The Stone Weierstrass Theorem

Theorem 1 Let ${ }^{1} X$ be a compact Hausdorff space and let $C_{\mathbb{R}}(X)$ be the real algebra of all continuous functions $f: X \rightarrow \mathbb{R}$. Suppose

$$
\mathcal{A} \subseteq C_{\mathbb{R}}(X)
$$

satisfies
(1) \mathcal{A} is a subalgebra (i.e. closed under sums and products)
(2) \mathcal{A} contains constants (i.e. $\mathbf{1} \in \mathcal{A}$)
(3) \mathcal{A} separates points of X (i.e. $f(x)=f(y)$ for all $f \in \mathcal{A}$ implies $x=y$).

Then \mathcal{A} is uniformly dense in $C_{\mathbb{R}}(X)$.

Proof (a) Let \mathcal{B} be the $\|\cdot\|_{\infty}$-closure of \mathcal{A}. We have to prove that $\mathcal{B}=C_{\mathbb{R}}(X)$.
Note that \mathcal{B} also satisfies (1),(2) and (3): Indeed (2) and (3) are obvious and (1) follows from the norm continuity of the algebraic operations.
(b) Claim: If $f \in \mathcal{B}$, then $|f| \in \mathcal{B}$.
(c) Claim: If $f, g \in \mathcal{B}$, then $f \wedge g \in \mathcal{B}$ and $f \vee g \in \mathcal{B} .{ }^{2}$
(A closed subalgebra of $C_{\mathbb{R}}(X)$ is a sublattice.)
(d) Given $x, y \in X$ and $s, t \in \mathbb{R}$ there exists $g \in \mathcal{B}$ such that $g(x)=s$ and $g(y)=t$.

Now fix $f \in C_{\mathbb{R}}(X)$ and $\epsilon>0$. To find $g \in \mathcal{B}$ such that $\|f-g\|_{\infty}<\epsilon$, i.e.

$$
\text { for all } z \in X, \quad f(z)-\epsilon<g(z)<f(z)+\epsilon \text {. }
$$

By (d), given any pair $\{x, y\} \subseteq X$ we can find $g \in \mathcal{B}$ such that $g(x)=f(x)$ and $g(y)=f(y)$.
Compactness will allow uniform approximation on all of X, in two steps, first from above, then from below. For the first step, we keep the first equality and relax the second to a lower bound, but uniformly on all of X :
(e) Fix $x \in X$. There exists $g^{x} \in \mathcal{B}$ such that

$$
g^{x}(x)=f(x) \quad \text { and for all } z \in X, \quad f(z)-\epsilon<g^{x}(z) .
$$

[^0]In the second and final step, we find $g \in \mathcal{B}$ still satisfying the lower bound, and, instead of the first equality, an upper bound uniformly on all of X.

Proof of Claim (b): If $f \in \mathcal{B}$, then $|f| \in \mathcal{B}$.
Note that $f(X) \subseteq[a, b]$. Let $\phi:[a, b] \rightarrow \mathbb{R}: t \rightarrow|t|$. By Weierstrass, or Taylor (!) there is a sequence $\left(p_{n}\right)$ of real polynomials such that $p_{n} \rightarrow \phi$ uniformly in [a,b]. Then $p_{n} \circ f \rightarrow \phi \circ f$ uniformly in X. Indeed given $\epsilon>0$ there is $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}$ and all $t \in[a, b]$ we have $\left|p_{n}(t)-\phi(t)\right|<\epsilon$, so for all $x \in X$ we have $\left|p_{n}(f(x))-|f(x)|\right|<\epsilon$. But, since $p_{n}(t)$ is a linear combination of powers of t, the function $p_{n} \circ f$ is a linear combination of powers of f, hence $p_{n} \circ f \in \mathcal{B}$ since \mathcal{B} is an algebra. Thus $|f| \in \mathcal{B}$ since \mathcal{B} is closed.

