The Stone Weierstrass Theorem

Theorem 1 Let ¹ X be a compact Hausdorff space and let $C_{\mathbb{R}}(X)$ be the real algebra of all continuous functions $f: X \to \mathbb{R}$. Suppose

$$\mathcal{A} \subseteq C_{\mathbb{R}}(X)$$

satisfies

- (1) \mathcal{A} is a subalgebra (i.e. closed under sums and products)
- (2) \mathcal{A} contains constants (i.e. $\mathbf{1} \in \mathcal{A}$)
- (3) \mathcal{A} separates points of X (i.e. f(x) = f(y) for all $f \in \mathcal{A}$ implies x = y).

Then \mathcal{A} is uniformly dense in $C_{\mathbb{R}}(X)$.

Proof (a) Let \mathcal{B} be the $\|\cdot\|_{\infty}$ -closure of \mathcal{A} . We have to prove that $\mathcal{B} = C_{\mathbb{R}}(X)$.

Note that \mathcal{B} also satisfies (1),(2) and (3): Indeed (2) and (3) are obvious and (1) follows from the norm continuity of the algebraic operations.

- (b) Claim: If $f \in \mathcal{B}$, then $|f| \in \mathcal{B}$.
- (c) Claim: If $f, g \in \mathcal{B}$, then $f \wedge g \in \mathcal{B}$ and $f \vee g \in \mathcal{B}$.²
- (A closed subalgebra of $C_{\mathbb{R}}(X)$ is a sublattice.)
- (d) Given $x, y \in X$ and $s, t \in \mathbb{R}$ there exists $g \in \mathcal{B}$ such that g(x) = s and g(y) = t.

Now fix $f \in C_{\mathbb{R}}(X)$ and $\epsilon > 0$. To find $g \in \mathcal{B}$ such that $\|f - g\|_{\infty} < \epsilon$, i.e.

for all
$$z \in X$$
, $f(z) - \epsilon < g(z) < f(z) + \epsilon$.

By (d), given any pair $\{x, y\} \subseteq X$ we can find $g \in \mathcal{B}$ such that g(x) = f(x) and g(y) = f(y).

Compactness will allow *uniform approximation* on all of X, in two steps, first from above, then from below. For the first step, we keep the first equality and relax the second to a lower bound, but uniformly on all of X:

(e) Fix $x \in X$. There exists $g^x \in \mathcal{B}$ such that

$$g^x(x) = f(x)$$
 and for all $z \in X$, $f(z) - \epsilon < g^x(z)$.

```
^{1}stonewei Feb. 14, 2012
```

 $^{{}^{2}(}f \wedge g)(x) = \max\{f(x), g(x)\} \text{ and} (f \vee g)(x) = \min\{f(x), g(x)\}.$

In the second and final step, we find $g \in \mathcal{B}$ still satisfying the lower bound, and, instead of the first equality, an upper bound uniformly on all of X.

Proof of Claim (b): *If* $f \in \mathcal{B}$, *then* $|f| \in \mathcal{B}$.

Note that $f(X) \subseteq [a, b]$. Let $\phi : [a, b] \to \mathbb{R} : t \to |t|$. By Weierstrass, or Taylor (!) there is a sequence (p_n) of real polynomials such that $p_n \to \phi$ uniformly in [a, b]. Then $p_n \circ f \to \phi \circ f$ uniformly in X. Indeed given $\epsilon > 0$ there is $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$ and all $t \in [a, b]$ we have $|p_n(t) - \phi(t)| < \epsilon$, so for all $x \in X$ we have $|p_n(f(x)) - |f(x)|| < \epsilon$. But, since $p_n(t)$ is a linear combination of powers of t, the function $p_n \circ f$ is a linear combination of powers of f, hence $p_n \circ f \in \mathcal{B}$ since \mathcal{B} is an algebra. Thus $|f| \in \mathcal{B}$ since \mathcal{B} is closed. \Box

Proof of Claim (c) : If $f, g \in \mathcal{B}$, then $f \wedge g \in \mathcal{B}$ and $f \vee g \in \mathcal{B}$. Indeed, since \mathcal{B} is a linear space and $|f - g| \in \mathcal{B}$ from (b),

$$f \lor g = \frac{1}{2}(f + g + |f - g|) \in \mathcal{B}$$
$$f \land g = \frac{1}{2}(f + g - |f - g|) \in \mathcal{B}.$$

Proof of Claim (d): Given $x, y \in X$ and $s, t \in \mathbb{R}$ there exists $f \in \mathcal{B}$ such that f(x) = s and f(y) = t.

Choose $f_1 \in \mathcal{B}$ such that $f_1(x) := s_0 \neq t_0 := f_1(y)$ (hypothesis (3)). Now find $a, b \in \mathbb{R}$ such that

$$as_0 + b = s$$
 and $at_0 + b = t$.

Then set $f = af_1 + b\mathbf{1} \in \mathcal{B}$ by (1) and (2). Now $f(x) = af_1(x) + b = as_0 + b = s$ and $f(y) = af_1(y) + b = at_0 + b = t$.

