right
derivative f ′−(x) and f ′+(x) of a function f : I → R at a point x ∈ I :

f ′−(x) = lim
y→x−0

f (y)− f (x)

y − x
(x not the left endpoint of I ),

f ′+(x) = lim
y→x+0

f (y)− f (x)

y − x
(x not the right endpoint of I ).

The left and right derivatives may or may not exist.
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Theorem 1.4. Let I be open and f : I → R convex. Then f ′− and f ′+ exist, are non-
decreasing (not necessarily strictly), and f ′− ≤ f ′+ on I . f is differentiable precisely
at those points x ∈ I where f ′− is continuous. Hence f ′(x) exists for all x ∈ I with a
set of exceptions which is at most countable and f ′ is non-decreasing on its domain
of definition.

Proof. Before embarking on the proof we state a simple proposition, the proof of
which is left to the interested reader.

(1) Consider a non-decreasing sequence of real continuous non-decreasing
functions on I with limit g, say. Then g is continuous on the left.

The proof of the theorem is split into several steps. First,

(2) f ′−, f ′+ exist on I and

f ′−(x) ≤ f ′+(x) ≤ f ′−(y) ≤ f ′+(y) for x, y ∈ I, x < y.

Let x, y ∈ I, x < y. By Lemma 1.1,

f (w)− f (x)

w − x
≤ f (z)− f (x)

z − x
≤ f (y)− f (x)

y − x
for w, z ∈ I, w < x < z < y,

and the first two expressions are non-decreasing in w, respectively, z. Thus their
limits as w→ x − 0 and z → x + 0 exist and we deduce that

(3)

f ′−(x), f ′+(x) exist and f ′−(x) ≤ f ′+(x) ≤
f (y)− f (x)

y − x
.

Similar arguments show that

(4)

f ′−(y), f ′+(y) exist and
f (y)− f (x)

y − x
≤ f ′−(y) ≤ f ′+(y).

Propositions (3) and (4) yield (2). This settles the assertion about f ′− and f ′+.
Second,

(5) f ′− is continuous on the left and f ′+ on the right.

The functions gn, n = 1, 2, . . . , defined by

gn(x) =
f (x − 1

n )− f (x)

− 1
n

for x ∈ I such that x − 1

n
∈ I,

are continuous and non-decreasing by Lemma 1.1 and, again by Lemma 1.1, form a
non-decreasing sequence with limit f ′−. It thus follows from (1) that f ′− is continuous
on the left. This establishes (5) for f ′−. The statement about f ′+ is shown similarly.

Third,

(6) f ′(x) exists precisely for those x ∈ I for which f ′− is continuous.
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Let x ∈ I and assume first that f ′− is continuous at x . By (2), f ′−(x) ≤ f ′+(x) ≤
f ′−(y) for all y ∈ I with x < y. Letting y → x + 0, the continuity of f ′− at x yields
f ′−(x) = f ′+(x) which, in turn, shows that f ′(x) exists. Assume, second, that f ′− is
not continuous at x . Then (2) and (5) imply

f ′−(x) < lim
y→x+0

f ′−(y) ≤ lim
y→x+0

f ′+(y) = f ′+(x).

Hence f ′(x) does not exist. The proof of (6) is now complete.
The theorem finally follows from (2) and (6) on noting that a non-decreasing

function on I has at most countably many points of discontinuity. ��
A less precise extension of Theorem 1.4 to convex functions in d variables is due

to Reidemeister 2.6. A precise extension to convex bodies in E
d is the Anderson–

Klee theorem 5.1.
An important consequence of Theorem 1.4 is the following result.

Theorem 1.5. Let I be open and f : I → R convex. If f is differentiable on I , then
f ′ is continuous, i.e. f is of class C1.

This result can be extended to d dimensions, compare Theorem 2.8.

First-Order Differentiability and Affine Support

The following result shows that, for convex functions of one variable, the relation
between differentiability and affine support is particularly simple.

Proposition 1.2. Let f : I → R be convex and x ∈ int I . Then an affine function
a : R → R of the form a(y) = f (x)+ u(y − x) for y ∈ R is an affine support of f
at x if and only if

f ′−(x) ≤ u ≤ f ′+(x).

Proof. Denote the coordinates in E
2 by y and z. By Theorem 1.4, the left and right

derivatives f ′−(x) and f ′+(x) exist. Their definitions show that the half-lines

(7) z = f (x)+ f ′−(x)(y − x) for y ≤ x,

z = f (x)+ f ′+(x)(y − x) for y ≥ x,

are the left and right half-tangents of the curve z = f (y) at y = x (Fig. 1.5).

As a consequence of Propositions (3) and (4) in the proof of Theorem 1.4 we have

(8) f (y) ≥ f (x)+ f ′−(x)(y − x) for y ∈ I, y ≤ x,

f (y) ≥ f (x)+ f ′+(x)(y − x) for y ∈ I, y ≥ x,

f ′−(x) ≤ f ′+(x).
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z = f (x)+ f ′+(x)(x − y)

z = f (x)+ u(y − x)
z = f (x)+ f ′−(x)(y − x)

x

z = f (y)

Fig. 1.5. Support and left and right side differentiability

It follows from (7) and (8) that a function of the form z = f (x) + u(y − x) for
y ∈ R is an affine support of f at x if and only if f ′−(x) ≤ u ≤ f ′+(x). ��

As an immediate consequence of this proposition we obtain the following result.
The corresponding d-dimensional result is Theorem 2.7.

Theorem 1.6. Let f : I → R be convex and x ∈ int I . Then the following statements
are equivalent:

(i) f is differentiable at x.

(ii) f has unique affine support at x, say a : R → R, where a(y) = f (x)+u(y− x)
for y ∈ R and u = f ′(x).

Second-Order Differentiability

We need the following weak notion of twice differentiability: a function f : I → R

is twice (or is second-order) differentiable almost everywhere on I if there are sets
M, N ⊆ I of (Lebesgue) measure 0 such that

f ′(x) = lim
y→x

f (y)− f (x)

y − x
exists for x ∈ I\M,

and lim
y→x

y∈I\M

f ′(y)− f ′(x)
y − x

exists for x ∈ I\(M ∪ N ).

The latter limit is denoted by f ′′(x). (In Sect. 2.2, we will consider a slightly dif-
ferent notion of twice differentiability almost everywhere for functions of several
variables.)

For the convenience of the reader, we define the Bachmann–Landau symbols o(·)
and O(·): let g, h : I → R and x ∈ I . Then we say that

g(y) = o
(
h(y)

)
as y → x, y ∈ I, if

|g(y)|
|h(y)| → 0

as y → x, y ∈ I, y �= x,

g(y) = O
(
h(y)

)
as y → x, y ∈ I if |g(y)| ≤ const |h(y)|

for y ∈ I, close to x,

where const is a suitable positive constant.
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The above definition of second-order differentiability is slightly weaker than
the common definition. In this way it still embodies the main idea of the common
second-order differentiability and has the advantage that it applies to general convex
functions as the following result shows:

Theorem 1.7. Let I be open and f : I → R convex. Then f is twice differentiable
almost everywhere on I . Moreover, for almost every x ∈ I ,

f (y) = f (x)+ f ′(x)(y − x)+ 1

2
f ′′(x)(y − x)2 + o(|y − x |2) as y → x, y ∈ I.

Proof. We first state two well-known theorems of Lebesgue, see [499].

(9) A non-decreasing real function on I is almost everywhere differentiable.

(10) The derivative of an absolutely continuous function g : J → R exists
almost everywhere on J , is Lebesgue integrable and, for x ∈ J ,

g(y) = g(x)+
y∫

x

g′(t) dt for y ∈ J.

By Theorem 1.4 above and (9), there are a countable set M and a set N of mea-
sure 0, both in I , such that the following statements hold: f ′(x) exists and equals
f ′−(x) for each x ∈ I\M and f ′− exists on I and is non-decreasing, and f ′′−(x) exists
for each x ∈ I\N . Thus,

(11) f ′′−(x) = lim
y→x

f ′−(y)− f ′−(x)
y − x

= lim
y→x

y∈I\M

f ′−(y)− f ′−(x)
y − x

= lim
y→x

y∈I\M

f ′(y)− f ′(x)
y − x

= f ′′(x) for x ∈ I\(M ∪ N ),

concluding the proof of the first assertion of the theorem.
To show the second assertion, note that (11) yields the following:

(12) f ′(y) = f ′(x)+ f ′′(x)(y − x)+ o(|y − x |)
as y → x, y ∈ I\M for x ∈ I\(M ∪ N ).

Since by Theorem 1.1 f is absolutely continuous, Proposition (10) shows that one
may integrate (12) from x to y to obtain

f (y) = f (x)+ f ′(x)(y − x)+ 1

2
f ′′(x)(y − x)2 + o(|y − x |2)

as y → x, y ∈ I\M for x ∈ I\(M ∪ N ).

Now note that the continuity of both sides of this equality permits us to cancel the
restriction that y �∈ M . ��

Theorem 1.5 says that for any convex function f the differentiability of f implies
that f ′ is continuous, i.e. f is of class C1. Examples show that there is no analogous
result for f ′′: If f ′′ exists it need not be continuous.
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1.3 Convexity Criteria

If a given function is known to be convex, the convexity may yield useful informa-
tion. For examples, see the following section. Thus the question arises to find out
whether a function is convex or not. While, in principle, Theorem 1.3 is a convexity
criterion, it is of little practical value.

The property that a convex function has non-decreasing derivative on the set
where the latter exists, and the property that a function which has affine support
everywhere is convex, yield a simple, yet useful convexity criterion which will be
stated below.

Convexity Criteria

Our aim is to prove the following result:

Theorem 1.8. Let I be open and f : I → R differentiable. Then the following
statements are equivalent:

(i) f is convex.

(ii) f ′ is non-decreasing.

Proof. (i)⇒(ii) This follows from Theorem 1.4.
(ii)⇒(i) If (ii) holds, then the first mean value theorem from calculus implies that

for any x ∈ I ,

f (y) = f (x)+ f ′
(
x + ϑ(y − x)

)
(y − x) ≥ f (x)+ f ′(x)(y − x)

for any y ∈ I and suitable ϑ depending on x and y, where 0 < ϑ < 1.

Hence f has affine support at each x ∈ I and thus is convex by Theorem 1.3. ��
Corollary 1.1. Let I be open and f : I → R twice differentiable. Then the follow-
ing are equivalent:

(i) f is convex.

(ii) f ′′ ≥ 0.

Remark. Simple arguments show that, for differentiable f : I → R, the assumption
that f ′ is strictly non-decreasing implies that f is strictly convex. Similarly, if f :
I → R is twice differentiable, the assumption that f ′′ > 0 yields the strict convexity
of f . Examples show that the converse implications do not hold generally.

1.4 Jensen’s and Other Inequalities

Notions and results of convex geometry are valuable tools for inequalities and the
related field of functional equations and inequalities. This agrees with the following
quotation of Mitrinović which we have taken from Roberts and Varberg [842], p.188:
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...it should be emphasized that the theory of convexity..., taken together with a few
elementary devices, can be used to derive a large number of the most familiar and
important inequalities of analysis.

Perhaps the most important elementary inequality dealing with convex functions is
the inequality of Jensen [544], proved earlier by Hölder [519] for differentiable con-
vex functions.

In this section it is proved by means of a simple convexity argument. As corol-
laries we obtain a series of classical inequalities. Let I be an interval in R.

For a thorough treatment of Jensen’s inequality and its consequences, see Kuczma
[620] and Castillo and Ruiz Cobo [196]. See also Roberts and Varberg [841] and
Roberts [840] for an overview of inequalities in the context of convex functions. A
beautiful book on inequalities is Steele [953].

Jensen’s Inequality

Jensen’s inequality is as follows:

Theorem 1.9. Let f : I → R be convex, x1, . . . , xn ∈ I , and λ1, . . . , λn ≥ 0 such
that λ1 + · · · + λn = 1. Then λ1x1 + · · · + λn xn ∈ I and

f (λ1x1 + · · · + λn xn) ≤ λ1 f (x1)+ · · · + λn f (xn).

We give two proofs.

Proof (by Induction). For n = 1 the assertion is trivial. Assume now that n > 1 and
that the assertion holds for n − 1. We have to prove it for n. If λn = 0 the assertion
reduces to the case n−1 and thus holds by the induction assumption. If λn = 1, then
λ1 = · · · = λn−1 = 0 and the assertion is true trivially. It remains to consider the
case 0 < λn < 1 and thus 0 < λ1 + · · · + λn−1 = 1− λn < 1. Then

λ1x1 + · · · + λn xn

= (1− λn)
( λ1

1− λn
x1 + · · · + λn−1

1− λn
xn−1

)
+ λn xn ∈ I,

f (λ1x1 + · · · + λn xn)

= f
(
(1− λn)

( λ1

1− λn
x1 + · · · + λn−1

1− λn
xn−1

)
+ λn xn

)

≤ (1− λn) f
( λ1

1− λn
x1 + · · · + λn−1

1− λn
xn−1

)
+ λn f (xn)

≤ λ1 f (x1)+ · · · + λn−1 f (xn−1)+ λn f (xn)

by the induction assumption, the convexity of I and the convexity of f . ��
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Proof (by affine support properties). By induction, x0 = λ1x1+ · · · + λn xn ∈ I . Let
a(x) = f (x0) + u(x − x0) be an affine support of f at x0. Then f (xi ) ≥ a(xi ) for
i = 1, . . . , n, and thus

λ1 f (x1)+ · · · + λn f (xn) ≥ λ1a(x1)+ · · · + λna(xn)
= (λ1 + · · · + λn) f (x0)+ u

(
λ1x1 + · · · + λn xn − (λ1 + · · · + λn)x0

)

= f (x0) = f (λ1x1 + · · · + λn xn). ��

Remark. If f is strictly convex and λ1, . . . , λn > 0, then equality holds in Jensen’s
inequality precisely in case when x1 = · · · = xn .

Mechanical Interpretation on Jensen’s Inequality

The center of gravity of the masses λ1, . . . , λn at the points
(
x1, f (x1)

)
, . . . ,(

xn, f (xn)
)

on the graph of f is the point

(xc, yc) =
(
λ1x1 + · · · + λn xn, λ1 f (x1)+ · · · + λn f (xn)

)
.

It is contained in the convex polygon with vertices
(
x1, f (x1)

)
, . . . ,

(
xn, f (xn)

)

which, in turn, is contained in the epigraph of f (as can be shown). Thus (xc, yc)
is also contained in the epigraph of f which is equivalent to Jensen’s inequality.

Inequality Between the Arithmetic and the Geometric Mean

As a direct consequence of Jensen’s inequality we have the following inequality.

Corollary 1.2. Let x1, . . . , xn ≥ 0 and λ1, . . . , λn ≥ 0 be such that λ1+· · ·+λn =
1. Then

xλ1
1 · · · xλn

n ≤ λ1x1 + · · · + λn xn .

In particular,

(x1 · · · xn)
1
n ≤ x1 + · · · + xn

n
.

Proof. We may suppose that x1, . . . , xn > 0. Since exp : R → R
+ is convex by

Theorem 1.8, an application of Jensen’s inequality to y1 = log x1, . . . , yn = log xn

then gives the desired inequality:

xλ1
1 · · · xλn

n = exp
(

log(xλ1
1 · · · xλn

n )
) = exp(λ1 log x1 + · · · + λn log xn)

≤ λ1 exp(log x1)+ · · · + λn exp(log xn) = λ1x1 + · · · + λn xn . ��

Actually, exp is strictly convex.
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Young’s Inequality

The inequality of the arithmetic and the geometric mean, in turn, yields our next
result.

Corollary 1.3. Let x, y ≥ 0 and p, q > 1 such that 1
p + 1

q = 1. Then

xy ≤ x p

p
+ yq

q
.

Proof. For x = 0 or y = 0 this inequality is trivial. For x, y > 0 it is the special
case n = 2, x1 = x p, x2 = yq , λ1 = 1

p , λ2 = 1
q of the arithmetic–geometric mean

inequality. ��

Hölder’s Inequality for Sums

The following result generalizes the Cauchy–Schwarz inequality for sums.

Corollary 1.4. Let x1, y1, . . . , xn, yn ≥ 0 and p, q > 1 such that 1
p + 1

q = 1. Then

x1 y1 + · · · + xn yn ≤
(
x p

1 + · · · + x p
n
) 1

p
(
yq

1 + · · · + yq
n
) 1

q .

Proof. If all xi or all yi are 0, Hölder’s inequality is trivial. Otherwise apply Young’s
inequality with

x = xi
(
x p

1 + · · · + x p
n
) 1

p

, y = yi
(
yq

1 + · · · + yq
n
) 1

q

for i = 1, . . . , n, sum from 1 to n and note that 1
p + 1

q = 1. ��

Hölder’s Inequality for Integrals

A generalization of the Cauchy–Schwarz inequality for integrals is the following
inequality.

Corollary 1.5. Let f, g : I → R be non-negative, integrable, with non-vanishing
integrals and let p, q > 1 such that 1

p + 1
q = 1. Then

∫

I

f g dx ≤
( ∫

I

f p dx
) 1

p
( ∫

I

gq dx
) 1

q
.

Proof. By Young’s inequality, we have

f

(
∫

I
f p dx)

1
p

g

(
∫

I
gq dx)

1
q

≤ f p

p
∫

I
f p dx

+ gq

q
∫

I
gq dx

.

Integrate this inequality over I and note that 1
p + 1

q = 1. ��
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Minkowski’s Inequality for Sums

Minkowski’s inequality for sums or the triangle inequality for the p-norm is as fol-
lows.

Corollary 1.6. Let x1, y1, . . . , xn, yn ≥ 0 and p ≥ 1. Then

(
(x1 + y1)

p + · · · + (xn + yn)
p) 1

p ≤ (
x p

1 + · · · + x p
n
) 1

p + (
y p

1 + · · · + y p
n
) 1

p .

Proof. For p = 1 this inequality holds trivially. Assume now that p > 1. Let q > 1
such that 1

p + 1
q = 1. Then (p − 1)q = p and thus

(x1 + y1)
p + · · · + (xn + yn)

p

= x1(x1 + y1)
p−1 + · · · + xn(xn + yn)

p−1

+ y1(x1 + y1)
p−1 + · · · + yn(xn + yn)

p−1

≤ (
x p

1 + · · · + x p
n
) 1

p
(
(x1 + y1)

p + · · · + (xn + yn)
p) 1

q

+ (
y p

1 + · · · + y p
n
) 1

p
(
(x1 + y1)

p + · · · + (xn + yn)
p) 1

q

= (
(x1 + y1)

p + · · · + (xn + yn)
p) 1

q
(
(x p

1 + · · · + x p
n )

1
p + (y p

1 + · · · + y p
n )

1
p
)

by Hölder’s inequality. ��

Minkowski’s Inequality for Integrals

A similar argument gives our last result.

Corollary 1.7. Let f, g : I → R be non-negative and integrable and let p ≥ 1.
Then

( ∫

I

( f + g)pdx
) 1

p ≤
( ∫

I

f pdx
) 1

p +
( ∫

I

g pdx
) 1

p
.

1.5 Bohr and Mollerup’s Characterization of �

A given functional equation may have many solutions. To single out interesting spe-
cial solutions, additional conditions must be imposed, for example continuity, mea-
surability, boundedness or convexity conditions. In the case of Cauchy’s functional
equation of 1821,

f (x + y) = f (x)+ f (y) for x, y ∈ R,

many such results are known.
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The characterization of the gamma function by Bohr and Mollerup [136] is also
a result of this type. It will be presented below, together with Artin’s [39] elegant
proof.

For more information on functional equations and convex functions the reader
may consult the books of Kuczma [620], Castillo and Ruiz Cobo [196] and Czerwik
[234], to which we add the nice little treatise of Smı́tal [944].

The Gamma Function

� is defined by

�(x) =
+∞∫

0

t x−1e−t dt for x > 0

and then extended, by analytic continuation, to the whole complex plane C, except
the points 0,−1,−2, . . . , where it has poles of first-order. There are other ways to
define �. See, e.g. formula (6) at the end of this section (Fig. 1.6).

We first collect some properties of �.

Theorem 1.10. � has the following properties:

(i) �(1) = 1.

(ii) �(x + 1) = x�(x) for x > 0, i.e. � satisfies Euler’s functional equation.

(iii) �is logarithmic convex, i.e. log� is convex for x > 0.

Proof. (i) �(1) =
+∞∫

0

e−t dt = lim
s→+∞

s∫

0

e−t dt = lim
s→+∞

(− e−t
∣∣s
0

) = 1.

−1 1

1

0

�

log�

Fig. 1.6. Gamma and log-gamma function



18 Convex Functions

(ii) Let x > 0. Then

�(x + 1) =
+∞∫

0

t x e−t dt = lim
s→+∞

s∫

0

t x e−t dt

= lim
s→+∞

(− t x e−t
∣
∣s
0 + x

s∫

0

t x−1e−t dt
)

= x lim
s→+∞

s∫

0

t x−1e−t dt = x�(x).

(iii) Let x, y > 0 and 0 < λ < 1. Then, putting 1− λ = 1
p and λ = 1

q ,

log�
(
(1− λ)x + λy

)

= log

+∞∫

0

t (1−λ)x+λy−1e−t dt = log

+∞∫

0

(
t x−1e−t)1−λ(

t y−1e−t)λdt

≤ log
(( +∞∫

0

t x−1e−t dt
)1−λ(

+∞∫

0

t y−1e−t dt
)λ)

= (1− λ) log�(x)+ λ log�(y)

by Hölder’s inequality for integrals, see Corollary 1.5. ��

Characterization of the Gamma Function

The functions g : R
+ → R which satisfy the conditions

g(1) = 1 and g(n + 1) = n g(n) (= n!) for n = 1, 2, . . . ,

are precisely the functions which can be represented in the form g(x) = �(x) +
h(x) for x > 0, where h : R

+ → R is an arbitrary function with zeros at 1, 2, . . . .
Similarly, the functions g : R

+ → R, which satisfy the stronger property that

g(1) = 1 and g(x + 1) = x g(x) for x > 0,

are precisely the functions of the form g(x) = �(x)h(x) for x > 0, where h : R
+ →

R is any function with period 1 and h(1) = 1. Among this large family of functions,
� is singled out by the property of logarithmic convexity, as shown by Bohr and
Mollerup [136]:

Theorem 1.11. Let g : R
+ → R

+ be a function having the Properties (i)–(iii) of
Theorem 1.10. Then g = � on R

+.

Proof. Properties (i) and (ii) imply that
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(1) g(n + 1) = n! for n = 0, 1, . . .

The main step of the proof is to show that Properties (i)–(iii) yield the formula

(2) g(x) = lim
n→∞

nx n!
x(x + 1) · · · (x + n)

for x > 0.

Assume first that 0 < x ≤ 1. The logarithmic convexity (iii), together with the
functional equation (ii) and (1), shows that

(3) g(n + 1+ x) = g
(
(1− x)(n + 1)+ x(n + 2)

)

≤ g(n + 1)1−x g(n + 2)x = (n + 1)x n!,
(4) n! = g(n + 1) = g

(
x(n + x)+ (1− x)(n + 1+ x)

)

≤ g(n+ x)x g(n+1+ x)1−x = (n+ x)−x g(n+1+ x)x g(n+1+ x)1−x

= (n + x)−x g(n + 1+ x).

An immediate consequence of the functional equation (ii) is the identity

(5) g(n + 1+ x) = (n + x)(n − 1+ x) · · · xg(x).

Combining (3)–(5), we obtain the following inequalities:

(
1+ x

n

)x ≤ (n + x)(n − 1+ x) · · · xg(x)

nx n! ≤
(

1+ 1

n

)x
for n = 1, 2, . . . ,

which, in turn, yields (2) in case 0 < x ≤ 1.
Assume, second, that x > 1. Using the functional equation (ii), this can be re-

duced to the case already settled: choose an integer m such that 0 < x − m ≤ 1.
Then

g(x) = (x − 1) · · · (x − m)g(x − m)

= (x − 1) · · · (x − m) lim
n→∞

nx−mn!
(x − m) · · · (x − m + n)

= lim
n→∞

( nx n!
x(x + 1) · · · (x + n)

· (x + n) · · · (x + n − m + 1)

nm

)

= lim
n→∞

nx n!
x(x + 1) · · · (x + n)

by (ii) and the already settled case of (2). Thus (2) also holds for x > 1, which
concludes the proof of (2).

Since � has Properties (i)–(iii) and (2) was proved using only these properties,
we see that

(6) �(x) = g(x) = lim
n→∞

nx n!
x(x + 1) · · · (x + n)

for x > 0. ��

Formula (6) was used by Euler in 1729 to introduce the gamma function. It is
sometimes named after Gauss. Theorem 1.11 can be used to derive other properties
of the gamma function. See, e.g. Webster [1016].



20 Convex Functions

2 Convex Functions of Several Variables

Convex functions in d variables appear in several areas of mathematics, for example
in optimization. Many of the general results for convex functions of one variable
extend to convex functions in d variables. While in some cases the extensions are
straightforward, for numerous results the proofs are essentially more difficult and
require new ideas.

In the following we consider continuity, affine support, and differentiability prop-
erties, including Alexandrov’s celebrated theorem on second-order differentiability
almost everywhere. Then a Stone–Weierstrass type result is given, showing a relation
between convex and continuous functions. As an application, we present a sufficient
condition in the calculus of variations due to Hilbert and Courant.

Let C be a convex set in E
d with non-empty interior and I ⊆ R an interval.

For more information the reader may consult the books and surveys cited in the
introduction of this chapter.

2.1 Continuity, Support and First-Order Differentiability, and a Heuristic
Principle

The results in this section are direct extensions of the basic results on continuity,
affine support and first-order differentiability of convex functions of one variable,
including Jensen’s inequality, which were presented in Sects. 1.2 and 1.3. In most
cases the proofs are more involved. Finally there are some heuristic remarks con-
cerning a sort of reinforcement principle.

Jensen’s Inequality

As a useful tool we state the following generalization of Theorem 1.9. Its proof is
verbatim the same as that of its 1-dimensional relative and thus is omitted.

Theorem 2.1. Let f : C → R be convex, x1, . . . , xn ∈ C, and λ1, . . . , λn ≥ 0 such
that λ1 + · · · + λn = 1. Then λ1x1 + · · · + λn xn ∈ C and

f (λ1x1 + · · · + λn xn) ≤ λ1 f (x1)+ · · · + λn f (xn).

Continuity Properties

Let f : C → R. f is Lipschitz on a subset D ⊆ C if there is a constant L > 0,
a Lipschitz constant of f on D, such that

| f (x)− f (y)| ≤ L‖x − y‖ for x, y ∈ D,

where ‖ · ‖ denotes the Euclidean norm on E
d . f is locally Lipschitz at a point

x ∈ C if there is a neighborhood N of x such that f is Lipschitz on C ∩ N . The
corresponding Lipschitz constant may depend on x and N .
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Theorem 2.2. Let f : C → R be convex. Then f is Lipschitz on each compact
subset of int C. Thus, in particular, f is continuous on int C.

Proof. It is sufficient to show the following.

(1) Let x ∈ int C . Then f is locally Lipschitz at x .

The proof of (1) is divided into several steps. For ε > 0 let N (ε) denote the
ε-neighborhood of x .

First,

(2) There are α, ε > 0 such that N (2ε) ⊆ int C and f is bounded above by
α on N (2ε).

For the proof of (2) it is sufficient to show that f is bounded above on some sim-
plex in C which contains x in its interior. Let S be a simplex in C with vertices
x1, . . . , xd+1, say, and x ∈ int S. If y ∈ S, then y = λ1x1 + · · · + λd+1xd+1, where
λ1, . . . , λd+1 ≥ 0, λ1 + · · · + λd+1 = 1. Jensen’s inequality then yields the desired
upper bound:

f (y) = f (λ1x1 + · · · + λd+1xd+1) ≤ λ1 f (x1)+ · · · + λd+1 f (xd+1)

≤ | f (x1)| + · · · + | f (xd+1)| = α, say.

Second,

(3) There is a γ > 0 such that | f | is bounded above by γ on N (2ε).

Let y ∈ N (2ε). Then 2x − y = x − (y − x) ∈ N (2ε) ⊆ C and thus

f (x) = f
(1

2
y + 1

2
(2x − y)

)
≤ 1

2
f (y)+ 1

2
f (2x − y)

by the convexity of f . This, together with (2), then shows that

α ≥ f (y) ≥ 2 f (x)− f (2x − y) ≥ 2 f (x)− α.
Hence

| f (y)| ≤ max{α, |2 f (x)− α|} = γ, say.

Third,

(4) f is Lipschitz with Lipschitz constant L = 2γ

ε
on N (ε).

Let y, z ∈ N (ε), y �= z. Choose w ∈ N (2ε) such that z ∈ [y, w] and ‖w − z‖ = ε.
Since the restriction of f to the line-segment [y, w] is convex, Lemma 1.1, together
with (3), yields the following:

f (z)− f (y)

‖z − y‖ ≤ f (w)− f (z)

‖w − z‖ ≤ 2γ

ε
or f (z)− f (y) ≤ 2γ

ε
‖z − y‖.

Clearly, the same conclusion holds with y and z exchanged. Thus
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| f (z)− f (y)| ≤ L‖z − y‖ where L = 2γ

ε
.

This concludes the proof of (4) and thus of (1). ��
Remark. Note that continuity may not extend to bd C as the following example
shows: let Bd be the solid Euclidean unit ball in E

d and f : Bd → R. Suppose that
for a suitable real α>0 the restriction of f to int Bd is convex and bounded above by
α and the restriction of f to bd Bd is bounded below by 2α, but otherwise arbitrary.
Then f is convex and discontinuous at each point of bd Bd .

Support and a Hahn–Banach Type Result

Support and the related separation properties of convex functions and convex sets
are of great importance for convex analysis. Moreover, they are bridges between
convex geometry and optimization and – to some extent – functional analysis. See,
e.g. Hiriart-Urruty and Lemaréchal [505], Stoer and Witzgall [970] and Rudin [861].

A function f : C → R has affine support at a point x ∈ C if there is an affine
function a : E

d → R of the form a(y) = f (x)+ u · (y − x) for y ∈ E
d , where u is

a suitable vector in E
d , such that

f (y) ≥ a(y) = f (x)+ u · (y − x) for y ∈ C.

a is called an affine support of f at x . The dot · denotes the usual inner product in
E

d .
The following result extends Theorem 1.2. It is a finite-dimensional version of

the Hahn–Banach theorem. For the general Hahn–Banach theorem see, e.g. [861].
Our proof is by induction. It generalizes to the infinite dimensional case where, of
course, induction has to be replaced by transfinite induction. A related result on the
existence of support hyperplanes of a convex body is Theorem 4.1. Our proof of
the latter result is essentially finite dimensional and thus basically different from the
proof of the following result.

Theorem 2.3. Let f : C → R be convex and P an affine subspace in E
d through a

point x ∈ int C. Suppose that the restriction f |P has an affine support aP at x. Then
f has an affine support a at x which extends aP , i.e. a|P = aP .

Proof. We may assume that x = o and f (o) = 0. Let L = P . Let dim stand
for dimension. If dim L = d, we are done. Otherwise it is sufficient to prove the
following proposition:

(5) Let k = dim L , dim L + 1, . . . , d. Then there are a k-dimensional linear
subspace Lk ⊇ L and a linear function lk : Lk → R which affinely supports
f |Lk and extends lL = aP .

The proof of (5) is by induction. If k = dim L , (5) holds by assumption. Suppose
now that (5) holds for a k < d. Choose w ∈ C\Lk . Then



2 Convex Functions of Several Variables 23

λlk(y)+ µlk(z) = (λ+ µ)lk
( λ

λ+ µ y + µ

λ+ µ z
)

≤ (λ+ µ) f
( λ

λ+ µ y + µ

λ+ µ z
)

= (λ+ µ) f
( λ

λ+ µ(y − µw)+
µ

λ+ µ(z + λw)
)

≤ λ f (y − µw)+ µ f (z + λw)
for y, z ∈ C ∩ Lk and λ,µ > 0 such that y − µw, z + λw ∈ C

by the induction hypothesis and the convexity of f . Hence

lk(y)− f (y − µw)
µ

≤ f (z + λw)− lk(z)

λ

for y, z ∈ C ∩ Lk and λ,µ > 0 such that y − µw, z + λw ∈ C.

The supremum of the left-hand side of this inequality is therefore less than or equal
to the infimum of the right-hand side. Thus there is an α ∈ R such that the following
inequalities hold:

lk(y)− f (y − µw)
µ

≤ α for y ∈ C ∩ Lk and µ > 0 such that y − µw ∈ C,

α ≤ f (z + λw)− lk(z)

λ
for z ∈ C ∩ Lk and λ > 0 such that z + λw ∈ C.

This can also be expressed as follows:

(6) f (z + λw) ≥ lk(z)+ αλ
for all z ∈ C ∩ Lk and λ ∈ R such that z + λw ∈ C .

Let Lk+1 be the (k + 1)-dimensional subspace of E
d spanned by Lk and w, and let

the linear function lk+1 : Lk+1 → R be defined by

lk+1(z + λw) = lk(z)+ αλ for z + λw ∈ Lk+1.

(6) then shows that lk+1 affinely supports f |Lk+1 at o. The induction is complete,
concluding the proof of (5) and thus of the theorem. ��

A Characterization of Convex Functions

As a consequence of Theorem 2.3 and the proof of Theorem 1.3, we have the follow-
ing equivalence. Clearly, this equivalence can be used to give an alternative definition
of the notion of convex function.

Theorem 2.4. Let C be open and f : C → R. Then the following are equivalent:

(i) f is convex.

(ii) f has affine support at each x ∈ C.
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First-Order Differentiability and Partial Derivatives

A function f : C → R is differentiable at a point x ∈ C in the sense of Stolz or
Fréchet if there is a (necessarily unique) vector u ∈ E

d , such that

f (y) = f (x)+ u · (y − x)+ o(‖y − x‖) as y → x, y ∈ C.

A weaker notion of differentiability is differentiability in the sense of Gâteaux. Since
both notions of differentiability coincide for convex functions in finite dimensions,
only the former will be considered.

Theorem 2.5. Let f : C → R be convex and x ∈ int C. Then the following state-
ments are equivalent:

(i) f is differentiable at x.

(ii) The partial derivatives fxi (x), i = 1, . . . , d, exist.

Proof. (i)⇒(ii) This is well known from calculus and easy to prove.
(ii)⇒(i) Let ui = fxi (x), i = 1, . . . , d, let u = (u1, . . . , ud) and let {b1, . . . , bd}

be the standard basis of E
d . Then

f (x + tbi ) = f (x)+ ui t + o(|t |) as t → 0 for i = 1, . . . , d.

Combined with Jensen’s inequality, this shows that

(7) f (y) = f
(
x + (y − x)

)

= f
( 1

d

(
x + d(y1 − x1)b1

)+ · · · + 1

d

(
x + d(yd − xd)bd

))

≤ 1

d
f
(
x + d(y1 − x1)b1

)+ · · · + 1

d
f
(
x + d(yd − xd)bd

)

= f (x)+ u1(y1 − x1)+ · · · + ud(yd − xd)

+ o(|y1 − xy |)+ · · · + o(|yd − xd |)
= f (x)+ u · (y − x)+ o(‖y − x‖) as y → x, y ∈ C.

A similar argument yields the following:

(8) f (2x − y) ≤ f (x)+ u · (x − y)+ o(‖y − x‖) as y → x, 2x − y ∈ C.

The final inequality we are seeking follows from the convexity of f :

(9) f (x) = f
(1

2
y + 1

2
(2x − y)

)
≤ 1

2
f (y)+ 1

2
f (2x − y) for y, 2x − y ∈ C.

The inequalities (9) and (8) now imply that

f (x)+ u · (y − x) ≤ 1

2
f (y)+ 1

2
f (2x − y)+ u · (y − x)

≤ 1

2
f (y)+ 1

2
f (x)+ 1

2
u · (y − x)+ o(‖y − x‖) as y → x, y ∈ C,
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and thus

f (y) ≥ f (x)+ u · (y − x)+ o(‖y − x‖) as y → x, y ∈ C.

Together with the inequality (7) this finally implies that

f (y) = f (x)+ u · (y − x)+ o(‖y − x‖) as y → x, y ∈ C. ��
Simple examples show that in this result one may not replace convex by contin-

uous.
The next result is due to Reidemeister [827].

Theorem 2.6. Let C be open and f : C → R convex. Then f is differentiable almost
everywhere on C.

Proof. We first show that

(10) The left-hand side and right-hand side partial derivatives f −xi
, f +xi

, i =
1, . . . , d, exist on C and are measurable.

Let {b1, . . . , bd} be the standard basis of E
d . For given i , consider the functions

gn, hn, n = 1, 2, . . . , which are defined by

gn(x) =
f (x − 1

n bi )− f (x)

− 1
n

for x ∈ C such that x − 1

n
bi ∈ C,

hn(x) = f (x + 1
n bi )− f (x)

1
n

for x ∈ C such that x + 1

n
bi ∈ C.

By Theorem 1.4,
gn → f −xi

, hn → f +xi
as n →∞ on C.

As the pointwise limits of continuous functions, f −xi
, f +xi

are measurable on C ,
concluding the proof of (10).

Second,

(11) fxi , i = 1, . . . , d, exist almost everywhere on C .

For given i , the set {
x ∈ C : f −xi

(x) �= f +xi
(x)

}

is measurable on C by (10). Fubini’s theorem and Theorem 1.4 for convex functions
of one variable together imply that this set has measure 0, concluding the proof of
(11).

Having proved (11), Reidemeister’s theorem is an immediate consequence of
Theorem 2.5. ��
A different proof of this result can be obtained from Theorems 2.2 and 2.5 and
Rademacher’s theorem on the differentiability almost everywhere of Lipschitz
continuous functions.
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Remark. More precise measure-theoretic information on the size of the set of points
at which a convex function is differentiable was given by Anderson and Klee [28]
(in the guise of a result on convex bodies). Mazur [701] and Preiss and Zajı́ček
[815, 816] employ the topological tool of Baire categories, respectively, the metric
tool of porous sets to estimate the size of this differentiability set. From all three
points of view, it is a large set. Compare Theorems 5.1 and 5.2 dealing with convex
bodies and the discussion on first-order differentiability after these results. For a
discussion of differentiability properties of convex functions on infinite dimensional
spaces, see the book of Benyamini and Lindenstrauss [97].

First-Order Differentiability and Affine Support

Our first result is as follows:

Theorem 2.7. Let f : C → R be convex and x ∈ int C. Then the following are
equivalent:

(i) f is differentiable at x.

(ii) f has unique affine support at x, say a : E
d → R, where a(y) = f (x)+u·(y−x)

for y ∈ E
d and u = grad f (x) = (

fx1(x), . . . , fxd (x)
)
.

Proof. By Theorem 1.4,

f −xi
(x) and f +xi

(x), i = 1, . . . , d, exist.

(i)⇒(ii) By Theorem 2.4 f has an affine support a : E
d → R at x , where

a(y) = f (x) + u · (y − x) for y ∈ E
d . Let i = 1, . . . , d. The restriction of f to

the intersection of C with the line through x parallel to the i th coordinate axis is a
convex function of one variable. This function has derivative

fxi (x) = f −xi
(x) = f +xi

(x)

at x by Theorem 2.5 and f (x)+ui (yi − xi ) for yi ∈ R is an affine support at x . Thus
ui = fxi (x) by Proposition 1.2. Since this holds for i = 1, . . . , d, the affine support
a is unique and has the desired form.

(ii)⇒(i) If f is not differentiable at x , then there is an index i such that fxi (x)
does not exist, see Theorem 2.5. Then

f −xi
(x) < f +xi

(x)

by Theorem 1.4. By Proposition 1.2, each affine function of the form f (x)+ui (yi −
xi ) for yi ∈ R where

f −xi
(x) ≤ ui ≤ f +xi

(x)

is an affine support of the restriction of f to the intersection of C and the line through
x parallel to the i th coordinate axis. Each of these affine supports can be extended to
an affine support of f at x by the Hahn–Banach type theorem 2.3. Hence f does not
have a unique affine support at x . ��
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Theorem 2.8. Let C be open and f : C → R convex and differentiable on C. Then
all partial derivatives of f are continuous, i.e. f is of class C1.

Proof. It is sufficient to show the following:

(12) Let x, x1, x2, · · · ∈ C be such that x1, x2, · · · → x . Then
un = grad f (xn)→ grad f (x).

Theorem 2.7 implies that

(13) f (y) ≥ f (xn)+ un · (y − xn) for y ∈ C and n = 1, 2, . . . .

By Theorem 2.2, f is Lipschitz in a suitable neighborhood N ⊆ C of x with Lip-
schitz constant L , say. By omitting finitely many xn and changing notation, if neces-
sary, we may assume that xn ∈ N for n = 1, 2, . . . . For each n, choose yn ∈ N such
that yn − xn �= o and yn − xn has the same direction as un . These remarks, together
with (13), imply that

‖un‖ ‖yn − xn‖ = un · (yn − xn) ≤ f (yn)− f (xn) ≤ L‖yn − xn‖
and thus ‖un‖ ≤ L , i.e. the sequence (un) is bounded. For the proof of (12) it is then
sufficient to show the following:

(14) Let (unk ) be a convergent subsequence of (un) with limit v , say. Then v =
grad f (x).

Since unk → v, xnk → x , and f is continuous, (13) implies that f (y) ≥ f (x)+ v ·
(y − x) for each y ∈ C . Thus f is supported at x by the affine function a defined by
a(y) = f (x) + v · (y − x) for y ∈ E

d . Since f is differentiable at x , Theorem 2.7
implies that a is unique and v = grad f (x). ��

Heuristic Observation

In Sect. 1.2 and in the present section we have encountered the phenomenon that a
convex function which has a particular property such as differentiability, has it in a
particularly pure form. This phenomenon occurs also in the context of the Venkov–
Alexandrov–McMullen theorem 32.2, 32.3 which shows that a convex polytope
which tiles by translation, is even a lattice tile. We think of these phenomena as
special cases of the following heuristic proposition.

Heuristic Principle. Consider a basic property which a convex function, a convex
body or a convex polytope can have. Then, in many cases, a convex function, body
or polytope which has this property, has an even stronger such property.

2.2 Alexandrov’s Theorem on Second-Order Differentiability

In the last section it was shown that a convex function is differentiable almost
everywhere, and we remarked that the same holds with respect to Baire category
and metric. A deep result of Alexandrov says that, in the sense of measure theory,
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even more is true: a convex function is twice differentiable, except on a set of
measure zero. In contrast, results of Zamfirescu [1037, 1038] imply that, from the
Baire category viewpoint, a typical convex function is twice differentiable only on a
small set.

This section contains a proof of the theorem of Alexandrov [14] on second order
differentiability of convex functions. It generalizes, in a non-trivial way, a result of
Busemann and Feller [183] for d = 2 and, of course, Theorem 1.7 for d = 1.

Besides the original proof of Alexandrov, we mention a proof of Zajı́ček [1036]
and one in the book of Evans and Gariepy [314].

For more information on differentiability properties of convex functions, respec-
tively, smooth boundary points of convex bodies, see Schneider [904, 907, 908] and
Gruber [431].

Second-Order Differentiability

A function f : C → R is twice (or second-order) differentiable at a point x ∈ int C ,
if there are a vector u ∈ E

d , the gradient of f at x , and a real d × d matrix H , the
Hessian matrix of f at x , such that

f (y) = f (x)+ u · (y − x)+ 1

2
(y − x)T H(y − x)+ o(‖y − x‖2) as y → x .

Alexandrov’s Theorem

Following Zajı́ček [1036], we prove Alexandrov’s differentiability theorem [14]:

Theorem 2.9. Let C be open and f : C → R convex. Then f is twice differentiable
almost everywhere on C.

Because the required tools are cited explicitly and the necessary definitions and
explanations are incorporated into the proof, the latter looks longer than it actually
is. A source for the tools is Mattila [696].

Proof. First, several tools are collected. The extension theorem of McShane shows
that

(1) A Lipschitz mapping which maps a set D ⊆ E
d into E

d can be extended to
a Lipschitz mapping of E

d into E
d with the same Lipschitz constant.

By Rademacher’s differentiability theorem,

(2) A Lipschitz mapping which maps C into E
d is almost everywhere differen-

tiable on C .

Call a mapping K : C → E
d differentiable (in the sense of Stolz or Fréchet) at a

point x ∈ C if there is a real d × d matrix A, the derivative of K at x , such that

K (y) = K (x)+ A(y − x)+ o(‖y − x‖) as y → x, y ∈ C.

The next result is a version of Sard’s theorem.
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(3) Let K : E
d → E

d be a Lipschitz mapping and let N ⊆ E
d be the set of

all points of E
d where K is differentiable but with singular derivative, i.e.

det A = 0. Then the image K (N ) of N has measure 0.

The final tool is well known.

(4) Let K : E
d → E

d be Lipschitz and let N ⊆ E
d have measure 0. Then

K (N ) also has measure 0.

Second, the notion of subgradient and some of its properties will be considered.
Let x ∈ C . Then the set G(x) of all vectors u ∈ E

d for which the affine function
a : E

d → R defined by a(y) = f (x) + u · (y − x) for y ∈ E
d is an affine support

of f at x is the subgradient of f at x . The mapping G : x → G(x) for x ∈ C is
set-valued. If G(x) is a singleton, say G(x) = {u}, then u is the gradient of f at x ,
see Theorem 2.7. Now we show that

(5) G is monotone, i.e.

(x − y) · (u − v) ≥ 0 for x, y ∈ C, u ∈ G(x), v ∈ G(y).

The definitions of G(x) and G(y) imply that f (y) ≥ f (x)+ u · (y− x) and f (x) ≥
f (y) + v · (x − y), respectively. Adding these inequalities yields (5). Let I denote
the identity mapping, respectively, the d × d unit matrix.

(6) Let D =⋃{x + G(x) : x ∈ C}. Then the set-valued mapping
K = (I + G)−1 : D → E

d is Lipschitz and thus single-valued.

(Here x + G(x) = {x + u : u ∈ G(x)}, for x + u ∈ D the set K (x + u) is the
set of all t ∈ C with x + u ∈ t + G(t), and when we say that K is Lipschitz this
means that, if w ∈ K (x + u) and z ∈ K (y + v) then the following inequality holds:
‖z − w‖ ≤ ‖y + v − x − u‖.) To prove (6), let x + u, y + v ∈ D and choose
w ∈ K (x + u), z ∈ K (y + v). Then x + u ∈ w + G(w), y + v ∈ z + G(z). The
monotonicity of G then shows that

(z − w) · (y + v − z − x − u + w) ≥ 0, or

‖z − w‖2 ≤ (y + v − x − u) · (z − w) ≤ ‖y + v − x − u‖ ‖z − w‖
by the Cauchy–Schwarz inequality, and thus ‖z − w‖ ≤ ‖y + v − x − u‖.

Third, G is said to be continuous at x ∈ C if G is single-valued at x , say G(x) =
u, and for any neighborhood of u the set G(y) is contained in this neighborhood if
y ∈ C and ‖y − x‖ is sufficiently small. By Reidemeister’s theorem 2.6,

(7) f is differentiable on C\L , where the set L ⊆ C has measure 0.

Then

(8) G is continuous on C\L .

To see this, the following must be shown: let x ∈ C\L , x1, x2, · · · ∈ C such that
xn → x , and choose u1 ∈ G(x1), u2 ∈ G(x2), . . . , arbitrarily. Then un → u =
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G(x). The proof of this statement is verbatim the same as for the corresponding
statement (12) in the proof of Theorem 2.8.

Fourth, call G differentiable at x ∈ C if G(x) is single-valued at x , say G(x) = u,
and if there is a real d × d matrix H , the derivative of G at x , such that the set
G(y) − u − H(y − x) is contained in a neighborhood of o of radius o(‖y − x‖)
as y → x, y ∈ C . The latter property will also be expressed in the form v =
u+H(y− x)+o(‖y− x‖) as y → x, y ∈ C uniformly for v ∈ G(y), or in the form
G(y) = u+ H(y− x)+ o(‖y− x‖) as y → x, y ∈ C . Clearly, if G is differentiable
at x , then it is continuous at x .

(9) Let G be continuous at x ∈ C and let the single-valued mapping K =
(I +G)−1 : D → E

d be differentiable at w = x + u where u = G(x), and
such that its derivative A is non-singular. Then G is differentiable at x with
derivative H = A−1 − I .

The differentiability of K at w implies that

(10) K (z)− K (w) = A(z−w)+ r for z ∈ D, where ‖r‖/‖z−w‖ is arbitrarily
small if ‖z − w‖ is sufficiently small.

For a real d × d matrix B = (bik) define ‖B‖ = (
∑

b2
ik)

1
2 . A result from linear

algebra based on the Cauchy–Schwarz inequality then shows that ‖Bp‖ ≤ ‖B‖ ‖p‖
for p ∈ E

d . Thus ‖p‖ = ‖B−1 Bp‖ ≤ ‖B−1‖ ‖Bp‖, or

(11) ‖Bp‖ ≥ ‖p‖
‖B−1‖ for p ∈ E

d and each non-singular d × d matrix B.

The following statement is a consequence of the continuity of G at x .

(12) Let w = x+u ∈ D, u = G(x), z = y+v ∈ D, y ∈ C, v ∈ G(y) and thus
x = K (w), y = K (z). Then ‖z −w‖ (≤ ‖v − u‖ + ‖y − x‖) is arbitrarily
small, uniformly for v ∈ G(y), if ‖y − x‖ is sufficiently small.

For x, y, w, z as in (12), Propositions (10)–(12) show that

‖y − x‖ = ‖K (z)− K (w)‖ ≥ ‖A(z − w)‖ − ‖r‖ ≥ ‖z − w‖
‖A−1‖ − ‖z − w‖

2‖A−1‖
= ‖z − w‖

2‖A−1‖ if ‖y − x‖ is sufficiently small.

Combining this with (10) yields the following proposition and thus completes the
proof of statement (9):

Let w = x + u ∈ D, u = G(x), z = y + v ∈ D, y ∈ C, v ∈ G(y) and
thus x = K (w), y = K (z). Then z − w = A−1(y − x)+ A−1r , or

v = u − (y − x)+ A−1(y − x)+ A−1r
= u + (A−1 − I )(y − x)+ A−1r,

where ‖A−1r‖/‖y − x‖ is arbitrarily small, uniformly for v ∈ G(y), if
‖y − x‖ is sufficiently small.
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Fifth, we show that

(13) G is differentiable almost everywhere on C .

By (6), K = (I + G)−1 : D → E
d is Lipschitz and thus can be extended to

a Lipschitz function of E
d into E

d by (1). Denote this extension also by K . Let
M be the set of points in E

d where this K is not differentiable and by N the set
where it is differentiable but with singular derivative. Propositions (2)–(4) then show
that K (M ∪ N ) has measure 0. The set L , from (7) and (8), is also of measure 0.
For the proof of (13), it is thus sufficient to show that G is differentiable for any
x ∈ C\(K (M ∪ N ) ∪ L

)
. For each such x Proposition (8) says that G is continuous

at x and the above definitions of M and N imply that K is differentiable at x + u
with non-singular derivative (note that x + u = (I + G)(x) = K−1(x) �∈ M ∪ N ).
Hence G is differentiable at x by (9). The proof of (13) is complete.

In the sixth, and final, step it will be shown that

(14) f (y) = f (x)+ u · (y− x)+ 1
2 (y− x)T H(y− x)+ o(‖y− x‖2) for almost

all x ∈ C and each y ∈ C . Here u = G(x) and H is the derivative of G
at x .

The idea of the proof of (14) is to restrict f to a line segment on which it is differen-
tiable almost everywhere and then represent it as the integral of its derivative.

f and G are differentiable at almost every point x ∈ C , see (7) and (13). Let x
be such a point. Then, in particular,

(15) G(y) = u + H(y − x)+ o(‖y − x‖) for y → x, y ∈ C,
where u = G(x) and H is the derivative of G at x .

In addition, (7) shows that, for almost every unit vector h and almost every t ≥ 0 for
which x + th ∈ C , the function f is differentiable at x + th. If h and t are such a
unit vector and such a number, respectively, then

f (y) = f (x + th)+ v · (y− (x + th)
)+ o

(‖y− (x + th)‖) as y → x + th, y ∈ C,

where v = G(y + th). Thus, in particular, for y = x + sh,

f (x + sh) = f (x + th)+ v · h (s − t)+ o(|s − t |) as s → t, x + sh ∈ C.

Hence, for t ≥ 0 such that x+ th ∈ C , the convex function f (x+ th) of one variable
is differentiable at almost every t . Its derivative is v ·h, where v = G(x+ th). Since a
convex function of one variable is absolutely continuous in the interior of its interval
of definition by Theorem 1.1, a theorem of Lebesgue shows that integration of its
derivative yields the original function, see the proof of Theorem 1.7. Hence

f (x + th)− f (x) =
t∫

0

G(x + sh) · h ds

=
t∫

0

(
u · h + hT Hh s + o(s)

)
ds = u · h t + 1

2
hT Hh t2 + o(t2) as t → 0
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by (15), uniformly for all h. Hence

(16) f (y) = f (x) + u · (y − x) + 1

2
(y − x)T H(y − x) + o(‖y − x‖2) as

y → x, y ∈ C,

uniformly for y of the form x + th and thus for almost all y ∈ C . Since f (y) and
f (x)+ u · (y − x)+ 1

2 (y − x)T H(y − x) depend continuously on y, (16) holds for
all y ∈ C . This concludes the proof of (14) and thus of Alexandrov’s theorem. ��
In contrast to the fact established in Theorem 2.8 that the existence of all first partial
derivatives of a convex function implies that the function is of class C1, the existence
of all second partial derivatives or the second order differentiability of a convex func-
tion does not guarantee that it is of class C2.

2.3 A Convexity Criterion

As for functions of one variable, it is of interest to ascertain when a function f :
C → R of several variables is convex.

Below we give a simple, yet useful convexity criterion due to Brunn [174] and
Hadamard [460].

Hessians

Let f : C → R have partial derivatives of second order, fxi ,xk (x), i, k = 1, . . . , d,
at x ∈ C . As in Section 2.2, the d × d matrix

H = H(x) =

⎛

⎜⎜
⎝

fx1,x1(x) . . . fx1,xd (x)
fx2,x1(x) . . . fx2,xd (x)
. . . . . . . . . . . . . . . . . . . .
fxd ,x1(x) . . . fxd ,xd (x)

⎞

⎟⎟
⎠

is called the Hessian matrix of f at x . Corresponding to it is the Hessian (quadratic)
form of f at x , defined by

y → 1

2
yT H y = 1

2

d∑

i,k=1

fxi ,xk (x) yi yk for y ∈ E
d .

The Convexity Criterion of Brunn and Hadamard

The following result for convex functions of d variables will be proved by retracing
it back to the one-dimensional case and using the fact that a convex function in one
variable of class C2 has non-negative second derivative.

Theorem 2.10. Let C be open and f : C → R of class C2. Then the following
statements are equivalent:

(i) f is convex.

(ii) For any x ∈ C the Hessian form H(x) of f at x is positive semi-definite.
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Proof. (i)⇒(ii) It is sufficient to show the following:

(1) Let x, y ∈ C, x �= y. Then (y − x)T H(x)(y − x) ≥ 0.

Let g be the convex function defined by g(t) = f
(
(1− t)x + t y

)
for t ∈ R such that

(1− t)x + t y = x + t (y − x) ∈ C. Since f and thus g is of class C2, the chain rule
for functions of d variables yields the following:

g′(t) exists and equals
d∑

i=1

fxi

(
x + t (y − x)

)
(yi − xi ),

g′′(t) exists and equals
d∑

i,k=1

fxi ,xk

(
x + t (y − x)

)
(yi − xi )(yk − xk).

Since g is convex and of class C2, Corollary 1.1 implies that, in particular, g′′(0) ≥ 0
and thus

1

2
(y − x)T H(x)(y − x) = 1

2

d∑

i,k=1

fxi ,xk (x)(yi − xi )(yk − xk) = 1

2
g′′(0) ≥ 0,

concluding the proof of (1).
(ii)⇒(i) By Theorem 2.4, it is sufficient to show the following:

(2) Let x ∈ C . Then f has an affine support at x .

Since f is of class C2, Taylor’s theorem, for functions of d variables, implies that

f (y) = f (x)+ u · (y − x)+ 1

2

d∑

i,k=1

fxi ,xk

(
x + ϑ(y − x)

)
(yi − xi )(yk − xk)

= f (x)+ u · (y − x)+ 1

2
(y − x)T H

(
x + ϑ(y − x)

)
(y − x)

≥ f (x)+ u · (y − x) for y ∈ C,

where u = grad f (x), 0 < ϑ < 1 is chosen suitably, depending on y, and we have
used the assumption that the Hessian form of f at x + ϑ(y − x) is positive semi-
definite. This concludes the proof of (2). ��

Remark. Essentially the same proof yields the following: If the Hessian form of f
is positive definite for each x ∈ C , then f is strictly convex. The following simple
example shows that the converse does not hold. Let f (x) = x4

1+· · ·+x4
d for ‖x‖ ≤ 1,

then f is strictly convex, but the Hessian form at o is the zero form and therefore not
positive definite.
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2.4 A Stone–Weierstrass Type Theorem

The problem, whether interesting special families of functions are dense in the class
of real or complex continuous functions on a given space, has drawn attention ever
since Weierstrass gave his well known approximation theorem.

In this section, we present a Stone-Weierstrass type result which shows that
differences of convex functions are dense in the space of continuous functions.

A Stone–Weierstrass Type Theorem for Convex Functions

For the following result, see Alfsen [21].

Theorem 2.11. Let C be compact and convex. Then the set D of all differences
of continuous convex functions on C is dense in the space of all real continuous
functions on C, endowed with the maximum norm.

We present two proofs. The first one was proposed by Schneider [910] and makes
use of the Weierstrass approximation theorem for several variables and the convexity
criterion of Brunn and Hadamard. The second proof is based on a theorem of Stone
of Stone–Weierstrass type.

Proof (using the Weierstrass approximation theorem). We need the following version
of the approximation theorem:

The family of all real polynomials in d variables on the cube K = {x :
|xi | ≤ 1} is dense in the space of all real continuous functions on K .

For the proof of the theorem we may assume that C ⊆ K . Since each continuous real
function on the compact set C can be continuously extended to K , it follows that

The family of all (restrictions of) real polynomials on C is dense in the
space of all real continuous functions on C .

This yields the theorem if we can show that

Each polynomial p on C can be represented as the difference of two convex
polynomials on C .

To see this, note that for sufficiently large λ > 0 the polynomials p(x)+λ(x2
1+· · ·+

x2
d) and λ(x2

1 · · · + x2
d) both are convex on C by the convexity criterion of Brunn and

Hadamard. ��
Proof (based on a theorem of Stone). The required result of Stone is as follows:

(1) Let S be a compact space and F a family of real continuous functions on S
having the following properties:

(i) F is closed under multiplication by real numbers, addition, and
multiplication.
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(ii) F separates points, i.e. for any x, y ∈ S, x �= y, there is a function
f ∈ F with f (x) �= f (y).

(iii) F vanishes nowhere on S, i.e. for any x ∈ S there is a function
f ∈ F with f (x) �= 0.

Then F is dense in the space of all real continuous functions on S, endowed
with the maximum norm.

Next, some simple properties of convex functions will be given:

(2) Let f : C → R be convex and f ≥ 0. Then f 2 is also convex.

The convexity and the non-negativity of f together with the fact that the function
t → t2 for t ≥ 0 is non-decreasing and convex, imply (2):

f
(
(1− λ)x + λy

)2 ≤ (
(1− λ) f (x)+ λ f (y)

)2 ≤ (1− λ) f (x)2 + λ f (y)2

for x, y ∈ C, 0 ≤ λ ≤ 1.

The following proposition is an immediate consequence of (2), the fact that sums of
convex functions are again convex, and of the simple identity f g = 1

2

(
( f + g)2 −

( f 2 + g2)
)
:

(3) Let f, g : C → R be convex and f, g ≥ 0. Then f g ∈ D.

In the last part of the proof it will be shown that D has Properties (i)–(iii) in
Stone’s theorem (1).

(4) D has Property (i).

Only multiplication has to be justified. Let f − g, h − k ∈ D. The convex functions
f, g, h, k : C → R are continuous on the compact set C by assumption and thus
are bounded. After adding the same suitable constant to each of these functions and
changing notation if this constant is �= 0, we may assume that f, g, h, k ≥ 0. Then
( f − g)(h − k) = f h + gk − f k − gh ∈ D by (3), concluding the proof of (4).

(5) D has Properties (ii) and (iii).

This follows by considering, for example, affine functions on C , which are clearly
convex.

Having proved (4) and (5), the theorem is an immediate consequence of Stone’s
theorem (1). ��
Remark. The above proof shows that Theorem 2.11 actually holds in spaces which
are more general than E

d .

2.5 A Sufficient Condition of Courant and Hilbert in the Calculus
of Variations

For many extremum problems necessary conditions for solutions are well known and
easy to obtain. In general, it is more difficult to give sufficient conditions. Consider
the following simple example: Let f : I → R be differentiable. Then, if f attains a
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xx x

Fig. 2.1. Stationary, extreme and unique extreme points

local minimum at a point x ∈ int I, necessarily f ′(x) = 0. Conversely, the condition
that f ′(x) = 0 does not guarantee that f attains a local minimum at x , but together
with the condition that f is convex, it does. If, in addition, we know that f is strictly
convex, this local minimum is even the unique global minimum of f (Fig. 2.1).

A similar situation arises in the calculus of variations: Consider a variational
problem and the corresponding Euler–Lagrange equation(s). A smooth solution of
the variational problem necessarily satisfies the Euler–Lagrange equation(s). Con-
versely, if a function satisfies the Euler–Lagrange equation(s), this may not be suffi-
cient for the function to be a solution of the variational problem. But it is sufficient
if, in addition, certain convexity conditions are satisfied. The first result of this type
seems to be due to Courant and Hilbert [227], p.186, which, in essence, is reproduced
below.

For a wealth of more recent pertinent results and references, see the survey of
Brechtken–Manderscheid and Heil [165].

A Sufficient Condition

A result of Courant and Hilbert is as follows, where [a, b] is an interval in R.

Theorem 2.12. Let f : [a, b]×E
2 → R be of class C2 and assume that for each fixed

x ∈ [a, b] the function (y, z) → f (x, y, z) for (y, z) ∈ E
2 is convex, respectively,

strictly convex. Let α, β ∈ R and assume that y : [a, b] → R is a function of class
C1 such that y(a) = α, y(b) = β. Then the following statements are equivalent:

(i) y is a minimizer, respectively, unique minimizer of the integral

I (w) =
b∫

a

f
(
x, w(x), w′(x)

)
dx

among all functions w : [a, b] → R of class C1 with w(a) = α,w(b) = β.
(ii) y satisfies the Euler–Lagrange equation

fy(x, y, y′)− d

dx
fy′(x, y, y′) = 0.

Proof. (i)⇒(ii) This is a standard result in the calculus of variations.
(ii)⇒(i) Assume first, that f satisfies the convexity condition. Then, for each

x ∈ [a, b], the expression f
(
x, y(x) + s, y′(x) + t

)
is convex in (s, t) on E

2 and
Theorem 2.7 implies that, in particular,
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(1) f
(
x, y(x)+ s, y′(x)+ t

)

≥ f
(
x, y(x), y′(x)

)+ fy
(
x, y(x), y′(x)

)
s + fy′

(
x, y(x), y′(x)

)
t

for (s, t) ∈ E
2.

Any function w : [a, b] → R of class C1 with w(a) = α,w(b) = β can be repre-
sented in the form w(x) = y(x) + s(x) for x ∈ [a, b], where s : [a, b] → R is of
class C1 and satisfies s(a) = s(b) = 0. Thus (1) and (ii) yield the following:

(2) I (w) = I (y + s) =
b∫

a

f
(
x, y(x)+ s(x), y′(x)+ s′(x)

)
dx

≥
b∫

a

f
(
x, y(x), y′(x)

)
dx

+
b∫

a

fy
(
x, y(x), y′(x)

)
s(x) dx +

b∫

a

fy′
(
x, y(x), y′(x)

)
s′(x) dx

= I (y)+
b∫

a

{ d

dx
fy′

(
x, y(x), y′(x)

)}
s(x) dx

+
b∫

a

fy′
(
x, y(x), y′(x)

)
s′(x) dx

= I (y)+
b∫

a

d

dx

{
fy′

(
x, y(x), y′(x)

)
s(x)

}
dx

= I (y)+ fy′
(
x, y(x), y′(x)

)
s(x)

∣∣∣
b

a
= I (y).

Since w was arbitrary, this shows that y is a minimizer.
Assume, second, that f satisfies the condition of strict convexity. Then, in (1),

we have strict inequality unless (s, t) = (0, 0). (Otherwise the graph of the function
(s, t)→ f

(
x, y(x)+s, y′(x)+ t

)
and its affine support at (s, t) = (0, 0) have a line-

segment in common which contradicts the strict convexity.) Then strict inequality
holds in (2) unless s(x) = s′(x) = 0 for all x ∈ [a, b], i.e. w = y. This shows that y
is the unique minimizer. ��

The Background

In order to understand better what the result of Courant and Hilbert really means,
note the following: consider the (infinite dimensional) space of functions

F = {
w : [a, b] → R, where w ∈ C2, w(a) = α,w(b) = β}.
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F is convex. Using the convexity property of f , it is easy to show that the mapping

I : w→ I (w) =
b∫

a

f
(
x, w(x), w′(x)

)
dx ∈ R, for w ∈ F

is a convex function on F . A solution y of the Euler–Lagrange equation is a sta-
tionary value of this mapping and thus a minimizer by convexity. If the mapping is
strictly convex, then this minimizer is even the unique minimizer.



Convex Bodies

Sporadic results on convex bodies have appeared in the mathematical literature since
antiquity, with an increasing rate in the nineteenth century. Systematic investiga-
tions started only in the nineteenth and the early twentieth century with the work
of Cauchy, Steiner, Brunn and, in particular, Minkowski. Important contributors in
the twentieth century were Blaschke, Hadwiger, Alexandrov and many contempo-
rary mathematicians. The following quotation of Klee [593] shows roughly where,
in mathematics, this area is located and what are some of its characteristics:

The study of convex sets is a branch of geometry, analysis, and linear algebra that
has numerous connections with other areas of mathematics and serves to unify many
apparently diverse mathematical phenomena. It is also relevant to several areas of
science and technology.

During the twentieth century the relationship of convex geometry with ana-
lytic flavor to other branches of mathematics and to applied areas increased greatly.
We mention differential and Riemannian geometry, functional analysis, calculus
of variations and control theory, optimization, geometric measure theory, inequal-
ities, Fourier series and spherical harmonics, probability, and mathematical physics.
Besides these relationships of a systematic character, there are minor connections
to numerous other areas, including complex function theory of one and several
variables, aspects of ordinary and partial differential equations, dynamical systems
and potential theory.

In this chapter, we try to justify the following observation of Ball [53]:

Although convexity is a simple property to formulate, convex bodies possess a sur-
prisingly rich structure.

We present the major analytic aspects of convex geometry together with many appli-
cations. We begin with general properties of convex bodies, including some results
of combinatorial geometry. Then the boundary structure of convex bodies is inves-
tigated. This comprises smooth, singular and extreme points. The natural topology
on the space of convex bodies is introduced next and Blaschke’s selection theorem
proved. Mixed volumes and quermassintegrals are treated in the following section.
The discussion of valuations is an important topic. Our exposition includes extension
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results, characterizations of volume and Hadwiger’s functional theorem. The latter
is applied to prove the principal kinematic formula of integral geometry. A central
theme is the Brunn–Minkowski inequality, which leads to geometric and physical
isoperimetric inequalities and to the concentration of measure phenomenon. The
following section deals with Steiner symmetrization and Schwarz rearrangement
which are valuable tools, for example for isoperimetric inequalities of mathemat-
ical physics. Area measures and the intrinsic metric of convex surfaces are then
studied, including the existence and uniqueness problems of Minkowski and Weyl.
We present solutions of these problems due to Alexandrov, Fenchel and Jessen, and
Pogorelov. Then we give some hints to dynamical aspects of convex geometry deal-
ing with the evolution of convex surfaces and billiards. Next come John’s ellipsoid
theorem and the reverse isoperimetric inequality. Then asymptotic best approxima-
tion of convex bodies is treated and applied to the isoperimetric problem for poly-
topes. Special convex bodies have always attracted interest. Here, simplices, balls
and ellipsoids are considered. Finally, the space of convex bodies is studied from
topological, measure, metric, group and lattice viewpoints.

Applications deal with complex function theory of several variables, Lyapunov’s
convexity theorem for vector-valued measures, Pontryagin’s minimum principle,
Birkhoff’s convexity theorem on doubly stochastic matrices, a series of results from
mathematical physics, in particular the theorem of Wulff on the form of crystals, and
Choquet’s characterization of vector lattices.

In this chapter we will often use convex polytopes, related notions and their sim-
ple properties, in particular approximation properties. The reader who is not familiar
with convex polytopes may consult the introductory sections of the next chapter.

The reader who wants to get more detailed information is referred to the books
and surveys of Blaschke [124], Bonnesen and Fenchel [149], Alexandrov [18],
Eggleston [290], Hadwiger [466, 468], Santaló [881], Leichtweiss [640], Burago
and Zalgaller [178], Schneider [907], Groemer [405], Thompson [994], Gardner
[359, 360], Klain and Rota [587], Ball [53] and Magaril-Il’yaev and Tikhomirov
[678]. In addition, we refer to parts I and IV of the Handbook of Convex Geome-
try [475], to Convexity and Its Applications [219] and to the collected or selected
works of Minkowski [745], Blaschke [129] and Alexandrov [18, 19].

There are omissions. The theory of curvature and area measures will only be
mentioned briefly. More, but by no means sufficient material deals with the local
theory of normed spaces. For thorough representations of these areas, see Schneider
[907], respectively, Pisier [802], Tomczak-Jaegermann [1001], Ball [53], and the per-
tinent surveys and chapters in the Handbook of Convex Geometry [475], the Hand-
book of the Geometry of Banach Spaces [477] and the monograph of Benyamini and
Lindenstrauss [97]. Integral geometry and geometric probability are only touched.
For information see Santaló [881] and Schneider and Weil [911].

3 Convex Sets, Convex Bodies and Convex Hulls

In this section the notions of convex sets, convex bodies and convex hulls are intro-
duced. Several simple properties are presented, including Carathéodory’s theorem on
convex hulls. Next, a short excursion into combinatorial geometry will include the
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theorems of Helly, Radon and, again, Carathéodory, together with some applications.
As an example, where the notion of convexity is used in an analytic context to clarify
or to describe a situation, we present Hartogs’ theorem on power series in d complex
variables.

3.1 Basic Concepts and Simple Properties

We begin with the definitions of convex sets and convex bodies and investigate con-
vex hulls, including Carathéodory’s theorem. Then we consider convex cones and
prove a simple decomposition result.

Convex Sets and Convex Bodies

The earliest explicit mention of the notion of convexity seems to be in the first four
axioms in the book On the Sphere and Cylinder of Archimedes [35]. The third and
the fourth axiom are as follows:

3. Similarly also there are certain finite surfaces, not in a plane themselves but having
their extremities in a plane, and such that they will either lie wholly on the same side
of the plane containing their extremities or will have no part on the other side.
4. I call convex in the same direction surfaces such that, if any two points on them
are taken, either the straight lines between the points all fall upon the same side of
the surface, or some fall on one and the same side while others fall along the surface
itself, but none falls on the other side.

Archimedes thus actually gives two definitions of a convex surface. The first is by
means of support properties, the second is the common one by means of line seg-
ments which are contained on the same side of the surface. In the sequel, we state
the second definition for sets instead of surfaces in the usual form and show the
equivalence of the two definitions later in Theorem 4.2.

A set C in E
d is convex if it has the following property:

(1− λ)x + λy ∈ C for x, y ∈ C, 0 ≤ λ ≤ 1.

It is strictly convex if it is closed and

(1− λ)x + λy ∈ int C for x, y ∈ C, x �= y, 0 < λ < 1,

where int stands for interior. A compact convex set is a convex body. It is a proper
convex body, if its interior is non-empty, otherwise improper. A proper convex body
in E

2 is also called a convex disc. There exist many characterizations of convex sets,
see the survey of Mani-Levitska [684] and the references there. Let C = C(Ed) be the
space of convex bodies in E

d and Cp = Cp(E
d) the space of proper convex bodies.

Convex bodies and, more generally, convex sets are the object of research in
convex geometry. They play a prominent role not only in convexity but also in many
other areas of mathematics and its applications as will become clear in the following.
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Convex Hulls

Given a set A in E
d , its convex hull, conv A, is the intersection of all convex sets

in E
d which contain A. Since the intersection of convex sets is always convex,

conv A is convex and it is the smallest convex set in E
d with respect to set inclusion,

which contains A. For the study of convex hulls we need the following concept: Let
x1, . . . , xn ∈ E

d . Then any point x of the form x = λ1x1 + · · · + λn xn , where
λ1, . . . , λn ≥ 0 and λ1 + · · · + λn = 1, is a convex combination of x1, . . . , xn .

Lemma 3.1. Let A ⊆ E
d . Then conv A is the set of all convex combinations of points

of A.

Proof. First, we show that

(1) The set of all convex combinations of points of A is convex.

Let x = λ1x1 + · · · + λm xm and y = λm+1xm+1 + · · · + λn xn be two convex
combinations of points of A and 0 ≤ λ ≤ 1. Then

(1− λ)x + λy = (1− λ)λ1x1 + · · · + (1− λ)λm xm + λλm+1xm+1 + · · · + λλn xn .

Since the coefficients of x1, . . . , xn all are non-negative and their sum is 1, the
point (1 − λ)x + λy is also a convex combination of points of A, concluding the
proof of (1).

Second, the following will be shown, compare the proof of Jensen’s inequality,
see Theorems 1.9 and 2.1.

(2) Let C ⊆ E
d be convex. Then C contains all convex combinations of its

points.

It is sufficient to prove, by induction, that C contains all convex combinations of any
n of its points, n = 1, 2, . . . This is trivial for n = 1. Assume now that n > 1 and that
the statement holds for n − 1. We have to prove it for n. Let x = λ1x1 + · · · + λn xn

be a convex combination of x1, . . . , xn ∈ C . If λn = 0, then x ∈ C by the induction
hypothesis. If λn = 1, then trivially, x = xn ∈ C . Assume finally that 0 < λn < 1.
Then 0 < λ1 + · · · + λn−1 = 1− λn < 1 and thus

λ1x1 + · · · + λn xn = (1− λn)

(
λ1

1− λn
x1 + · · · + λn−1

1− λn
xn−1

)
+ λn xn ∈ C

by the induction hypothesis and the convexity of C . The proof of (2) is complete.
Since conv A is the smallest convex set containing A, Proposition (1) implies that

conv A is contained in the set of all convex combinations of points of A. Conversely,
the convex set conv A contains by (2) all convex combinations of its points and thus,
a fortiori, all convex combinations of the points of A. ��
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Mechanical Interpretation of the Convex Hull

This lemma says that the convex hull of a finite set {x1, . . . , xn} in E
d consists of all

centres of gravity of (non-negative) masses λ1, . . . , λn at the points x1, . . . , xn .
In a hand-written appendix to his third proof of the fundamental theorem of

algebra, which was printed in Werke 3, p.112, Gauss [363] gave an alternative
description: the convex hull of x1, . . . , xn consists of all points x which have the
following property: assume that x supports positive mass, then there are masses at
the points x1, . . . , xn , such that x is in equilibrium with respect to the gravitational
pull exerted by the masses at x1, . . . , xn .

Carathéodory’s theorem [190]

refines the above lemma:

Theorem 3.1. Let A ⊆ E
d . Then conv A is the set of all convex combinations of

affinely independent points of A, i.e. the union of all simplices with vertices in A.

We reproduce a proof due to Radon [821], see also Alexandroff and Hopf [9], p. 607.

Proof. Let x ∈ conv A. By Lemma 3.1 we may represent x in the form x = λ1x1 +
· · · + λn xn , where x1, . . . , xn ∈ A, λ1, . . . , λn > 0, λ1 + · · · + λn = 1 and n is
minimal. We have to show that the points x1, . . . , xn are affinely independent.

Assume not. Then there are numbers µ1, . . . , µn, not all 0, such that

(3) µ1 + · · · + µn = 0,

(4) µ1x1 + · · · + µn xn = o.

By (3) at least one µk is positive. Choose k such that λk/µk is minimal among all
such k. Then

λi − λk

µk
µi ≥ 0 for i = 1, . . . , n, λk − λk

µk
µk = 0,

(
λ1 − λk

µk
µ1

)
+ · · · +

(
λn − λk

µk
µn

)
= 1

by (3). Hence (4) implies that

x = λ1x1 + · · · + λn xn = λ1x1 + · · · + λn xn − λk

µk
(µ1x1 + · · · + µn xn)

=
(
λ1 − λk

µk
µ1

)
x1 + · · · +

(
λk−1 − λk

µk
µk−1

)
xk−1 +

(
λk+1 − λk

µk
µk+1

)
xk+1

+ · · · +
(
λn − λk

µk
µn

)
xn

is a representation of x as a convex combination of at most n − 1 points of A. This
contradicts our choice of n and thus concludes the proof. ��
Remark. Carathéodory’s theorem is a cornerstone of combinatorial convex geome-
try. For more information on Carathéodory’s theorem and, more generally, on com-
binatorial geometry, see Sect. 3.2 and the surveys and books cited there.
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The next result is a simple consequence of Carathéodory’s theorem.

Corollary 3.1. Let A ⊆ E
d be compact. Then conv A is compact.

Proof. The set
{
(λ1, . . . , λd+1, x1, . . . , xd+1) : λi ≥ 0, λ1 + · · · + λd+1 = 1, x j ∈ A

}

is a compact subset of E
d+1+(d+1)d = E

(d+1)2 . Hence its image under the continuous
mapping

(λ1, . . . , λd+1, x1, . . . , xd+1)→ λ1x1 + · · · + λd+1xd+1

of E
(d+1)2 into E

d is also compact. By Carathéodory’s theorem this image is conv A.
��

Closure and Interior

In the following some useful minor results on closure and interior of convex sets and
on convex hulls of subsets of E

d are presented. Let C ⊆ E
d be convex. By relint C

we mean the interior of C relative to the affine hull aff C of C , i.e. the smallest flat in
E

d containing C .

Proposition 3.1. Let C ⊆ E
d be convex. Then the following statements hold:

(i) cl C is convex.

(ii) relint C is convex.

(iii) C ⊆ cl relint C.

Let Bd denote the solid Euclidean unit ball in E
d .

Proof. (i) To show that cl C is convex, let x, y ∈ cl C and 0 ≤ λ ≤ 1. Choose
sequences (xn), (yn) in C such that xn → x, yn → y as n → ∞. The convexity of
C implies that (1 − λ)xn + λyn ∈ C . Since (1 − λ)xn + λyn → (1 − λ)x + λy, it
follows that (1− λ)x + λy ∈ cl C .

(ii) It is sufficient to consider the case where int C �= ∅ and to show that int C is
convex. Let x, y ∈ int C and 0 ≤ λ ≤ 1. Choose δ > 0 such that x+δBd , y+δBd ⊆
int C ⊆ C . Then

(1− λ)x + λy + δBd = (1− λ)(x + δBd)+ λ(y + δBd) ⊆ C

by the convexity of Bd and C . Thus (1− λ)x + λy ∈ int C .
(iii) It is sufficient to consider the case where int C �= ∅ and to prove that C ⊆

cl int C . Let x ∈ C and choose y ∈ int C . Then there is a δ > 0 such that y + δBd ⊆
int C ⊆ C . The convexity of C now implies that

(1− λ)x + λy + λδBd = (1− λ)x + λ(y + δBd) ⊆ C.

Thus (1− λ)x + λy ∈ int C for 0 < λ ≤ 1. Since (1− λ)x + λy → x as λ→ 0, it
follows that x ∈ cl int C . ��
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Proposition 3.2. Let A ⊆ E
d be bounded. Then cl conv A = conv cl A.

Proof. Since conv A is convex, Proposition 3.1 shows that cl conv A is convex too.
cl conv A is a closed set which contains A. Thus it also contains cl A. Since cl conv A
is a convex set which contains cl A, it also contains conv cl A.

The set conv cl A is convex and contains A, thus it contains conv A. Since by
Corollary 3.1 conv cl A is compact and thus closed, it contains cl conv A. ��

Convex Cones

A notion which is important in several contexts, for example in ordered topological
vector spaces and in linear optimization, is that of convex cones. A closed set C in
E

d is a closed convex cone with apex o if it satisfies the following property:

λx + µy ∈ C for all x, y ∈ C, λ, µ ≥ 0.

Then, in particular, C is convex and contains, with each point x , also the ray {λx :
λ ≥ 0}. An example is the positive (non-negative) orthant {x : xi ≥ 0}. A closed
convex cone with apex a ∈ E

d is simply the translate of a closed convex cone with
apex o by the vector a. The lineality space L of a closed convex cone C with apex o
is the linear subspace

L = C ∩ (−C)

of E
d . It is the largest linear subspace of E

d which is contained in C . The convex
cone C is pointed if L = {o}. If H is a hyperplane containing only the point o of a
pointed closed convex cone C and p ∈ C, �= o, then C ∩ (H + p) is a convex body,
sometimes called a basis of C . It generates C in the sense that

C =
⋃{

λ
(
C ∩ (H + p)

) : λ ≥ 0
}
.

For later reference we prove the following simple result, where L⊥ denotes the
orthogonal complement of L , i.e. L⊥ = {y : x · y = 0 for all x ∈ L}. Clearly,
L⊥ is a subspace of E

d and E
d = L ⊕ L⊥.

Proposition 3.3. Let C be a closed convex cone in E
d with apex o and lineality space

L. Then
C = (C ∩ L⊥)⊕ L ,

where C ∩ L⊥ is a pointed closed convex cone with apex o.

Proof. First, the equality will be shown. Let x ∈ C . Noting that E
d = L⊥ ⊕ L , we

have x = y + z for some y ∈ L⊥, z ∈ L . Since C is a convex cone with apex o and
x ∈ C,−z ∈ −L = L ⊆ C , it follows that y = x − z ∈ C . Hence x = y + z, where
y ∈ C ∩ L⊥ and z ∈ L . Thus x ∈ (C ∩ L⊥)⊕ L . This shows that C ⊆ (C ∩ L⊥)⊕ L .
If, conversely, x = y + z ∈ (C ∩ L⊥) ⊕ L , where y ∈ C ∩ L⊥, z ∈ L ⊆ C , then,
noting that C is a convex cone with apex o, it follows that x = y + z ∈ C . Thus
C ⊇ (C ∩ L⊥)⊕ L , concluding the proof of the equality.
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C ∩ L⊥ clearly is a closed convex cone with apex o. We show that it is pointed:

(C ∩ L⊥) ∩ (− (C ∩ L⊥)
) = (C ∩ L⊥) ∩ (−C) ∩ (−L⊥)

= (
C ∩ (−C)

) ∩ (L⊥ ∩ L⊥) = L ∩ L⊥ = {o}. ��

Convex Cone Generated by a Set, Positive Hull

If {y1, . . . , yn} is a finite set in E
d , then by the cone generated by it, cone{y1, . . . , yn},

or by its positive hull pos{y1, . . . , yn}, we mean the set

{
λ1 y1 + · · · + λn yn : λi ≥ 0

}
.

It is easy to see that this is a closed convex cone with apex o, in fact, the smallest
such cone containing the set {y1, . . . , yn}. An open subset C of E

d is an open convex
cone with apex o if

λx + µy ∈ C for all x, y ∈ C, λ, µ > 0.

Then C is convex. Note that o �∈ C , unless C = E
d .

3.2 An Excursion into Combinatorial Geometry: The Theorems
of Carathéodory, Helly and Radon

The following result of Kirchberger [585] of 1903 seems to be the first result of
what is now called combinatorial geometry. It still conveys well the spirit of the
latter. Consider a flock of black and white sheep. If among any four sheep the black
ones can be separated from the white ones by a straight fence, then the black and
the white sheep of the whole flock can thus be separated. The later theorems of
Carathéodory [190], Radon [821] and, in particular, of Helly [490] attracted much
more attention and led to a multitude of pertinent results, especially in the 1960s and
1970s. Some of these results were proved for spaces more general than E

d .
We prove below the theorems of Radon, Carathéodory, and Helly. While we have

proved Carathéodory’s theorem in a similar way in Sect. 3.1, the present proof makes
the relation between the theorems of Radon and Carathéodory more clear. These
results, as well as certain other properties of convex sets, led to various attempts
to extend convexity or, rather, combinatorial geometry to a more general context.
The background of Helly’s theorem is singular homology theory, see the interesting
article of Debrunner [249].

For more information we refer to the surveys of Danzer, Grünbaum and Klee
[241] and Eckhoff [283, 284] and to the monograph of Boltyanskiı̆, Martini and
Soltan [145]. From the voluminous literature we cite the article of Tverberg [1003]
on Radon’s theorem. Other aspects of combinatorial geometry were treated by
Goodman, Pollack and Wenger [386] and Matoušek [695]. Axiomatic and gener-
alized convexity is dealt with by Van de Vel [1005] and Coppel [222].
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The Theorems of Radon, Carathéodory and Helly

Above the theorem of Carathéodory was proved, following Radon. If the argument
used by Radon is formulated properly, it is called Radon’s theorem. The theorems of
Radon, Carathéodory and Helly, are equivalent in the sense that each can be proved
using any of the other ones. The equivalence is stated in several references, for
example in [284], p. 430, but we were not able to locate in the literature a complete
proof in the context of E

d . Also here, we do not prove full equivalence.

Theorem 3.2. The following statements hold:

(i) Radon’s Theorem. Let A �= ∅ be a set of at least d + 2 points in E
d . Then

there are subsets B,C of A such that

B ∩ C = ∅, conv B ∩ conv C �= ∅.

(ii) Carathéodory’s Theorem. Let A �= ∅ be a set in E
d . Then conv A is the

set of all convex combinations of affinely independent points in A.

(iii) Helly’s Theorem. Let F be a family of convex bodies in E
d . If any d + 1 con-

vex bodies in F have non-empty intersection, then the intersection of all convex
bodies in F is non-empty.

Our proof of the implication (i)⇒(ii), in essence, is that of Carathéodory’s theo-
rem in Sect. 3.1. The proof of the implication (ii)⇒(iii) is due to Rademacher and
Schoenberg [819].

Proof. (i) It is sufficient to prove Radon’s theorem for A = {x1, . . . , xd+2} ⊆ E
d .

There are µ1, . . . , µd+2 ∈ R, not all 0, such that

µ1 + · · · + µd+2 = 0,

µ1x1 + · · · + µd+2xd+2 = 0.

We clearly may assume that µ1, . . . , µk ≥ 0 and −λk+1 = µk+1, . . . ,−λd+2 =
µd+2 ≤ 0. Then

µ1 + · · · + µk = λk+1 + · · · + λd+2 > 0,

µ1x1 + · · · + µk xk = λk+1xk+1 + · · · + λd+2xd+2

and thus
µ1x1 + · · · + µk xk

µ1 + · · · + µk
= λk+1xk+1 + · · · + λd+2xd+2

λk+1 + · · · + λd+2
.

Now put B = {x1, . . . , xk}, C = {xk+1, . . . , xd+2}.
(i)⇒(ii) Let x ∈ conv A. By Lemma 3.1, x = λ1x1 + · · · + λn xn, where

λ1, . . . , λn > 0, λ1 + · · · + λn = 1, x1, . . . , xn ∈ A. We suppose that this rep-
resentation is chosen such that n is minimal. We have to show that x1, . . . , xn are
affinely independent.
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Suppose not. Then, by Radon’s theorem in aff {x1, . . . , xn}, there are disjoint
subsets of {x1, . . . , xn}, the convex hulls of which have non-empty intersection. By
re-numbering, if necessary, we thus may assume that

ν1x1 + · · · + νm xm = νm+1xm+1 + · · · + νn xn, or ν1x1 + · · · − νn xn = o,

where ν1, . . . , νn ≥ 0, ν1 + · · · + νm = νm+1 + · · · + νn = 1,

and thus ν1 + · · · − νn = 0.

Thus, up to notation, we have the same situation as in the proof of the Theorem 3.1
of Carathéodory which easily leads to a contradiction.

(ii)⇒(iii) Since the intersection of a family of compact sets is non-empty, if each
finite subfamily has non-empty intersection, it is sufficient to prove (iii) for finite
families F = {C1, . . . ,Cn}, say, where n ≥ d + 2.

Assume that (iii) does not hold for F . Consider the function δ : E
d → R

defined by

δ(x) = max{δ(x,Ci ) : i = 1, . . . , n} for x ∈ E
d ,

where δ(x,Ci ) = min{‖x − y‖ : y ∈ Ci }.
Let δ assume its minimum at p ∈ E

d , say. Since (iii) does not hold for F , δ(p) > 0.
By re-numbering, if necessary, we may suppose that

δ(p) = δ(p,Ci ) precisely for i = 1, . . . ,m (≤ n).

Choose qi ∈ Ci such that

δ(p) = δ(p,Ci ) = ‖p − qi‖ for i = 1, . . . ,m.

Then
p ∈ conv{q1, . . . , qm},

since otherwise we could decrease δ(p,Ci ) and thus δ(p) by moving p closer to
conv{q1, . . . , qm}. By Carathéodory’s theorem there is a subset of {q1, . . . , qm} of
k ≤ d + 1 points, such that p is in the convex hull of this subset. By re-numbering,
if necessary, we may assume that this subset is the set {q1, . . . , qk}. Then

p = λ1q1 + · · · + λkqk, where λ1, . . . , λk ≥ 0, λ1 + · · · + λk = 1.

Clearly,

Ci ⊆ H−
i = {

x : (x − p) · (qi − p) ≥ ‖qi − p‖2 (> 0)
}

for i = 1, . . . , k.

Since k ≤ d + 1, we may choose a point y ∈ C1 ∩ · · · ∩Ck ⊆ H−
1 ∩ · · · ∩ H−

k . Then

0 = (y − p) · (p − p) = (y − p) · (λ1q1 + · · · + λkqk − p)

= (y − p) · (λ1(q1 − p)+ · · · + λk(qk − p)
)

= λ1(y − p) · (q1 − p)+ · · · + λk(y − p) · (qk − p) > 0,

which is the desired contradiction. ��
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Diameter and Circumradius: Jung’s Theorem.

The following estimate of Jung [555] relates circumradius and diameter. We repro-
duce a proof which makes use of Helly’s theorem.

The circumradius of a set A in E
d is the minimum radius of a Euclidean ball

which contains the set. It is easy to see that the ball which contains A and whose
radius is the circumradius is unique. It is called the circumball of A. The diameter
diam A of A is the supremum of the distances between two points of the set.

Theorem 3.3. Let A ⊆ E
d be bounded. Then A is contained in a (solid Euclidean)

ball of radius

� =
( d

2d + 2

) 1
2

diam A.

Proof. In the first step we show that

(1) The theorem holds for sets A consisting of d + 1 or fewer points.

Let A be such a set and c the centre of a ball containing A and of minimum radius,
say σ . We may assume that c = o. Let

{x1, . . . , xn} = {x ∈ A : ‖x‖ = σ }, where n ≤ d + 1.

Then c ∈ conv{x1, . . . , xn}, since otherwise we could decrease σ by moving c (= o)
closer to conv{x1, . . . , xn}. Hence

c = o = λ1x1 + · · · + λn xn, where λ1, . . . , λn ≥ 0, λ1 + · · · + λn = 1.

Then

1− λk =
n∑

i=1
i �=k

λi ≥
n∑

i=1
i �=k

λi
‖xi − xk‖2

(diam A)2
=

n∑

i=1

λi
x2

i + x2
k − 2 xi · xk

(diam A)2

= 1

(diam A)2
(
2σ 2 − 2

( n∑

i=1

λi xi

)
· xk

) = 2σ 2

(diam A)2
for k = 1, . . . , n.

Now, summing over k yields

n − 1 ≥ 2nσ 2

(diam A)2
, or σ ≤

(n − 1

2n

) 1
2

diam A ≤
( d

2d + 2

) 1
2

diam A.

This concludes the proof of (1).
For general A consider, for each point of A, the ball with centre at this point and

radius �. By (1), any d+ 1 of these balls have non-empty intersection. Thus all these
balls have non-empty intersection by Helly’s theorem. Any ball with radius � and
centre at a point of this intersection then contains each point of A. ��
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The Centrepoint of a Finite Set

We give a second application of Helly’s theorem. Let A ⊆ E
d be a finite set consist-

ing of, say, n points. A point x ∈ E
d is a centrepoint of A if each closed halfspace

which contains x contains at least n
d+1 points of A. Rado [820] proved the following

result.

Theorem 3.4. Each finite set in E
d has a centrepoint.

Proof. Let A ⊆ E
d be a finite set with n points. Clearly, a point in E

d is a centrepoint
of A if and only if it lies in each open halfspace Ho which contains more than d

d+1 n
points of A. For the proof of the theorem it is thus sufficient to show that the open
halfspaces Ho have non-empty intersection. This is certainly the case if the convex
polytopes conv(A ∩ Ho) have non-empty intersection. Given d + 1 of these poly-
topes, each contains more than d

d+1 n points of A. If their intersection were empty,
then each point of A is in the complement of one of these polytopes. Hence A is
the union of these complements, but the union consists of less than n points. This
contradiction shows that any d+ 1 of the polytopes have non-empty intersection. By
Helly’s theorem all these polytopes then have non-empty intersection. Each point of
this intersection is a centrepoint. ��
Remark. For extensions and the related ham-sandwich theorem see Matoušek [695]
and the references cited there.

3.3 Hartogs’ Theorem on Power Series

Given a power series in d complex variables,

(1)
∞∑

n1,...,nd=0

an1···nd zn1
1 · · · znd

d for z = (z1, . . . , zd) ∈ C
d ,

the problem arises to determine the largest connected open set in C
d on which it

converges, its domain of convergence. Considering the case d = 1, it is plausible to
conjecture, that a domain of convergence is a polycylinder, i.e. a Cartesian product
of d open circular discs. Surprisingly, this is wrong. A theorem of Hartogs gives a
complete description of domains of convergence.

This section contains the definition of Reinhardt domains and Hartogs’ theorem
which says that the domains of convergence of power series in d complex variables
are precisely the Reinhardt domains. Only part of the proof is given.

For a complete proof and for more information on analytic functions in several
complex variables, see, e.g. L. Kaup and B. Kaup [568].

Reinhardt Domains and Domains of Convergence

In order to state Hartogs’ theorem, we need the notion of a (complete, logarithmically
convex) Reinhardt domain. This is an open, connected set G in C

d with the following
properties:
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|z1| log |z1|

log |z2||z2|

Fig. 3.1. Logarithmically convex sets in C
2

(2) z = (z1, . . . , zd) ∈ C
d , (w1, . . . , wd) ∈ G,

|z1| < |w1|, . . . , |zd | < |wd | ⇒ z ∈ G,

(3)
{(

log |z1|, . . . , log |zd |
) : (z1, . . . , zd) ∈ G, zi �= 0

} ⊆ E
d is convex.

For d = 1, Reinhardt domains are simply the open circular discs with centre
0 in C (Fig. 3.1).

Hartogs’ Theorem

Hartogs [480] found the following characterization of domains of convergence of
power series in d complex variables.

Theorem 3.5. Let G be an open connected set in C
d . Then the following statements

are equivalent:

(i) G is the domain of convergence of a power series in d complex variables of the
form (1).

(ii) G is a complete, logarithmically convex Reinhardt domain.

We prove only the implication (i)⇒(ii). By const, a positive constant is meant. If
const appears several times in the same context, this does not mean that it is always
the same constant.

Proof. (i)⇒(ii) The main tool for the proof is the following lemma of Abel, see,
e.g. [568]:

(4) Let z, w ∈ C
d be such that |an1···ndw

n1
1 · · ·wnd

d | ≤ const
for n1, . . . , nd = 0, 1, . . . , and let |zi | < |wi | for i = 1, . . . , d. Then
z ∈ G.

Assume now that G satisfies (i). G is open and connected and, by (4), has prop-
erty (2). In order to show that it also has property (3), it is sufficient to show the
following.

(5) Let x, y ∈ G, xi , yi �= 0 for i = 1, . . . , d, let 0 ≤ λ ≤ 1, and let z ∈ C
d

such that log |zi | = (1− λ) log |xi | + λ log |yi | for i = 1, . . . , d.
Then z ∈ G.
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Since G is open, we may choose u, v ∈ G such that

(6) |xi | < |ui |, |yi | < |vi | for i = 1, . . . , d.

From u, v ∈ G it follows that

(7) |an1···nd un1
1 · · · und

d |, |an1···nd v
n1
1 · · · vnd

d | ≤ const for n1, . . . , nd = 0, 1, . . .

Taking into account (5), Propositions (6) and (7) imply that

|zi | = |xi |1−λ|yi |λ < |ui |1−λ|vi |λ = wi , say, for i = 1, . . . , d, where
|an1···ndw

n1
1 · · ·wnd

d | = |an1···nd un1
1 · · · und

d |1−λ|an1···nd v
n1
1 · · · vnd

d |λ≤ const for n1, . . . , nd = 0, 1, . . .

Hence z ∈ G by Abel’s lemma (4), concluding the proof of (5). Thus G has property
(3) and the proof that G satisfies (ii) is complete. ��

4 Support and Separation

Support and separation of convex sets play an important role in convex geometry,
convex analysis, optimization, optimal control and functional analysis.

In this section, we first introduce the notions of support hyperplane and support
function and show basic pertinent results. Then separation of convex sets and bod-
ies will be considered. We mention oracles as a tool to specify convex bodies. To
illustrate the usefulness of the former notions and results, Lyapunov’s theorem on
vector-valued measures and Pontryagin’s minimum principle from optimal control
theory are presented.

The reader who wants to get more information may consult the books cited in the
introduction of this chapter. In addition, we refer to books on convex analysis and
optimization, in particular to those of Rockafellar [843], Stoer and Witzgall [970],
Hiriart-Urruty and Lemaréchal [505] and Borwein and Lewis [158].

4.1 Support Hyperplanes and Support Functions

Support hyperplanes and support functions are basic tools of convex geometry and
are important in other areas.

In the following we first consider metric projection of E
d onto convex bodies.

Next we show that, for any convex body, there is a support hyperplane through each
of its boundary points. This leads to a characterization of convex bodies by means of
support properties. Then support functions are introduced, a classical means to de-
scribe convex bodies. Finally, we characterize support functions as convex functions
which are positive homogeneous of degree one.

For more precise information compare the references cited above.
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Hy

Hx

y
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x

pC (x)

pC (y)

Fig. 4.1. Metric projection is non-expansive

Metric Projection

Let C be a closed convex set in E
d . For each x ∈ E

d , there is a unique point pC (x) ∈
C closest to it. Since C is closed, the existence is obvious. To see the uniqueness,
assume that there are points y, z ∈ C, y �= z, both having minimum distance from x .
Then ‖y − x‖ = ‖z − x‖ and therefore ‖ 1

2 (y + z)− x‖ < ‖y − x‖, ‖z − x‖, noting
that y �= z. Since 1

2 (y + z) ∈ C by the convexity of C , this contradicts our choice
of y, z. The mapping pC : x → pC (x) of E

d onto C , thus obtained, is the metric
projection of E

d onto C with respect to the Euclidean norm.
The following useful result is due to Busemann and Feller [183].

Lemma 4.1. Let C ⊆ E
d be a closed convex set. Then the metric projection pC :

E
d → C is non-expansive, i.e.

‖pC (x)− pC (y)‖ ≤ ‖x − y‖ for x, y ∈ E
d .

Given a hyperplane H in E
d , let H+ and H− denote the closed halfspaces deter-

mined by H . We say, H separates two sets, if one set is contained in H+ and the
other one in H−.

Proof. Let x, y ∈ E
d . We consider only the case where x, y �∈ C (Fig. 4.1). The

other cases are treated similarly. If pC (x) = pC (y), we are done. Assume then that
pC (x) �= pC (y). Let S be the slab orthogonal to the line segment [pC (x), pC (y)] ⊆
C and such that its boundary hyperplanes Hx and Hy contain pC (x) and pC (y),
respectively. We claim that x and pC (y) are separated by Hx . Otherwise there is a
point on [pC (x), pC (y)] and thus in C which is closer to x than pC (x), which is
impossible. Similarly, y and pC (x) are separated by Hy . Taken together, this means
that x and y are on different sides of the slab S. Hence ‖x − y‖ is at least equal to
the width of S, that is ‖x − y‖ ≥ ‖pC (x)− pC (y)‖. ��

Support Hyperplanes, Normal Vectors and Support Sets

Let C ⊆ E
d be closed and convex. A hyperplane H = HC (x) is a support hyper-

plane of C at a point x of the boundary bd C of C , if x ∈ HC (x) and C is contained
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in one of the two closed halfspaces determined by H . In this case, we denote the
halfspace containing C by H−, the other one by H+. H− is called a support half-
space of C at x . In general, we represent H in the form H = {z : u · z = u · x}, where
u is a normal (unit) vector of H pointing into H+. Then H− = {z : u · z ≤ u · x}
and H+ = {z : u · z ≥ u · x}. u is an exterior normal (unit) vector of H , of C or of
bd C at x . Note that H may not be unique. The intersection C ∩ H is the support set
of C determined by H or, with exterior normal (unit) vector u.

In Theorems 1.2 and 2.3, it was shown that a convex function has affine support
at each point in the interior of its domain of definition. The following theorem is the
corresponding result for convex sets.

Theorem 4.1. Let C ⊆ E
d be a closed convex set. For each x ∈ bd C, there is a

support hyperplane HC (x) of C at x, not necessarily unique. If C is compact, then
for each vector u ∈ E

d \ {o}, there is a unique support hyperplane HC (u) of C with
exterior normal vector u.

Let Sd−1 denote the Euclidean unit sphere in E
d .

Proof. First, the following will be shown.

(1) Let y ∈ E
d\C . Then the hyperplane H through pC (y) ∈ bd C , orthogonal

to y − pC (y), supports C at pC (y).

It is sufficient to show that H separates y and C . If this does not hold, there is a point
z ∈ C which is not separated from y by H . Then the line segment [pC (y), z] ⊆ C
contains a point of C which is closer to y than pC (y). This contradicts the definition
of pC (y) and thus concludes the proof of (1).

Next we claim the following.

(2) Let Hn = {z : un · z = xn · un} be support hyperplanes of C at the points
xn ∈ bd C, n = 1, 2, . . . Assume that un → u ∈ E

d \ {o} and xn → x (∈
bd C) as n →∞. Then H = {z : u · z = u · x} is a support hyperplane of
C at x .

Clearly, x ∈ H . It is sufficient to show that C ⊆ H−. Let z ∈ C . Then un · z ≤ un ·xn

for n = 1, 2, . . . Letting n →∞, we see that u · z ≤ u · x, or z ∈ H−, concluding
the proof of (2).

For the proof of the first assertion in the theorem, choose points yn ∈ E
d\C, n =

1, 2, . . . , such that yn → x . By Lemma 4.1, xn = pC (yn) (∈ bd C)→ x = pC (x).
Proposition (1) shows that, for n = 1, 2, . . . , there is a support hyperplane of C at
xn , say Hn = {z : un · z = un · xn}, where un ∈ Sd−1. By considering a subsequence
and re-numbering, if necessary, we may suppose that un → u ∈ Sd−1, say. An
application of (2) then implies that H = {z : u · z = u · x} is a support hyperplane of
C at x .

To see the second assertion, note that the compactness of C implies that u · x =
sup{u · z : z ∈ C} for a suitable x ∈ C . Clearly, x ∈ bd C and H = {z : u · z = u · x}
is a support hyperplane of C (at x) with exterior normal vector u. ��
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Remark. The proofs of Theorem 2.3 on affine support of convex functions and of
the corresponding Theorem 4.1 on support hyperplanes of closed convex sets are
essentially different. The former proof is based on the linearity structure of E

d and
can be extended easily to infinite dimensions by transfinite induction. The latter proof
rests on the Euclidean structure of E

d and on compactness and its extension to infinite
dimensions is not of much interest.

Results on convex functions correspond, in many cases, to results on convex sets
or convex bodies and vice versa. Quite often it is possible to transform a result on
convex functions into a result on convex sets or convex bodies. Examples deal with
support, separation, and differentiability properties.

Characterization of Convex Sets by Support Properties

The definition of a support hyperplane of C at a point x ∈ bd C still makes sense
if the assumption that C is convex is omitted. Thus we may speak of a support
hyperplane of a closed set in E

d at a boundary point. The characterizations of convex
functions by support properties in Theorems 1.3 and 2.4 correspond to the following
result.

Theorem 4.2. Let C ⊆ E
d be closed and let int C �= ∅. Then the following are

equivalent:

(i) C is convex.

(ii) C has a support hyperplane HC (x) at each point x ∈ bd C.

Proof. (i)⇒(ii) This follows from Theorem 4.1.
(ii)⇒(i) The intersection of any family of convex sets is also convex. Thus it

suffices to prove that

(3) C =
⋂

x∈bd C

H−
C (x).

Since C is contained in the set on the right-hand side, it remains to show the
following: Let z ∈ E

d\C . Then z �∈ H−
C (x) for a suitable x ∈ bd C . To see this,

let y ∈ int C and choose x ∈ [y, z] ∩ bd C . By (ii) there is a support halfspace
H−

C (x) of C at x . Then y ∈ int C ⊆ C ⊆ H−
C (x) and therefore z �∈ H−

C (x). ��
Corollary 4.1. Let C ⊆ E

d be closed and convex. Then

C =
⋂

x∈bd C

H−
C (x).

How to Specify a Convex Body

While the definitions of convex sets and convex bodies are extremely simple, it is a
highly non-trivial task to specify an arbitrary convex body so that one may obtain,
from this specification, important information about the body, for example analytic
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or geometric information about its boundary, or information on its volume, surface
area, diameter, width, etc. Classical tools which sometimes serve this purpose are
support functions, distance and radial functions of a convex body. See, e.g. Schneider
[907]. In the context of algorithmic convex geometry, convex bodies are specified
by various membership oracles, see Sect. 4.2 and, for more information, Grötschel,
Lovász and Schrijver [409]. Here, we consider support functions.

Support Functions and Norms

Let C be a convex body in E
d . The position of a support hyperplane HC (u) of C

with given exterior normal vector u �= o is determined by its support function hC :
E

d → R defined by

hC (u) = sup{u · y : y ∈ C} for u ∈ E
d .

Clearly,

HC (u) =
{

x : u · x = hC (u)
}
, H−

C (u) =
{

x : u · x ≤ hC (u)
}
.

If u ∈ Sd−1, i.e. u is a unit vector, then hC (u) is the signed distance of the origin
o to the support hyperplane HC (u). More precisely, the distance of o to HC (u) is
equal to hC (u) if o ∈ HC (u)− and equal to −hC (u) if o ∈ HC (u)+. Since C is the
intersection of all its support halfspaces by Corollary 4.1, we have

(4) C = {
x : u · x ≤ hC (u) for all u ∈ E

d
}

= {
x : u · x ≤ hC (u) for all u ∈ Sd−1

}
.

Assume now that C is a proper convex body in E
d with centre at the origin o. We

can assign to C a norm ‖ · ‖C on E
d as follows:

‖x‖C = inf{λ > 0 : x ∈ λC} for x ∈ E
d .

The convex body C is the solid unit ball of this new norm on E
d .

Without proof, we mention the following: for a proper convex body C with centre
o, its polar body

C∗ = {y : x · y ≤ 1 for x ∈ C}
is also a proper, o-symmetric convex body. A simple proof, which is left to the reader,
shows the following relations between the support functions and the norms corre-
sponding to C and C∗:

hC (u) = ‖u‖C∗ and hC∗(u) = ‖u‖C for u ∈ E
d .

For more information on polar bodies, see Sect. 9.1.
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Characterization of Support Functions

The next result reveals the simple nature of support functions.

Theorem 4.3. Let h : E
d → R. Then the following statements are equivalent:

(i) h is the support function of a (unique) convex body C, i.e. h = hC .

(ii) h has the following properties:
h(λu) = λh(u) for u ∈ E

d , λ ≥ 0
h(u + v) ≤ h(u)+ h(v) for u, v ∈ E

d

Statement (ii) means that h is positively homogeneous of degree 1 and subadditive
and thus, in particular, convex.

Proof. (i)⇒(ii) Let h = hC , where C is a suitable convex body. Then

hC (λu) = sup{λu · x : x ∈ C} = λ sup{u · x : x ∈ C} = λhC (u),
hC (u + v) = sup{(u + v) · x : x ∈ C}

≤ sup{u · x : x ∈ C} + sup{v · x : x ∈ C} = hC (u)+ hC (v)

for u, v ∈ E
d , λ ≥ 0.

(ii)⇒(i) Define

(5) C = {
x : v · x ≤ h(v) for all v ∈ E

d} =
⋂

v∈Ed

{x : v · x ≤ h(v)}.

Being an intersection of closed halfspaces, C is closed and convex. Taking v =
±b1, . . . ,±bd , where {b1, . . . , bd} is the standard basis of E

d , shows that C is
bounded. If C �= ∅, the definition (5), of C , implies that hC ≤ h (note (4)). Thus, to
finish the proof, it is sufficient to show that

(6) C �= ∅ and h ≤ hC .

Let u ∈ E
d \ {o}. By (ii), the epigraph epi h, of h, is a closed convex cone in

E
d+1 = E

d × R with apex at the origin (o, 0), directed upwards and with non-
empty interior. By Theorem 4.1, there is a support hyperplane H of epi h at the point(
u, h(u)

) ∈ bd epi h, where
(
u, h(u)

) �= (o, 0). Since epi h is a convex cone with
non-empty interior and apex (o, 0), it follows that H supports epi h also at (o, 0).
(Fig. 4.2)

The exterior normal vectors of H at (o, 0) point below E
d . Thus we may choose

such a vector of the form (x,−1). Hence H = {(v, s) : v · x − s = 0}. Then
H− = {(v, s) : v · x ≤ s} ⊇ epi h and thus, in particular, v · x ≤ h(v) for each point
(v, h(v)) ∈ bd epi h and therefore v · x ≤ h(v) for all v ∈ E

d . Hence x ∈ C , by the
definition of C in (5), and thus C �= ∅. Since H is a support hyperplane of epi h at
(u, h(u)), we have u · x = h(u). For x ∈ C, the definition of the support function
hC implies that hC (u) ≥ u · x . Thus hC (u) ≥ h(u). The proof of (6) is complete,
concluding the proof of the implication (ii)⇒(i). ��
Warning. We warn the reader: the above proof cannot be trivialized, since, a priori,
it is not clear that the boundary hyperplanes of the halfspaces appearing in (5) all
touch C.
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Fig. 4.2. A homogeneous convex function is a support function

4.2 Separation and Oracles

Separation of convex sets, in particular of convex polytopes and convex polyhedra,
plays an important role in optimization and convex analysis.

In this section, we show a standard separation theorem which for most applica-
tions is sufficient, and describe oracles to specify convex bodies.

For more information on separation and oracles, see Stoer and Witzgall [970],
Hiriart-Urruty and Lemaréchal [505], and Grötschel, Lovász and Schrijver [409].

Separation and Strong Separation

Convex sets C and D in E
d are separated if there is a hyperplane H such that

C ⊆ H− and D ⊆ H+ or vice versa, where H+ and H− are the closed half-
spaces determined by H . Then H is called a separating hyperplane of C and D. The
sets C and D are strongly separated if there is a closed slab S with int S �= ∅ such
that C ⊆ S− and D ⊆ S+ or vice versa. Here S− and S+ are the closed halfspaces,
determined by the two boundary hyperplanes of S, not containing S. We call S a
separating slab of C and D.

In the following, two separation results will be presented. The first result is a
simple yet useful tool.

Proposition 4.1. Let C, D be convex sets in E
d . Then the following statements are

equivalent:

(i) C and D are separated, respectively, strongly separated.

(ii) The convex set C − D = {x − y : x ∈ C, y ∈ D} and {o} are separated,
respectively, strongly separated.

Proof. We consider only the case of strong separation, the case of separation is
similar, but simpler.
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(i)⇒(ii) For the proof of the convexity of C − D, let x, z ∈ C, y, w ∈ D and
0 ≤ λ ≤ 1. Then

(1− λ)(x − y)+ λ(z − w) = (
(1− λ)x + λz

)− (
(1− λ)y + λw) ∈ C − D

by the convexity of C and D. Thus C − D is convex. Next, let S = {x : α ≤ u · x ≤
β}, α < β, be a slab which strongly separates C and D, say C ⊆ {x : u · x ≤ α} and
D ⊆ {y : u · y ≥ β}. Then C − D ⊆ {x − y : u · (x − y) ≤ α − β}. Thus C − D
and {o} are separated by the slab {z : α − β ≤ u · z ≤ 0}.

(ii)⇒(i) Let the slab S = {z : −γ ≤ u · z ≤ 0}, γ > 0, separate {o} and
C − D. Then u · (x − y) ≤ −γ , i.e. u · x + γ ≤ u · y for all x ∈ C and y ∈ D.
Let α = sup{u · x : x ∈ C}. Then the slab {z : α ≤ u · z ≤ α + γ } separates C
and D. ��
Theorem 4.4. Let C, D ⊆ E

d be convex. Then the following hold:

(i) Let C be compact, D closed and C ∩ D = ∅. Then C and D are strongly
separated.

(ii) Let relint C ∩ relint D = ∅. Then C and D are separated.

Proof. (i) By the assumptions in (i), we may choose p ∈ C, q ∈ D having minimum
distance. Let u = q − p ( �= o). Then the slab {x : u · p ≤ u · x ≤ u · q} separates C
and D.

(ii) By Proposition 3.1, the sets relint C and relint D are convex. Since, by
assumption, these sets are disjoint, Proposition 4.1 shows that o �∈ E = relint C −
relint D. We shall prove that o �∈ int cl E . Otherwise, there are points x1, . . . , xd+1 ∈
E such that o is an interior point of the simplex with vertices x1, . . . , xd+1. Since E is
convex, by Proposition 4.1 we have o ∈ E , which is the desired contradiction. Thus
o ∈ bd cl E or o �∈ cl E . Since E is convex, cl E is convex by Proposition 3.1. It thus
follows from Theorem 4.2, respectively, from (i), that {o} and cl E can be separated
by a hyperplane. Hence, a fortiori, {o} and E = relint C − relint D can be separated
by a hyperplane. Thus relint C and relint D can be separated by a hyperplane by
Proposition 4.1. This, in turn, implies that cl relint C and cl relint D can be separated
by a hyperplane. Now apply Proposition 3.1 to see that C and D can be separated by
a hyperplane. ��

Simple examples show that, in general, disjoint closed convex sets C and D
cannot be strongly separated, but if C and D are convex polyhedra, this is possible.
This fact is of importance in optimization (Fig. 4.3).

Strong and Weak Oracles to Specify Convex Bodies

Before considering oracles, some definitions are in order: Let C be a proper convex
body in E

d and ε > 0. Define the ε-neighbourhood of C or the parallel body of C at
distance ε and the inner parallel body of C at distance ε by

Cε = C + εBd = {
x + εy : x ∈ C, y ∈ Bd}, C−ε =

{
x : x + εBd ⊆ C

}
.
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C
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C

Fig. 4.3. Separated and strongly separated unbounded convex sets

Let Q be the field of rationals. A way to specify a convex body C in the context
of algorithmic convex geometry is by means of oracles. The strong and the weak
separation oracles are as follows:

Oracle 4.1. Given a point y ∈ E
d , the oracle says that y ∈ C or specifies a vector

u ∈ E
d such that u · x < u · y for all x ∈ C.

Oracle 4.2. Given a point y ∈ Q
d and a rational ε > 0, the oracle says that y ∈ Cε

or specifies a vector u ∈ Q
d with maximum norm ||u||∞ = 1 such that u · x < u · y

for all x ∈ C−ε.

The strong and the weak membership oracles are the following:

Oracle 4.3. Given a point y ∈ E
d , the oracle says that y ∈ C or y �∈ C.

Oracle 4.4. Given a point y ∈ Q
d and a rational ε > 0, the oracle says that y ∈ Cε

or y �∈ C−ε.

The weak oracles are shaped more to the need of real life algorithms used by
computers.

4.3 Lyapunov’s Convexity Theorem

Convex geometry has many applications in other areas of mathematics and in related
fields. The applications are of many different types. In some cases the notion of con-
vexity or other notions of convex geometry serve to describe or clarify a situation.
An example is the Lyapunov convexity theorem 4.5. Sometimes it is a convexity
condition which yields an interesting result, such as the Bohr–Mollerup characteri-
zation 1.11 of the gamma function or the sufficient condition of Courant and Hilbert
in the calculus of variations, see Theorem 2.12. Finally, in some cases, methods or
results of convex geometry are useful, sometimes indispensable, tools for proofs.
For examples, see the proofs of Pontryagin’s minimum principle 4.6, Birkhoff’s
theorem 5.7 and the isoperimetric inequalities of mathematical physics in Sects. 8.4
and 9.4.

In the following we present a proof of Lyapunov’s convexity theorem on vector-
valued measures.

For vector measures, a good reference is Diestel and Uhl [267]. More recent
surveys on Lyapunov’s convexity theorem are Olech [779], Hill [503] and E. Saab
and P. Saab [870].
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Lyapunov’s Convexity Theorem

Let M be a set with a σ -algebra M of subsets. A finite signed measure ν on the
measure space 〈M,M〉 is non-atomic if, for every set A ∈M with ν(A) �= 0, there
is a set B ∈ M with B ⊆ A and ν(B) �= 0, ν(A). Lyapunov [671] proved the
following basic result.

Theorem 4.5. Let µ1, . . . , µd be d finite, signed, non-atomic measures on 〈M,M〉.
Then the range of the (finite, signed, non-atomic) vector-valued measure µ =
(µ1, . . . , µd) on 〈M,M〉, that is the set

R(M) = {
µ(B) = (

µ1(B), . . . , µd(B)
) : B ∈M} ⊆ E

d ,

is compact and convex.

There exist several proofs of this result. We mention the short ingenious proof of
Lindenstrauss [659]. Below we follow the more transparent proof of Artstein [40].
Let relbd stand for boundary of a set relative to its affine hull.

Proof. Before beginning with the proof, some useful notions and tools will be pre-
sented:

The variation |µ| of the vector-valued measure µ is a set function on 〈M,M〉
defined by

|µ|(A) = sup
{ n∑

i=1

‖µ(Ai )‖ : A1, . . . , An ⊆ A, disjoint,

A1, . . . , An ∈M, n = 1, 2, . . .
}
.

|µ| is a finite, non-atomic measure on 〈M,M〉. Thus, any set A∈M with |µ|(A)>0
contains sets B ∈ M for which |µ|(B) is positive and arbitrarily small. A finite
signed measure ν on 〈M,M〉 is absolutely continuous with respect to the measure
|µ| if ν(B) = 0 for each B ∈M with |µ|(B) = 0. This is equivalent to each of the
following statements: first, for each ε > 0, there is a δ > 0 such that |ν(B)| ≤ ε for
any B ∈M with |µ|(B) ≤ δ. Second, there exists a function f : M → R which is
integrable with respect to the measure |µ| such that

ν(B) =
∫

B

f d|µ| for B ∈M.

f is the Radon–Nikodym derivative of ν with respect to |µ|. Given A ∈ M, let
A−, A0, A+ denote the following sets:

A− = {s ∈ A : f (s) < 0}, A0 = {s ∈ A : f (s) = 0}, A+ = {s ∈ A : f (s) > 0},
all in M. Clearly, |µ|(B) = 0 for each set B ∈ M, B ⊆ A+, with ν(B) = 0. That
is, the restriction of |µ| to A+ is absolutely continuous with respect to the restriction
of ν to A+ and similarly for A−.
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For the proof of the theorem it is sufficient to show the following:

(1) Let x ∈ cl conv R(M). Then x ∈ R(M).

For x = o this is trivial. Thus we may suppose that x �= o. Then the proof of (1) is
split into several steps.

First, let

N = {A ∈M : x ∈ cl conv R(A)}.
Order N by set inclusion (up to sets of |µ|-measure 0). Then

(2) N has a minimal element.

In order to prove (2), the following will be shown first:

(3) Let {Ai , i = 1, 2, . . . } be a countable decreasing chain in N . Then A0 =⋂
i Ai is a lower bound of this chain in N .

Clearly, A0 is a lower bound of the chain. We have to show that A0 ∈ N ,
i.e. x ∈ cl conv R(A0). For this it is sufficient to prove that cl conv R(A0) ⊇⋂

i cl conv R(Ai ). For each measurable subset Ai ∩ B of Ai , where B ∈ M, the
definition of |µ| implies that

‖µ(A0 ∩ B)− µ(Ai ∩ B)‖ = ‖µ((Ai\A0) ∩ B
)‖ ≤ |µ|(Ai\A0) = εi ,

say. Thus R(A0) + εi Bd ⊇ R(Ai ). Hence cl conv R(A0) + εi Bd ⊇ cl conv R(Ai ).
Since εi → 0 (note that A0 = ⋂

i Ai and |µ| is a finite measure), we see that
cl conv R(A0) ⊇ ⋂

i cl conv R(Ai ). Since x ∈ cl conv R(Ai ) for each i , it finally
follows that x ∈ cl conv R(A0), or A0 ∈ N . The proof of (3) is complete. Using (3),
we next show the following refinement of (3):

(4) Let {Aι, ι ∈ I } be a chain in N . Then it has a lower bound in N .

If this chain has a smallest element, we are finished. Otherwise choose a decreasing
countable sub-chain {Aιi , i = 1, 2, . . . } such that inf{|µ|(Aιi ) : i = 1, 2, . . . } =
inf{|µ|(Aι) : ι ∈ I }. Then A0 = ⋂

i Aιi ∈ N by (3) and |µ|(A0) = inf{|µ|(Aι) : ι ∈
I }. We have to show that A0 ⊆ Aι for each ι ∈ I (up to a set of |µ|-measure 0). Let
ι ∈ I . If there is an i such that ιi < ι, then clearly A0 ⊆ Aι. Otherwise Aι ⊆ Aιi for
each i = 1, 2, . . . and thus Aι ⊆ A0. Since |µ|(Aι) ≥ |µ|(A0), this then implies that
Aι = A0 (up to a set of |µ|-measure 0) and thus, a fortiori, A0 ⊆ Aι. Having proved
that A0 ∈ N and A0 ⊆ Aι for ι ∈ I , the proof of (4) is complete. (4) implies (2) by
Zorn’s lemma.

Second, the following statement will be shown:

(5) Let A ∈ M, u ∈ Sd−1, and let ν be the finite, signed, non-atomic measure
ν = u ·µ = u1µ1+· · ·+udµd on 〈M,M〉. Then ν is absolutely continuous
with respect to |µ| and

H(u) ∩ cl conv R(A) = µ(A+)+ cl conv R(A0).
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Here H(u) is the support hyperplane of cl conv R(A) with exterior normal vector
u. The absolute continuity of ν with respect to |µ| is obvious. Clearly, H(u) is the
hyperplane

u · y = sup
{
u · z : z ∈ cl conv R(A)

} = sup
{
u · z : z ∈ R(A)

}

= sup
{
ν(C) : C ∈M,C ⊆ A

}

= sup
{
ν(A+ ∩ C)+ ν(A0 ∩ C)+ ν(A− ∩ C) : C ∈M,C ⊆ A

} = ν(A+).
For the proof of the inclusion H(u) ∩ cl conv R(A) ⊇ µ(A+) + cl conv R(A0), it
is sufficient to show the following: Let B ∈ M, B ⊆ A0. Then µ(A+) + µ(B) ∈
H(u) ∩ cl conv R(A). Clearly, A+ ∪ B ∈M and A+ ∪ B ⊆ A. Hence

µ(A+)+ µ(B) = µ(A+ ∪ B) ∈ R(A) ⊆ cl conv R(A),
u · (µ(A+)+ µ(B)) = ν(A+)+ ν(B) = ν(A+).

Thus µ(A+) + µ(B) ∈ H(u) ∩ cl conv R(A), concluding the proof of the first
inclusion. Next, the reverse inclusion H(u)∩cl conv R(A) ⊆ µ(A+)+cl conv R(A0)
will be shown. Since µ is a finite vector-valued measure, R(A) is bounded. Thus
cl conv R(A) = conv cl R(A) by Proposition 3.2. For the proof of the reverse
inclusion, it is thus sufficient to show the following: let y ∈ H(u) ∩ cl R(A). Then
y ∈ µ(A+) + cl conv R(A0). Clearly, yi → y

( ∈ H(u)
)

as i → ∞ for suitable
yi = µ(Ai ) ∈ R(A). Thus u · yi = u · µ(Ai ) = ν(Ai )→ u · y and thus

ν(Ai ) = ν(A+ ∩ Ai )+ ν(A0 ∩ Ai )+ ν(A− ∩ Ai )
= ν(A+ ∩ Ai )+ ν(A− ∩ Ai )→ u · y = ν(A+).

Hence ν(A+ ∩ Ai ) → ν(A+) and ν(A− ∩ Ai ) → 0 or ν(A+\Ai ) → 0 and
ν(A− ∩ Ai ) → 0. Since |µ| is absolutely continuous with respect to |ν| on A+
and also on A−, it thus follows that |µ|(A+\Ai )→ 0 and |µ|(A−∩ Ai )→ 0. Hence
µ(A+\Ai ), µ(A− ∩ Ai )→ o and therefore

y = limµ(Ai ) = lim
(
µ(A+ ∩ Ai )+ µ(A0 ∩ Ai )+ µ(A− ∩ Ai )

)

= lim
(
µ(A+)− µ(A+\Ai )+ µ(A0 ∩ Ai )+ µ(A− ∩ Ai )

)

= µ(A+)+ limµ(A0 ∩ Ai ) ∈ µ(A+)+ cl R(A0)

⊆ µ(A+)+ cl conv R(A0).

This concludes the proof of the reverse inclusion. The proof of (5) is complete.
Third, we shall prove the following:

(6) Let A ∈M be minimal such that x ∈ cl conv R(A). Then x ∈ R(A).

Note that x �= o and o, x ∈ cl conv R(A). We distinguish two cases. First case:
x ∈ relint cl conv R(A). By Lemma 3.1 the point x is in the relative interior of a con-
vex polytope with vertices µ(A1), . . . , µ(Ak) ∈ R(A), say. If B ∈ M, B ⊆ A,
is such that |µ|(B) is sufficiently small (such B exist since the measure |µ| is
non-atomic), then ‖µ(A1\B) − µ(A1)‖, . . . , ‖µ(Ak\B) − µ(Ak)‖ ≤ |µ|(B) are
so small that x is still in the relative interior of the convex polytope with ver-
tices µ(A1\B), . . . , µ(Ak\B) ∈ R(A\B) ⊆ R(A). Hence x ∈ cl conv R(A\B),
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in contradiction to the minimality of A. Hence the first case cannot hold. Second
case: x ∈ relbd cl conv R(A). Then we may choose u ∈ Sd−1 such that x ∈
H(u)∩cl conv R(A) but cl conv R(A) �⊆ H(u). By (5), x−µ(A+) ∈ cl conv R(A0).
The set A0 ∈ M is minimal such that x − µ(A+) ∈ cl conv R(A0). Otherwise
A ∈ M would not be minimal such that x ∈ cl conv R(A). Since cl conv R(A) �⊆
H(u), Proposition (5) shows that the dimension of cl conv R(A0) is smaller than
the dimension of cl conv R(A). If R(A0) = {o} we have x = µ(A+) and we are
done. If not, we may repeat the above argument with x − µ(A+) and A0 instead of
x and A to show that x − µ(A+)− µ(A0+) ∈ cl conv R(A00), where the dimension
of cl conv R(A00) is smaller than the dimension of cl conv R(A0), etc. In any case,
after finitely many repetitions we arrive at (6).

Propositions (2) and (6) finally yield (1), concluding the proof of the theorem.
��

Remark. The range of a finite non-atomic vector-valued signed measure is actually
a zonoid and vice versa, as shown by Rickert [835]. See also Bolker [141]. Zonoids
are particular convex bodies. See Sect. 7.3 for a definition.

4.4 Pontryagin’s Minimum Principle

The minimum principle, sometimes also called maximum principle, of Pontryagin
and his collaborators Boltyanskiı̆, Gamkrelidze and Mishchenko [813] is a central
result of control theory. It yields information on optimal controls.

In the following we present a version which makes essential use of support
hyperplanes and which rests on convexity arguments, both finite and infinite
dimensional.

For more information on control theory see, e.g. Pontryagin, Boltyanskiı̆,
Gamkrelidze, Mishchenko [813] and Agrachev and Sachkov [2].

The Time Optimal Control Problem

Consider a system of linear differential equations with given initial value:

(1) ẋ = Ax + Bu, x(0) = a,

where A and B are real d × d, respectively, d × c matrices and a ∈ E
d . A control

u : [0,+∞) → C is the parametrization of a curve which is contained in a given
convex body C in E

c. We suppose that each of its c components is measurable (with
respect to Lebesgue measure on R). Given a control u, by a solution of (1), we mean
a continuous parametrization x : [0,+∞) → E

d of a curve, such that the compo-
nents of x are almost everywhere differentiable and (1) holds almost everywhere on
[0,+∞). A control u is said to transfer the initial state a to a state b ∈ E

d \ {a} in
time t if x(t) = b holds for the corresponding solution x of (1).

The time optimal control problem is to find a control u which transfers a to b in
minimum time.
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The Minimum Principle

The following result of Pontryagin et al. [813] sheds light on the time optimal control
problem.

Theorem 4.6. Assume that there is a control for (1) which transfers a to b. Then the
following propositions hold:

(i) There is a time optimal control which transfers a to b.

(ii) Let u be a time optimal control which transfers a to b in minimum time T , say.
Then there is a pointw ∈ E

d such that for the solution of the initial value problem

(2) ẏ = −AT y, y(T ) = w,
the following statement holds, where w(t) = BT y(t):

u(t) ∈ C ∩ HC
(
w(t)

)
for almost every t ∈ [0, T ].

For the geometric meaning of Proposition (ii), see the remarks after the proof of
the theorem.

Proof. Before beginning the proof we collect some tools.

(3) The solutions of (1) and (2) can be presented as follows:

x(t) = eAt a +
t∫

0

eA(t−s)Bu(s) ds for t ≥ 0,

y(t) = e−AT (t−T )w ( �= o) for t ≥ 0.

Here eAt is the non-singular d × d matrix I + 1
1! At + 1

2! A
2t2 + · · · . The inte-

gral is to be understood component-wise. For t ≥ 0, consider the Hilbert space
L2 = L2([0, t],Ec) of all vector-valued functions u : [0, t] → E

c with measurable
component functions such that u2 is integrable on [0, t]. Besides the ordinary topol-
ogy on L2, there is also the so-called weak topology. With respect to this topology
the following statements hold.

(4) C(t) = {u ∈ L2 : u(s) ∈ C for s ∈ [0, t]} ⊆ L2

is compact and, trivially, convex for t ≥ 0.

(5) The mapping u → eAt a +
t∫

0

eA(t−s)Bu(s) ds

is a continuous and, trivially, affine mapping of L2 into E
d for t ≥ 0.

Next, we define and investigate the set R(t) reachable in time t ,

R(t) =
{

eAt a +
t∫

0

eA(t−s)Bu(s) ds : u ∈ C(t)
}
⊆ E

d , t ≥ 0.

Note that a continuous affine image of a compact convex set is again compact and
convex. Hence Propositions (4) and (5) yield the following property of R(t):
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(6) R(t) ⊆ E
d is compact and convex for t ≥ 0.

The second property of R(t), that will be used below, is a sort of weak right-hand
side continuity:

(7) Let t1 ≥ t2 ≥ · · · → T and b ∈ R(tn) for n = 1, 2, . . . Then b ∈ R(T ).

By definition,

b = eAtn a +
tn∫

0

eA(tn−s)Bun(s) ds for suitable un ∈ C(tn)

=
[
eAT a +

T∫

0

eA(T−s)Bun(s) ds
]

+
[(

eAtn − eAT )a +
tn∫

T

eA(tn−s)Bun(s) ds +
T∫

0

(
eA(tn−s) − eA(T−s))Bun(s) ds

]
.

The quantity in the first bracket is contained in R(T ) and R(T ) is compact by (6).
The quantity in the second bracket tends to o as n →∞. Hence b ∈ R(T ). The third
required property of R(t) is as follows:

(8) If b ∈ int R(T ), then b ∈ R(t) for all t ≤ T sufficiently close to T .

To see this, choose a simplex in int R(T ) with vertices x1, . . . , xd+1, say, which con-
tains b in its interior. By the definition of R(T ), there are solutions x1(·), . . . , xd+1(·)
of (1), corresponding to suitable controls in C(T )which transfer a to x1, . . . , xd+1 in
time T . That is, x1(T ) = x1, . . . , xd+1(T ) = xd+1. These solutions are continuous.
Hence, for all t < T sufficiently close to T , the points x1(t), . . . , xd+1(t) are the
vertices of a simplex in the convex set R(T ) and this simplex still contains b. Hence
b ∈ R(t) by (6).

After these preparations, the proof of the theorem is rather easy. Let T (≥ 0) be
the infimum of all t > 0 such that b ∈ R(t). By (7), b ∈ R(T ), concluding the
proof of statement (i). Since b �= a, a consequence of (i) is that T > 0. To show
(ii), note first that b �∈ int R(T ). Otherwise b ∈ R(t) for suitable t < T by (8), in
contradiction to the definition of T . Hence b is a boundary point of the convex body
R(T ) (see (6)). Theorem 4.1 then shows that

(9) (z − b) · w ≤ 0 for z ∈ R(T ),

with a suitable w ∈ E
d \ {o}. If u ∈ C(T ) is a control which transfers a to b in time

T , Propositions (3) and (9) yield the following:

T∫

0

eA(T−s)B
(
v(s)− u(s)

)
ds · w ≤ 0 for v ∈ C(T ),
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i.e.
T∫

0

BT eAT (T−s)w · (u(s)− v(s)) ds ≥ 0 for v ∈ C(T ),

i.e.
T∫

0

BT y(s) · (u(s)− v(s)) ds ≥ 0 for v ∈ C(T ).

Since the latter inequality holds for all v ∈ C(T ), we see that for w(s) = BT y(s)
( �= o),

(10) w(s) · (u(s)− v(s)) ≥ 0 for each v ∈ C(T ) and almost every s ∈ [0, T ].
Otherwise, there is a control v ∈ C(T ) such that the inner product in (10) is negative
on a subset of the interval [0, T ] of positive measure. Clearly, for the control in C(T )
which coincides with this v on the subset and with u outside of it, the integral over
the expression in (10) is negative. This is the required contradiction. (10) implies that

w(s) · u(s) ≥ w(s) · v(s) for each v ∈ C(T ) and almost every s ∈ [0, T ],
i.e.

w(s) · u(s) = max{w(s) · v : v ∈ C} for almost every s ∈ [0, T ],
i.e.

u(s) ∈ C ∩ HC
(
w(s)

)
for almost every s ∈ [0, T ]. ��

A Geometric Interpretation of the Minimum Principle and Bang-Bang
Controls

The above version of the minimum principle says that, for the time optimal control
u, the following statement holds: for almost every t the point u(t) is contained in the
support set C ∩ HC

(
w(t)

)
as the support hyperplane HC

(
w(t)

)
rolls continuously

over C . If C is strictly convex, each support set consists of a single point. The time
optimal control u then may be chosen as a continuous parametrization of a curve
on bd C . Suppose now that C is the unit cube in E

d and such that the support set
C ∩HC

(
w(s)

)
is a vertex of C for all times t ∈ [0, T ], with a finite set of exceptions.

Then there are times 0 = t0 < t1 < · · · < tn = T , vertices v0, . . . , vn of C and a
time optimal control u such that

u(t) = vk for t ∈ (tk−1, tk), k = 1, . . . , n.

Then u is said to be a bang-bang control. Essentially this says, if each of the admis-
sible strategies of a control problem varies independently in a given interval, time
optimal controls consist of a finite sequence of pure strategies.
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5 The Boundary of a Convex Body

The boundary of a convex body may be investigated from many different viewpoints.
One object of study concerns the smooth and the singular points. The size of the

sets of the different types of singular points has been investigated from the measure-
theoretic, the topological (Baire) and the metric (porosity) perspective. A related
question concerns the first-order differentiability of the boundary. A deep result of
Alexandrov deals with second-order differentiability.

The notion of extreme and the more restrictive notion of exposed point play an
important role both in finite dimensions, for example, in convex analysis, and in
infinite dimensions and have been studied intensively.

A further topic of research is Alexandrov’s theory based on the notion of intrin-
sic or geodesic metric on the boundary of a convex body. This is a sort of differ-
ential geometry without differentiability assumptions. We also mention Schäffer’s
[882] investigations of the geometry of the unit sphere in finite-dimensional normed
spaces.

In the following we investigate regular, singular and extreme points and first
and second-order differentiability properties, including Alexandrov’s theorem. An
application deals with Birkhoff’s theorem on doubly stochastic matrices.

For a more detailed discussion of smooth, singular and extreme points, see
Schneider [907]. Some hints on the study of the geodesic metric will be made
in Sect. 10.2. For a deeper study of smoothness and strict convexity in infinite-
dimensional spaces in the context of type and cotype theory, see the books of Pisier
[802] and Tomczak-Jaegermann [1001].

5.1 Smooth and Singular Boundary Points, Differentiability

In this section, we investigate the size of the set of singular boundary points of a given
convex body, using Hausdorff measure, Hausdorff dimension, and Baire categories,
and then give the convex body version of Alexandrov’s differentiability theorem.

Smooth and Singular Boundary Points

Let C be a proper convex body and x ∈ bd C . By Theorem 4.1 there is a support
hyperplane of C at x . If it is unique, x is called a smooth, regular or differentiable,
otherwise a singular boundary point of C . If all boundary points of C are smooth, C
is said to be smooth, differentiable, or regular. The set

NC (x) =
{
u : u · y ≤ u · x for all y ∈ C

}

consists of the origin o and all exterior normal vectors of support hyperplanes of
C at x . It is a closed convex cone with apex o, as will be shown in the proof of
Theorem 5.1. NC (x) is called the normal cone of C at x . The point x is smooth if and
only if the normal cone of C at x is simply a ray or, equivalently, has dimension 1.
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x + N (x)

x singularx smooth

Fig. 5.1. Smooth and singular points, normal cones

Using the dimension of the normal cone, one may classify the singular boundary
points (Fig. 5.1).

The natural question arises, to determine the size of the set of singular boundary
points of C .

The Hausdorff Measure of the Set of Singular Points

A continuous curve of finite length λ in E
d can be covered by a sequence of Euclid-

ean balls of arbitrarily small diameters such that the sum of the diameters is arbi-
trarily close to λ. This property was used by Carathéodory [190] to define the linear
measure of more general sets. His idea was extended by Hausdorff [482] as follows:
For 0 ≤ s ≤ d, the s-dimensional Hausdorff measure µs(A) of a set A ⊆ E

d is
defined by

µs(A) = lim
ε→+0

(

inf
{ ∞∑

n=1

(diam Un)
s : Un ⊆ E

d , diam Un ≤ ε, A ⊆
∞⋃

n=1

Un

})

,

where for U ⊆ E
d , diam U = sup{‖x − y‖ : x, y ∈ U } is the diameter of U . The

above defined µs , actually, is not a measure but an outer measure. If A is Lebesgue
measurable then, up to a constant depending on d, its Hausdorff measure µd(A)
equals the Lebesgue measure µ(A) or V (A) of A. If A is a Borel set in the boundary
of a given proper convex body C , then µd−1(A) equals, up to a constant depending
on d, the ordinary Lebesgue or Borel area measure σ(A) or S(A) of A. If K is
a Jordan curve in E

d , then µ1(K ) is its length. For more detailed information on
measure theory, respectively, geometric measure theory see, e.g. Falconer [317] or
Mattila [696].

Anderson and Klee [28] gave the following result, where a set has σ -finite mea-
sure if it is a countable union of sets of finite measure.

Theorem 5.1. Let C ∈ Cp. Then the set of singular points of bd C has σ -finite
(d − 2)-dimensional Hausdorff measure.

Proof. In a first step we show the following.

(1) Let x ∈ bd C . Then NC (x) is a closed convex cone with apex o.

To see that NC (x) is a convex cone with apex o, let u, v ∈ NC (x) and λ,µ ≥ 0.
Then u · y ≤ u · x and v · y ≤ v · x for all y ∈ C . Thus (λu+µv) · y ≤ (λu+µv) · x
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for all y ∈ C and therefore λu + µv ∈ NC (x). To see that NC (x) is closed, let
u1, u2, · · · ∈ NC (x), where un → u ∈ E

d , say. Then un · y ≤ un · x for all y ∈ C .
Since un → u, we obtain u · y ≤ u · x for all y ∈ C . Hence u ∈ NC (x), concluding
the proof of (1).

Note that the following statement holds:

(2) Let x ∈ bd C . Then x is singular if and only if dim NC (x) ≥ 2.

Next, let S be the countable set of all simplices in E
d\C of dimension d − 2 with

rational vertices and let pC : E
d → C denote the metric projection of E

d onto C ,
see Sect. 4.1. For the proof that

(3)
{

x ∈ bd C : x singular
} ⊆

⋃{
pC (S) : S ∈ S},

let x ∈ bd C be singular. Then dim NC (x) ≥ 2 by (2). Thus we may choose a simplex
S ∈ S with NC (x) ∩ S �= ∅. Then x ∈ pC (S), concluding the proof of (3).

Since by Lemma 4.1 the metric projection pC is non-expansive, the simple prop-
erty of the Hausdorff measure that non-expansive mappings do not increase the
Hausdorff measure, implies that

(4) µd−2
(

pC (S)
) ≤ µd−2(S) < +∞ for each S ∈ S.

Having proved (3) and (4), the theorem follows. ��
Remark. Anderson and Klee actually proved a more precise result. Refinements of
the latter are due to Zajı́ček [1036], Colesanti and Pucci [213] and Hug [527].

The Hausdorff Dimension of the Set of Singular Points

Given a set A ⊆ E
d , its Hausdorff dimension dimH A is defined by

dimH A = sup
{
s ≥ 0 : µs(A) = ∞} = inf

{
s ≥ 0 : µs(A) = 0

}
,

see [317] or [696]. The theorem of Anderson and Klee then yields the following
result.

Corollary 5.1. Let C ∈ Cp. Then the set of singular points of bd C has Hausdorff
dimension at most d − 2.

The Baire Category of the Set of Singular Points

A Baire space is a topological space in which any meagre set has dense complement,
where a set is meagre or of first Baire category if it is a countable union of subsets
which are nowhere dense in the space. A set is nowhere dense if its closure has
empty interior. Since a meagre subset can never exhaust a Baire space, meagre sets
in a Baire space are considered to be small while the non-meagre sets are large.
Particular non-meagre sets are the complements of meagre sets. When speaking of
most or of typical elements of a Baire space, we mean all elements, with a meagre set
of exceptions. To apply this topological instrument to distinguish between small and
large subsets of a space, we need to know which spaces are Baire. Simple criteria
are provided by versions of the Baire category theorem. We cite the following one:
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each complete metric or locally compact space is Baire. The rational numbers with
the usual topology are an example of a space which is not Baire.

Ever since their introduction by Baire [45] and Osgood [780], Baire categories
have been applied successfully in real analysis. See, e.g. Oxtoby [782] and Holmes
[520]. In recent years they found numerous applications in convex geometry, com-
pare the surveys of Zamfirescu [1041] and Gruber [431], and Sect. 13.1.

Given a proper convex body, its boundary is compact and thus Baire by the cate-
gory theorem. The finite-dimensional case of the density theorem of Mazur [701] is
as follows.

Theorem 5.2. Let C ∈ Cp. Then the set of singular points of bd C is meagre in bd C.

Proof. For n = 1, 2, . . . , let

Sn =
{

x ∈ bd C : there are support hyperplanes at x with angle at least
1

n

}
.

A simple compactness argument shows that Sn is closed in bd C . In order to show
that

(5) Sn is nowhere dense in bd C,

assume the contrary. Being closed, Sn then contains a relatively open subset G of
bd C . If B is a solid Euclidean ball of sufficiently small radius, there is a translate of
B contained in C which touches bd C at a point x ∈ G. Then, clearly, C has a unique
support hyperplane at x . Since this is in contradiction to x ∈ G ⊆ Sn , the proof of
(5) is complete. Clearly,

(6)
∞⋃

n=1

Sn =
{

x ∈ bd C : x singular
}
.

The theorem now follows from (5) and (6). ��

Differentiability

A (d − 1)-dimensional manifold in E
d may be represented explicitly, implicitly or

by means of parameters. The problem arises to move differentiability properties or
results, from one representation to the others. In differential geometry this is done by
means of refined versions of the theorems on implicit and inverse functions, using
differentiability assumptions. Unfortunately, in general, such possibilities are not
available in convex geometry. Thus one has to argue more carefully, even in sim-
ple cases. In the following we consider the problem of transferring first and second-
order differentiability at given points from convex functions to convex bodies and
vice versa.