Proof of Claim (c): If $f, g \in \mathcal{B}$, then $f \wedge g \in \mathcal{B}$ and $f \vee g \in \mathcal{B}$.
Indeed, since \mathcal{B} is a linear space and $|f-g| \in \mathcal{B}$ from (b),

$$
\begin{aligned}
& f \vee g=\frac{1}{2}(f+g+|f-g|) \in \mathcal{B} \\
& f \wedge g=\frac{1}{2}(f+g-|f-g|) \in \mathcal{B} .
\end{aligned}
$$

Proof of Claim (d): Given $x, y \in X$ and $s, t \in \mathbb{R}$ there exists $f \in \mathcal{B}$ such that $f(x)=s$ and $f(y)=t$.
Choose $f_{1} \in \mathcal{B}$ such that $f_{1}(x):=s_{0} \neq t_{0}:=f_{1}(y)$ (hypothesis (3)). Now find $a, b \in \mathbb{R}$ such that

$$
a s_{0}+b=s \quad \text { and } \quad a t_{0}+b=t .
$$

Then set $f=a f_{1}+b \mathbf{1} \in \mathcal{B}$ by (1) and (2). Now $f(x)=a f_{1}(x)+b=a s_{0}+b=s$ and $f(y)=$ $a f_{1}(y)+b=a t_{0}+b=t$.

Proof of Claim (e): Fix $x \in X$. There exists $g^{x} \in \mathcal{B}$ such that

$$
g^{x}(x)=f(x) \quad \text { and for all } z \in X, \quad f(z)-\epsilon<g^{x}(z)
$$

Let $y \in X$. Apply (d) to $s=f(x)$ and $t=f(y)$: You obtain $f_{y} \in \mathcal{B}$ which interpolates f exactly at x and y, i.e. $f_{y}(x)=f(x)$ and $f_{y}(y)=f(y)$.
The continuous function $f-f_{y}$ vanishes at y; so there is an open neighbourhood U_{y} of y such that

$$
\begin{equation*}
z \in U_{y} \Rightarrow f(z)-f_{y}(z)<\epsilon \Leftrightarrow f_{y}(z)>f(z)-\epsilon \tag{*}
\end{equation*}
$$

The family $\left\{U_{y}: y \in X\right\}$ is an open cover of X; choose a finite subcover: $X=\bigcup_{i=1}^{n} U_{y_{i}}$ and let

$$
g^{x}=f_{y_{1}} \vee f_{y_{2}} \vee \cdots \vee f_{y_{n}} .
$$

Note that $g^{x} \in \mathcal{B}$ by Claim (c). We have $g^{x}(x)=f(x)$ since $f_{y_{i}}(x)=f(x)$ for each i. Also, each $z \in X$ is in some $U_{y_{i}}$ and so $g^{x}(z) \geq f_{y_{i}}(z)>f(z)-\epsilon$ from $\left(^{*}\right)$.

Conclusion of the proof: For each $x \in X$ the continuous function $g^{x}-f$ from (e) vanishes at x. So there is an open neighbourhood V_{x} of x such that

$$
z \in V_{x} \Rightarrow g^{x}(z)-f(z)<\epsilon \Leftrightarrow g^{x}(z)<f(z)+\epsilon
$$

The family $\left\{V_{x}: x \in X\right\}$ is an open cover of X; choose a finite subcover so that $X=\bigcup_{j=1}^{m} V_{x_{j}}$ and let

$$
g=g^{x_{1}} \wedge g^{x_{2}} \wedge \cdots \wedge g^{x_{m}}
$$

Note that $g \in \mathcal{B}$ by Claim (c). From (e), each $g^{x_{i}}(z)>f(z)-\epsilon$ for all $z \in X$ so that $g(z)>f(z)-\epsilon$ for all $z \in X$. Also, each $z \in X$ is in some $V_{x_{j}}$ and so $g(z) \leq g^{x_{j}}(z)<f(z)+\epsilon$ from (\dagger). It follows that

