
QSopt Reference Manual
Version 1.0 – October 27, 2003

c© Copyright 2000–2003 by David Applegate, William Cook, Sanjeeb Dash, and Monika Mevenkamp.
All rights reserved.

Contents

Preface iv

1 Introduction 1

2 Creating an LP Problem 4
QScreate prob . 4
QScreate prob . 4
QSread prob . 5
QSload prob . 6
QSfree prob . 8

3 Optimizing an LP Problem 9
QSopt dual . 9
QSopt primal . 11

4 Accessing an LP Solution 13
QSget status . 13
QSget solution . 15
QSget objval . 17
QSget x array . 17
QSget pi array . 18
QSget slack array . 19
QSget rc array . 20
QSget named x . 21
QSget named rc . 21
QSget named pi . 22
QSget named slack . 23

5 Modifying an LP Problem 25
QSnew col . 26
QSadd cols . 26
QSadd col . 28
QSdelete cols . 29
QSdelete col . 29
QSdelete setcols . 30
QSdelete named column . 31
QSdelete named columns list . 31
QSnew row . 32
QSadd rows . 33
QSadd row . 34

i

Contents ii

QSdelete rows . 35
QSdelete row . 36
QSdelete setrows . 36
QSdelete named row . 37
QSdelete named rows list . 38
QSchange coef . 38
QSchange objcoef . 39
QSchange objsense . 40
QSchange rhscoef . 40
QSchange senses . 41
QSchange sense . 42
QSchange bounds . 42
QSchange bound . 43

6 Accessing LP Problem Data 45
QSget probname . 45
QSget objname . 46
QSget colcount . 47
QSget rowcount . 47
QSget nzcount . 48
QSget obj . 49
QSget rhs . 49
QSget bound . 50
QSget bounds . 51
QSget columns . 52
QSget columns list . 54
QSget rows . 55
QSget rows list . 57
QSget column index . 58
QSget row index . 59
QSget colnames . 60
QSget rownames . 61
QSget intcount . 62
QSget intflags . 63

7 Working with an LP Basis 64
QSget basis . 64
QSwrite basis . 65
QSread basis . 66
QSload basis . 67
QSread and load basis . 67
QSfree basis . 68
QSget basis array . 68
QSload basis array . 70
QSget basis and row norms array . 70
QSload basis and row norms array . 71

8 Utility Routines 73
QSfree . 73
QSset param . 74
QSget param . 75

Contents iii

QSset param double . 76
QSget param double . 76
QSwrite prob . 77
QSwrite prob file . 78

9 Advanced Computational Routines 79
QSopt strongbranch . 79
QSopt pivotin col . 82
QSopt pivotin row . 82
QScompute row norms . 83
QStest row norms . 84
QSget infeas array . 85

10 Problem file formats 86
10.1 Bounds on Variables . 86
10.2 LP Format . 87

10.2.1 LP-format Examples . 91
10.3 MPS Format . 91

10.3.1 Data Lines . 92
10.3.2 Sections and Section Order . 93
10.3.3 Defining the Problem’s Name . 93
10.3.4 Objective Goal . 94
10.3.5 Defining Constraints and the Objective Function 94
10.3.6 Defining variable bounds . 96
10.3.7 Integer Variables . 96
10.3.8 Miscellaneous . 97
10.3.9 MPS-format Examples . 97

Index 99

Preface

The QSopt library provides a set of functions for creating, manipulating, and solving linear-
programming problems. The library is written in the C programming language, and it is distributed
as an archive file qsopt.a and a header file qsopt.h. This reference manual contains descriptions
of the functions available in the QSopt library.

iv

Chapter 1

Introduction

Linear programming is a widely used tool for computing optimal solutions to problems involving
the allocation of scare resources. A classic reference is Linear Programming, V. Chvátal (W. H.
Freeman and Company, New York, 1983), and a recently updated reference is Linear Programming:
Foundations and Extensions, R. J. Vanderbei (Kluwer Academic Publishers, Boston, 2001).

Linear Programming Problems

A linear-programming (LP) problem is one of maximizing or minimizing a linear function subject
to linear equality and linear inequality constraints. A general form of an LP problem is

Maximize c1x1 + c2x2 + · · ·+ cnxn

Subject to
a11x1 + a12x2 + · · ·+ a1nxn ≤ b1
a21x1 + a22x2 + · · ·+ a2nxn ≤ b2

...
am1x1 + am2x2 + · · ·+ amnxn ≤ bm

l1 ≤ x1 ≤ u1

l2 ≤ x2 ≤ u2

...
ln ≤ xn ≤ un

where x1, x2, . . . , xn are variables and the remaining elements are input data. Each of the input
data can be any (rational) number; the l1, l2, . . . , ln can also be assigned the value of −infinity
(−∞) and the u1, u2, . . . , un can also be assigned the value of +infinity (+∞). The “Maximize” can
alternatively be “Minimize”, and each “≤” relation can alternatively be an “=” or a “≥” relation.

There is common terminology associated with the parts of an LP problem. The linear function
c1x1 + c2x2 + · · ·+ cnxn that we seek to maximize (or minimize) is called the objective function, and
c1, c2, . . . , cn are called the objective coefficients. The inequalities ai1x1 + ai2x2 + · · · + ainxn ≤ bi
(for i = 1, . . . ,m) are referred to as the constraints, and the values b1, b2, . . . , bm are called the
right-hand-side values. The values l1, l2, . . . , ln are called lower bounds, and the values u1, u2, . . . , un
are called upper bounds. Note that by setting li = −∞ and ui = +∞, we allow the variable xi to
have no explicit bounds; such a variable is called free.

It is often convenient to express an LP problem in matrix notation. To do this, we define a

1

CHAPTER 1. INTRODUCTION 2

matrix

A =

a11 a12 . . . a1n

a21 a22 . . . a2n

...
am1 am2 . . . amn

and vectors

x =

x1

x2

...
xn

 , c =

c1
c2
...
cn

 , l =

l1
l2
...
ln

 , u =

u1

u2

...
un

 , b =

b1
b2
...
bm

 .

The general LP problem can then be formulated as

Maximize cTx

Subject to
Ax ≤ b
l ≤ x ≤ u

where cT is the transpose of the c-vector. The matrix A is called the constraint matrix. We will
sometimes refer to the ith constraint as the ith “row” and refer to the jth variable as the jth
“column”.

As an example of an LP problem, consider the following formulation with 3 variables (n = 3)
and 2 constraints (m = 2).

Maximize 3.0x1 + 2.0x2 + 4.0x3

Subject to
3.1x1 + 2.3x2 + 1.4x3 ≤ 12.2

5.0x1 + 1.1x2 = 10.0
0.0 ≤ x1 ≤ +∞
−∞ ≤ x2 ≤ +∞
0.0 ≤ x3 ≤ 10.0

In describing such an LP problem, it is standard practice to assume that each variable xi has lower
bound li = 0 and upper bound ui = +∞, if the bounds are not explicitly given in the model. So
this example could be expressed as

Maximize 3.0x1 + 2.0x2 + 4.0x3

Subject to
3.1x1 + 2.3x2 + 1.4x3 ≤ 12.2

5.0x1 + 1.1x2 = 10.0
x2 free
x3 ≤ 10.0

where (as we mentioned above) “free” is the shorthand way of expressing the fact that x2 has no
explicit bounds.

CHAPTER 1. INTRODUCTION 3

The QSopt Library

The QSopt library provides a set of functions for creating, manipulating, and solving LP problems.
The library is written in the (ANSI) C programming language, and it is distributed as an archive
file qsopt.a and a header file qsopt.h. Thread-safe versions of the library are available for use in
re-entrant programming applications.

This reference manual contains descriptions of the functions available in the QSopt library. To
make the best use of the library, the user should be familiar with the C programming language;
excellent references for C are The C Programming Language, Second Edition, B. W. Kernighan and
D. M. Ritchie (Prentice Hall, Englewood Cliffs, 1988) and A C Reference Manual, S. P. Harbison,
III and G. L. Steele, Jr. (Prentice Hall, Upper Saddle River, 2002).

Chapter 2

Creating an LP Problem

Nearly all QSopt functions work with a single problem data structure that stores all available infor-
mation about the problem as well as the associated choice of solution algorithm. A handle to the
data structure is provided to the user by the QSprob data type.

The first step to working with an LP problem is to obtain an initialized QSprob from the QSopt
library. There are three available functions that return initialized QSprob objects, allowing the user
to start with an empty problem, a problem described in a file (in MPS or LP format), or a problem
described by a set of user data. These four functions are described below, together with a function
that allows the user to free the memory associated with a QSprob when work on a given problem is
completed.

Page
QScreate prob initialize a new data structure with an empty problem 4
QSread prob read a problem from a named file 5
QSload prob build a problem from user data 6
QSfree prob free the data structure for a problem 8

QScreate prob

Initialize a new problem data structure for an empty problem.

Synopsis

QSprob QScreate_prob (const char *name, int objsense)

Arguments

name – a string specifying the name of the problem (can be NULL)
objsense – specifies if the problem is a minimization problem or a maximization problem; to

specify a minimization problem set objsense to QS MIN (that is, 1) and to specify a maximization
problem set objsense to QS MAX (that is, -1).

Returns

An initialized QSprob object, providing a handle to an empty problem. If an error occurred,
the QSprob object is set to NULL.

Description

The QSprob provided by this function is the starting point for building an LP problem from

4

CHAPTER 2. CREATING AN LP PROBLEM 5

within an application. The QSprob is a handle to an empty problem that can be filled-in using
the problem modification routines described in Chapter 5. To specify a minimization problem set
objsense to QS MIN (that is, 1), and to specify a maximization problem set objsense to QS MAX
(that is, -1); if objsense is given some other value, the objective function defaults to minimization.

A standard method is to follow the QScreate prob() call with calls to QSnew row() to initialize
the constraints, then calls to QSadd col() to create the variables and to build the coefficients in
the constraint matrix. Alternatively, one can first use QSnew col() to initialize the variables, then
use QSadd row() to create the constraints and the constraint matrix. (Or mix the column and row
operations, if that is more natural in the given application.)

Example

QSprob p;

p = QScreate_prob ("binky", QS_MIN);
if (p == (QSprob) NULL) {

fprintf (stderr, "Unable to initialize LP data structure\n");
} else {

/* Build the LP with calls to QSnew_row () and QSadd_col () */
}

QSread prob

Read a problem from a named file.

Synopsis

QSprob QSread_prob (const char *filename, const char *filetype)

Arguments

filename – a string specifying the name of the file containing the problem
filetype – use "LP" to read a file in LP format or "MPS" to read a file in MPS format

Returns

An initialized QSprob object, providing a handle to the problem described in the specified file.
If an error occurred, the QSprob object is set to NULL.

Description

This function can read LP problems in either MPS format or in LP format. To specify MPS
format, set filetype to "MPS" (the letters can be any mix of uppercase and lowercase), and to
specify LP format, set filetype to "LP". (If some other string is specified, an error code will be
returned.)

MPS format is a standard file format for recording LP problems. The format was created at
IBM in the 1960s, and the original standard included fixed-column information (a common feature
in the days of punched cards). An introduction to the format can be found at

plato.la.asu.edu/pub/mps format.txt.

The QSopt MPS reader follows a number of other modern LP solvers in removing the fixed-column
aspects of the format. A complete description of the format used in QSopt is given in Chapter 10.

LP format is a well-established format for recording algebraic representations of LP problems,
in a natural, row by row, manner. The QSopt LP format is compatible with the standard usage of

CHAPTER 2. CREATING AN LP PROBLEM 6

the LP file format incorporated in other LP solvers. A complete description of the format used in
QSopt is given in Chapter 10.

Example

QSprob p;

/* Read a problem in MPS format given in the file binky.mps */

p = QSread_prob ("binky.mps", "MPS");
if (p == (QSprob) NULL) {

fprintf (stderr, "Unable to read and load the LP\n");
} else {

/* We can solve and/or modify the problem using the handle p */
}

QSload prob

Build a problem from user data.

Synopsis

QSprob QSload_prob (const char *probname, int ncols, int nrows,
int *cmatcnt, int *cmatbeg, int *cmatind, double *cmatval,
int objsense, double *obj, double *rhs, char *sense, double *lower,
double *upper, const char **colnames, const char **rownames)

Arguments

probname – a string containing the name of the problem (can be NULL).
ncols – specifies the number of columns.
nrows – specifies the number of rows.
cmatcnt – an array of length ncols; the jth entry specifies the number of non-zeros in the jth

column.
cmatbeg – an array of length ncols; the jth entry specifies the location of the start of the

entries for the jth column in the arrays cmatind and cmatval.
cmatind – an array that contains the row indices of the non-zero entries in the constraint

matrix. The indices of the jth column must be stored consecutively starting at entry number
cmatbeg[j] (there are cmatcnt[j] entries for the jth column).

cmatval – an array that contains the values of the non-zero entries in the constraint ma-
trix. The non-zero values of the jth column must be stored consecutively starting at entry number
cmatbeg[j] (there are cmatcnt[j] entries for the jth column).

objsense – specifies if the problem is a minimization problem or a maximization problem; to
specify a minimization problem set objsense to QS MIN (that is, 1) and to specify a maximization
problem set objsense to QS MAX (that is, -1).

obj – an array of length ncols; the jth entry is the coefficient of the jth variable in the
objective function.

rhs – an array of length nrows; the ith entry is the right-hand-side value of the ith constraint.
sense – an array of length nrows; the ith entry specifies the sense of the ith constraint; to

specify an equation use ’E’, to specify a ≤ constraint use ’L’, and to specify a ≥ constraint use
’G’.

lower – an array of length ncols; the jth entry is the lower bound for the jth variable (use
-QS MAXDOUBLE if the jth variable has no lower bound).

CHAPTER 2. CREATING AN LP PROBLEM 7

upper – an array of length ncols; the jth entry is the upper bound for the jth variable (use
QS MAXDOUBLE if the jth variable has no upper bound).

colnames – an array of length ncols; the jth entry is a string that specifies the name of the
jth variable (the colnames field can be NULL).

rownames – an array of length nrows; the ith entry is a string that specifies the name of the
ith constraint (the rownames field can be NULL).

Returns

An initialized QSprob object, providing a handle to the problem described by the specified
data. If an error occurred, the QSprob object is set to NULL.

Description

The arguments to QSload prob() provide a method to completely describe an LP problem; the
cost of this completeness is the frightening appearance of the argument list itself. Most applications
can be written more cleanly using QScreate prob() to initialize an empty QSprob, and then filling-in
the LP data piece by piece with the problem modification routines described in Chapter 5. In some
cases, however, it is convenient to load everything in a single stroke. For example, if an application
stores all data for an LP in a problem-specific format, then it is natural to use QSload prob() to
load all of the information into the QSopt solver.

Note that the specification of both cmatcnt and cmatbeg is an overkill, since if the data arrays
are packed densely, then the cmatbeg values can be determined by the cmatcnt values. The point
in using both cmatcnt and cmatbeg is to allow applications the freedom of providing gaps in the
data arrays. (This may be helpful, for example, when a application builds its LP data before exact
counts of the number of non-zeros in each column are available.)

When specifying the constraint coefficients, objective coefficients, right-and-aside values, and
upper and lower bounds, it is important not to give any value larger in magnitude than QS MAXDOUBLE
(1e30). This restriction is due to the internal structures used in the QSopt solvers.

Example

/* */
/* Using QSload_prob to load the following LP problem */
/* Maximize 3.0x + 2.0y + 4.0z */
/* Subject to */
/* 3.1x + 2.3y + 1.4z <= 12.2 */
/* 5.0x + 1.1y = 10.0 */
/* x >= 2.0 */
/* y free */
/* 1.0 <= z <= 10.0 */
/* */

int rval;
QSprob p;
int cmatcnt[3] = { 2, 2, 1 };
int cmatbeg[3] = { 0, 2, 4 };
int cmatind[5] = { 0, 1, 0, 1, 0 };
double cmatval[5] = { 3.1, 5.0, 2.3, 1.1, 1.4 };
double obj[3] = { 3.0, 2.0, 4.0 };
double rhs[2] = { 12.2, 10.0 };
char sense[2] = { ’L’, ’E’ };
double lower[3] = { 2.0, -QS_MAXDOUBLE, 1.0 };
double upper[3] = { QS_MAXDOUBLE, QS_MAXDOUBLE, 10.0 };
const char *colnames[3] = { "x", "y", "z" };

CHAPTER 2. CREATING AN LP PROBLEM 8

p = QSload_prob ("small", 3, 2, cmatcnt, cmatbeg, cmatind, cmatval,
QS_MAX, obj, rhs, sense, lower, upper, colnames,
(char **) NULL);

if (p == (QSprob) NULL) {
fprintf (stderr, "Unable to load the LP problem\n");

} else {
/* As a check, write the LP to a file */
rval = QSwrite_prob (p, "small.lp", "LP");
if (rval) {

fprintf (stderr, "Could not write LP, error code %d\n", rval);
}

}

QSfree prob

Free the data structure for a problem.

Synopsis

void QSfree_prob (QSprob p)

Arguments

p – a handle to a problem.

Returns

No return value.

Description

When work is complete on a given problem p, QSfree prob(p) should be called to free the
memory associated with the QSprob data structure. This operation is important in applications
where LP problems are repeatedly created and solved, permitting the application to reuse the
available memory.

Note that after a call to QSfree prob(p), the specified QSprob p will no longer contain any
information related to the original LP problem.

Example

/* p is an initialized QSprob */

QSfree_prob (p);

Chapter 3

Optimizing an LP
Problem

The QSopt library provides access to two procedures for solving linear programming problems (and
the LP relaxations associated with mixed-integer programming problems). The solution procedures
are the primal and dual simplex algorithms. For each of these procedures, the user can specify
a number of parameters to determine the particular variant of the algorithm that is applied (for
example, the dual steepest-edge simplex algorithm). The parameters for the algorithms are specified
by using the QSset param() function.

Page
QSopt dual solve the LP problem with the dual simplex algorithm 9
QSopt primal solve the LP problem with the primal simplex algorithm 11

QSopt dual

Solve the LP problem with the dual simplex algorithm.

Synopsis

int QSopt_dual (QSprob p, int *status)

Arguments

p – a handle to an initialized problem.
status – returns a code to indicate the status of the final solution.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The dual simplex algorithm is the method of choice for many forms of LP problems when
solving the problem from scratch. The algorithm is also an effective solution procedure for re-
optimizing problems after the addition of constraints (adding constraints keeps the current dual
solution feasible).

After a call to QSopt dual(), the status variable should be checked to determine the status
of the solution. In the most common cases, either an optimal solution is found (indicated by a value
of QS LP OPTIMAL), or the problem is shown to be in infeasible (QS LP INFEASIBLE), or the problem
is shown to be unbounded (QS LP UNBOUNDED). A full list of the possible values for status is given
below.

9

CHAPTER 3. OPTIMIZING AN LP PROBLEM 10

Value Constant Meaning
1 QS LP OPTIMAL Optimal solution found
2 QS LP INFEASIBLE LP problem has no feasible solution
3 QS LP UNBOUNDED LP problem objective is unbounded
4 QS LP ITER LIMIT Iteration limit reached
5 QS LP TIME LIMIT Time limit reached
6 QS LP UNSOLVED Could not solve the LP problem

By default QSopt dual() will solve the specified LP problem using the dual steepest-edge pricing
rule. This rule is effective for many difficult LP problems, but for problems that are relatively easy
to solve (even though they may be very large in size) a less time-consuming pricing rule may be
preferable. To select an alternative pricing rule, the QSset param() function can be used with the
whichparam argument set to the value given below.