First-Order Differentiability

Let D be an open convex set in E
d and f : D → R a convex function. Clearly,

notions such as support hyperplanes and regular and singular boundary points and
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the existence of support hyperplanes can be extended to the case of unbounded proper
convex bodies such as the epigraph epi f of f .

The following simple result, essentially a version of Theorem 2.7, shows how
to move first-order differentiability results from convex functions to convex sets and
vice versa.

Lemma 5.1. Let D ⊆ E
d be open and convex and f : D → R convex. Then, given

x ∈ D, the following are equivalent:

(i) f is differentiable at x.

(ii)
(
x, f (x)

)
is a smooth boundary point of epi f .

Proof. Left to the reader (use Theorem 2.7). ��
Theorem 5.3. Let D ⊆ E

d be open and convex and f : D → R convex. Then
f is differentiable at each point of D with a set of exceptions which is of σ -finite
(d − 1)-dimensional Hausdorff measure and meagre in D.

Proof. Using the same proofs, Theorems 5.1 and 5.2 easily extend to the graph of
f which is contained in the boundary of epi f in E

d+1. Now apply Lemma 5.1 and
note that subsets of bd epi f which are of σ -finite (d − 1)-dimensional Hausdorff
measure or are meagre project into such sets in D. ��

This result is the analogue, for convex functions, of the Theorems 5.1 and 5.2
of Anderson and Klee and Mazur, respectively. For d = 1 the measure part says
that f has at most countably many points of non-differentiability, which was also
proved in Theorem 1.4. For general d, it is an essential refinement of Reidemeister’s
Theorem 2.6.

Second-Order Differentiability

When saying that the proper convex body C is twice or second-order differentiable at
a point x ∈ bd C , the following is meant: First, x is a smooth point of bd C . Next, let
H be the unique support hyperplane of C at x and u the interior unit normal vector of
C at x . Choose, in H , a Cartesian coordinate system with origin o at x . Together with
u it yields a Cartesian coordinate system in E

d . In this coordinate system, represent
the lower side of bd C with respect to the last coordinate in the form

(
y, g(y)

) = y + g(y)u for y ∈ relint C ′.

Here “ ′ ” is the orthogonal projection of E
d onto H and g : relint C ′ → R a convex

function. We then require that, second, there is a positive semi-definite quadratic
form r on H such that

g(y) = r(y)+ o(‖y‖2) as y → o.

(Note that x is the origin.) Clearly, this definition may be extended to unbounded
proper convex bodies.

The following result makes it possible to transfer second-order differentiability
results from convex functions to convex bodies and vice versa.



5 The Boundary of a Convex Body 73

Lemma 5.2. Let D ⊆ E
d be open and convex and f : D → R convex. Then, given

x ∈ D, the following statements are equivalent:

(i) f is twice differentiable at x in the sense of Theorem 2.9,

(ii) epi f is twice differentiable at
(
x, f (x)

)
.

Proof. (i)⇒(ii) We may suppose that x = o, f (o) = 0. By assumption, there are a
vector a ∈ E

d and a positive semi-definite quadratic form q(z) = zT Az for z ∈ E
d ,

such that

(7) f (z) = a · z + q(z)+ o(‖z‖2) as z → o (= x), z ∈ E
d .

Let v be the unit normal vector of E
d pointing into int epi f . Let “′” denote the

orthogonal projection of E
d+1 = E

d × R onto E
d . Since, in particular, f is differ-

entiable at o, Lemma 5.1 shows that o is a smooth point of bd epi f . Let H be the
support hyperplane of epi f at o. Denote by u its unit normal vector pointing into
int epi f . Let “′′” denote the orthogonal projection of E

d+1 onto H . Represent the
lower side of bd epi f , with respect to the last coordinate of the Cartesian coordinate
system determined by H , and u in the form

(
y, g(y)

) = y + g(y)u for y ∈ (relint epi f )′′ ⊆ H.

Since o is a smooth point of bd epi f , Lemma 5.1 shows that the convex function g
is differentiable at o and thus (Fig. 5.2)

(8) g(y) = o(‖y‖) as y → o, y ∈ H .

Combining (7), z = (y + g(y)u)′ = y′ + g(y)u′ and (8), we see that

g(y) = (
f (z)− a · z

)
(u · v) = (

q(z)+ o(‖z‖2)
)
(u · v)

= (
q(y′)+ 2y′T Au′g(y)+ q(u′)g(y)2 + o(‖y‖2)

)
(u · v)

= r(y)+ o(‖y‖2) as y → o,

H

f (z)

o y′

v
u

z

y

E
d

R

g(y)

Fig. 5.2. Twice differentiability of functions and epigraphs
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where r(·) is a suitable positive semi-definite quadratic form on H .
(ii)⇒(i) Let x = o, f (o) = 0, u, v, H, r, ′′, g be as before. By assumption,

(9) g(y) = r(y)+ o(‖y‖2) as y → o, y ∈ H,

where r(y) = yT By, for y ∈ H , is a positive semi-definite quadratic form on H .
Lemma 5.1 shows that f is differentiable at o, that is

(10) f (z) = a · z + o(‖z‖) as z → o, z ∈ D,

where a is a suitable vector in E
d . Note that

(11) y = (
z + f (z)v

)′′ = z′′ + f (z)v ′′.
Propositions (9)–(11) yield the following:

f (z) = (
y + g(y)u

) · v = y · v + g(y) u · v
= z′′ · v + f (z) v ′′ · v + g

(
z′′ + f (z)v ′′

)
u · v,

and then

f (z)(1 − v ′′ · v) = z′′ · v + r
(
z′′ + f (z)v ′′

)
u · v + o

(‖z′′ + f (z)v ′′‖2
)

u · v
= z′′ · v + (

z′′T Bz′′ + z′′T Bv ′′ 2 f (z)+ v ′′T Bv ′′ f (z)2
)
u · v + o(‖z‖2)

= z′′ · v + (
z′′T Bz′′ + z′′T Bv ′′ 2 a · z + v ′′T Bv ′′(a · z)2

)
u · v + o(‖z‖2)

= b · z + q(z)+ o(‖z‖2) as z → o, z ∈ D.

Here b and q are a suitable vector in E
d and a quadratic form on E

d . Since f is
convex, this can hold only if q is positive semi-definite. ��
Using Lemma 5.2 and Alexandrov’s Theorem 2.9 for convex functions, we obtain

Alexandrov’s theorem on second-order differentiability of convex bodies:

Theorem 5.4. Let C ∈ Cp. Then bd C is almost everywhere twice differentiable.

Proof. bd C can be covered by finitely many relative interiors of its lower sides with
respect to suitable Cartesian coordinate systems. To the corresponding convex func-
tions, apply Alexandrov’s theorem 2.9 and Lemma 5.2, noting that a set on the rel-
ative interior of a lower side of bd C has (d − 1)-dimensional Hausdorff measure
0 if its orthogonal projection into a hyperplane has (d − 1)-dimensional Hausdorff
measure 0. (A convex function on an open set is locally Lipschitz.) ��

5.2 Extreme Points

Extreme points of convex bodies play an important role in convex analysis, convex
geometry and functional analysis, for example in the context of the Krein–Milman
theorem and Choquet theory. A refinement of the notion of extreme point is that of
exposed point. Using this notion, Straszewicz [973] proved a result of Krein–Milman
type.
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extreme, not exposed

extreme and exposed

Fig. 5.3. Stadium with extreme and exposed points

In the sequel we prove a finite-dimensional version of the Krein–Milman theorem
due to Minkowski and give a simple application dealing with maxima of convex
functions.

For more results on extreme points and extreme sets, see Rockafellar [843],
Stoer and Witzgall [970] and Hiriart-Urruty and Lemaréchal [505] in the finite-
dimensional case and Holmes [520] in the context of functional analysis.

Extreme Points

A point of a convex body C is extreme if it is not a relative interior point of a line
segment in C (see Fig. 5.3). Let ext C denote the set of all extreme points of C .
Examples of extreme points are the vertices of a convex polytope and the boundary
points of a solid Euclidean ball.

A Finite-Dimensional Krein–Milman Type Theorem

Minkowski [744], Sect. 12, proved the following finite-dimensional forerunner of the
Krein–Milman theorem.

Theorem 5.5. Let C ∈ C. Then ext C is the smallest subset of C (with respect to
inclusion) with convex hull C.

The infinite-dimensional theorem of Krein–Milman is slightly weaker: conv ext C
may be a proper subset of C , but cl conv ext C always equals C . See, e.g. [861].

Proof. In a first step we will show, by induction on n = dim D, that

(1) D = conv ext D for each convex body D.

For n = 0, 1, this is trivial. Assume now that n > 1 and that (1) holds for convex
bodies of dimensions 0, 1, . . . , n− 1. Let D be a convex body of dimension n. Since
the definition of extreme points and the convex hull operation are independent of the
dimension of the ambient space, we may assume that D is a proper convex body in
E

n . We have to show that, if x ∈ D, then x ∈ conv ext D. If x ∈ bd D, then x ∈
D∩H , where H is a support hyperplane of D at x , see Theorem 4.1. Clearly, D∩H is
a convex body of dimension less than n. Thus x ∈ conv ext(D ∩ H) by the induction
hypothesis. Since H is a support hyperplane of D, we have ext(D ∩ H) ⊆ ext D.
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Hence x ∈ conv ext D. If x ∈ int D, choose y, z ∈ bd D such that x ∈ [y, z]. By the
case just considered, y, z ∈ conv ext D and thus x ∈ conv ext D. This concludes the
proof of (1).

The second step is to show the following:

(2) Let x ∈ ext C . Then C\{x} is convex.

If (2) did not hold, there are points y, z ∈ C\{x} such that [y, z] �⊆ C\{x}. Since
[y, z] ⊆ C by the convexity of C , this can hold only if x ∈ [y, z]. Since x �= y, z,
the point x is not extreme, a contradiction. The proof of (2) is complete.

Finally, (1) and (2) yield the theorem. ��
Remark. The following refinement of Theorem 5.5 is due to Straszewicz [973]:
C = cl conv exp C , where exp C is the set of all exposed points of C . These are the
points x ∈ C such that {x} = C ∩ H for a suitable support hyperplane of C at x .
Clearly, each exposed point is extreme, but the converse does not hold generally. It
is not difficult to see that the apex of a pointed closed convex cone C is an exposed
and thus an extreme point of C .

Maxima of Convex Functions

A simple yet useful application of the above result is as follows:

Theorem 5.6. Let C ∈ C and let f : C → R be a continuous convex function. Then
f attains its maximum m at an extreme point of C.

Proof. Let x ∈ C be such that f (x) = m. Theorem 5.5 and Lemma 3.1 show that
x = λ1x1 + · · · + λn xn with suitable x1, . . . , xn ∈ ext C and λ1, . . . , λn > 0, where
λ1 + · · · + λn = 1. Jensen’s inequality then yields the following:

m = f (x) ≤ λ1 f (x1)+ · · · + λn f (xn) ≤ (λ1 + · · · + λn)m = m.

Thus equality holds throughout. Noting that λ1, . . . , λn > 0, it then follows that
f (x1) = · · · = f (xn) = m. ��

5.3 Birkhoff’s Theorem on Doubly Stochastic Matrices

Doubly stochastic d × d matrices have attracted a lot of interest, for example as the
matrices of transition probabilities of discrete Markov chains or in the context of van
der Waerden’s conjecture on permanents of doubly stochastic matrices.

Using the notions of convex hull and extreme point, we give a precise description
of the set of doubly stochastic d × d matrices due to Birkhoff.

For more information on van der Waerden’s conjecture, see Egorychev [291].
For general information on doubly stochastic matrices compare Minc [729,730] and
Seneta [926].
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Doubly Stochastic and Permutation Matrices

A real d × d matrix is doubly stochastic if all its entries are non-negative and the
sum of the entries in each row and column equals 1. The set of all doubly stochastic
d × d matrices is usually denoted Ωd . It clearly may be considered a subset of E

d2
.

Particular cases include the d × d permutation matrices. These are d × d matrices
such that, in each row and column, all entries are 0 with one exception which is 1.
There are d ! d × d permutation matrices.

Birkhoff’s Theorem

Because of the importance of doubly stochastic matrices, it is a natural problem
to describe the set Ωd of all doubly stochastic d × d matrices as a subset of E

d2
.

Birkhoff [119] gave the following satisfying result:

Theorem 5.7. The set Ωd of all doubly stochastic d × d matrices is the convex hull
of the d × d permutation matrices and each permutation matrix is an extreme point
of Ωd .

In other words, Ωd is a convex polytope in E
d2

, the vertices of which are precisely
the d × d permutation matrices. There exist many proofs of Birkhoff’s theorem. For
a proof which makes use of tools from linear programming see, e.g. [841]. A simple
geometric proof using properties of convex polytopes, will be given in Sect. 14.2. In
the following we present a proof based on the Frobenius–König theorem, where by a
diagonal of a d × d matrix we mean a sequence of d of its elements, one from each
row and column. A closely related result is Hall’s marriage theorem.

Lemma 5.3. Let M be a real d × d matrix. Then the following are equivalent:

(i) Each diagonal of M contains 0.

(ii) M has a p × q zero submatrix with p + q = d + 1.

Proof. For subsequences σ, τ of the sequence (1, . . . , d) let Mστ ,Mστ c ,Mσ cτ , and
Mσ cτ c denote the matrices obtained from M by cancelling all rows and all columns
with indices not in σ and not in τ , not in σ and in τ , in σ and not in τ , and in σ and
in τ , respectively.

¬(i)⇒ ¬(ii) Assume that there is a diagonal in M without 0. Let Mστ be a
p×q zero submatrix of M . Then, in the columns with indices in τ , the entries of our
diagonal must lie in Mσ cτ . Hence q ≤ d − p or p + q ≤ d.

(i)⇒(ii) Here the proof is by induction on d. For d = 1 this implication clearly
holds. Assume now that d > 1 and that the implication holds for d − 1. Let M be a
real d×d matrix such that every diagonal contains 0. If M is the zero matrix, there is
nothing to prove. Otherwise M has a non-zero entry, say mi j . By assumption on M ,
every diagonal of Mic jc contains 0. The induction hypothesis then shows that Mic jc

has an r × s zero submatrix with r + s = d. Thus M also has an r × (d − r) zero
submatrix. To simplify, permute the rows and columns of M so that the resulting
matrix N has the form
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N =
(

X, O

Y, Z

)

where X is an r × r matrix and Z a (d − r) × (d − r) matrix. By assumption on
M , every diagonal of N contains 0. Thus, if there is a diagonal of X which does not
contain 0, then every diagonal of Z contains 0. This shows that all diagonals of X
contain 0 or all diagonals of Z contain 0. We may suppose that the former is the case.
(If the latter is the case, the proof is almost identical.) By the induction hypothesis,
X has a t × u zero submatrix with t + u = r + 1. Then N , and therefore also M , has
a t × (u + d − r) zero submatrix. Since t + u + d − r = r + 1+ d − r = d + 1, the
induction is complete. ��

Proof of the Theorem. Since a convex combination of doubly stochastic d × d
matrices is also doubly stochastic, we see that

(1) Ωd is convex.

The main step is to prove that

(2) Ωd is the convex hull of the d × d permutation matrices.

Each doubly stochastic d × d matrix has n positive entries, where d ≤ n ≤ d2.
For the proof of (2) it is thus sufficient to show the following proposition by induction
on n:

(3) Let d ≤ n ≤ d2. Then each doubly stochastic d × d matrix with n positive
entries is a convex combination of d × d permutation matrices.

Any doubly stochastic d × d matrix M with precisely d positive entries is a
permutation matrix. Thus (3) holds for n = d. Assume now that n > d and (3)
holds for n − 1. Let M be a doubly stochastic d × d matrix with n positive entries.
We show that M has a diagonal with positive entries. For assume not, that is, each
diagonal of M contains 0. Lemma 5.3 then shows that M has a p×q zero submatrix
with p + q = d + 1, say Mστ . Since the non-zero entries of M in the rows with
indices in σ are in Mστ c , the sum of the entries in each row of Mστ c is 1. Therefore
the sum of all entries of Mστ c is p. Similarly, the sum of all entries of Mσ cτ is q.
Since Mστ c and Mσ cτ are disjoint submatrices of M , the sum of all entries of M is
at least p+ q = d + 1. This contradiction shows that M has a diagonal with positive
entries. Since, by assumption, M has n > d positive entries and the sum of all these
n entries is d, among the d entries of the diagonal, there must be one entry less than
1. Let 0 < µ < 1 be the minimum of the entries of the diagonal and let P be the
d×d permutation matrix with 1s precisely at the positions of the entries of the above
diagonal. The d × d matrix N = (1 − µ)−1(M − µP) is then doubly stochastic
and has fewer than n positive entries. By the induction hypothesis, N is a convex
combination of d × d permutation matrices. Since P is also a d × d permutation
matrix, we finally also see that M is a convex combination of d × d permutation
matrices. The induction, and thus the proof of (3), is complete. (3) implies (2).
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Clearly,

(4) A d × d permutation matrix is not a convex combination of other d × d
doubly stochastic matrices.

The theorem now is a consequence of Propositions (1), (2) and (4). ��

6 Mixed Volumes and Quermassintegrals

Schneider [907] describes the Brunn–Minkowski theory in the preface of his mono-
graph with the following words:

Aiming at a brief characterization of the Brunn–Minkowski theory, one might say
that it is the result of merging two elementary notions for point sets in Euclidean
space: vector addition and volume.

The original problem of the Brunn–Minkowski theory is to obtain information on the
volume

V (λC + µD)

of the Minkowski linear combination λC + µD = {λx + µy : x ∈ C, y ∈ D}
of two convex bodies C, D for λ,µ ≥ 0, in terms of information on C and D.
Prior to Minkowski, the only results of what is now the Brunn–Minkowski theory
were Cauchy’s [198] surface area formula, Steiner’s [959] formula for the volume
of parallel bodies of a convex body, the proof of the isoperimetric inequality by
Schwarz [922] and the inequality of Brunn [173, 174] (–Minkowski). These results
then were considered as interesting, but rather isolated contributions to geometry.
Their fundamental importance became visible only after Minkowski [744] built,
around them, a voluminous theory, now called after Brunn and himself. A central
notion is that of mixed volumes. Important later contributors to this theory were
Hadwiger [468] and Alexandrov [18]. Of contemporary mathematicians we men-
tion Schneider [907]. The Brunn–Minkowski theory deals, amongst others, with
mixed volumes, the corresponding measures, with developments around the Brunn–
Minkowski inequality, geometric inequalities and other topics of an analytic flavour
in convex geometry. Its numerous applications and relations to other areas range
from isoperimetric problems of various sorts, including isoperimetric inequalities of
mathematical physics, to crystallography, statistics and algebraic geometry.

In this section, we first give basic notions and preliminary results dealing with
Minkowski addition and the Hausdorff metric. Then Blaschke’s selection theorem is
presented. Next, we consider Minkowski’s theorem on mixed volumes and Steiner’s
formula for the volume of parallel bodies and study properties of mixed volumes
and quermassintegrals, including Minkowski’s inequalities, Cauchy’s surface area
formula and Kubota’s formulae for quermassintegrals.

The notions and properties of volume and convex polytopes will be used several
times in this section but will be treated in detail only in Sect. 7 and in the chapter
“Convex Polytopes”.
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Further topics of the Brunn–Minkowski theory will be treated in Sects. 7–9.
Major treatises and surveys on the Brunn–Minkowski theory were cited in the
introduction of the present chapter, the most comprehensive reference is Schneider’s
monograph [907]. We also mention Sangwine-Yager [878] and Peri [790].

6.1 Minkowski Addition, Direct Sums, Hausdorff Metric, and Blaschke’s
Selection Theorem

Important ingredients of the Brunn–Minkowski theory are Minkowski addition and
the Hausdorff metric. The natural topology on the space C = C(Ed) of all convex
bodies in E

d is induced by the Hausdorff metric. The Blaschke selection theorem
then says that this space is complete and locally compact.

In this section, these notions are introduced and Blaschke’s selection theorem is
proved. In addition, we present a result of the author which says that each proper
convex body C can be represented as a direct sum of directly irreducible convex
bodies C1, . . . ,Cm :

C = C1 ⊕ · · · ⊕ Cm,

where this representation is unique up to the order of summands.
For C and subspaces of it, various other metrics and notions of distance have been

considered. See, e.g. [428] and the references cited there.

Minkowski Addition

There are several natural ways to define, on C, geometrically interesting operations of
addition and multiplication with (non-negative or general) real numbers. Minkowski
addition and (ordinary) multiplication with real numbers are defined as follows:

C + D = {x + y : x ∈ C, y ∈ D} for C, D ∈ C,
λC = {λx : x ∈ C} for C ∈ C, λ ∈ R.

The following representation of C + D gives a better idea of what C + D really
means. For x ∈ E

d the set x + D (= {x + y : y ∈ D}) is the translate of D by the
vector x , where instead of {x} we simply write x . Then

C + D =
⋃

x∈C

(x + D).

C − D stands for C + (−1)D.

A Short Historical Excursion

Aristotle [37] asked the following question:

Why does the sun, when it shines through a square, not produce rectangular forms
but circles as is the case when it shines through wicker work?
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the sun

diaphragmscreen

}
sunimage of

Fig. 6.1. Camera obscura

A similar question due to Tycho Brahe is about the form of the image of the sun on
the screen of a camera obscura, depending on the shape of the diaphragm (Fig. 6.1).
Implicitly using Minkowski addition, Kepler [575] solved Brahe’s problem by show-
ing – in our terminology – the following: the image of the sun is of the form
D + λB2, where D is a convex disc, a translate of the diaphragm. See Scriba and
Schreiber [923]. A similar phenomenon can be observed in sunshine at noon under
a broad-leaved tree: the image of the sun on the ground consists of numerous rather
round figures of the form P + λE , where P is approximately of polygonal shape,
not necessarily convex, and E an ellipse. See Schlichting and Ucke [890].

Properties of Minkowski Addition

The following simple properties of Minkowski addition will be used frequently.

Proposition 6.1. Let C, D ∈ C and λ ∈ R. Then C + D, λC ∈ C.

Proof. We consider only C + D. To show the convexity of C+ D, let u+ x, v+ y ∈
C + D where u, v ∈ C, x, y ∈ D, and let 0 ≤ λ ≤ 1. Then

(1− λ)(u + x)+ λ(v + y) = (
(1− λ)u + λv)+ (

(1− λ)x + λy
) ∈ C + D

by the convexity of C and D. Hence C+D is convex. It remains to show that C+D is
compact. The Cartesian product C×D = {(x, y) : x ∈ C, y ∈ D} ⊆ E

d×E
d = E

2d

is compact in E
2d . Being the image of the compact set C × D under the continuous

mapping (x, y)→ x + y of E
2d onto E

d , the set C + D is also compact. ��
The following result relates addition and multiplication with positive numbers of
convex bodies to addition and multiplication with positive numbers of the corre-
sponding support functions.

Proposition 6.2. Let C, D ∈ C and λ ≥ 0. Then

hC+D = hC + hD, hλC = λhC .

Proof. Again, we consider only C + D:

hC+D(u) = sup{u · (x + y) : x ∈ C, y ∈ D}
= sup{u · x : x ∈ C} + sup{u · y : y ∈ D}
= hC (u)+ hD(u) for u ∈ E

d . ��
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We are now ready to state some simple algebraic properties of the space C
of convex bodies in E

d , endowed with the operations of Minkowski addition and
multiplication with positive numbers.

Theorem 6.1. The following claims hold:

(i) C, endowed with Minkowski addition, is a commutative semigroup with cancel-
lation law.

(ii) C, endowed with Minkowski addition, and multiplication with non-negative num-
bers is a convex cone, i.e. C + D, λC ∈ C for C, D ∈ C, λ ≥ 0.

Proof. (i) Proposition 6.1 and the simple fact that Minkowski addition is associative
and commutative, settle the first part of statement (i). For the proof that the cancella-
tion law holds, let B,C, D ∈ C such that B+D = C+D. Then hB+hD = hC+hD

by Proposition 6.2. Therefore, hB = hC which, in turn, implies that B = C by
Proposition (4) before Theorem 4.3.

(ii) This is simply a re-statement of Proposition 6.1. ��

Direct Sum Decomposition of Convex Bodies

A convex body C is the direct sum of the convex bodies C1, . . . ,Cm ,

C = C1 ⊕ · · · ⊕ Cm,

if
C = C1 + · · · + Cm and lin C1 ⊕ · · · ⊕ lin Cm exists.

By lin we mean the linear hull. The convex body C is directly irreducible if, in any
direct decomposition of C , at most one summand is different from {o}.

Our aim is to prove the following result of the author [412], II. For alternative
proofs and generalizations, see [412], Gale and Klee [352] and Kincses [584] and
Schneider [907]. The following proof is essentially that of Kincses.

Theorem 6.2. Let C ∈ Cp. Then there are directly irreducible convex bodies C1, . . . ,
Cm ∈ C, such that

C = C1 ⊕ · · · ⊕ Cm .

This decomposition is unique up to the order of the summands.

For the proof we need the following tool. For later reference we prove it in a slightly
more general form than is needed below. HC (u) is the support hyperplane of C with
exterior normal vector u.

Lemma 6.1. Let C1, . . . ,Cm ∈ C, λ1, . . . , λm ≥ 0, and u ∈ Sd−1. Then, for C =
λ1C1 + · · · + λmCm, the following holds:

C ∩ HC (u) = λ1
(
C1 ∩ HC1(u)

)+ · · · + λm
(
Cm ∩ HCm (u)

)
.



6 Mixed Volumes and Quermassintegrals 83

Proof. First, let x ∈ C ∩HC (u). Then x = λ1x1+· · ·+λm xm with suitable xi ∈ Ci .
Clearly, u · xi ≤ hCi (u) for each i . In case λi = 0 we are free to choose xi ∈
Ci ∩ HCi (u). It remains to show that, in case λi > 0, we also have xi ∈ Ci ∩ HCi (u).
If this did not hold, then there is a λi > 0 where u · xi < hCi (u). Then,

hC (u) = u · x = λ1u · x1 + · · · + λmu · xm < λ1hC1(u)+ · · · + λmhCm (u)

= hλ1C1+···+λmCm (u) = hC (u)

by Proposition 6.2, which is a contradiction. Thus xi ∈ Ci∩HCi (u) for i = 1, . . . ,m.
Second, let xi ∈ Ci ∩ HCi (u) for i = 1, . . . ,m. Then

x = λ1x1 + · · · + λm xm ∈ λ1C1 + · · · + λmCm = C,

u · x = λ1u · x1 + · · · + λmu · xm = λ1hC1(u)+ · · · + λmhCm (u)

= hλ1C1+···+λmCm (u) = hC (u), or x ∈ HC (u).

Hence x ∈ C ∩ HC (u). ��
Proof of the Theorem. Existence. C is a proper convex body. If C = C1⊕· · ·⊕Cm ,
then each Ci is a proper convex body in its linear hull lin Ci . Thus, if a body Ci can
be directly decomposed, the decomposition takes place in lin Ci . This then leads to a
refinement of the given direct decomposition of C . Since a proper segment contained
in a line through o is directly irreducible, the refinement process stops after a finite
number of steps.

Uniqueness. Assume that

C = C1 ⊕ · · · ⊕ Cm = D1 ⊕ · · · ⊕ Dn,

where the Ci , D j all have at least dimension 1 and are directly irreducible. Choose
a unit vector u orthogonal to lin C1 such that the support set (C2 ⊕ · · · ⊕ Cm) ∩
HC2⊕···⊕Cm (u) consists of a single point s, say. Then C ∩ HC (u) = C1 + s, and
therefore,

C1 + s = C ∩ HC (u) =
(
D1 ∩ HD1(u)

)⊕ · · · ⊕ (
Dn ∩ HDn (u)

)

by Lemma 6.1. If s = s1 + · · · + sn where s j ∈ lin D j , then

C1 =
(
D1 ∩ HD1(u)− s1

)+ · · · + (
Dn ∩ HDn (u)− sn

)

and since lin
(
D j ∩ HD j (u) − s j

) ⊆ lin D j , the following direct sum of linear sub-
spaces exists:

lin
(
D1 ∩ HD1(u)− s1

)⊕ · · · ⊕ lin
(
Dn ∩ HDn (u)− sn

)
.

Thus
C1 =

(
D1 ∩ HD1(u)− s1

)⊕ · · · + ⊕(
Dn ∩ HDn (u)− sn

)
.

Since C1 is directly irreducible, it coincides with one of these summands and thus
is a subset of D j − s j , say. Changing the roles of the Ci and the D j , we see that,
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similarly, D j is a subset of a translate of Ci , say. This is possible only if C1 = Ci .
Hence C1 = D j − s j . Continuing in this way, we obtain m = n and {C1, . . . ,Cm} =
{D1 − s1, . . . , Dm − sm}. Hence

D1 ⊕ · · · ⊕ Dm − (s1 + · · · + sm) = C1 ⊕ · · · ⊕ Cm = D1 ⊕ · · · ⊕ Dm .

This can hold only if s j = 0 for all j . Hence {C1, . . . ,Cm} = {D1, . . . , Dm},
concluding the proof of the uniqueness. ��

Hausdorff Metric and the Natural Topology on C

The space C of convex bodies in E
d is endowed with a natural topology. It can be in-

troduced as the topology induced by the Hausdorff metric δH on C, which is defined
as follows:

δH (C, D) = max
{

max
x∈C

min
y∈D

‖x − y‖, max
y∈D

min
x∈C

‖x − y‖} for C, D ∈ C.

The metric δH was first defined by Hausdorff [481] in a more general context. A non-
symmetric version of it was considered earlier by Pompeiu [812] and Blaschke [124]
was the first to put it to use in convex geometry in his selection theorem, see below.
The Hausdorff metric can be defined in different ways.

Proposition 6.3. Let C, D ∈ C. Then:

(i) δH (C, D) = inf
{
δ ≥ 0 : C ⊆ D + δBd , D ⊆ C + δBd

}

(ii) δH (C, D) = max
{|hC (u)− hD(u)| : u ∈ Sd−1

}

(iii) δH (C, D) = maximum distance which a point of one of the bodies C, D
can have from the other body

Proof. Left to the reader. ��

If we consider a topology on C or on a subspace of it, such as Cp, it is always assumed
that it is the topology induced by δH .

The Blaschke Selection Theorem

In many areas of mathematics there is need for results which guarantee that certain
problems, in particular extremum problems, have solutions. Examples of such results
are the Bolzano–Weierstrass theorem for sequences in R, the Arzelà–Ascoli theorem
for uniformly bounded equicontinuous families of functions and the selection Theo-
rem 25.1 of Mahler for (point) lattices.

In convex geometry, the basic pertinent result is Blaschke’s selection theorem
[124] for convex bodies. It can be used to show that, for example, the isoperimetric
problem for convex bodies has a solution. Here we give the following version of it,
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where a sequence of convex bodies is bounded, if it is contained in a suitable (solid
Euclidean) ball.

It turns out that the selection theorems of Arzelà–Ascoli, Blaschke and Mahler
are closely connected, see the remarks at the end of this section and Groemer’s proof
of Mahler’s theorem outlined in Sect. 25.2.

Theorem 6.3. Any bounded sequence of convex bodies in E
d contains a convergent

subsequence.

We present two proofs. The first proof, in essence, is due to Blaschke, the second one
to Heil [487].

Proof (using ε-nets). Let C1,C2, · · · ∈ C be contained in a ball B. For the proof that
the sequence C1,C2, . . . , contains a convergent subsequence, the following will be
shown first:

(1) The sequence C1,C2, . . . , contains a subsequence D1, D2, . . . , such that

δH (Dm, Dn) ≤ 1

2min {m,n} for m, n = 1, 2, . . .

For the proof of (1) the main step is to prove that

(2) There are sequences C11,C12, . . . ;C21,C22, . . . ; . . . ,
where C11,C12, . . . is a subsequence of C1,C2, . . . , and each subsequent
sequence is a subsequence of the sequence preceding it, such that

δH (Cmi ,Cmj ) ≤ 1

2m
for m = 1, 2, . . . , and i, j = 1, 2, . . .

The first step of the induction is similar to the step from m to m+1, thus only the latter
will be given. Let m ≥ 1 and assume that the first m sequences have been constructed
already and satisfy the inequality for 1, . . . ,m. Since the ball B is compact, it can be
covered by a finite family of balls, each of radius 1/2m+2 with centre in B. To each
convex body in B we associate all balls of this family which intersect it. Clearly,
these balls cover the convex body. Since there are only finitely many subfamilies
of this family of balls, there must be one which corresponds to each convex body
from an infinite subsequence of Cm1,Cm2, . . . , say Cm+1 1,Cm+1 2, . . . Now, given
i, j = 1, 2, . . . , for any x ∈ Cm+1 i there is a ball in our subfamily which contains x .
Hence ‖x − c‖ ≤ 1/2m+2, where c is the centre of this ball. This ball also intersects
Cm+1 j . Thus we may choose y ∈ Cm+1 j with ‖y − c‖ ≤ 1/2m+2. This shows that,
for each x ∈ Cm+1 i , there is y ∈ Cm+1 j with ‖x − y‖ ≤ 1/2m+1. Similarly, for
each y ∈ Cm+1 j there is x ∈ Cm+1 i with ‖x − y‖ ≤ 1/2m+1. Thus

δH (
Cm+1 i ,Cm+1 j

) ≤ 1

2m+1
for i, j = 1, 2, . . .

by Proposition 6.3(iii). The induction is thus complete, concluding the proof of (2).
By considering the diagonal sequence D1 = C11, D2 = C22, . . . , we see that (1) is
an immediate consequence of (2).
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For the proof of the theorem it is sufficient to show that

(3) D1, D2, · · · → D, where D =
∞⋂

n=1

(
Dn + 1

2n−1
Bd

)
∈ C.

(1) implies that

D1 + 1

2
Bd ⊇ D2, D2 + 1

22
Bd ⊇ D3, . . .

and thus,

(4) D1 + Bd ⊇ D2 + 1

2
Bd ⊇ . . .

Being the intersection of a decreasing sequence of non-empty compact convex sets
(see (3) and (4)), the set D is also non-empty, compact and convex, i.e. D ∈ C. In
order to prove that D1, D2, · · · → D, let ε > 0. Then

(5) D ⊆ Dn + 1

2n−1
Bd ⊆ Dn + εBd for n ≥ 1+ log2

1

ε
.

Let G = int(D + εBd). The intersection of the following decreasing sequence of
compact sets

(
D1 + Bd)\G ⊇

(
D2 + 1

2
Bd

)
\G ⊇ . . .

is contained both in D (see (3)) and in E
d\G and thus is empty. This implies that,

from a certain index on, the sets in this sequence are empty. That is,

(6) Dn ⊆ Dn + 1

2n−1
Bd ⊆ G ⊆ D + εBd for all sufficiently large n.

Since ε > 0 was arbitrary, (5) and (6) show that D1, D2, · · · → D, concluding the
proof of (3) and thus of the theorem. ��

Proof (using the Arzelà–Ascoli theorem). A special case of the Arzelà–Ascoli
theorem is as follows:

(7) Let B be a ball in E
d and f1, f2, · · · : B → R a sequence of functions such

that

| fn(x)| ≤ const for x ∈ B, n = 1, 2, . . . ,

| fn(x)− fn(y)| ≤ ‖x − y‖ for x, y ∈ B, n = 1, 2, . . .

Then the sequence f1, f2, . . . contains a uniformly convergent subse-
quence.

For the proof of the selection theorem we have to show the following:

(8) Let B be a ball and C1,C2, . . . a sequence of convex bodies in B. Then this
sequence contains a convergent subsequence.
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Define δn : B → R, n = 1, 2, . . . , by

δn(x) = dist(x,Cn) = min{‖x − u‖ : u ∈ Cn} for x ∈ B.

In order to apply (7) to the functions δn , some properties have to be proved first. To
see that

(9) δn is convex,

let x, y ∈ B and 0 ≤ λ ≤ 1. Choose u, v ∈ Cn such that δn(x) = ‖x − u‖
and δn(y) = ‖y − v‖. Since (1 − λ)u + λv ∈ Cn by the convexity of Cn , it then
follows that

δn
(
(1− λ)x + λy

) ≤ ‖(1− λ)x + λy − (
(1− λ)u + λv)‖

≤ (1− λ)‖x − u‖ + λ‖y − v‖ = (1− λ)δn(x)+ λδn(y),
concluding the proof of (9). For the proof that

(10) |δn(x)− δn(y)| ≤ ‖x − y‖ for x, y ∈ B,

let x, y ∈ B and choose u, v ∈ Cn such that δn(x) = ‖x − u‖ and δn(y) = ‖y − v‖.
Then

δn(x) ≤ ‖x − v‖ ≤ ‖x − y‖ + ‖y − v‖ = ‖x − y‖ + δn(y),
or δn(x)− δn(y) ≤ ‖x − y‖. Similarly, δn(y)− δn(x) ≤ ‖x − y‖ and the inequality
(10) follows. (Alternatively, one may use Lemma 4.1.) Next,

(11) |δn(x)| ≤ diam B for x ∈ B.

Note that δn(x) = 0 for x ∈ Cn and take (10) into account.
Propositions (10), (11) and (7) imply that there is a subsequence δn1, δn2 , . . . ,

converging uniformly to a function δC : B → R. As the uniform limit of a sequence
of non-negative, convex and continuous functions on B, also δC is non-negative,
convex and continuous on B. Hence

C = {
x ∈ B : δC (x) = 0

} ∈ C or C = ∅.
If C = ∅, then δC (x) > 0 for all x ∈ B. Hence δn j (x) > 0 for all sufficiently large
j and all x ∈ B. This contradiction shows that

(12) C ∈ C.
We finally show that

(13) Cn1,Cn2 , · · · → C.

Let ε > 0. Since δC is continuous on the compact set B and thus uniformly continu-
ous and since δC is 0 precisely on C , there is δ > 0 such that

{
x ∈ B : δC (x) ≤ δ

} ⊆ C + εBd .

Since δC (x) ≤ δnk (x)+ δ for all sufficiently large k,

(14) Cnk =
{

x ∈ B : δnk (x) = 0
} ⊆ {

x ∈ B : δC (x) ≤ δ
} ⊆ C + εBd

for all sufficiently large k.
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The definition of δnk shows that

{
x ∈ B : δnk (x) ≤ ε

} ⊆ Cnk + εBd .

Since δnk (x) ≤ δC (x)+ ε for all sufficiently large k,

(15) C = {
x ∈ B : δC (x) = 0

} ⊆ {
x ∈ B : δnk (x) ≤ ε

} ⊆ Cnk + εBd

for all sufficiently large k.

ε > 0 was chosen arbitrarily. Thus (14) and (15) together with Proposition 6.3 (i)
imply (13).

Propositions (12) and (13) yield (8), concluding the proof of the theorem. ��

Other Versions and Generalizations of the Selection Theorem

Sometimes the following versions of Blaschke’s selection theorem are needed in the
context of convex geometry. These are immediate consequences of the above form of
the selection theorem. Here C is endowed with its natural topology and its subspace
Cp of proper convex bodies with the corresponding induced topology.

Theorem 6.4. The following claims hold:

(i) C is a locally compact space.

(ii) Cp is a locally compact space.

(iii) C, endowed with the metric δH , is a boundedly compact complete metric
space.

Clearly, the Hausdorff metric can be defined for the space of compact sets in any
metric space. The above proofs can easily be generalized to show that the Blaschke
selection theorem holds for spaces of compact sets in boundedly compact metric
spaces endowed with the Hausdorff metric, and even in more general situations.
Such spaces of compact sets are sometimes called hyperspaces. An analogue of the
selection theorem for hyperspaces was first proved by Vietoris [1010]. Related, more
general results are due to Michael [722]. For hyperspaces, see Beer [88] and Illanes
and Nadler [535].

Equivalence of Blaschke’s Selection Theorem and the Arzelà–Ascoli Theorem

Using a general version of Blaschke’s selection theorem, Bol [140] proved the clas-
sical Arzelà–Ascoli theorem. Conversely, Heil [487] proved a general version of
Blaschke’s selection theorem by means of the Arzelà–Ascoli theorem.

6.2 Minkowski’s Theorem on Mixed Volumes and Steiner’s Formula

A highlight of the early Brunn–Minkowski theory is Minkowski’s [744] theorem on
mixed volumes. It says that the volume of a linear combination of convex bodies is
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a polynomial in the coefficients of the linear combination. The coefficients of the
polynomial are the mixed volumes. The following quotation from Hilbert’s [502],
p.XIX, obituary on Minkowski illustrates the meaning of mixed volumes.

...Thus the concept of mixed volume appears as the simplest generalization which
comprises the notions of volume, surface area, total mean curvature as special cases.
In this way the latter notions are related much more closely to each other. Thus we
may expect now to obtain a deeper understanding than was possible before, of the
mutual relations of these notions...

An important special case is Steiner’s [959] formula for the volume of parallel
bodies. The coefficients of the corresponding polynomial are, up to multiplicative
constants, the so-called quermassintegrals. Mixed volumes and quermassintegrals
played a dominant role in convex geometry throughout the twentieth century.

In this section we prove Minkowski’s theorem on mixed volumes and Steiner’s
formula. In the following sections the notions of mixed volumes and quermassinte-
grals will be investigated in more detail.

For references, see the introduction of this chapter.

Minkowski’s Theorem on Mixed Volumes

Theorem 6.5. Let C1, . . . ,Cm ∈ C. Then there are coefficients V (Ci1 , . . . ,Cid ),
1 ≤ i1, . . . , id ≤ m, called mixed volumes, which are symmetric in the indices and
such that

V (λ1C1 + · · · + λmCm) =
m∑

i1,...,id=1

V (Ci1, . . . ,Cid )λi1 · · · λid for λ1, . . . , λm ≥ 0.

The proof is by induction. It follows a clear line and, basically, is not difficult. To
make it more transparent, it is split into several steps. The first tool is Lemma 6.1
above.

A convex polytope is the convex hull of a finite set in E
d . Let P denote the space

of all convex polytopes in E
d . Given P ∈ P , a face of P is the intersection of P with

a support hyperplane. It is the convex hull of the intersection of the finite set which
determines P with the support hyperplane and thus also a convex polytope. A face
of dimension d − 1 is called a facet. For more information, see Sect. 14.1

Lemma 6.2. Let P1, . . . , Pm ∈ P . Then the following claims hold:

(i) P = λ1 P1 + · · · + λm Pm ∈ P for λ1, . . . , λm ≥ 0.

(ii) There is a finite set U ⊆ Sd−1 such that for all λ1, . . . , λm ≥ 0, for which
P = λ1 P1 + · · · + λm Pm is a proper convex polytope, the exterior unit normal
vectors of the facets of P are contained in U.

Proof. (i) We may assume that λ1, . . . , λm > 0, otherwise consider fewer polytopes.
Then the following will be shown.

(1) Let e ∈ P be extreme and e = λ1e1 + · · · + λmem , where ei ∈ Pi . Then
each ei is extreme in Pi .
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If ei ∈ Pi is not extreme in Pi , then there is a line segment S ⊆ Pi such that ei is
a relative interior point of S. Then e is a relatively interior point of the line segment
λ1e1 + · · · + λi−1ei−1 + λi S + λi+1ei+1 + · · · + λmem ⊆ P and thus cannot be
extreme in P . This contradiction completes the proof of (1). Since by Theorem 5.5
each Pi has only finitely many extreme points, its vertices, (1) implies that P has only
finitely many extreme points. Since P is the convex hull of these by Theorem 5.5, it
is a polytope.

(ii) We show the following:

(2) Let Fi be a face of Pi for i = 1, . . . ,m, and λ1, . . . , λm ≥ 0, such that
λ1 F1 + · · · + λm Fm has dimension d − 1 (and is contained in a hyperplane
H ). Then F1 + · · · + Fm also has dimension d − 1 and is contained in a
hyperplane parallel to H .

It is sufficient to show this under the assumption that λi > 0 and o ∈ relint Fi for
each i . Then

H = lin(λ1 F1 + · · · + λm Fm) = lin λ1 F1 + · · · + lin λm Fm

= lin F1 + · · · + lin Fm = lin(F1 + · · · + Fm),

concluding the proof of (2). Since each Pi has only finitely many faces, there is only
a finite set U of unit normal vectors of hyperplanes H as in (2). Since the hyperplanes
which contain facets of P = λ1 P1 + · · · + λm Pm are of this type by Lemma 6.1, the
proof of (ii) is complete. ��
Lemma 6.3. Let pn, n = 1, 2, . . . , be a sequence of real homogeneous polynomials
in m variables of degree d and let p be a real function in m variables, defined for
λ1, . . . , λm ≥ 0. Assume that

(3) pn(λ1, . . . , λm)→ p(λ1, . . . , λm) as n →∞
for each m-tuple λ1, . . . , λm ≥ 0.

Then p is a homogeneous polynomial in m variables of degree d, restricted to
λ1, . . . , λm ≥ 0.

Proof. First, the following will be shown:

(4) Let qn, n = 1, 2, . . . , be a sequence of real polynomials in one variable of
degree d and let q be a real function defined for λ ≥ 0. Assume that

qn(λ)→ q(λ) for each λ ≥ 0.

Then q is a polynomial in one variable of degree d, restricted to λ ≥ 0.

Let qn(λ) = a0n + a1nλ+ · · · + adnλ
d for λ ∈ R. Then

a0n = qn(0)→ q(0),
a0n + a1n + · · · + adn = qn(1)→ q(1),
a0n + a1n2+ · · · + adn2d = qn(2)→ q(2),
. . . . . . . . . . . . . . . . . . . . . . . . . .
a0n + a1nd + · · · + adndd = qn(d)→ q(d).
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The coefficient matrices of these systems of linear equations in a0n, . . . , adn, n =
1, 2, . . . , all are equal to a fixed Vandermonde matrix and thus non-singular. An
application of Cramer’s rule then shows that

a0n → a0, . . . , adn → ad , say.

Thus

qn(λ)→
{

a0 + a1λ+ · · · + adλ
d

q(λ)

}
for each λ ≥ 0.

Hence q(λ) = a0 + a1λ+ · · · + adλ
d for λ ≥ 0, concluding the proof of (4).

We now prove the lemma by induction on m. In the following, all coefficients are
supposed to be symmetric in the indices. For m = 1 let pn(λ) = anλ

d . Then

an = pn(1)→ p(1) = a, say,

by assumption. Thus

pn(λ) = anλ
d →

{
a λd

p(λ)

}
for each λ ≥ 0

by assumption. Hence p(λ) = aλd for λ ≥ 0. (The case m = 1 is also a conse-
quence of Proposition (4).) Suppose now that m > 1 and that the lemma holds for
1, 2, . . . ,m − 1. Then

pn(λ1, . . . , λm) = p0n(λ2, . . . , λm)+p1n(λ2, . . . , λm)λ1+· · ·+pdn(λ2, . . . , λm)λ
d
1 ,

where
pin(λ2, . . . , λm)

is a homogeneous polynomial of degree d − i in the variables λ2, . . . , λm . Given
λ2, . . . , λm ≥ 0, we have pn(λ1, λ2, . . . , λm)→ p(λ1, λ2, . . . , λm) for any λ1 ≥ 0
by assumption. An application of (4) then shows that, for the coefficients pin, i =
0, . . . , d, (which are homogeneous polynomials in λ2, . . . , λm of degree d − i),

pin(λ2, . . . , λm) converges as n →∞ for λ2, . . . , λm ≥ 0 and i = 0, . . . , d.

Denote the limit by qi (λ2, . . . , λm). The induction hypothesis, applied for i =
0, . . . , d, shows that

pin(λ2, . . . , λm)→ qi (λ2, . . . , λm) for λ2, . . . , λm ≥ 0 and i = 0, . . . , d,

where qi (λ2, . . . , λm) is the restriction to λ2, . . . , λm ≥ 0 of a suitable homogeneous
polynomial in λ2, . . . , λm of degree d − i . Then, clearly,

pn(λ1, . . . , λd) =
d∑

i=0

pin(λ2, . . . , λm)λ
i
1 →

d∑

i=0

qi (λ2, . . . , λm)λ
i
1

= q(λ1, . . . , λm) for λ1 ≥ 0 and λ2, . . . , λm ≥ 0,

say, where q is a homogeneous polynomial of degree d in λ1, . . . , λm . Comparing
this with (3), we see that p(λ1, . . . , λm) = q(λ1, . . . , λm) for λ1, . . . , λm ≥ 0,
concluding the induction and thus the proof of the lemma. ��
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Let v(·) denote (d − 1)-dimensional volume.

Proof of the Theorem. First, the theorem is proved for convex polytopes by induc-
tion on d. The case d = 1 deals with line segments and is left to the reader. Assume
now that d > 1 and that the theorem holds for d − 1. Let P1, . . . , Pm ∈ P and
choose U as in Lemma 6.2. Then the formula for the volume of convex polytopes,
see Proposition (9) in Sect. 16.1, and Lemma 6.1 yield,

V (P = λ1 P1 + · · · + λm Pm) = 1

d

∑

u∈U

{
h P (u) v(F) : F = P ∩ HP (u)

}

= 1

d

∑

u∈U

{
hλ1 P1+···+λm Pm (u) v(λ1 F1 + · · · + λm Fm) : Fi = Pi ∩ HPi (u)

}

for λ1, . . . , λm ≥ 0.

Now note that hλ1 P1+···+λm Pm (u) = λ1h P1(u)+· · ·+λmh Pm (u), by Proposition 6.2,
and v(λ1 F1 + · · · + λm Fm) is a homogeneous polynomial of degree d − 1 in
λ1, . . . , λm by the induction hypothesis, where the coefficients are symmetric in
their indices. (F1, . . . , Fm may be in different parallel hyperplanes, but this does not
change the area of λ1 F1 + · · · + λm Fm .) Hence V (P) is a homogeneous polynomial
of degree d in λ1, . . . , λm for λ1, . . . , λm ≥ 0. By changing the coefficients suitably,
if necessary, we may assume that the new coefficients are symmetric in their indices.
This concludes the induction and thus proves the theorem for convex polytopes.

Second, we prove the theorem for convex bodies C1, . . . ,Cm ∈ C. Choose
sequences of convex polytopes (P1n), . . . , (Pmn) such that Pin → Ci as n → ∞
for i = 1, . . . ,m, see the proof of Theorem 7.4. Since we have already proved the
theorem for convex polytopes, there are homogeneous polynomials pn of degree d
in λ1, . . . , λm , the coefficients of which are symmetric in their indices, such that

V (λ1 P1n + · · · + λm Pmn) = pn(λ1, . . . , λm)

for n = 1, 2, . . . and λ1, . . . , λm ≥ 0.

Since Pin → Ci as n → ∞, it follows for any m-tuple λ1, . . . , λm ≥ 0, that
λ1 P1n +· · ·+λm Pmn → λ1C1+· · ·+λmCm . Thus, noting that by Theorem 7.5 the
volume V (·) is continuous on C, it follows that:

V (λ1 P1n+· · ·+λm Pmn)→ V (λ1C1+· · ·+λmCm) as n →∞ for λ1, . . . , λm ≥ 0.

Therefore the polynomials pn satisfy

pn(λ1, . . . , λm)→ V (λ1C1 + · · · + λmCm) as n →∞ for λ1, . . . , λm ≥ 0.

An application of Lemma 6.3 then shows that V (λ1C1+· · ·+λmCm) itself is a homo-
geneous polynomial in λ1, . . . , λm of degree d. We clearly may write this polynomial
with coefficients which are symmetric in their indices. Finally, denote the coefficient
of λi1 · · · λid by V (Ci1, . . . ,Cid ). ��
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C + λB2C

Fig. 6.2. Steiner’s formula for parallel bodies

Steiner’s Formula for Parallel Bodies

An important special case of Theorem 6.5 is the following result of Steiner [959]
(see Fig. 6.2).

Theorem 6.6. Let C ∈ C. Then

V (C + λBd) = W0(C)+
(

d

1

)
W1(C)λ+ · · · +

(
d

d

)
Wd(C)λ

d f or λ ≥ 0,

where
Wi (C) = V (C, . . . ,C︸ ︷︷ ︸

d−i

, Bd , . . . , Bd
︸ ︷︷ ︸

i

), i = 0, . . . , d.

The polynomial on the right side is the Steiner polynomial and the quantities Wi are
the quermassintegrals or the mean projection measures of the convex body C .

Remark. It is a natural, yet not intensively studied problem to extract geometric
properties of convex bodies from their Steiner polynomials. An open conjecture of
Teissier [993] relates the roots of the Steiner polynomial to the inradius and the
circumradius of the corresponding convex body. For a series of interesting geo-
metric results related to Steiner polynomials in the 2- and 3-dimensional case, see
Hernández Cifre and Saorı́n [496] who also give some references to the literature.

Remark. For an explanation why quermassintegrals are called quermassintegrals,
see a remark after Kubota’s theorem 6.16.

6.3 Properties of Mixed Volumes

Mixed volumes are a seminal notion in convex geometry and, thus, have been
investigated intensively from various viewpoints. Mixed area measures are local-
ized versions of mixed volumes. Mixed volumes form a bridge between convex and
algebraic geometry. For hints in this direction, see Sect. 19.5.
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The present section contains a series of important properties of mixed volumes.
We start with a representation of mixed volumes by means of volumes, then con-
sider linearity, continuity, monotony, and valuation properties and, finally, prove
Minkowski’s inequalities.

For more information we refer to the books of Leichtweiss [640], Burago and
Zalgaller [178] and Schneider [905] and the survey of Sangwine-Yager [878].

A Representation of Mixed Volumes

The following representation of mixed volumes gives insight into the meaning of
mixed volumes. If, in a sum, a summand has a tilde, it is to be omitted. Summation
is from 1 to d, taking into account the stated restrictions.

Theorem 6.7. Let C1, . . . ,Cd ∈ C. Then

(1) d ! V (C1, . . . ,Cd) = V (C1+· · ·+Cd)−
∑

i1

V (C1+· · ·+ C̃i1 +· · ·+Cd)

+
∑

i1<i2

V (C1 + · · · + C̃i1 + · · · + C̃i2 + · · · + Cd)− · · ·

+ (−1)d−1
∑

i

V (Ci ).

Proof. By Minkowski’s theorem on mixed volumes, the sum appearing on the right
side in (1) is equal to the following expression, where in each term we have omitted
V (C j1, . . . ,C jd ).

(2)
∑

j1,..., jd

−∑

i1

∑

j1,..., jd �=i1

+ ∑

i1<i2

∑

j1,..., jd �=i1,i2

− ∑

i1<i2<i3

∑

j1,..., jd �=i1,i2,i3

+ · · ·

Here the indices j1, . . . , jd run from 1 to d. We consider the mixed volumes appear-
ing in (2). First, take all mixed volumes whose indices coincide with 1, . . . , d up to
their order. There are d ! such mixed volumes. They appear only in the first term and
all have the same value. Their total value thus is d !V (C1, . . . ,Cd). Secondly, take a
mixed volume V (C j1, . . . ,C jd ), where the indices j1, . . . , jd are not a permutation
of 1, . . . , d. Choose i1 < · · · < ik , k maximal, such that j1, . . . , jd �= i1, . . . , ik .
If this mixed volume and the mixed volumes corresponding to permutations of its
indices together appear in the first sum l times, they appear in the second sum kl
times, in the third sum

(k
2

)
l times, etc. Thus they appear in the expression (2), taken

with the appropriate sign,

(
1−

(
k

1

)
+

(
k

2

)
− · · · + (−1)k

(
k

k

))
l = (1− 1)k l = 0

times. Since they all have the same value, their contribution to the expression in (2)
thus is 0. This shows that all mixed volumes in the expression (2) cancel, except
those with indices which are permutations of 1, . . . , d, where the contribution of the
latter is d ! V (C1, . . . ,Cd), as was shown first. ��
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C o D

C + D

Fig. 6.3. Mixed volume 2V (C, D) = V (C + D)− V (C)− V (D)

This result permits us to visualize mixed volumes, at least in dimension 2. Consider
two convex bodies C and D. Then

2V (C, D) = V (C + D)− V (C)− V (D).

The shaded figure is the sum C+D (see Fig. 6.3). The area of the lightly shaded part
equals 2V (C, D).

Some of the following results are easy consequences of Theorem 6.7. In spite of
this we present their common proofs.

The Notation for Mixed Volumes

The following result justifies the notation of mixed volumes.

Proposition 6.4. Let C1, . . . ,Cm ∈ C and j1, . . . , jd ∈ {1, . . . ,m}. Then V (C j1, . . . ,
C jd ) depends only on C j1, . . . ,C jd .

Proof. Let D1, . . . , Dm ∈ C such that C j1 = D j1, . . . ,C jd = D jd . Then, putting
λi = 0 for all i �= j1, . . . , jd ,

∑

i1,...,id∈{ j1,..., jd }
V (Ci1 , . . . ,Cid )λi1 · · · λid

= V (λ j1C j1 + · · · + λ jd C jd )

= V (λ j1 D j1 + · · · + λ jd D jd )

=
∑

i1,...,id∈{ j1,..., jd }
V (Di1, . . . , Did )λi1 · · · λid

for λ j1, . . . , λ jd ≥ 0.

Comparing coefficients, it follows in particular, that V (C j1, . . . ,C jd ) = V (D j1, . . . ,
D jd ). ��

Rigid Motions

Since volume is translation invariant and, more generally, rigid motion invariant, see
Theorem 7.5, the following statements hold.
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Proposition 6.5. Let C1, . . . ,Cd ∈ C. Then:

(i) V (C1 + t1, . . . ,Cd + td) = V (C1, . . . ,Cd) for all t1, . . . , td ∈ E
d .

(ii) V (mC1, . . . ,mCd) = V (C1, . . . ,Cd) for all rigid motions m : E
d → E

d .

Remark. More generally, we have the following: let a : E
d → E

d be an affinity
with determinant det a �= 0. Then

V (aC1, . . . , aCd) = | det a|V (C1, . . . ,Cd).

Linearity

Mixed volumes are linear in each variable with respect to non-negative linear combi-
nations of convex bodies.

Proposition 6.6. Let C, D, D2, . . . , Dd ∈ C. Then

V (λC + µD, D2, . . . , Dd) = λV (C, D2, . . . , Dd)+ µV (D, D2, . . . , Dd)

for λ,µ ≥ 0.

Proof. Let λ,µ ≥ 0. The quantities

V
(
λ1(λC + µD)+ λ2 D2 + · · · + λd Dd

)
,

V
(
(λ1λ)C + (λ1µ)D + λ2 D2 + · · · + λd Dd

)

have identical polynomial representations in λ1, . . . , λd . The coefficient of λ1 · · · λd

in the first polynomial is

d !V (λC + µD, D2, . . . , Dd).

The coefficient of λ1 · · · λd in the second polynomial can be obtained by representing
the second quantity as a polynomial in λ1λ, λ1µ, λ2, . . . , λd and then collecting
λ1 · · · λd . Thus it is

d !λV (C, D2, . . . , Dd)+ d !µV (D, D2, . . . , Dd).

Since the coefficients coincide, the proof is complete. ��

Continuity

Mixed volume are continuous in their entries.

Theorem 6.8. V (·, . . . , ·) is continuous on C × · · · × C.

Proof. The following remark is clear:

Let p, pn, n = 1, 2, . . . , be homogeneous polynomials of degree d in d
variables such that
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pn(λ1, . . . , λd)→ p(λ1, . . . , λd) as n →∞
for each d-tuple λ1, . . . , λd ≥ 0.

Assume that all coefficients ai1...id n and ai1...id of pn and p, respectively,
are symmetric in their indices i1, . . . , id . Then

ai1...id n → ai1...id for all i1, . . . , id ∈ {1, . . . , d}.
To show the theorem, consider sequences (C1n), . . . , (Cdn) in C converging to
C1, . . . ,Cd ∈ C say, respectively. Since for λ1, . . . , λd ≥ 0, we have λ1C1n + · · · +
λdCdn → λ1C1 + · · · + λdCd , the continuity of volume, which will be proved in
Theorem 7.5, yields

V (λ1C1n + · · · + λdCdn)→ V (λ1C1 + · · · + λdCd)

for λ1, . . . , λd ≥ 0.

Now apply Minkowski’s mixed volume Theorem 6.5 and the above remark for
a12...dn = V (C1n, . . . ,Cdn) and a12...d = V (C1, . . . ,Cd). ��

Monotony

Mixed volumes are non-decreasing in their entries.

Theorem 6.9. Let C1, . . . ,Cd , D1, . . . , Dd ∈ C such that C1 ⊆ D1, . . . ,Cd ⊆ Dd.
Then V (C1, . . . ,Cd) ≤ V (D1, . . . , Dd).

As examples show, equality does not mean that necessarily Ci = Di for all i . The
proof of the theorem is based on several lemmas which are of interest themselves.
Let v(·) denote (d−1)-dimensional volume. (For (d−1)-dimensional polytopes and
thus for facets of d-dimensional polytopes it coincides with elementary area measure
for polytopes, see Sect. 16.1.)

Lemma 6.4. Let C ∈ C and P ∈ P . For each facet F of P let uF be the exterior unit
normal vector of F. Then

(3) V (C, P, . . . , P) = 1

d

∑

F facet of P

hC (uF ) v(F).

Proof. First, the following will be shown:

(4) Let G be a face of P with dim G ≤ d − 2. Then
V (G + εBd) = O(ε2) as ε→+0.

We may assume that G ⊆ E
d−2, where E

d is represented in the form E
d = E

d−2 ×
E

2. Let Bd−2, B2 be the corresponding unit balls. Choose � > 0 so large that G +
εBd−2 ⊆ �Bd−2 for 0 < ε ≤ 1. Then G + εBd ⊆ (G + εBd−2) × εB2 ⊆
�Bd−2 × εB2 and thus V (G + εBd) = O(ε2) as ε→+0.
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Second, Minkowski’s theorem 6.5 on mixed volumes shows that, in particular,

V (εC + P) = V (P, . . . , P)+ d V (C, P, . . . , P)ε + . . .
+ d V (C, . . . ,C, P)εd−1 + V (C, . . . ,C)εd

= V (P)+ d V (C, P, . . . , P)ε + · · · + V (C)εd .

Thus

(5) V (C, P, . . . , P) = 1

d
lim
ε→+0

V (εC + P)− V (P)

ε
.

Third, in the following we distinguish two cases. In the first case let o ∈ C .
Choose σ > 0 such that C ⊆ σ Bd . The convex body εC + P then may be dissected
into P , into cylinders, possibly slanting, with the facets as bases and into the remain-
ing part of εC+P . The cylinders can be described as follows: for a facet F of P with
exterior unit normal vector uF choose a point p ∈ C ∩ HC (uF ). The corresponding
cylinder then is F + ε[o, p]. The remaining part of εC + P is contained in the union
of sets of the form εC + G ⊆ εσ Bd + G, where G ranges over the faces of P with
dim G ≤ d − 2 and thus has volume O(ε2) by (4). Hence

(6) V (εC + P) = V (P)+ ε
∑

F facet of P

hC (uF ) v(F)+ O(ε2) as ε→ 0.

Finally, (5) and (6) together yield (3) in case where o ∈ C .
In the second case let o �∈ C . Choose t ∈ E

d such that o ∈ C + t . Then

V (C, P, . . . , P) = V (C + t, P, . . . , P)

= 1

d

∑

F facet of P

hC+t (uF ) v(F)

= 1

d

∑

F facet of P

hC (uF ) v(F)+ 1

d

∑

F facet of P

t · uF v(F)

by Proposition 6.5 and the first case. Now note that

∑

F facet of P

t · uF v(F) = ‖t‖
∑

F facet of P

t

‖t‖ · uF v(F) = 0

since the latter sum equals the sum of the area of the projection of bd P onto the
hyperplane through o orthogonal to t , taken once with a + sign and once with a −
sign. This concludes the proof of (3) in case where o �∈ C . ��
For later reference we state the following consequence of (5), where for the
Minkowski surface area, see Sect. 6.4.

Corollary 6.1. Let P ∈ P . Then d V (Bd , P, . . . , P) equals the (Minkowski) surface
area of P.

The next result is a refinement of Lemma 6.4.
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Lemma 6.5. Let C ∈ C, P2, . . . , Pd ∈ P , and let U ⊆ Sd−1 be a finite set contain-
ing all exterior unit normal vectors of the facets of all the polytopes λ2 P2+· · ·+λd Pd

with λ2, . . . , λd ≥ 0. U exists by Lemma 6.2. Let v(·, . . . , ·) denote the mixed volume
in d − 1 dimensions. Then

(7) V (C, P2, . . . , Pd) = 1

d

∑

u∈U

hC (u) v
(
P2 ∩ HP2(u), . . . , Pd ∩ HPd (u)

)
.

Proof. Let P = λ2 P2 + · · · + λd Pd . By Lemmas 6.4 and 6.1 and Theorem 6.5 for
dimension d − 1, we may express V (C, P, . . . , P) in the following form:

(8) V (C, P, . . . , P) = 1

d

∑

u∈U

hC (u) v
(
P ∩ HP (u)

)

= 1

d

∑

u∈U

hC (u) v
(
λ2

(
P2 ∩ HP2(u)

)+ · · · + λd
(
Pd ∩ HPd (u)

))

= 1

d

∑

u∈U

hC (u)
d∑

i2,...,id=2

v
(
Pi2 ∩ HPi2

(u), . . . , Pid ∩ HPid
(u)

)
λi2 . . . λid .

Proposition 6.6 implies that

(9) V (C, P, . . . , P) =
d∑

i2,...,id=2

V (C, Pi2 , . . . , Pid )λi2 · · · λid .

Finally, equating the coefficients of λ2 · · · λd in (8) and (9) yields (7). ��
Proof (of the Theorem by induction on d). For d = 1 the result is trivial. Assume
now that d > 1 and that the result holds for d − 1. It is sufficient to prove the
following:

(10) Let C, D, D2, . . . , Dd ∈ C such that C ⊆ D. Then
V (C, D2, . . . , Dd) ≤ V (D, D2, . . . , Dd).

Since by Theorem 6.8 mixed volumes are continuous, it suffices, for the proof of
(10), to show the following special case of (10):

(11) Let C, D ∈ C such that C ⊆ D and P2, . . . , Pd ∈ P . Then
V (C, P2, . . . , Pd) ≤ V (D, P2, . . . , Pd).

C ⊆ D implies that hC ≤ hD . Represent V (C, P2, . . . , Pd) and V (D, P2, . . . , Pd)
as in Lemma 6.5. Since hC ≤ hD and, by induction,

v
(
P2 ∩ HP2(u), . . . , Pd ∩ HPd (u)

) ≥ v({o}, . . . , {o}) = 0,

the inequality V (C, P2, . . . , Pd) ≤ V (D, P2, . . . , Pd) follows. This proves (11) and
thus (10) which, in turn, yields the theorem. ��
Corollary 6.2. Let C1, . . . ,Cd ∈ C. Then V (C1, . . . ,Cd) ≥ 0.

Proof. Without loss of generality, o ∈ C1, . . . ,Cd . Then Theorem 6.9 shows that
V (C1, . . . ,Cd) ≥ V

({o}, . . . , {o}) = 0. ��
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The Valuation Property

Mixed volumes have the following weak additivity property.

Theorem 6.10. Let C, D, D2, . . . , Dd ∈ C such that C ∪ D ∈ C. Then

V (C ∪ D, D2, . . . , Dd)+ V (C ∩ D, D2, . . . , Dd)
= V (C, D2, . . . , Dd)+ V (D, D2, . . . , Dd).

Note that here we only require that additivity holds for certain pairs C, D, whereas
in other context, for example in measure theory, it is required that it holds for all
pairs C, D. Given D2, . . . , Dd ∈ C, this weak additivity property of the mapping
C → V (C, D2, . . . , Dd) is expressed by saying that this mapping is a valuation. For
more on valuations, see Sect. 7.

We present two proofs of this result. One is based on Minkowski’s theorem on
mixed volumes, the other one was suggested by Károly Böröczky, Jr. [157] and
makes use of the continuity of mixed volumes and of Lemma 6.5.

Proof (using Minkowski’s theorem on mixed volumes). The following simple propo-
sition will be needed later:

(12) Let C, D, E ∈ C such that C ∪ D ∈ C. Then
(C ∪ D)+ E = (C + E) ∪ (D + E) and
(C ∩ D)+ E = (C + E) ∩ (D + E).

The first assertion is clear. Similarly, the inclusion (C∩D)+E ⊆ (C+E)∩(D+E)
is obvious. To show the reverse inclusion, let x ∈ (C + E) ∩ (D + E). Then x =
c+ e = d + f with c ∈ C, d ∈ D, e, f ∈ E . Since C ∪ D is convex, there is a point
p = (1 − λ)c + λd ∈ [c, d] ∩ (C ∩ D). Hence x = (1 − λ)(c + e) + λ(d + f ) =
p + (1 − λ)e + λ f ∈ (C ∩ D) + E . Thus (C + E) ∩ (D + E) ⊆ (C ∩ D) + E ,
concluding the proof of (12).

To prove the theorem, note that

V
(
λ(C ∪ D)+ λ2 D2 + · · · + λd Dd

)

=
d∑

j=0

(
d

j

)
λ j

d∑

i j+1,...,id=2

V (C ∪ D, . . . ,C ∪ D︸ ︷︷ ︸
j

, Di j+1 , . . . , Did )λi j+1 · · · λid ,

V
(
λ(C ∩ D)+ λ2 D2 + · · · + λd Dd

)

=
d∑

j=0

(
d

j

)
λ j

d∑

i j+1,...,id=2

V (C ∩ D, . . . ,C ∩ D︸ ︷︷ ︸
j

, Di j+1 , . . . , Did )λi j+1 · · · λid ,

V (λC + λ2 D2 + · · · + λd Dd)

=
d∑

j=0

(
d

j

)
λ j

d∑

i j+1,...,id=2

V (C, . . . ,C︸ ︷︷ ︸
j

, Di j+1 , . . . , Did )λi j+1 · · · λid ,

V (λD + λ2 D2 + · · · + λd Dd)

=
d∑

j=0

(
d

j

)
λ j

d∑

i j+1,...,id=2

V (D, . . . , D︸ ︷︷ ︸
j

, Di j+1 , . . . , Did )λi j+1 · · · λid .
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By (12) the sum of the first two of these volumes equals the sum of the last two.
Equating the coefficients of λ λ2 · · · λd on both sides of this equality then yields the
theorem. ��
Proof (using the continuity of mixed volumes and Lemma 6.5). Since the mixed
volumes are continuous in their entries by Theorem 6.8, it is sufficient to prove the
theorem in case where D2, . . . , Dd are polytopes.

We now show that, for the support functions of C ∪ D and C ∩ D, we have the
equalities,

hC∩D = min{hC , hD} and hC∪D = max{hC , hD}.
Let u ∈ E

d \ {o}. We may assume that hC (u) ≤ hD(u). Choose x ∈ C, y ∈ D such
that x · u = hC (u) and y · u = hD(u). The line segment from x to y is contained in
C ∪ D since C ∪ D is convex. Let z be the last point on this line segment contained
in C . Then z ∈ C ∩ D. Since

C ∩ D ⊆ C ⊆ {v : v · u ≤ x · u} ⊆ {v : v · u ≤ z · u},
we have

hC∩D(u) ≤ hC (u) ≤ z · u ≤ hC∩D(u)

and thus
hC∩D(u) = hC (u) = min{hC (u), hD(u)}.

This proves the first equality. The proof of the second equality is even simpler and
thus omitted.

These equalities yield the identity,

hC∪D + hC∩D = hC + hD.

Now use Lemma 6.5. ��

Minkowski’s Inequalities

Mixed volumes satisfy several inequalities, in particular the following first and sec-
ond inequality of Minkowski [739].

Theorem 6.11. Let C, D ∈ C. Then:

(i) V (C, D, . . . , D)d ≥ V (C)V (D)d−1, where for proper convex bodies C, D
equality holds if and only if C and D are (positive) homothetic.

(ii) V (C, D, . . . , D)2 ≥ V (C,C, D, . . . , D)V (D).

The equality case in the second inequality is more complicated to formulate and to
prove. It was settled by Bol [139], thereby confirming a conjecture of Minkowski.

Proof. The Brunn–Minkowski theorem 8.3 shows that

(13) The function V
(
(1 − λ)C + λD

) 1
d , 0 ≤ λ ≤ 1, is concave in λ. If C

and D are proper, then this expression is linear if and only if C and D are
homothetic.
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Minkowski’s theorem on mixed volumes implies that

(14) V
(
(1− λ)C + λD

) =
d∑

i=0

(
d

i

)
(1− λ)iλd−i V (C, . . . ,C︸ ︷︷ ︸

i

, D, . . . , D︸ ︷︷ ︸
d−i

).

(i) Let

f (λ) = V
(
(1− λ)C + λD

) 1
d for 0 ≤ λ ≤ 1.

(14) shows that f is differentiable. By (13) f is concave and f (0) = V (C)
1
d , f (1) =

V (D)
1
d . Thus f ′(1) ≤ V (D)

1
d − V (C)

1
d , where equality holds if and only if f is

linear, or, using (13), if and only if C and D are homothetic. Now calculate f ′(1)
using (14). This yields (i), including the equality case.

(ii) By (13) f is concave. (14) shows that f is twice differentiable. Thus
f ′′(1) ≤ 0. This yields (ii). ��

The Alexandrov–Fenchel Inequality

There is a far reaching generalization of Minkowski’s inequalities, the inequality
of Alexandrov [11, 13] and Fenchel [333]:

Theorem 6.12. Let C, D, D3, . . . , Dd ∈ C. Then,

V (C, D, D3, . . . , Dd)
2 ≥ V (C,C, D3, . . . , Dd) V (D, D, D3, . . . , Dd).

This inequality has attracted a great deal of interest in the last two or three decades.
It is related to the Hodge index theorem in algebraic geometry, see Khovanskiı̆ [582]
and Teissier [991, 992]. Compare also the book of Ewald [315]. The equality case
in the Alexandrov–Fenchel inequality has not yet been settled. The special case of
mixed discriminants, where the equality case is known, was used by Egorychev [291]
to prove van der Waerden’s conjecture on permanents of doubly stochastic matrices.
For more information, see Burago and Zalgaller [178], Sangwine-Yager [878] and
Schneider [907].

6.4 Quermassintegrals and Intrinsic Volumes

Quermassintegrals or, with a different normalization, intrinsic volumes, are special
mixed volumes. Originally they appeared in Steiner’s [959] formula for the volume
of parallel bodies of a convex body, see Theorem 6.6. These quantities are of funda-
mental importance in convex geometry and, in particular, in the context of valuations,
see Sect. 7.3.

In the following we present a series of properties of quermassintegrals. Among
these are Steiner formulae for quermassintegrals, the famous surface area formula of
Cauchy and Kubota’s formulae. The latter yield an explanation why quermassinte-
grals are called quermassintegrals. We also describe a problem of Blaschke to charac-
terize the set of vectors of quermassintegrals. In Sect. 7.3 the functional theorems of
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Hadwiger will be treated, in which the quermassintegrals are characterized as special
valuations.

For more information we refer to Leichtweiss [640], Schneider [905, 908],
Sangwine-Yager [878] and McMullen and Schneider [716].

Quermassintegrals and Intrinsic Volumes

Recall Steiner’s theorem on parallel bodies, Theorem 6.6: Given a convex body C ∈
C, we have,

V (C + λBd) = W0(C)+
(

d

1

)
W1(C)λ+ · · · +

(
d

d

)
Wd(C)λ

d for λ ≥ 0,

where the coefficients

Wi (C) = V (C, . . . ,C︸ ︷︷ ︸
d−i

, Bd , . . . , Bd
︸ ︷︷ ︸

i

), i = 0, . . . , d,

are the quermassintegrals of C . If C is contained in a subspace of E
d , one can define

the quermassintegrals of C both in E
d and in this subspace. Unfortunately the result

is not the same as the following proposition shows, where v(·) is the volume and
wi (·), i = 0, . . . , d − 1, are the quermassintegrals in d − 1 dimensions, κ0 = 1, and
κi , i = 1, . . . , d, is the i-dimensional volume of Bi .

Proposition 6.7. Let C ∈ C(Ed−1) and embed E
d−1 into E

d as usual (first d − 1
coordinates). Then

Wi (C) = i κi

d κi−1
wi−1(C) for i = 1, . . . , d.

Proof. Let u = (0, . . . , 0, 1). Then

d∑

i=0

(
d

i

)
Wi (C)λ

i = V (C + λBd) =
λ∫

−λ
v
(
(C + λBd) ∩ (Ed−1 + tu)

)
dt

=
λ∫

−λ
v
(
C + (λ2 − t2)

1
2 Bd−1) dt =

λ∫

−λ

( d−1∑

i=0

(
d − 1

i

)
wi (C)(λ

2 − t2)
i
2

)
dt

=
d−1∑

i=0

(
d − 1

i

)
wi (C)

λ∫

−λ
(λ2 − t2)

i
2 dt =

d−1∑

i=0

(
d − 1

i

)
wi (C)

κi+1

κi
λi+1

for λ ≥ 0

by Steiner’s formula in E
d , Steiner’s formula in E

d−1 and Fubini’s theorem which
is used to calculate the (i + 1)-dimensional volume of the ball λBi+1. Now equate
coefficients. ��
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To remedy the situation that the quermassintegrals depend on the dimension of
the embedding space, McMullen [708] introduced the intrinsic volumes Vi (C),
defined by

Vd−i (C) =
(d

i

)

κi
Wi (C) for C ∈ C and i = 0, . . . , d.

Proposition 6.7 shows that the intrinsic volumes depend only on the convex body and
not on the dimension of the embedding space.

From Steiner’s formula and the definition of the (Minkowski) surface area S(·)
below we obtain

W0(C) = Vd(C) = V (C), W1(C) = 2

d
Vd−1(C) = 1

d
S(C),

Wd(C) = κd V0(C) = κd .

In addition,

Wd−1(C) = κd

2
w(C), where w(C) = 2

d κd

∫

Sd−1

hC (u) dσ(u)

is the mean width of C . Here σ is the ordinary surface area measure. There is no parti-
cularly simple proof for this equality, so we prove it as a consequence of Hadwiger’s
functional theorem 7.9, see Corollary 7.1.

Minkowski’s Surface Area

Minkowski [738, 739] introduced (see Fig. 6.4) the following notion of (Minkowski)
surface area S(C):

S(C) = lim
ε→+0

V (C + εBd)− V (C)

ε
.

Since, by Steiner’s formula,

V (C + εBd) = V (C)+ d W1(C)ε + O(ε2) as ε→+0,

this limit exists and equals d W1(C). Together with the Brunn–Minkowski
theorem 8.1, this notion of surface area easily leads to the isoperimetric inequality,

C + εB2C

ε

Fig. 6.4. (Minkowski) surface area S(C) ∼ (
V (C + εBd )− V (C)

)
/ε
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including the equality case, see Theorem 8.7. Note that, if C has dimension d − 1,
then S(C) equals twice the (d−1)-dimensional volume of C . If d = 2, we also write
P(C) for S(C) and call P(C) the perimeter of C .

We point out that this notion of surface area coincides with the elementary sur-
face area of proper convex polytopes and with the common notion of area of differ-
entiable surfaces in E

d . For more complicated sets it is – if it exists – in general
larger than common notions of surface area such as the Lebesgue or the Hausdorff
surface area or the more recent notions of integral geometric surface areas, perimeter
and currents. Such questions are not discussed in this book and we refer to Burago
and Zalgaller [178] and Morgan [756].

Properties of Quermassintegrals

In Theorem 6.13 we collect results for quermassintegrals, proved in Sect. 6.3 for the
more general case of mixed volumes.

Theorem 6.13. The following statements hold for i = 0, . . . , d:

(i) Wi (·) is rigid motion invariant and thus, in particular, translation inva-
riant, i.e. Wi (mC) = Wi (C) for C ∈ C and each rigid motion m of E

d .

(ii) Wi (·) is (positive) homogeneous of degree d− i , i.e. Wi (λC) = λd−i Wi (C)} for
C ∈ C and λ ≥ 0.

(iii) Wi (·) is continuous on C.

(iv) Wi (·) is non-decreasing on C with respect to set inclusion.

(v) Wi (·) is a valuation on C, that is, if C, D ∈ C are such that C ∪ D ∈ C,
then

Wi (C ∪ D)+ Wi (C ∩ D) = Wi (C)+ Wi (D).

Proof. Properties (i)–(iv) are immediate consequences of Propositions 6.5, 6.6 and
Theorems 6.9, 6.10. Property (v) follows from the first proof of Theorem 6.10 on
putting D2 = · · · = Dd = Bd , λ2 = · · · = λd = 1 and comparing the coefficients
of λi . ��

Steiner Formulae for Quermassintegrals

Steiner’s formula 6.6 for the volume of parallel bodies can be extended as follows.

Theorem 6.14. Let C ∈ C . Then

Wi (C + λBd) =
d−i∑

k=0

(
d − i

k

)
Wi+k(C)λ

k for λ ≥ 0 and i = 0, . . . , d.

In particular,

S(C + λBd) = d W1(C + λBd) =
d−1∑

k=0

d

(
d − 1

k

)
Wk+1(C)λ

k for λ ≥ 0.



106 Convex Bodies

Proof. Applying Steiner’s formula to (C + λBd) + µBd = C + (λ + µ)Bd shows
that

d∑

i=0

(
d

i

)
Wi (C + λBd)µi =

d∑

i=0

(
d

i

)
Wi (C)(λ+ µ)i

=
d∑

i=0

(
d

i

)
Wi (C)

(
λi +

(
i

1

)
λi−1µ+ · · · +

(
i

i

)
µi

)

=
d∑

i=0

((d

i

)(
i

i

)
Wi (C)+

(
d

i + 1

)(
i + 1

i

)
Wi+1(C)λ+ · · ·

+
(

d

d

)(
d

i

)
Wd(C)λ

d−i
)
µi

=
d∑

i=0

( d−i∑

k=0

(
d

i + k

)(
i + k

i

)
Wi+k(C)λ

k
)
µi for λ,µ ≥ 0.

Equating the coefficients of µi , we obtain that

Wi (C + λBd) =
d−i∑

k=0

( d
i+k )(

i+k
i )

( d
i )

Wi+k(C)λ
k =

d−i∑

k=0

(
d − i

k

)
Wi+k(C)λ

k

for λ ≥ 0.��

Cauchy’s Surface Area Formula

Given C ∈ C and u ∈ Sd−1, let C |u⊥ denote the orthogonal projection of C into the
(d − 1)-dimensional subspace u⊥ = {x : u · x = 0} orthogonal to u. Let σ be the
ordinary surface area measure in E

d . Then the surface area formula of Cauchy [198]
is as follows:

Theorem 6.15. Let C ∈ C. Then

(1) S(C) = 1

κd−1

∫

Sd−1

v(C |u⊥) dσ(u).

Proof. First, let C = P be a proper convex polytope. If F is a facet of P , let uF be
its exterior unit normal vector. Since P is a proper convex polytope,

S(P) =
∑

F facet of P

v(F),

as pointed out above. Noting that v(F) |uF · u| = v(F |u⊥) for u ∈ Sd−1, integration
over Sd−1 shows that
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∫

Sd−1

v(F |u⊥) dσ(u) = v(F)
∫

Sd−1

|uF · u| dσ(u) = 2κd−1v(F).

Hence

S(P) =
∑

F facet of P

v(F) = 1

2κd−1

∫

Sd−1

( ∑

F facet of P

v(F |u⊥)) dσ(u)

= 1

κd−1

∫

Sd−1

v(P|u⊥) dσ(u).

Second, let C be a proper convex body. We may assume that o ∈ int C . By the
proof of Theorem 7.4, there is a sequence (Pn) of proper convex polytopes such that

Pn ⊆ C ⊆
(

1+ 1

n

)
Pn and Pn → C as n →∞.

S(·) = d W1(·) is continuous by Theorem 6.13 (iii). Thus

(2) S(Pn)→ S(C) as n →∞.
The functions v(Pn|u⊥) : u ∈ Sd−1 are continuous in u for each n = 1, 2, . . . Since

v(Pn|u⊥) ≤ v(C |u⊥) ≤
(

1+ 1

n

)d−1
v(Pn|u⊥) for u ∈ Sd−1,

and since v(C |u⊥) is bounded on Sd−1, the function v(C |u⊥) : u ∈ Sd−1 is the
uniform limit of the continuous functions v(Pn|u⊥). Thus it is continuous itself.
Integration over Sd−1 then shows that
∫

Sd−1

v(Pn|u⊥) dσ(u) ≤
∫

Sd−1

v(C |u⊥) dσ(u) ≤
(

1+ 1

n

)d−1
∫

Sd−1

v(Pn|u⊥) dσ(u).

Since, by the first part of the proof,

S(Pn) = 1

κd−1

∫

Sd−1

v(Pn|u⊥) dσ(u),

we conclude that

S(Pn)→ 1

κd−1

∫

Sd−1

v(C |u⊥) dσ(u) as n →∞.

Together with (2), this shows that

S(C) = 1

κd−1

∫

Sd−1

v(C |u⊥) dσ(u).
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Third, let C be a convex body of dimension d − 1. We may assume that C ⊆ v⊥
for suitable v ∈ Sd−1. Then

1

κd−1

∫

Sd−1

v(C |u⊥) dσ(u) = 1

κd−1

∫

Sd−1

|u · v| dσ(u) v(C) = 2v(C) = S(C).

If, fourth, dim C < d − 1, then both sides in (1) are 0 and thus coincide. ��

An Integral-Geometric Interpretation of Cauchy’s Formula

Given a set L of lines in E
d , a natural measure for L can be defined as follows: For

any (d − 1)-dimensional subspace u⊥ of E
d , where u ∈ Sd−1, consider the lines

in L which are orthogonal to u⊥. Let v(u) denote the measure of the intersection
of this set of lines with u⊥ (if the intersection is measurable). The integral of v(u)
over Sd−1 with respect to the ordinary surface area measure, then, is the measure
of the set L of lines (if the integral exists). Clearly, this measure is rigid motion
invariant. Cauchy’s surface area formula now says that the surface area of a convex
body C , that is the area of its boundary bd C , equals (up to a multiplicative constant)
the integral of the function which assigns to each line the number of its intersection
points with bd C . This interpretation extends to all sufficiently smooth surfaces in
E

d and is the starting point for so-called integral geometric surface area. For more
on integral geometry, see the standard monograph of Santaló [881] and Sect. 7.4.
Geometric measure theory is treated by Falconer [317] and Mattila [696].

Kubota’s Formulae for Quermassintegrals

Let wi (·), i = 0, . . . , d−1, denote the quermassintegrals in d−1 dimensions. Then
one may write Cauchy’s formula in the following form:

W1(C) = 1

d κd−1

∫

Sd−1

w0(C |u⊥) dσ(u).

It was the idea of Kubota [619] to extend this formula to all quermassintegrals.
We state the following special case.

Theorem 6.16. Let C ∈ C. Then

(3) Wi (C) = 1

d κd−1

∫

Sd−1

wi−1(C |u⊥) dσ(u) for i = 1, . . . , d.

Proof. First note that

(C + λBd)|u⊥ = C |u⊥ + λBd |u⊥ for u ∈ Sd−1.
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Steiner’s formula in d − 1 dimensions then shows that

v
(
(C + λBd)|u⊥) = v(C |u⊥ + λBd |u⊥)

=
d−1∑

i=0

(
d − 1

i

)
wi (C |u⊥)λi .

Since C |u⊥ varies continuously with u and wi (·) is continuous, we may integrate
over Sd−1 and Cauchy’s surface area formula, applied to C + λBd , shows that

(4) S(C + λBd) =
d−1∑

i=0

(
d − 1

i

)
1

κd−1

∫

Sd−1

wi (C |u⊥) dσ(u) λi for λ ≥ 0.

Since S(C+λBd) = d W1(C+λBd), Steiner’s formula for W1(·) yields the follow-
ing, see Theorem 6.14:

(5) S(C + λBd) = d
d−1∑

i=0

(
d − 1

i

)
Wi+1(C)λ

i for λ ≥ 0.

Finally, equating coefficients in (4) and (5), implies (3). ��

A Remark on the Proofs

In the proofs of Steiner’s and Kubota’s formulae for quermassintegrals, we have
expressed the same quantity in two different ways as polynomials. Hence these poly-
nomials must be identical, i.e. corresponding coefficients coincide. This finally yields
the desired formulas. Expressing the same quantity in different ways and equating is
a common method of proof in integral geometry, see Santaló [881].

Why are Quermassintegrals or Mean Projection Measures Called So?

Iterating (3) with respect to the dimension, yields the general formulae of Kubota.
These express the quermassintegrals Wi (C) of C as the mean of the (d − i)-
dimensional volumes of the projections of C onto (d − i)-dimensional linear sub-
spaces. These volumes are called Quermaße in German.

Blaschke’s Problem for Quermassintegrals

We conclude this section with the following major problem which goes back to
Blaschke [125].

Problem 6.1. Determine the set
{(

W0(C), . . . ,Wd−1(C)
) : C ∈ C} ⊆ E

d .

In case d = 2 the solution is given by the isoperimetric inequality: The set in question
is {(P, A) : P2 ≥ 4π A, P, A ≥ 0}, where P and A stand for perimeter and area.
The problem is open for d ≥ 3. For some references, see Hadwiger [468], Schneider
[907], and Sangwine-Yager [877, 878].
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A Problem of Santaló

Santaló proposed the following related question.

Problem 6.2. Consider a finite set of geometric functionals F1, . . . , Fk for convex
bodies in E

d , for example the inradius r , the volume V and the diameter diam.
Determine the set

{(
F1(C), . . . , Fk(C)

) : C ∈ C} ⊆ E
k .

As is the case for the above problem of Blaschke, this problem is also difficult in this
generality. For pertinent results see Hernández Cifre, Pastor, Salinas Martı́nez and
Segura Gomis [497].

7 Valuations

Let S be a family of sets. A (real) valuation on S is a real function φ on S which is
additive in the following sense:

φ(C ∪ D)+ φ(C ∩ D) = φ(C)+ φ(D) whenever C, D,C ∪ D,C ∩ D ∈ S,
and φ(∅) = 0 if ∅ ∈ S.

In many cases of interest, S is intersectional, that is, C ∩ D ∈ S for C, D ∈ S.
If S is the space C of convex bodies in E

d or a subspace of it such as the space P
of convex polytopes, and in many other cases, the above additivity property is rather
weak since we require additivity only for a small set of pairs C, D in C. In case
where S is the space of Jordan or of Lebesgue measurable sets in E

d , the valuation
property coincides with the common notion of additivity in measure theory. Exam-
ples of valuations on C, P and on the space of lattice polytopes, are the volume, the
quermassintegrals, affine surface area, the Dehn invariants in the context of Hilbert’s
third problem and the various lattice point enumerators. Mixed volumes also give
rise to valuations on C.

While special valuations have been investigated since antiquity, it seems that
Blaschke [128], Sects. 41,43, was the first to consider valuations per se and he ini-
tiated their study. Then, his disciple Hadwiger started the systematic investigation
of valuations, culminating in the functional theorems, see [468]. Important later
contributions are due to Groemer, McMullen, Schneider, Betke and Kneser, Klain,
Alesker, Ludwig and Reitzner, and others, see [108, 402, 587, 666, 713, 714, 716].
Amongst others, these contributions deal with Hilbert’s third problem, McMullen’s
polytope algebra, lattice point enumerators and with characterizations and represen-
tations of certain important classes of valuations.

This section contains a small account of the rich theory of valuations. We start
with extension results, introduce the elementary volume and Jordan measure, then
give a characterization of the volume and, as a consequence, show Hadwiger’s func-
tional theorem. As an application of the functional theorem, the principal kinematic
formula is proved.

For more information on valuations, see Hadwiger [468], McMullen and
Schneider [716], McMullen [714], Klain and Rota [587] and Peri [790]. See also
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the very readable popular article of Rota [858]. Special valuations in the context of
polytopes and lattice polytopes will be dealt with in Sects. 16.1 and 19.4.

7.1 Extension of Valuations

Given a valuation on a family of sets, the problem arises to extend this valuation to
larger families of sets, for example to the (algebraic) lattice of sets generated by the
given family.

This section contains the inclusion–exclusion formula and the extension results
of Volland, rediscovered by Perles and Sallee in a more abstract form, and of
Groemer.

The Inclusion–Exclusion Formula

Let L, or more precisely, 〈L,∩,∪〉, be a lattice of sets, where the lattice operations
are the ordinary intersection and union. Given a valuation φ : L → R, iterating the
relation

φ(C ∪ D)+ φ(C ∩ D) = φ(C)+ φ(D) for C, D ∈ L,
easily leads to the equality,

(1) φ(C1 ∪ · · · ∪ Cm) =
∑

i

φ(Ci )−
∑

i< j

φ(Ci ∩ C j )+

+
∑

i< j<k

φ(Ci ∩ C j ∩ Ck)− · · · + (−1)m−1φ(C1 ∩ · · · ∩ Cm)

for C1, . . . ,Cm ∈ L.

The indices run from 1 to m. Sometimes it is helpful to rewrite (1) in a more concise
form. We denote by I the ordered k-tuples ∅ �= I = {i1, . . . , ik} ⊆ {1, . . . ,m}where
k = 1, . . . ,m, 1 ≤ i1 < i2 < · · · < ik ≤ m, and put

CI = Ci1 ∩ · · · ∩ Cik and |I | = k.

Then (1) may be written in the following form:

(2) φ(C1 ∪ · · · ∪ Cm) =
∑

I

(−1)|I |−1φ(CI ) for C1, . . . ,Cm ∈ L.

That φ has properties (1) or (2) is also expressed by saying that φ satisfies the
inclusion–exclusion formula on L. It will be seen in a moment, that this modest
looking formula is crucial for the extension of valuations.

A General Extension Result

Let S be an intersectional family of sets and φ : S → R a valuation. The problem
arises, whether φ can be extended to a valuation on the lattice L(S) generated by
S. Since S is intersectional, L(S) consists of all possible unions of finitely many
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sets of S. If φ can be extended to a valuation on L(S), then this extension satisfies
the inclusion–exclusion formula on L, as seen before. This shows that, in particular,
the original valuation φ on S must satisfy the inclusion–exclusion formula for an
intersectional family on S:

(3) φ(C1 ∪ · · · ∪ Cm) =
∑

i

φ(Ci )−
∑

i< j

φ(Ci ∩ C j )+− · · ·

=
∑

I

(−1)|I |−1φ(CI ), for C1, . . . ,Cm,C1 ∪ · · · ∪ Cm ∈ S.

Thus (3) is a necessary condition for a valuation φ on S to be extendible to a valuation
on L(S). Surprisingly, this simple necessary condition for extension is also sufficient,
as the following first extension theorem of Volland [1011] shows; see also Perles and
Sallee [792].

Theorem 7.1. Let S be an intersectional family of sets and φ : S → R a valuation.
Then the following claims are equivalent:

(i) φ satisfies the inclusion–exclusion formula on S.

(ii) φ has a unique extension to a valuation on L(S).

The proof follows Volland, but requires filling a gap.

Proof. Since the implication (ii)⇒(i) follows from what was said above, it is suffi-
cient to prove that

(i)⇒(ii) In a first step it will be shown that

(4)
∑

I

(−1)|I |−1φ(CI ) =
∑

J

(−1)|J |−1φ(DJ )

for C1, . . . ,Cm, D1, . . . , Dn ∈ S, where C1 ∪ · · · ∪ Cm = D1 ∪ · · · ∪ Dn .

Since C1 ∪ · · · ∪ Cm = D1 ∪ · · · ∪ Dn ,

∑

I

(−1)|I |−1φ(CI ) =
∑

I

(−1)|I |−1φ
(
CI ∩ (D1 ∪ · · · ∪ Dn)

)

=
∑

I

(−1)|I |−1φ
(
(CI ∩ D1) ∪ · · · ∪ (CI ∩ Dn)

)

=
∑

I

(−1)|I |−1
∑

J

(−1)|J |−1φ(CI ∩ DJ )

=
∑

J

(−1)|J |−1
∑

I

(−1)|I |−1φ(DJ ∩ CI ) = · · · =
∑

J

(−1)|J |−1φ(DJ ),

concluding the proof of (4).
Define a function φ : L(S)→ R by

(5) φ(C1 ∪ · · · ∪ Cm) =
∑

I

(−1)|I |−1φ(CI ) for C1, . . . ,Cm ∈ S,



7 Valuations 113

where on the right side φ means the given valuation on S. By (4), this function φ is
well defined and extends the given valuation. We show that

(6) φ is a valuation on L(S).
For the proof of (6) we will derive two identities. As a preparation for the proof

of the first identity, we prove the following proposition.

(7) Let L be a non-empty finite set. Then
∑

J,K �=∅
J∪K=L

(−1)|J |+|K | = −(−1)|L|.

For simplicity, we omit, in all sums in the proof of (7), (−1)|J |+|K |. The proof is by
induction on |L|. For |L| = 1, Proposition (7) is trivial. Assume now that |L| = l > 1
and that (7) holds for l − 1. We may suppose that L = {1, 2, . . . , l}. Then

∑

J,K �=∅
J∪K=L

=
∑

1∈J,K
J∪K=L

+
∑

1∈J, �∈K
J∪K=L

+
∑

1�∈J,∈K
J∪K=L

.

Next note that
∑

1∈J,K
J∪K=L

=
∑

J={1},1∈K
J∪K=L

+
∑

1∈J,K={1}
J∪K=L

+
∑

{1}� J,K
J∪K=L

=2(−1)|L|+1 − (−1)|L|−1+2,

∑

1∈J, �∈K
J∪K=L

=
∑

J={1},1�∈K
J∪K=L

+
∑

{1}� J,1�∈K
J∪K=L

=(−1)|L| − (−1)|L|−1+1,

∑

1�∈J,1∈K
J∪K=L

= =(−1)|L| − (−1)|L|−1+1,

by induction. Now we add to get (7). The induction is complete.
The first required identity is as follows:

(8) Let C1 ∪ · · · ∪ Cm, D = D1 ∪ · · · ∪ Dn ∈ S. Then
φ
(
(C1 ∪ · · · ∪Cm)∩ (D1 ∪ · · · ∪ Dn)

) = −
∑

I,J

(−1)|I |+|J |−1φ(CI ∩ DJ ).

The proof is by induction on m. Assume first that m = 1. Then

φ
(
C1 ∩ (D1 ∪ · · · ∪ Dn)

) = φ((C1 ∩ D1) ∪ · · · ∪ (C1 ∩ Dn)
)

=
∑

J

(−1)|J |−1φ(C1 ∩ DJ ) = −
∑

I={1}
J⊆{1,...,n}

(−1)|I |+|J |−1φ(CI ∩ DJ )

by the definition of φ on L(S) and since I = {1} is the only possibility for I . This
settles (8) for m = 1. Now let m > 1 and assume that the identity (8) holds for
m − 1. Then

φ
(
(C1 ∪ · · · ∪ Cm) ∩ (D1 ∪ · · · ∪ Dn)

)

= φ((C1 ∩ (D1 ∪ · · · ∪ Dn)
) ∪ (

(C2 ∪ · · · ∪ Cm) ∩ (D1 ∪ · · · ∪ Dn)
))

= φ((C1 ∩ D1) ∪ · · · ∪ (C1 ∩ Dn) ∪
⋃

i∈{2,...,m}
j∈{1,...,n}

(Ci ∩ D j = Ei j , say)
)
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=
∑

J⊆{1,...,n}
(−1)|J |−1φ(C1 ∩ DJ )

+
∑

J⊆{1,...,n}
(−1)|J |

∑

K⊆{2,...,m}×{1,...,n}
(−1)|K |−1φ(C1 ∩ DJ ∩ EK )

+
∑

K⊆{2,...,m}×{1,...,n}
(−1)|K |−1φ(EK )

(by the definition of φ on L(S))
= −

∑

I⊆{1}
J⊆{1,...,n}

(−1)|I |+|J |−1φ(CI ∩ DJ )

+
∑

J⊆{1,...,n}
(−1)|J |φ

( ⋃

i∈{2,...,m}
j∈{1,...,n}

(C1 ∩ DJ ∩ Ci ∩ D j )
)

+ φ(
⋃

i∈{2,...,m}
j∈{1,...,n}

(Ci ∩ D j )
)

(by the definition of φ on L(S))
= −

∑

I⊆{1}
J⊆{1,...,n}

(−1)|I |+|J |−1φ(CI ∩ DJ )−
∑

I⊆{2,...,m}
J⊆{1,...,n}

(−1)|I |+|J |−1φ(CI ∩ DJ )

−
∑

J⊆{1,...,n}
(−1)|J |

∑

I⊆{2,...,m}
K⊆{1,...,n}

(−1)|I |+|K |−1φ(C1 ∩ CI ∩ DJ ∩ DK )

(by induction, applied twice)

= −
∑

I⊆{1} or I⊆{2,...,m}
J⊆{1,...,n}

(−1)|I |+|J |−1φ(CI ∩ DJ )

−
∑

I ∩ {1} �= ∅
I ∩ {2, . . . ,m} �= ∅

J ⊆ {1, . . . n}
K ⊆ {1, . . . , n}

(−1)|I |−1+|J |+|K |−1φ(CI ∩ DJ ∪ K
︸ ︷︷ ︸
=L

)

= −
∑

I⊆{1} or I⊆{2,...,m}
J⊆{1,...,n}

(−1)|I |+|J |−1φ(CI ∩ DJ )

+
∑

I∩{1}�=∅
I∩{2,...,m}�=∅

(−1)|I |−1
∑

L⊆{1,...,n}

( ∑

J∪K=L

(−1)|J |+|K |

︸ ︷︷ ︸
=−(−1)|L|

)
φ(CI ∩ DL)

(by Proposition (7))

= −
∑

I⊆{1,...,m}
L⊆{1,...,n}

(−1)|I |+|L|−1φ(CI ∩ DL).
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The induction is complete, concluding the proof of the identity (8).
The second identity is as follows.

(9) Let C1, . . . ,Cm, D1, . . . , Dn ∈ S. Then
φ
(
(C1 ∪ · · · ∪ Cm) ∪ (D1 ∪ · · · ∪ Dn)

)

=∑

I
(−1)|I |−1φ(CI )+∑

I,J
(−1)|I |+|J |−1φ(CI ∩ DJ )+∑

J
(−1)|J |−1φ(DJ )

= φ(C1 ∪ · · · ∪ Cm)+∑

I,J
(−1)|I |+|J |−1φ(CI ∩ DJ )+ φ(D1 ∪ · · · ∪ Dn).

Now add the identities (8) and (9) to get φ(C ∪ D)+φ(C ∩ D) = φ(C)+φ(D)
for C , D ∈ L (S), concluding the proof of (6).

Thus we have obtained a valuation on L(S) which extends the given valuation
on S. Since each valuation on the lattice L(S), which extends the given valuation on
S, satisfies (5), the extension is unique. ��
Remark. For far-reaching related results, see Groemer [402].

Extension of Valuations on Boxes and Convex Polytopes

A box in E
d is a set of the form {x : αi ≤ xi ≤ βi }. Its edge-lengths are βi −

αi , i = 1, . . . , d. Let B = B(Ed) be the space of boxes in E
d . For the definition

of convex polytopes, see Sects. 6.2, 14.1 and let P = P(Ed) be the space of convex
polytopes in E

d . Both B and P are intersectional families of sets. The following
polytope extension theorem is due to Volland [1011].

Theorem 7.2. Let φ be a valuation on B or P . Then φ satisfies the inclusion–
exclusion formula on B, respectively, P and thus can be extended uniquely to a
valuation on L(B), the space of polyboxes, respectively, L(P), the space of poly-
convex polytopes by Theorem 7.1.

Proof. We consider only the case of convex polytopes, the case of boxes being anal-
ogous. By Volland’s first extension theorem, it is sufficient to show that φ satisfies
the inclusion–exclusion formula on P:

(10) Let P, P1, . . . , Pm ∈ P(Ed) such that P = P1 ∪ · · · ∪ Pm . Then

φ(P) =
∑

I

(−1)|I |−1φ(PI ).

The proof of (10) is by double induction on d and m. (10) holds trivially for d =
0, 1, . . . , and m = 1 and for d = 0 and m = 1, 2, . . . Assume now that d > 0 and
m > 1 and that (10) holds for dimensions 0, 1, . . . , d − 1 and in dimension d for
1, 2, . . . ,m − 1 polytopes. We have to establish it for d and m.

In the first step of the proof, we show that (10) holds in the following special
cases:

(i) One of the polytopes P1, . . . , Pm has dimension less than d, say Pm .

(ii) One of the polytopes P1, . . . , Pm coincides with P , say P1.
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If P has dimension less than d, (10) holds by the induction hypothesis. Thus we may
assume that P has dimension d. Then in each of the cases (i) and (ii) we have that
Q = P1 ∪ · · · ∪ Pm−1 ∈ P and P = Q (note that P is convex) and thus, trivially,
P = Q ∪ Pm . Since φ is a valuation:

(11) φ(P) = φ(Q)+ φ(Pm)− φ(Q ∩ Pm).

Since Q = P1 ∪ · · · ∪ Pm−1 and Q ∩ Pm = (P1 ∩ Pm) ∪ · · · ∪ (Pm−1 ∩ Pm), and
(10) holds for d and m − 1 by induction, the equality (11) readily leads to (10).

In the second step, the general case is traced back to the cases (i) and (ii). If P1
has dimension less than d or coincides with P , (10) holds since the cases (i) and (ii)
are already settled. Thus we may suppose that P1 has dimension d and is a proper
subpolytope of P . Then we proceed as follows: Clearly, P1 has facets which meet
int P . Given such a facet, let H be the hyperplane containing it and let H−(⊇ P1) and
H+ be the closed halfspaces determined by H . Then P− = H−∩P, P+ = H+∩P,
P− ∪ P+ = P ∈ P and since φ is a valuation, we have:

(12) φ(P) = φ(P−)+ φ(P+)− φ(P− ∩ P+).
Clearly, P+i = H+ ∩ Pi , P−i = H− ∩ Pi ∈ P for i = 1, . . . ,m. This leads to the
representations

(13) P− = P−1 ∪ · · · ∪ P−m , P+ = P+1 ∪ · · · ∪ P+m ,
P− ∩ P+ = (P−1 ∩ P+1 ) ∪ · · · ∪ (P−m ∩ P+m ) and
φ(PI ) = φ(P−I )+ φ(P+I )− φ(P−I ∩ P+I ) since φ is a valuation.

dim P+1 < d and dim(P− ∩ P+) < d. Thus case (i) and the induction hypothe-
sis show that (7) holds for φ(P+) and φ(P− ∩ P+). Then (12) and (13) yield the
following:

(14) φ(P)−
∑

I

(−1)|I |−1φ(PI ) = φ(P−)−
∑

I

(−1)|I |−1φ(P−I )+ φ(P+)

−
∑

I

(−1)|I |−1φ(P+I )− φ(P− ∩ P+)+
∑

I

(−1)|I |−1φ(P−I ∩ P+I )

= φ(P−)−
∑

I

(−1)|I |−1φ(P−I ).

By construction, P1 = P−1 ⊆ P−. If P−1 = P−, then (13) and case (ii) show
that the right-hand side in (14) is 0 and (10) holds. Otherwise the polytope P1 = P−1 ,
which has dimension d, is a proper subpolytope of P−. Then we proceed again as
before, etc. After finitely many repetitions of this procedure, we finally arrive at the
following situation:

P−k = P−
k

1 ∪ · · · ∪ P−k

m , P1 = P−
k

1 = P−k
,

(15) φ(P)−
∑

I

(−1)|I |−1φ(PI ) = φ(P−k
)−

∑

I

(−1)|I |−1φ(P−
k

I ).

Case (ii) then shows that the right-hand side in (15) is 0. This concludes the proof of
(10) and thus of the theorem. ��
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Extension of Valuations on Simplices

Ludwig and Reitzner [667] showed that each valuation on the space of all simplices
in E

d has unique extensions to the spaces P and L(P) of all convex, respectively, all
convex and polyconvex polytopes. This result yields an alternative way to define the
elementary volume of polytopes, see Sect. 16.1.

Extension of Continuous Valuations on Convex Bodies

The following problem still seems to be open.

Problem 7.1. Can every valuation on C be extended to a valuation on L(C), the
space of polyconvex bodies?

While the general extension problem is open, in important special cases, fortunately,
the extension is possible. Considering the above proof of Volland’s theorem, it is
plausible that continuous valuations on C can be extended to valuations on L(C),
where continuity is meant with respect to the topology induced by the Hausdorff
metric. In fact, this is true, as the following extension theorem of Groemer [402]
shows.

Theorem 7.3. Let φ be a continuous valuation on C. Then φ can be extended
uniquely to a valuation on L(C).

Proof. By Theorem 7.1 it is sufficient to show that φ satisfies the inclusion–exclusion
formula (2). Let C,C1, . . . ,Cm ∈ C such that C = C1 ∪ · · · ∪ Cm .

First, the following will be shown:

(16) Let P1, . . . , Pm ∈ P such that C1 ⊆ int P1, . . . ,Cm ⊆ int Pm . Then there
are Q1, . . . , Qm ∈ P such that C1 ⊆ Q1, . . . ,Cm ⊆ Qm and Q1 ∪ · · · ∪
Qm ∈ P .

P = P1 ∪ · · · ∪ Pm is a not necessarily convex polytope containing the convex body
C in its interior. Hence we may find a convex polytope Q with C ⊆ Q ⊆ P . Now
let Q1 = P1 ∩ Q, . . . , Qm = Pm ∩ Q.

By (16) we may choose m decreasing sequences of convex polytopes, say

(17) (Qin) ⊆ P such that Qi1 ⊇ Qi2 ⊇ · · · → Ci as n →∞
for i = 1, . . . ,m,

such that

(18) Q1n ∪ · · · ∪ Qmn ∈ P.
Then

(19) QI 1 ⊇ QI 2 ⊇ · · · → CI for all I .
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Since, by Volland’s polytope extension Theorem 7.2, φ satisfies, on P , the
inclusion–exclusion formula, it follows that

φ(Q1n ∪ · · · ∪ Qmn) =
∑

I

(−1)|I |−1φ(QI n).

Then, letting n →∞, the continuity of φ on C together with (17)–(19) implies that

φ(C1 ∪ · · · ∪ Cm) =
∑

I

(−1)|I |−1φ(CI ).

Thus the inclusion–exclusion formula is valid for φ on C, concluding the proof of the
theorem. ��

The Euler Characteristic on L(C)

The Euler characteristic on L(C) is a valuation χ which is defined as follows:
First, let

χ(C) = 1 for C ∈ C and χ(∅) = 0.

This, clearly, is a continuous valuation on C. By Groemer’s extension theorem it
extends uniquely to a valuation χ on L(C), the Euler characteristic on L(C). Since
L(C) is a lattice, χ satisfies the inclusion–exclusion formula. Thus:

(20) χ(C1 ∪ · · · ∪ Cm) = m − #
{
(i1, i2) : i1 < i2, Ci1 ∩ Ci2 �= ∅}

+ #
{
(i1, i2, i3) : i1 < i2 < i3, Ci1 ∩ Ci2 ∩ Ci3 �= ∅} − · · ·

for C1, . . . ,Cm ∈ C,
where # is the counting function.

7.2 Elementary Volume and Jordan Measure

Volume is one of the seminal concepts in convex geometry, where its theory is now
part of the theory of valuations.

In this section, we define the notions of elementary volume of boxes and of vol-
ume or Jordan measure and establish some of their properties. In particular, it will
be shown that both are valuations. Jordan measure plays an important role in several
other sections. In some cases we use their properties not proved in the following,
for example, Fubini’s theorem or the substitution rule for multiple integrals. We also
make some remarks about the problems of Busemann-Petty and Shephard and the
slicing problem.

In Section 16.1, the elementary volume on the space of convex polytopes will be
treated in a similar way.
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Elementary Volume of Boxes

The elementary volume V on the space of boxes B is defined by

V (B) =
∏

i

(βi − αi ) for B = {x : αi ≤ xi ≤ βi } ∈ B.

Easy arguments yield the following formulae to calculate the elementary volume of
boxes, where Z

d is the integer (point) lattice in E
d , that is the set of all points in E

d

with integer coordinates:

(1) V (B) = lim
n→∞

1

nd
#
(

B ∩ 1

n
Z

d
)
= lim

n→∞
1

nd
#
(

int B ∩ 1

n
Z

d
)

for B ∈ B.
The proof of the next result is left to the reader.

Proposition 7.1. The elementary volume on B is a simple, (positive) homogeneous
of degree d, translation invariant, non-decreasing, and continuous valuation.

When we say that V is a simple, (positive) homogeneous of degree k, translation
invariant, rigid motion invariant, non-decreasing or monotone valuation on B, the
following is meant:

V (B) = 0 for B ∈ B, dim B < d

V (λB) = λd V (B) for B ∈ B, λ ≥ 0

V (B + t) = V (B) for B ∈ B, t ∈ E
d

V (m B) = V (B) for B ∈ B and any rigid motion m of E
d

V (B) ≤ V (C) for B,C ∈ B, B ⊆ C

V or −V is non-decreasing

Elementary Volume of Polyboxes

The elementary volume V on the space B of boxes is a valuation. Volland’s polytope
extension theorem 7.2 thus shows that it has a unique extension to a valuation V on
the space L(B) of polyboxes, the elementary volume on L(B). Each polybox A may
be represented in the form

A = B1 ∪ · · · ∪ Bm,

where the Bi are boxes with pairwise disjoint interiors. The inclusion-exclusion for-
mula for V on L(B) and the fact that V is simple on B, then yield

V (A) = V (B1)+ · · · + V (Bm),
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that is, V is simply additive on L(B). Using this representation of V (A), Proposition
(1) implies the following formulae for polyboxes:

(2) V (A) = lim
n→∞

1

nd
#
(

A ∩ 1

n
Z

d
)
= lim

n→∞
1

nd
#
(

int A ∩ 1

n
Z

d
)

for A ∈ L(B).
As before, it is easy to prove the following result.

Proposition 7.2. The elementary volume on L(B) is a simple, simply additive,
homogeneous of degree d, translation invariant, non-decreasing valuation.

Note that V is not continuous on L(B) if L(B) is endowed with the topology
induced by the Hausdorff metric. To see this, let Fn, n = 1, 2, . . . , be finite sets
such that Fn → [0, 1]d with respect to the Hausdorff metric. Then V (Fn) = 0 for
each n, but V ([0, 1]d) = 1.

Volume, Jordan Measure or Jordan Content

A set J ⊆ E
d is Jordan, Riemann or Peano measurable, if

sup
{

V (A) : A ∈ L(B), A ⊆ J
} = inf

{
V (B) : B ∈ L(B), J ⊆ B

}
.

If J is Jordan measurable, then its Jordan, etc. measure, its Jordan, etc. content, or its
volume V (J ) on E

d is this common value. In dimension 2 the volume is called area
and we sometimes write A(J ) for V (J ). Let J = J (Ed) be the family of Jordan
measurable sets in E

d . Each Jordan measurable set is Lebesgue measurable, but not
necessarily a Borel set. Its Jordan measure coincides with its Lebesgue measure.
Note that Jordan measure, actually, is not a measure in the sense of measure theory
since it lacks σ -additivity, and that J is a proper subfamily of the family of Lebesgue
measurable sets in E

d . As a consequence of (2) we obtain the formulae

(3) V (J ) = lim
n→∞

1

nd
#
(

J ∩ 1

n
Z

d
)
= lim

n→∞
1

nd
#
(

int J ∩ 1

n
Z

d
)

for J ∈ J .
These formulae will be needed in proofs of Minkowski’s fundamental theorem and
the Minkowski–Hlawka theorem. Since no further use of Jordan measure for general
sets will be made, we restrict our attention to convex and polyconvex bodies.

Volume of Convex Bodies

Convex bodies are Jordan measurable:

Theorem 7.4. C ⊆ J .

Proof. Let C ∈ C. Assume, first, that int C �= ∅. Since Jordan measure and measu-
rability of a set are invariant with respect to translations, we may suppose that o ∈
int C . Choose a box B ⊇ C .
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For ε > 0 the body (1 − ε)C is a compact subset of int C . Hence there is a
polybox A with (1− ε)C ⊆ A ⊆ int C ⊆ C and therefore,

A ⊆ C ⊆ 1

1− ε A.

Since elementary volume on L(B) is non-decreasing and homogeneous of degree d,
we have,

V (A) ≤ V
( 1

1− ε A
)
= 1

(1− ε)d V (A)

= V (A)+ O(ε)V (A) ≤ V (A)+ O(ε)V (B) as ε→ 0.

This implies that C is Jordan measurable.
Assume, second, that C is contained in a hyperplane. Since C is compact, it can

be covered with polyboxes of arbitrarily small elementary volume. Thus C is Jordan
measurable with V (C) = 0. ��
Theorem 7.5. The volume on C is a simple, homogeneous of degree d, non-
decreasing, continuous, rigid motion invariant valuation.

For the proof we need an auxiliary result about rotations: Let SO(d) denote the
special orthogonal group of E

d , i.e. the group of the orthogonal transformations of
E

d with determinant 1. Let B = {b1, . . . , bd} be the standard basis of E
d and denote

by SO(d, B) the set of all transformations in SO(d) which fix at least d − 2 vectors
of the basis B. The required result is then as follows; for d = 3 it reduces to a version
of a well-known result of Euler.

Lemma 7.1. Let A ∈ SO(d). Then there are transformations A1, . . . , An ∈ SO(d, B)
such that A = A1 · · · An.

Proof. The result holds trivially in case d = 2 since then SO(2) = SO(2, B).
Suppose now that d > 2 and that the result holds for dimension d − 1.

Let A ∈ SO(d) but A �∈ SO(d, B). Let u = A bd and assume without loss
of generality that u �= ±bd . Consider the orthogonal projection of u into E

d−1(=
lin{b1, . . . , bd−1}) and let v be its unit normalization. There is S ∈ SO(d) with
Sv = bd−1 and Sbd = bd . Since u ∈ lin{v, bd}, we have Su ∈ lin{bd−1, bd}. Let
T ∈ SO(d, B) be such that T b1 = b1, . . . , T bd−2 = bd−2 and T Su = bd . Then
T S A bd = T Su = bd .

Clearly, S, T S A ∈ SO(d) and both fix bd . By the induction hypothesis, there are
S1, . . . , Sl , T1, . . . , Tm ∈ SO(d, B) such that S = S1 · · · Sl and T S A = T1 · · · Tm .
Then

A = S−1T−1T1 · · · Tm = S−1
l · · · S−1

1 T−1T1 · · · Tm .

This concludes the induction and the proof is complete. ��
Proof of the Theorem. We first show that

(4) V is a valuation on C.
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Let C, D ∈ C such that C ∪ D ∈ C. In order to show that

(5) V (C)+ V (D) ≤ V (C ∪ D)+ V (C ∩ D),

choose sequences (Pn), (Qn) in L(B) with

Pn ⊆ C, V (Pn)→ V (C) and Qn ⊆ D, V (Qn)→ V (D) as n →∞.
Then

Pn ∪ Qn ⊆ C ∪ D, Pn ∩ Qn ⊆ C ∩ D.

The fact that V is a valuation on L(B) and the definition of Jordan measure on C
yield the following.

V (Pn)+ V (Qn) = V (Pn ∪ Qn)+ V (Pn ∩ Qn) ≤ V (C ∪ D)+ V (C ∩ D).

Now, let n →∞ to get (5). The reverse inequality

(6) V (C)+ V (D) ≥ V (C ∪ D)+ V (C ∩ D)

is obtained in a similar way by considering sequences (Rn), (Sn) in L(B) such that

Rn ⊇ C, V (Rn)→ V (C) and Sn ⊇ D, V (Sn)→ V (D).

Having shown (5) and (6), the proof of (4) is complete.
The statement that

(7) V is simple

has been shown in the last part of the proof of Theorem 7.4 above, while the statement
that

(8) V is homogeneous of degree d and non-decreasing,

follows from the corresponding properties of V on L(B) and the definition of Jordan
measure on C.

For the proof that

(9) V is continuous,

we have to show the following:

(10) Let C,C1,C2, · · · ∈ C such that C1,C2, · · · → C . Then
V (C1), V (C2), · · · → V (C).

Assume first, that V (C) > 0. Since volume and Hausdorff metric are translation
invariant, we may assume that o ∈ int C . Choose � > 0 such that

�Bd ⊆ C.

Since C1,C2, · · · → C , we have the following: Let ε > 0. Then the inclusions

Cn ⊆ C + εBd , C ⊆ Cn + εBd
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hold for all sufficiently large n. Hence

Cn ⊆ C + ε

�
C =

(
1+ ε

�

)
C,

(
1− ε

�

)
C + ε

�
C = C ⊆ Cn + ε

�
C.

Using support functions and arguing as in the proof of the cancellation law for convex
bodies (Theorem 6.1), we obtain the inclusions

(
1− ε

�

)
C ⊆ Cn ⊆

(
1+ ε

�

)
C

for all sufficiently large n. This, together with (8), yields the following:
(

1− ε

�

)d
V (C) ≤ V (Cn) ≤

(
1+ ε

�

)d
V (C).

For given ε > 0 and all sufficiently large n,

which, in turn, implies (10) for V (C) > 0. Assume second, that V (C) = 0. Since
C1,C2, · · · → C , for any ε > 0

Cn ⊆ C + εBd

for all sufficiently large n. Thus, by Steiner’s theorem on the volume of parallel
bodies 6.6,

V (Cn) ≤ V (C + εBd) = V (C)+ O(ε) = O(ε)
for given ε > 0 and all sufficiently large n.

This proves (10) for V (C) = 0. The proof of (10), and thus of (9), is complete.
It remains to show that

(11) V is rigid motion invariant.

Taking into account the definition of V , it is sufficient to show that any two congruent
boxes have the same volume. To see this, note that, by Lemma 7.1, it is sufficient to
prove the following, where, by a dissection of a proper convex polytope, we mean a
representation of it as a union of finitely many proper convex polytopes with pairwise
disjoint interiors:

(12) Let P, T be two congruent rectangles in E
2. Then P can be dissected into

finitely many convex polygons such that suitable translations of these poly-
gons form a dissection of T .

In other words, P and T are equidissectable with respect to (the group of) translations
(Fig. 7.1). Since equidissectability is transitive, as can be shown easily, the following
argument leads to (12): first, P is equidissectable to a parallelogram Q, one pair of
edges of which is parallel to a pair of edges of T . Q is equidissectable to a rectangle,
the edges of which are parallel to those of T . R is equidissectable to a rectangle S,
one side of which has length at least the length l of the corresponding parallel edges
of T and at most twice this length. S and T are equidissectable. We omit the details.

��
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Fig. 7.1. Translative equidissectability of rectangles

Remark. The volume or Jordan measure on C can be extended in two ways to a
valuation on L(C). First, by Groemer’s extension theorem. Second, by the restriction
of the Jordan measure on J which is a valuation on J to L(C) ⊆ J . The uniqueness
part of Groemer’s theorem implies that both extensions coincide.

Comparison of Volumes by Sections and Projections; the Problems of Busemann-
Petty and Shephard and the Slicing Problem

Given two convex bodies C, D, how do their volumes compare? More precisely,
what conditions on sections or projections of C and D guarantee that V (C) ≤ V (D)?

A particularly attractive problem in this context is the following problem of
Busemann-Petty [184], where v(·) is the (d − 1)-dimensional volume.

Problem 7.2. Let C, D ∈ Cp be two o-symmetric convex bodies such that

(13) v(C ∩ H) ≤ v(D ∩ H)

for each (d − 1)-dimensional linear subspace H of E
d . Does it follow that V (C) ≤

V (D)?

This problem has attracted a good deal of interest over the last two decades, so we
give the main steps of its solution:

The answer is no for:

d ≥ 12: Larman and Rogers [629]

d ≥ 10: Ball [48]

d ≥ 7: Giannopoulos [373], Bourgain [159]

d ≥ 5: Papadimitrakis [785], Gardner [358], Zhang [1043]

The answer is yes for:

d = 3: Gardner [357]

d = 4: Zhang [1044]

A unified solution for all dimensions using Fourier analysis was given by Gardner,
Koldobsky and Schlumprecht [361]. The answers are based on the notion of inter-
section body, introduced by Lutwak [668]. Use is made of the following interesting
result of Lutwak: The solution of the Busemann-Petty problem in E

d is positive if
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and only if every symmetric proper convex body in E
d is an intersection body. For

more precise information and additional references see the survey of Koldobsky and
König [607] and Koldobsky’s book [606]. It is a pity that the Busemann-Petty prob-
lem has a negative answer. Otherwise it would have made a deep and interesting
result.

Equally intuitive is Shephard’s problem [931]:

Problem 7.3. Let C, D ∈ Cp be two o-symmetric convex bodies such that

(14) v(C |H) ≤ v(D|H)
for each (d − 1)-dimensional linear subspace H of Ed , where C |H denotes the
orthogonal projection of C into H. Does it then follow that V (C) ≤ V (D)?

The projection theorem of Alexandrov [11] says the following: Let C, D be cen-
trally symmetric proper convex bodies such that for each hyperplane H the projec-
tions C |H and D|H have the same area. Then C and D coincide up to a translation.
Considering this result, a positive answer to the above question seems plausible.
Unfortunately, things go wrong as much as they possibly can: There are (even cen-
trally symmetric) convex bodies C and D such that v(C |H) < v(D|H) for all
(d − 1)-dimensional subspaces H of E

d , yet V (C) > V (D). Examples were pro-
vided by Petty [796] and Schneider [897]. Petty and Schneider also proved that the
answer is positive, if the body D is a zonoid. For more information, consult Gardner’s
book [359].

In both cases, the question remains to determine precise additional conditions
under which the problems of Busemann-Petty and Shephard have positive answers.

If C, D are proper, o-symmetric convex bodies, then both (13) and (14) imply
that

V (C) ≤ √d V (D).

This can be shown by the Corollary 11.2 of John’s ellipsoid theorem 11.2, see
Gardner [359], Theorems 4.2.13 and 8.2.13. While in the case of projections, no
essential improvements are possible,

√
d can be replaced by essentially smaller quan-

tities in the case of sections. It is even possible that the slicing problem which has
been investigated intensively in the local theory of normed spaces has a positive
solution. We state the following version of it:

Problem 7.4. Does there exist an absolute constant c > 0 such that the following
inequality holds: Let C, D ∈ Cp be o-symmetric convex bodies such that

v(C ∩ H) ≤ v(D ∩ H)

for each (d − 1)-dimensional subspace H. Then V (C) ≤ c V (D).

For more information see Gardner [359] and, in the local theory of normed spaces,
Giannopoulos and Milman [374, 375].



126 Convex Bodies

7.3 Characterization of Volume and Hadwiger’s Functional Theorem

Elementary volume on B and volume on C are valuations with particular proper-
ties, including simplicity, translation and rigid motion invariance, monotonicity and
continuity. The valuation property and the specified properties are what one would
expect from a notion of volume in an axiomatic theory. Thus it is a natural question
to ask, whether the valuation property together with some of the specified properties
characterize elementary volume on B and volume on C.

In this section we give positive answers to the above questions. As an applica-
tion, we prove Hadwiger’s functional theorem, which by some mathematicians, for
example by Rota, is considered to be one of the most beautiful and interesting theo-
rems of all mathematics. Of its numerous applications, one in integral geometry is
presented, the principal kinematic formula, see Theorem 7.10.

In Sect. 16.1 we will show that a valuation on the space P of convex polytopes,
with certain additional properties, is a multiple of the elementary volume on P .
A result similar to the functional theorem, but for valuations on the space of lattice
polytopes, is the Betke–Kneser theorem 19.6.

We follow Klain, see [586]. A different modern proof of Hadwiger’s volume
theorem is due to Chen [203].

Characterization of the Elementary Volume of Boxes

As a first characterization theorem we show the following result.

Theorem 7.6. Let φ be a simple, translation invariant valuation on B which is
monotone or continuous. Then φ = c V , where c is a suitable constant.

Proof. Let c = φ([0, 1]d). φ is a simple, translation invariant valuation on B and sat-
isfies the inclusion–exclusion formula, by Volland’s polytope extension theorem 7.2.
Since, for each n = 1, 2, . . . , the unit cube [0, 1]d can be dissected into nd cubes,
each a translate of the cube [0, 1

n ]d , it follows that

φ
([

0,
1

n

]d) = 1

nd
φ
([0, 1]d) = c

nd
= c V

([
0,

1

n

]d) for n = 1, 2, . . .

This, in turn, implies that

φ(B) = c V (B) for each box B with rational edge-lengths,

on noting that each such box can be dissected into translates of the cube [0, 1
n ]d for

suitable n. The monotonicity, respectively, the continuity then yields

φ(B) = cV (B) for each B ∈ B. ��
Example. The assumption that φ is monotone or continuous on B is essential, as
the following valuation ψ on B(E1) shows: Let f : R → R be a non-continuous
solution of Cauchy’s functional equation
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f (s + t) = f (s)+ f (t) for s, t ∈ R.

Then ψ , defined by

ψ(B) = f (β − α) for B = [α, β] ∈ B(E1),

is a simple, translation invariant valuation on B(E1), but clearly not a multiple of the
length.

Remark. A similar result holds for L(B), where, by the continuity of a valuation on
L(B), we mean continuity of its restriction to B.

First Characterization of the Volume of Convex Bodies

In the following we present a characterization of the volume on C, see Hadwiger
[462,464,468]. Versions of this result in the context of Jordan and Lebesgue measure,
respectively, Riemann and Lebesgue integrals are well known.

Theorem 7.7. Let φ be a simple, translation invariant, monotone valuation on C.
Then φ = c V , where c is a suitable constant.

Proof. By replacing φ by −φ, if necessary, we may assume that

(1) φ is non-decreasing and thus non-negative on C.

An application of the above characterization theorem to the restriction of φ to B
shows that

(2) φ(B) = c V (B) for B ∈ B,

where c is a suitable constant. By Theorem 7.2 φ has a unique extension to a val-
uation on L(B) which we also denote by φ. Similarly, c V is a valuation on L(B)
which extends the valuation c V on B, see Propositions 7.1, 7.2. Since φ and c V
coincide on B by (2), they must coincide on L(B) by Volland’s polytope extension
theorem 7.2:

(3) φ(A) = c V (A) for A ∈ L(B).
Volland’s theorem, applied to the restriction of the valuation φ to the intersec-

tional family P , shows that φ satisfies the inclusion–exclusion formula on P . Since
φ is simple, we see that

(4) φ is simply additive on P .

We now show that

(5) φ(A) ≤ φ(C) for A ∈ L(B), C ∈ C, where A ⊆ C .

(Note that this is not trivial since in the theorem monotonicity is assumed only for
C.) Given A,C , we have conv A ∈ P . Then A ⊆ conv A ⊆ C . Represent A in the
form

A = B1 ∪ · · · ∪ Bm, where Bi ∈ B
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and the Bi have pairwise disjoint interiors. We may then represent conv A in the form

conv A = B1 ∪ · · · ∪ Bm ∪ P1 ∪ · · · ∪ Pn where Pj ∈ P
and such that the boxes and convex polytopes B1, . . . , Pn have pairwise disjoint
interiors. Thus (4) and (1) imply the following:

φ(A) = φ(B1)+ · · · + φ(Bm) ≤ φ(B1)+ · · · + φ(Bm)+ φ(P1)+ · · · + φ(Pn)

= φ(conv A) ≤ φ(C),
concluding the proof of (5).

The next step is to prove the following counterpart of (5):

(6) φ(C) ≤ φ(B) for C ∈ C, B ∈ L(B), where C ⊆ int B.

Given C, B, choose P ∈ P , such that C ⊆ P ⊆ B. This is possible since C ⊆ int B.
Represent B in the form

B = B1 ∪ · · · ∪ Bm, where Bi ∈ B
and the Bi have pairwise disjoint interiors. Then (1), (4) and (1) again yield the
following:

φ(C) ≤ φ(P) = φ(P ∩ (B1 ∪ · · · ∪ Bm)
) = φ((P ∩ B1) ∪ · · · ∪ (P ∩ Bm)

)

= φ(P ∩ B1)+ · · · + φ(P ∩ Bm) ≤ φ(B1)+ · · · + φ(Bm) = φ(B),
concluding the proof of (6).

In the last part of the proof we show that

(7) φ(C) = c V (C) for C ∈ C.

Let C ∈ C. Then (3), (5), (6) and (3) show that

sup{c V (A) : A ∈ L(B), A ⊆ C} ≤ φ(C)
≤ inf{c V (B) : B ∈ L(B),C ⊆ int B}.

Since C is Jordan measurable, by Theorem 7.4, we have

sup{V (A) : A ∈ L(B), A ⊆ C} = V (C)

= inf{V (B) : B ∈ L(B),C ⊆ int B}.
Hence φ(C) = c V (C), concluding the proof of (7) and thus of the theorem. ��

Second Characterization of the Volume of Convex Bodies

Much more difficult than the proof of the first characterization of the volume is the
proof of Hadwiger’s characterization of the volume, see [462, 464, 468], where a
rigid motion is proper if it has determinant 1.
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Theorem 7.8. Let φ be a simple, continuous valuation on C which is invariant with
respect to proper rigid motions. Then φ = cV , where c is a suitable constant.

The following proof is due to Klain [586], see also [587]. It simplifies the elementary
original proof of Hadwiger, but uses the non-elementary tool of spherical harmonics.
A recent simplified elementary version of the original proof of Hadwiger is due to
Chen [203].

First, some tools are put together. A convex polytope Z is a zonotope if it can be
represented in the form

Z = S1 + · · · + Sn, where the Si are line segments.

A convex body which is the limit of a convergent sequence of zonotopes is a zonoid.
For more on zonotopes and zonoids, see Goodey and Weil [384].

Lemma 7.2. Let C be an o-symmetric convex body with support function hC such
that the restriction of hC to Sd−1 is of class C∞. Then there are zonoids Y and Z
such that

C + Y = Z .

Proof. If f : Sd−1 →R is a function of class C∞, its cosine transform C f : Sd−1 →R

is defined by

C f (u) =
∫

Sd−1

|u · v| f (v) dσ(v) for u ∈ Sd−1,

where σ is the ordinary surface area measure in E
d . Using the Funk–Hecke theorem

on spherical harmonics it can be shown that C is a bijective linear operator on the
space of all even functions f : Sd−1 → R of class C∞ onto itself. See, e.g. [402].

Since hC |Sd−1 is even and of class C∞ by assumption, there is an even function
f : Sd−1 → R of class C∞ such that hC |Sd−1 = C f , that is,

hC (u) =
∫

Sd−1

|u · v| f (v) dσ(v) for u ∈ Sd−1.

Define f +, f − : Sd−1 → R by f +(v) = max{ f (v), 0}, f −(v) = max{− f (v), 0}
for v ∈ Sd−1. Then f = f + − f − and thus

hC (u)+
∫

Sd−1

|u · v| f −(v) dσ(v) =
∫

Sd−1

|u · v| f +(v) dσ(v) for u ∈ Sd−1.

It is easy to check that the cosine transforms C f −, C f + (homogeneously extended
to E

d of degree 1) are positive homogeneous of degree 1 and convex. Thus the char-
acterization theorem 4.3 for support functions shows that there are convex bodies
Y, Z such that hY = C f −, hZ = C f + and therefore hC + hY = hZ , or

C + Y = Z .
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Since the Riemann sums (actually functions of u) of the above parameter integrals
for the support functions hY = C f −, hZ = C f + are linear combinations of support
functions of line segments and thus of zonotopes, and since the Riemann sums con-
verge uniformly to hY and hZ , it follows that Y and Z are zonoids. ��
The following tool is due to Sah [873].

Lemma 7.3. Let S be a d-dimensional simplex. Then S can be dissected into finitely
many convex polytopes, each symmetric with respect to a hyperplane.

Proof. Let F1, . . . , Fd+1 be the facets of S and let c ∈ S be the centre of the unique
inball of maximum radius of S. Let pi be the point where the inball touches Fi . For
i < j let Pi j = conv{c, pi , p j , Fi ∩ Fj }. Then each Pi j is a convex polytope, sym-
metric in the hyperplane through c and Fi ∩ Fj , and {P12, . . . , Pd d+1} is a dissection
of S. ��
Proof of the Theorem. The main step of the proof is to show the following proposi-
tion:

(8) Letψ be a simple, continuous valuation on C which is invariant with respect
to proper rigid motions and such that ψ([0, 1]d) = 0. Then ψ = 0.

We prove (8) by induction on d. If d = 1, then ψ is simple and translation invari-
ant. Thus ψ([0, 1]) = 0 implies that ψ([0, 1

n ]) = 0 for n = 1, 2, . . . This, in turn,
shows that ψ vanishes on all compact line segments with rational endpoints. By con-
tinuity, ψ then vanishes on all compact line segments, that is, on C(E1), concluding
the proof of (8) in case d = 1.

Assume now that d > 1 and that (8) holds in dimension d − 1. The proof of
Proposition (8) for d is divided into a series of steps.

First, Volland’s polytope extension theorem 7.2, applied to the valuation ψ |P ,
shows that ψ satisfies the inclusion–exclusion formula on P and thus, being simple,

(9) ψ is simply additive on P .

Second,

(10) ψ(S) = ψ(−S) for each simplex S.

If d is even, S can be transformed into −S by a proper rigid motion and (9) holds
trivially. If d is odd, there is a dissection {P1, . . . , Pn} of S by Lemma 7.3 where each
Pi is a convex polytope which is symmetric with respect to a hyperplane. Hence Pi

can be transformed into−Pi by a proper rigid motion. By the assumption in (8), ψ is
invariant with respect to proper rigid motions. This together with (9) then yields (10).

Third,

(11) ψ(W ) = 0 for each right cylinder W ∈ C.

Embed E
d−1 into E

d = E
d−1 × R as usual and define a function µ : C(Ed−1) →

R by
µ(C) = ψ(C × [0, 1]) for C ∈ C(Ed−1) ⊆ C(Ed).
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It is easy to see thatµ is a simple, continuous valuation on C(Ed−1)which is invariant
with respect to proper rigid motions in E

d−1 and such that µ([0, 1]d−1) = 0. Thus
µ = 0 on C(Ed−1) by the induction hypothesis. Hence ψ(W ) = 0 for all right
cylinders W of the form W = C×[0, 1] ⊆ E

d−1×R = E
d with basis C ∈ C(Ed−1).

Since ψ is invariant with respect to proper rigid motions in E
d , this yields (11) for

all right cylinders of height 1. Since ψ is simple and translation invariant, ψ(W ) = 0
for each right cylinder of height 1

n , n = 1, 2, . . . , and thus for all right cylinders of
rational height. The continuity of ψ finally yields that (11) holds generally.

Fourth,

(12) ψ(X) = 0 for each slanting cylinder X ∈ C with polytope basis.

If X is long and thin, cut it with a hyperplane orthogonal to its cylindrical boundary
into two pieces and glue the pieces together such as to obtain a right cylinder Y W .
Since ψ is translation invariant, (9) and (11) show that ψ(X) = ψ(W ) = 0. If X
is not long and thin, dissect it into finitely many long and thin slanting cylinders
X1, . . . , Xn , say. Since ψ satisfies (9), ψ(X) = ψ(X1)+ · · · + ψ(Xn) = 0 by what
was just proved. This concludes the proof of (12).

Fifth,

(13) ψ(P + L) = ψ(P) for each P ∈ P and any line segment L .

Let L = [o, s] with s ∈ E
d . If dim P ≤ d − 1, then P + L is a cylinder or of

dimension ≤ d − 1. Using (12), respectively, the assumption that ψ is simple, we
see that ψ(P + L) = 0. Clearly, ψ(P) = 0 too, by the simplicity of ψ . Hence
ψ(P + L) = ψ(P) in case dim P ≤ d − 1. Assume now that dim P = d. Let
F1, . . . , Fn be the facets of P and denote the exterior unit normal vector of Fi

by ui . By renumbering, if necessary, we may suppose that s · ui > 0 precisely
for i = 1, . . . ,m(< n). Then P, F1 + L , . . . , Fm + L form a dissection of P + L .
(9) and (12) then show that

ψ(P + L) = ψ(P)+ ψ(F1 + L)+ · · · + ψ(Fm + L) = ψ(P),
concluding the proof of (13).

Since a zonotope is a finite sum of line segments, a simple induction argument,
starting with (13), shows that ψ(P + Z) = ψ(P), ψ(Z) = 0 for each P ∈ P and
each zonotope Z . Since, by assumption, ψ is continuous, this implies that

(14) ψ(C + Z) = ψ(C), ψ(Z) = 0 for each C ∈ C and each zonoid Z .

Sixth,

(15) ψ(C) = 0 for each centrally symmetric convex body C ∈ C such that the
restriction of hC to Sd−1 is of class C∞.

By Lemma 7.2 there are zonoids Y and Z such that C + Y = Z . Hence ψ(C) =
ψ(C + Y ) = ψ(Z) = 0 by (14), which yields (15). Since the centrally symmetric
convex bodies C with hC |Sd−1 of class C∞ are dense in the family of all centrally
symmetric convex bodies, (15) and the continuity of ψ imply that

(16) ψ(C) = 0 for all centrally symmetric C ∈ C.
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v1 + v2 + v3

o

v1

v3

v2

Fig. 7.2. Proof of Proposition (17)

Seventh,

(17) ψ(S) = 0 for each simplex S.

Sinceψ is simple, (17) holds if dim S ≤ d−1. Assume now that dim S = d and that o
is a vertex of S. Let v1, . . . , vd denote the other vertices of S and let v = v1+· · ·+vd .
Let P = {λ1v1 + · · · + λdvd : 0 ≤ λi ≤ 1}. The hyperplanes through v1, . . . , vd

and v − v1, . . . , v − vd , respectively, dissect P into S, a centrally symmetric convex
polytope Q, and v − S. (16), (9), (16) and (10) then imply that

0 = ψ(P) = ψ(S)+ ψ(Q)+ ψ(v − S) = 2ψ(S),

hence ψ(S) = 0, concluding the proof of (17) (see Fig. 7.2).
Finally, since each P ∈ P can be dissected into simplices, (9) and (17) show that

ψ(P) = 0 for P ∈ P . The continuity of ψ then implies that

ψ(C) = 0 for C ∈ C.
This concludes the induction. The proof of (8) is finished.

To complete the proof of the theorem, let ψ : C → R be defined by ψ(C) =
φ(C)− cV (C) for C ∈ C, where c = φ([0, 1]d). ψ is a valuation which satisfies the
assumptions in (8). Thus ψ = 0, i.e. φ = cV , concluding the proof of the theorem.

��
Remark. If, in this result, the group of proper rigid motions is replaced by the group
of translations, then, besides the valuations of the form cV , many other valuations
turn up. The situation on C thus is essentially more complicated than the situation on
B, see Theorem 7.6.

Hadwiger’s Functional Theorem

The above characterizations of the volume will lead to an easy proof of Hadwiger’s
[462, 464, 468] celebrated functional theorem. A preliminary version of this result is
due to Blaschke [128], Sect. 4, who also provided the basic idea of proof. Unfor-
tunately, Blaschke’s presentation was rather sloppy and it needed the genius of
Hadwiger to recognize this treasure.
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Theorem 7.9. Let φ be a continuous valuation on C which is invariant with respect
to proper rigid motions. Then

φ = c0W0 + · · · + cd Wd with suitable constants c0, . . . , cd .

This result clearly shows the importance of the quermassintegrals W0, . . . ,Wd on C.
For information on quermassintegrals, see Sect. 6.4 and the references cited there.

Proof (by Induction on d). The functional theorem is trivial for d = 0. Assume now
that d > 0 and that it holds for d − 1. We have to prove it for d. The restriction of
φ to C(Ed−1) satisfies the assumption of the theorem. The induction hypothesis then
shows that

(18) φ(C) = d0w0(C)+ · · · + dd−1wd−1(C) for C ∈ C(Ed−1),

where d0, . . . , dd−1 are suitable constants and w0, . . . , wd−1 are the quermassinte-
grals in E

d−1. Note that

(19) W0(C) = 0, wi−1(C) = d κi−1

i κi
Wi (C)

for C ∈ C(Ed−1) ⊆ C(Ed = E
d−1 × R),

by Proposition 6.7. Consider the valuation

ψ = φ −
d∑

i=1

di−1
d κi−1

i κi
Wi = φ −

d∑

i=1

ci Wi , say.

ψ(C) = 0 for C ∈ C(Ed−1) ⊆ C(Ed) by (18) and (19). Since φ is invariant with
respect to proper rigid motions, by assumption, and the same is true of the quer-
massintegrals Wi , by Theorem 6.13, ψ is also invariant with respect to proper rigid
motions. This shows that ψ is simple. Since φ is continuous, by assumption, and the
quermassintegrals Wi are continuous by Theorem 6.13, the valuationψ is continuous
too. Thus ψ satisfies the assumptions of Hadwiger’s characterization theorem for the
volume which then implies that ψ = c0V = c0W0 where c0 is a suitable constant.
Hence

φ = ψ +
d∑

i=1

ci Wi =
d∑

i=0

ci Wi . ��

Remark. Hadwiger [462, 464] also proved a similar result, where, instead of con-
tinuity, monotony is assumed. An interesting recent result of Ludwig and Reitzner
[666] shows that the valuations on C which are semi-continuous and invariant with
respect to volume preserving affinities are precisely the linear combinations of the
Euler characteristic, affine surface area and volume. Alesker [7, 8] determined the
continuous rotation invariant and the continuous translation invariant valuations
on C. For further pertinent results and additional information, see McMullen and
Schneider [716], McMullen [714] and Klain and Rota [587].
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Mean Width and the (d-1)st Quermassintegral

As a simple consequence of Hadwiger’s functional theorem we derive the following
identity:

Corollary 7.1. Wd−1(C) = κd

2
w(C) for C ∈ C, where w(C) is the mean width

of C,

w(C) = 2

d κd

∫

Sd−1

hC (u) dσ(u).