Proof of Claim (e): Fix $x \in X$. There exists $g^x \in \mathcal{B}$ such that

$$g^{x}(x) = f(x)$$
 and for all $z \in X$, $f(z) - \epsilon < g^{x}(z)$.

Let $y \in X$. Apply (d) to s = f(x) and t = f(y): You obtain $f_y \in \mathcal{B}$ which interpolates f exactly at x and y, i.e. $f_y(x) = f(x)$ and $f_y(y) = f(y)$.

The continuous function $f - f_y$ vanishes at y; so there is an open neighbourhood U_y of y such that

$$z \in U_y \Rightarrow f(z) - f_y(z) < \epsilon \Leftrightarrow f_y(z) > f(z) - \epsilon.$$
 (*)

The family $\{U_y : y \in X\}$ is an open cover of X; choose a finite subcover: $X = \bigcup_{i=1}^n U_{y_i}$ and let

$$g^x = f_{y_1} \vee f_{y_2} \vee \cdots \vee f_{y_n}.$$

Note that $g^x \in \mathcal{B}$ by Claim (c). We have $g^x(x) = f(x)$ since $f_{y_i}(x) = f(x)$ for each *i*. Also, each $z \in X$ is in some U_{y_i} and so $g^x(z) \ge f_{y_i}(z) > f(z) - \epsilon$ from (*). \Box

Conclusion of the proof: For each $x \in X$ the continuous function $g^x - f$ from (e) vanishes at x. So there is an open neighbourhood V_x of x such that

$$z \in V_x \Rightarrow g^x(z) - f(z) < \epsilon \Leftrightarrow g^x(z) < f(z) + \epsilon.$$
(†)

The family $\{V_x : x \in X\}$ is an open cover of X; choose a finite subcover so that $X = \bigcup_{j=1}^m V_{x_j}$ and let

$$g = g^{x_1} \wedge g^{x_2} \wedge \dots \wedge g^{x_m}$$

Note that $g \in \mathcal{B}$ by Claim (c). From (e), each $g^{x_i}(z) > f(z) - \epsilon$ for all $z \in X$ so that $g(z) > f(z) - \epsilon$ for all $z \in X$. Also, each $z \in X$ is in some V_{x_j} and so $g(z) \leq g^{x_j}(z) < f(z) + \epsilon$ from (†). It follows that

for all
$$z \in X$$
, $f(z) - \epsilon < g(z) < f(z) + \epsilon$. \Box

The complex case. C(X) is the complex algebra of all continuous functions $f: X \to \mathbb{C}$.

For $\mathcal{A} \subseteq C(X)$, assumptions (1) to (3) do not suffice to guarantee that \mathcal{A} is dense in C(X)

Example. Let $X = \overline{\mathbb{D}}$ and let \mathcal{A} be the algebra of all complex polynomials. It is an algebra, contains complex constants and separates points, because it contains p_1 where $p_1(z) = z$. But the continuous function f where $f(z) = \overline{z}$ cannot be approximated by polynomials uniformly in X. Indeed if there existed a sequence (p_n) of polynomials such that $p_n \to f$ uniformly, then we would have

$$\int_{0}^{2\pi} p_n(e^{it}) e^{it} dt \to \int_{0}^{2\pi} f(e^{it}) e^{it} dt$$

However the left hand side is 0 (it is a linear combination of terms of the form $\int_0^{2\pi} e^{ikt} dt$, k > 0) and the right hand side is 2π .

Complex conjugation is exactly what is missing:

Theorem 2 Let X be a compact Hausdorff space and let C(X) be the complex algebra of all continuous functions $f: X \to \mathbb{C}$. Suppose

$$\mathcal{A} \subseteq C(X)$$

satisfies

- (1) A is a subalgebra (i.e. closed under sums and products)
- (2) \mathcal{A} contains constants (i.e. $\mathbf{1} \in \mathcal{A}$)
- (3) \mathcal{A} separates points of X (i.e. f(x) = f(y) for all $f \in \mathcal{A}$ implies x = y)
- (4) \mathcal{A} is closed under complex conjugation (i.e. $f \in \mathcal{A} \Rightarrow \overline{f} \in \mathcal{A}$).

Then \mathcal{A} is uniformly dense in C(X).

Proof Let $C = \{f \in \mathcal{A} : f(X) \subseteq \mathbb{R}\}$, considered as a subset of the real algebra $C_{\mathbb{R}}(X)$. This is clearly a subalgebra of $C_{\mathbb{R}}(X)$: if $f, g \in \mathcal{A}$ take real values, then f + g, fg are in \mathcal{A} and take real values. Also, C contains (real) constants, because \mathcal{A} contains all constants.