$$
\text { for all } z \in X, \quad f(z)-\epsilon<g(z)<f(z)+\epsilon .
$$

The complex case. $C(X)$ is the complex algebra of all continuous functions $f: X \rightarrow \mathbb{C}$.
For $\mathcal{A} \subseteq C(X)$, assumptions (1) to (3) do not suffice to guarantee that \mathcal{A} is dense in $C(X)$
Example. Let $X=\overline{\mathbb{D}}$ and let \mathcal{A} be the algebra of all complex polynomials. It is an algebra, contains complex constants and separates points, because it contains p_{1} where $p_{1}(z)=z$. But the continuous function f where $f(z)=\bar{z}$ cannot be approximated by polynomials uniformly in X. Indeed if there existed a sequence $\left(p_{n}\right)$ of polynomials such that $p_{n} \rightarrow f$ uniformly, then we would have

$$
\int_{0}^{2 \pi} p_{n}\left(e^{i t}\right) e^{i t} d t \rightarrow \int_{0}^{2 \pi} f\left(e^{i t}\right) e^{i t} d t
$$

However the left hand side is 0 (it is a linear combination of terms of the form $\int_{0}^{2 \pi} e^{i k t} d t, k>0$) and the right hand side is 2π.
Complex conjugation is exactly what is missing:
Theorem 2 Let X be a compact Hausdorff space and let $C(X)$ be the complex algebra of all continuous functions $f: X \rightarrow \mathbb{C}$. Suppose

$$
\mathcal{A} \subseteq C(X)
$$

satisfies
(1) \mathcal{A} is a subalgebra (i.e. closed under sums and products)
(2) \mathcal{A} contains constants (i.e. $\mathbf{1} \in \mathcal{A}$)
(3) \mathcal{A} separates points of X (i.e. $f(x)=f(y)$ for all $f \in \mathcal{A}$ implies $x=y$)
(4) \mathcal{A} is closed under complex conjugation (i.e. $f \in \mathcal{A} \Rightarrow \bar{f} \in \mathcal{A}$).

Then \mathcal{A} is uniformly dense in $C(X)$.

Proof Let $\mathcal{C}=\{f \in \mathcal{A}: f(X) \subseteq \mathbb{R}\}$, considered as a subset of the real algebra $C_{\mathbb{R}}(X)$. This is clearly a subalgebra of $C_{\mathbb{R}}(X)$: if $f, g \in \mathcal{A}$ take real values, then $f+g, f g$ are in \mathcal{A} and take real values. Also, \mathcal{C} contains (real) constants, because \mathcal{A} contains all constants.

Finally, \mathcal{C} separates points of X. Indeed, if $x \neq y$, by (3) there exists $f \in \mathcal{A}$ so that $f(x) \neq f(y)$. Hence either $(\operatorname{Re} f)(x) \neq(\operatorname{Re} f)(\underline{y})$ or $(\operatorname{Im} f)(x) \neq(\operatorname{Im} f)(y)$. But $\operatorname{Re} f=\frac{1}{2}(f+\bar{f})$ and $\operatorname{Im} f=$ $\frac{1}{2 i}(f-\bar{f})$ are both in \mathcal{C}, because $\bar{f} \in \mathcal{A}$ by (4).
By Theorem $1, \mathcal{C}$ is uniformly dense in $C_{\mathbb{R}}(X)$. So given $f \in C(X)$ and $\epsilon>0$, since $\operatorname{Re} f, \operatorname{Im} f$ are in $C_{\mathbb{R}}(X)$, there are $g, h \in \mathcal{C}$ such that $\|\operatorname{Re} f-g\|_{\infty}<\epsilon$ and $\|\operatorname{Im} f-h\|_{\infty}<\epsilon$. Now $\phi:=g+i h$ is in \mathcal{A} and $\|f-\phi\|_{\infty}<2 \epsilon$.

Sample applications. (i) Let $X=\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}$. The set \mathcal{A} of trigonometric polynomials, i.e. linear combinations of the functions $e_{k}(z)=z^{k}$, satisfies the hypotheses of Theorem 4 (to satisfy hypothesis (4), we need to take all integer values of k).