Proof. The main step of the proof is to show that

(20) w(·) is a valuation.

To see this, let C, D ∈ C be such that C∪D ∈ C. In the second proof of Theorem 6.10
we showed the following equalities for the support functions of C ∩ D and C ∪ D:

(21) hC∩D = min{hC , hD} and hC∪D = max{hC , hD}.
Proposition (20) can now be obtained as follows:

w(C)+ w(D)
= 2

d κd

∫

Sd−1

(hC (u)+ hD(u)) dσ(u)

= 2

d κd

∫

Sd−1

min{hC (u), hD(u)} dσ(u)+ 2

d κd

∫

Sd−1

max{hC (u), hD(u)} dσ(u)

= w(C ∩ D)+ w(C ∪ D)

by (21), concluding the proof of (20).
w is a valuation by (20). It is easy to see that it is continuous, rigid motion

invariant and positive homogeneous of degree 1. Hadwiger’s functional theorem then
shows that w is a multiple of Wd−1. Now let C = Bd and note that d Wd−1(Bd) =
d κd by Steiner’s formula and w(Bd) = 2 to determine the factor. ��

7.4 The Principal Kinematic Formula of Integral Geometry

The following quote from Santaló [879], preface, gives an idea of what integral
geometry is all about:

To apply the idea of probability to random elements that are geometric objects (such
as points, lines, geodesics, congruent sets, motions, or affinities), it is necessary, first,
to define a measure for such sets of elements. Then, the evaluation of this measure
for specific sets sometimes leads to remarkable consequences of a purely geometric
character, in which the idea of probability turns out to be accidental. The definition
of such a measure depends on the geometry with which we are dealing. Accord-
ing to Klein’s famous Erlangen Program (1872), the criterion that distinguishes one
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geometry from another is the group of transformations under which the propositions
remain valid. Thus, for the purposes of integral geometry, it seems to be natural to
choose the measure in such a way that it remains invariant under the corresponding
group of transformation.

The first reference of integral geometry and the closely related field of geometric
probability, is the needle experiment of the naturalist Buffon [177]. Buffon found
his formula in 1733, but it was published only in 1777. Principal contributors to this
area are Cauchy, Barbier, Crofton and Czuber in the nineteenth century, Blaschke
and his school, in particular his followers Santaló, Chern and Hadwiger, in the 1930s
and later, and a number of contemporaries. See the collected works of Blaschke
[129] and the books of Blaschke [128], Hadwiger [468], Stoka [971], Santaló [879],
Ambartzumian [26], Schneider and Weil [911], Klain and Rota [587] and Beneš and
Rataj [95].

A related, yet different, type of integral geometry deals with the Radon transform
and its applications. See, e.g. Helgason [489], Gel’fand, Gindikin and Graev [368]
and Palamodov [784].

In the following we state and prove the principal kinematic formula based on
Hadwiger’s functional theorem.

Measure on the Group of Rigid Motions

Let M = M(Ed) be the group of all (proper and improper) rigid motions in E
d .

Since every rigid motion is a (proper or improper) rotation, i.e. an element of the
orthogonal group O(d), followed by a translation, we obtain an invariant measure µ
on M as follows: Take the product of the invariant measure ν on the compact group
O(d), normalized such that the whole group has measure 1, with the d-dimensional
Lebesgue measure. See [760].

The Principal Kinematic Formula

permits us to calculate the integral

(1)
∫

M

χ(C ∩ m D) dµ(m),

where C, D are polyconvex bodies and χ is the Euler characteristic, see Sect. 7.1.
It is due to Santaló [879] (d = 2), Blaschke [127, 128] (d = 3) and Chern and
Yien [205] (general d). There exist many generalizations and extensions of it, for
example the general kinematic formula which permits us to calculate the integral

∫

M

Wi (C ∩ m D) dµ(m).

For convex bodies C, D the integral (1) is simply the measure of all rigid motions m
such that the intersection C ∩m D is not empty. If B is a convex body which contains
C , the quotient
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∫

M

χ(C ∩ m D) dµ(m)

∫

M

χ(B ∩ m D) dµ(m)

may be interpreted as the probability that a congruent copy of D which meets B
also meets C . There are similar interpretations for χ replaced by the quermassinte-
grals Wi .

Our aim is to prove the principal kinematic formula:

Theorem 7.10. Let C, D ∈ L(C). Then

(2)
∫

M

χ(C ∩ m D) dµ(m) =
d∑

i=0

1

κd

(
d

i

)
Wi (C)Wd−i (D).

The quermassintegrals Wi , including χ , are continuous valuations on C, see Theo-
rem 6.13. Hence they can be extended in a unique way to valuations on L(C) by
Groemer’s extension theorem. These extensions are applied in (2).

Proof. We consider, first, the case C. Define a function φ : C × C → R by

(3) φ(C, D) = µ({m ∈ M : C ∩ m D �= ∅}) =
∫

M

χ(C ∩ m D) dµ(m)

=
∫

O(d)

( ∫

Ed

χ
(
C ∩ (r D + t)

)
dt

)
dν(r)

=
∫

O(d)

V (C − r D) dν(r) for C, D ∈ C,

noting that {t : C ∩ (r D + t) �= ∅} = C − r D. Since {m ∈ M : C ∩ m D �= ∅} is
compact in M = O(d)×E

d and thus measurable, φ is well defined. In order to apply
the functional theorem of Hadwiger to φ, several properties of φ have to be shown
first.

The first property of φ is the following:

(4) φ(C, D) = φ(D,C) for C, D ∈ C.

χ is invariant with respect to rigid motions and the Haar measure µ is unimodular,
that is, if in an integrand the variable m is replaced by m−1, the integral does not
change its value. See, e.g. [760], p.81. Thus (4) can be obtained as follows:

φ(C, D) =
∫

M

χ(C ∩ m D) dµ(m) =
∫

M

χ(m−1C ∩ D) dµ(m)

=
∫

M

χ(D ∩ m−1C) dµ(m) =
∫

M

χ(D ∩ mC) dµ(m) = φ(D,C).
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The second property of φ says that

(5) φ(·, D) is a valuation on C for given D ∈ C.

Let B,C ∈ C such that B ∪ C ∈ C. Since

(B ∪ C) ∩ m D = (B ∩ m D) ∪ (C ∩ m D),

(B ∩ C) ∩ m D = (B ∩ m D) ∩ (C ∩ m D),

and since χ is a valuation on C, we obtain the equality

χ
(
(B ∪ C) ∩ m D

)+ χ((B ∩ D) ∩ m D
) = χ(B ∩ m D)+ χ(C ∩ m D)

for m ∈ M. Integrating this equality over M then shows that

φ(B ∪ C, D)+ φ(B ∩ C, D) = φ(B, D)+ φ(C, D),

concluding the proof of (5). Properties (4) and (5) yield the third property of φ, which
says that

(6) φ(C, ·) is a valuation on C for given C ∈ C.

The left invariance of the Haar measure µ yields the following fourth property of φ.

(7) φ(C,m D) = φ(C, D) for C, D ∈ C, m ∈ M.

More intricate is the proof of the fifth and last property,

(8) φ(·, ·) is continuous on C × C.

To see this, note that

φ(C, D) =
∫

O(d)

V (C − r D) dν(r)

by (3). V (C − r D) is continuous in (C, D, r), using the natural topology on O(d)
(matrix norms). Since O(d) is compact, integration yields a function which is con-
tinuous in (C, D), concluding the proof of (8).

For given C ∈ C the function φ(C, ·) is a continuous valuation on C by (6) and
(8). By (7) it is invariant with respect to proper rigid motions. An application of
Hadwiger’s functional theorem thus shows that

(9) φ(C, D) = c0(C)W0(D)+ · · · + cd(C)Wd(D) for C, D ∈ C
with suitable coefficients c0(C), . . . , cd(C).

We now investigate these coefficients and show first that

(10) ci (·) is a valuation on C for i = 0, . . . , d.



138 Convex Bodies

In the following, summation on i and j is from 0 to d. Let B,C ∈ C with B∪C ∈ C.
Then

φ(B ∪ C, D) =
∑

i

ci (B ∪ C)Wi (D),

φ(B ∩ C, D) =
∑

i

ci (B ∩ C)Wi (D),

φ(B, D) =
∑

i

ci (B)Wi (D),

φ(C, D) =
∑

i

ci (C)Wi (D) for D ∈ C.

This, together with (5), shows that

0 =
∑

i

(
ci (B ∪ C)+ ci (B ∩ C)− ci (B)− ci (C)

)
Wi (D) for D ∈ C.

Taking D = B0, B1, . . . , Bd , the vectors
(
W0(D), . . . ,Wd(D)

)
form a basis of

E
d+1. Hence

ci (B ∪ C)+ ci (B ∩ C)− ci (B)− ci (C) = 0,

concluding the proof of (10). Next:

(11) ci (·) is continuous for i = 0, . . . , d.

Choose C,C1,C2, · · · ∈ C such that Cn → C as n →∞. Then

∑

i

ci (Cn)Wi (D) = φ(Cn, D)→ φ(C, D) =
∑

i

ci (C)Wi (D) for any D ∈ C

by (9) and (8). Hence

∑

i

(
ci (Cn)− ci (C)

)
Wi (D)→ 0 for any D ∈ C.

Taking D = B0, B1, . . . , Bd , the vectors
(
W0(D), . . . ,Wd(D)

)
form a basis of

E
d+1. Hence

ci (Cn)− ci (C)→ 0.

The proof of (11) is complete. The last required property of the ci says that

(12) ci (·) is invariant with respect to proper rigid motions for i = 0, . . . , d.

Let C ∈ C, m ∈ M . Then
∑

i

ci (mC)Wi (D) = φ(mC, D) = φ(C, D) =
∑

i

ci (C)Wi (D)
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by (9), (4) and (7), or
∑

i

(
ci (mC)− ci (C)

)
Wi (D) = 0 for D ∈ C.

An argument that was used twice before, then shows that ci (mC) = ci (C), conclud-
ing the proof of (12).

Having proved (10)–(12), Hadwiger’s functional theorem shows that

(13) ci (·) = ci0W0(·)+ · · · + cid Wd(·) for C ∈ C
with suitable coefficients ci j .

In the last step of the proof, the coefficients ci j in (13) will be determined. This
is done by applying (3), (9) and (13) to the special convex bodies λBd , µBd , noting
that ν is normalized and using Theorem 6.13 (ii):

φ(λBd , µBd) =
∫

O(d)

V
(
λBd − µ r Bd) dν(r) =

∫

O(d)

V
(
(λ+ µ)Bd) dν(r)

= V
(
(λ+ µ)Bd) = (λ+ µ)d V (Bd) = κd

∑

i

(
d

i

)
λiµd−i

=
∑

i, j

ci j Wi (λBd)W j (µBd) =
∑

i, j

ci j Wi (B
d)W j (B

d) λd−iµd− j

Hence:

(14) ci j = 0 for i + j �= d and ci d−i = κd
(d

i

)

Wi (Bd)Wd−i (Bd)
=

(d
i

)

κd

since Wi (Bd) = κd , by Steiner’s theorem on the volume of parallel bodies 6.6.
Propositions (3), (9), (13) and (14) settle the theorem for C.
To prove the theorem also for L(C), we proceed as follows: given a convex body

C ∈ C and a rigid motion m, the valuations
∫

M

χ(C ∩ m · ) dµ(m) and Wd−i (·)

on C are continuous and invariant with respect to proper rigid motions. By Groemer’s
extension theorem 7.3, these valuations have unique extensions to L(C). Since their
values for D1 ∪ · · · ∪ Dm ∈ L(C), where D j ∈ C, are determined by the inclusion–
exclusion formula, (2) continues to hold for the given C and all D ∈ L(C). Thus
(2) holds for all C ∈ C and D ∈ L(C). Then, given D ∈ L(C), a similar argument
shows that (2) holds for all C ∈ L(C) and the given D ∈ L(C). Thus (2) holds for all
C ∈ L(C) and D ∈ L(D), concluding the proof of the theorem. ��
Remark. For extensions of the principal kinematic formula to homogeneous spaces,
see Howard [523] and Fu [345]. A comprehensive survey of more recent results
on kinematic and Crofton type formulae in integral geometry is due to Hug and
Schneider [528].
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7.5 Hadwiger’s Containment Problem

Consider the following

Problem 7.5. Specify (simple necessary and sufficient) conditions such that two
proper convex bodies satisfying these conditions have the property that one of the
bodies is contained in a congruent copy of the other body.

While, at present, a complete solution of this problem seems to be out of reach, there
are interesting contributions to it.

Hadwiger’s Sufficient Condition for Containment

As an application of the principal kinematic formula, we will prove the following
result of Hadwiger [461], where A and P stand for area and perimeter.

Theorem 7.11. Let C, D ∈ Cp(E
2). If

2π
(

A(C)+ A(D)
)− P(C)P(D) > 0 and A(C) �= A(D),

then there is a rigid motion m such that either C ⊆ int m D or D ⊆ int mC.

Proof. Assume first that C and D are proper convex polygons. If C ∩m D = ∅, then
also bd C ∩ m bd D = ∅. However, if C ∩ m D �= ∅, then there are two possibilities.
The first possibility is that bd C ∩m bd D �= ∅. If we disregard a set of rigid motions
m of measure 0, then bd C ∩ m bd D consists of an even number of distinct points.
The second possibility is that bd C ∩m bd D = ∅. Then C ⊆ int m D or D ⊆ int mC .

Suppose now that no congruent copy of C is contained in int D and, simi-
larly, with C and D exchanged. In terms of the Euler characteristic this implies the
following:

χ(C ∩ m D) = 0 ⇒ χ(bd C ∩ m bd D) = 0,

χ(C ∩ m D) = 1 ⇒ χ(bd C ∩ m bd D) ≥ 2

for all m ∈ M with a set of exceptions of measure 0. Hence

χ(bd C ∩ m bd D) ≥ 2χ(C ∩ m D)

for all m ∈ M with a set of exceptions of measure 0. Thus,
∫

M

χ(bd C ∩ m bd D) dµ(m) ≥ 2
∫

M

χ(C ∩ m D) dµ(m),

or, by the principal kinematic formula 7.10 for d = 2 and the definition of Wi on
L(C),
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χ(bd C)A(bd C)+ 2

π
P(C)P(D)+ A(bd C)χ(bd D)

≥ 2χ(C)A(D)+ 4

π
P(C)P(D)+ 2A(C)χ(D).

Since C, D ∈ C, we have χ(C) = χ(D) = 1 and A(bd C) = A(bd D) = 0. Hence

2π(A(C)+ A(D))− P(C)P(D) ≤ 0.

Thus, if 2π(A(C) + A(D)) − P(C)P(D) > 0, one of C, D contains a congruent
copy of the other disc in its interior. This proves the theorem for convex polygons.

Assume, second, that C, D are proper convex discs such that

2π
(

A(C)+ (A(D))− P(C)P(D) > 0, A(C) �= A(D),

say A(C) > A(D). Choose convex polygons Q ⊆ C, R ⊇ D such that

2π
(

A(Q)+ A(R)
)− P(Q)P(R) > 0, A(Q) > A(R).

By the first part of the proof a suitable congruent copy of R is then contained in int Q.
Thus, a fortiori, a suitable congruent copy of D is contained in int C , concluding the
proof of the theorem. ��
Remark. It is an open question to extend Hadwiger’s containment theorem to higher
dimensions in a simple way. For ideas in this direction due to Zhou and Zhang, see
the references in Klain and Rota [587].

8 The Brunn–Minkowski Inequality

In the Brunn–Minkowski inequality, the volume

V (C + D)

of the Minkowski sum C+D = {x+ y : x ∈ C, y ∈ D}, of two convex bodies C, D,
is estimated in terms of the volumes of C and D. Around the classical inequality, a
rich theory with numerous applications developed over the course of the twentieth
century.

In this section we first present different versions of the Brunn–Minkowski
inequality, among them extensions to non-convex sets and integrals. Then, appli-
cations of the Brunn–Minkowski inequality to the classical isoperimetric inequality,
sand piles, capillary surfaces, and Wulff’s theorem from crystallography are given.
Finally, we show that general Brunn–Minkowski or isoperimetric type inequalities
lead to the concentration of measure phenomenon.

For references and related material, see Leichtweiss [640], Schneider [907], Ball
[53] and, in particular, the comprehensive survey of Gardner [360] and the report of
Barthe [77].
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8.1 The Classical Brunn–Minkowski Inequality

The Brunn–Minkowski inequality was first proved by Brunn [173,174] with a clever
but rather vague proof. The equality case, in particular, was not settled satisfactorily,
as was pointed out by Minkowski. Then, both Brunn [175] and Minkowski [735]
provided correct proofs. At present several essentially different proofs are known, as
well as a series of far-reaching extensions and applications.

Dinghas [270] commented on Brunn’s proof as follows:

The ingenious idea of Brunn to relate two convex sets by equal volume ratios ... saw
substantial progress in the last twenty years. It did not yield only refinements of old,
but produced also new results.

The proof that will be given below is a variant of the proof of Brunn [173, 174],
respectively of its precise version due to Kneser and Süss [600]. It is by induc-
tion and makes use of the idea of Brunn which relates the d-dimensional case to
the (d − 1)-dimensional case by equal volume ratios: let u ∈ Sd−1 and H(t) =
{x : u · x = t}. For 0 ≤ s ≤ 1 let tC (s) and tD(s) be such that the hyperplanes
H(tC (s)) and H(tD(s)) divide the volume of C , respectively, D, in the ratio s : 1−s.
Clearly,

C + D ⊇
⋃

0≤s≤1

(
C ∩ H

(
tC (s)

)+ D ∩ H
(
tD(s)

))
.

Now apply induction to C ∩ H
(
tC (s)

) + D ∩ H
(
tD(s)

)
and use Fubini’s theorem.

A different proof is due to Blaschke [124]. It makes use of a property of Steiner
symmetrization, namely that

st(C + D) ⊇ st C + st D.

This makes it possible to reduce the proof to the trivial case where C and D are balls.
For Blaschke’s proof, see Sect. 9.2.

The Classical Inequality

Our aim is to prove the Brunn–Minkowski inequality:

Theorem 8.1. Let C, D ∈ C. Then:

(1) V (C + D)
1
d ≥ V (C)

1
d + V (D)

1
d ,

where equality holds if and only if one of C, D is a point, or C and D are improper
and lie in parallel hyperplanes, or C and D are proper and positive homothetic.

Proof. The following inequality will be used below:

(2)
(
v

1
d−1 + w 1

d−1
)d−1

(V

v
+ W

w

)
≥ (V 1

d + W
1
d )d for v,w, V,W > 0,

where equality holds if and only if

v

V
d−1

d

= w

W
d−1

d

.
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To show (2), fix V,W and note that on each ray in the positive quadrant, {(v, w) :
v,w > 0}, starting at o, the left side of the inequality (2) is constant. Thus, to deter-
mine the minimum of the left side, it is sufficient to determine its minimum on the
open line segment {(v, 1− v) : 0 < v < 1}. Elementary calculus then yields (2).

The case when one or both convex bodies C, D are improper, is left to the reader.
Thus, from now on, we assume that V (C), V (D) > 0. For d = 1 our result is trivial.
Next, let d > 1 and assume that it holds for d − 1. We have to prove it for d.

In the first part of the proof, we show the inequality (1). Let u ∈ Sd−1 and, for
real t , let H(t) = {x : u · x = t} and H−(t) = {x : u · x ≤ t}. Choose αC < βC such
that H(αC ) and H(βC ) are support hyperplanes of C and similarly for D. Then:

(3) H(αC + αD) and H(βC + βD) are support hyperplanes of C + D.

Let v(·) denote (d − 1)-dimensional volume and put:

(4) vC (t) = v
(
C ∩ H(t)

)
, VC (t) = V

(
C ∩ H−(t)

)
for αC ≤ t ≤ βC ,

and similarly for D.

The function t → VC (t)/V (C), for αC ≤ t ≤ βC , assumes the values 0, 1 for
t = αC , βC , is continuous and strictly increasing for αC ≤ t ≤ βC and continuously
differentiable with derivative V ′

C (t)/V (C) = vC (t)/V (C) > 0 for αC < t < βC .
Consider its inverse function s → tC (s). Then:

(5) tC (·) is defined for 0 ≤ s ≤ 1,
tC (0) = αC , tC (1) = βC ,
tC (·) is continuous for 0 ≤ s ≤ 1,
tC (·) is continuously differentiable with

t ′C (s) =
V (C)

vC
(
tC (s)

) > 0 for 0 < s < 1.

Analogous statements hold for D.

Thus the function:

(6) tC+D(·) = tC (·)+ tD(·) is defined for 0 ≤ s ≤ 1,
tC+D(0) = αC + αD, tC+D(1) = βC + βD ,
tC+D(·) is continuous for 0 ≤ s ≤ 1,
tC+D(·) is continuously differentiable with

t ′C+D(s) =
V (C)

vC
(
tC (s)

) + V (D)

vD
(
tD(s)

) > 0 for 0 < s < 1.

Since H
(
tC+D(s)

) = H
(
tC (s)

)+ H
(
tD(s)

)
for 0 ≤ s ≤ 1, we have:

(7) (C + D) ∩ H
(
tC+D(s)

) ⊇ C ∩ H
(
tC (s)

)+ D ∩ H
(
tD(s)

)
for 0 ≤ s ≤ 1.

Now (3), Fubini’s theorem, (6) and integration by substitution, (7), the induction
hypothesis, (4), (6) and (2) together yield (1) as follows:

(8) V (C + D) =
βC+βD∫

αC+αD

v
(
(C + D) ∩ H(t)

)
dt
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D ∩ H(tD)

D

C

C ∩ H(tC )

C + D

C ∩ H(tC )+ D ∩ H(tD)

Fig. 8.1. Proof of the Brunn–Minkowski theorem; there is no misprint in the figure for C + D

=
1∫

0

v
(
(C + D) ∩ H

(
tC+D(s)

))
t ′C+D(s) ds

≥
1∫

0

v
(
C ∩ H

(
tC (s)

)+ D ∩ H
(
tD(s)

))
t ′C+D(s) ds

≥
1∫

0

(
vC

(
tC (s)

) 1
d−1 + vD

(
tD(s)

) 1
d−1

)d−1

(
V (C)

vC
(
tC (s)

) + V (D)

vD
(
tD(s)

)

)

ds

≥
1∫

0

(
V (C)

1
d + V (D)

1
d
)d

ds = (
V (C)

1
d + V (D)

1
d
)d
.

In the second part of the proof, we assume that equality holds in (1). By trans-
lating C and D, if necessary, we may suppose that o is the centroid of both C and
D. Let u ∈ Sd−1. Since, by assumption, there is equality in (1), we have equality
throughout (8). Thus, in particular (see Fig. 8.1),

vC
(
tC (s)

)

V (C)
d−1

d

= vD
(
tD(s)

)

V (D)
d−1

d

for 0 < s < 1,

by (2). An application of (5) then shows that

t ′C (s)

V (C)
1
d

= t ′D(s)
V (D)

1
d

for 0 < s < 1.
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This, in turn, implies that

(9)
tC (s)

V (C)
1
d

= tD(s)

V (D)
1
d

+ const for 0 ≤ s ≤ 1,

where we have used the continuity of tC , tD for 0 ≤ s ≤ 1. Since o is the centroid
of C , Fubini’s theorem, (4) and (5) show that

0 =
∫

C

u · x dx =
βC∫

αC

t v
(
C ∩ H(t)

)
dt =

βC∫

αC

t vC (t) dt

=
1∫

0

tC (s) vC
(
tC (s)

)
t ′C (s) ds =

1∫

0

tC (s) ds V (C),

and similarly for D.

The constant in (9) is thus 0. Using support functions for C and D, Proposition (9)
implies that

hD(u) = βD = tD(1) =
(V (D)

V (C)

) 1
d

tC (1) =
(V (D)

V (C)

) 1
d
βC =

(V (D)

V (C)

) 1
d

hC (u).

Since u ∈ Sd−1 was arbitrary, it follows that

D =
(V (D)

V (C)

) 1
d

C.

This settles the equality case. ��

Other Common Versions of the Classical Brunn–Minkowski Inequality

The above version of the Brunn–Minkowski inequality readily yields the following
results.

Theorem 8.2. Let C, D ∈ C. Then

V
(
(1− λ)C + λD

) 1
d ≥ (1− λ)V (C) 1

d + λV (D)
1
d for 0 ≤ λ ≤ 1,

where there is equality for some λ with 0 < λ < 1 if and only if C or D is a point,
or C and D are improper and lie in parallel hyperplanes, or proper and homothetic.

Theorem 8.3. Let C, D ∈ C. Then the function

λ→ V
(
(1− λ)C + λD

) 1
d is strictly concave for 0 ≤ λ ≤ 1,

unless C or D is a point, or C and D are either improper and lie in parallel hyper-
planes, or proper and homothetic. In the latter cases this function is linear.

The following result, in essence, is the Brunn–Minkowski inequality in d − 1
dimensions. It has applications in the geometry of numbers, see, e.g. Gruber [411].
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Theorem 8.4. Let C ∈ Cp, let u ∈ Sd−1 and, for real λ, let H(λ) = {x : u · x = λ}.
Let H(α) and H(β) be support hyperplanes of C where α < β. Then the function

λ→ v
(
C ∩ H(λ)

) 1
d−1 is concave for α ≤ λ ≤ β.

If C is the convex hull of two homothetic convex bodies in parallel hyperplanes, this
function is linear.

8.2 The Brunn–Minkowski Inequality for Non-Convex Sets

In view of its numerous applications, it makes sense to try to extend the Brunn–
Minkowski inequality for convex bodies to more general classes of sets. Extensions
to very general classes, including the class of all sets in E

d , where inner and outer
Lebesgue measure are used, have been given by Lyusternik [672], Schmidt [891],
Henstock and Macbeath [494] and Ohmann [776]. For Brunn–Minkowski type in-
equalities on metric probability spaces and the concentration of measure phenom-
enon, see Sect. 8.6.

In the following we reproduce Ohmann’s proof for the case of compact sets.
It uses the idea of Brunn described above in a skilful way.

For more information the reader is referred to the above references and to the
books and surveys of Hadwiger [468], Schneider [907] and Gardner [360].

The Brunn–Minkowski Inequality for Compact Sets

Our aim is to prove the following result.

Theorem 8.5. Let S, T be non-empty compact sets in E
d . Then:

(1) V (S + T )
1
d ≥ V (S)

1
d + V (T )

1
d .

Proof. In the following, summation or product over i is from 1 to d. The proof
consists of two steps.

In the first step, (1) is proved for polyboxes by induction:

(2) Let A = A1 ∪ · · · ∪ Am, B = B1 ∪ · · · ∪ Bn be polyboxes where
Ai and B j are boxes. Then

V (A + B)
1
d ≥ V (A)

1
d + V (B)

1
d .

For the proof of (2) it is sufficient to consider the case where the boxes A1, . . . , Am

are proper and have pairwise disjoint interiors.
If m + n = 2, let αi , βi > 0 be the edge-lengths of the boxes A, B. Then

V (A)
1
d + V (B)

1
d

V (A + B)
1
d

= (
∏

i αi )
1
d + (∏i βi )

1
d

(∏
i (αi + βi )

) 1
d

=
∏

i

( αi

αi + βi

) 1
d +

∏

i

( βi

αi + βi

) 1
d

≤ 1

d

(∑

i

αi

αi + βi
+

∑

i

βi

αi + βi

)
= 1
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by the inequality of the geometric and arithmetic mean, see Corollary 1.2. The proof
of (2) for m + n = 2 is complete. Assume now that m + n > 2 and thus in particular
m ≥ 2, say, and that (2) holds for 2, . . . ,m+n−1 boxes. Since the boxes A1, . . . , Am

have pairwise disjoint interiors, there is a hyperplane HA parallel to a coordinate
hyperplane such that in each of the closed halfspaces H+

A , H−
A there is at least one

of the boxes A1, . . . , Am . Then, among the boxes A1 ∩ H+
A , . . . , Am ∩ H+

A , there
are 0 < m+ < m proper boxes, say A+1 , . . . , A+m+ and among the boxes A1 ∩
H−

A , . . . , Am ∩ H−
A there are 0 < m− < m proper boxes, say A−1 , . . . , A−m− . Let HB

be a hyperplane parallel to HA such that

(3) V (A ∩ H+
A ) = αV (A), V (A ∩ H−

A ) = (1− α)V (A),
V (B ∩ H+

B ) = αV (B), V (B ∩ H−
B ) = (1− α)V (B),

where 0 < α < 1. The polyboxes B ∩ H+
B , B ∩ H−

B each consist of at most n boxes.
Now, noting that the hyperplane HA+HB separates the polyboxes A∩H+

A +B∩H+
B

and A ∩ H−
A + B ∩ H−

B , the induction hypothesis and (3) yield the following:

V (A + B) = V
(
(A ∩ H+

A ) ∪ (A ∩ H−
A )+ (B ∩ H+

B ) ∪ (B ∩ H−
B )

)

≥ V
(

A ∩ H+
A + B ∩ H+

B

)+ V
(

A ∩ H−
A + B ∩ H−

B

)

≥ V
(

A+1 ∪ · · · ∪ A+m+ + B ∩ H+
B

)+ V
(

A−1 ∪ · · · ∪ A−m− + B ∩ H−
B

)

≥ (
V (A+1 ∪ · · · ∪ A+m+)

1
d + V (B ∩ H+

B )
1
d
)d

+ (
V (A−1 ∪ · · · ∪ A−m−)

1
d + V (B ∩ H+

B )
1
d
)d

= (
V (A ∩ H+

A )
1
d + V (B ∩ H+

B )
1
d
)d + (

V (A ∩ H−
A )

1
d + V (B ∩ H−

B )
1
d
)d

= (
V (A)

1
d + V (B)

1
d
)d
.

Thus the induction is complete, concluding the proof of (2).
To prove (1) for compact sets S, T, consider decreasing sequences of polyboxes

with intersections S, respectively, T and use (2). ��
Remark. Using monotone limits, the above version of the Brunn–Minkowski inequ-
ality can easily be extended to Lebesgue measurable sets, and even to non-measurable
sets using inner measures and measurable kernels. Some caution is needed in the
statement of these results for the following reasons. By an example of Sierpiński
[939], the sum of two Lebesgue measurable sets in E

d need not be Lebesgue measur-
able. Similarly, the sum of two Borel sets in E

d need not be Borel, but it is Lebesgue
measurable, see Erdös and Stone [309].

8.3 The Classical Isoperimetric and the Isodiametric Inequality
and Generalized Surface Area

Besides geometric isoperimetric inequalities, a large body of isoperimetric inequal-
ities of mathematical physics has been obtained by means of methods of convex
geometry, in particular by means of the Brunn–Minkowski inequality. A differ-
ent tool for proving both geometric and physical isoperimetric inequalities is sym-
metrization, see Sects. 8.4 and 9.4.
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In the following we present the classical geometric isoperimetric and the isodia-
metric inequality. Then we consider an additional norm on E

d . In the normed space
thus obtained, we define the notion of generalized surface area and state the corres-
ponding isoperimetric inequality.

For information on notions of surface area in geometric measure theory and the
corresponding isoperimetric problems, including isoperimetric problems on mani-
folds, see Burago and Zalgaller [178], Talenti [986], Morgan [756], Chavel [201]
and Ritoré and Ros [839]. These notions and problems are not touched here.

The basic reference for generalized surface area in finite-dimensional normed
spaces and related matters is Thompson’s monograph [994]. For pertinent material
in the context of the local theory of normed spaces, see Sect. 8.6 and the references
cited there, in particular the book of Ledoux [634]. Closer to convex geometry is
Ball’s [50] reverse isoperimetric inequality, see Theorem 11.3.

The Classical Isoperimetric Inequality

A common version of the isoperimetric inequality says that, amongst all convex bod-
ies in E

d of given volume, it is precisely the Euclidean balls that have minimum
surface area.

The planar case of this problem is mentioned in the Aeneid of Vergil [1009],
book 1, verses 367, 368: Dido fled with a group of followers from Tyrus to escape
the fate of her husband Sychaeus, who was killed by her brother Pygmalion. Close
to where now is Tunis

they bought as much land – and called it Byrsa – as could be encircled with a bull’s
hide.

Geometric results in antiquity concerning the isoperimetric problem are due to
Archimedes (lost, but referred to by other authors) and Zenodorus. The contributions
of Galilei in the renaissance are in the spirit of Zenodorus, while, in the eighteenth
century, analytic attempts to prove the isoperimetric inequality drew upon tools from
the calculus of variations. More geometric were the four hinge method and Steiner
symmetrization, introduced to the isoperimetric problem in the late eighteenth and
the first half of the nineteenth century. The arguments of the analysts and the geo-
metric arguments of Steiner in the nineteenth century to prove the isoperimetric in-
equality all made use of the implicit unproven assumption that there was a solution
and thus did not lead to a complete solution, as noted by Dirichlet.

Steiner, in particular, proved that a planar convex body which is not a circle is
not a solution of the isoperimetric problem. He thought that this implies that the
circular discs were the solutions. To show his error more clearly, we present Pólya’s
[810] pseudo-argument for the assertion that 1 is the largest positive integer: For any
positive integer n > 1 there are integers larger than n, for example n2. Thus n cannot
be the largest positive integer. The only possible candidate thus is 1. Therefore 1 is
the largest positive integer.

The importance of Steiner, in the context of the isoperimetric problem, lies in
the methodological ideas. The first complete proofs of the geometric isoperimetric
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inequality were given by Edler [285] (d = 2) and Schwarz [922] (d = 3). The latter
based his proof on the calculus of variations and used ideas of Weierstrass. For the
history of the classical isoperimetric problem, see Gericke [370] and Danilova [236].

As will be seen below, Minkowski surface area and the Brunn–Minkowski the-
orem are ideal tools for an easy proof of the isoperimetric inequality for convex
bodies. The same proof holds also for much more general sets, but the isoperimetric
inequality thus obtained is not really of interest: Since the Minkowski surface area of
complicated sets in general is rather large, such sets readily satisfy the isoperimetric
inequality. For example, the Minkowski surface area of the set of rational points in
the unit cube is infinite, whereas for any reasonable notion of surface area, a count-
able set should have area 0.

A good deal of the modern theory of geometric isoperimetric problems took place
outside convexity in areas where other notions of area measures were available, for
example, integral geometric concepts of area and the notions of perimeter and cur-
rents. Instead of E

d or Sd−1 Riemannian and more general manifolds have been
considered.

Other developments related to the geometric isoperimetric inequality deal with
the so-called concentration of measure phenomenon in the context of the local theory
of normed spaces.

The following word of Poincaré applies well to the geometric isoperimetric
problem:

There are no solved problems, there are only more-or-less solved problems.

Below we reproduce Hurwitz’s [532] proof for d = 2 for Jordan domains,
by means of Fourier series and Minkowski’s [738] proof for general d for convex
bodies. Ingredients of Minkowski’s proof include Steiner’s formula for parallel bod-
ies, the Brunn–Minkowski inequality and Minkowski’s notion of surface area. For
Blaschke’s proof involving Steiner symmetrization, see Sect. 9.2.

Hurwitz’s Proof for Planar Jordan Curves by Means of Fourier Series

Hurwitz [532] derived the following version of the isoperimetric inequality. To sim-
plify the argument a little bit our assumptions are stronger than actually needed.
For more information on applications of Fourier series in convex geometry, see the
monographs of Groemer [405] and Koldobsky [606] and the proceedings on Fourier
analysis and convexity [343].

Theorem 8.6. Let K be a closed Jordan curve in E
2 of class C2 with length L and

let A denote the area of the Jordan domain bounded by K . Then

L2 ≥ 4π A,

where equality holds if and only if K is a circle.

Proof. We may assume that K is positively oriented, has length 2π , with parame-
trization (x, y) : [0, 2π ] → E

2, where the parameter is the arc-length s. Since the
arc-length s is the parameter,
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x ′(s)2 + y′(s)2 = 1 for 0 ≤ s ≤ 2π.

Integration implies that

2π∫

0

x ′(t)2dt +
2π∫

0

y′(t)2dt = 2π.

Consider the Fourier series for x(·) and y(·),

x(s) = a0

2
+

∞∑

n=1

(an cos ns + bn sin ns), y(s) = c0

2
+

∞∑

n=1

(cn cos ns + dn sin ns).

Then

x ′(s) =
∞∑

n=1

(nbn cos ns − nan sin ns), y′(s) =
∞∑

n=1

(ndn cos ns − ncn sin ns).

The formula of Leibniz to calculate the area of a planar set bounded by a closed
Jordan curve of class C1 and a version of Parseval’s theorem then yield the following.

A =
2π∫

0

x(t)y′(t)dt = π
∞∑

n=1

n(andn − bncn)

and

L2 = 4π2 = 2π

⎛

⎝
2π∫

0

x ′(t)2dt +
2π∫

0

y′(t)2dt

⎞

⎠ = 2π2
∞∑

n=1

n2(a2
n + b2

n + c2
n + d2

n ).

Thus

L2 − 4π A = 2π2
∞∑

n=1

(
n2(a2

n + b2
n + c2

n + d2
n )− 2n(andn − bncn)

)

= 2π2
∞∑

n=1

(
(nan − dn)

2 + (nbn + cn)
2 + (n2 − 1)(c2

n + d2
n )
) ≥ 0,

where equality holds if and only if

cn = dn = an = bn = 0 for n ≥ 2, a1 = d1, b1 = −c1.

In this case

x(s) = a0

2
+ a1 cos s + b1 sin s,

y(s) = c0

2
− b1 cos s + a1 sin s.

This is the parametrization of a circle – note that
(

x(s)− a0

2

)2 +
(

y(s)− c0

2

)2 = a2
1 + b2

1. ��
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The Isoperimetric Inequality for Convex Bodies

In the following we present three related proofs of the isoperimetric inequality for
convex bodies. All three proofs make use of Minkowski’s notion of surface area, see
Sect. 6.4. The first proof is a simple application of the Brunn–Minkowski inequal-
ity. It yields the isoperimetric inequality, but does not settle the equality case. The
second proof, which is due to Minkowski [738], is based on the Brunn–Minkowski
inequality, including the equality case, and Steiner’s formula for the volume of par-
allel bodies. It shows when there is equality. It is curious to note that Brunn [173],
p.31, thought that

This theorem [the Brunn–Minkowski theorem] cannot be used for a proof of the
maximal property of the ball.

The third proof makes use of Minkowski’s first inequality and also settles the equal-
ity case. Since the proof of Minkowski’s first inequality is based on the Brunn–
Minkowski theorem, it is not surprising, that the isoperimetric inequality for convex
bodies can be derived from it.

The isoperimetric inequality for convex bodies is as follows.

Theorem 8.7. Let C ∈ Cp(E
d). Then

S(C)d

V (C)d−1
≥ S(Bd)d

V (Bd)d−1
,

where equality holds if and only if C is a solid Euclidean ball.

Proof (using the Brunn–Minkowski theorem). The Brunn–Minkowski theorem
shows that

V (C + λBd)
1
d ≥ V (C)

1
d + λV (Bd)

1
d for λ > 0.

Thus

V (C + λBd)− V (C)

λ
≥ d V (C)

d−1
d V (Bd)

1
d + O(λ) as λ→ 0.

For λ→ 0, we get

S(C) ≥ V (C)
d−1

d
d V (Bd)

V (Bd)
d−1

d

, or
S(C)d

V (C)d−1
≥ S(Bd)d

V (Bd)d−1
. ��

Proof (using the Brunn–Minkowski theorem and Steiner’s theorem for the volume
of parallel bodies). By Steiner’s theorem:

(1) V
(
(1− λ)C + λBd

)
is a positive polynomial in λ for 0 ≤ λ ≤ 1, and

V
(
(1− λ)C + λBd

) = (1− λ)d V (C)+ (1− λ)d−1λS(C)+ O(λ2)
as λ→+0.
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As a consequence of the Brunn–Minkowski theorem, we see that

(2) The function f (λ) = V
(
(1− λ)C + λBd

) 1
d − (1− λ)V (C) 1

d − λV (Bd)
1
d

for 0 ≤ λ ≤ 1 with f (0) = f (1) = 0 is strictly concave, unless C is a ball,
in which case it is the zero function.

Since, by (1), f is differentiable for 0 ≤ λ ≤ 1, Proposition (2) shows that

(3) f ′(0) ≥ 0, where equality holds if and only if C is a ball.

By (1) and (2),

f ′(λ) = 1

d
V
(
(1− λ)C + λBd) 1

d−1{− d(1− λ)d−1V (C)

+ (− (d − 1)(1− λ)d−2λ+ (1− λ)d−1)S(C)+ O(λ)
}

+ V (C)
1
d − V (Bd)

1
d as λ→ 0+ .

Hence (3) implies that

1

d
V (C)

1
d−1{− dV (C)+ S(C)

}+ V (C)
1
d − V (Bd)

1
d ≥ 0,

or, equivalently,
S(C)

dV (C)
d−1

d

≥ V (Bd)
1
d = S(Bd)

dV (Bd)
d−1

d

,

where equality holds if and only if C is a ball. ��
Proof (using Minkowski’s first inequality). Note that, for C ∈ Cp, we have S(C) =
d W1(C) = d V (Bd ,C . . . ,C). By Minkowski’s first inequality we have, V (Bd ,
C, . . . ,C)d ≥ V (Bd)V (C)d−1, where equality holds precisely in case where C is a
Euclidean ball. Taking into account that S(Bd) = d V (Bd) we thus obtain that

S(C)d

V (C)d−1
≥ dd V (Bd) = dd V (Bd)d

V (Bd)d−1
= S(Bd)d

V (Bd)d−1
,

where equality holds precisely in case where C is a ball. ��

The Isodiametric Inequality

This inequality is due to Bieberbach [113]. We obtain it as a simple application of
the Brunn–Minkowski theorem. See also Sect. 9.2

Theorem 8.8. Let C ∈ C. Then

V (C) ≤
(1

2
diam C

)d
V (Bd),

where equality holds if and only if C is a solid Euclidean ball.
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Proof. We may suppose that V (C) > 0. We consider two cases. First, let C be
centrally symmetric. Without loss of generality, we may assume that o is the centre
of C . Then C ⊆ ( 1

2 diam C)Bd and thus

V (C) ≤
(1

2
diam C

)d
V (Bd),

where equality holds if and only if C = ( 1
2 diam C)Bd .

Second, let C be not centrally symmetric. The Brunn–Minkowski theorem 8.2
then implies that

V (C)
1
d = 1

2
V (C)

1
d + 1

2
V (−C)

1
d < V

(1

2
(C − C)

) 1
d = 1

2
V (C − C)

1
d ,

and thus:

(4) V (C) <
1

2d
V (C − C).

Since C − C is symmetric:

(5) V (C − C) ≤
(1

2
diam(C − C)

)d
V (Bd)

by the first case. Next note that

(6)

diam(C − C) = max{‖(u − v)− (x − y)‖ : u, v, x, y ∈ C}
≤ max{‖u − x‖ : u, x ∈ C} +max{‖v − y‖ : v, y ∈ C}
= 2 diam C.

Now combine (4)–(6) to see that

V (C) <
(1

2
diam C

)d
V (Bd). ��

The isodiametric inequality can be used to show that d-dimensional Hausdorff mea-
sure coincides, up to a multiplicative constant, with the Lebesgue measure in E

d , see
Morgan [756].

Urysohn’s inequality

A refinement of the isodiametric inequality is the following inequality of Urysohn
[1004] where, instead of the diameter, the mean width is used:

Theorem 8.9. Let C ∈ Cp. Then

V (C) ≤
(1

2
w(C)

)d
V (Bd),

where equality holds if and only if C is a solid Euclidean ball.
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Proof.

(1

2
w(C)

)d
V (Bd)d = Wd−1(C)

d = V (C, Bd , . . . , Bd)d ≥ V (C)V (Bd)d−1,

where we have used Corollary 7.1, the relation Wd−1(C) = V (C, Bd , . . . , Bd) and
Minkowski’s first inequality, see Theorem 6.11. ��

Stability of Geometric Inequalities

Given a geometric inequality for which equality holds for special convex bodies, for
example for balls, ellipsoids, or simplices, the following stability problem arises.

Problem 8.1. Let C be a convex body for which in a given geometric inequality there
is equality up to ε > 0. How far does C deviate, in terms of ε, from convex bodies
for which the equality sign holds?

There is a body of interesting pertinent results, see the survey of Groemer [403].

Generalized Surface Area

Besides the common Euclidean norm, consider a second norm on E
d . In this new

normed space or Minkowski space the natural notion of volume is the ordinary vol-
ume V (Haar measure), possibly up to a multiplicative constant. Likewise, surface
area is determined in each hyperplane up to a multiplicative constant, but now the
constant may depend on the hyperplane. Several different natural proposals for this
dependence have been made by Busemann [181], Holmes and Thompson [521] and
Benson [96]. Busemann, for example, considers (d−1)-dimensional Hausdorff mea-
sure with respect to the new norm. These proposals amount to the introduction of an
o-symmetric convex body I , the isoperimetrix, which may be obtained from the unit
ball B in a variety of ways. For Busemann the isoperimetrix is the polar of the inter-
section body of B. For Holmes–Thompson it is the projection body of the polar of
B. The generalized surface area SI (C) of a convex body C then is defined to be

SI (C) = lim
ε→+0

V (C + ε I )− V (C)

ε
.

Compare the definition of Minkowski surface area in Sect. 6.4. Since, by Minkowski’s
theorem on mixed volumes,

V (C + ε I ) = V (C)+ d V (I,C, . . . ,C)ε + O(ε2) as ε→+0,

the generalized surface area exists and is equal to d V (I,C . . . ,C).
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The Isoperimetric Inequality in a Minkowski Space

The analog of the classical isoperimetric inequality in a Minkowski space is as
follows:

Theorem 8.10. Let C ∈ Cp(E
d) where E

d is endowed with a new norm and a corre-
sponding isoperimetrix I . Then

SI (C)d

V (C)d−1
≥ SI (I )d

V (I )d−1
,

where equality holds if and only if C is homothetic to I .

If, in the three proofs of the classical isoperimetric inequality given above, the
Euclidean unit ball Bd is replaced by I and instead of Steiner’s formula for the vol-
ume of parallel bodies Minkowski’s theorem on mixed volumes is used, we obtain
this more general result.

8.4 Sand Piles, Capillary Surfaces and Wulff’s Theorem in Crystallography

As remarked Sect. 8.3, the Brunn–Minkowski theorem has several applications to
isoperimetric problems of mathematical physics.

In the following we present three pertinent results, a problem on the maximum
volume of a sand pile with given area of the base, a problem on the minimum volume
of a capillary surface and Wulff’s theorem on the form of crystals.

For general references on isoperimetric inequalities of mathematical physics, see
the books and surveys cited in the introduction to Sect. 9.4.

Sand Piles of Maximum Volume

What is the shape of a closed planar set of given area which supports a sand pile
of maximum volume? The same mathematical problem arises also in Nádai’s [761]
theory of plasticity in the following form: For what cross-section of given area has
a perfectly plastic rod maximum torsional rigidity? Compare Sect. 9.4 for the cor-
responding question for elastic rods. Leavitt and Ungar [633] proved the following
result using the method of inner parallel sets. This method can also be used to prove
the geometric isoperimetric inequality, see, e.g. Fejes Tóth [329].

Theorem 8.11. Among all compact sets B in E
2 of given area it is precisely the

circular discs, up to sets of measure 0, that support sand piles of maximum volume.

Proof. Let α be the maximum angle with the horizontal which a sand pile can sus-
tain, the so-called glide angle of the sand. The height of a sand pile on B at a point
x ∈ B then is at most δ(x) tanα, where δ(x) = dist(x, bd B) = min{‖x − y‖ : y ∈
bd B}. Thus we have the following estimate for the volume V of a sand pile on B:

(1) V ≤ tanα
∫

B

δ(x) dx .
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Let � > 0 be the maximum radius of a circular disc inscribed to B. Define the
inner parallel set of B at distance δ, where 0 ≤ δ ≤ �, by:

(2) B−δ = {x ∈ B : x + δB2 ⊆ B} = {x ∈ B : δ(x) ≥ δ}.
Clearly, B−δ is compact, and since B−δ + δB2 ⊆ B for 0 ≤ δ ≤ �, the Brunn–
Minkowski theorem for compact sets shows that

(3) A(B−δ)
1
2 + A(δB2)

1
2 ≤ A

(
B−δ + δB2

) 1
2 ≤ A(B)

1
2 , and thus,

A(B−δ) ≤
(

A(B)
1
2 − δπ 1

2
)2 for 0 ≤ δ ≤ �.

Combining (2), Fubini’s theorem applied to the integral in (1), and (3), we obtain
the following:

V ≤ tanα
∫

B

δ(x) dx = tanα

�∫

0

A(B−δ) dδ

≤ tanα

�∫

0

(
A(B)

1
2 − δπ 1

2
)2

dδ = − tanα

3π
1
2

(
A(B)

1
2 − δπ 1

2
)3
∣∣
∣
�

0

= − tanα

3π
1
2

(
A(B)

1
2 − �π 1

2
)3 + tanα A(B)

3
2

3π
1
2

≤ tanα A(B)
3
2

3π
1
2

,

where in the last inequality there is equality if and only if A(B) = �2π , i.e. when B
coincides with its maximum inscribed circular disc, up to a set of measure 0. Thus
we have proved the following: The volume of a sand pile on B is bounded above by

tanα A(B)
3
2 /3π

1
2 and this bound can be attained, if at all, only when B is a circular

disc up to a set of measure 0. A simple check shows that, in fact, there is equality if
B is a circular disc – consider the circular cone with angle α with the horizontal. ��

Equilibrium Capillary Surfaces

Let B be a compact body in E
2 bounded by a closed Jordan curve K of class C2.

Let E
2 be embedded into E

3 as usual (first two coordinates). Consider a vertical
cylindrical container with cross-section B and filled with water up to the level of B.
Due to forces in the surface of the water, the surface deviates from B close to the
boundary of the container. If u(x), x ∈ B ∪ K , describes this deviation, then the
following statements are well known (see Fig. 8.2):

(4) u is of class C1 on B, of class C2 on int B, and it is the unique such function
satisfying

div
grad u

(
1+ (grad u)2

) 1
2

= κ u on int B,
(grad u) · n

(
1+ (grad u)2

) 1
2

= cosα on K .



8 The Brunn–Minkowski Inequality 157

α

Fig. 8.2. Equilibrium capillary surface

Here κ > 0 is a physical constant, n(x) is the exterior unit normal vector of K at
x ∈ K , and 0 < α < π

2 is the angle between the water surface and the wall of the
container.

The following result of Finn [336], p.236, gives information about the capillary
volume

(5)
∫

B

u(x) dx .

Theorem 8.12. Among all compact bodies B in E
2 of given area and bounded by

closed Jordan curves K of class C2, precisely the circular discs yield the minimum
capillary volume.

Proof. Let x = x(s), s ∈ [0, L], be a parametrization of K where the parameter is
the arc-length. Then x is of class C1.

We will apply the following version of Green’s integral formula from calculus:

(6) Let v : B → E
2 be a continuous vector field such that v| int B is of class

C2. Then
∫

B

div v(x) dx =
L∫

0

v
(
x(s)

) · n
(
x(s)

)
ds.

Now, let u be the unique function satisfying (4). Then (4), (6) and the isoperimetric
inequality of Theorem 8.6 imply that

∫

B

u(x) dx = 1

κ

∫

B

div
grad u(x)

(
1+ (

grad u(x)
)2) 1

2

dx

= 1

κ

L∫

0

grad u
(
x(s)

) · n
(
x(s)

)

(
1+ (

grad u
(
x(s)

))2) 1
2

ds

= cosα

κ

L∫

0

ds = cosα

κ
L ≥

√
4π cosα

κ
A(B)

1
2 ,

where equality holds if and only if B is a circular disc. ��
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Wulff’s Theorem in Crystallography

Why do crystals have such particular forms? Since the late eighteenth century it was
the belief of many crystallographers that underlying each crystal there is a point
lattice, where any lattice parallelotope contains a certain set of atoms, ions or mole-
cules, and any two such parallelotopes coincide up to translation. Compare also the
discussion in Sect. 21. Any facet of the crystal is contained in a 2-dimensional lattice
plane. The free surface energy per unit area of a facet (whatever this means) is small
if the corresponding lattice plane is densely populated by lattice points and large oth-
erwise. Thus, only for a small set of normal directions, the free surface energies per
unit area in the corresponding lattice planes are small. Since real crystals minimize
their total free surface energy according to Gibbs, Curie and Wulff, this explains why
crystals have the form of particular polytopes. More precisely, we have the following
theorem of Wulff [1031]. A first proof of it is due to Dinghas [268]. In our version
of Wulff’s theorem, no compatibility condition for the free surface energies per unit
area is needed. For this reason the proof is slightly more difficult than otherwise.

There are various other versions of Wulff’s theorem, for example those of
Busemann [180], Fonseca [339] and Fonseca and Müller [340]. See also the sur-
veys of Taylor [990], McCann [702] and Gardner [360] and the book of Dobrushin,
Kotecký and Shlosman [275]. For applications to statistical mechanics and combina-
torics, compare the report of Shlosman [932].

Theorem 8.13. Let u1, . . . , un ∈ Sd−1 (the exterior unit normal vectors of the facets
of the crystal) be such that E

d = {α1u1 + · · · + αnun : αi ≥ 0}. Let ε1, . . . , εn > 0
(the free surface energies per unit area of the facets). Let K be the convex polytope

K = {
x : ui · x ≤ εi for i = 1, . . . n

}

(the crystal). Then, amongst all convex polytopes with volume equal to V (K ), and
such that the exterior normal vectors of their facets belong to {u1, . . . , un}, those
with minimum total free surface energy are precisely the translates of K .

The proof of Dinghas is difficult to understand. Possibly, our proof is what Dinghas
had in mind. It is related to Minkowski’s proof of the isoperimetric inequality, see
Theorem 8.7. Let v(·) denote the (d − 1)-dimensional area measure.

Proof. We may assume that each of the halfspaces {x : ui · x ≤ εi }, i = 1, . . . ,m,
contributes a ((d − 1)-dimensional) facet to K , say

Fi =
{

x : ui · x = εi
} ∩ K ,

while each of the halfspaces {x : ui · x ≤ εi }, i = m+1, . . . , n, has the property that

Fi =
{

x : ui · x = δiεi
} ∩ K

is a face of K with dim Fi < d − 1, where 0 ≤ δi ≤ 1 is chosen such that the
hyperplane {x : x · ui = δiεi } supports K .
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Let P be a convex polytope with V (P) = V (K ) such that all its facets are among
the faces

Gi =
{

x : ui · x = h P (ui )
} ∩ P.

For the proof of the theorem we have to show the following:

(7) The total free surface energy of P is greater than that of K ,
unless P is a translate of K .

To see this, we first show that:

(8) V
(
(1− λ)P + λK

)
is a positive polynomial in λ for 0 ≤ λ ≤ 1, and

V
(
(1− λ)P + λK

) = (1− λ)d V (P)

+ (1− λ)d−1λ
( m∑

i=1
Gi facet of P

εi v(Gi )+
n∑

i=m+1
Gi facet of P

δi εi v(Gi )
)

+ O(λ2) as λ→ 0.

The first statement follows from Minkowski’s (see Fig. 8.3) theorem 6.5 on mixed
volumes. To see the second, note that (1− λ)P + λK can be dissected into the poly-
tope (1− λ)P , cylinders with basis (1− λ)Gi and height λεi if i ≤ m, respectively,
λδiεi if i > m, where Gi is a facet of P , and polytopes of total volume O(λ2).

Second, since V (P) = V (K ), the theorem of Brunn–Minkowski implies that

(9) The function f (λ) = V
(
(1 − λ)P + λK

) 1
d − (1 − λ)V (P) 1

d − λV (K )
1
d

for 0 ≤ λ ≤ 1 with f (0) = f (1) = 0 is strictly concave, unless P is a
translate of K , in which case it is identically 0.

Note that V (P) = V (K ). Since, by (8), f is differentiable for 0 ≤ λ ≤ 1, Proposi-
tion (9) implies that

(10) f ′(0) ≥ 0, where equality holds if and only if P is a translate of K .

(1− λ)P + λK

o (1− λ)PK

Fig. 8.3. Proof of Wulff’s theorem
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Third, by (8) and (9),

f ′(λ) = 1

d
V
(
(1− λ)P + λK

) 1
d−1{− d(1− λ)d−1V (P)

+ (− (d − 1)(1− λ)d−2λ+ (1− λ)d−1)(∑+
∑)+ O(λ)

}

+ V (P)
1
d − V (K )

1
d as λ→ 0.

Since V (P) = V (K ), we thus have,

(11) f ′(0) = 1

d
V (P)

1
d−1{− dV (P)+

∑
+

∑} ≥ 0

by (10) or, equivalently,

(12)
m∑

i=1
Gi facet of P

εiv(Gi )+
n∑

i=m+1
Gi facet of P

δi εi v(Gi )

≥ d V (P) = d V (K ) =
m∑

i=1
εi v(Fi ).

Therefore

(13)
n∑

i=1
Gi facet of P

εi v(Gi ) ≥
m∑

i=1

εi v(Fi ).

If there is equality in (13), there must be equality in (12) and thus in (11). Then (10)
shows that P is a translate of K . This concludes the proof of (7) and thus of the
theorem. ��

Remark. The evolution of curves in the plane or on other surfaces has attracted
much interest in recent years. An example is the curvature flow where the velocity
of a point of the curve is proportional to the curvature at this point and the direction
is orthogonal to the curve. See Sect. 10.3. In recent years, Wulff’s theorem gave rise
to several pertinent results. See, e.g. the articles of Almgren and Taylor [24] and
Yazaki [1032].

Packing of Balls and Wulff Polytopes

A problem due to Wills [1027] where Wulff’s theorem plays a role is the follow-
ing: Consider a lattice L which provides a packing of the unit ball Bd . Let P be
a convex polytope, with vertices in L , and for n ∈ N consider the finite packings
{Bd + l : l ∈ L ∩ n P}. It turns out that the so-called parametric density δρ(Bd ,
L ∩ n P) of these packings approaches the density δ(Bd , L) = V (Bd)/d(L) of
the lattice packing {Bd + l : l ∈ L} rapidly as n → ∞ if P is close to a cer-
tain Wulff polytope. Tools for the proof are Minkowski’s theorem on mixed volumes
and Ehrhart’s polynomiality theorem for lattice polytopes. For more information and
references, see Böröczky [155], in particular Sect. 13.
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8.5 The Prékopa–Leindler Inequality and the Multiplicative
Brunn–Minkowski Inequality

This section contains modern developments in the context of the Brunn–Minkowski
inequality.

The Prékopa–Leindler Inequality

The following inequality of Prékopa [817] and Leindler [645] may be considered
as an extension of the Brunn–Minkowski inequality to integrals. It leads to the so-
called multiplicative Brunn–Minkowski inequality which is equivalent to the ordi-
nary Brunn–Minkowski inequality in the more general case of compact sets, see
below.

Theorem 8.14. Let f, g, h be non-negative Borel functions on E
d and 0 < λ < 1

such that

(1) h
(
(1− λ)x + λy

) ≥ f (x)1−λg(y)λ for all x, y ∈ E
d .

Then

(2)
∫

Ed

h(x) dx ≥
( ∫

Ed

f (x) dx
)1−λ( ∫

Ed

g(x) dx
)λ
.

Before beginning with the proof, some remarks are in order. If f, g are given and if
we set k = f 1−λgλ, then Hölder’s inequality for integrals says that

∫

Ed

k(x) dx ≤
( ∫

Ed

f (x) dx
)1−λ( ∫

Ed

g(x) dx
)λ
,

see Corollary 1.5 for the case d = 1. Thus the Prékopa–Leindler inequality seems to
be Hölder’s inequality, backwards. The difference is that h has to satisfy the inequal-
ity (1) for all pairs (x, y), and not just for the pairs (x, x). Thus h has to be larger
than k.

The following proof is due to Brascamp and Lieb [163]. Let | · | denote Lebesgue
measure on R.

Proof (by induction on d). As a preparation for the proof in case d = 1, we
show the following 1-dimensional version of the Brunn–Minkowski theorem. It is
an immediate consequence of Theorem 8.5, but we prefer to give an independent
proof:

(3) Let R, S, T ⊆ R be non-empty Borel sets and 0 < λ < 1 such that R ⊇
(1− λ)S + λT . Then

|R| ≥ (1− λ)|S| + λ|T |.
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Since the measure of a Borel set is the supremum of the measures of its compact
subsets, it is sufficient to prove (3) for compact sets R, S, T . Then, by shifting S, T
suitably, we may suppose that 0 is the right endpoint of S and the left endpoint of T .
The set (1− λ)S + λT then includes the sets (1− λ)S and λT which have only 0 in
common. Hence |R| ≥ |(1− λ)S + λT | ≥ (1− λ)|S| + λ|T |, concluding the proof
of (3).

Now, let d = 1. Then f, g, h are non-negative Borel functions on R satisfying
(1). Since the integral of a non-negative measurable function on R is the supremum
of the integrals of its bounded, non-negative measurable minorants, we may assume
that f, g, h are bounded. Excluding the case where f or g is a zero function, and
taking into account that the assumption in (1) and the inequality (2) have the same
homogeneity, we may assume that sup f = sup g = 1. By Fubini’s theorem we then
can write the integrals of f and g in the form

∫

R

f (x) dx =
1∫

0

|{x : f (x) ≥ t}| dt,
∫

R

g(x) dx =
1∫

0

|{y : g(y) ≥ t}| dt.

If f (x) ≥ t and g(y) ≥ t , then h((1− λ)x + λy) ≥ t by (1). Thus,

{z : h(z) ≥ t} ⊇ (1− λ){x : f (x) ≥ t} + λ{y : g(y) ≥ t}.
For 0 ≤ t < 1 the sets on the right-hand side are non-empty Borel sets in R. Thus

|{z : h(z) ≥ t}| ≥ (1− λ)|{x : f (x) ≥ t}| + λ|{y : g(y) ≥ t}|
by (3). Integration from 0 to 1 and the inequality between the arithmetic and the
geometric mean, see Corollary 1.2, then yield (2) in case d = 1:

∫

R

h(z) dz ≥
1∫

0

|{z : h(z) ≥ t}| dt

≥ (1− λ)
1∫

0

|{x : f (x) ≥ t}| dt + λ
1∫

0

|{y : g(y) ≥ t}| dt

= (1− λ)
∫

R

f (x) dx + λ
∫

R

g(y) dy

≥
( ∫

R

f (x) dx
)1−λ( ∫

R

g(y) dy
)λ
.

Assume finally, that d > 1 and that the theorem holds for d − 1. Let f, g, h be
non-negative Borel functions on E

d satisfying (1). Embed E
d−1 into E

d as usual, i.e.
E

d = E
d−1 × R. Let u = (0, . . . , 0, 1) ∈ E

d . Let s, t ∈ R and r = (1 − λ)s + λt .
By (1), the non-negative measurable functions f (x + su), g(y + tu), h(z + ru) on
E

d−1 satisfy the following condition:
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h
(
(1− λ)x + λy + (

(1− λ)s + λt
)
u
) ≥ f (x + su)1−λg(y + tu)λ for x, y ∈ E

d−1.

The induction hypothesis thus implies that for the functions F,G, H defined by

F(s) =
∫

Ed−1

f (x + su) dx, G(t) =
∫

Ed−1

g(y + tu) dy, H(r) =
∫

Ed−1

h(z + ru) dz

for r, s, t ∈ R, the following statement holds:

F,G, H are non-negative measurable functions on R such that
H
(
(1− λ)s + λt

) ≥ F(s)1−λG(t)λ for s, t ∈ R.

The case d = 1 of the Prékopa–Leindler inequality, applied to F,G, H and Fubini’s
theorem then yield inequality (1) for d. The induction and thus the proof of the
theorem is complete. ��

A Multiplicative Version of the Brunn–Minkowski Inequality

As a consequence of the Prékopa–Leindler inequality we have the following result.

Theorem 8.15. Let S, T be non-empty compact sets in E
d . Then

V
(
(1− λ)S + λT

) ≥ V (S)1−λV (T )λ for 0 ≤ λ ≤ 1.

Proof. We may assume that 0 < λ < 1. Now apply the Prékopa–Leindler inequality
to the characteristic functions of S, T, and the compact set R = (1− λ)S + λT . ��

Using inner measures, this theorem can easily be extended to arbitrary sets by
monotone limits.

Equivalence of the Ordinary and the Multiplicative Version

We will prove the following result:

Proposition 8.1. The (ordinary) Brunn–Minkowski inequality for compact sets and
its multiplicative version are equivalent in the sense that each easily implies the
other.

Proof. We show that for non-empty compact sets S, T in E
d and 0 < λ < 1 the

following statements are equivalent:

(i) The ordinary Brunn–Minkowski inequality holds.

(ii) The multiplicative Brunn–Minkowski inequality holds.

(i)⇒(ii) By the ordinary Brunn–Minkowski inequality,

V
(
(1− λ)S + λT

) 1
d ≥ (1− λ)V (S) 1

d + λV (T )
1
d .
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An application of the inequality of the arithmetic and the geometric mean to the right

hand-side expression shows that the latter is bounded below by V (S)
1−λ

d V (T )
λ
d .

Now raise both sides to the dth power to get

V
(
(1− λ)S + λT

) ≥ V (S)1−λV (T )λ.

(ii)⇒(i) If V (S) = 0 or V (T ) = 0, the ordinary Brunn–Minkowski inequality
clearly holds. Assume now that V (S), V (T ) > 0. Define:

(4) U = 1

V (S)
1
d

S, V = 1

V (T )
1
d

T, µ = λV (T )
1
d

(1− λ)V (S) 1
d + λV (T )

1
d

.

Then

(5) (1− µ)U + µV = (1− λ)S + λT

(1− λ)V (S) 1
d + λV (T )

1
d

.

The multiplicative version of the Brunn–Minkowski inequality applied to U, V, µ
shows that

V
(
(1− µ)U + µV

) ≥ V (U )1−µV (V )µ ≥ 1

by (4). Now use (5) to obtain

V
(
(1− λ)S + λT

) 1
d ≥ (1− λ)V (S) 1

d + λV (T )
1
d . ��

8.6 General Isoperimetric Inequalities and Concentration of Measure

There are natural extensions of the isoperimetric inequality to the sphere Sd and the
hyperbolic space Hd . In many cases, these extensions are based on symmetrization
arguments or on Brunn–Minkowski type inequalities, see Lévy [653] and, in particu-
lar, Schmidt [891] and Dinghas [269]. More recently, these isoperimetric inequalities
were extended even further in the context of metric probability spaces, a study ini-
tiated by Milman. Some of these results are rather surprising and are well described
by “concentration of measure”.

This section gives a description of the general isoperimetric problem in metric
probability spaces. Then the cases of the sphere and of the Gaussian measure on E

d

are discussed. Our exposition follows Ball [53].
For more material on general isoperimetric inequalities and on concentration

of measure we refer to Burago and Zalgaller [178], Ball [53], Ledoux [634],
Schechtman [885] and the references cited below.

The Euclidean Case

Let C be a compact set in E
d . The Brunn–Minkowski theorem for compact sets then

gives the following: Let � ≥ 0 such that V (�Bd) = V (C). Then:

(1) V (C + εBd) ≥ (
V (C)

1
d + V (εBd)

1
d
)d = (

V (�Bd)
1
d + V (εBd)

1
d
)d

= V (�Bd + εBd) for ε ≥ 0.
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Using the definition of Minkowski surface area, this inequality readily yields the
isoperimetric inequality. Expressed otherwise, (1) says that the volume of the ε-
neighbourhood Cε = C + εBd of the compact set C is at least as large as the
volume of the ε-neighbourhood of a (solid Euclidean) ball of the same volume as C .
This result may be considered as a sort of isoperimetric inequality, where the notion
of surface area is not needed. This is the starting point for general isoperimetric
inequalities in metric probability spaces.

The Problem on Metric Probability Spaces

Let 〈M, δ, µ〉 be a space M with a metric δ and thus a topology and a Borel proba-
bility measure µ. By the ε-neighbourhood Cε of a compact set C in M we mean the
set

Cε = {x ∈ M : δC (x) ≤ ε}, where δC (x) = dist(x,C) = min{δ(x, y) : y ∈ C}.
Then the following general isoperimetric or Brunn–Minkowski problem arises:

Problem 8.2. Given α, ε > 0, for what compact sets C in M with µ(C) = α has the
ε-neighbourhood Cε of C minimum measure?

The Spherical Case

Let Sd−1 be endowed with its chordal metric, i.e. the metric inherited from E
d , and

let S be the normalized area measure on Sd−1. An isoperimetric inequality for Sd−1

of Lévy [653], p.269, and Schmidt [891] is as follows: Let α > 0. Then, for all
compact sets C ⊆ Sd−1 with S(C) = α, we have,

S(Cε) ≥ S(Kε) for ε ≥ 0,

where K is a spherical cap with S(K ) = α. The equality case was studied by Dinghas
[269].

This result has the following surprising consequence: Let α = 1
2 , so that C has

the measure of a hemisphere H . Then, for each ε ≥ 0, we have that S(Cε) ≥ S(Hε).

An easy proof shows that the complement of Hε has area measure about e− 1
2 dε2

.

Hence S(Cε) is about 1 − e− 1
2 dε2

. Thus, for any given ε > 0 and large d almost all
of Sd−1 lies within distance ε of any given compact set C in Sd−1 of measure 1

2 . In
other words, for large d the area of Sd−1 is concentrated close to any compact set of
measure 1

2 . As a consequence, for large d the area of Sd−1 is concentrated near any
great circle.

The situation just described becomes even more striking if it is interpreted in
terms of a Lipschitz function f : Sd−1 → R with Lipschitz constant 1. There is
a number m, the median of f , such that there are compact sets C, D ⊆ Sd−1 with
S(C ∩ D) = 0, S(C) = S(D) = 1

2 and C ∪ D = Sd−1, where f (u) ≤ m for u ∈ C

and f (v) ≥ m for v ∈ D. Then S(Cε) and S(Dε) both have area about 1 − e− 1
2 dε2

.
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Since f has Lipschitz constant 1, f (u) ≤ m + ε for u ∈ Cε and f (v) ≥ m − ε for
v ∈ Dε. This shows that for large d

S
({u ∈ Sd−1 : | f (u)− m| > ε}) is at most about 2e−

1
2 dε2

.

In other words, for large d a real function on Sd−1 with Lipschitz constant 1 is nearly
equal to its median on most of Sd−1.

Heuristic Observations

This surprising phenomenon appears in one form or another in many results of the
local theory of normed spaces, as initiated by Milman and his collaborators. Milman
[726] expressed this in his unique way as follows:

This phenomenon led to a complete reversal of our intuition on high-dimensional
results. Instead of a chaotic diversity with an increase in dimension, which previous
intuition suggested, we observe well organized and simple patterns of behaviour.

For similar situations dealing with approximation of convex bodies, the Minkowski–
Hlawka theorem and Siegel’s mean value formula, see Sects. 11.2 and 24.2.

The Case of Gaussian Measure

Let E
d be endowed with the standard Gaussian probability measure µ. It has density:

(2) δ(x) = 1

(2π)
d
2

e−
1
2 ‖x‖2

for x ∈ E
d .

Borell [150] showed that, in this space, we have the following Brunn–Minkowski
type result. Let α > 0. Then for all closed sets C ⊆ E

d with µ(C) = α,

µ(Cε) ≥ µ(H+
ε ) for ε ≥ 0,

where H+ is a closed halfspace in E
d with µ(H+) = α.

In particular, if α = 1
2 , then for H+ we may take the halfspace {x : x1 ≤ 0}.

Then

µ(Ed\H+
ε ) =

1

(2π)
d
2

∫

x1≥ε
e−

x2
1
2 −···−

x2
d
2 dx = 1√

2π

+∞∫

ε

e−
x2
1
2 dx1

= 1√
2π

+∞∫

0

e
−(t+ε)2

2 dt = e
−ε2

2
1√
2π

+∞∫

0

e−
t2
2 −tεdt

≤ e
−ε2

2
1√
2π

+∞∫

0

e−
t2
2 dt = e−

ε2
2 for ε ≥ 0.

Hence

µ(Cε) ≥ 1− e−
ε2
2 for ε ≥ 0.
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Using the Prékopa–Leindler inequality 8.14 with λ = 1
2 , Maurey [699] gave a

simple proof of the following weaker estimate. A version of Maurey’s argument for
the Euclidean case appeared in an article of Arias de Reyna, Ball and Villa [36], see
also Matoušek’s book [695].

Theorem 8.16. Let E
d be endowed with the standard Gaussian measure µ. Then, if

C ⊆ E
d is closed with µ(C) > 0 :

(3)
∫

Ed

e
1
4 δC (x)

2
dµ(x) ≤ 1

µ(C)
,

where δC (x) = dist(x,C) = min{‖x − y‖ : y ∈ C}. If, in particular, µ(C) = 1
2 ,

then

(4) µ(Cε) ≥ 1− 2e−
ε2
4 .

Proof. Recall the Prékopa–Leindler theorem and let

f (x) = e
1
4 δC (x)

2
δ(x), g(x) = 1C (x) δ(x), h(x) = δ(x) for x ∈ E

d .

Here, δ(·) is the density of the Gaussian measure µ, see (2), and 1C the characteristic
function of C . We have to prove that

(5)
∫

Ed

e
1
4 δC (x)

2
dµ(x) µ(C) ≤ 1,

or

(6)
∫

Ed

f (x) dx
∫

Ed

g(x) dx ≤
( ∫

Ed

h(x) dx
)2
.

It is thus enough to check that f, g, h, λ = 1
2 satisfy the assumption of the Prékopa–

Leindler inequality, i.e.

(7) f (x) g(y) ≤ h
( x + y

2

)2
for x, y ∈ E

d .

It is sufficient to show (7) for y ∈ C , since otherwise g(y) = 0. But in this case
δC (x) ≤ ‖x − y‖. Hence

(2π)d f (x) g(y) = e
1
4 δC (x)

2
e−

1
2 x2

e−
1
2 y2

≤ e
1
4 ‖x−y‖2− 1

2 ‖x‖2− 1
2 ‖y‖2 = e−

1
4 ‖x+y‖2

= (
e−

1
2 ‖ x+y

2 ‖2)2 = (2π)d h
( x + y

2

)2
.

This settles (7). By the Prékopa–Leindler theorem, (7) yields (6) which, in turn,
implies (5), concluding the proof of (3).

To obtain the inequality (4) from (3), note that, in case µ(C) = 1
2 , the inequality

(3) implies ∫

Ed

e
1
4 δC (x)

2
dµ(x) ≤ 2.
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Clearly, the integral here is at least

µ({x : δC (x) > ε})e 1
4 ε

2
.

Hence
µ({x : δC (x) > ε}) ≤ 2e−

1
4 ε

2
,

which immediately yields (4). ��

9 Symmetrization

A convex body is symmetric with respect to a group of transformations if it is invari-
ant under each transformation of the group. The group may consist of orthogonal,
affine or projective transformations, or, if the convex body is a polytope, of combi-
natorial transformations.

For the rich modern theory of symmetric convex and non-convex polytopes
which can be traced back to antiquity (Platonic solids), we refer to Coxeter [230,
232], Robertson [842], Johnson [550] and McMullen and Schulte [717].

Here, our objective is the following: A more symmetric convex body has in
many cases better geometric or analytic properties. It is thus of interest to consider
symmetrization methods which transform convex bodies into more symmetric ones.
The known symmetrization methods all have the useful property that they decrease,
respectively, increase salient geometric quantities such as the quermassintegrals, in
particular the surface area, diameter, width, inradius and circumradius. More impor-
tant for applications is the fact that they increase, respectively, decrease electrostatic
capacity, torsional rigidity and the first principal frequency of membranes.

In this section we first study Steiner symmetrization and use it to prove the iso-
diametric, the isoperimetric and the Brunn–Minkowski inequalities. Then Schwarz
symmetrization and rearrangement of functions are investigated. Our applications
concern the isoperimetric inequalities of mathematical physics. In particular, we
consider torsional rigidity of rods and the first principal frequency of membranes.
Finally, we investigate central symmetrization and prove the inequality of Rogers and
Shephard. It has applications in the geometry of numbers and in discrete geometry,
see Sects. 30.1 and 30.3.

For more information on the geometric aspects of symmetrization, see the
books of Hadwiger [468], Leichtweiss [640], Gardner [359], and the surveys of
Lindenstrauss and Milman [660], Sangwine-Yager [878] and Talenti [986]. For perti-
nent results in mathematical physics we refer to the books of Pólya and Szegö [811],
Bandle [64] and the survey of Talenti [987].

9.1 Steiner Symmetrization

In the following we define Steiner symmetrization, prove several of its properties
and the sphericity theorem of Gross. Blaschke (or Minkowski) symmetrization is
mentioned.

For more information, see the references mentioned above.
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C

H

stH C

Fig. 9.1. Steiner symmetrization

Steiner Symmetrization

Let C be a convex body and H a hyperplane in E
d . The Steiner symmetral st C =

stH C of C (see Fig. 9.1) with respect to H is defined as follows: For each straight
line L orthogonal to H and such that C ∩ L �= ∅, shift the line segment C ∩ L along
L until its midpoint is in H . The union of all line segments thus obtained is st C .
Clearly, st C is symmetric with respect to (mirror) reflection in H .

According to Danilova [236], L’Huillier [654] and an anonymous author, possi-
bly Gergonne [369], anticipated Steiner symmetrization in a vague form.

Basic Properties of Steiner Symmetrization

We first collect a series of simple results on Steiner symmetrization. Given a convex
body C , the inradius r(C) and the circumradius R(C) are the maximum radius of a
(solid Euclidean) ball contained in C and the minimum radius of a ball containing
C , respectively.

Proposition 9.1. Steiner symmetrization of convex bodies with respect to a given
hyperplane H has the following properties:

(i) st C ∈ C for C ∈ C
(ii) st λC = λ st C (up to translations) for λ ≥ 0, C ∈ C

(iii) st(C + D) ⊇ st C + st D (up to translations) for C, D ∈ C
(iv) st C ⊆ st D for C, D ∈ C, C ⊆ D,

(v) st : Cp → Cp is continuous

(vi) V (st C) = V (C) for C ∈ C
(vii) S(st C) ≤ S(C) for C ∈ C

(viii) diam st C ≤ diam C for C ∈ C
(ix) r(st C) ≥ r(C), R(st C) ≤ R(C) for C ∈ C
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Note that st : C → C is not continuous. Consider, for example, the sequence of line

segments
[
o,

(
1
n , 1

)]
∈ C(E2), n = 1, 2, . . . Clearly,

[
o,

(
1

n
, 1

)]
→ [o, (0, 1)] as n →∞,

but for Steiner symmetrization in the first coordinate axis we have that

st

[
o,

(
1

n
, 1

)]
=

[
o,

(
1

n
, 0

)]
→ {o} �=

[(
0,−1

2

)
,

(
0,

1

2

)]
= st [o, (0, 1)] .

Proof. We may assume that o ∈ H . Let L be the line through o orthogonal to the
hyperplane H .

(i) The proof that st C is compact is left to the reader. To show that st C is convex,
let x, y ∈ st C . Consider the convex trapezoid

T = conv
((

C ∩ (L + x)
) ∪ (

C ∩ (L + y)
)) ⊆ C.

Since x, y ∈ st T and since st T is also a convex (see Fig. 9.2) trapezoid and is
contained in st C , it follows that [x, y] ⊆ st T ⊆ st C .

(ii) Trivial.
(iii) Let x ∈ st C, y ∈ st D or, equivalently, x = h + l, y = k + m, where

h, k ∈ H and l,m ∈ L are such that ‖l‖ ≤ 1
2 length

(
C ∩ (L + x)

)
and ‖m‖ ≤ 1

2
length

(
D ∩ (L + y)

)
. Then x + y = (h + k)+ (l +m) where h + k ∈ H (note that

o ∈ H ) and l + m ∈ L (note that o ∈ L), where

‖l + m‖ ≤ ‖l‖ + ‖m‖
≤ 1

2

(
length

(
C ∩ (L + x)

)+ length
(
D ∩ (L + y)

))

= 1

2
length

(
C ∩ (L + x)+ D ∩ (L + y)

)

≤ 1

2
length

(
(C + D) ∩ (L + x + y)

)
.

Hence x + y ∈ st(C + D).

stH T

T

y

H

x

Fig. 9.2. Steiner symmetrization preserves convexity



9 Symmetrization 171

(iv) Trivial.
(v) Let C,C1,C2, · · · ∈ Cp be such that C1,C2, · · · → C . We have to show that

st C1, st C2, · · · → st C . We clearly may suppose that o ∈ int C . The assumption that
C1,C2, · · · → C is then equivalent to the following: Let ε > 0, then (1 − ε)C ⊆
Cn ⊆ (1+ε)C for all sufficiently large n. By (ii) and (iv), this implies the following:
Let ε > 0, then (1−ε) st C ⊆ st Cn ⊆ (1+ε) st C for all sufficiently large n. Since
o ∈ int st C , this implies that st C1, st C2, · · · → st C .

(vi) This property is an immediate consequence of the definition of the Steiner
symmetrization, (i) and Fubini’s theorem.

(vii) By (iii) and (ii), st(C + εBd) ⊇ st C + ε st Bd = st C + εBd for ε > 0.
Hence

V (st C + εBd)− V (st C)

ε
≤ V

(
st (C + εBd)

)− V (st C)

ε

= V (C + εBd)− V (C)

ε
for ε > 0,

by (iv) and (vi). Now let ε→+0 and note the definition of surface area in Sect. 6.4.
(viii) Let x, y ∈ st C and let T and st T be as in the proof of (i). Then, at least one

of the diagonals of the trapezoid T ⊆ C has length greater than or equal to ‖x − y‖.
(ix) Let c+�Bd ⊆ C . Then st (c+�Bd) ⊆ st C by (iv) and thus b+�Bd ⊆ st C

for suitable b. Hence r(C) ≤ r(st C). The inequality R(st C) ≤ R(C) is shown
similarly, using balls containing C . ��
Remark. Proposition 9.1(iii) can be refined as follows: Let C, D ∈ Cp. Then

st (C + D) ⊇ st C + st D,

where equality holds if and only if C and D are homothetic. Propositions (vi) and
(vii) admit the following generalization and refinement: Let C ∈ C, then

Wi (st C) ≤ Wi (C) for i = 0, 1, . . . , d,

where for C ∈ Cp and i = 1, . . . , d − 1 equality holds if and only if C is symmetric
in a hyperplane parallel to H . See the references at the beginning of Sect. 9.

Polar Bodies and Steiner Symmetrization

Let C be a convex body with o ∈ int C . Its polar body C∗ (with respect to o) is
defined by

C∗ = {y : x · y ≤ 1 for x ∈ C}.
It is easy to see that C∗ is also a convex body with o ∈ int C∗. Polar bodies play
a role in geometric inequalities, the local theory of normed spaces, the geometry
of numbers and other areas. The following property was noted by Ball [47] and
Meyer and Pajor [720]. It can be used to prove the Blaschke–Santaló inequality, see
Theorem 9.5. Let v(·) denote (d − 1)-dimensional volume.
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Proposition 9.2. Let C ∈ Cp be o-symmetric. Then, Steiner symmetrization, with
respect to a given hyperplane through o, satisfies the following inequality:

V
(
(st C)∗

) ≥ V (C∗).

Proof. We may suppose that this hyperplane is E
d−1 = {x : xd = 0}. Then

st C = {(
x,

1

2
(s − t)

) : (x, r), (x, s) ∈ C
}
,

C∗ = {
(y, t) : x · y + st ≤ 1 for (x, s) ∈ C

}
,

(st C)∗ = {
(w, t) : x · w + 1

2
(r − s)t ≤ 1 for (x, r), (x, s) ∈ C

}
.

For a set A ⊆ E
d and t ∈ R, let A(t) = {v ∈ E

d−1 : (v, t) ∈ A}. Then

1

2

(
C∗(t)+ C∗(−t)

)

= {1

2
(y + z) : x · y + r t ≤ 1, w · z + s(−t) ≤ 1 for (x, r), (w, s) ∈ C

}

⊆ {1

2
(y + z) : x · y + r t ≤ 1, x · z + s(−t) ≤ 1 for (x, r), (x, s) ∈ C

}

⊆ {1

2
(y + z) : x · 1

2
(y + z)+ 1

2
(r − s)t ≤ 1 for (x, r), (x, s) ∈ C

}

= {
w : x · w + 1

2
(r − s)t ≤ 1 for (x, r), (x, s) ∈ C

}

= (st C)∗(t) for t ∈ R.

Since C is o-symmetric, C∗ is also o-symmetric. Thus C∗(t) = −C∗(−t) and there-
fore v

(
C∗(t)

) = v(C∗(−t)
)
. The Brunn–Minkowski inequality in d − 1 dimensions

then shows that

v
(
(st C)∗(t)

) ≥ v
(1

2

(
C∗(t)+ C∗(−t)

))

≥
(1

2
v
(
C∗(t)

) 1
d−1 + 1

2
v
(
C∗(−t)

) 1
d−1

)d−1 = v(C∗(t)
)

for t ∈ R.

Now, integrating over t , Fubini’s theorem yields V
(
(st C)∗

) ≥ V (C∗). ��

The Sphericity Theorem of Gross

The following highly intuitive sphericity theorem of Gross [407] and its corollary
were used by Blaschke [124] for easy proofs of the isodiametric, the isoperimetric
and the Brunn–Minkowski inequalities. Let κd = V (Bd).

Theorem 9.1. Let C ∈ Cp with V (C) = V (Bd). Then, there is a sequence
C1,C2, . . . of convex bodies, each obtained from C by finitely many successive
Steiner symmetrizations with respect to hyperplanes through o, such that

C1,C2, · · · → Bd .
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Proof. For D ∈ C, let �(D) denote the minimum radius of a ball with centre o
which contains D. Let S = S(C) be the family of all convex bodies which can be
obtained from C by finitely many successive Steiner symmetrizations with respect
to hyperplanes through o. Let

σ = inf{�(D) : D ∈ S}.
There is a sequence (Cn) in S such that

(1) �(Cn)→ σ .

Since C ⊆ �(C)Bd , an application of Proposition 9.1(iv) shows that Cn ⊆
�(C)Bd for n = 1, 2, . . . Now apply Blaschke’s selection theorem 6.3. Then, by
considering a suitable subsequence of (Cn) and renumbering, if necessary, we may
assume that

(2) Cn → C0 ∈ C, say.

Clearly, �(·) is continuous on C. It thus follows from (2) and (1) that �(Cn) →
�(C0) = σ . We assert that

(3) C0 = σ Bd .

For, if not, C0�σ Bd (note that �(C0) = σ ). Thus there is a calotta of σ Bd which is
disjoint from C0, where a calotta of Bd is the intersection of Bd with a closed half-
space. Given a calotta of σ Bd , we may cover bd σ Bd by finitely many mirror images
of it in hyperplanes through the origin o. For suitable hyperplanes H1, . . . , Hk

through o, the convex body:

(4) D0 = stHk stHk−1 · · · stH1 C0 ∈ Cp

is then contained in int σ Bd and therefore:

(5) �(D0) < σ.

Clearly,

(6) Dn = stHk stHk−1 · · · stH1 Cn ∈ S for n = 1, 2, . . . .

Thus �(Dn) ≥ σ . Since Cn → C0 by (2), it follows from (4), (6) and Proposi-
tion 9.1(v) that Dn → D0. The continuity of �(·), together with (5), then shows that
�(Dn) < σ for all sufficiently large n. Since Dn ∈ S this is in contradiction to the
definition of σ . The proof of (3) is complete.

Since Cn ∈ S, Propositions (2) and (3) imply that C1,C2, · · · → σ Bd . Since
V (Cn) = V (C) = V (Bd) for each n and volume is continuous, this is possible only
if σ = 1. The proof (3), and thus of the theorem, is complete. ��
Corollary 9.1. Let C, D ∈ Cp. Then, there are Steiner symmetrizations stH1 ,
stH2 , . . . , with respect to hyperplanes H1, H2, . . . through o, such that

Cn = st Hn · · · st H1C →
(

V (C)

κd

) 1
d

Bd ,

Dn = st Hn · · · st H1 D →
(

V (D)

κd

) 1
d

Bd .
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Proof. Let ε > 0. By the sphericity theorem, there are hyperplanes H1, . . . , Hn1 ,
through o, such that

st Hn1
· · · st H1C ⊆ (1+ ε)

(
V (C)

κd

) 1
d

Bd .

Again, by the sphericity theorem, there are hyperplanes Hn1+1, . . . , Hn2 , through o,
such that

st Hn2
· · · st Hn1+1(st Hn1

· · · st H1 D) ⊆ (1+ ε)
(

V (D)

κd

) 1
d

Bd ,

while maintaining

st Hn2
· · · st Hn1+1(st Hn1

· · · st H1C) ⊆ (1+ ε)
(

V (C)

κd

) 1
d

Bd .

Applying the same argument with ε/2 to the convex bodies st Hn2
· · · st H1C ,

st Hn2
· · · st H1 D ∈ Cp, etc., finally yields the corollary. ��

Remark. Considering the theorem and its corollary, the question arises, how fast
do suitable iterated Steiner symmetrals of C approximate �Bd? The first result in
this direction was proved by Hadwiger [463]. A more precise estimate is due to
Bourgain, Lindenstrauss and Milman [160]. There are an absolute constant α > 0
and a function α(ε) > 0 such that the following statement holds: Let C be a convex
body C of volume V (Bd) and ε > 0. Then, by at most α d log d + α(ε) d Steiner
symmetrizations of the body or the polar body, one obtains a convex body D with

(1− ε)Bd ⊆ D ⊆ (1+ ε)Bd .

For a pertinent result involving random Steiner symmetrizations, see Mani-Levitska
[683]. A sharp isomorphic result is due to Klartag and Milman [589]. A lower bound
for the distance of iterated Steiner symmetrals of C from �Bd was given by Bianchi
and Gronchi [112]. See [660, 878] for additional references.

Blaschke Symmetrization

Blaschke [124], p.103, introduced the following concept of symmetrization. Given
a convex body C and a hyperplane H in E

d , let C H be the (mirror) reflection of C
in H . Then the Blaschke symmetrization of C with respect to H is the convex body

1

2
C + 1

2
C H .

In recent years the Blaschke symmetrization has also been called Minkowski
symmetrization. A surprisingly sharp sphericity result for this symmetrization is due
to Klartag [588].
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9.2 The Isodiametric, Isoperimetric, Brunn–Minkowski, Blaschke–Santaló
and Mahler Inequalities

If C is a proper convex body but not a ball, then a suitable Steiner symmetral of C
has smaller isoperimetric quotient than C . This observation led Steiner [958, 959],
erroneously, to believe that Steiner symmetrization shows that balls have minimum
isoperimetric quotient. The gap in this proof of the isoperimetric inequality was filled
by Blaschke. He showed that Steiner symmetrization together with the Blaschke
selection theorem, or rather the sphericity theorem of Gross, also provide easy proofs
of the isodiametric, the isoperimetric and the Brunn–Minkowski inequalities.

Below we first present the proofs of Gross [407] and Blaschke [124] of these
inequalities, but do not discuss the equality cases. Then the proof of Ball [47] and
Meyer and Pajor [720] of the Blaschke–Santaló inequality will be given, again,
excluding a discussion of the equality case. As a counterpart of the Blaschke–Santaló
inequality, we present an inequality of Mahler. Let κd = V (Bd).

The Isodiametric Inequality

A simple proof using d Steiner symmetrizations yields the following result of
Bieberbach [113], a refinement of which was given by Urysohn [1004]. For a
different proof, see Sect. 8.3.

Theorem 9.2. Let C ∈ C. Then V (C) ≤ 1

2d
(diam C)d V (Bd).

Proof. By symmetrizing C with respect to each coordinate hyperplane we obtain a
convex body D which is symmetric in the origin o and with V (D) = V (C) and
diam D ≤ diam C , see Proposition 9.1(vi,viii). Then D ⊆ ( 1

2 diam D)Bd . ��

The Isoperimetric Inequality

An equally simple proof yields the next result.

Theorem 9.3. Let C ∈ Cp. Then
S(C)d

V (C)d−1
≥ S(Bd)d

V (Bd)d−1
.

Proof. By Corollary 9.1, there are hyperplanes H1, H2, . . . through o, such that

st Hn · · · st H1C →
(

V (C)

κd

) 1
d

Bd .

Now using Proposition 9.1(vii) and the continuity of the surface area S(·), see
Theorem 6.13, we obtain the desired inequality:

S(C) ≥ S(st H1C) ≥ · · · → S

((
V (C)

κd

) 1
d

Bd

)

= V (C)
d−1

d

κ
d−1

d
d

S(Bd). ��
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The Brunn–Minkowski Inequality

The following proof reduces the Brunn–Minkowski inequality to the trivial case
where both bodies are balls.

Theorem 9.4. Let C, D ∈ C. Then V (C + D)
1
d ≥ V (C)

1
d + V (D)

1
d .

Proof. It is sufficient to consider the case where C, D ∈ Cp. By Corollary 9.1, there
are hyperplanes H1, H2, . . . through o, such that

st Hn · · · st H1C →
(V (C)

κd

) 1
d

Bd ,

st Hn · · · st H1 D →
(V (D)

κd

) 1
d

Bd .

Thus Proposition 9.1(vi,iii) and the continuity of V , see Theorem 7.5, yield the
following.

V (C + D)
1
d = V

(
st H1(C + D)

) 1
d ≥ V (st H1C + st H1 D)

1
d ≥ · · ·

→ V

((
V (C)

κd

) 1
d

Bd +
(

V (D)

κd

) 1
d

Bd

) 1
d

= V

⎛

⎝ 1

κ
1
d

d

(
V (C)

1
d + V (D)

1
d

)
Bd

⎞

⎠

1
d

= V (C)
1
d + V (D)

1
d . ��

The Blaschke–Santaló Inequality

Blaschke [126] proved the following result for d = 3. It was extended to general d
by Santaló [880].

Theorem 9.5. Let C ∈ Cp be o-symmetric. Then

V (C)V (C∗) ≤ κ2
d .

Proof. By the Corollary 9.1 to the sphericity theorem of Gross, there are hyperplanes
H1, H2, . . . through o, such that

Cn = st Hn · · · st H1C →
(

V (C)

κd

) 1
d

Bd .

An easy argument for polar bodies then shows that

C∗
n →

(
κd

V (C)

) 1
d

Bd .

Thus

V (C)V (C∗) ≤ V (st H1C)V
(
(st H1C)∗

) = V (C1)V (C
∗
1 )

≤ V (st H2C1)V
(
(st H2C1)

∗) = V (C2)V (C
∗
2 ) ≤ . . .

→ V (Bd)2 = κ2
d .

by Proposition 9.2 and the continuity of volume on C, see Theorem 7.5. ��
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Mahler’s Inequality

The following inequality of Mahler [679] is a useful tool for successive minima, see
Theorem 23.2:

Theorem 9.6. Let C ∈ Cp be o-symmetric. Then

4d

d ! ≤ V (C)V (C∗).

Proof. Since a non-singular linear transformation does not change the product
V (C)V (C∗), we may assume the following. The o-symmetric cross-polytope
O = {x : |x1| + · · · + |xd | ≤ 1} is inscribed in C and has maximum volume among
all such cross-polytopes. Since O has maximum volume, C is contained in the cube
K = {x : |xi | ≤ 1}. Thus O ⊆ C ⊆ K . Polarity then yields K ∗ ⊆ C∗ ⊆ O∗. Note
that K ∗ = O . Hence

(2d)2

(d !)2 = V (O)2 = V (O)V (K ∗) ≤ V (C)V (C∗),

concluding the proof. ��

A much stronger version of this simple result was conjectured also by Mahler:

Conjecture 9.1. Let C ∈ Cp be o-symmetric. Then

4d

d ! ≤ V (C)V (C∗).

Remark. It is plausible that the product V (C)V (C∗) is minimum if C is the cube
{x : |xi | ≤ 1}. Then C∗ is the cross-polytope {x : |x1| + · · · + |xd | ≤ 1} and we
have, V (C)V (C∗) = 4d/d !. This seems to have led Mahler to the above conjecture.
Mahler proved it for d = 2. While the conjecture is open for d ≥ 3, substantial
progress has been achieved by Bourgain and Milman [161] who proved that there is
an absolute constant α such that

αd

dd
≤ V (C)V (C∗).

A simple proof of a slightly weaker result is due to Kuperberg [622]. A refined
version of the estimate of Bourgain and Milman was given by Kuperberg [624]. For
special convex polytopes a proof of the conjecture is due to Lopez and Reisner [663].
In [623] Kuperberg stated a conjecture related to Mahler’s conjecture. For more
information we refer to Lindenstrauss and Milman [660].
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9.3 Schwarz Symmetrization and Rearrangement of Functions

A relative of Steiner’s symmetrization is Schwarz’s symmetrization. It was intro-
duced by Schwarz [922] as a tool for the solution of the geometric isoperimetric
problem. While of interest in convex geometry, its real importance is in the con-
text of isoperimetric inequalities of mathematical physics, where a version of it, the
spherical rearrangement of functions, is an indispensable tool.

In this section Schwarz symmetrization of convex bodies and spherically sym-
metric rearrangement of real functions are treated. Without proof we state a result on
rearrangements. Applications are dealt with in the following sections.

For references to the literature on rearrangement of functions and its applica-
tions to isoperimetric inequalities of mathematical physics and partial differential
equations, consult the books of Bandle [64] and Kawohl [569] and the survey of
Talenti [987]. Unfortunately, a modern treatment of this important topic with detailed
proofs, still seems to be missing.

Schwarz Symmetrization

Schwarz symmetrization or Schwarz rounding of a convex body C with respect to a
given line L is defined as follows. For each hyperplane H orthogonal to L and which
meets C , replace C ∩ H by the (d − 1)-dimensional ball in H with centre at H ∩ L
and (d − 1)-dimensional volume equal to that of C ∩ H . The union of all balls thus
obtained is then the Schwarz symmetrization sch C = schL C of C with respect to L .

The version 8.4 of the Brunn–Minkowski theorem implies that sch C ∈ C.
Refining the argument that led to Corollary 9.1, shows that there are hyperplanes
H1, H2, . . . , all containing L , such that

st Hn · · · st H1C → schLC.

As a consequence, many properties of Steiner symmetrization also hold for Schwarz
symmetrization; in particular, the properties listed in Proposition 9.1.

Rearrangement of Functions

It is clear that Schwarz symmetrization extends to non-convex sets (see Fig. 9.3).
Given a Borel function f : E

d → R, we apply Schwarz symmetrization to the set
B = {(x, t) : f (x) ≥ t} ⊆ E

d × R with respect to the line {o} × R: Let

B(t) = {(x, t) : f (x) ≥ t} ⊆ E
d × {t} for t ∈ R.

Since f , and thus B, is Borel, each set B(t) is also Borel. If B(t) has infinite measure,
let Br (t) = E

d × {t}; otherwise let Br (t) be the ball in E
d × {t} with centre at (o, t)

and measure equal to that of B(t). The rearrangement f r : E
d → R of f then is

defined by
f r (x) = sup{t : (x, t) ∈ Br (t)} for x ∈ E

d .
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Fig. 9.3. Rearrangement of functions

The following rearrangement theorem is indispensable for certain isoperimetric
inequalities of mathematical physics, see the next section. While this result was
known and used at least since Faber [316] and Krahn [615], a complete proof requires
tools of more recent geometric measure theory. See Talenti [987] for its history and
references to proofs. Compare also Bandle [64]. Here no proof is presented.

Theorem 9.7. Let f : E
d → [0,+∞) be locally Lipschitz and such that f (x)→ 0

as ‖x‖ → ∞. Then f r : E
d → [0,+∞) is also locally Lipschitz, f r (x) → 0 as

‖x‖ → ∞, and
∫

Ed

(
grad f (x)

)2
dx ≥

∫

Ed

(
grad f r (x)

)2
dx .

(Since f and f r are locally Lipschitz, (grad f )2 and (grad f r )2 are measurable and
exist almost everywhere, see [696].)

9.4 Torsional Rigidity and Minimum Principal Frequency

We begin with the following quotation from Bandle [64], preface.

The study of ‘isoperimetric inequalities’ in a broader sense began with the conjec-
ture of St Venant in 1856. Investigating the torsion of elastic prisms, he observed
that of all cross-sections of given area the circle has the maximal torsional rigidity.
This conjecture was proved by Pólya in 1948. Lord Rayleigh conjectured that of
all membranes with given area, the circle has the smallest principal frequency. This
statement was proved independently by Faber and Krahn around 1923.

There is a large body of isoperimetric type inequalities in mathematical physics
dealing with eigenvalues of partial differential equations. In physical terms these
inequalities concern principal frequencies of membranes, torsional rigidity, bend-
ing of beams, electrostatic capacity, etc. Major contributors are Saint-Venant, Faber,
Krahn, Pólya and Szegö, Osserman, Hersch, Payne, Talenti and others.

The above rearrangement theorem will be applied to give the best upper, respec-
tively, lower, bound for the torsional rigidity of an elastic cylindrical rod and for the
first principal frequency of a clamped membrane.

For more information, see the surveys and books of Pólya and Szegö [811],
Bandle [64], Mossino [757], Hersch [498], Payne [786] and Talenti [987].
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Torsional Rigidity

Let K be a smooth closed Jordan curve in E
2. It is the boundary of a compact body

B, where by a body we mean a compact set which equals the closure of its interior.
Consider a cylindrical rod of homogeneous elastic material with cross-section B.
The torsional rigidity T (B) of the rod is the torque required for a unit angle of twist
per unit length under the assumption that the shear modulus is 1. It can be expressed
in the form

(1) T (B) =
∫

B

(
grad u(x)

)2
dx,

where u : B → R is the solution of the following boundary value problem, where

� = ∂2

∂x2
1

+ ∂2

∂x2
2

is the Laplace operator:

(2) �u + 2 = 0 in int B
u|K = 0
u|B is continuous on B
u| int B is of class C2

The following result was conjectured by Saint-Venant [875] and first proved by Pólya
[809] a century later.

Theorem 9.8. Let K be a closed Jordan curve of class C1 and B the compact body
in E

2 bounded by K and of area A(B). Then

T (B) ≤ A(B)2

2π
.

Equality is attained if B is a circular disc.

Proof. First, a different representation of T (B) will be given:

(3) T (B) = sup

⎧
⎪⎪⎨

⎪⎪⎩

(
2
∫

B
f (x) dx

)2

∫

B

(
grad f (x)

)2
dx

:

f : B → [0,+∞) locally Lipschitz, f �= 0, f |K = 0

⎫
⎬

⎭
,

where the supremum is attained precisely for f of the form f = u �= 0, u
as in (2).

Let ∂
∂n denote the derivative in the direction of the exterior unit normal vector of K

and let x(·) : [0, L] → E
2 be a parametrization of K where the arc-length s is the

parameter and L the length of K . Recall the following formula of Green for integrals.
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∫

B

(
grad f (x)

) · ( grad u(x)
)

dx +
∫

B

f (x)�u(x) dx =
L∫

0

f
(
x(s)

)∂u

∂n

(
x(s)

)
dx,

where f and u are as above.
To prove (3), let f be chosen as in (3). Then (2), Green’s formula, the equality

f |K = 0, the Cauchy–Schwarz inequality for integrals and (1) yield the following:

2
∫

B

f (x) dx = −
∫

B

f (x)�u(x) dx

=
∫

B

(
grad f (x)

) · ( grad u(x)
)

dx −
L∫

0

f
(
x(s)

)∂u

∂n

(
x(s)

)
ds

≤
∫

B

‖ grad f (x)‖ ‖ grad u(x)‖ dx

≤
⎛

⎝
∫

B

(
grad f (x)

)2
dx

∫

B

(
grad u(x)

)2
dx

⎞

⎠

1
2

=
⎛

⎝
∫

B

(
grad f (x)

)2
dx T (B)

⎞

⎠

1
2

.

Hence

T (B) ≥

(
2
∫

B
f (x) dx

)2

∫

B

(
grad f (x)

)2
dx
.

Since (2), Green’s formula, u|K = 0 and (1) show that

2
∫

B

u(x) dx = −
∫

B

u(x)�u(x) dx

=
∫

B

(
grad u(x)

)2
dx −

L∫

0

u
(
x(s)

)∂u

∂n

(
x(s)

)
ds

=
∫

B

(
grad u(x)

)2
dx = T (B),

we obtain

T (B) =

(
2
∫

B
u(x) dx

)2

∫

B

(
grad u(x)

)2
dx
.
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The proof of (3) is thus complete.
Now, using (3) and the rearrangement theorem, it follows that

T (B) = sup

⎧
⎪⎪⎨

⎪⎪⎩

(
2
∫

B
f (x) dx

)2

∫

B

(
grad f (x)

)2
dx

: . . .

⎫
⎪⎪⎬

⎪⎪⎭

≤ sup

⎧
⎪⎪⎨

⎪⎪⎩

(
2
∫

D
f r (x) dx

)2

∫

D

(
grad f r (x)

)2
dx

: . . .

⎫
⎪⎪⎬

⎪⎪⎭
≤ T (D),

where D is the circular disc with centre o and A(D) = A(B). Its radius is � =( 1
π A(B)

)1/2. The solution of the boundary value problem,

�v + 2 = 0 in int D

v| bd D = 0

v is continuous on D

v| int D is of class C2

is given by

v(x) = �2

2
− ‖x‖2

2
for x ∈ D.

Thus

T (D) = 2
∫

D

(
grad v(x)

)2
dx = A(D)2

2π
= A(B)2

2π
. ��

Remark. It is well known that, in the estimate for T (B), equality holds precisely
in case when B is a circular disc. For recent results on rods consisting of plastic
material and for additional information, see Talenti [987].

First Principal Frequency of a Clamped Membrane

Let K be a smooth closed Jordan curve in E
2 and let B be the compact body with K

as boundary. Consider an elastic, homogeneous vibrating membrane on B clamped
along K . Small vertical vibrations of this membrane are described by a function
v(x, t) : B × R → R which satisfies the wave equation,

(4) c�v = vt t in int B × R

v|K × R = 0
v is continuous on B × R

v| int B × R is of class C2

where c > 0 is a constant depending on the membrane. If v is a non-trivial solution
of (4) of the form v(x, t) = u(x)eiωt , then u is a solution of the following eigenvalue
problem:
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(5) �u + λu = 0 in int B, where λ = ω2

c
u|K = 0
u is continuous on B
u| int B is of class C2

Before stating and proving Rayleigh’s theorem, we collect several well-known
results on this eigenvalue problem. A non-trivial solution of (5) has the following
properties:

(6) u > 0 in int B,
∂u

∂n
> 0 on K .

The eigenvalue problem (5) has non-trivial solutions precisely for a sequence of λ’s,

0 < λ1 ≤ λ2 ≤ · · · → ∞ .

Then

0 < ω1 =
√

cλ1 ≤ ω2 =
√

cλ2 ≤ · · · → ∞
are called the principal frequencies of the membrane.

Rayleigh [824] conjectured that, among all homogeneous membranes of given
area, it is precisely the circular membranes which have the smallest first principal
frequency. First proofs of this conjecture are due to Faber [316] and Krahn [615].

Theorem 9.9. Among all homogeneous elastic membranes clamped on smooth
closed Jordan curves and of given area, the circular membranes have the smallest
first principal frequency.

Proof. We use the same notation as in the proof of Theorem 9.8. Let K be a smooth
closed Jordan curve which bounds a compact body B in E

2 of given area. We first
prove that λ1 can be expressed as the infimum of Rayleigh quotients as follows:

(7) λ1(B) = inf

⎧
⎪⎪⎨

⎪⎪⎩

∫

B

(
grad f (x)

)2
dx

∫

B
f (x)2dx

:

f : B → [0,+∞) locally Lipschitz, f �= 0, f |K = 0

⎫
⎪⎪⎬

⎪⎪⎭
,

where the infimum is attained precisely for f of the form f = const u,
const > 0, u as in (5).

Let f be as in (7). By (5) and (6) we have f = gu, where g is locally Lipschitz.
Then (5), Green’s integral formula and the property that u|K = 0 together show that
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∫

B

((
grad f (x)

)2 − λ f (x)2
)

dx

=
∫

B

(
(grad gu)2 + g2u�u

)
dx

=
∫

B

{
g2(grad u)2 + 2gu grad g · grad u + u2(grad g)2

− grad(g2u) · grad u
}
dx +

∫

K

g2u
∂u

∂n
dt

=
∫

B

{
g2(grad u)2 + 2gu grad g · grad u + u2(grad g)2

− g2(grad u)2 − 2gu grad g · grad u
}

dx

=
∫

B

u2(grad g)2 dx ≥ 0.

Hence,

λ ≤

∫

B

(
grad f (x)

)2
dx

∫

B
f (x)2dx

,

where equality holds if and only if grad g(x) = o, i.e. g = const or f = const u. The
proof of (7) is complete.

Proposition (7) and the rearrangement theorem finally imply the desired
inequality:

λ1(B) =

∫

B

(
grad u(x)

)2
dx

∫

B
u(x)2dx

≥

∫

D

(
grad ur (x)

)2
dx

∫

D
ur (x)2dx

≥ inf

⎧
⎪⎪⎨

⎪⎪⎩

∫

D

(
grad h(x)

)2
dx

∫

D
h(x)2dx

: h . . .

⎫
⎪⎪⎬

⎪⎪⎭
= λ1(D). ��

Remark. It can be shown that equality holds precisely for circular membranes. The
first principal frequency for circular membranes can be expressed in terms of Bessel
functions. For refinements, generalizations and related modern material we refer to
Kac [558], Bandle [64], Payne [786], Protter [818] and Talenti [987]. Many of the
pertinent results are related to the following question.

Problem 9.1. What information about a compact body B in E
d can be obtained from

the sequence of eigenvalues of the eigenvalue problem (5)?
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Fig. 9.4. Isospectral membranes

Weyl [1019] showed that the area of a plane membrane is determined by the sequence
of its principal frequencies. This led to the speculation that, perhaps, the shape is also
determined by this sequence. Quite unexpectedly, Gordon, Webb and Wolpert [388]
constructed examples of essentially distinct non-convex isospectral membranes (see
Fig. 9.4), i.e. membranes with the same sequence of principal frequencies. In other
words, one cannot hear the shape of a drum. See also the article of Buser, Conway,
Doyle and Semmler [185]. The figure shows a pair of isospectral membranes speci-
fied by McDonald and Meyers [703].

9.5 Central Symmetrization and the Rogers–Shephard Inequality

Given a convex body C , there are several possibilities to assign to C a convex body
which is centrally symmetric with respect to some point. Here the following possi-
bility will be considered: The difference body D of C , defined by

D = C − C = {x − y : x, y ∈ C},
is convex and symmetric with respect to o. The convex body 1

2 D is called the central
symmetral of C .

The difference body is important for, e.g. the isodiametric inequality, for packing
and tiling. See Sects. 8.3, 30 and 32.2. In this section, we give tight lower and upper
estimates for the volume of the difference body of a given convex body in terms of the
volume of the original body. The lower estimate is an immediate consequence of the
Brunn–Minkowski inequality. The upper estimate is the Rogers–Shephard inequality
[852]. For applications of this inequality to density estimates for lattice and non-
lattice packing, see Sects. 30.1 and 30.3. A simple proof of a more general result is
due to Chakerian [199].

Estimates for V (C − C)

Our aim is to show the inequality of Rogers and Shephard without considering the
equality cases. This is the right-hand inequality in the following result.
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Theorem 9.10. Let C ∈ Cp. Then the volume of the difference body D = C − C
satisfies the inequalities,

2d V (C) ≤ V (D) ≤
(

2d

d

)
V (C).

Proof. Lower estimate: The Brunn–Minkowski theorem easily yields

V (D) = V (C − C) = V
(
C + (−C)

) ≥ (
V (C)

1
d + V (−C)

1
d
)d

= (
2V (C)

1
d
)d = 2d V (C).

Upper estimate: Let 1C be the characteristic function of C . Unless indicated
otherwise, integration is over E

d . By changing the order of integration we have:

(1)
∫ (∫

1C (y − x)1C (y) dy

)
dx =

∫
1C (y)

(∫
1C (y − x) dx

)
dy

=
∫

1C (y)V (C) dy = V (C)2.

For each x , the integral
∫

1C (y − x)1C (y) dy

is 0, unless there is a point y such that y and y − x both belong to C . In this case
x = y − (y − x) ∈ C − C = D. Hence (1) can be written in the form:

(2)
∫

D

(∫
1C (y − x)1C (y) dy

)
dx = V (C)2.

For each point x ∈ D\{o}, let λ = λ(x) ∈ (0, 1] be such that z = λ−1x ∈ bd D ⊆ D.
Since z ∈ D = C − C , there are points p, q ∈ C with z = p − q. By convexity,

(1− λ)C + λp ⊆ C, (1− λ)C + λq + x ⊆ C + x .

Since λp − (λq + x) = λ(p − q) − x = λz − x = o, the sets (1 − λ)C + λp and
(1− λ)C + λq + x coincide and so both are contained in C ∩ (C + x). Thus:

(3)
∫

1C (y − x)1C (y) dy = V
(
C ∩ (C + x)

) ≥ V
(
(1− λ)C)

= (1− λ)d V (C) = (
1− λ(x))d

V (C).

Substituting this into (2) implies that

V (C)2 ≥
∫

D

(
1− λ(x))d

V (C) dx .

Dividing by V (C) and noticing that

(
1− λ(x))d =

1∫

λ(x)

d(1− t)d−1dt,
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we see that

(4) V (C) ≥
∫

D

(
1− λ(x))d

dx =
∫

D

⎛

⎜
⎝

1∫

λ(x)

d (1− t)d−1dt

⎞

⎟
⎠ dx

=
1∫

0

⎛

⎜⎜
⎝

∫

x∈D
λ(x)≤t

d (1− t)d−1dx

⎞

⎟⎟
⎠ dt.

Since z = λ(x)−1x ∈ bd D, it follows that x ∈ λ(x)D. The condition that λ(x) ≤ t
is thus equivalent to the condition that x ∈ t D. Consequently,

1∫

0

⎛

⎜⎜
⎝

∫

x∈D
λ(x)≤t

d (1− t)d−1dx

⎞

⎟⎟
⎠ dt =

1∫

0

d (1− t)d−1V (t D) dt

= V (D)

1∫

0

d (1− t)d−1tddt = (d !)2
(2d) !V (D).

Substituting this back into (4) yields the desired upper bound for V (D). ��
Remark. V (D) = 2d V (C) holds precisely when C is centrally symmetric and
V (D) = (2d

d

)
V (C) holds precisely when C is a simplex, see [852]. In the proof of the

latter result the following characterization of simplices is needed: C is a simplex if
and only if C ∩ (C+ x) is a non-negative homothetic image of C for each x ∈ E

d for
which C ∩ (C + x) �= ∅. This characterization of Rogers and Shephard [852] of sim-
plices slightly refines a classical characterization of simplices due to Choquet [208].
Compare Sect. 12.1.

For a stability version of the Rogers–Shephard inequality, see Böröczky Jr. [156].
A modern characterization of centrally symmetric convex bodies was given by

Montegano [751].

10 Problems of Minkowski and Weyl and Some Dynamics

The original versions of Minkowski’s problem [736, 739] and of Weyl’s problem
[1020] are as follows, where a closed convex surface is the boundary of a proper
convex body.

Problem 10.1. Given a positive function κ on Sd−1, is there a convex body C with
Gauss curvature κ (as a function of the exterior unit normal vector)?

Problem 10.2. Given a Riemannian metric on Sd−1, is there a closed convex surface
S in E

d such that Sd−1 with the given Riemannian metric is isometric to S if the
latter is endowed with its geodesic or intrinsic metric, i.e. distance in S is measured
along geodesic segments.
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Both problems influenced the development of differential geometry and convex
geometry throughout the twentieth century. An important additional aspect is that
of the uniqueness of the convex body C and of the convex surface S, respectively. In
the context of convex geometry, both problems have been solved satisfactorily at the
right level of generality, including the uniqueness problems. Many of the pertinent
results go back to Alexandrov and Pogorelov in the context of Alexandrov’s differ-
ential geometry of not-necessarily differentiable convex surfaces.

In the following, the notion of area measure of a convex body will be introduced
and, using this, the solution of Alexandrov [12] and Fenchel and Jessen [335] of
Minkowski’s problem, including uniqueness, will be presented. Then we consider
the notion of intrinsic metric and state, without proofs, Alexandrov’s [15] realization
and Pogorelov’s [803] uniqueness or rigidity theorem which together solve Weyl’s
problem for general convex surfaces in E

3. The known proofs of these results are
long and full of tedious technical details.

For more information on the above problems, the reader is referred to the books
of Busemann [182], Pogorelov [806] and Schneider [907], to the surveys of Ivanova-
Karatopraklieva and Sabitov [538, 539] and the references below.

In addition to investigations of fixed convex bodies or classes of convex bodies,
there are results in convex geometry of a dynamical type, dealing with rigidity and
deformation of closed convex surfaces, convex surfaces with boundary, non-convex
polytopal spheres and frameworks. For rigidity we refer to Sects. 10.2, 17.1 and
17.2. Early results on the evolution of convex polytopal spheres are related to crystal
growth, see the references in Sect. 8.4 dealing with Wulff’s theorem. In recent years
numerous results on deformation of closed convex surfaces by flows of different
types have been studied in the context of differential geometry and partial differ-
ential equations. In some cases the surfaces shrink to a point and before collapsing
their form becomes more and more spherical. These contributions may be considered
convexity results, at least in some cases.

A different dynamical aspect in convex geometry is provided by billiards.
Billiards have been studied in mathematics at least since Birkhoff and have attracted
a lot of interest in the context of dynamical systems. There are results dealing with
periodic and dense trajectories, with caustics and with the behaviour induced by
boundary points of the billiard tables with particular curvature properties. Several of
these investigations also belong to convex geometry.

In the following we try to convey some of the dynamical flavor of evolution
and billiards by considering evolution of closed convex surfaces by curvature driven
flows and convex caustics in billiard tables.

10.1 Area Measure and Minkowski’s Problem

In this section, we define and investigate the notion of (surface) area measure of con-
vex bodies. Then, given a Borel measure σ on Sd−1 with certain properties, existence
and uniqueness of a convex body with area measure σ is proved. This is then used
to define Blaschke addition of proper convex bodies. We follow Alexandrov [10],
Pogorelov [806] and Schneider [907].
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The Reverse Normal Image

Let C ∈ Cp be given. Given a Borel set B ⊆ Sd−1, the reverse normal or reverse
spherical image n−1

C (B) of B in bd C is defined by

n−1
C (B) =

{
x ∈ bd C : there is an exterior normal

unit vector of bd C at x contained in B
}
.

Let µd−1 be the (d − 1)-dimensional Hausdorff measure in E
d . A subset of bd C is

measurable if it is measurable with respect to µd−1| bd C .

Proposition 10.1. The reverse normal image of a Borel set in Sd−1 is measurable in
bd C.

Proof. Let M be the family of all sets B in Sd−1 for which n−1
C (B) is measurable.

We have to show that M contains all Borel sets in Sd−1. This will be done in three
steps.

First, the following will be shown:

(1) Let B ⊆ Sd−1 be compact. Then n−1
C (B) is compact in bd C and thus

B ∈M.

To see this, let x1, x2, · · · ∈ n−1
C (B) such that x1, x2, · · · → x ∈ bd C , say. We

have to show that x ∈ n−1
C (B). Choose u1, u2, · · · ∈ B ⊆ Sd−1 for which xn ∈

n−1
C (un) for n = 1, 2, . . . By considering a suitable subsequence and renumbering,

if necessary, we may suppose that u1, u2, · · · → u ∈ Sd−1, say. Since B is compact,
u ∈ B. The body C is contained in each of the support halfspaces {z : un · z ≤
un · xn}. Since un → u, xn → x, it follows that C is contained in the halfspace
{z : u · z ≤ u · x} and x is a common boundary point of this halfspace and of C .
Hence this halfspace supports C and thus x ∈ n−1

C (u) ⊆ n−1
C (B), concluding the

proof of (1).
Second, we claim the following:

(2) Let B ∈M. Then Bc = Sd−1\B ∈M.

At each point of n−1
C (B) ∩ n−1

C (B
c) there are two different exterior unit normal vec-

tors of bd C , one in B, the other one in Bc. Hence each point of n−1
C (B) ∩ n−1

C (B
c)

is singular. The theorem of Anderson and Klee 5.1 then shows that µd−1
(
n−1

C (B) ∩
n−1

C (B
c)
) = 0. The set n−1

C (B
c) thus differs from the set Sd−1\n−1

C (B) which is
measurable by the assumption in (2), by a set of measure 0 and therefore is measur-
able itself. The proof of (2) is complete.

Third, the following statement holds:

(3) Let B1, B2, · · · ∈M. Then B = B1 ∪ B2 ∪ · · · ∈M.

This follows from the identity n−1
C (B) = n−1

C (B1) ∪ n−1
C (B2) ∪ · · ·

Having proved (1) – (3), it follows that M is a σ -algebra of subsets of Sd−1

containing all compact sets in Sd−1. It thus contains the smallest such σ -algebra,
that is the family of all Borel sets in Sd−1. ��



190 Convex Bodies

The Area Measure of Order d − 1

Let C ∈ Cp. The area measure σC of order d − 1 is the Borel measure on Sd−1

defined by

σC (B) = µd−1
(
n−1

C (B)
)

for each Borel set B ⊆ Sd−1.

If C = P is a convex polytope with facets F1, . . . , Fn , and exterior unit normal
vectors u1, . . . , un, the area measure σP is concentrated at the points u1, . . . , un and

σP ({ui }) = µd−1(Fi ) = v(Fi ).

More generally,

σP (B) =
∑

ui∈B

v(Fi ) for each Borel set B ⊆ Sd−1.

If C is of class C2 with positive Gauss curvature κC (as a function of the exterior unit
normal vector of bd C), then, as is well known,

κC (u) = lim
µd−1(B)

σC (B)
as the Borel set B ⊆ Sd−1 shrinks down to {u}.

In other words, κC is the Radon–Nikodym derivative of µd−1 with respect to σC .
This can also be expressed in the form

σC (B) =
∫

B

dµd−1(u)

κC (u)
for each Borel set B ⊆ Sd−1.

Let σ, σ1, σ2, . . . be Borel measures on Sd−1. The measures σ1, σ2, . . . are said
to converge weakly to the measure σ if
∫

Sd−1

f (u) dσn(u)→
∫

Sd−1

f (u) dσ(u) for any continuous function f : Sd−1 → R.

The following result relates convergence of a sequence of convex bodies to the weak
convergence of the corresponding sequence of area measures.

Proposition 10.2. Let C,C1,C2, · · · ∈ Cp be such that C1,C2, · · · → C. Then the
area measures σC1 , σC2 , . . . converge weakly to the area measure σC .

Proof. We first present two tools. The Hausdorff metric and the Blaschke selec-
tion theorem may be extended easily to the space of all compact sets in E

d , see the
remarks after the proof of Blaschke’s selection theorem. The first tool is as follows:

(4) Let F0, F1, F2, · · · ⊆ bd C be compact such that F1, F2, · · · → F0.
Then lim sup

n→∞
µd−1(Fn) ≤ µd−1(F0).
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Since F0 is compact, it is the intersection of the decreasing sequence (Nm), where

Nm =
(

F0 + 1

m
Bd

)
∩ bd C.

Hence

(5) µd−1(F0) = lim sup
m→∞

µd−1(Nm).

Since each Nm is a neighbourhood of F0 in bd C , we see that for given m we have,
Fn ⊆ Nm for all sufficiently large n. Therefore

lim sup
n→∞

µd−1(Fn) ≤ µd−1(Nm) for m = 1, 2, . . .

This together with (5) yields (4).
The second tool is the following special case of the Portmanteau theorem, see

Bauer [82].

(6) Let τ, τ1, τ2, . . . , be Borel probability measures on Sd−1. Then the follow-
ing statements are equivalent:

(i) τ1, τ2, . . . converge weakly to τ .
(ii) lim sup

n→∞
τn(F) ≤ τ(F) for each compact set F ⊆ Sd−1.

For the proof of Proposition 10.2 we may suppose that o ∈ int C and o ∈
int Cn for n = 1, 2, . . . Let � : E

d\{o} → bd C be the radial mapping of E
d\{o}

onto bd C with centre o. Since o ∈ int C and C1,C2, · · · → C , it is not difficult to
show that

(7) The mappings � : bd Cn → bd C and their inverses are Lipschitz with
Lipschitz constants converging to 1.

We will apply (6). Let F ⊆ Sd−1 be compact. By (1) and since � is continuous,
the sets �

(
n−1

Cn
(F)

) ⊆ bd C are compact. By Blaschke’s selection theorem for com-
pact sets, we may assume by considering a suitable subsequence and renumbering,
if necessary, that

(8) lim
n→∞ σCn (F) exists and equals the limit superior of the original sequence,

and

(9) �
(
n−1

Cn
(F)

)→ F0, say, where F0 is compact in bd C .

In order to show that

(10) F0 ⊆ n−1
C (F) ⊆ bd C,

let x ∈ F0. By (9) there are points yn ∈ �
(
n−1

Cn
(F)

) ⊆ bd C with yn → x . Choose

xn ∈ n−1
Cn
(F) ⊆ bd Cn such that �(xn) = yn . By (7) and since yn → x , and

�(x) = x , we have that xn → x . Let un ∈ F such that xn ∈ n−1
Cn
(un). By con-

sidering a suitable subsequence and renumbering, if necessary, we may suppose that
un → u ∈ Sd−1, say. Since F is compact, u ∈ F . Cn is contained in the support
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halfspace {z : un · z ≤ un · xn}. Now, noting that Cn → C, un → u ∈ F ⊆ Sd−1,
and xn → x ∈ bd C , the halfspace {z : u · z ≤ u · x} is a support halfspace of C at x .
Thus x ∈ n−1

C (u) ⊆ n−1
C (F), concluding the proof of (10).

It follows from (4), (9) and (10) that

lim sup
n→∞

µd−1
(
�
(
n−1

Cn
(F)

)) ≤ µd−1
(
n−1

C (F)
)
.

Since
µd−1

(
n−1

C (S
d−1)

) = µd−1
(
�
(
n−1

Cn
(Sd−1)

)) = µd−1(bd C),

the measuresµd−1
(
�(n−1

Cn
(· )) are probability measures on Sd−1 up to some constant.

Thus (6) implies that the measuresµd−1
(
�
(
n−1

Cn
(· ))) converge weakly to the measure

µd−1
(
n−1

C (·)
)
. Taking into account (7), this implies that the area measures σCn (· ) =

µd−1
(
n−1

Cn
(· )) converge weakly to the area measure σC (· ) = µd−1

(
n−1

C (· )
)
. ��

Corollary 10.1. Let C, D ∈ Cp. Then

V (C, D, . . . , D) = 1

d

∫

Sd−1

hC (u) dσD(u).

Proof. Choose convex polytopes Pn ∈ Pp, n = 1, 2, . . . , such that Pn → D. By
Proposition 10.2 the area measures σPn converge weakly to the area measure σD .
Hence, in particular:

(11)
∫

Sd−1

hC (u) dσPn (u)→
∫

Sd−1

hC (u) dσD(u).

Lemma 6.5 and the definition of the area measure of polytopes show that

(12) V (C, Pn, . . . , Pn) = 1

d

∑

F facet of Pn

hC (uF ) v(F) = 1

d

∫

Sd−1

hC (u) dσPn (u).

According to Theorem 6.8 mixed volumes are continuous in their entries. Since
Pn → D, we thus have:

(13) V (C, Pn, . . . , Pn)→ V (C, D, . . . , D).

The corollary is now an immediate consequence of Propositions (11)–(13). ��

Alexandrov’s and Fenchel–Jessen’s Generalization of Minkowski’s Theorem

Minkowski [736, 739] proved the following result: Let κ : Sd−1 → R
+ be a contin-

uous function such that

(14)
∫

Sd−1

u

κ(u)
dµd−1(u) = o (componentwise).
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Then, there is a proper convex body C with area measure σC , unique up to translation,
such that

σC (B) =
∫

B

dµd−1(u)

κ(u)
for each Borel set B ⊆ Sd−1.

This equality shows that κ is the following Radon–Nikodym derivative.

κ = dµd−1

dσC
.

κ is called the generalized Gauss curvature of C . For the question whether or, more
precisely, when κ is the ordinary Gauss curvature of C , compare the references cited
in the remarks at the end of this section.

The extension of Alexandrov [12] and Fenchel and Jessen [335] of Minkowski’s
theorem is as follows.

Theorem 10.1. Let σ be a Borel measure on Sd−1. Then the following are equiva-
lent:

(i) σ is not concentrated on a great circle of Sd−1 and
∫

Sd−1

u dσ(u) = o (componentwise).

(ii) There is a proper convex body C, unique up to translation, with area measure σ .

Busemann [182], p.60, praised this result with the words:

... we have here a first example of a deeper theorem of differential geometry in the
large proved for a geometrically natural class of surfaces, i.e. without smoothness
requirements necessitated by the methods rather than the problem.

Proof. The proof rests on the corresponding result of Minkowski for convex poly-
topes, see Theorem 18.2.

(i)⇒(ii) We first prove the existence of C . By a spherically convex set on Sd−1

we mean the intersection of Sd−1 with a convex cone with apex o. For m = 1, 2, . . . ,
decompose Sd−1 into finitely many pairwise disjoint spherically convex sets, each of
diameter at most 1/m. Let S1, . . . , Sn denote those among these sets which have
positive σ -measure. Here, and in the following, when i appears as an index it would
be better to write mi instead, but we do not do it in order to avoid clumsy notation.
Let

(15) �i ui = 1

σ(Si )

∫

Si

u dσ(u),

where 0 < �i ≤ 1 and ui ∈ Sd−1, i = 1, . . . , n (= n(m)).

�i ui is the centroid of Si with respect to the measure σ . Since �i ui ∈ conv Si and
diam Si ≤ 1

m , an elementary argument shows that

(16) 1− 1

2m2
≤ �i ≤ 1.
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Let σm be the discrete Borel measure on Sd−1 which is defined as follows:

σm(B) =
∑

ui∈B

σ(Si )�i for each Borel set B ⊆ Sd−1.

We show that

(17) σm converges weakly to σ as m →∞.

Let g : Sd−1 → R be continuous. Then
∫

Sd−1

g(u) dσm(u)−
∫

Sd−1

g(u) dσ(u)

=
n∑

i=1

(
σ(Si )�i g(ui )−

∫

Si

g(u) dσ(u)
) =

n∑

i=1

∫

Si

(
�i g(ui )− g(u)

)
dσ(u).

By (16),

|�i g(ui )− g(u)| ≤ |g(ui )− g(u)| + max
u∈Sd−1

{|g(u)|} 1

2m2
.

If u ∈ Si , then ‖ui − u‖ ≤ diam Si ≤ 1
m . Since g is uniformly continuous on Sd−1,

we see that
∫

Sd−1

g(u) dσm(u)−
∫

Sd−1

g(u) dσ(u)→ 0 as m →∞,

concluding the proof of (17).
By (i) and (15),

o =
∫

Sd−1

u dσ(u) =
n∑

i=1

∫

Si

u dσ(u) =
n∑

i=1

�iσ(Si )ui

=
n∑

i=1

αi ui , where αi = �iσ(Si ) > 0.

It follows from (i) that there is 0 < τ < π
2 such that each calotta of radius τ on

Sd−1 has positive measure. Thus, if m is sufficiently large, each open halfsphere
contains one of the sets S1, . . . , Sn and, hence, a point among u1, . . . , un . Thus we
may apply Minkowski’s theorem for polytopes, Theorem 18.2, to obtain, for all suf-
ficiently large m, a polytope Pm ∈ Pp with area measure σPm = σm and facet areas
αi = �iσ(Si ). For the surface area of Pm , it follows from (17) that

(18) S(Pm) =
n∑

i=1

αi =
n∑

i=1

�iσ(Si ) = σm

(
Sd−1

)
→ σ

(
Sd−1

)
> 0.
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The isoperimetric inequality then shows that

(19) The sequence
(
V (Pm)

)
is bounded above.

By translating Pm , if necessary, we may suppose that

(20) o ∈ Pm for all m.

We next show that

(21) The sequence of polytopes (Pm) is bounded.

For all α ∈ R let α+ = max{α, 0}. Let x = ‖x‖v ∈ Pm . Since h Pm (u) ≥ h[o,x](u) =
‖x‖(u · v)+ for u ∈ Sd−1 by (20), it follows from (17) that

(22) V (Pm) = 1
d

n∑

i=1
h Pm (ui )αi ≥ ‖x‖

d

n∑

i=1
(ui · v)+αi

= ‖x‖
d

∫

Sd−1

(u · v)+dσm(u)
(→ ‖x‖

d

∫

Sd−1

(u · v)+dσ(u)
)

> β‖x‖ for all sufficiently large m and x ∈ Pm .

Here, β > 0 is independent of v and thus of x . (19) and (22) together yield Proposi-
tion (21).

For the proof that

(23) The sequence
(
V (Pm)

)
is bounded below by a positive constant,

it is sufficient to take, in (22), x ∈ Pm such that ‖x‖ ≥ γ > 0 for all sufficiently
large m, where γ is a suitable positive constant. This is possible by (18).

Blaschke’s selection theorem, the continuity of the volume on C, see Theo-
rem 7.5, and Propositions (21) and (23) yield the following. By taking a suitable
subsequence of (Pm) and renumbering, if necessary,

Pm → C, say, where C ∈ Cp.

By Proposition 10.2,

σm = σPm then converges weakly to σC .

Comparing this with (17) implies that σ = σC . This settles the existence of the
convex body C .

To show that C is unique up to translation, assume that σ = σD for a convex
body D ∈ Cp. Corollary 10.1 then shows that

V (C, D, . . . , D) = 1

d

∫

Sd−1

hC (u) dσD(u) = 1

d

∫

Sd−1

hC (u) dσC (u)

= V (C,C, . . . ,C) = V (C).
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Thus Minkowski’s first inequality, see Theorem 6.11, shows that

V (C)d = V (C, D, . . . D)d ≥ V (C)V (D)d−1, or V (C) ≥ V (D).

Similarly, V (D) ≥ V (C). Hence

V (C) = V (D) = V (C, D, . . . , D).

Thus, in Minkowski’s first inequality, we have equality. This, in turn, implies that C
and D are homothetic, see Theorem 6.11. Since V (C) = V (D), we see that D is a
translate of C .

(ii)⇒(i) Choose convex polytopes Pm ∈ Pp, m = 1, 2, . . . , such that Pm → C .
By Proposition 10.2, the area measures σPm converge weakly to the area measure
σ = σC . Hence, in particular,

∫

Sd−1

u dσPm (u)→
∫

Sd−1

u dσC (u) as m →∞ (componentwise).

By Minkowski’s theorem for polytopes,
∫

Sd−1

u dσPm (u) = o.

Hence ∫

Sd−1

u dσC (u) = o.

If σC were concentrated on a great circle, say the equator of Sd−1, let B be the
open northern hemisphere. Then σC (B) = 0. On the other hand, n−1

C (B) con-
sists of all points of bd C with exterior unit normal vectors in B. Thus σC (B) =
µd−1

(
n−1

C (B)
)
> 0, a contradiction. ��

Related Open Problems

The given solution of Minkowski’s problem is rather satisfying, but it does not settle
the following question. If κ : Sd−1 → R

+ is of class Cα , to what class does the
corresponding convex body C belong and if it is of class Cβ with β ≥ 2, is κ then its
ordinary Gauss curvature? There is a large body of pertinent results, see the surveys
in Pogorelov [806], Gluck [381], Su [976] and Schneider [908]. Selected references
are Pogorelov [806], Caffarelli [186, 187] and Jerison [545].

Blaschke Multiplication and Blaschke Addition

Theorem 10.1 led Blaschke [124], p.112, to introduce, besides multiplication with
reals and Minkowski addition, a second type of multiplication with reals and addition
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for convex bodies which may be described as follows. Given λ ≥ 0 and two convex
bodies C, D ∈ Cp, the Blaschke product λ ·B C of λ and C and the Blaschke sum
C +B D of C and D are defined by the equalities

λ ·B C = λ 1
d−1 C, σC+B D = σC + σD.

Here a convex body is considered only up to translation. For more information and
references to applications, see Grünbaum [453], Schneider [908] and A. Thompson
[994]. Two recent articles dealing with Blaschke sums are Campi, Colesanti and
Gronchi [188] and Goodey, Kiderlen and Weil [383].

Christoffel’s Problem

If, instead of Gauss curvature, respectively, the corresponding area measure, the
mean curvature or other elementary symmetric functions of the principal curvatures,
respectively, the corresponding measures are considered, the analogous problem is
called Christoffel’s problem, see Su [976] and Schneider [908].

10.2 Intrinsic Metric, Weyl’s Problem and Rigidity of Convex Surfaces

In a metric space where any two points can be connected with a continuous curve of
finite length, besides the given metric a second metric can be defined, the intrinsic
or geodesic metric. The systematic study of the intrinsic metric of the boundary of a
convex body in E

3 was initiated by Alexandrov. The Weyl problem in this setting is to
specify necessary and sufficient conditions such that a given metric space, endowed
with its intrinsic metric, is isometric to the boundary of a suitable convex body in E

3,
if the latter is also endowed with its intrinsic metric. A solution of this problem is
due to Alexandrov, and Pogorelov proved that the convex body is unique up to rigid
motions.

In this section we first define the notion of intrinsic metric of a metric space, des-
cribe Weyl’s problem and state Alexandrov’s solution of it. Then rigidity of convex
surfaces is considered and Pogorelov’s uniqueness or rigidity result stated. No proofs
are given.

For more information, see Alexandrov [15, 19], Busemann [182], Alexandrov
and Zalgaller [20] and Pogorelov [805].

Intrinsic Metric of a Metric Space

We follow Alexandrov [15]. Let 〈M, δ〉 be a metric space. Given a curve K in M by
means of a parametrization x : [a, b] → M , its length is defined by

sup

{
n∑

i=1

δ
(
x(ti−1), x(ti )

) : n = 1, 2, . . . , a = t0 ≤ t1 ≤ · · · ≤ tn = b

}

.
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Suppose now that any two points of M can be connected by a continuous curve of
finite length. Then the intrinsic or geodesic metric � of the metric space 〈M, δ〉 is
defined as follows:

�(x, y) is the infimum of the lengths of the continuous curves
in M connecting x, y for any x, y ∈ M .

In general the metrics δ and � will be different, but they induce the same topology on
M . A continuous curve in M connecting two points x, y of M and of length �(x, y)
is called a geodesic segment with endpoints x, y. It is non-trivial to show that, for
sufficiently differentiable closed convex surfaces, or, more generally, for sufficiently
smooth manifolds, this notion of geodesic segment coincides with the corresponding
differential geometric notion. For a hint to a proof, see Gruber [423].

Weyl’s Problem and Alexandrov’s Realization Theorem

The following version of Weyl’s [1020] problem was studied in convex geometry,
where a metric (d − 1)-sphere is a metric space homeomorphic to Sd−1.

Problem 10.3. Let M be a metric (d − 1)-sphere. Is there a closed convex surface
S in E

d such that M and S are isometric, if both are endowed with their intrinsic
metric? In other words, can M be realized by a closed convex surface?

There exist many contributions to Weyl’s problem, mainly in differential geometry.
In the following we state without proof Alexandrov’s [15] solution in the context of
convex geometry.

Let M be a metric 2-sphere endowed with its intrinsic metric. If two geodesic
segments have a common endpoint it is possible to define a notion of lower angle
between them. The intrinsic metric on M is then said to have positive curvature if
each point of M has a neighbourhood with the following property: for each triangle
in this neighbourhood with geodesic segments as edges, the sum of the lower angles
between its edges is at least π . Alexandrov’s fundamental realization theorem now is
as follows.

Theorem 10.2. Let M be a metric 2-sphere with positive curvature. Then M is
isometric to a closed convex surface S in E

3 where both M and S are endowed
with their intrinsic metrics.

Rigidity of Convex Surfaces and Pogorelov’s Rigidity Theorem

The question arises, whether the convex surface S in Alexandrov’s realization theo-
rem is unique up to rigid motions? In other words, if S and T are closed convex
surfaces in E

3 which are isometric if both are endowed with their intrinsic metric, do
they coincide up to rigid motions? If this is the case, S is called rigid.

This problem for polytopal surfaces goes back to antiquity, see the discussion
in Sect. 17.1. In the context of differential geometry the first pertinent result seems
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to be Liebmann’s [657] theorem on the rigidity of spheres within the class of
sufficiently smooth closed convex surfaces. In his proof the following result, already
conjectured by Minding, is shown first. A sufficiently smooth closed convex sur-
face with constant Gauss curvature is a sphere. Then he makes use of the fact that
the Gauss curvature is determined by the intrinsic metric. For some references, see
the book by Su [976]. We point out the remarkable and totally unexpected result
of Nash [766] and Kuiper [621] that a sufficiently smooth closed convex surface is
C1-diffeomorphically isometric to a topological sphere which is folded such as to
form a set of arbitrarily small (Euclidean) diameter. It is this Nash who won the
Nobel prize in economics in 1995, see Milnor [727].

The final rigidity result for closed convex surfaces in convex geometry is the
following rigidity theorem of Pogorelov [803]:

Theorem 10.3. Let S and T be two closed convex surfaces in E
3 which are isometric

with respect to their intrinsic metrics. Then S and T are congruent.

So far no simple proof of this result is available. Surveys of the relevant literature
are due to Pogorelov [805], Su [976] and Ivanova-Karatopraklieva and Sabitov [538,
539].

10.3 Evolution of Convex Surfaces and Convex Billiards

While, in a majority of results in convex geometry, fixed objects, in particular fixed
convex bodies are studied, there are several groups of results in the last decades
which deal with moving objects, for example with deformation of surfaces. Of these
investigations with a dynamical aspect we mention the following:

flexible polytopal spheres and frameworks
evolution of convex surfaces by curvature driven flows
billiards

In the following we first cite some results on evolution of closed convex surfaces
by flows which are driven by the mean and the Gauss curvature. Then caustics of
convex billiard tables are considered. No proofs are given.

For more information on rigidity and flexibility of closed convex surfaces,
polytopal spheres and frameworks, see Sects. 10.2, 17.1 and 17.2 and the references
given there.

Evolution of Convex Curves and Surfaces by Curvature Driven Flows

All convex curves and surfaces considered in the following are assumed to be
sufficiently differentiable.

If S0 is a closed convex curve in E
2, the problem is to find a family {St : t ≥ 0}

of closed convex curves given by a sufficiently differentiable function x(s, t) where,
for fixed t , the expression x(s, t) is an arc-length parametrization of St such that, for
fixed s, the point x(s, t) moves in time t in the direction of the inner unit normal
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vector of St at x(s, t) with speed equal to the curvature of St at x(s, t). In other
words, x(s, t) is the solution of the parabolic initial value problem

xt (s, t) = xss(s, t)

x(s, 0) = x(s),

where x(s) is a given arc-length parametrization of S0.
This problem, clearly, can be extended to dimensions d ≥ 2 with the flow driven

by the mean curvature, the Gauss curvature, a function of these, or by some other
function of the principal curvatures. For simplicity, we consider only the mean and
the Gauss curvature.

The following result was proved for d = 2 by Gage [349, 350] and Gage and
Hamilton [351] and for d ≥ 3 by Huisken [529]. Andrews [31] gave a generalization
providing a simpler proof of Huisken’s result. For the question of singularities which
might evolve, see Huisken and Sinestrari [530] and White [1024]. For a selection of
generalizations, related material and references, we refer to Andrews [33], the book
of Chou and Zhu [210] and the reports of White [1022, 1023].

Theorem 10.4. A given (sufficiently differentiable) closed convex surface S0 in E
d

is deformed by the mean curvature driven flow in the interior normal direction into
a family {St : t ≥ 0} of closed convex surfaces shrinking to a point. If rescaled by
suitable homotheties, these convex surfaces tend to Sd−1.

An analogous result holds for the flow driven by the Gauss curvature. For d = 2
it is the same result as before. For general d it was proved by Chou [209] and An-
drews [32]. See also Andrews [33] for a multitude of references. For affine evolutions
compare Leichtweiss [643].

Convex Billiards and Caustics

A (convex) billiard table B in E
d is a proper convex body (see Fig. 10.1). A billiard

ball in B is a point which moves with constant speed along a (straight) line in int B
until it hits bd B. If the point where it hits bd B is a regular boundary point of B, the
billiard ball is reflected in the usual way and moves again with the same speed along
a line in int B, etc. If the billiard ball hits bd B at a singular point, it stops there. The
curve described by a billiard ball is called a billiard trajectory.