Constant Parameter
QS PARAM DUAL PRICING Dual pricing

The QSopt library has available three pricing rules for the dual simplex algorithm. The pricing rule
can be specified in QSset param() by setting the newvalue argument to one of the values given
below.

Constant Rule
QS PRICE DDANTZIG Dual Dantzig
QS PRICE DSTEEP Dual steepest-edge
QS PRICE DMULTPARTIAL Dual multiple-partial

Several parameters associated with the optimization algorithm (as well as with QSopt primal())
can also be set with QSset param(). These parameters are given in the following table.

Parameter Possible Values Default
QS PARAM SIMPLEX DISPLAY 0 or 1 0
QS PARAM SIMPLEX SCALING 0 or 1 1
QS PARAM SIMPLEX MAX ITERATIONS Any positive integer 300000

In a call to QSset param(), the parameter is specified in the whichparam argument and the value is
specified in the newvalue argument. The QS PARAM SIMPLEX DISPLAY parameter controls whether
or not detailed information on the progress of the optimization algorithm is displayed (0 is no, and
1 is yes) and the QS PARAM SIMPLEX SCALING parameter controls whether or not the problem data
is scaled at the start of the optimization algorithm. The maximum number of pivots allowed in the
algorithm can be set with the QS PARAM SIMPLEX MAX ITERATIONS parameter.

Additional parameters can be set with QSset param double(), as indicated below.

Parameter Possible Values Default
QS PARAM SIMPLEX MAX TIME Any positive number 10000.0

The QS PARAM SIMPLEX MAX TIME parameter sets the maximum allowed time (in seconds) for the
optimization algorithm.

Example

int status, rval;

/* p is a QSprob, a handle to an existing LP problem */

rval = QSopt_dual (p, &status);
if (rval) {

CHAPTER 3. OPTIMIZING AN LP PROBLEM 11

fprintf (stderr, "QSopt_dual failed with return code %d\n", rval);
} else {

switch (status) {
case QS_LP_OPTIMAL:

printf ("Found optimal solution to LP\n");
break;

case QS_LP_INFEASIBLE:
printf ("No feasible solution exists for the LP\n");
break;

case QS_LP_UNBOUNDED:
printf ("The LP objective is unbounded\n");
break;

default:
printf ("LP could not be solved, status = %d\n", status);
break;

}
}

QSopt primal

Solve the LP problem with the primal simplex algorithm.

Synopsis

int QSopt_primal (QSprob p, int *status)

Arguments

p – a handle to an initialized problem.
status – returns a code to indicate the status of the final solution.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

In general, there is not a clear-cut winner between the primal and dual simplex algorithms. If
performance is important in an application, it may pay to make tests of both methods to determine
which function to use in the given setting.

After a call to QSopt primal(), the status variable should be checked to determine the status
of the solution. The possible values of status are given above in the description of QSopt dual().

The QSset param() function can be used to select the pricing rule that is used in QSopt primal().
The appropriate value for the whichparam argument of QSset param() is given below.

Constant Parameter
QS PARAM PRIMAL PRICING Primal pricing

The QSopt library has available four pricing rules for the primal simplex algorithm. The pricing
rule can be specified in QSset param() by setting the newvalue argument to one of the values given
below.

CHAPTER 3. OPTIMIZING AN LP PROBLEM 12

Constant Rule
QS PRICE PDANTZIG Primal Dantzig
QS PRICE PDEVEX Primal Devex
QS PRICE PSTEEP Primal steepest-edge
QS PRICE PMULTPARTIAL Primal multiple-partial

Additional parameters associated with the optimization algorithm can be set using QSset param()
and QSset param double(); see the documentation for QSopt dual() given above.

Example

int status, rval;

/* p is a QSprob, a handle to an existing LP problem */

rval = QSopt_primal (p, &status);
if (rval)

fprintf (stderr, "QSopt_primal failed with return code %d\n", rval);
} else {

switch (status) {
case QS_LP_OPTIMAL:

printf ("Found optimal solution to LP\n");
break;

case QS_LP_INFEASIBLE:
printf ("No feasible solution exists for the LP\n");
break;

case QS_LP_UNBOUNDED:
printf ("The LP objective is unbounded\n");
break;

default:
printf ("LP could not be solved, status = %d\n", status);
break;

}
}

Chapter 4

Accessing an LP Solution

After a problem has been solved by QSopt dual() or QSopt primal(), information about the com-
ponents of the solution can be obtained through a variety of QSopt library functions. The optimal
basis can be obtained via the functions described in Chapter 7 Working with an LP Basis, and in
this chapter we describe functions to retrieve the objective function value, the solution vector, the
reduced costs, the values of the dual variables, and the values of the slack variables associated with
the constraints.

Except for the objective function value, all information is returned in arrays. The arrays need
to be allocated by the calling routine. For the solution vector and for the values of the reduced costs,
the arrays must be length at least ncols (the number of columns [variables] in the problem). For
the values of the dual variables and for the values of the slack variables, the arrays must be of length
at least nrows (the number of rows [constraints] in the problem). The appropriate values of ncols
and nrows can be obtained by calls to the functions QSget colcount() and QSget rowcount(),
respectively.

Page
QSget status obtain the solution status 13
QSget solution copy various solution data into arrays 15
QSget objval get the current objective function value 16
QSget x array copy the solution vector into an array 17
QSget pi array copy the values of the dual variables into an array 18
QSget slack array copy the constraint slack values into an array 19
QSget rc array copy the reduced costs into an array 20
QSget named x obtain the solution value of a named variable 20
QSget named rc obtain the reduced cost of a named variable 21
QSget named pi obtain the dual value associated with a named row 22
QSget named slack obtain the slack value associated with a named row 23

QSget status

Obtain the solution status.

Synopsis

int QSget_status (QSprob p, int *status)

13

CHAPTER 4. ACCESSING AN LP SOLUTION 14

Arguments

p – a handle to an initialized problem.
status – returns the solution status of the LP problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

If the problem p has been modified since the last time QSopt dual() or QSopt primal()
has been called to solve p, then status is set to QS LP MODIFIED (this has numerical value 100).
Otherwise, status is set to the value that was associated with the last call to QSopt dual() or
QSopt primal(), as specified in the table given on page 10.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, status;

rval = QSget_satus (p, &status);
if (rval) {

fprintf (stderr, "Unable to obtain status, error code %d\n", rval);
} else {

switch (status) {
case QS_LP_OPTIMAL:

printf ("An optimal solution is available\n");
break;

case QS_LP_INFEASIBLE:
printf ("The LP has no feasible solution\n");
break;

case QS_LP_UNBOUNDED:
printf ("The LP has unbounded objective value\n");
break;

case QS_ITER_LIMIT:
printf ("The optimization algorithm reached its iteration limit\n");
break;

case QS_TIME_LIMIT:
printf ("The optimization algorithm reached its time limit\n");
break;

case QS_LP_UNSOLVED:
printf ("The optimization algorithm could not solve the LP\n");
break;

case QS_LP_MODIFIED:
printf ("The LP was modified since last optimization call\n");
break;

default:
printf ("Unknown solution status: %d\n", status);
break;

}

}

CHAPTER 4. ACCESSING AN LP SOLUTION 15

QSget solution

Copy various solution data into arrays.

Synopsis

int QSget_solution (QSprob p, double *value, double *x, double *pi,
double *slack, double *rc)

Arguments

p – a handle to an initialized problem.
value – returns the value of the objective function (this field can be NULL).
x – returns the solution vector as an array (this field can be NULL, if it is not NULL then it

should point to an array of length at least ncols, the number of columns in the problem).
pi – returns the values of the dual variables as an array (this field can be NULL, if it is not

NULL then it should point to an array of length at least nrows, the number of rows in the problem).
slack – returns the values of the slack variables associated with the constraints (this field can

be NULL, if it is not NULL then it should point to an array of length at least nrows).
rc – returns the reduced costs of the variables (this field can be NULL, if it is not NULL then it

should point to an array of length at least ncols).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget solution() returns an error code if it is called with a specified problem that has
not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since
the last time the problem was loaded or modified.

Description

This function allows the user to obtain different components of the solution in one call (if some
component is not needed, the field can be given as NULL). To obtain individual components, it is
easier to use the specialized functions described later in this chapter.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Assume that p was solved with QSopt_dual() or QSopt_primal, and */
/* that the status code indicates that an optimal solution was */
/* obtained. We will grab and print all solution components. */

int rval, ncols, nrows, i, j;
double value;
double *x, *pi, *slack, *rc;
char **colnames, **rownames;

ncols = QSget_colcount (p);
nrows = QSget_rowcount (p);

/* Get the variable names and the constraint names, for printing */

colnames = (char **) malloc (ncols * sizeof (char *));

CHAPTER 4. ACCESSING AN LP SOLUTION 16

rownames = (char **) malloc (nrows * sizeof (char *));
rval = QSget_colnames (p, colnames);
if (rval) {

fprintf (stderr, "Could not get column names, error code %d\n", rval);
/* free the memory for colnames and rownames */
/* return an error code */

}
rval = QSget_rownames (p, rownames);
if (rval) {

fprintf (stderr, "Could not get row names, error code %d\n", rval);
/* free the memory for colnames and rownames */
/* return an error code */

}

/* Allocate memory for the solution components. */

x = (double *) malloc (ncols * sizeof (double));
rc = (double *) malloc (ncols * sizeof (double));
pi = (double *) malloc (nrows * sizeof (double));
slack = (double *) malloc (nrows * sizeof (double));

rval = QSget_solution (p, &value, x, pi, slack, rc);
if (rval) {

fprintf (stderr, "Could not get solution, error code %d\n", rval);
/* free the memory for x, rc, pi, slack, colnames, rownames */
/* return an error code */

}

printf ("Objective Value = %.6f\n", value);
for (j = 0; j < ncols; j++) {

printf ("%s = %.6f, reduced cost = %.6f\n", colnames[j], x[j], rc[j]);
}
for (i = 0; i < nrows; i++) {

printf ("dual %s = %.6f, slack = %.6f\n", rownames[i], pi[i], slack[i]);
}

/* Free the memory, including the individual names of cols and rows */

free (x); free (rc); free (pi); free (slack);
for (j = 0; j < ncols; j++) {

QSfree (colnames[j]); /* Use QSfree for memory from QSopt functs */
}
free (colnames);
for (i = 0; i < nrows; i++) {

QSfree (rownames[i]); /* Use QSfree for memory from QSopt functs */
}
free (rownames);

QSget objval

CHAPTER 4. ACCESSING AN LP SOLUTION 17

Get the current objective function value.

Synopsis

int QSget_objval (QSprob p, double *value)

Arguments

p – a handle to an initialized problem.
value – returns the value of the objective function.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget objval() returns an error code if it is called with a specified problem that has not
been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since the
last time the problem was loaded or modified.

Description

After a successful call to one of the optimization routines (QSopt dual() or QSopt primal()),
this function can be used to obtain the value of the objective function.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval;
double value;

rval = QSget_objval (p, &value);
if (rval) {

fprintf (stderr, "Could not get objective value, error code %d\n", rval);
} else {

printf ("Objective value = %.6f\n", value);
}

QSget x array

Copy the solution vector into an array.

Synopsis

int QSget_x_array (QSprob p, double *x)

Arguments

p – a handle to an initialized problem.
x – returns the solution vector as an array; this field should point to an array of length at least

ncols, the number of columns in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget x array() returns an error code if it is called with a specified problem that has
not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since

CHAPTER 4. ACCESSING AN LP SOLUTION 18

the last time the problem was loaded or modified.

Description

This function returns the solution to the LP problem as a dense vector, that is, the values of
all variables (both zero and non-zero) are returned in the array x.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, ncols;
double *x;

ncols = QSget_colcount (p);
x = (double *) malloc (ncols * sizeof (double));

rval = QSget_x_array (p, x);
if (rval) {

fprintf (stderr, "Could not get x-vector, error code %d\n", rval);
} else {

/* To print solution with names, see QSget_solution() example. */
}

free (x);

QSget pi array

Copy the values of the dual variables into an array.

Synopsis

int QSget_pi_array (QSprob p, double *pi)

Arguments

p – a handle to an initialized problem.
pi – returns the values of the dual variables as an array; this should point to an array of length

at least nrows, the number of rows in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget pi array() returns an error code if it is called with a specified problem that has
not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since
the last time the problem was loaded or modified.

Description

This function returns the dual solution to the LP problem as a dense vector, that is, the values
of all dual variables (both zero and non-zero) are returned in the array pi. Note that the values of
the dual variables associated with lower and upper bounds are given implicitly by the array pi.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

CHAPTER 4. ACCESSING AN LP SOLUTION 19

int rval, nrows;
double *pi;

nrows = QSget_rowcount (p);
pi = (double *) malloc (nrows * sizeof (double));

rval = QSget_pi_array (p, pi);
if (rval) {

fprintf (stderr, "Could not get dual values, error code %d\n", rval);
} else {

/* To print dual values with names, see QSget_solution() example. */
}

free (pi);

QSget slack array

Copy the constraint slack values into an array.

Synopsis

int QSget_slack_array (QSprob p, double *slack)

Arguments

p – a handle to an initialized problem.
slack – returns the values of the slack variables associated with the constraints; this field

should point to an array of length at least nrows, the number of rows in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget slack array() returns an error code if it is called with a specified problem that
has not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since
the last time the problem was loaded or modified.

Description

This function returns the slack values associated with the constraints of the LP problem. The
values are given as a dense vector, that is, the values of all slacks (both zero and non-zero) are
returned in the array slack.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, nrows;
double *slack;

nrows = QSget_rowcount (p);
slack = (double *) malloc (nrows * sizeof (double));

rval = QSget_slack_array (p, slack);
if (rval) {

fprintf (stderr, "Could not get slacks, error code %d\n", rval);

CHAPTER 4. ACCESSING AN LP SOLUTION 20

} else {
/* To print slack values with names, see QSget_solution() example. */

}

free (slack);

QSget rc array

Copy the reduced costs into an array.

Synopsis

int QSget_rc_array (QSprob p, double *rc)

Arguments

p – a handle to an initialized problem.
rc – returns the reduced costs of the variables; this field should point to an array of length at

least ncols, the number of columns in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget rc array() returns an error code if it is called with a specified problem that has
not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since
the last time the problem was loaded or modified.

Description

This function returns the reduced costs of the variables in the LP problem as a dense vector,
that is, values for all variables (both zero and non-zero) are returned in the array rc.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, ncols;
double *rc;

ncols = QSget_colcount (p);
rc = (double *) malloc (ncols * sizeof (double));

rval = QSget_rc_array (p, rc);
if (rval) {

fprintf (stderr, "Could not get reduced costs, error code %d\n", rval);
} else {

/* To print reduced costs with names, see QSget_solution() example. */
}

free (rc);

QSget named x

CHAPTER 4. ACCESSING AN LP SOLUTION 21

Obtain the solution value of a named variable.

Synopsis

int QSget_named_x (QSprob p, const char *colname, double *val)

Arguments

p – a handle to an initialized problem.
colname – a string specifying the name of a variable.
val – returns the solution value of the named variable.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget named x() returns an error code if it is called with a specified problem that has
not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since
the last time the problem was loaded or modified. An error will also occur if the named variable is
not in the LP problem.

Description

After a successful call to one of the optimization routines (QSopt dual() or QSopt primal()),
this function can be used to obtain the value of a variable specified by its name.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Get the solution value of the variable z. */

int rval;
double val;

rval = QSget_named_x (p, "z", &val);
if (rval) {

fprintf (stderr, "Could not get the x-value, error code %d\n", rval);
} else {

printf ("Solution value = %.6f\n", val);
}

QSget named rc

Obtain the reduced cost of a named variable.

Synopsis

int QSget_named_rc (QSprob p, const char *colname, double *val)

Arguments

p – a handle to an initialized problem.
colname – a string specifying the name of a variable.
val – returns the reduced cost of the named variable.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

CHAPTER 4. ACCESSING AN LP SOLUTION 22

Note that QSget named rc() returns an error code if it is called with a specified problem that has
not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since
the last time the problem was loaded or modified. An error will also occur if the named variable is
not in the LP problem.

Description

After a successful call to one of the optimization routines (QSopt dual() or QSopt primal()),
this function can be used to obtain the reduced cost of a variable specified by its name.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Get the reduced cost of the variable z. */

int rval;
double val;

rval = QSget_named_rc (p, "z", &val);
if (rval) {

fprintf (stderr, "Could not get the rc-value, error code %d\n", rval);
} else {

printf ("Reduced cost = %.6f\n", val);
}

QSget named pi

Obtain the dual value associated with a named row.

Synopsis

int QSget_named_pi (QSprob p, const char *rowname, double *val)

Arguments

p – a handle to an initialized problem.
rowname – a string specifying the name of a constraint.
val – returns the dual value associated with the named constraint.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget named pi() returns an error code if it is called with a specified problem that has
not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since
the last time the problem was loaded or modified. An error will also occur if the named constraint
is not in the LP problem.

Description

After a successful call to one of the optimization routines (QSopt dual() or QSopt primal()),
this function can be used to obtain the value of the dual variable associated with a constraint
specified by name.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Get the value of the dual variable for constraint r2. */

CHAPTER 4. ACCESSING AN LP SOLUTION 23

int rval;
double val;

rval = QSget_named_pi (p, "r2", &val);
if (rval) {

fprintf (stderr, "Could not get the dual value, error code %d\n", rval);
} else {

printf ("Dual value = %.6f\n", val);
}

QSget named slack

Obtain the slack value associated with a named row.

Synopsis

int QSget_named_slack (QSprob p, const char *rowname, double *val)

Arguments

p – a handle to an initialized problem.
rowname – a string specifying the name of a constraint.
val – returns the slack value associated with the named constraint.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget named slack() returns an error code if it is called with a specified problem that
has not been solved with one of the optimization functions (QSopt dual() or QSopt primal()) since
the last time the problem was loaded or modified. An error will also occur if the named constraint
is not in the LP problem.

Description

After a successful call to one of the optimization routines (QSopt dual() or QSopt primal()),
this function can be used to obtain the slack value (corresponding to the LP solution) for the named
constraint.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Get the slack value for the constraint r2. */

int rval;
double val;

rval = QSget_named_slack (p, "r2", &val);
if (rval) {

fprintf (stderr, "Could not get the slack value, error code %d\n", rval);
} else {

printf ("Slack value = %.6f\n", val);
}

CHAPTER 4. ACCESSING AN LP SOLUTION 24

Chapter 5

Modifying an LP Problem

In many applications, a linear-programming problem needs to be modified during the course of the
solution procedure, for example when new constraints are discovered or new variables need to be
added. The QSopt library provides a variety of functions to address this need. Note that this collec-
tion of functions can also be used to build a problem from scratch, after a call to QScreate prob()
to initialize an empty problem.

