605: Exercises VI

1. (α Let $f \in \mathcal{L}^{1}([-\pi, \pi])$ with $f(t) \in \mathbb{R}$ for all $t \in[-\pi, \pi]$. Show that $\hat{f}(-k)=\overline{f(k)}$ for all $k \in \mathbb{Z}$.
(β) Let $f \in \mathcal{L}^{1}([-\pi, \pi])$ with $\hat{f}(-k)=\overline{f(k)}$ for all $k \in \mathbb{Z}$. Is it true that $f(t) \in \mathbb{R}$ for all $t \in[-\pi, \pi]$; For almost all $t \in[-\pi, \pi]$;
2. If $g \in L^{1}([-\pi, \pi])$ and $m \in \mathbb{N}$, find the Fourier coefficients of the function $f(t)=g(m t)$ in terms of the Fourier coefficients of g.
3. (α) Using the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ given by $f(x)=|x|$ and Parseval's identity, show that

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{4}}=\frac{\pi^{4}}{96} \quad \text { and } \quad \sum_{k=1}^{\infty} \frac{1}{k^{4}}=\frac{\pi^{4}}{90}
$$

(β) Using the 2π-periodic odd function $g:[-\pi, \pi] \rightarrow \mathbb{R}$ given by $g(x)=x(\pi-x) \sigma \tau 0[0, \pi]$ and Parseval's identity, show that

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{6}}=\frac{\pi^{6}}{960} \quad \text { and } \quad \sum_{k=1}^{\infty} \frac{1}{k^{6}}=\frac{\pi^{6}}{945} .
$$

4. Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be a continuously differentiable function with $f(-\pi)=f(\pi)$.
(α) Show that there is a constant $C(f)>0$ so that $|k \hat{f}(k)| \leq C(f)$ for all $k \in \mathbb{Z}$.
(β) Examine whether $\lim _{|k| \rightarrow \infty}|k \hat{f}(k)|=0$.
(γ) Examine whether $\sum_{k=-\infty}^{\infty}|f(k)|<+\infty$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuously differentiable function which is 2π-periodic. If $\int_{-\pi}^{\pi} f(t) d t=0$, show using Parseval's identity for f and f^{\prime} that

$$
\int_{-\pi}^{\pi}|f(t)|^{2} d t \leq \int_{-\pi}^{\pi}\left|f^{\prime}(t)\right|^{2} d t
$$

Show also that equality holds if and only if there are $a, b \in \mathbb{R}$ so that $f(t)=a \cos t+b \sin t$.
6. Let $f \in \mathcal{L}^{1}([-\pi, \pi])$ be even and bounded with $a_{n}(f) \geq 0$ for all $n \in \mathbb{Z}_{+}$.

Show that $\sum_{n=0}^{\infty} a_{k}(f)<\infty$.
What can you conclude about the convergence of the Fourier series of f;
Conclude that f is almost everywhere equal to a continuous function.