Fig. 10.1. Billiard
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C

B

Fig. 10.2. Gardener construction of a billiard table, given a caustic

Billiards have been considered from various viewpoints in the context of ergodic
theory, dynamical systems, partial differential equations, mechanics, physics, num-
ber theory and geometry. For some information, see the books of Birkhoff [120],
Arnold [38], Lazutkin [632], Cornfeld, Fomin and Sinai [224], Katok, Strelcyn,
Ledrappier and Przytycki [567], Gal’perin and Zemlyakov [354], Kozlov and
Treshchëv [614], Petkov and Stoyanov [795], and Tabachnikov [985].

We consider convex caustics from a geometric viewpoint. These are convex
bodies C in int B such that any trajectory which touches C once, touches it again
after each reflection. Minasian [728] showed the following. Let C be a caustic of
a planar billiard table B. Then there is a closed inelastic string such that bd B is
obtained by wrapping the string around C , pulling it tight at a point and moving
this point around C while keeping the string tight. Conversely, given a planar con-
vex disc C , each convex disc B obtained in this way is a billiard table with caustic
C . This nice result shows that the planar billiard tables with a given caustic may be
obtained from the caustic by a generalization of the common gardener (see Fig. 10.2)
construction of ellipses.

Lazutkin [631] related the problem of eigenvalues of the Laplace operator on
a planar billiard table B to the existence of convex caustics and showed that, for
billiard tables of class C553 and with positive curvature, there exists a large family
of caustics. 553 was reduced to 6 by Douady [277]. The problem about the non-
existence of caustics was studied by Mather [694] and Hubacher [524]. In [422] the
author showed that in the sense of Baire categories, there is only a meagre set of
billiard tables in E

2 which have caustics.
Refining a result of Berger [98], Gruber [433] proved the following result. Its

proof relies on Alexandrov’s differentiability theorem.

Theorem 10.5. Among all convex billiard tables in E
d , d ≥ 3, it is only the solid

ellipsoids that have convex caustics. The caustics are precisely the confocal solid
ellipsoids contained in their interiors and, moreover, the intersection of all confocal
ellipsoids.

For further results on caustics of planar billiard tables we refer to the articles of
Gutkin and Katok [458], Knill [603] and Gutkin [457].
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Fig. 10.3. Outer billiard

Outer Billiards

Let B be a planar, strictly convex body (see Fig. 10.3). Given x0 ∈ E
2 \ B, consider

the support line of B through x0 such that B is on the left side of this line if viewed
from x0. Let x1 be the mirror image of x0 with respect to the touching point. The
dynamical system x0 → x1 is called the outer billiard determined by B. In our
context outer billiards are important for the approximation of planar convex bodies,
see Sect. 11.2 and the article of Tabachnikov [984] cited there. The latter proved a
result on outer billiards which yields an asymptotic series development for best area
approximation of a planar convex body by circumscribed polygons as the number of
edges tends to infinity.

11 Approximation of Convex Bodies and Its Applications

Most approximation results in convex geometry belong to one of the following types:

Approximation by special convex bodies, such as ellipsoids, simplices, boxes,
or by special classes of convex bodies, for example centrally symmetric convex
bodies, analytic convex bodies, or zonotopes

Asymptotic best approximation by convex polytopes with n vertices or facets as
n →∞
Approximation of convex bodies by random polytopes, i.e. the convex hull of n
random points

Asymptotic approximation by random polytopes as n →∞
There are many sporadic results of the first type scattered throughout the convexity
literature. Pertinent results of a more systematic nature can be found in the context
of the maximum and minimum ellipsoids in the local theory of normed spaces.

The first asymptotic formulae for best approximation of a convex body with
respect to a metric were given by L. Fejes Tóth [329] for d = 2 in the early 1950s.
Asymptotic formulae for general d were first proved by Schneider [905] for the
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Hausdorff metric δH and then by Gruber [427] for the symmetric difference metric
δV . These results gave rise to a long series of further investigations.

Early contributions to random approximation are due to Crofton, Czuber and
Blaschke, the first asymptotic results were proved by Rényi and Sulanke [831] in
case d = 2. Modern results for general d are due, amongst others, to Bárány and
Buchta [69] and Reitzner [829].

In this section we first consider John’s characterization of the ellipsoid of maxi-
mum volume contained in a convex body and use it to prove Ball’s reverse
isoperimetric inequality. Then the author’s asymptotic formula for the best vol-
ume approximation of a convex body by circumscribed convex polytopes is given
as the number of facets tends to infinity. This is then applied to the isoperimetric
problem for convex polytopes.

For references concerning John’s theorem and asymptotic best approximation,
see the following sections. Recent surveys on random approximation are due to the
author [435] and Schneider [909].

11.1 John’s Ellipsoid Theorem and Ball’s Reverse Isoperimetric Inequality

To a given convex body one may assign several ellipsoids in a canonical way.
One example is the ellipsoid of inertia, for other examples, see the articles of
Milman [725] and Lutwak, Yang and Zhang [670] and the book of Pisier [802].
Among the ellipsoids which are inscribed, respectively, circumscribed to a proper
convex body in E

d , there is precisely one of maximum, respectively, minimum vol-
ume. Simple proofs for this result are due to Löwner (unpublished), Behrend [90]
(d = 2) and Danzer, Laugwitz and Lenz [242] (general d). John [549] characterized
inscribed ellipsoids of maximum volume, a complement being due to Ball [51]. Both
results are of interest in convex geometry and in the geometry of normed spaces.
John’s theorem implies, in particular, that for any origin symmetric convex body
there is an ellipsoid which approximates it up to a factor

√
d.

Below these results are proved for convex bodies which are symmetric in o. The
proof of the characterization result is taken from Gruber and Schuster [452]. It is
based on the idea of Voronoı̆ to identify symmetric, positive definite d × d matri-

ces, respectively, positive definite quadratic forms on E
d with points in E

1
2 d(d+1),

compare Sect. 29.4. This idea was applied earlier in the same context by the author
[421]. We give two classical applications, one to the group of affinities which map
a convex body onto itself and one to the Banach–Mazur distance between norms on
E

d . A third application is the reverse isoperimetric inequality. For convex bodies C ,
the isoperimetric quotient

S(C)d

V (C)d−1

is bounded below by the isoperimetric quotient of the unit ball Bd , but it is clearly not
bounded above. Behrend [89], for d = 2, and Ball [50], for general d, asked whether
for any given convex body C there is an affine image, the isoperimetric quotient of
which is bounded above in terms of d, and what is the worst case.
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For more information on John’s theorem and its aftermath, see the article of
Ball [53] and the surveys of Johnson and Lindenstrauss [552], Ball [54], and
Giannopoulos and Milman [374] in the Handbook of the Geometry of Banach
Spaces. For information on other John type and so-called minimum position results
see Gruber [445].

Uniqueness and John’s Characterization of Inscribed Ellipsoids of Maximum
Volume

Our aim here is to show the results of Löwner, Behrend [90], Danzer, Laugwitz and
Lenz [242], and of John [549], Pełczyński [788], and Ball [51], respectively, for
o-symmetric convex bodies.

Given d×d matrices A = (ai j ), B = (bi j ), define their inner product by A ·B =∑
ai j bi j , where summation on i and j is from 1 to d. The dot · denotes also the

ordinary inner product in E
d . For u, v ∈ E

d , let u⊗v be the d×d matrix u vT . Then
(u ⊗ v) x = (v · x) u for u, v, x ∈ E

d . I is the d × d unit matrix.

Theorem 11.1. Let C ∈ Cp be symmetric in o. Then there is a unique ellipsoid of
maximum volume (necessarily symmetric in o) amongst all ellipsoids contained in C.

Theorem 11.2. Let C ∈ Cp be symmetric in o and Bd ⊆ C. Then the following
statements are equivalent:

(i) Bd is the unique ellipsoid of maximum volume amongst all ellipsoids in C.

(ii) There are ui ∈ Bd ∩bd C and λi > 0, i = 1, . . . ,m, where d ≤ m ≤ 1
2 d(d+1)

such that
I =

∑

i

λi ui ⊗ ui ,
∑

k

λk = d.

Here, and in the following, summation on i and k is from 1 to m. It is not difficult to
extend both theorems to convex bodies C which are not necessarily symmetric in o.

Without loss of generality, we assume, in the following, that all ellipsoids are
symmetric in o. Before beginning the proof, we state two tools:

(1) Each non-singular d×d matrix M can be represented in the form M = AR,
where A is a symmetric, positive definite and R an orthogonal d×d matrix.

(Take A = (M MT )
1
2 and R = A−1 M , see [367], p.112.) Identify a symmetric d×d

matrix A = (ai j ) with the point (a11, . . . , a1d , a22, . . . , a2d , . . . , add) ∈ E
1
2 d(d+1).

Then, the set of all symmetric positive definite d × d matrices is (represented by) an

open convex cone P in E
1
2 d(d+1) with apex at the origin. The set

(2) D = {A ∈ P : det A ≥ 1} is a closed, smooth and strictly convex set in P

with non-empty interior.

This follows from the implicit function theorem and Minkowski’s determinant
inequality,
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(
det(A+B)

) 1
d ≥ (

det A
) 1

d +(
det B

) 1
d for A, B ∈ P,where equality holds

precisely in case where A, B are proportional.

A proof of this inequality can be obtained by diagonalizing A and B simultaneously
and then using the following inequality which is a consequence of the arithmetic–
geometric mean inequality,

(
(x1 + y1) · · · (xd + yd)

) 1
d ≥ (x1 · · · xd)

1
d + (y1 · · · yd)

1
d for xi , yi ≥ 0,

where equality holds if and only if x = (x1, . . . , xd), y = (y1, . . . , yd) are
linearly dependent.

See also Sect. 29.4.

Proof of Theorem 11.1. A simple compactness argument yields the existence of at
least one ellipsoid in C of maximum volume.

To see uniqueness, assume that, on the contrary, there are two distinct maxi-
mum volume ellipsoids in C . Without loss of generality we may assume that their
volumes are equal to that of Bd . By (1) these ellipsoids can be represented in the
form ABd , B Bd with suitable d × d-matrices A, B ∈ P, where A �= B and
det A = det B = 1. Then 1

2 (A + B)Bd ⊆ C by the convexity of C . Since
det

( 1
2 (A + B)

)
> 1 by (2), the ellipsoid 1

2 (A + B)Bd has greater volume than
the maximum volume ellipsoids ABd , B Bd , a contradiction. ��
Proof of Theorem 11.2. (i)⇒(ii) By (1), the family of all ellipsoids in C is repre-
sented by the following set of symmetric positive definite matrices in P.

E = {
A ∈ P : Au · v = A · u ⊗ v ≤ hC (v) for all u, v ∈ bd Bd}.

Clearly, E is the intersection of the family of the closed halfspaces

(3)
{

A ∈ E
1
2 d(d+1) : A · u ⊗ v ≤ hC (v)

} : u, v ∈ bd Bd ,

H

O

D

P

K

E I

u2 ⊗ u2

u1 ⊗ u1

I

Fig. 11.1. Proof of John’s theorem
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with P. Thus, it is the intersection of a closed convex set with P and therefore convex.
By (i), det A < 1 for all A ∈ E \ {I }. This, together with (2), yields the following:

(4) E is convex, D ∩ E = {I } and E is separated from D by the unique support
hyperplane H of D at I .

The support cone K of E at I is the closed convex cone with apex I generated
by E. Since E is the intersection of the closed halfspaces in (3) and P, and since
these halfspaces vary continuously as u, v range over bd Bd , the support cone K is
the intersection of those halfspaces in (3) which contain the apex I of K on their
boundaries, i.e. I · u ⊗ v = u · v = hC (v). Since u · v ≤ 1, hC (v) ≥ 1 for u, v ∈
bd Bd , the equality I · u ⊗ v = hC (v) holds precisely in case where u = v and
v ∈ bd Bd ∩ bd C . Thus K is the intersection of the halfspaces

{
A ∈ E

1
2 d(d+1) : A · u ⊗ u ≤ 1

} : u ∈ bd Bd ∩ bd C = Bd ∩ bd C.

The normal cone N, of E at I , is the polar cone of K − I and thus is generated by
the exterior normals u ⊗ u, u ∈ Bd ∩ bd C, of these halfspaces,

(5) N = pos
{
u ⊗ u : u ∈ Bd ∩ bd C

}
.

The cone K has apex I and, by (4), is separated form D by the hyperplane H.
The normal I of H points away from K and thus is contained in the normal cone N.
Noting (5), Carathéodory’s theorem then implies that there are ui ∈ Bd ∩ bd C,
λi > 0, i = 1, . . . ,m, where m ≤ 1

2 d(d + 1), such that

I =
∑

i

λi ui ⊗ ui .

This, in turn, shows that

d = trace I =
∑

i

λi trace ui ⊗ ui =
∑

i

λi .

For the proof that m ≥ d, it is sufficient to show that lin{u1, . . . , um} = E
d . If this

were not the case, we could choose a unit vector u orthogonal to u1, . . . , um to obtain
the contradiction

1 = u2 = I u · u =
∑

i

λi
(
(ui ⊗ ui ) u

) · u =
∑

i

λi
(
(ui · u) ui

) · u = 0.

(ii)⇒(i) Let E be as above. E is convex and I is a boundary point of it by (ii).
Thus we may define K,N as before. (ii) yields I ∈ N. The hyperplane H through I
and orthogonal to I thus separates K and D and thus, a fortiori, D and E. Since D is
strictly convex by (2), D∩ E = {I }. This shows that det A < 1 for each A ∈ E \ {I },
or, in other words, Bd is the unique ellipsoid in C with maximum volume. ��
Remark. For the proof of a more general implication (i)⇒(ii), see Giannopoulos,
Perissinaki and Tsolomitis [376]. Proofs of John’s theorem (see Fig. 11.1) in the
non-symmetric case and of the generalized version of Giannopoulos, Perissinaki and
Tsolomitis in the spirit of the above proof are outlined in Gruber and Schuster [452].
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The number of common points of bd C and the inscribed ellipsoid of maximum
volume is precisely 1

2 d(d + 1) for most convex bodies C which are symmetric in o.
See Gruber [421] and, for a different proof, Rudelson [860].

The Group of Affinities of a Convex Body

Danzer, Laugwitz and Lenz [242], proved the following result.

Corollary 11.1. Let C ∈ Cp be symmetric in o. Then the group L of all linear
transformations which map C onto itself is a subgroup of the orthogonal group with
respect to a suitable inner product.

Proof. By replacing the given inner product on E
d by a suitable new inner product, if

necessary, we may assume that the unique ellipsoid of maximum volume in C is the
unit ball with respect to the new inner product. Denote the latter by Bd . Let T ∈ L.
Since T C = C , the transformation T is volume-preserving. Thus T Bd is also an
ellipsoid of maximum volume in T C = C . The uniqueness part of Theorem 11.1
then shows that T Bd = Bd , i.e. T is an orthogonal transformation with respect to
the inner product corresponding to Bd . ��
Remark. A similar result holds for general convex bodies and affinities.

The Banach–Mazur Compactum

On the space N = N (Ed) of all norms on E
d define the Banach–Mazur distance

δB M as follows, where for a norm | · | the corresponding unit ball is denoted by B|·|.

δB M (| · |, �� · ��) = inf
{
λ > 1 : ∃ T : E

d → E
d linear, B|·| ⊆ T B��·�� ⊆ λB|·|

}

for | · |, �� · �� ∈ N .

δB M does not distinguish between isometric norms, is symmetric and log δB M satis-
fies the triangle inequality. There are other ways to define δB M . N , endowed with
the distance δB M , is a compact space, called the Banach–Mazur compactum. It has
attracted a lot of interest in the local theory of normed spaces, see the reports of
Gluskin [382] and Szarek [981] and the book of Tomczak-Jaegermann [1001]. One
of the difficult open questions in this area is to determine the diameter of N . Here,
the following simple estimate due to John [549] is given, where ‖ · ‖ denotes the
Euclidean norm on E

d .

Corollary 11.2. δB M (‖ · ‖, | · |) ≤ √d for any | · | ∈ N (Ed).

Proof. Assume that T is chosen such that Bd ⊆ T B|·| is the ellipsoid of maximum
volume in C = T B|·|. Choose ui , λi according to John’s ellipsoid theorem. Then

(6) I =
∑

i

λi ui ⊗ ui ,
∑

i

λi = d.
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Note that ui ∈ Bd ∩ bd C . Hence C is contained in the support halfspace of Bd at
ui , and thus ui · x ≤ 1 for x ∈ C = T B|·|. Represent x by (6) in the form

x = I x =
∑

i

λi (ui ⊗ ui ) x =
∑

i

λi (ui · x) ui .

Then
x2 = x · x =

∑

i

λi (ui · x)2 ≤
∑

i

λi = d for x ∈ T B|·|,

again by (6). Thus T B|·| ⊆
√

d Bd . ��

Ball’s Reverse Isoperimetric Inequality

Ball [50] proved the following result. The simpler 2-dimensional result was given
previously by Behrend [89].

Theorem 11.3. Let C ∈ Cp be symmetric in o. Then there is a non-singular linear
transform T such that

S(T C)d

V (T C)d−1
≤ (2d)d .

This cannot be improved if C is a cube.

Ball’s proof shows that the isoperimetric quotient of T C is small, if Bd is the ellip-
soid of maximum volume in T C . As shown by Barthe [76], the equality sign is
needed precisely in the case where C is a parallelotope.

Proof. We need the following version of the inequality of Brascamp and Lieb [162]
due to Ball [49], see also Barthe [76].

(7) Let ui ∈ Sd−1, λi > 0, i = 1, . . . ,m, such that

I =
∑

i

λi ui ⊗ ui ,
∑

i

λi = d

and let fi , i = 1, . . . ,m, be non-negative measurable functions on R. Then
∫

Ed

∏

i

fi (ui · x)λi dx ≤
∏

i

( ∫

R

fi (t) dt
)λi
.

Choose a linear transformation T such that Bd is the ellipsoid of maximum
volume in T C . We will show that

(8) V (T C) ≤ 2d .

Take ui , λi as in John’s theorem and consider the convex body D = {x : |ui · x | ≤
1, i = 1, . . . ,m}. For each i let fi be the characteristic function of the interval
[−1, 1]. Then the function
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x →
∏

i

fi (ui · x)λi

is the characteristic function of D. Now integrate and use (7) to see that V (D) ≤ 2d .
Since T C ⊆ D, this implies (8).

The definition of surface area in Sect. 6.4, the inclusion Bd ⊆ T C and (8)
together yield the following:

S(T C) = lim
ε→+0

V (T C + εBd)− V (T C)

ε

≤ lim
ε→+0

V (T C + εT C)− V (T C)

ε
= dV (T C) ≤ 2dV (T C)

d−1
d .

This readily yields the desired upper estimate for the isoperimetric quotient of T C .
The simple proof that equality holds if C is a cube is omitted. ��

11.2 Asymptotic Best Approximation, the Isoperimetric Problem
for Polytopes, and a Heuristic Principle

Given a metric δ(·, ·) or some other measure of distance on C, a convex body C
and a class of convex polytopes Qn such as the class Pc

(n) = Pc
(n)(C) of all convex

polytopes which are circumscribed to C and have at most n facets, or the class P i
n =

P i
n(C) of all convex polytopes with at most n vertices which are inscribed into C ,

the following problems arise. First, to determine or estimate the quantity

δ(C,Qn) = min{δ(C, P) : P ∈ Qn}.
Second, to describe the polytopes P ∈ Qn for which the infimum is attained, the best
approximating polytopes of C in Qn with respect to the given metric δ(·, ·). Using
Blaschke’s selection theorem it is easy to show that, for the common metrics and
polytope classes Qn , best approximating polytopes exist. While precise answers to
these problems are out of reach, it is possible to give satisfying results as n →∞.

In this section the author’s asymptotic formula for δV (C,Pc
(n)) will be derived,

using Zador’s Theorem 33.2 for α = 2. As an application, the isoperimetric problem
for convex polytopes is considered. A comparison of asymptotic best and random
approximation will show that, in high dimensions, the difference is negligible. This
will lead to a vague heuristic principle.

For more information we refer to the book of Fejes Tóth [329] and the surveys
[417, 429, 434].

The Asymptotic Formula for δV (C,P c
(n)

)

Our aim is to show the following result of Gruber [427], where δV (·, ·) is the sym-
metric difference metric on Cp,

δV (C, D) = V (C�D) = V
(
(C \ D) ∪ (D \ C)

)
for C, D ∈ Cp.
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Theorem 11.4. Let C ∈ Cp be of class C2 with Gauss curvature κC > 0. Then there
is a constant δ = δ2,d−1 > 0, depending only on d, such that

(1) δV (C,Pc
(n)) ∼

δ

2

⎛

⎝
∫

bd C

κC (x)
1

d+1 dσ(x)

⎞

⎠

d+1
d−1

1

n
2

d−1

as n →∞.

Here, σ is the ordinary surface area measure on bd C . The integral in the asymptotic
formula (1) is the affine surface area of C , a notion from affine differential geometry.
It is invariant with respect to volume preserving affinities of the convex body C . The
constant δ = δ2,d−1 was introduced in [427], where we wrote div (for Dirichlet
and Voronoı̆) instead of δ. It is related to Dirichlet–Voronoı̆ tilings, see Sect. 32.1.
We have,

δ2,2 = 5

18
√

3
, δ2,d−1 ∼ d

2πe
as d →∞.

For the value of δ2,2, see Fejes Tóth [329] and the author [425, 427]. For a proof of
the asymptotic formula for δ2,d−1, see Proposition 33.1.

Proof. Let λ > 1. We start with some preparations. For p ∈ bd C , let H be the
unique support hyperplane of C at p. Choose a Cartesian coordinate system in H
with origin at p. Together with the interior unit normal vector of bd C at p, it forms
a Cartesian coordinate system in E

d . The lower part of bd C with respect to the last
coordinate then can be represented in the form:

(
s, f (s)

) : s ∈ C ′,

where “ ′ ” denotes the orthogonal projection of E
d onto H and f is a convex function

on C′ such that f | relint C ′ is of class C2. For u ∈ relint C ′, define the quadratic form
qu = qpu by

qu(s) =
∑

i, j

fxi ,x j (u)si s j for s = (s1, . . . , sd−1) ∈ H.

Let qp = qpp. The Gauss curvature κC (u) at the point x = (
u, f (u)

) ∈ bd C ,
u ∈ relint C ′, is then given by

κC (u) = det qu
(
1+ (

grad f (u)
)2) d+1

2

.

We also write κC (x) for κC (u). Since κC > 0, the quadratic forms qu are all positive
definite. Since f is of class C2, their coefficients are continuous. Hence we may
choose an open convex neighbourhood U ′ ⊆ C ′ of p in H such that

1

λ
qp(s) ≤ qu(s) ≤ λqp(s) for s ∈ H, u ∈ U ′

1

λ
det qp ≤ det qu ≤ λ det qp for u ∈ U ′

1

λ
κC (u) ≤ det qp ≤ λκC (u) for u ∈ U ′
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Let U be the set on the lower part of bd C which projects onto U ′. Clearly, U is a
neighbourhood of p in bd C .

The following inequality is well known.

(2)

(
1

m

(
σ

d+1
d−1

1 + · · · + σ
d+1
d−1

m

)) d−1
d+1 ≥ 1

m
(σ1 + · · · + σm) for σ1, . . . , σm > 0.

By means of a suitable linear transformation, Zador’s Theorem 33.2 for α = 2
yields the following asymptotic formula:

(3) Let J ⊆ H be Jordan measurable with v(J ) > 0 and q a positive definite
quadratic form on H . Then

inf
S⊆H
#S=m

∫

J

min
t∈S
{q(s − t)} ds ∼ δ v(J ) d+1

d−1 (det q)
1

d−1
1

m
2

d−1

as m →∞,

where δ > 0 is a constant depending only on d.

After these preparations, the first step is to show that

(4) δV (C,Pc
(n)) ≥

δ

2λ
4d

d−1

⎛

⎝
∫

bd C

κC (x)
1

d+1 dσ(x)

⎞

⎠

d+1
d−1

1

n
2

d−1

for all sufficiently large n.

The open neighbourhoods U considered above cover the compact set bd C . Thus
there is a finite subcover. By Lebesgue’s covering lemma (see, e.g. [572], p.154),
each set of sufficiently small diameter in bd C is then contained in one of the neigh-
bourhoods of the subcover. Thus we may choose finitely many small pieces Ji ,
i = 1, . . . , l, in bd C, points pi and neighbourhoods Ui of pi in bd C , support hyper-
planes Hi of C at pi , convex functions fi , and quadratic forms qu = qpi u, qi = qpi pi

as in the preparations, such that the following statements hold:

(5) The sets Ji are compact and pairwise disjoint, and their projections
J ′i ⊆ Ui ⊆ relint C ′ are Jordan measurable

(6)
1

λ
qi (s) ≤ qu(s) ≤ λ qi (s) for s ∈ Hi , u ∈ U ′

i

(7)
1

λ
det qi ≤ det qu ≤ λ det qi for u ∈ U ′

i

(8)
1

λ
κC (u) ≤ det qi ≤ λ κC (u) for u ∈ U ′

i

(9)
∑

i

∫

J ′i

κC (u)
1

d+1 du ≥ 1

λ

∫

bd C

κC (x)
1

d+1 dσ(x)

Let Pn ∈ Pc
(n), n = d + 1, . . . , be a sequence of best approximating convex

polytopes of C . Since δV (C, Pn) → 0 and C is strictly convex (note that κC > 0),



212 Convex Bodies

the maximum of the diameters of the facets of Pn tends to 0 as n → ∞. This,
together with (5), implies the following:

(10) δV (C, Pn) ≥∑

i

{
volume of the subset of Pn below Ji

}

for all sufficiently large n.

Let Fnik, k = 1, . . . ,mni , be the facets of Pn below C such that F ′nik ∩ J ′i �= ∅.
Clearly,

(11) mni →∞ as n →∞,
(12) mn1 + · · · + mnl ≤ n for all sufficiently large n.

Let snik ∈ relint C ′ be the projection into Hi of the point where Fnik touches C .
Then the

(13) volume of the subset of Pn below Ji

=
∑

k

∫

F ′nik∩J ′i

{
fi (s)− fi (snik)− grad fi (snik) · (s − snik)

}
ds.

Since fi is of class C2, the remainder term in Taylor’s formula shows that the
integrand here is

1

2
qsnik+ξ(s−snik )(s − snik) for s ∈ F ′nik ∩ J ′i

with suitable ξ ∈ [0, 1] depending on s. Since the maximum of the diameters of the
facets of Pn tends to 0 as n → ∞, (5) shows that, for sufficiently large n, the sets
F ′nik which meet J ′i are all contained in U ′

i . For such n, it follows from (6) that the
integrand is bounded below by

1

2λ
qi (s − snik) for s ∈ F ′nik ∩ J ′i .

Thus (10), (13), the lower bound for the integrand in (13), (11), (3), (2), (8), (12) and
(9) yield (4), where summation on i is from 1 to l and on k from 1 to mi :

δV (C,Pc
(n)) = δV (C, Pn) ≥ 1

2λ

∑

i

∑

k

∫

F ′nik∩J ′i

qi (s − snik) ds

≥ 1

2λ

∑

i

∫

J ′i

min
k=1,...,mni

{qi (s − snik)} ds

≥ 1

2λ

∑

i

inf
S⊆H

#S=mni

∫

J ′i

min
t∈S
{qi (s − t)} ds

≥ δ

2λ2

∑

i

v(J ′i )
d+1
d−1 (det qi )

1
d−1

1

m
2

d−1
ni
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= δ

2λ2

{
1

mn1 + · · · + mnl

∑

i

(
v(J ′i )(det qi )

1
d+1

1

mni

) d+1
d−1

mni

}

× (mn1 + · · · + mnl)

≥ δ

2λ2

{
1

mn1 + · · · + mnl

∑

i

v(J ′i )(det qi )
1

d+1
1

mni
mni

} d+1
d−1

× (mn1 + · · · + mnl)

= δ

2λ2

{
∑

i

v(J ′i )(det qi )
1

d+1

} d+1
d−1 1

(mn1 + · · · + mnl)
2

d−1

≥ δ

2λ2+ d+1
d−1

⎛

⎜
⎝
∑

i

∫

J ′i

κC (u)
1

d+1 du

⎞

⎟
⎠

d+1
d−1

1

n
2

d−1

≥ δ

2λ2+2 d+1
d−1

⎛

⎝
∫

bd C

κC (x)
1

d+1 dσ(x)

⎞

⎠

d+1
d−1

1

n
2

d−1

for all sufficiently large n.

In the second step it will be shown that

(14) δV (C,Pc
(n)) ≤

λ
3d+2
d−1 δ

2

⎛

⎝
∫

bd C

κC (x)
1

d+1 dσ(x)

⎞

⎠

d+1
d−1

1

n
2

d−1

for all sufficiently large n.

By the same argument as at the beginning of the proof of (4), we may dissect bd C
into finitely many pieces Ki , i = 1, . . . , l, and choose slightly larger sets Li where
Ki ⊆ Li in bd C , points pi with neighbourhoods Ui in bd C , support hyperplanes
Hi of C at pi , functions fi , quadratic forms qu = qpi u, qi = qpi pi such that the
following statements hold:

(15) The sets Ki are compact sets which dissect bd C, K ′
i ⊆ L ′i ⊆ relint U ′

i are
Jordan measurable, L ′i is open and U ′

i convex

(16) v(L ′i ) ≤ λv(K ′
i )

(17) Propositions (6) and (8) hold

Next, convex polytopes Qn will be constructed, for all sufficiently large n, which
have at most n facets and are circumscribed to C . Let

(18) τi =
∫

Ki

κC (x)
1

d+1 dσ(x)

⎛

⎝
∫

bd C

κC (x)
1

d+1 dσ(x)

⎞

⎠

−1

, mni = �τi n�.

Then

(19) mni →+∞ as n →∞
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(20) mni ≥ 1

λ
τi n for all sufficiently large n

(21) mn1 + · · · + mnl ≤ n

Choose points snik ∈ L ′i , k = 1, . . . ,mni , such that

(22)
∫

L ′i

min
k=1,...,mni

{qi (s − snik)} ds = inf
S⊆L′i

#S=mni

∫

L ′i

min
t∈S
{qi (s − t)} ds.

Let tnik be the point on the lower part of bd C which projects onto snik . For suf-
ficiently large n, the points tnik are distributed rather densely over bd C . Thus the
intersection of the support halfspaces of C at these points is a convex polytope, say
Qn , where Qn is circumscribed to C and – by (21) – has at most n facets. Clearly,
Qn → C as n →∞. Then (15) implies that

(23) δV (C, Qn) ≤∑

i

{
volume of the subset of Qn below Li

}

≤
∑

i

∫

L ′i

min
k=1,...,mni

{
fi (s)− fi (snik)

− grad fi (snik) · (s − snik)
}

ds

for all sufficiently large n.

The expression in { · } equals

1

2
qsnik+ξ(s−snik )(s − snik)

with suitable ξ ∈ [0, 1], which by (17) and (6) is at most

λ

2
qi (s − snik).

Hence (23), (19), (3), (16), (20), (17) and (8), (18) and (15) show (14):

δV (C,Pc
(n)) ≤ δV (C, Qn) ≤ λ

2

∑

i

∫

L ′i

min
k=1,...,mni

{qi (s − snik)}ds

≤ λ
2 δ

2

∑

i

v(L ′i )
d+1
d−1 (det qi )

1
d−1

1

m
2

d−1
ni

≤ λ
2+ d+1

d−1+ 2
d−1 δ

2

∑

i

v(K ′
i )

d+1
d−1 (det qi )

1
d−1

1

τ
2

d−1
i

1

n
2

d−1
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= λ
3d+1
d−1 δ

2

∑

i

(
v(K ′

i )(det qi )
1

d+1

) d+1
d−1 1

τ
2

d−1
i

1

n
2

d−1

≤ λ
3d+1
d−1 + 1

d−1 δ

2

∑

i

⎛

⎜
⎝
∫

K ′
i

κC (u)
1

d+1 du

⎞

⎟
⎠

d+1
d−1

1

τ
2

d−1
i

1

n
2

d−1

≤ λ
3d+2
d−1 δ

2

∑

i

⎛

⎜
⎝
∫

Ki

κC (x)
1

d+1 dσ(x)

⎞

⎟
⎠

⎛

⎝
∫

bd C

κC (x)
1

d+1 dσ(x)

⎞

⎠

2
d−1

1

n
2

d−1

= λ
3d+2
d−1 δ

2

⎛

⎝
∫

bd C

κC (x)
1

d+1 dσ(x)

⎞

⎠

d+1
d−1

1

n
2

d−1

for all sufficiently large n.

Having proved (4) and (14) for any λ > 1, the asymptotic formula (1) follows.
��

Related Open Problems

In the context of this result, the following problems arise:

Eliminate the assumption that κC > 0. This was done by Böröczky [153]. A more
coherent proof would be desirable.

Prove an asymptotic formula for a wider class of convex bodies. Originally
the affine surface area was defined only for sufficiently smooth convex bodies.
Approximation and other problems in convexity led to extensions to all con-
vex bodies by Petty [797], Lutwak [669], Leichtweiss [641] and Schütt and
Werner [921]. These generalizations all coincide as was proved by Schütt [919]
and Leichtweiss [642]. See also Leichtweiss [644]. It seems feasible to extend
Theorem 11.4, in the above form, to all convex bodies, using the generalized
affine surface area. The case d = 2 was settled by Ludwig [665]. For general
d, compare the corresponding result of Schütt [920] for approximation with ran-
dom polytopes. Unfortunately, the generalized affine surface area is 0 for most
convex bodies. Moreover, the irregularity Theorem 13.2 and its corollary imply
that there is no other non-trivial asymptotic formula which holds for most convex
bodies.

Prove more precise asymptotic formulae or even asymptotic series developments
for δV (C,Pc

(n)) under suitable smoothness assumptions for C . For d = 2 a first
step in this direction is due to Ludwig [664] and Tabachnikov [984] proved an
asymptotic series development for δV (C,Pc

(n)). For general d Böröczky [154]
and Gruber [440,441] gave estimates for the error term in the asymptotic formula
(1) and in similar formulae.



216 Convex Bodies

Prove analogous results, given the number of edges, 2-faces, etc. of the approxi-
mating polytopes instead of the number of vertices or facets.

Prove results of this type for other measures of distance, for example for the
deviation with respect to the surface area or other quermassintegrals.

Gruber [439] showed that for d = 3 best approximating polytopes have asymp-
totically affine regular hexagonal facets. For some information on the form of the
best approximating polytopes for general d, see [443]. More precise results in
higher dimensions would be desirable.

An Isoperimetric Problem for Convex Polytopes

Let P(n), n = d + 1, . . . , denote the set of all proper convex polytopes in E
d with at

most n facets. Then the problems arise to determine

inf

{
S(P)d

V (P)d−1
: P ∈ P(n)

}

and to describe the polytopes Pn ∈ P(n) with minimum isoperimetric quotient. As a
consequence of the above approximation theorem, we have the following result.

Theorem 11.5. Let Pn ∈ P(n), n = d + 1, . . . , be polytopes with minimum
isoperimetric quotient amongst all polytopes in P(n). Then there is a constant
δ = δ2,d−1 > 0, depending only on d, such that

S(Pn)
d

V (Pn)d−1
∼ dd V (Bd)+ dd δ

2
S(Bd)

d+1
d−1

1

n
2

d−1

as n →∞.

Proof. By the corollary of Lindelöf’s theorem 18.4, each of the polytopes Pn is cir-
cumscribed to a ball. Since homotheties do not change the isoperimetric quotient,
we may assume that each Pn is circumscribed to Bd . For such a polytope the volume
equals 1/d times its surface area. Hence

(24)
S(Pn)

d

V (Pn)d−1
= dd V (Pn) = dd V (Bd)+ dd

(
V (Pn)− V (Bd)

)

= dd V (Bd)+ ddδV (C, Pn).

Pn minimizes the isoperimetric quotient among all polytopes in P(n), and is circum-
scribed to Bd . Thus, in particular, it minimizes the isoperimetric quotient among all
polytopes in P(n) circumscribed to Bd . Taking into account (24), we see that Pn min-
imizes the symmetric difference δV (C, Pn) among all polytopes in P(n) which are
circumscribed to Bd . Thus Pn is best approximating of Bd among all polytopes in
Pc
(n)(B

d). Now apply Theorem 11.4 to the equality (24). ��
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Remark. For refinements and information on the form of Pn , see the author’s
articles [439] (d = 3) and [443] (general d). The results in these papers deal with
normed spaces and make use of the generalized surface area as treated in Sect. 8.3.
One of the tools used there is a result of Diskant [274] which extends Lindelöf’s
theorem to normed spaces.

Heuristic Observations

The asymptotic formula for best approximation of C by inscribed convex polytopes
is as follows, see Gruber [427].

δV (C,P i
n) ∼

γ

2
A(C)

d+1
d−1

1

n
2

d−1

as n →∞,
where γ = γ2,d−1 > 0 is a suitable constant depending on d, and

A(C) =
∫

bd C

κC (x)
1

d+1 dσ(x)

the affine surface area of C . A result of Bárány [67] and Schütt [920] on random
polytopes states the following, where E

(
δV (C, Qk)

)
stands for the expectation of

the difference of the volume of C and the volume of the convex hull Qk of k random
points uniformly distributed in C ,

E
(
δV (C, Qk)

) ∼ cd A(C)
1

k
2

d+1

as k →∞.
Here cd > 0 is a suitable constant depending on d. These two asymptotic formulae
seem to say that random approximation is less efficient than best approximation (put
k = n), but, as observed by Bárány, this is the wrong comparison to make. Being
the convex hull of k random points in C , the random polytope Qk in general has less
than k vertices. Actually, for the expectation E

(
v(Qk)

)
of the number of vertices of

Qk , we have

E
(
v(Qk)

) ∼ cd A(C) k
d−1
d+1 as k →∞.

Denote this expectation by n. Then,

E
(
δV (C, Qk)

) ∼ c
d+1
d−1
d A(C)

d+1
d−1

1

n
2

d−1

as n →∞.
For d = 2, 3 Bárány [68] proved an even stronger result. Since Mankiewicz and
Schütt [686] showed that

c
d+1
d−1
d

1
2γ2,d−1

→ 1 as d →∞,

we see that for large d, random approximation is almost as good as best approxi-
mation.

This is an example of the following vague principle.
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Heuristic Principle. In many complicated situations, for example in high dimensions
or depending on many parameters, average configurations are almost extremal or
attain almost the mean value or the median.

For a particularly striking result on medians of functions in the context of the concen-
tration of measure phenomenon, see Sect. 8.6. Examples of extremal results of this
type seem to be also provided by the Minkowski–Hlawka inequality and Siegel’s
mean value theorem in the geometry of numbers. See the discussions in Sects. 24.2
and 30.3. In some cases such results hold up to absolute constants.

For information on random approximation see the surveys of Buchta [176],
Schneider [906] and the author [435].

12 Special Convex Bodies

Special objects of mathematics have attracted interest since antiquity, early examples
are the primes, the conics and the Platonic and Archimedean solids. The interest in
special objects seems deep rooted in human nature. Mathematical reasons for this
include the following: In many cases special objects exhibit interesting properties in
a particularly pure or strong form, for example, they may be regular, extremal, or
symmetric in a certain sense. Frequently such objects are solutions of very general
problems and the same object may appear in rather different mathematical theories.

In this section we consider simplices, balls and ellipsoids.
For relevant references and surveys, see below. In addition, we refer to the

treatises of Coxeter [230, 232] and McMullen and Schulte [717] on regular poly-
topes. From the vast literature on symmetry in geometry we mention the books of
Robertson [842], Ziegler [1047] and Johnson [550]. A book dedicated to cubes is
due to Zong [1051]. See also the survey [1050].

12.1 Simplices and Choquet’s Theorem on Vector Lattices

Simplices, i.e. convex hulls of affinely independent sets in E
d , are important in

several branches of mathematics. They are building blocks for cell complexes in
algebraic topology and their infinite-dimensional version appears in Choquet theory.
In convex geometry, simplices are basic for combinatorial polytope theory and in
numerous geometric inequalities the extremal bodies are simplices. Many different
characterizations are known.

In the following a characterization of simplices due to Choquet, and its refine-
ment by Rogers and Shephard will be presented. The former makes it possible to
single out the vector lattices among the ordered topological vector spaces (of finite
dimensions). This result was Choquet’s starting point for Choquet theory (in infinite
dimensions). Without proof we mention that the Rogers–Shephard characterization
of simplices is used to settle the equality case in the Rogers–Shephard inequality for
the volume of difference bodies, see Theorem 9.10.

For more information consult the survey of Heil and Martini [488] which
contains a multitude of references to other surveys and books, and the reports of
Fonf, Lindenstrauss and Phelps [338] and Soltan [947].
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Characterizations of Simplices of Choquet and Rogers–Shephard

Choquet [208] ((i)⇔(ii)) and Rogers and Shephard [852] ((i)⇔(iii)) proved the
following seminal result.

Theorem 12.1. Let C ∈ C. Then the following statements are equivalent:

(i) C is a simplex.

(ii) For any λ,µ ≥ 0 and x, y ∈ E
d with (λC + x) ∩ (µC + y) �= ∅, there are

ν ≥ 0 and z ∈ E
d such that

(λC + x) ∩ (µC + y) = νC + z.

(iii) For any x, y ∈ E
d with (C + x) ∩ (C + y) �= ∅, there are ν ≥ 0 and z ∈ E

d

such that
(C + x) ∩ (C + y) = νC + z.

An exposed point of a convex body C is a point p ∈ C , such that there is a support
hyperplane H of C with H ∩ C = {p}.
Proof. The implications (i)⇒(ii) and (ii)⇒(iii) are easy to prove (consider the sim-
plex {x : 0 ≤ xi , x1 + · · · + xd ≤ 1}), or trivial. Thus it is sufficient to show that

(iii)⇒(i) We may suppose that dim C = d. The proof is by induction on d. For
d = 0, 1 each convex body and thus, in particular, C is a simplex. Assume now that
d > 1 and that the implication (iii)⇒(i) holds for dimensions 0, 1, . . . , d − 1.

C contains an exposed boundary point, take for example a point where a circum-
scribed sphere touches C . After a translation, if necessary, we may suppose that this
point is the origin o. Choose a support hyperplane H of C with C ∩ H = {o}. Since
C is proper, the smooth points are dense in bd C , see Theorem 5.1. Thus we may
choose a smooth point p ∈ bd C such that the open line segment with endpoints o, p
is contained in int C . In order to see that

(1) C ∩ (C − λp) = (1− λ)C for 0 < λ < 1,

note first that, for 0 < λ < 1, the intersection C ∩ (C − λp) is non-empty and thus
homothetic to C by (iii). Considering the line segment [o, p] ⊆ C then shows that
the homothety has centre o and factor 1− λ, concluding the proof of (1).

Let K be the unique support hyperplane of C at p and K− the corresponding
support halfspace. Then we have the following.

(2) C = conv({o} ∪ F), where F = C ∩ K .

For the proof of (2), it is sufficient to show that C = (cone C) ∩ K−, where cone
C = ⋃{µC : µ ≥ 0}. Clearly, C ⊆ (cone C) ∩ K−. To see the reverse inclusion,
let x ∈ (cone C) ∩ K−, x �∈ [o, p]. There are points y, z ∈ C such that y = αx with
suitable α > 0 and z − p = β(x − p) with suitable β > 0. For the latter we have
used the fact that p is a smooth boundary point of C . If 0 < λ < 1 is sufficiently
close to 1, then the line segments [o, y] and [p, z]-λp meet at a point w, say. Since
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µC + y

νC + z

λC + x

Fig. 12.1. Choquet simplex

w ∈ C ∩ (C − λp) = (1 − λ)C, (see (1)) and w = (1 − λ)x , we have that x ∈ C .
Thus (cone C) ∩ K− ⊆ C . The proof of (2) is complete.

For each vector x parallel to the hyperplane K and such that F ∩ (F + x) �= ∅,
the set F ∩ (F + x) is a face of C ∩ (C + x), and C ∩ (C + x) is homothetic to
C by (iii). Hence F ∩ (F + x) is homothetic to F . The induction hypothesis then
shows that F is a simplex. Since o �∈ K , Proposition (2) finally implies that C is also
a simplex, concluding the proof of (i). ��
Remark. A compact convex set C in an infinite-dimensional topological vector
space which satisfies property (iii) is called a Choquet simplex (see Fig. 12.1).
Choquet simplices are basic in Choquet theory and thus in measure theory in infinite
dimensions.

Topological Vector Lattices in Finite Dimensions

Let V be a real vector space and � a (partial) ordering of V in the following sense:

x � x for x ∈ V
x � y, y � x ⇒ x = y for x, y ∈ V
x � y, y � z ⇒ x � z for x, y, z ∈ V

〈V,�〉 is an ordered vector space if, in addition, the ordering is compatible with the
operations in V , i.e.

x � y ⇒ x + z � y + z for x, y, z ∈ V
x � y ⇒ λx � λy for x, y ∈ V, λ ≥ 0

Then K = {x ∈ V : o � x} is a convex cone with apex o such that K ∩ (−K ) =
{o}, that is, K is pointed. K is called the positive cone (see Fig. 12.2) of 〈V,�〉.
Conversely, if K is a pointed convex cone in V with apex o, then the definition

(3) x � y if y − x ∈ K or, equivalently, y ∈ K + x for x, y ∈ V

makes V into an ordered vector space with positive cone K . The ordered vector space
〈V,�〉 is a vector lattice, if for any x, y ∈ V there is a greatest lower bound x ∧ y
and a smallest upper bound x ∨ y of the set {x, y} in V , that is,
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K

o x

y

K + x

K + y

(K + x) ∧ (K + y) = K + x ∨ yx ∨ y

Fig. 12.2. Positive cone, vector lattice

x ∧ y � x, y and if z � x, y, then z � x ∧ y,

and similarly for x ∨ y.
V is a topological vector space if V is Hausdorff and the mappings (x, y) →

x + y and (λ, x) → λx are continuous. Up to isomorphisms, E
d is the only

d-dimensional (real) topological vector space (forget the norm, but retain the
topology).

If the vector space V is ordered and topological, it is called an ordered topologi-
cal vector space if the ordering is compatible with the topology in the sense that

o � A ⇒ o � cl A for A ⊆ V .

This is equivalent to the requirement that the positive cone is closed.
In the following we consider the finite-dimensional case. Let K be a pointed

closed convex cone in E
d with apex o. Then there is a hyperplane H with o �∈ H

and such that C = H ∩ K is a convex body. Clearly, K = pos C = {λx : λ ≥ 0,
x ∈ C}. K is a simplicial cone if C is a simplex. It is easy to see that this definition
is independent of the choice of H .

Choquet’s Characterization of Topological Vector Lattices

We conclude this section with a finite-dimensional case of Choquet’s theorem on
vector lattices, see [208].

Theorem 12.2. Let K be a pointed closed convex cone in E
d with apex o which

makes E
d into an ordered topological vector space. Then the following statements

are equivalent:

(i) E
d is a vector lattice with positive cone K .

(ii) K is a simplicial cone with dim K = d.

Proof. (i)⇒(ii) In the following the above properties and definitions will be applied
several times without explicit reference. The first step is to show the following:

(4) Let x, y ∈ E
d . Then (K + x) ∩ (K + y) = K + x ∨ y.
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To show that (K + x) ∩ (K + y) ⊆ K + x ∨ y, let w ∈ (K + x) ∩ (K + y).
Then w ∈ K + x and w ∈ K + y and thus x, y � w and therefore x ∨ y � w, or
w ∈ K + x ∨ y. To show the reverse inclusion, let w ∈ K + x ∨ y. Then x ∨ y � w
and thus x, y � w. This yields w ∈ (K + x)∩ (K + y). The proof of (4) is complete.

Choose a hyperplane H as in the remarks before the theorem and let C = H ∩K .
Then the following statement holds:

(5) Let λ,µ ≥ 0 and x, y ∈ E
d with (λC + x) ∩ (µC + y) �= ∅. Then

(λC + x) ∩ (µC + y) = νC + x ∨ y for suitable ν ≥ 0.

Let G be the hyperplane parallel to H which contains λC + x and µC + y. Then

λC + x = (K + x) ∩ G, µC + y = (K + y) ∩ G

and thus,

(λC + x) ∩ (µC + y) = (K + x) ∩ (K + y) ∩ G

mm = (K + x ∨ y) ∩ G = νC + x ∨ yfor suitableν ≥ 0

by (4). This concludes the proof of (5).
(5) Together with Theorem 12.2 of Choquet and Rogers and Shephard implies

that C is a simplex. Hence K is a simplicial cone. To see that dim K = d, consider
a basis {b1, . . . , bd} of E

d and note that for z = o ∧ b1 ∧ · · · ∧ bd the cone K + z
contains o, b1, . . . , bd . Thus dim K = dim(K + z) = d.

(ii)⇒(i) This is easy to prove on noting that after a suitable linear transformation
we may assume that K = {x : 0 ≤ xi }. ��
Remark. Choquet actually proved his result in infinite dimensions using Choquet
simplices instead of (finite dimensional) simplices. A generalization to vector spaces
without any topology is due to Kendall [574]. See the surveys by Peressini [789] and
Rosenthal [857].

12.2 A Characterization of Balls by Their Gravitational Fields

During the twentieth century a multitude of different characterizations of (Euclidean)
balls and spheres have been given. Besides elementary characterizations, charac-
terizations by extremal properties, in particular by properties of isoperimetric type,
and other characterizations in the context of convexity, there is a voluminous body
of differential geometric characterizations. Interesting sporadic characterizations of
balls have their origin in other branches of mathematics, for example in potential
theory and, even outside of mathematics.

In the sequel we consider a characterization of balls by their Newtonian gravita-
tional fields. We consider the case d = 3, but the result can be extended easily to any
d ≥ 2, where, for d = 2, logarithmic potentials have to be used.

Surveys of characterizations of balls are due to Bonnesen and Fenchel [149],
Giering [377], Burago and Zalgaller [178], Bigalke [114] and Heil and Martini [488].
We add two references, one related to cartography by Gruber [426] and one to
electrostatics by Mendez and Reichel [719]. For a characterization of balls using
topological tools see Montejano [750].
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The Newtonian Gravitational Field and its Potential

Let C be a compact set in E
3 consisting of homogeneous matter. Up to a multiplica-

tive constant, its (Newtonian) gravitational field g is given by

g(y) =
∫

C

x − y

‖x − y‖3
dx for y ∈ E

3\C,

where the integral is to be understood componentwise. The corresponding
( Newtonian) gravitational potential P then is given by

P(y) =
∫

C

dx

‖x − y‖ for y ∈ E
3\C,

up to an additive constant. Note that g = grad P .

The Problem and One Answer

A natural question to ask is whether C is determined uniquely by the gravitational
field g or the gravitational potential P . Pertinent results are due to Novikov [774]
and Shahgholian [927]. A special case of the latter’s result is the following (earlier)
result of Aharonov, Schiffer and Zalcman [3].

Theorem 12.3. Let C = cl int C ⊆ E
3 be a compact body consisting of homoge-

neous matter such that E
3\C is connected. If the gravitational field of C coincides

in E
3\C with the gravitational field of a suitable point mass, then C is a ball.

The following proof relies heavily on results from potential and measure theory for
which we refer to Wermer [1018] and Bauer [82].

Proof. We clearly may suppose that the point mass is located at the origin o. Then,
by assumption, ∫

C

x − y

‖x − y‖3
dx = − α y

‖y‖3
for y ∈ E

3\C,

where α > 0 is a suitable constant. Since the fields coincide on the open connected
set E

3\C , the corresponding potentials coincide on E
3\C up to an additive

constant, i.e. ∫

C

dx

‖y − x‖ =
α

‖y‖ + β for y ∈ E
3\C,

where β is a suitable constant. Letting ‖y‖ → +∞, it follows that β = 0. Thus,

(1)
∫

C

dx

‖y − x‖ =
α

‖y‖ for y ∈ E
3\C .
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The integral here may be considered as the convolution of the locally integrable
function 1/‖x‖ on E

3\{o} with the characteristic function of C which is bounded,
measurable and has compact support. It thus defines a bounded continuous function
on all of E

3. Then

(2) o ∈ int C,

since otherwise the function α/‖y‖ is unbounded on E
3\C and thus the above

integral is unbounded by (1), a contradiction.
A real function u on a domain in E

3 of class C2 which satisfies the Laplace
equation

�u = ∂2u

∂x2
1

+ ∂
2u

∂x2
2

+ ∂
2u

∂x2
3

= 0

is harmonic. We now show the following:

(3) Let u be a harmonic function on a neighbourhood of C . Then

∫

C

u(x) dx = α u(o),

where α is as in (1). Modify u outside C to be of class C2 with compact support S,
preserving the harmonicity on and near C . Since u is of class C2 and has compact
support, a potential theoretic result shows that

(4) u(x) = − 1

4π

∫

S

�u(y)

‖x − y‖ dy for x ∈ E
3,

see Wermer [1018], p.13. Thus,
∫

C

u(x) dx = − 1

4π

∫

C

∫

S

�u(y)

‖x − y‖ dy dx = − 1

4π

∫

S

(
�u(y)

∫

C

dx

‖x − y‖
)

dy

= − 1

4π

∫

S

�u(y)
α

‖y‖ dy = α u(o)

by (4), Fubini’s theorem, (1) and (4) again, concluding the proof of (3).
Now, noting (2), choose p ∈ bd C closest to o and take points p1, p2, · · · ∈ E

3\C
with pn → p. Each of the functions vn defined by

vn(x) = ‖x‖2 − ‖pn‖2

‖x − pn‖3
for x ∈ E

3\{pn}

is harmonic on C and vn(x)→ v(x) for x ∈ C \{p}, where v is a harmonic function
defined by

v(x) = ‖x‖2 − ‖p‖2

‖x − p‖3
for x ∈ E

3\{p}.
The sequence

(
vn(·)

)
converges pointwise and thus stochastically to v(·) on C\{p}

and is uniformly integrable on C . Thus
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(5)
∫

C

v(x) dx = lim
n→∞

∫

C

vn(x) dx = lim
n→∞α vn(o) = α v(o)

by Proposition (3). For the notions of stochastic convergence and uniform integrabil-
ity and for the first equality in (5) see, e.g. Bauer [82], Sects. 20, 21.

Finally, let a harmonic function w be defined by

w(x) = 1+ ‖p‖v(x) for x ∈ E
3\{p}

and let B be the ball ‖p‖B3. Since o ∈ int C by (2), our choice of p shows that
B ⊆ C . Thus

(6) α w(o) = α(1+ ‖p‖v(o)) = 0 =
∫

C

(
1+ ‖p‖v(x)) dx =

∫

C

w(x) dx

by the definitions of w and v , (3) applied to u = 1 and Proposition (5). The mean
value property of harmonic functions implies that

(7)
∫

B

w(x) dx = γ w(o) = 0,

where γ > 0 is a suitable multiplicative constant, see Wermer [1018], Appendix.
From (6) and (7) we conclude that

0 =
∫

C

w(x) dx =
∫

B

w(x) dx +
∫

C\B

w(x) dx =
∫

C\B

w(x) dx .

Since w(x) > 0 for x ∈ C\B, it follows that C\B has measure 0. Noting that
C = cl int C by assumption, this means that C\B = ∅, or C ⊆ B. The reverse
inclusion being obvious, C = B follows. ��

12.3 Blaschke’s Characterization of Ellipsoids and Its Applications

Ellipsoids and Euclidean spaces play an important role in many branches of mathe-
matics. Among these are convex and differential geometry, the local theory of
normed spaces, functional analysis, approximation, operator and potential theory,
dynamical systems, combinatorial optimization and mechanics. The first characteri-
zations of ellipsoids in convex geometry go back to Brunn and Blaschke, and at
present there is still interest for these characterizations. One may distinguish between
characterizations based on:

Affine and projective transformations

Sections

Projections and illuminations

Extremal properties

Other geometric and analytic properties
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In the following we consider a characterization of ellipsoids due to Blaschke
[123,124] by the property that the shadow boundaries under parallel illumination all
are planar. As a consequence, two characterizations of Euclidean spaces are given.
A remark concerns geometric stability problems. Finally, we define Radon norms.

For more information we refer to the books and surveys of Bonnesen and
Fenchel [149], Day [248], Laugwitz [630], Gruber and Höbinger [446], Petty [798],
Amir [27], Istrǎtescu [537], Heil and Martini [488], Lindenstrauss and Milman [660],
Li, Simon and Zhao [655], Thompson [994], Martini [692], and Deutsch [263].

A Version of Blaschke’s Characterization of Ellipsoids

Among all characterizations of ellipsoids in convex geometry, Blaschke’s [123, 124]
characterization mentioned above has the largest number of applications. In some of
these the following slightly refined version due to Marchaud [689] is used.

Theorem 12.4. Let C be a proper convex body in E
d , d ≥ 3. Then the following

statements are equivalent:

(i) C is an ellipsoid.

(ii) For each line L through o there is a hyperplane H such that

(1) C + L = C ∩ H + L .

In other words, the shadow boundary bd(C+L)∩C of C under illumination parallel
to L contains the “planar curve” bd(C + L) ∩ H . Before beginning with the proof
we state two auxiliary results, the proofs of which are left to the reader but take some
effort.

Lemma 12.1. Let C ∈ Cp and k ∈ {2, . . . , d}. Then the following assertions are
equivalent:

(i) C is an ellipsoid.

(ii) For each k-dimensional plane H which meets int C, the intersection C ∩ H is an
ellipsoid.

Lemma 12.2. Let D ∈ Cp(E
2) and w ∈ int D such that for any pair of parallel

support lines S, T of D there are points s ∈ D ∩ S, t ∈ D ∩ T with w ∈ [s, t]. Then
w is the centre of C.

Proof of the Theorem. The implication (i)⇒(ii) is easy. We show only that
(ii)⇒(i) A simple argument implies that the intersection of C with any 3-

dimensional plane which meets int C also has property (ii). If the implication (ii)⇒(i)
holds in case d = 3, the first lemma implies that C is an ellipsoid. It is thus sufficient
to consider the case

d = 3.

Our first proposition is as follows:

(2) Let U be a support plane of C . Then C ∩U is not a line segment.
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To see this, assume the contrary. For each illumination of C parallel to a line L
parallel to U but not to the line segment C ∩ U , the plane H must contain this line
segment. If the direction of L differs only slightly from the direction of the line
segment, then H is almost parallel to L and (1) cannot hold, a contradiction.

As a consequence of Corollary 11.1 we may assume that, after a suitable transla-
tion and the choice of a suitable inner product in E

3,

(3) the group of affinities in E
3 which leave C invariant (as a whole), is a sub-

group of the orthogonal group.

Let M be a line and U a plane not parallel to M . An affine reflection of E
3 in M

parallel to U is an affinity which reflects each plane parallel to U in its intersection
point with M . If M is orthogonal to U we speak of an orthogonal reflection of E

3 in
M . Now the following will be shown:

(4) The group of affinities in E
3 which leave C invariant, contains the ortho-

gonal reflections in all lines through o, except for a set of lines which is at
most countable.

Let U, V be a pair of parallel support planes of C which are not parallel to any of
the at most countably many 2-faces in bd C . Then C ∩U,C ∩ V consist of one point
each by (2), say u and v , respectively. Let W be a plane between U, V and let w
be the intersection point of W and the line M through u, v . For any illumination of
C parallel to U, V,W, the plane H must contain u, v and thus also w. This implies
that the convex disc D = C ∩ W satisfies the assumptions of the second lemma and
thus has centre w. Since W was an arbitrary plane between U, V, it follows that C is
invariant with respect to the affine reflection in the line M , parallel to U . Noting (3)
and our choice of U, V, we obtain (4).

A simple compactness argument then shows that

the group of affinities in E
d which leave C invariant contains the orthogonal

reflections in all lines through o.

This readily implies that the intersection of C with any plane through o is a circular
disc, which in turn shows that C is a ball with centre o with respect to the chosen
inner product. ��
Remark. It turns out that, for a characterization of ellipsoids, only illuminations in
a rather small set of directions are needed, see [446].

Geometric Stability Problems

Considering the various stability problems in the mathematical literature, the follow-
ing geometric problem is quite natural.

Problem 12.1. Consider a geometric property which characterizes certain convex
bodies. How well can a convex body which satisfies this property approximately, be
approximated by convex bodies which satisfy this property exactly?
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The first such result in convex geometry seems to be due to Groemer [404]. A stability
result related to Blaschke’s characterization of ellipsoids was given by the author
[434].

Kakutani’s Characterization of Euclidean Norms

As a consequence of Blaschke’s characterization of ellipsoids, we will prove the
following characterization of Euclidean norms by Kakutani [559].

Theorem 12.5. Let | · | be a norm on E
d , d ≥ 3, and k ∈ {2, . . . , d − 1}. Then the

following statements are equivalent:

(i) | · | is Euclidean.

(ii) For each k-dimensional linear subspace S of E
d there is a (linear) projection

pS : E
d → S with norm |pS| = sup

{|pS(x)| : x ∈ E
d , |x | ≤ 1

}
equal to 1.

The following proof was proposed by Klee [591]. It makes use of polarity. Here
polarity is defined slightly more generally than in Sect. 9.1.

C∗ = {y : x · y ≤ 1 for y ∈ C} for convex C ⊆ E
d , o ∈ C.

The properties of polarity needed in the proof of Kakutani’s theorem and one further
property are collected together in Lemma 12.3, the proof of which is left to the
interested reader.

Lemma 12.3. The following properties hold:

(i) S linear subspace of E
d ⇒ S∗ = S⊥

(ii) C ⊆ E
d convex, o ∈ C ⇒ C∗∗ = cl C

(iii) C, D ⊆ E
d convex, o ∈ C ∩ D ⇒ (C ∩ D)∗ = cl conv(C∗ ∪ D∗)

(iv) E ⊆ E
d ellipsoid with centre o ⇒ E∗ ellipsoid with centre o

(v) C ⊆ E
d convex, o ∈ C, S a linear subspace of Ed ⇒ C + S = cl conv(C ∪ S)

Proof of the Theorem. It is easy to show that (i)⇒(ii).
(ii)⇒(i) By Lemma 12.1 it is sufficient to consider the case

d = k + 1, or k = d − 1.

Clearly, statement (ii) can be expressed as follows, where B = {x : |x | ≤ 1} is the
solid unit ball of the norm | · |.

(5) For each hyperplane S through o, there is a line T through o such that

B ∩ S = (B + T ) ∩ S.

Note that

B∗ + S∗ = cl conv(B∗ ∪ S∗) = (B ∩ S)∗ = (
(B + T ) ∩ S

)∗

= cl conv
(
(B + T )∗ ∪ S∗

) = (B + T )∗ + S∗

= (
cl conv(B ∪ T )

)∗ + S∗ = (
cl conv(B∗∗ ∪ T ∗∗)

)∗ + S∗

= (B∗ ∩ T ∗)∗∗ + S∗ = (B∗ ∩ T ∗)+ S∗,
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by properties (v), (iii) of the lemma, Proposition (5) and, again, properties (iii), (v),
(ii), (iii) and (ii). Thus property (i) and Proposition (5) imply that

For each line L(= S∗) through o there is a hyperplane H(= T ∗) through o
such that

B∗ + L = B∗ ∩ H + L .

Blaschke’s characterization of ellipsoids then shows that B∗ is an ellipsoid. Since o is
in the centre of B, also B∗ has centre o. An application of property (iv) then implies
that B is an ellipsoid, concluding the proof of Statement (i) of the theorem. ��

Orthogonality in Normed Spaces

A well-known notion of orthogonality in normed spaces which goes back to a ques-
tion of Carathéodory on Finsler spaces is as follows. Given a normed space with
norm | · |, a vector x is orthogonal to a vector y, in symbols

x⊥y, if |x | ≤ |x + λy| for all λ ∈ R.

Expressed geometrically, x⊥y means that the line through x parallel to the vector y
supports the ball {z : |z| ≤ |x |} at the boundary point x . This notion of orthogonality
is sometimes named for Birkhoff [118] or James [541]. Orthogonality is important
in the context of approximation and still attracts interest, see the pertinent literature
in the books of Amir [27] and Istrǎtescu [537].

The following result is due to Blaschke [123, 124] and Birkhoff [118].

Theorem 12.6. Let | · | be a norm on E
d , d ≥ 3, and let ⊥ be the corresponding

notion of orthogonality. Then the following are equivalent:

(i) | · | is Euclidean.

(ii) ⊥ is symmetric, i.e. x⊥y implies y⊥x for x, y ∈ E
d .

Proof. (i)⇒(ii) This is trivial.
(ii)⇒(i) Let B = {x : |x | ≤ 1}. We will prove that

(6) For each line L through o there is a hyperplane H through o such that

B + L = B ∩ H + L .

Let bd B ∩ L = {±p}, say, and let H + p be a support hyperplane of B at p. For the
proof that B+L = B∩H+L , it is sufficient to show that any line of the form L+q,
where q ∈ B, meets B ∩ H . Given such a line, let (L + q) ∩ H = {r}. Since r ∈ H
and H + p supports B at p, we have |p| ≤ |p + λr | for all λ ∈ R or p⊥r . Thus
r⊥p by (ii), or |r | ≤ |r + µp| for all µ ∈ R, or |r | ≤ |s| for all s ∈ L + r = L + q.
Hence, in particular, |r | ≤ |q| ≤ 1, or r ∈ B. This concludes the proof of (6).

Having proved (6), Blaschke’s ellipsoid theorem shows that B is an ellipsoid,
concluding the proof of (i). ��
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v

o

u

Fig. 12.3. Symmetry of orthogonality with respect to a Radon norm

Remark. For d = 2, the so-called Radon norms, which include the Euclidean
norms, are characterized by property (ii). There are several other properties which
also characterize Euclidean norms in dimension d ≥ 3 and Radon norms in case
d = 2, see the survey of Gruber [420]. Thus it makes sense, to consider Radon
norms as the 2-dimensional equivalent of Euclidean norms in dimension d ≥ 3. For
a stability result with respect to orthogonality both for Euclidean and Radon norms,
see Gruber [434].

Radon norms can be constructed as follows: Take a continuous curve in the unit
square [0, 1]2 which connects the points (0, 1) and (1, 0) and such that the curve
together with the line segments [o, (0, 1)] and [o, (1, 0)] is the boundary of a convex
disc. Consider its polar curve, which is also contained in [0, 1]2 and connects the
points (0, 1) and (1, 0). Rotate the polar curve by π/2 about the origin o in the
positive direction. The given curve, the rotated polar curve and their reflections in o
form the boundary of a convex disc with centre o. Now apply a non-singular linear
transform to this convex disc. This, then, is the unit disc of a Radon norm and each
Radon norm (see Fig. 12.3) can be obtained in this fashion.

13 The Space of Convex Bodies

The space C of convex bodies and subspaces of it such as the space Cp of proper
convex bodies, have been investigated from the viewpoint of topological and metric
spaces, lattices and groups. In spite of a multitude of results, we believe that the work
is only at its beginning. In addition to Baire category results and metric estimates,
many results deal with structure preserving mappings, which turn out to be few and
surprisingly simple.

It seems that, with respect to their natural topologies, the spaces C and Cp are
homogeneous, but we are not aware of a proof. In contrast, the results which will be
given in the following indicate that, with respect to the group, the lattice and metric
structures, both C and Cp are far from being homogeneous. If sometime in the future,
there will be local versions of the results on structure preserving mappings, we think
that these will show that, still, neighbourhoods of generic pairs of convex bodies in
C or Cp are totally different from the group, lattice and metric viewpoint.
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In the following we first deal with the topology, considering Baire category
results. Then, a result is presented which shows difficulties with the introduction
of measures. Then characterizations of the isometries of the metric spaces 〈C, δH 〉
and 〈Cp, δ

V 〉 are stated without proofs. Finally, we consider the algebraic structure
of C. A characterization of homomorphisms with additional properties of 〈C,+〉 into
〈Ed ,+〉 is presented. Its proof makes use of spherical harmonics. Results on endo-
morphisms of the semigroup 〈C,+〉 and the lattice 〈C,∧,∨〉 are stated last.

For more information and additional references, see [428] and the references and
books cited below.

13.1 Baire Categories

A version of Blaschke’s selection theorem says that the spaces C and Cp, endowed
with their natural topologies (which are induced by, e.g. the metric δH ), are locally
compact, see Theorem 6.4. Thus both are Baire according to a modern form of
Baire’s category theorem. This means that each meagre set has dense complement.
By most or typical convex bodies we mean all convex bodies with a meagre set of
exceptions. For these notions, see Sect. 5.1.

The first Baire category result dealing with spaces of convex bodies is due to Klee
[590]. It says that most convex bodies are smooth and strictly convex. For unclear
reasons it was soon forgotten. Its re-discovery by Gruber [414] some 20 years later
led to a voluminous body of results, see the surveys of Zamfirescu [1039, 1041] and
the author [431]. These results treat:

Differentiability properties

Geodesics

Billiards, normals and mirrors

Approximation

Contact points

Shadow boundaries

Metric projection

Fixed points and attractors

Cut loci and conjugate points

Packing and covering

It is interesting to note that, sometimes, Baire type convexity results are in contrast
to results of differential geometry. For example, a result of the author [423] says
that for most proper convex bodies C in E

3 there is no closed geodesic on bd C
while on each sufficiently smooth proper convex body C in E

3 there are infinitely
many closed geodesics on bd C according to a famous theorem of Bangert [65] and
Hingston [504].

In the following we prove the result of Klee mentioned above. Then an irregu-
larity criterion will be shown and applied to the approximation of convex bodies.
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What Does the Boundary of a Typical Convex Body Look Like?

An easy proof will yield the following answer.

Theorem 13.1. Most proper convex bodies are smooth and strictly convex.

Proof. Smoothness: For n = 1, 2, . . . , let

Cn =
{
C ∈ Cp : ∃ p ∈ bd C, u, v ∈ Sd−1 such that

‖u − v‖ ≥ 1

n
, C ⊆ {x : x · u ≤ p · u}, {x : x · v ≤ p · v}}.

Simple compactness arguments show that

(1) Cn is closed in Cp.

(It is sufficient to show that C1,C2, · · · ∈ Cn, C ∈ Cp, C1,C2, · · · → C implies that
C ∈ Cn too.) To see that

(2) int Cn = ∅,
assume the contrary. Since the smooth convex bodies are dense in Cp, the set Cn then
would contain a smooth convex body, but this is incompatible with the definition of
Cn . (1) and (2) imply that Cn is nowhere dense. Hence

∞⋃

n=1

Cn is meagre.

To conclude the proof of the smoothness assertion, note that

{
C ∈ Cp : C is not smooth

} =
∞⋃

n=1

Cn .

Strict convexity: Replacing Cn by

Dn =
{
C ∈ Cp : ∃ p, q ∈ bd C : ‖p − q‖ ≥ 1

n
, [p, q] ⊆ bd C

}
,

the proof is similar to the proof in the smoothness case. ��
Remark. This result has been refined and generalized in the following directions.

Most convex bodies are not of class C1+ε, see Gruber [423] (ε = 1) and Klima
and Netuka [599] (ε > 0).

Most convex bodies are of class C1, but have quite unexpected curvature prop-
erties. For a multitude of pertinent results, mainly due to Zamfirescu, see the
surveys [431, 1041].

Zamfirescu [1040] proved that all convex bodies are of class C1 and strictly con-
vex, with a countable union of porous sets of exceptions. A porous set is meagre
but the converse does not hold generally. For a definition see [431].
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An Irregularity Criterion

If an approximation or iteration procedure is very fast or very slow for a dense set of
elements of a space, what can be said for typical elements? The following result of
Gruber [418] gives a Baire type answer.

Theorem 13.2. Let B be a Baire space. Then the following statements hold:

(i) Let α1, α2, · · · > 0 and let f1, f2, · · · : B → [0,+∞) be continuous functions
such that the set

{
x ∈ B : fn(x) = o(αn) as n → ∞}

is dense in B. Then for
most x ∈ B the inequality fn(x) < αn holds for infinitely many n.

(ii) Let β1, β2, · · · > 0 and let g1, g2, · · · : B → [0,+∞) be continuous functions
such that the set

{
x ∈ B : βn = o

(
gn(x)

)
as n → ∞}

is dense in B. Then for
most x ∈ B the inequality βn < gn(x) holds for infinitely many n.

Proof. (i) Since the functions fn are continuous, the sets
{

x ∈ B : fn(x) ≥ αn
}

are
closed. Hence

Bn =
{

x ∈ B : fn(x) ≥ αn, fn+1(x) ≥ αn+1, . . .
}

is closed.

The assumption in (i) implies that intBn = ∅. Thus, Bn is nowhere dense and
therefore,

∞⋃

n=1

Bn =
{

x ∈ B : fn(x) ≥ αn for all but finitely many n
}

is meagre.

This implies (i) on noting that

B\
∞⋃

n=1

Bn =
{

x ∈ B : fn(x) < αn for infinitely many n
}
.

(ii) Replacing αn, fn,≥,< by βn, gn,≤,>, the proof is similar. ��
Remark. Clearly, instead of assuming that fn and gn are continuous, it is sufficient
to assume that the fn are upper and the gn are lower semi-continuous.

For Most Convex Bodies Asymptotic Best Approximation is Irregular

Among numerous applications of the irregularity criterion, we consider one in
the context of asymptotic best approximation of proper convex bodies. For other
applications, see [418, 431].

Let δV be the symmetric difference metric. Given C ∈ Cp, let Pc
(n) = Pc

(n)(C)
be the family of all convex polytopes with at most n facets which are circumscribed
to C . Let

δV (C,Pc
(n)) = inf

{
δV (C, P) : P ∈ Pc

(n)

}
.

The infimum is attained and the convex polytopes for which it is attained are called
best approximating. For more information, see Sect. 11.2.
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Corollary 13.1. Let ϕ,ψ : N → R
+ be such that 0 < ϕ(n), ψ(n) = o(n−

2
d−1 ) as

n →∞. Then for most convex bodies C ∈ Cp we have

δV (C,Pc
(n)) < ϕ(n) for infinitely many n,

δV (C,Pc
(n)) > ψ(n) for infinitely many n.

Proof. Simple arguments dealing with best approximating polytopes show that

δV (
C,Pc

(n)(C)
)

is continuous in C(∈ Cp).

Trivially,

δV (
P,Pc

(n)(P)
) = 0 for n sufficiently large, for each P ∈ Pp,

where Pp = Pp(E
d) is the space of all proper convex polytopes in E

d , and the
Theorem 11.4 on asymptotic best volume approximation shows that

δV (
C,Pc

(n)(C)
) ∼ const

n
2

d−1

as n →∞

for each C ∈ Cp of class C2 with positive Gauss curvature,

where const> 0 is a constant depending on C . Now apply the above irregularity
result. ��

13.2 Measures on C?

As seen above, the topological concept of Baire categories is an effective tool
to distinguish between small (meagre) and large (non-meagre) sets in C and Cp.
Considering this, the following problem arises:

Problem 13.1. Define a geometrically useful measure on C or on Cp which is easy
to handle.

The spaces C and Cp are locally compact with respect to their common topologies.
Thus there should be many measures available on these spaces. Unfortunately this
is not so, at least so far. A conjecture of the author that Hausdorff measures with
respect to the metric δH might do, was readily disproved by Schneider [901]. More
general is a negative result of Bandt and Baraki [66]. In view of these results which
indicate that a solution of the above problem might be difficult, it seems to be worth
while to study the following problem:

Problem 13.2. Given an interesting subset D of C or Cp, for example the set of all
proper convex bodies of class Ck , or the set of all proper convex bodies with singular
points, find non-decreasing functions h, k : [0,+∞) → [0,+∞) such that for the
corresponding Hausdorff measures µh, µk with respect to a given metric δ on C or
Cp we have

µh(D) = 0, µk(D) > 0.
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Here,

µh(A) = lim
ε→+0

(

inf

{ ∞∑

n=1

h(diamUn) : Un ⊆ D, diamUn ≤ ε, A ⊆
∞⋃

n=1

Un

})

,

where diam is the diameter with respect to the given metric δ.
In this section we prove the result of Bandt and Baraki.

Non-Existence of Isometry-Invariant Measures on 〈C, δH〉
A Borel measure µ on C is isometry-invariant with respect to δH if

µ(D) = µ(I (D)) for all Borel sets D ⊆ C and each isometry I : C → C
with respect to δH .

These isometries have been determined by Gruber and Lettl [449], see Theorem 13.4
below. This result shows that there are few isometries of 〈C, δH 〉 into itself. Thus the
condition that a measure µ on C is isometry-invariant is not too restrictive. In spite
of this we have the following negative result of Bandt and Baraki [66].

Theorem 13.3. Let d > 1. Then there is no positive σ -finite Borel measure on C
which is invariant with respect to all isometries of 〈C, δH 〉 into itself.

Proof. Assume that there is a positive σ -finite Borel measure µ on C which is
isometry-invariant with respect to δH . Let

Cn = C(nBd) = {C ∈ C : C ⊆ nBd} for n = 1, 2, . . .

Since C is the union of the compact sets Cn and µ is positive, there is an n with

(1) µ(Cn) > 0.

For this n we have the following:

(2) C contains uncountably many pairwise disjoint
isometric copies of Cn .

To see this, we first show that

(3) the sets Cn + [o, p] = {C + [o, p] : C ∈ Cn}, p ∈ 3nSd−1,
are pairwise disjoint.

If (3) did not hold, there are p, q ∈ 3nSd−1, p �= q, such that C+[o, p] = D+[o, q]
for suitable C, D ∈ Cn . Choose a linear form l on E

d such that l(p) = 1, l(q) = 0.
Let r ∈ C be such that

l(r) = min{l(x) : x ∈ C}.
Choose s ∈ D and 0 ≤ λ ≤ 1, such that r = s + λq. Choose t ∈ C and 0 ≤ ν ≤ 1,
such that s + q = t + νp. Then t + νp − q + λq = r and thus

l(t)+ ν = l(t + νp − q + λq) = l(r) ≤ l(t).
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Hence ν = 0 and thus s + q = t and it follows that

3n = ‖q‖ = ‖t − s‖ ≤ ‖t‖ + ‖s‖ ≤ 2n.

This contradiction concludes the proof of (3). Now, noticing that the sets Cn + [o, p],
p ∈ 3nSd−1, all are isometric to Cn , the proof of (2) is complete.

A simple, well-known measure-theoretic result says that a measure cannot be
σ -finite if there is an uncountable family of pairwise disjoint sets with positive mea-
sure. This together with the isometry-invariance of µ and statements (1) and (2)
implies that µ is not σ -finite, which yields the desired contradiction. ��

13.3 On the Metric Structure of C
There is a long list of metrics and other notions of distance on C and certain subspaces
of it, including Cp, that have been studied. See, e.g. [428,429]. The most import ones
are the Hausdorff metric δH on C, the symmetric difference metric δV on Cp, and the
Banach–Mazur distance on the space of all (equivalence classes with respect to non-
singular linear transformations of) proper, o-symmetric convex bodies. While a good
deal of all articles in convex geometry make use of such metrics, the metric spaces
〈C, δH 〉, etc. per se have rarely been investigated. Of what is known, we mention
estimates for ε-nets of

〈C(Bd), δH
〉
,
〈Cp(Bd), δV

〉
and characterizations of isometries.

In the following two characterizations of isometries will be stated. The proofs
are rather long and technical and thus are omitted. For related results, see the author
[428].

Description of the Isometries of 〈C, δH〉
Refining earlier work of Schneider [902], Gruber and Lettl [449] showed the follow-
ing result.

Theorem 13.4. Let I : C → C be a mapping. Then the following statements are
equivalent:

(i) I is an isometry with respect to δH .

(ii) There are a rigid motion m : E
d → E

d and a convex body D, such that

I (C) = m C + D for C ∈ C.
Remark. The Hausdorff metric δH clearly may be extended to the space K = K(Ed)
of all compact subsets of E

d . Generalizing the above result, Gruber and Lettl [448]
characterized the isometries of 〈K, δH 〉.
Description of the Isometries of 〈C p, δV 〉
A result of the author [415] is as follows.

Theorem 13.5. Let I : Cp → Cp be a mapping. Then the following statements are
equivalent:

(i) I is an isometry with respect to δV .

(ii) There is a volume-preserving affinity a : E
d → E

d such that

I (C) = a C for C ∈ Cp.
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Remark. A more general local version of this result has been obtained by
Weisshaupt [1017].

13.4 On the Algebraic Structure of C
The space C of convex bodies is an Abelian semigroup with respect to Minkowski
addition+ on which the non-negative reals operate. Since 〈C,+〉 satisfies the cancel-
lation law, it can be embedded into an Abelian group or, more precisely, into a vector
space over R. The embedding can be achieved by considering equivalence classes
of pairs of convex bodies (as in the construction of the integers from the natural
numbers) or via support functions. For some references to the large pertinent liter-
ature, see [428]. A different line of research deals with the characterization of ho-
momorphisms with additional properties of 〈C,+〉 into itself, into 〈Ed ,+〉 and into
〈R,+〉. Major contributions of this type are due to Schneider.

The definitions

C ∧ D = C ∩ D, C ∨ D = conv(C ∪ D) for C, D ∈ C

make C into an atomic lattice 〈C,∧,∨〉. It was investigated mainly by Belgian mathe-
maticians. In addition, a characterization of the endomorphisms of 〈C,∧,∨〉 has been
given.

Linearity and lattice properties of C were used as axioms for so-called convexity
spaces with the aim to raise convex geometry to a more general level of abstraction.
Other attempts to define convexity spaces are based on combinatorial results such
as the theorems of Caratheódory, Helly and Radon. See Sect. 3.2 and the references
cited there.

In the following a result of Schneider [898] on homomorphisms of 〈C,+〉 into
〈Ed ,+〉 is presented first. It deals with the Steiner point or curvature centroid of con-
vex bodies. Besides the centroid, the centres of the inscribed ellipsoid of maximum
volume and the circumscribed ellipsoid of minimum volume and other points, the
curvature centroid is one of the points which are assigned in a natural way to a con-
vex body. Tools for Schneider’s proof are spherical harmonics. We state the needed
definitions and some properties of the latter. Finally, two results on endomorphisms
of 〈C,+〉 and 〈C,∧,∨〉 due to Schneider [900] and Gruber [424], respectively, are
given without proof.

For more information and references to the original literature, see the articles and
surveys of Schneider [899], McMullen and Schneider [716], Saint-Pierre [874] and
the author [428] and the books of Schneider [907], Sect. 3.4 and Groemer [405],
Sect. 5.8.

Spherical Harmonics

Spherical harmonics are important tools of analysis and, in particular, of pure and
applied potential theory. Their first applications to problems of convex geometry
date back to Hurwitz [532] and Minkowski [741]. For expositions in the spirit of
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geometry, see Seidel [924] and, in particular, the monograph of Groemer [405]. The
Proceedings on Fourier analysis and convexity [343] and the book of Koldobsky
[606] also contain many results in convexity and the geometry of numbers based on
Fourier series, Fourier transforms, and spherical harmonics.

In the following we give the definitions and properties that will be used below.
A polynomial h : E

d → R is harmonic if it satisfies the Laplace equation

�h = ∂2h

∂x2
1

+ · · · + ∂
2h

∂x2
d

= 0.

The restriction of a homogeneous harmonic polynomial h : E
d → R to the unit

sphere Sd−1 is a spherical harmonic. For n = 0, 1, . . . , let Hd
n be the linear space of

all spherical harmonics in d variables of degree n and let

Hd = Hd
0 ⊕Hd

1 ⊕Hd
2 ⊕ · · ·

be the linear space of all finite sums of spherical harmonics in d variables. Let σ
denote the ordinary surface area measure in E

d . By a rotation in E
d an orthogonal

transformation with determinant 1 is meant and κd = V (Bd).

Proposition 13.1. We have the following statements:

(i) dim Hd
n =

2n + d − 2

n + d − 2

(
n + d − 2

d − 2

)
.

(ii) 〈h, k〉 =
∫

Sd−1

h(u)k(u) dσ(u) = 0 for h ∈ Hd
m, k ∈ Hd

n ,m �= n.

(iii) The spherical harmonics in Hd
1 are the functions of the form

u → a · u for u ∈ Sd−1, where a ∈ E
d .

For the norm ‖ · ‖2 on Hd
n related to the inner product 〈·, ·〉, we have

‖ui‖2 = κ
1
2

d for u = (u1, . . . , ud) ∈ Sd−1.

(iv) Let h ∈ Hd
n and r : E

d → E
d a rotation. Then rh ∈ Hd

n , where rh is defined
by rh(u) = h

(
r−1(u)

)
for u ∈ Sd−1.

(v) If H is a linear subspace of Hd
n that is invariant under rotations, then H = {0}

or Hd
n .

(vi) Let h ∈ Hd . Then h + α is (the restriction to Sd−1 of) the support function of
a suitable convex body if α > 0 is sufficiently large.

(vii) The family of all convex bodies the support functions of which are finite sums
of spherical harmonics, i.e. are in Hd , is dense in C.
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The Steiner Point

The Steiner point or curvature centroid sC of a convex body C is the point

sC = 1

κd

∫

Sd−1

hC (u)u dσ(u),

where the integral is to be understood componentwise. If C is a proper convex body
of class C2, it can be shown that sC is the centroid of mass distributed over bd C with
density equal to the Gauss curvature of bd C . A nice application of the Steiner point
to approximate matching of shapes was given by Aichholzer, Alt and Rote [5].

Homomorphisms of 〈C,+〉 into 〈Ed,+〉 and a Characterization of the Steiner
Point

The following result was proved by Schneider [898].

Theorem 13.6. Let s : C → E
d be a mapping. Then the following statements are

equivalent:

(i) s(C) = sC for C ∈ C.

(ii) s satisfies the properties:
(a) s(C + D) = s(C)+ s(D) for C, D ∈ C
(b) s(mC) = ms(C) for C ∈ C and all rigid motions m : E

d → E
d

(c) s(·) is continuous

Proof. (i)⇒(ii) This is a simple exercise.
(ii)⇒(i) The first step is to show the following:

(1) Let H : Hd → E
d be a linear mapping such that H(rh) = r H(h) for

h ∈ Hd and each rotation r : E
d → E

d . Then

H(h) = β
∫

Sd−1

h(u)u dσ(u) for h ∈ Hd ,

where β is a real constant depending only on d and H and the integral is
considered componentwise.

To prove this, let h = h0+ h1+· · ·+ hm where hn ∈ Hd
n . From Proposition 13.1(ii)

and the fact that each coordinate ui of u ∈ Sd−1 is a spherical harmonic of degree 1
in Hd

1 by Proposition 13.1(iii), it follows that
∫

Sd−1

h(u)u dσ(u) =
∫

Sd−1

h1(u)u dσ(u).

For the proof of (1) it is thus sufficient to show that

(2) H(hn) = β
∫

Sd−1

h1(u)u dσ(u) for n = 1 and = o for n �= 1.
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We distinguish three cases:
n = 0: Since by the assumption of (1) we have, H(h0) = H(rh0) = r H(h0)

for any rotation r , the point H(h0) ∈ E
d is rotation invariant and thus is equal to o,

concluding the proof of (2) for n = 0.
n > 1: Then

dim Hd
n =

2n + d − 2

n + d − 2

(
n + d − 2

d − 2

)
≥ 2n + d − 2 > d

by Proposition 13.1(i). Consider the linear subspace H = {h ∈ Hd
n : H(h) = o} of

Hd
n . By the assumption of (1), rH = H for each rotation r . Hence H = {0} or Hd

n
by Proposition 13.1(v). Since H is the kernel of the linear mapping H : Hd

n → E
d

and dim Hd
n > d, it follows that dim H > 0 and thus H = Hd

n or, equivalently,
H(h) = o for each h ∈ Hd

n . The proof of (2) for n > 1 is complete.
n = 1: By Proposition 13.1(iii), every h ∈ Hd

1 is of the form h(u) = a · u for
u ∈ E

d where a ∈ E
d . Thus one can define a linear transformation l : E

d → E
d by

l(a) = H(a · u) ∈ E
d for a ∈ E

d .

Using the assumption in (1), it then follows that

(3) (lr)(a) = l
(
r(a)

) = H
(
(ra) · u

) = H
(
a · (r−1u)

) = H
(
r(a · u)

)

= r H(a · u) = r
(
l(a)

) = (rl)(a) for a ∈ E
d and all rotations r ,

where in the expression r(a · u) it is assumed that r operates on u – note that a · u ∈
Hd

1 . Hence the linear transformation l : E
d → E

d commutes with each rotation
r : E

d → E
d . This will be used to show that

(4) l(a) = γ a for a ∈ E
d , where γ is a suitable constant.

If every a ∈ E
d is an eigenvector of the linear transformation l : E

d → E
d , then all

eigenvalues are the same and Proposition (4) holds. Otherwise choose an a ∈ E
d

such that l(a) is not a multiple of a. Let r be a rotation such that ra = a but
rl(a) �= l(a). Then rl(a) = lr(a) = l(a) by (3). This contradiction concludes
the proof of (4). We now show that (2) holds for h1 where h1(u) = a ·u according to
Proposition 13.1(iii). Noting the definition of l(·), (4) and since for the Steiner point
of the convex body {a} we have s{a} = a, it then follows that

H(h1) = H(a · u) = l(a) = γ a = γ s{a} = γ

κd

∫

Sd−1

h{a}(u)u dσ(u)

= γ

κd

∫

Sd−1

(a · u)u dσ(u) = γ

κk

∫

Sd−1

h1(u)u dσ(u),

where h{a}(u) = a · u is the support function of the convex body {a}. This proves (2)
for n = 1 where β = γ /κd . The proof of (2) and thus of (1) is complete.

In the second step a particular linear map H : Hd → E
d is constructed which

satisfies the assumptions of (1). Let s : C → E
d satisfy (ii). Then

(5) s is positive homogeneous of degree 1.
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To see this let C ∈ C. By property (a), s(C) = s( 1
l C) + · · · + s( 1

l C) or s( 1
l C) =

1
l s(C) for l = 1, 2, . . . This in turn implies that s( k

l C) = k
l s(C) for k, l = 1, 2, . . .

Hence s(λC) = λs(C) for λ ≥ 0 by property (c). The proof of (5) is complete. Now
the construction of H is as follows: let h ∈ Hd . Then h = h0 + · · · + hm where
hn ∈ Hd

n . By Proposition 13.1(vi) there is a constant α > 0 such that each of the
functions hn + α is (the restriction to Sd−1 of) a support function of a convex body,
say Cn . Now define

(6) H(h) = s(C0)+ · · · + s(Cm)− (m + 1)s(αBd).

It is easy to see that H(h) does not depend on the particular choice of α as long as all
functions hn + α are support functions of convex bodies. Thus H(h) is well defined
and maps Hd into E

d . Next,

(7) H satisfies the assumptions of (1).

The definition of H in (6) together with (5) and property (a) imply that H is linear.
By its definition H satisfies the equality H(rh) = r H(h) for all h ∈ Hd and all
rotations r . The proof of (7) is complete.

In the third step the aim is to show the following proposition.

(8) Let C ∈ C be such that hC = h0 + · · · + hm with suitable hn ∈ Hd
n . Then

s(C) = sC .

Apply (6) with h = hC and note property (a). Then

H(hC )+ (m + 1)s(αBd) = s(C0)+ · · · + s(Cm) = s(C0 + · · · + Cm).

From hC + (m+1)α = (h0+α)+· · ·+ (hm +α) it follows that C+ (m+1)αBd =
C0 + · · · + Cm . Thus property (a) shows that

s(C)+ (n + 1)s(αBd) = s(C)+ s
(
(n + 1)αBd) = s

(
C + (n + 1)αBd)

= s(C0 + · · · + Cn).

It follows that H(hC ) = s(C). Since by (7) H satisfies the assumptions in (1),
Proposition (1) then shows that

(9) s(C) = H(hC ) = β
∫

Sd−1

hC (u)u dσ(u).

To determine β, let e = (1, 0, . . . , 0) ∈ E
d and let t : E

d → E
d be the translation

x → x + e for x ∈ E
d . Then property (b) yields

s({e})+ s({e}) = s({e} + {e}) = s
(
t ({e})) = ts({e}) = s({e})+ e.

Hence s({e}) = e and, applying (9) in the special case where C = {e} and thus
h{e}(u) = e · u ∈ Hd

1 , we find that

e = β
∫

Sd−1

(e · u)u dσ(u) = βe
∫

Sd−1

u2
1 dσ(u) = βκde
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by Proposition 13.1(iii). Thus β = 1/κd and (9) shows that

s(C) = 1

κd

∫

Sd−1

hC (u)u dσ(u) = sC ,

concluding the proof of (8).
In the last step note that s(·) and sC are continuous in C . Hence (8) implies that

s(C) = sC for all C ∈ C, i.e. Proposition (ii) holds. ��
Remark. For a slight refinement of this result, see Posicel’skiĭ [814]. The problem
remains whether one can relax the properties (b) and (c).

Description of the Continuous Endomorphisms of the Convex Cone 〈C,+〉
The next result is due to Schneider [900].

Theorem 13.7. Let d ≥ 3 and let E : C → C be a mapping. Then the following
statements are equivalent:

(i) E(C) = C + λ(C − C) for C ∈ C, where λ ≥ 0 is a constant.

(ii) E has the following properties:

(a) E(C + D) = E(C)+ E(D) for C, D ∈ C
(b) E(aC) = aE(C) for C ∈ C and all surjective affinities a : E

d → E
d

(c) E is continuous

Description of the Endomorphisms of the Lattice 〈C,∧,∨〉
By an endomorphism of the lattice 〈C,∧,∨〉 a mapping E : C → C is meant for
which

E(C ∧ D) = E(C) ∧ E(D), E(C ∨ D) = E(C) ∨ E(D) for C, D ∈ C.

As a final result of this section we state a description by Gruber [424] of the endo-
morphisms of 〈C,∧,∨〉.
Theorem 13.8. Let d ≥ 2 and let E : C → C be a mapping. Then the following
statements are equivalent:

(i) E is an endomorphism of 〈C,∧,∨〉.
(ii) For E one of the following hold:

(a) E(C) = D for C ∈ C, where D is a fixed convex body
(b) There is a surjective affinity a : E

d → E
d such that E(C) = aC for C ∈ C

Remark. For a description of the endomorphisms in case d = 1, see [424].



Convex Polytopes

The early history of convex polytopes is lost. About 2000 BC convex polytopes
appeared in a mathematical context in the Sumerian civilization, in Babylonia and in
Egypt. Sources are the Moscow papyrus and the Rhind papyrus. Some of the regular
polytopes were already known by then. A basic problem was to calculate the vol-
umes of truncated pyramids. This was needed to determine the number of bricks for
fortifications and buildings. Babylonians sometimes did the calculations correctly,
sometimes not, while Egyptians used the right formula. For pertinent information the
author is obliged to the assyriologist Hermann Hunger [531]. In the fifth century BC
Democritos also discovered this formula and Eudoxos proved it, using the method
of exhaustion. Theaitetos developed a theory of regular polytopes, later treated by
Plato in the dialogue Timaios. Euclid, around 300 BC, considered metric proper-
ties of polytopes, the volume problem, including the exhaustion method, and the
five regular polytopes, the Platonic solids. Zenodoros, who lived sometime between
200 BC and 90 AD, studied the isoperimetric problem for polygons and polytopes
and Pappos, about 300 AD, dealt with the semi-regular polytopes of Archimedes.
In the renaissance the study of convex polytopes was in the hands of artists such
as Uccello, Pacioli, da Vinci, Dürer, and Jamnitzer. Then it went back to mathe-
matics. Kepler investigated the regular and the semi-regular polytopes and planar
tilings. Descartes considered convex polytopes from a metric point of view, almost
arriving at Euler’s polytope formula, discovered by Euler only hundred years later.
Contributions to polytope theory in the late eighteenth and the nineteenth century
are due to Legendre, Cauchy, Steiner, Schläfli and others. At the turn of the nine-
teenth and in the twentieth century important results were given by Minkowski,
Dehn, Sommerville, Steinitz, Coxeter and numerous contemporaries. At present,
emphasis is on the combinatorial, algorithmic, and algebraic aspects. Modern rela-
tions to other areas date back to Newton (polynomials), Fourier (linear optimization),
Dirichlet, Minkowski and Voronoı̆ (quadratic forms) and Fedorov (crystallography).
In recent decades polytope theory was strongly stimulated and, in part, re-oriented
by linear optimization, computer science and algebraic geometry. Polytope theory,
in turn, had a certain impact on these areas. For the history, see Federico [318] and
Malkevitch [681].
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The material in this chapter is arranged as follows. After some preliminaries
and the introduction of the face lattice, combinatorial properties of convex poly-
topes are considered, beginning with Euler’s polytope formula. In Sect. 14 we treat
the elementary volume as a valuation, and Hilbert’s third problem. Next, Cauchy’s
rigidity theorem for polytopal convex surfaces and rigidity of frameworks are dis-
cussed. Then classical results of Minkowski, Alexandrov and Lindelöf are studied.
Lindelöf’s results deals with the isoperimetric problem for polytopes. Section 14
treats lattice polytopes, including results of Ehrhart, Reeve and Macdonald and the
Betke–Kneser valuation theorem. Applications of lattice polytopes deal with irre-
ducibility of polynomials and the Minding–Bernstein theorem on the number of
zeros of systems of polynomial equations. Finally we present an account of linear
optimization, including aspects of integer linear optimization.

For additional material the reader may wish to consult the books of Alexan-
drov [16], Grünbaum [453], McMullen and Shephard [718], Brøndsted [171], Ewald
[315] and Ziegler [1045], the survey of Bayer and Lee [83] and other surveys in
the Handbooks of Convex Geometry [475] and Discrete and Computational Geome-
try [476].

Regular polytopes and related topics will not be considered. For these we refer
to Coxeter [230, 232], Robertson [842], McMullen and Schulte [717] and Johnson
[551]. For McMullen’s algebra of polytopes, see [713].

14 Preliminaries and the Face Lattice

The simple concept of a convex polytope embodies a wealth of mathematical struc-
ture and problems and, consequently, yields numerous results. The elementary theory
of convex polytopes deals with faces and normal cones, duality, in particular polarity,
separation and other simple notions. It was developed in the late eighteenth, the nine-
teenth and the early twentieth century. Some of the results are difficult to attribute.
In part this is due to the large number of contributors.

In this section we first give basic definitions, and then show the equivalence of
the notions of V-polytopes and H-polytopes and, similarly, of V- and H-polyhedra.
We conclude with a short study of the face lattice of a convex polytope using polarity.

For more information, see the books cited earlier, to which we add Schneider
[907] and Schrijver [915].

14.1 Basic Concepts and Simple Properties of Convex Polytopes

In the following we introduce the notion of convex polytopes and describe two
alternative ways to specify convex polytopes: as convex hulls (V-polytopes) and as
intersections of halfspaces (H-polytopes). An example deals with a result of Gauss
on zeros of polynomials.
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Convex Polytopes and Faces

A convex polytope P in E
d is the convex hull of a finite, possibly empty, set in

E
d . If P = conv{x1, . . . , xn}, then the extreme points of P are among the points

x1, . . . , xn by Minkowski’s theorem 5.5 on extreme points. Thus, a convex polytope
has only finitely many extreme points. If, conversely, a convex body has only finitely
many extreme points, then it is the convex hull of these, again by Minkowski’s theo-
rem. Hence, the convex polytopes are precisely the convex bodies with finitely many
extreme points. The intersection of P with a support hyperplane H is a face of P . It
is not difficult to prove that

(1) H ∩ P = conv(H ∩ {x1, . . . , xn}).
This shows that a face of P is again a convex polytope. The faces of dimension 0 are
the vertices of P . These are precisely the extreme, actually the exposed points of P .
The faces of dimension 1 are the edges of P and the faces of dimension dim P−1 the
facets. The empty set ∅ and P itself are called the improper faces, all other faces are
proper. Since a face of P is the convex hull of those points among x1, . . . , xn which
are contained in it, P has only finitely many faces. Since each boundary point of P
is contained in a support hyperplane by Theorem 4.1, bd P is the union of all proper
faces of P . By F(P) we mean the family of all faces of P , including ∅ and P . The
space of all convex polytopes in E

d is denoted by P = P(Ed) and Pp = Pp(E
d) is

its sub-space consisting of all proper convex polytopes, that is those with non-empty
interior.

Gauss’s Theorem on the Zeros of the Derivative of a Polynomial

In an appendix to his third proof of the fundamental theorem of algebra, Gauss [363]
proved the following result.

Theorem 14.1. Let p be a polynomial in one complex variable. Then the zeros of its
derivative p′ are contained in the convex polygon determined by the zeros of p.

Proof. Let z1, . . . , zn ∈ C be the zeros of p, each written according to its multiplic-
ity. Then

p(z) = a(z − z1) · · · (z − zn) for z ∈ C

with suitable a ∈ C. Let z �= z1, . . . , zn . Dividing the derivative p′(z) by p(z)
implies that

(2)
p′(z)
p(z)

= 1

z − z1
+ · · · + 1

z − zn
= z̄ − z̄1

|z − z1|2 + · · · +
z̄ − z̄n

|z − zn|2 .

Assume now that z is a zero of p′. We have to show that z ∈ conv{z1, . . . , zn}. If z
is equal to one of z1, . . . , zn , this holds trivially. Otherwise (2) shows that

z =
1

|z−z1|2 z1 + · · · + 1
|z−zn |2 zn

1
|z−z1|2 + · · · +

1
|z−zn |2

.

Thus z is a convex combination of z1, . . . , zn . ��
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V-Polytopes and H-Polytopes

Convex polytopes as defined earlier are also called convex V-polytopes. Here V

stands for vertices. Dually, a convex H-polyhedron is the intersection of finitely many
closed halfspaces. A bounded convex H-polyhedron is called a convex H-polytope.

A formal proof of the following folk theorem is due to Weyl [1021], see also
Minkowski [744], Sect. 4.

Theorem 14.2. Let P ⊆ E
d . Then the following statements are equivalent:

(i) P is a convex V-polytope.

(ii) P is a convex H-polytope.

Proof. (i)⇒(ii) We may suppose that dim P = d. P has only finitely many faces.
Since each boundary point of P is contained in a support hyperplane of P by Theo-
rem 4.1, bd P is the union of its proper faces. Connecting an interior point of P with
a line segment which misses all faces of dimension at most d − 2 with an exterior
point, each point where it intersects the boundary of P must be contained in a face
of dimension d − 1, i.e. in a facet. Thus P must have facets. Let Hi , i = 1, . . . ,m,
be the hyperplanes containing the facets of P and H−

i the corresponding support
halfspaces. We claim that

(3) P = H−
1 ∩ · · · ∩ H−

m .

The inclusion P ⊆ H−
1 ∩ · · · ∩ H−

m is trivial. To show the reverse inclusion, let
x ∈ E

d\P . For each of the finitely many faces of P of dimension at most d − 2,
consider the affine hull of the face and x . Choose a point y ∈ int P which is contained
in none of these affine hulls. The intersection of the line segment [x, y] with bd P
then is a point z ∈ bd P which is contained in none of these affine hulls and thus in
none of the faces of P of dimension at most d − 2. Since bd P is the union of all
faces, z is contained in a suitable facet and thus in one of the hyperplanes, say Hi .
Then x �∈ H−

i and therefore x �∈ H−
1 ∩ · · · ∩ H−

m . Hence P ⊇ H−
1 ∩ · · · ∩ H−

m ,
concluding the proof of (3).

(ii)⇒(i) Let P = H−
1 ∩ · · · ∩ H−

m be bounded, where each H−
i , i = 1, · · · ,m,

is a halfspace with boundary hyperplane Hi . Clearly, P is a convex body. By
Minkowski’s theorem 5.5, P is the convex hull of its extreme points. To conclude
the proof that P is a convex polytope, it is thus sufficient to show that P has only
finitely many extreme points. To see this, it is sufficient to prove the following propo-
sition:

(4) Let e be an extreme point of P . Then e is the intersection of a sub-family
of {H1, . . . , Hm}.

By re-indexing, if necessary, we may assume that

e ∈ H1, . . . , Hk, int H−
k+1, . . . , int H−

m .
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It is sufficient to show that

(5) {e} = H1 ∩ · · · ∩ Hk .

If this did not hold, the flat H = H1∩· · ·∩Hk has dimension at least 1 and we could
choose u, v ∈ H, int H−

k+1, . . . , int H−
m , u, v �= e, and such that e = 1

2 (u+ v). Then
u, v ∈ P and we obtain a contradiction to the assumption that e is an extreme point
of P . This proves (5) and thus concludes the proof of (4). ��
Corollary 14.1. Let P, Q ∈ P . Then P ∩ Q ∈ P .

14.2 Extension to Convex Polyhedra and Birkhoff’s Theorem

Many combinatorial and geometric results on convex polytopes have natural exten-
sions to convex polyhedra.

In the following we generalize some of the definitions and the main result of the
last section to convex polyhedra. As a tool, which will be needed later, we give a
simple representation of normal cones of polyhedra. An application of the latter is a
short geometric proof of Birkhoff’s theorem 5.7 on doubly stochastic matrices.

V-Polyhedra and H-Polyhedra

A set P in E
d is a convex V-polyhedron if there are finite sets {x1, . . . , xm} and

{y1, . . . , yn} in E
d such that

P = conv{x1, . . . , xm} + pos{y1, . . . , yn}
= {
λ1x1 + · · · + λm xm : λi ≥ 0, λ1 + · · · + λm = 1

}

+ {
µ1 y1 + · · · + µn yn : µ j ≥ 0

}

= Q +
⋃
{µR : µ ≥ 0} = Q + C,

where

Q = {
λ1x1 + · · · + λm xm : λi ≥ 0, λ1 + · · · + λm = 1

}
,

R = {
µ1 y1 + · · · + µn yn : µ j ≥ 0, µ1 + · · · + µn = 1

}
,

C = {
µ1 y1 + · · · + µn yn : µ j ≥ 0

}
.

Thus P is the sum of a convex polytope Q and a closed convex cone C with apex o
and therefore a closed convex set.

A set P in E
d is a convex H-polyhedron if it is the intersection of finitely many

closed halfspaces, that is

P = {x ∈ E
d : Ax ≤ b},

where A is a real m×d matrix, b ∈ E
m , and the inequality is to be understood compo-

nentwise. This definition abundantly meets the requirements of linear optimization.
A bounded convex H-polyhedron is a convex H-polytope.
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Convex cones which are polyhedra are called polyhedral convex cones. These
may be represented as convex V-cones and convex H-cones. Clearly, polyhedral con-
vex cones are closed.

Support hyperplanes and the notion of (bounded or unbounded) faces, in partic-
ular of vertices, edges and facets, of convex polyhedra are introduced as in the case
of convex polytopes.

We now show that the notions of convex V- and H-polyhedra coincide, as in the
case of convex polytopes.

Theorem 14.3. Let P ⊆ E
d . Then the following statements are equivalent:

(i) P is a convex V-polyhedron.

(ii) P is a convex H-polyhedron.

Proof. The theorem will be proved in several steps:

(1) Let C ⊆ E
d . Then the following are equivalent:

(i) C is a pointed convex V-cone with apex o.
(ii) C is a pointed convex H-cone with apex o.

(i)⇒(ii) Let C = {µ1 y1 + · · · + µn yn : µ j ≥ 0} = ⋃{µT : µ ≥ 0}, where
T = {µ1 y1 + · · · + µn yn : µ j ≥ 0, µ1 + · · · + µn = 1} is a convex polytope. If
o ∈ T , it must be a vertex of T . To see this, note that C is pointed, hence o is an
extreme point of C and thus of T and therefore a vertex of T . Hence o is among the
points y1, . . . , yn . Removing o, the convex hull of the remaining points is a convex
polytope U such that C =⋃{µU : µ ≥ 0} and o �∈ U . Let H be a hyperplane which
strictly separates o and U and let V be the radial projection of U into H with centre
o. V is a convex V-polytope and thus a convex H-polytope in H by Theorem 14.2.
Since C =⋃{µV : µ ≥ 0}, we easily see that C is a convex H-polyhedron.

(ii)⇒(i) Let K = {x : |xi | ≤ 1}. Since C is pointed, o is an extreme point of the
convex polytope C ∩ K and thus a vertex. Hence there is a support hyperplane H
of C ∩ K with (C ∩ K ) ∩ H = {o}. Since C is a cone with apex o, it follows that
C ∩ H = {o}. Let p ∈ C \ {o}. Then the H-polyhedron C ∩ (H + p) is bounded.
Otherwise it contains a ray p + S with o ∈ S ⊆ H , say. Since C is a cone with
apex o, we have µ(p + S) = µp + S ⊆ C for all µ > 0. Since C is closed,
also S = 0p + S ⊆ C , in contradiction to C ∩ H = {o}. Since C ∩ (H + p) is
bounded, it is an H- and thus a V-polytope by Theorem 14.2, say C ∩ (H + p) =
{µ1 y1 + · · · + µn yn : µ j ≥ 0, µ1 + · · · + µn = 1} with suitable y1, . . . , yn ∈ C .
Since C is a convex cone with apex o and C ∩ H = {o}, each ray in C with endpoint
o meets H + p. Together this shows that

C =
⋃{

µ
(
C ∩ (H + p)

) : µ ≥ 0
} = {µ1 y1 + · · · + µn yn : µ j ≥ 0}.

The proof of (1) is complete.

(2) Let C ⊆ E
d . Then the following are equivalent:

(i) C is a convex V-cone with apex o.
(ii) C is a convex H-cone with apex o.
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If (i) or (ii) hold, then C is a closed convex cone with apex o. Hence Proposition 3.3
shows that

C = (C ∩ L⊥)⊕ L ,

where L is the linearity space of C and C ∩ L⊥ is a pointed closed convex cone with
apex o. We may assume that L = {x : x1 = · · · = xc = 0}, L⊥ = {x : xc+1 =
· · · = xd = 0}. Then it is easy to see that

C is a convex
{ V

H

}
-cone ⇐⇒ C ∩ L⊥ is a convex

{ V

H

}
-cone.

An application of (1) then implies (2).

(3) Let P ⊆ E
d . Then the following are equivalent:

(i) P is a convex V-polyhedron.
(ii) P is a convex H-polyhedron.

Embed E
d into E

d+1 as usual and let u = (o, 1) ∈ E
d+1. Consider P + u ⊆ E

d+1

and let C be the smallest closed convex cone with apex o containing P + u.
(i)⇒(ii) Let P = conv{x1, . . . , xm} + pos{y1, . . . , yn}. Then

C = {
(λ1x1 + · · · + λm xm, λ)+ µ1 y1 + · · · + µn yn :
λi ≥ 0, λ1 + · · · + λm = λ, µ j ≥ 0

}

is a convex V- and thus a convex H-cone by (2). Then

P + u = C ∩ {
(x, z) : z ≥ 1,−z ≥ −1

}

is a convex H-polyhedron. This, in turn, shows that P is a convex H-polyhedron.
(ii)⇒(i) Let P = {x : Ax ≤ b}. Then

C = {
(x, z) : z ≥ 0, Ax − bz ≤ o

}

is an H-cone and thus a V-cone by (2), say

C = pos
{
(x1, 1), . . . , (xm, 1), y1, . . . , yn

}

with suitable xi , yi ∈ E
d . Then

P + u = C ∩ (Ed + u)

= {
(λ1x1 + · · · + λm xm, 1)+ µ1 y1 + · · · + µn yn :
λi ≥ 0, λ1 + · · · + λm = 1, µ j ≥ 0

}

and thus

P = {
λ1x1 + · · · + λm xm + µ1 y1 + · · · + µn yn :
λi ≥ 0, λ1 + · · · + λm = 1, µ j ≥ 0

}
.

The proof of (3) and thus of the theorem is complete. ��
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Generalized Convex Polyhedra

For the geometric theory of positive definite quadratic forms, see Sect. 29.4, for
Dirichlet-Voronoı̆ tilings, see Sect. 32.1, and in other contexts, a more general
notion of convex polyhedron is needed: call a closed convex set in E

d a generalized
convex polyhedron if its intersection with any convex polytope is a convex polytope.
A generalized convex polyhedron looks locally like a convex polyhedron, but may
have countably many different faces. An example of a generalized convex polygon
is the set

conv
{
(u, v) ∈ Z

2 : v ≥ u2} ⊆ E
2.

Normal Cones of Polytopes and Polyhedra

Let P be a convex polyhedron and p a boundary point of P . The normal cone NP (p)
of P at p is the closed convex cone of all exterior normal vectors of support hyper-
planes of P at p, that is,

NP (p) =
{
u : u · x ≤ u · p for all x ∈ P

}
.

For later reference we need the following result, where the ai are the row vectors of
the n × d matrix A, the βi the components of the vector b ∈ E

n , and the inequality
Ax ≤ b is to be understood componentwise. We consider the row vectors ai as
vectors in E

d and thus write ai · u instead of aT
i · u for the inner product. Using the

matrix product and considering ai as a row vector, we also write the inner product in
the form ai u.

Proposition 14.1. Let P = {x : Ax ≤ b} be a convex polyhedron and p ∈ bd P.
Assume that ai p = βi precisely for i = 1, . . . , k. Then

(4) NP (p) = pos
{
a1, . . . , ak

}
.

If p is a vertex of P, then

(5) dim NP (p) = d.

Proof. Since NP (p) depends on P only locally and is translation invariant, we may
assume that p = o. Then

NP (p) = NC (o), where C is the closed convex cone {x : Bx ≤ o}
and B is the k× d matrix consisting of the rows a1, . . . , ak . Since each of the hyper-
planes {x : ai · x = ai x = 0} supports C at o, it follows that NC (o) ⊇ {a1, . . . , ak}
and thus

NC (o) ⊇ pos
{
a1, . . . , ak

}
.

To show that equality holds, assume that, on the contrary, there is c ∈ NC (o) \
pos{a1, . . . , ak}. Choose a hyperplane {x : u · x = α} which strictly separates c and
the closed convex cone pos{a1, . . . , ak}, say u · c > α > u · x for each x of the
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form x = λ1a1 + · · · + λkak, λi ≥ 0. Since this holds for all λi ≥ 0, it follows
that u · c > 0 ≥ u · ai = ai · u for i = 1, . . . , k and thus u ∈ C . From u ∈ C and
c ∈ NC (o) we conclude that u · c ≤ 0, a contradiction. Hence, equality holds and the
proof of (4) is complete.

Now suppose that p is a vertex of P . If (5) did not hold, then by (4) we may
choose x �= o such that

ai · (p ± x) = ai · p ± ai · x = ai · p + 0 = βi for i = 1, . . . , k,

while still
ai · (p ± x) < βi for i = k + 1, . . . ,m.

Then p ± x ∈ P . Hence p is not extreme and thus cannot be a vertex of P . This
contradiction concludes the proof of (5). ��

Birkhoff’s Theorem on Doubly Stochastic Matrices

Proposition 14.1 yields an easy geometric proof of Birkhoff’s theorem on doubly
stochastic matrices, compare Barvinok [80]. For definitions and a different proof see
Sect. 5.3.

Theorem 14.4. The set �d of all doubly stochastic d × d matrices is a convex poly-
tope in E

d2
, the vertices of which are precisely the d × d permutation matrices.

Proof. If d = 1, the result is obvious. Assume now that d > 1 and that it holds for
d − 1.
�d may be interpreted as the subset of E

d2
defined by the following equalities

and inequalities

∑

i

xi j = 1,
∑

j

xi j = 1, xi j ≥ 0 for i, j = 1, . . . , d.

Since this subset is bounded, it is a convex polytope. Consider the affine sub-space S

of E
d2

defined by the 2d hyperplanes

∑

i

xi j = 1,
∑

j

xi j = 1 for i, j = 1, . . . , d.

To see that dim S = (d − 1)2, note that among the coefficient matrices
⎛

⎜⎜
⎝

1, 0, . . . , 0
1, 0, . . . , 0
. . . . . . . . .

1, 0, . . . , 0

⎞

⎟⎟
⎠ , . . . ,

⎛

⎜⎜
⎝

0, 0, . . . , 1
0, 0, . . . , 1
. . . . . . . . .

0, 0, . . . , 1

⎞

⎟⎟
⎠ ,

⎛

⎜⎜
⎝

1, 1, . . . , 1
0, 0, . . . , 0
. . . . . . . . .

0, 0, . . . , 0

⎞

⎟⎟
⎠ , . . . ,

⎛

⎜⎜
⎝

0, 0, . . . , 0
0, 0, . . . , 0
. . . . . . . . .

1, 1, . . . , 1

⎞

⎟⎟
⎠

of the 2d hyperplanes there are precisely 2d − 1 linearly independent ones. �d is a
proper convex polytope in the (d−1)2-dimensional affine sub-space S, defined by the
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d2 inequalities xi j ≥ 0. Now let V = (vi j ) be a vertex of �d . By Proposition 14.1
V is the intersection of dim �d = (d − 1)2 defining support planes of �d . Thus
vi j = 0 for some (d − 1)2 entries of V . The doubly stochastic matrix V cannot have
a row consisting only of zeros and if every row would contain at least two non-zero
entries, V would contain at most d(d − 2) < (d − 1)2 zero entries, a contradiction.
Therefore V has a row with precisely one non-zero entry. This entry must then be
1. In the column which contains this entry, all other entries are 0. Cancelling this
row and column we get a (d − 1) × (d − 1) doubly stochastic matrix W , say. If W
were not a vertex of �d−1, it could be represented as the midpoint of two distinct
matrices in �d−1. This also implies that V could be represented as the midpoint
of two distinct matrices in �d , a contradiction. Thus W is a vertex of �d−1 and
therefore a permutation matrix in �d−1 by induction. This then implies that V is a
permutation matrix in �d .

Conversely, each permutation matrix in �d is extreme, and since �d is a poly-
tope, it is a vertex. The induction is complete. ��

14.3 The Face Lattice

The family of all faces of a convex polytope is an (algebraic) lattice with special
properties.

In this section, we study this lattice and show that it is atomic, co-atomic and
complemented. A tool to show this is polarity.

For more information we refer to Grünbaum [453], Schrijver [915] and Ziegler
[1045]. A standard treatise on lattice theory is Grätzer [390].

The Face Lattice of a Convex Polytope

Given P ∈ P , denote by F(P) the family of all faces of P , including the improper
faces ∅ and P . In a first result we describe the simple relation between faces and
faces of faces.

Theorem 14.5. Let P ∈ P . Then the following statements hold:

(i) Let F ∈ F(P) and G ∈ F(F). Then G ∈ F(P).

(ii) Let F,G ∈ F(P) and G ⊆ F. Then G ∈ F(F).

Proof. We may assume that o ∈ G � F .
(i) Choose

HF = {x : u · x = 0}, H = {x ∈ HF : v · x = 0},
such that HF is a support hyperplane of P in E

d and H a support hyperplane of F
in HF with

F = HF ∩ P, G = H ∩ F.

Here u and v are exterior normal vectors. For δ > 0 the hyperplane

HG = {x : (u + δv) · x = 0}
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intersects F along G. If δ > 0 is sufficiently small, then all vertices of P not in G are
in int H−

G . Hence HG is a support hyperplane of P with G = HG ∩ P . This shows
that G is a face of P .

(ii) If G = ∅, F , we are done. If not, choose support hyperplanes HF , HG of P
such that F = HF ∩ P, G = HG ∩ P . This, together with G�F , implies that HF �=
HG and HF ∩ HG is a hyperplane in HF . Since HG supports P and F ⊆ P, HF

and F �⊆ HG , the hyperplane HF ∩ HG in HF supports F . Since G = HG ∩ P ,
G ⊆ F ⊆ P, and F ⊆ HF , we have G = HG ∩ P = HG ∩ F = HG ∩ HF ∩ F .
Hence G is a face of F . ��

The next result shows that F(P) is a lattice.

Theorem 14.6. Let P ∈ P and define binary operations ∧ (intersection) and ∨
(join) on F(P) as follows:

(1) F ∧ G = F ∩ G,
F ∨ G =⋂{

H ∈ F(P) : F,G ⊆ H
}

for F,G ∈ F(P).

Then
〈
F(P),∧,∨〉 is a lattice with zero ∅ and unit element P, the face lattice of P.

Proof. A finite family of sets, which is closed with respect to intersection and con-
tains the empty set ∅ and the union of all sets, is a lattice with respect to the operations
∧,∨ as defined in (1). The zero element of this lattice is ∅ and the unit element is
the union of all sets. For the proof of the theorem it is thus sufficient to show the
following.

(2) Let F,G ∈ F(P). Then F ∩ G ∈ F(P).

If F ∩ G = ∅ or F = G or F = P or G = P , we are done. Otherwise we may
assume that o ∈ F ∩ G. Choose support hyperplanes

HF = {x : u · x = 0}, HG = {x : v · x = 0}
of P , such that

F = HF ∩ P, G = HG ∩ P.

Since F �= G, we have HF �= HG . Thus HF ∩ HG is a support plane (of dimension
d − 2) of P with

F ∩ G = (HF ∩ HG) ∩ P.

The hyperplane
H = {x : (u + v) · x = 0}

is a support hyperplane and

H ∩ P = (HF ∩ HG) ∩ P = F ∩ G,

concluding the proof of (2) and thus of the theorem. ��
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The Face Lattices of P and P∗ are Anti-Isomorphic

We first present a tool, where

P∗ = {
y : x · y ≤ 1 for x ∈ P

}

is the polar of P , see Sect. 9.1.

Proposition 14.2. Let P ∈ P such that o ∈ int P. Then the following statements
hold:

(i) P∗ ∈ P .

(ii) P∗∗ = P.

Proof. (i) Represent P in the form P = conv{x1, . . . , xn}. Then

P∗ = {
y : (λ1x1 + · · · + λn xn) · y ≤ 1 for λi ≥ 0, λ1 + · · · + λn = 1

}

= {
y : xi · y ≤ 1 for i = 1, . . . , n} =

n⋂

i=1

{y : xi · y ≤ 1
}

is an intersection of finitely many closed halfspaces. Since o ∈ int P , there is � > 0
such that �Bd ⊆ P . The definition of polarity then easily yields P∗ ⊆ (�Bd)∗ =
(1/�)Bd . Thus P∗ is bounded. Since P∗ is the intersection of finitely many half-
spaces and is bounded, Theorem 14.2 implies that P∗ ∈ P .

(ii) To show that P ⊆ P∗∗, let x ∈ P . Then x · y ≤ 1 for all y ∈ P∗ by the
definition of P∗. This, in turn, implies that x ∈ P∗∗ by the definition of P∗∗. To
show that P ⊇ P∗∗, let x ∈ E

d\P . The separation theorem 4.4 then provides a point
y ∈ E

d such that x · y> 1 while z · y ≤ 1 for all z ∈ P . Hence y ∈ P∗. From x · y> 1
we then conclude that x �∈ P∗∗ by the definition of P∗∗. The proof that P = P∗∗ is
complete. ��

The following result relates the face lattices of P and P∗, where dim∅ = −1.

Theorem 14.7. Let P ∈ P such that o ∈ int P. Define a mapping ♦ = ♦P by

F♦ = {
y ∈ P∗ : x · y = 1 for x ∈ F

}
for F ∈ F(P),

where, in particular, ∅♦ = P∗ and P♦ = ∅. Then the following statements hold:

(i) ♦ is a one-to-one mapping of F(P) onto F(P∗).
(ii) dim F♦+ dim F = d − 1 for each F ∈ F(P).

(iii) ♦ is an anti-isomorphism of the lattice
〈
F(P),∧,∨〉 onto the lattice〈

F(P∗),∧,∨〉.
By the latter we mean that ♦ is one-to-one and onto and

(F ∧ G)♦ = F♦ ∨ G♦ and (F ∨ G)♦ = F♦ ∧ G♦ for F,G ∈ F(P).
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Proof. The first step is to show the following:

(3) Let F ∈ F(P). Then F♦ ∈ F(P∗).

Let F = conv{x1, . . . , xk}. Then

F♦ = {
y ∈ P∗ : (λ1x1 + · · · + λk xk) · y = 1 for λi ≥ 0, λ1 + · · · + λk = 1

}

= {
y ∈ P∗ : xi · y = 1 for i = 1, . . . , k

} =
k⋂

i=1

{y ∈ P∗ : xi · y = 1}

= P∗ ∩
k⋂

i=1

{y : xi · y = 1}.

(If F = ∅, this shows that F♦ = P∗ if, as usual, the intersection of an empty family
of subsets of E

d is defined to be E
d .) Each of the hyperplanes {y : xi ·y = 1} supports

P∗ (or does not meet P∗) by the definition of P∗. Thus F♦ is the intersection of k
faces of P∗ and hence is a face of P∗ by Theorem 14.6, applied to P∗.

In the second step we prove that

(4) ♦ = ♦P is one-to-one and onto.

For this, it is sufficient to show that

(5) ♦P∗ ♦P = identity and, dually, ♦P ♦P∗ = identity.

Let F ∈ F(P). We have to prove the equality F = F♦♦. To show the inclusion
F ⊆ F♦♦, let x ∈ F . The definition of F♦ then implies that x · y = 1 for all y ∈ F♦.
Hence x ∈ F♦♦ by the definition of F♦♦. To show the reverse inclusion F ⊇ F♦♦,
let x ∈ P = P∗∗, x �∈ F . Consider a support hyperplane H = {z : z · y = 1} of
P such that F = H ∩ P . Then z · y ≤ 1 for all z ∈ P . Hence y ∈ P∗. Further,
z · y = 1 precisely for those z ∈ P for which z ∈ F and thus, in particular, x · y < 1.
By the definition of F♦ we then have y ∈ F♦. This, together with x ∈ P∗∗ and
x · y < 1, finally yields that x �∈ F♦♦ by the definition of F♦♦. The proof of the
equality F = F♦♦ and thus of (5) is complete. (5) implies (4).

The definition of ♦P and proposition (4) readily imply the next statement.

(6) Let F,G ∈ F(P), F � G. Then F♦
� G♦.

In the third step of the proof the following will be shown.

(7) Let F ∈ F(P). Then dim F♦ = d − 1− dim F .

If F = ∅ or P , then F♦ = P∗, resp. ∅ and (7) holds trivially. Assume now that
F �= ∅, P . An argument similar to the one in the proof of Theorem 14.6 shows that
F is a (proper or non-proper) face of a facet of P . Using this, a simple proof by
induction implies that there is a sequence of faces of P , say ∅ = F−1, F0, . . . , F =
Fk, . . . , Fd−1, Fd = P ∈ F(P), such that

(8) ∅ = F−1 � F0 � · · · � F = Fk � · · · � Fd−1 � Fd = P,
where dim Fi = i.
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Then (6) implies that

(9) P = F♦
−1 � F♦

0 � · · · � F♦ = F♦
k � · · · � F♦

d−1 � F♦
d = ∅.

Propositions (4) and (6) and the fact that for faces G, H ∈ F(P) with G � H
holds dim G < dim H together imply that the sequences of inclusions (8) and (9) are
compatible only if dim F♦

i = d − 1 − dim Fi for i = −1, 0, . . . , d. Proposition (7)
is the special case where i = k.

Finally, (i) and (ii) hold by (3), (4) and (7). Since by (3), (4) and (7) the map-

pings ♦P and ♦P∗ = ♦−1
P are onto, one-to-one and inclusion reversing, both are

anti-isomorphisms. This proves (iii). ��

The Face Lattice of P is Atomic, Co-Atomic and Complemented

First, the necessary lattice-theoretic terminology is introduced. Given a lattice L =
〈L,∧,∨〉 with 0 and 1, an atom of L is an element a �= 0, such that there is no
element of L strictly between 0 and a. L is atomic if each element of L is the join of
finitely many atoms. The dual notions of co-atom and co-atomic are defined similarly
with 0,∨ exchanged by 1,∧. The lattice L is complemented if for each l ∈ L there
is an element m ∈ L such that l ∧ m = 0 and l ∨ m = 1.

Our aim is to show the following properties of the face lattice.

Theorem 14.8. Let P ∈ P . Then the following statements hold:

(i)
〈
F(P),∧,∨〉 is atomic and co-atomic.

(ii)
〈
F(P),∧,∨〉 is complemented.

Proof. We may assume that o ∈ int P . Let P = conv{v1, . . . , vn}, where the vi are
the vertices of P . Let F1, . . . , Fm be the facets of P .

(i) Clearly, v1, . . . , vn are the atoms and F1, . . . , Fm the co-atoms of F(P).
Given F ∈ F(P), F is the convex hull of the vertices contained in it, say v1, . . . , vk .
Then F is the smallest set in F(P) with respect to inclusion which contains
v1, . . . , vk . Hence F = v1 ∨ · · · ∨ vk . That is, F(P) is atomic. To see that it is
co-atomic, let F ∈ F(P) and consider the face F♦ ∈ F(P∗). We have just proved
that the face lattice of any convex polytope is atomic. Thus, in particular, F(P∗) is
atomic. This shows that F♦ = w1 ∨ · · · ∨wl for suitable vertices w1, . . . , wl of P∗.
Now apply ♦P∗ and take into account Theorem 14.7 and that ♦P ♦P∗ is the identity
to see that

F = F♦P♦P∗ = (w1 ∨ · · · ∨ wk)
♦P∗ = w♦P∗

1 ∧ · · · ∧ w♦P∗
l .

Sincewi is a vertex of P∗, the setw♦P∗
i is a face of P of dimension d−1 by Theorem

14.7 (i), i.e. a facet of P . Thus F(P) is co-atomic.
(ii) Let F ∈ F(P). If F = ∅ or P, then G = P , respectively, ∅ is a complement

of F . Assume now that F �= ∅, P . Let G ∈ F(P) be a maximal face disjoint from
F . Clearly, F ∧ G = ∅. For the proof that F ∨ G = P , it is sufficient to show
that the set of vertices in F and G is not contained in a hyperplane. Assume that, on
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the contrary, there is a hyperplane HFG which contains all vertices of F and G and
thus F and G. Let HG be a support hyperplane of P with G = HG ∩ P . Clearly
HG �= HFG . Rotate HG keeping the (d − 2)-dimensional plane HG ∩ HFG fixed to
the first position, say H , where it contains a further vertex v of P , not in HFG . Then
H is a support hyperplane of P and H ∩ P is a face E of P with E � G and such
that E ∩ HFG = G. Hence E ∩ F = ∅. This contradicts the maximality of G. ��

14.4 Convex Polytopes and Simplicial Complexes

A (finite) simplicial complex C in E
d is a family of finitely many simplices in E

d such
that for any S ∈ C each face of S is also in C and for any S, T ∈ C, the intersection
S ∩ T is a face of both S and T . In topology a (convex or non-convex) polytope is
defined to be the union of all simplices of a simplicial complex in E

d , see Alexandroff
and Hopf [9] or Maunder [698]. The problem arises, whether a convex polytope P in
the sense of convex geometry can be obtained in this way. In some cases even more is
demanded, the vertices of the simplices all should be vertices of P . If the latter holds,
we speak of a simplification of P . That simplifications always exist seems to be well
known. Anyhow, this result is used by several authors, including Macdonald [675],
Ehrhart [292, 293] and Betke and Kneser [108] without further comment. Thus it is
important in our context, see Sects. 19.1, 19.2 and 19.4. For convex polytopes a proof
was communicated to the author by Peter Mani-Levitska [685] and only then we
found the proof of Edmonds [286] in the literature. Edmonds’s idea is also described
by Lee [635, 636]. Since these proofs are essentially different, and each contains an
interesting idea, both are presented.

Convex Polytopes have Simplifications

Our aim is to prove the following result.

Theorem 14.9. Let P ∈ P . Then P has a simplification.

The k-skeleton k-skel P of a convex polytope P in E
d is the union of its faces of

dimension ≤ k. By a simplification of k-skel P we mean simplifications of the faces
of P of dimension ≤ k which fit together at common sub-faces. Let f0(P) denote
the number of vertices of P .

Proof (by Edmonds). We may assume that P is proper. By induction, the following
will be shown.

(6) Let k ∈ {0, 1, . . . , d}. Then each face of P of dimension ≤ k has a simpli-
fication. These simplifications together form a simplification of k-skel P .

Consider a linear ordering of the set of vertices of P . Clearly, (6) holds for k = 0.
Assume now, that k > 0 and that (6) holds for k − 1. We construct a simplification
of k-skel P as follows. Let F be a face of P with dim F = k. By the induction
assumption, all proper faces of F have a simplification. Let p be the first vertex of
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P in F . For any proper face G of F , which is disjoint from {p}, consider the convex
hulls of p and the simplices of the simplification of G. Since p is not in the affine
hull of G, these convex hulls are all simplices. As G ranges over the proper faces of
F which do not contain p, the simplices thus obtained form a simplification of F .

If H is a proper face of F which contains p, then the simplification of F just
constructed, if restricted to H , forms a simplification of H . Being the first vertex of
P in F , the vertex p is also the first vertex of P in H . Hence the earlier simplification
of H coincides with the simplification of H constructed in an earlier step of the
induction.

The simplifications of the faces of P of dimension k thus fit together if such
faces have a face of dimension less than k in common. Hence the simplifications of
the faces of P of dimension k together form a simplification of k-skel P .

The induction and thus the proof of (6) is complete. The theorem is the case
k = d of (6). ��
Proof (by Mani-Levitska). It is sufficient to prove the Theorem for proper convex
polytopes. The proof is by (a strange) induction where the dimension d is variable.

(7) Let k ∈ N and let P be a proper convex polytope in (some) E
d such that

k = f0(P)− d. Then P has a simplification.

For k = 1, f0(P)− d = 1, i.e. f0(P) = d + 1. Since P is proper, it is a simplex
and (7) holds trivially. Assume now that k > 1 and that (7) holds for k−1. We have to
establish it for k. Let P be a proper convex polytope in E

d such that f0(P)− d = k.
Then f0(P) = d + k > d + 1. Embed E

d into E
d+1 as usual (first d coordinates)

and let “ ′ ” denote the orthogonal projection of E
d+1 onto E

d . Choose a proper
convex polytope Q in E

d+1 such that Q′ = P, f0(Q) = f0(P) and such that Q has
precisely one vertex above each vertex of P and no other vertices. Let L be the lower
side of bd Q with respect to the last coordinate. L is the union of certain faces of Q.
Since f0(Q) − dim Q = f0(P) − (d + 1) < k, the proper convex polytope Q by
the induction assumption has a simplification, say C. Then {S′ : S ∈ C, S ⊆ L} is a
simplification of P .

This concludes the induction and thus proves the theorem. ��

15 Combinatorial Theory of Convex Polytopes

Euler’s polytope formula of 1752, praised by Klee [592] as the first landmark in
the combinatorial theory of convex polytopes, led to a voluminous literature both in
topology and convex geometry. Major contributors in convex geometry are Schläfli,
Eberhard, Brückner, Schoute, Dehn, Sommerville, Steinitz, Hadwiger, Alexandrov
and numerous living mathematicians. Investigations deal with f -vectors, graphs and
boundary complexes, algorithms and matroids. Several relations to linear optimiza-
tion are known.

In this section we consider the Euler polytope formula and its converse due to
Steinitz for d = 3, shellings and the Euler polytope formula for general d and its
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modern aftermath. Then the problem whether a graph can be realized as the edge
graph of a convex polytope is studied. Balinski’s theorem and the Perles–Blind–
Mani theorem for simple graphs are given as well as the Steinitz representation the-
orem. Next we touch the problem whether a polytopal complex can be realized as
the boundary complex of a convex polytope. Finally, combinatorial types of convex
polytopes are discussed.

For more information we refer to the books of Grünbaum [453], McMullen
and Shephard [718], Brøndsted [171], Ziegler [1045], Richter-Gebert [833] and
Matoušek [695], the historical treatise of Federico [318], the proceedings [346],
[562] and the surveys of Klee and Kleinschmidt [595] and Bayer and Lee [83].

15.1 Euler’s Polytope Formula and Its Converse by Steinitz for d = 3

A result which readily implies Euler’s [312, 313] polytope formula was given by
Descartes around 1630. The original manuscript was lost, but a handwritten copy by
Leibniz of 1676 survived. It was found in 1860 in the Royal Library of Hanover,
immediately published and inserted into the collected works of Descartes [261]. See
the comment of Federico [318]. In their fundamental treatise on topology Alexan-
droff and Hopf [9], p.1, write,

... - the discovery of the Euler (more correctly: Descartes-Euler) polytope theorem
may be considered the first important event in topology (1752).

Below we define f -vectors and state the basic problem on f -vectors. Then two
versions of the Euler polytope formula are presented, one for convex polytopes in E

3,
the other one for planar graphs. Finally, the converse of Euler’s formula by Steinitz
is presented. Since graphs will be used extensively in Sects. 15.4 and 34.1, the nec-
essary graph-theoretic terminology is described in some detail.

The f -Vector of a Convex Polytope

Let P ∈ P be a convex polytope. Its f -vector f = f (P) is the d-tuple

f = ( f0, f1, . . . , fd−1),

where fi = fi (P) is the number of i-dimensional faces of P . In particular, f0 is
the number of vertices of P . A basic task of combinatorial polytope theory is the
following.

Problem 15.1. Characterize among all d-tuples of positive integers the f -vectors of
proper convex polytopes in E

d .

For d = 1, 2, this problem is trivial. For d = 3 its solution follows from Euler’s
polytope formula and its converse by Steinitz, see later. For d > 3 it is open, but a
lot of far-reaching contributions have been given, see the discussion in Sect. 15.2.
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Euler’s Polytope Formula for d = 3

Theorem 15.1. Let P be a proper convex polytope in E
3 with v vertices, e edges and

f facets, i.e. f (P) = (v, e, f ). Then

v − e + f = 2, v ≤ 2 f − 4, f ≤ 2v − 4.

Euler’s original proof lacked an argument of the type of Jordan’s curve theorem
for polygons which then was not available. Since the curve theorem for polygons is
easy to show (see, e.g. Benson [96]), this criticism of Euler’s proof should not be
taken too seriously. The first rigorous proof seems to have been that of Legendre
[639]. Before presenting it, we show the following lemma, actually a special case
of the Gauss–Bonnet theorem. By a convex spherical polygon on the 2-dimensional
unit sphere S2, we mean the intersection of S2 with a closed convex polyhedral cone
with apex o.

Lemma 15.1. The area of a convex spherical polygon on S2, the boundary of which
consists of n great circular arcs and with interior angles α1, . . . , αn at the vertices,
is α1 + · · · + αn − (n − 2)π .

Proof. Since the polygon may be dissected into convex spherical triangles, it is suffi-
cient to prove the lemma for convex spherical triangles. Let T be a spherical triangle
on S2 with interior angles α, β, γ . Consider the three great circles containing the
edges of T . Each pair of these great circles determines two spherical 2-gons, one
containing T , the other one containing −T . The interior angles of these six 2-gons
are α, α, β, β, γ, γ . Hence these 2-gons have areas (Fig. 15.1)

α

2π
4π = 2α, 2α, 2β, 2β, 2γ, 2γ.

The 2-gons cover each of T and −T three times and the remaining parts of S2 once.
Thus we have for the area A(T ) of T ,

α

β

γ

Fig. 15.1. Area of a spherical triangle
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4A(T )+ 4π = 2α + 2α + 2β + 2β + 2γ + 2γ, or A(T ) = α + β + γ − π. ��
Proof of the polytope formula. We may assume that o ∈ int P . Projecting bd P from
o radially onto S2 yields a one-fold covering of S2 by f convex spherical polygons.
Apply the above lemma to each of these polygons. Note that the sum of the interior
angles of such polygons at a common vertex is 2π and that each edge is an edge of
precisely two of these polygons, and add. Then

(1) A(S2) = 4π = 2πv − 2πe + 2π f, or v − e + f = 2.

Since each edge is incident with two vertices and each vertex with at least three
edges, it follows that

3v ≤ 2e, similarly, 3 f ≤ 2e.

By (1),
−2v = −2e + 2 f − 4, −2 f = −2e + 2v − 4.

Adding then yields that

v ≤ 2 f − 4, f ≤ 2v − 4. ��

Abstract Graphs, Graphs and Realizations

Before proceeding to the graph version of Euler’s formula, some notation will be
introduced.

A (finite) abstract graph G consists of two sets, the set of vertices V = V(G) =
{1, . . . , v} and the set of edges E = E(G) which consists of two-element subsets of
V. If {u, w} is an edge, we write also uw for it and call w a neighbour of u and vice
versa. If a vertex is contained in an edge or an edge contains a vertex then the vertex
and the edge are incident. If two edges have a vertex in common, they are incident
at this vertex. A path is a sequence of edges such that each edge is incident with the
preceding edge at one vertex and with the next edge at the other vertex. We may write
a path also as a sequence w1w2 · · ·wk of vertices. We say that it connects the first
and the last vertex of this sequence. A path is a cycle if the first and the last vertex
coincide. A cycle which consists of k edges is a k-cycle. G is connected if any two
distinct of its vertices are connected by a path. If G has at least k + 1 vertices, it is k-
connected if any two distinct vertices can be connected by k paths which, pairwise,
have only these vertices in common. With some effort it can be shown that this is
equivalent to the following. The graph which is obtained from G by deleting any set
of k − 1 vertices and the edges incident with these, is still connected.

More geometrically, by definition, a (finite) graph consists of a finite point set
in some space, the set of vertices and, for each of a set of pairs of distinct vertices,
of a continuous curve which connects these vertices and contains no vertex in its
relative interior. These curves form the set of edges. The notions and notations which
were defined earlier for abstract graphs are defined for graphs in the obvious way.
Two graphs G,H, one or both of which may be abstract, are isomorphic if there is a
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bijection between V(G) and V(H) which maps (endpoints of) edges onto (endpoints
of) edges in both directions.

A graph in E
2 (or C or C ∪ {∞}) is planar if no two edges of it cross. More

generally, an abstract graph or a graph is called planar if it is isomorphic to a planar
graph in E

2. The isomorphic image in E
2 then is a planar realization of the given,

possibly abstract graph. There are simple criteria for planarity. Let G be a planar
connected graph in E

2. Omitting from E
2 the vertices and edges of G leaves a finite

system of connected open sets, the countries of G, often called domains of G. Since
G is connected, the bounded countries are simply connected. If G is considered as
embedded into C ∪ {∞}, also the unbounded country is simply connected. It is easy
to see that each planar graph in E

2 is isomorphic to a planar graph in E
2 the edges of

which are polygonal curves.
The edge graph G(P) of a proper convex polytope P is the graph consisting of

the vertices and the edges of P . If dim P = 3, then G(P) is planar.
For more information on geometric graph theory, see Nishizeki and Chiba [772],

Bollobás [142], Mohar and Thomassen [748] and Felsner [332].

Euler’s Formula for Graphs in E
2

We will show the following result.

Theorem 15.2. Let G be a connected planar graph in E
2 with v vertices, e edges and

f countries. Then
v − e + f = 2.

Proof. Define the Euler characteristic χ(H) of a connected planar graph H in E
2

as the number of vertices minus the number of edges plus the number of countries
of H, including the unbounded country. For simplicity, we assume that all graphs
considered have polygonal curves as edges.

The following proposition is well-known.

(2) Let a graph K in E
2 arise from a connected planar graph H in E

2 by one of
the following two operations:

(i) Consider a polygonal curve connecting a vertex of H with a point in a
country of H and which contains no vertex or point on an edge of H in
its relative interior. Add this curve to the edges of H and its endpoint to
the vertices.

(ii) Consider a polygonal curve connecting two vertices of H and which
contains no vertex or point on an edge of H in its relative interior. Add
this curve to the edges of H.

Then χ(K) = χ(H).
Since G is connected, it can be constructed by finitely many operations as

described in (2), beginning with a graph consisting of a single vertex which has
Euler characteristic 2. Proposition (2) then shows that χ(G) = 2. ��
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Corollaries of Euler’s Formula for Graphs in E
2

The following consequences of Euler’s formula will be needed later.

Corollary 15.1. Let H be a planar graph in E
2 with v vertices, e edges and f coun-

tries. If H contains no 3-cycle, then

(3) e ≤ 2v − 4.

Here equality holds if and only if H is 2-connected and each country of H has a
boundary 4-cycle.

Proof. Assume, first, that H is 2-connected. Then each edge is on the boundary of
two distinct countries of H. Since the boundary cycles of the countries are at least
4-cycles, we see that

4 f ≤ 2e,

where equality holds if and only if each country of H has a boundary 4-cycle. Since

8 = 4v − 4e + 4 f,

by Euler’s formula, addition yields (3), where equality holds if and only if each
country of H has a boundary 4-cycle.

