On the Uniqueness Theorem in \mathcal{L}^1

Recall that, for $f, g \in C(\mathbb{T})$, the following are equivalent:

(i)
$$\hat{f}(k) = \hat{g}(k)$$
 για κάθε $k \in \mathbb{Z}$
(ii) $f = g$.

One cannot expect this equivalence to hold for $f, g \in \mathcal{L}^1(\mathbb{T})$, since if an \mathcal{L}^1 function is modified on a null set, then its Fourier coefficients are unchanged. In other words,

If $f, g \in \mathcal{L}^1(\mathbb{T})$ and f = g almost everywhere, then $\hat{f}(k) = \hat{g}(k)$ για κάθε $k \in \mathbb{Z}$.

The converse is also true:

Theorem 1 If $f, g \in \mathcal{L}^1(\mathbb{T})$ the following are equivalent: (i) $\hat{f}(k) = \hat{g}(k)$ for all $k \in \mathbb{Z}$ (ii) f = g almost everywhere. That is, f and g determine the same element of $L^1(\mathbb{T})$.

The implication $(i) \Rightarrow (ii)$ was observed above. The proof of the implication $(ii) \Rightarrow (i)$ will follow from an extension of Fejér's Theorem to the space $(L^1(\mathbb{T}), \|\cdot\|_1)$.

Recall that, for $f \in \mathcal{L}^1(\mathbb{T})$, the trigonometric polynomial $\sigma_m(f)$ is defined by

$$\sigma_m(f) = \frac{1}{m+1} \sum_{n=0}^m S_n(f) \quad (m \in \mathbb{N})$$

and is given by

$$\sigma_m(f)(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} K_m(t-s)f(s)ds$$

where

$$K_m(x) = \sum_{k=-n}^n \left(1 - \frac{|k|}{m+1}\right) e^{ikx}.$$

Proposition 1 For every $f \in L^1(\mathbb{T})$, we have $\lim_n \|\sigma_n(f) - f\|_1 = 0$.

Proof. Recall that, by Fejér's Theorem, for every $g \in C(\mathbb{T})$ we have

$$\lim_{n} \|\sigma_n(g) - g\|_{\infty} = 0$$

and therefore, since $\|h\|_1 \leq \|h\|_\infty$ for $h \in C(\mathbb{T})$,

$$\lim_{n} \|\sigma_{n}(g) - g\|_{1} = 0.$$

But we know that $C(\mathbb{T})$ is dense in $(L^1(\mathbb{T}), \|\cdot\|_1)$. Thus, for every $f \in L^1(\mathbb{T})$, given $\epsilon > 0$ there exists $f \in C(\mathbb{T})$ with

$$\|f-g\|_1 < \epsilon \,.$$

For g we may choose $n_0 \in \mathbb{N}$ so that for all $n \ge n_0$ we have

$$\left\|\sigma_n(g) - g\right\|_1 < \epsilon.$$

Now we have, if $n \ge n_0$

$$\|\sigma_n(f) - f\|_1 \le \|\sigma_n(f) - \sigma_n(g)\|_1 + \|\sigma_n(g) - g\|_1 + \|g - f\|_1$$

< $\|\sigma_n(f - g)\|_1 + \epsilon + \epsilon$

and the proof will be complete if we can control the quantity $\|\sigma_n(f-g)\|_1$. But by Proposition 2 below, we have $\|\sigma_n(f-g)\|_1 \le \|f-g\|_1$.

Proposition 2 For every $f \in L^1(\mathbb{T})$, we have $\|\sigma_n(f)\|_1 \le \|f\|_1$.