Finally, \mathcal{C} separates points of X. Indeed, if $x \neq y$, by (3) there exists $f \in \mathcal{A}$ so that $f(x) \neq f(y)$. Hence either $(\operatorname{Re} f)(x) \neq (\operatorname{Re} f)(y)$ or $(\operatorname{Im} f)(x) \neq (\operatorname{Im} f)(y)$. But $\operatorname{Re} f = \frac{1}{2}(f + \bar{f})$ and $\operatorname{Im} f = \frac{1}{2i}(f - \bar{f})$ are both in \mathcal{C} , because $\bar{f} \in \mathcal{A}$ by (4).

By Theorem 1, C is uniformly dense in $C_{\mathbb{R}}(X)$. So given $f \in C(X)$ and $\epsilon > 0$, since Re f, Im f are in $C_{\mathbb{R}}(X)$, there are $g, h \in C$ such that $\|\operatorname{Re} f - g\|_{\infty} < \epsilon$ and $\|\operatorname{Im} f - h\|_{\infty} < \epsilon$. Now $\phi := g + ih$ is in \mathcal{A} and $\|f - \phi\|_{\infty} < 2\epsilon$.

Sample applications. (i) Let $X = \mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. The set \mathcal{A} of trigonometric polynomials, i.e. linear combinations of the functions $e_k(z) = z^k$, satisfies the hypotheses of Theorem 4 (to satisfy hypothesis (4), we need to take all integer values of k).

Conclusion: any continuous function on \mathbb{T} can be approximated uniformly by trigonometric polynomials.

(ii) Let $X \subseteq \mathbb{R}^2$ be any compact nonempty set. The following two sets of functions on X satisfy the hypotheses of Theorem 4 and are therefore uniformly dense in C(X):

 \mathcal{A}_1 : linear combinations of functions h of the form h(s,t) = f(s)g(t) where f and g are continuous functions on \mathbb{R} (or suitable subsets of \mathbb{R}).

 \mathcal{A}_2 : polynomials of two variables.

(iii) (variation of (ii) Let $X \subseteq \mathbb{C}$ be any compact nonempty set, and \mathcal{A} the set of all polynomials in z and \overline{z} . Then \mathcal{A} is uniformly dense in C(X) (we noted that polynomials in z do not suffice).

(iv) Let X be the direct (Cartesian) product of countably many copies of \mathbb{T} . This is a compact space (in fact a compact group with coordinate-wise operations) in the product topology (or any 'metrikh ginomeno'). For any $i \in \mathbb{N}$, let $e_i : X \to \mathbb{C}$ be the *i*-th coordinate function, $e_i(z_1, z_2, ...) = z_i$. Let \mathcal{A} be the set of all linear combination of products

$$e_{i_1}^{n_1} e_{i_2}^{n_2} \dots e_{i_m}^{n_m}$$

where $n_k \in \mathbb{Z}$ and $m \in \mathbb{N}$. The set \mathcal{E} of all such (finite) products is closed under multiplication and under complex conjugation and contains the constant function **1**. Therefore its linear span \mathcal{A} is an algebra containing constants and closed under complex conjugation. Finally, \mathcal{E} separates points of X. Indeed, if $z = (z_1, z_2, ...) \neq w = (w_1, w_2, ...)$ then there exists $i \in \mathbb{N}$ such that $z_i \neq w_i$ and then $e_i(z) \neq e_i(w)$. It follows that \mathcal{A} also separates points of X.

Therefore any continuous function on the infinite product X can be uniformly approximated by elements of \mathcal{A} , each of which depends on finitely many coordinates.

The locally compact case. A Hausdorff topological space is *locally compact* if every point has a compact neighbourhood (example: $(\mathbb{R}^n, \|\cdot\|_2)$ but not $(\ell^2, \|\cdot\|_2)$). Continuous functions need not be bounded (ex: f(t) = t on \mathbb{R}). A continuous function $f: X \to \mathbb{C}$ on a locally compact space Xis said to vanish at infinity if given $\epsilon > 0$ there is a compact subset $K \subseteq X$ such that $|f(x)| < \epsilon$ for all $x \notin K$. Such a function is necessarily bounded. The set $C_0(X)$ of all continuous functions $f: X \to \mathbb{C}$ which vanish at infinity, equipped with the supremum norm, becomes a complete normed algebra. When X is not compact, $C_0(X)$ cannot contain nonzero constants; they don't vanish at infinity. However it can be shown that for every $x \in X$ there exists $f \in C_0(X)$ such that $f(x) \neq 0$.

Theorem 3 Let X be a locally compact Hausdorff space. Suppose

$$\mathcal{A} \subseteq C_0(X)$$

satisfies

- (1) A is a subalgebra (i.e. closed under sums and products)
- (2) \mathcal{A} vanishes at no point of X (i.e. for all $x \in X$ there exists $f \in \mathcal{A}$ such that $f(x) \neq 0$)
- (3) \mathcal{A} separates points of X (i.e. f(x) = f(y) for all $f \in \mathcal{A}$ implies x = y)
- (4) \mathcal{A} is closed under complex conjugation (i.e. $f \in \mathcal{A} \Rightarrow \overline{f} \in \mathcal{A}$).

Then \mathcal{A} is uniformly dense in $C_0(X)$.