If H is not 2-connected, there is inequality in (3) as can be shown by induction
on v by dissecting H into two or more sub-graphs which have, pairwise, at most one
vertex in common. ��
Corollary 15.2. Let H be a planar 3-connected graph in E

2. Then there is a vertex
incident with three edges or a country with a boundary 3-cycle.

Proof. Let v, e, f denote the numbers of vertices, edges and countries of H, respec-
tively. Since H is 3-connected and each country has a boundary cycle consisting of
at least 3 vertices, we may represent v and f in the form

v = v3 + v4 + · · · , f = f3 + f4 + · · · ,
where vk is the number of vertices which are incident with precisely k edges and fk

is the number of countries the boundary cycle of which consists of precisely k edges.
Each edge is incident with precisely two vertices and, noting that H is 3-connected,
each edge is on the boundary of precisely two countries. Hence

2e = 3v3 + 4v4 + · · · = 3 f3 + 4 f4 + · · ·
Euler’s formula then yields,

8 = 4v − 4e + 4 f = 4v3 + 4v4 + 4v3 + · · · − 3v3 − 4v4 − 5v5 − · · ·
− 3 f3 − 4 f4 − 5 f5 − · · · + 4 f3 + 4 f4 + 4 f5 + · · ·

= v3 − v5 − 2v6 − · · · + f3 − f5 − 2 f6 − · · · ≤ v3 + f3. ��
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The Converse of Euler’s Polytope Formula for d = 3 by Steinitz

Steinitz [962, 965] proved the following converse of Euler’s formula, perhaps con-
jectured already by Euler. Together with Euler’s polytope formula, it yields a char-
acterization of the f -vectors of convex polytopes in E

3.

Theorem 15.3. Let v, e, f be positive integers such that

v − e + f = 2, v ≤ 2 f − 4, f ≤ 2v − 4.

Then there is a proper convex polytope in E
3 with v vertices, e edges and f facets.

Proof. Clearly, we have the following proposition.

(4) Let P0 be a proper convex polytope in E
3 with f -vector (v0, e0, f0).

Assume that P has at least one vertex incident with three edges and at least
one triangular facet. By cutting off this vertex, resp. by pasting a suitable
triangular pyramid to P at this facet we obtain proper polytopes with f -
vectors (v0+ 2, e0+ 3, f0+ 1), and (v0+ 1, e0+ 3, f0+ 2), respectively,
satisfying the same assumption.

A consequence of this proposition is the following.

(5) Let P0 be as in (4) with f -vector (v0, e0, f0). By repeating the cutting
process i times and the pasting process j times, we obtain a proper con-
vex polytope with f -vector (v0 + 2i + j, e0 + 3i + 3 j, f0 + i + 2 j).

To prove the theorem note that, by assumption,

2v − f − 4, 2 f − v − 4

are non-negative integers. Their difference is divisible by 3. Thus they give the same
remainder on division by 3, say r ∈ {0, 1, 2}. Hence there are non-negative integers
i, j , such that

2v − f − 4 = 3i + r, 2 f − v − 4 = 3 j + r

and thus

(6) v = (4+ r)+ 2i + j, f = (4+ r)+ i + 2 j.

Take for P0 a pyramid with basis a convex (3 + r)-gon. The f -vector of P0 is the
vector

(4+ r, 6+ 2r, 4+ r).

Applying (5) to this P0 with the present values of i and j , we obtain a convex poly-
tope P with v vertices and f facets, see (6). By Euler’s polytope formula, P has
e = v + f − 2 edges. ��
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15.2 Shelling and Euler’s Formula for General d

The first attempt to extend Euler’s polytope formula to general d goes back to Schläfli
[888] in 1850 in a book which was published only in 1901. His proof that, for the
f -vector of a proper convex polytope P in E

d , we have,

(1) f0 − f1 +− · · · + (−1)d−1 fd−1 = 1− (−1)d

made use of an argument of the following type. The boundary of P can be built up
from a given facet F1 by successively adding the other facets in a suitable order, say
F2, . . . , Fm , such that (F1∪· · ·∪Fi−1)∩Fi is homeomorphic to a (d−2)-dimensional
convex polytope for i = 2, . . . ,m−1. Schläfli, and later other mathematicians, seem
to have thought that the existence of such a shelling was obvious; see the references
in Grünbaum [453]. After many unsuccessful attacks, in particular in the 1960s, this
was proved in an ingenious way by Bruggesser and Mani [172] in 1970. Before that,
the only elementary proof of the formula (1) was that of Hadwiger [467].

A topological proof of (1), by Poincaré [807, 808], also had serious gaps.
Rigorous proofs in the context of topology were given only in the 1930s when the
necessary algebraic-topological machinery was available. For this information I am
indebted to Matthias Kreck [617].

The shelling result of Bruggesser and Mani, which yields a simple proof of (1), is
also a tool to prove the equations of Dehn [251] and Sommerville [948] for f -vectors
and is used in the striking proof of the upper bound conjecture by McMullen [705].

The problem of characterizing the f -vectors of convex polytopes is settled for
d = 2 where it is trivial, and for d = 3, see the preceding section. For d > 3 it is
far from a solution, but there are important contributions towards it. For simplicial
convex polytopes a characterization was proposed by McMullen [707] in the form of
his celebrated g-conjecture. The g-conjecture was proved by Billera and Lee [116]
and Stanley [951], see also McMullen [715].

In this section we present the shelling result of Bruggesser and Mani and show
how it leads to Euler’s polytope formula (1) for general d. Then other relations for
f -vectors are discussed.

Shellings are treated by Björner and Björner et al. [121, 122] and from the volu-
minous literature on f -vectors we cite the books of Grünbaum [453], McMullen and
Shephard [718], Brøndsted [171] and Ziegler [1045] and the surveys of Bayer and
Lee [83] and Billera and Björner [115].

Polytopal Complexes and Shellings

A (finite) abstract complex C is a family of subsets of {1, . . . , v}, the faces of C, such
that ∅, {1}, . . . , {v} ∈ C and for any two faces F,G ∈ C also F ∩ G ∈ C. The faces
{1}, . . . , {v} are called the vertices of C.

Closer to convexity, we define a (finite) polytopal complex C to be a finite family
of convex polytopes in E

d , called the faces of C, such that any (geometric) face of a
polytope in C belongs also to C and the intersection of any two polytopes in C is a
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(geometric) face of both of them, and thus is contained in C. (What we call a poly-
topal complex is often called a polyhedral complex. The reason for our terminology
is that we want to stress that our complexes consist of convex polytopes and not of,
possibly, unbounded convex polyhedra.) The underlying set of C is the union of all
polytopes in C. The dimension of C, dim C, is the maximum dimension of a polytope
in C. The complex C is pure if any polytope in C is a (geometric) face of a polytope
in C of dimension dim C. Two (abstract or geometric) complexes are isomorphic if
there is a bijection between their (abstract or geometric) vertices which preserves
their (abstract or geometric) faces in both directions.

Given a convex polytope P in E
d , the family of all its (geometric) faces, includ-

ing ∅ and P , is a polytopal complex, the complex C = C(P) of P . Also the family
of all its proper (geometric) faces, including ∅, is a polytopal complex, the boundary
complex C(relbd P) of P . See Theorems 14.5 and 14.6.

By a shelling of a convex polytope P or, more precisely, of its boundary complex
C(relbd P), we mean a linear ordering F1, . . . , Fm of the facets of P such that either
dim P = 0, 1, or which otherwise satisfies the following conditions:

(i) (The boundary complex of) F1 has a shelling.

(ii) For i = 2, . . . ,m we have (F1 ∪ · · · ∪ Fi−1) ∩ Fi = G1 ∪ · · · ∪ G j ,

where j ≤ k and G1 = Gi1, . . . ,Gk = Gik is a shelling of Fi .

The Bruggesser-Mani Shelling Theorem

Before stating this result, we present a simple property of shellings.

Proposition 15.1. Let G1, . . . ,Gk be a shelling of a convex polytope F. Then
Gk, . . . ,G1 is also a shelling of F.

Proof (by induction on d = dim F). The assertion clearly holds for d = 0, 1.
Assume now that d > 1 and that it holds in dimension d − 1. We prove it for F .
First, each Gi and thus, in particular, Gk is shellable by (i) and (ii). Second, let
i < k. By (ii),

(2) (G1 ∪ · · · ∪ Gi−1) ∩ Gi = H1 ∪ · · · ∪ Hj ,

where j ≤ n and H1, . . . , Hn is a shelling of Gi . For each facet Hl of Gi there is a
unique facet Gm of F such that Hl = Gi ∩ Gm . Thus (2) implies that

Gi ∩ (Gi+1 ∪ · · · ∪ Gk) = Hj+1 ∪ · · · ∪ Hn .

Now note that Hn, . . . , H1 is also a shelling of Gi by induction. The induction is
complete. ��

The Bruggesser-Mani shelling theorem is as follows:

Theorem 15.4. Convex polytopes are shellable.
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Proof. Actually, we prove slightly more.

(3) Let P ∈ Pp and let p ∈ E
d\P be a point not contained in the affine hull of

any facet of P . Then there is a shelling of P where the facets of P which
are visible from p come first.

Clearly, (3) holds in case d = 1. Assume now that d > 1 and (3) holds for d − 1.
Choose a line L through p which meets int P , is not parallel to any facet of P , and
intersects the affine hulls of different facets of P in distinct points. Orient L such that
p is in the positive direction relative to P . Starting at the point where L leaves P ,
move along L in the positive direction to infinity and, from there, return again along
L but from the opposite direction (Fig. 15.2).

Order the facets of P as they become visible on our flight before we reach infin-
ity and as they disappear on the horizon on the flight back. This gives an ordering
F1, . . . , Fm of the facets of P such that

(4) In the ordering F1, . . . , Fm the facets visible from p come first.

We will show that

(5) F1, . . . , Fm is a shelling of P .

F1 is shellable by induction. If Fi , i > 1, appears in the ordering before we reach
infinity, then

(F1 ∪ · · · ∪ Fi−1) ∩ Fi

consists precisely of those facets of Fi which are visible from pi , where {pi } =
L ∩ aff Fi . By induction, these facets appear first in a shelling of Fi . If Fi appears
after we have reached infinity, then

(F1 ∪ · · · ∪ Fi−1) ∩ Fi

L

F6

F4

F2

F5

P

p

L

F3

F8

F7

F1

Fig. 15.2. Shelling
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consists precisely of those facets of Fi which are not visible from pi . By induction,
these facets come last in a shelling of Fi . The earlier proposition then says that these
facets come first in a different shelling of Fi . Hence F1, . . . , Fm , in fact, is a shelling
of P , concluding the proof of (5). Having proved (4) and (5), the induction and thus
the proof of (3) is complete. ��

The Euler Characteristic of Polytopal Complexes

In Sect. 7.1 we have defined the Euler characteristic χ on the lattice of polytopes, i.e.
for finite unions of convex polytopes. It is the unique valuation which is 1 for convex
polytopes.

Here, the Euler characteristic χ(C) of a polytopal complex C is defined by

χ(C) = f0 − f1 +− · · · ,
where fi = fi (C), i = 0, 1, . . . , d, is the number of convex polytopes in C of
dimension i . f0 is the number of vertices, f1 the number of edges, etc. If C and
D are complexes such that C ∪ D is also a complex, that is, P ∩ Q ∈ C ∩ D for
P ∈ C and Q ∈ D, then the following additivity property holds, as can be shown
easily,

χ(C ∪D)+ χ(C ∩D) = χ(C)+ χ(D).
In other words, χ is a valuation on the family of polytopal complexes.

It can be shown that the Euler characteristic (in the present sense) of a polytopal
complex and the Euler characteristic (in the sense of Sect. 7.1) of the underlying
polytope coincide.

The Euler polytope formula for general d

shows that the Euler characteristic of the boundary complex of a convex polytope
can be expressed in a very simple form.

Theorem 15.5. Let P ∈ Pp. Then

χ
(
C(bd P)

) = f0 − f1 +− · · · + (−1)d−1 fd−1 = 1− (−1)d , χ
(
C(P)

) = 1.

Proof. It is sufficient to show the following, where C(F1 ∪ · · · ∪ Fi ) is the polytopal
complex consisting of the facets F1, . . . , Fi and all their faces:

(6) Let P ∈ Pp and let F1, . . . , Fm, m = fd−1, be a shelling of P . Then

(i) χ
(
C(Fi )

) = 1 for i = 1, . . . ,m.

(ii) χ
(
C(F1 ∪ · · · ∪ Fi )

) =
{

1 for i = 1, . . . ,m − 1.
1− (−1)d for i = m.

(iii) χ
(
C(P)

) = 1.

The proof of (6) is by induction. (6) is clear for d = 1. Assume now that d > 1 and
that (6) holds for d − 1. By induction, (iii) implies that
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(7) χ
(
C(Fi )

) = 1 for i = 1, . . . ,m,

settling (i). The assertion for i = 1 in (ii) is a consequence of (i). Assume next that
1 < i < m. Then

(8) χ
(
C(F1 ∪ · · · ∪ Fi )

)

= χ(C(F1 ∪ · · · ∪ Fi−1)
)+ χ(C(Fi )

)− χ(C((F1 ∪ · · · ∪ Fi−1) ∩ Fi )
)

= χ(C(F1 ∪ · · · ∪ Fi−1)
)+ 1− χ(C(G1 ∪ · · · ∪ G j )

)

= χ(C(F1 ∪ · · · ∪ Fi−1)
)+ 1− 1

= χ(C(F1 ∪ · · · ∪ Fi−1)
) = · · · = χ(C(F1)

) = 1

by the additivity of χ , where j < k, G1, . . . ,Gk is a shelling of Fi and we have used
induction on (ii) and (7). Assume next that i = m. Then

χ
(
C(F1 ∪ · · · ∪ Fm)

)

= χ(C(F1 ∪ · · · ∪ Fm−1)
)+ χ(C(Fm)

)− χ(C(F1 ∪ · · · ∪ Fm−1) ∩ Fm
)

= 1+ 1− (
1− (−1)d−1) = 1+ (−1)d

by the additivity of χ , (8), (7), noting that C((F1∪· · ·∪ Fm−1)∩ Fm) is the boundary
complex of Fm , and induction on (ii). The proof of (ii) is complete. To show (iii),
note that C(P) is obtained from C(F1 ∪ · · · ∪ Fm) by adding P . Hence the definition
of χ shows that

χ
(
C(P)

) = χ(C(F1 ∪ · · · ∪ Fm)
)+ (−1)d = 1− (−1)d + (−1)d = 1.

This settles (iii). The induction and thus the proof of (6) is complete. ��
Remark. It can be shown that the Euler polytope formula is the only linear relation
which is satisfied by the f -vectors of all d-dimensional convex polytopes.

The Dehn–Sommerville Equations and McMullen’s g-Theorem

At present a characterization of all f -vectors of proper convex polytopes, i.e. a
solution of Problem 15.1 for d > 3, seems to be out of reach. But for simplicial
and simple convex polytopes this can be done. These are convex polytopes all facets
of which are simplices, resp. convex polytopes, each vertex of which is incident with
precisely d edges. We consider only the simplicial case.

Dehn [251] (d = 5) and Sommerville [948] (general d) specified � d+1
2 � indepen-

dent linear equations, including the Euler polytope formula (1), which are satisfied
by the f -vectors of all proper simplicial convex polytopes. It can be shown that there
is no linear relation independent of the Dehn–Sommerville equations which is satis-
fied by the f -vectors of all proper simplicial convex polytopes, see Grünbaum [453],
Sect. 9.2.

McMullen [707] stated in 1970 a characterization of the set of all f -vectors of
proper simplicial convex polytopes in E

d , the g-conjecture. This conjecture was con-
firmed by the efforts of Stanley [951], who used heavy algebraic machinery (neces-
sity of McMullen’s conditions) and Billera and Lee [116] (sufficiency). See also
McMullen [715].
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The Lower and the Upper Bound Theorem

It is a natural question to determine the best lower and upper bounds for fi (P), i =
1, . . . , d − 1, for all convex polytopes P with given n = f0(P) (or fk(P) for given
k). The best lower bounds are attained by so-called stacked polytopes, as shown by
Barnette [73, 74]. In particular,

fd−1(P) ≥ (d − 1)n − (d + 1)(d − 2).

The best upper bounds are attained by so-called neighbourly polytopes. This was
shown by McMullen [705], thereby confirming Motzkin’s [758] upper bound
conjecture. In particular,

fd−1(P) ≤ 2

d
2∑∗

i=0

(
n − d − 1+ i

i

)
,

where
d
2∑∗

i=0

ai =
{

a0 + · · · + a d−1
2

for d odd,

a0 + · · · + a d−2
2
+ 1

2 a d
2

for d even.

15.3 Steinitz’ Polytope Representation Theorem for d = 3

The edge graph of a proper convex polytope P in E
3 is planar and 3-connected.

To see the former property, project the 1-skeleton of P from an exterior point of P
which is sufficiently close to a given relative interior point of a facet F of P onto
a plane parallel to F on the far side of P . For the latter property, see Theorem 15.8
later. The proof that, conversely, a planar, 3-connected graph can be realized as the
edge graph of a convex polytope in E

3 is due to Steinitz [963,965]. Grünbaum [453],
Sect. 13.1, stated in 1967 that this is

The most important and deepest known result on 3-polytopes . . .

So far, it has resisted extension to higher dimensions. Since the determination of the
face lattices of 4-dimensional convex polytopes is NP-hard, almost surely there is no
such extension. In spite of this, the Steinitz theorem led to a collection of non-trivial
results of modern polytope theory centred around the following questions.

Problem 15.2. Characterize, among all graphs or in a given family of graphs, those
which can be realized as edge graphs of convex polytopes.

Problem 15.3. Given the edge graph of a convex polytope, what can be said about
the polytope?

In this section we give a short proof of the Steinitz theorem using the Koebe–
Brightwell–Scheinerman representation theorem 34.1 for planar graphs. Section 15.4
contains further contributions to these problems.
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For additional information the reader may consult the books of Grünbaum [453],
Ziegler [1045], Richter-Gebert [833] and Matoušek [695] and the surveys of Bayer
and Lee [83] and Kalai [561].

Steinitz’ Representation Theorem for Convex Polytopes in E
3

We shall prove the following basic result.

Theorem 15.6. Let G be a planar 3-connected graph. Then G is isomorphic to the
edge graph of a convex polytope in E

3.

Proof. For terminology, see Sect. 34.1. An application of the Koebe–Brightwell–
Scheinerman theorem 34.1 together with a suitable Möbius transformation and stere-
ographic projection shows that there is a primal-dual circle representation of G on the
unit sphere S2 with the following properties.

The country circle of the outer country is the equator.
All other country circles are in the southern hemisphere.
Three of these touch the equator at points which are 2π

3 apart.

From now on we use this primal-dual circle representation of G.
For each country circle choose a closed halfspace with the country circle in its

boundary plane such that the halfspace of the equator circle contains the south pole
of S2 and the other halfspaces the origin o. The intersection of these halfspaces is
then a convex polytope P . The countries, resp. the country circles of G correspond
to the facets of P . Let v ∈ S2 be a vertex (of the representation) of G on S2. The
country circles of the countries with vertex v form a ring around v like a string
of beads, possibly of different sizes, on the vertex circle of v . The latter intersects
these country circles orthogonally. All other country circles are outside this ring.
This shows that the boundary planes of the halfspaces corresponding to the circles
of the ring meet in a point vP , say, radially above v and vP is an interior point of all
other halfspaces. Thus vP is a vertex of P . If C is a country circle of the ring, the
facet F of P determined by C has two edges which contain vP and are tangent to C
and thus to S2. If vw · · · z is a cycle of G around C , then vPwP · · · zP is a cycle of
edges of F and thus is the cycle of edges of F . Each edge of F is tangent to S2 at
the point where it touches the incircle C of F . Since, by construction, the edge graph
of P is obtained by radial projection of the representation of G (in S2), the proof is
complete. ��

Different Ways to Represent a Convex Polytope

The above proof of the Steinitz representation theorem shows that any convex poly-
tope in E

3 is (combinatorially) isomorphic to a convex polytope all edges of which
touch the unit ball B3. A far-reaching generalization of this result is due to Schramm
[914] in which B3 is replaced by any smooth and strictly convex body in E

3.
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A problem of Steinitz [964] asks whether each convex polytope in E
d is circum-

scribable that is, it is isomorphic to a convex polytope circumscribed to Bd and such
that each of the facets of this polytope touches Bd . A similar problem of Steiner [961]
deals with inscribable convex polytopes, i.e. there is an isomorphic convex polytope
contained in Bd such that all its vertices are on the boundary of Bd . Steinitz [964]
proved the existence of a non-circumscribable convex polytope in E

3. Schulte [917]
proved the existence of non-inscribable convex polytopes in E

d for d ≥ 4. For more
information, see Grünbaum [453], Grünbaum and Shephard [455] and Florian [337].

Klee asked whether each convex polytope in E
d is rationally representable, that

is, it is isomorphic to a convex polytope in E
d , all vertices of which have rational

coordinates. The affirmative answer for d = 3 follows from a proof of the Steinitz
representation theorem where all steps may be carried out in the rational space Q

3,
see Grünbaum [453]. For d ≥ 8 Perles proved that there are convex polytopes which
cannot be represented rationally, see Grünbaum [453], p. 94. Richter-Gebert [833]
could show that this holds already for d ≥ 4. For more information compare Bayer
and Lee [83] and Richter-Gebert [833].

15.4 Graphs, Complexes, and Convex Polytopes for General d

There are many connections between graphs and complexes on the one hand and
convex polytopes on the other hand. A first such result is Steinitz’ representation
theorem for d = 3, see the preceding section where we also mentioned two basic
problems. Important later contributions are due to Grünbaum, Perles, Blind, Mani,
Kalai and others.

One of the great problems in this context is the following:

Problem 15.4. Characterize, among all polytopal complexes, those which are iso-
morphic to boundary complexes of convex polytopes of dimension d.

This problem remains open, except for d = 3, in which case the Steinitz representa-
tion theorem provides an answer. More accessible is the following

Problem 15.5. Given suitable sub-complexes of the boundary complex of a convex
polytope, what can be said about the polytope?

In this section we first show that there is an algorithm to decide whether
an abstract graph can be realized as the edge graph of a convex polytope. Then
Balinski’s theorem on the connectivity of edge graphs is presented. Next, we give
the theorem of Perles, Blind and Mani together with Kalai’s proof, which says that,
for simple convex polytopes, the edge graph determines the combinatorial structure
of the polytope. For general convex polytopes, no such result can hold. Finally, we
give a short report on related problems for complexes instead of graphs.

For more information, see the books of Grünbaum [453] and Ziegler [1045].
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Is a Given Graph Isomorphic to an Edge Graph?

A first answer to this question is the following result.

Theorem 15.7. There is an algorithm to decide whether a given abstract graph can
be realized as the edge graph of a proper convex polytope in E

d .

The following proof is shaped along Grünbaum’s [453], p. 92, proof of a similar
result on complexes.

Proof. A statement in elementary algebra is any expression constructed according
to the usual rules and involving only the symbols

+,−, ·,=,<, (, ), [, ], 0, 1,∨,∧,¬,∀, ∃
and real variables. The quantifiers ∀ and ∃ act only on real variables. A theorem of
Tarski [989] is then as follows.

(1) Every statement in elementary algebra which contains no free variables (i.e.
such that each variable is bound by ∀ or ∃) is effectively decidable. That is,
there is an algorithm to decide whether any such statement is true or false.

Now, given an abstract graph G = 〈V,E〉, the question as to whether it is realizable
as the edge graph of a proper convex polytope in E

d may be put in the following
form, in which (1) is applicable.

(2) There are reals xi j , i ∈ V, j = 1, . . . , d, such that there are reals ui j , and
αi , i ∈ V, j = 1, . . . , d, where

d∑

j=1

ui j xi j = αi for i ∈ V,

d∑

j=1

ui j xk j < αi for i, k ∈ V and k �= i,

and such that for every subset {l,m} ⊆ V the following statements are
equivalent:

(i) {l,m} ∈ E,

(ii) There are reals v j , j = 1, . . . , d, and β, where

d∑

j=1

v j xi j

{
= β for i ∈ {l,m}
< β for i ∈ V, i �∈ {l,m},

and such that for all reals y1, . . . , yd there are reals λi , i ∈ V, for which
λ1 + · · · + λn = 0 and

y j =
∑
λi xi j for j = 1, · · · , d.
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The first condition makes sure that the points (xi1, . . . , xid) are vertices of a convex
polytope, in the second condition it is tested whether G is the edge graph of this
polytope and the third condition makes sure that it is proper.

The theorem is now a consequence of (1) and (2). ��
Remark. Two convex polytopes are combinatorially equivalent if there is a bijection
between the sets of vertices of these polytopes which maps (the sets of vertices of)
faces onto (the sets of vertices of) faces in both directions. A convex polytope is 2-
neighbourly, if any two of its vertices are connected by an edge. A special case of
2-neighbourly polytopes are cyclic polytopes in E

d where d ≥ 4. Cyclic polytopes
are the convex hulls of n ≥ d + 1 points on the moment curve

{(t, t2, . . . , td) : t ∈ R} (d ≥ 3).

(Sometimes, convex polytopes are called cyclic, if they are combinatorially equiva-
lent to cyclic polytopes as defined here.) There are 2-neighbourly polytopes which
are not combinatorially equivalent to a cyclic polytope. See, e.g. Grünbaum [453],
p. 124. A complete graph, that is a graph in which any two vertices are connected by
an edge, thus can be realized as the edge graph of combinatorially different proper
convex polytopes. It clearly can always be realized as the edge graph of a simplex.

In spite of the above theorem, the problem to characterize, in a simple way, the
graphs which can be realized as edge graphs of convex polytopes remains open.

Edge Graphs of Convex Polytopes are d-Connected

Recall that a graph is d-connected if the deletion of any d − 1 of its vertices and
of the edges incident with these vertices leaves it connected. We show the following
theorem of Balinski [?].

Theorem 15.8. Let P be a proper convex polytope in E
d . Then the edge graph of P

is d-connected.

The following proof is taken from Grünbaum [453]. For references to other proofs,
see Ziegler [1045].

Proof (by induction on d). The theorem is trivial for d = 1, 2. Assume then that
d > 2 and that it holds for 1, 2, . . . , d − 1.

Let v1, . . . , vd−1 ∈ V = V(P). We have to show that the graph arising from the
edge graph of P by deleting v1, . . . , vd−1 and the edges incident with these vertices,
is still connected.

Since P is the disjoint union of all relative interiors of its faces (including the
improper face P) , the point 1

d−1 (v1 + · · · + vd−1) is in the relative interior of a face
of P , say F . We distinguish two cases.

First, F �= P . Choose u ∈ Sd−1 and α ∈ R such that F = {x ∈ P : u · x = α}
and P ⊆ {x : u ·x ≤ α}. Since 1

d−1 (v1+· · ·+· · ·+vd−1) ∈ F and v1, . . . , vd−1 ∈ P ,
we see that v1, . . . , vd−1 ∈ F . Choose β < α such that P ⊆ {x : u · x ≥ β} and
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G = {x ∈ P : u · x = β} is a face �= ∅ of P . A vertex v ∈ V \{v1, . . . , vd−1}
is contained in G or is connected by a not deleted edge to a vertex w ∈ V with
u · w < u · v . Continuing, we see that each vertex of V \{v1, . . . , vd−1} either is
contained in G or can be connected by a path consisting of not deleted edges, to a
vertex in G. By induction, the graph of G is connected. The graph obtained from the
edge graph of P by deleting v1, . . . , vd−1 and the edges incident with these vertices,
is thus connected.

Second, F = P . Then 1
d−1 (v1 + · · · + vd−1) ∈ int P . Choose u ∈ Sd−1 and

α ∈ R such that the hyperplane {x : u · x = α} contains v1, . . . , vd−1 and another
vertex v of P . Choose β < α < γ such that the hyperplanes {x : u · x = β} and
{x : u · x = γ } support P at facets G and H , say. By the same argument as earlier,
we see that each vertex in V \{v1, . . . , vd−1} is connected to a vertex in G or H by
a path consisting of not deleted edges. In particular, v is connected by such paths to
a vertex in G as well as to a vertex in H . By induction, the graphs of G and H are
connected. The graph obtained from the edge graph of P by deleting v1, . . . , vd−1
and the edges incident with these vertices, is thus connected.

The induction is complete, concluding the proof. ��

Edge Graphs of Simple Polytopes Determine the Combinatorial Structure;
the Perles–Blind–Mani Theorem

Let G be a graph, possibly abstract. G is i-regular if any vertex is incident with
precisely i edges of G. If G is d-regular then, using Theorem 15.7, it is possible, at
least in principle, to find out whether it can be realized as the edge graph of a proper
simple convex polytope P in E

d . If this is the case, the question arises whether P is
determined uniquely (up to combinatorial isomorphisms). Surprisingly, the answer
is yes, as shown by Blind and Mani-Levitska [133]. This confirms a conjecture of
Perles [791]. Below we reproduce Kalai’s [560] elegant proof of this result. See also
Ziegler [1045].

Theorem 15.9. Let a graph G be isomorphic to the edge graph G(P) of a proper
simple convex polytope P in E

d . Then the combinatorial structure of P is determined
by G.

In other words, given a set of vertices, we can read off from G whether their convex
hull is a face of P or not.

Proof. The notions which will be introduced in the following for G(P) also apply
to G.

Let O be an acyclic orientation of G(P), that is an edge orientation with no
oriented cycle. Since O contains no oriented cycle, it induces a partial order on
V
(
G(P)

) = V(P). For v,w ∈ V
(
G(P)

)
, let v �O w if there is a path from v to

w, oriented from v to w. A vertex of a sub-graph of G(P) is a sink of the sub-graph
with respect to O, if there is no edge of this sub-graph incident with v and oriented
away from v . O is good if every sub-graph of G(P) of the form G(F) where F is a
face of P , has precisely one sink.
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The existence of good acyclic orientations of G(P) is easy to see. Choose u ∈
Sd−1 such that the linear form x → u ·x assumes different values at different vertices
of P . Then orient an edge vw of P from v to w if u · v < u · w and from w to v if
u · v > u · w.

We now characterize, among all acyclic orientations of G(P), the good ones. Let
O be an acyclic orientation. The in-degree of a vertex v of G(P) is the number of
edges incident with v and oriented towards it. Let hO

i be the number of vertices of
G(P) with in-degree i , where i = 0, 1, . . . , d, and let

f O = hO
0 + 2hO

1 + 22hO
2 + · · · + 2d hO

d .

If a vertex v of G(P) has in-degree i , then v is a sink of 2i faces of P . (Since P is
simple, any set of j ≤ i edges of P incident with v determines a face of dimension
j of P which contains these edges but no further edge incident with v .) Let f be the
number of non-empty faces of P . Since each face of P has at least one sink,

f O ≥ f, and O is good if and only if f O = f.

Thus,

(3) among all acyclic orientations O of G(P), the good orientations are precisely
those with minimum f O.

It is easy to see that each face F of the simple polytope P is simple in aff F ,
i.e. F is i-regular, where i = dim F . Clearly, G(F) is a sub-graph of G(P). We next
characterize among all sub-graphs of G(P) those which are the edge graphs of faces
of P:

(4) Let H be an induced sub-graph of G(P) that is, it contains all edges of G(P)
which are incident only with vertices of H. Then the following statements
are equivalent:

(i) H = G(F) where F is a face of P .
(ii) H is connected, i-regular for some i and initial with respect to some

good acyclic orientation O of G(P).

Here, when saying that the induced sub-graph H is initial, we mean that each edge
of G(P) which is incident with precisely one vertex of H (and thus is not an edge of
H) is oriented away from this vertex.

(i)⇒(ii) Clearly, H is connected and i-regular where i = dim F . Let u ∈ Sd−1

such that the linear function x → u · x assumes different values at different vertices
of P and such that the values at the vertices of F are smaller than the values at the
other vertices of P . The orientation O which is determined by this linear form is an
acyclic good orientation and H is initial with respect to it.

(ii)⇒(i) Let v be a sink of H with respect to O. There are i edges in H incident
with v and oriented towards it. Thus v is a sink of the face F of P of dimension
i containing these i edges. Since O is good, v is the unique sink of F and thus all
vertices of F are �O v . Being initial, H contains all vertices �O v . Hence V(F) ⊆
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V(H). Since both G(F) and H are i-regular, induced and connected, this can happen
only if V(F) = V(H) and thus G(F) = H. The proof of (4) is complete.

By (3), all good acyclic orientations of G can be determined just by considering G.
Then (4) permits us to determine those subsets of V(G) = V(P), which correspond
to faces of P just by inspection of G and its good acyclic orientations. ��
Remark. There are non-isomorphic convex polytopes with isomorphic edge graphs,
see the remarks after Theorem 15.7. Thus the Perles–Blind–Mani theorem cannot be
extended to all convex polytopes.

The actual construction of the combinatorial structure by the above proof obvi-
ously is prohibitive (one has to compute all orderings of V(P)). A more effective,
but still exponential algorithm is due to Achatz and Kleinschmidt [1], but see Joswig,
Kaibel and Körner [554].

An extension of the Perles–Blind–Mani theorem to other families of convex poly-
topes is due to Joswig [553].

The Boundary Complex

There is an algorithm to decide whether a polytopal complex is isomorphic to the
boundary complex of a convex polytope in E

d , see Grünbaum [453], p. 92, but
there is no feasible characterization of such polytopal complexes. In other words,
Problem 15.4 remains unsolved. Considering the universality results of Mnëv and
Richter-Gebert which will be described in Sect. 15.5, and algorithmic hardness
results, the chances that Problem 15.4 has a positive solution are low.

The k-skeleton, k = 0, 1, . . . , d, of a convex polytope P is the complex consist-
ing of all faces of P of dimension at most k. Sometimes the union of these faces is
called the k-skeleton, see the proof of Theorem 14.9. Considering the k-skeleton of
a convex polytope, what information on the boundary complex does it provide? An
extension of an old result of Whitney [1025] says that the (d−2)-skeleton of a proper
convex polytope P in E

d determines the boundary complex of P , see Kalai [561].

15.5 Combinatorial Types of Convex Polytopes

Two natural questions on polytopes are the following.

Problem 15.6. Given a convex polytope P in E
d , describe the space of all convex

polytopes which have the same face structure as P. This space is the combinatorial
type of P.

Problem 15.7. Enumerate the essentially different convex polytopes in E
d . That is,

enumerate the combinatorial types of convex polytopes with n vertices for n = d +
1, d + 2, . . . , or, more generally, with n k-faces.

While trivial for d = 2, these questions are difficult for d ≥ 3.
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For d = 3 it follows from Steinitz’ representation theorem that each combinato-
rial type of a convex polytope is rather simple. For d > 3 the universality theorem
of Richter-Gebert says that combinatorial types may be arbitrarily complicated. For
d = 3 there are asymptotic formulae due to Bender, Richmond and Wormald for the
number of combinatorial types of convex polytopes with n vertices, edges, or facets,
respectively, as n → ∞. For d > 3 upper and lower estimates for the number of
combinatorial types of convex polytopes with n vertices are due to the joint efforts
of Shemer, Goodman and Pollack and Alon.

In the following, we describe these results but give no proofs. All polytopes con-
sidered in this section are proper convex polytopes in E

d .
For more information we refer to Grünbaum [453] and the surveys of Bender

[92], Bayer and Lee [83] and Klee and Kleinschmidt [595].

Combinatorial Types and Realization Spaces

Two (proper) convex polytopes in E
d are of the same combinatorial type if they have

isomorphic boundary complexes. The equivalence classes of convex polytopes of the
same combinatorial type are the combinatorial types of convex polytopes.

A more geometric way to express the fact that two convex polytopes P and Q
are of the same combinatorial type is the following. It is possible to represent P and
Q in the form

P = conv{x1, . . . , xn}, Q = conv{y1, . . . , yn},
where the xi and the yi are the vertices of P and Q, respectively, which correspond
to each other and such that

conv{xi1 , . . . , xim } ∈ C(P)⇔ conv{yi1 , . . . , yim } ∈ C(Q)
for each set {i1, . . . , im} ⊆ {1, . . . , n}.

For the investigation of a combinatorial type it is sometimes more convenient
to study a proper sub-space (which easily yields the whole combinatorial type). Fix
affinely independent points x1, . . . , xd+1 in E

d and let P = conv{x1, . . . , xn} be
a proper convex polytope with vertices xi such that the vertices x2, . . . , xd+1 are
adjacent to the vertex x1. The realization space R(P) of P is the family of all d × n
matrices (y1, . . . , yn) ∈ E

dn such that the convex polytopes P = conv{x1, . . . , xn}
and Q = conv{y1, . . . , yn} are of the same combinatorial type with corresponding
vertices xi and yi , where x1 = y1, . . . , xd+1 = yd+1. See Richter-Gebert and Ziegler
[834] and Richter-Gebert [833].

Primary Semi-Algebraic Sets

A primary semi-algebraic set A (over Z) in E
N is a set of the form

A = {
x ∈ E

N : p1(x) = · · · = pk(x) = 0, q1(x), . . . , ql(x) > 0
}
,
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where N ∈ N and the pi and the q j are real polynomials on E
N with integer coeffi-

cients. For example, {0, 1} and ]0, 1[ are primary semi-algebraic sets, but (0, 1] and
[0, 1] are not.

On the family of all primary semi-algebraic sets, there is an equivalence relation,
called stable equivalence, which preserves certain geometric properties, for example
the homotopy type, see [834].

What do Realization Spaces Look Like?

It is easy to show that the realization space of a convex polytope P is a primary
semi-algebraic set. (The polynomials pi and q j are formed with determinants of
d × d minors of the d × n matrices x = (x1, . . . , xn) ∈ E

N .)
The following result, for d = 3, follows from a close inspection of a proof of the

Steinitz representation theorem, see Richter-Gebert [833].

Theorem 15.10. The realization space of a proper convex polytope P in E
3 is a

smooth open ball in E
f1−6, where f1 is the number of edges of P.

For d > 3 the situation is much more involved. Improving upon a deep theorem
of Mnëv [746], Richter-Gebert [833] proved the following universality theorem.

Theorem 15.11. For every primary semi-algebraic set A, there is a (not necessarily
proper) convex polytope P in E

4, such that A is stably equivalent to R(P).

Tools for the proof are so-called Lawrence extensions and connected sums. These
are elementary geometric operations on polytopes.

Remark. The universality theorem shows that the realization spaces of convex poly-
topes may be arbitrarily complicated. This has been interpreted to indicate that there
might not exist a reasonable extension of the representation theorem of Steinitz to
higher dimensions. The universality theorem has a series of consequences, for exam-
ple the following: There is a convex polytope in E

4 which admits no realization with
rational vertices, compare the discussion in Sect. 15.3.

How Many Combinatorial Types are There?

For d = 3 results of Bender and Wormald [94] and Bender and Richmond [93] yield
asymptotic formulae for the number of combinatorial types of convex polytopes with
n vertices, edges, or faces, as n →∞. For a survey, see Bender [92].

For d > 3 results of Shemer [930], Goodman and Pollack [385] and Alon [25]
together yield the following estimates.

Theorem 15.12. Let cs(d, n) and c(d, n) be the numbers of combinatorial types of
proper simplicial and general convex polytopes in E

d with n vertices. Then

(n − d

d

) nd
4 ≤ cs(d, n) ≤ c(d, n) ≤

(n

d

)d2n(1+o(1))
as n →∞.
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16 Volume of Polytopes and Hilbert’s Third Problem

By general agreement, a notion of volume of convex polytopes is to be at least simply
additive, translation invariant, non-negative and such that the volume of a cube of
edge-length one equals one. Surprisingly, the proof that there is such a notion seems
to require a limiting argument, for example the exhaustion method. The proof of
the uniqueness is difficult. Rigorous treatments in the context of polytope theory
came forth rather late. We mention Schatunovsky [884], Süss [977] and, in particular,
Hadwiger [468].

A different line of attack is to try to reduce the volume problem for convex poly-
topes to that for cubes in the following way, where the volume of a cube is the dth
power of its edge-length. Dissect each polytope into polytopal pieces which, when re-
arranged properly, form a cube. The volume of the polytope then is defined to be the
volume of the cube. This is possible for d = 2 but not for d ≥ 3. The latter was shown
by Dehn [250], thereby solving Hilbert’s third problem. While the volume problem
thus cannot be solved by dissections, a rich theory developed around the question
as to when two convex polytopes are G-equidissectable, where G is a group of rigid
motions. Important contributors are, amongst others, Hadwiger, Sydler, Jessen and
Thorup, Sah, Schneider, and McMullen.

In this section, we first show that there is a unique notion of volume for con-
vex polytopes. Secondly, the equidissectability result for polygons of Bolyai and
Gerwien and the non-equidissectability result of Dehn for regular tetrahedra and
cubes are presented.

For general information the reader is referred to Hadwiger [468], more special
references will be given later.

16.1 Elementary Volume of Convex Polytopes

In Sect. 7.2, we defined the notions of the elementary volume of axis parallel boxes
and of the Jordan measure of convex bodies. Both turned out to be valuations with
special properties. Conversely, it was shown in Sect. 7.3 that valuations with these
properties on the spaces of boxes and convex bodies are, up to multiplicative con-
stants, the elementary volume and the Jordan measure, respectively.

Here, this program is extended to the elementary volume of convex polytopes,
yet in a strange order. First it will be shown that there is at most one candidate for
the notion of elementary volume. In this part of the proof a simple limiting argument
is needed. Then we present a candidate and show that it has the required properties.
While related to Hadwiger’s [468] proof, the subsequent proof is slightly simpler. An
alternative approach to the elementary volume is mentioned. We also make a remark,
why we don’t simply use Lebesgue or Jordan measure instead of the elementary
volume.

The analogous result for spherical spaces is due to Schneider [903], see also
Böhm and Hertel [135]. A general approach which also treats hyperbolic spaces, was
outlined in McMullen and Schneider [716]. For discussions, see McMullen [714].
We refer also to the simple presentation of Rokhlin [855].
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Dissections

A polytope P ∈ Pp is dissected into the polytopes P1, . . . , Pn ∈ Pp, in symbols,

P = P1∪̇ · · · ∪̇Pm,

if P = P1 ∪ · · · ∪ Pm and the polytopes Pi have pairwise disjoint interiors.
{P1, . . . , Pm} then is said to be a dissection of P .

Uniqueness of Elementary Volume

The elementary volume on the space P of convex polytopes is a valuation with spe-
cial properties. We first show that there is at most one such valuation.

Theorem 16.1. Let Φ,Ψ be simple, translation invariant, monotone valuations on
P with Φ([0, 1]d) = Ψ ([0, 1]d) = 1. Then Φ = Ψ .

Proof (by induction on d). If d = 1, then it is easy to see thatΦ([α, β]) = |α−β| =
Ψ ([α, β]) for all intervals [α, β] ⊆ R, see the corresponding argument for boxes in
the proof of Theorem 7.6.

Assume now that d > 1 and that the theorem holds for dimension d − 1. Since
Φ and Ψ both are valuations on P , they satisfy the inclusion–exclusion principle
by Volland’s extension theorem 7.2. The assumption that Φ and Ψ are simple then
implies that they are simply additive:

(1) Let P = P1∪̇ · · · ∪̇Pm , where P, P1, . . . , Pm ∈ Pp.
Then Φ(P) = Φ(P1)+ · · · +Φ(Pm) and similarly for Ψ .

Thus the translation invariance of Φ and Ψ together with Φ([0, 1]d) =
Ψ ([0, 1]d) = 1 shows that

(2) Φ(K ) = Ψ (K ) = 1 for any cube K in E
d of edge-length 1,

see the proof of statement (11) in the proof of Theorem 7.5.
Next, the following will be shown.

(3) Φ(Z) = Ψ (Z) for each right cylinder Z ∈ P of height 1.

Let H be a hyperplane and u a normal unit vector of H . Consider the functions
ϕ,ψ : P(H)→ R defined by

ϕ(Q) = Φ(Q + [o, u]), ψ(Q) = Ψ (Q + [o, u]) for Q ∈ P(H).

It is easy to see that ϕ and ψ are simple, translation invariant, monotone valuations
on P(H). If L is a cube of edge-length 1 in H , then L + [o, u] is a cube in E

d of
edge-length 1, and thus

ϕ(L) = Φ(L + [o, u]) = 1 = Ψ (L + [o, u]) = ψ(L)



282 Convex Polytopes

by (2). Hence ϕ = ψ by induction and therefore

Φ(Q + [o, u]) = ϕ(Q) = ψ(Q) = Ψ (Q + [o, u]) for Q ∈ P(H).
Since this holds for any hyperplane in E

d , the proof of (3) is complete.
For each hyperplane H the valuation ϕ is simple. Hence any two such valua-

tions on different hyperplanes are 0 in the intersection of these hyperplanes and thus
coincide for polytopes in the intersection. Thus all these valuations together yield a
valuation φ, say, on the space of all polytopes Q ∈ P with dim Q ≤ d − 1.

The next proposition refines (3).

(4) Φ(Z) = Ψ (Z) = h φ(Q)
for each right cylinder Z ∈ P with base Q and height h.

For cylinders of height 1 this holds by (3) and its proof. For cylinders of height 1/n
this holds by dissection, Proposition (1) and translation invariance. For cylinders of
height l/n this then holds by dissection, Proposition (1) and translation invariance.
For arbitrary real height, it finally follows by monotony.

After these preliminaries we will prove that

(5) Φ(P) = Ψ (P) for each P ∈ P .

If P is improper, then Φ(P) = 0 = Ψ (P) since both Φ and Ψ are simple. Suppose
now that P is proper. P can be dissected into proper simplices. Since Φ and Ψ are
simply additive by (1), it suffices for the proof of (5) to show that Φ(S) = Ψ (S) for
each proper simplex S. By considering the centre c of the inball of S of maximum
radius and for any facet F of S its convex hull with c, we see that S can be dissected
into simplices T = conv({c} ∪ F), where the orthogonal projection b of c into the
hyperplane H = aff F is contained in F . It is thus sufficient to prove that Φ(T ) =
Ψ (T ) for such simplices T . Let n ∈ N. The n hyperplanes

Hi = H + i

n
(c − b), i = 0, . . . , n − 1,

dissect T into n polytopes T1, . . . , Tn ∈ Pp, say,

(6) T = T1∪̇ · · · ∪̇Tn .

Consider the cylinders Y1, . . . ,Yn, Z1, . . . , Zn−1 where

Yi = Hi−1 ∩ T +
[

o,
1

n
(c − b)

]
, Zi = Hi ∩ T +

[
o,−1

n
(c − b)

]
.

Then Yi ⊇ Ti ⊇ Zi . This, the monotonicity of Φ, (6) and (1) together yield that

(7) Φ(Z1)+ · · · +Φ(Zn−1) ≤ Φ(T1)+ · · · +Φ(Tn) = Φ(T )
≤ Φ(Y1)+ · · · +Φ(Yn).

Similar inequalities hold for Ψ . Noting (4), it then follows that

Φ(Z1)+ · · · +Φ(Zn−1) ≤ Ψ (T ) ≤ Φ(Y1)+ · · · +Φ(Yn),
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i.e.

(8) −Φ(Y1)− · · · −Φ(Yn) ≤ −Ψ (T ) ≤ −Φ(Z1)− · · · −Φ(Zn−1).

Adding (7) and (8) and taking into account that Yi+1 is a translate of Zi , the transla-
tion invariance of Φ implies that

−Φ(Y1) ≤ Φ(T )− Ψ (T ) ≤ Φ(Y1),

i.e.

|Φ(T )− Ψ (T )| ≤ Φ(Y1) = ‖c − b‖
n

φ(F) for n ∈ N

by (4). Since this holds for all n, it follows that Φ(T ) = Ψ (T ), concluding the proof
of (5). The induction is complete. ��

Existence of Elementary Volume

The elementary volume of convex polytopes is to be a simple, translation invariant,
non-negative (equivalently, a monotone) valuation on P , such that for the unit cube
[0, 1]d its value is 1. If it exists, it is unique by what was shown earlier. A candidate
for the elementary volume is the function V : P → R, defined inductively as fol-
lows. For d = 1, let V ([α, β]) = |α − β| for each interval [a, b] ⊆ R. Assume now
that d > 1 and that the volume has been defined in dimension d−1. Then it is defined
on each hyperplane and since it is simple, it is 0 on intersections of hyperplanes. This
leads to a notion of elementary volume or area for all (d − 1)-dimensional convex
polytopes in E

d . Denote it by v . Then V is defined by:

(9) V (P) = 1

d

m∑

i=1

h P (ui ) v(Fi ) for P ∈ P(Ed),

where F1, . . . , Fm are the facets of P and u1, . . . , um the corresponding exterior
normal unit vectors of P . If dim P < d − 1, the definition (9) is to be understood as
V (P) = 0 (empty sum) and in case dim P = d − 1 the polytope P has two facets,
both coinciding with P but with opposite exterior normal unit vectors and (9) yields
V (P) = 0.

The following result shows that V , as defined in (9), has the required properties.
By the uniqueness theorem 16.1 it is the unique such function and thus is legitimately
called the elementary volume on P .

Theorem 16.2. V is a simple, translation invariant, monotone valuation on P with
V ([0, 1]d) = 1.

Proof. The following assertions will be shown by induction on d:

(10) V is simply additive, that is, V (P) = V (P1)+ · · · + V (Pm)
for P, P1, . . . , Pm ∈ Pp such that P = P1∪̇ · · · ∪̇Pm .

(11) V is a simple valuation on P .
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(12) The volume of any box in E
d equals the product of its edge-lengths.

In particular, V ([0, 1]d) = 1.

(13) Let L be a line through o and Z an unbounded cylinder parallel to L with
polytopal cross-section and let l > 0. Then for all parallel slabs S for which
L ∩ S is a line segment of length l, the volume V (S ∩ Z) is the same.

(14) V is translation invariant.

(15) V is non-negative.

(16) V is monotone.

For d = 1 statements (10)–(16) are trivial. Assume now that d > 1 and that (10)–
(16) hold in (all hyperplanes of) E

d for v in place of V .
The proof of (10) for d is by induction on m. It is trivial for m = 1. Assume

next that m = 2. Let P1 and P2 have the facets F1, . . . , Fj and G1, . . . ,Gk , respec-
tively, with corresponding exterior normal unit vectors u1, . . . , u j and v1, . . . , vk ,
say. Since P = P1∪̇P2 ∈ Pp, we may assume that

F1 = G1, u1 = −v1.
F2∪̇G2, . . . , Fl ∪̇Gl are facets of P with exterior normal unit vectors

u2 = v2, . . . , ul = vl .
Fl+1, . . . , Fj , Gl+1, . . . ,Gk are facets of P with exterior normal unit

vectors ul+1, . . . , vk .

Since by the induction assumption on d, the assertion (10) is valid for v , it thus
follows that

V (P) = V (P1∪̇P2)

= 1

d

l∑

i=2

h P (ui ) v(Fi ∪̇Gi )+ 1

d

j∑

i=l+1

h P (ui ) v(Fi )+
k∑

i=l+1

h P (vi ) v(Gi )

= 1

d

(
h P1(u1) v(F1)+ h P2(v1) v(G1)

)+ 1

d

l∑

i=2

(
h P1(ui ) v(Fi )+ h P2(vi ) v(Gi )

)

+ 1

d

j∑

i=l+1

h P1(ui ) v(Fi )+ 1

d

k∑

i=l+1

h P2(vi ) v(Gi ) = V (P1)+ V (P2),

concluding the proof of (10) for m = 2. Assume now that m > 2 and that (10)
holds for 1, . . . ,m − 1. Consider the case that P = P1∪̇ · · · ∪̇Pm . The polytopes
P1, Pm ∈ Pp have disjoint interiors and thus can be separated by a hyperplane H ,
say. Let H± be the corresponding closed halfspaces where P1 ⊆ H−, Pm ⊆ H+,
say. We may assume that

P1, P2, . . . , Pj ⊆ H−, Pj+1, . . . , Pk �⊆ H±, Pk+1, . . . , Pm ⊆ H+.
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Since we have already proved the assertion (10) for m = 2, the induction assumption
on m then shows that

V (P) = V
(
(P ∩ H−)∪̇(P ∩ H+)

) = V (P ∩ H−)+ V (P ∩ H+)
= V

(
P1∪̇ · · · ∪̇Pj ∪̇(Pj+1 ∩ H−)∪̇ · · · ∪̇(Pk ∩ H−)

)

+ V
(
(Pj+1 ∩ H+)∪̇ · · · ∪̇(Pk ∩ H+)∪̇Pk+1∪̇ · · · ∪̇Pm

)

= V (P1)+ · · · + V (Pj )+ V (Pj+1 ∩ H−)+ · · · + V (Pk ∩ H−)
+ V (Pj+1 ∩ H+)+ · · · + V (Pk ∩ H+)+ V (Pk+1)+ · · · + V (Pm)

= V (P1)+ · · · + V (Pj)+ V (Pj+1)+ · · · + V (Pk)+ V (Pk+1)+ · · · + V (Pm).

The induction on m is thus complete. Hence (10) holds for d and all m. This con-
cludes the induction on d for (10).

For the proof of the assertion (11) note first that V (P) = 0 for P ∈ P with
dim P ≤ d − 1. Hence V is simple. To see that it is a valuation, let P, Q ∈ P such
that P ∪ Q ∈ P . The cases where at least one of P, Q, P ∩ Q is improper are easily
dealt with by the simplicity of V and (10). Assume now that P, Q, P ∩ Q all are
proper. Consider all hyperplanes through facets of P ∩ Q. These hyperplanes dissect
P and Q into proper convex polytopes

P ∩ Q, P1, . . . , Pm and P ∩ Q, Q1, . . . , Qn,

say. Then
P ∩ Q, P1, . . . , Pm, Q1, . . . , Qn

form a dissection of P ∪ Q and it follows from (10) that

V (P)+ V (Q)

= V (P ∩ Q)+ V (P1)+ · · · + V (Pm)+ V (Q1)+ · · · + V (Qn)+ V (P ∩ Q)

= V (P ∪ Q)+ V (P ∩ Q).

Thus V is a valuation, concluding the induction for (11).
Assertion (12) easily follows from the definition of V by induction on d.
If dim Z < d, the assertion (13) holds trivially. Assume now that dim Z = d. To

speak more easily, call L vertical for the proof of (13). Let S be a parallel slab as in
(13) and T a horizontal slab of width l. For the proof of (13) it is sufficient to show
that

(17) V (S ∩ Z) = V (T ∩ Z).

If S and T are parallel, this is easy to see. Assume now that S and T are not parallel.
By induction,

(18) The contributions of the vertical facets of S∩ Z and T ∩ Z to V (S∩ Z) and
V (T ∩ Z), respectively, are the same.

Next, the non-vertical facets will be considered. Let v be a unit vector parallel to
L such that F, F − lv and G,G − lv are the top and bottom facets of S ∩ Z and
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T ∩ Z , respectively. Let ±u be the exterior normal unit vectors of S ∩ Z at the facets
F, F − lv . Clearly, ±v are the exterior normal unit vectors of T ∩ Z at the facets
G,G − lv . Choose p ∈ F and q ∈ G arbitrarily. Then

(19) The contributions of the facets F, F − lv of S ∩ Z to V (S ∩ Z) and of the
facets G,G − lv of T ∩ Z to V (T ∩ Z) are

1

d

(
p · u v(F)+ (p − lv) · (−u) v(F − lv)

) = l

d
u · v v(F),

1

d

(
q · v v(G)+ (q − lv) · (−v) v(G − lv)

) = l

d
v(G).

Here, the translation invariance of v was used. Clearly, G = F ′, where “ ′ ” is
the orthogonal projection of the hyperplane HF = aff F onto the hyperplane HG =
aff G. Since S, T are not parallel, HF , HG are also not parallel. Letw : P(HF )→ R

be defined by:
w(Q) = v(Q′) for Q ∈ P(HF ).

Since, by induction, v is a simple translation invariant, monotone valuation on
P(HG), it is easy to see, that this also holds for w on P(HF ). Thus, there are two
simple, translation invariant valuations v and w on P(HF ). The uniqueness theo-
rem 16.1 then yields

w(Q) = α v(Q) for Q ∈ P(HF ),

where α ≥ 0 is a suitable constant. To determine its value, choose a (d − 1)-
dimensional cube K in HF of edge-length 1 such that a (d− 2)-dimensional facet of
K is contained in HF ∩ HG . Then K ′ is a box in HG of edge-lengths 1, . . . , 1, u · v .
Thus

w(K ) = v(K ′) = u · v = α v(K ) = α,
i.e. α = u · v . Here we have used property (12) for v . Hence

v(G) = v(F ′) = α v(F) = u · v v(F).
By (19), this shows that

(20) The contributions of the facets F, F − lv of S ∩ Z to V (S ∩ Z) and of the
facets G,G − lv of T ∩ Z to V (T ∩ Z) are the same.

Having proved (18) and (20), the proof of (17) is complete, concluding the induction
for (13).

For the proof of (14), let P ∈ P and t ∈ E
d . If P is improper, V (P) = 0 =

V (P + t) since V is simple by (11), and we are done. Assume now that P is proper.
Let L be a line through o with direction t and call it vertical. Let H be the (d − 1)-
dimensional subspace of E

d orthogonal to L . Let F1, . . . , Fm be the facets of P on
the upper side and G1, . . . ,Gn the facets on the lower side of P . The translate P + t
of P may be obtained as follows. Dissect each facet Fi into pieces Fi1, . . . , Fin and
each facet G j into pieces G1 j , . . . ,Gmj such that
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F ′i j = G ′
i j = F ′i ∩ G ′

j for i = 1, . . . ,m, j = 1, . . . , n.

(Some pieces may be empty.) Now add to P those cylinders of the form Fi j + [o, t]
which are proper. This gives a dissection of P + [o, t]. Next remove from P + [o, t]
those cylinders of the form Gi j +[o, t] which are proper. Then P + t remains. Since
by (13) V (Fi j + [o, t]) = V (Gi j + [o, t]), Proposition (10) shows that V (P) =
V (P + t). The induction for (14) is thus complete.

To prove (15), let P ∈ P and choose p ∈ P . Then o ∈ P − p. By induction,
v ≥ 0. The definition of V in (9) then yields V (P − p) ≥ 0 and thus V (P) =
V (P − p) ≥ 0 by (14), concluding the induction for (15).

For the proof of (16), let P, Q ∈ P with P ⊆ Q. If P is improper, V (P) = 0 ≤
V (Q) by (13) and (15). Assume now that P is proper. The hyperplanes through the
facets of P dissect Q into polytopes P, Q1, . . . , Qm ∈ Pp, say. (15) and (10) then
imply that

V (P) ≤ V (P)+ V (Q1)+ · · · + V (Qm) = V (P∪̇Q1∪̇ · · · ∪̇Qm) = V (Q)

and the induction for (16) is complete.
Having proved (10)–(16) for d, the induction is complete. Thus (10)–(16) and, in

particular, the theorem hold generally. ��

Simple Consequences

An important property of V is the following.

Corollary 16.1. V is rigid motion invariant.

Proof. Let r : E
d → E

d be a rigid motion. Define a mapping W : P → R

by W (P) = V (r P) for P ∈ P. Since V (·) is a simple, translation invariant
monotone valuation on P by Theorem 16.2, it is immediate that this also holds
for W (·). The proof of statement (11) in the proof of Theorem 7.5 then yields
W ([0, 1]d) = V ([0, 1]d) = 1. An application of the uniqueness theorem 16.1 now
shows that V = W , or V (P) = V (r P) for P ∈ P . ��

The definition of V (·) and an easy induction argument yields the following
property.

Proposition 16.1. V is positively homogeneous of degree d.

Volume and Elementary Volume

By Theorems 7.5 and 16.2 the volume (or Jordan measure) and the elementary vol-
ume are both simple, monotone and translation invariant valuations on P and their
values for the unit cube both are 1. Thus Theorem 16.1 yields the following result:

Corollary 16.2. On P volume, i.e. Jordan measure, and elementary volume coincide.
Similarly, Minkowski surface area and elementary surface area, i.e. the sum of the
elementary volumes of the facets, coincide on P .
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An Alternative Approach to the Existence of the Elementary Volume
on Convex Polytopes

Using a well known determinant formula from analytic geometry, define the elemen-
tary volume of simplices. It is easy to show that this is a valuation on the space of
all simplices in E

d . The latter can be extended, by the extension result of Ludwig
and Reitzner [667] mentioned in Sect. 7.1, to a unique, simple, translation invariant,
monotone valuation on the space P of all convex polytopes in E

d . Since it is easy to
see that this valuation is 1 for the unit cube, it coincides by Theorem 16.1 with the
earlier notion of elementary volume.

Why not Simply use Lebesgue Measure?

There is general agreement, that a notion of volume or measure on the space of
convex polytopes should be at least a translation invariant, simple and monotone
valuation which assumes the value 1 for the unit cube. Lebesgue measure has these
properties and is unique (on the space of Lebesgue measurable sets). So, why not
simply use Lebesgue measure instead of the elementary volume, the introduction
and uniqueness of which are so complicated to show. The reason is that it is by
no means clear that the restriction of Lebesgue measure to the small subspace of
convex polytopes is the only valuation having the mentioned properties. (Note that
the requirements of being translation invariant, etc. on the space of convex polytopes
is a much weaker property than the analogous requirement on the large space of
measurable sets.) A similar remark applies to Jordan measure.

16.2 Hilbert’s Third Problem

Let G be a group of rigid motions in E
d . Two proper convex polytopes P, Q are

G-equidissectable if there are dissections {P1, . . . , Pm} of P and {Q1, . . . , Qm} of
Q such that

Pi = mi Qi with suitable mi ∈ G for i = 1, . . . ,m.

By equidissectability we mean G-equidissectability, where G is the group of all rigid
motions.

If two convex polytopes are equidissectable, then they have equal volume. Does
the converse hold? For d = 2 the answer is yes. While this can easily be shown with
the geometric tools already known in antiquity, the first rigorous proofs are due to
Bolyai [146] and Gerwien [372]. Farkas Bolyai published his proof in a book for
high schools. In an appendix of this book Farkas’s son János published his famous
result on non-Euclidean geometry. Gerwien was a Prussian officer and amateur math-
ematician. Gauss, perhaps, was in doubt whether for d = 3 the answer still is yes,
see his letters [365] to Gerling. In the late nineteenth century there were several at-
tempts to prove that the answer was no, for example by Bricard [166], unfortunately
with a gap. This seems to have been the motive for Hilbert [501] to state, in the third
problem of his famous list of 23 problems, the following.
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In two letters to Gerling, Gauss expresses his regret that certain theorems of solid
geometry depend upon the method of exhaustion, i.e. in modern phraseology, upon
the axiom of continuity (or upon the axiom of Archimedes). Gauss mentions in
particular the theorem of Euclid, that triangular pyramids of equal altitudes are to
each other as their bases. Now the analogous problem in the plane has been solved.
Gerling also succeeded in proving the equality of volume of symmetrical polyhedra
by dividing them into congruent parts. Nevertheless, it seems to me probable that a
general proof of this kind for the theorem of Euclid just mentioned is impossible,
and it should be our task to give a rigorous proof of its impossibility. This would
be obtained, as soon as we succeeded in specifying two tetrahedra of equal bases
and equal altitudes which can in no way be split up into congruent tetrahedra, and
which cannot be combined with congruent tetrahedra to form two polyhedra which
themselves could be split up into congruent tetrahedra.

This problem was solved by Hilbert’s student Dehn [250], even before Hilbert’s
list appeared in print.

The problem of necessary and sufficient conditions for G-equidissectability was
studied throughout the whole twentieth century for various groups G of rigid mo-
tions. Hadwiger [465] extended Dehn’s necessary conditions for equidissectability to
all dimensions and Sydler [979] and Jessen [547] showed their sufficiency for d = 3
and d = 4, respectively. For d ≥ 5, the problem is open. For the group of translations
necessary and sufficient conditions were given by Hadwiger and Glur [469] (d = 2)
and Jessen and Thorup [548] (general d). Hadwiger [468], p. 58, showed that two
convex polytopes P, Q ∈ Pp are G-equidissectable if and only if φ(P) = φ(Q)
for all G-invariant valuations φ on Pp. The case d = 3 of this result is due to
Jessen [546].

In this section we first prove the simple result of Bolyai and Gerwien by pre-
senting several figures. Then Boltyanskiı̆’s [144] concise proof of Dehn’s result is
presented in which he avoids Hamel functions and thus the axiom of choice. See
also the expositions by Boltyanskiı̆ [143] and in the nice collection of Aigner and
Ziegler [6].

For more information we refer to the books of Hadwiger [468], Boltyanskiı̆ [143]
and Sah [873] and the surveys of McMullen and Schneider [716], Cartier [192],
McMullen [714], Neumann [769], Kellerhals [571] and Dupont [279]. For a popular
presentation of Hilbert’s third problem, see Gray [393].

Equidissectability of Polygons

The following result is due independently to Bolyai [146] and Gerwien [372].

Theorem 16.3. Let P, Q ∈ Pp(E
2) such that A(P) = A(Q). Then P and Q are

equidissectable.

Proof. Since equidissectability is a symmetric and transitive relation, it is sufficient
to show that

(1) P is equidissectable to a rectangle of edge-lengths 1 and A(P).
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P clearly can be dissected into triangles. For the proof of (1) it is thus sufficient to
show that

(2) Each triangle T is equidissectable to a rectangle of edge-lengths 1 and
A(T ).

The following figure shows how one can obtain (2) and thus (1) (Fig. 16.1). ��

11

Fig. 16.1. Equidissectability of a triangle and a rectangle with one edge-length equal to 1

Hilbert’s Third Problem

Let α1, . . . , αm ∈ R be rationally independent and let β1, . . . , βm ∈ R. The corre-
sponding Hamel quasi-function f is then defined by:

f (r1α1 + · · · + rmαm) = r1β1 + · · · + rmβm for rational ri .

f is compatible with a proper convex polytope P in E
3 if the dihedral angles

ϑ1, . . . , ϑm of P at its edges are all rational linear combinations of α1, . . . , αm . The
f -Dehn invariant of P is

D f (P) =
m∑

i=1

li f (ϑi ),

where li is the length of the edge of P corresponding to ϑi . Note, if α1, . . . , αm

and β1, . . . , βm are extended to rationally independent α1, . . . , αm, . . . , αk ∈ R and
β1, . . . , βm, . . . , βk ∈ R and, correspondingly, f to a function g, then

D f (P) = Dg(P).

Dehn’s theorem is the following.

Theorem 16.4. Let P, Q be equidissectable, proper convex polytopes in E
3. Then

D f (P) = D f (Q) for each Hamel quasi-function f which is compatible with P and
Q and such that f (π) is defined and equal to 0.

Proof. Let f be such a Hamel quasi-function. Since D f is rigid motion invariant, it
is sufficient to prove the following proposition.
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(3) Let P = P1∪̇ · · · ∪̇Pk , where P1, . . . , Pk ∈ Pp, and extend f to a Hamel
quasi-function g compatible with P1, . . . , Pk . Then

D f (P) = Dg(P) = Dg(P1)+ · · · + Dg(Pk).

The set of all vertices of P, P1, . . . , Pk dissect the edges of these polytopes into
smaller line segments which we call links. The dihedral angle of one of the polytopes
P, P1, . . . , Pk at a link is the dihedral angle of this polytope at the edge containing
this link.

If a link is contained in an edge of P , then, for the dihedral angles ϑ, ϑ1, . . . , ϑk

of P, P1, . . . , Pk at this link, we have, ϑ = ϑ1 + · · · + ϑk . Thus

f (ϑ) = g(ϑ) = g(ϑ1)+ · · · + g(ϑk).

If a link is contained in the relative interior of a facet of P , then, for the dihedral
angles π, ϑ1, . . . , ϑk of P, P1, . . . , Pk at this link, the equality π = ϑ1 + · · · + ϑk

holds. Thus
f (π) = 0 = g(π) = g(ϑ1)+ · · · + g(ϑk).

If a link is in the interior of P , then, for the dihedral angles 2π, ϑ1, . . . , ϑk of
P, P1, . . . , Pk at this link, we have 2π = ϑ1 + · · · + ϑk and thus

f (2π) = 0 = g(2π) = g(ϑ1)+ · · · + g(ϑk).

Multiplying these equalities by the lengths of the corresponding links and summing
over all links yields the equality in (3). ��
Corollary 16.3. Let S be a regular simplex and K a cube in E

3 with V (S) = V (K ).
Then S and K are not equidissectable.

Proof. The dihedral angle ϑ of S at any of its edges satisfies the equation cosϑ =
1/3. Apply the formula cos(α + β) = cosα cosβ − sinα sinβ with α = nϑ and
β = ±ϑ to express cos(n + 1)ϑ and cos(n − 1)ϑ . Addition then yields

cos(n + 1)ϑ = 2 cosϑ cos nϑ − cos(n − 1)ϑ for n ∈ N.

This, in turn, implies, by a simple induction argument, that

cos nϑ = an

3n
for n ∈ N, where an ∈ Z, 3 � | an .

Since an/3n �= ±1, it follows that nϑ is not an integer multiple of π for any n ∈ N.
Hence ϑ and π are rationally independent. Let f be a Hamel quasi-function such
that f (ϑ) = 1, f (π) = 0 and let l be the edge-length of S. Then

D f (S) = 6 l �= 0 = D f (K ).

Thus S and K are not equidissectable by Dehn’s theorem 16.4. ��
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17 Rigidity

Rigidity in the context of convex geometry can be traced back to Book XI of Euclid
[310], but the first proper result seems to be Cauchy’s [197] rigidity theorem for
convex polytopal surfaces in E

3. Cauchy’s seminal result gave rise to a series of
developments.

First, to flexibility results for general closed polytopal surfaces, including the
result of Bricard [167] on flexible immersed octahedra, the examples of flexible em-
bedded polytopal spheres of Connelly [217] and Steffen [954] and the more recent
results of Sabitov [871]. Second, to rigidity in the context of differential geometry
and, much later, to rigidity in Alexandrov’s intrinsic geometry of closed convex sur-
faces, the latter culminating in the rigidity theorem of Pogorelov [803] for closed
convex surfaces in E

3, see Sect. 10.2. Third, to rigidity and infinitesimal rigidity
for frameworks starting with Maxwell [700] and with contributions by Dehn [252],
Alexandrov [16], Gluck [380] and Asimow and Roth [41].

In this section we present Cauchy’s rigidity theorem for convex polytopal sur-
faces and a result of Asimov and Roth on the flexibility, resp. rigidity of convex
frameworks.

References to the voluminous literature may be found in the following books
and surveys: Alexandrov [16], Efimov [288, 289], Pogorelov [805], Ivanova-
Karatopraklieva and Sabitov [538, 539] (differential geometry, intrinsic geometry
of convex surfaces), Ivanova-Karatopraklieva and Sabitov [539], Connelly [218]
(non-convex polytopal surfaces), Roth [859], Graver, Servatius and Servatius [391],
Maehara [677], Graver [392] (convex and non-convex frameworks).

17.1 Cauchy’s Rigidity Theorem for Convex Polytopal Surfaces

In Book XI of the Elements of Euclid [310] Definition 10 is as follows.

Equal and similar solid figures are those contained by similar planes equal in multi-
tude and magnitude.

The intensive study of Euclid in modern times led to the question whether this was
a definition or, rather, a theorem saying that two polytopal surfaces are congruent
if their corresponding facets are congruent. Legendre [639] definitely thought that
it was a theorem, see the comment of Heath [310], but he was also aware that this
theorem could not hold without additional assumption. This is shown by the two
polytopal surfaces in Fig. 17.1. Legendre thought that convexity might be such an
additional assumption. He drew the attention of young Cauchy to this problem and
Cauchy [197] gave a positive answer. Minor errors in his ingenious proof were cor-
rected later on, see [218].

Cauchy won high recognition with this result. He submitted it for publication to
the Institute, as the Académie des sciences was called then. The referees Legendre,
Carnot, and Biot gave an enthusiastic report which concluded with the following
words:
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Fig. 17.1. Isometric but not congruent polytopal surfaces

We wanted to give only an idea of M. Cauchy’s proof, but have reproduced the
argument almost completely. We have thus furnished further evidence of the brilliance
with which this young geometer came to grips with a problem that had resisted even
the efforts of the masters of the art, a problem whose solution was utterly essential if
the theory of solids was to be perfected.

See Belhoste [91], p.28.
For a nice presentation of Cauchy’s proof and a survey of related problems, we

refer to Dolbilin [276]. See also the survey of Schlenker [889].

Cauchy’s Rigidity Theorem for Convex Polytopal Surfaces

can be stated as follows:

Theorem 17.1. Let P, Q be proper convex polytopes in E
3. If there is a homeomor-

phism of bd P onto bd Q which maps each facet of P isometrically onto a facet of
Q, then P and Q are congruent.

There are many versions of Cauchy’s proof in the literature, see, for example the
proof in Aigner and Ziegler [6] which includes the arm lemma. The proof consists of
two parts, a geometric and a combinatorial one. In the geometric part the following
proposition is proved. Mark an edge of P by +,−, or leave it unmarked, if the
dihedral angle of P at this edge is greater than, less than or equal to the dihedral
angle of Q at the corresponding edge of Q. If no edge of P is marked, P and Q
are congruent as can be seen by building up bd Q beginning with one facet and
successively adding adjacent facets. If at least one edge of P is marked, then for any
vertex of P on a marked edge the following can be shown. On circling around the
vertex, there are at least four changes of sign of the marks encountered (omitting
the edges not marked). This is ruled out in the combinatorial part of the proof by an
argument based on the Euler polytope formula for planar connected graphs.

The first tool for the proof is the so-called arm lemma of Cauchy. We state it
without proof. Proofs are elementary, yet complicated. For a proof, see Danzer [240].
For references to other proofs compare [218].
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Fig. 17.2. Cauchy’s arm lemma

Lemma 17.1. Let S, T be convex spherical polygons on S2. Let s1, . . . , sn and
t1, . . . , tn be the vertices of S and T , respectively, in, say, counter clockwise order.
Let σ1, . . . , σn and τ1, . . . , τn be the corresponding interior angles. Assume that for
the spherical lengths of the edges of S and T ,

s1s2 = t1t2, . . . , sn−1sn = tn−1tn

and for the angles

(1) σ2 ≤ τ2, . . . , σn−1 ≤ τn−1.

Then

(2) sns1 ≤ tnt1.

If, in (1), there is strict inequality at least once, then there is strict inequality in (2)
(Fig. 17.2).

Corollary 17.1. Let S, T, s1, t1, . . . , σ1, τ1, . . . , be as in the lemma and assume
that

(3) s1s2 = t1t2, . . . , sn−1sn = tn−1tn, sns1 = tnt1.

Mark the vertex si by +,−, or leave it unmarked, if σi > τi , σi < τi , or σi = τi .
If at least one vertex of S is marked, then, on circling bd S, we have at least four
changes of sign of the marks encountered (omitting the unmarked vertices).

Proof. It is not possible that there is a vertex marked by − but no vertex marked by
+. If this were the case, we may assume that si with 1 < i < n is marked by−. Then
sns1 < tnt1 by the arm lemma, contrary to (3). Similarly, it is not possible that there
is a vertex marked by + but no vertex has mark −. Thus there is at least one vertex
marked by + and at least one marked by −. Hence there are at least two changes of
sign.

If there were precisely two changes of sign, then, by re-indexing, if neces-
sary, we may suppose that at least one of the vertices s1, . . . , sk is marked by +
while the others are also marked by + or are unmarked, and similarly for the ver-
tices sk+1, . . . , sn with + and − exchanged. We then have the situation as shown
in Fig. 17.3. Choose points a, b in the relative interiors of the edges sk, sk+1 and
sn, s1 of S and points c, d in the relative interiors of the edges tk, tk+1 and tn, t1
of T such that ska = tkc and s1b = t1d. Applying the arm lemma to the poly-
gons with vertices b, s1, . . . , sk, a and d, t1, . . . , tk, c and to the polygons with
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+s1

+sk
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a

−sk+2
−sn

−sk+1

Fig. 17.3. Proof of Cauchy’s rigidity theorem

vertices a, sk+1, . . . , sn, b and c, tk+1, . . . , tn, d, we obtain the contradiction that
ab > cd > ab. Thus there are more than two changes of sign.

Since the number of changes of sign is even, it follows that there are at least four
changes of sign. ��

The next step in our proof is Cauchy’s combinatorial lemma:

Lemma 17.2. Let P be a proper convex polytope in E
3. Assume that the edges of P

are marked by +, by −, or are unmarked in such a way that the following statement
holds. On circling in bd P around a vertex of P which is an endpoint of a marked
edge, there are at least four changes of sign of the marks encountered (omitting the
unmarked edges). Then there are no marked edges.

Proof. Assume that there are marked edges. Let G be a graph consisting of a maximal
connected set of marked edges and their endpoints. Omitting from bd P the vertices
and edges of G leaves a family of open connected sets in bd P , the countries of G.
Since G is connected, the countries are simply connected. Roughly speaking, each
of these countries is a union of certain facets of P . Let v, e, f be the numbers of
vertices, edges and countries, respectively, determined by the connected planar graph
G. Euler’s formula for graphs in E

2, see Theorem 15.2, then shows that

v − e + f = 2.

For i = 2, 3, . . . , let fi be the number of countries with a boundary consisting of i
edges, where an edge is counted twice if, on circling the boundary of the country, it
appears twice. The case f2 �= 0 cannot hold. Then,

f = f3 + f4 + · · ·
Since an edge of G is on the boundary of two countries or is counted twice if it is on
the boundary of only one country, we see that

2e = 3 f3 + 4 f4 + · · ·
Hence

4v = 8+ 4e − 4 f = 8+ 2 f3 + 4 f4 + 6 f5 + 8 f6 + 10 f7 + · · ·
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Call the index of a vertex of G the number of changes of sign of the marks encoun-
tered on circling the vertex once. Let I be the sum of all indices. By the assumption
of the lemma,

4v ≤ I.

We now count the indices in a different way. If the boundary of a country determined
by G consists of i edges, circling it there are at most i changes of sign if i is even and
at most i − 1 if i is odd. Thus

I ≤ 2 f3 + 4 f4 + 4 f5 + 6 f6 + 6 f7 + · · ·
and we obtain the contradiction that

8+ 2 f5 + 2 f6 + · · · ≤ 0. ��
Proof of Cauchy’s rigidity theorem. The given homeomorphism maps the facets,
edges and vertices of P onto the facets, edges and vertices of Q, respectively, where
corresponding facets are congruent and corresponding edges have equal length. For
the proof of the congruence of P and Q it is sufficient to show that the dihedral
angles of P and Q at corresponding edges are equal.

Mark an edge of P by +,−, or leave it unmarked, if the dihedral angle of P
at this edge is greater than, less than, or equal to the dihedral angle of Q at the
corresponding edge. We have to show that no edge of P is marked. To see the latter,
we first show the following:

(4) Let p be a vertex of P which is incident with at least one marked edge.
Then, circling around p, we encounter at least four changes of sign.

Consider spheres with centres at p and q, where q is the vertex of Q corresponding
to p, and radius � > 0. Choose � so small that the sphere with centre p meets only
those facets and edges of P which contain p and similarly for q. Intersecting these
spheres with P and Q, gives convex spherical polygons S and T , respectively. Call
vertices of S and T corresponding if they are determined by corresponding edges of
P and Q. The interior angles of S and T at their vertices are simply the dihedral
angles of P and Q at their edges with endpoints p and q. Mark a vertex of S by
+,−, or leave it unmarked if this holds for the edge of P which determines this
vertex. If a vertex of S is marked by +,−, or is left unmarked, then the interior
angle of S at this vertex is greater than, less than, or equal to the interior angle of T
at the corresponding vertex. An application of Corollary 17.1 then shows that circling
around S we have at least four changes of sign. Translating this back to P , we thus
see that circling around the vertex p, there are at least four changes of sign of the
marks at the edges of P with endpoint p. The proof of (4) is complete.

Cauchy’s combinatorial lemma and Proposition (4) finally show that there are no
marked edges at all. ��

Higher Dimensions

Assume that one can prove Cauchy’s theorem in E
k . Then it holds also in Sk by

the same arguments as for E
k . By intersecting a closed convex polyhedral surface
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in E
k+1 with small spheres centred at the vertices and applying the result in Sk ,

the polytopal surface turns out to be rigid at each vertex. This immediately yields
Cauchy’s theorem in E

k+1. Since the rigidity theorem holds in E
3 it thus holds in

E
d for all d ≥ 3. See Alexandrov [16] and Pogorelov [804]. For more information

compare Connelly [218].

Flexible Non-convex Polytopal Spheres and the Bellows Conjecture

Cauchy’s rigidity theorem implies the following. A closed convex polytopal surface
in E

3 with rigid facets and hinges along the edges cannot be flexed. Also the non-
convex example of Legendre of Fig. 17.1 does not admit a flexing. More generally,
Euler [311] conjectured that

a closed spatial figure allows no changes as long as it is not ripped apart.

Bricard [167] gave an example of a flexible octahedral surface in E
3. Unfortu-

nately, it suffers from the defect that the surface is not embedded, that is, it has
self-intersections. The next step of this story is due to Gluck [380] who showed
that the closed, simply connected polytopal embedded surfaces in E

3 are generically
rigid, that is, at least the large majority is rigid. Finally, Connelly [217], surprisingly,
specified a flexible, embedded polytopal sphere in E

3. A simpler example is due to
Steffen [954].

The so-called bellows conjecture asserts that the volume of a flexible polytopal
sphere does not change while flexing. Sabitov’s [871] affirmative answer is based on
an interesting formula in which the volume is expressed as a polynomial in terms of
edge-lengths. This formula may be considered as a far-reaching extension of formu-
lae of Heron for the area of a triangle and Euler for the volume of a tetrahedron. For
a survey see Schlenker [889].

17.2 Rigidity of Frameworks

A framework is a system of rods in E
d with joints at common endpoints such that

the rods can rotate freely. A basic question is to decide whether a given framework
is rigid or flexible.

Early results on frameworks in the nineteenth century are due to Maxwell [700],
Peaucellier [787], Kempe [573], Bricard [167]. Throughout the twentieth century
and, in particular, in the last quarter of it, a multitude of results on frameworks were
given. Amongst others, these results deal with rigidity and infinitesimal rigidity, with
stresses and self-stresses.

In this section a result of Asimow and Roth [41] will be presented, showing that
a framework consisting of the edges and vertices of a proper convex polytope in E

3

is rigid if and only if all facets are triangular. We follow Roth [859].

Definitions

An abstract framework F consists of two sets, the set of vertices V = V(F) =
{1, . . . , v} and the set of edges E = E(F), the latter consisting of two-element subsets
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of V. For i ∈ V let a(i) = { j ∈ V : {i, j} ∈ E} be the set of vertices adjacent to the
vertex i . A framework F(p) in E

d is an abstract framework F = 〈V,E〉 together with
a point p = (p1, . . . , pv ) ∈ E

d × · · · × E
d = E

dv . A point pi , i ∈ V, is a vertex
and a line segment [pi , p j ], {i, j} ∈ E, is an edge of F(p). The framework F(p) is
called a realization of the abstract framework F. Let e be the number of edges of F.
Consider the e functions f{i j} : E

dv → R, {i, j} ∈ E, defined by:

f{i j}(x) = ||xi − x j ||2 for x = (x1, . . . , xv ) ∈ E
dv .

Let

R(p) = {
x : f{i j}(x) = f{i j}(p) for all {i, j} ∈ E

}

=
⋂

{i, j}∈E

{
x : f{i j}(x) = f{i j}(p)

} ⊆ E
dv .

Then {
F(x) : x ∈ R(p)

}

is the set of all realizations F(x) of F with edge-lengths equal to the corresponding
edge-lengths of F(p). Call x = (x1, . . . , xv ) congruent to p = (p1, . . . , pv ) if there
is a rigid motion m : E

d → E
d such that x1 = m p1, . . . , xv = m pv . Let

C(p) = {
x : x congruent to p

} ⊆ R(p).

If aff{p1, . . . , pv } = E
d , then it is not too difficult to show that C(p) is a smooth

manifold of dimension 1
2 d(d + 1) in E

dv , where by smooth we mean of class C∞.
Here 1

2 d(d − 1) dimensions come from the rotations and d from the translations.
Then {F(x) : x ∈ C(p)} is the set of all realizations F(x) of F which are congruent
to F(p) in the ordinary sense. The framework F(p) is flexible if there is a continuous
function x : [0, 1] → E

dv such that

(1) x(0) = p ∈ C(p) and x(t) ∈ R(p)\C(p) for 0 < t ≤ 1.

F(p) is rigid if it is not flexible.

A Rigidity Criterion

The above makes it clear that flexibility of a framework F(p) is E
d is determined by

the way in which C(p) is included in R(p) in a neighbourhood of p. The following
result is a simple version of the rigidity predictor theorem of Gluck [381].

Theorem 17.2. Let F(p) be a framework in E
d , where p = (p1, . . . , pv ) and

aff{p1, . . . , pd} = E
d . Assume that the e vectors

grad f{i j}(p), {i, j} ∈ E,

are linearly independent in E
dv . Then e ≤ dv − 1

2 d(d + 1) and F(p) is rigid if and
only if equality holds.
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Proof. Clearly,

R(p) =
⋂

{i, j}∈E

R{i j} where R{i j} =
{
x : f{i j}(x) = f{i j}(p)

}
.

Since grad f{i j}(p) �= o, the implicit function theorem shows that, in a neighbour-
hood of p in E

d , the set R{i j} is a smooth hypersurface in E
dv with normal vector

grad f{i j}(p) at p. Since, by assumption, the e vectors grad f{i j}(p) are linearly in-
dependent, in a suitable neighbourhood of p in E

d , the set R(p) is a smooth mani-
fold of dimension dv − e. See, e.g. Auslander-MacKenzie [43], p. 32. Since, in this
neighbourhood, C(p) is a sub-manifold of R(p), we have 1

2 d(d + 1) ≤ dv − e or
e ≤ dv − 1

2 d(d + 1).
If e < dv − 1

2 (d + 1) then C(p) is a proper sub-manifold of R(p) and we can
choose a continuous function x : [0, 1] → E

dv such that (1) holds, i.e. F(p) is
flexible. If e = dv − 1

2 (d + 1) then C(p) has the same dimension as R(p) and thus
coincides with R(p) in a neighbourhood of p. In this case there is no such continuous
function x(t) which satisfies (1). Hence F(p) is rigid. ��

Rigidity of Convex Frameworks in E
3

The rigidity predictor theorem and arguments from the proof of Cauchy’s rigidity
theorem yield the following result of Asimow and Roth [41].

Theorem 17.3. Let F(p) be the framework consisting of the vertices and edges of a
proper convex polytope P in E

3. Then the following statements are equivalent:
(i) All facets of P are triangles.

(ii) F(p) is rigid.

The implication (i)⇒(ii) is an immediate consequence of Cauchy’s rigidity theorem.

Proof. Let p = (p1, . . . , pv ) ∈ E
3v where p1, . . . , pv are the vertices of P . Let

E = {{i, j} : [pi , p j ] is an edge of P} and define f{i j}(x) = ‖xi − x j‖2 for x =
(x1, . . . , xv ) ∈ E

3v and {i, j} ∈ E. Let a(i) = { j : {i, j} ∈ E}, i = 1, . . . , v .
The main step of the proof is to show that

(2) The vectors grad f{i j}(p), {i, j} ∈ E, are linearly independent.

To see this, assume the contrary. Then there are real numbers ω{i j}, not all 0, such
that

(3)
∑

{i, j}∈E

ω{i j} grad f{i j}(p) = o.

Note that

grad f{i j}(p) = 2(o, . . . o, pi − p j , o, . . . , o, p j − pi , o, . . . , o) ∈ E
3v ,

for {i, j} ∈ E, or, equivalently, for i ∈ {1, . . . , v} and j ∈ a(i).
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Thus (3) implies that

(4)
∑

j∈a(i)
ω{i j}(pi − p j ) = o for i = 1, . . . , v.

If ω{i j} > 0 mark the edge [pi , p j ] of P by +, if ω{i j} < 0 mark it by −, and
leave it unmarked if ω{i j} = 0. If pi is a vertex which is the endpoint of a marked
edge, the index of pi is the number of changes of sign of the marks encountered on
circling pi once in bd P . We show the following.

(5) Let pi be a vertex of P which is the endpoint of at least one marked edge.
Then pi has index at least four.

The index cannot be 0 since, then, all ω{i j} are non-negative and at least one is pos-
itive, or all are non-positive and at least one is negative. Let u be an exterior normal
vector of a support plane of P which meets P only at pi . Then u · (pi − p j ) > 0 for
all j ∈ a(i). Thus ∑

j∈a(i)

ω{i j} u · (pi − p j ) > 0,

contrary to (4). The index cannot be 2 since, then, we may separate the edges of P
with endpoint pi which are marked + from the edges marked − by a hyperplane
through pi . Let u be a normal vector of this hyperplane. Then

∑

j∈a(i)

ω{i j} u · (pi − p j ) =
∑

j∈a(i)
ω{i j}>0

ω{i j} u · (pi − p j )+
∑

j∈a(i)
ω{i j}<0

ω{i j} u · (pi − p j ) �= 0,

again contrary to (4). Since the index is even, it is thus at least 4, concluding the
proof of (5).

Combining (5) with the combinatorial lemma 17.2 of Cauchy, we see that there
are no marked edges at all, i.e. all ω{i j} are 0. This contradicts the assumption in the
proof of (2). The proof of (2) is complete.

Having proved (2), we may apply Theorem 17.2 to see that

(6) F(p) is rigid if and only if e = 3v − 6.

By Euler’s polytope formula 15.1

(7) 3v − 6 = 3(v − 2) = 3(e − f ) = e + (2e − 3 f ),

where f is the number of facets of P . Let fi , i = 3, 4, . . . , be the number of facets
of P with i edges. Since

3 f = 3
∑

i≥3

fi ≤
∑

i≥3

i fi = 2e,

where equality holds if and only if f = f3, we conclude from (7) that 3v − 6 ≥ e,
where equality holds if and only if all facets of P are triangular. Together with (6),
this shows that F(p) is rigid if and only if all facets of P are triangular. ��
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Remark. To Günter Ziegler [1046] we owe the following comment. The proof
of the theorem of Asimow and Roth is via the rigidity matrix, which characterizes
infinitesimal rigidity. Thus it shows that, in the simplicial case, the polytope actually
is infinitesimally rigid, which implies rigidity, but is a stronger property in general.

18 Theorems of Alexandrov, Minkowski and Lindelöf

In convex geometry there are results of geometric interest, but not (yet?) of a system-
atic character. This does not exclude that such a result is useful as a tool or that there
are related results. Of course, this may change over the years. In the nineteenth cen-
tury Steiner’s formula for the volume of parallel bodies was an interesting curiosity,
through the work of Minkowski it is now an essential part of the Brunn–Minkowski
theory.

In the following we present results of this type on convex polytopes due to
Alexandrov [16], Minkowski [739] and Lindelöf [658]. Besides the geometric
interest of these results, it is the methods of proof which contribute to their appeal.

18.1 Alexandrov’s Uniqueness Theorem for Convex Polytopes

Given two convex polytopes, what conditions ensure that one is a translate of the
other? There are several such results in the literature, dealing with projections, sec-
tions or properties of faces.

This section contains Alexandrov’s sufficient condition for the congruence of
convex polytopes in E

3, see [16]. The proof makes use of Cauchy’s combinatorial
lemma.

Alexandrov’s Uniqueness Theorem

In the proof, unconventional terminology is used. A side of a (possibly improper)
convex polygon or polytope is a vertex or an edge. If F and G are convex polygons,
then by parallel sides we mean sides defined by support lines of F and G, respec-
tively, with the same exterior normal vector. Let H = F + G. Then each edge of
H is the sum of corresponding (unique, parallel) sides of F and G. We say that F
can be embedded into G if F + t � G for a suitable vector t . These definitions may
easily be extended to vertices, edges and facets, i.e. to faces of convex polytopes
in E

3. Alexandrov’s uniqueness theorem for convex polytopes in E
3 can now be

stated as follows:

Theorem 18.1. Let P, Q be proper convex polytopes in E
3. Then the following state-

ments are equivalent:

(i) For each pair of parallel faces of P and Q, at least one of which is a facet,
neither can be embedded in the other.

(ii) P and Q coincide up to translation.
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Proof. (i)⇒(ii) The proof of the following simple elementary proposition is left to
the reader; see also Alexandrov [16].

(1) Let H = F + G, where F and G are proper convex polygons. Mark an
edge of H by+,−, or leave it unmarked, if its corresponding side in F has
length greater than, less than, or equal to its corresponding side in G. If no
edge of H is marked, then F and G coincide up to translation. If at least
one edge of H is marked then, omitting the unmarked edges, there are at
least four changes of sign on each circuit of H .

Consider the polytope

R = P + Q.

Each edge of R is the sum of corresponding sides in P and Q, respectively. At
least one of these sides is an edge, and if both are edges, they are parallel in the
ordinary sense. Mark an edge of R by +,−, or leave it unmarked, if the length of
its corresponding side in P is greater than, less than or equal to the length of its
corresponding side in Q.

The main part of the proof is to show the following proposition.

(2) Let H = F + G be a facet of R, where F and G are the corresponding
faces in P and Q, respectively. If no edge of H is marked, then F and G
both are facets which coincide up to translation. If at least one edge of H is
marked then, omitting the unmarked edges, there are at least four changes
of sign on each circuit of H .

The following simple remark will be useful in the proof of (2).

(3) For each edge of H the corresponding sides in P and Q actually are corres-
ponding sides in F and G, respectively. Thus we may define the signs of
the edges of H by means of F and G.

To show (2), we distinguish four cases, according to the different possibilities for
F and G.

First, F and G are facets. Then take into account the assumption in statement (i)
and apply (3) and (1).

Second, F is a facet and G an edge (or vice versa). Since, by the assumption in
statement (i), G cannot be embedded into F , the sides of F parallel to G have shorter
length than G. These sides of F are separated by edges of F which are not parallel
to G. Clearly, for these edges of F , the parallel sides in G are the endpoints of G and
thus have length 0. Noting (3), we see then that there are at least four changes of sign
on each circuit of H .

Third, F and G are non-parallel edges. Then H is a parallelogram and, noting
(3), the edges of H have alternating sign.

Fourth, F is a facet and G a vertex (or vice versa). Since then G can be embedded
into F , this possibility is ruled out by the assumption in statement (i). The proof of
(2) is complete.
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Next, define a graph G on bd R as follows: in each facet of R choose a relative
interior point, a knot. Two knots are connected by an edge, that is a Jordan curve
in bd R if the facets containing the knots have a common (ordinary) edge (of R).
Clearly, the edges of G may be chosen such that they meet only at their endpoints, if
at all. Mark an edge of G by +,−, or leave it unmarked, if the corresponding edge
of R is so marked. Proposition (2) now reads as follows.

If a knot of G is the endpoint of a marked edge of G, then, on a circuit of the
knot, there are at least four changes of sign of the edges of G, omitting the
unmarked edges.

Cauchy’s combinatorial lemma 17.2 then shows that there is no marked edge of G.
This, in turn, implies that none of the edges of R is marked. Hence (2) implies the
following.

For each facet H = F+G of R the faces F and G of P and Q, respectively,
are both facets and they coincide up to translation.

Since this exhausts all facets of P and Q, we see that

The facets of P and Q appear in parallel pairs and the facets of any such
pair coincide up to translation.

Finally, building up bd P and bd Q starting with a pair of parallel facets and adding
the adjacent facets, etc., we see that bd P and bd Q and thus P and Q coincide up to
translation.

(ii)⇒(i) Trivial. ��
Remark. This result does not extend to E

d , d ≥ 4 in a straightforward way. To see
this, consider a box in E

d with edge-lengths 1, 1, 3, . . . , 3 and a cube of edge-length
2 with edges parallel to those of the box.

Problem 18.1. Find a version of Alexandrov’s theorem which holds in every
dimension.

18.2 Minkowski’s Existence Theorem and Symmetry Condition

It is a natural question to ask whether a convex polytope is determined by the areas of
its facets or the curvatures at its vertices. The first pertinent result of this type seems
to be Minkowski’s [739] existence and uniqueness theorem for convex polytopes
with given exterior normal vectors and areas of the facets. This result is the first
step in the proof of the existence of a convex body with given surface area measure,
see Sect. 10.1. A different result is Alexandrov’s theorem [16] on the existence and
uniqueness of convex polytopes with vertices on fixed rays and given corresponding
curvatures.

Here, we present Minkowski’s existence and uniqueness theorem for convex
polytopes. As an application, we show Minkowski’s condition for the central sym-
metry of a convex polytope which will be used in the proof of the Venkov–McMullen
theorem on tilings in Sect. 32.2.
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For other pertinent results, see Alexandrov [16]. See also the report in Schneider
[907].

Minkowski’s Existence and Uniqueness Theorem for Convex Polytopes

Minkowski [739] proved the following result; the proof is taken from Alexandrov
[16]. It makes use of the Lagrange multiplier theorem from calculus.

Theorem 18.2. Let u1, . . . , un ∈ Sd−1 and α1, . . . , αn > 0. Then the following
statements are equivalent:

(i) u1, . . . , un and α1, . . . , αn are the exterior normal unit vectors and the areas of
the corresponding facets of a proper convex polytope P in E

d which is unique up
to translation.

(ii) u1, . . . , un are not contained in a halfspace whose boundary hyperplane contains
o and

n∑

i=1

αi ui = o.

Proof. (i)⇒(ii) Clearly, P = {
x : ui · x ≤ h P (ui ), i = 1, . . . , n

}
. Let x ∈ P . If

there were a vector u �= o such that ui · u ≤ 0 for i = 1, . . . , n, then x + λu ∈ P for
all λ ≥ 0. This contradicts the boundedness of P and thus proves the first assertion
in (ii). To see the second assertion, note that

(
n∑

i=1

αi ui

)

· u =
∑

ui ·u>0

αi ui · u −
∑

ui ·u<0

αi ui · (−u) for each u ∈ Sd−1.

Since both sums on the right hand side are equal to the area of the orthogonal pro-
jection of P into the hyperplane u⊥, it follows that

(
n∑

i=1

αi ui

)

· u = 0 for each u ∈ Sd−1.

This readily implies the second assertion in (ii).
(ii)⇒(i) First, the existence of P will be shown. The first step is to prove that

(1) P
(
s = (s1, . . . , sn)

) = {
x : ui · x ≤ si , i = 1, . . . , n

}

is a convex polytope with o ∈ P(s) for s1, . . . , sn ≥ 0.

Clearly, P(s) is a convex polyhedron with o ∈ P(s). We have to show that P(s)
is bounded. If not, then P(s) contains a ray starting at o, say {λu : λ ≥ 0}, where
u �= o. Then

ui · u ≤ si

λ
for all λ > 0 and thus ui · u ≤ 0 for i = 1, . . . , n,

in contradiction to (ii), concluding the proof of (1).
For s1, . . . , sn ≥ 0, let Ai

(
s = (s1, . . . , sn)

)
be the area of the (possibly empty)

face Fi (s) = P(s) ∩ {x : ui · x = si } of P(s). (If Fi (s) = ∅, put Ai (s) = 0.) Then
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(2) V (s) = V
(
P(s)

)
is differentiable for s1, . . . , sn > 0, and

∂V (s)

∂si
= Ai (s) for i = 1, . . . , n.

The proof of the formula for the partial derivatives of V (s), in the case where
Ai (s) = 0, is left to the reader. If Ai (s) > 0, then, for sufficiently small |h|, the
polytopes P(s1, . . . , si + h, . . . , sn) and P(s1, . . . , sn) differ by the convex hull of
Fi (s1, . . . , si +h, . . . , sn) and Fi (s1, . . . , sn). Since Fi (s1, . . . , si +h, . . . , sn) tends
to F(s1, . . . , sn) as h → 0 (with respect to the Hausdorff metric), the volume of the
convex hull is Ai (s1, . . . , sn)|h| + o(|h|). Hence

V (s1, . . . , si + h, . . . , sn)− V (s1, . . . , sn) = A(s1, . . . , sn)h + o(h) as h → 0.

Now divide by h and let h tend to 0 to get the formula for the partial derivatives of
V (s) in (2). From the formula and the continuity of Ai , the differentiability of V
follows.

The simplex

(3) S =
{

s : si ≥ 0,
n∑

i=1

αi si = 1

}

⊆ E
n

is compact. Since V is continuous on S, it attains its maximum on S at a point of
S, say a. If a �∈ relint S, at least one ai is 0 and thus o ∈ bd P(a) by (1). Choose a
vector v �= o such that o ∈ int

(
P(a)+ v). Then

P(a)+ v = {
x + v : ui · x ≤ ai , i = 1, . . . , n

}

= {
y : ui · y ≤ ai + ui · v, i = 1, . . . , n

}

= P(b), where b = a + (u1 · v, . . . , un · v).

Since o ∈ int
(
P(a)+ v) = int P(b), we thus see that b1, . . . , bn > 0. Since a ∈ S,

the equality in statement (ii) implies that

n∑

i=1

αi bi =
n∑

i=1

αi ai +
n∑

i=1

αi ui · v = 1.

Hence b ∈ relint S. We thus have shown that

V attains its maximum on S at the point b ∈ relint S.

Propositions (2), (3) and the Lagrange multiplier theorem then yield

∂

∂si

(

V (s)− λ
n∑

i=1

αi si

) ∣∣∣∣
s=b

= Ai (b)− λαi = 0 for i = 1, . . . , n,
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where λ is a suitable constant. Since b1, . . . , bn > 0, the convex polytope P(b) is
proper and thus Ai (b) > 0 for certain i . Hence λ �= 0 and we obtain

αi = 1

λ
Ai (b) for i = 1, . . . , n.

The polytope P = λ− 1
d−1 P(b) then has the desired properties.

Secondly, we show that P is unique up to translation. For d = 3, this is an
immediate consequence of Alexandrov’s uniqueness theorem 18.1. For general d,
we argue as follows:

Let P, Q ∈ Pp be two convex polytopes with u1, . . . , un ∈ Sd−1 and α1, . . . ,
αn > 0 as exterior normals and areas of their facets. By Lemma 6.4, we have

V (P, Q, . . . , Q) = 1

d

n∑

i=1

h P (ui ) αi = V (P, . . . , P) = V (P).

Thus

V (P)d = V (P, Q, . . . , Q)d ≥ V (P)V (Q)d−1, or V (P) ≥ V (Q)

by Minkowski’s first inequality, see Theorem 6.11. Similarly, V (Q) ≥ V (P) and
therefore,

V (P) = V (Q) = V (P, Q, . . . , Q).

Hence there is equality in Minkowski’s first inequality. Together with V (P) = V (Q)
this shows that P and Q coincide up to translation. ��

Remark. Minkowski’s theorem is an existence and uniqueness theorem. A first
algorithm to construct P , given the exterior normal vectors and the areas of the
facets, is due to Little [662]. Complexity questions are studied by Gritzmann and
Hufnagel [395].

Minkowski’s Symmetry Condition

In some contexts, it is important to know whether a convex body or a polytope is cen-
trally symmetric, for example in problems dealing with packing and tiling, compare
Sects. 30.1–30.3 and 32.2. Thus symmetry criteria are of interest. As an immediate
consequence of the uniqueness statement in Minkowski’s existence and uniqueness
theorem we have the following result.

Corollary 18.1. Let P ∈ Pp. Then the following statements are equivalent:
(i) P is centrally symmetric.

(ii) For any facet of P there is a (unique) facet of P with equal area and opposite
exterior unit normal vector.
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Proof. Since the implication (i)⇒(ii) is trivial, it is sufficient to show that
(ii)⇒(i) Let u1,−u1, . . . , um,−um be the exterior normal unit vectors of the

facets of P and α1, α1, . . . , αm, αm the corresponding areas. By (ii), u1,−u1, . . . ,
um,−um and α1, α1, . . . , αm, αm are the exterior normal unit vectors and the areas
of the facets of−P . Hence the uniqueness statement in the existence and uniqueness
theorem implies that P is a translate of −P . This, in turn, shows that P is centrally
symmetric. ��

A useful result is the following symmetry condition of Minkowski [736].

Theorem 18.3. Let P = P1∪̇ · · · ∪̇Pm, where P, P1, . . . , Pm ∈ Pp. If each of
the convex polytopes Pi is centrally symmetric, then P is also centrally symmetric
(Fig. 18.1).

Proof. By the above corollary, it is sufficient to show the following statement.

(4) Let F be a facet of P with exterior normal unit vector u, say, and G the
face of P with exterior normal unit vector −u. Then v(F) = v(G) and, in
particular, G is a facet of P .

Orient E
d by the vector u. Consider the facets of the polytopes Pi which are parallel

to aff F . If such a facet H is on the upper side of a polytope Pi , let its signed area
w(H) be equal to v(H), and equal to −v(H) otherwise. Then

∑

H

w(H) = 0

since all Pi are centrally symmetric. Since the signed areas of the facets of the Pi ,
which are strictly between the supporting hyperplanes of P parallel to aff F , cancel
out, ∑

H

w(H) =
∑
w(Hk)+

∑
w(Hl),

where the Hk are the facets contained in F and the Hl the facets contained in G.
Clearly, the facets in F form a dissection of F and similarly for G. Hence,

v(F)− v(G) =
∑
v(Hk)−

∑
v(Hl) =

∑
w(H) = 0,

concluding the proof of (4) and thus of the theorem. ��

Fig. 18.1. Minkowski’s symmetry condition
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18.3 The Isoperimetric Problem for Convex Polytopes and Lindelöf’s Theorem

Considering convex polytopes, the following natural isoperimetric problem arises.
Determine, among all proper convex polytopes in E

d with n facets, those with
minimum isoperimetric quotient and specify the value of the latter.

This section contains Lindelöf’s necessary condition for polytopes with minimum
isoperimetric quotient amongst all convex polytopes in E

d with n facets.
Pertinent results in E

3, for small values of n, are reviewed by Fejes Tóth [330]
and Florian [337]. This includes characterizations of regular polytopes. For asymp-
totic results about the minimum isoperimetric quotient and the form of the minimiz-
ing polytopes as n → ∞, see Gruber [439–441, 443]. Compare also Sects. 8.3, 8.6
and 9.2.

Lindelöf’s Necessary Condition for Minimum Isoperimetric Quotient

The following result of Lindelöf [658] was vaguely anticipated by Steiner [960]. The
proof given below is modeled along the lines of the proof of the classical isoperimet-
ric theorem 8.7.

Theorem 18.4. Among all proper convex polytopes in E
d with given exterior nor-

mals of the facets, it is precisely the polytopes circumscribed to a ball that have
minimum isoperimetric quotient (Fig. 18.2).

The proof which we present in the following makes use of Minkowski’s theorem
on mixed volumes and the Brunn–Minkowski theorem. A different proof, which is
left to the reader, is based on Minkowski’s first inequality for mixed volumes. These
proofs are very similar to the second and third proof of the isoperimetric inequality,
see Theorem 8.7.

Proof. Since homotheties do not change the isoperimetric quotient of a convex body,
it is sufficient to show the following:

P

Q

S(P)d

V (P)d−1 ≥ S(Q)d

V (P)d−1

B2
o

Fig. 18.2. Lindelöf’s isoperimetric theorem for polytopes
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(1) Let P, Q ∈ Pp have the same set of exterior normal vectors of their facets
and such that Q is circumscribed to Bd . Then

S(P)d

V (P)d−1
≥ S(Q)d

V (Q)d−1
,

where equality holds if and only if P is homothetic to Q (and thus also
circumscribed to a ball).

Since Q is circumscribed to the unit ball Bd , dissecting Q into pyramids, all with
apex o, the formula for the volume of a pyramid then shows that

(2) S(Q) = d V (Q).

Minkowski’s theorem on mixed volumes 6.5 yields

(3) V
(
(1− λ)P + λQ

)
is a polynomial in λ for 0 ≤ λ ≤ 1.

Q is circumscribed to Bd . Choose � > 0 such that Q ⊆ �Bd . For 0 ≤ λ ≤ 1 the
polytope (1−λ)P+λQ can thus be dissected into (1−λ)P , right prisms of height λ
with the facets of (1− λ)P as bases, and a set in the λ�-neighbourhood of the union
of the (d − 2)-faces of (1− λ)P . Thus

(4) V
(
(1− λ)P + λQ

) = (1− λ)d V (P)+ (1− λ)d−1λS(P)+ O(λ2)
as λ→+0.

The Brunn–Minkowski theorem 8.3 shows that

(5) the function f (λ) = V
(
(1 − λ)P + λQ

) 1
d − (1 − λ)V (P) 1

d − λV (Q)
1
d

for 0 ≤ λ ≤ 1 with f (0) = f (1) = 0 is strictly concave, unless P is
homothetic to Q, in which case it is identically 0.

By (3) f is differentiable. Thus (5) shows that

(6) f ′(0) ≥ 0 where equality holds if and only if P is homothetic to Q.

Using the definition of f in (5), (4), and (2), a calculation which is almost identical
to that in the proof of the isoperimetric theorem 8.7, yields (1). ��

Corollary 18.2. Among all proper convex polytopes in E
d with a given number of

facets, there are polytopes with minimum isoperimetric quotient and these polytopes
are circumscribed to a ball.

In the proof, the first step is to show that there is a polytope with minimum isoperi-
metric quotient. By Lindelöf’s theorem this polytope then is circumscribed to a ball.

Remark. Diskant [274] extended Lindelöf’s theorem to the case where ordinary sur-
face area is replaced by generalized surface area, see Sect. 8.3. The above corollary
and its generalization by Diskant are used by Gruber [439,443] to obtain information
about the geometric form of convex polytopes with minimum isoperimetric quotient.
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19 Lattice Polytopes

A convex lattice polytope in E
d is the convex hull of a finite subset of the integer lat-

tice Z
d . Equivalently, it is a convex polytope, all vertices of which are in Z

d . Let PZd

and PZd p denote the spaces of all convex, resp. proper convex lattice polytopes in
E

d . Lattice polytopes play a prominent role in convexity and several other branches
of mathematics, including the following:

Algebraic geometry (toric varieties, Newton polytopes)

Integer optimization

Tiling (Delone triangulations)

Crystallography

Combinatorial geometry (counting problems)
In this section we first present results of Ehrhart on lattice point enumerators and

study the relation of lattice point enumerators to the volume of lattice polytopes. In
particular, results of Pick, Reeve and Macdonald are proved. Next, we give a ver-
sion of Minkowski’s theorem on mixed volumes for integer linear combinations of
convex lattice polytopes due to McMullen and Bernstein. Finally, we present the the-
orem of Betke–Kneser on valuations on the space of convex lattice polytopes which
is analogous to Hadwiger’s functional theorem on valuations on the space of convex
bodies. This result leads to short proofs of the lattice point enumeration theorems
of Ehrhart. For a different approach to enumeration problems for lattice polytopes
based on generating functions, we refer to Barvinok [80, 81]. Applications of lat-
tice polytopes deal with the irreducibility of polynomials in several variables and
the Minding–Kouchnirenko–Bernstein theorem on the number of zeros of a generic
system of polynomial equations.

Some of the proofs are rather complicated. The reader should not be misled by
a first look at the (much shorter) original proofs. In this section we use simple prop-
erties of lattices and the Euler characteristic which are not specified in the pertinent
sections, but are easy to prove using the tools developed there. In addition, we use
simple material on Abelian groups. Tools on polynomials are proved as the proofs
are not easily available elsewhere. Let U denote the family of all integer unimodular
d × d matrices, i.e. d × d matrices with integer entries and determinant ±1.

For general information on lattice polytopes and lattice polyhedra, see the books
of Schrijver [915], Erdös, Gruber and Hammer [307], Gruber and Lekkerkerker
[447], Handelman [478], Barvinok [80] and Beck and Robins [86]. Schrijver, in
particular, studies convex lattice polyhedra in the context of integer optimization.
See also the surveys of McMullen and Schneider [716], Gritzmann and Wills [397],
Lagarias [625], Barvinok [81] and DeLoera [253] and the pertinent articles in the
collection on Integer Points in Polyhedra – Geometry, Number Theory, Algebra, Op-
timization [536].

19.1 Ehrhart’s Results on Lattice Point Enumerators

The lattice point enumerators L , Lo, Lb : PZd → Z are defined as follows, where #
denotes the counting function:
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L(P) = #(P ∩ Z
d)

Lo(P) = (−1)d−dim P #(relint P ∩ Z
d)

Lb(P) = L(P)− Lo(P) for P ∈ PZd

relint P is the interior of P relative to the affine hull aff P . Some authors use slightly
different definitions.

The systematic study of lattice point enumerators started with the work of Reeve
[825,826], Macdonald [675] and the polynomiality results of Ehrhart [292–294] and
is now part of the theory of valuations on PZd . The results of Ehrhart are related to the
Riemann–Roch theorem, see Brion [169]. Ehrhart polynomials and their coefficients
play an essential role in combinatorics and the geometry of numbers. For references
see the book of Stanley [952], the article of Henk, Schürmann and Wills [492] and
the survey of Henk and Wills [493]. A relation between the roots of Ehrhart poly-
nomials and successive minima due to Henk, Schürmann and Wills will be stated in
Sect. 23.1.

This section contains the proofs of two results of Ehrhart, following in part the
line of Macdonald [675]. Different proofs will be given in Sect. 19.4, using the theo-
rem of Betke and Kneser.

For more information the reader is referred to Ehrhart’s monograph [294], to
the books cited in the introduction of Sect. 19 and to the surveys of McMullen and
Schneider [716], Gritzmann and Wills [397], Brion [170] and Simion [940]. Beck,
De Loera, Develin, Pfeifle and Stanley [85] investigated the coefficients and roots of
the Ehrhart polynomials.

Ehrhart’s Polynomiality and Reciprocity Results for L and Lo

The following results are due to Ehrhart [292–294]. The first result is called Ehrhart’s
polynomiality theorem, the second Ehrhart’s reciprocity theorem.

Theorem 19.1. Let P be a proper convex lattice polytope in E
d . Then the following

claims hold:

(i) L(n P) = pP (n) for n ∈ N, where pP is a polynomial of degree d, with leading
coefficient V (P) and constant term 1.

(ii) Lo(n P) = (−1)d pP (−n) for n ∈ N.

These results yield the Reeve–Macdonald formulae for the volume of lattice poly-
topes, see Sect. 19.2. In our proof of the theorem, the notion of lattice and simple
related concepts are used, for which the reader may wish to consult Sect. 21.

Proof. (i) First, the following will be shown.

(1) Let S ∈ PZd p be a simplex. Then

∞∑

n=0

L(nS)tn = q(t)
(

1+
(d + 1

1

)
t +

(d + 2

2

)
t2 + · · ·

)
for |t | < 1,

where q is a polynomial of degree at most d with integer coefficients.
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Embed E
d into E

d+1 as usual (first d coordinates) and let q1, . . . , qd+1 ∈ Z
d+1

be the vertices of the lattice simplex T = S + (0, . . . , 0, 1) in the hyperplane
{x : xd+1 = 1}. The lattice Z

d+1 has determinant d(Zd+1) = 1. Let L be the
sublattice of Z

d+1 with basis {q1, . . . , qd+1}. The set F = {α1q1+· · ·+αd+1qd+1 :
0 ≤ αi < 1} is a fundamental parallelotope of L . Thus, for the determinant of L
we have d(L) = Vd+1(F), where Vd+1 stands for the volume in E

d+1. Then the
following hold.

(2) For each u ∈ Z
d+1, there is precisely one point v ∈ F ∩ Z

d+1 such that
u ∈ v + L . Further, Vd+1(F) = #(F ∩ Z

d+1) = h, say.

If u = β1q1 + · · · + βd+1qd+1 ∈ Z
d+1, then v = (β1 − �β1�)q1 + · · · + (βd+1 −

�βd+1�)qd+1 is the unique point v ∈ F ∩ Z
d+1 with u ∈ v + L . The index of the

sublattice (subgroup) L in the lattice (group) Z
d+1 is thus #(F ∩ Z

d+1). Since the
index is also equal to d(L)/d(Zd+1) = Vd+1(F), we see that Vd+1(F) = #(F ∩
Z

d+1), concluding the proof of (2). Compare Sect. 21.3. For each u ∈ nT ∩ Z
d+1,

according to (2), we have

(3) u = v +
d+1∑

i=1

mi qi with suitable integers mi ≥ 0.

To see this, note that u = β1q1 + · · · + βd+1qd+1 with βi ≥ 0 and put mi = �βi�.
Considering the last coordinate, (3) shows that

(4) n = vd+1 +
d+1∑

i=1

mi with integers mi ≥ 0.

Conversely, given v ∈ F ∩ Z
d+1, any solution of (4) in integers mi ≥ 0 gives rise to

a unique point u ∈ nT ∩ Z
d+1 with u ∈ v + L . The number of such solutions of (4)

equals the coefficient of tn in the power series

tvd+1(1+ t + t2 + · · · )d+1 = tvd+1

(1− t)d+1

= tvd+1

(
1+

(−d − 1

1

)
(−t)+

(−d − 1

2

)
(−t)2 + · · ·

)

= tvd+1

(
1+

(
d + 1

1

)
t +

(
d + 2

2

)
t2 + · · ·

)
,

where we have applied Newton’s binomial series. Hence

(5) L(nS)(= L(nT )) equals the coefficient of tn in the power series

q(t)

(
1+

(
d + 1

1

)
t +

(
d + 2

2

)
t2 + · · ·

)
, where q(t) =

∑

v∈F∩Zd+1

tvd+1 .

To determine the degree of q(·), note that each v ∈ F ∩ Z
d+1 can be represented

in the form v = α1q1 + · · ·αd+1qd+1 where 0 ≤ αi < 1. Each qi has last coordinate
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1. Hence vd+1 = α1 + · · · + αd+1 < d + 1. Thus, being integer, vd+1 ≤ d, which
shows that q has degree at most d. The proof of (1) is complete.

Second, we show Proposition (i) for simplices.

(6) Let S ∈ PZd p be a simplex. Then L(nS) = pS(n) for n ∈ N, where pS is a
polynomial of degree d, with leading coefficient V (S) and constant term 1.

To show (6), note that according to (1), q(t) = a0+a1t+· · ·+adtd . By the definition
of q in (5), the coefficient ai is the number of points v ∈ F ∩ Z

d+1 with vd+1 = i .
Thus, in particular,

(7) a0 = 1 and a0 + a1 + · · · + ad = h,

see (2). Denote the k-dimensional volume by Vk . We have,

Vd+1(F) = (d + 1)!Vd+1
(

conv(T ∪ {o}))

= (d + 1)!
d + 1

Vd(T ) = d !V (S).

Since h = Vd+1(F) by (2), it follows that

(8) V (S) = h

d ! .
Inserting

q(t) = a0 + a1t + · · · + ad td

into (1) and comparing the coefficients of tn in the two power series, yields

L(nS) =
(

d + n

d

)
a0 +

(
d + n − 1

d

)
a1 + · · · +

(n

d

)
ad

= a0 + · · · + a0 + · · · + ad

d ! nd = 1+ · · · + V (S) nd = pS(n), say,

for n ∈ N

by (7) and (8). The proof of (6) is complete.
Using (6), we now show the following related statement.

(9) Let R ∈ PZd be a simplex with c = dim R < d. Then L(n R) = pR(n)
for n ∈ N, where pR is a polynomial of degree less than d with constant
term 1.

Embed E
c into E

d as usual (first c coordinates). There is an integer unimodular d×d
matrix U ∈ U such that U R is a simplex in PZc p. Now apply (6) to U R and note
that L(n R) = L(nU R) to get (9).

Third, the following proposition will be shown.

(10) Let S ∈ PZd p be a simplex. Then L(n int S) = qS(n) for n ∈ N, where
qS is a polynomial of degree d with leading coefficient V (S) and constant
term (−1)d .
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To see this, note that

L(n int S) = L(nS)−
∑

R

L(n R)+
∑

Q

L(nQ)−+ · · · ,

where R ranges over all facets of S, Q over all (d − 2)-dimensional faces, etc. Now
take into account (6) and (9) to see that L(n int S) = qS(n) where qS is a polynomial
of degree d with leading coefficient V (S) and constant term

1−
(

d + 1

1

)
+

(
d + 1

2

)
−+ · · · + (−1)d

(
d + 1

d

)
= (−1)d ,

concluding the proof of (10).
Analogous to the derivation of (9) from (6), the following proposition is a conse-

quence of (10).

(11) Let R ∈ PZd be a simplex with c = dim R < d. Then L(n relint R) =
qR(n) for n ∈ N, where qR is a polynomial of degree < d with constant
term (−1)c.

In the fourth, and last, step of the proof of (i), we extend (6) from simplices to
convex polytopes.

(12) Let P ∈ PZd p. Then L(n P) = pP (n) for n ∈ N, where pP is a polynomial
of degree d with leading coefficient V (P) and constant term 1.

By Theorem 14.9, the proper lattice polytope P is the union of all simplices of a
suitable simplicial complex where all simplices are lattice simplices. Hence P is the
disjoint union of the relative interiors of these simplices. See, e.g. Alexandroff and
Hopf [9], p. 128. Propositions (10) and (11) thus yield (12), except for the statement
that the constant term is 1. To see this note that the Euler characteristic of a simplicial
complex is the number of its vertices minus the number of its edges plus the number
of its 2-dimensional simplices, etc. This together with (10) and (11) shows that the
constant term in pP is just the Euler characteristic of the simplicial complex; but
this equals the Euler characteristic of P and is thus 1. The proof of (12) and thus of
Proposition (i) is complete.

(ii) Since the proof of (ii) is similar to that of (i), some details are omitted. The
first step is to show the following analogue of (1).

(13) Let S ∈ PZd p be a simplex. Then

∞∑

n=0

Lo(nS)tn = r(t)

(
1+

(
d + 1

1

)
t +

(
d + 2

2

)
t2 + · · ·

)
for |t | < 1,

where r is a polynomial with integer coefficients of degree ≤ d + 1.

Instead of the fundamental parallelotope F in the proof of (1), here the fundamental
parallelotope G = {

x = α1q1 + · · · + αd+1qd+1 : 0 < αi ≤ 1
}

is used.
In (13), r(t) = b1t + · · · + bd+1td+1, where bk equals the number of points

v ∈ G ∩ Z
d+1 with vd+1 = k. By symmetry, ai = bd+1−i for i = 0, . . . , d. Hence
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r(t) = adt + · · · + a1td + a0td+1

and we obtain, from (13)

Lo(nS) =
(

d + n − 1

d

)
ad +

(
d + n − 2

d

)
ad−1 + · · · +

(
n − 1

d

)
a0

= 1

d !
(
(d + n − 1) · · · (n + 1)nad + · · · + (n − 1) · · · (n − 1− d + 1)a0

)

= (−1)d

d !
(
(−n + d) · · · (−n + 1)a0 + · · · + (−n) · · · (−n − d + 1)ad

)

= (−1)d
((−n + d

d

)
a0 + · · · +

(−n

d

)
ad

)
= (−1)d pS(−n).

This, together with the corresponding results in lower dimensions, yields the follow-
ing counterpart of (6) and (9).

(14) Let S ∈ PZd be a simplex with c = dim S ≤ d. Then
Lo(nS) = (−1)c pS(−n) for n ∈ N.

In the final step we extend (14) to proper convex lattice polytopes.

(15) Let P ∈ PZd p. Then Lo(n P) = (−1)d pP (−n) for n ∈ N.

Represent P as the disjoint union of the relative interiors of the simplices of a com-
plex of lattice simplices as in the proof of (12). Then

(16) pP (n) = L(n P) =∑

S
Lo(nS)+∑

R
Lo(n R)+ · · ·

=∑

S
(−1)d pS(−n)+∑

R
(−1)d−1 pR(−n)+ · · · for n ∈ N,

where S ranges over all proper simplices of this complex, R over all (d − 1)-
dimensional simplices, etc. Since pP , pS, . . . , all are polynomials and since (16)
holds for all n ∈ N, it holds for all t ∈ R in place of n ∈ N. Thus it holds in
particular for all −n where n ∈ N. Hence

(17) (−1)d pP (−n) =∑

S
pS(n)−∑

R
pR(n)+ · · ·

=∑

S
L(nS)−∑

R
L(n R)+ · · · for n ∈ N,

by (i). To finish the proof of (15,) it suffices to show that the last line in (17) is
equal to Lo(n P). Let l ∈ Z

d . The contribution of l to the last line in (17) equals the
expression

#
({S : l ∈ nS})− #

({R : l ∈ n R})+− . . .
If l �∈ n P , this expression is 0. If l ∈ bd(n P), this expression may be interpreted
(up to the sign) as the Euler characteristic of (a complex of convex polyhedral cones
with apex l and union equal to) the polyhedral support cone of P at l. Thus it is 0.
If l ∈ int n P , this expression is (up to the sign) equal to the Euler characteristic of
(a complex of convex polyhedral cones with apex l and union equal to) E

d . Thus it
is 1. The last line in (17) thus equals Lo(n P), concluding the proof of (15) and thus
of (ii). ��
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The Coefficients of the Ehrhart Polynomial

Based on Barvinok’s [78, 79] method for counting lattice points, DeLoera,
Hemmecke, Tauzer and Yoshida [254] developed an efficient algorithm to calculate
the coefficients of Ehrhart polynomials.

19.2 Theorems of Pick, Reeve and Macdonald on Volume and Lattice Point
Enumerators

Can the volume of a lattice polytope P be calculated in terms of the number of lattice
points in P , in the relative interior of P and on the relative boundary of P , that is, in
terms of L(P), Lo(P) and Lb(P)?

A nice result of Pick [801] says that, for a Jordan lattice polygon P in E
2,

(1) A(P) = L(P)− 1
2 Lb(P)− 1,

where A stands for area. For this result there are many proofs, variants and extensions
known, as a look into the American Mathematical Monthly, the Mathematics Teacher
and similar journals shows. We mention the far-reaching generalizations of Hadwiger
and Wills [470] and Grünbaum and Shephard [456].

There is no direct generalization of the formula (1) to higher dimension as can
be seen from the simplices Sn = conv{o, (1, 0, 0), (0, 1, 0), (1, 1, n)} in E

3.

V (Sn) = n

3! , while L(Sn) = Lb(Sn) = 4, Lo(Sn) = 0 for n ∈ N.

Reeve [825, 826] (d = 3) and Macdonald [675] (general d) were able to express the
volume of a (general) lattice polytope P in terms of L(P), Lb(P), L(2P),
Lb(2P), . . . , L

(
(d − 1)P

)
, Lb

(
(d − 1)P

)
.

This section contains the proofs of Pick’s theorem and of results of Reeve and
Macdonald in the special case of convex lattice polytopes.

For more information, see the references given earlier and the references at the
beginning of Sect. 19.

Pick’s Lattice Point Theorem in E
2

A Jordan lattice polygon is a solid polygon in E
2 bounded by a closed Jordan polyg-

onal curve in E
2, all vertices of which are points of Z

2. Let JZ2 be the family of
all Jordan lattice polygons. Clearly, the lattice point enumerators extend to JZ2 . The
following result is due to Pick [801].

Theorem 19.2. Let P ∈ JZ2 . Then (Fig. 19.1)

(1) A(P) = L(P)− 1
2 Lb(P)− 1.

Proof. We first show that

(2) The expression M = L − 1
2 Lb − 1 is simply additive on JZ2 .
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P

A(P) = 7 1
2 , L(P) = 15, Lb(P) = 13

Fig. 19.1. Pick’s theorem

By the latter we mean the following: If P, Q ∈ JZ2 are such that P ∪ Q ∈ JZ2 and
P ∩ Q is a polygonal Jordan arc, then

M(P ∪ Q) = M(P)+ M(Q).

To see (2), assume that the common arc P ∩ Q of P and Q contains m points of Z
2.

Then

L(P ∪ Q) = L(P)+ L(Q)− m,

Lb(P ∪ Q) = Lb(P)+ Lb(Q)− 2m + 2.

This, in turn, implies (2):

M(P ∪ Q) = L(P ∪ Q)− 1

2
Lb(P ∪ Q)− 1

= L(P)− 1

2
Lb(P)+ L(Q)− 1

2
Lb(Q)− m + m − 1− 1

= M(P)+ M(Q).

To prove the theorem, it is sufficient to show the following:

(3) Let n = 3, 4, . . . Then (1) holds for each P ∈ JZ2 with L(P) = n.

The proof is by induction on n. If n = 3, then P is a lattice triangle which contains
no point of Z

2, except its vertices. We may assume that P = conv{o, b1, b2}. The
triangle −P + b1+ b2 is also a lattice triangle which contains no point of Z

2, except
its vertices. Hence o is the only point of Z

2 in the parallelogram {α1b1 + α2b2 : 0 ≤
αi < 1} ⊆ P ∪ (−P + b1 + b2). Thus {b1, b2} is a basis of Z

2 and therefore,

A(P) = 1

2
| det(b1, b2)| = 1

2
= 3− 1

2
3− 1 = L(P)− 1

2
Lb(P)− 1.

Assume now that n > 3 and that (3) holds for 3, 4, . . . , n − 1. Let q be a ver-
tex of conv P and let p and r be the points of Z

2 on bd P just before and after q.
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If the triangle S = conv{p, q, r} contains no further point of Z
2, dissect P along

the line segment [p, r ]. This gives two Jordan lattice polygons, S and T , say, where
L(S), L(T ) < n. Hence (3) holds for S and T by the induction assumption and we
obtain that

A(P) = A(S ∪ T ) = A(S)+ A(T )

= L(S)− 1

2
Lb(S)− 1+ L(T )− 1

2
Lb(T )− 1

= L(S ∪ T )− 1

2
Lb(S ∪ T )− 1 = L(P)− 1

2
Lb(P)− 1

by (2). Hence (3) holds for P , too. If S = conv{p, q, r} contains points of Z
2 dif-

ferent from p, q, r, choose one which is closest to q, say s. Now dissect P along
[q, s] and proceed as before to show that (3) also holds for P in the present case. The
induction is thus complete. This concludes the proof of (3) and thus of the theorem.

��
Remark. Since the perimeter P(P) of a polygon P ∈ JZ2 is at least Lb(P), Pick’s
equality (1) yields the following estimate.

A(P) ≥ L(P)− 1

2
P(P)− 1.

If C is a planar convex body such that P = conv(C ∩ Z
2) is a proper convex lattice

polygon, then

A(C) ≥ A(P) ≥ L(P)− 1

2
P(P)− 1 ≥ L(C)− 1

2
P(C)− 1.

This inequality was first proved by Nosarzewska [773].

The Reeve–Macdonald Lattice Point Results in E
d

A very satisfying extension of Pick’s theorem to higher dimensions is due to Reeve
[825,826] (d = 3) and Macdonald [675] (general d). We present it in the case where
the lattice polytope is convex.

Theorem 19.3. Let P ∈ PZd p. Then

(i) d !V (P) = L(d P)−
(

d

1

)
L
(
(d − 1)P

)+ · · · + (−1)d−1
(

d

d − 1

)
L(P)+

(−1)d , and

(ii)
(d − 1)d !

2
V (P) = M

(
(d − 1)P

)−
(

d − 1

1

)
M

(
(d − 2)P

)+ · · ·

· · · + (−1)d−2
(

d − 1

d − 2

)
M(P)+ 1

2
+ 1

2
(−1)d ,

where M(P) = L(P)− 1

2
Lb(P) = 1

2

(
L(P)+ Lo(P)

)
.
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The original proof of (ii) by Macdonald was rather complicated. Using Ehrhart’s
reciprocity theorem 19.1(ii), the following proof of (ii) is along the lines of the proof
of Proposition (i) and much shorter.

Proof. (i) By Proposition (i) in Ehrhart’s theorem 19.1,

(4) L(n P) = pP (n) for n ∈ N, where pP is a polynomial of degree d with
leading coefficient V (P) and constant term 1.

Since pP (i) = L(i P) �= 0 for i = 0, . . . , d, Lagrange’s theorem on partial fractions
shows that

(5)
pP (t)

d∏

i=0
(t − i)

=
d∑

j=0

a j

t − j

with suitable coefficients a j . Then

pP (t) =
d∑

j=0

a j

d∏

i=0
i �= j

(t − i).

Put t = j to see that

L( j P) = pP ( j) = a j

d∏

i=0
i �= j

( j − i), or a j = (−1)d− j L( j P)

(d − j)! j ! .

Multiplying (5) by
d∏

i=0

(t− i) and comparing the coefficient of td on both sides shows

that

d !V (P) = L(d P)−
(d

1

)
L
(
(d − 1)P

)+− · · · + (−1)d

by (4).
(ii) Propositions (i) and (ii) in Ehrhart’s theorem 19.1 together imply that

(6) M(n P) = 1
2

(
L(n P) + Lo(n P)

) = 1
2

(
pP (n) + (−1)d pP (−n)

) = qP (n),
say, for n ∈ N, where qP is a polynomial of degree d with leading coeffi-
cient V (P), second coefficient 0, and constant term 1

2 + 1
2 (−1)d .

Since qP (i) = 1
2

(
L(i P) + Lo(i P)

) �= 0 for i = 0, . . . , d − 1, Lagrange’s theorem
yields

qP (t)
d−1∏

i=0
(t − i)

=
d−1∑

j=0

b j

t − j
+ V (P)

with suitable coefficients b j . Then
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qP (t) =
d−1∑

j=0

b j

d−1∏

i=0
i �= j

(t − i)+ V (P)
d−1∏

i=0

(t − i).

Now put t = j . This gives

M( j P) = qP ( j) = b j

d−1∏

i=0
i �= j

( j − i), or b j = (−1)d−1− j M( j P)

(d − 1− j)! j ! ,

where by M(0P) we mean 1
2 + 1

2 (−1)d . Hence

(d−1)! qP (t) =
d−1∑

j=0

(−1)d−1− j
(d − 1

j

)
M( j P)

d−1∏

i=0
i �= j

(t−i)+(d−1)! V (P)
d−1∏

i=0

(t−i).

Note (6) and compare the coefficient of td−1 on both sides. This yields the following:

0 =
d−1∑

j=0

(−1)d−1− j
(d − 1

j

)
M( j P)+ (d − 1)!

d−1∑

j=0

(− j)V (P),

or
1

2
(d − 1)d !V (P) =

d−1∑

j=0

(−1)d−1− j
(d − 1

j

)
M( j P),

concluding the proof of (ii). ��

19.3 The McMullen–Bernstein Theorem on Sums of Lattice Polytopes

One of the fascinating results of early convex geometry is Minkowski’s theorem on
mixed volumes 6.5. It says that the volume of a linear combination of convex bod-
ies with non-negative coefficients is a homogeneous polynomial in the coefficients.
McMullen [708,709] and Bernstein [101] proved an analogous result for linear com-
binations of lattice polytopes with integer coefficients where, instead of the volume,
the number of lattice points is considered. Both the volume and the lattice point enu-
merators are valuations and the results of Minkowski and McMullen–Bernstein are
now part of the theory of valuations. While this is classical for the volume, it is due
to the efforts of McMullen [709] for lattice point enumerators, see the survey [714].

This section contains Bernstein’s proof of the McMullen–Bernstein theorem. We
start with some properties of polynomials which, surprisingly, we could not find in
the literature in the required form.

For more information on pertinent material, see McMullen [708, 709] and the
surveys of McMullen and Schneider [716], Gritzmann and Wills [397] and Mc-
Mullen [714].
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Sufficient Conditions for Polynomiality

We begin with two criteria for polynomiality. Both seem to be known. A result sim-
ilar to the first criterion is due to Carroll [191]. I am grateful to Iskander Aliev [22]
for this reference. Here N = {0, 1, . . . }.
Lemma 19.1. Let k ∈ N and p : N

d → R such that for any d − 1 variables fixed, p
is (the restriction of) a real polynomial of degree at most k in the remaining variable.
Then p is a real polynomial in all d variables of degree at most k.

Proof. We prove the lemma in case d = 2. The same idea, together with a simple
induction argument, yields the general case.

By assumption,

(1) p(m, n) =
k∑

i=0

ai (m)n
i for m, n ∈ N,

where the ai (m) are suitable coefficients. Thus, in particular,

p(m, j) =
k∑

i=0

ai (m) j i for m ∈ N, j = 0, . . . , k.

Cramer’s rule and the Gram determinant then imply that

(2) ai (m) =
k∑

j=0

bi j p(m, j) for m ∈ N, i = 0, . . . , k,

with suitable real coefficients bi j . Thus

p(m, n) =
k∑

i, j=0

bi j p(m, j)ni for m, n ∈ N,

by (1) and (2). Since, by the assumption of the lemma, p(m, j) is a polynomial in
m (∈ N) for each j = 0, 1, . . . , k, p(m, n) is also a polynomial in m, n (∈ N). ��
Lemma 19.2. Let q : N → R be such that q(n + 1) − q(n) is (the restriction of) a
real polynomial for n ∈ N. Then q is a real polynomial in one variable.

Proof. Let

q(n + 1)− q(n) = a0 + a1n + · · · + aknk for n ∈ N,

with suitable coefficients ai . Then

q(n + 1)− q(1) = q(n + 1)− q(n)+ q(n)− q(n − 1)+ · · · + q(2)− q(1)

= a0 + a1n + · · · + aknk + a0 + a1(n − 1)+ · · · + ak(n − 1)k + · · ·
= a0(1+ 1+ · · · + 1)+ a1(1+ 2+ · · · + n)+ · · · + ak(1+ 2k + · · · + nk).
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Now, take into account that the sum of the i th-order arithmetic series 1+2i+· · ·+ni

is a polynomial in n of degree i + 1, where the coefficients depend on the Bernoulli
numbers. Hence q(n+1)−q(1) and thus q(n+1) and then also q(n) is a polynomial
in n of degree k + 1. ��
The McMullen–Bernstein Theorem on Lattice Points in Sums of Lattice
Polytopes

is as follows.

Theorem 19.4. Let P1, . . . , Pm ∈ PZd p. Then L(n1 P1+· · ·+nm Pm) is a polynomial
in n1, . . . , nm ∈ N of degree d.

Proof. We begin with some simple preparations. The inclusion–exclusion formula
for finite sets is as follows.

(3) Let A1, . . . , Am be finite sets. Then

#
⋃

i

Ai =
∑

i

#Ai −
∑

i< j

#(Ai ∩ A j )+
∑

i< j<k

#(Ai ∩ A j ∩ Ak)− · · ·

For S ∈ PZd and u ∈ E
d , u �= o, the support set of S with exterior normal u is the

set
S(u) = {

x ∈ S : u · x = hS(u)
}
.

For a finite set U ⊆ E
d with o �∈ U , let

S(U ) = {
x ∈ S : u · x = hS(u) for each u ∈ U

} =
⋂

u∈U

S(u).

An easy argument yields the following.

(4) Let S, T ∈ PZd and let U ⊆ E
d be a finite set with o �∈ U . Then the support

sets S(U ), T (U ), (S + T )(U ) are in PZd , are faces of S, T, S + T and

(S + T )(U ) =
⋂

u∈U

(
S(u)+ T (u)

) = S(U )+ T (U ).

The main step of the proof of the theorem is to show the following proposition.

(5) Let P, Q ∈ PZd . Then L(P + nQ) is the restriction of a polynomial of
degree ≤ d to n ∈ N.

The proof is by induction on l = dim Q. If l = 0, then Q is a point of Z
d and for each

n ∈ N, the polytope P+nQ is a translate of P by a vector of Z
d . Hence L(P+nQ)

is a constant.
Assume now that l > 0 and that (5) holds in case where dim Q = 0, 1, . . . , l−1.

We have to prove it for dim Q = l. Since translations of P and Q by vectors of Z
d

do not affect (5), we may assume that

o ∈ P, Q.
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As a consequence of Corollary 21.2 and Theorem 21.1 the following holds. There is
an integer unimodular d × d matrix which maps the lattice lin(P + Q) ∩ Z

d onto
a lattice of the form Z

c in E
d , where c = dim lin(P + Q) and E

c is embedded
into E

d as usual (first c coordinates). Then P, Q are mapped onto convex lattice
polytopes with respect to Z

c the sum of which is proper. Thus we may suppose that
already P+Q ∈ PZd p. Embed E

d into E
d+1 as usual, denote by “ ′ ” the orthogonal

projection from E
d+1 onto E

d , and let u1 = (0, . . . , 0, 1) ∈ E
d+1. When speaking

of upper side, etc. of a convex polytope in E
d+1, this is meant with respect to the last

coordinate. Let R = conv
(
Q ∪ {u1}

) ∈ PZd+1 .

After these preparations we show that

(6) L
(
P + (n + 1)Q

)− L(P + nQ) is a polynomial in n ∈ N.

By the above, P + nQ+ R ∈ PZd+1 p and its upper side contains the horizontal facet
F1 = P + nQ + u1 with exterior normal vector u1 and certain “non-horizontal”
facets, say F2, . . . , Fm . Let u2, . . . , um be exterior normal vectors of these. Then

(7) F1 = P + nQ + u1,

Fi = P(ui )+ nQ(ui )+ R(ui ) for i = 2, . . . ,m

by (4). Next, it will be shown that

(8) u2, . . . , um are not orthogonal to lin Q.

For, assume that ui⊥ lin Q (⊆ E
d). Then P(ui ) ⊆ P, Q(ui ) ⊆ Q. Since R =

conv(Q∪{u1}), ui⊥ lin Q, u1 = (0, . . . , 0, 1) and ui has last coordinate greater than
0, we have R(ui ) = {u1}. Thus Fi = (P+nQ+R)(ui ) = P(ui )+nQ(ui )+R(ui ) ⊆
P + nQ + {u1} = F1 by (4) and (7). This is impossible, concluding the proof of (8).
From P, Q ∈ PZd , R ∈ PZd+1 and (8) it follows that

(9) P(ui ), Q(ui ),
(
R(ui ) ∈ PZd+1 and thus

)
R(ui )

′ ∈ PZd for i = 1, . . . ,m,
dim Q(ui ) < dim Q = l for i = 2, . . . ,m.

Hence (4) yields

(10) P
({ui , u j }

)
, Q

({ui , u j }
)
, R

({ui , u j }
)′ ∈ PZd for 1 ≤ i < j ≤ m,

dim Q
({ui , u j }

)
(≤ dim Q(u j )) < dim Q = l for 1 ≤ i < j ≤ m.

Analogous statements hold for P
({ui , u j , uk}

)
, . . .

Since F ′1, . . . , F ′m tile (P+nQ+R)′ = P+nQ+R′ = P+nQ+Q = P+(n+1)Q
and F ′1 = P + nQ, propositions (3), (7) and (4) imply that
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L
(
P + (n + 1)Q

) =
∑

i

L(F ′i )−
∑

i< j

L(F ′i ∩ F ′j )+ · · ·

= L(P + nQ)+
m∑

i=2

L(F ′i )−
∑

i< j

L
(
(Fi ∩ Fj )

′)+ · · ·

= L(P + nQ)+
m∑

i=2

L
(
P(ui )+ nQ(ui )+ R(ui )

′)

−
∑

i< j

L
(
P
({ui , u j }

)+ nQ
({ui , u j }

)+ R
({ui , u j }

)′)+ · · · .

This, combined with (9), (10) and the induction assumption, shows that L(P +
(n + 1)Q)− L(P + nQ) is a polynomial in n ∈ N, concluding the proof of (6).

Having proved (6), Lemma 19.2 shows that L(P+nQ) is a polynomial in n ∈ N.
If K is a lattice cube such that P, Q ⊆ K , then P + nQ ⊆ (n + 1)K and thus
L(P+nQ) ≤ L((n+1)K ) = O(nd). Hence the polynomial L(P+nQ) has degree
≤ d. Thus (5) holds for Q ∈ PZd with dim Q = l. The induction is thus complete
and (5) holds generally.

The theorem finally follows from (5) and Lemma 19.1. ��

19.4 The Betke–Kneser Theorem on Valuations

Many of the functions φ on the space PZd of convex lattice polytopes which have
been studied are valuations with values in R or in some Abelian group A. This means
that

φ(P ∪ Q)+ φ(P ∩ Q) = φ(P)+ φ(Q)
whenever P, Q, P ∪ Q, P ∩ Q ∈ PZd , and φ(∅) = 0.

Examples are the volume and the lattice point enumerators. Among such valuations
many are integer unimodular invariant. By this we mean that

φ(P) = φ(U P + u) for P ∈ PZd , U ∈ U, u ∈ Z
d ,

where U is the family of all integer unimodular d × d matrices. A central result in
this context due to Betke [105] and Betke and Kneser [108] shows that the structure
of the linear space of the real, integer unimodular invariant valuations on PZd is sur-
prisingly simple. It parallels Hadwiger’s functional theorem 7.9 for real, continuous
and motion invariant valuations on the space C of convex bodies. The theorem of
Betke and Kneser yields simple proofs of the results of Ehrhart [292, 293] on lattice
point enumerators.

In the following we state without proof an unpublished result of Stein and Betke
on the inclusion–exclusion principle, give a proof of the Betke–Kneser theorem and
show how it implies the results of Ehrhart. We will make use of some algebraic tools.

For more information, see the survey of McMullen [714] and the references in
the introduction of Sect. 19, to which we add Kantor [564].



19 Lattice Polytopes 325

The Inclusion–Exclusion Formula

R. Stein [955] and Betke [106] proved the following result but, unfortunately, did not
publish their proofs.

Theorem 19.5. Let φ : PZd → A be an integer unimodular invariant valuation,
where A is an Abelian group. Then φ satisfies the following inclusion–exclusion
formula for lattice polytopes:

φ(P1 ∪ · · · ∪ Pm) =
∑

i

φ(Pi )−
∑

i< j

φ(Pi ∩ Pj )+ · · ·+ (−1)m−1φ(P1 ∩ · · · ∩ Pm),

whenever Pi , Pi ∩ Pj , . . . , P1 ∩ · · · ∩ Pm, P1 ∪ · · · ∪ Pm ∈ PZd .