Page
QSnew col create a new empty column (variable) in the problem 25
QSadd cols add a set of columns to the problem 26
QSadd col add a single column to the problem 28
QSdelete cols delete a set of columns from the problem 29
QSdelete col delete a single column from the problem 29
QSdelete setcols delete a set of columns specified by flags 30
QSdelete named column delete a column specified by name 31
QSdelete named columns list delete a list of columns, specified by names 31
QSnew row create a new empty row (constraint) in the problem 32
QSadd rows add a set of rows to the problem 33
QSadd row add a single row to the problem 34
QSdelete rows delete a set of rows from the problem 35
QSdelete row delete a single row from the problem 36
QSdelete setrows delete a set of rows specified by flags 36
QSdelete named row delete a row specified by name 37
QSdelete named rows list delete a list of rows, specified by names 38
QSchange coef change a coefficient in the constraint matrix 38
QSchange objcoef change a coefficient in the objective function 39
QSchange objsense change the sense of the objective function 40
QSchange rhscoef change a coefficient in the right-hand-siden 40
QSchange senses change the sense of a set of constraints 41
QSchange sense change the sense of a single constraint 42
QSchange bounds change the lower or upper bounds for a set of variables 42
QSchange bound change the lower or upper bound for a single variable 43

QSnew col

25

CHAPTER 5. MODIFYING AN LP PROBLEM 26

Create a new empty column (variable) in the problem.

Synopsis
int QSnew_col (QSprob p, double obj, double lower, double upper,

const char *name)

Arguments

p – a handle to an initialized problem.
obj – the objective function coefficient for the variable.
lower – the lower bound for the variable (use -QS MAXDOUBLE if no lower bound).
upper – the upper bound for the variable (use QS MAXDOUBLE if no upper bound).
name – the name of the variable (can be NULL).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The QSnew col() function can be used to add a new variable to an existing LP problem. This
function should be used in cases where the new variable does not appear in the existing rows of the
LP problem, and in cases where the variable’s coefficients in the existing rows are not yet known in
the application. (In other cases, QSadd col() should be used to add the variable.)

As an example of a possible use of QSnew col(), the function can be called to initialize the
variables of an LP after a call to QScreate prob(); the constraint matrix is then created with calls
to QSadd row(). A call to QSnew col() can also be used before adding a constraint that introduces
a new variable to an existing problem, permitting the coefficients of the new variable to be specified
in the arguments of QSadd row().

When specifying obj, lower, and upper, it is important not to give any value larger in magni-
tude than QS MAXDOUBLE (1e30). This restriction is due to the internal structures used in the QSopt
solvers.

Example

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Add a variable w, with an objective coefficient of 1.1, and with */
/* 1.0 <= w <= 2.0. */

int rval;
const char *name = "w";

rval = QSnew_col (p, 1.1, 1.0, 2.0, name);
if (rval) {

fprintf (stderr, "QSnew_col failed with return code %d\n", rval);
}

QSadd cols

Add a set of columns (variables) to the problem.

Synopsis
int QSadd_cols (QSprob p, int num, int *cmatcnt, int *cmatbeg,

int *cmatind, double *cmatval, double *obj, double *lower,
double *upper, const char **names)

CHAPTER 5. MODIFYING AN LP PROBLEM 27

Arguments

p – a handle to an initialized problem.
num – the number of columns to be added.
cmatcnt – an array of length num (see QSload prob()).
cmatbeg – an array of length num (see QSload prob()).
cmatind – an array of row indices (see QSload prob()).
cmatval – an array of matrix coefficients (see QSload prob()).
obj – an array of length num specifying objective function coefficients for the variables.
lower – an array of length num specifying lower bounds for the variables.
upper – an array of length num specifying upper bounds for the variables.
names – an array of length num specifying names of variables (names can be NULL).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use QSadd cols() to add a collection of variables to an LP problem, including the non-zero
coefficients of the variables in the existing constraints of the problem. (If the new variables do not
appear in the existing rows, then it is simpler to use QSnew col() to add the variables. Also, to add
only a single variable, it is simpler to use QSadd col().) The arguments to specify the constraint
coefficients follow the same pattern as in QSload prob().

When specifying cmatval, obj, lower, and upper, it is important not to give any value larger
in magnitude than QS MAXDOUBLE (1e30). This restriction is due to the internal structures used in
the QSopt solvers.

Example

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Add variables v and w to obtain the following LP problem. */
/* Maximize 3.0x + 2.0y + 4.0z + 5.1v + 1.1w */
/* Subject to */
/* 3.1x + 2.3y + 1.4z + 3.5v + 2.1w <= 12.2 */
/* 5.0x + 1.1y + 3.0w = 10.0 */
/* x >= 2.0 */
/* y free */
/* 1.0 <= z <= 10.0 */
/* 0.0 <= v <= 2.0 */
/* 1.0 <= w <= 2.0 */

int rval;
int cmatcnt[2] = { 1, 2 };
int cmatbeg[2] = { 0, 1 };
int cmatind[3] = { 0, 0, 1 };
double cmatval[3] = { 3.5, 2.1, 3.0 };
double obj[2] = { 5.1, 1.1 };
double lower[2] = { 0.0, 1.0 };
double upper[2] = { 2.0, 2.0 };
const char *names[2] = { "v", "w" };

rval = QSadd_cols (p, 2, cmatcnt, cmatbeg, cmatind, cmatval, obj,
lower, upper, names);

CHAPTER 5. MODIFYING AN LP PROBLEM 28

if (rval) {
fprintf (stderr, "Add columns failed, error code %d\n", rval);

} else {
rval = QSwrite_prob (p, "newsmall.lp", "LP");
if (rval) {

fprintf (stderr, "Could not write LP, error code %d\n", rval);
}

}

QSadd col

Add a single column (variable) to the problem.

Synopsis

int QSadd_col (QSprob p, int cnt, int *cmatind, double *cmatval,
double obj, double lower, double upper, const char *name)

Arguments

p – a handle to an initialized problem.
cnt – the number of non-zero entries in the column.
cmatind – an array of length cnt specifying the row indices of the non-zero entries.
cmatval – an array of length cnt specifying the values of the matrix coefficients for the non-zero

entries.
obj – the objective function coefficient for the variable.
lower – the lower bound for the variable (use -QS MAXDOUBLE if no lower bound).
upper – the upper bound for the variable (use QS MAXDOUBLE if no upper bound).
name – the name of the variable (can be NULL).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The QSadd col() function provides a simpler interface than QSadd cols() for adding a single
variable to an existing LP, for example, the argument obj is a double rather than an array of
doubles (of length 1 when adding only a single variable).

When specifying cmatval, obj, lower, and upper, it is important not to give any value larger
in magnitude than QS MAXDOUBLE (1e30). This restriction is due to the internal structures used in
the QSopt solvers.

Note that when adding many variables, it is more efficient to use QSadd cols() rather than
repeated calls to QSadd col(), due to the internal data management in the QSopt library.

Example

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Add a variable w, with an objective coefficient of 1.1, with a 2.1 */
/* in the first constraint, with a 3.0 in the second constraint, and */
/* 1.0 <= w <= 2.0. */

int rval;
const char *name = "w";
int cmatind[2] = { 0, 1 };

CHAPTER 5. MODIFYING AN LP PROBLEM 29

int cmatval[2] = { 2.1, 3.0 };

rval = QSadd_col (p, 2, cmatind, cmatval, 1.1, 1.0, 2.0, name);
if (rval) {

fprintf (stderr, "QSadd_col failed with return code %d\n", rval);
}

QSdelete cols

Delete a set of columns from the problem.

Synopsis

int QSdelete_cols (QSprob p, int num, int *dellist)

Arguments

p – a handle to an initialized problem.
num – the number of columns to be deleted.
dellist – an array of length num specifying the indices of the columns to be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to delete a set of variables from an existing LP problem, specifying the
variables as a list of indices. (Note that the variables are numbered from 0 up to ncols-1, where
ncols is the number of columns in the problem.)

Example

/* Assume p is an initialized LP problem with at least 5 columns. */
/* Use QSdelete_cols() to remove columns 0, 2, and 4. */

int rval;
int dellist[3] = { 0, 2, 4 };

rval = QSdelete_cols (p, 3, dellist);
if (rval) {

fprintf (stderr, "QSdelete_cols failed with return code %d\n", rval);
}

QSdelete col

Delete a single column from the problem.

Synopsis

int QSdelete_col (QSprob p, int colindex)

Arguments

p – a handle to an initialized problem.

CHAPTER 5. MODIFYING AN LP PROBLEM 30

colindex – the index of the column to be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to delete a single variable from an existing LP problem; the interface is
slightly easier than that of QSdelete cols(). (Note that the variables are numbered from 0 up to
ncols-1, where ncols is the number of columns in the problem.)

Example

/* Assume p is an initialized LP problem with at least 5 columns. */
/* Use QSdelete_col() to remove column 4. */

int rval;

rval = QSdelete_col (p, 4);
if (rval) {

fprintf (stderr, "QSdelete_col failed with return code %d\n", rval);
}

QSdelete setcols

Delete a set of columns specified by flags.

Synopsis

int QSdelete_setcols (QSprob p, int *flags)

Arguments

p – a handle to an initialized problem.
flags – an array of length ncols (the number of columns in the problem) specifying a 0 or 1

for each column; the columns corresponding to the 1’s will be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to delete a set of variables (columns) from an existing LP problem, specifying
the variables as an array of flags, with a 0 entry indicating that a variable should not be deleted and
a 1 entry indicated that a variable should be deleted.

Example

/* Assume p is an initialized LP problem with 5 columns. */
/* Use QSdelete_setcols() to remove columns 0, 2, and 4. */

int rval;
int flags[5] = { 1, 0, 1, 0, 1 };

rval = QSdelete_setcols (p, flags);
if (rval) {

CHAPTER 5. MODIFYING AN LP PROBLEM 31

fprintf (stderr, "QSdelete_setcols failed with return code %d\n", rval);
}

QSdelete named column

Delete a column specified by name.

Synopsis

int QSdelete_named_column (QSprob p, const char *colname)

Arguments

p – a handle to an initialized problem.
colname – a string specifying the name of a column (variable) to be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred. If
the column is not in the LP problem, an error will be returned.

Description

Use this function to delete a single variable from an existing LP problem by specifying the
name of the variable; the interface is slightly easier than that of QSdelete named columns list().

Example

/* Assume p is an initialized LP problem. */
/* Delete variable z. */

int rval;

rval = QSdelete_named_column (p, "z");
if (rval) {

fprintf (stderr, "could not delete variable, error code %d\n", rval);
}

QSdelete named columns list

Delete a list of columns, specified by names.

Synopsis

int QSdelete_named_columns_list (QSprob p, int num, const char **colnames)

Arguments

p – a handle to an initialized problem.
num – the number of columns to be deleted.
colnames – an array of length num; the entries in the array are strings specifying the names of

the columns (variables) to be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred. If

CHAPTER 5. MODIFYING AN LP PROBLEM 32

one or more of the columns is not in the LP problem, an error will be returned.

Description

This function can be used to delete a set of variables from an existing LP problem by specifying
the names of the variables in a list. It is more efficient to use this function then to use repeated calls
to QSdelete named column().

Example

/* Assume p is an initialized LP problem. */
/* Delete variables v and w. */

int rval;
const char *dlist[2] = { "v", "w" };

rval = QSdelete_named_columns_list (p, 2, dlist);
if (rval) {

fprintf (stderr, "could not delete variables, error code %d\n", rval);
}

QSnew row

Create a new empty row (constraint) in the problem

Synopsis

int QSnew_row (QSprob p, double rhs, char sense, const char *name)

Arguments

p – a handle to an initialized problem.
rhs – the right-hand-side value of the constraint.
sense – the sense of the constraint (to specify an equation use ’E’, to specify a ≤ constraint

use ’L’, and to specify a ≥ constraint use ’G’).
name – the name of the constraint (can be NULL).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The QSnew row() function can be used to add a new constraint to an existing LP problem.
This function should be used in cases where the new constraint has no non-zero coefficients in the
existing columns of the LP problem, and in cases where the constraint’s coefficients in the existing
columns are not yet known in the application. (In other cases, QSadd row() should be used to add
the constraint.)

As an example of a possible use of QSnew row(), the function can be called to initialize the
constraints of an LP after a call to QScreate prob(); the constraint matrix is then created with
calls to QSadd col().

When specifying rhs, it is important not to give any value larger in magnitude than QS MAXDOUBLE
(1e30). This restriction is due to the internal structures used in the QSopt solvers.

Example

/* Assume p is initialized to the problem in the QSload_prob example. */

CHAPTER 5. MODIFYING AN LP PROBLEM 33

/* Add a >= constraint, with right-hand-side value 6.0 (and no name */
/* specified for the row). */

int rval;

rval = QSnew_row (p, 6.0, ’G’, (const char *) NULL);
if (rval) {

fprintf (stderr, "QSnew_row failed with return code %d\n", rval);
}

QSadd rows

Add a set of rows (constraints) to the problem.

Synopsis

int QSadd_rows (QSprob p, int num, int *rmatcnt, int *rmatbeg,
int *rmatind, double *rmatval, double *rhs, char *sense,
char **names)

Arguments

p – a handle to an initialized problem.
num – the number of rows to be added.
rmatcnt – an array of length num; the ith entry specifies the number of non-zero coefficients

in the ith row to be added to the LP problem.
rmatbeg – an array of length num; the ith entry specifies the location of the start of the ith

row in the rmatind and rmatval arrays.
rmatind – an array that contains the column indices of the non-zero coefficients in the rows

to be added. The indices for the ith row must be stored consecutively starting at entry number
rmatbeg[i] (there are rmatcnt[i] indices for the ith row).

rmatval – an array that contains the values of the non-zero coefficients in the rows to be added.
The coefficients for the ith row must be stored consecutively starting at entry number rmatbeg[i]
(there are rmatcnt[i] non-zero coefficients for the ith row).

rhs – an array of length num; the ith entry is the right-hand-side value of the ith constraint.
sense – an array of length num; the ith entry specifies the sense of the ith constraint; to specify

an equation use ’E’, to specify a ≤ constraint use ’L’, and to specify a ≥ constraint use ’G’.
names – an array of length num; the ith entry is a string that specifies the name of the ith

constraint to be added (the names field can be NULL).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use QSadd rows() to add a collection of constraints to an LP problem, including the non-zero
coefficients of the constraints in the existing columns of the problem. The arguments to specify the
non-zero coefficients follow the same pattern as in QSload prob().

When specifying rmatval and rhs, it is important not to give any value larger in magnitude
than QS MAXDOUBLE (1e30). This restriction is due to the internal structures used in the QSopt
solvers.

Note that to add single constraint, it is simpler to use QSadd row().)

Example

CHAPTER 5. MODIFYING AN LP PROBLEM 34

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Add two new rows to obtain the following LP. */
/* Maximize 3.0x + 2.0y + 4.0z */
/* Subject to */
/* 3.1x + 2.3y + 1.4z <= 12.2 */
/* 5.0x + 1.1y = 10.0 */
/* 0.5x + 2.0y + 4.0z >= 6.0 New */
/* 3.0y + 2.0z <= 8.0 New */
/* x >= 2.0 */
/* y free */
/* 1.0 <= z <= 10.0 */
/* */

int rval;
int rmatcnt[2] = { 3, 2 };
int rmatbeg[2] = { 0, 3 };
int rmatind[5] = { 0, 1, 2, 1, 2 };
double rmatval[5] = { 0.5, 2.0, 4.0, 3.0, 2.0 };
double rhs[2] = { 6.0, 8.0 };
char sense[2] = { ’G’, ’L’ };

rval = QSadd_rows (p, 2, rmatcnt, rmatbeg, rmatind, rmatval, rhs,
sense, (char **) NULL);

if (rval) {
fprintf (stderr, "Add rows failed, error code %d\n", rval);

} else {
rval = QSwrite_prob (p, "new2small.lp", "LP");
if (rval) {

fprintf (stderr, "Could not write LP, error code %d\n", rval);
}

}

QSadd row

Add a single row (constraint) to the problem.

Synopsis

int QSadd_row (QSprob p, int cnt, int *rmatind, double *rmatval,
double rhs, char sense, const char *name)

Arguments

p – a handle to an initialized problem.
cnt – the number of non-zero entries in the row.
rmatind – an array of length cnt specifying the column indices of the non-zero entries.
rmatval – an array of length cnt specifying the values of the matrix coefficients for the non-zero

entries.
rhs – the right-hand-side value of the constraint.
sense – the sense of the constraint; to specify an equation use ’E’, to specify a ≤ constraint

use ’L’, and to specify a ≥ constraint use ’G’.

CHAPTER 5. MODIFYING AN LP PROBLEM 35

name – the name of the constraint (can be NULL).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The QSadd row() function provides a simpler interface than QSadd rows() for adding a single
constraint to an existing LP, for example, the argument rhs is a double rather than an array of
doubles (of length 1 when adding only a single constraint).

When specifying rmatval and rhs, it is important not to give any value larger in magnitude
than QS MAXDOUBLE (1e30). This restriction is due to the internal structures used in the QSopt
solvers.

Note that when adding many constraints, it is more efficient to use QSadd rows() rather than
repeated calls to QSadd row(), due to the internal data management in the QSopt library.

Example

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Add the constraint 0.5x + 2.0y + 4.0z >= 6.0 to the LP. */

int rval;
int rmatind[3] = { 0, 1, 2 };
int rmatval[3] = { 0.5, 2.0, 4.0 };

rval = QSadd_row (p, 2, rmatind, rmatval, 6.0, ’G’, (const char *) NULL);
if (rval) {

fprintf (stderr, "QSadd_row failed with return code %d\n", rval);
}

QSdelete rows

Delete a set of rows from the problem.

Synopsis

int QSdelete_rows (QSprob p, int num, int *dellist)

Arguments

p – a handle to an initialized problem.
num – the number of rows to be deleted.
dellist – an array of length num specifying the indices of the rows to be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to delete a set of constraints from an existing LP problem, specifying the
constraints as a list of indices. (Note that the constraints are numbered from 0 up to nrows-1, where
nrows is the number of rows in the problem.)

Example

/* Assume p is an initialized LP problem with at least 4 rows. */

CHAPTER 5. MODIFYING AN LP PROBLEM 36

/* Use QSdelete_rows() to remove rows 1 and 3. */

int rval;
int dellist[2] = { 1, 3 };

rval = QSdelete_rows (p, 2, dellist);
if (rval) {

fprintf (stderr, "QSdelete_rows failed with return code %d\n", rval);
}

QSdelete row

Delete a single row from the problem.

Synopsis
int QSdelete_row (QSprob p, int rowindex)

Arguments

p – a handle to an initialized problem.
rowindex – the index of the row to be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to delete a single constraint from an existing LP problem; the interface is
slightly easier than that of QSdelete rows(). (Note that the constraints are numbered from 0 up
to nrows-1, where nrows is the number of rows in the problem.)

Example

/* Assume p is an initialized LP problem with at least 4 rows. */
/* Use QSdelete_row() to remove row 3. */

int rval;

rval = QSdelete_row (p, 3);
if (rval) {

fprintf (stderr, "QSdelete_row failed with return code %d\n", rval);
}

QSdelete setrows

Delete a set of rows specified by flags.

Synopsis
int QSdelete_setrows (QSprob p, int *flags)

Arguments

p – a handle to an initialized problem.

CHAPTER 5. MODIFYING AN LP PROBLEM 37

flags – an array of length nrows (the number of rows in the problem) specifying a 0 or 1 for
each row; the rows corresponding to the 1’s will be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to delete a set of constraints from an existing LP problem, specifying the
constraints as an array of flags, with a 0 entry indicating that a constraint should not be deleted
and a 1 entry indicated that a constraint should be deleted.

Example

/* Assume p is an initialized LP problem with 4 rows. */
/* Use QSdelete_setrows() to remove rows 1 and 3. */

int rval;
int flags[4] = { 0, 1, 0, 1 };

rval = QSdelete_setrows (p, flags);
if (rval) {

fprintf (stderr, "QSdelete_setrows failed with return code %d\n", rval);
}

QSdelete named row

Delete a row specified by name.

