
Questions 605

II. 2. Every integrable function f : [−π,π] → C can be written uniquely as f = fa + fp where fa is even and fp is
odd. Show that

1

2π

∫ π

−π

|f |2 =
1

2π

∫ π

−π

|fa|2 +
1

2π

∫ π

−π

|fp|2.



II. 3. Let f : R → C be a continuous 2π-periodic function. Suppose that lim
n→∞

1

n+ 1

n∑
k=−n

|kf̂(k)| = 0 . Show that

then Sn(f) → f uniformly.



II. 4. If f : R → C is a 2π periodic and integrable function, show that

lim
x→0

∫
|f(t− x)− f(t)| dt = 0.

Hint: Consider first the case when f is continuous.

(NB. Same proof for periodic fns, when intrgral
is over [-π,π].) 

SEE ALSO p. 13



II. 11. Let f, fn (n ∈ N) be 2π-periodic functions, integrable in [−π,π], which satisfy

lim
n→∞

∫ π

−π

|f(x)− fn(x)| dx = 0.

Show that
cfn(k) → bf(k) as n → ∞,

uniformly in k. That is, for every ε > 0 there exists n0 ∈ N so that for each n ≥ n0 and each k ∈ Z, we have

|cfn(k)− bf(k)| < ε.



III. 3. If f : T → C is integrable, show that, for eachm ∈ N,

σm(f) =

m∑

k=−m

(
1− |k|

m+ 1

)
f̂(k)ek .

SEE ALSO SLIDES p. 34



III. 4. If f, g : T → C are continuous, show that

1

2π

∫ π

−π

f(t− s)g(s)ds =
1

2π

∫ π

−π

f(x)g(t− x)dx := (f ∗ g)(t)

for all t. Show that f ∗ g is continuous and find �f ∗ g(k) for each k ∈ Z.

See the file apr14.pdf, page 3



III. 5. Let f : R → C be a 2π-periodic function which is integrable over [−π,π]. Suppose that for some x ∈ R the
limits

f(x−) := lim
t→x−

f(t) and f(x+) := lim
t→x+

f(t)

exist. Show that the Fourier series S[f ] of f is Abel summable at x: more precisely, show that

lim
r→1−

fr(x) =
f(x−) + f(x+)

2
.

You may use the fact that
1

2π

∫ 0

−π

Pr(x) dx =
1

2π

∫ π

0

Pr(x) dx.

(Reminder: fr(t) = 1
2π

∫ π

−π
f(s)Pr(t− s)ds.)

not required for this exam



IV. 4. (α) If A,B ⊆ R and λ∗(B) = 0, show that λ∗(A ∪B) = λ∗(A).

(β) If A,B ⊆ R και λ∗(A△B) = 0, show that λ∗(A) = λ∗(B) (the symbol A△B denotes the symmetric difference
(A \B) ∪ (B \A) of A and B).



IV.6. Let E ⊆ R with 0 < λ∗(E) < +∞ and let 0 < α < 1. Show that there exists an open interval I with the
property

λ∗(E ∩ I) > α ℓ(I).

Hint: Assume the opposite and, for an arbitrary ε > 0, consider a sequence of intervals Ik such that E ⊆ ∪∞
k=1 Ik and∑∞

k=1 ℓ(Ik) < λ∗(E) + ε.



V. 1. (α) If E ⊆ R is measurable with λ(E) < ∞, show that for all ϵ > 0 there exists a step function f vanishing
outside a bounded interval so that ∥χE − f∥1 < ϵ.

Hint Recall the first of the three principles of Littlewood.
Note also that f : R → R is a step function vanishing outside a bounded interval if and only if there are x0, . . . xn ∈ R,
x0 < x1 < · · · < xn such that f is constant on each (xi−1, xi) and f(t) = 0 for all t /∈ [x0, xn].

(β) If I ⊆ R is a bounded interval and ϵ > 0, show that there is a continuous function g with compact support so that
∥χI − g∥1 < ϵ.

(γ) using the above, show that the following linear spaces are dense in L1(R):
(i) The space of simple integrable functions.

(ii) The space of integrable step functions.

(iii) The space Cc(R) of continuous functions with compact support.

Continued on p. 14



V.10. (α) Show that for all X ∈ M, L1(X) = {fg : f, g ∈ L2(X)}.
(β) If f ≥ 0, show that f ∈ L2([−π,π]) if and only if f2 ∈ L1([−π,π]). Is the same true when f([−π,π]) ⊆ R;



VI.4. Let f : [−π,π] → R be a continuously differentiable function with f(−π) = f(π).

(α) Show that there is a constant C(f) > 0 so that |kf̂(k)| ≤ C(f) for all k ∈ Z.

(β) Examine whether lim
|k|→∞

|kf̂(k)| = 0.

(γ) Examine whether
∞∑

k=−∞
|f(k)| < +∞.