Algebraic Preparations

Let Gd
p be the free Abelian group generated by the proper convex lattice polytopes

P ∈ PZd p and let Hd
p be its subgroup generated by the following elements of Gd

p:

P −U P − u : P ∈ PZd p, U ∈ U, u ∈ Z
d

P −∑

i
Pi : P = P1∪̇ · · · ∪̇Pm, Pi ∈ PZd p, Pi ∩ Pj , Pi ∩ Pj ∩ Pk, · · · ∈ PZd

Let S0 = {o} and denote by Si the simplex conv{o, b1, . . . , bi } for i = 1, . . . , d,
where {b1, . . . , bd} is the standard basis of E

d .

Proposition 19.1. Gd
p/H

d
p is an infinite cyclic group generated by the coset Sd+Hd

p.

Proof. Let P ∈ PZd p. By Theorem 14.9, P = T1∪̇ · · · ∪̇Tm , where Ti ∈ PZd p and
Ti ∩ Tj , Ti ∩ Tj ∩ Tk, · · · ∈ PZd are simplices. The definition of Hd

p then shows that

P +Hd
p = T1 +Hd

p + · · · + Tm +Hd
p.

For the proof of the proposition it is thus sufficient to show the following:

(1) Let S ∈ PZd p be a simplex of volume V (V is an integer multiple of 1/d!).
Then

S +Hd
p = (d !V )Sd +Hd

p.

This will be proved by induction on d ! V . If d ! V = 1, there are U ∈ U, and u ∈ Z
d ,

such that S = U Sd + u, which implies (1), on noting that

S +Hd
p = S −U Sd − u +U Sd + u +Hd

p = U Sd + u +Hd
p

= U Sd + u − Sd + Sd +Hd
p = Sd +Hd

p

by the definition of Hd
p.

Assume now that d ! V > 1 and that (1) holds for all proper convex lattice sim-
plices of volume less than V . Let S = conv{p0, . . . , pd} ∈ PZd p be a simplex with
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V (S) = V . Let j be the largest index such that p1− p0, . . . , p j−1− p0 ∈ Z
d are such

that the parallelotope spanned by these vectors contains no point of Z
d except for its

vertices. An application of Theorem 21.3 shows that there is a basis {c1, . . . , cd} of
Z

d such that
pi − p0 = ui1c1 + · · · + uii ci for i = 1, . . . , d

with suitable uik ∈ Z
d . The assumption on j shows that o is the only point of Z

d

in the parallelotope
{
α1(p1 − p0) + · · · + α j−1(p j−1 − p0) : 0 ≤ αi < 1

}
and

that |u j j | > 1. The former can be used to show that |u11| = · · · = |u j−1, j−1| = 1.
By replacing ci by −ci , if necessary, and renaming, we may assume that u11 =
· · · = u j−1, j−1 = 1 and u j j > 1. Putting d1 = c1, d2 = u21c1 + c2, . . . , d j−1 =
u j−1,1c1 + · · · + u j−1, j−2c j−2 + c j−1 and d j = u1d1 + · · · + u j d j−1 + c j with
suitable ui ∈ Z

d , and d j+1 = c j+1, . . . , dd = cd , we obtain a basis
{
d1, . . . , dd

}
of

Z
d such that

p1 − p0 = d1
p2 − p0 = d2
. . . . . . . . . . . .
p j−1 − p0 = d j−1
p j − p0 = v j1d1 + · · · + v j j d j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
pd − p0 = vd1d1 + · · · · · · · · · + vdddd

with suitable vik ∈ Z, where 0 ≤ v j1, . . . , v j, j−1 ≤ v j j , v j j > 1. Finally, permut-
ing d1, . . . , d j−1 suitably, if necessary, and retaining d j , . . . , dd , we obtain a basis
e1, . . . , ed of Z

d such that

V (p1 − p0) = e1
V (p2 − p0) = e2
. . . . . . . . . . . . . . .
V (p j−1 − p0) = e j−1
V (p j − p0) = w j1e1 + · · · + w j j e j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V (pd − p0) = wd1e1 + · · · · · · · · · + wdded

with a suitable integer unimodular d × d matrix V and integers wik ∈ Z such that
0 ≤ w j1 ≤ w j2 ≤ · · · ≤ w j j , w j j > 1. Now choose an integer unimodular d × d
matrix W such that W ei = bi and put U = W V . Then

U (pi − p0) = bi for i = 1, . . . , j − 1,

U (p j − p0) = w j1b1 + · · · + w j j b j ,

where w jk ∈ Z, 0 ≤ w j1 ≤ · · · ≤ w j j , w j j > 1.

Since S +Hd
p = U S −U p0 +Hd

p, by the definition of Hd
p, we may assume that S

already has this form. The facets of S are

Fi = conv{p0, . . . , pi−1, pi+1, . . . , pd}, i = 0, . . . d.

If p ∈ Z
d , represent conv

(
S ∪ {p}) as follows:
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(2) conv
(
S ∪ {p}) = S∪̇ conv

(
Fi1 ∪ {p}

)∪̇ · · · ∪̇ conv
(
Fik ∪ {p}

)

= conv
(
Fj1 ∪ {p}

)∪̇ · · · ∪̇ conv
(
Fjl ∪ {p}

)
.

Here, for a facet Fin , the point p is in the interior of the halfspace aff F+in
determined

by the support hyperplane aff Fin of S, and, for a facet Fjn , the point p is in the
interior of the support halfspace aff F−jn of S. Then

(3) S + conv
(
Fi1 ∪ {p}

)+ · · · + conv
(
Fik ∪ {p}

)+Hd
p

= conv
(
Fj1 ∪ {p}

)+ · · · + conv
(
Fjl ∪ {p}

)+Hd
p

by the definition of Hd
p. We next show that

(4) There is a point p ∈ Z
d such that

V
(

conv
(
Fi ∪ {p}

))
< V = V (S) for i = 0, . . . , d.

The proof of (4) is elementary and will only be outlined. Choose m such that

ma j + 1 ≤ a1 + · · · + a j ≤ (m + 1)a j

and put p = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) ∈ Z
d with j − m − 1 zeros, m + 1

ones and d − j zeros (in this order). Considering the equations of the hyperplanes
aff Fi for i = 0, i = 1, . . . , j − 1, i = j, i = j + 1, . . . , d, it turns out that
p ∈ aff Fi for i = j + 1, . . . , d. For all other i the point p is closer to aff Fi than pi .
This concludes the proof of (4). Propositions (4), (3) and the induction assumption
show that S satisfies (1). The induction is thus complete and (1) holds generally,
concluding the proof of the proposition. ��

Let Gd be the free Abelian group generated by the convex lattice polytopes P ∈
PZd and let Hd be the subgroup generated by the following elements of the group
Gd :

P −U P − u, P ∈ PZd , U ∈ U, u ∈ Z
d

P −
∑

i

Pi +
∑

i< j

Pi ∩ Pj − · · · , P = P1 ∪ · · · ∪ Pm, Pi , Pi ∩ Pj , . . . ∈ PZd

Let A be an Abelian group.

Proposition 19.2. Between the integer unimodular invariant valuations φ : PZd →A

and the homomorphisms ψ : Gd/Hd → A there is a one-to-one correspondence
such that

(5) φ(P) = ψ(P +Hd) for P ∈ PZd .

Proof. The first step is to show the following statement:

(6) Let φ : PZd → A be an integer unimodular invariant valuation. Then there
is a unique homomorphism ψ : Gd/Hd → A such that (5) is satisfied.

First, define a mapping ψ : Gd → A as follows: for P ∈ PZd let ψ(P) = φ(P).
Then extend ψ to a mapping ψ : Gd → A by linearity (over Z

d ). This is possible
since Gd is the free Abelian group generated by the polytopes in PZd . Clearly ψ is a
homomorphism. Next,
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(7) ψ |Hd = 0.

To see this, note that for the generating elements of Hd ,

ψ(P −U P − u) = ψ(P)− ψ(U P + u) = φ(P)− φ(U P + u) = 0,

ψ

⎛

⎝P −
∑

i

Pi +
∑

i< j

Pi ∩ Pj − · · ·
⎞

⎠

= ψ(P)−
∑

i

ψ(Pi )+
∑

i< j

ψ(Pi ∩ Pj )− · · ·

= φ(P)−
∑

i

φ(Pi )+
∑

i< j

φ(Pi ∩ Pj )− · · · = 0,

where we have used the facts that φ is integer unimodular invariant by assumption
and satisfies the inclusion–exclusion formula by Theorem 19.5. Since this holds for
the generating elements of Hd , we obtain (7). Since ψ : Gd → A is a homomor-
phism, (7) shows that it gives rise to a homomorphism of Gd/Hd → A. We also
denote it by ψ . Clearly ψ(P +Hd) = ψ(P) = φ(P) for P ∈ PZd . To conclude the
proof of (6) we have to show that ψ is unique. Let µ be another homomorphism of
Gd/Hd → A satisfying (5). Then

ψ(P +Hd) = φ(P) = µ(P +Hd) for P ∈ PZd .

Since the cosets P +Hd : P ∈ PZd generate Gd/Hd and ψ,µ are both homomor-
phisms, ψ = µ, concluding the proof of (6).

The second step is to prove the following reverse statement:

(8) Let ψ : Gd/Hd → A be a homomorphism. Then the mapping φ : PZd →
A, defined by (5), is a integer unimodular invariant valuation.

We first show that φ is a valuation. Let P, Q ∈ PZd , where P ∪ Q, P ∩ Q ∈ PZd .
Then

φ(P ∪ Q) = ψ(P ∪ Q +Hd)

= ψ(
P ∪ Q − (P ∪ Q − P − Q + P ∩ Q)+Hd)

= ψ(P + Q − P ∩ Q +Hd)

= ψ(P +Hd)+ ψ(Q +Hd)− ψ(P ∩ Q +Hd)

= φ(P)+ φ(Q)− φ(P ∩ Q)

by the definitions of φ and Hd , since ψ is a homomorphism. To see that φ is integer
unimodular invariant, let P ∈ PZd , U ∈ U, u ∈ Z

d . Then

φ(U P + u) = ψ(U P + u +Hd) = ψ(U P + u + (P −U P − u)+Hd)

= ψ(P +Hd) = φ(P)
by the definitions of φ and Hd , concluding the proof of (8).

Having shown (6) and (8), the proof of the proposition is complete. ��
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Proposition 19.3. Gd/Hd is the free Abelian group generated by the cosets S0 +
Hd , . . . , Sd +Hd .

Proof. By induction on d we prove that

(9) S0 +Hd , . . . , Sd +Hd generate Gd/Hd .

For d = 0, (9) is trivial. Assume now that d > 0 and that (9) holds for d − 1. Let
E

d−1 be embedded into E
d as usual (first d − 1 coordinates). Then Gd is generated

by (the elements of) Gd
p and Gd−1. According to Proposition 19.1, Gd

p is generated

by Sd and Hd
p and Gd−1 is generated by S0, . . . , Sd−1 and Hd−1(⊆ Hd) by the

induction assumption. Thus Gd is generated by S0, . . . , Sd and Hd . This concludes
the induction and thus yields (9).

It remains to show that

(10) S0 +Hd , . . . , Sd +Hd are linearly independent (with respect to Z).

A simple induction argument shows that

L(nSi ) =
(

n + i

i

)
for n ∈ N, i = 0, . . . , d.

For n ∈ N define φn : PZd → R by

φn(P) = L(n P) for P ∈ PZd .

Since the lattice point enumerator L : PZd → R is a valuation, each φn is also a
valuation. Let µn : Gd/Hd → R be the corresponding homomorphism, see Propo-
sition 19.2. If (10) did not hold, then

a0S0 + · · · + ad Sd +Hd = Hd

for suitable integers ai , not all 0. Then

0 = µn(a0S0 + · · · + ad Sd +Hd)

= a0µn(S0 +Hd)+ · · · + adµn(Sd +Hd)

= a0φn(S0)+ · · · + adφn(Sd) = a0L(nS0)+ · · · + ad L(nSd)

= a0

(
n + 0

0

)
+ a1

(
n + 1

1

)
+ · · · + ad

(
n + d

d

)
for n ∈ N.

Since
( n+i

i

)
is a polynomial in n of degree i , this can hold only if ad = · · · = a0 = 0.

This contradiction concludes the proof of (10).
Claims (9) and (10) together yield Proposition 19.3. ��

The Theorem of Betke and Kneser

As a corollary of the above results, Betke and Kneser proved the following result.
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Theorem 19.6. The integer unimodular invariant valuations φ : PZd → R (with
ordinary addition and multiplication by real numbers) form a real vector space of
dimension d + 1. This space has a basis {L0, . . . , Ld} such that

Li (n P) = ni Li (P) and L(n P) = L0(P)+ L1(P)n + · · · + Ld(P)n
d

for P ∈ PZd , n ∈ N, i = 0, . . . , d.

Proof. We first show that

(11) The homomorphisms ψ : Gd/Hd → R with ordinary addition and multi-
plication with real numbers form a real vector space of dimension d + 1.

These homomorphisms clearly form a real vector space. For the proof that it is of di-
mension d+1, use Proposition 19.3 to define d+1 homomorphisms ψi : Gd/Hd →
R, i = 0, . . . , d, by:

ψi (a0S0 + · · · + ad Sd +Hd) = ai for a0S0 + · · · + ad Sd +Hd ∈ Gd/Hd .

To show that ψ0, . . . , ψd are linearly independent, let α0, . . . , αd ∈ R be such that
α0ψ0 + · · · + αdψd = 0. Then

0 = α0ψ0(a0S0 + · · · + ad Sd +Hd)+ · · · + αdψd(a0S0 + · · · + ad Sd +Hd)

= α0a0 + · · · + αdad for all a0, . . . , ad ∈ Z,

which implies that α0 = · · · = αd = 0 and thus shows the linear independence
of ψ0, . . . , ψd . To show that ψ0, . . . , ψd form a basis, let ψ : Gd/Hd → R be a
homomorphism. Then

ψ(a0S0 + · · · + ad Sd +Hd) = a0ψ(S0 +Hd)+ · · · + adψ(Sd +Hd)

= a0β0 + · · · + adβd say, where βi = ψ(Si +Hd)

= β0ψ0(a0S0 + · · · + ad Sd +Hd)+ · · · + βdψd(a0S0 + · · · + ad Sd +Hd)

for all a0S0 + · · · + ad Sd +Hd ∈ Gd/Hd .

Hence ψ = β0ψ0 + · · · + βdψd . Thus {ψ0, . . . , ψd} is a basis, concluding the proof
of (11).

By Proposition 19.2, the integer unimodular invariant valuations φ : PZd → R

coincide with the restrictions of the homomorphisms ψ : Gd/Hd → R to a certain
subset of Gd/Hd . Thus (11) implies that

(12) The integer unimodular invariant valuations φ : PZd → R form a real
vector space of dimension at most d + 1.

We next show that

(13) There are d + 1 linearly independent valuations L0, . . . , Ld : PZd → R

such that

Li (n P) = ni Li (P), L(n P) = L0(P)+ L1(P)n + · · · + Ld(P)n
d

for P ∈ PZd , n ∈ N, i = 0, . . . , d.
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Let φn, µn be as in the proof of Proposition 19.3. Then

L(n P) = φn(P) = µn(P +Hd) = µn(a0S0 + · · · + ad Sd +Hd)

= a0µn(S0 +Hd)+ · · · + adµn(Sd +Hd)

= a0φn(S0)+ · · · + adφn(Sd) = a0

(
n + 0

0

)
+ · · · + ad

(
n + d

d

)

= b0 + b1n + · · · + bdnd for P ∈ PZd , n ∈ N,

by Proposition 19.3, where a0, . . . , ad and thus b0, . . . , bd are suitable integers,
depending only on P . Thus we may write,

(14) L(n P) = L0(P)+ L1(P)n + · · · + Ld(P)nd for P ∈ PZd , n ∈ N.

It is easy to check that the mappings Li : PZd → R are integer unimodular invariant
valuations: let P, Q ∈ PZd be such that P ∪ Q, P ∩ Q ∈ PZd . Then L

(
n(P ∪ Q)

)+
L
(
n(P ∩ Q)

) = L(n P) + L(nQ). Represent each of these four expressions as a
polynomial in n according to (14) and compare coefficients. By (14),

L(mn P) = L0(n P)+ L1(n P)m + · · · + Ld(n P)md

= L0(P)+ L1(P)mn + · · · + Ld(P)m
dnd

for P ∈ PZd , m, n ∈ N.

Fixing n ∈ N, this shows that

Li (n P) = ni Li (P) for P ∈ PZd , n ∈ N, i = 0, . . . , d.

Since L(nSi ) = ( n+i
i ) is a polynomial in n of degree i , we obtain

Li (Si ) �= 0, Li+1(Si ) = · · · = Ld(Si ) = 0 for i = 0, . . . , d.

This readily implies that L0, . . . , Ld are linearly independent. The proof of (13) is
complete.

The theorem finally follows from (12) and (13). ��

Ehrhart’s Lattice Point Enumerators Theorem

As simple corollaries of the theorem of Betke and Kneser we get again the
theorem 19.1 of Ehrhart [292, 293] on lattice point enumerators, but without the
information that the constant term in the polynomial is 1.

Corollary 19.1. Let P ∈ PZd p. Then the following hold:

(i) L(n P) = pP (n) for n ∈ N, where pP is a polynomial of degree d with leading
coefficient V (P).

(ii) Lo(n P) = (−1)d pP (−n) for n ∈ N.

Proof. (i) By the Betke–Kneser theorem,
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(15) L(n P) = L0(P)+ · · · + Ld(P)nd = pP (n) for n ∈ N,

where pP is a polynomial of degree ≤ d. We have to show that Ld(P) = V (P).
Using the formula for the calculation of Jordan measure in Sect. 7.2, it follows that

V (P) = lim
n→∞

1

nd
#

(
P ∩ 1

n
Z

d
)
= lim

n→∞
1

nd
#(n P ∩ Z

d)

= lim
n→∞

L(n P)

nd
= Ld(P).

(ii) We first show that Lo is a valuation on PZd . Let Q, R ∈ PZd be such that
Q ∪ R, Q ∩ R ∈ PZd . Considering the cases Q ⊆ R, or R ⊆ Q; dim Q = dim R =
dim(Q ∩ R) + 1; dim Q = dim R = dim(Q ∩ R), it is easy to see that Lo(Q ∪
R) + Lo(Q ∩ R) = Lo(Q) + Lo(R), i.e. Lo is a valuation. Clearly, Lo is integer
unimodular invariant. Thus the theorem of Betke and Kneser implies that

(16) Lo(n P) =
d∑

i=0

ai Li (n P) =
d∑

i=0

ai n
i Li (P) for n ∈ N

with suitable coefficients ai independent of P and n. In order to determine the coef-
ficients ai take the lattice cube [0, 1]d instead of P . Then

(17) L
(
n[0, 1]d) = (n + 1)d =

d∑

i=0

ni
(

d

i

)
for n ∈ N,

(18) Lo(n[0, 1]d) = (n − 1)d =
d∑

i=0

ni (−1)d−i
(

d

i

)
for n ∈ N.

Now compare (15) and (17) and also (16) and (18) to see that ai = (−1)d−i . Thus

Lo(n P) =
d∑

i=0

(−1)d−i Li (P)n
i = (−1)d

d∑

i=0

Li (P)(−n)i

= (−1)d pP (n) for n ∈ N

by (16) and (15), concluding the proof of (ii). ��

19.5 Newton Polytopes: Irreducibility of Polynomials
and the Minding–Kouchnirenko–Bernstein Theorem

Let p = p(x1, . . . , xd) be a polynomial in d variables over R,C, or some other field.
Its Newton polytope Np is the convex hull of all points (u1, . . . , ud) ∈ Z

d , such that,
in p, there is a monomial of the form

axu1
1 · · · xud

d where a �= 0.

The Newton polytope Np conveys important properties of the polynomial p. Newton
polytopes turned out to be of interest in algebra, algebraic geometry and numerical
analysis. They constitute a bridge between convexity and algebraic geometry.
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Irreducibility of polynomials has a long history and there is a large body of per-
tinent results. See, e.g. Schmidt [895], Lidl and Niederreiter [656], Mignotte and
Stefanescu [723] and Schinzel [887]. It plays a crucial role in finite geometry, see
Hirschfeld [506], combinatorics, see Szönyi [983], and coding, compare Stichtenoth
[969]. Surprisingly, Newton polytopes provide an effective tool to describe large
classes of (absolute) irreducible polynomials, see Gao [355] and the references there.

A remarkable result of Bernstein [100] says that the number of roots of a generic
system of polynomial equations over C of the form

p1(z1, . . . , zd) = 0
p2(z1, . . . , zd) = 0
. . . . . . . . . . . . . . . . .
pd(z1, . . . , zd) = 0

equals d ! V (Np1 , . . . , Npd ). The case d = 2 was anticipated by Minding [731]
in 1841 using different terminology, as pointed out by Khovanskiı̆ [583]. The
case where the Newton polytopes of p1, . . . , pd all coincide was treated slightly
before Bernstein by Kouchnirenko [612]. This result gave rise to several alterna-
tive proofs, generalizations and expositions, see Huber and Sturmfels [525, 526],
Sturmfels [974], Rojas [853, 854] and the nice book by Sturmfels [975]. In the latter
there are described applications to economics (Nash equilibria of n-person games),
statistics (random walks on Z

d , numerical algorithms for maximum likelihood equa-
tions), linear partial differential equations and other areas.

This section contains a simple result of Ostrowski [781] which yields an
irreducibility criterion, see Gao [355]. Special cases include the Stepanov–Schmidt
[895] criterion for irreducibility. Then the result of Minding–Bernstein is given
without proof.

For more detailed information, see the articles, surveys and books cited earlier.

An Irreducibility Criterion

The first result is a simple observation of Ostrowski [781] on Newton polytopes, see
also Gao [355].

Proposition 19.4. Let p, q : E
d → R be real polynomials. Then

Npq = Np + Nq .

Proof. Since each monomial of the polynomial pq is a sum of products of a mono-
mial of p and a monomial of q, we have

Npq ⊆ Np + Nq .

To see the reverse inclusion, it is sufficient to show that each vertex u of the convex
lattice polytope Np + Nq is contained in Npq . By Lemma 6.1, u is the sum of a
support set of Np and a support set of Nq . Since u is a singleton, these support sets
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have to be singletons too and thus are vertices of Np and Nq , respectively, say v,w.
Then u = v+w and this is the only possible representation of u as the sum of a point
of Np and a point of Nq . The product of the corresponding monomials bxv1

1 · · · xvd
d

of p and cxw1
1 · · · xwd

d of q is thus a monomial of the form axu1
1 · · · xud

d and no other
product of a monomial of p and a monomial of q has this form. Hence axu1

1 · · · xud
d

is the monomial in pq corresponding to u, or u ∈ Npq . Thus

Np + Nq ⊆ Npq ,

concluding the proof. ��
A real polynomial on E

d is irreducible if it cannot be represented as a product
of two real polynomials on E

d , each consisting of more than one monomial. Call a
convex lattice polytope in E

d integer irreducible if it cannot be represented as the
sum of two convex lattice polytopes, each consisting of more than one point. As
an immediate consequence of the earlier Proposition 19.4, we obtain the following
irreducibility criterion, see Gao [355].

Theorem 19.7. Let p : E
d → R be a real polynomial with Newton polytope Np. If

Np is integer irreducible, then p is irreducible.

Remark. Actually, this result holds for any polynomial p in d variables over any
field F. In addition, irreducibility of p may be sharpened to absolute irreducibility,
i.e. irreducibility in the algebraic closure of F. When Np is not integer irreducible,
then p may still be irreducible. An example is provided by the irreducible real
polynomial p(x, y) = 1 + y + xy + x2 + y2, whose Newton polytope Np =
conv

{
o, (0, 2), (2, 0)

}
is integer reducible:

conv{o, (0, 2), (2, 0)} = conv{o, (0, 1), (1, 0)} + conv{o, (0, 1), (1, 0)}.
Gao and Lauder [356] study the integer irreducibility of convex lattice polytopes.
It turns out that the problem to decide whether a convex lattice polytope is integer
irreducible is N P-complete.

The Stepanov–Schmidt Irreducibility Criterion

Clearly, a convex lattice polygon in E
2, which has an edge of the form [(0,m), (n, 0)]

with m and n relatively prime and which is contained in the triangle conv{o, (0,m),
(n, 0)}, is integer irreducible. This leads to the following criterion of Stepanov and
Schmidt, see W. Schmidt [895], p. 92, and Gao [355].

Corollary 19.2. Let p be a real polynomial in two variables, such that its Newton
polygon Np contains an edge of the form [(0,m), (n, 0)], where m and n are
relatively prime, and is contained in the triangle conv

{
o, (0,m), (n, 0)

}
. Then p

is irreducible.

For example, the polynomials x2+ y3 and x3+ y7+xy+xy2+x2 y2 are irreducible.
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Zeros of Systems of Polynomial Equations,
the Minding–Kouchnirenko–Bernstein Theorem

The problem to determine the number of (positive, negative, real or complex) roots
of a polynomial equation or of a system of such equations has attracted interest
for several centuries. Highlights of the study of this problem are Descartes’s rule
of signs, the fundamental theorem of algebra, and theorems of Sturm, Routh and
Hurwitz. For systems of polynomial equations Bezout’s theorem is as follows: If the
system

(1) p1(z1, . . . , zd) = 0
p2(z1, . . . , zd) = 0
. . . . . . . . . . . . . . . . .
pd(z1, . . . , zd) = 0

of d complex polynomial equations in d complex variables has only finitely many
common complex zeros (z1, . . . , zd), then the number of these zeros is at most the
product of the degrees of the polynomials p1, . . . , pd . For an elementary proof,
see the book by Cox, Little and O’Shea [228]. In general this upper estimate is
far too large. In the generic case, the following theorem of Minding–Kouchnirenko–
Bernstein gives the precise answer. We state it without proof and do not explain what
is meant by generic. For detailed information, see the book of Sturmfels [975], or the
original article of Bernstein [100].

Theorem 19.8. For generic systems of polynomial equations over C of the form (1)
the number of common solutions in (C\{0})d is finite and equals d ! V(Np1 , . . . , Npd ).

20 Linear Optimization

A linear optimization (or linear programming) problem entails minimizing or
maximizing a linear form on a convex polytope or polyhedron. A typical form is
the following:

(1) sup
{
c · x : x ∈ E

d , Ax ≤ b
}
,

where A is a real m × d matrix, c ∈ E
d , b ∈ E

m and the inequality is to be
understood componentwise. When writing (1), we mean the problem is to determine
the supremum and, if it is finite, to find a point at which it is attained. It turns out that
all common linear optimization problems are polynomially equivalent to one of the
form (1).

With early contributions dating back to the eighteenth century, a first vague
version of linear programming was given by Fourier [342] at the beginning of the
nineteenth century. Pertinent later results on systems of linear inequalities are due to
Gordan, Farkas, Stiemke, Motzkin and others. Linear optimization, as it is used at
present, started with the work of Kantorovich [565] which won him a Nobel prize in
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economics, von Neumann [768], Koopmans [608] and, in particular, Dantzig [237],
who specified the simplex algorithm. While the Klee-Minty [597] cube shows that
the common version of the simplex algorithm is not polynomial, Borgwardt [151]
proved that, on the average, it is polynomial. See also a more recent result of
Spielman and Teng [950]. In practice the simplex algorithm works very effectively.
Khachiyan [580] indicated a proof that the ellipsoid algorithm of Shor [933] and
Yudin and Nemirovskiı̆ [1033] is polynomial. The ellipsoid algorithm did not replace
the simplex algorithm in practice and was never stably implemented. There is no
running code available, not even for small test problems. A different polynomial
algorithm is that of Karmarkar [566]. While it was not put to practical use, it started
the development of a very efficient, huge class of interior-point methods for linear
programming, some of which are both polynomial and efficient in practice. For many
types of problems the interior point methods are better than the simplex algorithm
and are widely used in practice.

Integer linear optimization (or integer linear programming) is linear optimization
with the variables restricted to the integers. A standard problem is the following,

sup
{
c · x : x ∈ Z

d , Ax ≤ b
}
,

where A is a rational m × d matrix and b ∈ E
m, c ∈ E

d are rational vectors. An
integer linear optimization problem may be interpreted as the search of optimum
points of the integer lattice Z

d contained in the convex polyhedron {x : Ax ≤ b}.
Integer linear optimization is essentially different from linear optimization: there is
no duality, no polynomial algorithm is known and, presumably, does not exist.

In this section we first consider a classical duality result, then describe the sim-
plex algorithm in geometric terms and explain how to find feasible solutions with the
ellipsoid algorithm. In integer optimization we consider so-called totally dual inte-
gral systems for which integer optimization is easier than in the general case. Their
relations to lattice polyhedra are touched and Hilbert bases are used to characterize
totally dual integral systems. We have borrowed freely from Schrijver’s book [915].

To simplify the presentation, we often consider row vectors as being contained
in E

d or E
m . Using the matrix product we write cx instead of cT · x where c is a row

vector and x a column vector in E
d .

There exists a rich literature on linear and integer optimization, including
the classic of Dantzig [238] and the monographs of Schrijver [915], Borgwardt [152],
Grötschel, Lovász and Schrijver [409], Berkovitz [99], Dantzig and Thapa [239] and
Schrijver [916]. See also the surveys of Shamir [928], Burkard [179], Gritzmann and
Klee [396] and Bartels [75]. For information on the history of optimization, see [508]
and [915].

20.1 Preliminaries and Duality

As remarked before, any of the standard linear optimization problems can be reduced
in polynomial time to any of the others. It turns out that certain pairs of linear opti-
mization problems, one a maximization, the other one a minimization problem, are
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particularly strongly related, in the sense that the values of their solutions coincide.
Such results are called duality theorems.

After some preliminary results on normal cones we present the duality theorem
of von Neumann, Gale, Kuhn and Tucker.

For more information, see the literature cited earlier.

Terminology and Normal Cones

Given a linear optimization problem, say

sup{cx : Ax ≤ b},

the function x → cx, x ∈ E
d is its objective function and the convex polyhedron

{x : Ax ≤ b} its feasible set. A point of the feasible set is a feasible solution. If the
supremum is attained at a feasible solution, the latter is called an optimum solution.
There is an analogous notation for the other linear optimization problems.

Let C be a closed convex cone in E
d with apex o. Its normal cone NC (o) of C

at the apex o is the closed convex cone with apex o consisting of all exterior normal
vectors of support hyperplanes of C at o, that is,

NC (o) =
{
u : ux ≤ 0 for all x ∈ C

}
,

see Sect. 14.2. Let P be a convex polyhedron. The normal cone NP (p) of P at a
point p ∈ bd P is the closed convex cone of all exterior normal vectors of support
hyperplanes of P at p. The normal cone NP (F) of P at a face F ∈ F(P) is the
closed convex cone of all exterior normal vectors of support hyperplanes of P which
contain F . If p is a relative interior point of F , then it is easy to see that

NP (F) = NP (p).

An immediate extension of Proposition 14.1 is the following result.

Proposition 20.1. Let P = {x : Ax ≤ b} be a convex polyhedron and let
p ∈ bd P, resp. F ∈ F(P). If a1x ≤ β1, . . . , ak x ≤ βk are the inequalities among
the inequalities Ax ≤ b which are satisfied with the equality sign by p, resp. by all
x ∈ F, then

NP (p), resp. NP (F) = pos{a1, . . . , ak}.

Let F �= ∅ be a face of a convex polyhedron P . F is called a minimum face
of P if there is no face of P properly contained in F , except the empty face. This
means that the polyhedron F has no proper face except for the empty face. Thus the
minimum faces are planes of dimension 0 (vertices), 1 (edges, unbounded in both
directions), 2,...
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Existence of Solutions

Since each convex polyhedron P �= ∅ can be represented in the form
{
λ1 p1+· · ·+λm pm : λi ≥ 0, λ1+· · ·+λm = 1

}+{
µ1q1+· · ·+µnqn : µ j ≥ 0

}
,

the following result is easy to see:

Proposition 20.2. Assume that the linear optimization problem sup{cx : Ax ≤ b}
has non-empty feasible set P = {x : Ax ≤ b}. Then the supremum is either +∞,
or it is finite and attained. An analogous result holds for the problem inf{yb : y ≥
o, y A = c}.

The Duality Theorem

of von Neumann [768] and Gale, Kuhn and Tucker [353] is as follows.

Theorem 20.1. Let A be a real m × d matrix, b ∈ E
m, c ∈ E

d . If at least one of the
extreme sup{cx : Ax ≤ b} and inf{yb : y ≥ o, y A = c} is attained, then so is the
other and

(1) max{cx : Ax ≤ b} = min{yb : y ≥ o, y A = c}.
Proof. We first show the following inequality, where P = {x : Ax ≤ b} and
Q = {y : y ≥ o, y A = c}:

(2) If P, Q �= ∅, then sup{cx : Ax ≤ b} and inf{yb : y ≥ o, y A = c} both are
attained and

max{cx : Ax ≤ b} ≤ min{yb : y ≥ o, y A = c}.
Let x ∈ P, y ∈ Q. Then cx = y Ax ≤ yb. Hence sup{cx : Ax ≤ b} ≤ inf{yb : y ≥
o, y A ≤ c} and both are attained by Proposition 20.2, concluding the proof of (2).

Assume now that P �= ∅ and that δ = sup{cx : Ax ≤ b} is attained at p ∈ P =
{x : Ax ≤ b}, say. Then p is a boundary point of P and the hyperplane through p
with normal vector c supports P at p. Clearly, c is an exterior normal vector of this
support hyperplane. Let a1x ≤ β1, . . . , ak x ≤ βk be the inequalities among the m
inequalities Ax ≤ b, which are satisfied by p with the equality sign. We may assume
that a1, . . . , ak are the first k row vectors of A and β1, . . . , βk the first k entries of b.
Proposition 20.1 then implies that

(3) c = λ1a1 + · · · + λkak with suitable λi ≥ 0.

Thus,
δ = cp = λ1a1 p + · · · + λkak p = λ1β1 + · · · + λkβk

and therefore

max{cx : Ax ≤ b} = δ = cp = λ1β1 + · · · + λkβk

= (λ1, . . . , λk, 0, . . . , 0)b ≥ inf{yb : y ≥ o, y A = c},
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on noting that (λ1, . . . , λk, 0, . . . , 0) ∈ Q = {y : y ≥ o, y A = c} by (3). In
particular, Q �= ∅. (2) then shows that the infimum is also attained and that the
maximum is less than or equal to the minimum. Thus (1) holds in case where P �= ∅
and the supremum is attained.

Assume, finally, that Q �= ∅ and that ε = inf{yb : y ≥ o, y A = c} is attained at
q ∈ Q = {y : y A = c,−y ≤ o}, say. Then −b is an exterior normal vector of the
support hyperplane {y : yb = ε} of Q at q. Proposition 20.1 then shows that

(4) b = µ1b1 + · · · + µdbd + ν1e1 + · · · + νl el with suitable µi ∈ R, ν j ≥ 0,

where b1, . . . , bd are the column vectors of A and e1, . . . , el are standard unit vectors
of E

d such that e j has entry 1 where q has entry 0. In particular,

(5) qe j = 0 for j = 1, . . . , l.

(4) implies that

A(µ1, . . . , µd)
T = µ1b1 + · · · + µdbd = b − ν1e1 − · · · − νl el ≤ b.

Thus (µ1, . . . , µd)
T ∈ P and therefore P �= ∅. This, together with (4) and (5),

shows that

min{yb : y ≥ o, y A = c} = ε = qb = µ1qb1 + · · · + µdqbd

= q A(µ1, . . . , µd)
T = c(µ1, . . . , µd)

T

≤ sup{cx : Ax ≤ b}.
Since P, Q �= ∅, (2) shows that the supremum is also attained and that the maximum
is less than or equal to the minimum. Thus (1) holds also in the case where Q �= ∅
and the infimum is attained. The proof of the theorem is complete. ��

20.2 The Simplex Algorithm

The simplex algorithm of Dantzig [237], or versions of it, are still the common
method for linear optimization problems.

In this section we give a description of the simplex algorithm and show that it
leads to a solution. The presentation follows Schrijver [915].

The Idea of the Simplex Algorithm

Consider a linear optimization problem of the form

(1) sup{cx : Ax ≤ b}
where a vertex v0 of the feasible set P = {x : Ax ≤ b} is given. Check whether there
is an edge of P starting at v0 along which the objective function cx increases. If there
is no such edge, v0 is an optimum solution. Otherwise move along one of these edges.
If this edge is a ray, the supremum is infinite. If not, let v1 be the other vertex on this
edge. Repeat this step with v1 instead of v0, etc. This leads to an optimum solution
or shows that the supremum is infinite in finitely many steps.
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Description of a Standard Version of the Simplex Algorithm, Given a Vertex

Let a1, . . . , am be the row vectors of A. The vertex v0 of the feasible set P =
{x : Ax ≤ b} is the intersection of a suitable subfamily of d hyperplanes among
the m hyperplanes Ax = b, say A0x = b0, where A0 is a non-singular d × d sub-
matrix of A and b0 is obtained from b by deleting the entries corresponding to the
rows of A not in A0. Clearly, A0v0 = b0 and, since A0 is non-singular, we may
represent the row vector c as a linear combination of the rows of A0, say

(2) c = u0 A.

Here u0 is a row vector in E
m with entries outside (the row indices of) A0 equal to 0.

We distinguish two cases:
(i) u0 ≥ o. Then c is a non-negative linear combination of the rows of A0. The

hyperplane {x : cx = cv0} thus supports P at v0 and has exterior normal vector c by
Proposition 20.1. Hence v0 is an optimum solution of (1).

(ii) u0 �≥ o. Let i0 be the smallest index of a row in A0 with u0i0 < 0. Since A0
is a non-singular d× d matrix, the following system of linear equations has a unique
solution x0:

(3) ai x0 = 0 for each row ai of A0, except for ai0 for which ai0 x0 = −1.

Then v0 + λx0 is on a bounded edge of P , on an unbounded edge of P , or outside P
for λ > 0. In addition,

(4) cx0 = u0 Ax0 = −u0i0 > 0.

Case (ii) splits into two subcases:
(iia) ax0 ≤ 0 for each row a of A. Then v0 + λx0 ∈ P for all λ ≥ 0. Noting (4),

it follows that the supremum in (1) is +∞.
(iib) ax0 > 0 for a suitable row a of A. Let λ0 ≥ 0 be the largest λ ≥ 0 such that

v0 + λx0 ∈ P , i.e.

λ0 = max
{
λ ≥ 0 : Av0 + λAx0 ≤ b

}

= max
{
λ ≥ 0 : λa j x0 ≤ β j − a jv0 for all j = 1, . . . ,m with a j x0 > 0

}
.

Let j0 be the smallest index j of a row in A for which the maximum is attained.
Let A1 be the d × d matrix which is obtained from the non-singular d × d matrix A0
by deleting the row ai0 and inserting the row a j0 at the appropriate position. Since
a j0 x0 > 0 by our choice of j0, (3) and the fact that A0 is non-singular show that
A1 is also non-singular. Since ai (v0 + λ0x0) = βi for each row of the non-singular
matrix A1, by (3) and the choice of A0 and j0, and since ai (v0 + λ0x0) ≤ βi for
all other rows of A, by the definition of λ0, it follows that v1 = v0 + λ0x0 is a also
vertex of P . We have A1v1 = b1, where b1 is obtained from b0 by deleting the entry
βi0 and inserting the entry β j0 at the appropriate position (Fig. 20.1).

Repeat this step with v1, A1 instead of v0, A0.
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v0

v1 = v0 + λx0

Fig. 20.1. Simplex algorithm

The Simplex Algorithm Terminates

We prove the following result.

Theorem 20.2. The simplex algorithm either shows that the supremum in (1) is infi-
nite or leads to an optimum solution in finitely many steps.

Proof. Assume that, on the contrary, the simplex algorithm applied to (1) does not
terminate. Then it does not show that the supremum in (1) is infinite and produces
sequences of matrices, vectors and reals,

Ak, bk, vk, uk, xk, λk, k = 0, 1, . . .

We note that no step can lead to an unbounded edge, and that P has only finitely
many vertices. Moving from one vertex to the next one increases the objective func-
tion or leaves it the same if the vertices coincide, we therefore have the following:
from a certain index on, each step leads to case (iib) and always to the same vertex.
Since for the d × d sub-matrices of A there are only finitely many choices, there are
indices k < l, such that

Ak = Al , vk = vk+1 = · · · = vl , λk = λk+1 = · · · = λl = 0.

Let n be the largest index of a row which is removed from one of Ak, . . . , Al in some
step, say from Ap. Then Ap+1 no longer has this row. Since Ap contains this row,
it must have been inserted into one of Ap+1, . . . , Al = Ak, Ak+1, . . . , Ap−1. Let
Aq+1 be the first matrix in this sequence of matrices which again contains the nth
row. By our choice of n,

(5) None of the rows ai of Ap with i > n is removed in any of the following
steps.

By (2) for Ap and (4) for Aq instead of A0, we have u p Axq = cxq > 0. Thus
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(6) u pi ai xq > 0 for at least one row ai in Ap.

We now distinguish several cases:

i < n: Then u pi ≥ 0 since n is the smallest index of a row in Ap with
u pn < 0. In addition, ai xq ≤ 0 since n is the smallest index of a
row in A with anvq = βn and an xq > 0 (note that λq = 0).

i = n: Then u pn < 0 and an xq > 0, see the case i < n.
i > n: Then ai xq = 0 since ai is not deleted from Aq , see (3).

Each case is in contradiction to (6), concluding the proof of the theorem. ��

What to do, if no Vertex is Known?

If no vertex of the feasible set P = {x : Ax ≤ b} �= ∅ of a linear optimization
problem

(7) sup{cx : Ax ≤ b}
is known, we proceed as follows: Let S be the linear subspace lin{a1, . . . , am} of E

d .
Then it is easy to see that

P = Q ⊕ S⊥,

where Q = P ∩ S is a convex polyhedron with vertices. If c �∈ S, then cx assumes
arbitrarily large values on P = Q ⊕ S⊥. Then the supremum is +∞ and we are
done. If c ∈ S, then

sup{cx : x ∈ P} = sup{cx : x ∈ Q}.
Thus we have reduced our problem (7) to a problem where it is clear that the feasible
set has vertices, but we do not know them.

Changing notation, we assume that the new problem has the form

sup{cx : Ax ≤ b},
where the feasible set P = {x : Ax ≤ b} has vertices. Consider the following linear
optimization problem with one more variable z (Fig. 20.2),

(8) sup
{
z : Ax − bz ≤ o,−z ≤ 0, z ≤ 1

}

with the feasible set

Q = cl conv
({(o, 0)} ∪ (

P + (o, 1))).
(o, 0) is a vertex of Q. Let A0 be a non-singular d × d sub-matrix of A. Then (o, 0)
is the intersection of the d + 1 hyperplanes

ai x − βi z = 0 , ai row of A0,
z = 0.
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E
d + (o, 1)

o

Q

P + (o, 1)R

E
d

Fig. 20.2. How to find a vertex?

Start the simplex algorithm for the linear optimization problem (8) with this vertex.
In finitely many steps this leads to a vertex of the form (v, 1) of Q, i.e. to a vertex v
of P .

Considering the earlier, the task remains to determine whether the feasible set P
is empty or not. If P = ∅, the supremum in (8) is less than 1. So this determines
feasibility.

20.3 The Ellipsoid Algorithm

The ellipsoid algorithm was originally developed for convex optimization problems
by Shor [933] and Yudin and Nemirovskiı̆ [1033]. Khachiyan [580] sketched a proof
that an extension of it is polynomial for linear optimization. This sketch was made
into a proof by Gács and Lovász [348] and then elaborated by Grötschel, Lovász and
Schrijver [408]. The definitive treatment is in their book [409]. This does not mean
that, in practical applications, it is superior to the simplex algorithm or versions of
the latter.

In the following we present a simple version of the ellipsoid algorithm to find a
feasible solution of a linear optimization problem (under additional assumptions).

Ellipsoids and Half Ellipsoids

We first prove a simple lemma on ellipsoids.

Lemma 20.1. Let E be a solid ellipsoid in E
d and H− a halfspace whose boundary

hyperplane contains the centre of E. Then E ∩ H− is contained in an ellipsoid F
such that

V (F)

V (E)
≤ e−

1
2(d+1) .

Proof. We may assume that E = Bd and H− = {x : xd ≥ 0}. Let

F =
{

x : d2 − 1

d2
x2

1 + · · · +
d2 − 1

d2
x2

d−1 +
(d + 1)2

d2

(
xd − 1

d + 1

)2

≤ 1

}

.
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For x ∈ Bd ∩ H− we have xd ≥ 0 and x2
1 + · · · + x2

d−1 ≤ 1− x2
d , or

d2 − 1

d2
x2

1 + · · · +
d2 − 1

d2
x2

d−1 ≤
d2 − 1

d2
− d2 − 1

d2
x2

d .

Clearly,

(d + 1)2

d2

(
xd − 1

d + 1

)2

= (d + 1)2

d2
x2

d −
2(d + 1)

d2
xd + 1

d2
.

Addition then gives

d2 − 1

d2
x2

1+· · ·+
d2 − 1

d2
x2

d−1+
(d + 1)2

d2

(
xd − 1

d + 1

)2

≤ 1+2d + 2

d2
(x2

d−xd) ≤ 1

on noting that 0 ≤ xd ≤ 1 implies that x2
d − xd ≤ 0. Thus x ∈ F , concluding the

proof that Bd ∩ H− ⊆ F . Finally,

V (F)

V (Bd)
=

(
d2

d2 − 1

) d−1
2 d

d + 1
≤ e

1
d2−1

d−1
2 e−

1
d+1 = e−

1
2(d+1) ,

where we have used the fact that 1+ x ≤ ex for x = 1
d2−1

, −1
d+1 . ��

How to Find a Feasible Solution by the Ellipsoid Algorithm?

We consider the feasible set P = {x : Ax ≤ b} of a linear optimization problem.
Assuming that there are �, δ > 0 such that P ⊆ �Bd and V (P) ≥ δ, we describe
how to find a feasible solution, i.e. a point of P .

Let E0 be the ellipsoid �Bd with centre c0 = o. Then P ⊆ E0. If c0 ∈ P , then c0
is the required feasible solution. If c0 �∈ P , then c0 is not contained in at least one of
the defining halfspaces of P , say c0 �∈ {x : ai0 x ≤ βi0}. Clearly, P ⊆ E0∩H−

0 where
H−

0 is the halfspace {x : ai0 x ≤ ai0 c0}which contains c0 on its boundary hyperplane.
By Lemma 20.1, there is an ellipsoid E1 with centre c1 such that P ⊆ E0∩H−

0 ⊆ E1
and

V (E1)

V (E0)
≤ e−

1
2(d+1) .

If c1 ∈ P , then c1 is the required feasible solution, otherwise repeat this step with
E1, c1 instead of E0, c0.

In this way we either get a feasible solution cn ∈ P in finitely many steps, or
there is a sequence of ellipsoids E0, E1, · · · ⊇ P with

V (En) = V (En)

V (En−1)
· · · V (E1)

V (E0)
V (E0) ≤ e−

n
2(d+1) V (Eo) for n = 1, 2, . . .

Thus V (En) < δ ≤ V (P) for all sufficiently large n, in contradiction to En ⊇ P .
The latter alternative is thus ruled out.



20 Linear Optimization 345

Remark. There is no need to give the feasible set P in an explicit form as earlier.
For the ellipsoid algorithm it is sufficient to know, at the nth step, whether cn ∈ P
or to specify a halfspace which contains P but not cn . This can be achieved by a
separation oracle for P .

Complexity of the Ellipsoid Algorithm

The result of Khachiyan [580] shows that one can find a feasible solution of a rational
system of linear inequalities

{x : Ax ≤ b}
in polynomial time by a refined version of the ellipsoid algorithm. Since this is poly-
nomially equivalent to the solution of the linear optimization problem

sup{cx : Ax ≤ b}

with rational c, there is a polynomial time algorithm for rational linear optimization
problems. See Schrijver [915].

20.4 Lattice Polyhedra and Totally Dual Integral Systems

Lattice polyhedra and polytopes play an important role in several branches of math-
ematics, including convex geometry and the geometry of numbers and in applied
fields such as crystallography. See Sects. 8.4, 19 and 32.1. Here we study lattice
polyhedra and polytopes in the context of integer linear optimization. Basic results on
lattice polyhedra in optimization are due to Gordan and many living mathematicians,
including Gomory, Lenstra, Chvátal, Grötschel, Lovász and Schrijver, Papadimitriou
and Edmonds and Giles.

Integer linear optimization problems, for example the problem to determine

sup{cx : Ax ≤ b, x ∈ Z
d},

behave much worse than corresponding linear optimization problems, but in the spe-
cial case, where the inequality system

Ax ≤ b

is a so-called totally dual integral system, they behave quite well. The study of such
systems was initiated by Edmonds and Giles.

In this section we first prove some simple yet important results on lattice
polyhedra and then introduce the notion of totally dual integral systems of linear
inequalities.

For more information, see Schrijver [915] and the references cited there.
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Rational Polyhedra and Lattice Polyhedra

A convex polyhedron P in E
d is rational, if it has a representation of the form

P = {x : Ax ≤ b},
where A is a rational matrix and b a rational vector. The convex polyhedron P is
called integer, integral or a lattice polyhedron if it is the convex hull of the points of
the integer lattice Z

d contained in it. It is not difficult to show the following equiv-
alences, where a minimum face of a convex polyhedron is a face which does not
contain a proper subface. Thus a minimum face is a vertex, a line or a plane of
dimension ≥ 2.

Proposition 20.3. Let P be a rational convex polyhedron in E
d . Then the following

statements are equivalent:
(i) P is a lattice polyhedron.

(ii) Each face of P contains a point of Z
d .

(iii) Each minimum face of P contains a point of Z
d .

(iv) If in a linear optimization problem of the form sup{cx : x ∈ P} the supremum is
finite, it is attained at a point of Z

d .

(v) Each support hyperplane of P contains a point of Z
d .

Some Properties of Lattice Polyhedra

The following result of Edmonds and Giles [287] contains a series of earlier results
as special cases.

Theorem 20.3. Let P be a rational convex polyhedron in E
d . Then the following

statements are equivalent:

(i) P is a lattice polyhedron.

(ii) Each rational support hyperplane of P contains a point of Z
d .

Proof. (i)⇒(ii) Clear.
(ii)⇒(i) We may assume that P = {x : Ax ≤ b}, where A, b are integer. It is

sufficient to show that each minimum face of P contains a point of Z
d . To see this,

assume that, on the contrary, there is a minimum face F of P which contains no point
of Z

d . Being a minimum face, F is a plane and thus can be represented in the form

F = {x : A′x = b′},
where the matrix A′ consists of, say k (≤ m) rows of A and the column b′ of the cor-
responding entries of b. We now construct a rational hyperplane H which supports
P but contains no point of Z

d in contradiction to (ii). For this we need the defini-
tion and simple properties of polar lattices in Sect. 21.4. The columns b′1, . . . , b′d of
A′ are integer vectors in E

k and are contained in the subspace S = lin{b′1, . . . , b′d}
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of E
k . They generate a lattice L in S. We show that b′ ∈ S\L . Let x ∈ F . Then

b′ = A′x = x1b′1 + · · · + xdb′d ∈ S. If b′ ∈ L , then b′ = u1b′1 + · · · + udb′d = A′u
for suitable u ∈ Z

d . Hence F contains the integer vector u, which is excluded by
assumption. Let L∗ be the polar lattice of L in S. Since b′ �∈ L there is a rational row
y′ ∈ L∗ with

y′b′ �∈ Z, while y′A′ = (y′b′1, . . . , y′b′d) ∈ Z
d

by the definition of L∗. By adding suitable positive integers to the entries of y′, if
necessary, we may suppose that

y′ ≥ o while still y′b′ �∈ Z, y′A′ ∈ Z
d .

If a1, . . . , ak are the rows of A′, then

c = y′A′ = y′1a1 + · · · + y′kak ∈ pos{a1, . . . , ak} ∩ Z
d = NP (F) ∩ Z

d ,
β = y′b′ ∈ Q \ Z

by Proposition 20.1. The hyperplane

H = {x : c x = β} = {x : y′A′x = y′b′}
is rational, contains F = {x : A′x = b′} and its normal vector c is in NP (F). Thus
H supports P . H contains no u ∈ Z

d since otherwise y′b′ = y′A′u ∈ Z while
y′b′ �∈ Z. This contradicts (ii) and thus concludes the proof. ��

A consequence of this result is the following:

Corollary 20.1. Let Ax ≤ b be a rational system of linear inequalities. Then the
following statements are equivalent:
(i) sup{c x : Ax ≤ b} is attained by an integer vector x for each rational row c for

which the supremum is finite.

(ii) sup{c x : Ax ≤ b} is an integer for each integer row c for which the supremum
is finite.

(iii) P = {x : Ax ≤ b} is a lattice polyhedron.

Proof. (i)⇒(ii) Let c be an integer row and such that sup{cx : Ax ≤ b} is finite. By
(i), the supremum is attained at an integer vector x and thus is an integer.

(ii)⇒(iii) We first show the following:

(2) Let H = {x : c x = δ} be a rational support hyperplane of P . Then H
contains a point of Z

d .

By multiplying the equation c x = δ by a suitable positive rational number and
changing notation, if necessary, we may suppose that c is an integer row vector with
relatively prime entries. Since H is a support hyperplane of P , sup{c x : Ax ≤ b} =
δ is finite. By (ii), δ is then an integer. Since c has relatively prime integer entries,
there is a u ∈ Z

d such that c u = δ. Hence u ∈ H , concluding the proof of (2).
Having proved (2), Theorem 20.3 implies statement (iii).

(iii)⇒(i) Trivial. ��
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Totally Dual Integral Systems of Linear Inequalities

The implication (i)⇒(ii) in this corollary says the following. Let Ax ≤ b be a rational
system of linear inequalities. If sup{c x : Ax ≤ b} is attained by an integer vector x
for each rational row vector c for which the supremum is finite, then it is an integer
for each integer row vector c for which the supremum is finite. The duality equality

sup{c x : Ax ≤ b} = inf{y b : y ≥ o, y A = c}
then led Edmonds and Giles [287] to define the following: a rational system of linear
inequalities Ax ≤ b is totally dual integral if inf{y b : y ≥ o, y A = c} is attained by
an integer row vector y for each integer row vector c for which the infimum is finite.
This implies, in particular, that Proposition (ii) of the above corollary holds, which,
in turn, shows that P = {x : Ax ≤ b} is a lattice polyhedron.

Note that there are rational systems of linear inequalities which define the same
lattice polyhedron and such that one system is totally dual integral while the other
is not.

Complexity of Integer Linear Optimization for Lattice Polyhedra and Totally
Dual Integral Systems

We have stated earlier that, presumably, there is no polynomial time algorithm for
general integer linear optimization problems. Fortunately, for lattice polyhedra and
totally dual integral systems the situation is better:

There is a polynomial algorithm by Lenstra [647] which finds for a fixed number
of variables an optimum solution of the integer linear optimization problem

sup{c x : Ax ≤ b, x ∈ Z
d}.

Similarly, there is a polynomial algorithm which finds an integral optimum solution
for the linear optimization problem

inf{y b : y ≥ o, y A = c}
if Ax ≤ b is a totally dual integral system with A integer and c an integer row vector.
For proofs and references, see Schrijver [915], pp. 232, 331.

Considering these remarks, it is of interest to find out whether a given rational
system Ax ≤ b defines a lattice polyhedron or is totally dual integral. See [915].

20.5 Hilbert Bases and Totally Dual Integral Systems

For a better understanding of totally dual integral systems of linear inequalities, Giles
and Pulleyblank [378] introduced the notion of a Hilbert basis of a polyhedral convex
cone.

In this section we present the geometric Hilbert basis theorem of Gordan and van
der Corput and show how one uses Hilbert bases to characterize totally dual integral



20 Linear Optimization 349

systems of linear inequalities. An algorithm for geometric Hilbert bases is due to
Hirzebruch [507] and Jung [556].

For references and detailed information, compare Schrijver [915] and Bertsimas
and Weismantel [104].

Geometric Hilbert Bases

A (geometric) Hilbert basis of a polyhedral convex cone C in E
d with apex o is a

set of vectors {a1, . . . , am} in C such that each integer vector in C is an integer lin-
ear combination of a1, . . . , am . Of particular interest are integer (geometric) Hilbert
bases, that is, Hilbert bases consisting of integer vectors.

The Geometric Hilbert Basis Theorem

Old results of Gordan [387] and van der Corput [225] on systems of linear equations
can be formulated as follows.

Theorem 20.4. Let C be a pointed rational polyhedral convex cone in E
d with

apex o. Then C has an integer Hilbert basis. If C is pointed, it has a unique minimal
(with respect to inclusion) integer Hilbert basis.

Proof. Existence: Let C = pos{q1, . . . , qn} where the qi are rational vectors. We
may suppose that qi ∈ Z

d . We prove the following:

(1) Let {a1, . . . , am} =
{
λ1q1 + · · · + λnqn : 0 ≤ λi ≤ 1

} ∩ Z
d . Then

{a1, . . . , am} is an integer Hilbert basis of C and C = pos{a1, . . . , am}.
Since C = pos{q1, . . . , qn} and {q1, . . . , qn} ⊆ {a1, . . . , am} ⊆ C , clearly C =
pos{a1, . . . , am}. To see that {a1, . . . , am} is an integer Hilbert basis of C , let
u ∈ C ∩ Z

d . Since C = pos{q1, . . . , qn}, there are µ1, . . . , µn ≥ 0 such that
u = µ1q1 + · · · + µnqn . Then

u − �µ1�q1 − · · · − �µn�qn = (µ1 − �µ1�)q1 + · · · + (µn − �µn�)qn ∈ C ∩ Z
d .

The vector (µ1 − �µ1�)q1 + · · · + (µn − �µn�)qn thus occurs among a1, . . . , am .
Since the q1, . . . , qn also occur among the a1, . . . , am , we see that u is a non-negative
integer linear combination of a1, . . . , am , concluding the proof of (1).

Uniqueness: Let C be pointed. We will show that

(2) B = {
a ∈ C ∩ Z

d \ {o} : a is not a sum of vectors in C ∩ Z
d \ {o}}

is the unique minimal Hilbert basis of C .

Clearly, B is contained in any Hilbert basis of C . Since the Hilbert basis in (1) is
finite, B is also finite. B is integer. Thus, to finish the proof of (2), we have to show
that B is a Hilbert basis of C . Since C is pointed, o is an extreme point and thus a
vertex of C . Thus there is a support hyperplane {x : c x = 0} of C at o which meets
C only at o. We may assume that c x > 0 for each x ∈ C \ {o}. Suppose that there
are vectors in C ∩ Z

d \ {o}, which are not non-negative integer linear combinations
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of the vectors in B. Let u be such a vector with c u (> 0) as close as possible to 0.
Then, in particular, u �∈ B and we may choose vectors v,w ∈ C ∩ Z

d \ {o}, with
u = v + w. Then c u = c v + cw. Since v,w ∈ C \ {o} we thus have that 0 <
c v, cw < c u which contradicts our choice of u. Thus every vector in C ∩ Z

d ,
including o, is a non-negative integer linear combination of vectors in B. The proof
of (2) is complete. ��

The notion of geometric Hilbert basis and the geometric Hilbert basis theorem
remind one of the Hilbert [500] basis theorem for ideals in polynomial rings over
Noetherian rings. There are actually relations between these two topics, see [915],
p. 376 for references.

Characterization of Totally dual Integral Systems by Hilbert Bases

We prove the following result, where a row ai of A is active on F if ai x = βi for
each x ∈ F :

Theorem 20.5. Let Ax ≤ b be a rational system of linear inequalities. Then the
following propositions are equivalent:
(i) Ax ≤ b is totally dual integral.

(ii) For each face F of the convex polyhedron P = {x : Ax ≤ b} the rows of A which
are active on F form a Hilbert basis of the cone generated by these rows.

Proof. (i)⇒(ii) Let F be a face of P and let a1, . . . , ak be the rows of A which are
active on F . Then, clearly, the following hold:

(3) Let x be a relatively interior point of F . Let a be a row of A and β the
corresponding entry of b. Then

a x = β if a is one of a1, . . . , ak and ax < β otherwise.

To show that {a1, . . . , ak} is a Hilbert basis of pos{a1, . . . , ak} = NP (F), let

c ∈ NP (F) ∩ Z
d \ {o}.

Then the supremum in the equality

(4) sup{c x : Ax ≤ b} = inf{yb : y ≥ o, y A = c}
is attained by any point of F , in particular at a relatively interior point x , say. The
infimum in (4) is thus finite. Then (i) shows that it is attained by an integer row y ≥ o,
say. Then c x = y Ax ≤ yb = cx and therefore y Ax = yb, or y(b−Ax) = 0. Noting
(3), this shows that an entry of y is 0 if the corresponding row of A is not active on F .
Hence c = y A is an integer linear combination just of a1, . . . , ak . Hence {a1, . . . , ak}
is a Hilbert basis of pos{a1, . . . , ak}.

(ii)⇒(i) Let c ∈ Z
d be such that the infimum in (4) and thus also the supremum

are attained. Let F be a minimum face of P such that the supremum in (4) is attained
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at each point of F , in particular at a relatively interior point x , say. Let a1, . . . , ak be
the row vectors of A which are active on F . Then

ai x = βi for i = 1, . . . , k.

Since c is the exterior normal vector of a hyperplane which supports P at F , c ∈
NP (x) = pos{a1, . . . , ak} by Proposition 20.1. By (ii), c = λ1a1 + · · · + λkak

with suitable integers λi ≥ 0. Enlarge the integer row (λ1, . . . , λk) by appropriately
inserting 0s to get an integer row y ≥ o with

y A = λ1a1 + · · · + λkak = c,
yb=λ1β1 + · · · + λkβk = (λ1a1 + · · · + λkak)x = c x .

Thus the infimum in (4) is attained at the integer row y. As this is true for each c for
which the infimum in (4) is finite, the system Ax ≤ b is totally dual integral. ��



Geometry of Numbers and Aspects of Discrete
Geometry

The roots of discrete geometry and geometry of numbers date back to the seventeenth
or eighteenth century. We mention the ball packing problem, first treated by Kepler.
The well known discussion between Newton and Gregory on the problem of the
13 balls involved the following question: given a unit ball, is it possible to arrange 13
non-overlapping unit balls such that each touches the given ball, or not? Gregory
said yes, Newton no. Sporadic results in the late eighteenth and the nineteenth cen-
tury are due to Lagrange, Gauss, Dirichlet, Korkin and Zolotarev (packing of balls
and positive definite quadratic forms), Fedorov (tiling), and Thue (irregular packing
of circular discs). Both areas became well-established branches of mathematics only
at the turn of the nineteenth and during the twentieth century. The major figures at
the beginning of the systematic era were Minkowski (fundamental theorems, appli-
cations to Diophantine approximation) and Voronoı̆ (geometric theory of quadratic
forms) in the geometry of numbers and, 50 years later, Fejes Tóth (packing and
covering) in discrete geometry. Other contributors to both areas in the twentieth cen-
tury were Delone, Siegel, Mahler, Davenport, Kneser, Rogers, Ryshkov and many
living mathematicians, including Hlawka, Bambah and Schmidt. Important topics
are lattice and non-lattice packing, covering and tiling. Both areas have strong ties to
other parts of mathematics and the applied sciences, for example to crystallography,
coding and data transmission, modular functions, computational and algorithmic
geometry, graph theory, number theory and algebraic geometry. There are applica-
tions to numerical integration and the Riemann mapping theorem.

At the heart of the geometry of numbers is the interplay of the group-theoretic
notion of lattice and the geometric concept of convex set, the lattices representing
periodicity, the convex sets geometry. In discrete geometry similar problems are con-
sidered as in the geometry of numbers, but relaxing periodicity.

While the important problems of the geometry of numbers and of discrete
geometry are easy to state, their solution, in general, is difficult. Thus progress is
slow. Major results in recent years are at the boundary of the classical theory, deal-
ing, for example, with positive and indefinite quadratic forms and computational and
algorithmic aspects. It seems that fundamental advance in the future will require new
ideas and additional tools from other areas.
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The aim of this chapter is to present basic results from these two areas. We start
with regular, i.e. lattice results and topics from the geometry of numbers such as
the fundamental theorems of Minkowski, the Minkowski–Hlawka theorem, the geo-
metric theory of positive definite quadratic forms and reduction. Minkowski’s fun-
damental theorem and the Minkowski–Hlawka theorem are opposite cornerstones
of the geometry of numbers, the first yielding a simple upper bound for the den-
sity of lattice packings, the second a lower bound. To show the reader the flavour
of the geometry of numbers of the English school we discuss some classical par-
ticular arithmetic–geometric problems. Computational and algorithmic aspects are
touched. Then irregular, i.e. non-lattice results of a systematic character of discrete
geometry are presented, dealing with packing, covering, tiling, optimum quantiza-
tion and Koebe’s representation theorem for planar graphs. Besides quantization and
Koebe’s theorem, a further result of an instrumental character in classical discrete
geometry is Euler’s polytope formula, see Sect. 15.1. For corresponding problems
the irregular case for obvious reasons is more difficult than the regular one. Thus it
is not surprising that lattice results are, in general, much farther reaching than corre-
sponding non-lattice results. In our presentation the emphasis is on the geometry. The
given applications and relations to other areas deal with Diophantine approximation,
polynomials, error correcting codes, data transmission, numerical integration, graphs
and the Riemann mapping theorem. Lattice polytopes and some of their applications
were treated in Sect. 19 in the chapter on convex polytopes, but would also fit well
into the present chapter.

The reader who wants to get more detailed information is referred to the books
and surveys of Fejes Tóth [329, 330], Rogers [851], Gruber [416], Conway and
Sloane [220], Pach and Agarwal [783], Erdös, Gruber and Hammer [307], Cassels
[195], Gruber and Lekkerkerker [447], Ryshkov and Baranovskiı̆ [867], Kannan
[563], Grötschel, Lovász and Schrijver [409], Siegel [937], Gruber [430], Zong
[1048,1049], Lagarias [625], Olds, Lax and Davidoff [778], Coppel [223], Ryshkov,
Barykinskiı̆ and Kucherinenko [868], Matoušek [695], Böröczky [155], Ryshkov
[866], Bombieri and Gubler [148], to the collected or selected works of Minkowski
[745], Voronoı̆ [1014], Davenport [246] and Hlawka [516] and to the pertinent
articles in the Handbooks of Convex Geometry [475] and of Discrete and Computa-
tional Geometry [476] and in Discrete and Computational Geometry [273]. A large
collection of research problems in discrete geometry is due to Brass, Moser and
Pach [164].

Finite packing and covering problems, Erdös type problems, arrangements and
matroids will not be considered in the following. For these, see the book of Pach and
Agarwal [783], the monograph of Böröczky [155] on finite packing and covering,
the book of Matoušek [695] and the monograph of Bokowski [137] on oriented
matroids. Similarly, we consider lattice points in large convex bodies in the sense
of the circle problem of Gauss only in passing and instead refer to Gruber and
Lekkerkerker [447], Sect. iii, and articles in the Proceedings on Fourier Analysis
and Convexity [343], together with the references cited there.
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Extension to Crystallographic Groups?

Most results in the geometry of numbers and part of the results in discrete geometry
rest on the notion of lattices, that is, discrete groups of translations in E

d . Consid-
ering this, it is surprising that there is no equally elaborate theory for other crystal-
lographic groups, although there are some pertinent results. We mention a result of
Delone [258] on the number of facets of a stereohedron, i.e. a space filler by means
of a crystallographic group, the negative solution of Hilbert’s 18th problem, a ver-
sion of Blichfeldt’s theorem due to Schmidt [896], p. 30 based on a crystallographic
structure, and a result on ball packings with crystallographic groups of Horváth and
Molnár [522]. A starting point for research in this direction could be Engel’s arti-
cle [297]. See also the short chapter on crystallography in Erdös, Gruber and Ham-
mer [307] and the books of Senechal [925] and Engel, Michel and Senechal [301].

The crystallographer Peter Engel [300] has reservations about a substantial par-
allel theory for crystallographic groups – in spite of his important pertinent contri-
butions. His argument is that the context of general crystallographic groups is so
complicated that one may not expect a lot of non-trivial results.

All convex bodies in this chapter are proper.

21 Lattices

The notion of lattice already appeared implicitly in the work of Kepler [576, 577],
who used it in the context of packing of balls. Crystallographers such as Haüy [483]
in the eighteenth century and many crystallographers in the nineteenth century based
their investigations on lattices, although experimental proof that lattices are under-
lying crystals was given only in the early twentieth century by von Laue and father
and son Bragg, for which all three got the Nobel Prize. A different source for lattices
is number theory. Here the classical reference is Gauss [364], who seems to have
first seen the relation between positive definite quadratic forms and lattice packing
of balls. Lattices and convex bodies are the main ingredients of the geometry of
numbers. Results dealing with lattices are often the starting point for more general
investigations in discrete geometry.

In this section, basic notions related to lattices and some of the fundamental prop-
erties of lattices are presented, as needed in the context of the geometry of numbers.

For additional information on lattices, mainly from the viewpoint of the geometry
of numbers, see Cassels [195], Gruber and Lekkerkerker [447] and Lagarias [625].
While we study relations between lattices in general, special lattices, theta series
and codes are treated in the book of Gruber and Lekkerkerker. More information
on these topics is presented by Ebeling [282] and Conway and Sloane [220]. For
relations to crystallography, see Erdös, Gruber and Hammer [307], Engel [296, 297]
and Lagarias [625]. Engel, Michel and Senechal [301] treat lattices from a crystal-
lographic viewpoint. For algorithmic problems and results on lattices compare the
references in Sect. 28.
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21.1 Basic Concepts and Properties and a Linear Diophantine Equation

Discrete sets of various sorts in E
d play an important role in numerous branches

of mathematics and other fields, including discrete geometry and the geometry of
numbers. It is thus a natural problem to study interesting classes of discrete sets.
In many cases such sets are uniformly distributed over E

d , or they have periodicity
properties. We mention Delone sets and refer for these to Sect. 32.1, orbits of crys-
tallographic groups, periodic sets as considered by Zassenhaus, see Sects. 30.4 and
31.4, and lattices.

In the following we define the notion of lattice, basis, fundamental parallelo-
tope and determinant, and state the relations between different bases of a lattice.
An application deals with a simple Diophantine equation.

Lattices and Lattice Bases

A (geometric) lattice L in E
d is the system of all integer linear combinations of d

linearly independent vectors b1, . . . , bd ∈ E
d ,

L = {
u1b1 + · · · + udbd : ui ∈ Z

}
.

The d-tuple {b1, . . . , bd} is called a basis of L .

b1

F

b2

o

Fig. 21.1. Lattice

An example of a lattice is the integer lattice

Z
d = {

(u1, . . . , ud) : ui ∈ Z
}
.

The vectors
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)

form the standard basis of Z
d .

Lattices appear in many different branches of mathematics, including Dio-
phantine approximation, algebraic number theory and algebraic geometry, com-
plex analysis (periods of doubly periodic analytic functions), numerical analysis
(nodes for numerical integration), integer programming, coding, and crystallography
(Fig. 21.1).
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Relations Between Different Bases

Different bases of a given lattice are related in a rather simple way. Recall, an integer
unimodular d × d matrix is a d × d matrix U with integer entries and det U = ±1.

Theorem 21.1. Let {b1, . . . , bd} be a basis of a lattice L in E
d . Then the following

statements hold:

(i) Let {c1, . . . , cd} be another basis of L. Then

(1)

c1 = u11b1 + · · · + u1dbd

c2 = u21b1 + · · · + u2dbd

. . . . . . . . . . . . . . . . . . . . . . . .
cd = ud1b1 + · · · + uddbd

or (c1, . . . , cd) = (b1, . . . , bd)U
T ,

where U = (uik) is a suitable integer unimodular d × d matrix.

(ii) Let U = (uik) be an integer unimodular d × d matrix and let {c1, . . . , cd} be
defined by (1). Then {c1, . . . , cd} is a basis of L.

Proof. (i) Since {b1, . . . , bd} is a basis of L , each vector of L is an integer linear
combination of b1, . . . , bd . This implies (1), where U = (uik) is an integer d × d
matrix. Noting that {c1, . . . , cd} is also a basis of L , it follows that, conversely,

(2)

b1 = v11c1 + · · · + v1dcd

b2 = v21c1 + · · · + v2dcd

. . . . . . . . . . . . . . . . . . . . . . .
bd = vd1c1 + · · · + vddcd

or (b1, . . . , bd) = (c1, . . . , cd)V
T ,

where V = (vik) is a suitable integer d × d matrix. From (1) and (2) we conclude
that

(3) (c1, . . . , cd) = (b1, . . . , bd)U
T = (c1, . . . , cd)V

T U T = (c1, . . . , cd)(U V )T

Since c1, . . . , cd are linearly independent and thus (c1, . . . , cd) a non-singular d × d
matrix, it follows from (3) that det(U V )T = 1 or det U det V = 1. Since U and
V are integer matrices, their determinants are also integers. This then shows that
det U = ±1, concluding the proof of (i).

(ii) Since U is an integer unimodular d × d matrix, (1) implies that c1, . . . , cd

are in L , are linearly independent and

(b1, . . . , bd) = (c1, . . . , cd)V
T , where V = U−1.

Being the inverse of the integer unimodular d × d matrix U , the matrix V is also
an integer unimodular matrix. Thus each bi is an integer linear combination of the
vectors c1, . . . , cd . Since each vector of L is an integer linear combination of the
vectors b1, . . . , bd , it follows that each vector of L is an integer linear combina-
tion of the vectors c1, . . . , cd . Since c1, . . . , cd are linearly independent, {c1, . . . , cd}
is a basis. ��
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Particular Bases of a Lattice; Reduction

Since, for d ≥ 2, there are infinitely many integer unimodular d×d-matrices, any lat-
tice in E

d , d ≥ 2, has infinitely many different bases. A major problem of reduction
theory is to single out bases which have particularly nice geometric properties, e.g.
bases consisting of short vectors or bases where the vectors are almost orthogonal.
For more information, see Sect. 28.

The Bravais Classification of Lattices

A square lattice and a hexagonal lattice in E
2, clearly, are different, but what makes

them different? One way to distinguish lattices is to classify them by means of their
groups of isometries, keeping the origin fixed. This is the Bravais classification of
lattices from crystallography, see Engel [296,297], Erdös, Gruber and Hammer [307]
and [295] and Engel, Michel and Senechal [301].

Fundamental Parallelotope and Determinant of a Lattice

Given a basis {b1, . . . , bd} of a lattice L , the corresponding fundamental parallelo-
tope F is defined by:

F = {
α1b1 + · · · + αdbd : 0 ≤ αi < 1

}
.

The determinant d(L) of the lattice L is the volume of F ,

d(L) = V (F) = | det(b1, . . . , bd)|.
It follows from Theorem 21.1 that d(L) is independent of the particular choice of a
basis of E

d .

A Linear Diophantine Equation

There are many known proofs of the following result, in particular proofs based on
the Euclidean algorithm. See, e.g. Mordell [754]. The first indication of such a proof
is due to Āryabhata about 500 AD. A later contributor is Brahmagupta in the seventh
century. The proof presented later resulted from a discussion with Keith Ball [55].

Proposition 21.1. Let u, v be positive integers with greatest common divisor 1. Then
there are integers x, y such that

uy − vx = 1.

Proof. The point (u, v) is a primitive point of the integer lattice Z
2, i.e. there is no

lattice point on the line segment [o, (u, v)] except for o, (u, v). Consider the line
segment [o, (u, v)] and move it parallel to itself to the left until it first hits a point of
Z

2, say (x, y). We assert that (u, v), (x, y) form a basis of Z
2. By construction, the
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triangle conv{o, (u, v), (x, y)} contains no point of Z
2, except its vertices. Consider-

ing its mirror image in o and the translation of the latter by the vector (u, v)+ (x, y),
we see that the parallelogram generated by (u, v) and (x, y) contains no point of Z

2,
except its vertices. The parallelogram F = {α(u, v)+ β(x, y) : 0 ≤ α, β < 1} then
contains only the point o of Z

2. Given a point l ∈ Z
2, we may subtract integer mul-

tiples of (u, v) and (x, y) from it such that the resulting lattice point is contained in
F and thus must coincide with o. Hence l is an integer linear combination of (u, v)
and (x, y). Thus (u, v), (x, y) form a basis of the lattice Z

2. By Theorem 21.1 their
determinant is ±1 and by our choice of (x, y) it is positive. Hence uy − vx = 1. ��

21.2 Characterization of Lattices

Since the notion of lattice is important for many purposes, it is sometimes useful to
have at hand an alternative description.

This section contains a simple characterization of lattices. This result or, more
precisely, its proof will be used in Proof of Theorem 21.3. It is also a tool for the
Venkov–McMullen theorem 32.3 on characterization of parallelohedra.

A Characterization of Lattices

A subset of E
d is called discrete if any bounded set contains only finitely many of

its points or, equivalently, if it has no point of accumulation. A characterization of
lattices based on the notions of group and discrete set now is as follows.

Theorem 21.2. Let L ⊆ E
d . Then the following statements are equivalent:

(i) L is a lattice.

(ii) L is a discrete sub-group of E
d which is not contained in a hyperplane.

Proof. (i)⇒(ii) Let {b1, . . . , bd} be a basis of L . If l,m are integer linear combina-
tions of b1, . . . , bd , then so is l − m. Hence L is a sub-group of E

d . For the proof
that L is discrete, note that

(1)
{
α1b1 + · · · + αdbd : −1 < αi < 1

} ∩ L = {o}.
Let � > 0 be the radius of a ball with centre at o which is contained in the open
parallelotope in (1). Then the distance from o to any point of L\{o} is at least �.
Therefore, we have ‖l−m‖ ≥ � for l,m ∈ L , l �= m. If L is not discrete, it contains
a bounded infinite subset. This subset then has at least one accumulation point. Any
two distinct points of this subset, which are sufficiently close to the accumulation
point, have distance less than �. This contradiction concludes the proof that L is
discrete. L is not contained in a hyperplane since it contains the points o, b1, . . . , bd .

(ii)⇒(i) It is sufficient to show the following:

(2) There are d linearly independent vectors b1, . . . , bd ∈ L such that L ={
u1b1 + · · · + udbd : ui ∈ Z

}
.
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This is an immediate consequence of the case i = d of the following proposition:

(3) Let c1, . . . , cd ∈ L be linearly independent. Then, for i = 1, . . . , d, we
have the following: There are i linearly independent vectors b1, . . . , bi ∈ L
such that

c1 = u11b1
c2 = u21b1 + u22b2
. . . . . . . . . . . . . . . . . . . . . . . . .
ci = ui1b1 + · · · · · · + uii bi

where u jk ∈ Z, u j j �= 0

and
lin{b1, . . . , bi } ∩ L = {u1b1 + · · · + ui bi : u j ∈ Z}.

Proof by induction: For i = 1, choose, among all points of L on the line lin{c1}, one
with minimum positive distance from o, say b1. Since L is discrete, this is possible.
Then the assertion in (3), for i = 1, holds with this b1.

Next, let i < d and assume that the assertion in (3) holds for i . Consider the
unbounded parallelotope

P = {
α1b1 + · · · + αi bi + αci+1 : 0 ≤ α j < 1, α ∈ R

}
.

All points of P , which are sufficiently far from o, have arbitrarily large distance
from lin{b1, . . . , bi }. Since (P ∩ L) \ lin{b1, . . . , bi } ⊇ {ci+1} �= {o} and since L
is discrete, we thus may choose a point bi+1 ∈ P ∩ L which is not contained in
lin{b1, . . . , bi } and has minimum distance from lin{b1, . . . , bi }. Then

(4) b1, . . . , bi , bi+1 ∈ L are linearly independent.

Next, note that, for any point of L in lin{b1, . . . , bi , bi+1}, we obtain a point of P
by adding a suitable integer linear combination of b1, . . . , bi . These two points then
have the same distance from lin{b1, . . . , bi }. Thus bi+1 has minimum distance from
lin{b1, . . . , bi }, not only among all points of (P∩L)\ lin{b1, . . . , bi }, but also among
all points of

(
lin{b1, . . . , bi , bi+1} ∩ L

)\ lin{b1, . . . , bi }. This yields, in particular,

(5)
{
α1b1 + · · · + αi bi + αi+1bi+1 : 0 ≤ α j < 1

} ∩ L = {o}.
We now show that

(6) lin{b1, . . . , bi+1} ∩ L = {
u1b1 + · · · + ui bi + ui+1bi+1 : u j ∈ Z

}
.

Let x ∈ lin{b1, . . . , bi+1} ∩ L . Hence x = u1b1 + · · · + ui+1bi+1 with suitable
ui ∈ R. Then

x − �u1�b1 − · · · − �ui+1�bi+1 ∈
{
α1b1 + · · · + αi+1bi+1 : 0 ≤ α j < 1

}∩ L = {o}
by (5) and thus x = �u1�b1 + · · · + �ui+1�bi+1. Comparing the two representations
of x and taking into account the fact that b1, . . . , bi+1 are linearly independent by
(4), it follows that u j = �u j� ∈ Z, for j = 1, . . . , i + 1. Thus, the left-hand side in
(6) is contained in the right-hand side. Since the converse is obvious, the proof of (6)
is complete.
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By definition of bi+1,

ci+1 ∈
(

lin{b1, . . . , bi+1} ∩ L
)\ lin{b1, . . . , bi }.

Thus (6) yields

(7) ci+1 = ui+1 1b1 + · · · + ui+1 i+1bi+1 where ui+1 j ∈ Z, ui+1 i+1 �= 0.

Considering (4), (3) and (7), and (6), the induction is complete, concluding the
proof of (3). Since (3) implies (2), the proof of the implication (ii)⇒(i) is complete.

��

The Sub-Groups of E
d

From a general mathematical viewpoint, it is of interest to describe all sub-groups
of E

d . It turns out that the closed sub-groups of E
d are the direct sums of the form

L ⊕ S where L is a lattice in a linear sub-space R of E
d and S is a linear sub-space

of E
d such that R ∩ S = {o}. The general sub-groups of E

d are the direct sums of
the form L ⊕ D where L is a lattice in a linear sub-space R of E

d and D a dense
sub-group of a linear sub-space S of E

d where R ∩ S = {o}. See Siegel [937].

21.3 Sub-Lattices

Given a mathematical structure, it is a basic problem to describe its sub-structures
and their properties. We study sub-lattices of a given lattice. In general, a lattice is
given by specifying one of its bases. Since Minkowski [743], Sect. 14, it is known
that, for each basis of a sub-lattice, there is a basis of the lattice such that these bases
are related in a particularly simple way and vice versa, for each basis of the lattice
there is such a basis of the sub-lattice. Max Köcher [604] pointed out that one may
select bases of the lattice and the sub-lattice which are related in an even simpler
way. He did not communicate a proof, but seems to have had in mind a proof based
on the theory of elementary divisors.

In this section we present these results. Our proof of Köcher’s result is elementary.
For additional information on sub-lattices compare Cassels [195] and the author

and Lekkerkerker [447].

Relations Between the Bases of a Lattice and its Sub-Lattices

If a lattice is contained in a lattice L , it is a sub-lattice of L .

Theorem 21.3. Let M be a sub-lattice of a lattice L in E
d . Then the following hold:

(i) Given a basis {c1, . . . , cd} of M, there is a basis {b1, . . . , bd} of L such that

(1)

c1 = u11b1
c2 = u21b1 + u22b2
. . . . . . . . . . . . . . . . . . . . . . . . . . .
cd = ud1b1 + · · · · · · + uddbd

where uik ∈ Z, uii �= 0.
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(ii) Given a basis {b1, . . . , bd} of L, there is a basis {c1, . . . , cd} of M such that (1)
holds.

Proof. (i) This is an immediate consequence of the case i = d of Proposition (3) in
the proof of Theorem 21.2.

(ii) We first show that

(2) uL ⊆ M with a suitable positive u ∈ Z.

Consider bases {b1, . . . , bd} of L and {c1, . . . , cd} of M such that (1) holds. The
inverse of the integer lower triangular matrix (uik), with determinant u = u11 · · ·
udd �= 0, is a lower triangular matrix, the entries of which are of the form vik/u,
where vik ∈ Z. Hence

ub1 = v11c1
ub2 = v21c1 + v22c2
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

ubd = vd1c1 + · · · · · · + vddcd .

From this it follows that uL is a sub-lattice of M , concluding the proof of (2).
To prove (ii), let {b1, . . . , bd} be a basis of L . Choose u as in (2). Then

{ub1, . . . , ubd} is a basis of uL . An application of (i) to the sub-lattice uL of M
thus yields a basis {d1, . . . , dd} of M such that

(3)

ub1 = w11d1
ub2 = w21d1 + w22d2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ubd = wd1d1 + · · · · · · + wdddd

where wik ∈ Z, wi i �= 0.

Solving (3) for d1, . . . , dd , we see that we may express d1, . . . , dd in the form
(1) with d1, . . . , dd instead of c1, . . . , cd , but where the uik are rational. Since
{b1, . . . , bd} is a basis of L and M a sub-lattice, the uik are, in fact, integers. ��

Primitive Points and Bases

If {b1, . . . , bd} is a basis of L and b = u1b1 + · · · + udbd , then b is primitive if and
only if 1 is the greatest common divisor of u1, . . . , ud .

Corollary 21.1. Let b be a primitive point of a lattice L in E
d . Then there are points

b2, . . . , bd ∈ L, such that {b, b2, . . . , bd} is a basis of L.

Proof. Choose c2, . . . , cd ∈ L , such that b, c2, . . . , cd are linearly independent. By
Proposition (i) of the above theorem, there is a basis {b1, . . . , bd} of L , such that

b = u11b1
c2 = u21b1 + u22b2
. . . . . . . . . . . . . . . . . . . . . . . . . . .
cd = ud1b1 + · · · · · · + uddbd

where uik ∈ Z, uii �= 0.

Since b is primitive, this can hold only if u11=±1 or b=±b1. Hence {b, b2, . . . , bd}
is also a basis of L . ��
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A similar, slightly more complicated proof leads to the following result:

Corollary 21.2. Let b1, . . . , bk be k linearly independent points of a lattice L such
that {

α1b1 + · · · + αkbk : 0 ≤ αi < 1
} ∩ L = {o}.

Then, there are points bk+1, . . . , bd ∈ L such that {b1, . . . , bd} is a basis of L.

Closely Related Bases of a Lattice and a Sub-Lattice

The following result shows that, given a sub-lattice M of a lattice L , there are bases of
M and L which are related in a particularly simple way. We could ascertain whether
this result is a consequence of a more general result on Abelian groups.

Theorem 21.4. Let M be a sub-lattice of a lattice L in E
d . Then there are bases

{c1, . . . , cd} of M and {b1, . . . , bd} of L, such that

c1 = u1b1, . . . , cd = udbd , where ui ∈ Z \ {0}.
Proof (by induction on d). If d = 1, the theorem is easy to see. Assume now that
d > 1 and that the theorem holds for d−1. The proof for d is divided into two steps.

In the first step we treat a special case:

(4) Let M be a sub-lattice of a lattice L in E
d which contains a primitive point

b1 of L . Then the theorem holds.

In the following, we consider lower dimensional lattices in E
d , but this should not

cause difficulties. Since b1 is a primitive point of L , there is a basis of L of the form
{b1, b2, . . . , bd} by Corollary 21.1. Then

L = {ub1 + l : u ∈ Z, l ∈ lin{b2, . . . , bd} ∩ L = L ′}.
L ′ is a lattice of dimension d − 1 in E

d . Let a point m ∈ M ⊆ L be given. Then,
since b1 ∈ M, we have m − ub1 ∈ lin{b2, . . . , bd} ∩ M for suitable u ∈ Z. Hence

M = {ub1 + n : u ∈ Z, n ∈ lin{b2, . . . , bd} ∩ M = M ′}.
M ′ is a (d − 1)-dimensional sub-lattice of the (d − 1)-dimensional lattice L ′. By
induction, there are bases {b2, . . . , bd} of L ′ and {c2, . . . , cd} of M ′, such that

c2 = u2b2, . . . , cd = udbd for suitable ui ∈ Z.

The bases {b1, b2, . . . , bd} of L and {b1, c2, . . . , cd} of M are then of the desired
form, concluding the proof for d in the special case (4).

In the second step, we consider a general sub-lattice M of L . For each point
m ∈ M \ {o}, let j be the unique positive integer such that m = j l, where l ∈ L
is primitive. Call j the index of m. Choose c ∈ M \ {o}, such that c has minimum
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index, say i , and let c = ib1, where b1 ∈ L is primitive. Now the following will be
shown:

(5) Let m ∈ M \ {o} and let j be the index of m. Then i | j .

If m is linearly dependent on c, Proposition (5) is easy to see. Assume now that c
and m are linearly independent. The 2-dimensional lattice M ′ = lin{c,m} ∩ M is a
sub-lattice of the 2-dimensional lattice L ′ = lin{c,m} ∩ L . Since b1 is a primitive
point of L , and thus of L ′, Corollary 21.1 shows that there is a basis of the form
{b1, b2} of L ′. Let m = j (ub1 + vb2), where u, v are relatively prime integers. Note
that c = ib1 and choose h ∈ Z, such that

n = m − hc = ( ju − ih)b1 + ( jv)b2 = k(wb1 + zb2), where
0 ≤ ju − ih = kw < i and w, z are relatively prime integers.

Clearly, k is the index of n. The inequality 0 ≤ kw < i and the inequality
i ≤ k, which follows from the definition of i , are compatible only if w = 0. Thus
ju − ih = 0, or

(6) i | ju,

and n = jvb2. Next, consider the point c+ n = ib1+ jvb2 ∈ M \ {o}. Since i is the
minimum index of all points of M \ {o}, we have

(7) i | jv.
Since the integers u, v are relatively prime, there are integers x, y such that uy−vx =
1, see Corollary 21.1. Propositions (6) and (7) then imply that i | j (uy − vx) = j ,
concluding the proof of (5).

The lattice (1/ i)M is a sub-lattice of L by (5) and b1 = (1/ i)c ∈ (1/ i)M is
a primitive point of L . Thus, we may apply (4) to see that there are bases of L and
(1/ i)M , and thus of L and M , of the desired type. The induction, and thus the proof
of the theorem, is complete. ��

The Index of a Sub-Lattice

Let M be a sub-lattice of a lattice L and choose bases {b1, . . . , bd} of L and
{c1, . . . , cd} of M , as in Theorem 21.4. The fundamental parallelotope,

{
α1c1 + · · · + αdcd : 0 ≤ αi < 1

}
,

of M , and thus every fundamental parallelotope of M , contains precisely |u1 · · · ud |
points of L , where u1, . . . , ud are as in the last theorem. Thus the number of
translates of M by vectors of L , which are needed to make up L , is precisely
|u1 · · · ud |. In other words, |u1 · · · ud | is the index of the sub-group 〈M,+〉 in the
group 〈L ,+〉. Call this the index of the sub-lattice M in the lattice L . It follows,
from c1 = u1b1, . . . , cd = udbd , that the index of the sub-lattice M in the lattice
L equals

|u1 · · · ud | = d(M)

d(L)
.



21 Lattices 365

21.4 Polar Lattices

For each lattice L in E
d , there exists a sort of dual lattice, called the polar lattice of

L , which is a useful tool in various contexts. Polar lattices seem to have appeared
first in the work of Bravais in crystallography, see the discussion by Rigault [838].
There is a sort of weak duality between a convex body and a lattice, on the one hand,
and the polar body and the polar lattice, on the other hand. For an example of this
duality, see Theorem 23.2.

In this section, we introduce the notion of the polar lattice of a given lattice and
show how their bases are related.

The Polar Lattice of a Given Lattice

Our aim here is to show the following simple result, where B−T is the transposed of
the inverse of the d × d matrix B.

Theorem 21.5. Let L be a lattice in E
d . Then

L∗ = {
m ∈ E

d : l · m ∈ Z for each l ∈ L
}

is a lattice, called the dual or polar lattice of L. If {b1, . . . , bd} is a basis of L and
B the (non-singular) matrix with columns b1, . . . , bd , then the columns of the matrix
B∗ = B−T form a basis {b∗1, . . . , b∗d} of L∗, the dual or polar basis of the given basis.

Proof. Let {b1, . . . , bd} be a basis of L . Then b∗1, . . . , b∗d are linearly independent.
To see that

(1) bi · b∗k =
{

1 for i = k,
0 for i �= k,

note that, for the d × d matrix (bi · b∗k ), we have,

(bi · b∗k ) = BT B−T = (B−1 B)T = I T = I,

where I is the d × d unit matrix. Since b∗1, . . . , b∗d are linearly independent, it is
sufficient, for the proof of the theorem, to show that

(2) L∗ = {
v1b∗1 + · · · + vdb∗d : vi ∈ Z

}
.

First, let m ∈ L∗. Since b∗1, . . . , b∗d are linearly independent, m = w1b∗1+· · ·+wdb∗d
for suitable wi ∈ R. Then

wi = bi · (w1b∗1 + · · · + wdb∗d) = bi · m ∈ Z

by (1) and the definition of L∗. Hence m ∈ {
v1b∗1 + · · · + vdb∗d : vi ∈ Z

}
. Second,

let m ∈ {
v1b∗1 + · · · + vdb∗d : vi ∈ Z

}
, say m = v1b∗1 + · · · + vdb∗d , where vi ∈ Z.

Then we have

l · m = (u1b1 + · · · + udbd) · (v1b∗1 + · · · + vdb∗d) = u1v1 + · · · + udvd ∈ Z,

for any l = u1b1 + · · · + udbd ∈ L by (1), and thus m ∈ L∗. This concludes proof
of (2) and thus of the theorem. ��
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22 Minkowski’s First Fundamental Theorem

We cite Cassels [195], prologue:

We owe to MINKOWSKI the fertile observation that certain results which can be
made almost intuitive by consideration of figures in n-dimensional Euclidean space
have far-reaching consequences in diverse branches of number theory. For exam-
ple, he simplified the theory of units in algebraic number fields and both simplified
and extended the theory of approximation of irrational numbers by rational ones
(Diophantine Approximation). This new branch of number theory, which
MINKOWSKI christened “The Geometry of Numbers”, has developed into an inde-
pendent branch of number theory which, indeed, has many applications elsewhere
but which is well worth studying for its own sake.

Minkowski’s fundamental theorem is one among a small number of basic results
of the geometry of numbers alluded to by Cassels. It relates the basic notions of lat-
tices and convex bodies. The fundamental theorem is simple, almost trivial and, at the
same time, deep. There exist numerous generalizations and arithmetic consequences
of it. The following remark of Hilbert well describes the situation, see Rose [856]:

The art of doing mathematics consists in finding that special case which contains all
the germs of generality.

In this section we present the fundamental theorem together with some of its classical
applications dealing with Diophantine approximation, representation of integers as
sums of squares, and estimates for discriminants of polynomials.

For a wealth of different versions, related results and further applications, see
Cassels [195], Kannan [563], Gruber and Lekkerkerker [447] and Erdös, Gruber and
Hammer [307].

22.1 The First Fundamental Theorem

Let f : E
d → R. The arithmetic problem of finding a solution u = (u1, . . . , ud) of

the inequality

f (x1, . . . , xd) ≤ 1,

where the ui are integers, not all equal to 0, is equivalent to the geometric problem
of finding a point of the integer lattice Z

d different from o and contained in the set

{x : f (x) ≤ 1}.

This led Minkowski to look for conditions which guarantee that a set, in particular a
convex body, contains points of a lattice different from the origin. The result was his
first fundamental theorem.

In this section we present Minkowski’s theorem together with three elegant and
convincing proofs, each based on a different idea.
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The First Fundamental Theorem

A very satisfying answer to the above problem is the following first fundamental
theorem of Minkowski [734] or Minkowski’s first theorem:

Theorem 22.1. Let C be an o-symmetric convex body and L a lattice in E
d such that

V (C) ≥ 2dd(L). Then C contains a pair of points ±l ∈ L \ {o}.
The first proof is based on Dirichlet’s pigeon hole principle and a formula to

calculate the volume of a convex body. The idea to use the pigeon hole principle
in this context seems to be due to Scherrer [886]. The second proof is due to Siegel
[935] and makes use of Fourier series and Parseval’s theorem. The third one utilizes a
close relation between the fundamental theorem and the notion of density of a lattice
packing of convex bodies (Fig. 22.1).

Proof (using the pigeon hole principle). Since C is compact and L discrete, it is
sufficient to prove the theorem under the stronger assumption that

(1) V (C) > 2dd(L).

The convex body 1
2 C is Jordan measurable by Theorem 7.4. Using the substitution

rule for multiple integrals, the asymptotic formula (3) in Sect. 7.2 to calculate the
Jordan measure then implies that

V
(1

2
C
)
∼ #

(1

2
C ∩ 1

n
L
)
· d

(1

n
L
)

as n →∞.

Since by (1) V ( 1
2 C) > d(L), it follows that

(2) #
(1

2
C ∩ 1

n
L
)
> nd for all sufficiently large n.

Keep such an n fixed and choose a basis {b1, . . . , bd} of L . To each point

u1

n
b1 + · · · + ud

n
bd ∈ 1

2
C ∩ 1

n
L

Cd

o

Fig. 22.1. Fundamental theorem
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we associate the point

w1

n
b1 + · · · + wd

n
bd where wi ≡ ui mod n and wi ∈ {0, . . . , n − 1}.

There are precisely nd points of the latter form. Since, by (2), there are more than
nd points in 1

2 C ∩ 1
n L , the Dirichlet pigeon hole principle implies that there are two

distinct points, say

u1

n
b1 + · · · + ud

n
bd ,

v1

n
b1 + · · · + vd

n
bd ∈ 1

2
C ∩ 1

n
L ,

for which the associated points coincide. Then ui ≡ vi mod n, or n|(ui − vi ) for
i = 1, . . . , d, and we obtain

o �= u1 − v1

n︸ ︷︷ ︸
∈Z

b1 + · · · + ud − vd

n︸ ︷︷ ︸
∈Z

bd ∈
(1

2
C − 1

2
C
)
∩ L = C ∩ L .

This concludes the first proof of the fundamental theorem. ��

Proof (of Siegel with Fourier series). It is sufficient to show the following proposi-
tion:

(3) Let C ∩ L = {o}. Then V (C) ≤ 2dd(L).

For the proof of (3) we assume that C ∩ L = {o} and first show the following:

(4) The convex bodies 1
2 C + l, l ∈ L , are pairwise disjoint.

If (4) did not hold, then 1
2 x + l = 1

2 y + m for suitable x, y ∈ C and l,m ∈ L ,
l �= m. Hence o �= l − m = 1

2 y − 1
2 x ∈ ( 1

2 C − 1
2 C) ∩ L = C ∩ L . This contradicts

the assumption in (3) and thus concludes the proof of (4).
Let 1 be the characteristic function of 1

2 C . Clearly, the function ψ : E
d → R

defined by:

(5) ψ(x) =
∑

l∈L

1(x + l) is L-periodic.

Because of (4), we have ψ(x) = 0 or 1 for each x ∈ E
d and thus

(6) ψ2 = ψ.
To ψ corresponds the Fourier series

∑

m∈L∗
c(m)e2π i m·x ,

where, for the Fourier coefficients c(m), we have the following representations:
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(7) c(m) = 1

d(L)

∫

F

ψ(x)e−2π i m·x dx = 1

d(L)

∫

F

∑

l∈L

1(x + l)e−2π i m·x dx

= 1

d(L)

∑

l∈L

∫

F

1(x + l)e−2π i m·x dx

= 1

d(L)

∑

l∈L

∫

F+l

1(y)e−2π i m·(y−l)dy = 1

d(L)

∫

Ed

1(y)e−2π i m·ydy,

by (5). Here i = √−1 and F is a fundamental parallelotope of L . Note that the sums
are all finite and thus integration and summation may be interchanged. A similar
calculation shows that:

(8)
∫

F

ψ(x)2dx =
∫

F

ψ(x) dx =
∫

F

(∑

l∈L

1(x + l)
)

dx

=
∑

l∈L

∫

F

1(x + l) dx =
∑

l∈L

∫

F+l

1(y) dy =
∫

Ed

1(y) dy

= V
(1

2
C
)
,

where we have used (6), (5) and the definition of 1. Finally, (8), Parseval’s theorem
for Fourier series, (7) and the definition of 1 show that:

V
(1

2
C
)
=

∫

F

ψ(x)2dx = d(L)
∑

m∈L∗
|c(m)|2

= d(L)|c(o)|2 + d(L)
∑

m∈L∗\{o}
|c(m)|2

= d(L)
1

d(L)2
V
(1

2
C
)2 + d(L)

∑

m∈L∗\{o}
|c(m)|2,

i.e.

2dd(L) = V (C)+ 4dd(L)2

V (C)

∑

m∈L∗\{o}
|c(m)|2 ≥ V (C). ��

Proof (by means of lattice packing). The reader who is not familiar with lattice
packing of convex bodies and the notion of density may wish to consult Sect. 30.1
first.

As before, it is sufficient to show (3). Statement (4) says that { 1
2 C + l : l ∈ L} is

a lattice packing. The density of a lattice packing is at most 1. Hence

V ( 1
2 C)

d(L)
≤ 1, or V (C) ≤ 2dd(L). ��

The Background of the Fundamental Theorem

The principle underlying the fundamental theorem and some of its refinements or
extensions, such as Blichfeldt’s [130] theorem or more modern generalizations of
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it, is Dirichlet’s pigeon hole principle or, put analytically, the following simple
observation: If, on a measure space with total measure 1, the integral of a function is
greater than 1, then the function assumes values greater than 1.

Effective Methods for Finding Lattice Points

The fundamental theorem guarantees the existence of lattice points different from o
in C , but it does not tell us how to find such a point. In the context of algorithmic
geometry of numbers, a polynomial time algorithm has been specified which finds
such points, supposing that the volume of C is substantially larger than 2dd(L).
See the remarks on the shortest lattice vector problem in Sect. 28.2 and, for more
information, Grötschel, Lovász and Schrijver [409].

22.2 Diophantine Approximation and Discriminants of Polynomials

The first fundamental theorem has numerous classical applications. These include
Minkowski’s applications to positive definite quadratic forms, Diophantine approxi-
mation, his linear form theorem and discriminants of polynomials.

In the following, we present a selection of applications due to Minkowski and a
result of Lagrange on the representation of integers as sums of squares. For further
applications of the fundamental theorem. See, e.g. Gruber and Lekkerkerker [447]
and Schmidt [896].

Homogeneous Minimum of a Positive Definite Quadratic Form

Using a geometric argument on lattices and balls, Minkowski [732] was able to im-
prove a theorem of Hermite [495] on positive definite quadratic forms. At the time
when he published his result, Minkowski did not yet have the fundamental theorem
in its general form, but the argument used led him to the fundamental theorem shortly
afterwards. Minkowski’s result is as follows:

Corollary 22.1. Let

q(x) =
d∑

i,k=1

aik xi xk for x = (x1, . . . , xd) ∈ E
d

be a positive definite quadratic form (aik = aki ). Then the following inequality has
a non-trivial integer solution u, i.e. u ∈ Z

d \ {o}:

q(u) ≤ 4
(det(aik)

V (Bd)2

) 1
d
.

Proof. To see this estimate, note that for � > 0 the set E� = {x : q(x) ≤ �} is a
solid ellipsoid in E

d with centre o and volume
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V (E�) = �
d
2 V (Bd)

det(aik)
1
2

.

If

� = 4
(det(aik)

V (Bd)2

) 1
d
,

then V (E�) = 2d . Now apply the fundamental theorem to the convex body E� and
the lattice Z

d . ��
For smaller upper estimates, but in the terminology of density of packings

of balls, see Sect. 29.2 and the articles of Blichfeldt, Sidel’nikov, Levenstein and
Kabat’janskiı̆ cited there. The best known upper bound is that of Levenstein and
Kabat’janskiı̆.

Minkowski’s Linear Form Theorem

This result can be formulated as follows, see Minkowski [735]:

Corollary 22.2. Let l1, . . . , ld be d real linear forms in d real variables, such that the
absolute value δ of their determinant is positive. Assume further that τ1, . . . , τd > 0
are such that τ1 · · · τd ≥ δ. Then the following system of inequalities has a non-trivial
integer solution

|l1(x)| ≤ τ1, . . . , |ld(x)| ≤ τd .
Proof. Apply the fundamental theorem to the parallelotope P and the lattice Z

d ,
where

P = {
x : |l1(x)| ≤ τ1, . . . , |ld(x)| ≤ τd

}
, V (P) = 2dτ1 · · · τd

δ
≥ 2d . ��

The estimate in the linear form theorem cannot be improved for all systems of linear
forms.

Simultaneous Diophantine Approximation

As a consequence of the linear form theorem, we obtain a classical approximation
result due to Kronecker [618]. He proved it by means of Dirichlet’s pigeon hole
principle. Here, we follow Minkowski [735] who used his linear form theorem.

Corollary 22.3. Let ϑ1, . . . , ϑd ∈ R. Then the following system of inequalities has
infinitely many integer solutions (u0, u1, . . . , ud), where u0 �= 0:

∣∣
∣ϑ1 − u1

u0

∣∣
∣ ≤ 1

u
1+ 1

d
0

, . . . ,
∣∣
∣ϑd − ud

u0

∣∣
∣ ≤ 1

u
1+ 1

d
0

.
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Proof. If ϑ1, . . . , ϑd all are rational, choose (u0, . . . , ud) ∈ Z
d+1, u0 �= 0, such that

ϑ1 = u1

u0
, . . . , ϑd = ud

u0
.

Then the corollary holds trivially by considering all integer multiples of the integer
vector (u0, u1, . . . , ud). Assume, now, that, among ϑ1, . . . , ϑd , not all are rational,
say ϑ1 is irrational. Let 0 < ε1 < 1. Then the linear form theorem, applied in E

d+1,
shows that the following system of d+1 inequalities has a non-trivial integer solution
(u0, u1, . . . , ud):

|u0ϑ1 − u1| ≤ ε1, . . . , |u0ϑd − ud | ≤ ε1, |u0| ≤ 1

εd
1

.

Here u0 �= 0 since otherwise u1 = · · · = ud = 0 (note that 0 < ε1 < 1). This gives
a first solution. Clearly, 0 < |u0ϑ1 − u1|. Next, let 0 < ε2 < ε1 such that

ε2 < |u0ϑ1 − u1|
and argue as before. This, again, gives a solution, different from the first one. Con-
tinuing in this way, one gets an infinite set of solutions as required. ��

Approximation of Linear Forms

Similar arguments lead to the following counterpart of Corollary 22.3, proved earlier
by Dirichlet [271]:

Corollary 22.4. Let ϑ1, . . . , ϑd ∈ R. Then the following inequality has infinitely
many integer solutions (u0, u1, . . . , ud), where u1, . . . , ud are not all 0:

|u1ϑ1 + · · · + udϑd − u0| ≤ 1

max{|u1|, . . . , |ud |}d .

The Four Squares Theorem of Lagrange

Slightly more complicated is the proof of the following result of Lagrange, known
already to Diophantus and conjectured by Bachet.

Corollary 22.5. Let u be a positive integer. Then there are integers u1, u2, u3, u4
such that

u = u2
1 + · · · + u2

4.

Proof (following Davenport [245]). For the proof, we may assume that u is square
free and u > 1. Thus u = p1 · · · pn , where the pi are different primes. First, the
following will be shown:

(1) For each pi there are integers ai , bi such that a2
i + b2

i + 1 ≡ 0 mod pi .
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If pi = 2 put ai = 1, bi = 0. If pi is odd, each of the sets {a2 : 0 ≤ a < pi/2}
and {−1 − b2 : 0 ≤ b < pi/2} consists of 1

2 (pi + 1) integers which are pairwise
incongruent modulo pi . Since there are only pi residue classes modulo pi , these sets
must contain elements a2

i and −1 − b2
i , say, which are congruent modulo pi . Then

a2
i + b2

i + 1 ≡ 0 mod pi , concluding the proof of (1).
As a consequence of (1), we shall prove that:

(2) There are integers a, b such that a2 + b2 + 1 ≡ 0 mod u.

For each i , choose an integer Pi such that Pi pi = u. Since Pi and pi are relatively
prime, there is an integer qi such that Pi qi ≡ 1 mod pi , see Proposition 21.1. Now let

a = P1q1a1 + · · · + Pnqnan, b = P1q1b1 + · · · + Pnqnbn .

Then

a2 + b2 + 1 ≡ P2
1 q2

1 a2
1 + · · · + P2

n q2
n a2

n + P2
1 q2

1 b2
1 + · · · + P2

n q2
n b2

n + 1

≡ P2
i q2

i (a
2
i + b2

i )+ 1 ≡ a2
i + b2

i + 1 ≡ 0 mod pi ,

by (1) and our choice of Pi , qi . Thus pi |a2 + b2 + 1 for each i . This implies that
u = p1 · · · pn|a2 + b2 + 1, concluding the proof of (2).

Next consider the lattice L in E
4 with basis

(1, 0, a,−b), (0, 1, b, a), (0, 0, u, 0), (0, 0, 0, u).

Clearly d(L) = u2. Let

� = 2
5
4 u

1
2

π
1
2

.

Then

V (�B4) = �4V (B4) = 25u2

π2

π
4
2

�(1+ 4
2 )
= 24u2,

where B4 is the solid Euclidean unit ball in E
4. An application of the fundamental

theorem, with C = �B4 and the lattice L just defined, yields a point �= o of L in
�B4. Thus, there are integers v1, . . . , v4, not all 0, such that

0 < v2
1 + v2

2 + (av1 + bv2 + uv3)
2 + (−bv1 + av2 + uv4)

2 ≤ �2 < 2u.

Since
v2

1 + v2
2 + (av1 + bv2 + uv3)

2 + (−bv1 + av2 + uv4)
2

≡ v2
1 + v2

2 + (av1 + bv2)
2 + (−bv1 + av2)

2

≡ v2
1(a

2 + b2 + 1)+ v2
2(a

2 + b2 + 1) ≡ 0 mod u,

by (2), we finally obtain the representation of u we were looking for:

u = v2
1 + v2

2 + (av1 + bv2 + uv3)
2 + (−bv1 + av2 + uv4)

2. ��
Remark. There are versions of Lagrange’s theorem for algebraic integers in certain
number fields. See, e.g. the article of Deutsch [264] and the references there.

Remark. Note that all the earlier applications of the fundamental theorem guarantee
the existence of solutions, but do not help us to determine such efficiently. We return
to this question in Sect. 28.2.
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Lower Estimate of the Discriminant of an Irreducible Polynomial

We will present a special case of a result of Minkowski [743] on the discriminant of
irreducible polynomials. See also Siegel [937].

A polynomial p(t) = a0+a1t+· · ·+ad−1td−1+ td with rational coefficients ai

is irreducible over Q if it cannot be represented as the product of two non-constant
polynomials with rational coefficients. This implies that a root of p is not a root of a
polynomial of lower degree which is not identically zero and has rational coefficients.
Also, every root of p is simple, for otherwise it would be a root of p′ which is of
lower degree and does not vanish identically. For irreducibility criteria based on the
notion of Newton polytopes, see Sect. 19.5.

If t1, . . . , td denote the roots of p, then the discriminant D of p is defined by:

D =
∏

1≤i< j≤d

(ti − t j )
2.

By Vandermonde’s theorem on determinants,

D = det

⎛

⎜⎜⎜⎜⎜
⎝

1 t1 . . . td−1
1

1 t2 . . . td−1
2

1 td . . . td−1
d

⎞

⎟⎟⎟⎟⎟
⎠

2

.

The theorem on elementary symmetric functions implies the following: a symmetric
polynomial q in t1, . . . , td , with integer coefficients, can be expressed as a poly-
nomial in a0, . . . , ad−1, with integer coefficients. If, in particular, a0, . . . , ad−1 are
integers, then q(t1, . . . , td) is an integer. A lattice is admissible for a set if it contains
no interior point of the set, except, possibly, the origin.

Corollary 22.6. Let p(t) = a0 + a1t + · · · + ad−1td−1 + td be an irreducible
polynomial with integer coefficients a0, . . . , ad−1. If all roots of p are real, then
the discriminant D of p satisfies

D ≥
(dd

d !
)2
.
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Proof. Consider the linear forms

l1(u) = u1 + t1u2 + · · · + td−1
1 ud

l2(u) = u1 + t2u2 + · · · + td−1
2 ud

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ld(u) = u1 + tdu2 + · · · + td−1

d ud ,

where t1, . . . , td are the roots of p. For u ∈ Z
d \ {o}, the linear forms li (u),

i = 1, . . . , d, all are different from 0, for, if li (u) = 0, then ti is a root of the
polynomial li (u) of degree at most d − 1 in ti with integer coefficients. This contra-
dicts the irreducibility of p. Therefore l1(u) · · · ld(u) �= 0 and, since this product is
a symmetric polynomial in t1, . . . , td with integer coefficients, it must be an integer.
Thus

|l1(u) · · · ld(u)| ≥ 1 for u ∈ Z
d \ {o}.

The lattice L = {l = (l1(u), . . . , ld(u)) : u ∈ Z
d} is thus admissible for the star set

{x : |x1 · · · xd | ≤ 1}.
By the inequality of the geometric and arithmetic mean, this star set contains the
o-symmetric cross-polytope

O = {
x : 1

d

(|x1| + · · · + |xd |
) ≤ 1

}
,

of volume 2ddd/d !. Thus L is also admissible for O . The fundamental theorem then
shows that d(L) ≥ dd/d !. Noting that D = d(L)2, the proof is complete. ��

23 Successive Minima

Successive minima of star bodies or convex bodies with respect to lattices were first
defined and investigated by Minkowski in the context of the geometry of numbers.
Minkowski put them to use in algebraic number theory. A hundred years later, suc-
cessive minima still play a role in the geometry of numbers and in algebraic and
transcendental number theory. See, e.g. Bertrand [102], Chen [204] and Matveev
[697], but they are also important in Diophantine Approximation, see, e.g. Schmidt
[896], and in computational geometry, compare Lagarias, Lenstra and Schnorr [626],
Schnorr [913] and Blömer [134]. There is a surprising link to Nevanlinna’s value dis-
tribution theory, a branch of complex analysis, see Wong [1028] and Hyuga [534].
Relations to lattice polytopes and roots of Ehrhart polynomials were studied by
Stanley, Henk, Schürmann and Wills, see the references in Sect. 19.1 and the sur-
vey of Henk and Wills [493].

In this section, we first present Minkowski’s theorem on successive minima and
prove a result of Mahler relating successive minima of a convex body with respect
to a lattice and successive minima of the polar body with respect to the polar lat-
tice. Then Jarnı́k’s transference theorem is proved. It connects lattice packing and
lattice covering of a given convex body. Finally, we give a result of Perron and
Khintchine on Diophantine approximation.
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23.1 Successive Minima and Minkowski’s Second Fundamental Theorem

There are many extensions and refinements of the first fundamental theorem, inclu-
ding Blichfeldt’s [130] theorem and its relatives. See, e.g. Gruber and Lekkerkerker
[447] and Lagarias [625]. A particularly refined result is the theorem on successive
minima or second fundamental theorem of Minkowski [735].

Henk, Schürmann and Wills [492] discovered an interesting connection between
the successive minima of an o-symmetric lattice polytope with respect to the integer
lattice Z

d and the roots of the corresponding Ehrhart polynomial.
This section contains Minkowski’s proof of the second fundamental theorem,

streamlined by Henk, and Mahler’s theorem relating successive minima and polarity.
In addition, we state the result of Henk, Schürmann and Wills.

Successive Minima

Let C be an o-symmetric convex body and L a lattice in E
d . The successive minima

λi = λi (C, L), i = 1, . . . , d, of C with respect to L are defined by:

λi = min
{
λ > 0 : λC contains i linearly independent points of L

}
.

Clearly,

(1) 0 < λ1 ≤ λ2 ≤ · · · ≤ λd < +∞.

The Second Fundamental Theorem

It is easy to see that Minkowski’s first fundamental theorem is equivalent to the
inequality

V (λ1C) ≤ 2dd(L) or λd
1 V (C) ≤ 2dd(L).

Thus the following second fundamental theorem or theorem on successive minima of
Minkowski is a refinement of the first fundamental theorem.

Theorem 23.1. Let C be an o-symmetric convex body and L a lattice in E
d . Let

λi = λi (C, L), i = 1, . . . , d, be the successive minima of C with respect to L. Then

2d

d ! d(L) ≤ λ1 · · · λd V (C) ≤ 2dd(L).

The difficult part of the proof is to show the right-hand inequality. For a long
time the original proof of Minkowski [745] was considered to be rather obscure.
Alternative proofs were given by Bambah, Woods and Zassenhaus [63] and others.
It was a great surprise when a careful scrutiny of Minkowski’s proof by Henk [491]
revealed that, after eliminating the proof of a Fubini-type result from Minkowski’s
proof and streamlining the rest, the proof was perfectly correct and elegant. It is
Henk’s version of Minkowski’s proof which is reproduced below.
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Proof. It is sufficient to consider the case where L = Z
d .

Right-hand inequality: Let

Ci = λi

2
C for i = 1, . . . , d.

It follows from the definition of successive minima that there are d linearly indepen-
dent points l1, . . . , ld ∈ Z

d , such that

li ∈ λi C for i = 1, . . . , d.

After assigning to {l1, . . . , ld} a basis of Z
d by Theorem 21.3 (i) and then transform-

ing this basis into the standard basis of Z
d by an integer unimodular d × d matrix

according to Theorem 21.1, we may assume that

li ∈ Ei =
{

x = (x1, . . . , xi , 0, . . . , 0) ∈ E
d} for i = 1, . . . , d.

Next, let

Ldk =
{
l = (u1, . . . , ud) ∈ Z

d : |ui | ≤ k
}
, Lik = Ei ∩ Ldk for k = 1, 2, . . .

Since C is bounded, there is a constant α > 0, which depends only on C , such that

(2) V (Cd + Ldk) ≤ (2k + 1+ α)d .
By the definition of λ1 we have, for C1 = λ1

2 C , (int C1 + l) ∩ (int C1 + m) = ∅ for
l,m ∈ Z

d , l �= m. Thus

(3) V (C1 + Ldk) = (2k + 1)d V (C1) = (2k + 1)d
λd

1

2d
V (C).

The main step of the proof is to show the following estimate:

(4) V (Ci+1 + Ldk) ≥
(λi+1

λi

)d−i
V (Ci + Ldk) for i = 1, . . . , d − 1.

If λi+1 = λi , the inequality (4) is trivial. We may thus assume that λi+1 > λi . Then
the following statement holds:

(5) (int Ci+1 + l) ∩ (int Ci+1 + m) = ∅
for l = (u1, . . . , ud), m = (v1, . . . , vd) ∈ Z

d ,

where (ui+1, . . . , ud) �= (vi+1, . . . , vd).

Otherwise the i + 1 linearly independent lattice points l1, . . . , li , l − m would be
contained in the interior of λi+1C = Ci+1 − Ci+1, in contradiction to the definition
of λi+1. Proposition (5) implies that

(6)
V (Ci + Ldk) = (2k + 1)d−i V (Ci + Lik),

V (Ci+1 + Ldk) = (2k + 1)d−i V (Ci+1 + Lik).

Let
E⊥i = {

x = (0, . . . , 0, xi+1, . . . , xd) ∈ E
d}



378 Geometry of Numbers

and define linear maps f, g : E
d → E

d by:

f (x) =
(λi+1

λi
x1, . . . ,

λi+1

λi
xi , xi+1, . . . , xd

)
for x ∈ E

d ,

g(x) =
(

x1, . . . , xi ,
λi+1

λi
xi+1, . . . ,

λi+1

λi
xd

)
for x ∈ E

d .

For every x ∈ E⊥i , there is a point y ∈ Ei with Ci ∩(x+Ei ) ⊆ f (Ci )∩(x+Ei )+ y,
and so

V (Ci + Lik) =
∫

E⊥i

v
(
(Ci + Lik) ∩ (x + Ei )

)
dx

≤
∫

E⊥i

v
(
( f (Ci )+ Lik) ∩ (x + Ei )

)
dx = V

(
f (Ci )+ Lik

)
,

by Fubini’s theorem, where v(·) stands for i-dimensional volume. Since g
(

f (Ci )
)+

Lik = Ci+1 + Lik , we conclude that

V (Ci+1 + Lik) = V
(
g
(

f (Ci )
)+ Lik

)

=
(λi+1

λi

)d−i
V
(

f (Ci )+ Lik
) ≥

(λi+1

λi

)d−i
V (Ci + Lik).

Now, multiply both sides of this inequality by (2k + 1)d−i and use (6) to get the
estimate (4).

Finally, (3), (4) and (2) together imply the following:

(2k + 1)d
(λ1

2

)d
V (C)

= V (C1 + Ldk)

≤
(λ1

λ2

)d−1
V (C2 + Ldk) ≤ · · · ≤

(λ1

λ2

)d−1
. . .

(λd−1

λd

)1
V (Cd + Ldk)

≤ λ
d
1(2k + 1+ α)d
λ1 · · · λd

for k = 1, 2, . . .

This yields the right-hand inequality.
Left-hand inequality: Again, consider d linearly independent points l1, . . . , ld ∈

Z
d such that

li ∈ λi C or
li
λi
∈ C for i = 1, . . . , d.

Since C is o-symmetric and convex, it contains the cross-polytope

O = conv
{
± l1
λ1
, . . . ,± ld

λd

}
.
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Thus

V (C) ≥ V (O) = 2d

d !
∣
∣∣ det

( l1
λ1
, . . . ,

ld
λd

)∣∣∣

= 2d | det(l1, . . . , ld)|
d ! λ1 · · · λd

≥ 2d

d ! λ1 · · · λd
. ��

Polar Lattices and Polar Bodies

Given a convex body C in E
d with o ∈ int C , its polar body C∗ is defined by:

C∗ = {y : x · y ≤ 1 for all x ∈ C},

compare Sect. 9.1. The following theorem is due to Mahler [679]:

Theorem 23.2. Let C be an o-symmetric convex body and L a lattice in E
d and let

λi = λi (C, L), λ∗j = λ j (C∗, L∗) for i, j = 1, . . . , d. Then

(7) 1 ≤ λd−k+1λ
∗
k ≤

4d

V (C)V (C∗)
≤ (d !)2 f or k = 1, . . . , d.

Proof. We need the following inequality of Mahler, see Theorem 9.6:

(8) V (C)V (C∗) ≥ 4d

(d !)2 .

The definition of polar lattice implies that

(9) d(L) d(L∗) = 1.

For the proof of the left-hand inequality, choose linearly independent points
l1, . . . , ld ∈ L and m1, . . . ,md ∈ L∗ such that

li ∈ λi bd C, m j ∈ λ∗j bd C∗ for i, j = 1, . . . , d.

Then ± 1
λi

li ∈ bd C and ± 1
λ∗j

m j ∈ bd C∗ and the definition of C∗ implies that

± li
λi
· m j

λ∗j
≤ 1 or λiλ

∗
j ≥ ±li · m j .

Taking into account the definition of L∗, it follows that

(10) λiλ
∗
j ≥ 1 or li · m j = 0 for i, j = 1, . . . , d.

Let k ∈ {1, . . . , d}. Since m1, . . . ,mk are linearly independent, the set {x : x ·m1 =
· · · = x · mk = 0} is a subspace of E

d of dimension d − k. Thus, at least one of the
d−k+1 linearly independent points l1, . . . , ld−k+1 is not contained in this subspace.
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Hence li · m j �= 0 for suitable i, j , where 1 ≤ i ≤ d − k + 1, and 1 ≤ j ≤ k. Then,
Propositions (1) and (10) yield the left inequality:

λd−k+1λ
∗
k ≥ λiλ

∗
j ≥ 1.

We now prove the right-hand inequality. The second fundamental theorem shows
that

λ1 · · · λd V (C) ≤ 2dd(L), λ∗1 · · · λ∗d V (C∗) ≤ 2dd(L∗).
Thus

(λ1λ
∗
d) · · · (λd−k+1λ

∗
k) · · · (λdλ

∗
1)V (C)V (C

∗) ≤ 4dd(L)d(L∗).
Combining this and the inequalities

1 ≤ λ1λ
∗
d , . . . , λd−k+1λ

∗
k , . . . , λdλ

∗
1,

which follow from the left inequality in (7), Propositions (8) and (9), we obtain the
right inequality. ��
Remark. The right inequality has been refined substantially. The case where C = Bd

has attracted particular attention. For a discussion and references, see Gruber [430].

A Relation Between Successive Minima and the Roots of the Ehrhart
Polynomial

Given a proper lattice polytope P ∈ PZd , Ehrhart’s polynomiality theorem for the
lattice point enumerator L shows that

L(n P) = #(n P ∩ Z
d) = pP (n), n ∈ N,

where pP is a polynomial of degree d, called the Ehrhart polynomial of P . See
Sect. 19.1. The result of Henk, Schürmann and Wills is as follows.

Theorem 23.3. Let P ∈ PZd be a proper, o-symmetric lattice polytope in E
d . Let

λi = λi (P,Zd) be its successive minima with respect to the integer lattice Z
d and

let −γi = −γi (P,Zd) be the roots of its Ehrhart polynomial. Then

γ1 + · · · + γd ≤ 1

2
(λ1 + · · · + λd).

Equality is attained for the cube P = {x : −1 ≤ xi ≤ 1}.

23.2 Jarnı́k’s Transference Theorem and a Theorem of Perron and Khintchine

Let C be an o-symmetric convex body and L a lattice in E
d . The family {C + l : l ∈

L} of translates of C by the vectors of L is called a set lattice. If any two distinct
translates have disjoint interiors, the set lattice is a lattice packing of C with packing
lattice L . If the translates cover E

d , the set lattice is a lattice covering of C with
covering lattice L .
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Given C and L , the problem arises to determine the numbers

�(C, L) = max
{
� > 0 : {�C + l : l ∈ L} is a lattice packing

}
,

µ(C, L) = min
{
µ > 0 : {µC + l : l ∈ L} is a lattice covering

}
,

the packing radius and the covering radius of C with respect to L . From a more
arithmetic viewpoint, 2�(C, L) = λ1(C, L) andµ(C, L) are called the homogeneous
and the inhomogeneous minimum of C with respect to L .

There are several inequalities between the quantities �(C, L), µ(C, L), λ1(C, L),
. . . , λd(C, L), respectively, called transference theorems since they transfer informa-
tion from one situation to another situation, for example from packing to covering
and vice versa. A first result of this nature is the following transference theorem
of Jarnı́k [543]. For a different transference theorem due to Kneser [601], see
Theorem 26.2.

A basic problem in Diophantine approximation is the simultaneous approxima-
tion of real numbers by rationals. Equally important is the related problem of approx-
imation of linear forms. Compare Corollaries 22.3 and 22.4 to get an idea of such
results.

In the following we present Jarnı́k’s transference theorem and a deep result of
Perron and Khintchine, which relates the approximation of d real numbers by ratio-
nals with common denominator and the approximation of the linear form with these
reals as coefficients.

Jarnı́k’s Transference Theorem

Our aim is to show the following estimates:

Theorem 23.4. Let C be an o-symmetric convex body and L a lattice in E
d . Further,

let λi = λi (C, L) for i = 1, . . . , d and µ = µ(C, L). Then

1

2
λd ≤ µ ≤ 1

2
(λ1 + · · · + λd).

Proof. Left-hand inequality: Let {b1, . . . , bd} be a basis of L . The definition of µ
shows that there are vectors li ∈ L such that 1

2 bi − li ∈ µC or bi − 2li ∈ 2µC
for i = 1, . . . , d. The vectors b1 − 2l1, . . . , bd − 2ld are linearly independent. (For
otherwise, there is a linear combination of these vectors with integer coefficients not
all 0 which is equal to o. Hence there are integers u1, . . . , ud , with greatest common
divisor 1, such that we have the equality

∑
ui bi = 2

∑
ui li . Since b1, . . . , bd form

a basis, the point
∑

ui bi is primitive, and this equality cannot hold.) The definition
of λd then shows that λd ≤ 2µ, concluding the proof of the left-hand inequality.

Right-hand inequality: It is sufficient to show that

(1)
{1

2
(λ1 + · · · + λd)C + l : l ∈ L

}
is a lattice covering.
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For this, it is sufficient to prove the following implication:

(2) Let x ∈ E
d . Then x ∈ 1

2
(λ1 + · · · + λd)C + l for suitable l ∈ L .

To see this, choose d linearly independent points l1, . . . , ld ∈ L such that li ∈ λi C .
Represent x in the form x = x1l1 + · · · + xdld with xi ∈ R. Choose u1, . . . , ud ∈ Z

such that |xi − ui | ≤ 1
2 and let l = u1l1 + · · · + udld . Then

x − l = (x1 − u1)l1 + · · · + (xd − ud)ld ∈ λ1

2
C + · · · + λd

2
C

= 1

2
(λ1 + · · · + λd)C.

The proof of (2), and thus of (1), is complete, concluding the proof of the right-hand
inequality. ��

A Result of Perron and Khintchine on Diophantine Approximation

We first state a result due to Mahler [1939].

Lemma 23.1. Let

P = {
x : |ai1x1 + · · · + aid xd | ≤ 1, i = 1, . . . , d

}
,

Q = {
x : |bi1x1 + · · · + bid xd | ≤ 1, i = 1, . . . , d

}

be two parallelotopes in E
d such that A∗ = (aik)

−T = (bik) = B. Let λP =
λ1(P,Zd) and λQ = λ1(Q,Zd). Then

λP ≤ (
d λQ | det A|) 1

d−1 ,

λQ ≤ (
d λP | det B|) 1

d−1 .

Proof. To see that

P∗ = {
y : |b11 y1 + · · · + b1d yd | + · · · + |bd1 y1 + · · · + bdd yd | ≤ 1

}
,

note that

{x : |xi | ≤ 1}∗ = {y : x · y ≤ 1 for all x with |xi | ≤ 1} = {y : |y1| + · · · + |yd | ≤ 1}
and, for an o-symmetric convex body C ,

(A−1C)∗ = {z : z · A−1x ≤ for all x ∈ C}
= {AT A−T z : zT A−1x = (A−T z)T x = A−T z · x ≤ 1 for all x ∈ C}
= {AT y : y · x ≤ 1 for all x ∈ C} = AT C∗.

Thus,

P∗ = (
A−1{x : |xi | ≤ 1})∗ = AT {x : |xi | ≤ 1}∗

= B−1{y : |y1| + · · · + |yd | ≤ 1}
= {z : |b11z1 + · · · + b1d zd | + · · · + |bd1z1 + · · · + bdd zd |},
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as required. This representation of P∗ immediately yields the inclusions

1

d
Q ⊆ P∗ ⊆ Q

which, in turn, show that

(3) λQ ≤ λ1(P
∗,Zd) ≤ d λQ .

The theorem on successive minima implies the following:

λd−1
P ≤ λ1(P,Z

d) · · · λd−1(P,Z
d) ≤ 2d

λd(P,Zd)V (P)
= | det A|
λd(P,Zd)

.

This, together with Theorem 23.2 and Proposition (3), shows that

λd−1
P ≤ λ1(P

∗,Zd)| det A| ≤ d λQ | det A|.
This yields the first inequality. The second follows by symmetry. ��

The following result goes back to Perron [793] and Khintchine [581]. It shows
that the results on simultaneous Diophantine approximation and on approximation
of linear forms in Sect. 22.2 are closely related.

Theorem 23.5. Let ϑ1, . . . , ϑd ∈ R. Then the following propositions are equivalent:

(i) There is a constant α > 0 such that the following system of inequalities has no
integer solution (u0, . . . , ud) where u0 �= 0:

∣∣∣ϑ1 − u1

u0

∣∣∣ ≤ α

u
1+ 1

d
0

, . . . ,
∣∣∣ϑd − ud

u0

∣∣∣ ≤ α

u
1+ 1

d
0

.

(ii) There is a constant β > 0 such that the following inequality has no integer
solution (u0, . . . , ud) where (u1, . . . , ud) �= o:

|u1ϑ1 + · · · + udϑd − u0| ≤ β

max{|u1|, . . . , |ud |}d .

The following interpretation may help in understanding the meaning of this result:
ϑ1, . . . , ϑd cannot be simultaneously approximated well by rationals with the same
denominator if and only if the linear form u1ϑ1+· · ·+udϑd , for integers u1, . . . , ud

not all 0, cannot be approximated well by integers.

Proof. (i)⇒(ii) If (i) holds, then, for each τ > αd , the following system of inequali-
ties has only the trivial integer solution:

|u0ϑ1 − u1| ≤ α

τ
1
d

, . . . , |u0ϑd − ud | ≤ α

τ
1
d

, |u0| ≤ τ.
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(If there were a non-trivial integer solution, then u0 �= 0, and we obtain a contradic-
tion to (i).) Thus the parallelotope

P =
{

x ∈ E
d+1 :

∣∣
∣
τ

1
d

α
(x1 − ϑ1x0)

∣∣
∣ ≤ 1, . . . ,

∣∣
∣
τ

1
d

α
(xd − ϑd x0)

∣∣
∣ ≤ 1,

∣∣
∣
1

τ
x0

∣∣
∣ ≤ 1

}

in E
d+1 contains only the point o of Z

d+1, and therefore,

(4) λP = λ1(P,Z
d+1) > 1.

Let A be the coefficient matrix of the linear forms which determine P . Then

A−T =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

1

τ
0 . . . 0

−τ
1
d ϑ1

α

τ
1
d

α
. . . 0

. . . . . . . . . . . . . . . . . . .

−τ
1
d ϑd

α
0 . . .

τ
1
d

α

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

−T

=

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

τ τϑ1 . . . τϑd

0
α

τ
1
d

. . . 0

. . . . . . . . . . . . . .

0 0 . . .
α

τ
1
d

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Consider the parallelotope

Q =
{

x ∈ E
d+1 :

∣∣∣
α

τ
1
d

x1

∣∣∣ ≤ 1, . . . ,
∣∣∣
α

τ
1
d

xd

∣∣∣ ≤ 1, τ |ϑ1x1 + · · · + ϑd xd − x0| ≤ 1
}

=
{

x ∈ E
d+1 : |x1| ≤ τ

1
d

α
, . . . , |xd | ≤ τ

1
d

α
, |ϑ1x1 + · · · + ϑd xd − x0| ≤ 1

τ

}
.

Note that A−T is the coefficient matrix of the linear forms which determine Q. Let
λQ = λ1(Q,Zd+1). An application of (4) and Lemma 23.1 then shows that

1 < λP ≤
(
(d + 1)λQ | det A|) 1

d , or λQ ≥ λd
P

(d + 1)| det A| >
αd

d + 1
.

The latter implies that
αd

d + 1
Q ∩ Z

d+1 = {o}
which, in turn, shows that the system of inequalities

|x1| ≤ α
d−1τ

1
d

d + 1
, . . . , |xd | ≤ α

d−1τ
1
d

d + 1
, |ϑ1x1 + · · · + ϑd xd − x0| ≤ αd

τ(d + 1)

has no non-trivial integer solution and thus, a fortiori, no integer solution (u0, . . . , ud)

where (u1, . . . , ud) �= o. Put σ = αd−1τ
1
d /(d + 1) and β = αd2

/(d + 1)d+1. Then
the system of inequalities

|x1| ≤ σ, . . . , |xd | ≤ σ, |ϑ1x1 + · · · + ϑd xd − x0| ≤ β

σ d

has no integer solution (u0, . . . , ud) where (u1, . . . , ud) �= o. This implies (ii).
(ii)⇒(i) This implication is shown similarly. ��
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24 The Minkowski–Hlawka Theorem

Given an o-symmetric convex body C , Minkowski’s fundamental theorem says that
any lattice L with sufficiently small determinant contains a point of C other than o.
A theorem of Hlawka [509] which verifies a conjecture of Minkowski that the latter
stated in slightly different forms at various places, for example in [733], yields the
following counterpart of this statement: There is a lattice, the determinant of which
is not too large, which contains no point of C other than o.

The Minkowski–Hlawka theorem has attracted interest ever since it was proved
by Hlawka in 1944. In the first decades, emphasis was on alternative proofs, refine-
ments and generalizations. We mention Siegel, Rogers, Macbeath, Cassels and
Schmidt. More recently, its relations to error correcting codes have been studied
by Sloane and Rush amongst others. A Minkowski–Hlawka theorem, in the adelic
setting, is due to Thunder [998].

In this section we present a basic version of the Minkowski–Hlawka theorem and
state a beautiful generalization of it, the mean value theorem of Siegel. Applications
to lattice packing will be given in Theorem 30.4.

For further pertinent results and numerous references, see [447].

24.1 The Minkowski–Hlawka Theorem

In the following we prove a classical version of the Minkowski–Hlawka theorem.

A Version of the Minkowski–Hlawka Theorem

Theorem 24.1. Let J be a Jordan measurable set in E
d with V (J ) < 1. Then there

is a lattice L in E
d with d(L) = 1 which contains no point of J , with the possible

exception of o.

We give two short and elegant proofs, one more discrete, the other more analytic.
The first proof is due to Rogers [845], the second is a version of a proof of Davenport
and Rogers [247] and Cassels [193].

Proof (by Rogers). Let p be a prime. For each point u ∈ Z
d with 0 ≤ u1, . . . ,

ud−1 < p and ud = 1, let L(p, u) be the lattice with basis

{(p, 0, . . . , 0), (0, p, . . . , 0), . . . , (0, 0, . . . , 0, p, 0), u}.

Then the following hold:

(1) For each v = (v1, . . . , vd) ∈ Z
d with vd �= 0,±p,±2p, . . . , there is a

unique lattice L(p, u) with v ∈ L(p, u).
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To show this, it is sufficient to show that there are unique integers u1, . . . , ud−1, with
0 ≤ u1, . . . , ud−1 < p, such that, for suitable integers k1, . . . , kd−1, k, we have

v1 = ku1 + k1 p
. . . . . . . . . . . . . . . . . . . . .
vd−1 = kud−1 + kd−1 p
vd = k

or

v1 ≡ ku1 mod p
. . . . . . . . . . . . . . . . . . .
vd−1 ≡ kud−1 mod p
vd = k.

Since vd = k is not an integer multiple of p, these congruences uniquely determine
integers u1, . . . , ud−1 with 0 ≤ u1, . . . , ud−1 < p, concluding the proof of (1). An
immediate consequence of (1) is as follows:

(2) The set Y = {
v ∈ Z

d : vd �= 0,±p,±2p, . . .
} ⊆ Z

d is the disjoint union
of the pd−1 sets L(p, u) ∩ Y : 0 ≤ u1, . . . , ud−1 < p.

Since J is Jordan measurable and thus bounded, and since V (J ) < 1, we can
choose a prime p which is so large that

(3) J ⊆ {
x : |xi | < p

1
d
}

and

(4)
1

pd−1
#
(

J ∩ 1

p
d−1

d

Y
)
≤ 1

pd−1
#
(

J ∩ 1

p
d−1

d

Z
d
)
< 1.

For the latter, note that (1/p(d−1)/d)Zd is a lattice with determinant 1/pd−1.
Propositions (2) and (4) imply that there is a lattice L(p, u) such that

#
(

J ∩ 1

p
d−1

d

(
L(p, u) ∩ Y

))
< 1,

or

(5) p
d−1

d J ∩ L(p, u) ∩ Y = ∅.
Since

L(p, u) ∩ {
x : |x1|, . . . , |xd−1| < p, xd = 0

} = {o},
(3) and (5) imply that

p
d−1

d J ∩ L(p, u) ⊆ {o} or J ∩ 1

p
d−1

d

L(p, u) ⊆ {o}.

Since (1/p(d−1)/d)L(p, u) is a lattice of determinant 1, the proof is complete. ��

Proof (by Davenport, Rogers and Cassels). By replacing J by its closure, if nec-
essary, we may assume that J is compact. For λ > 0 consider the hyperplanes
Hn = {x : xd = n/λd−1}, n = 0,±1, . . . , parallel to E

d−1 = H0. Let v(·) denote
(d − 1)-dimensional measure. Since J is Jordan measurable and compact, Fubini’s
theorem for Riemann integrals and the definition of 1-dimensional Riemann integrals
show that we may choose λ so large that the following statements hold:
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(6) (V (J ) ≈)
∑

n �= 0

v(Hn ∩ J )
1

λd−1
< 1,

(7) J ⊆ {x : |xi | < λ}.
Let L be the lattice λZd−1 in E

d−1. The determinant d(L) of L equals λd−1. Let
F = {

x ∈ E
d−1 : 0 ≤ xi < λ

}
. Noting that E

d−1 is the disjoint union of the sets
F + l, l ∈ L , that L − l = L for l ∈ L and that F contains precisely one point of
each translate L + x of L , we obtain the following formula:

(8)
∫

F

#
(
K ∩ (L + x)

)
dx =

∑

l∈L

∫

F

#
(
(F + l) ∩ K ∩ (L + x)

)
dx

=
∑

l∈L

∫

F

#
(
F ∩ (K − l) ∩ (L + x)

)
dx =

∑

l∈L

v
(
F ∩ (K − l)

)

=
∑

l∈L

v
(
(F + l) ∩ K

) = v(K ) for any measurable K ⊆ E
d−1.

For the proof of the next formula, dissect nF into nd−1 disjoint sets of the form
F + l, where l ∈ L and note that L + l = L for l ∈ L . This shows that

(9)
∫

F

#
(
K ∩ (L + nx)

)
dx = 1

nd−1

∫

nF

#
(
K ∩ (L + y)

)
dy

=
∫

F

#
(
K ∩ (L + x)

)
dx = v(K )

for any measurable K ⊆ E
d−1 and n = ±1, . . .

by (8).
Finally, for x ∈ F , let L(x) be the lattice

L + Z
(
x1, . . . , xd−1,

1

λd−1

)
in E

d .

Then d
(
L(x)

) = d(L)/λd−1 = 1. The definitions of Hn, L and L(x), together with
(7), show that H0 ∩ J ∩ L(x) ⊆ {o}. Then (9) and (6) yield the following, where #∗
counts points different from o:

∫

F

#∗
(
J ∩ L(x)

)
dx =

∫

F

∑

n �= 0

#
(
Hn ∩ J ∩ L(x)

)
dx

=
∑

n �= 0

∫

F

#
(
Jn ∩ (L + nx)

)
dx, where Jn = Hn ∩ J − (

0, . . . , 0,
n

λd−1

)
,

=
∑

n �= 0

v(Jn) =
∑

n �= 0

v(Hn ∩ J ) < λd−1 = v(F).

The integral of the non-negative function #∗
(
J ∩ L(x)

)
over the set F is thus less

than the measure of F . Therefore, there is a point x ∈ F such that #∗
(
J ∩ L(x)

)
< 1.

L(x) is then the desired lattice. ��
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Hlawka [514] described the idea of his proof of the Minkowski–Hlawka theorem
as follows:

This theorem requires one to pick out from the infinite set of lattices, lattices which
have a particular property. Since it is difficult to find such lattices by chance, it is
plausible to make the following comparison: consider the problem of catching fish
of given length from a pond. Making one haul, one may catch such a fish only by
chance. For this reason it makes sense to catch many fish, hoping that a fish of the
desired length is among them. In probability theory this is called a random sample.
For this sample one considers the mean value, in our case the mean value of the
length, to get information on the sample. This was the idea which I applied in 1942 ...

The two proofs given earlier – as all other known proofs, including Hlawka’s
original proof – are based on mean value arguments dealing with huge sets of lattices.
This fact prevents the effective construction of lattices as specified in the theorem. In
particular, this explains why, so far, there is no effective algorithm available to con-
struct lattice packings of o-symmetric convex bodies of density at least 2−d , although
such packings exist by the Minkowski–Hlawka theorem, compare Theorem 30.4. For
balls, the situation is slightly better but by no means satisfactory. There are construc-
tions of rather dense lattice packings of balls using codes. In many cases the codes
can be given effectively. Unfortunately the codes used by Rush [862] to reach the
Minkowski–Hlawka bound 2−d+o(d) are not of this type. See Sect. 29.3.

Refinements

There are several refinements of the Minkowski–Hlawka theorem, see Gruber and
Lekkerkerker [447]. The best known estimate is due to Schmidt [893]: there is an
absolute constant α > 0 such that, for each Borel set B in E

d with V (B) ≤
d log

√
2 − α, there is a lattice in E

d of determinant 1 which contains no point of
B except, possibly, o. At present, it is the belief of many people working in the
geometry of numbers that, in essence, the theorem of Minkowski–Hlawka cannot be
refined. In the past, this was not always so, but Edmund Hlawka [517] told the author
that he was always convinced that no essential refinement was possible.

24.2 Siegel’s Mean Value Theorem and the Variance Theorem
of Rogers–Schmidt

A natural question to ask in the geometry of numbers is the following: Given a prop-
erty which a lattice may or may not have, is the set of lattices which have this prop-
erty, large or small? Tools which sometimes help to give an answer are measure
and Baire categories. Measure has turned out to be a versatile tool which applies
to many such questions, ever since Siegel [936] defined and put to use a natural
measure on the space of all lattices of determinant 1. Later contributions are due to
Rogers, Macbeath and Schmidt. Because of great technical difficulties, in particular
in the work of Schmidt, the development seems to have reached a deadlock. Despite
this, we believe that many important measure results in the geometry of numbers
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still await discovery. Category on the space of lattices has rarely been used, a minor
exception is the article of Aliev and the author [23].