Synopsis

int QSdelete_named_row (QSprob p, const char *rowname)

Arguments

p – a handle to an initialized problem.
rowname – a string specifying the name of a row (constraint) to be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred. If
the row is not in the LP problem, an error will be returned.

Description

Use this function to delete a single constraint from an existing LP problem by specifying the
name of the constraint; the interface is slightly easier than that of QSdelete named rows list().

Example

/* Assume p is an initialized LP problem. */
/* Delete constraint r2. */

int rval;

rval = QSdelete_named_row (p, "r2");
if (rval) {

CHAPTER 5. MODIFYING AN LP PROBLEM 38

fprintf (stderr, "could not delete row, error code %d\n", rval);
}

QSdelete named rows list

Delete a list of rows, specified by names.

Synopsis

int QSdelete_named_rows_list (QSprob p, int num, const char **rownames)

Arguments

p – a handle to an initialized problem.
num – the number of rows to be deleted.
rownames – an array of length num; the entries in the array are strings specifying the names of

the rows (constraints) to be deleted.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred. If
one or more of the rows is not in the LP problem, an error will be returned.

Description

This function can be used to delete a set constraints from an existing LP problem by specifying
the names of the constraints in a list. It is more efficient to use this function then to use repeated
calls to QSdelete named row().

Example

/* Assume p is an initialized LP problem. */
/* Delete constraints r0 and r2. */

int rval;
const char *dlist[2] = { "r0", "r2" };

rval = QSdelete_named_rows_list (p, 2, dlist);
if (rval) {

fprintf (stderr, "could not delete rows, error code %d\n", rval);
}

QSchange coef

Change a coefficient in the constraint matrix.

Synopsis

int QSchange_coef (QSprob p, int rowindex, int colindex, double coef)

Arguments

p – a handle to an initialized problem.
rowindex – the index of the row containing the coefficient.

CHAPTER 5. MODIFYING AN LP PROBLEM 39

colindex – the index of the column containing the coefficient.
coef – the new value of the coefficient.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to change a single coefficient in the constraint matrix; it can be used to
modify an existing non-zero coefficient or to add a new non-zero coefficient.

Note that the function assumes that both the row and column exist; use QSadd row or QSadd col
if the coefficient introduces a new row or column.

Example

/* Change the matrix coefficient in row 1, col 2, to 1.5 */

int rval = 0;

rval = QSchange_coef (p, 1, 2, 1.5);
if (rval) {

fprintf (stderr, "could not change coef, error code %d\n", rval);
}

QSchange objcoef

Change a coefficient in the objective function.

Synopsis

int QSchange_objcoef (QSprob p, int indx, double coef)

Arguments

p – a handle to an initialized problem.
indx – the index of the variable whose objective coefficient will be changed.
coef – the new value of the coefficient.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to change a single coefficient in the objective function; it can be used to
modify an existing non-zero coefficient or to add a new non-zero coefficient to the objective.

Note that the function assumes that the column (variable) exists; use QSnew col if the coeffi-
cient introduces a new column.

Example

/* Change the objective coefficient of variable y to 5.0 */

int rval = 0;
int yindex;

/* Find the index of of y */

CHAPTER 5. MODIFYING AN LP PROBLEM 40

rval = QSget_column_index (p, "y", &yindex);
if (rval) {

fprintf (stderr, "could not get index, error code %d\n", rval);
} else {

if (yindex == -1) {
printf ("y is not a variable in the problem\n");

} else {
rval = QSchange_objcoef (p, yindex, 5.0);
if (rval) {

fprintf (stderr, "could not change coef, error %d\n", rval);
}

}
}

QSchange objsense

Change the sense of the objective function.

Synopsis
int QSchange_objsense (QSprob p, int newsense)

Arguments

p – a handle to an initialized problem.
newsense – the new sense of the objective; to specify a minimization problem set newsense to

QS MIN (that is, 1) and to specify a maximization problem set newsense to QS MAX (that is, -1).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to switch from minimizing the objective function to maximizing the objective
function, and vice versa.

Example

/* p is an initialized QSprob, change it to maximization */

int rval;

rval = QSchange_sense (p, QS_MAX);
if (rval) {

fprintf (stderr, "QSchange_objsense failed with return code %d\n", rval);
}

QSchange rhscoef

Change a coefficient in the right-hand-side vector.

Synopsis

CHAPTER 5. MODIFYING AN LP PROBLEM 41

int QSchange_rhscoef (QSprob p, int indx, double coef)

Arguments

p – a handle to an initialized problem.
indx – the index of the row whose right-hand-side coefficient will be changed.
coef – the new value of the coefficient.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to change a single coefficient in the right-hand-side vector; it can be used to
modify an existing non-zero coefficient or to add a new non-zero coefficient to the right-hand-side
vector.

Note that the function assumes that the row (constraint) exists; use QSnew row if the coefficient
introduces a new row.

Example

/* Change the right-hand-side coefficient in row 1 to 7.1 */

int rval = 0;

rval = QSchange_rhscoef (p, 1, 7.1);
if (rval) {

fprintf (stderr, "could not change rhs value, error code %d\n", rval);
}

QSchange senses

Change the sense of a set of constraints.

Synopsis

int QSchange_senses (QSprob p, int num, int *rowlist, char *sense)

Arguments

p – a handle to an initialized problem.
num – the number of constraints to be changed.
rowlist – an array of length num specifying the indices of the constraints to be changed.
sense – an array of length num specifying the new sense of each of the constraints; entries

should be ’E’, ’L’, or ’G’.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The sense of each constraint in an LP problem is either =, ≤, or ≥. This function can be used
to change the sense of each constraint in a given list, specifying new values using the encoding ’E’
for =, ’L’ for ≤, and ’G’ for ≥. To change the sense of a single constraint it is easier to use the
function QSchange sense().

Example

CHAPTER 5. MODIFYING AN LP PROBLEM 42

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Change the first constraint to an "=" and change the second */
/* constraint to a "<=". */

int rval;
int rowlist[2] = { 0, 1 };
char sense[2] = { ’E’, ’L’ };

rval = QSchange_senses (p, 2, rowlist, sense);
if (rval) {

fprintf (stderr, "Could not change the senses, error code %d\n",rval);
}

QSchange sense

Change the sense of a single constraint.

Synopsis
int QSchange_sense (QSprob p, int rowindex, char sense)

Arguments

p – a handle to an initialized problem.
rowindex – the index of the constraint to be changed.
sense – the new sense of the constraint; the value should be ’E’, ’L’, or ’G’.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The sense of each constraint in an LP problem is either =, ≤, or ≥. This function can be used
to change the sense of a single constraint by specifying a new value using the encoding ’E’ for =,
’L’ for ≤, and ’G’ for ≥.

Example

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Change the second constraint to "<=". */

int rval;

rval = QSchange_sense (p, 1, ’L’);
if (rval) {

fprintf (stderr, "Could not change the sense, error code %d\n",rval);
}

QSchange bounds

Change the lower or upper bounds for a set of variables.

Synopsis

CHAPTER 5. MODIFYING AN LP PROBLEM 43

int QSchange_bounds (QSprob p, int num, int *collist, char *lu,
double *bounds)

Arguments

p – a handle to an initialized problem.
num – the number of bounds to be changed.
collist – an array of length num specifying the indices of the variables whose bounds will be

changed.
lu – an array of length num specifying the type of each bound to be changed (’L’ for a lower

bound, ’U’ for an upper bound).
bounds – an array of length num specifying the values of the new bounds.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to change the lower and upper bounds for a list of variables. Bounds
on variables can be removed by specifying -QS MAXDOUBLE as a lower bound, or QS MAXDOUBLE
as an upper bound. (To change a bound on a single variable it is easier to use the function
QSchange bound().)

When specifying the upper and lower bounds, it is important not to give any value larger in
magnitude than QS MAXDOUBLE (1e30). This restriction is due to the internal structures used in the
QSopt solvers.

Example

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Change the bounds on variable y to 0 <= y <= 1, and change the */
/* upper bound on x to 3, giving x the bounds 2 <= x <= 3. */

int rval;
int collist[3] = { 1, 1, 0};
char lu[3] = { ’L’, ’U’, ’U’};
double bounds[3] = { 0.0, 1.0, 3.0 };

rval = QSchange_bounds (p, 3, collist, lu, bounds);
if (rval) {

fprintf (stderr, "Could not change the bounds, error code %d\n",rval);
}

QSchange bound

Change the lower or upper bound for a single variable.

Synopsis

int QSchange_bound (QSprob p, int indx, char lu, double bound)

Arguments

p – a handle to an initialized problem.
indx – the index of the variable whose bound will be changed.
lu – an ’L’ to change the lower bound or a ’U’ to change an upper bound.

CHAPTER 5. MODIFYING AN LP PROBLEM 44

bound – the value of the new bound.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to change the lower or upper bound of a single variable. A bound
on a variable can be removed by specifying -QS MAXDOUBLE as a lower bound, or QS MAXDOUBLE as
an upper bound. A common use of this function is to fix a variable at its lower or upper bound, or
to change a bound in a step of a branch-and-bound algorithm.

When specifying the lower or upper bound, it is important not to give any value larger in
magnitude than QS MAXDOUBLE (1e30). This restriction is due to the internal structures used in the
QSopt solvers.

Example

/* Assume p is initialized to the problem in the QSload_prob example. */
/* Change the lower bound on variable y to 0. */

int rval;
rval = QSchange_bound (p, 1, ’L’, 0.0);
if (rval) {

fprintf (stderr, "Could not change the bound, error code %d\n",rval);
}

Chapter 6

Accessing LP Problem
Data

The QSopt library provides a number of functions for obtaining information about the content of
the problem associated with a specified QSprob object.

Page
QSget probname copy the problem name 45
QSget objname copy the objective name 46
QSget colcount return the number of columns (variables) in the problem 47
QSget rowcount return the number of rows (constraints) in the problem 47
QSget nzcount return the number of non-zeros in the constraint matrix 48
QSget obj copy the objective function coefficients into an array 48
QSget rhs copy the right-hand-side values into an array 49
QSget bound obtain a lower or upper bound for a variable 50
QSget bounds copy the lower and upper bounds into arrays 51
QSget columns copy all columns 52
QSget columns list copy a list of columns 54
QSget rows copy all rows 55
QSget rows list copy a list of rows 57
QSget column index obtain the index of a named column 58
QSget row index obtain the index of a named row 59
QSget colnames copy the names of the columns in the problem 60
QSget rownames copy the names of the rows in the problem 61
QSget intcount obtain the number of integer variables 62
QSget intflags get flags indicating the integer variables 63

QSget probname

Copy the problem name.

Synopsis

char* QSget_probname (QSprob p)

45

CHAPTER 6. ACCESSING LP PROBLEM DATA 46

Arguments

p – a handle to an initialized problem.

Returns

A pointer to a string specifying the name of the problem. The function returns NULL if an error
occurred.

Description

The pointer returned by QSget probname() is a handle to a string that is allocated in the
function. When the string is no longer needed, the memory should be freed by the user; since the
memory for the string is allocated by the QSopt library, the memory must be freed with a call to
QSfree() and not by the system free() function—see the documentation for QSfree() on page 73.
(Note that without the call to QSfree (), the QSopt library will not free the memory for the string,
even after a call to QSfree prob(p).

Example

char *name;

/* p is an initialized QSprob */

name = QSget_probname (p);
if (name == (char *) NULL) {

fprintf (stderr, "Could not obtain the name of the LP\n");
} else {

printf ("Problem Name: %s\n", name);
QSfree (name); /* Use QSfree for mem allocated by QSopt */

}

QSget objname

Copy the objective name.

Synopsis
char* QSget_objname (QSprob p)

Arguments

p – a handle to an initialized problem.

Returns

A pointer to a string specifying the name of the objective for the problem. The function returns
NULL if an error occurred.

Description

The pointer returned by QSget objname() is a handle to a string that is allocated in the
function. When the string is no longer needed, the memory should be freed by the user; since the
memory for the string is allocated by the QSopt library, the memory must be freed with a call to
QSfree() and not by the system free() function—see the documentation for QSfree() on page 73.
(Note that without the call to QSfree (), the QSopt library will not free the memory for the string,
even after a call to QSfree prob(p).

Example

CHAPTER 6. ACCESSING LP PROBLEM DATA 47

char *objname;

/* p is an initialized QSprob */

objname = QSget_objname (p);
if (objname == (char *) NULL) {

fprintf (stderr, "Could not obtain the objective name for the LP\n");
} else {

printf ("Objective Name: %s\n", objname);
QSfree (objname); /* Use QSfree for mem allocated by QSopt */

}

QSget colcount

Return the number of columns in the problem.

Synopsis

int QSget_colcount (QSprob p)

Arguments

p – a handle to an initialized problem.

Returns

The number of columns (variables) in the problem. If p has not been initialized, QSget colcount()
will return 0.

Description

The value returned by QSget colcount() is the number of variables in the problem, it does
not include any slack variables or artificial variables that may have been added during the solution
procedure. A common use of this function is to obtain the value of ncols in order to use the func-
tions that access the components of the LP solution.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int ncols;

ncols = QSget_colcount (p);
printf ("Number of variables: %d\n", ncols);

QSget rowcount

Return the number of rows (constraints) in the problem.

Synopsis

int QSget_rowcount (QSprob p)

CHAPTER 6. ACCESSING LP PROBLEM DATA 48

Arguments

p – a handle to an initialized problem.

Returns

The number of rows (constraints) in the problem. If p has not been initialized, QSget rowcount()
will return 0.

Description

The value returned by QSget rowcount() is the number of constraints in the problem; it does
not include the objective row. A common use of this function is to obtain the value of nrows in
order to use the functions that access the components of the LP solution.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int nrows;

nrows = QSget_rowcount (p);
printf ("Number of constraints: %d\n", nrows);

QSget nzcount

Return the number of non-zeros in the constraint matrix.

Synopsis

int QSget_nzcount (QSprob p)

Arguments

p – a handle to an initialized problem.

Returns

The number of non-zero entries in the constraint matrix. If p has not been initialized,
QSget nzcount() will return 0.

Description

The value returned by QSget nzcount() is the number of non-zero entries in the constraint
matrix, it does not include the non-zero coefficients in the objective function.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int nzcount;

nzcount = QSget_nzcount (p);
printf ("Number of non-zero constraint coefficients: %d\n", nzcount);

QSget obj

CHAPTER 6. ACCESSING LP PROBLEM DATA 49

Copy the objective function coefficients into an array.

Synopsis

int QSget_obj (QSprob p, double *obj)

Arguments

p – a handle to an initialized problem.
obj – returns the objective function coefficients as an array; this field should point to an array

of length at least ncols, the number of columns in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function returns the coefficients of the objective function as a dense vector, that is, all
coefficients (both zero and non-zero) are returned in the array obj. The calling function must
allocate the memory for the obj array; it should be of length at least ncols.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, ncols;
double *obj;

ncols = QSget_colcount (p);
obj = (double *) malloc (ncols * sizeof (double));

rval = QSget_obj (p, obj);
if (rval) {

fprintf (stderr, "Could not get objective, error code %d\n", rval);
} else {

printf ("Objective Function\n");
for (i = 0; i < ncols; i++) {

printf ("%f\n", obj[i]);
}

}

free (obj);

QSget rhs

Copy the right-hand-side values into an array.

Synopsis

int QSget_rhs (QSprob p, double *rhs)

Arguments

p – a handle to an initialized problem.

CHAPTER 6. ACCESSING LP PROBLEM DATA 50

rhs – returns the right-hand-side values as an array; this field should point to an array of
length at least nrows, the number of rows in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function returns the right-hand-side values of the constraints (the b values in the linear
system Ax ≤ b) as a dense vector, that is, all coefficients (both zero and non-zero) are returned in
the array rhs. The calling function must allocate the memory for the rhs array; it should be of
length at least nrows, the number of rows in the problem.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, nrows;
double *rhs;

nrows = QSget_rowcount (p);
rhs = (double *) malloc (nrows * sizeof (double));

rval = QSget_rhs (p, rhs);
if (rval) {

fprintf (stderr, "Could not get right-hand-side, error code %d\n", rval);
} else {

printf ("Right-Hand-Side\n");
for (i = 0; i < nrows; i++) {

printf ("%f\n", rhs[i]);
}

}

free (rhs);

QSget bound

Obtain a lower or upper bound for a variable.

Synopsis
int QSget_bound (QSprob p, int colindex, char lu, double *bound)

Arguments

p – a handle to an initialized problem.
colindex – the index of the variable.
lu – an ’L’ to obtain a lower bound or a ’U’ to obtain an upper bound.
bound – returns the value of the specified lower or upper bound.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to obtain the lower or upper bound on a single variable. If the

CHAPTER 6. ACCESSING LP PROBLEM DATA 51

bound on the specified variable does not exist, bound will be set to -QS MAXDOUBLE in the case of
lower bounds and set to QS MAXDOUBLE in the case of upper bounds.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval;
double bound;

rval = QSget_bound (p, 2, ’U’, &bound);
if (rval) {

fprintf (stderr, "could not obtain bound, error code %d\n", rval);
} else {

printf ("Upper bound of variable 2 is %f\n", bound);
}

QSget bounds

Copy the lower and upper bounds into arrays.

Synopsis

int QSget_bounds (QSprob p, double *lower, double *upper)

Arguments

p – a handle to an initialized problem.
lower – returns the variable lower bounds as an array; this field can be NULL, if it is not NULL

then it should point to an array of length at least ncols, the number of columns in the problem.
upper – returns the variable upper bounds as an array; this field can be NULL, if it is not

NULL then it should point to an array of length at least ncols.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function returns the lower and upper bounds on all variables (if one of the two arrays is
not needed, its argument can be set to NULL). The calling function must allocate the memory for
the two arrays (unless they are set to NULL); the arrays should be of length at least ncols, the
number of columns in the problem. If some variable does not have a lower bound, the corresponding
value of lower will be set to -QS MAXDOUBLE. Similarly, if some variable does not have an upper
bound, the corresponding value of upper will be set to QS MAXDOUBLE.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int j, rval, ncols;
double *lower, *upper;

ncols = QSget_colcount (p);
lower = (double *) malloc (ncols * sizeof (double));
upper = (double *) malloc (ncols * sizeof (double));

CHAPTER 6. ACCESSING LP PROBLEM DATA 52

rval = QSget_bounds (p, lower, upper);
if (rval) {

fprintf (stderr, "could not obtain bounds, error code %d\n", rval);
} else {

for (j = 0; j < ncols; j++) {
if (lower[j] == -QS_MAXDOUBLE) {

printf ("-infinity");
} else {

printf ("%f", lower[j]);
}
printf (" <= Variable %d <= ", j);

if (upper[j] == QS_MAXDOUBLE) {
printf ("+infinity\n");

} else {
printf ("%f\n", upper[j]);

}
}

}

free (lower);
free (upper);

QSget columns

Copy all columns.