Conclusion: any continuous function on \mathbb{T} can be approximated uniformly by trigonometric polynomials.
(ii) Let $X \subseteq \mathbb{R}^{2}$ be any compact nonempty set. The following two sets of functions on X satisfy the hypotheses of Theorem 4 and are therefore uniformly dense in $C(X)$:
\mathcal{A}_{1} : linear combinations of functions h of the form $h(s, t)=f(s) g(t)$ where f and g are continuous functions on \mathbb{R} (or suitable subsets of \mathbb{R}).
\mathcal{A}_{2} : polynomials of two variables.
(iii) (variation of (ii) Let $X \subseteq \mathbb{C}$ be any compact nonempty set, and \mathcal{A} the set of all polynomials in z and \bar{z}. Then \mathcal{A} is uniformly dense in $C(X)$ (we noted that polynomials in z do not suffice).
(iv) Let X be the direct (Cartesian) product of countably many copies of \mathbb{T}. This is a compact space (in fact a compact group with coordinate-wise operations) in the product topology (or any 'metrikh ginomeno'). For any $i \in \mathbb{N}$, let $e_{i}: X \rightarrow \mathbb{C}$ be the i-th coordinate function, $e_{i}\left(z_{1}, z_{2}, \ldots\right)=z_{i}$. Let \mathcal{A} be the set of all linear combination of products

$$
e_{i_{1}}^{n_{1}} e_{i_{2}}^{n_{2}} \ldots e_{i_{m}}^{n_{m}}
$$

where $n_{k} \in \mathbb{Z}$ and $m \in \mathbb{N}$. The set \mathcal{E} of all such (finite) products is closed under multiplication and under complex conjugation and contains the constant function $\mathbf{1}$. Therefore its linear span \mathcal{A} is an algebra containing constants and closed under complex conjugation. Finally, \mathcal{E} separates points of X. Indeed, if $z=\left(z_{1}, z_{2}, \ldots\right) \neq w=\left(w_{1}, w_{2}, \ldots\right)$ then there exists $i \in \mathbb{N}$ such that $z_{i} \neq w_{i}$ and then $e_{i}(z) \neq e_{i}(w)$. It follows that \mathcal{A} also separates points of X.
Therefore any continuous function on the infinite product X can be uniformly approximated by elements of \mathcal{A}, each of which depends on finitely many coordinates.

The locally compact case. A Hausdorff topological space is locally compact if every point has a compact neighbourhood (example: $\left(\mathbb{R}^{n},\|\cdot\|_{2}\right)$ but not $\left(\ell^{2},\|\cdot\|_{2}\right)$). Continuous functions need not be bounded (ex: $f(t)=t$ on \mathbb{R}). A continuous function $f: X \rightarrow \mathbb{C}$ on a locally compact space X is said to vanish at infinity if given $\epsilon>0$ there is a compact subset $K \subseteq X$ such that $|f(x)|<\epsilon$ for all $x \notin K$. Such a function is necessarily bounded.

The set $C_{0}(X)$ of all continuous functions $f: X \rightarrow \mathbb{C}$ which vanish at infinity, equipped with the supremum norm, becomes a complete normed algebra. When X is not compact, $C_{0}(X)$ cannot contain nonzero constants; they don't vanish at infinity. However it can be shown that for every $x \in X$ there exists $f \in C_{0}(X)$ such that $f(x) \neq 0$.

Theorem 3 Let X be a locally compact Hausdorff space. Suppose

$$
\mathcal{A} \subseteq C_{0}(X)
$$

satisfies
(1) \mathcal{A} is a subalgebra (i.e. closed under sums and products)
(2) \mathcal{A} vanishes at no point of X (i.e. for all $x \in X$ there exists $f \in \mathcal{A}$ such that $f(x) \neq 0$)
(3) \mathcal{A} separates points of X (i.e. $f(x)=f(y)$ for all $f \in \mathcal{A}$ implies $x=y$)
(4) \mathcal{A} is closed under complex conjugation (i.e. $f \in \mathcal{A} \Rightarrow \bar{f} \in \mathcal{A}$).

Then \mathcal{A} is uniformly dense in $C_{0}(X)$.

[^0]: ${ }^{1}$ stonewei Feb. 14, 2012
 ${ }^{2}(f \wedge g)(x)=\max \{f(x), g(x)\}$ and $(f \vee g)(x)=\min \{f(x), g(x)\}$.