In this section we describe the natural measure on the space of lattices of
determinant 1 and state an elegant generalization of the Minkowski–Hlawka the-
orem, Siegel’s mean value theorem. Then, an important adjunct result is specified
which, perhaps, is best called the variance theorem of Rogers and Schmidt.

The reader who wants to get more information on measure theory on spaces of
lattices is referred to the books of Rogers [851], Gruber and Lekkerkerker [447]
and Siegel [937].

Measure on the Space of Lattices of Determinant 1

Let L(1) be the space of all lattices of determinant 1 in E
d . Since, by Mahler’s

selection theorem 25.1, respectively, its Corollary 25.1, this space is locally compact,
it carries many measures. A measure on this space, which has proved extremely
useful for the geometry of numbers, can be defined as follows.

Let SL(d) be the locally compact multiplicative group of all real d × d matrices
with determinant 1, the special linear group. We consider the Haar measure on
SL(d). Up to normalization, this measure can be described as follows: Represent-
ing a d × d matrix as a point in E

d2
, the space SL(d) is a surface in E

d2
. Given a

Borel set B ⊆ SL(d), consider the cone with basis B and apex at the origin, that is
the set {λB : 0 ≤ λ ≤ 1, B ∈ B} ⊆ E

d2
. This set is again Borel and its Lebesgue

measure is the Haar measure of B.
Let U be the sub-group of SL(d), consisting of all integer unimodular matrices.

Given a lattice L ∈ L(1), any basis of L with positive determinant can be identified
with a matrix B ∈ SL(d). The family of all bases of L , with positive determinant, is
then the set of all matrices of the form BU where U ∈ U, that is, a left coset of U.
There exists a fundamental domain F of SL(1) with respect to U, that is a set which
contains precisely one matrix from each coset of U, which is Borel and has positive
finite Haar measure. Clearly, the Haar measure can be normalized such that F has
measure 1. Since F contains precisely one basis of each lattice in L(1), this gives
a measure µ on the space of all lattices of determinant 1 in E

d . This measure was
defined by Siegel [937] using reduction theory of positive definite quadratic forms,
thus following an idea of Minkowski.

Siegel’s Mean Value Theorem

Using this measure, Siegel [936] proved the following elegant result.

Theorem 24.2. Let f : E
d → R be Riemann integrable. Then

∫

L(1)

∑{
f (l) : l ∈ L \ {o}} dµ(L) =

∫

Ed

f (x) dx .
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If f is the characteristic function of a Jordan measurable set J then, in particular,∫

L(1)

#∗(L ∩ J ) dµ(L) = V (J ).

This says that the mean value of the number of points �= o of a lattice L of determi-
nant 1 in J equals V (J ). A stronger version of the Minkowski–Hlawka theorem is
an immediate consequence: If V (J ) < 1 then all lattices of L(1) are disjoint from
J \ {o}, except for a set of lattices of measure at most V (J ).

We shall not give a proof of Siegel’s theorem, but refer the reader to Siegel [936,
937] and Gruber and Lekkerkerker [447].

Heuristic Observations

Comparing the first proof of the Minkowski–Hlawka theorem and Siegel’s mean
value theorem, we see that the average over a certain set of lattices is the same as the
integral over the space of all lattices of determinant 1. It thus seems plausible that
the set of lattices employed in the proof of the Minkowski–Hlawka theorem is not
only dense in L(1), as remarked in Sect. 25.1, but even uniformly distributed in the
sense of uniform distribution theory, see Hlawka [515]. Compare a pertinent remark
by Schmidt [894].

The following is the result of a discussion with Hendrik Lenstra [649]. It has
been conjectured that the Minkowski–Hlawka theorem, in essence, is best possible,
even for balls. Assume that this is true. Then there is a positive function ϕ(d) where
ϕ(d) → 0, ϕ(d)d → ∞ as d → ∞ and such that the following statement holds.
Let B be the ball with centre at the origin and volume 1. Then, each lattice L ∈ L(1)
contains a point different from o in the ball 2ϕ(d)B of volume 2ϕ(d)d . In contrast,
Siegel’s mean value theorem implies that all lattices in L(1), up to a set of lattices of
measure 2−ϕ(d)d = o(1), are admissible for the ball 2−ϕ(d)B of volume 2−ϕ(d)d =
o(1). This may be expressed in terms of λ1(B, L) as follows:

λ1(2
ϕ(d)B, L) ≤ 1 for all L ∈ L(1) and

λ1(2
−ϕ(d)B, L) ≥ 1 for all L ∈ L(1), up to a set of lattices of measure
at most o(1).

Equivalently,

λ1(B
d , L) ≤ V (Bd)

1
d 2ϕ(d) = V (Bd)

1
d (1+ o(1)) for all L ∈ L(1) and

λ1(B
d , L) ≥ V (Bd)

1
d 2−ϕ(d) = V (Bd)

1
d (1− o(1)) for all L ∈ L(1),

up to a set of lattices of measure at most o(1).

Hence, assuming that the Minkowski–Hlawka theorem, in essence, is best pos-
sible, the maximum value of λ1(Bd , L) for a lattice of determinant 1 is about
V (Bd)1/d and, for a majority of lattices of determinant 1, the homogeneous mini-
mum λ1(Bd , L) is close to V (Bd)1/d . The following variance theorem shows that,
in fact, the latter statement is true. This phenomenon is an instance of the heuristic
remark in Sect. 11.2, which says that in many complicated situations, the average
configuration attains almost the extremal value. For other examples of this phenom-
enon, see Sects. 8.6 and 11.2.
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The Variance Theorem of Rogers and Schmidt

An interesting complement of Siegel’s mean value theorem is the following result of
Rogers [847] and Schmidt [892]:

Theorem 24.3. There is an absolute constant α > 0 such that the following state-
ment holds: Let d ≥ 3 and let B be a Borel set in E

d , then
∫

L(1)

(
#∗(L ∩ B)− V (B)

)2
dµ(L) < α V (B).

Remark. For d = 2, a slightly weaker result is due to Schmidt [892]. A consequence
of these results is the following: Let B be a Borel set in E

d with V (B) = ∞. Then,
almost every lattice L ∈ L(1) has infinitely many primitive points in common with
B. A refinement of the latter result was given by Aliev and the author [23]. It says
that, for almost every lattice L ∈ L(1), the set B contains infinitely many pairwise
disjoint d-tuples of linearly independent primitive points of L .

25 Mahler’s Selection Theorem

Several problems in the geometry of numbers amount to the question as to whether
there exist lattices with a given extremum property. For example, given a convex
body C , do there exist lattice packings and lattice coverings of C with maximum,
respectively, minimum density? In several such situations, Mahler’s selection theo-
rem yields the existence of extremal lattices.

Related results of a similar character in other areas of mathematics are the
Bolzano–Weierstrass theorem from calculus, the Arzelà-Ascoli theorem in analy-
sis and Blaschke’s selection theorem 6.3 in convex geometry. As will be seen later,
the Blaschke selection theorem can be used to prove Mahler’s theorem.

In this section, we define a topology on the space of all lattices in E
d and present

Mahler’s selection theorem. For applications to lattice packing and covering, see
Theorems 30.1 and 31.1.

25.1 Topology on the Space of Lattices

There is a natural topology on the space of lattices. Endowed with this topology, the
space L of all lattices, and thus also the closed subspace L(1) of all lattices with
determinant 1, in E

d are locally compact.
In this section, we define this topology on the space L and state some results

due to Rogers, Woods and Schmidt on dense subsets. These results are useful for
measure results.

For more information, see Cassels [195] and [447].
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Topology on the Space of Lattices

We define the natural topology on the space L of all lattices in E
d by specifying a

basis. A basis of the topology on L is given by the following sets of lattices:
{

M ∈ L : M has a basis {c1, . . . , cd} with ‖ci − bi‖ < ε, i = 1, . . . , d
}

where L ∈ L, {b1, . . . , bd} is a basis of L , and ε > 0.

The corresponding notion of convergence can be described as follows. A seq-
uence (Ln) of lattices in E

d is convergent, if there is a lattice L in E
d such that, for

suitable bases {bn1, . . . , bnd} of Ln, n = 1, 2, . . . , and {b1, . . . , bd} of L , respec-
tively, we have

bn1 → b1, . . . , bnd → bd as n →∞.
From now on, we assume that L is endowed with this topology.

It is not difficult to see that this topology is induced by a suitable metric on L.
See [447].

Dense Sets of Lattices

Confirming a statement of Rogers [851], Woods [1030] proved that the set of lattices,
where the basis vectors are the columns of the following matrices, is dense in the
space L(1):

⎛

⎜⎜⎜⎜
⎝

α 0 . . . 0 α1
0 α . . . 0 α2
. . . . . . . . . . . . . . .
0 0 . . . α αd−1

0 0 . . . 0 α1−d

⎞

⎟⎟⎟⎟
⎠
, where α1, . . . , αd−1 ∈ R and α > 0.

This set of lattices can be used to prove the Minkowski–Hlawka theorem, see
Sect. 24.1.

A refinement of Wood’s result is the following result due to Schmidt [894]. For
almost all (d − 1)-tuples (β1, . . . , βd−1) ∈ E

d−1, the set of lattices, where the basis
vectors are the columns of the matrices

⎛

⎜⎜⎜⎜
⎝

k 0 . . . 0 β1k
0 k . . . 0 β2k
. . . . . . . . . . . . . . . .
0 0 . . . k βd−1k
0 0 . . . 0 k1−d

⎞

⎟⎟⎟⎟
⎠
, k = 1, 2, . . . ,

is dense in L(1).

25.2 Mahler’s Selection Theorem

Mahler’s selection theorem is the main topological result for the space of lattices.
It provides a firm basis for several results which before were clear only intuitively.

In the following we present a standard version of it.
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The Selection Theorem of Mahler [680]

Theorem 25.1. Let (Ln) be a sequence of lattices in E
d such that, for suitable con-

stants α, � > 0, the following hold for n = 1, 2, . . . :

(i) d(Ln) ≤ α.

(ii) Ln is admissible for �Bd.

Then the sequence of lattices contains a convergent subsequence.

We first present a familiar proof of Mahler’s theorem and then outline a beautiful
geometric proof due to Groemer [401], based on the notion of Dirichlet–Voronoı̆
cells and Blaschke’s selection theorem.

Proof. In the first step, the following will be shown:

(1) Let l1, . . . , ld be d linearly independent points of a lattice in E
d . Then there

is a basis {b1, . . . , bd} of this lattice such that:

‖bi‖ ≤ ‖l1‖ + · · · + ‖li‖ for i = 1, . . . , d.

By Theorem 21.3, there is a basis {c1, . . . , cd} such that:

l1 = u11c1
l2 = u21c1 + u22c2
. . . . . . . . . . . . . . . . . . . . . . . . . .

ld = ud1c1 + · · · · · · + uddcd

where uik ∈ Z, uii �= 0.

Then
c1 = u−1

11 l1,
c2 = u−1

22 l2 + t21l1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
cd = u−1

dd ld + tdd−1ld−1 + · · · + td1l1

where tik ∈ R.

Since {c1, . . . , cd} is a basis of L , the d vectors

b1 = c1 = c1
b2 = c2 − �t21�l1 = c2 + v21c1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bd = cd − �td1�l1 − · · · − �tdd−1�ld−1 = cd + vdd−1cd−1 + · · · + vd1c1

where vik ∈ Z

also form a basis and

‖bi‖ = ‖u−1
i i li + (tii−1 − �tii−1�)li−1 + · · · + (ti1 − �ti1�)l1‖

≤ |u−1
i i |‖li‖ + ‖li−1‖ + · · · + ‖l1‖ ≤ ‖li‖ + ‖li−1‖ + · · · + ‖l1‖

for i = 1, . . . , d,

concluding the proof of (1).
The second step is to show the following, where α, � are as in (i) and (ii):
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(2) Let L be a lattice in E
d such that d(L) ≤ α and which is admissible for

�Bd . Then there is a basis {b1, . . . , bd} of L with

‖bi‖ ≤ β, where β = d 2dα

�d−1V (Bd)
,

d(L) ≥ γ, where γ = �d V (Bd)

2d
.

To see this, choose d linearly independent points l1, . . . , ld ∈ L such that:

li ∈ λi bd Bd or ‖li‖ = λi ,

where λi = λi (Bd , L). The assumptions in (2), together with Minkowski’s theorem
on successive minima, yield the following:

(3) � ≤ ‖li‖ ≤ 2dd(L)

‖l1‖ · · · ‖li−1‖ ‖li+1‖ · · · ‖ld‖V (Bd)
≤ 2dα

�d−1V (Bd)
.

Proposition (1) now shows that there is a basis {b1, . . . , bd} of L such that:

‖bi‖ ≤ d 2dα

�d−1V (Bd)
= β.

This proves the first assertion in (2). The second assertion also follows from (3),
since ‖l1‖, . . . , ‖ld‖ ≥ � by the assumptions in (2). The proof of (2) is complete.

In the final step of our proof, note that, by the assumptions of the theorem and
(2), there are bases {bn1, . . . , bnd} of Ln for n = 1, 2, . . . , such that the following
hold:

� ≤ ‖bn1‖, . . . , ‖bnd‖ ≤ β and | det{bn1, . . . , bnd}| = d(Ln) ≥ γ.
Now apply a Bolzano–Weierstrass type argument to the first basis vectors, then to
the second basis vectors, etc., to get the selection theorem. ��
Proof (outline, following Groemer). Let α, � > 0 be as in the theorem. Consider, for
n = 1, 2, . . . , the Dirichlet–Voronoı̆ cell Dn = D(Ln, o) of o with respect to Ln ,

Dn =
{

x : ‖x‖ ≤ ‖x − l‖ for all l ∈ Ln
}
.

It consists of all points of E
d which are at least as close to o as to any other point

of Ln . Since Ln is admissible for �Bd , we have,

(4)
�

2
Bd ⊆ Dn .

Since {Dn + l : l ∈ Ln} is a tiling of E
d , i.e. both a packing and a covering, we

conclude that V (Dn) = d(Ln) ≤ α. Noting that Dn is convex, (4) then implies that

(5) Dn ⊆ βBd .
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where β > 0 is a suitable constant. Propositions (4) and (5), together with Blaschke’s
selection theorem 6.3, imply that a suitable subsequence of the sequence (Dn) con-
verges to a convex body D, where

�

2
Bd ⊆ D ⊆ βBd .

It turns out that D is the Dirichlet–Voronoı̆ cell of a lattice L . The subsequence of
(Ln) which corresponds to the convergent subsequence of the sequence of Dirichlet–
Voronoı̆ cells, then converges to L . ��

An Alternative Version

In some cases the following version of Mahler’s selection theorem is useful:

Corollary 25.1. The space L of lattices in E
d is locally compact.

26 The Torus Group E
d/L

A lattice is a sub-group of the additive group of E
d . Given a lattice L , a natural

object to investigate is the quotient or torus group E
d/L . Since this group is compact

and Abelian, there is a Haar measure m defined on it. In essence it is the ordinary
Lebesgue measure on a fundamental parallelotope. The question arises, to estimate
the measure

m(U+V)

of the sum U +V = {u + v : u ∈ U, v ∈ V} for measurable sets U,V in E
d/L for

which U+V is also measurable. A satisfying answer to this question is the sum the-
orem of Macbeath and Kneser. It was used by Kneser to prove a strong transference
theorem.

In this section, we first study the quotient group 〈Ed/L ,+〉, then present two
proofs of the sum theorem and, finally, use it to show Kneser’s transference theorem.

For information on topological groups, in particular for measure theory on topo-
logical groups, see Nachbin [760].

26.1 Definitions and Simple Properties of E
d/L

Let L be a lattice in E
d . Then E

d/L is a group which is endowed with a natural
topology and a natural measure. The topology on E

d/L can be defined with a partic-
ular notion of distance. E

d/L thus carries a considerable lot of structure. Hence it is
plausible to expect interesting results.

In this section we define the group E
d/L , a notion of distance which makes it a

topological group, and a measure. Both the distance and the measure are inherited
from E

d in a simple way.
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The Group E
d/L

With respect to vector addition +, the space E
d is an Abelian group and L a sub-

group of it. The torus or quotient group E
d/L is the Abelian group consisting of all

cosets of L , that is translates L+ x = {l+ x : l ∈ L} of L , where x ∈ E
d . For L+ x

we also write x. Addition + on E
d/L is defined by:

x+ y = L + x + L + y = L + x + y for x = L + x, y = L + y ∈ E
d/L .

Clearly, addition on E
d/L is independent of the particular choice of x, y. A coset

x = L + x is also called an inhomogeneous lattice. A fundamental domain of E
d/L

is a subset of E
d which contains precisely one point of each coset. If {b1, . . . , bd} is

a basis of L , then the corresponding fundamental parallelotope

F = {
α1b1 + · · · + αdbd : 0 ≤ αi < 1

}

is a fundamental domain. Addition in E
d/L corresponds to addition modulo L in F ,

symbolized by +L (Fig. 26.1):

x +L y = (L + x + y) ∩ F for x, y ∈ F.

Proposition 26.1. The groups 〈Ed/L ,+〉 and 〈F,+L 〉 are isomorphic. An isomor-
phism is given by the mapping

x → x ∩ F for x ∈ E
d/L .

Proof. Left to the reader. ��

Topology on E
d/L

Define a distance modulo L , ‖ · ‖L , on E
d/L by:

‖x‖L = inf
{‖l + x‖ : l ∈ L

}
for x = L + x ∈ E

d/L .

Since L is discrete, x = L + x is also discrete. Hence the infimum is attained for a
suitable l ∈ L . The distance ‖ · ‖L yields a metric and thus induces a topology on
E

d/L . We assume, from now on, that E
d/L is endowed with this topology.

o

x

y

x + y

x +L y

Fig. 26.1. Addition modulo L
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Proposition 26.2. E
d/L is a compact Abelian topological group.

Proof. Clearly, E
d/L is Abelian. For the proof that E

d/L is a topological group, we
have to show that the mapping

(1) (x, y)→ x− y for x, y ∈ E
d/L is continuous.

Let a, b ∈ E
d/L and ε > 0. Let x, y ∈ E

d/L be contained in the ε/2-neighbourhoods
of a and b, respectively, i.e.

‖x− a‖L , ‖y− b‖L <
ε

2
.

Choose l,m ∈ L such that:

‖x− a‖L = ‖x − a − l‖, ‖y− b‖L = ‖y − b − m‖.
The definition of ‖ · ‖L then shows that

‖x− y− (a− b)‖L ≤ ‖x − y − a + b − l + m‖
≤ ‖x − a − l‖ + ‖y − b − m‖ = ‖x− a‖L + ‖y− b‖L <

ε

2
+ ε

2
= ε.

Thus x−y is contained in the ε-neighbourhood of a−b, concluding the proof of (1).
E

d/L is a metric space. For the proof that it is compact, it is thus sufficient
to show that each sequence in E

d/L has a convergent subsequence. Let (xn) be a
sequence in E

d/L . Let F be a fundamental parallelotope. Let xn ∈ F be such that
xn ∩ F = {xn}. This gives a sequence (xn) in the bounded set F ⊆ E

d . The Bolzano–
Weierstrass theorem then shows that the sequence (xn) contains a subsequence (xnk )
converging to a point x ∈ E

d , say. Let x = L+x . The definition of ‖·‖L now implies
that

‖xnk − x‖L ≤ ‖xnk − x‖ → 0 as n →∞.
Thus (xnk ) converges to x. ��

Given a fundamental parallelotope F of L , define the distance modulo L on F by:

‖x‖L = inf
{‖x + l‖ : l ∈ L

} = ‖x‖L for x ∈ F.

‖·‖L yields a metric, and thus a topology, on F . Let F be endowed with this topology
(Fig. 26.2).

Proposition 26.3. The metric spaces 〈Ed/L , ‖ · ‖L 〉 and 〈F, ‖ · ‖L 〉 are isometric. An
isometry is given by the mapping

x → x ∩ F for x ∈ E
d/L .

Proof. Left to the reader. ��
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x

o

Fig. 26.2. Neighbourhood of a point

M

o

M +L x

M + x

Fig. 26.3. Translation of a set modulo L

Measure on E
d/L

E
d/L is a compact Abelian group. Hence there is a unique (complete) Haar measure

m on it which is normalized such that m(Ed/L) = d(L).
Let F be a fundamental parallelotope of L . For Lebesgue measurable sets S in F ,

let V (S) denote the Lebesgue measure of S. This makes F into a measurable space
with measure V (·). It is not difficult to see that V (·) is invariant with respect to
addition modulo L in F (Fig. 26.3).

The mapping x → x∩F of E
d/L onto F is both an isomorphism and an isometry.

The Haar measures on E
d/L and on F are both unique and normalized such that

E
d/L and F both have measure d(L). This leads to the following result.

Proposition 26.4. A set S ⊆ E
d/L is measurable in E

d/L if and only if the set
S = F ∩S is measurable in F. In the case of measurability m(S) = V (S).

Proof. Left to the reader. ��

26.2 The Sum Theorem of Macbeath–Kneser

Given an additive group and two of its subsets, it is a natural question to investigate
properties of their sum. For example, if the group is finite, one may ask for estimates
of the number of elements of the sum-set in terms of the numbers of elements of
the given sets. Or, if the group is endowed with a measure, one may try to relate the
measure of the sum-set to the measures of the given sets. Such problems of α+β type
were considered in additive number theory, in the theory of congruences, in group
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theory, see Mann [687, 688] and Danilov [235], and in other areas of mathematics.
Minkowski’s theorem on mixed volumes 6.5 and the Brunn–Minkowski theorem 8.1
are also α + β type results.

The sum theorem of Macbeath and Kneser, which will be proved later, gives a
satisfying answer to this question for the torus group. Let L be a lattice in E

d .

The Sum Theorem of Kneser–Macbeath

Macbeath [673] and Kneser [601, 602] proved the following result.

Theorem 26.1. Let S,T be non-empty sets in E
d/L such that S,T and S + T are

measurable. Then the following claims hold:

(i) If m(S)+ m(T) > d(L), then S+ T = E
d/L.

(ii) If m(S)+ m(T) ≤ d(L), then m(S+ T) ≥ m(S)+ m(T).

Note that the Lebesgue measurability of S and T does not necessarily imply
the Lebesgue measurability of S + T. If S and T are Borel, their sum is Lebesgue
measurable, but need not be Borel. For references, see the Remark in Sect. 8.2.

If S + T is not measurable, a result similar to the sum theorem of Kneser and
Macbeath holds, where m(S+T) is replaced by the corresponding inner measure of
S+ T.

We give two proofs. The first one is due to Kneser [602], see also Cassels [195].
The second proof is due to Macbeath [673] and Kneser [601]. In the second proof,
we consider only the case where S,T and S+ T all are Jordan measurable sets.

Proof of Kneser

As a preparation for the first proof, we show the following result; versions of it
are useful tools in integral geometry. See, e.g. Hadwiger [468], Santaló [881] or
Schneider and Weil [911].

Lemma 26.1. Let U,V ⊆ E
d/L be measurable. Then there is z ∈ E

d/L such that:

m
(
(U+ z) ∩V

)
d(L) = m(U)m(V).

Proof. Let 1U and 1V be the characteristic functions of U and V, respectively. Then

m
(
(U+ y) ∩V

) =
∫

Ed/L

1U+y(x)1V(x) dm(x)

=
∫

Ed/L

1U(x− y)1V(x) dm(x).
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It is well known that convolutions are continuous. This implies that the expression
m
(
(U + y) ∩ V

)
is continuous as a function of y. Taking into account the fact that

E
d/L is compact, this expression is integrable. Then

∫

Ed/L

m
(
(U+ y) ∩V

)
dm(y)

=
∫

Ed/L

∫

Ed/L

1U(x− y)1V(x) dm(x) dm(y)

=
∫

Ed/L

∫

Ed/L

1U(x− y)1V(x) dm(y) dm(x)

=
∫

Ed/L

m(U)1V(x) dm(x) = m(U)m(V),

by Fubini’s theorem, since E
d/L is Abelian and thus unimodular. Since m

(
(U +

y) ∩V
)

is continuous, as a function of y, on the compact connected space E
d/L of

measure d(L), there is a coset z ∈ E
d/L such that:

∫

Ed/L

m
(
(U+ y) ∩V

)
dm(y) = m

(
(U+ z) ∩V

)
d(L). �

Proof (of the sum theorem). (i) If Proposition (i) does not hold, choose x ∈ E
d/L

such that x �∈ S+ T. Then x− s �∈ T for s ∈ S, or

(x−S) ∩ T = ∅.
This yields a contradiction and thus concludes the proof of (i):

m(S)+ m(T) = m(x−S)+ m(T) = m
(
(x−S) ∪ T

) ≤ m(Ed/L) = d(L).

(ii) First, we show the following.

(1) Let U,V ⊆ E
d/L where U ∩V �= ∅. Then U+V ⊇ U ∩V+ U ∪V.

Let x ∈ U ∩V and y ∈ U ∪V. If y belongs to U, then we may regard x as belonging
to V, since it belongs to both U and V. Hence x+ y = y+ x ∈ U+V. Similarly, if
y belongs to V, we regard x as belonging to U.

The crucial task in the proof of (ii) is to show it for compact sets S and T. Let

(2) m(S) = σd(L), m(T) = τd(L).

By assumption, σ + τ ≤ 1. If σ = 0 or τ = 0, then (ii) holds trivially. After
exchanging S and T and renaming, if necessary, we may thus assume that

(3) 0 < σ ≤ τ and σ + τ ≤ 1.
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The main step of the proof is to show the following statement by induction:

(4) For n = 1, 2, . . . , there are non-empty compact sets Sn,Tn in E
d/L and

real numbers σn , τn , where

S1 = S, T1 = T, σ1 = σ, τ1 = τ,
and such that:

Sn,Tn are compact,Sn + Tn ⊆ S+ T,

m(Sn) = σnd(L), m(Tn) = τnd(L),

σn + τn = σ + τ, σn = σn−1τn−1 (n ≥ 2).

The case n = 1 is trivial. Since the proof for n = 2 is the same as that for n + 1,
assuming that (4) holds for n ≥ 2, only the latter will be presented. An application
of Lemma 26.1, with U = Sn and V = Tn , shows that there is a zn ∈ E

d/L such
that:

(5) Sn+1 = (Sn + zn) ∩ Tn �= ∅,
m(Sn+1)d(L) = m(Sn)m(Tn) = σnτnd(L)2.

Let

(6) Tn+1 + zn = (Sn + zn) ∪ Tn .

Since Sn,Tn are compact,

(7) Sn+1,Tn+1 are also compact.

An application of (1) with U = Sn + zn,V = Tn shows that

Sn + zn + Tn ⊇ (Sn + zn) ∩ Tn + (Sn + zn) ∪ Tn = Sn+1 + Tn+1 + zn,

i.e.

(8) Sn+1 + Tn+1 ⊆ Sn + Tn ⊆ S+ T.

Put

(9) m(Sn+1) = σn+1d(L),m(Tn+1) = τn+1d(L).

Since
m(Sn)+ m(Tn) = m(Sn + zn)+ m(Tn)

= m
(
(Sn + zn) ∩ Tn

)+ m
(
(Sn + zn) ∪ Tn

)

= m(Sn+1)+ m(Tn+1 + zn) = m(Sn+1)+ m(Tn+1),

the induction hypothesis and Propositions (9), (5) and (2) show that

(10) σn+1 + τn+1 = σn + τn = σ + τ, σn+1 = σnτn .

Having shown (7)–(10), the induction is complete, concluding the proof of the
statement (4).

Clearly, as a sum of compact sets in E
d/L ,
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(11) Sn + Tn is compact and thus measurable and
m(Sn + Tn) ≥ m(Tn) = τnd(L) for n = 1, 2, . . .

It follows from (3) and (4) that

0 ≤ σn ≤ 1, σn ≤ σn−1(1− σn−1) for n = 2, 3, . . .

and therefore, σn → 0 as n → ∞. Hence (4) yields τn → σ + τ as n → ∞.
Combine this with (11), (4) and (2) to get

m(S+ T) ≥ (σ + τ) d(L) = m(S)+ m(T),

as required. The proof of (ii) for compact sets S,T is complete.
If S,T and S + T are measurable, then there are non-decreasing sequences

S1 ⊆ S2 ⊆ · · · ⊆ S, T1 ⊆ T2 ⊆ · · · ⊆ T of non-empty compact sets the
measures of which tend to m(S) and m(T), respectively. Applying (ii) to the non-
empty compact sets Sn,Tn and letting n →∞, yields (ii) for S,T. ��
Proof of Macbeath and Kneser

As an essential tool for the second proof, we state, without proof, the following result
on finite Abelian groups. For a proof see Kneser [601].

Lemma 26.2. Let A, B be non-empty subsets of a finite Abelian group G. Then the
following claims hold:

(i) If #A + #B > #G then A + B = G.

(ii) If #A + #B ≤ #G then #(A + B) ≥ #A + #B − #H,
where H is a proper sub-group of G.

Proof (of the sum theorem for S,T,S+ T Jordan measurable).
(i) The simple proof of statement (i) is as earlier.
(ii) For the proof of Statement (ii) of the sum theorem, it is sufficient to show the

following proposition:

(12) Let S, T ⊆ [0, 1)d be Jordan measurable such that V (S) + V (T ) < 1 and
S +

Zd T is Jordan measurable. Then V (S +
Zd T ) ≥ V (S)+ V (T ).

Let p be a prime number and consider the group

G p =
{(u1

p
, . . . ,

ud

p

)
: ui ∈ {0, 1, . . . , p − 1}}

with componentwise addition modulo 1. This group has pd elements. Thus, each
proper sub-group has at most pd−1 elements. If we consider G p as a subset of [0, 1)d ,
addition in G p and in [0, 1)d coincide. Clearly,

(S +
Zd T ) ∩ G p ⊇ S ∩ G p +

Zd T ∩ G p.
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The formula to calculate the Jordan measure in Sect. 7.2 shows that

lim
p→∞
p prime

#G p

pd
= 1 > V (S)+ V (T ) = lim

p→∞
p prime

#(S ∩ G p)

pd
+ lim

p→∞
p prime

#(T ∩ G p)

pd
.

This, in turn, implies that #(S ∩ G p) + #(T ∩ G p) ≤ #G p for all sufficiently large
primes p. The lemma then shows that

#
(
(S +

Zd T
) ∩ G p) ≥ #(S ∩ G p)+ #(T ∩ G p)− #Hp for all

sufficiently large primes p, with Hp a proper sub-group of G p.

Thus,

V (S +
Zd T ) = lim

p→∞
p prime

#
(
(S +

Zd T ) ∩ G p
)

pd

≥ lim
p→∞
p prime

#(S ∩ G p)

pd
+ lim

p→∞
p prime

#(T ∩ G p)

pd
− lim

p→∞
p prime

pd−1

pd

= V (S)+ V (T ),

concluding the proof of Proposition (12) and thus of Statement (ii). ��

26.3 Kneser’s Transference Theorem

It is to Jarnı́k’s credit that he first proved a transference theorem. In the subsequent
development more refined tools and ideas led to further transference theorems. We
mention, in particular, Hlawka’s [513] transference theorem which he proved using
the method of the additional variable and Kneser’s [601] transference theorem which
is based on the sum theorem. Both relate the packing and the covering radius of an
o-symmetric convex body with respect to a given lattice.

In this section Kneser’s transference theorem is proved. We use notions and sim-
ple properties of lattice packing and covering; see Sects. 30.1 and 31.1.

For more information the reader is referred to [447].

The Transference Theorem of Kneser

As a consequence of the sum theorem, Kneser [601] proved the following result,
where for the definitions of the packing radius �(C, L) and the covering radius
µ(C, L) see Sect. 23.2. The transference theorem relates lattice packing and cov-
ering.

Theorem 26.2. Given an o-symmetric convex body C and a lattice L in E
d and let

(1) q =
⌊

d(L)

�(C, L)d V (C)

⌋
and r = d(L)

�(C, L)d V (C)
− q.

Then

(2) µ(C, L) ≤ �(C, L)(q + r
1
d ).
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Proof. Put � = �(C, L) and µ = µ(C, L), and let F be a fundamental parallelotope
of L . By tC for t ≥ 0 we mean the set tC + L . It follows from Proposition 26.4 that

(3) m(tC) = V (F ∩ tC) for t ≥ 0.

Using (3), we prove the following two assertions.
First,

(4) m(tC) = td V (C) for 0 ≤ t ≤ �.
For 0 ≤ t ≤ � the set lattice {tC + l : l ∈ L} is a packing. Hence its density
V (tC)/d(L) = td V (C)/d(L) is the proportion of E

d covered by the sets tC+ l, see
Sect. 30.1. The latter equals the proportion of F covered by the sets tC + l and thus
is equal to V

(
F ∩ (tC + L)

)
/d(L) = V (F ∩ tC)/d(L). Hence (3) yields (4).

Second,

(5) µ = inf
{
t > 0 : m(tC) = d(L)

}
.

If t > µ, then {tC + l : l ∈ L} is a covering. Then tC = tC + L = E
d and

thus m(tC) = V (F) = d(L) by (3). If t < µ, then {tC + l : l ∈ L} is not a
covering. In particular, the family tC + l : l ∈ L of translates of the (compact)
convex body by vectors of the lattice L do not cover F . Hence m(tC) = V (F∩tC) =
V
(
F ∩ (tC + L)

)
< V (F) = d(L) by (3). The proof of (5) is now complete.

Noting that (s + t)C ⊇ sC+ tC, the sum theorem shows that

(6) m
(
(s + t)C

) ≥ min
{
m(sC)+ m(tC), d(L)

}
for s, t ≥ 0.

Having shown (4)–(6), the proof of the theorem is easy: By (4),

(7) m(�C) = �d V (C), m(r
1
d �C) = r�d V (C).

Applying (6) several times, (7) and (1), it follows that

m
(
�(q + r

1
d )C

) ≥ min
{
q m(�C)+ m(r

1
d �C), d(L)

}

= min
{
�d(q + r)V (C), d(L)

} = d(L).

This, together with (5), finally yields (2). ��

27 Special Problems in the Geometry of Numbers

In this chapter we have so far outlined systematic features of the geometry of
numbers. What about problems? In contrast to other areas of mathematics, in the
geometry of numbers there is only a rather small number of basic particular prob-
lems. Roughly speaking, these are of two types. First, special problems of a more
arithmetic character, including problems on forms of various types. A selection of
these will be considered here. Second, sets of problems involving reduction, pack-
ing, covering and tiling. While reduction has arithmetic and geometric aspects, the
other three sets of problems of the second group definitely are geometric. Reduction,
packing, covering and tiling will be studied in the subsequent sections. In this section
we consider the following special problems:
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The conjecture on the product of inhomogeneous linear forms
DOT U -matrices
Mordell’s inverse problem for the linear form theorem of Minkowski
Minima of the Epstein zeta function
Lattice points in large convex bodies

A further group of special problems deals with homogeneous and inhomogeneous
minima of indefinite quadratic forms. These problems have been solved, mainly
through the efforts of the Indian school of the geometry of numbers of Bambah,
Dumir and Hans-Gill and their students, see the survey by Bambah, Dumir and Hans-
Gill [58]. While, in recent decades, much progress has been achieved for indefinite
quadratic forms, there is not much advance visible on the other problems. Exceptions
are the results of Narzullaev and Ramharter [765] on DOT U -matrices and the proof
of McMullen [704] of the conjecture on the product of inhomogeneous linear forms
for d = 6.

For more detailed information, see the book of the author and Lekkerkerker [447]
and the reports of Malyshev [682], Bambah [56], Bambah, Dumir and Hans-Gill [58]
and Bayer-Fluckiger and Nebe [84]

27.1 The Product of Inhomogeneous Linear Forms and DOTU Matrices

A special problem, which has attracted interest since Minkowski first studied the
2-dimensional case, is the conjecture on the product of inhomogeneous linear forms.
In spite of numerous contributions, the general case is still open and there are doubts
whether the conjecture is true generally. The conjecture is one of those seminal prob-
lems which, over a century, has generated numerous notions, problems and results of
different types in number theory and, in particular, in the geometry of numbers. One
such notion is that of DOT U -matrices. Tools used in this context and, in particular,
tools to attack the conjecture range from algebraic topology to measure and algebraic
number theory.

In this section we state the conjecture, describe the main lines of attack, addi-
tional results and problems and make some remarks on DOT U -matrices.

The reader who is interested in more precise information may wish to con-
sult [447], Malyshev [682], Bambah [56], Bambah, Dumir and Hans-Gill [58] and
Narzullaev and Ramharter [765] and the references in these sources.

The Conjecture on the Product of Inhomogeneous Linear Forms

The following conjecture has been attributed to Minkowski, but according to Dyson
[281] it is not contained in his written work.

Conjecture 27.1. Let l1, . . . , ld be d real linear forms in d variables such that the
absolute value δ of their determinant is positive. Then, for any α1, . . . , αd ∈ R, there
is a point u ∈ Z

d such that:

∣
∣(l1(u)− α1

) · · · (ld(u)− αd
)∣∣ ≤ δ

2d
.
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Here equality occurs precisely in case when there is an integer unimodular transfor-
mation of the variables, such that the linear forms assume the form β1v1, . . . , βdvd

and α1 ≡ 1
2β1 modβ1, . . . , αd ≡ 1

2βd modβd .

The conjecture may also be expressed as follows:

Conjecture 27.2. For any lattice L in E
d the family of all translates of the set

(1) |x1 · · · xd | ≤ d(L)

2d

by vectors of L covers E
d . Precisely for the lattices L not of the form DZ

d , where D
is a d × d diagonal matrix, the set in (1) can be replaced by the set

|x1 · · · xd | < d(L)

2d
.

The Cases d=2,. . . ,6

The conjecture is true for:

d = 2: Minkowski [737, 743], a multitude of further proofs
d = 3: Remak [830], Davenport [243], who simplified Remak’s proof, Birch

and Swinnerton-Dyer [117], Narzullaev [762]
d = 4: Dyson [281], Skubenko [941], Bambah and Woods [60]
d = 5: Skubenko [941]. Bambah and Woods [62] gave a proof along similar

lines, clarifying Skubenko’s arguments
d = 6: McMullen [704]

Most of the proofs mentioned so far follow the line of proof of Remak-Davenport:
For the proof of the conjecture (except for the equality case) it is sufficient to show
the following two assertions:

(i) For each lattice L in E
d there is an ellipsoid E of the form:

a1x2
1 + · · · + ad x2

d ≤ 1

which contains d linearly independent points of L on its boundary but no
point of L in its interior, except o.

(ii) Let L be a lattice of determinant 1 and ρBd a ball which contains d linearly
independent points of L on its boundary but no point of L in its interior,
except o. Then the following family of balls covers E

d :

{√d

2
Bd + l : l ∈ L

}
.

Let L be a lattice of determinant 1 and let E be the corresponding ellipsoid. After
applying to L and E a suitable diagonal transformation of determinant 1, we may
assume that E is a Euclidean ball as in (ii). Then the translates of the ball (

√
d/2)Bd

by the vectors of L cover E
d . Since the inequality of the arithmetic and geometric

mean shows that the ball (
√

d/2)Bd is contained in the set |x1 · · · xd | ≤ 1/2d , the
translates of this set by the vectors of L cover E

d .
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Asymptotic Estimates

Chebotarev [202] proved that, for each lattice L , the family of all translates of the set

|x1 · · · xd | ≤ d(L)

2
d
2

by vectors of L covers Ed . The proof uses a clever application of Minkowski’s first
fundamental theorem. Using refinements of Minkowski’s theorem, many succes-
sive improvements of this result were given, where 2d/2 is replaced by νd2d/2 with
νd > 1. We mention the following; for others, see the author and Lekkerkerker [447]
and Bambah, Dumir and Hans-Gill [58]:

νd ∼ 2e − 1: Davenport [244]

νd ∼ 2(2e − 1): Woods [1029]

νd ∼ 3.0001(2e − 1): Bombieri [147]

νd ∼ 3(2e − 1): Gruber [410]

νd ∼ e− 2
3 d

1
3 log− 2

3 d as d →∞ Skubenko [942]

See also Narzullaev and Skubenko [764], Mukhsinov [759] and Andriyasyan, Il’in
and Malyshev [34].

Sets of Lattices for which the Conjecture is true and DOTU-Matrices

A result of Birch and Swinnerton-Dyer [117] is as follows: If the conjecture holds
for dimensions 2, . . . , d − 1, then it holds in dimension d for all lattices L for which
the homogeneous minimum

(2) λ(L) = inf
{|l1 · · · ld | : l ∈ L \ {o}}

is 0. Since it is easy to prove that λ(L) = 0 for almost all lattices L ∈ L(1) in the
sense of the measure introduced by Siegel on the space of all lattices of determinant
1, we see that, if the conjecture holds in dimensions 2, . . . , d − 1, then it holds in
dimension d for almost all lattices of determinant 1, see [411]. In the same article,
it was shown that, in all dimensions, the measure of the set of lattices of determinant
1 which cover E

d by the set

|x1 · · · xd | ≤ d d !
dd

∼
√

2π√
ded

= e−d+o(d) as d →∞,

is at least 1− e−0.279 d .
A real d × d-matrix A is a DOT U -matrix if it can be written in the form:

A = DOT U,

where D is a diagonal, O an orthogonal, T an upper triangular matrix with 1’s in the
diagonal and U an integer unimodular d × d matrix. This notion was introduced by
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Macbeath [674]. An easy proof led Macbeath to the following result: If L = AZ
d ,

where A is a DOT U -matrix, then the conjecture holds for the lattice L . It is thus
of interest to find out whether all d × d-matrices are DOT U -matrices or not. It is
easy to see that each real 2× 2 matrix is DOT U . After some unsuccessful attempts,
Narzulaev [763] established this for d = 3. Narzullaev and Ramharter [765] proved
that all non-singular 4× 4 matrices A, for which the homogeneous minimum (2) of
the lattice L = AZ

4 is sufficiently small, are DOT U -matrices. It is easy to see that
for all d the rational d × d matrices are DOT U and Macbeath showed that the set
of DOT U -matrices is open. Hence, the d × d DOT U -matrices form a dense open
set in the space of all non-singular d × d matrices.

Unfortunately, Gruber [413] and Ahmedov [4] showed for infinitely many,
respectively, all sufficiently large d, the existence of d × d matrices which are not
DOT U . Skubenko [943] gave an example of such a matrix for d = 2880 and
Hendrik Lenstra [648] communicated an example with d = 64. These examples
make use of algebraic number theory and, in particular, of class field theory.

A Related Conjecture

which has attracted some interest is the following; we state it in geometric form:

Conjecture 27.3. For k = 0, . . . , d and any lattice L in E
d , the family of all trans-

lates of the set
{

x : x1, . . . , xk ≥ 0, |x1 · · · xd | ≤ d(L)

2d−k

}

by vectors of L covers E
d .

This conjecture was proved by Chalk [200] for k = d and all d, by Cole [212] for
k = d − 1 and all d and by Bambah and Woods [61] for k = 2 and d = 3. All other
cases seem to be open.

27.2 Mordell’s Inverse Problem and the Epstein Zeta-Function

A geometric version of the Minkowski linear form theorem is as follows, see
Corollary 22.2: Let L be a lattice in E

d with d(L) = 1. Given numbers τ1, . . . , τd > 0
such that τ1 · · · τd ≥ 1, the lattice L contains a point �= o in the box

(1) |x1| ≤ τ1, . . . , |xd | ≤ τd .
This led Mordell [753] to consider the problem to choose τ1, . . . , τd > 0 such that
τ1 · · · τd is as large as possible and there is no point of L \ {o} in the box (1).

Given a lattice L in E
d , the Epstein zeta-function ζ(L , ·) is defined as follows:

ζ(L , s) =
∑

l∈L\{o}

1

‖l‖2s
for s >

d

2
.
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This function was first studied by Epstein [305] and re-discovered by Sobolev [945].
It is important for the determination of potentials of crystal lattices, for the lat-
tice energy, for the dynamics of viscous fluids, and for the numerical integration
of functions belonging to Sobolev classes. Its study, in the context of the geometry
of numbers, was cultivated in the 1950s and 1960s and later in Great Britain and in
Russia. The motive for the study in Great Britain was purely number-theoretic, while
the Russian school of the geometry of numbers studied it following a suggestion of
Sobolev in the context of the problem of the optimal choice of nodes for numerical
integration formulae.

In the following we describe some of the developments induced by Mordell’s
problem. For more information and references the reader is referred to [447] and
Narzullaev and Ramharter [765]. In addition, we state some results on local minima
of the Epstein zeta-function. See also [447] and the report [438].

Mordell’s Inverse Problem

Given a lattice L in E
d , let

κ(L) = sup
{
τ1 · · · τd : τi > 0, {x : |x j | < τ j } ∩ L = {o}}.

Using the quantity

κd = inf
{κ(L)

d(L)
: L ∈ L

}
.

Mordell’s problem can be formulated as follows:

Problem 27.1. Determine κd for d = 2, 3, . . .

The problem is solved for d = 2, 3:

κ2 = 1

2
+ 1

2
√

5
= 0.7236 . . . : Szekeres [982]

κ3 = 8

7
cos2 (π

7

)
cos

(2π

7

) = 0.578416 . . . : Ramharter [822]

Hlawka [512] (lower bound) and Gruber and Ramharter [450] (upper bound) gave
the estimates:

2−
d2
2 (1+o(1)) = d

d !22
d(d+1)

2

< κd ≤ κ
d−1

2
2 = (0.7236 . . . )

d−1
2 .

Minima of the Epstein Zeta-Function

The main problem on the Epstein zeta-function in the context of the geometry of
numbers is the following:

Problem 27.2. Given s > d
2 , determine among all lattices L in E

d with d(L) = 1
those for which ζ(L , s) has a global or a local minimum.
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Collecting the work of Rankin [823], Cassels [194], Ennola [303], Diananda [266]
and Montgomery [752] (global minima) and Ryshkov [864] (local minima) we state
the following result.

Theorem 27.1. The following propositions hold:

(i) Let s > 1. Then ζ(·, s) attains its global minimum among all lattices in E
2 of

determinant 1 precisely for the regular hexagonal lattices.

(ii) Let s ≥ 3. Then the only local minimum of ζ(·, s) among all lattices in E
2 of

determinant 1 is the global minimum.

The 3-dimensional case was studied by Ennola [304] and Sandakova [876].

27.3 Lattice Points in Large Convex Bodies

A classical problem of analytic number theory, the Gauss circle problem [366], is to
estimate the number of points of the integer lattice Z

2 in the circular disc ρB2 for
large ρ > 0. Clearly,

A(ρ) = #(Z2 ∩ ρB2) = ρ2π + O(ρ) as ρ →∞.
O(ρ) may be replaced by O

(
ρ

2
3
)

as shown by Sierpiński [938]. The best upper
estimate, at present, is due to Huxley [533], who showed that instead of O(ρ) one

may put O
(
ρ

131
208 (log ρ)

18637
4160

)
. It was proved by Hardy [479] that O(ρ) may not be

replaced by o
(
ρ

1
2
)
. The best pertinent result known was given by Soundararajan [949].

In an article which is not yet published, Cappell and Shaneson [189] seem to have

proved the bound O (ρ
1
2+ε).

The circle problem was the starting point of a voluminous literature in the context
of analytic number theory, see the survey of Ivić, Krätzel, Kühleitner and Nowak
[540], the books of Fricker [344] and Krätzel [616] and the short report in Gruber
and Lekkerkerker [447].

In this section we present a result of Hlawka [511] which is representative of this
area. Since all available proofs are technically involved and require sophisticated
analytic tools, no proof is given.

Hlawka’s Lattice Point Theorem

Theorem 27.2. Let C be an o-symmetric convex body, the boundary of which is of
class C2 and has positive Gauss curvature. Then

A(ρ) = #(Zd ∩ ρC) = ρd V (C)+ O
(
ρd−2+ 2

d+1
)

as ρ →∞.

Here O
(
ρd−2+ 2

d+1
)

cannot be replaced by o
(
ρ

d−1
2
)
.

For various refinements due to Krätzel, Nowak, Müller and others, see the survey of
Ivić, Krätzel, Kühleitner and Nowak [540].
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28 Basis Reduction and Polynomial Algorithms

The basic problem of reduction theory can be stated in two equivalent ways. First,
given a lattice, determine a (not necessarily unique) basis having nice geometric
properties, a reduced basis. Here, nice may mean that the basis vectors are short or
almost orthogonal. Second, given a positive definite quadratic form, find a (not nec-
essarily unique) equivalent form having nice arithmetic properties, a reduced form.

There are several classical reduction methods for positive definite quadratic
forms, going back at least to Lagrange [628]. Rather geometric are the reduction
methods of Korkin and Zolotarev [610] and Lenstra, Lenstra and Lovász [646]. The
latter provides polynomial time algorithms for geometric problems dealing with the
shortest lattice vector problem and thus with Minkowski’s fundamental theorem and
with the nearest lattice point problem. In addition, it yields polynomial time algo-
rithms for a multitude of other problems. These include the factoring of polynomials,
Diophantine approximation, integer programming and cryptography. It was used for
the disproof of Mertens’s conjecture on the Riemann zeta-function and had a strong
impact on complexity problems in algorithmic geometry. The Lenstra, Lenstra and
Lovász algorithm was inspired by the 2-dimensional reduction method of Gauss.

In the following we first present the LLL-basis reduction algorithm and then
describe its applications to Diophantine approximation and the nearest lattice point
problem.

For additional information and references on reduction and geometric algo-
rithms, see Gruber and Lekkerkerker [447], Kannan [563], Grötschel, Lovász and
Schrijver [409], Gruber [430], Koy and Schnorr [613] and Micciancio and Goldwasser
[721]. We are not aware of a comprehensive and unified exposition of the various re-
duction methods.

28.1 LLL-Basis Reduction

We will describe the Lenstra, Lenstra and Lovász [646] basis reduction algorithm
and show that it is polynomial in input size. Our presentation follows the exposition
of Grötschel, Lovász and Schrijver [409].

Definition of LLL-Reduced Bases

Let {b1, . . . , bd} be an (ordered) basis of a lattice L in E
d . Using the Gram–

Schmidt orthogonalization method, we assign to {b1, . . . , bd} an (ordered) system
{b̂1, . . . , b̂d} of d orthogonal vectors such that:

(1)

b1 = b̂1

b2 = µ21b̂1 + b̂2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

bd = µd1b̂1 + · · · + µd d−1b̂d−1 + b̂d

where µ j i = b j · b̂i

‖b̂ j‖2
.
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b̂ j+1 is the orthogonal projection of b j+1 onto the subspace lin{b1, . . . , b j }⊥ =
lin{b̂1, . . . , b̂ j }⊥. The following result exhibits a connection between the orthogo-
nal system {b̂1, . . . , b̂d} and the shortest (non-zero) vector problem in L .

Lemma 28.1. Let {b1, . . . , bd} be a basis of a lattice L and {b̂1, . . . , b̂d} its Gram–
Schmidt orthogonalization. Then

‖l‖ ≥ min{‖b̂1‖, . . . , ‖b̂d‖} for any l ∈ L \ {o}.
Proof. Let l ∈ L . Then

l =
∑

i

ui bi where ui ∈ Z.

Let k be the largest index with uk �= 0. Replace b1, . . . , bk by their expressions from
(1). This gives

l =
k∑

i=1

αi b̂i where αk = uk ∈ Z \ {0}.

Since b̂1, . . . , b̂k are pairwise orthogonal, this yields the desired inequality:

‖l‖2 =
k∑

i=1

α2
i ‖b̂i‖2 ≥ α2

k‖b̂k‖2 ≥ ‖b̂k‖2. ��

After these preparations, the definition of an LLL-reduced basis is as follows:
Let {b1, . . . , bd} be a basis of a lattice L , {b̂1, . . . , b̂d} its Gram–Schmidt orthogo-
nalization and the numbers µ j i as in (1). Then {b1, . . . , bd} is an LLL-reduced basis
of L if it satisfies the following conditions:

(2) |µ j i | ≤ 1

2
for i, j = 1, . . . , d, i < j,

(3) ‖b̂ j+1 + µ j+1 j b̂ j‖2 ≥ 3

4
‖b̂ j‖2 for j = 1, . . . , d − 1.

Roughly speaking, the first condition means that the basis vectors {b1, . . . , bd} are
pairwise almost orthogonal. The vectors b̂ j and b̂ j+1 + µ j+1 j b̂ j are the projections
of b j and b j+1 onto lin{b̂1, . . . , b̂ j−1}⊥. Thus, the second condition says that the
length of the projection of b j+1 cannot be much smaller than the length of the pro-
jection of b j .

Properties of LLL-Reduced Bases

We collect some basic properties of LLL-reduced bases which will be needed later:

Theorem 28.1. Let {b1, . . . , bd} be an LLL-reduced basis of a lattice L in E
d . Then

the following hold:

(i) ‖b1‖ ≤ 2
1
4 (d−1)d(L)

1
d
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(ii) ‖b1‖ ≤ 2
1
2 (d−1) min

{‖l‖ : l ∈ L \ {o}}

(iii) ‖b1‖ · · · ‖bd‖ ≤ 2
1
4 d(d−1)d(L)

Proof. (i) Since the vectors b̂ j are pairwise orthogonal, condition (3) shows that

3

4
‖b̂ j‖2 ≤ ‖b̂ j+1‖2 + µ2

j+1 j‖b̂ j‖2 for j = 1, . . . , d − 1.

Since µ2
j+1 j ≤ 1

4 by (2),

‖b̂ j+1‖2 ≥ 1

2
‖b̂ j‖2 for j = 1, . . . , d − 1

follows. Then induction implies that

(4) ‖b̂ j‖2 ≥ 2i− j‖b̂i‖2 for i, j = 1, . . . , d, i < j.

In particular,

(5) ‖b̂ j‖2 ≥ 21− j‖b̂1‖2 = 21− j‖b1‖2 for j = 1, . . . , d.

Multiplying the latter inequalities for j = 1, . . . , d, and taking into account the
orthogonality of the system {b̂1, . . . , b̂d} and (1), Statement (i) is obtained as follows:

2−
1
2 d(d−1)‖b1‖2d ≤ ‖b̂1‖2 · · · ‖b̂d‖2 = det(b̂1, . . . , b̂d)

2

= det(b1, . . . , bd)
2 = d(L)2.

(ii) Proposition (5) yields

min{‖b̂1‖, . . . , ‖b̂d‖} ≥ 2−
1
2 (d−1)‖b1‖.

Now apply Lemma 28.1.
(iii) Using (1) and (2), we see that:

‖b j‖2 = ‖b̂ j‖2 +
j−1∑

i=1

µ2
j i‖b̂i‖2 ≤ ‖b̂ j‖2 +

j−1∑

i=1

1

4
‖b̂i‖2.

So, by (4),

‖b j‖2 ≤
(

1+
j−1∑

i=1

1

2
2 j−i

)
‖b̂ j‖2 ≤ 2 j−1‖b̂ j‖2.

Multiplying this for j = 1, . . . , d, yields (iii)

‖b1‖2 · · · ‖bd‖2 ≤ 2
1
2 d(d−1)‖b̂1‖2 · · · ‖b̂d‖2 = 2

1
2 d(d−1)d(L). ��
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LLL-Reduction is Polynomial

We now come to the main result, where a lattice in E
d is rational if all its points have

rational coordinates.

Theorem 28.2. There is a polynomial time algorithm that finds, for any given basis
{a1, . . . , ad} of a rational lattice L in E

d , an L L L-reduced basis.

Proof. Without loss of generality, we may assume that L ⊆ Z
d , and let {a1, . . . , ad}

be a basis of L . We shall transform this basis until the conditions (2) and (3)
are satisfied. The algorithm starts with the basis {b1, . . . , bd} = {a1, . . . , ad}.
Let {b̂1, . . . , b̂d} be the corresponding Gram–Schmidt orthogonalization and let the
coefficients µ j i be as in (1).

Step I. For j = 1, . . . , d, and, given j , for i = 1, . . . , j − 1, replace b j by
b j −)µ j i�bi , where )µ j i� is the integer nearest to µ j i . (In case of ambiguity choose
the smaller integer.) Then go to Step II.

Step I does not change the Gram–Schmidt orthogonalization of the basis. Hence,
after executing (the substeps of) Step I for a certain j , the newµ j i will satisfy |µ j i | ≤
1
2 for i = 1, . . . , j −1. Executing (the substeps of) Step I for a larger j will not spoil
this property. Thus executing (all substeps of) Step I yields a basis which satisfies
condition (2).

Step II. If there is an index j violating condition (3), interchange b j and b j+1
and return to Step I.

We analyze this step. Let

c1 = b1, . . . , c j−1 = b j−1, c j = b j+1, c j+1 = b j , c j+2 = b j+2, . . . , cd = bd .

Then ĉi = b̂i for i �= j, j + 1. Further, ĉ j = b̂ j+1 + µ j+1 j b̂ j and since condition
(3) is violated for j , we have that:

(6) ‖ĉ j‖2 <
3

4
‖b̂ j‖2.

The formula for ĉ j+1 is more complicated, but it is not needed. For our purpose it is
sufficient to note that from

‖ĉ1‖2 · · · ‖ĉd‖2 = ‖b̂1‖2 · · · ‖b̂d‖2 = d(L)2

it follows that ‖ĉ j‖2‖ĉ j+1‖2 = ‖b̂ j‖2‖b̂ j+1‖2 and thus by (6)

(7) ‖ĉ j‖2(d− j)+2‖ĉ j+1‖2(d− j) <
3

4
‖b̂ j‖2(d− j)+2‖b̂ j+1‖2(d− j).

After having described the algorithm we come to the proof of the Theorem. First,
the following will be shown:

(8) The total number of arithmetic operations in the algorithm is polynomial in
the encoding length of the input.
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To estimate the number of times Steps I and II are executed before a reduced basis is
obtained (if at all), we study the quantity

D = ‖b̂1‖2d‖b̂2‖2(d−1) · · · ‖b̂d‖2.

By the earlier remarks and (7), Step I does not change the value of D, while Step II
decreases it by a factor less than 3

4 . It follows from Gram’s determinant theorem that

‖b̂1‖2 · · · ‖b̂ j‖2 = det
(
(bk · bl)k,l≤ j

)
> 0 for j = 1, . . . , d,

see [295]. Thus

(9) D =
d∏

j=1

D j , where D j = det
(
(bk · bl)k,l≤ j

)
> 0.

Since L ⊆ Z
d , all bases obtained by the execution of Steps I and II are integer. Hence

all D j s and thus also D are integers at least 1. At the beginning of the algorithms we
have,

D = D0 = ‖â1‖2d · · · ‖âd‖2 ≤ ‖a1‖2d · · · ‖ad‖2 ≤ (‖a1‖ · · · ‖ad‖)2d .

Since Step I leaves D unchanged and Step II decreases it by a factor less than 3/4
and since D is always at least 1, Step II is executed at most

log D0

log 4
3

≤ 2d

log 4
3

(log ‖a1‖ + · · · + log ‖ad‖)

times. This is polynomial in the encoding length of the input. Between two execu-
tions of Step II there is at most one execution of Step I which has O(d3) arithmetic
operations. Together this yields (8).

In the following parts of the proof, it will be shown that the denominators and
the numerators of the (rational) numbers occurring in the algorithm are not too large.
This is done first for the bases and their orthogonalizations resulting from Steps I and
II and then for the bases and the numbers µ j i resulting from the substeps of Step I.

In the second part of the proof, the following will be shown:

(10) For every basis {b1, . . . , bd} resulting from Steps I or II in the algo-
rithm every coordinate of any vector b̂ j is a rational whose denomina-
tor is bounded by D0 and whose numerator is bounded by A0 D0, where
A0 = max{‖a1‖, . . . , ‖ad‖}.

We begin by showing that:

(11 Db̂ j ∈ Z
d for j = 1, . . . , d.

To see this, note that (1) implies that

(12) b̂ j = b j − λ j1b1 − · · · − λ j j−1b j−1
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with suitable λ j i ∈ R. Multiplying this representation of b̂ j by bi for i = 1, . . . , j − 1,
gives the following system of linear equations for λ j1, . . . , λ j j−1:

b j · bi = λ j1b1 · bi + · · · + λ j j−1b j−1 · bi , i = 1, . . . , j − 1.

(Note that b̂ j · bi = 0.) This system has determinant D j > 0, see (9). Since
b1, . . . , bd ∈ L ⊆ Z

d and thus all inner products bi · bk are integer, it follows
that D jλ j i ∈ Z for i = 1, . . . , j − 1. Since, by (9), the integer D j > 0 divides the
integer D > 0, (12) implies (11). Next we show that

(13) max{‖b̂1‖, . . . , ‖b̂d‖} ≤ max{‖a1‖, . . . , ‖ad‖} = A0,

say. Step I does not change this maximum. In Step II, ĉi = b̂i for i �= j, j + 1.
Further ‖ĉ j‖ < ‖b̂ j‖, by the condition of Step II, see also (6), and ‖ĉ j+1‖ ≤ ‖b̂ j‖
since ĉ j+1 is a suitable orthogonal projection of b̂ j . Hence Step II never increases the
maximum. This concludes the proof of (13). Since D ≤ D0, (11) and (13) together
yield (10).

Third, we prove the following statement:

(14) For every basis {b1, . . . , bd} resulting from Steps I or II in the algorithm
every coordinates of any vector b j is an integer bounded by

√
d A0.

For the proof it is sufficient to show that:

(15) max{‖b1‖2, . . . , ‖bd‖2} ≤ d A2
0.

After Step I has been executed, |µ j i | ≤ 1
2 . Then (1), together with (13), implies that:

‖b j‖2 =
j∑

i=1

µ2
i j‖b̂i‖2 ≤

j∑

i=1

‖b̂i‖2 ≤ d A2
0.

Hence (15) holds after an execution of Step I. Since Step II does not change the
maximum, (15) holds generally, concluding the proof of (14).

The fourth step is to show that:

(16) For every basis {b1, . . . , bd} resulting from a substep of Step I in the algo-
rithm, every coordinate of any b j is an integer bounded by (2D0 A0)

d
√

d A0.

Note that the Gram–Schmidt orthogonalization does not change during an execution
of Step I. Thus, for the bases appearing during Step I, statement (10) is valid. If, in a
substep of Step I, the basis vector b j is replaced by b j − )µ j i�bi , then

|µ j i | = |b j · b̂i |
‖b̂i‖2

≤ ‖b j‖
‖b̂i‖

≤ D0‖b j‖

by the Cauchy–Schwarz inequality and (10). Thus

|)µ j i�| ≤ 2|µ j i | ≤ 2D0‖b j‖
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and so

‖b j − )µ j i�bi‖ ≤ ‖b j‖ + |)µ j i�|‖bi‖ ≤ ‖b j‖ + 2D0‖bi‖‖b j‖.
Since i < j the bi which appears here will not change any more through executions
of sub-steps of Step I and thus will appear in the basis resulting from Step I. Hence
‖bi‖ ≤

√
d A0 by (15) and we conclude that:

‖b j − )µ j i�bi‖ ≤ (1+ 2
√

d A0 D0)‖b j‖ ≤ 2d A0 D0‖b j‖.
Since b j is changed at most j − 1 < d times, its length is increased at most by
the factor (2d A0 D0)

d . Since we start with a basis resulting from Steps I or II, an
application of (14) then yields (16).

Fifth, we prove that:

(17) For every basis {b1, . . . , bd} resulting from Steps I and II, respectively, from
a sub-step of Step I, each number µ j i is a rational where the denominator
is bounded by d2 A0(2A0 D0)

d+3 and the numerator by d A0 D3
0.

Note that

µ j i = b j · b̂i

‖b̂i‖2

and apply (10) and (14), respectively, (16).
Having proved Propositions (8), (10), (14), (16) and (17), the theorem follows.

��
Remark. Actually, the results of Lenstra, Lenstra and Lovász [646] are more
explicit than the above results. For refinements, see Grötschel, Lovász,
Schrijver [409].

28.2 Diophantine Approximation, the Shortest and the Nearest Lattice Vector
Problem

Typical classical results in number theory and, in particular, in Diophantine approx-
imation, Diophantine equations and in the classical geometry of numbers say that a
given problem, a given inequality, or a given equation has an integer solution. The
problem, how to find all or, at least one solution by means of an algorithm, say,
was left open. This situation was considered in the last few decades to be rather
unsatisfactory and much effort has been spent to remedy it. The LLL-basis reduction
algorithm was defined with such applications in mind and has turned out to pro-
vide polynomial time algorithms for the solution of numerous problems in algebra,
number theory and computational geometry.

In the following, we present applications to Diophantine approximations and the
shortest and the nearest lattice point problem.

For more information consult Kannan [563], Grötschel, Lovász and Schrijver
[409], Koy and Schnorr [613] and Micciancio and Goldwasser [721].
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Simultaneous Diophantine Approximation

The following is an approximate algorithmic version of a result of Kronecker
[618] and Minkowski [735], see Corollary 22.3. It is due to Lenstra, Lenstra and
Lovász [646].

Corollary 28.1. There is a polynomial time algorithm which, given rational numbers
ϑ1, . . . , ϑd and 0 < ε < 1, finds integers u0, u1, . . . , ud where u0 �= 0, such that:

∣∣
∣ϑ1 − u1

u0

∣∣
∣ ≤ ε

u0
≤ 2

1
4 (d+1)

u
1+ 1

d
0

, . . . ,
∣∣
∣ϑd − ud

u0

∣∣
∣ ≤ ε

u0
≤ 2

1
4 (d+1)

u
1+ 1

d
0

, 1 ≤ u0 ≤ 2
1
4 d(d+1)

εd
.

Proof. Let L be the lattice in E
d+1 with basis

a0 =
(
ϑ1, . . . , ϑd ,

εd+1

2
1
4 d(d+1)

)
, a1 = (1, 0, . . . , 0), . . . , ad = (0, . . . , 0, 1, 0).

Then

det L = εd+1

2
1
4 d(d+1)

.

By the earlier theorem of Lenstra, Lenstra and Lovász, there is a polynomial time
algorithm which finds a reduced basis of L . The first vector of this basis, say b0,
satisfies

(1) ‖b0‖ ≤ 2
d
4 (det L)

1
d+1 = ε < 1

by Theorem 28.1. Write b0 = u0a0 − u1a1 − · · · − udad , with u0, u1, . . . , ud ∈ Z.
By (1) we have u0 �= 0. Thus we may assume that u0 ≥ 1. Since the last coordinate
of b0 is εd+1u02−d(d+1)/4 and since the i th coordinate is u0ϑ − ui for i = 1, . . . , d,
it follows from (1) that

|u0ϑ − u1| ≤ ε, . . . , |u0ϑ − ud | ≤ ε, 0 < u0
εd+1

2
1
4 d(d+1)

< ε or 1 ≤ u0 ≤ 2
1
4 d(d+1)

εd
.

This clearly implies the corollary. ��

Approximation of Linear Forms

The approximate algorithmic version of the result of Dirichlet [271], see Corol-
lary 22.4, can be proved in a similar way. It is as follows:

Corollary 28.2. There is a polynomial time algorithm which, given rational numbers
ϑ1, . . . , ϑd and 0 < ε < 1, finds integers u0 and u1, . . . , ud , not all 0, such that:

|u1ϑ1 + · · · + udϑd − u0| ≤ ε ≤ 2
1
4 d(d+1)

max{u1, . . . , ud}d , |u1|, . . . , |ud | ≤ 2
1
4 (d+1)

ε
1
d

.
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Shortest Lattice Vector Problem

The formal statement of this homogeneous problem is as follows:

Problem 28.1. Given a lattice L in E
d , find a point l ∈ L \ {o}, such that:

‖l‖ = min
{‖m‖ : m ∈ L \ {o}}.

In the present chapter this problem appears in different versions:

Find a point v ∈ Z
d \ {o} such that q(v) = min

{
q(u) : u ∈ Z

d \ {o}}, where
q(·) is a positive definite quadratic form, see Corollary 22.1.

Determine λ1(Bd , L) = 2�(Bd , L) or, more generally, determine λ1(C, L) =
2�(C, L) where C is a o-symmetric convex body. In essence, the latter means
that the Euclidean norm is replaced by an arbitrary norm on E

d . See Sects. 23.2
and 26.3.

The Minkowski fundamental theorem applied to Bd shows that:

min
{‖m‖ : m ∈ L \ {o}} = λ1(B

d , L) ≤
(2dd(L)

V (C)

) 1
d
,

but it does not explicitly provide a point l ∈ L \ {o}, such that ‖l‖ = λ1(Bd , L). As
an immediate consequence of the Lenstra, Lenstra, Lovász theorem, we obtain the
following approximate answer to the shortest lattice vector problem.

Corollary 28.3. There is a polynomial time algorithm which, for any given basis
{a1, . . . , ad} of a rational lattice L in E

d , finds a vector l ∈ L \ {o}, such that:

‖l‖ ≤ 2
1
2 (d−1) min

{‖m‖ : m ∈ L \ {o}}.
Remark. For any fixed ε > 0 there is a polynomial time algorithm due to Schnorr

[912] with the factor (1+ ε) 1
2 (d−1) instead of 2

1
2 (d−1).

Remark. Using an approximate algorithmic version of John’s theorem 11.2, this
result can easily be extended to arbitrary norms instead of the Euclidean norm. This,
then, is an approximate algorithmic version of Minkowski’s fundamental theorem.

Nearest Lattice Point Problem

This is the following inhomogeneous problem.

Problem 28.2. Given a lattice L in E
d , find for any x ∈ E

d a point l ∈ L such that:

‖x − l‖ = min
{‖x − m‖ : m ∈ L

}
.

Van Emde Boaz [1007] has shown that this problem is NP-hard. Of course, it
may be considered also for norms different from ‖·‖. Using the LLL-basis reduction,
Babai [44] showed that an approximate answer to the nearest lattice point problem
is possible in polynomial time:
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Corollary 28.4. There is a polynomial time algorithm which, for any given basis
{a1, . . . , ad} of a rational lattice L in E

d and any point x ∈ E
d with rational coor-

dinates, finds a vector l ∈ L such that:

‖x − l‖ ≤ 2
d
2−1 min

{‖x − m‖ : m ∈ L
}
.

Proof. First, the LLL-theorem shows that there is a polynomial time algorithm which
finds an LLL-reduced basis {b1, . . . , bd}. Let {b̂1, . . . , b̂d} be its Gram–Schmidt
orthogonalization. We will use the following relations:

(2)

b1=b̂1

b2=µ21b̂1 + b̂2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
bd=µd1b̂1 + · · · + µdd−1b̂d−1 + b̂d

b̂1=b1

b̂2=ν21b1 + b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b̂d=νd1b1 + · · · + νdd−1bd−1 + bd .

Second,

(3) There is a polynomial time algorithm which finds for given rational x ∈ E
d

a point l ∈ L such that:

x − l =
d∑

i=1

λi b̂i , where |λi | ≤ 1

2
for i = 1, . . . , d.

Start with a representation of x of the form

x =
∑

i

λ0i b̂i .

Subtract )λ0d�bd to get a representation of the form

x − )λ0d�bd =
∑

i

λ1i b̂i where |λ1d | ≤ 1

2
.

Next subtract )λ1d−1�bd−1, etc. Taking into account (2) we arrive, after d steps, at (3).
Third, it will be shown that:

(4) ‖x − l‖ ≤ 2
d
2−1‖x − m‖ for any m ∈ L , where l is as in (3).

Let m ∈ L and write
x − m =

∑

i

µi b̂i .

Let k be the largest index such that λk �= µk . Then

l − m =
k∑

i=1

(λi − µi )b̂i = (λk − µk)bk + lin. comb. of b1, . . . , bk−1 ∈ L

by (2). Thus λk−µk is a non-zero integer. In particular |λk−µk | ≥ 1. Since |λk | ≤ 1
2 ,

it follows that |µk | ≥ 1
2 . So,
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‖x − m‖2 =
∑

i

µ2
i ‖b̂i‖2 ≥ 1

4
‖b̂k‖2 +

d∑

i=k+1

µ2
i ‖b̂i‖2

≥ 1

4
‖b̂k‖2 +

d∑

i=k+1

λ2
i ‖b̂i‖2

and therefore

‖x − l‖2 = ‖
∑

i

λi b̂i‖2 ≤ 1

4

k∑

i=1

‖b̂i‖2 +
d∑

i=k+1

λ2
i ‖b̂i‖2

≤ 1

4

k∑

i=1

2k−i‖b̂k‖2 +
d∑

i=k+1

λ2
i ‖b̂i‖2

≤ 2k−2‖x − m‖2 ≤ 2d−2‖x − m‖2,

where we have used the inequality (4) in the proof of Theorem 28.1. The proof of (4)
and thus of the corollary is complete. ��

29 Packing of Balls and Positive Quadratic Forms

Packing of balls is a story with many chapters starting with Kepler [576, 577]. The
corresponding theory of positive definite quadratic forms dates back to Lagrange
[628] and Gauss [364]. It seems that the main reason for the intensive geometric work
on lattice packing of balls in the nineteenth and twentieth century was the arithmetic
background. Rogers [851], p.2, expressed this in his little classic on Packing and
Covering as follows:

Largely because of its connection with the arithmetic minimum of a positive definite
quadratic form, much effort has been devoted to the study of δL (Kn), where Kn is
the unit sphere in n-dimensional space.

For the notions of packing, upper density, maximum density δL(Bd) of lattice
packings of Bd and maximum density δT (Bd) of packings of translates of Bd , see
Sect. 30.1.

In this section we outline a selection of classical and modern results and meth-
ods. We begin with densest lattice packing of balls in 2 and 3 dimensions and the
density bounds of Blichfeldt and Minkowski–Hlawka. Then a chapter on the geom-
etry of positive definite quadratic forms is presented, which goes back at least to
Korkin and Zolotarev and to Voronoı̆. Finally, relations between ball packing and
error-correcting codes are discussed.

For more information, compare the monographs of Thompson [995], Conway
and Sloane [220], Leppmeier [650], Zong [1049] and Martinet [691] and the surveys
of Bambah [56] and Pfender and Ziegler [799].
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29.1 Densest Lattice Packing of Balls in Dimensions 2 and 3

The densest lattice packings of balls are known in dimensions:

d = 2 : Lagrange [628] (in arithmetic form)

d = 3 : Gauss [364]

d = 4, 5 : Korkin and Zolotarev [609, 611]

d = 6, 7, 8 : Blichfeldt [132]

d = 24 : Cohn and Kumar [211]

The densest lattice packing of balls in dimension d = 24 is provided by the Leech
lattice.

The proofs for d = 3, up to the year 2000, were either arithmetic, or geometric
but rather clumsy. Hales [472] gave a simple and elegant geometric argument which
is reproduced below. We make some remarks on the result of Hales that δL(B3) =
δT (B3) and add heuristic considerations for higher dimensions.

Densest Lattice Packing in Dimensions 2 and 3

We prove the following results of Lagrange and Gauss.

Theorem 29.1. δL(B
2) = π

2
√

3
= 0.906 899.., δL(B

3) = π

3
√

2
= 0.740 480...

Proof. The case d = 2 is left to the reader (Fig. 29.1).
For the proof in case d = 3, note first that by Theorem 30.1 there is a packing

lattice L of B3 which yields a packing of B3 of maximum density. If the ball B3

did not touch any other ball in this packing then contracting L slightly would yield a
lattice packing of higher density, which is impossible. Thus, by periodicity, the balls
in the packing are arranged as beads in parallel strings such that neighbouring balls
in each string touch. If balls in different strings did not touch then, again, by pushing
the strings suitably together, we obtain a lattice packing of B3 of higher density,
which is impossible. Thus we may arrange the strings in parallel layers where, in

Fig. 29.1. Densest lattice packing of circular discs in E
2
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each layer, neighbouring strings touch. Given a layer, the balls in each neighbouring
layer must rest in the pockets formed by three balls in our layer and touch all three
balls; otherwise we can form a lattice packing of higher density, which is impossible.
(Of these three balls two are in one string and the third one in a neighbouring string.)
We thus have obtained three balls, touching pairwise. (Of these three balls two are
neighbours in a string in our layer and one is from a parallel neighbouring layer.) We
now change our point of view. By periodicity we may suppose that these three balls
have centres at o, a, b ∈ L , where o, a, b form an equilateral triangle. The balls with
centres in the 2-dimensional sub-lattice of L generated by a, b form a layer in which
the balls are arranged hexagonally. The balls in the parallel neighbouring layers must
rest in the pockets formed by three pairwise touching balls in our layer and touch all
three balls; otherwise we can obtain a lattice packing of higher density. This shows
that L is generated by points a, b, c, such that o, a, b, c form the vertices of a regular
tetrahedron. That is, L is a face-centred cubic lattice and an elementary calculation
shows that the density is as required. ��

Densest Packing of Translates in Dimension 2 and 3

For d = 2 Thue [996, 997] showed that

δT (B
2) = δL(B

2).

A gap in Thue’s proof was filled by Fejes Tóth [327]. For a proof of a more general
result due to Fejes Tóth and Rogers, see Sect. 30.4. For a proof of Thue’s theorem,
based on Fejes Tóth’s moment theorem 33.1, compare Sect. 33.4.

In a recent breakthrough Hales has proved the so-called Kepler conjecture, which
says that

δL(B
3) = δT (B

3).

See Hales [472–474]. Hales’ proof is long and computationally involved. In [474]
an outline if given. Many mathematicians had previously worked on this problem,
including Fejes Tóth, Zassenhaus and Hsiang. Fejes Tóth, in particular, described in
his book [329] a plan of a proof in which the problem is reduced to an optimization
problem in finitely many variables over a compact set which, possibly, can be solved
in the future on a computer. This would yield a proof with a transparent mathematical
part.

Heuristic Observation

Consider densest lattice packings of the unit ball in E
d for d = 2, 3, . . . . The space

between the balls of the packings seems to become bigger and bigger as the dimen-
sion increases. Thus, for sufficiently large d, a suitable translate of Bd should fit
between the balls of a densest lattice packing. Then, by periodicity, a suitable trans-
late of the whole lattice packing also fits into the space left uncovered by the original
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lattice packing. Together with the original lattice packing of Bd , it forms a packing
of translates of Bd with density 2δL(Bd). In this dimension we then have,

δL(B
d) ≤ 1

2
δT (B

d).

29.2 Density Bounds of Blichfeldt and Minkowski–Hlawka

While the problem of finding tight lower and upper bounds or asymptotic formulae
as d → ∞ for the maximum density of lattice and non-lattice packings of balls
remains unsolved, there are substantial pertinent results.

In this section we give Blichfeldt’s upper estimate for δT (Bd) and the lower
estimate for δL(Bd) which follows from the Minkowski–Hlawka theorem. Then
more precise upper estimates for δT (Bd) due to Sidel’nikov, Kabat’janski and
Levenstein and lower estimates for δL(Bd) of Schmidt and Ball are described.

Upper Estimate for δT (Bd); Blichfeldt’s Enlargement Method

The following result of Blichfeldt [131] was the first substantial improvement of the
trivial estimate δT (Bd) ≤ 1.

Theorem 29.2. δT (B
d) ≤ d + 2

2
2−

d
2 = 2−

d
2+o(d) as d →∞.

Proof. The first step is to show the inequality of Blichfeldt:

(1)
n∑

j,k=1
‖t j − tk‖2 ≤ 2n

n∑

j=1
‖s − t j‖2 for all t1, . . . , tn, s ∈ E

d .

Clearly,

n∑

j,k=1

(a j − ak)
2 =

∑

j,k

(a2
j + a2

k − 2a j ak) =
∑

j,k

(a2
j + a2

k )− 2
(∑

j

a j

)2

≤
∑

j,k

(a2
j + a2

k ) = 2n
∑

j

a2
j for all a1, . . . , an ∈ R.

Then,
∑

j,k

‖t j − tk‖2 =
∑

j,k

‖(s − t j )− (s − tk)‖2 =
∑

j,k

∑

i

(
(si − t j i )− (si − tki )

)2

≤
∑

i

∑

j,k

(
(si − t j i )− (si − tki )

)2 ≤ 2n
∑

i

∑

j

(si − t j i )
2

= 2n
∑

j

∑

i

(si − t j i )
2 = 2n

∑

j

‖s − t j‖2,

concluding the proof of Blichfeldt’s inequality (1).
In the second step, we prove the following estimate, where the function f is

defined by f (r) = max
{
0, 1− 1

2r2
}

for r ≥ 0.
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(2) Let {Bd + t : t ∈ T } be a packing of the unit ball Bd . Then

∑

t∈T

f (‖s − t‖) ≤ 1 for each s ∈ E
d .

Since {Bd + t : t ∈ T } is a packing, any two distinct vectors t ∈ T have distance
at least 2. Hence

∑

j,k

‖t j − tk‖2 ≥ 4n(n − 1) for any distinct t1, . . . , tn ∈ T .

An application of Blichfeldt’s inequality (1) implies that:

∑

j

‖s − t j‖2 ≥ 2(n − 1) for any distinct t1, . . . , tn ∈ T and s ∈ E
d .

Thus
∑

t∈T

f (‖s − t‖) =
∑

j

f (‖s − t j‖) =
∑

j

(
1− 1

2
‖s − t j‖2)

≤ n − (n − 1) = 1 for s ∈ E
d ,

where, for given s, the points t1, . . . , tn are precisely the points t of T with ‖s− t‖ <√
2, i.e. those points t of T with f (‖s − t‖) > 0. The proof of (2) is complete.

In the third step we show the following:

(3) Let {Bd + t : t ∈ T } be a packing of Bd . Then its upper density is at most
d + 2

2
2−

d
2 .

Let K be the cube {x : |xi | ≤ 1}. Proposition (2) and the definition of f then yield
the following:

V
(
(τ + 2

√
2)K

) ≥
∫

(τ+2
√

2)K

{∑

t∈T

f (‖s − t‖)}ds

≥
∑

t∈T∩(τ+√2)K

∫

√
2Bd+t

f (‖s − t‖) ds =
∑

t∈T∩(τ+√2)K

∫

√
2Bd

f (‖s‖) ds

=
∑

t∈T∩(τ+√2)K

√
2∫

0

S(r Bd) f (r) dr =
∑

t∈T∩(τ+√2)K

d V (Bd)

√
2∫

0

rd−1
(
1− r2

2

)
dr

= 2

d + 2
2

d
2

∑

t∈T∩(τ+√2)K

V (Bd) ≥ 2
d
2+1

d + 2

∑

t∈T

V
(
(Bd + t) ∩ τK

)
,
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where S(·) stands for ordinary surface area in E
d . Thus,

1

(2τ)d
∑

t∈T

V
(
(Bd + t) ∩ τK

) ≤ d + 2

2
2−

d
2

(
2(τ + 2

√
2)
)d

(2τ)d
.

Now let τ →∞ to get Proposition (3).
Having proved (3), the definition of δT (Bd) readily yields the theorem. ��

More Precise Upper Estimates for δT (Bd)

A slight improvement of Blichfeldt’s result is due to Rogers [849]:

δT (B
d) ≤ (d/e)2−0.5d(1+ o(1)).

A refinement of Rogers’ upper estimate for small dimensions is due to Bezdek [111].
For many decades, it was a widespread belief among number theorists that, in
essence, Blichfeldt’s upper estimate for δT (Bd)was best possible. Thus it was a great
surprise when, in the 1970s, essential improvements were achieved using spherical
harmonics:

δT (Bd) ≤ 2−0.5096d+o(d) : Sidel’nikov [934]

δT (Bd) ≤ 2−0.5237d+o(d) : Levenštein [651]

δT (Bd) ≤ 2−0.599d+o(d) : Kabat’janski and Levenštein [557]

For an outline of the proof of the last estimate, see Fejes Tóth and Kuperberg [325].

Lower Estimate for δL(Bd)

In Sect. 30.3 we shall see, in the more general context of lattice packing of convex
bodies, that, as a consequence of the Minkowski–Hlawka theorem 24.1, the follow-
ing result holds.

Theorem 29.3. δL(B
d) ≥ 2−d .

Actually, slightly more is true, where ζ(·) denotes the Riemann zeta function:

δL(B
d) ≥ 2ζ(d) 2−d . This follows from Hlawka’s [509] version of the

Minkowski–Hlawka theorem for star bodies.

δL(B
d) ≥ 2dcd 2−d , where cd → log

√
2 as d →∞. This follows from

Schmidt’s [893] refinement of the Minkowski–Hlawka theorem.

δL(B
d) ≥ 2(d − 1)ζ(d) 2−d . This is the best known lower bound. It is

due to Ball [52].

It is believed that no essential improvement of these estimates is possible in the sense
that the best estimate is of the form

δL(B
d) ≥ 2−d+o(d) as d →∞.
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29.3 Error Correcting Codes and Ball Packing

The Minkowski–Hlawka theorem guarantees the existence of (comparatively) dense
lattice packings of balls and, more generally, of centrally symmetric convex bodies,
but does not provide constructions of such.

Starting with the work of Leech [637], error correcting codes turned out to be a
powerful tool for the construction of dense lattice and non-lattice packings of balls.
Work in this direction culminated in the construction of Rush [862] of lattice pack-
ings of balls of density 2−d+o(d), thus reaching the Minkowski–Hlawka bound. An
explicit construction of dense lattice or non-lattice packings based on error correct-
ing codes requires codes which can be given explicitly. Unfortunately this is not the
case for the codes used by Rush.

A different way to construct dense packings, in dimensions which are not too
large, is to pack congruent layers of ball packings in stacks to get a layer of 1-
dimension more, and use induction.

In this section we first give the necessary definitions from coding theory and
describe two constructions of ball packings based on codes due to Leech and Sloane
[638]. Then the layer construction is outlined.

For more information, see the monographs of Conway and Sloane [220] and
Zong [1049] and the survey of Rush [863] on sphere packing.

Binary Error Correcting Codes

In a data transmission system it is the task of error correcting codes to correct errors
which might have occurred during the transmission in the channel. See Sect. 33.4 for
some information.

A (binary error correcting) code C of length d consists of a set of ordered d-
tuples of 0s and 1s, the so-called code-words. Clearly, C can be identified with a
subset of the set of vertices of the unit cube {x : 0 ≤ xi ≤ 1} in E

d or with a subset
of Fd , where F is the Galois field consisting of 0 and 1. The 0s and 1s in a code-word
are called its letters. Given two code-words of C , the number of letters in which they
differ is their Hamming distance. The minimum of the Hamming distances of any
two distinct code-words of C is the minimum distance of C . A code C of length d
consisting of M code-words and of minimum distance m is called a (d,M,m)-code.
A (d,M,m)-code C is linear of dimension k if it is a k-dimensional linear subspace
of the d-dimensional vector space Fd over F , i.e. Fd with coordinatewise addition
modulo 2 and scalar multiplication. In this case C is called a [d, k,m]-code. If the
result of the transmission in the channel of a code-word is a word, i.e. a d-tuple of
0s and 1s, we assign to it (one of) the closest code-word(s). This is the original code-
word if the number of errors is at most )m

2 �− 1. Thus, given d, a code is good if, for
given number of code-words, its minimum distance is large, or for given minimum
distance the number of code-words is large.
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Examples of Codes

We present three codes which are important for packing of balls:
Our first example is the [d, d − 1, 2]-even weight code consisting of all words

with an even number of 1s.
A Hadamard matrix H is a d × d matrix with entries ±1 such that H H T = d I ,

where I is the d × d unit matrix. It is known that Hadamard matrices can exist
only for d = 1, 2 and multiples of 4, but whether there are Hadamard matrices for
all multiples of 4 is an open question. The following inductive construction yields
special Hadamard matrices for powers of 2:

H1 = (1), H2 =
(

H1 H1
H1 −H1

)
, . . . , H2k =

(
Hk Hk

Hk −Hk

)
, . . .

Observe that the first row and column of H8 contain only 1s. Now consider the matrix
H̃8 by replacing the 1s by 0s and the −1s by 1s. Delete the first column of H̃8. The
rows of the remaining matrix then form a (7, 8, 4)-code. The code-words form the
vertices of a regular simplex inscribed into the unit cube in E

7.
The Golay code G24 is a (24, 212, 8)-code which is defined as follows: Let G12

be the 12× 12 matrix (cik), where

cik =
⎧
⎨

⎩

0 if i = k = 1 or i, k ≥ 2 and i + k − 4 is a
quadratic residue mod 11,

1 otherwise,

and let I12 be the 12 × 12 unit matrix. Then G24 is the 12-dimensional subspace of
F24 spanned by the rows of the matrix (I12,G12).

Construction of Ball Packings by Means of Codes

Leech and Sloane [638] specified three basic constructions of packings of balls using
error correcting binary codes. We describe two of these, constructions A and B.

Theorem 29.4. Construction A: Let C be a (d,M,m)-code. We consider C as a
subset of the set of vertices of the unit cube in E

d . Let

T = C + 2 Z
d , ρ = min

{
1,

√
m

2

}
.

Then {ρBd + t : t ∈ T } is a packing of density

Mρd V (Bd)

2d
.

If C is linear, then T is a lattice.
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Proof. In order to show that {ρBd + t : t ∈ T } is a packing it is sufficient to prove
the following:

(1) s, t ∈ T, s �= t ⇒ ‖s − t‖ ≥ 2ρ.

Let s = c + 2u, t = d + 2v . If c �= d, then c − d has at least m coordinates
equal to ±1. Thus s − t = c − d + 2(u − v) has at least m odd coordinates. Hence
‖s− t‖ ≥ √m ≥ 2ρ. If c = d, then s− t = 2(u−v) �= o and thus ‖s− t‖ ≥ 2 ≥ 2ρ.
This concludes the proof of (1) and thus shows that {ρBd + t : t ∈ T } is a packing.
The other assertions are obvious. ��

An application of the Construction A to the [d, d − 1, 2]-even weight code for
d = 3, 4, 5 yields the densest lattice packing of balls in these dimensions. If this
construction is applied to the (7, 8, 4)-code constructed earlier by means of the
Hadamard matrix H8, it yields the densest lattice packing of balls for d = 7.

Using a refined version of construction A and codes with large alphabets, Rush
[862] was able to construct lattice packings of Bd of density 2−d+o(d), thus reaching
the Minkowski–Hlawka bound, see Theorem 29.3.

Theorem 29.5. Construction B: Let C be a (d,M,m)-code such that the weight of
each code-word is even. Let

T = {
t ∈ C + 2Z

d : 4 | t1 + · · · + td
}
, ρ = min

{√
2,

√
m

2

}
.

Then {ρBd + t : t ∈ T } is a packing of density

Mρd V (Bd)

2d+1
.

If C is linear, then T is a lattice.

The proof of this result is similar to that of Theorem 29.4 and thus is omitted.

The Leech Lattice

If Construction B is applied to the Golay code G24, we obtain a lattice packing
{B24 + (1/√2) l : l ∈ L}. It turns out that a suitable translate of this packing fits
into the space left uncovered. This gives again a lattice packing {B24 + (1/√2)m :
m ∈ M} where M is the lattice L ∪ (L + a), a = (1/2) (1, 1, . . . , 1,−3), the Leech
lattice. The Leech lattice goes back to the Göttingen thesis of Niemeier [771]. Cohn
and Kumar [211] proved that it provides the densest lattice packing of balls in E

24.
The number of neighbours of B24 in the Leech lattice packing of B24 is 196560. This
is the maximum number of neighbours of B24 in any lattice packing and, moreover,
in any packing of B24 as shown by Levenštein [652] and Odlyzko and Sloane [775].
See also Zong [1049].



430 Geometry of Numbers

The Layer Construction

A different construction for dense lattice packings of balls can be described as fol-
lows: For d = 1 consider the packing {B1 + u : u ∈ 2Z}. Assume now that d > 1
and that we have constructed a lattice packing of Bd , say {Bd + l : l ∈ Ld} where
Ld is a lattice in E

d . For d + 1 proceed as follows: Consider E
d as being embedded

in E
d+1 as usual (first d coordinates). Clearly, {Bd+1 + l : l ∈ Ld} is a layer of

non-overlapping balls in E
d+1. Consider a translate {Bd+1 + l + b : l ∈ Ld} of this

layer where b = (b1, . . . , bd+1) is chosen such that bd+1 > 0 is minimal and such
that {Bd+1 + l + ub : l ∈ Ld , u ∈ Z} is a packing of Bd+1 with packing lattice
Ld+1 = {l + ub : l ∈ Ld , u ∈ Z}.

This construction yields sequences of lattices (not necessarily unique, not neces-
sarily infinite). In this way one can obtain the densest lattice packing in dimensions
d = 2, . . . , 8 and 24.

29.4 Geometry of Positive Definite Quadratic Forms and Ball Packing

The geometric theory of positive definite quadratic forms, which is related to lat-
tice packing and covering with balls, was developed since the nineteenth century
mainly by the Russian school of the geometry of numbers. Among the contributors
are Korkin, Zolotarev, Voronoı̆, Delone, Ryshkov and their students. Voronoı̆ des-
erves particular mention. We list also Minkowski, Blichfeldt, Watson and Barnes.
Recent contributions are due to the French school of quadratic forms of Martinet,
see [691].

Incidentally, note that the study of general, not necessarily positive definite
quadratic forms is a quite different thing. In the context of the geometry of num-
bers it was cultivated, amongst others, by Bambah, Dumir, Hans-Gill, Raka and their
disciples at Chandigarh, see the report of Bambah, Dumir and Hans-Gill [57].

The main problem of the geometric theory of positive definite quadratic form is
to determine the extreme and the absolute extreme forms. This is equivalent to the
determination of the lattice packings of balls which have maximum density either
locally, i.e. among all sufficiently close lattice packings, or globally, i.e. among all
lattice packings. Other problems deal with minimum points, covering and reduction.

A quadratic form on E
d may be represented by the vector of its coefficients in

E
1
2 d(d+1). This allows us to transform certain problems on positive definite quadratic

forms and lattice packing of balls in E
d into geometric problems about subsets of

E
1
2 d(d+1) which, in many cases, are more accessible. The solution of the geometric

problem, finally, is translated back into the language of positive forms. The system-
atic use of this idea is due to Voronoı̆. A different application of it is our proof of
John’s characterization of the ellipsoid of maximum volume inscribed into a convex
body, see Theorem 11.2.

In the following we describe pertinent results of Korkin and Zolotarev, Voronoı̆,
Delone and Ryshkov, using the approach of Ryshkov [865].

In the book of Martinet [691], the theory of positive definite quadratic forms
is treated from an arithmetic point of view. A comprehensive modern geometric
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exposition has yet to be completed, although parts of it can be found in the liter-
ature, for example in Delone [257] and Delone and Ryshkov [259]. See also [1015].

The Cone of Positive Definite Quadratic Forms

Let q be a real quadratic form on E
d ,

q(x) = xT Ax =
d∑

i,k=1

aik xi xk for x ∈ E
d ,

where
A = (aik), aik = aki ,

is the symmetric d×d coefficient matrix of q. The coefficient vector of q is the vector

(a11, a12, . . . , a1d , a22, a23, . . . , add) ∈ E
1
2 d(d+1).

The determinant det A is the discriminant of q. In the following we will not dis-
tinguish between a quadratic form, its coefficient matrix and its coefficient vector.
A quadratic form q on E

d is positive definite if q(x) > 0 for all x ∈ E
d \ {o}.

Let P be the set of all (coefficient vectors of) positive definite quadratic forms
on E

d . If q, r ∈ P, then λq + µr ∈ P for all λ,µ > 0. Thus P is a convex cone in

E
1
2 d(d+1) with apex at the origin. A result from linear algebra says that a quadratic

form on E
d is positive definite if and only if all principal minors of its coefficient

matrix are positive. Thus, if q ∈ P, all quadratic forms on E
d , the coefficients of

which are sufficiently close to that of q, are also positive definite and thus are in P.
This means that P is open. P is called the (open convex) cone of (coefficient vectors
of) positive definite quadratic forms on E

d . P is not a polyhedral cone although it
shares several properties with polyhedral cones. For more information on the alge-
braic and geometric properties of P see the articles of Bertraneu and Fichet [103]
and Gruber [444].

Let U be an integer d × d matrix. It yields the linear transformation

x → U x

of E
d onto itself. In turn, this linear transformation induces a transformation

q(x) = xT Ax → q(U x) = xT U T AU x

of the space of all quadratic forms on E
d onto itself, or in terms of coefficient vectors,

a transformation

U : (aik)→
(∑

l,m

uli umkalm

)

of the space of coefficient vectors onto itself. U may be considered as a linear trans-

formation of E
1
2 d(d+1) onto itself which maps P onto itself.

Two forms q, r ∈ P are equivalent, if there is an integer unimodular d×d matrix
U such that r(x) = q(U x). Since UZ

d = Z
d , equivalent forms assume the same

values for integer values of the variables, that is, on Z
d .
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Lattice Packing of Balls and Positive Definite Quadratic Forms

First, let B be a non-singular d×d matrix, not necessarily symmetric. Then L = BZ
d

is a lattice in E
d . The columns b1, . . . , bd of B form a basis of L . To L or, more

precisely, to the basis B we associate the positive definite quadratic form q on E
d

defined by:

q(x) = ‖Bx‖2 = Bx · Bx = xT BT Bx = xT Ax for x ∈ E
d ,

where A = (aik) = (bi ·bk) = BT B is a symmetric d×d matrix. q is called the met-
ric form of L associated to the basis {b1, . . . , bd}. If {c1, . . . , cd} is a different basis
of L and C the matrix with columns c1, . . . , cd , then there is an integer unimodular
d × d matrix U such that C = BU . The metric form r of L associated to the basis
{c1, . . . , cn} then is

r(x) = xT CT Cx = xT U T BT BU x = xT U T AU x = q(U x) for x ∈ E
d

and thus is equivalent to q. If, on the other hand, r is a positive definite quadratic
form equivalent to q, then there is a basis of L such that r is the metric form of L
associated to this basis.

Second, let q(x) = xT Ax be a positive definite quadratic form on E
d . Then by

a result from linear algebra, there is a d × d matrix B such that A = BT B. Thus
q is the metric form of the lattice L = BZ

d associated to the basis {b1, . . . , bd}
which consists of the columns of B. Besides B it is precisely the matrices of the
form C = SB, where S is any orthogonal d × d matrix, for which A = CT C . Thus
L is unique up to (proper and improper) rotations.

Given a lattice L , we have, for the packing radius of Bd with respect to L ,

�(Bd , L) = 1

2
min

{‖l‖ : l ∈ L \ {o}} = 1

2
λ1(B

d , L).

The density of the lattice packing
{
�(Bd , L)Bd + l : l ∈ L

}
is given by:

V
(
�(Bd , L)Bd

)

d(L)
= �(Bd , L)d V (Bd)

d(L)
.

We say that L provides a locally densest lattice packing of balls if

�(Bd ,M)d V (Bd)

d(M)
≤ �(B

d , L)d V (Bd)

d(L)

for all lattices M in a suitable neighbourhood of L . If q is a positive definite quadratic
form on E

d , its arithmetic minimum min{q} is defined by:

min{q} = min
{
q(u) : u ∈ Z

d \ {o}}.
The points u ∈ Z

d \ {o}, for which min{q} is attained are the minimum points or
vectors of q. We say that q is an extreme form if
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min{r}d
det r

≤ min{q}d
det q

for all positive definite quadratic forms r in a suitable neighbourhood of q, i.e. if
the coefficient vector of r is in a suitable neighbourhood in P of the coefficient vec-
tor of q.

If L and q are such that q is the metric form of L associated to the basis
{b1, . . . , bd} of L and B is the d×d matrix with columns b1, . . . , bd , then L = BZ

d

and

min{q} = min
{
q(u) = uT BT Bu = Bu · Bu = ‖Bu‖2 : u ∈ Z

d \ {o}}
= min

{‖l‖2 : l ∈ L \ {o}} = 4�(L , Bd)2,

det q = det(BT B) = det(B)2 = d(L)2.

Hence,
min{q}d

det q
= 4d

V (Bd)2

(�(L , Bd)d V (Bd)

d(L)

)2
.

From this it follows that the problem to determine the locally densest lattice packings
of balls in E

d and the problem to determine the extreme positive definite quadratic
forms on E

d are equivalent. In the following we consider only the latter.

The Set of Minimum Points

The following result contains some information on the set of minimum points. It is
due to Delone and Ryshkov [259]. Proposition (i) refines an old theorem of Korkin
and Zolotarev [611].

Theorem 29.6. Let q be a positive definite quadratic form on E
d . Then the following

hold:

(i) The absolute value of the determinant of any d-tuple of minimum vectors is
bounded above by d ! .

(ii) Assume that there are d linearly independent minimum vectors. Then there is a
basis of Z

d such that for any minimum vector the absolute value of its coordinates
with respect to this basis is bounded above by d (d !)2.

Proof. (i) The Dirichlet–Voronoı̆ cell D of the origin o with respect to the lattice Z
d

and the norm q(·)1/2 is defined by:

D = {
x : q(x) ≤ q(x − u) for all u ∈ Z

d}.

D is a convex o-symmetric polytope and {D + u : u ∈ Z
d} is a tiling of E

d .
In particular, V (D) = 1. Next,

(1) 1
2 m ∈ D for each minimum vector m.
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To see this note that, since m is a minimum vector, q(m) ≤ q(m − u) for all u ∈
Z

d \ {m}. Note that m �= 2u for each u ∈ Z
d . Hence q(m) ≤ q(m − 2u) and thus

q
( 1

2 m
) ≤ q

( 1
2 m − u

)
for all u ∈ Z

d .
Now, let m1, . . . ,md ∈ Z

d be d minimum vectors. If these are linearly depen-
dent, we are done. Otherwise, there is a basis {b1, . . . , bd} of Z

d such that:

(2)

m1 = u11b1
m2 = u21b1 + u22b2
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
md = ud1b1 + · · · · · · + uddbd

where uik ∈Z, |uik | ≤ |uii |, uii �= 0.

To see this, apply Theorem 21.3. This gives a basis satisfying (2), except, possibly,
for the condition that |uik | ≤ |uii |, but this condition can easily be obtained by
adding suitable integer multiples of b1, . . . , bi−1 to bi for i = 2, . . . , d and taking
the vectors thus obtained as the required basis. Since ± 1

2 m1, . . . ,± 1
2 md ∈ D by (1)

and D is convex, D contains the cross-polytope conv{± 1
2 m1, . . . ,± 1

2 md}. Thus

1 = V (D) ≥ V

(
conv

{
±1

2
m1, . . . ,±1

2
md

})

= 2d

d !
∣∣∣
∣det

(
1

2
m1, . . . ,

1

2
md

)∣∣∣
∣ =

1

d ! | det(m1, . . . ,md)|

= 1

d ! |u11 · · · udd | | det(b1, . . . , bd)| = 1

d ! |u11 · · · udd |.

by (2). Hence | det(m1, . . . ,md)| ≤ d !, concluding the proof of (i). Note also that
|uii | ≤ d ! and therefore

(3) |uik | ≤ d !.
(ii) Let m1, . . . ,md be d linearly independent minimum vectors and let

{b1, . . . , bd} be a basis of Z
d such that (2) and (3) hold. We then show the following:

(4) Let m be a minimum vector. Then m = a1m1+· · ·+admd where |ai | ≤ d !
for i = 1, . . . , d.

m1, . . . ,mi−1,m,mi+1, . . . ,md are d minimum vectors. Thus (i) implies that

d ! ≥ | det(m1, . . . ,mi−1,m,mi+1, . . . ,md)|
= |ai | | det(m1, . . . ,mi−1,mi ,mi+1, . . . ,md)| ≥ |ai |,

concluding the proof of (4). Finally, (4), (2) and (3) together yield (ii). ��

Perfect Forms

A positive definite quadratic form on E
d is perfect if it is uniquely determined by its

minimum vectors and the value of the minimum. In Proposition 29.7 it will be shown
that the perfect forms correspond precisely to the vertices of the so-called Ryshkov
polyhedron.
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Later we will see that perfect forms – besides being of interest per se – play an
important role for the determination of extreme forms or, more geometrically, for
the determination of lattice packings of Bd of locally maximum density. Minkowski
[742] and Voronoı̆ [1012] both proposed methods for finding all perfect forms in
d variables. Unfortunately, these methods are not efficient and it is still a task to
determine all perfect forms even for moderately large d.

If the minimum vectors of a positive definite quadratic form on E
d do not

span E
d , the form cannot be perfect. As a consequence of the above theorem and

Theorem 21.1 we thus obtain the following result:

Theorem 29.7. There are only finitely many non-equivalent perfect positive definite
quadratic forms on E

d or, in other words, only finitely many equivalence classes of
perfect positive definite quadratic forms on E

d , with the same minimum.

The numbers of non-equivalent perfect positive definite quadratic forms with
given minimum have been evaluated for dimensions d = 2, . . . , 8:

d = 2: 1 : Lagrange [628]

d = 3: 1 : Gauss [364]

d = 4: 2 : Korkin and Zolotarev [611]

d = 5: 3 : Korkin and Zolotarev [611]

d = 6: 7 : Barnes [71]

d = 7: 33 : Jaquet-Chiffelle [542]

d = 8: 10916 : Dutour Sikiric and Schürmann [280]

For more information see Martinet [691] and Nebe [767].

Ryshkov’s Approach to Results of Korkin–Zolotarev and Voronoı̆ on Perfect
and Eutactic Forms

In the following we describe an elegant path to the fundamental theorems of Korkin–
Zolotarev and Voronoı̆, where as a tool for the determination of extreme forms a gen-
eralized convex polyhedron R(m) ⊆ P, m > 0, is used, dual to the so-called Voronoı̆
polyhedron. (For the definition of generalized convex polyhedra, see Sect. 14.2.)
It was introduced by Ryshkov [865], and we call it the Ryshkov’s polyhedron:

R(m) =
⋂

u∈Zd \{o}
primitive

{
(a11, . . . , a1d , a22, . . . , add) ∈ E

1
2 d(d+1) :

∑

i,k

aik ui uk ≥ m
}
.

R(m) is the intersection of closed halfspaces in E
1
2 d(d+1) with (interior) normal

vectors (u2
1, 2u1u2, . . . , 2u1ud , u2

2, 2u2u3, . . . , u2
d). We list several properties

of R(m):

Proposition 29.1. R(m) is closed, convex and has non-empty interior. Each ray in P

starting at the origin meets bd R(m) in precisely one point and, from that point on it,
is contained in int R(m).



436 Geometry of Numbers

Proof. As an intersection of closed halfspaces, R(m) is closed and convex. The
definition of R(m) implies that each ray R in the open convex cone P starting at
the origin intersects R(m) in a half-line. Let R be such a ray and consider the
first point of the halfline R ∩ R(m), say A. Next choose 1

2 d(d + 1) further such
rays, say Ri , i = 1, . . . , 1

2 d(d + 1), in P which determine a simplicial cone which
contains the ray R in its interior. For any B ∈ R ∩ R(m), B �= A, we may
choose points Ai ∈ Ri ∩ R(m) such that B is an interior point of the simplex
conv

{
A, A1, . . . , A 1

2 d(d+1)

}
which, in turn, is contained in the convex set R(m).

This implies that int R(m) �= ∅ and thus concludes the proof of the proposition. ��
Proposition 29.2. R(m) ⊆ P.

Proof. Consider a point in R(m) and let q be the corresponding quadratic form.
We have to show that q is positive definite. By the definition of R(m)we have q(u) ≥
m > 0 for each u ∈ Z

d \{o}. Thus q(r) > 0 for each point r ∈ E
d \{o}, with rational

coordinates and therefore q(x) ≥ 0 for each x ∈ E
d by continuity. Thus q is positive

semi-definite. If q were not positive definite, then a well known arithmetic result says
that for any positive number and thus in particular for m, there is a point u ∈ Z

d \{o},
with q(u) less than this number. This is the required contradiction. ��
Proposition 29.3. The points of R(m), respectively, of bd R(m) correspond precisely
to the positive definite quadratic forms with arithmetic minimum at least m, respec-
tively, equal to m.

Proof. This is an immediate consequence of the definition of R(m) and the earlier
two propositions. ��
Proposition 29.4. Let U be an integer unimodular d × d matrix and let U be the
corresponding transformation of P. Then U

(
R(m)

) = R(m) and U
(

bd R(m)
) =

bd R(m).

Proof. This follows from Proposition 29.3 by taking into account that with any posi-
tive definite quadratic form having arithmetic minimum at least m or equal to m, any
equivalent form is also positive definite with arithmetic minimum greater or equal to
m, or equal to m, respectively. ��
Proposition 29.5. R(m) is a generalized convex polyhedron.

Proof. Considering the definition of generalized convex polyhedra in Sect. 14.2, it
is sufficient to prove that, for any q ∈ bd R(m), there is a cube K with centre q in

E
1
2 d(d+1) such that K ∩ R(m) is a convex polytope. Let q ∈ bd R(m). The positive

quadratic form q has at most 2d − 1 pairs of minimum points, see Theorem 30.2.
If a cubic neighbourhood K of q is chosen sufficiently small, then K ⊆ P and the
minimum points of any form in K are amongst those of q. This means that

K ∩ R(m) = K ∩
⋂

u∈Zd
u minimum
point of q

{
(a11, . . . , add) ∈ E

1
2 d(d+1) :

∑

i,k

aik ui uk ≥ m
}

is a polytope, concluding the proof. ��
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Proposition 29.6. Any two facets of R(m) are equivalent via a transformation of the
form U where the corresponding d × d matrix U is integer and unimodular.

Proof. Let F and G be facets of R(m). They are determined by two primitive integer
minimum vectors uF, uG ∈ Z

d , see the proof of Proposition 29.5. Now take for U
any integer unimodular d × d matrix U with UuF = uG. ��
Proposition 29.7. The perfect quadratic forms on E

d with arithmetic minimum m
correspond precisely to the vertices of R(m).

Proof. This result is clear. ��
Since at least 1

2 d(d + 1) facets meet at each vertex of the polyhedron R(m)

in E
1
2 d(d+1), the following result of Korkin and Zolotarev [611] is an immediate

consequence of this proposition:

Theorem 29.8. Each perfect positive definite quadratic form on E
d has at least

1
2 d(d + 1) pairs ±u �= o of minimum points. Among the minimum points are d
linearly independent ones.

An extension of this result to lattice packings of an o-symmetric convex body of
locally maximum density is due to Swinnerton-Dyer [978], see Theorem 30.3.

The following property of Ryshkov’s polyhedron is an immediate consequence
of Proposition 29.7 and Theorem 29.7.

Proposition 29.8. There are only finitely many vertices of R(m) which are pairwise
non-equivalent via transformations of the form U where U is an integer unimodular
d × d matrix.

The (equi-)discriminant surface D(δ), where δ > 0, consists of all (points of P

corresponding to) positive definite quadratic forms on E
d with discriminant δ. We

establish the following properties of D(δ).

Proposition 29.9. The following statements hold:

(i) Each ray in P starting at the origin meets D(δ) at precisely one point.

(ii) D(δ) is strictly convex and smooth.

The strict convexity of the discriminant surface plays an important role in our
proof of John’s theorem 11.2.

Proof. (i) is trivial.
(ii) We first show the strict convexity: let A, B ∈ D(δ) be such that A �= B. Since

A and B are not proportional to each other, Minkowski’s determinant inequality for
symmetric, positive semi-definite matrices then implies that det

(
(1−λ)A+λB

)
> δ

for 0 < λ < 1. It remains to show that D(δ) is a smooth surface: Since the gradient
of the determinant does not vanish on P and thus on D(δ), a version of the implicit
function theorem from calculus shows that the discriminant surface D(δ) = {A ∈
P : det A = δ} is smooth at each if its points. ��



438 Geometry of Numbers

Let q(x) = ∑
aik xi xk be a positive definite quadratic form q on E

d , with arith-
metric minimum m and discriminant δ = det(aik). q is eutactic if the following
statement holds: let (bik) = (aik)

−1. Then

(b11, 2b12, . . . , 2b1d , b22, 2b23, . . . , bdd),

the normal vector of the discriminant surface D(δ) at its point q, is a linear combi-
nation with positive coefficients of the vectors

(u2
1, 2u1u2, . . . , 2u1ud , u

2
2, 2u2u3, . . . , u

2
d)

where ±(u1, . . . , ud) ∈ Z
d ranges over the minimum vectors of q. These vectors

are the normal vectors of the facets of the Ryshkov polyhedron R(m) which contain
the boundary point q of R(m) and thus generate the normal cone of R(m) at q. This
seemingly strange definition is, in fact, perfectly natural, as will be clear from the
following basic theorem of Voronoı̆ [1012] and its proof.

It seems that Coxeter [229] was the first to use the word eutactic in the present
context. Presumably, he wanted to express the fact that (bik) is well (=eu in Greek)-
determined (=tactic) by the vectors (u2

1, . . . , 2u1ud , . . . , u2
d). See also Martinet [690].

Theorem 29.9. A positive definite quadratic form on E
d is extreme if and only if it is

perfect and eutactic.

Proof (by means of the Ryshkov polyhedron). Let q be a positive definite quadratic
form on E

d with coefficients aik , arithmetic minimum m and discriminant δ. For
the proof of the theorem, it is sufficient to show that the following statements are
equivalent:

(i) q is extreme.

(ii) A suitable neighbourhood of (a11, a12, . . . , add) in the polyhedron R(m)
is contained in the unbounded convex body determined by the smooth
and strictly convex surface D(δ) through (a11, a12, . . . , add).

(iii) (a11, a12, . . . , add) is the only point of R(m) in the tangent hyperplane
of D(δ) at (a11, a12, . . . , add), that is the hyperplane

{
v = (v11, . . . , vdd) ∈ E

1
2 d(d+1) :

∑

i,k

bik vik = d, vik = vki

}
,

where (aik)
−1 = (bik).

(iv) q is perfect and eutactic.

Only (iii)⇔(iv) needs justification: Consider a point of a convex polyhedron and a
hyperplane through it. Then the following are equivalent (a) the hyperplane meets the
polyhedron only at this point and (b) this point is a vertex of the polyhedron and thus
the unique point contained in all facets through it, and the exterior normal vector
of the hyperplane is a linear combination with positive coefficients of the exterior
normal vectors of these facets, see Proposition 14.1. ��
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The following is a list of the numbers of extreme forms for dimensions
d = 2, . . . , 8:

d = 2: 1 : Korkin and Zolotarev [611]

d = 3: 1 : Korkin and Zolotarev [611]

d = 4: 2 : Korkin and Zolotarev [611]

d = 5: 3 : Korkin and Zolotarev [611]

d = 6: 6 : Hofreiter [518], Barnes [71, 72]

d = 7: 30 : Conway and Sloane [221]

d = 8: 2408 : Riener [836, 837]

For more information see Martinet [691].

Remark. Using Voronoı̆’s theorem, one can decide, at least in principle, whether
a given positive quadratic form is extreme or, equivalently, whether a given lattice
provides a locally densest packing of balls.

In order to find all extreme forms it is sufficient to consider a maximal set of
inequivalent vertices of R(m) and to take those vertices q for which the tangent hy-
perplane of the discriminant surface through q meets R(m) only at q. Unfortunately,
no effective algorithm to determine the extreme forms is yet known.

30 Packing of Convex Bodies

The problem of packing of convex bodies and, in particular, of Euclidean balls has
attracted interest ever since Kepler first considered such questions. One reason for
this is that packing results can have interesting arithmetic interpretations. Among
the eminent contributors we mention Kelvin, Minkowski, Thue, Voronoı̆ and Fejes
Tóth. The first investigations of non-lattice packings are due to Thue [996, 997], the
later development was strongly influenced by the seminal work of Fejes Tóth. As a
nice historical curiosity we cite the following observation of Reynolds [832] on the
distortion of a dense packing of grains of sand, see Coxeter [231]:

As the foot presses upon the sand when the falling tide leaves it firm, the portion of
it immediately surrounding the foot becomes momentarily dry. . . . . The pressure of
the foot causes dilatation of the sand, and so more water is [drawn] through the in-
terstices of the surrounding sand . . . , leaving it dry until a sufficient supply has been
obtained from below, when it again becomes wet. On raising the foot we generally
see that the sand under and around it becomes wet for a little time. This is because
the sand contracts when the distorting forces are removed, and the excess of water
escapes at the surface.

At the beginning the sand grains form a dense packing. Then the pressure of the
foot distorts the packing which consequently becomes less dense and thus provides
more space for the water. By capillary forces the water then is drawn into the interior
of the sand. On raising the foot with the water as lubricant the sand grains again glide
back into a dense packing which provides less space for the water.
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How seriously Hilbert [501] took the packing problem can be seen from the
following question in his 18th problem:

How can one arrange most densely in space an infinite number of equal solids of
given form, e.g. spheres with given radii or regular tetrahedra with given edges (or
in prescribed position), that is, how can one so fit them together that the ratio of the
filled to the unfilled space may be as great as possible?

In this section we consider lattice packings and packings of translates of a given
convex body. After some definitions and simple remarks, we show that densest lattice
packings of convex bodies always exist. Then bounds for the number of neighbours
in lattice packings of convex bodies are given. Next, we mention an algorithm of
Betke and Henk, which permits us to determine the densest lattice packing of convex
polytopes in E

3, and present a lower bound for the maximum density of lattice pack-
ings as a consequence of the Minkowski–Hlawka theorem. Finally, we consider, in
the planar case, the relation between the lattice and the non-lattice case.

For more detailed expositions, see the books of Fejes Tóth [329,330] and Rogers
[851], and the surveys of Fejes Tóth [322], Fejes Tóth and Kuperberg [325], Gruber
[438] and Bambah [56].

30.1 Definitions and the Existence of Densest Lattice Packings

This section contains the definitions of packing and density and some simple, yet
important, properties of packings. In particular, we study the relation between pack-
ings of convex bodies and packings of their central symmetrizations, and show the
existence of lattice packings of convex bodies of maximum density.

Packing of Convex Bodies and the Notion of Density

A family of convex bodies in E
d is a packing if any two distinct bodies have dis-

joint interior. We will consider packings of translates and lattice packings of a given
proper convex body C , i.e. packings of the form {C + t : t ∈ T } and {C + l : l ∈ L},
where T a discrete set and L a lattice in E

d , respectively. If {C+ l : l ∈ L} is a lattice
packing of C then L is called a packing lattice of C . Let K be the cube {x : |xi | ≤ 1}.

If T is a discrete set in E
d then its upper and lower density are

lim sup
τ→+∞

#(T ∩ τK )

(2τ)d
, lim inf
τ→+∞

#(T ∩ τK )

(2τ)d
.

If the upper and the lower density of T coincide, their common value is the density
δ(T ) of the discrete set T . If the density of T exists, it may be interpreted as the
number of points of T per unit volume or, roughly speaking, as the number of points
in T divided by the volume of E

d .
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Next, given a convex body C and a discrete set T , consider the family {C + t :
t ∈ T } of translates of C by the vectors of T . Its upper and lower density are

lim sup
τ→+∞

1

(2τ)d
∑

t∈T

V
(
(C + t) ∩ τK

)
, lim inf
τ→+∞

1

(2τ)d
∑

t∈T

V
(
(C + t) ∩ τK

)
.

If they coincide, their common value is called the density δ(C, T ) of the given fam-
ily. In other sources different definitions are used. For packings and coverings with
translates of a convex body, these amount to the same values for the upper and lower
densities. For more general families of convex bodies our definitions are still close to
the intuitive notion of density and avoid strange occurrences such as packings with
upper density +∞.

Roughly speaking, the density of a family {C + t : t ∈ T } of translates of C
by the vectors of T is the total volume of the bodies divided by the total volume of
E

d . In the case where this family is a packing, the density may be considered as the
proportion of E

d which is covered by the bodies of the packing, or as the probability
that a ‘random point’ of E

d is contained in one of the bodies of the packing.
Given a convex body C , let δT (C) and δL(C) denote the supremum of the upper

densities of all packings of translates of C , and all lattice packings of C , respec-
tively. δT (C) and δL(C) are called the (maximum) translative packing density and
the (maximum) lattice packing density of C , respectively. Clearly,

0 < δL(C) ≤ δT (C) ≤ 1.

Density of Lattices and of Families of Translates of Convex Bodies

We start with the density of lattices:

Proposition 30.1. Let L be a lattice in E
d . Then its density δ(L) exists and equals

1/d(L).

Proof. Let F be a fundamental parallelotope of L and choose σ > 0 such that:

(1) F ⊆ σK .

For the proof of the proposition, it is sufficient to show that

(2)
2d(τ − σ)d

d(L)
≤ #(L ∩ τK ) ≤ 2d(τ + σ)d

d(L)
for τ > σ.

The parallelotopes {F + l : l ∈ L} are pairwise disjoint and cover E
d . Thus the

parallelotopes in this family which intersect τK , in fact, cover τK . By (1) these
parallelotopes are all contained in (τ + σ)K . Thus if m is their number, we have

#(L ∩ τK ) ≤ m = mV (F)

V (F)
≤ V

(
(τ + σ)K )

V (F)
= 2d(τ + σ)d

d(L)
.



442 Geometry of Numbers

This proves the right-hand inequality in (2). Next, consider the parallelotopes from
our family which intersect (τ − σ)K . These cover (τ − σ)K and by (1) are all
contained in τK . If n is their number, it thus follows that

#(L ∩ τK ) ≥ n = nV (F)

V (F)
≥ V

(
(τ − σ)K )

V (F)
= 2d(τ − σ)d

d(L)
,

concluding the proof of the left-hand inequality in (2). ��

Remark. Using the Möbius inversion formula from number theory, it can be shown
that the density of the set of primitive points of a lattice L in E

d is 1/(ζ(d)d(L)),
where ζ(·) is the Riemann zeta function. In particular, this shows that the probability
that a point of a lattice is primitive is 1/ζ(d).

Next, the density of a discrete set T and the density of the family of translates of
a given convex body by the vectors of T will be related:

Proposition 30.2. Let C be a proper convex body and T a discrete set in E
d . Then

the upper density of the family {C + t : t ∈ T } is equal to V (C) times the upper
density of T . Analogous statements hold for the lower density and the density, if the
latter exists.

Proof. Choose σ > 0 such that C ⊆ σK . Clearly,

(C + t) ∩ τK �= ∅ ⇒ t ∈ (τ + σ)K ,
t ∈ (τ + σ)K ⇒ (C + t) ⊆ (τ + 2σ)K .

Then

1

(2τ)d
∑

t∈T

V
(
(C + t) ∩ τK

) ≤ 1

(2τ)d
#
(
T ∩ (τ + σ)K )

V (C)

≤ 1
(
2(τ + 2σ)

)d

∑

t∈T

V
(
(C + t) ∩ (τ + 2σ)K

)
(
2(τ + 2σ)

)d

(2τ)d
.

Now let τ → ∞ to get the equalities for the upper and the lower density and the
density. ��

Corollary 30.1. Let C be a proper convex body and L a lattice in E
d . Then the family

{C + l : l ∈ L} of translates of C by the vectors of L has density

δ(C, L) = V (C)

d(L)
.

The family {C+ l : l ∈ L} of translates of the body C by the vectors of the lattice
L is sometimes called a set lattice with set C and lattice L and δ(C, L) is its density.
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Packing and Central Symmetrization

Given a convex body C , its central symmetrization is the convex body

D = 1

2
(C − C)

(
=

{
1

2
(x − y) : x, y ∈ C

})
.

(The convex body 2D = C−C is called the difference body of C .) Minkowski [740]
discovered that lattice packings of a convex body and its difference body are closely
related. His proof yields the following, slightly more general result.

Proposition 30.3. Let C be a proper convex body, D = 1
2 (C − C) its central sym-

metrization and T a discrete set in E
d . Then the following statements are equivalent:

(i) {C + t : t ∈ T } is a packing.

(ii) {D + t : t ∈ T } is a packing.

Proof. It is sufficient to show the following equivalence:

(3) Let s, t ∈ E
d . Then

(int C + s) ∩ (int C + t) �= ∅ ⇔ (int D + s) ∩ (int D + t) �= ∅.
We shall use the equalities

(4) int D = 1

2
(int C − int C),

(5) int C = 1

2
(int C + int C).

Then

(int C + s) ∩ (int C + t) �= ∅
⇒ x + s = y + t for suitable x, y ∈ int C

⇒ 1

2
(x − y)+ s = 1

2
(y − x)+ t

⇒ (int D + s) ∩ (int D + t) �= ∅ by (4)

⇒ 1

2
(u − v)+ s = 1

2
(w − z)+ t for suitable u, v, w, z ∈ int C by (4)

⇒ 1

2
(u + z)+ s = 1

2
(w + v)+ t

⇒ (int C + s) ∩ (int C + t) �= ∅ by (5),

concluding the proof of (3) and thus of the proposition. ��
Remark. If L is a packing lattice of C or, equivalently, of D = 1

2 (C − C), the
corresponding densities are

δ(C, L) = V (C)

d(L)
and δ(D, L) = V (D)

d(L)
,
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respectively. By the Brunn–Minkowski theorem 8.1 and the inequality of Rogers and
Shephard 9.10, these densities are related as follows:

δ(C, L) ≤ δ(D, L) ≤ 1

2d

(
2d

d

)
δ(C, L) ∼ 2d

√
πd

δ(C, L).

There is equality in the left inequality if and only if C is centrally symmetric and in
the right inequality if and only if C is a simplex.

Admissible and Critical Lattices

Let C be a convex body in E
d with o ∈ int C . A lattice L is admissible for C if o is

the only point of L in int C . L is critical for C if it is admissible and has minimum
determinant among all admissible lattices. This determinant is denoted ∆(C) and is
called the critical determinant of C . The lattice L is locally critical for C if it is
admissible and has minimum determinant among all admissible lattices in a suitable
neighbourhood of it.

Proposition 30.4. Let C be a proper convex body, D = 1
2 (C − C) its central sym-

metrization and L a lattice in E
d . Then the following statements are equivalent:

(i) {C + l : l ∈ L} is a packing.

(ii) {D + l : l ∈ L} is a packing.

(iii) L is admissible for 2D.

Proof. Note Proposition 30.3 and its proof. Then

{C + l : l ∈ L} is a packing

⇔ {D + l : l ∈ L} is a packing

⇔ int D ∩ (int D + l) = ∅ for each l ∈ L \ {o},
⇔ l �∈ int D − int D for each l ∈ L \ {o},
⇔ l �∈ int 2D for each l ∈ L \ {o}
⇔ L is admissible for 2D. ��

Corollary 30.2. Let C be a proper convex body, D = 1
2 (C − C) its central

symmetrization and L a lattice in E
d . Then the following statements are equivalent:

(i) {C + l : l ∈ L} is a packing of maximum density.

(ii) L is a critical lattice of 2D = C − C.

Note that

δL(C) = V (C)

∆(2D)
.
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Existence of Densest Lattice Packings

As a consequence of Mahler’s selection theorem 25.1 we prove that, for any convex
body, there exist lattice packings of maximum density.

Theorem 30.1. Let C be a proper convex body in E
d with o ∈ int C. Then there is a

packing lattice L of C such that δ(C, L) = δL(C).

Proof. Let (Ln) be a sequence of packing lattices of C such that:

(6) 0 < δ(C, L1) = V (C)

d(L1)
≤ δ(C, L2) = V (C)

d(L2)
≤ · · · → δL(C).

Then Ln is admissible for 2D = C − C by Proposition 30.4 and d(Ln) ≤ d(L1)
for all n. By Mahler’s selection theorem, the sequence (Ln) has a convergent subse-
quence. After suitable cancellation and renumbering, if necessary, we may assume
that L1, L2, · · · → L , where L is a suitable lattice. The definition of convergence
then implies that

(7) d(L1), d(L2), · · · → d(L), and

(8) for each l ∈ L there are points ln ∈ Ln, n = 1, 2, . . . ,
such that l1, l2, · · · → l.

Then,

(9) L is a packing lattice of C .

Otherwise, there is a vector l ∈ L \ {o}, such that int C ∩ (int C + l) �= ∅. By (8) we
may choose points ln ∈ Ln converging to l. Then int C ∩ (int C+ ln) �= ∅ and ln �= o
for all sufficiently large n. But, since Ln is a packing lattice of C by assumption, we
have int C ∩ (int C + ln) = ∅ for all n with ln �= o. This contradiction concludes the
proof of (9).

Finally, (6), (7) and (9) together yield the equality δ(C, L) = δL(C). ��
Remark. Similarly, δT (C) is attained for suitable configurations, see Hlawka [510]
and Groemer [399] for this and more general results.

30.2 Neighbours

Let C be a convex body and L a lattice in E
d . If {C + l : l ∈ L} is a packing, two

distinct bodies of it are neighbours if they intersect. The question arises, as to how
many neighbours can C have? Well-known pertinent results are due to Minkowski
and Swinnerton-Dyer. More recent are results of the author [419] and Engel [299].
One reason, why the notion of neighbour has attracted interest seems to be the fact
that neighbours correspond to minimum points in Diophantine inequalities. Compare
Theorems 29.6 and 29.8, where minimum points of positive definite quadratic forms
are studied.

Versions of the above question play an important role in the context of finite
packing. See, e.g. the books of Zong [1049] and Böröczky [155], in particular the
results dealing with the notions of kissing and Hadwiger numbers.
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In this section upper and lower estimates for the number of neighbours in lattice
packings are given.

Upper Estimates for the Number of Neighbours

The following are classical estimates due to Minkowski [743].

Theorem 30.2. Let C be a proper convex body and L a lattice in E
d such that {C+l :

l ∈ L} is a packing. Then C has at most 3d − 1 neighbours. If C is strictly convex, it
has at most 2d+1 − 2 neighbours.

Proof. Let D = 1
2 (C − C). Since we have the following,

{C + l : l ∈ L} packing ⇔ {D + l : l ∈ L} packing,

C + l neighbour of C ⇔ D + l neighbour of D,

C strictly convex ⇔ D strictly convex,

it is sufficient to prove the result for D instead of C . Since

{D + l : l ∈ L} packing ⇔ L is admissible for 2D,

D + l neighbour of D ⇔ l ∈ bd 2D,

it is sufficient to show the following:

(1) the lattice L , which is admissible for 2D, has at most 1
2 (3

d − 1) pairs of
points ±l on bd 2D. Here 1

2 (3
d − 1) can be replaced by 2d − 1 if 2D is

strictly convex.

First, let C and thus 2D be strictly convex and let {b1, . . . , bd} be a basis of L .
If ±l = ±(u1b1 + · · · + udbd) ∈ L ∩ bd 2D, then we cannot have ui ≡ 0 mod
2 for i = 1, . . . , d; otherwise all ui are even and 1

2 l ∈ (L ∩ int 2D) \ {o}, which
contradicts the admissibility of L for 2D. If ±l = ±(u1b1 + · · · + udbd),±m =
±(v1b1+· · ·+ vdbd) ∈ (L ∩ bd 2D) where±l �= ±m, then we cannot have ui ≡ vi

mod 2 for i = 1, . . . , d; otherwise 1
2 (l − m) ∈ L \ {o} and by the strict convexity

of 2D we have 1
2 (l − m) ∈ int 2D, which again contradicts the admissibility of L

for 2D. Since there are 2d − 1 residue classes for (u1, . . . , ud) modulo 2, excluding
(0, . . . , 0), there can be at most 2d − 1 different pairs of points ±l ∈ L ∩ bd 2D, as
required.

If, second, C and thus 2D is not strictly convex, similar arguments with congru-
ences modulo 3 lead to the bound 1

2 (3
d − 1). ��

Remark. Helmut Groemer [406] pointed out that the following simple geometric
argument shows that, in any packing of translates of a convex body C , the number of
neighbours of a fixed translate is at most 3d − 1: It is sufficient to prove this for the
difference body D instead of C . Since D is symmetric in o and convex, a translate
of D is a neighbour of D if and only if it is contained in 3D. Considering volumes,
we see that in 3D there is space for at most 3d non-overlapping translates of D,
including D.
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Remark. The bound 1
2 (3

d − 1) is attained if C = {
α1b1 + · · · + αdbd : |αi | ≤ 1

2

}

where {b1, . . . , bd} is a basis of L , and Groemer [398] showed that this is the only
case.

Remark. A result of the author [419] says that for a typical convex body C (in
the sense of Baire categories) for any lattice packing which (locally) has maximum
density, the number of neighbours of C is at most 2d2. We think that this can still
be improved and state the following conjecture, which is also in accordance with the
next result.

Conjecture 30.1. For a typical proper convex body C, for any lattice packing which
has locally maximum density, the number of neighbours of C is precisely d(d + 1).

Lower Estimate for the Number of Neighbours

The following result of Swinnerton-Dyer [978] extends the corresponding estimate
of Korkin and Zolotarev [609–611] for Euclidean balls, see Theorem 29.8. We
present the particularly elegant proof of Swinnerton-Dyer.

Theorem 30.3. Let C be a proper convex body and L a lattice in E
d such that {C+l :

l ∈ L} is a packing which has locally maximum density. Then C has at least d(d+1)
neighbours.

Proof. Again, it is sufficient to show that the lattice L which is locally critical for
2D = C − C , has at least 1

2 d(d + 1) pairs of points ±l on bd 2D.

Assume that there are only n < 1
2 d(d + 1) such pairs of points of L on bd 2D,

say ±l j , j = 1, . . . , n. Consider supporting hyperplanes of 2D at these points and
denote their exterior normal unit vectors by ±u j . Determine a real d × d matrix
A = (aik) different from the d × d zero matrix O by the conditions

aik − aki = 0 for i < k,

lT
j Au j = 0 for j = 1, . . . , n.

There is such a matrix A �= O since these conditions form a homogeneous system
of n + 1

2 d(d − 1) < d2 linear equations for the d2 variables aik . For any real s, the
linear transformation

x → (I + s A)x

maps each of the 2n points ±l j onto a point of the corresponding supporting
hyperplane and thus onto a point not in int 2D. If |s| is sufficiently small, the
linear transformation has determinant �= 0 and maps any point l ∈ L} different
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from o,±l1, . . . ,±ln , onto a point outside 2D. Thus the lattice L(s) = (I + s A)L
is admissible for 2D. Its determinant is given by:

d
(
L(s)

) = | det(I + s A)| d(L)

= det

⎛

⎜⎜⎜⎜
⎝

1+ s a11 s a12 . . . s a1d

s a21 1+ s a22 . . . s a2d

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s ad1 s ad2 . . . 1+ s add

⎞

⎟⎟⎟⎟
⎠

d(L)

= (1+ s a1 + s2a2 + · · · + sdad)d(L),

where a1 =∑

i
aii , a2 = ∑

i<k
(aii akk − aikaki ).

(The expressions for a3, . . . , ad are not needed.) Since L is locally critical, d
(
L(s)

) ≥
d(L) for all sufficiently small |s|. Hence

1+ s a1 + s2a2 + · · · ≥ 1 for all sufficiently small |s|.
Clearly, this is possible only if a1 = 0, a2 ≥ 0. Thus

0 ≤ 2a2 − a2
1 = −

∑

i,k

a2
ik and thus aik = 0 for all i, k.

This contradicts A �= O , and thus concludes the proof of the theorem. ��

30.3 The Betke–Henk Algorithm and the Lower Bound
for δL(C) of Minkowski–Hlawka

In this section we discuss general results on lattice packings of maximum density.

How to Find Lattice Packings of Convex Polytopes in E
3 of Maximum Density?

The problem of finding lattice packings of maximum density for a given convex body
is difficult. While there are many pertinent results in the planar case, until recently
this problem has been solved in E

3 only for balls, frustrums of balls, double cylin-
ders, cubes, truncated cubes, tetrahedra, cubo-octahedra, cylinders with convex base
and, trivially, space fillers. See the references in Erdös, Gruber and Hammer [307].
Minkowski [743] stated conditions for lattice packings of maximum density of a con-
vex body in E

3, but these conditions are difficult to apply in concrete cases. It thus
was a breakthrough when Betke and Henk [107] presented an efficient algorithm for
computing the density of a densest lattice packing of an arbitrary convex polytope in
E

3. As an application they calculated the densest lattice packings of all regular and
Archimedean polytopes. Let alone the trivial case of space fillers, all explicit results
in dimensions d ≥ 4 deal with balls, see Sect. 29.1.



30 Packing of Convex Bodies 449

A Lower Estimate for the Maximum Lattice Packing Density

As a consequence of the Minkowski-Hlawka theorem and the inequality of Rogers
and Shephard on difference bodies, we obtain the following estimates:

Theorem 30.4. Let C be a proper convex body in E
d . Then, as d →∞,

(i) δL(C) ≥ 2−d if C is centrally symmetric.

(ii) δL(C) ≥ 4−d+o(d) for general C.

Proof. (i) Let C be an o-symmetric proper convex body. The Minkowski–Hlawka
theorem 24.1 then shows that there are lattices L which contain no point of 2C ,
except o and with determinant d(L) greater than but arbitrarily close to V (2C). These
lattices provide packings of C where the densities V (C)/d(L) are less than, but
arbitrarily close to, 2−d . This clearly yields δL(C) ≥ 2−d .

(ii) Let C be a proper convex body. Its central symmetrization D = 1
2 (C − C)

then is a proper, o-symmetric convex body. By (i), there are lattices L which provide
packings of D with density V (D)/d(L) arbitrarily close to 2−d . By Proposition 30.3,
each such lattice provides a packing of C where for the density we have

V (C)

d(L)
= V (C)

V (D)

V (D)

d(L)
≥ 2d

(2d
d

)
V (D)

d(L)

by the Rogers–Shephard inequality. Since this is arbitrarily close to

2d

(2d
d

)2−d = 4−d+o(d),

we obtain δL(C) ≥ 4−d+o(d). ��

Heuristic Observations

We now extend the heuristic observations in Sect. 24.2. There is reason to believe
that the bound in (i) cannot be improved essentially for certain o-symmetric convex
bodies, perhaps even for Euclidean balls. If this is true, there is a functionψ : N → R

where
ψ(d) = o(d), ψ(d)→∞ as d →∞,

such that the following hold: for each d there is an o-symmetric convex body C
in E

d with V (2C) = 2−ψ(d) and each lattice L ∈ L(1) contains a point �= o in
the interior of the convex body 21+2ψ(d)/dC of volume 2ψ(d). Thus, no lattice L ∈
L(1) provides a packing of the convex body 22ψ(d)/dC of volume 2−d+ψ(d). This
implies that δL(22ψ(d)/dC) ≤ 2−d+ψ(d). Since the maximum lattice packing density
is invariant with respect to dilatations we have,

δL(C) ≤ 2−d+ψ(d).
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Let A be the set of all lattices in L(1) which contain a point �= o in the convex body
2C of volume 2−ψ(d) = o(1). Then Siegel’s mean value theorem shows that

µ(A) ≤
∫

L(1)

#∗(L ∩ 2C) dµ(L) = V (2C) = o(1).

Thus, we have the following:

All lattices L ∈ L(1), with a set of exceptions of measure o(1), provide a
packing of the convex body C with density 2−d−ψ(d).

Supposing that, for the Minkowski–Hlawka theorem, there is no essential improve-
ment possible for certain o-symmetric convex bodies, this shows the following:
a large majority of lattices of determinant 1 provide lattice packings of such bod-
ies with density close to the maximum lattice packing density.

30.4 Lattice Packing Versus Packing of Translates

Roughly speaking, the geometry of numbers deals with regular configurations, in
particular with lattice packing, covering and tiling of convex and, possibly, non-
convex bodies. Discrete geometry investigates the irregular case, in particular pack-
ing, covering and tiling of translates and congruent copies of convex and non-convex
bodies.

Classical results in E
2 say that, in several cases, general extremal configurations

are no better than the corresponding extremal lattice configurations. An example
is a result of Fejes Tóth and Rogers. It says that densest lattice packings of convex
discs have maximum density among all packings by translates. For more information
see the books of Fejes Tóth [327, 329] and Pach and Agarwal [783]. A stability
result of the author [436] gives information on the geometric appearance of general
packings of circular discs of maximum density. Such packings are asymptotically
regular hexagonal. For other results of this type see Sects. 31.4 and 33.4 and the
author’s survey [438].

For d ≥ 3 the only pertinent result for convex bodies is due to Hales. It says that
δL(B3) = δT (B3), see Sect. 29.2. (An earlier result of Bezdek and Kuperberg [109]
deals with unbounded circular cylinders.) So far there is no example known of a
convex body in E

d , d ≥ 3, with the property that the maximum lattice packing den-
sity is smaller than the maximum density of a packing by translates. If non-convex
bodies are admitted, examples for this phenomenon are known, see Szabó [980].
Compare also the discussion in Sect. 32.3. Bezdek and Kuperberg [110] specified,
for each d ≥ 3, packings of congruent ellipsoids in E

d which have density larger
than δL(Bd).

In the following we give a proof of the result of Fejes Tóth [328,329] and Rogers
[846]. The special case of solid circular discs is due to Thue [996,997] and Fejes Tóth
[327]. For a direct proof of the latter, see also Sect. 33.4.
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Lattice Packing and Packing of Translates in E
2

We show the following result of Fejes Tóth and Rogers:

Theorem 30.5. Let C be a proper convex disc in E
2. Then δT (C) = δL(C).

The following proof was given by Fejes Tóth [331]. It seems to be the shortest
proof known.

Proof. Since the strictly convex discs are dense among all convex discs, it is suf-
ficient to prove this result for strictly convex discs. The result is first proved for
triangular discs, that is strictly convex discs C contained in a convex hexagon with
vertices a, b, c, d, e, f, parallel opposite edges and such that a, c, e ∈ C . Call the
line through a and b vertical, a and e the left and right and c the bottom vertex of C
(Fig. 30.1).

The first step in the proof of the theorem is to show the following:

(1) Let {C + t : t ∈ T } be a packing of translates of a triangular disc C . Then
for each translate C + t there is an associated set At such that:

(i) diam At ≤ 3 diam C .
(ii) The sets At ∪ (C + t), t ∈ T, do not overlap.
(iii) The density of C + t in At ∪ (C + t), i.e. the quotient of the areas

of these sets, equals the density of a certain lattice packing of C .

Given C + t , consider translates C + r,C + s, not necessarily belonging to the
given packing, such that the bottom vertices of C + s and C + r coincide with the
left and right vertices of C+ t . The translates C+r,C+ s,C+ t enclose a region A.
We distinguish two cases (Fig. 30.2):

First, no translate C + u, u ∈ T, overlaps A. Then put At = A. The region At is
contained in a triangle, a congruent copy of which is contained in C + t . Hence

(2) diam At ≤ diam C .

Further,

(3) each point of At is connected to a point of C + t by a vertical line segment
and this line segment does not meet any translate C + u, u ∈ T \ {t}.

b

a

f

e

d

c

C

Fig. 30.1. Triangular disc
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C + r

C + t

At

C + u

At C + v C + w

C + s

C + t

Fig. 30.2. Packing with triangular discs

Let L be the lattice with basis r− t, s− t . Then {C+ t+ l : l ∈ L} is a lattice packing
of C + t . It contains C + r,C + s,C + t . Since

{
At ∪ (C + t)+ l : l ∈ L

}
is a lattice

tiling, d(L) = A
(

At ∪ (C + t)
) = A(At )+ A(C). Thus,

(4) the density of C + t in At ∪ (C + t), that is A(C)/
(

A(At )+ A(C)
)
, equals

the density of the lattice packing {C + t + l : l ∈ L}.
Second, there is a translate C + u, u ∈ T which overlaps A.
Choose two translates C + v,C + w, not necessarily from the given packing,

such that C + v,C +w touch C + t at the left and right vertex of C + t , respectively,
and C + u at the right vertex of C + v and the left vertex of C + w, respectively.
Since C is strictly convex, the discs C + v,C + w are unique. The translates C +
v,C + u,C + w,C + t enclose a region At , say. Since diam At = diam bd At ,

(5) diam At ≤ 3 diam C.

Since no translate C + p, p ∈ T, can overlap At , we see that

(6) each point of At is connected to a point of C + t by a vertical line segment
and this line segment does not meet any translate C + p, p ∈ T \ {t}.

Let L be the lattice with basis v − t, w − t . Then {C + t + l : l ∈ L} is a lattice
packing of C containing C + v,C + w,C + t,C + u. (The lattice translation v − t
maps C+w onto C+v+w− t and the latter meets C+w at its left vertex. Similarly,
C + v + w − t meets C + v at its right vertex. Since C is strictly convex, C + u is
the unique translate which meets C + v at its right and C + w at its left vertex, we
see that C + u = C + v + w − t .) Since

{
At ∪ (C + t) + l : l ∈ L

}
is a tiling,

d(L) = A
(

At ∪ (C + t)
) = A(At )+ A(C). Thus

(7) the density of C + t in At ∪ (C + t), that is A(C)/
(

A(At )+ A(C)
)

equals
the density of the lattice packing {C + t + l : l ∈ L}.

Propositions (2), (5); (3), (6); and (4), (7) imply (i), (ii) and (iii) in (1), respec-
tively, concluding the proof of (1).

An immediate consequence of (1) is the following:

(8) Let C be a triangular disc. Then the upper density of a packing of translates
of C never exceeds the density of the densest lattice packing of C .
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f

a

C

o

e

2D

Fig. 30.3. Disc and triangular disc

In the second step of the proof, the following will be shown:

(9) Let D be an o-symmetric strictly convex disc. Then there is a triangular
disc C such that D = 1

2 (C − C) (Fig. 30.3).

To prove this, we first show that there is an affine regular convex hexagon H inscribed
in 2D. For a ∈ bd 2D let H be the unique convex hexagon H inscribed in 2D with
opposite vertices a and −a such that its edges parallel to the line segment [a,−a]
both have length ‖a‖. Since 2D is strictly convex and symmetric in o, these edges
are also symmetric in o. Thus H is affine regular.