Synopsis

int QSget_columns (QSprob p, int **colcnt, int **colbeg, int **colind,
double **colval, double **obj, double **lower, double **upper,
char ***names)

Arguments

p – a handle to an initialized problem.
colcnt – returns an array of length ncols (the number of columns in the problem), with the

jth entry specifying the number of non-zero coefficients in the jth column of the constraint matrix;
this field can be NULL.

colbeg – returns an array of length ncols, with the jth entry specifying the location of the
start of the jth column in the colind and colval arrays; this field can be NULL.

colind – returns an array that contains the row indices of the columns; the indices for jth
column are stored consecutively starting at entry number colbeg[j] (there are colcnt[j] indices
for the jth column); this field can be NULL.

colval – returns an array that contains the non-zero coefficients in the columns; the coefficients
for the jth column are stored consecutively starting at entry number colbeg[j] (there are colcnt[j]
coefficients for jth column); this field can be NULL.

obj – returns an array of length ncols, giving the objective function coefficients; this field can
be NULL.

lower – returns an array of length ncols, giving the lower bounds for the variables (if a variable
has no lower bound, the value -QS MAXDOUBLE is given); this field can be NULL.

CHAPTER 6. ACCESSING LP PROBLEM DATA 53

upper – returns an array of length ncols, giving the upper bounds for the variables (if a
variable has no upper bound, the value QS MAXDOUBLE is given); this field can be NULL.

names – returns an array of length ncols, where the jth entry is a string that specifies the
name of jth variable; this field can be NULL.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

A complete description of the variables for the problem can be obtained using this function.
Each of the arguments returns an array that is allocated by the function QSget columns(); if some
piece of information is not needed, the corresponding argument for the function should be set to
NULL. The calling function should free the memory for each of the arrays (and for the strings in the
array names) when the information is no longer needed; since the memory for the arrays and strings
is allocated by the QSopt library, the memory must be freed with calls to QSfree() and not by the
system free() function—see the documentation for QSfree() on page 73. The form of the column
information is the same as that used in the QSload prob() function.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

double *colval = NULL, *obj = NULL, *lower = NULL, *upper = NULL;
int *colcnt = NULL, *colbeg = NULL, *colind = NULL;
char **names = NULL;
int ncols, j, k, rval;

ncols = QSget_colcount (p);
rval = QSget_columns (p, &colcnt, &colbeg, &colind, &colval, &obj, &lower,

&upper, &names);
if (rval) {

fprintf (stderr, "could not obtain cols, error code %d\n", rval);
} else {

for (j = 0; j < ncols; j++) {
printf ("%s OBJ = %f, LOWER = %f, UPPER = %f\n",

names[j], obj[j], lower[j], upper[j]);
printf (" Coefficients: ");
for (k = colbeg[j]; k < colbeg[j] + colcnt[j]; k++) {

printf ("(%d, %f) ", colind[k], colval[k]);
}
printf ("\n");

}
}

QSfree (colcnt); QSfree (colbeg); QSfree (colind); QSfree (colval);
QSfree (obj);
QSfree (lower); QSfree (upper);
if (names) {

for (j = 0; j < ncols; j++) {
QSfree (names[j]);

}
QSfree (names);

}

CHAPTER 6. ACCESSING LP PROBLEM DATA 54

QSget columns list

Copy a list of columns.

Synopsis
int QSget_columns_list (QSprob p, int num, int *collist,

int **colcnt, int **colbeg, int **colind, double **colval,
double **obj, double **lower, double **upper, char ***names)

Arguments

p – a handle to an initialized problem.
num – the length of the array collist.
collist – an array of length num; each entry specifies the index of a column (so a value between

0 and ncols - 1, where ncols is the number of columns in the problem).
colcnt – returns an array of length num, with the jth entry specifying the number of non-zero

coefficients in column collist[j] of the constraint matrix; this field can be NULL.
colbeg – returns an array of length num, with the jth entry specifying the location of the start

of column collist[j] in the colind and colval arrays; this field can be NULL.
colind – returns an array that contains the row indices of the non-zero coefficients in the

columns specified in the collist array; the indices for column collist[j] are stored consecutively
starting at entry number colbeg[j] (there are colcnt[j] indices for collist[j]); this field can
be NULL.

colval – returns an array that contains the non-zero coefficients in the columns specified by
the collist array; the coefficients for column collist[j] are stored consecutively starting at entry
number colbeg[j] (there are colcnt[j] coefficients for collist[j]); this field can be NULL.

obj – returns an array of length num, giving the objective function coefficients for the columns
specified in the collist array; this field can be NULL.

lower – returns an array of length num, giving the lower bounds for the columns specified in
the collist array (if a variable has no lower bound, the value -QS MAXDOUBLE is given); this field
can be NULL.

upper – returns an array of length num, giving the upper bounds for the columns specified in
the collist array (if a variable has no upper bound, the value QS MAXDOUBLE is given); this field
can be NULL.

names – returns an array of length num where the jth entry is a string that specifies the name
of variable collist[j]; this field can be NULL.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

A complete description of the subset of the variables for the problem can be obtained us-
ing this function; the indices for the variables are passed into the function via the collist ar-
ray (the indices can be obtained from the corresponding column names by using the function
QSget column index()). Each of the arguments returns an array that is allocated by the function
QSget columns list(); if some piece of information is not needed, the corresponding argument for
the function should be set to NULL. The calling function should free the memory for each of the
arrays (and for the strings in the array names) when the information is no longer needed; since the
memory for the arrays and strings is allocated by the QSopt library, the memory must be freed with
calls to QSfree() and not by the system free() function—see the documentation for QSfree()

CHAPTER 6. ACCESSING LP PROBLEM DATA 55

on page 73. The form of the column information is the same as that used in the QSload prob()
function.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Obtain the column information for column 2. */

double *colval = NULL, *obj = NULL, *lower = NULL, *upper = NULL;
int *colcnt = NULL, *colbeg = NULL, *colind = NULL;
char **names = NULL;
int collist[1] = { 2 };
int k, rval;

rval = QSget_columns_list (p, 1, collist, &colcnt, &colbeg, &colind,
&colval, &obj, &lower, &upper, &names);

if (rval) {
fprintf (stderr, "could not obtain column, error code %d\n", rval);

} else {
printf ("Variable %s, objective %f, bounds %f <= %s <= %f\n",

names[0], obj[0], lower[0], names[0], upper[0]);
printf ("Coefficients: ");
for (k = colbeg[0]; k < colbeg[0] + colcnt[0]; k++) {

printf ("Row %d = %f ", colind[k], colval[k]);
}
printf ("\n");

}

QSfree (colcnt); QSfree (colbeg); QSfree (colind); QSfree (colval);
QSfree (obj);
QSfree (lower); QSfree (upper);
if (names) {

QSfree (names[0]);
QSfree (names);

}

QSget rows

Copy all rows.

Synopsis

int QSget_rows (QSprob p, int **rowcnt, int **rowbeg, int **rowind,
double **rowval, double **rhs, char **sense, char ***names)

Arguments

p – a handle to an initialized problem.
rowcnt – returns an array of length nrows, the number of rows in the problem, with the ith

entry specifying the number of non-zero coefficients in the ith row of the constraint matrix; this field
can be NULL.

rowbeg – returns an array of length nrows, with the ith entry specifying the location of the
start of the ith row in the rowind and rowval arrays; this field can be NULL.

CHAPTER 6. ACCESSING LP PROBLEM DATA 56

rowind – returns an array that contains the column indices of the non-zero coefficients in the
rows; the indices for the ith row are stored consecutively starting at entry number rowbeg[i] (there
are rowcnt[i] indices for the ith row); this field can be NULL.

rowval – returns an array that contains the non-zero coefficients in the rows; the coefficients
for the ith row are stored consecutively starting at entry number rowbeg[i] (there are rowcnt[i]
coefficients for the ith row); this field can be NULL.

rhs – returns the right-hand-side values as an array of length nrows; this field can be NULL.
sense – returns an array of length nrows where the ith entry specifies the sense of the ith

constraint (’E’ for =, ’L’ for ≤; ’G’ for ≥); this field can be NULL.
names – returns an array of length nrows where the ith entry is a string that specifies the name

of the ith constraint; this field can be NULL.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

A complete description of the constraints for the problem can be obtained using this function.
Each of the arguments returns an array that is allocated by QSget rows(); if some piece of informa-
tion is not needed, the corresponding argument for the function should be set to NULL. The calling
function should free the memory for each of the arrays (and for the strings in the names array) when
the information is no longer needed; since the memory for the arrays and strings is allocated by
the QSopt library, the memory must be freed with calls to QSfree() and not by the system free()
function—see the documentation for QSfree() on page 73. The form of the row information is the
same as that used in the QSadd rows() function.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

double *rowval = NULL, *rhs = NULL;
int *rowcnt = NULL, *rowbeg = NULL, *rowind = NULL;
char *sense = NULL, **names = NULL;
int nrows, i, j, rval;

nrows = QSget_rowcount (p);
rval = QSget_rows (p, &rowcnt, &rowbeg, &rowind, &rowval, &rhs, &sense,

&names);
if (rval) {

fprintf (stderr, "could not obtain rows, error code %d\n", rval);
} else {

for (i = 0; i < nrows; i++) {
printf ("%s RHS = %f, SENSE = %c\n", names[i], rhs[i], sense[i]);
printf (" Coefficients: ");
for (j = rowbeg[i]; j < rowbeg[i] + rowcnt[i]; j++) {

printf ("(%d, %f) ", rowind[j], rowval[j]);
}
printf ("\n");

}
}

QSfree (rowcnt); QSfree (rowbeg); QSfree (rowind); QSfree (rowval);
QSfree (rhs); QSfree (sense);
if (names) {

CHAPTER 6. ACCESSING LP PROBLEM DATA 57

for (i = 0; i < nrows; i++) {
QSfree (names[i]);

}
QSfree (names);

}

QSget rows list

Copy a list of rows.

Synopsis

int QSget_rows_list (QSprob p, int num, int *rowlist, int **rowcnt,
int **rowbeg, int **rowind, double **rowval, double **rhs,
char **sense, char ***names)

Arguments

p – a handle to an initialized problem.
num – the length of the array rowlist.
rowlist – an array of length num; each entry specifies the index of a row (so a value between

0 and nrows - 1, where nrows is the number of rows in the problem).
rowcnt – returns an array of length num, with the ith entry specifying the number of non-zero

coefficients in the row specified by rowlist[i]; this field can be NULL.
rowbeg – returns an array of length num, with the ith entry specifying the location of the start

of rowlist[i] in the rowind and rowval arrays; this field can be NULL.
rowind – returns an array that contains the column indices of the non-zero coefficients in the

rows specified in the rowlist array; the indices for rowlist[i] are stored consecutively starting at
entry number rowbeg[i] (there are rowcnt[i] indices for row rowlist[i]); this field can be NULL.

rowval – returns an array that contains the non-zero coefficients in the rows specified by the
rowlist array; the coefficients for rowlist[i] are stored consecutively starting at entry number
rowbeg[i] (there are rowcnt[i] coefficients for rowlist[i]); this field can be NULL.

rhs – returns an array of length num, giving the right-hand-side values for rows specified in the
rowlist array; this field can be NULL.

sense – returns an array of length num where the ith entry specifies the sense of constraint
rowlist[i] (’E’ for =, ’L’ for ≤; ’G’ for ≥); this field can be NULL.

names – returns an array of length num where the ith entry is a string that specifies the name
of constraint rowlist[i]; this field can be NULL.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

A complete description of the subset of the constraints for the problem can be obtained using
this function; the indices for the constraints are passed into the function via the rowlist array (the
indices can be obtained from the corresponding row names by using the function QSget row index()).
Each of the arguments returns an array that is allocated by QSget rows list(); if some piece of
information is not needed, the corresponding argument for the function should be set to NULL. The
calling function should free the memory for each of the arrays when the information is no longer
needed; since the memory for the arrays and strings is allocated by the QSopt library, the memory
must be freed with calls to QSfree() and not by the system free() function—see the documen-
tation for QSfree() on page 73. The form of the row information is the same as that used in the

CHAPTER 6. ACCESSING LP PROBLEM DATA 58

QSadd rows() function.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Obtain the row information for row 0 and row 2. */

double *rowval = NULL, *rhs = NULL;
int *rowcnt = NULL, *rowbeg = NULL, *rowind = NULL;
char *sense = NULL, **names = NULL;
int rowlist[2] = { 0, 2 };
int i, j, rval;

rval = QSget_rows_list (p, 2, rowlist, &rowcnt, &rowbeg, &rowind, &rowval,
&rhs, &sense, &names);

if (rval) {
fprintf (stderr, "could not obtain rows, error code %d\n", rval);

} else {
for (i = 0; i < 2; i++) {

printf ("%s RHS = %f, SENSE = %c\n", names[i], rhs[i], sense[i]);
printf (" Coefficients: ");
for (j = rowbeg[i]; j < rowbeg[i] + rowcnt[i]; j++) {

printf ("(%d, %f) ", rowind[j], rowval[j]);
}
printf ("\n");

}
}

QSfree (rowcnt); QSfree (rowbeg); QSfree (rowind); QSfree (rowval);
QSfree (rhs); QSfree (sense);
if (names) {

for (i = 0; i < 2; i++) {
QSfree (names[i]);

}
QSfree (names);

}

QSget column index

Obtain the index of a named column.

Synopsis

int QSget_column_index (QSprob p, const char *name, int *colindex)

Arguments

p – a handle to an initialized problem.
name – a string containing the name of a variable.
colindex – returns the index of the variable in the problem (a value between 0 and ncols

- 1, where ncols is the number of columns in the problem); if the variable is not in the problem,

CHAPTER 6. ACCESSING LP PROBLEM DATA 59

colindex is set to -1.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function returns the index of a variable specified by name (all variables in an initialized
QSprob have associated names). The function provides an easy way to keep track of a named variable,
particularly after calls that delete columns (and change the indices of the remaining variables).

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Find the index of the variable z. */

int rval, colindex;
const char *name = "z";

rval = QSget_column_index (p, name, &colindex);
if (rval) {

fprintf (stderr, "could not get index, error code %d\n", rval);
} else {

if (colindex == -1) {
printf ("%s is not in the problem\n", name);

} else {
printf ("%s is variable number %d\n", name, colindex);

}
}

QSget row index

Obtain the index of a named row.

Synopsis

int QSget_row_index (QSprob p, const char *name, int *rowindex)

Arguments

p – a handle to an initialized problem.
name – a string containing the name of a row.
rowindex – returns the index of the row in the problem (a value between 0 and nrows - 1,

where nrows is the number of rows in the problem); if the row is not in the problem, rowindex is
set to -1.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function returns the index of a constraint specified by name (all rows in an initialized
QSprob have associated names). The function provides an easy way to keep track of a named row,
particularly after calls that delete rows (and change the indices of those that remain).

Example

CHAPTER 6. ACCESSING LP PROBLEM DATA 60

/* p is an initialized QSprob, a handle to an existing LP problem */
/* Find the index of the constraint r1. */

int rval, rowindex;
const char *name = "r1";

rval = QSget_row_index (p, name, &rowindex);
if (rval) {

fprintf (stderr, "could not get index, error code %d\n", rval);
} else {

if (rowindex == -1) {
printf ("%s is not in the problem\n", name);

} else {
printf ("%s is row number %d\n", name, rowindex);

}
}

QSget colnames

Copy the names of the columns in the problem.

Synopsis

int QSget_colnames (QSprob p, char **colnames)

Arguments

p – a handle to an initialized problem.
colnames – returns an array of strings specifying the names of the columns (variables); this

field should point to an array of length at least ncols, the number of columns in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

A QSprob data structure always contains names for each column of the LP problem; if the
application does not give explicit column names, then the QSopt library will generate them when
the problem is loaded and as new columns are added. The QSget colnames() function will allocate
memory for each of the strings that are returned via the array of pointers in colnames; when the
application no longer needs the names, the memory associated with each of the strings should be
freed; since the memory for the strings was allocated by the QSopt library, the memory must be
freed with calls to QSfree() rather than by the system free() function—see the documentation for
QSfree() on page 73.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, ncols, j;
char **colnames;

ncols = QSget_colcount (p);
colnames = (char **) malloc (ncols * sizeof (char *));

CHAPTER 6. ACCESSING LP PROBLEM DATA 61

rval = QSget_colnames (p, colnames);
if (rval) {

fprintf (stderr, "Could not get column names, error code %d\n", rval);
} else {

printf ("Variable Names\n");
for (j = 0; j < ncols; j++) {

printf ("%s\n", colnames[j]);
}

/* Need to free the individual names */

for (j = 0; j < ncols; j++) {
QSfree (colnames[j]); /* Use QSfree for mem allocated by QSopt */

}
}

free (colnames); /* Use free for mem allocated by system malloc */

QSget rownames

Copy the names of the rows in the problem.

Synopsis

int QSget_rownames (QSprob p, char **rownames)

Arguments

p – a handle to an initialized problem.
rownames – returns an array of strings specifying the names of the rows (constraints); this field

should point to an array of length at least nrows, the number of rows in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

A QSprob data structure always contains names for each row of the LP problem; if the applica-
tion does not give explicit row names, then the QSopt library will generate them when the problem
is loaded and as new rows are added. The QSget rownames() function will allocate memory for
each of the strings that are returned via the array of pointers in rownames; when the application
no longer needs the names, the memory associated with each of the strings should be freed; since
the memory for the strings was allocated by the QSopt library, the memory must be freed with calls
to QSfree() rather than by the system free() function—see the documentation for QSfree() on
page 73.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, nrows, i;
char **rownames;

CHAPTER 6. ACCESSING LP PROBLEM DATA 62

nrows = QSget_rowcount (p);
rownames = (char **) malloc (nrows * sizeof (char *));

rval = QSget_rownames (p, rownames);
if (rval) {

fprintf (stderr, "Could not get row names, error code %d\n", rval);
} else {

printf ("Constraint Names\n");
for (i = 0; i < nrows; i++) {

printf ("%s\n", rownames[i]);
}

/* Need to free the individual names */

for (i = 0; i < nrows; i++) {
QSfree (rownames[i]); /* Use QSfree for mem allocated by QSopt */

}
}

free (rownames); /* Use free for mem allocated by system malloc */

QSget intcount

Obtain the number of integer variables.

Synopsis

int QSget_intcount (QSprob p, int *count)

Arguments

p – a handle to an initialized problem.
count – returns the number of integer variables in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to obtain the number of integer variables in the problem, that is,
the number of variables that are required to take on integer values.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, count;

rval = QSget_intcount (p, &count);
if (rval) {

fprintf (stderr, "could not get integer count, error code %d\n", rval);
} else {

printf ("Problem has %d integer variables\n", count);
}

CHAPTER 6. ACCESSING LP PROBLEM DATA 63

QSget intflags

Get flags indicating the integer variables.

Synopsis

int QSget_intflags (QSprob p, int *intflags)

Arguments

p – a handle to an initialized problem.
intflags – returns an array of length ncols (the number of columns in the problem) of 0 - 1

values; the jth entry is 1 if the jth variable is an integer variable and the jth entry is 0 otherwise;
this array must be allocated by the calling routine.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to determine the integer variables in the problem, that is, the
variables that are required to take on integer values. The argument intflags must point to an
array of length at least ncols, the number of columns in the problem. The first ncols entries of
intflags will be set to 0 or 1, with the 1’s indicating the integer variables.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int j, ncols;
int *intflags;

ncols = QSget_colcount (p);
intflags = (int *) malloc (ncols * sizeof (int));

rval = QSget_intflags (p, intflags);
if (rval) {

fprintf (stderr, "could not get intflags, error code %d\n", rval);
} else {

printf ("Integer Variables\n");
for (j = 0; j < ncols; j++) {

if (intflags[j] == 1) {
printf ("%d ", j);

}
}
printf ("\n");

}

free (intflags);

Chapter 7

Working with an LP Basis

An LP solution found by the simplex algorithm has an associated basis. The basis can be used to
restart the solution procedure after a problem is modified (usually allowing the algorithm to save
a great amount of time over solving the problem from scratch). In the normal course of solving
a problem, modifying the data, and resolving, the QSopt solvers will automatically use the basis
information to aid in the resolves (the user does not need to provide any additional information to
the solvers). However, if a problem is saved (for example to a file) and later reloaded, the basis
information is lost. In such a case, it may be useful to save the basis and provide the solver with
this information to help in the later solution of the problem. The QSopt library provides number
of routines for saving and loading the basis information, as well as saving and loading information
used by the dual steepest-edge variant of the simplex algorithm.

The QSopt functions provide two interfaces to the basis routines. The first interface makes use
of the QSbas data type to store the associated information, in a manner similar to the use of the
QSprob data type. The second interface makes use of a set of arrays to store the basis information
(allowing the user to easily build and manipulate the data).

Page
QSget basis get the current basis 64
QSwrite basis write a basis to a file 65
QSread basis read a basis from a file 66
QSload basis load a basis stored in a basis structure 67
QSread and load basis read and load a basis 67
QSfree basis free the basis structure 68
QSget basis array copy the current basis into arrays 68
QSload basis array load a basis specified by arrays 70
QSget basis and row norms array copy the basis and row norms 70
QSload basis and row norms array load a basis and row norms 71

QSget basis

Get the current basis.

Synopsis

QSbas QSget_basis (QSprob p)

64

CHAPTER 7. WORKING WITH AN LP BASIS 65

Arguments

p – a handle to an initialized problem.

Returns

An initialized QSbas object, providing a handle to the current basis for the LP problem. If an
error occurred, the QSbas object is set to NULL. Note that QSget basis() returns an error code if it
is called with a specified problem that has not been solved with one of the optimization functions
(QSopt dual() or QSopt primal()) since the last time the problem was loaded or modified.

Description

This function can be used to obtain a copy of the current basis; the basis can later be used with
a call to QSload basis() when re-solving the LP problem. When a application no longer requires
the QSbas data structure, the function QSfree basis() should be call to free the associated memory.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

QSbas B;

B = QSget_basis (p);
if (B == (QSbas) NULL) {

fprintf (stderr, "Could not obtain the basis\n");
}

QSwrite basis

Write a basis to a file.

Synopsis

int QSwrite_basis (QSprob p, QSbas B, const char *filename)

Arguments

p – a handle to an initialized problem.
B – a handle to a basis for the problem; this argument can be NULL, in which case the basis

written will be the current optimal basis for the problem.
filename – a string specifying the name of the file to store the basis.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred. Note
that if B is NULL, then QSwrite basis() returns an error code if it is called with a specified problem
that has not been solved with one of the optimization functions (QSopt dual() or QSopt primal())
since the last time the problem was loaded or modified.

Description

This can be used to store a basis directly in a file, avoiding the format issues that arise in the
use of the QSget basis array() function. The B argument can be used to specify the basis, or B
can be set to NULL to specify that the current optimal basis for the LP problem should be written
to the file.

CHAPTER 7. WORKING WITH AN LP BASIS 66

The basis file is written the industry standard MPS Basis format. (This is the format that is
used by QSread basis().)

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval;

rval = QSwrite_basis (p, (QSbas) NULL, "binky.bas");
if (rval) {

fprintf (stderr, "Could not write the basis, error code %d\n", rval);
}

QSread basis

Read a basis from a file.

Synopsis

QSbas QSread_basis (QSprob p, const char *filename)

Arguments

p – a handle to an initialized problem.
filename – a string specifying the name of the file containing the basis.

Returns

An initialized QSbas object, providing a handle to the basis described in the file. If an error
occurred, the QSbas object is set to NULL.

Description

This function returns the basis in the QSbas data structure. The function can be used if an
application has stored the basis information and may need to load it several times (for example, when
the LP problem is solved in several different ways, or after several different types of modifications).
If the application only needs to solve the LP problem a single time and the QSbas data structure is
being passed directly to the QSprob p via a call to QSload basis(), then it may be easier to use
the function QSread and load basis() to read and load the basis in a single stroke.

When a application no longer requires the QSbas data structure, the function QSfree basis()
should be call to free the associated memory.

The basis file should contain a description of the basis in the industry standard MPS Basis
format. (This is the format that is used by QSwrite basis().)

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

QSbas B;

B = QSread_basis (p, "binky.bas");
if (B == (QSbas) NULL) {

fprintf (stderr, "Could not read the basis\n");
}

CHAPTER 7. WORKING WITH AN LP BASIS 67

QSload basis

Load a basis stored in a basis structure.

Synopsis

int QSload_basis (QSprob p, QSbas B)

Arguments

p – a handle to an initialized problem.
B – a handle to a basis for the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Use this function to load a previously saved basis into the QSprob data structure. The basis B
should have been obtained either via a call to QSget basis() or via a call to QSread basis(). The
QSload basis function will check that the size of the basis agrees with the size of the LP problem
p, and return an error code if the two do not match.

Example

/* p is an initialized QSprob, a handle to an existing LP problem. */
/* B is an initialized QSbas for p (with size matching the size of p). */

int rval;

rval= QSload_basis (p, B);
if (rval) {

fprintf (stderr, "Could not load the basis, error code %d\n", rval);
}

QSread and load basis

Read and load a basis.

Synopsis

int QSread_and_load_basis (QSprob p, const char *filename)

Arguments

p – a handle to an initialized problem.
filename – a string specifying the name of the file containing the basis.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function reads a basis from a file an stores in directly in the QSprob data structure,

CHAPTER 7. WORKING WITH AN LP BASIS 68

avoiding both the need to keep a QSbas structure as well as the format issues that arise in the use
of the QSload basis array() function.

The basis file should contain a description of the basis in the industry standard MPS Basis
format. (This is the format used by QSwrite basis().)

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval;

rval = QSread_and_load_basis (p, "binky.bas");
if (rval) {

fprintf (stderr, "Could not read the basis, error code %d\n", rval);
}

QSfree basis

Free the basis structure.

Synopsis

void QSfree_basis (QSbas B)

Arguments

B - a handle to a basis.

Returns

No return value.

Description

When work is complete on a given basis B, QSfree basis(B) should be called to free the
memory associated with the QSbas data structure. Note that after a call to QSfree basis(B), the
specified QSbas B will no longer contain any useful information.

Example

/* B is an initialized QSbas */

QSfree_basis (B);

QSget basis array

Copy the current basis into arrays.

Synopsis

int QSget_basis_array (QSprob p, char *cstat, char *rstat)

Arguments

p – a handle to an initialized problem.

CHAPTER 7. WORKING WITH AN LP BASIS 69

cstat – returns an array specifying the status of each column (variable) in the basis; this field
can be NULL, if it is not NULL it should point to an array of length at least ncols, the number of
columns in the problem.

rstat – returns an array specifying the status of each row (constraint) in the basis; this field
can be NULL, if it is not NULL it should point to an array of length at least nrows, the number of
rows in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The status of the columns (variables) in the basis are specified in the array cstat. Each entry
in the cstat array is one of the following four values

Value Constant Meaning
0 QS COL BSTAT LOWER Variable is non-basic, at lower bound
1 QS COL BSTAT BASIC Variable is basic
2 QS COL BSTAT UPPER Variable is non-basic, at upper bound
3 QS COL BSTAT FREE Variable is non-basic and free

Similarly, the status of the rows (constraints) in the basis (that is, the status of the logical variables
[either slack variables or artificial variables] corresponding to the rows) are specified in the array
rstat. Each entry in the rstat array is one of the following two values

Value Constant Meaning
0 QS ROW BSTAT LOWER Logical variable is non-basic, at lower bound
1 QS ROW BSTAT BASIC Logical variable is basic
2 QS ROW BSTAT UPPER Logical variable is non-basic, at upper bound

Note that a logical variable has an associated upper bound only if it corresponds to a range constraint.

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, ncols, nrows;
char *cstat, *rstat;

ncols = QSget_colcount (p);
nrows = QSget_rowcount (p);

cstat = (char *) malloc (ncols * sizeof (char));
rstat = (char *) malloc (nrows * sizeof (char));

rval = QSget_basis_array (p, cstat, rstat);
if (rval) {

fprintf (stderr, "Could not get the basis, error code %d\n", rval);
} else {

/* The basis information is stored in the arrays. */
}

free (cstat);
free (rstat);

CHAPTER 7. WORKING WITH AN LP BASIS 70

QSload basis array

Load a basis specified by arrays.

Synopsis

int QSload_basis_array (QSprob p, char *cstat, char *rstat)

Arguments

p – a handle to an initialized problem.
cstat – an array of length ncols, the number of columns in the problem; cstat[j] should

specify the status of the jth column.
rstat – an array of length nrows, the number of rows in the problem; rstat[i] should specify

the status of the ith row.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The basis should be described by the arrays cstat and rstat, using the encoding given above
in the description of QSget basis array(). If values other than those listed above are specified in
cstat or rstat, then an error code will be returned by QSload basis array().

Example

/* p is an initialized QSprob, a handle to an existing LP problem */
/* cstat and rstat are arrays containing the basis information. */

int rval;

rval = QSload_basis_array (p, cstat, rstat);
if (rval) {

fprintf (stderr, "Could not load the basis, error code %d\n", rval);
}

QSget basis and row norms array

Copy the basis and dual steepest-edge norms.

Synopsis

int QSget_basis_and_row_norms_array (QSprob p, char *cstat,
char *rstat, double *rownorms)

Arguments

p – a handle to an initialized problem.
cstat – returns an array specifying the status of each column (variable) in the basis; this field

can be NULL, if it is not NULL it should point to an array of length at least ncols, the number of
columns in the problem.

CHAPTER 7. WORKING WITH AN LP BASIS 71

rstat – returns an array specifying the status of each row (constraint) in the basis; this field
can be NULL, if it is not NULL it should point to an array of length at least nrows, the number of
rows in the problem.

rownorms – returns an array specifying the dual steepest-edge norm of each row (constraint);
this field can be NULL, if it is not NULL it should point to an array of length at least nrows.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The basis information is returned in the arrays cstat and rstat, using the encoding given
above in the description of QSget basis array(); the row norms are given as floating point numbers
in the array rownorms. It is important note that the row norms correspond to the particular basis,
so the basis and row norms should be stored together if they are to be used in a later call to
QSload basis and row norms array().

Example

/* p is an initialized QSprob, a handle to an existing LP problem */

int rval, ncols, nrows;
char *cstat, *rstat;
double *rownorms;

ncols = QSget_colcount (p);
nrows = QSget_rowcount (p);

cstat = (char *) malloc (ncols * sizeof (char));
rstat = (char *) malloc (nrows * sizeof (char));
rownorms = (double *) malloc (nrows * sizeof (char));

rval = QSget_basis_and_row_norms_array (p, cstat, rstat, rownorms);
if (rval) {

fprintf (stderr, "Could not get the basis+norms, error code %d\n", rval);
} else {

/* The basis and norm information is stored in the arrays. */
}

free (cstat);
free (rstat);
free (rownorms);

QSload basis and row norms array

Load a basis and dual steepest-edge norms.

Synopsis

int QSload_basis_and_row_norms_array (QSprob p, char *cstat,
char *rstat, double *rownorms)

Arguments

CHAPTER 7. WORKING WITH AN LP BASIS 72

p – a handle to an initialized problem.
cstat – an array of length ncols, the number of columns in the problem; cstat[j] should

specify the status of the jth column.
rstat – an array of length nrows, the number of rows in the problem; rstat[i] should specify

the status of the ith row.
rownorms – an array of length nrows, the number of rows in the problem; rownorms[i] should

specify the dual steepest-edge norm of the ith row.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

The format for the basis arrays cstat and rstat is given above in the description of the function
QSget basis array(). The values for rownorms should normally be obtained from an earlier call to
QSget basis and row norms array(). Note that the row norms correspond to a particular basis;
mixing a given set of row norms with an unmatched basis will most likely lead to poor results in
later calls to QSopt dual().

Example

/* p is an initialized QSprob, a handle to an existing LP problem. */
/* cstat and rstat are arrays containing the basis information, */
/* and rownorms contains the dual steepest-edge norms for the rows. */

int rval;

rval = QSload_basis_and_row_norms_array (p, cstat, rstat, rownorms);
if (rval) {

fprintf (stderr, "Could not load the basis+norms, error code %d\n", rval);
}

Chapter 8

Utility Routines

In this section we describe several utility functions provided in the QSopt library, including functions
that allow users to set and obtain parameters associated with the solver routines.

Page
QSfree free standard memory allocated by QSopt functions 73
QSset param set the value of a specified parameter 74
QSget param obtain the value of a specified parameter 75
QSset param double set the value of a numerical parameter 76
QSget param double obtain the value of a numerical parameter 76
QSwrite prob write the problem to a named file 77
QSwrite prob file write the problem to an open file 78

QSfree

Free standard memory allocated by QSopt functions.

Synopsis

void QSfree (void *ptr)

Arguments

ptr – a pointer to a block of memory allocated by a QSopt function and returned to the user
as either the value of a function or as an argument in a function.

Returns

No return value.

Description

This function should be used to free the blocks of memory allocated by QSopt functions when
the memory is no longer needed by the user. Only pointers to data of standard type (that is,
char, int, double) and pointers to pointers of these types should be passed to QSfree; pointers to
structures created by QSopt functions should be passed to the structure-specific functions, that is,
QSfree prob () or QSfree basis ().

Examples of blocks of memory allocated by a QSopt function are the locations of the strings
returned by QSget probname () or QSget objname (), or the locations of the strings for the column

73

CHAPTER 8. UTILITY ROUTINES 74

names returned by QSget colnames (). Other examples include arguments in QSget columns (),
QSget columns list (), QSget rownames (), QSget rows (), and QSget rows list ().

It is important to note that this function should not be used to free memory allocated by the
system malloc () functions.

(The functionality of QSfree () is needed to deal with the partitioned memory system used in
the Microsoft Windows operating system. By altering the design of the QSopt library, it would be
possible to avoid the allocation of standard types by the QSopt functions, but only at the expense
of having a less intuitive interface for the functions that return collections of strings, like those
returning the column names and row names. Under Unix-like systems, you should be able to simply
use the standard free () function rather than QSfree () if you prefer to do so.)

Example

/* p is a QSprob, a handle to an existing LP problem. */

char *objname;

objname = QSget_objname (p);
if (objname == (char *) NULL) {

fprintf (stderr, "Could not obtain the objective name\n");
} else {

printf ("Objective Name: %s\n", objname);
QSfree (objname); /* Use QSfree for mem allocated by QSopt */

}

QSset param

Set the value of a specified parameter.

Synopsis

int QSset_param (QSprob p, int whichparam, int newvalue)

Arguments

p – a handle to an initialized problem.
whichparam - specifies the parameter to be set.
newvalue – specifies the new value of the parameter.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to set various parameters that determine the behavior of the QSopt
solver. The whichparam field specifies the parameter to be set and the newvalue field specifies the
value for the parameter.

Example

/* p is a QSprob, a handle to an existing LP problem. */
/* Set the QSdual_opt() solver to work with the Dantzig pricing rule. */

int rval;

CHAPTER 8. UTILITY ROUTINES 75

rval = QSset_param (p, QS_PARAM_DUAL_PRICING, QS_PRICE_DDANTZIG);
if (rval) {

fprintf (stderr, "Could not set the parameter, error code %d\n", rval);
}

QSget param

Obtain the value of a specified parameter.

Synopsis

int QSget_param (QSprob p, int whichparam, int *value)

Arguments

p – a handle to an initialized problem.
whichparam - specifies the parameter to be obtained.
value – returns the value of the specified parameter.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to access parameters associated with the QSopt solvers. The
whichparam argument specifies the parameter and the value argument returns that current set-
ting of the specified parameter.

Example

/* p is a QSprob, a handle to an existing LP problem. */
/* Get the current pricing rule used in QSdual_opt(). */

int rval, param;

rval = QSget_param (p, QS_PARAM_DUAL_PRICING, ¶m);
if (rval) {

fprintf (stderr, "Could not get the parameter, error code %d\n", rval);
} else {

switch (param) {
case QS_PRICE_DDANTZIG:

printf ("Dual Dantzig Pricing\n");
break;

case QS_PRICE_DSTEEP:
printf ("Dual Steepest-Edge Pricing\n");
break;

case QS_PRICE_DMULTPARTIAL:
printf ("Dual Multiple-Partial Pricing\n");
break;

default:
printf ("Unknown dual pricing rule: %d\n", param);
break;

}
}

CHAPTER 8. UTILITY ROUTINES 76

QSset param double

Set the value of a numerical parameter.

Synopsis
int QSset_param_double (QSprob p, int whichparam, double newvalue)

Arguments

p – a handle to an initialized problem.
whichparam - specifies the parameter to be set.
newvalue – specifies the new value of the parameter.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to set various numerical parameters that determine the behavior of
the QSopt solver with respect to a given problem. The whichparam field specifies the parameter to
be set and the newvalue field specifies the value for the parameter.

Example

/* p is a QSprob, a handle to an existing LP problem. */
/* Set the time limit of the QSopt solvers to 10.5 seconds. */

int rval;

rval = QSset_param_double (p, QS_PARAM_SIMPLEX_MAX_TIME, 10.5);
if (rval) {

fprintf (stderr, "Could not set the parameter, error code %d\n", rval);
}

QSget param double

Obtain the value of a numerical parameter.

Synopsis
int QSget_param_double (QSprob p, int whichparam, double *value)

Arguments

p – a handle to an initialized problem.
whichparam - specifies the parameter to be obtained.
value – returns the value of the specified parameter.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function can be used to access parameters associated with the QSopt solvers. The

CHAPTER 8. UTILITY ROUTINES 77

whichparam argument specifies the parameter and the value argument returns the current set-
ting of the specified parameter.

Example

/* p is a QSprob, a handle to an existing LP problem. */
/* Get the maximum time (in seconds) allowed in the QSopt solvers. */

int rval;
double param;

rval = QSget_param_double (p, QS_PARAM_SIMPLEX_MAX_TIME, ¶m);
if (rval) {

fprintf (stderr, "Could not get the parameter, error code %d\n", rval);
} else {

printf (Simplex Maximum Time: %f seconds\n");
}

QSwrite prob

Write the problem to a named file.

Synopsis

int QSwrite_prob (QSprob p, const char *filename, const char *filetype)

Arguments

p – a handle to an initialized problem.
filename – a string containing the name of the file to store the problem.
filetype – use "LP" to write a file in LP format or "MPS" to write a file in MPS format.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Writes problem p to a file in LP format or MPS format. The name of the file is specified by
filename. If filetype is specified as "LP" (the letters in the string can be any mix of uppercase and
lowercase), then the problem is written in LP format (see Chapter 10 for a description of the problem
file formats); if filetype is specified as "MPS" (again, the letters in the string can be any mix of
uppercase and lowercase), then the problem is written in MPS format. If filetype is specified as
something other than "LP" or "MPS", then an error code will be returned.

Example

/* p is a QSprob, a handle to an existing LP problem */

int rval;

rval = QSwrite_prob (p, "binky.mps", "MPS");
if (rval) {

fprintf (stderr, "Could not write the MPS file, error code %d\n", rval);
}

CHAPTER 8. UTILITY ROUTINES 78

QSwrite prob file

Write the problem to an open file.