Choose an affine regular hexagon with consecutive vertices a, b, c, d, e, f and
centre at o which is inscribed in 2D. Translate the triangles with vertices a, b, o; o, c,
d; f, o, e along with the adjacent lunae cut off from 2D by the line segments
[a, b], [c, d] and [ f, e], such that the triangles coincide. Let C be the union of the
translated triangles and lunae. Considering an o-symmetric convex hexagon circum-
scribed to 2D the edges of which touch 2D at the points a, . . . , f, it follows that C
is triangular. Clearly, 2D = C − C , concluding the proof of (9).

In the third step of the proof, we show the following proposition:

(10) Let D be an o-symmetric strictly convex disc. Then the upper density of a
packing of translates of D never exceeds the density of the densest lattice
packing of D.

Let {D + t : t ∈ T } be a packing. By Proposition 30.2, its upper density is A(D)δ,
where δ is the upper density of T . Choose a triangular disc C such that D = 1

2 (C −
C). This is possible by (9). By Proposition 30.4, {C + t : t ∈ T } is also a packing.
Its upper density is A(C)δ. By (8), there is a packing lattice L of C and A(C)δ ≤
A(C)/d(L) by Corollary 30.1. Thus δ ≤ 1/d(L). Proposition 30.4 then shows that
L is also a packing lattice of D. Thus {D + l : l ∈ L} is a lattice packing of D
of density A(D)/d(L) ≥ A(D)δ. Now note that A(D)δ is the upper density of the
packing {D + t : t ∈ T }.
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The fourth step is to show the following:

(11) Let E be a strictly convex disc. Then the upper density of a packing of
translates of E never exceeds the density of the densest lattice packing of E .

Let D = 1
2 (E − E). Similar arguments as in the proof of (10) but with E, D instead

of D,C yield (11), concluding the proof of the theorem for strictly convex discs.
For convex discs which are not strictly convex consider approximation with

strictly convex discs and use (11). The details are tedious. ��
Remark. This result does not extend to packing by congruent copies, as the example
of a triangle shows. More precisely, for a typical convex disc C (in the sense of Baire
categories), Fejes Tóth [320] showed that there are packings of congruent copies of
C which have density larger than δL(C). It has been conjectured that this holds in all
dimensions d ≥ 2. For certain ellipsoids this was shown by Bezdek and Kuperberg
[110] and Rogers [851] conjectured it for Euclidean balls for all sufficiently large d.

In the special case of packings by congruent copies of centrally symmetric con-
vex discs, the theorem continues to hold according to a result of Fejes Tóth [327],
[329], p. 86, which is a consequence of one of his more general results.

A Conjecture of Zassenhaus for Densest Packings in E
d

A periodic packing of a proper convex body C is a packing by translates, where the
set T of translation vectors is of the form

T = L ∪ (L + t1) ∪ · · · ∪ (L + tm)

with a lattice L and vectors t1, . . . , tm ∈ E
d . It is easy to see that, for every proper

convex body C , there are periodic packings with density arbitrarily close to δT (C).
An interesting open conjecture of Zassenhaus [1042] asserts even more:

Conjecture 30.2. Let C be a proper convex body in E
d . Then δT (C) is attained by a

suitable periodic packing of C.

31 Covering with Convex Bodies

The theory of covering is less rich than the theory of packing with convex bodies
and appeared much later in the literature, the first landmark being a result of
Kershner [578]. It shows that the minimum density of coverings of E

2 by congruent
circular discs is attained by lattice coverings. One reason for the fact that covering
results have attracted less interest is that the arithmetic and number theoretic inter-
pretations of covering results seem to have attracted less attention than correspond-
ing interpretations of packing results. Yet, in the last two or three decades, covering
with convex bodies has become important in the local theory of normed spaces, see
the report of Giannopoulos and Milman [375], and Schneider [905] discovered that
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coverings with congruent balls play an essential role for Hausdorff approximation of
convex bodies by polytopes.

This section deals with lattice coverings and coverings with translates of con-
vex bodies. We begin with definitions and elementary remarks. Then star numbers
of coverings are considered. Next, the upper bound for minimum densities, due to
Rogers, is given. Finally we touch the relation between coverings with translates and
lattice coverings.

For more information, see the references cited at the beginning of Sect. 30 to
which we add a survey of Fejes Tóth [324].

31.1 Definitions, Existence of Thinnest Lattice Coverings and the Covering
Criterion of Wills

In this section we give definitions of coverings and covering density, state several
simple properties of coverings and show the existence of lattice coverings with min-
imum density. In addition, we state the covering criterion of Wills.

Covering with Convex Bodies and the Notion of Density

A family of convex bodies in E
d is a covering if their union equals E

d . We consider
only coverings by translates and lattice coverings of a given convex body C , i.e.
coverings of the form {C + t : t ∈ T } and {C + l : l ∈ L} where T is a discrete
set and L a lattice in E

d , respectively. If {C + l : l ∈ L} is a lattice covering of C ,
then L is a covering lattice of C . The upper and lower density and the density of a
discrete set or of a family of translates of a convex body are defined in Sect. 30.1.
Corollary 30.1 says that the density δ(C, L) of a family {C + l : l ∈ L} of translates
of a proper convex body by the vectors of a lattice L equals

V (C)

d(L)
.

Consider a covering by translates of a convex body. Cum grano salis, its density may
be interpreted as the total volume of the bodies divided by the volume of E

d , or as
the expectation of the number of bodies of the covering in which a random point of
E

d is contained.
Given a convex body C , let ϑT (C) and ϑL(C) denote the infima of the lower

densities of all coverings by translates of C and of all lattice coverings of C , respec-
tively. ϑT (C) and ϑL(C) are called the (minimum) translative covering density and
the (minimum) lattice covering density of C , respectively. Clearly,

1 ≤ ϑT (C) ≤ ϑL(C) <∞.

Existence of Thinnest Coverings

Using Jarnı́k’s transference theorem, the lower estimate in the theorem on successive
minima of Minkowski and Mahler’s selection theorem, we prove the following result.
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Theorem 31.1. Let C be a proper convex body in E
d with o ∈ int C. Then there is a

covering lattice L of C such that δ(C, L) = ϑL(C).

Proof. Let (Ln) be a sequence of covering lattices of C such that:

(1) δ(C, L1) = V (C)

d(L1)
≥ δ(C, L2) = V (C)

d(L2)
≥ · · · → ϑL(C) ≥ 1.

Then

(2) V (C) ≥ d(Ln).

Let B be a solid Euclidean ball with centre o such that B ⊇ C . Since Ln is a covering
lattice of C and thus a fortiori of B, it follows that for the covering radius µ(B, Ln)
of B with respect to Ln that µ(B, Ln) ≤ 1. Thus Jarnı́k’s transference theorem 23.4
implies that, for the dth successive minimum of B with respect to Ln , we have

(3) λd(B, Ln) ≤ 2µ(B, Ln) ≤ 2.

Considering the inequality

λ1(B, Ln) · · · λd(B, Ln)V (B) ≥ 2d

d ! d(Ln),

which holds by the theorem 23.1 on successive minima, it follows from (1) and
(3) that

λ1(B, Ln) ≥ 2d d(Ln)

d ! λd(B, Ln)d−1V (B)
≥ 2d V (C)

d ! 2d−1V (B) δ(C, L1)
= α,

say. Thus

(4) Ln is admissible for the ball αB with centre o.

Noting (2) and (4), Mahler’s selection theorem 25.1 implies that the sequence
(Ln) has a convergent subsequence. After appropriate cancellation and renumbering
of indices, if necessary, we may assume that L1, L2, · · · → L , where L is a suitable
lattice. The definition of convergence of lattices implies the following propositions:

(5) d(L1), d(L2), · · · → d(L).

(6) If ln ∈ Ln are such that l1, l2, · · · → l ∈ E
d , then l ∈ L .

For the proof that

(7) L is a covering lattice of C,

let x ∈ E
d . We have to show that x ∈ C + l for suitable l ∈ L . Since, by assump-

tion, the lattices Ln are covering lattices of C , there are vectors ln ∈ Ln such that
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x ∈C + ln . Hence (ln) is a bounded sequence in E
d . By cancellation and renumber-

ing, if necessary, we may assume that l1, l2, · · · → l ∈ E
d , say. Then l ∈ L by (6).

The inclusion x ∈ C + ln and the fact that C is closed yield x ∈ C + l. The proof of
(7) is complete.

Concluding, L is a covering lattice of C , by (7), and Propositions (5) and (1)
imply that

δ(C, L) = V (C)

d(L)
= lim

n→∞
V (C)

d(Ln)
= ϑL(C). ��

Remark. A different proof shows that ϑT (C) is attained for suitable discrete sets T ,
see Hlawka [510] and Groemer [399].

The Covering Criterion of Wills

Given a convex body C in E
d , when does a lattice provide a covering of C? There

is a small number of pertinent results. We cite the following interesting theorem of
Wills [1026].

Theorem 31.2. Let C be a proper convex body in E
d with V (C) > 1

2 S(C). Then the
integer lattice Z

d is a covering lattice of C.

Remark. A generalization of this result which deals with multiple coverings is due
to Bokowski, Hadwiger and Wills [138]. For other covering criteria, see [447].

Considering the covering criterion, the following problem arises.

Problem 31.1. Extend the covering criterion to general lattices.

31.2 Star Numbers

Given a lattice covering of a convex body C in E
d , its star number is the number of

the translates of C by lattice vectors, including C , which intersect the body C .
In the following we give a lower bound for star numbers due to Erdös and Rogers.

An upper bound in the spirit of the lower estimate of Swinnerton-Dyer for neighbours
in packings still seems to be missing. We formulate this as a problem:

Problem 31.2. Find a tight upper bound for the star number of lattice coverings of
(symmetric or general) proper convex bodies which (locally) have minimum density.

Lower Estimate for the Star Number

The precise lower bound for star numbers of lattice coverings of o-symmetric convex
bodies is due to Erdös and Rogers [308]:

Theorem 31.3. Let C be a proper, o-symmetric convex body and L a covering lattice
of C in E

d . Then the star number of the covering {C + l : l ∈ L} is at least 2d+1− 1.
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Proof. Call x, y ∈ E
d congruent modulo L if x − y ∈ L . The points of the form

1
2 l with l ∈ L then fall into 2d congruence classes modulo L . (To see this, let
{b1, . . . , bd} be a basis of L . Then each point of the form 1

2 l with l ∈ L is con-
gruent to one of the 2d points

u1

2
b1 + · · · + ud

2
bd where ui ∈ {0, 1}

and these points are pairwise incongruent.) Let o, 1
2 l1, . . . ,

1
2 ln , with li ∈ L and

n = 2d − 1 be representatives of these congruence classes. Then, as the translates of
C by the vectors of L cover E

d , there are m1, . . . ,mn ∈ L such that 1
2 li ∈ C + mi ,

or
1

2
li − mi ∈ C for i = 1, . . . , n.

These points lie in different congruence classes modulo L and are not congruent
to o. Since −( 1

2 li −mi ) ≡ 1
2 li −mi modulo L , we see that the points −( 1

2 li −mi )

and 1
2 li − mi lie in the same congruence class but clearly are different. Since C is

o-symmetric it follows that

the 2n = 2d+1 − 2 points ±( 1
2 li − mi ), i = 1, . . . , n,

are pairwise different, different from o and all are contained in C .

Thus C meets each of the 2n + 1 = 2d+1 − 1 distinct bodies C, C ± (li − 2mi ),
i = 1, . . . , n, of the covering. ��

31.3 Rogers’s Upper Bound for ϑT (C)

Numerous early attempts to construct or to establish the existence of dense lattice
and non-lattice coverings of E

d with convex bodies were relatively unsuccessful.
The upper bounds which were obtained all were of the form cd with suitable con-
stants c > 1. The breakthrough finally was achieved by Rogers who introduced
averaging methods to this problem which led to surprisingly small upper estimates
for the minimum density of a covering of E

d by translates of a convex body and for
lattice coverings.

In this section we prove Rogers’ upper estimate for the minimum density of a
covering of E

d by translates of a convex body. His proof is based on periodic sets
and a mean value argument.

For an exposition of the work of Rogers on coverings, the reader may wish to
consult Rogers’ classical Cambridge tract [851].

An Inequality Between δT (C) and ϑT (C)

Before embarking on Rogers’ result, we present a result which relates the packing
and the covering case and, as a consequence, yields a (large) upper bound for ϑT (C).
We point out the nice idea of proof, which might have been a starting point for
Rogers’ ingenious proof, see later.
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Proposition 31.1. Let C be a proper, o-symmetric convex body in E
d . Then

(1 ≤) ϑT (C) ≤ 2dδT (C) (≤ 2d). In particular, δT (C) ≥ 2−d .

Proof. Consider a packing of translates of C in E
d . By successively inserting addi-

tional translates of C into the interstitial space of the packing, we finally arrive at
a packing of translates of C , say {C + t : t ∈ T }, such that, for any x ∈ E

d , the
translate C + x meets at least one translate of the packing, say C + t . Thus there are
p, q ∈ C such that p+ x = q+ t , and therefore x = q− p+ t ∈ C−C+ t = 2C+ t
since C is o-symmetric. In other words, {2C + t : t ∈ T } is a covering of translates
of C . ��

If C is an o-symmetric convex body for which the Minkowski–Hlawka bound
2−d+o(d) for δL(C) is best possible, then ϑL(C) ≤ 2o(d). The upper estimates of
Rogers for ϑT (C) and ϑL(C) are more explicit and hold for all o-symmetric convex
bodies C .

Rogers’s Upper Bound for ϑT (C)

Rogers [848, 851] proved the following upper estimate for ϑT (C). See Füredi and
Kang [347] for an elegant proof of a slightly weaker result.

Theorem 31.4. Let C be a proper convex body in E
d . Then

ϑT (C) ≤ d log d
(
1+ o(1)

)
as d →∞.

The following rough outline of the proof may help the reader:

It is enough to cover a large box and to continue by periodicity.
Randomly placed translates of C cover almost the whole box

in an economic way.
With an additional trick the small holes are covered.

Proof. We may suppose that

(1) V (C) = 1

and that o is the centroid of C . Then a well-known result, which can easily be proved,
says that

(2) − 1

d
C ⊆ C.

Choose s > 0 so large that, for the lattice L = s Z
d ,

(3) any two distinct bodies of the family {C + l : l ∈ L} are disjoint.

Let F = {x : 0 ≤ xi < s} be a fundamental parallelotope of L and let m be a large
positive integer.
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After these preparations the following will be shown first:

(4) There is a set X = {x1, . . . , xm} ⊆ F such that the proportion of space left
uncovered by the set C + L + X , that is by the family

{
C + l + x : l ∈

L , x ∈ X
}
, is at most

(
1− 1

sd

)m
.

Let 1C be the characteristic function of C . It follows from (3) that the characteristic
function of the set C+L , that is the union of the family {C+l : l ∈ L}, is

∑{
1C (x−

l) : l ∈ L
}
. Thus the set C + L + xi where xi ∈ F has characteristic function∑{

1C (x − l − xi ) : l ∈ L
}
. This shows that, for X = {x1, . . . , xm} ⊆ F , the

characteristic function of the set S = E
d\(C + l + X) left uncovered by the set

C + L + X , that is by the family
{
C + l + xi : l ∈ L , xi ∈ X

}
, is given by:

1S(x) =
m∏

i=1

(
1−

∑

l∈L

1C (x − l − xi )
)
.

1S is periodic with respect to L . Thus the proportion of space left uncovered by the
set C + L + X equals

V (S ∩ F)

V (F)
= 1

V (F)

∫

F

1S(x) dx .

The mean value of this proportion extended over all choices X = {x1, . . . , xm} of m
points in F is thus

1

V (F)m

∫

F

· · ·
∫

F

(
1

V (F)

∫

F

1S(x) dx

)
dx1 · · · dxm

= 1

V (F)m+1

∫

F

(∫

F

· · ·
∫

F

m∏

i=1

(
1−

∑

l∈L

1C (x − l − xi )

)
dx1 · · · dxm

)
dx

= 1

V (F)m+1

∫

F

( m∏

i=1

∫

F

(
1−

∑

l∈L

1C (x − l − xi )

)
dxi

)
dx

= 1

V (F)m+1

∫

F

m∏

i=1

(
V (F)−

∑

l∈L

∫

F

1C (x − l − xi )dxi

)
dx

= 1

V (F)m+1

∫

F

m∏

i=1

(
V (F)−

∑

l∈L

∫

F−x+l

1C (−y)dy

)
dx

= 1

V (F)m+1

∫

F

m∏

i=1

(
V (F)−

∫

Ed

1C (−y)dy

)
dx

= 1

V (F)m+1
V (F)

(
V (F)− V (C)

)m =
(

1− V (C)

V (F)

)m

=
(

1− 1

sd

)m
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by (1). Since the mean value extended over all choices of m points in F of the
proportion in question is (1− 1/sd)m , there is at least one choice X = {x1, . . . , xm}
of m points in F for which this proportion is at most (1 − 1/sd)m , concluding the
proof of (4).

Second, we prove the following proposition where the set X is as in (4).

(5) Let 0 < t ≤ 1/d and Y = {y1, . . . , yn} ⊆ F with n maximum such that
the family

{ − tC + l + y : l ∈ L , y ∈ Y
}

is a packing contained in
E

d\(C + L + X). Then

n ≤ sd

td

(
1− 1

sd

)m

.

This is easy. First, the proportion of space covered by the packing
{− tC+l+ y : l ∈

L , y ∈ Y
}
, that is its density, is n td V (C)/V (F) = n td/sd by (1) and the choice of

L = s Z
d . Second, this packing is contained in E

d\(C + L + X) and the proportion
of space covered by the latter set is at most (1 − 1/sd)m by (4). The proof of (5) is
complete.

Third, note (4) and (5). In order to prove that

(6)
{
(1+ t)C + l + z : l ∈ L , z ∈ X ∪ Y

}
is a covering,

let w ∈ E
d . We have to show that w is contained in at least one of the bodies in (6).

By (2), (3) and since by (5) 0 < t ≤ 1
d , the bodies−tC+m+w, m ∈ L , are pairwise

disjoint. We distinguish two cases. First, (−tC + L +w)∩ (C + L + X) �= ∅. Then
there are p, q ∈ C, l,m ∈ L , xi ∈ X such that −tp + l + w = q + m + xi , or
w = tp + q − l + m + xi ∈ (1+ t)C + L + X . Second, if the first alternative does
not hold, then −tC + L + w ⊆ E

d\(C + L + X). By the maximality of the family{− tC + l+ y : l ∈ L , y ∈ Y
}

we then have (−tC + L +w)∩ (−tC + L +Y ) �= ∅.
Thus there are p, q ∈ C, l,m ∈ L , y j ∈ Y such that−tp+ l+w = −td+m+ y j ,
or w = tp + tq − l + m + y j ∈ (1 + t)C + L + Y by (2) and since 0 < t ≤ 1/d
by (5). This concludes the proof of (6).

Fourth, noting (1), the definition of L = s Z
d , Propositions (4) and (5) show that

(7) the density of the covering in (6) is

(1+ t)d(m + n)

sd
≤ (1+ t)d

(
m

sd
+ 1

td

(
1− 1

sd

)m)
.

By choosing s,m, t suitably this finally yields the desired upper bound for a covering
of E

d by translates of (1 + t)C , and thus for a corresponding covering of E
d by

translates of C : Let
m

sd
= d log

1

t
, t = 1

d log d
.
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Then

(1+ t)d
(

m

sd
+ 1

td

(
1− 1

sd

)m)

≤ edt
(

d log
1

t
+ 1

td
e
− m

sd

)

≤ e
1

log d

(
d log(d log d)+ 1

td
e−d log 1

t

)

≤
(

1+ 2

log d

)
(d log d + d log log d + 1)

≤ d log d + d log log d + 5d = d log d
(
1+ o(1)

)
. ��

Remark. The following lower estimate of Coxeter, Few and Rogers [233] shows
that Theorem 31.4 cannot be improved much, if at all:

ϑT (B
d)

>∼ d

e
√

e
as d →∞.

Rogers’s Upper Bound for ϑL(C)

A more refined proof led Rogers [850] to a corresponding result for lattice coverings
which is stated without proof:

Theorem 31.5. Let C be a proper convex body in E
d , where d ≥ 3. Then

ϑL(C) ≤ d log2d (1+o(1))as d →∞.

31.4 Lattice Covering Versus Covering with Translates

In Sect. 30.4 we encountered the phenomenon that certain general extremal configu-
rations are not better than corresponding extremal lattice configurations. In addition,
general extremal configurations may have lattice characteristics. A planar example
of this, dealing with packing of convex discs was presented and a case where general
extremal configurations exhibit regular hexagonality mentioned.

Thinnest lattice coverings in E
2 with o-symmetric convex discs have minimum

density among all coverings by translates as shown by Kershner. A stability result
of Gruber [436] says that thinnest coverings of E

2 by circular discs are arranged
asymptotically in the form of a regular hexagonal pattern. For more information
compare the survey [438].

A Result of Fejes Tóth and Bambah and Rogers

Without proof, we state the following result of Fejes Tóth [328] and Bambah and
Rogers [59]. The special case for circular discs is due to Kershner [578]. For an
alternative proof of Kershner’s result, see Sect. 33.4. It is an open problem, whether
the symmetry assumption can be omitted.
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Theorem 31.6. Let C be a proper o-symmetric convex disc in E
2. Then ϑT (C) =

ϑL(C).

Remark. It has been conjectured that the equality in this theorem holds for all con-
vex discs. A corresponding result in E

2 for coverings with congruent copies of a
centrally symmetric convex disc has been conjectured but, so far, this was proved
only under additional restrictions, see Fejes Tóth [323]. For a typical convex (not
necessarily centrally symmetric) disc C the thinnest covering with congruent copies
has density smaller than θL(C), as shown by Fejes Tóth and Zamfirescu [326].

A Conjecture of Zassenhaus on Thinnest Coverings in E
d

Considering the packing case in Sect. 30.4, it is clear what is meant by a periodic
covering with a convex body C . Zassenhaus [1042] stated a conjecture for coverings
analogous to his Conjecture 30.1 on packings as follows:

Conjecture 31.1. Let C be a proper convex body in E
d . Then ϑT (C) is attained by

a suitable periodic covering of C.

32 Tiling with Convex Polytopes

Tiling problems date back to antiquity, see the historical remarks on honeycombs by
Hales [472]. We mention also Kepler, MacLaurin and Kelvin. In his vortex theory of
planetary motion, Descartes [262] used figures which are almost Dirichlet–Voronoı̆
tilings, compare Gaukroger [362]. I owe this information to Rolf Klein [598]. Prob-
lems on quadratic forms led Dirichlet [272] and later Voronoı̆ [1014] and Delone
[255], his disciple Ryshkov and their school to study lattice and non-lattice tiling,
while Fedorov’s [319] research on tiling was the outgrowth of his seminal work in
crystallography. Hilbert’s [501] 18th problem made tiling problems more popular.
Since then there has been a continuous stream of tiling results.

In this section we first present Dirichlet–Voronoı̆ and Delone tilings. Then the
basic theorem of Venkov–McMullen will be given. Finally, we discuss a conjecture
of Voronoı̆ and Hilbert’s 18th problem.

For detailed information on tiling the reader is referred to the surveys and books
of Heesch and Kienzle [486], Rogers [851], Fejes Tóth [327], Delone and Ryshkov
[259], Grünbaum and Shephard [454], Engel [296, 297], Gruber and Lekkerkerker
[447], Erdös, Gruber and Hammer [307], Schulte [918], Senechal [925], Johnson
[550], Schattschneider and Senechal [883] and Engel, Michel and Senechal [301].

32.1 Dirichlet–Voronoı̆ and Delone Tilings and Polyhedral Complexes

Among the most important examples of tilings in E
d are the Dirichlet–Voronoı̆

tilings and the Delone triangulations. The former are important for quadratic forms
and in computational geometry, discrete geometry and convexity, and are of use in
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econometry, geography, sociology, biology, microbiology, metallurgy, crystallogra-
phy, data transmission and other fields. This is expressed, for example, by Tanemura
[988]:

... usefulness of the concept of Voronoı̆ tessellation is three-fold. Firstly, the Voronoı̆
tessellation can be one of the ways of describing the manner of a spatial distribution
of particles. ... Secondly, the Voronoı̆ tessellation is useful for modeling tiling pat-
terns which are observed in nature. ... Thirdly, the Voronoı̆ tessellation can be used
as a tool for reducing the load of computation.

After stating basic definitions, we describe, in this section, Dirichlet–Voronoı̆
tilings and Delone triangulations and show that locally finite facet-to-facet tilings
give rise to polyhedral complexes. Finally, a bound, due to Minkowski, for the num-
ber of facets of a lattice tile is given.

The tilings that will be considered are all locally finite, i.e. any bounded set in E
d

meets only finitely many tiles. Tilings which are not locally finite and, in particular,
such tilings in infinite dimensional normed spaces may have completely unexpected
properties. For some results and references to the literature, see, e.g. Klee, Maluta
and Zanco [596], Klee [594] and Gruber [432].

The reader who wants to know more on tilings in the context of Dirichlet–
Voronoı̆ and Delone tilings may consult the books of Møller [749], Engel and Syta
[302] and Okabe, Boots, Sugihara and Chiu [777] and the surveys of Fortune [341]
and Aurenhammer and Klein [42].

Tiling with Convex Bodies

A family of proper convex or unbounded proper convex bodies in E
d is a (convex)

tiling if it is both a packing and a covering. The bodies are called tiles. We will con-
sider mainly, but not exclusively, tilings which consist of lattice translates, translates,
or congruent copies of a given convex body P . These tilings are called lattice tilings,
translative tilings and tilings of congruent copies of P . The convex body P then is
a convex polytope as will be shown in this section. It is called the prototile of the
tiling. The prototile of a lattice tiling is called a parallelohedron. Particular tilings of
congruent copies of P are those where the tiles are the images of P under the rigid
motions of a crystallographic group. If this is the case, P is a stereohedron. A tiling
is facet-to-facet if, for any two tiles with (d − 1)-dimensional intersection, the inter-
section is a facet of both of them. It is face-to-face, if the intersection of any two tiles
is a face of both of them.

Dirichlet–Voronoı̆ Tilings

Dirichlet [272] first introduced tilings of the following form, where L is a lattice
in E

d :
{P + l : l ∈ L}, P = {

x : ‖x‖ ≤ ‖x − m‖ for all m ∈ L
}
.
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Fig. 32.1. Dirichlet–Voronoı̆ tiling and Delone triangulation

The systematic study of such tilings started with Voronoı̆ [1014]. More generally, let
D be a discrete set in E

d . Then the sets

{D(p) : p ∈ D}, D(p) = {
x : ‖x − p‖ ≤ ‖x − q‖ for all q ∈ D

}

are called Dirichlet–Voronoı̆ cells of D. Clearly, any cell D(p) consists of all points
x which are at least as close to p as to any other point q ∈ D. Dirichlet–Voronoı̆
cells are known under very different names, for example honeycombs, domains
of action, Brillouin, or Wigner-Seitz zones. The corresponding tilings are called
Dirichlet–Voronoı̆ tilings (Fig. 32.1).

Proposition 32.1. Let D be a discrete set. Then the corresponding Dirichlet–Voronoı̆
cells are proper, generalized convex polyhedra and form a facet-to-facet tiling of E

d .

Proof. First, the following will be shown:

(1) Each Dirichlet–Voronoı̆ cell D(p), p ∈ D, is a proper generalized convex
polyhedron.

As the intersection of closed halfspaces, each cell is a closed convex set in E
d . Since

D is discrete, each cell has non-empty interior and thus is proper. To show that it is a
generalized polyhedron, it is sufficient to prove the following: Let K be a cube. Then
the intersection D(p) ∩ K is a convex polytope for each p ∈ D. Clearly, D(p) ∩ K
is the intersection of the cube K with the halfspaces {x : ‖x− p‖ ≤ ‖x−q‖}, where
q ∈ D, q �= p. Since D is discrete, all but finitely many of these halfspaces contain
K in their interior. Thus D(p) ∩ K is the intersection of K with a finite family of
these halfspaces and thus is a convex polytope, concluding the proof of (1).

The second step is to show the following statement:

(2) The Dirichlet–Voronoı̆ cells {D(p) : p ∈ D} form a locally-finite tiling
of E

d .
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Fig. 32.2. Dirichlet–Voronoı̆ tilings are facet-to-facet

For the proof of (2) it is sufficient to show the following: if K is a cube, then only
finitely many of the Dirichlet–Voronoı̆ cells D(p) meet K and these form a tiling
of K . Let q ∈ D. Since D is discrete, all but finitely many of the halfspaces {x :
‖x− p‖ ≤ ‖x−q‖} are disjoint from K . Thus, only finitely many Dirichlet–Voronoı̆
cells D(p) meet K , say D(p1), . . . , D(pk). Any two of these cells are separated by
a hyperplane and thus have disjoint interiors. Since D is discrete, for each point of
E

d there is a least one nearest point in D. Thus E
d is the union of all cells. Together,

this implies that
{

D(p1) ∩ K , . . . , D(pk) ∩ K
}

form a tiling of K .
The third and final step is to show the following:

(3) The Dirichlet–Voronoı̆ cells {D(p) : p ∈ D} form a facet-to-facet tiling
of E

d .

By (1) and (2), each facet of a cell D(p), p ∈ D, is covered by facets of other such
cells. Thus, if (3) did not hold, there are points p, q ∈ D such that the tiles D(p) and
D(q) have facets F and G, respectively, which overlap, but do not coincide. Then
there is a (d − 2)-dimensional face H of G, say, which meets the relative interior of
F . Project F,G, H onto a 2-dimensional plane orthogonal to H . Then we have the
configuration of Fig. 32.2.

Since H is the intersection of two facets of D(q), one of which is G, there is
a point r ∈ D which, together with q, determines this facet. Then the hyperplane
{x : ‖x − p‖ = ‖x − r‖} cuts off the part of F outside H . Thus this part is not
contained in D(p). This contradiction concludes the proof of (3).

Having shown (1)–(3), the proof of the proposition is complete. ��

Delone Sets, the Empty Sphere Method and Delone Triangulations

We follow Delone [255], see also Delone and Ryshkov [259]. Let D be an (r, R)-
system or Delone set in E

d where r, R > 0. That is, a discrete set D in E
d such that

any two distinct points have distance at least r and for any point in E
d there is a point

in D at distance at most R. Lattices and periodic sets as considered by Zassenhaus,
are Delone sets but not vice versa. Delone sets still have a certain uniformity and
regularity. Now the aim is to construct a tiling of E

d with convex polytopes such that
the vertices of these polytopes are precisely the points of D. Particular such tilings
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are called Delone triangulations or Delone tilings. These can be defined by Delone’s
empty sphere method: Consider all Euclidean spheres such that D contains no point
in the interior but d + 1 or more of its points are on the sphere and such that these
points are not contained in a hyperplane. For each such empty sphere take the convex
hull of the points of D on it. This gives a proper convex polytope.

Proposition 32.2. Let D be a Delone set. Then the proper convex polytopes obtained
by the empty sphere method form a facet-to-facet tiling of E

d .

Proof. We first show the following:

(4) Let P, Q be two distinct convex polytopes obtained by the empty sphere
method. Then int P ∩ int Q = ∅.

Let S, T be the corresponding empty spheres. None of these can contain the other
one. If they are disjoint or touch, we are done. If not, they intersect along a common
(d−2)-sphere. The hyperplane H through the latter cuts off from each of the spheres
S, T a spherical cap contained in the interior of the other sphere. Thus none of these
caps can contain a point of D. This shows that H separates the points of D ∩ S from
the points of D ∩ T , which, in turn, implies (4).

Next, we prove the following:

(5) Let P be a polytope obtained by the empty sphere method from D and F a
facet of P . Then there is another such polytope which meets P in F .

Let S be the empty sphere corresponding to P . Move the centre of S in the direction
of the exterior normal of F while keeping the vertices of F on the sphere. By the
definition of D, this will eventually lead to an empty sphere T which contains the
vertices of F and one or more points of D on the far side of F . The polytope corre-
sponding to T is the desired polytope which meets P in F .

The last step is to show that the following holds:

(6) The polytopes obtained by the empty sphere method from D cover E
d .

Since the centre of an empty sphere has distance at most R from the nearest point
of D, its radius is at most R. Hence each of the polytopes obtained by the empty
sphere method has diameter at most 2R. The vertices of each of these polytopes are
contained in D. Since D is discrete, each bounded set meets only finitely many such
polytopes. If (6) did not hold, connect a point of the complement with a line segment
which avoids all faces of our polytopes of dimension at most d − 2 to a point in
the interior of one of the polytopes. The first point where this line segment meets a
polytope, say P , is an interior point of a facet F of P and there is no polytope which
meets P in F . Since this contradicts (5), the proof of (6) is complete.

The proposition now follows from (4) to (6). ��

An Alternative way to Construct Dirichlet–Voronoi and Delone Tilings

Let D be a general discrete set or a Delone set. Embed E
d into E

d+1 as usual (first d
coordinates). Consider, in E

d+1, the solid paraboloid
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S = {
(x, z) : x ∈ E

d , z ≥ ‖x‖2}

and choose a subset E ⊆ bd S such that its orthogonal projection into E
d equals

D. Define generalized polyhedra P, Q as follows: P = conv E and Q is the
intersection of the support halfspaces of S at the points of E . Then P ⊆ S ⊆ Q,
the orthogonal projections of the facets of P into E

d give the Delone triangulation
and the projections of the facets of Q into E

d the Dirichlet–Voronoi tiling corre-
sponding to D.

Facet-to-Facet Tilings give Rise to Polyhedral Complexes

A (generalized) polyhedral complex C is a family of (generalized) convex polyhedra
in E

d with the following property: The intersection of any two of its polyhedra is a
face of each of these and any face of any of its polyhedra is contained in the family.
The polyhedra of C are called the cells of C.

The proof of the following result is easy and left to the reader.

Proposition 32.3. The tiles of a locally finite, convex facet-to-facet tiling of E
d are

generalized convex polyhedra.

Our next aim is to prove the following result of the Gruber and Ryshkov [451]:

Theorem 32.1. Let T be a locally finite, convex facet-to-facet tiling of E
d . Then T

gives rise to a (generalized) polyhedral complex, that is, the family of all tiles and all
faces of tiles, including the empty face, is a (generalized) polyhedral complex.

Proof. We have to show that the intersection of any two faces of tiles is again a face
of a tile.

To prove this, we first show the following:

(7) Let S, T ∈ T. Then S ∩ T is a face of both S and T .

The main tool for the proof of (7) is the following proposition, the proof of which is
left to the reader.

(8) If a face of S contains a relative interior point of a convex subset of S (in its
relative interior), then it contains (the relative interior of) this subset (in its
relative interior).

Let f ∈ relint(S ∩ T ). Since bd S is the disjoint union of the sets relint F , F a face
of S, there is a face F of S with

(9) f ∈ relint F .

Similarly, there is a face G of T , such that

(9) f ∈ relint G.

For the proof of (7) it is sufficient to show that

(10) F = G(andthusF = G = S ∩ T ).
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Let N be a bounded convex neighbourhood of f . Since T is locally finite, N in-
tersects only finitely many tiles. By choosing N even smaller, if necessary, we may
suppose that N meets only those faces of a tile which contain f . Let s, t ∈ N be
interior points of S and T , respectively, such that the line segment [s, t] intersects
the boundaries of tiles (all of which meet N ) only in interior points of facets. Order
the tiles which intersect [s, t], say S = T1, . . . , Tm = T , so that successive tiles have
common facets. Let F12 be the common facet of S = T1 and T2. By our choice of N ,
the facet F12 contains the relative interior point f of the face F of S = T1. Hence
F ⊆ F12. Since F12 is a facet of T2 too, we deduce that F is contained in and is a
face of T2. Let F23 be the common facet of T2 and T3. By our choice of N , the facet
F23 contains the point f in the relative interior of the face F of T2. Hence F ⊆ F23.
Continuing in this way, we finally see that F is contained in and is a facet of Tm = T .
Thus F,G are both faces of T . Since f is a relative interior point of each of them,
this can hold only if F = G, concluding the proof of (10) and thus of (7).

Next, the following will be shown:

(11) Let S, T ∈ T, F a face of S and G a face of T . Then F ∩ G is a face of
both S and T .

If F = S or G = T , the statement (11) is an immediate consequence of (7). Oth-
erwise, each of F,G is the intersection of finitely many facets of S, respectively, T .
Since T is a facet-to-facet tiling, we then have

F = S ∩ S1 ∩ · · · ∩ Sm, G = T1 ∩ · · · ∩ Tn ∩ T,

say, where S1, . . . , Tn ∈ T. Hence

F ∩ G = (S ∩ S1) ∩ · · · ∩ (S ∩ Sm) ∩ (S ∩ T1) ∩ · · · ∩ (S ∩ Tn).

is an intersection of faces of S by (7), and thus itself is a face of S. Similarly, F ∩ G
is a face of T , concluding the proof of (11).

Having proved (11), the proof of the theorem is complete. ��
An immediate consequence of Propositions 32.1, 32.2 and of Theorem 32.1, is

the following result.

Corollary 32.1. Dirichlet–Voronoı̆ tilings and Delone triangulations give rise to
polyhedral complexes.

Dirichlet–Voronoı̆ and Delone Tilings are Dual

Two (generalized) polyhedral complexes C,D in E
d are dual polyhedral complexes

if there is a one-to one mapping of the cells of C onto the cells of D such that the
following statements hold:

(i) Each cell F ∈ C of dimension i is mapped onto a cell G ∈ D of dimension d − i
such that these cells have precisely one point in common which is in the relative
interior of both F and G. F is disjoint from any other cell H ∈ D of dimension
d − i and similarly for G. The cells F and G are then said to be dual to each
other.
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(ii) If cells F ∈ C and G ∈ D have non-empty intersection, then F is dual to a
suitable face of G and G is dual to a suitable face of F .

Given a Delone set, consider the corresponding Dirichlet–Voronoı̆ and Delone
tilings. It can be shown that the complexes which arise from these tilings are dual
to each other. For a proof, in the case of simplicial complexes, see Rogers [846]
Chap. 8.

The Number of Facets of a Parallelohedron

There is not much information available on parallelohedra. The following is an
immediate consequence of Minkowski’s theorem 30.2 on the number of neighbours
of a convex body in a lattice packing. For a few other properties of parallelohedra, see
the Venkov–McMullen characterization of translative tiles and thus of parallelohedra
in Sect. 32.2. See also the short report on the conjecture of Voronoı̆ in Sect. 32.3 and
the result of Ryshkov and Bol’shakova [869] cited in Sect. 32.2 later.

Proposition 32.4. The number of facets of a parallelohedron in E
d is at

most 2d+1 − 2.

This result was extended by Delone [258] to an estimate for the number of facets
of a stereohedron. For further information on stereohedra, see Delone and Sandakova
[260]. Compare also the report of Schulte [918].

32.2 The Venkov–Alexandrov–McMullen Characterization of Translative Tiles

From the viewpoint of geometry and crystallography it is of interest to study tilings
by translates and congruent copies of a given convex polytope, the prototile. A ma-
jor problem in this context is to characterize the prototiles of translative tilings and
tilings by congruent copies. A different problem is to find out whether a prototile
which tiles by translation or by congruent copies, actually is a parallelohedron, i.e. it
is a lattice tile, or a stereohedron, that is, it tiles by means of a crystallographic group.
For translative tilings both problems were solved in a satisfying way by Venkov,
Alexandrov and McMullen. For tilings by congruent copies the first problem remains
unsolved while the second problem, which goes back to Hilbert’s 18th problem, in
general has a negative answer. This was proved by Reinhardt.

Alexandrov [16], p. 349 (English edition), described the problem of characteriz-
ing parallelohedra as follows:

The problem consists in finding all possible parallelohedra. This first implies finding
all possible types of structures of parallelohedra and, second, describing the metric
characteristics for such types which, if enjoyed by a polyhedron, ensure that it is a
parallelohedron.

This problem is interesting not only in itself but also by its connections with crys-
tallography and number theory. It was first solved by the great Russian crystallogra-
pher E.S. Fedorov in 1890 ...
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This sub-section contains a proof of a characterization of translative convex
tiles due to Venkov [1008], Alexandrov [17] and, independently but much later,
McMullen [710]. The proof is difficult, a slightly different version of the proof is
due to Zong [1048] and in [712] McMullen has given an outline. The Venkov–
Alexandrov–McMullen theorem shows that, in particular, a translative convex tile
necessarily is a lattice tile or parallelohedron. Thus it is an example of the phenom-
enon that an object which has a certain property, in some cases has an even stronger
such property, see the heuristic remark in Sect. 2.1.

For extensions and auxilliary results we refer to Alexandrov [17] and Groemer
[400]. For remarks on earlier results consult [710, 711].

A conjecture of Voronoı̆ asserts, that parallelohedra are affine images of
Dirichlet–Voronoi cells of lattices. For the conjecture and some pertinent results see
Sect. 32.3. For Dirichlet–Voronoı̆ cells Ryshkov and Bol’shakova [869] proved an
interesting decomposition theorem.

Necessity of the Conditions

First, some notation is introduced. Let P be a (proper) centrally symmetric convex
polytope in E

d , each facet of which is also centrally symmetric. A sub-facet, or ridge
of P is a (d − 2)-dimensional face of P . Given a sub-facet G of P , the belt of P
corresponding to it consists of all facets of P which contain translates of G and −G
as faces.

Theorem 32.2. Let P be a proper convex body in E
d which is a translative tile. Then

the following claims hold:

(i) P is a convex polytope.

(ii) P is centrally symmetric.

(iii) Each facet of P is centrally symmetric.

(iv) Each belt of P consists of 4 or 6 facets.

Proof. Let {P + t : t ∈ T } be a translative tiling of E
d with o ∈ T .

(i) Let s, t ∈ T, s �= t . Then int(P + s) ∩ int(P + t) = ∅. Thus s − t �∈
int P − int P = int(P − P). Since o ∈ int(P − P), it follows that ‖s − t‖ is
bounded below by a positive constant. Hence T is a discrete set in E

d . This, and the
compactness of P , show that only finitely many translates touch P , say the translates
P+ti , ti ∈ T \{o}, i = 1, . . . , k, and all other translates P+t, t ∈ T \{t1, . . . , tk},
have distance from P bounded below by a positive constant. Hence each point of
bd P is contained in one of the finitely many touching sets P∩(P+ti ). The separation
theorem 4.4 for convex bodies then shows that each point in bd P is contained in one
of finitely many supporting hyperplanes. This finally implies that the convex body P
is actually a convex polytope.

(ii) Clearly, {−P − t : −t ∈ −T } is also a tiling of E
d . Since T and thus

−T are discrete as shown earlier, and since −P is compact, there are only finitely
many translates −P − ti , ti ∈ T, i = 1, . . . , k, say, which meet P . Thus P is the
union of the k non-overlapping centrally symmetric convex polytopes P∩(−P− ti ),
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i = 1, . . . , k. An application of Minkowski’s symmetry theorem 18.3 then shows that
P itself is centrally symmetric.

A different proof of (ii) can be obtained along the following lines: the tiling
{P + t : t ∈ T } clearly has density 1. This density is V (P) δ(T ) where δ(T ) is the
density of the discrete set T . {P + t : t ∈ T } is a tiling and thus a packing. Then{ 1

2 (P − P) + t : t ∈ T
}

is also a packing by Proposition 30.4. It thus has density
V
( 1

2 (P − P)
)
δ(T ) ≤ 1. To prove (ii), assume that P is not centrally symmetric.

Then P and −P are not homothetic and the Brunn–Minkowski theorem 8.1 yields
the contradiction:

1 ≥ V

(
1

2
(P − P)

)
δ(T ) > V (P) δ(T ) = 1.

(iii) By (ii) we may assume that o is the centre of P . Let F be a facet of P and
−F its opposite facet. Each point in the relative interior of F is contained in the facet
−F + t of a suitable translate P + t, t ∈ T \{o}, of the given tiling (Fig. 32.3). This
implies that the relative interior of F , and thus also F , is the union of finitely many
non-overlapping, centrally symmetric (d − 1)-dimensional convex polytopes of the
form F ∩ (−F + t). Now apply Minkowski’s symmetry theorem 18.3 (Fig. 32.4).

(iv) Note that we have already proved statements (i)–(iii). Let G be a sub-facet of
P and consider the corresponding belt. It consists of, say, k pairs of opposite facets.
For the proof of (iv) assume that, on the contrary, k ≥ 4. Consider the orthogonal

Fig. 32.3. Lattice tiles in E
2

Fig. 32.4. Lattice tiles in E
3
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projection “ ′ ” of E
d onto the 2-dimensional subspace orthogonal to G. Then P ′

is a centrally symmetric convex 2k-gon. The edges of P ′ are the projections of the
facets of the belt corresponding to G and the vertices of P ′ are the projections of
the sub-facets parallel to G, more precisely, which are translates of G or −G. The
dihedral angle of P at two adjacent facets of the belt corresponding to G equals
the internal angle of the corresponding edges of the centrally symmetric convex
2k-gon P ′. Since k ≥ 4, the following statements hold:

(1) The dihedral angle of P at a sub-facet parallel to G is less than π .

(2) The sum of the dihedral angles of P at two non-opposite sub-facets parallel
to G is greater than π and less than 2π .

(3) The sum of the dihedral angles of P at three pairwise non-opposite sub-
facets parallel to G is greater than 2π .

Choose a point g ∈ relint G which is not contained in a face of any tile P + t,
t ∈ T of dimension less than d − 2 or of dimension d − 2 but not parallel to G.
If g ∈ relint F where F is a facet of a tile P+ s, s ∈ T \{o}, Proposition (1) applied
to G, shows that there is a tile P+t, t ∈ T \{o, s},which contains g and is contained
in the wedge determined by the facet F of P + s and a facet E of P where G is a
sub-facet of E . Considering P ′, P ′ + s′, P ′ + t ′, we see that P has dihedral angles
at two non-opposite sub-facets parallel to G with sum at most π , in contradiction
to (2). By our choice of g and the case just settled, we see, if g is contained in a
tile P + s, s ∈ T \ {o}, then g is contained in the relative interior of a sub-facet of
P + s which is parallel to G. The sum of the dihedral angles at g of such tiles is 2π .
By (1)–(3) we see that g belongs to at least 3 sub-facets parallel to G. We distinguish
the following two cases: first, g belongs to 2 opposite sub-facets. Then g belongs to
2 pairs of non-opposite sub-facets which is impossible by (2). Second, g belongs to
3 pairwise non-opposite sub-facets which is impossible by (3). This shows that our
assumption that k ≥ 4 is wrong and thus concludes the proof of (iv). ��

P ′ + t ′

F ′

G′ P ′ + s′P ′

E ′

Fig. 32.5. On the proof of the Venkov–McMullen theorem
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Remark. Groemer [400] proved that a convex polytope which admits a tiling of E
d

by (positive) homothetic copies, is already a translative tile and thus a parallelohe-
dron by Theorems 32.2 and 32.3.

Sufficiency of the Conditions

More difficult is the proof of the following converse of Theorem 32.2:

Theorem 32.3. Let P be a proper convex body in E
d which satisfies Properties (i)–

(iv) in Theorem 32.2. Then P is a translative tile, more precisely even a lattice tile;
i.e. it is a parallelohedron.

Proof. In the following int is the interior relative to E
d or a sphere S and by relint

we mean the interior relative to the affine or the spherical hull. We may assume that
o is the centre of P .

In the first step we describe a family of translates of P which is a candidate for a
facet-to-facet lattice tiling of P . If F is a facet of P , then the facet −F is a translate
of F (note (ii) and (iii) and that o is the centre of P), say F = −F + tF . Clearly,
P ∩ (P + tF ) = F = −F + tF . Now consider the following family of translates
of P:

(4) {P + l : l ∈ L}, where L = {∑
uF tF : F facet of P, uF ∈ Z

}
.

We will show that this is the desired facet-to-facet lattice tiling of P . The following
notation will be needed. Given l ∈ L and a face F of the translate P + l, let L(l, F)
be the subset of L defined recursively as follows: l ∈ L(l, F) and n ∈ L(l, F) if
there is a point m ∈ L(l, F) such that P + m and P + n have a facet in common
which contains F as a face. Clearly, L(o,∅) = L and L(o, P) = {o}. Since L is an
additive sub-group of E

d and thus L(l, F) = L(o, F − l)+ l, it is sufficient to study
L(o, F) where F is a face of P . Since P contains only finitely many faces which are
translates of F ,

(5) L(l, F) is finite for each l ∈ L and each face F �= ∅ of P + l.

In the second step we will show that

(6) {P + l : l ∈ L} is a covering of E
d .

To see this, it will be proved first that

(7) for k = d, d − 1, . . . , 0, one has the following inclusion:
relint F ⊆ int

⋃{
P + l : l ∈ L(o, F)

}
for each face F of P with

dim F = k.

Obviously, (7) holds for k = d (where L(o, P) = {o}) and k = d − 1 (where
L(o, F) = {o, tF }). Assume now that k < d − 1 and (7) holds for all faces F of P
with dim F = k + 1. Let G be a face of P with dim G = k. Let S be a sphere of
dimension d − k − 1 centred at a point of relint G, orthogonal to aff G, and so small
that it meets only those faces of P + l, l ∈ L(o,G), which contain G. For the proof
that (7) holds for the face G, it is sufficient to show that

(8) S ⊆
⋃{

P + l : l ∈ L(o,G)
}
.
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Define

Q(l,G) =
⋃{⋃{

P + m : m ∈ L(l, F)
} : F face of P + l,G � F

}

for l ∈ L(o,G).

Let l ∈ L(o,G). Each point of (P + l) ∩ S lies in the relative interior of a suitable
face F of P + l with dim F > dim G = k. The induction assumption thus shows
that each point of (relint F) ∩ S has a neighbourhood in S which is contained in

⋃{
P + m : m ∈ L(l, F)

} ⊆ Q(l,G).

Since (P + l) ∩ S is compact, there is a δ > 0 such that the δ-neighbourhood of
(P + l) ∩ S in S is contained in Q(l,G). As L(o,G) is finite by (5), we may take
the same δ for each l ∈ L(o,G). Hence the δ-neighbourhood in S of each point of
the set

R =
⋃{

P + l : l ∈ L(o,G)
} ∩ S ⊆ S

is contained in
⋃{

Q(l,G) : l ∈ L(o,G)
} =

⋃{
P + l : l ∈ L(o,G)

}
.

Since S is arcwise connected and R compact and non-empty, this can hold only if
R = S, concluding the proof of (8). This concludes the induction and thus proves (7).

P is the disjoint union of the sets relint F where F ranges over the 0, 1, . . . , d-
dimensional faces of P . It thus follows from (7) that P ⊆ int

⋃{P + l : l ∈ L}.
Taking into account the fact that P is compact, a suitable δ-neighbourhood of P
is contained in int

⋃{P + l : l ∈ L} too. By periodicity the δ-neighbourhood of⋃{P + l : l ∈ L} is also contained in int
⋃{P + l : l ∈ L}. This is possible only if⋃{P + l : l ∈ L} = E

d . The proof of (6) is complete.
The third step is to show that

(9) {P + l : l ∈ L} is a packing of E
d .

In order to show this, we first prove that

(10) for k = d, d − 1, . . . , 0, we have the equality int(P + l)∩ int(P +m) = ∅
for l,m ∈ L(o, F), l �= m, and any face F of P with dim F = k.

Clearly, (10) holds for k = d (where L(o, P) = {o}) and k = d−1 (where L(o, F) =
{o, tF }). If k = d − 2, Theorem 32.2 implies that L(o, F) = {o, l,m} with suitable
l,m ∈ L (when the belt corresponding to F consists of six facets) or L(o, F) =
{o, l,m, l + m} (when the belt corresponding to F consists of four facets) and the
translates P + l, l ∈ L(o, F), have pairwise disjoint interiors. Hence (10) holds for
k = d − 2 too. Assume now that k < d − 2 and that (10) holds for all faces F
of P with dim F = k + 1. Let G be a face of P with dim G = k. For the proof
that (10) holds for G, assume the contrary. Then there are l,m ∈ L(o,G), l �= m,
such that int(P + l) ∩ int(P + m) �= ∅. By the definition of L(o,G) we can find
points l = l1, l2, . . . , ln = m ∈ L(o,G), li �= l j , for i �= j , such that each set
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(P + li )∩ (P + li+1) is a common facet of P + li and P + li+1 which contains G as
a face. The sequence of polytopes P+ l = P+ l1, P+ l2, . . . , P+ ln = P+m then
is called an {l,m}-chain. Next, let the small sphere S of dimension d − k − 1 ≥ 2
be chosen as in the proof of (7). Our {l,m}-chain then gives rise to a sequence of
(d− k−1)-dimensional spherically convex polytopes R1 = (P+ l1)∩ S, . . . , Rn =
(P + ln) ∩ S on S, called a spherical {l,m}-chain. From the proof of (7), we see
that the spherical polytopes (P + l) ∩ S, l ∈ L(o,G), cover S. By assumption,
int R1 ∩ int Rn = int(P + l) ∩ int(P + m) ∩ S �= ∅.

Choose a point p ∈ int R1 ∩ int Rn such that its antipode in S is not contained
in the spherical hull of any face of any of the spherical polytopes (P + l)∩ S,
l ∈ L(o,G). By a loop based at p associated with the spherical {l,m}-chain
R1, . . . , Rn, we mean a closed spherical polygonal curve C on S starting at p which
can be dissected into the (great circular) arcs C1 ⊆ R1, . . . ,Cn ⊆ Rn such that Ci

and Ci+1 meet in Ri∩Ri+1. Of course, Cn and C1 meet at p. The loop C is an interior
loop if each arc Ci is contained in relint(Ri−1 ∩ Ri ) ∪ int Ri ∪ relint(Ri ∩ Ri+1).
Denote the length of C by |C |. Let λ denote the infimum of the lengths of the inte-
rior loops based at p associated with all possible spherical {l,m}-chains.

To conclude the induction, we will show that both λ = 0 and λ > 0 lead to a
contradiction. Clearly, λ = 0 contradicts the definition of loops based at p. It remains
to consider the case λ > 0. By (5) and the definition of {l,m}-chains, there are only
finitely many {l,m}-chains. A compactness argument then implies that there is a
loop D based at p with |D| = λ and associated with the spherical {l,m}-chain
R1 = (P + l1) ∩ S, . . . , Rm = (P + lm) ∩ S, say. An interior loop based at p
associated with a spherical {l,m}-chain can always be deformed into such a loop of
smaller length. Thus D cannot be an interior loop. By our choice of p, most great
circles on S through p avoid all spherical faces of dimension at most d − k − 3 of
all spherical polytopes (P + l)∩ S, l ∈ L(o,G). (To see this project these spherical
faces from p, respectively, its antipode into the equator of S corresponding to the
north pole p.) Each such great circle is an interior loop based at p of length 2π .
Since an interior loop cannot have minimal length, λ < 2π . Hence D cannot be
a great circle. Thus D has a non-straight angle at a relative interior point q of a
spherical face F ∩ S of the spherical polygon (P + li )∩ S, say, where F is a face of
P + li with G � F . (Note that a spherical convex polytope is the disjoint union of
the relative interiors of its faces.) Clearly, dim F ≥ k + 1. By the proof of (7), there
is a δ-neighbourhood N of q in S with

N ⊆
⋃{

P + g : g ∈ L(li , F)
} ∩ S.

Choose r, s ∈ D ∩ N such that q is strictly between r and s. Construct a new loop
E by replacing the part of D between r and s by the arc r̂ s ⊆ N of the great circle
through r, s. Then

r̂ s ⊆ N ⊆ int
(⋃{

P + g : g ∈ L(li , F)
} ∩ S

)
.

Clearly, |E | < |D| and so a contradiction will be obtained if it can be shown that the
loop E based at p is associated with some {l,m}-chain.
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Let u ∈ {1, . . . , n} be the smallest index such that r ∈ Ru and v ∈ {1, . . . , n} the
largest index such that s ∈ Rv . Clearly, u �= v . Since L(li , F) is finite, we can find
two sequences (rw) in (int Ru)∩N and (sw) in (int Rv )∩N with rw → r and sw → r
asw→∞, such that the arcs r̂wsw meet no face of dimension at most d−k−3 of any
polytope (P+g)∩S, g ∈ L(li , F), (and thus meet no face of dimension at most d−2
of any polytope P + g, g ∈ L(li , F),) and such that the arcs r̂wsw pass through the
same sequence S1 = Ru, S2, . . . , Sa = Rv where S j = (P+m j )∩ S,m j ∈ L(li , F)
for j = 1, . . . , a. Then, since dim F ≥ k + 1, the inductive assumption shows
that (P + m j ) ∩ (P + m j+1) is a common facet of both P + m j and P + m j+1
containing F and G for j = 1, . . . , a − 1. Finally, since r̂wsw → r̂ s, we see that
P + l = P + l1, . . . , P + lu, P +m1, . . . , P +ma, P + lv , . . . , P + ln = P +m is
a new {l,m}-chain with which the loop E is associated. Since |E | < |D| = λ, this is
impossible. The proof of the induction and thus of (10) is complete.

To conclude the proof of (9) we now show that

(11) int(P + l) ∩ int(P + m) = ∅ for l,m ∈ L , l �= m.

It follows, from the second step, that there is a number δ > 0 such that the
δ-neighbourhood of P + l, l ∈ L , is contained in the set

⋃{⋃{
P + m : m ∈ L(l,G

} : G face of P + l
}
.

Let i be the number of translates P+m in this set. Clearly, this set is contained in the
union of all sequences of translates of P starting with P+l which can be obtained by
fitting together facet-to-facet at most i translates of P . This union obviously contains
the δ-neighbourhood of P + l. Applying the same process to each translate of this
first union, we obtain a second union of translates of P , which contains the 2δ-
neighbourhood of P + l, etc. Continuing in this way, we arrive at the following
statement:

(12) Let λ > 0 and l ∈ L . Then there is a number j such that the union of
all sequences of translates of P starting with P + l which can be obtained
by fitting together facet-to-facet at most j translates of P contains the 2λ-
neighbourhood of P + l.

To prove (11), assume the contrary. Then there are l,m ∈ L , l �= m, such that
int(P + l)∩ int(P +m) �= ∅. Call a sequence P + l = P + l1, P + l2, . . . , P + ln =
P+m, li ∈ L , li �= l j , for i �= j , an {l,m}-chain if (P+li )∩(P+li+1) is a common
facet of both P+li and P+li+1 for i = 1, . . . , n−1. Choose p ∈ int(P+l)∩int(P+
m). Define a loop based at p associated with the {l,m}-chain P + l1, . . . , P + ln
to be a closed polygon C starting at p which can be dissected into line segments
C1 ⊆ P + l1, . . . ,Cn ⊆ P + ln, such that Ci and Ci+1 meet in (P + li )∩ (P + li+1)
for i = 1, . . . , n and ln+1 = l1 . C is an interior loop if each line segment Ci is
contained in relint

(
(P+ li−1)∩ (P+ li )

)∪ int(P+ li )∪ relint
(
(P+ li )∩ (P+ li+1)

)

for i = 1, . . . , n and ln+1 = L1. Let λ be the infimum of the lengths of interior loops.
Consider all loops of length at most 2λ. Then using (8) and a similar compactness
argument to that in the third step, we see that there is a loop of length λ. Now arguing
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as in the third step we arrive at a contradiction, concluding the proof of (11) and thus
of (9).

Finally, the definition of L in (4) together with Proposition (9) implies by
Theorem 21.2 that L is a lattice. Then (6) and (9) show that L provides a tiling
of E

d with prototile P . ��

Parallelohedra and Zonotopes

A zonotope is a finite sum of line segments. It thus has the property that its faces
of all dimensions are centrally symmetric. If, conversely, a convex polytope has the
property that for k = 2 in case d = 2, 3 and for a given k ∈ {2, . . . , d − 2} in case
d ≥ 4, its k-dimensional faces are all centrally symmetric, then it is already a zono-
tope as shown by McMullen [706]. Hence, all 2− and 3-dimensional parallelohedra
are zonotopes. The example of the so-called 24-cell in E

4, which is a parallelohedron,
shows that a parallelohedron may have faces which are not centrally symmetric and
thus is not a zonotope. For information on the 24-cell, see Coxeter [230].

Non-Convex Tilings are Different

The convexity assumption in Theorem 32.3 cannot be omitted. Stein [956] specified
simple star bodies in E

5 and E
10 which tile by translations but do not admit lattice

tilings. See Stein and Szabó [957].

32.3 Conjectures and Problems of Voronoı̆, Hilbert,
Minkowski, and Keller

There is a small series of tiling problems with marked impact on the literature in dis-
crete geometry and convexity in the twentieth century. We mention the conjecture of
Voronoı̆, Hilbert’s 18th problem, the cube conjecture of Minkowski and its stronger
version due to Keller.

In this section these problems are described and some references to the literature
given.

Conjecture of Voronoı̆

A characterization of convex lattice tiles different from the earlier characterization
of Venkov, Alexandrov and McMullen, is indicated by the following conjecture of
Voronoı̆ on parallelohedra.

Conjecture 32.1. Let P be a proper convex polytope which admits a lattice tiling of
E

d , i.e. P is a parallelohedron. Then there is a lattice L such that P is a suitable
linear image of the Dirichlet–Voronoı̆ cell

{
x : ‖x‖ ≤ ‖x − l‖ for all l ∈ L

}
.
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This conjecture has been proved for d = 2, 3, 4 by Delone [256] and Engel
[298] established for d = 5 the slightly weaker result that each parallelohedron
is combinatorially equivalent to a Dirichlet–Voronoı̆ cell of a lattice. For general d
Voronoı̆ [1013] proved the conjecture if P is the prototile of a primitive lattice tiling,
that is, the tiling is facet-to-facet and at each vertex of a tile there meet precisely
d + 1 tiles. Žitomirskiı̆ [1052] observes that Voronoı̆ needs in his proof only that
at each sub-facet of a tile there meet precisely three tiles and gives a far-reaching
generalization of Voronoı̆’s result, but his proof is difficult to understand. If P is a
zonotope, then the conjecture is true according to Erdahl [306]. Unfortunately there
are convex polytopes which are lattice tiles but not zonotopes, see the remark on
parallelohedra and zonotopes in the last section. There are several statements which
are equivalent to Voronoı̆’s conjecture, see Deza and Grishukhin [265].

On Hilbert’s 18th Problem

It follows from the earlier results of Venkov–McMullen that a convex polytope which
provides a translative tiling of E

d , necessarily is a parallelohedron. Considering this
result, the following conjecture is highly plausible:

Conjecture 32.2. Let P be a convex polytope which provides a tiling of E
d by con-

gruent copies. Then P is a stereohedron that is, there is a crystallographic group G
such that {g P : g ∈ G} is a tiling of E

d .

Hilbert seems to have had doubts whether this was true since, in his 18th problem,
he asked the following:

The question arises: whether polyhedra also exist which do not appear as funda-
mental regions of groups of motions, by means of which nevertheless by a suitable
juxtaposition of congruent copies a complete filling up to all space is possible.

See [501]. Reinhardt [828] produced the first example of a (non-convex) polytope P
in E

3 which yields a tiling with congruent copies but no tiling by means of the copies
of P under the rigid motions of a crystallographic group. The first (non-convex)
planar examples are due to Heesch [485] and the first convex example in E

2 was
given by Kershner [579]. In all these examples the congruent copies of P are not
just translates. It is thus of particular interest that Szabó [980] exhibited an example
of a (non-convex) polytope in E

3 which tiles by translation but not by means of a
crystallographic group.

The answer to Hilbert’s problem is in the negative and thus the Conjecture false.
Hence the following problem arises.

Problem 32.1. Specify mild additional conditions which imply that a convex poly-
tope in E

d which tiles E
d with congruent copies, is a stereohedron.

Conjectures of Minkowski and Keller

Minkowski [735] conjectured that, in any lattice tiling of a cube, there are translates
of this cube which meet facet-to-facet and proved this for d = 2, 3. The general
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proof, surprisingly, turned out to be extremely difficult. It was finally given by Hajós
[471] who reduced it to a problem on Abelian groups. Keller [570] conjectured that,
more generally, in any tiling of E

d with translates of a cube, there are two cubes
which meet facet-to-facet. For d ≤ 6 this was confirmed by Perron [794]. Making
essential use of a reformulation of Keller’s conjecture by Corrádi and Szabó [226],
Lagarias and Shor [627] disproved Keller’s conjecture for d ≥ 10 and Mackey [676]
for d ≥ 8. Thus Keller’s conjecture is open only in case d = 7. For more information,
see Zong [1051].

33 Optimum Quantization

In the sequel we investigate integrals of the following type:

∫

J

min
s∈S

{‖x − s‖2}dx,

where J ⊆ E
d is Jordan measurable and S ⊆ J or S ⊆ E

d a finite set consisting
of n points, say. This integral may be interpreted as the volume above sea level of a
mountain landscape over J with n valleys, each a piece of a paraboloid of revolution.
The deepest points of the valleys are at sea-level and are the points of S. Given J and
n, the problem is to determine the minimum volume above sea level of such mountain
landscapes and to describe the minimizing configurations S. While precise solutions
are out of reach, asymptotic results as n →∞ are possible.

Since the late 1940s this seemingly unspectacular problem has appeared in sev-
eral rather different areas, including the following:

Data transmission, see Gray and Neuhoff [394]

Discrete geometry and location theory, see Fejes Tóth [329] and Matérn
and Persson [693]

Numerical integration, see Chernaya [206]

Probability theory, see Graf and Luschgy [389]

Convex geometry, see Gruber [439, 443]

In this section we prove Fejes Tóth’s inequality for sums of moments in E
2 and

an asymptotic formula for integrals of this type due to Zador. The structure of the
minimizing arrangements will also be discussed. These results are then applied to
packing and covering problems for circular discs, to problems of data transmission
and to numerical integration. For an application to the volume approximation of
convex bodies by circumscribed convex polytopes and the isoperimetric problem
for convex polytopes compare Sect. 11.2.

For additional information compare Du, Faber and Gunzburger [278] and the
author [442].
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33.1 Fejes Tóth’s Inequality for Sums of Moments

The 2-dimensional case of the problem has attracted the interest of the Hungarian
school of discrete geometry, ever since Fejes Tóth published his inequality on sums
of moments. By now, there are more than a dozen proofs of it known. The inequal-
ity has applications to packing and covering problems for circular discs, to volume
approximation of convex bodies in E

3 by circumscribed convex polytopes and to
problems in areas outside of mathematics such as economics and geography. For a
planar generalization of it, to which Fejes Tóth, Fejes Tóth, Imre and Florian con-
tributed, see the report of Florian [337]. The inequality on sums of moments indicates
that, for certain geometric and analytic problems, regular hexagonal configurations
are close to optimal, and are possibly optimal.

In this section the sum theorem of Fejes Tóth will be presented.
For more information, see the book of Fejes Tóth [329] and the surveys of Florian

[337] and Gruber [438, 442].

Sums of Moments

Let f : [0,+∞) → [0,+∞) be non-decreasing, where f (0) = 0, and let H be a
convex 3, 4, 5, or 6-gon in E

2. Then, given a dissection C1, . . . ,Cn of H and a set
S = {s1, . . . , sn} of n points in H or in E

d , the sum

∑

i

∫

Ci

f (‖x − si‖)dx

is called a sum of moments. If f (t) = t2, this is a sum of moments of inertia. If for
the sets Ci we take the Dirichlet–Voronoı̆ cells

Di =
{

x ∈ H : ‖x − si‖ ≤ ‖x − s j‖ for j = 1, . . . , n
}
, i = 1, . . . , n,

in H corresponding to S, then the sum of moments decreases and, in addition,

∑

i

∫

Di

f (‖x − si‖)dx =
∫

H

min
s∈S

{ f (‖x − s‖)}dx .

Fejes Tóth’s Inequality for Sums of Moments

Our aim is to prove the following result of Fejes Tóth [329].

Theorem 33.1. Let f : [0,+∞) → [0,+∞) be non-decreasing where f (0) = 0
and let H ⊆ E

2 be a convex 3, 4, 5, or 6-gon. Then,

(1) I (H, f, n) = inf
S⊆E2
#S=n

∫

H

min
s∈S

{ f (‖x − s‖)}dx ≥ n
∫

Hn

f (‖x‖)dx,
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where Hn is a regular hexagon in E
2 of area A(Hn) = A(H)/n and centre at the

origin o.

The following analytic proof is due to the author [437]. It uses the moment lemma
of Fejes Tóth [329], p. 198.

Proof. It is sufficient to prove the theorem for functions f with positive continuous
derivative on (0,+∞). Let S ⊆ E

2, #S = n. Then

(2)
∫

H

min
s∈S

{ f (‖x − s‖)}dx =
∑

i

∫

Di

f (‖x − si‖)dx,

where the sets Di , i = 1, . . . , n, are the Dirichlet–Voronoı̆ cells in H corresponding
to S. Di is a convex polygon of area ai with vi vertices, say. The moment lemma of
Fejes Tóth says that

(3)
∫

Di

f (‖x − si‖)dx ≥
∫

Ri

f (‖x‖)dx = M(ai , vi ),

say, where Ri is a regular vi -gon with area ai and centre o. Let g be defined by
g(r2) = f (r) for r ≥ 0. Then g(0) = 0 and g has positive continuous derivative
on (0,+∞). Let G be such that G(0) = 0 and G ′ = g. Finally, let h(a, v) =
a/(v tan(π/v)) for a > 0, v ≥ 3. Clearly, the following hold:

If R is a regular polygon with centre o, area a, and v vertices,

then h
1
2 is its inradius, and

(4) M(a, v) =
∫

R

f (‖x‖)dx = 2v

π
v∫

0

h1/2
cosψ∫

0

g(r2)r dr dψ = v
π
v∫

0

G
( h

cos2 ψ

)
dψ.

Define M(a, v) for a > 0, v ≥ 3 by the latter integral.
After these preparations the main step of the proof of the theorem is to show that

the moment

(5) M(a, v) is convex for a > 0, v ≥ 3.

Let

I =
π
v∫

0

g
( h

cos2 ψ

) dψ

cos2 ψ
, J =

π
v∫

0

g′
( h

cos2 ψ

) dψ

cos4 ψ
, K = g

( h

cos2 π
v

)
.

Elementary calculus yields for the second order partial derivatives of M ,

Maa = vh2
a J (> 0), Mav = (ha + vhav )I + vhahv J − πha

v cos2 π
v

K ,

Mvv = (2hv + vhvv )I + vh2
v J + 2πa

v cos2 π
v

( π
v3
− hav

)
K .
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Noting that

2h2
v − hhvv = 2π2a2

v6 sin2 π
v

, h + vhv = πa

v2 sin2 π
v

,

K − cos πv
sin πv

I=2a cos2 π
v

v sin2 π
v

π
v∫

0

g′
( h

cos2 ψ

) sin2 ψ

cos4 ψ
dψ (> 0),

a simple, yet lengthy calculation then shows that

Maa Mvv − M2
av

= −v2ha(2hvhav − hahvv )IJ+ 2π2ah2
a

v3 cos2 π
v

JK−
(
(ha + vhav )I − πha

v cos2 π
v

K
)2

= −2π2a cos πv
v5 sin3 π

v

I J + 2π2a

v5 sin2 π
v

J K − π2

v4 sin2 π
v cos2 π

v

(
K − cos πv

sin πv
I
)2

= 2π2a

v5 sin2 π
v

J
(

K − cos πv
sin πv

I
)
− 2π2a

v5 sin2 π
v

v

2a cos2 π
v

(
K − cos πv

sin πv
I
)2

= 2π2a

v5 sin2 π
v

(
J − v

2a cos2 π
v

(
K − cos πv

sin πv
I
))(

K − cos πv
sin πv

I
)

= 2π2a

v5 sin2 π
v

π
v∫

0

g′
( h

cos2 ψ

)(
1− sin2 ψ

sin2 π
v

) dψ

cos4 ψ

2a cos2 π
v

v sin2 π
v

×
π
v∫

0

g′
( h

cos2 ψ

) sin2 ψ

cos4 ψ
dψ > 0.

Having proved that Maa and Maa Mvv−M2
av are positive for a > 0, v ≥ 3, it follows

that the Hessian matrix of M is positive definite, which in turn implies (5), see the
convexity criterion 2.10 of Brunn and Hadamard.

Our next tool is the following simple consequence of Euler’s polytope formula.
See, e.g.
aiFejes Tóth, L. [329], p. 16:

(6) v1 + · · · + vn ≤ 6n.

Since, for fixed a, the function M(a, v) is convex in v by (5) and has a limit as
v → +∞ (the moment of the circular disc with centre o and area a), we see the
following:

(7) For a fixed, M(a, v) is decreasing in v.
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Now, combine (1), (2), (4), apply Jensen’s inequality 2.1 for convex functions,
and use (6) and (7) to see that

I (H, f, n) ≥
n∑

i=1

M(ai , vi ) ≥ n M
(a1 + · · · + an

n
,
v1 + · · · + vn

n

)

≥ n M
( |H |

n
, 6

)
.

The proof of the theorem is complete. ��

33.2 Zador’s Asymptotic Formula for Minimum Distortion

In higher dimensions, the problem raised in the introduction of Sect. 33 appeared first
in the work of Zador [1035] in the context of data transmission, more precisely, in
the problem to evaluate the quality of certain encoders as the number of code-words
of the code-books used tends to infinity. Later appearances are in error estimates for
numerical integration, approximation of probability measures by discrete probabil-
ity measures, approximation of convex bodies by polytopes and approximation of
functions by step functions. Far-reaching refinements and generalizations of Zador’s
results are due to Chernaya [206] and Gruber [443].

In the following, we give an asymptotic formula due to Zador for general d,
which is sufficient for many applications. For applications see Sect. 33.4.

Minimum Distortion

Let J be a Jordan measurable set in E
d with V (J ) > 0 and let α > 0. The expression

I (J, α, n) = inf
S⊆J
#S=n

∫

J

min
s∈S

{‖x − s‖α} dx

is called minimum distortion. This notion first appeared in the context of data trans-
mission, compare Sect. 33.4. In some cases the following slightly different quantity
is of interest:

K (J, α, n) = inf
S⊆Ed
#S=n

∫

J

min
s∈S

{‖x − s‖α} dx .

Zador’s Asymptotic Formula

The following result goes back to Zador [1035]. The proof is a simplified version of
the author’s [443] proof of a more general result. A body is a compact set which is
equal to the closure of its interior.

Theorem 33.2. Let α > 0. Then there is a constant δ = δα,d > 0, depending only
on α and d, such that, for any Jordan measurable body J ⊆ E

d with V (J ) > 0,

I (J, α, n), K (J, α, n) ∼ δ V (J )
α+d

d

n
α
d

as n →∞.
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The constant δ = δ2,d−1 has appeared already in the context of volume approxi-
mation of convex bodies by circumscribed convex polytopes, see Theorem 11.4. The
formula

δα,d ∼ d
α
2

(2πe)
α
2

as d →∞

will be proved later, see Proposition 33.1.
We prove only the asymptotic formula for I (J, α, n). The proof for K (J, α, n) is

very similar, but in one detail slightly more complicated.

Proof. In the following const stands for a positive constant which may depend on α
and d. If const appears several times in the same context, this does not mean that it
is always the same constant.

In the first step of the proof we show that

(1)
const

n
α
d
≤ I

(
K , α, n

) ≤ const

n
α
d
, where K = {x : 0 ≤ xi ≤ 1}.

For the proof of the lower estimate some preparations are needed. First, the fol-
lowing will be shown:

(2) Let I ⊆ E
d be a convex body and let � > 0 and s ∈ E

d be such that
V (I ) = V (�Bd + s). Then

∫

I

‖x − s‖αdx ≥
∫

�Bd+s

‖x − s‖αdx =
∫

�Bd

‖x‖αdx .

To see this, note that the sets I\(�Bd + s) and (�Bd + s)\I have the same volume
and ‖x − s‖α is greater on the first set. Second, dissecting �Bd into infinitesimal
shells of the form (t+dt)Bd\t Bd of volume d V (Bd)td−1dt and adding, we obtain,

(3)
∫

�Bd

‖x‖αdx = d V (Bd)

�∫

0

td−1tαdt = d

α + d
V (Bd)�α+d .

After these preparations, choose minimizing configurations Sn = {sn1, . . . , snn}
⊆ K for I

(
K , α, n

)
and consider the corresponding Dirichlet–Voronoı̆ cells in K ,

Dni =
{

x ∈ K : ‖x − sni‖ ≤ ‖x − snj‖ for j = 1, . . . , n
}
, i = 1, . . . , n.

The cells Dni are convex polytopes which tile K and are such that, for x ∈ Dni ,
one has ‖x − sni‖α ≤ ‖x − snj‖α for j = 1, . . . , n. This together with (2), (3) and
Jensen’s inequality, applied to the convex function t → t (α+d)/d , yields the lower
estimate in (1):
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I
(
K , α, n

) =
∫

K

min
s∈Sn

{‖x − sni‖α} dx =
∑

i

∫

Dni

‖x − sni‖αdx

≥
∑

i

∫

�ni Bd

‖x‖αdx where �ni =
(

V (Dni )

V (Bd)

) 1
d

= d V (Bd)

α + d

∑

i

�α+d
ni = d V (Bd)

(α + d) V (Bd)
α+d

d

∑

i

V (Dni )
α+d

d

≥ d

(α + d)V (Bd)
α
d

n
(1

n

∑

i

V (Dni )
) α+d

d = d

(α + d) V (Bd)
α
d

1

n
α
d
.

For the proof of the upper estimate in (1), note that we can cover the cube K with
n balls of radius �n , say, such that the total volume of these balls is bounded above
by a constant independent of n. (For n = ld take as set of centres a square grid of
edge-length 1

l in K . For general n choose l such that ld ≤ n < (l + 1)d and as set of
centres choose the same as before plus n − ld arbitrary points in K .) Thus

n �d
n V (Bd) ≤ const, or �n ≤ const

n
1
d

.

If Tn = {tn1, . . . , tnn} is the set of centres of the balls of the nth covering, we obtain
the upper estimate in (1) as follows:

I (K , α, n) ≤
∫

K

min
i=1,...,n

{‖x − tni‖α} dx ≤
∑

i

∫

�n Bd+tni

‖x − tni‖αdx

=
∑

i

∫

�n Bd

‖x‖αdx ≤ n V (�n Bd)�αn ≤
const

n
α
d
.

In the second step of the proof, it will be shown that we have the following:

(4) There is a constant δ > 0, depending only on α and d such that:

I
(
K , α, n

) ∼ δ

n
α
d

as n →∞.

Clearly, (1) implies,

(5) δ := lim inf
n→∞

(
n
α
d I

(
K , α, n

)) ∈ R
+.

We show that one may replace lim inf in (5) by lim. Let λ > 1 and choose k such
that:

(6) I
(
K , α, k

)
<
λ δ

k
α
d
.

First consider n of the form n = kld , l = 1, 2, . . . Clearly, I
(
K , α, k

)
is the volume

of the mountain landscape
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(7)
{
(x, y) : x ∈ K , 0 ≤ y ≤ min

s∈Sk
{‖x − s‖α}} ⊆ E

d+1

over the cube K with k valleys. Here Sk is a minimizing configuration in K , consist-
ing of k points. Each of the ld affinities

x1 → x1 + a1

l
, . . . , xd → xd + ad

l
, y → y

lα
,

a1, . . . , ad ∈ {0, 1, . . . , l − 1}
maps the landscape (7) onto a small landscape over a small cube of edge-length
1
l , where the small cubes tile the unit cube K . Thus, these small landscapes put
together, form a landscape over K with at most kld valleys. This landscape contains
the following landscape:

{
(x, y) : x ∈ K , 0 ≤ y ≤ min

{‖x − s‖α : s ∈ 1

l
(Sk + a), ai ∈ {0, 1 . . . , l − 1

}}
.

Since this landscape is among those over which we form the infimum in the definition
of I (K , α, n = kld) it follows that

(8) I
(
K , α, n = kld) ≤ ld 1

ldlα
I
(
K , α, k

) ≤ λ δ

(kld)
α
d

by (6). Secondly, we consider general n. Choose l0 so large that

(9)

(
l0 + 1

l0

)
≤ λ.

Then,

(10) I
(
K , α, n

) ≤ λ
2δ

n
α
d

for n ≥ kld
0 .

To see this, let n ≥ kld
0 , and choose l ≥ l0 such that kld ≤ n < k(l + 1)d . Then the

definition of I , (8) and (9) yield (10):

I
(
K , α, n

)
n
α
d ≤ I

(
K , α, kld)(k(l + 1)d

) α
d ≤ λ δ

( l + 1

l

)α ≤ λ2δ.

Since λ > 1 was arbitrary, (5) and (10) together yield (4).
By applying a suitable affine transformation, we see that (4) implies the following

asymptotic formula:

(11) Let C ⊆ E
d be a cube. Then I (C, α, n) ∼ δ V (C)

α+d
d

n
α
d

as n →∞.

The third step of the proof is to show that

(12) I (J, α, n)
>∼ δ V (J )

α+d
d

n
α
d

as n →∞.
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Arguments similar to those which led to (1) yield the inequalities

(13)
const

n
α
d
≤ I (J, α, n) ≤ const

n
α
d
.

Choose minimizing configurations Sn = {sn1, . . . , snn} ⊆ J for I (J, α, n) and con-
sider the corresponding Dirichlet–Voronoı̆ cells in J ,

Dni =
{

x ∈ J : ‖x − sni‖ ≤ ‖x − snj‖ for j = 1, . . . , n
}
, i = 1, . . . , n.

Since J is a body and I (J, α, n)→ 0 as n →∞ by (13), a simple indirect compact-
ness argument implies that

(14) max
i
{diam Dni } → 0 as n →∞.

Next, we introduce some necessary notation. If C is a cube, then

n(C) = #{i : C ∩ Dni �= ∅}, Sn(C) = {sni : C ∩ Dni �= ∅}.
Now n(C) will be estimated below and above:

(15) Let C ⊆ J be a cube. Then const n ≤ n(C) ≤ n.

Clearly,

I
(
C, α, n(C)

) ≤
∫

C

min
s∈Sn(C)

{‖x − s‖α} dx

=
∫

C

min
s∈Sn

{‖x − s‖α} dx ≤ I (J, α, n) ≤ const

n
α
d

by (13). Hence I
(
C, α, n(C)

) → 0 and thus n(C) → ∞ as n → ∞. This, in turn,
shows by (11) that

I
(
C, α, n(C)

) ∼ δ V (C)
α+d

d

n(C)
α
d

as n →∞.

Hence n(C) ≥ const n, concluding the proof of (15).
For the proof of (12) let λ > 1. Since J is compact and Jordan measurable, the

following holds:

(16) There are pairwise disjoint cubes C1, . . . ,Ck ⊆ J such that:

∑

i

V (Ci ) ≥ 1

λ
V (J ).

Since the cubes C1, . . . ,Ck are pairwise disjoint, it follows from (14) that the
sets Sn(Ci ), i = 1, . . . , k, are also pairwise disjoint and thus

(17)
∑

i

n(Ci ) ≤ n for sufficiently large n.
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Next, we prove that

(18) lim inf
n→∞ I (J, α, n) n

α
d
>∼ δ V (J )

α+d
d

λ1+ αd
.

Clearly, the following hold:

(19) There are a subsequence of 1, 2, . . . , and constants σi > 0, i = 1, . . . , k,
such that:

I (J, α, n) n
α
d → lim inf

n→∞ I (J, α, n) n
α
d ,

n(Ci ) ∼ σi n for i = 1, . . . , k,∑

i

σi ≤ 1

as n →∞ in this subsequence.

Here we have applied (15) and (17). Finally, taking into account the fact that the
cubes Ci , i = 1, . . . , k, are pairwise disjoint by (16), the definitions of Sn(Ci ), I ,
(11), (15), (19), Jensen’s inequality (Theorem 1.9) applied to the convex function
t → t−α/d , t > 0, and (16) together show the following:

I (J, α, n) n
α
d =

∫

J

min
s∈Sn

{‖x − s‖α} dx n
α
d

≥
∑

i

∫

Ci

min
s∈Sn(Ci )

{‖x − s‖α} dx n
α
d ≥

∑

i

I
(
Ci , α, n(Ci )

)
n
α
d

∼ δ
∑

i

V (Ci )
α+d

d
n
α
d

n(Ci )
α
d
∼ δ

∑

i

V (Ci )
α+d

d σ
− αd
i

= δ
∑

j

V (C j )
∑

i

V (Ci )∑

j
V (C j )

( σi

V (Ci )

)− αd

≥ δ
∑

j

V (C j )
(∑

i

V (Ci )∑

j
V (C j )

σi

V (Ci )

)− αd

= δ
(∑

j

V (C j )
) α+d

d
(∑

i

σi

)− αd ≥ δ V (J )
α+d

d

λ
α+d

d

,

as n →∞ in the subsequence from Proposition (19). The proof of (18) is complete.
Since λ > 1 was arbitrary, (18) immediately yields (12).

In the last step of the proof it will be shown that

(20) I (J, α, n)
<∼ δV (J ) α+d

d
1

n
α
d

as n →∞.

Before proving (20), note that the definition of I yields the following inequality:

(21) Let C be a cube. Then I (C ∩ J, α, l) ≤ I (C, α, l).
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For the proof of (20) let λ > 1. Since J is Jordan measurable, the following statement
holds:

(22) There are cubes C1, . . . ,Ck such that:

J ⊆ C1 ∪ · · · ∪ Ck, Ci ∩ J �= ∅ for i = 1, . . . , k,

V (Ci ) all are equal and ≤ λV (J )

k
,

∑

Ci �⊆J
V (Ci )

α+d
d ≤ (λ− 1)

∑

i
V (Ci )

α+d
d .

Using this, we prove that

(23) I (J, α, n)
<∼ λ3+ αd δV (J )

α+d
d

1

n
α
d

as n →∞.

At first, the case where n = kl, l = 1, 2, . . . , will be considered. For i = 1, . . . , k
and l = 1, 2, . . . , choose minimizing configurations Sil for I (C ∩ J, α, l) with
#Sil = l. Let Sn = ⋃

i
Sil . Then #Sn ≤ n = kl. The definition of I together with

(22), (21), (11) and (22) shows that

I (J, α, n = kl) n
α
d ≤

∫

J

min
s∈Sn

{‖x − s‖α} dx n
α
d

≤
∑

i

∫

Ci∩J

min
s∈Sil

{‖x − s‖α} dx n
α
d

≤
( ∑

Ci⊆J

I (Ci , α, l)+
∑

Ci �⊆J

I (Ci ∩ J, α, l)
)

n
α
d

≤
( ∑

Ci⊆J

I (Ci , α, l)+
∑

Ci �⊆J

I (Ci , α, l)
)

n
α
d

∼ δ
( ∑

Ci⊆J

V (Ci )
α+d

d +
∑

Ci �⊆J

V (Ci )
α+d

d

)
k
α
d

≤ δ
(∑

i

V (Ci )
α+d

d + (λ− 1)
∑

i

V (Ci )
α+d

d

)
k
α
d

≤ λ δ
∑

i

V (Ci )
α+d

d k
α
d = λ δ k

(λV (J )

k

) α+d
d

k
α
d

= λ2+ αd δV (J )
α+d

d as l →∞.

Thus (23) holds for n of the form n = kl, l = 1, 2, . . . with λ2+α/d instead of
λ3+α/d . A similar argument as the one that led to (10), then yields (23).

Since λ > 1 was arbitrary, (23) implies (20). The desired asymptotic formula for
I (J, α, n) finally follows from (12) and (20). ��
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Generalizations

From the point of view of applications, it is of interest to extend Zador’s asymptotic
formula to asymptotic formulae for expressions of the following form, where f is a
non-decreasing function on [0,+∞), J ⊆ E

d Jordan measurable, ‖·‖ a norm on E
d ,

possibly different from the standard Euclidean norm, and w : J → R
+ a continuous

weight function:

(24) inf
S⊆J
#S=n

∫

J

min
s∈S

{ f (‖x − s‖)}w(x) dx,

or of the form

(25) inf
S⊆J
#S=n

∫

J

min
s∈S

{ f (ρM (x, s))}w(x) dωM (x),

where 〈M, ρM , ωM 〉 is a d-dimensional Riemannian manifold with Riemannian met-
ric ρM and measure ωM , J ⊆ M Jordan measurable and w : J → R

+ a weight
function as before. Similar problems arise if the sets S are not necessarily contained
in the set J . For many functions f corresponding asymptotic formulae exist. For
pertinent results and more information compare Gruber [442, 443].

The Constant δ

The proof of the following asymptotic formula was communicated by Karoly
Böröczky [157].

Proposition 33.1. Let α > 0. Then δα,d ∼ d
α
2

(2πe)
α
2

as d →∞.

Proof. We make use of the material in the first two steps of the proof of the theorem
of Zador. Note that

δα,d = lim
n→∞

(
n
α
d I (K , α, n)

)
.

Estimate below: From the proof of (1) we have,

(26) n
α
d I (K , α, n) ≥ d

(α + d) V (Bd)
α
d
.

Estimate above: By Rogers’s covering theorem 31.4, for all sufficiently large
n there are points {xn1, . . . , xnn} in the cube K and ρn > 0 such that the balls
ρn Bd + xni cover the cube and their total volume is less than 2d log d. Then
n ρd

n V (Bd) ≤ 2d log d, or

n
α
d ραn ≤

(2d log d)
α
d

V (Bd)
α
d
.
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Let Dni be the Dirichlet–Voronoı̆ cell of xni in K with respect to the set {xn1, . . . ,
xnn}. Then Dni ⊆ ρn Bd + xni and the cells Dni form a tiling of the unit cube K .
This yields the following rough estimate:

n
α
d I (K , α, n) ≤ n

α
d

∫

K

min
xni
{‖x − xni‖α} dx

= n
α
d
∑

i

∫

Dni

‖x − xni‖α dx ≤ n
α
d
∑

i

V (Dni )ρ
α
n = n

α
d ραn .

Thus,

(27) n
α
d I (K , α, n) ≤ (2d log d)

α
d

V (Bd)
α
d
.

Since V (Bd) = π
d
2 /�(1 + d

2 ), Stirling’s formula for the gamma function and
the inequalities (26) and (27) yield the asymptotic formula for δα,d , as required. ��

33.3 Structure of Minimizing Configurations, and a Heuristic Principle

While it is out of reach to give a precise description of the configurations Sn which
minimize the expressions (24) and (25) for all n, information is available as n →∞.
For d = 2 the minimizing configurations Sn are asymptotically regular hexagonal
and for d ≥ 3, they are still distributed rather regularly over J .

Without giving details, we roughly outline what is known. For precise informa-
tion, see the author [439, 442, 443]. In addition, a conjecture of Gersho [371] on the
distribution of Sn over J will be discussed.

The Case d = 2

For a wide class of strictly increasing functions f : [0,+∞) → [0,+∞) a weak
stability result of Gruber [439] says the following: For J in E

2 or on a Riemannian
2-manifold 〈M, ρM , ωM 〉 and w = const the minimizing configurations Sn for the
expressions in (24) for the Euclidean norm and for (25) are asymptotically regu-
lar hexagonal patterns in J as n → ∞. If w is not constant then a result of this
type still holds, but its formulation is slightly more complicated. A related weak
stability result for the Euclidean norm for a wider class of functions f is due to
Fejes Tóth [321].

The Case d ≥ 2

A rather precise description of the minimizing sets Sn is indicated by the following
conjecture of Gersho [371] which we state without giving precise definitions.

Conjecture 33.1. There is a convex polytope P with V (P) = 1 which tiles E
d with

congruent copies such that the following holds: Let J ⊆ E
d be a Jordan measurable
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set with V (J ) > 0 and let Sn = {sn1, . . . , snn} ⊆ J, n = 1, 2, . . . , be minimizing
configurations for I (J, 2, n). Then the corresponding Dirichlet–Voronoı̆ cells

Dni = {x : ‖x − sni‖ ≤ ‖x − snj‖ for j = 1, . . . , n}

are asymptotically congruent to
(
V (J )/n

)1/d
P as n →∞.

This conjecture has so far been proved only for d = 2, where it is an immediate
consequence of the weak stability result mentioned earlier. The convex polytope P
then is a regular hexagon. The conjecture also follows from the result of Fejes Tóth
[321]. Assertions in the literature that it is a consequence of earlier results are not
justified.

While for dimensions d > 2 Gersho’s conjecture is open, weaker results on
what Sn looks like have been proved by Gruber [443]: Let J, f, w be as earlier, such
that f is from a certain class of non-decreasing functions, the boundary of J is not
too fuzzy and w has a positive lower bound. Let Sn, n = 1, 2, . . . , be minimizing
configurations for the expression in (24) for the Euclidean norm or in (25). Then:

(i) There is a β > 1 such that Sn is a
(
1/βn1/d , β/n1/d

)
-Delone set in J .

(ii) Sn is uniformly distributed in J .

For the definition of a Delone set in J , compare Sect. 32.1. The sequence of sets (Sn)
is uniformly distributed in J , if

#(K ∩ Sn) ∼ V (K )

V (J )
n as n →∞ for each Jordan measurable set K ⊆ J.

That is, each K contains the appropriate share of points of Sn if n is sufficiently large.
For more on uniform distribution see Hlawka [515].

Heuristic Observations

If a convex body is optimal or almost optimal with respect to an inequality, then, in
many cases, it is particularly regular or symmetric in a certain sense. See Groemer’s
survey [403] on geometric stability results.

The weak stability result for point configurations and its applications are also
examples of this phenomenon, see the surveys [439, 442, 443]. Results on packing
and covering of circular discs with maximum, respectively, minimum density and
Gersho’s conjecture are further examples of this, see [436, 438] and Sects. 30.4 and
31.4. In all these cases the extremal configurations are point configurations which
are distributed over subsets of E

d or Riemannian manifolds in a rather regular way.
More generally, we express this as follows:

Heuristic Principle. In many simple situations, for example in low dimensions
or depending on few parameters, the extremal configurations are rather regular,
possibly in an asymptotic sense.
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33.4 Packing and Covering of Circles, Data Transmission and Numerical
Integration

Fejes Tóth’s theorem on sums of moments and Zador’s theorem on minimum distor-
tion, the refinements of the latter by the author [443] and the results on the structure
of the minimizing configurations are tools for a series of applications, see the refer-
ences cited in the introduction of Sect. 33.

In the following, applications to packing and covering with circular discs, to
data transmission and to numerical integration are presented. For an application of
Zador’s theorem to the approximation of convex bodies by circumscribed convex
polytopes see the approximation theorem 11.4.

Packing and Covering of B2

Using Fejes Tóth’s theorem on sums of moments, we prove a result of Thue [996,
997] and Fejes Tóth [327] which says that the maximum density of a packing in E

2

with circular discs equals the maximum lattice packing density, compare Sects. 29.1
and 31.4.

Corollary 33.1. δT (B
2) = δL(B

2) = π√
12
= 0.906 899 . . .

Proof. We first show a weaker statement:

(1) Let τ > 0 and consider a packing of n translates of B2 in the square τK ,
where K = {x : |xi | ≤ 1}. Then

nπ

4τ 2
≤ π√

12
.

Let Sn be the set of centres of this packing. Fejes Tóth’s inequality on sums of
moments then shows that

(2)
∫

τK

min
s∈Sn

{ f (‖x−s‖)} dx ≥ n
∫

Hn

f (‖x‖) dx where f (t) =
{

0 for 0 ≤ t ≤ 1,
1 for t > 1,

and Hn is a regular hexagon of area A(Hn) = A(H)/n = 4τ 2/n with centre o.
Note that

(3)
∫

τK

min
s∈Sn

{ f (‖x − s‖)} dx = 4τ 2 − nπ

and

(4) n
∫

Hn

f (‖x‖) dx = n A(Hn\B2) ≥ n A(Hn)− n A(B2) = 4τ 2 − nπ.
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In (4) equality holds precisely in case where Hn contains B2. Since inequality is
excluded by Propositions (2)–(4), the hexagon Hn contains the circular disc B2. Then

A(Hn) ≥ 2
√

3

π
A(B2) and thus

nπ

4τ 2
≤ π√

12
,

concluding the proof of statement (1).
Second, the following stronger statement will be shown:

(5) Let {B2 + s : s ∈ S} be a packing. Then

1

4τ 2

∑

s∈S

A
(
(B2 + s) ∩ τK

) ≤ π√
12
+ O

(1

τ

)
.

To see this, rewrite the left side of this inequality in the form

1

4τ 2

∑

s∈S
B2+s⊆τK

A(B2 + s)+ 1

4τ 2

∑

s∈S
B2+s �⊆τK

(B2+s)∩τK �=∅

A
(
(B2 + s) ∩ τK ).

Apply (1) to the first expression and note that in the second expression only discs are
considered which intersect bd τK . Since we consider a packing, these discs do not
overlap. The total area of these discs is thus O(τ ). This gives the second term on the
right side of the inequality in (5).

Proposition (5) implies that δT (B2) ≤ π/√12. Since there is a lattice packing of
B2 of density π/

√
12, the equality δL(B2) = δL(B2) = π/√12 follows. ��

Similar arguments lead to the following counterpart of the result of Thue and
Fejes Tóth due to Kershner [578]. It says that the minimum density of a covering of
E

2 with circular discs equals the minimum lattice covering density.

Corollary 33.2. ϑT (B
2) = ϑL(B

2) = 2π√
27
= 1.209 199 . . .

Proof. First, we show the following:

(6) Let τ > 0 and consider a covering of τK with n translates of B2. Then,

nπ

4τ 2
≥ 2π√

27
.

We may assume that all centres of these translates are in τK . Let Sn be the set of
centres. Fejes Tóth’s inequality then yields

∫

τK

min
s∈Sn

{ f (‖x − s‖)} dx ≥ n
∫

Hn

f (‖x‖) dx

with f and Hn as before. Since the translates of B2 cover τK , the integrand of the
first integral is 0. Being non-negative, the integrand of the second integral thus is 0
too. Taking into account the definition of f , this implies that Hn ⊆ B2 which, in
turn, yields (6).

Second, the following statement holds:
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Fig. 33.1. Densest lattice covering with circular discs in E
2

(7) Let {B2 + s : s ∈ S} be a covering (of E
2). Then

1

4τ 2

∑

s∈S

A
(
(B2 + s) ∩ τK

)

≥ 4(τ − 2)2

4τ 2

1

4(τ − 2)2
∑

s∈S
(B2+s)∩(τ−2)K �=∅

A(B2 + s)

≥ 4(τ − 2)2

4τ 2

2π√
27

for τ > 2

by (6), applied to (τ − 2)K instead of τK .
Proposition (7) shows that θT (B2) ≥ 2π/

√
27. Since there are lattice cover-

ings of B2 of density 2π/
√

27, the equality θT (B2) = θL(B2) = 2π/
√

27 follows
(Fig. 33.1). ��

Minimum Distortion of Vector Quantization

The scheme of a data transmission system is as follows:

x −→ encoder
C−→ channel

C ′−→ decoder −→ x ′.

A source produces signals. The signals are the input of the encoder. The encoder
assigns to each incoming signal x a code-word c which is taken from a code-book
consisting of finitely many code-words. The code-word c then is transmitted in a
channel. The output of the channel is a word c′, possibly different from c, from
which the decoder produces a signal x ′. We study the quality of the encoder in a
particularly important special case, compare Gray and Neuhoff [394].

The signals are the points of a Jordan measurable set C in E
d such that V (C)> 0.

The encoder consists of a dissection of C into n Jordan measurable sets, say
C1, . . . ,Cn , the cells, and a set {c1, . . . , cn} of n points in E

d , the code-book. The
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encoder now works as follows: If x is a signal, it finds out to which set of the dissec-
tion x belongs. If it belongs to Ci , the encoder assigns the code-word ci , here also
called code-vector, to x . In case of ambiguity, which can occur only for x in a set of
Jordan measure 0, choose any code-vector ci with x ∈ Ci . Common measures for the
quality of the thus defined encoder or (vector-)quantizer on C can be described as
follows: Let α > 0. The corresponding (average) distortion of the encoder is defined
to be ∑

i

∫

Ci

‖x − ci‖αdx .

How should the cells Ci and the code-vectors ci be chosen in order to minimize
the distortion? Given the code-book {c1, . . . , cn}, the distortion is minimized if
C1, . . . ,Cn are the Dirichlet–Voronoı̆ cells in C corresponding to the code-book
{c1, . . . , cn}. Then the distortion is easily seen to be

∫

C

min
i∈{1,...,n}{‖x − ci‖α}dx .

Thus the minimum distortion is given by

inf
S⊆Ed
#S=n

∫

C

min
c∈S

{‖x − c‖α}dx .

The literature on vector quantization began with fundamental papers of Shannon
[929] and Zador [1034, 1035]. Shannon considered the minimum distortion as
d →∞, while in Zador’s high resolution theory the case n →∞ is investigated.

An immediate consequence of Zador’s theorem proved earlier, actually a refor-
mulation of it, is the following result of Zador [1034, 1035].

Corollary 33.3. Let α > 0. Then there is a constant δ = δα,d > 0, depending only on
α and d, such that the following holds: let C ⊆ E

d be a compact, Jordan measurable
body. Then the minimum distortion of a vector-quantizer on C with n code-words is
asymptotically equal to

δ
V (C)

α+d
α

n
α
d

as n →∞.

Remark. See Gruber [443] for more precise results.

Minimum Error of Numerical Integration Formulae

Let J ⊆ E
d be a compact Jordan measurable set with V (J ) > 0 and F a class of

Riemann integrable functions on J . For given sets of n nodes N = {p1, . . . , pn} ⊆ J
and n weights W = {w1, . . . , wn} ⊆ R the error of the numerical integration
formula ∫

J

f (x) dx ≈
∑

i

f (pi )wi for f ∈ F
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is defined to be

E(J,F , N ,W ) = sup
f ∈F

{∣∣∣
∫

J

f (x) dx −
∑

i

f (pi )wi

∣∣∣
}
.

The minimum error then is

E(J,F , n) = inf
N⊆J,#N=n
W⊆R,#W=n

{
E(F , N ,W )

}
.

Precise solutions of the problems to determine, for all n, the minimum error and to
describe the corresponding sets of nodes and weights are out of reach. Upper esti-
mates and asymptotic formulae as n →∞ of the minimum error for several classes
F of functions have been given by Koksma and Hlawka, see Hlawka [515], by
Sobolev [946] and his school and by the Dnepropetrovsk school of numerical analy-
sis, see Chernaya [206, 207].

As a consequence of Zador’s theorem 33.2, we obtain the following result of
Chernaya [207]:

Corollary 33.4. Let 0 < α ≤ 1. Then there is a constant δ = δα,d > 0, depending
only on α and d, such that the following statement holds: Let J ⊆ E

d be a compact
Jordan measurable body and consider the following class Hα of Hölder continuous
real functions on J :

Hα = {
f : J → R : | f (x)− f (y)| ≤ ‖x − y‖α for x, y ∈ J

}
.

Then

E(J,Hα, n) ∼ δ V (J )
α+d

d

n
α
d

as n →∞.

Proof. Taking into account Zador’s theorem, it is sufficient to prove that

(1) E(J,Hα, n) = inf
N⊆J

#N=n

⎧
⎨

⎩

∫

J

min
p∈N

{‖x − p‖α}dx

⎫
⎬

⎭
.

To see this, we proceed as follows
First, the following will be shown:

(2) Let N = {p1, . . . , pn} ⊆ J and let h : J → R be defined by
h(x) = min

p∈N
{‖x − p‖α}. Then h ∈ Hα .

Let x, y ∈ J . By exchanging x and y, if necessary, we may assume that h(x) ≥ h(y).
Then

0 ≤ h(x)− h(y) = min
p∈N

{‖x − p‖α} −min
q∈N

{‖y − q‖α}
= ‖x − p‖α − ‖y − q‖α for suitable p, q ∈ N
≤ ‖x − q‖α − ‖y − q‖α
= ‖x − y + y − q‖α − ‖y − q‖α ≤ (‖x − y‖ + ‖y − q‖)α − ‖y − q‖α
≤ ‖x − y‖α + ‖y − q‖α − ‖y − q‖α = ‖x − y‖α,
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where we have used that (s + t)α ≤ sα + tα for s, t ≥ 0 (note that 0 < α ≤ 1). This
concludes the proof of (2).

Second,

(3) let N = {p1, . . . , pn} ⊆ J and W = {w1, . . . , wn} ⊆ R. Define
Di =

{
x ∈ J : ‖x − pi‖ ≤ ‖x − p j‖ for j = 1, . . . , n

}
, i = 1, . . . , n.

Let wi = V (Di ), i = 1, . . . , n, W = {w1, . . . , wn}. Then

E(J,Hα, N ,W ) ≥ E(J,Hα, N ,W ) =
∫

J

min
p∈N

{‖x − p‖α}dx .

This can be seen as follows:

E(J,Hα, N ,W ) = sup
f ∈Hα

{∣∣
∣
∫

J

f (x) dx −
∑

i

f (pi )

∫

Di

dx
∣∣
∣
}

≤ sup
f ∈Hα

{∑

i

∫

Di

| f (x)− f (pi )| dx
}

≤
∑

i

∫

Di

‖x − pi‖αdx =
∫

J

min
p∈N

{‖x − p‖α} dx

=
∫

J

h(x) dx =
∫

J

h(x) dx −
∑

i

h(pi )wi ≤ E(J,Hα, N ,W )

by the assumption in (3), (2) and since h(pi ) = 0.
Third, it follows from (3) that

E(J,Hα, n) = inf
N⊆J,#N=n
W⊆R,#W=n

{
E(J,Hα, N ,W )

}

= inf
N⊆J

#N=n

{
E(J,Hα, N ,W )

} = inf
N⊆J

#N=n

{ ∫

J

min
p∈N

{‖x − p‖α} dx
}
,

concluding the proof of (1) and thus of the theorem. ��
Remark. See Chernaya [206] and Gruber [443] for more general results.

34 Koebe’s Representation Theorem for Planar Graphs

Let G be a finite, 3-connected planar graph. Koebe [605] showed that one may assign
to each vertex of G a (circular) disc such that these discs form a packing in E

2 where
two discs touch precisely in case when the corresponding vertices of G are connected
by an edge. This result was rediscovered by Andreev [29, 30] and Thurston [999].
Thurston [1000] also specified a procedure, Thurston’s algorithm, for finding such
packings. Its convergence was proved by Rodin and Sullivan [844] and Colin de



500 Geometry of Numbers

Verdière [214,215]. An extension of Koebe’s theorem to a representation of G and its
dual G∗ by two related packings of discs is due to Brightwell and Scheinerman [168].

These results have a series of important consequences: Miller and Thurston
(unpublished) showed that Koebe’s theorem yields the basic theorem of Lipton and
Tarjan [661] on separation of graphs, see Miller, Teng, Thurston and Vavaies [724]
and Pach and Agarwal [783]. Koebe’s theorem and the corresponding algorithms
of Thurston [999], Rodin and Sullivan [844] and Mohar [747] yield constructive
approximations to the analytic functions as in the Riemann mapping theorem. The
extension of Brightwell and Scheinerman proves a conjecture of Tutte [1002] on
simultaneous straight line representation of G and its dual G∗. For us, it is important
that the result of Brightwell and Scheinerman readily yields a refined version of the
representation theorem 15.6 of Steinitz for convex polytopes in E

3.
In this section we first present the theorem of Brightwell and Scheinerman, then

discuss the algorithm of Thurston which yields a construction of the circle packing
corresponding to a graph with triangular countries that is, for Koebe’s theorem, and
outline how this can be used to obtain approximations for the Riemann mapping
theorem.

For more information and references to the literature, see the books of Pach
and Agarwal [783] on combinatorial geometry, of Mohar and Thomassen [748] and
Felsner [332] on graphs and of Stephenson [967] on packings of circular discs in the
context of discrete analytic functions. See also Sachs [872] and Stephenson [966].

34.1 The Extension of Koebe’s Theorem by Brightwell and Scheinerman

After introducing needed terminology on planar graphs, we present a proof of the
theorem of Brightwell and Scheinerman.

Graph Terminology

Recall the definitions and notation in Sect. 15.1. Let G be a 3-connected planar graph
in C ∪ {∞}. We assume that ∞ is not a vertex of G. Since G is 3-connected, any
two countries of G are either disjoint, or have one common vertex, or one common
edge. The exterior country of G is the country containing the point ∞ in its interior.
Up to isomorphisms the dual graph G∗ of G is defined as follows: In each country
of G, including the exterior country, choose a point. These points are the vertices
of G∗. Distinct vertices of G∗ are connected by an edge in G∗ if the corresponding
countries of G have an edge of G in common. Clearly, G∗ can be drawn in C ∪ {∞}.
It can be shown that G∗ is also 3-connected and planar. Next, the vertex-country
incidence graph G∧ of G will be defined: Its vertices are the vertices of G and G∗.
An edge of G∧ connects a vertex v of G with a vertex w of G∗ if v is a vertex of the
country of G corresponding to w. There are no other edges. By applying a suitable
Möbius transformation, if necessary, we may assume that ∞ is the vertex of G∗
which corresponds to the exterior country of G. Let G′ denote the graph obtained
from G∧ by deleting the vertex ∞ and all edges incident with it. See Bollobás [142]
and Mohar and Thomassen [748] (Fig. 34.1).
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G∧G∗G

Fig. 34.1. Graph, dual graph and vertex-country incidence graph

By a primal-dual circle packing of G, we mean a system of (circular) discs in
C∪{∞}, each disc corresponding to a vertex of G∧, such that the following properties
hold:

(i) The discs corresponding to the vertices of G form a packing such that two discs
touch precisely in case where the corresponding vertices are connected by an
edge of G.

(ii) A disc with centre ∞ is simply the complement in C ∪ {∞} of an open disc
with centre 0. Its radius is −ρ where ρ is the radius of the open disc. The discs
corresponding to the vertices of G∗ or, equivalently, to the countries of G, form
a packing such that two discs touch precisely in case where the corresponding
countries have an edge of G in common.

(iii) Let Dv , Dw be discs corresponding to vertices v,w of G which are connected by
an edge of G and Dx , Dy the discs corresponding to the countries of G adjacent
to the edge vw. Then the four discs Dv , Dw, Dx , Dy have a common boundary
point at which the boundary circles of Dv , Dw intersect the boundary circles of
Dx , Dy orthogonally.

A weak primal-dual circle packing of G is defined similarly with the only excep-
tion that there is no disc corresponding to the exterior country of G.

The Extension of Koebe’s Theorem by Brightwell and Scheinerman

Following Brightwell and Scheinerman [168] and Mohar and Thomassen [748], we
prove the following refinement of Koebe’s theorem.

Theorem 34.1. Let G be a 3-connected planar graph. Then G admits a primal-dual
circle packing.

Proof. The proof is split into several steps.
In the first step we derive necessary conditions for a primal-dual circle packing

of G.

(1) Let
(
ρv : v ∈ V(G′)

)
be the radii of a primal-dual circle packing of G. Then

(i)
∑

vw∈E(G′)
arctan

ρw

ρv
= π for v ∈ V(G′), v∞ �∈ E(G∧).
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Let v1, . . . , vk ∈ V(G′) be such that vi ∞ ∈ E(G∧), i.e. v1v2 · · · vk is the
outer facet cycle of G, and let

αi = 2
∑

viw∈E(G′)
arctan

ρw

ρvi

for i = 1, . . . , k.

Then

(ii) 0 < αi < π for i = 1, . . . , k, and
k∑

i=1
αi = (k − 2)π.

We identify G with the nerve of the packing
{

Dv : v ∈ V(G)
}
, i.e. its vertices

are the centres of the discs Dv and two vertices are connected by an edge if the
corresponding discs touch, and similarly for G∗. For the proof of (i) consider the
case that v ∈ V(G), the proof being similar in case that v ∈ V(G∗). The countries of
G that contain v are all bounded. The corresponding verticesw in G∗ are precisely the
neighboursw of v in G∧. The cycle determined by the neighboursw is circumscribed
to the disc Dv since the boundaries of Dv and Dw intersect orthogonally. This yields
(1)(i) (Fig. 34.2).

To see (1)(ii), note that αi is the internal angle of the outer country cycle of G at
the vertex vi . Since the outer country cycle is circumscribed to D∞, it is a convex
polygon which implies (1)(ii) (Fig. 34.3).

The proof that the conditions (1)(i),(ii) are sufficient for the existence of a weak
primal-dual circle packing of G makes use of a topological result on graphs which
will be given in steps four and five.

In step two a topological tool is presented. It will yield a topological result on
graphs in step three. A map f : C → C is a covering map if it is continuous, onto
and such that for each x ∈ C there are neighbourhoods U of x and W of f (x),
respectively, such that f maps U homeomorphically onto W .

(2) Let f : C → C be a covering map such that the set{
x ∈ C : # f −1( f (x)) ≥ 2

}
is bounded. Then f is a homeomorphism.

It is sufficient to show that
{

x : # f −1( f (x)) ≥ 2
} = ∅ or, equivalently, that

{
z :

# f −1(z) ≥ 2
} = ∅. To see the latter, we first prove that the set

{
z : # f −1(z) ≥ 2

}

Gv

v

Dv

Gw

Dw

w

Fig. 34.2. Country circle and vertex circle
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αi

Di−1

Di+1

D∞

vi+1

vi vi−1

Di

Fig. 34.3. Country circle and vertex circles

is open. Let w be one of its points. Then there are points x, y ∈ C
2, x �= y,

with f (x) = f (y) = w. Choose disjoint neighbourhoods U of x and V of y
and a neighbourhood W of w such that f maps each of U, V homeomorphically
onto W . Then, clearly, W ⊆ {

z : # f −1(z) ≥ 2
}
. Secondly, it will be shown that

the set
{
z : # f −1(z) = 1

}
is also open. For suppose not. Then there are points

z, zn, n = 1, 2, . . . , with zn → z and # f −1(z) = 1, # f −1(zn) ≥ 2 for all n.
Let {x} = f −1(z) and choose neighbourhoods U of x and W of z such that f
maps U homeomorphically onto W . By omitting finitely many indices and renum-
bering, if necessary, we may assume that there are xn ∈ U, yn ∈ C\U such that
f (xn) = f (yn) = zn and xn → x . Since

{
y : # f −1

(
f (y)

) ≥ 2
}

is bounded by
assumption, by considering a suitable subsequence and renumbering, if necessary,
we may assume that yn → y ∈ C\U , say. The continuity of f then implies that
f (x) = f (y) = z, while x �= y. This is a contradiction. C is thus the disjoint union
of the two open sets

{
z : # f −1(z) ≥ 2

}
and

{
z : # f −1(z) = 1

}
. By assumption,{

z : # f −1(z) ≥ 2
}

is bounded. Thus
{
z : # f −1(z) = 1

} �= ∅. Since C is connected,
it follows that

{
z : # f −1(z) ≥ 2

} = ∅. Hence f is one-to-one, concluding the proof
of (2).

The third step is to show the following topological result on graphs.

(3) Let H be the image of G′ in C under a (graph) isomorphism f , possibly
with edge crossings, which has the following properties:

(i) All edges of H are polygonal arcs.
(ii) For each vertex v of G′ the images in H of the edges that leave v are

pairwise non-crossing and leave f (v) in the same clockwise order as
their originals in G′.

(iii) The image of each country cycle in G′ is a closed Jordan curve in H.
(iv) If C is the boundary cycle of a bounded country of G′ and E an edge

of G′ leaving C , then the first segment of f (E) is in the exterior of
f (C).
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Then H is a planar representation of G′, i.e. it has no edge crossings.

If J is a closed Jordan curve in C, we denote by interior J the bounded component
of C\J . Let C∞ be the cycle of the exterior country of G′.

To see (3), we first extend f to a continuous map of the point set of G′, i.e.
the union of all vertices and edges of G′, onto the point set of H such that f
is one-to-one on each edge of G′. Next, we extend f step by step to a covering
map of C onto C: Noting (iii), we may extend f by the Jordan-Schönflies theo-
rem for each country cycle C �= C∞ of G′ to interior C such that the extended f
maps C ∪ interior C homeomorphically onto the compact set f (C) ∪ interior f (C).
The extended f then maps C∞∪ interior C∞ continuously onto the compact set
f (C∞) ∪ f (interior C∞). Let x ∈ interior C∞. By distinguishing the cases where
x is an interior point of a bounded country, a relatively interior point of an edge,
or a vertex of G′ and noting (iv) and (ii), we see that there are neighbourhoods U
of x and W of f (x) such that f maps U homeomorphically onto W . As a conse-
quence, we see that f (interior C∞) is an open set in E

2. Since a boundary point of
f (interior C∞)must be a limit point of points of the form f (xn), n = 1, 2, . . ., where
xn ∈ interior C∞, it must be of the form f (x)where x ∈ C∞∪interior C∞. (Consider
a convergent subsequence of the sequence (xn).) Since x ∈ interior C∞ is excluded,
x ∈ C∞. Hence bd f (interior C∞) ⊆ f (C∞). Thus, noting that f (interior C∞)
is open, connected and bounded, f (interior C∞) = interior f (C∞) follows. By a
version of the Jordan-Schönflies theorem, f finally can be extended to a contin-
uous map f : C → C such that f is a homeomorphism on C\interior C∞. Let
x ∈ C\interior C∞. As before, we see that there are neighbourhoods U of x and W
of f (x) such that f maps U homeomorphically onto W . The extended f satisfies the
required assumptions of (2) and thus is a homeomorphism of C onto C. In particular,
H is a planar representation of G′, concluding the proof of (3).

In the fourth step we show that the conditions (1)(i,ii) yield a weak primal-dual
circle packing of G:

(4) Let ρ = (
ρv : v ∈ V(G′)

)
satisfy (1)(i,ii). Then there is a weak primal-dual

circle packing of G with radii ρ = (ρv) and with the same local clockwise
orientation as in G and G∗.

We shall construct an isomorphic planar image of G′ such that the image of an edge
uv is a line segment. For each vertex u ∈ V(G′) we shall determine a point ū ∈ C

such that the discs with centres ū and radii ρu form the desired weak primal-dual
circle packing. We start with an edge uv ∈ E(G′) and draw a corresponding line
segment ūv̄ in C of length

(
ρ2

u + ρ2
v

)1/2. Then the position of each neighbour of ū is
uniquely determined. Now, given an arbitrary vertex w ∈ V(G′), consider a path in
G′ connecting u and w and use it to construct w̄. For the proof that w̄ is independent
of the path chosen, it is sufficient to show that, for each simply closed path in G′, our
construction leads to a closed path in C. This can easily be shown by induction on
the number of country 4-cycles in the simply closed path. The image of G′ in C thus
obtained satisfies the properties specified in (3). Hence it has no crossings and thus
is a planar graph. For each of its vertices ū the disc Du with centre ū and radius ρu

is contained in the convex polygon consisting of the convex kites which correspond
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Dv

ū

Du

v̄

Fig. 34.4. Kite

to the country 4-cycles in G′ with vertex u (Fig. 34.4). Since this holds for any vertex,
the disc Du touches only those discs Dv or their boundaries intersect orthogonally,
for which v̄ is a vertex of a kite with vertex ū. Hence the discs Du : u ∈ V(G′) form
a weak primal-dual circle packing of G, concluding the proof of (4).

In the fifth step we refine (4):

(5) Let ρ = (
ρv : v ∈ V(G′)

)
satisfy (1)(i,ii). Then there exists a primal-dual

circle packing of G.

Assume first that the outer cycle of G is a 3-cycle v1v2v3. By (4) there is a weak
primal-dual circle packing of G. By applying a suitable Möbius transformation and
changing notation, if necessary, we obtain a weak primal-dual circle packing of G

and such that v̄1, v̄2, v̄3 are the vertices of a regular triangle with centroid 0. Since
the discs Dv1, Dv2 , Dv3 with centres v̄1, v̄2, v̄3 touch pairwise, they all have the
same radius. Hence there is a circular disc D∞ with centre ∞ such that its bound-
ary circle intersects orthogonally the boundary circles of the discs Dv1, Dv2 , Dv3

at the points where these discs touch pairwise. This yields the desired primal-dual
circle packing of G (Fig. 34.5). If, second, the outer cycle of G has length greater
than 3, then either G or G∗ has a country 3-cycle by the Corollary 15.1 of the Euler
polytope formula. Interchanging the roles of G and G∗, if necessary, and applying a
suitable Möbius transformation, if necessary, we arrive at the same situation as in the
previous paragraph. Thus there exists a corresponding primal-dual circle packing.
The inverse of the Möbius transformation then yields the desired primal-dual circle
packing of G.

In the sixth step we prepare the way for the seventh step:

(6) Let S � V(G∧) with #S ≥ 5. Then 2#S − #E
(
G∧(S)

) ≥ 5.

Here G∧(S) is the subgraph of G∧ with vertex set S whose edges are precisely
the edges uv of G∧ with u, v ∈ S. To see (6), note first that the following
holds:
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D∞

Dv1 Dv2

Dv3

Gv1 v2

v3

v∞

Fig. 34.5. Graph and corresponding primal-dual circle packing

(7) Every 4-cycle in G∧ is country.

If xvyw is such a cycle, assume that x, y correspond to countries of G. These coun-
tries then have the vertices v,w in common. Since G is 3-connected, this is possi-
ble only if v,w are connected in G by an edge and that this edge is the common
edge of the countries. This means that xvyw is a country cycle in G∧, concluding
the proof of (7). Next note that by the Corollary 15.1 of the Euler polytope for-
mula

(8) 2#S − #E
(
G∧(S)

) ≥ 4

with equality if and only if
(
G∧(S) is 2-connected and

)
all countries of G∧(S) are

quadrangles. G∧ is connected. Since S�V(G∧), there is an edge of G∧ which is in-
cident with a vertex of S but is not an edge of G∧(S). This edge meets the interior
of one of the countries of G∧(S). Thus, if there is equality in (8), one of the country
4-cycles in G∧(S) is not a country 4-cycle of G∧, in contradiction to (7). Hence, there
is inequality in (8), concluding the proof of proposition (6).

In the seventh, and last, step of the proof we have to show that there is a list
ρ = (

ρv : v ∈ V(G∧)
)

of radii satisfying (1)(i,ii). More precisely, the following has
to be shown:

(9) Let v1v2 · · · vk be the outer cycle of G and let 0 < α1, . . . , αk < π
be such that α1 + · · · + αk = (k − 2)π . Then there is a list ρ =(
ρv : v ∈ V(G∧)

)
of positive numbers such that the following statements

hold:

(i)
∑

vw∈E(G∧)
arctan

ρw

ρv
= π for v ∈ V(G∧) \ {v1, . . . , vk,∞}.

(ii) 2
∑

viw∈E(G∧)
w �=∞

arctan
ρw

ρvi

= αi for i = 1, . . . , k.

Given a list ρ = (
ρv : v ∈ V(G′)

)
, define
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ϑv = ϑv(ρ) =
∑

vw∈E(G∧)
arctan

ρw

ρv
− π for v ∈ V(G∧), v �= v1, . . . , vk,∞,

ϑvi = ϑvi (ρ) =
∑

viw∈E(G∧)
w �=∞

arctan
ρw

ρvi

− αi

2
for i = 1, . . . , k.

The quantity

µ(ρ) =
∑

v∈V(G′)
ϑv(ρ)

2

is a measure for the deviation of the list ρ from a list as postulated in (9). For the
proof of (9), we have to find a list ρ of positive numbers such that µ(ρ) = 0.

First, the following equality will be shown:

(10)
∑

v∈V(G′)
ϑv(ρ) = 0 for any list ρ = (ρv) of positive numbers.

To see (10), note that

(11)
∑

v∈V(G′)
ϑv(ρ) =

∑

vw∈E(G′)
arctan

ρw

ρv
+ arctan

ρv

ρw

− π(#V(G′)− k
)− 1

2

k∑

i=1

αi .

Since all countries of G∧ are quadrangles, it follows from Corollary 15.1 that

(12) 2#V(G′) = #E(G∧)+ 2 = #E(G′)+ k + 2.

Noting that arctan t+arctan (1/t) = π/2 for t > 0, Propositions (11) and (12) imply
the equality (10).

Let

∅ �= S � V(G′), l = #{v1, . . . , vk} ∩ S.

Clearly, #
(
S ∪ {∞}) = #(S)+ 1 and #E

(
G∧(S ∪ {∞})) = #E

(
G∧(S)

)+ l. An appli-
cation of (6) to S ∪ {∞} instead of S (for #S ≥ 4 and l ≥ 0) and simple arguments
(for #S = 2, 3 and l = 0) show that

(13) 2#S − #E
(
G∧(S)

) ≥ l + 3 for #S ≥ 4, l ≥ 0 or #S = 2, 3, l = 0.

Simple arguments also yield the following:

(14) 2#S − #E
(
G∧(S)

) ≥ l + 2 for #S = 2, 3, l > 0.

Second, we show that the quantity µ(·) attains its minimum. Let R be the set
of all lists ρ = (

ρv : v ∈ V(G′)
)
, where 0 < ρv ≤ 1 and such that ρv = 1

if ϑv(ρ) > 0. In addition, we require that ρv = 1 for at least one v . We have
R �= ∅, since the list (1) ∈ R. Unfortunately, R is not compact. Let

(
ρ(n)

)
be a

sequence of lists in R such that µ
(
ρ(n)

)
tends to the infimum of µ(ρ) for ρ ∈ R.

Apply the Bolzano–Weierstrass theorem to see that, by considering a suitable sub-
sequence and renumbering, if necessary, the sequence

(
ρ
(n)
v

)
converges for each

v ∈ V(G′). Let
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S = {
v ∈ V(G′) : lim

n→∞ ρ
(n)
v �= 0

}
.

We will show that

(15) S = V(G′).
For suppose not. Then, by a calculation similar to the one that led to (11), we see
that

(16)
∑

v∈S

ϑv
(
ρ(n)

) = π

2
#E

(
G∧(S)

)− π(#S − l)

− 1

2

∑

vi∈S

αi +
∑

vw∈E(G′)
v∈S,w �∈S

arctan
ρ
(n)
w

ρ
(n)
v

.

By the definition of S, the last sum tends to 0 as n →∞. Thus

(17)
∑

v∈S

ϑv
(
ρ(n)

)→−π
2

(
2#S − #E

(
G∧(S)

)− l − 2
)+ 1

2

∑

vi∈S

(π−αi )− π.

Since π − αi > 0 for i = 1, . . . , k, and
∑
(π − αi ) = 2π, it follows from (17) that,

in case when (13) holds,
∑{

ϑv
(
ρ(n)

) : v ∈ S
}
< 0 for all sufficiently large n. The

same is true if (14) holds with inequality. If (14) holds with equality, it is also true
since then l < k. (To see the latter suppose that l = k. Since k ≥ 3 and #S ≥ l it
then follows that l = k = #S = 3 and thus S = {v1, v2, v3}, #E

(
G∧(S)

) = 0.) The
remaining case, #S = 1, trivially yields the same conclusion. Taking into account
(10), we have

∑

v �∈S

ϑv
(
ρ(n)

)
> 0 for all sufficiently large n.

By considering a suitable subsequence and renumbering, if necessary, it follows that
there is a vertex v �∈ S with ϑv

(
ρ(n)

)
> 0 for all n. Then ρ(n)v = 1 for all n by the

definition of R. Hence v ∈ S by the definition of S. This contradiction concludes the
proof of (15).

Let ρ = limn→∞ ρ(n). Since the ϑv(·) are continuous, ρ ∈ R. We now show
that

(18) µ(ρ) = 0.

For, suppose that, on the contrary, µ(ρ) > 0. Then by (10),

∅ �= T = {
v ∈ V(G′) : ϑv(ρ) < 0

}
� V(G′).

Let σv = λρv for v ∈ T and σv = ρv for v �∈ T and given λ, where 0 < λ < 1.
Then

(19) ϑv(ρ) ≤ ϑv(σ ) for each v ∈ T

by the definition of ϑv(·) and the fact that arctan is non-decreasing. Since G′ is con-
nected, there is a v ∈ T having one or more neighbours w ∈ V(G′) with w �∈ T .
Thus, by Taylor’s theorem, we have the claim:

(20) There is v ∈ T such that
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ϑv(σ ) = · · · + arctan
ρw

λρv
+ · · ·

= · · · + arctan
ρw

ρv
+ · · · + const

(1

λ
− 1

)
+ o

(1

λ
− 1

)

= ϑv(ρ)+ const(1− λ)+ o(1− λ) as λ→ 1− 0,

where const denotes a positive constant. Similarly,

(21) ϑv(ρ) ≥ ϑv(σ ) for each v �∈ T

and an application of Taylor’s theorem shows that the following hold:

(22) For each v �∈ T with ϑv(ρ) = 0, ϑv(σ ) = ϑv(ρ) + o(1 − λ) as λ →
1− 0.

For all λ sufficiently close to 1, we have σ ∈ R (see the definition of R) and Propo-
sitions (19)–(22) show that

µ(ρ)− µ(σ) =
∑

v∈V(G′)
ϑv(ρ)

2 − ϑv(σ )2

=
∑

v∈T

(
ϑv(ρ)+ ϑv(σ )

)(
ϑv(ρ)− ϑv(σ )

)−
∑

v �∈T
ϑv (ρ)=0

ϑv(σ )
2

+
∑

v �∈T
ϑv (ρ)>0

(
ϑv(ρ)+ ϑv(σ )

)(
ϑv(ρ)− ϑv(σ )

)
> 0.

This contradicts the minimality of µ(ρ), thus concluding the proof of (18) which, in
turn, implies (9).

Having proved (1), (5) and (9), the proof of the theorem is complete. ��

34.2 Thurston’s Algorithm and the Riemann Mapping Theorem

In view of the numerous applications of the Koebe-Andreev-Thurston-Bright-well-
Scheinerman theorem, the problem arises to construct the disc packings in an
effective way. The first procedure to serve this purpose for graphs with triangu-
lar countries was proposed by Thurston [1000]. It is called Thurston’s algorithm,
although it is not an algorithm in the strict sense which is always finite. Rodin and
Sullivan [844] and Colin de Verdière [214, 215] showed its convergence. See also
Collins and Stephenson [216]. Mohar [747] considered the more general case of
primal-dual circle packings and gave a polynomial time algorithm.

In the following we first describe the algorithm of Thurston, following Rodin
and Sullivan. Then the relation between packing of discs and the Riemann mapping
theorem will be described. No proofs are given. For the figures we are indebted to
Kenneth Stephenson [968].

For more information, see the references given in the introduction of Sect. 34.
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Fig. 34.6. Circle packing corresponding to a graph

Thurston’s Algorithm

We need the following special case of Theorem 34.1:

(1) Let G be a planar, 3-connected graph all countries of which are triangular,
including the exterior country. Then to G corresponds a packing of (circular)
discs in C. The discs are in one-to-one correspondence with the vertices
of G and two discs touch precisely when the corresponding vertices are
connected by an edge (Fig. 34.6).

Let v1, . . . , vn be the vertices of G where v1, v2, v3 are the vertices of the exterior
country. For the construction of the corresponding packing of discs, it is sufficient to
specify the radii �1, . . . , �n of the discs corresponding to v1, . . . , vn (up to Möbius
transformations). The algorithm can be described as follows:

For k = 1, 2, . . . , assign to v1, . . . , vn labels �k1, . . . , �kn in the following way:
Let �11 = �12 = �13 = 1 and �14, . . . , �1n > 0 arbitrary. Now cycle through
v4, . . . , vn, vn+1 = v4. Assume that at step k we have arrived at vertex vi−1. If
viv jvk is a (triangular) country of G, its angle at the vertex vi is the angle of the
Euclidean triangle with edges of lengths �ki + �k j , �ki + �kl , �k j + �kl opposite to
the edge of length �k j + �kl . The curvature κ(vi , �k1, . . . , �kn) at vi is 2π minus
the sum of the angles at vi of the triangular countries with vertex vi . Considered as a
function of � = �ki , the curvature is strictly increasing. If �→+∞, the curvature at
vi tends to 2π . vi is a vertex of at least three countries. (Since the cycle v1v2v3 is the
exterior cycle of the graph G, the vertex vi �= v1, v2, v3 is surrounded by countries
of G. Since G is 3-connected, vi cannot be a vertex of only one or two countries.)
Thus, for � = 0, the curvature at vi is at most −π . Hence there is a unique number
� > 0 for which it vanishes. Now let �k+1,1 = �k+1,2 = �k+1,3 = 1, �k+1 j = �k j

for j = 4, . . . , n, j �= i and �k+1i = � and go on to vertex vi+1.
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It turns out that �k1 → �1, . . . , �kn → �n , with suitable numbers �1 = �2 =
�3 = 1, �4, . . . , �m > 0, and such that the curvatures κ(vi , �1, . . . , �n) vanish for
i = 4, . . . , n. This, in turn, yields a packing of discs corresponding to G as in (1).

The algorithm of Thurston is quite effective in practice.

The Riemann Mapping Theorem

Let J be a bounded, simply connected domain in C. By the Riemann mapping the-
orem there is an analytic function f which maps R in a one-to-one fashion onto
int D, where D is the unit disc of C. The problem arises to approximate f by simple
functions.

For sufficiently small ε > 0 consider the common regular hexagonal grid in C

of mesh-length ε. Let G be a part of it which almost exhausts J and is bounded
by a closed Jordan polygon. G may be considered as a finite graph with triangular
countries. Add an exterior point as a new vertex to G and connect it with polygonal

Fig. 34.7. Piecewise affine approximations of a Riemann mapping function
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curves to each of the boundary vertices of G so as to get a new planar graph. This
new graph has only triangular countries. According to (1), construct a corresponding
packing of discs in C. After a suitable Möbius transformation has been applied, we
may assume that the new vertex corresponds to the exterior of D, all other discs form
a packing in D and the discs which correspond to the boundary vertices of G touch the
boundary of D (Fig. 34.7). Now define a map fε as follows: fε maps each vertex of
G onto the centre of the corresponding disc. Then extend fε affinely to the triangular
countries of G. This gives a piecewise affine mapping of the union of the countries of
G, excluding the exterior country, into int D. The six circle conjecture of Fejes Tóth
proved by Bárány, Füredi and Pach [70], or the hexagonal packing lemma of Rodin
and Sullivan [844] proved by He [484], shows that, for small ε > 0, triangles deep
in the interior of the graph G are mapped onto almost regular triangles. This, in turn,
shows that the function fε is almost analytic deep in the interior of J .

As ε→+0, the functions fε (possibly after suitable Möbius transformations are
applied) converge to a Riemann mapping function f : J → int D.
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réseaux, J. reine angew. Math. 226 (1967) 1–29
293. Ehrhart, E., Démonstration de la loi de réciprocité pour un polyèdre entier, C. R. Acad.
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chen Formen von Ludwig August Seeber, Göttingische gelehrte Anzeigen, 9.7.1831,
Werke 2 (1836) 188–196, J. reine angew. Math. 20 (1840) 312–320

365. Gauss, C.F., Letters to Gerling, 8.4.1844 and 17.4.1844, Werke 8 241,244
366. Gauss, C.F., Werke 2 269–291
367. Gel’fand, I.M., Lectures on linear algebra, Interscience, Wiley, New York 1967
368. Gel’fand, I.M., Gindikin, S.G., Graev, M.I., Selected problems in integral geometry,

Dobrosvet, Moscow 2000
369. Gergonne, J.D., Recherche de la surface plane de moindre contour, entre toutes celles

de meme etendue, Ann. Math. 4 (1814) 338–345
370. Gericke, H., Zur Geschichte des isoperimetrischen Problems, Math. Semesterber. 29

(1982) 160–187
371. Gersho, A., Asymptotically optimal block quantization, IEEE Trans. Inform. Theory

IT-25 (1979) 373–380
372. Gerwien, P., Zerschneidung jeder beliebigen Anzahl von gleichen geradlinigen Figuren
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377. Giering, O., Über gewisse Kennzeichnungen der Kugel, Math.-Phys. Semesterber. 18
(1971) 194–204

378. Giles, F.R., Pulleyblank, W.R., Total dual integrality and integer polyhedra, Linear
Algebra Appl. 25 (1979) 191–196

379. Giles, J.R., Convex analysis with application in differentiation of convex functions,
Pitman, Boston 1982

380. Gluck, H., Almost all simply connected closed surfaces are rigid, in: Geomet-
ric topology (Proc. Conf. Park City, Utah 1974) 225–239, Lect. Notes Math. 438,
Springer-Verlag, Berlin 1975

381. Gluck, H., Manifolds with preassigned curvature – a survey, Bull. Amer. Math. Soc. 81
(1975) 313–329

382. Gluskin, E.D., Probability in the geometry of Banach spaces, Proc. Internat. Congr.
Math. 2 (Berkeley, CA 1986) 924–938, Amer. Math. Soc., Providence, RI 1987

383. Goodey, P., Kiderlen, M., Weil, W., Section and projection means of convex bodies,
Monatsh. Math. 126 (1998) 37–54

384. Goodey, P., Weil, W., Zonoids and generalisations, in: Handbook of convex geometry
B 1297–1326, North-Holland, Amsterdam 1993



References 529

385. Goodman, J.E., Pollack, R., Upper bounds for configurations and polytopes in Rd ,
Discrete Comput. Geom. 1 (1986) 219–227

386. Goodman, J.E., Pollack, R., Wenger, R., Geometric transversal theory. New trends
in discrete and computational geometry, 163–198, Algorithms Combin. 10, Springer-
Verlag, Berlin 1993
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453. Grünbaum, B., Convex polytopes, Interscience, Wiley, London 1967, 2nd ed., prepared
by V. Kaibel, V. Klee, G.M. Ziegler, Springer-Verlag, New York 2003
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522. Horváth, Á.G., Molnár, E., Densest ball packings by orbits of the 10 fixed point free

Euclidean space groups, Studia Sci. Math. Hungar. 29 (1994) 9–23
523. Howard, R., The kinematic formula in Riemannian homogeneous spaces, Memoir 509,

Amer. Math. Soc. 1993
524. Hubacher, A., Instability of the boundary in the billiard ball problem, Comm. Math.

Phys. 108 (1987) 483–488
525. Huber, B., Sturmfels, B., A polyhedral method for solving sparse polynomial systems,

Math. Comp. 64 (1995) 1541–1555
526. Huber, B., Sturmfels, B., Bernstein’s theorem in affine space, Discrete Comput. Geom.

17 (1997) 137–141
527. Hug, D., Generalized curvature measures and singularities of sets with positive reach,

Forum Math. 10 (1998) 699–728
528. Hug, D., Schneider, R., Kinematic and Crofton formulae of integral geometry: recent

variants and extensions, in: Homenatge al profesor Lluı́s Santaló i Sors 51–80, Univ.
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563. Kannan, R., Algorithmic geometry of numbers, Ann. Rev. Comput. Sci. 2 (1987)

231–267
564. Kantor, J.-M., Triangulations of integral polytopes, examples and problems, in:

Topology of holomorphic dynamical systems and related topics (Kyoto 1995),
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639. Legendre, A.-M., Éléments de géométrie, Firmin-Didot, Paris 1794
640. Leichtweiss, K., Konvexe Mengen, Springer-Verlag, Berlin 1980
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Mishchenko (Miščenko), E.F., The mathematical theory of optimal processes,
Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow 1961, Wiley, New York 1962, Pergamon,
Macmillan, New York 1964

814. Posicel’skiı̆, E.D., The characterization of the Steiner point, Mat. Zametki 14 (1973)
243–247
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Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964) 138–147

832. Reynolds, O., in: British Association Report, p.897, Aberdeen 1885
833. Richter-Gebert, J., Realization spaces of polytopes, Lect. Notes Math. 1643, Springer-

Verlag, Berlin 1996
834. Richter-Gebert, J., Ziegler, G.M., Realization spaces of 4-polytopes are universal, Bull.

Amer. Math. Soc. (N.S.) 32 (1995) 403–412



References 547

835. Rickert, N.W., The range of a measure, Bull. Amer. Math. Soc. 73 (1967) 560–563
836. Riener, C., Extreme Gitter, Diplomarbeit, U. Ulm 2006
837. Riener, C., On extreme forms in dimension 8, J. Théor. Nombres Bordeaux, in print
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957. Stein, S.K., Szabó, S., Algebra and tiling, Math. Assoc. America 1994
958. Steiner, J., Einfache Beweise der isoperimetrischen Hauptsätze, J. reine angew. Math.

18 (1838) 289–296, Ges. Werke II 77–91, Reimer, Berlin 1882
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Santaló’s problem, 110
Schneider’s theorem, 239
Schwarz rounding, 178
Schwarz symmetrization, 178
selection theorem of Blaschke, 84
selection theorem of Mahler, 393
separated sets, 58
separating hyperplane, 53, 58

separating slab, 58
set lattice, 380
shadow boundary, 226
shelling, 266
Shephard’s problem, 125
shortest lattice vector problem, 419
Siegel’s mean value theorem, 389
signal, 497
simple

polytope, 269
valuation, 119

simplex algorithm, 340
simplicial complex, 257
simplicial polytope, 269
simplification, 257
simply additive, 281
simply additive valuation, 120
singular boundary point, 68
slicing problem, 125
smooth boundary point, 68
smooth convex body, 68
special linear group, 389
spherical harmonic, 238
spherical polygon, 260
sphericity theorem of Gross, 172
stable equivalence, 279
standard basis, 356
star number of a covering, 457
Steiner

formulae for quermassintegrals, 105
point, 239
polynomial, 93
symmetrization, 169

Steiner’s theorem for parallel bodies,
93

Steinitz’ representation theorem, 271
Stepanov–Schmidt irreducibility

criterion, 334
stereohedron, 464
Stone–Weierstrass theorem for

convex functions, 34
strictly

concave function, 3
convex function, 3
convex set, 2, 41



INDEX 565

strong membership oracle, 60
strong separation oracle, 60
strongly separated sets, 58
sub-facet of a polytope, 471
successive minimum, 376
sum of moments, 481
sum theorem of Kneser–Macbeath, 399
support

cone, 206
function, 56
halfspace, 54
hyperplane, 53, 55
set, 54

surface area formula of Cauchy, 106
symmetric difference metric, 209
symmetric with respect to a group,

168
symmetry condition of Minkowski, 307

theorem of
Alexandrov, 198, 301
Alexandrov on differentiability, 28,

74
Alexandrov on projections, 125
Alexandrov, Fenchel-Jessen, 193
Anderson and Klee, 69
Bezout, 335
Birkhoff, 77
Blaschke, 84
Bohr–Mollerup, 18
Bruggesser-Mani, 266
Brunn–Minkowski, 142
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Beneš, 135
Benson, 154
Benyamini, 26, 40
Berger, 201
Berkovitz, 336
Bernstein, 320, 333, 335
Bertrand, 375
Bertraneu, 431
Bertsimas, 349
Betke, 110, 257, 324, 325, 448
Bezdek, A., 450, 454
Bezdek, K., 426
Bianchi, 174
Bieberbach, 152, 175
Bigalke, 222
Billera, 265, 269
Birch, 406, 407
Birkhoff, G., 77, 229
Birkhoff, G.D., 201

567



568 AUTHOR INDEX

Björner, 265
Blaschke, 40, 84, 109, 110, 132, 135,

142, 172, 174–176, 226, 229
Blichfeldt, 369, 376, 422, 424
Blind, 275
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Kotecký, 158
Kouchnirenko, 333
Koy, 411, 417
Kozlov, 201
Krätzel, 410
Krahn, 179, 183
Krätzel, 410
Kreck, 265
Kronecker, 371, 418
Kubota, 108
Kucherinenko, 354



572 AUTHOR INDEX

Kuczma, 13, 17
Kühleitner, 410
Kuhn, 338
Kuiper, 199
Kumar, 422, 429
Kuperberg, G., 177
Kuperberg, W., 426, 440, 450, 454

Lagarias, 310, 354, 355, 375, 376, 480
Lagrange, 411, 421, 422, 435
Larman, 124
Las Vergnas, 265
Lauder, 334
Laugwitz, 203, 204, 207, 226
Lax, 354
Lazutkin, 201
Leavitt, 155
Ledoux, 148, 164
Ledrappier, 201
Lee, 244, 257, 259, 265, 269, 271,

272, 278
Leech, 427, 428
Legendre, 260, 292
Leichtweiss, 40, 94, 141, 168, 200,

215
Leindler, 161
Lekkerkerker, 310, 354, 355, 361, 366,

370, 376, 385, 388–392, 403,
405, 407, 409–411, 463
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Rényi, 203
Reynolds, 439
Richmond, 279
Richter-Gebert, 259, 271, 272, 278,

279
Rickert, 64
Riener, 439
Rigault, 365
Ritoré, 148
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Schütt, 215, 217
Schwarz, 79, 149
Scriba, 81
Segura Gomis, 110
Seidel, 238
Semmler, 185
Senata, 76
Senechal, 355, 358, 463
Servatius, B., 292
Servatius, H., 292
Shahgholian, 223
Shamir, 336
Shaneson, 410
Shannon, 497
Shemer, 279
Shephard, 125, 185, 187, 219, 244,

259, 265, 272, 316, 449, 463
Shlosman, 158
Shor, 336, 343, 480
Sidel’nikov, 426
Siegel, 354, 361, 367, 374, 388–390
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