Synopsis

int QSwrite_prob_file (QSprob p, FILE *file, const char *filetype)

Arguments

p – a handle to an initialized problem.
file – a handle to a file that is open for writing.
filetype – use "LP" to write a file in LP format or "MPS" to write a file in MPS format.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Writes problem p to an open file in LP format or MPS format. The argument file should be
a handle to a file that is open for writing. The use of the argument filetype to specify the format
of the output file is the same as in the function QSwrite prob() described above.

This function gives an easy way to write the problem to the screen by specifying the file as
stdout or stderr. The function can also be used to store the LP along with other information
in a given file. To simply open a file and write the LP, it is usually easier to use the function
QSwrite prob().

Example

/* p is a QSprob, a handle to an existing LP problem. */
/* Write the problem to the screen in LP format. */

int rval;

rval = QSwrite_prob_file (p, stdout, "LP");
if (rval) {

fprintf (stderr, "Could not write LP to stdout, error code %d\n", rval);
}

Chapter 9

Advanced Computational
Routines

In this section we describe a number of QSopt functions that may be of interest to researchers and
expert developers. These functions can be used in the design of branch-and-cut algorithms for integer
programming and discrete optimization (they support routines in the Concorde traveling salesman
problem code of Applegate, Bixby, Chvátal, and Cook).

Page
QSopt strongbranch compute values used with strong-branching 79
QSopt pivotin col pivot columns into the basis 82
QSopt pivotin row pivot logical variables into the basis 82
QScompute row norms recompute the dual steepest-edge norms 83
QStest row norms check if dual steepest-edge norms are available 84
QSget infeas array obtain a certificate of LP infeasibility 84

QSopt strongbranch

Compute values used with strong-branching.

Synopsis
int QSopt_strongbranch (QSprob p, int ncand, int *candidatelist,

double *xlist, double *down_vals, double *up_vals, int iterations,
double objbound)

Arguments

p – a handle to an initialized problem.
ncand – the number of variables to be tested.
candidatelist – a list of the indices of the variables to be tested; the array of values must

have length at least ncand.
xlist – a list of values to use in determining branches, the down-branch to be tested is

x[candidatelist[i]] ≤ bxlist[i]c and the up-branch to be tested is x[candidatelist[i]] ≥ dxlist[i]e. The
argument xlist can be NULL; if it is not NULL then the array of values should have length at least
ncand.

down vals – returns the objective function values obtained by the down branches; this field
should point to an array of length at least ncand.

up vals – returns the objective function values obtained by the up branches; this field should
point to an array of length at least ncand.

79

CHAPTER 9. ADVANCED COMPUTATIONAL ROUTINES 80

iterations – the number of iterations (pivots) of the dual steepest-edge simplex algorithm to
use in the tests.

objbound – a bound on the objective function (can be QS MAXDOUBLE [for a minimization prob-
lem] or -QS MAXDOUBLE [for a maximization problem] if no bound is known).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function is used to implement the strong-branching rule used by Applegate, Bixby, Chvátal,
and Cook in their TSP research. The idea is to use strong LP information to determine a choice of
branching variable that is likely to increase the LP bound for each of the two children created by
the branching operation.

For each of the column indices specified in the array candidatelist (this array is of length
ncand), the function will gather information about the bounds that can be obtained by branching
on the corresponding variable.

Let j be the ith index in candidatelist. In the branching test, variable j first has its upper
bound set to bxlist[i]c and then variable j has its lower bound set to dxlist[i]e, and in both cases
the dual steepest-edge simplex algorithm is called with an iteration limit of iterations pivots. The
resulting objective values are returned in the arrays down vals (for the values where the variables
have their upper bounds modified) and up vals (for the values where the variables have their lower
bounds modified). If the argument xlist is not specified, then QSopt strongbranch () uses the
x-vector in the current LP solution to determine the points where the branches occur. (Note that for
0-1 valued variables, the branches correspond to setting the variables equal to 0 for the down-branch
and equal to 1 for the up-branch.)

The parameter objbound should be set by the calling routine to be an upper bound on the
objective function value for minimization problems, and to a lower bound on the objective function
value for maximization problems. (This can be used to terminate the optimization routines early,
if the bound is obtained in less than iterations pivots. The value of objbound can be set to the
value of the best available MIP solution.) The values returned in down vals and up vals will be no
larger than objbound for minimization problems, and no smaller than objbound for maximization
problems.

Example

/* Assume p is a QSprob, a handle to an existing LP problem, that has */
/* been solved with one of the optimization routines. All variables */
/* in p will be considered as integer variables, and a candidate */
/* for a branching variable will be determined using strong- */
/* branching. The index of the branching variable is the return */
/* value of the code fragment. */
/* */
/* Assume x is an array containing the current solution to the LP; */
/* it could be obtained using QSget_x_array (). */
/* */
/* Assume ObjBound is the objective value of the best integer */
/* solution known for the problem. */

int rval, i, ncols, ncand, branch = -1;
int *candidatelist = (int *) NULL;
double *xlist, *down_vals, *up_vals;
double bestval;

CHAPTER 9. ADVANCED COMPUTATIONAL ROUTINES 81

ncols = QSget_colcount (p);

candidatelist = (int *) malloc (ncols * (sizeof(int));
xlist = (double *) malloc (ncols * (sizeof(double));

ncand = 0;
for (i = 0; i < ncols; i++) {

t = x[i] - floor (x[i]); /* t is the fractional part of x[i] */
if (t >= 0.1 && t <= 0.9) { /* x[i] is at least 0.1 from integer */

candidatelist[ncand] = i;
xlist[ncand++] = x[i];

}
}

if (ncand == 0) {
free (candidatelist);
free (xlist);
return -1;

}

down_vals = (double *) malloc (ncand * sizeof(double));
up_vals = (double *) malloc (ncand * sizeof(double));

rval = QSopt_strongbranch (p, ncand, candidatelist, xlist, down_vals,
up_vals, 50, ObjBound);

if (rval) {
fprintf (stderr, "QSopt_strongbranch failed, error code %d\n", rval);

} else {
/* Select as a branching variable the candidate that maximizes the */
/* the function 10*min + max, where min is the smaller of */
/* down_vals and up_vals, and max is the larger. */

bestval = -QS_MAXDOUBLE;
for (i = 0; i < ncand; i++) {

if (down_vals[i] < up_vals[i]) {
val = 10 * down_vals[i] + up_vals[i];

} else {
val = 10 * up_vals[i] + down_vals[i];

}
if (val > bestval) {

bestval = val;
branch = candidatelist[i];

}
}

}

free (candidatelist);
free (xlist);
free (down_vals);
free (up_vals);

CHAPTER 9. ADVANCED COMPUTATIONAL ROUTINES 82

return branch;

QSopt pivotin col

Pivot columns into the basis.

Synopsis

int QSopt_pivotin_col (QSprob p, int ccnt, int *clist)

Arguments

p – a handle to an initialized problem.
ccnt – the number of columns to be pivoted into the basis.
clist – an array of length ccnt; each entry specifies the index of a column (so a value between

0 and ncols - 1, where ncols is the number of columns in the problem).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function attempts to pivot into the current basis the columns specified in clist. The
routine sequentially pivots in the columns. The leaving column in each pivot is a column (not one
in the list) that results in the least movement from the current solution, chosen from among the
columns that yield suitable pivot values.

Example

/* p is an initialized QSprob, a handle to an existing LP problem. */
/* Pivot column 2 into the basis. */

int rval;
int collist[1] = { 2 };

rval = QSopt_pivotin_col (p, 1, collist);
if (rval) {

fprintf stderr, "QSopt_pivotin_col failed with return code %d\n", rval);
}

QSopt pivotin row

Pivot logical variables into the basis.

Synopsis

int QSopt_pivotin_row (QSprob p, int rcnt, int *rlist)

Arguments

p – a handle to an initialized problem.
rcnt – the number of rows to be pivoted into the basis.

CHAPTER 9. ADVANCED COMPUTATIONAL ROUTINES 83

rlist – an array of length rcnt; each entry specifies the index of a row (so a value between 0
and nrows - 1, where nrows is the number of rows in the problem).

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

This function attempts to pivot into the current basis the columns for the logical variables
associated with the rows specified in rlist. The routine sequentially pivots in the columns. The
leaving column in each pivot is a column (not one in the list) that results in the least movement
from the current solution, chosen from among the columns that yield suitable pivot values.

Example

/* p is an initialized QSprob, a handle to an existing LP problem. */
/* Delete rows 1 and 3 from the LP, but to keep a basis for the */
/* modified problem, first pivot into the basis the logical */
/* variables associated with the two rows. */

int rval;
int dellist[2] = { 1, 3 };

rval = QSopt_pivotin_row (p, 2, dellist);
if (rval) {

fprintf stderr, "QSopt_pivotin_row failed with return code %d\n", rval);
} else {

rval = QSdelete_rows (p, 2, dellist);
if (rval) {

fprintf stderr, "QSdelete_rows failed with return code %d\n", rval);
}

}

QScompute row norms

Recompute the dual steepest-edge norms.

Synopsis

int QScompute_row_norms (QSprob p)

Arguments

p – a handle to an initialized problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.

Description

Recomputes the dual steepest-edge norms for problem p. Note that an error will occur if the
current dual pricing rule is not QS PRICE DSTEEP.

Example

/* p is an initialized QSprob, a handle to an existing LP problem. */

CHAPTER 9. ADVANCED COMPUTATIONAL ROUTINES 84

/* Assume we are working with the QS_PRICE_DSTEEP pricing rule. */

int rval;

rval = QScompute_row_norms (p);
if (rval) {

fprintf (stderr, "Could not compute row norms, error code %d\n", rval);
}

QStest row norms

Check if dual steepest-edge norms are available.

Synopsis

int QStest_row_norms (QSprob p)

Arguments

p – a handle to an initialized problem.

Returns

One if the dual steepest-edge norms exist, and zero otherwise.

Description

This function returns one if dual steepest-edge norms exist, and zero otherwise. If the row
norms do not exist (this may happen after some types of problem modifications), then a call to the
function QScompute row norms() or a call to one of the optimization routines will restore them.
(Note that row norms will only exist if the LP problem is being solved via the dual steepest-edge
simplex algorithm, that is with the dual pricing rule QS PRICE DSTEEP.)

Example

/* p is an initialized QSprob, a handle to an existing LP problem. */
/* Assume we are working with QS_PRICE_DSTEEP pricing rule. */

int rval, yesno;

yesno = QStest_row_norms (p);
if (yesno == 1) {

printf ("Row norms exist\n");
} else {

printf ("Need to compute row norms\n");
rval = QScompute_row_norms (p);
if (rval) {

fprintf (stderr, "Could not compute norms, error code %d\n", rval);
}

}

QSget infeas array

CHAPTER 9. ADVANCED COMPUTATIONAL ROUTINES 85

Obtain a certificate of LP infeasibility.

Synopsis

int QSget_infeas_array (QSprob p, double *pi)

Arguments

p – a handle to an initialized problem.
pi – returns multipliers for a Farkas-like certificate of LP infeasibility; this should point to an

array of length at least nrows, the number of rows in the problem.

Returns

A zero value if the function terminated correctly, and a non-zero value if an error occurred.
Note that QSget infeas array() will return an error unless either QSopt primal() reports infea-
sibility or QSopt dual() reports unboundedness.

Description

This function returns dual multipliers that can be used in a Farkas-like certificate of LP infea-
sibility. It can be used within an integer programming code to verify that an LP relaxation is really
infeasible before pruning a branch-and-bound tree.

Example

/* p is an initialized QSprob, a handle to an existing LP problem. */

int rval, nrows;
double *pi;

nrows = QSget_rowcount (p);
pi = (double *) malloc (nrows * sizeof (double));

rval = QSget_infeas_array (p, pi);
if (rval) {

fprintf (stderr, "Could not get certificate, error code %d\n", rval);
}

free (pi);

Chapter 10

Problem file formats

The QSopt library supports two ASCII file formats for specifying LP and MIP problems. The
formats are based on two industry standards, the MPS file format and the LP file format. Both file
formats provide convenient mechanisms to define an LP or MIP problem, that is

• its objective and whether it should be minimized or maximized,

• the constraints with their expressions, senses, and right-hand-sides,

• the problem’s variables, and their bounds,

• which variables are integer variables, and

• the problem’s name.

The QSopt reader expects that all problems that it reads from a file have at least one constraint
and at least one variable. The objective function that it reads may be empty, that is, it may contain
no terms; in such a case, the optimization routines attempt only to find a feasible solution when
solving the problem.

10.1 Bounds on Variables
The two file formats do not require that all variable upper and lower bounds be given explicitly.
The QSopt reader assumes by default that variables are greater than or equal to zero and have no
upper bound. Integer variables are assumed to be binary, that is, they have a lower bound of 0 and
an upper bound of 1. The bounds sections in LP and MPS files are used to define different variable
bounds.

When defining variable bounds keep the following rules in mind.

1. A variable’s upper bound must be greater than or equal to its lower bound.

2. Negative infinity may not be used as an upper bound and positive infinity may not be used as
lower bound.

3. If a variable’s upper bound is defined either as a nonnegative number or as positive infinity,
then its lower bound defaults to zero. Thus defining a zero upper bound without defining a
lower bound fixes a variable to zero.

4. If a variable’s upper bound is defined as negative number its lower bound defaults to negative
infinity.

86

CHAPTER 10. PROBLEM FILE FORMATS 87

5. If a variable’s lower bound is defined either as a negative number or as negative infinity, then
its upper bound defaults to zero.

6. If a variable’s lower bound is defined either as zero or as a positive number, then its upper
bound is assumed to be positive infinity.

10.2 LP Format
An LP-format file contains a sequence of sections that state the problem’s name, its objective
function, and its constraints, and optional sections stating upper and lower bounds on the problem’s
variables and listing the variables that are required to take on integer values. All LP-format files
end with the keyword ”END”.

The LP-format example below defines a linear-programming problem called smallExample.
The example’s objective section defines the objective obj to be x - 2.3y + 0.5z, where x and
y, and z are variables. The problem’s objective is to maximize the given linear expression. The
constraint section contains two constraints. The first constraint, called c1, states that x - y + s
must be less than or equal to 10.75. The the second constraint states that -z + 2x - s must
be greater than or equal to -100. The QSopt reader will create a name for the second unnamed
constraint.

Problem
smallExample

Maximize
obj: x - 2.3y + 0.5z

Subject
c1: x - y + s <= 10.75

-z + 2x - s >= -100
End

The objective function in an LP-format description may be empty, that is, it may contain no
terms; in such a case, the optimization routines attempt only to find a feasible solution when solving
the problem. Constraints may be empty as well; empty constraints are simply ignored. Constraints
must always contain a right-hand-side, that is a comparison operator and a number. The QSopt
reader parses the unnamed constraint

<= -1000

correctly but ignores it because it contains no terms.
The bounds section is used to define variable bounds that differ from the defaults assumed by

the QSopt reader (see page 86). The lines

Bounds
x <= 10.5
y <= -1
-10 <= z <= 100
s = 1.0

state that x ranges from 0 to 10.5, y ranges from negative infinity (−∞) to -1, z ranges from -10 to
100, and s is fixed at 1.

To define a variable x’s range to be [−∞,+∞] its lower and upper bound must either be
explicitly given as

-inf<=x<=inf

CHAPTER 10. PROBLEM FILE FORMATS 88

or alternatively as

x free

where free, -inf, and inf are keywords. Note that there need not be white space between -inf,
inf, and x and the <= operators, because identifiers and keywords never contain ’<’ or ’=’ characters.
On the other hand, if there were no space between x and free, xfree would be interpreted to be an
unknown column name, since the variable xfree is used nowhere else in the LP problem statement.

To fix a variable to a specific value, its lower and upper bound must be set to the same value.
This can be achieved in two ways:

y = 10.1
10.0 <= x <= 10.0

By default variables may assume any floating point value within their bounds. If a variable is
restricted to integer values (a MIP problem), then it must be listed in the integer section. The lines

Integer
x y

state that the variables x and y are required to take on integer values only. Integer variables are
binary in the absence of explicit lower or upper bound definitions, that is, they represent the values
0 or 1.

The syntax rules for LP files are given in Bachus-Naur form in Figure 10.1.
Names in <> are non-terminals. IDENT, NUMBER, STRING, keywords, and literals are the

tokens used in LP files.

IDENT is any nonempty string that contains solely lower or upper case letters (a-z and A-Z) the
ten digits (0-9), and

! " # $ % & () / , ; ? @ _ ‘ ’ { } | ~ .

An IDENT must never start with a digit or a period (.).

NUMBER is a floating point number in scientific notation.

STRING is a nonempty sequence of characters that contains no white space characters.

keyword is any of the strings given in double quotes in Figure 10.1. All keywords must appear at
the beginning of lines. Characters in keywords may be any mix of upper or lower case. For
example ”MIN” can be written as min, Min, MIN, mIn, ...

literal is any of the strings given in single quotes used in Figure 10.1. A literal may appear anywhere
on a line. Characters in literals may be any mix of upper or lower case. For example, ’inf’
can we written as inf, INF, Inf, iNF, ...

Comments are introduced by the character ’\’. The LP file reader ignores all text after ’\’
until the end of the line.

Tokens may be separated by white space, that is by blanks, tabs (\t), newlines (\n), formfeeds
(\f), and control-returns (\r). The LP file reader always tries to match the longest possible string
to the next token. Therefore, two tokens must be separated by white space from each other in an
LP-format description if their combination becomes a legal token itself. For example, writing

Bounds
10<=xy<=10 \ x and y glued together

CHAPTER 10. PROBLEM FILE FORMATS 89

<A> → means that <A> can be derived to be
<A> →

→ <C> means that <A> can be derived to be or <C>
<A> | means either <A> or
(<X>) means <X>
[<X>] means 0 or 1 <X>
(<X>)* means sequence of 0 or more instances of <X>
(<X>)+ means sequence of 1 or more instances of <X>

Figure 10.1. Convention for BNF notation

is interpreted as 10 <= xy <= 10 and not as 10 <= x, y <= 10.
It is legal to use as constraint or variable names the same strings that are used for keywords

such as ST, integer, or Bound. If these strings appear at the beginning of a line they are always inter-
preted as keywords. When using variables and constraint names that look like keywords, LP-format
descriptions quickly become very confusing and it is strongly recommended not to do so. Consider
the following example, where the objective is to maximize the variable ST under the constraint that
ST is less than or equal to 10.

MAX
ST

ST
ST <= 10

END

The LP-format reader is able to interpret the LP problem as intended, since the first ST is not
placed at the beginning of its line and is therefore recognized as an identifier. The second ST starts
a line and is recognized as the keyword that starts the constraint section and the third ST becomes
the term of the problem’s constraint. If the first or third ST is moved to the start of its line, then
the LP-format description becomes incorrect.

Formally LP-format descriptions can be defined as a sequence of tokens that can be derived
from the nonterminal <LP-file> by the syntax rules given in Figure 10.2. In formulating the rules
we use the conventions defined in Figure 10.1.

CHAPTER 10. PROBLEM FILE FORMATS 90

<LP-file> → [<Problem-Name>]
<Min-or-Max> <objective>
<constraint-section>
[(”BOUNDS” | ”BOUND”) <bounds-section>]
[(”INTEGER” | ”INT”) <integer-section>]
”END”

<Problem-Name> → (”PROBLEM” | ”PROB”) STRING
<Min-or-Max> → ”MIN” | ”MINIMUM” | ”MINIMIZE”

→ ”MAX” | ”MAXIMUM” | ”MAXIMIZE”
<objective> → <constraint-expr>
<constraint-section> → (”ST” | ”SUBJECT” | ”SUBJECT TO”)

(<constraint-expr> <sense> <rhs>)+
<constraint-expr> → [IDENT ’:’]

[NUMBER IDENT ((’+’ | ’-’) NUMBER IDENT)*]
% The optional identifier before the ’:’
% designates a row/constraint name.
% All other identifiers are column/variable names.

<sense> → <smaller-equal> | <greater-equal> | ’=’
<smaller-equal> → ’<’ | ’<=’ | ’=<’
<greater-equal> → ’>’ | ’>=’ | ’=>’
<bounds-section> → <bounds-item>*
<bounds-item> → <num or Inf> <smaller-equal> IDENT

[<smaller-equal> <num-or-Inf>]
→ <num or Inf> <greater-equal> IDENT

[<greater-equal> <num-or-Inf>]
→ IDENT <smaller-equal> <num-or-Inf>
→ IDENT <greater-equal> <num-or-Inf>
→ IDENT ’=’ NUMBER
→ IDENT ’FREE’

<num-or-Inf> → NUMBER | ’-INF’ | ’+INF’ | ’INF’ |
’-INFINITY’ | ’+INFINITY’ | ’INFINITY’

<integer-section> → IDENT*

Figure 10.2. BNF grammar for LP files

CHAPTER 10. PROBLEM FILE FORMATS 91

10.2.1 LP-format Examples

To illustrate the LP-format rules, we give below several additional small examples. The first example
contains nine variables, each bounded between 0 and 1, and six constraints. The objective function
is the sum of the variables. The constraint names node 0, node 1, . . . , node 5 are not necessary
to describe the problem, but they help to document the formulation and they are useful in viewing
dual solutions (if no constraint names are specified, the QSopt reader will assign default names).

Problem Example1
Minimize x0_1 + x0_2 + x0_4 + x1_2 + x1_5 + x2_3 + x3_4 + x3_5 + x4_5
Subject To node_0: x0_1 + x0_2 + x0_4 = 2

node_1: x0_1 + x1_2 + x1_5 = 2
node_2: x0_2 + x1_2 + x2_3 = 2
node_3: x2_3 + x3_4 + x3_5 = 2
node_4: x0_4 + x3_4 + x4_5 = 2
node_5: x1_5 + x3_5 + x4_5 = 2

Bounds x0_1 <= 1 x0_2 <= 1 x0_4 <= 1
x1_2 <= 1 x1_5 <= 1 x2_3 <= 1
x3_4 <= 1 x3_5 <= 1 x4_5 <= 1

End

The second example contains four variables, each required to take on integer values, and three
constraints. The first variable, x1, is bounded between 0 and 2, while the remaining three variables
default to binary values, that is, they are bounded between 0 and 1.

Problem
Example2
Maximize
obj: 4x1 + x2 + 5x3 + 3x4
Subject To
r1: x1 - x2 - x3 + 3x4 <= 1
r2: 5x1 + x2 + 3x3 + 8x4 <= 55
r3: -x1 + 2x2 + 3x3 - 5x4 <= 3
Bounds
0 <= x1 <= 2
Integer
x1 x2 x3
x4
End

10.3 MPS Format
An MPS file contains a sequence of sections that define an LP or MIP problem. The ROWS, COLUMNS,
RHS, and RANGES sections define the objective and constraint expressions, the sense of the constraints,
and the right-hand-sides values. In the optional BOUNDS section, a variable’s range may be defined
to differ from the default [0,∞] interval. The OBJSENSE section states whether the objective value
should be minimized or maximized. The NAME section assigns a name to the problem. The OBJNAME
section picks one of the problem’s rows as the objective. Each section starts with the corresponding
keyword at the beginning of a line, and, with the exception of the NAME section, the keyword is the
only item on the line. All MPS-format files end with the keyword “ENDATA” at the beginning of a
line.

The following example defines an LP problem in MPS format. The line numbers are included
for reference, they are not part of the MPS file input.

CHAPTER 10. PROBLEM FILE FORMATS 92

1 NAME smallExample
2 OBJSENSE
3 MAX
4 OBJNAME
5 obj
6 ROWS
7 N obj
8 L r1
9 G r2
10 COLUMNS
11 x obj 1 r1 1 r2 2
12 y obj -2.3 r1 -1
13 z obj 0.5
14 z r2 -1
15 s r2 -1
16 s r1 1
17 RHS
18 RIGHT r1 10.75
19 RIGHT r2 -100
20 ENDATA

This example describes the same problem instance as the following LP-format file.

Problem
smallExample
Maximize
obj: x - 2.3 y + 0.5 z
Subject To
r1: x - y + s <= 10.75
r2: 2.0 x - z - s >= -100.0
End

Whereas the LP-format file specifies the objective function and constraints row by row, the MPS-
format file describes these objects in a column by column fashion.

The following table summarizes the lines in the MPS file that define the different components
of smallExample’s objective and constraints.

line 11 12 13 14 15 16 8 18 9 19
obj x -2.3y +0.5z
r1 x -y s ≤ 10.75
r2 2x -z -s ≥ -100

The remaining lines in the MPS file are interpreted as follows. The first line defines the problem’s
name to be “smallExample”. Line 3 states that the objective value should be maximized. Line
5 picks the row obj as the objective and line 7 defines obj to be an “N” row, that is, obj has no
right-hand-side.

10.3.1 Data Lines

Each section in an MPS file must contain at least one data line, with the exception of the NAME
section. The data lines are interpreted according to the section to which they belong.

Data lines must start with at least one white space character, that is, with a blank, tab (\t),
formfeed (\f), or control-return (\r). Note that, in contrast to LP format, the return character (\n)

CHAPTER 10. PROBLEM FILE FORMATS 93

is not considered to be white space. Data lines contain one or more fields separated by white space.
Fields may contain any characters other than white space. Fig. 10.3 lists and interprets the fields
of data lines in relation to their sections.

section field 1 field 2 field 3 field 4,5,. . .
OBJNAME row name
REFROW row name
OBJSENSE “MAXIMIZE” or “MAX”

“MINIMIZE” or “MIN”
ROWS “N”, “L”, row name

“G”, or “E"”
COLUMNS variable name row name number more row name, num-

ber pairs may follow
name “’MARKER’” “’INTORG’”
name “’MARKER’” “’INTEND’”
name “’MARKER’” “’SOSORG’”
name “’MARKER’” “’SOSEND’”

RHS label row name number more row name, num-
ber pairs may follow

BOUNDS “LO” or UP” bounds label variable number
“FX” bounds label variable number
“LI” or “UI” bounds label variable number
“BV” bounds label variable number
“MI” or “PL” bounds label variable
“FR” bounds label variable

RANGES label row name number more row name, num-
ber pairs may follow

Figure 10.3. Field interpretation of data lines within sections

Lines that start with the “*” character are comment lines. Also, if field 3 (or field 5, field 7,
etc.) starts with the “$” character, then it is skipped along with the rest of the line. Empty lines
are ignored.

10.3.2 Sections and Section Order

An MPS-format file must contain a ROWS section and a COLUMNS section. It may also contain optional
NAME, OBJSENSE, OBJNAME, RHS, RANGES, BOUNDS, and REFROW sections. All MPS files must terminate
with an ENDATA line.

The following restrictions apply to the ordering of sections.

1. The ROWS section must appear before the COLUMNS and RHS section.

2. The optional RANGES section must appear after the ROWS section.

3. The optional BOUNDS section must appear after the COLUMNS section.

4. The REFROW section must appear before the ROWS section.

10.3.3 Defining the Problem’s Name

A problem’s name may be defined on the NAME line; the first field after NAME is used as the name. If
no NAME section is given, the problem’s name defaults to “unnamed”.

CHAPTER 10. PROBLEM FILE FORMATS 94

10.3.4 Objective Goal

The QSopt reader assumes by default that a program’s goal is to minimize the objective function.
This goal may be stated explicitly or overwritten in the OBJSENSE section, which contains exactly
one data line. The data line’s first and only field must contain one of the strings “MAXIMIZE”, “MAX”,
“MINIMIZE”, or “MIN”.

10.3.5 Defining Constraints and the Objective Function

The OBJNAME, ROWS, COLUMNS, RHS, and RANGES sections define a problem’s constraints and objective.

The ROWS Section

Row names and senses are defined in the ROWS section. Each row is declared on its own data line.
Field 1 on a row data line contains one of the strings “N”, “G”, “L”, or “E” to indicate the row’s
sense, according to the following table.

field 1 interpretation
G ≥
L ≤
E =
N no right-hand-side.

An MPS-format file may define multiple “N” rows; the reader ignores each of them other than
the objective row.

The OBJNAME Section

By default the first “N” row defined in the ROWS section becomes a problem’s objective; a different
objective may be specified in the OBJNAME section, which contains exactly one data line that names
the objective in field 1. The QSopt reader changes the objective constraint chosen to be an “N”
constraint, if necessary.

The RHS and RANGES Sections

By default “L”, “G”, and “E” constraints have a right-hand-side value of 0.0. If values other than
0.0 are needed, they are specified in the RHS and RANGES sections. The reader ignores all RHS and
RANGES definitions for “N” constraints.

Field 1 in a RHS or RANGES data line is a (possibly empty) label. The reader ignores RHS and
RANGES data lines with a label that differs from the label used in the section’s first data line. (This
convention makes it possible to study several different models with minimal change to the file; it
arose in the days when data was described via card decks.)

RHS and RANGES data lines contain a row name on field 2, and a floating point value in field
3. Additional row name, number pairs may follow on fields 4 and 5, fields 6 and 7, etc. Each row
may be mentioned at most once in a RHS data line, and at most once in a RANGES data line. In the
absence of a RANGES definition for a row, the row’s right-hand-side either defaults to 0.0 or assumes
the value given in its RHS data line.

A constraint’s RANGES definition states that the constraint’s expression must evaluate to a
number that falls within an interval that depends on the constraint’s right-hand-side and the range
value, as well as the constraint’s sense. If rhs is a constraint’s right-hand-side value and range is
the constraint’s range value, then the range interval is defined according to the following table:

CHAPTER 10. PROBLEM FILE FORMATS 95

sense interval
G [rhs, rhs + |range|]
L [rhs - |range|, rhs]
E [rhs,rhs + range] if range ≥ 0

[rhs + range,rhs] if range < 0

where |range| is range’s absolute value.
The MPS file excerpt

ROWS
N obj
L lower
G greater
E equal

RHS
rhs lower 10

states that equal is equal to 0.0, greater is greater than or equal to 0.0, and lower is less than or
equal to 10.0. Adding the lines

RANGES
lower 8
greater -5
equal -0.5

changes the constraints as to

lower’s constraint expression falls inside the interval [2.0, 10.0],

greater’s constraint expression falls inside the interval [0.0, 5.0],

equal’s constraint expression falls inside the interval [-0.5,0.0].

The COLUMNS Section

The objective function and the constraints are treated in the same way in the COLUMNS section, which
defines their non-zero terms. In a COLUMNS data line, field 1 contains a variable name, field 2 contains
a row name, and field 3 contains a floating point number; additional row name, number pairs may
follow on fields 4 and 5, fields 6 and 7, etc. The QSopt reader adds a term number ∗ variable to the
specified row for each row name, number pair.

The comment lines in the following MPS file excerpt interpret the COLUMNS data lines. Note
that the second and third COLUMNS data lines both define the term -5v2 for r1’s constraint expression.
The QSopt reader adds both terms so that r1’s expression becomes -5v2 -5v2 or -10v2.

ROWS
N obj
L r1
L r2

COLUMNS
* add term: 1.5v1 to objective

v1 obj 1.5
* add term 2.25v2 to objective and
* -5v2 to r1 and
* -2.75v2 to r2

v2 obj 2.25 r1 -5 r2 -2.75
* add another term -5v2 to r1

v2 r1 -5

CHAPTER 10. PROBLEM FILE FORMATS 96

10.3.6 Defining variable bounds

BOUNDS data lines are used to define variable bounds that differ from the defaults assumed by the
QSopt reader (see page 86).

Field 1 of a BOUNDS data line contains a bounds indicator, field 2 contains a label, and field 3 a
variable name. Depending on the bounds indicator, field 4 is either empty or it contains a floating
point number. Similar to RHS and RANGES data lines, a BOUNDS line is ignored if its label differs from
the label used in the first BOUNDS line.

The following table explains the effects of BOUNDS data lines on a variable’s bounds. x refers
to the variable name and value refers to the number given on the data line.

indicator uses field 4 interpretation
LO, LI yes x ≥ value
UP, UI yes x ≤ value
FX yes x = value
BV no x ∈ {0, 1}
MI no x ≥ −∞
PL no x ≤ ∞
FR no −∞ ≤ x ≤ ∞

The “LI”, “UI”, or “BV” bounds indicators declare their variable to be an integer variable as
well as defining its bounds.

10.3.7 Integer Variables

Some BOUNDS data lines, aside from changing a variable’s bounds, declare the variable to be integral
(see the above section). Alternatively, a file may contain ’MARKER’ lines in the COLUMNS section to
declare variables integral.

MARKER lines contain three fields. The contents of field 1 are ignored. Field 2 must contain
the string “’MARKER’” and field 3 contains either the string “’INTORG’” or the string “’INTEND’”.
(Note that the single quotes must be part of the fields.) A line with “’INTORG’” starts an integer
section and a line with “’INTEND’” ends an integer section. Integer sections may not be nested.
All variables mentioned inside of an integer section are integer (it does not matter whether they are
mentioned outside integer sections as well).

The following MPS file excerpt includes line numbers for reference. The COLUMNS section
contains two integer sections. The first covers the lines 3–7 and the second covers the lines 11–13.
The second MARKER on line 5 is ignored because it tries to start an integer section from within an
integer section. The variables x2, x3, and x4 are integer variables since they are mentioned inside
an integer section.

1 COLUMNS
2 x1 obj 1
3 mm ’MARKER’ ’INTORG’
4 x2 obj 1
5 mm ’MARKER’ ’INTORG’
6 x3 obj 1
7 mm ’MARKER’ ’INTEND’
8 x1 row1 3
9 x2 row1 5
10 x3 row1 5
11 mm ’MARKER’ ’INTORG’
12 x4 obj 1 row1 5 row2 10
13 mm ’MARKER’ ’INTEND’

CHAPTER 10. PROBLEM FILE FORMATS 97

10.3.8 Miscellaneous

The QSopt reader parses REFROW sections and “SOS” MARKER lines, but does not interpret the input
otherwise. Thus files that use these features can be read and are compatible with the MPS format
understood by QSopt.

A REFROW section contains exactly one data line. Its first and only field contains a row name.
QSopt accepts MARKER lines which contain the string “’SOSORG’” or “’SOSEND’” in their third

field (see Fig. 10.3). ’SOSORG’ lines start an SOS section and ’SOSEND’ lines terminate an SOS
section. SOS sections may not be nested. Each pair of ’SOSORG’ and ’SOSEND’ lines defines a set
of variables; the set contains the variables mentioned in that section. All SOS sets defined in an
MPS-format file must be disjoint.

10.3.9 MPS-format Examples

We illustrate the MPS-file format with the two examples used in the preceding section of LP format.
The first example contains nine variables and six constraints; each of the variables is bounded
between 0 and 1. In this small example, the entire columns can be described on single lines in the
COLUMNS section. This example can be found in LP format on page 91.

NAME Example1
OBJSENSE
MIN

OBJNAME
obj

ROWS
N obj
E node_0
E node_1
E node_2
E node_3
E node_4
E node_5
COLUMNS
x0_1 obj 1 node_1 1 node_0 1
x0_2 obj 1 node_2 1 node_0 1
x0_4 obj 1 node_4 1 node_0 1
x1_2 obj 1 node_2 1 node_1 1
x1_5 obj 1 node_5 1 node_1 1
x2_3 obj 1 node_3 1 node_2 1
x3_4 obj 1 node_4 1 node_3 1
x3_5 obj 1 node_5 1 node_3 1
x4_5 obj 1 node_5 1 node_4 1

RHS
RHS node_0 2 node_1 2
RHS node_2 2 node_3 2
RHS node_4 2 node_5 2
BOUNDS
UP BOUND x0_1 1
UP BOUND x0_2 1
UP BOUND x0_4 1
UP BOUND x1_2 1
UP BOUND x1_5 1

CHAPTER 10. PROBLEM FILE FORMATS 98

UP BOUND x2_3 1
UP BOUND x3_4 1
UP BOUND x3_5 1
UP BOUND x4_5 1
ENDATA

The second example uses MARKER lines to specify that the four variables are required to take
on integer values. This example can be found in LP format on page 91.

NAME Example2
OBJSENSE
MAX

OBJNAME
obj

ROWS
N obj
L r1
L r2
L r3
COLUMNS
MARK0qs ’MARKER’ ’INTORG’
x1 obj 4 r3 -1 r2 5 r1 1
x2 obj 1 r3 2 r2 1 r1 -1
x3 obj 5 r3 3 r2 3 r1 -1
x4 obj 3 r3 -5 r2 8 r1 3

MARK4qs ’MARKER’ ’INTEND’
RHS
RHS r1 1
RHS r2 55
RHS r3 3
BOUNDS
UP BOUND x1 2
ENDATA

Index

comments, LP format, 88
comments, MPS format, 93

LP format, 87

MPS format, 91

QSadd col, 28
QSadd cols, 26
QSadd row, 34
QSadd rows, 33
QSchange bound, 43
QSchange bounds, 42
QSchange coef, 38
QSchange objcoef, 39
QSchange objsense, 40
QSchange rhscoef, 40
QSchange sense, 42
QSchange senses, 41
QScompute row norms, 83
QScreate prob, 4
QSdelete col, 29
QSdelete cols, 29
QSdelete named column, 31
QSdelete named columns list, 31
QSdelete named row, 37
QSdelete named rows list, 38
QSdelete row, 36
QSdelete rows, 35
QSdelete setcols, 30
QSdelete setrows, 36
QSfree, 73
QSfree basis, 68
QSfree prob, 8
QSget basis, 64
QSget basis and row norms array, 70
QSget basis array, 68
QSget bound, 50
QSget bounds, 51
QSget colcount, 47
QSget colnames, 60
QSget column index, 58
QSget columns, 52

QSget columns list, 54
QSget infeas array, 84
QSget intcount, 62
QSget intflags, 63
QSget named pi, 22
QSget named rc, 21
QSget named slack, 23
QSget named x, 20
QSget nzcount, 48
QSget obj, 48
QSget objname, 46
QSget objval, 16
QSget param, 75
QSget param double, 76
QSget pi array, 18
QSget probname, 45
QSget rc array, 20
QSget rhs, 49
QSget row index, 59
QSget rowcount, 47
QSget rownames, 61
QSget rows, 55
QSget rows list, 57
QSget slack array, 19
QSget solution, 15
QSget status, 13
QSget x array, 17
QSload basis, 67
QSload basis and row norms array, 71
QSload basis array, 70
QSload prob, 6
QSnew col, 25
QSnew row, 32
QSopt dual, 9
QSopt pivotin col, 82
QSopt pivotin row, 82
QSopt primal, 11
QSopt strongbranch, 79
QSread and load basis, 67
QSread basis, 66
QSread prob, 5
QSset param, 74

99

Index 100

QSset param double, 76
QStest row norms, 84
QSwrite basis, 65
QSwrite prob, 77
QSwrite prob file, 78