Proof. We first claim that the inequality $\|\sigma_n(f)\|_1 \leq \|f\|_1$ holds when $f \in C(\mathbb{T})$. Indeed, we have

$$\sigma_m(f)(t) = \int_{-\pi}^{\pi} K_m(t-s)f(s)\frac{ds}{2\pi}$$

hence $\|\sigma_m(f)\|_1 = \int_{-\pi}^{\pi} \left|\int_{-\pi}^{\pi} K_m(t-s)f(s)\frac{ds}{2\pi}\right| \frac{dt}{2\pi}$
 $= \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |K_m(t-s)f(s)|\frac{ds}{2\pi}\right) \frac{dt}{2\pi}$
 $\stackrel{(!)}{=} \int_{-\pi}^{\pi} \left(\int_{-\pi}^{\pi} |K_m(t-s)f(s)|\frac{dt}{2\pi}\right) \frac{ds}{2\pi}$
 $= \int_{-\pi}^{\pi} |f(s)| \left(\int_{-\pi}^{\pi} |K_m(t-s)|\frac{dt}{2\pi}\right) \frac{ds}{2\pi}$

But $\int_{-\pi}^{\pi} |K_m(t-s)| \frac{dt}{2\pi} = \int_{-\pi}^{\pi} |K_m(x)| \frac{dx}{2\pi}$ by periodicity, and we know that $\int_{-\pi}^{\pi} |K_m(x)| \frac{dx}{2\pi} = 1$. Hence the previous inequality becomes

$$\|\sigma_m(f)\|_1 \le \int_{-\pi}^{\pi} |f(s)| \frac{ds}{2\pi} = \|f\|_1$$
.

Now suppose $f \in L^1(\mathbb{T})$ and let $m \in \mathbb{N}$ be fixed. Then given $\epsilon > 0$ there exists $f_{\epsilon} \in C(\mathbb{T})$ such that $\|f - f_{\epsilon}\|_1 < \frac{\epsilon}{m+1}$. Then,

$$\sigma_m(f) - \sigma_m(f_{\epsilon}) = \sum_{k=-m}^m \left(1 - \frac{|k|}{m+1}\right) (\hat{f}(k) - \hat{f}_{\epsilon}(k)) e_k$$

so $\|\sigma_m(f) - \sigma_m(f_{\epsilon})\|_1 \le \sum_{k=-m}^m \left(1 - \frac{|k|}{m+1}\right) |\hat{f}(k) - \hat{f}_{\epsilon}(k)| \|e_k\|_1$

But $||e_k||_1 = 1$ and $|\hat{f}(k) - \hat{f}_{\epsilon}(k)| \le \left\|\hat{f} - \hat{f}_{\epsilon}\right\|_{\infty} \le \|f - f_{\epsilon}\|_1$ for all k, so

$$\|\sigma_m(f) - \sigma_m(f_{\epsilon})\|_1 \le \sum_{k=-m}^m \left(1 - \frac{|k|}{m+1}\right) \|f - f_{\epsilon}\|_1 \le (m+1) \|f - f_{\epsilon}\|_1 < \epsilon$$

and therefore, using the fact that $\|\sigma_m(f_{\epsilon})\|_1 \leq \|f_{\epsilon}\|_1$ (by the claim)

$$\begin{aligned} \|\sigma_m(f)\|_1 &\leq \|\sigma_m(f) - \sigma_m(f_{\epsilon})\|_1 + \|\sigma_m(f_{\epsilon})\|_1 \\ &\leq \|\sigma_m(f) - \sigma_m(f_{\epsilon})\|_1 + \|f_{\epsilon}\|_1 < \epsilon + (\|f\|_1 + \epsilon) \end{aligned}$$

so $\|\sigma_m(f)\|_1 \le \|f\|_1$ since $\epsilon > 0$ was arbitrary.

Proof of Theorem 1 (*ii*) \Rightarrow (*i*): Suppose $\hat{f}(k) = \hat{g}(k)$ for all $k \in \mathbb{Z}$. Then the partial sums of the Fourier series of f and g are the same, and so $\sigma_n(f) = \sigma_n(g)$, or $\sigma_n(f-g) = 0$ for all n. Therefore, from Proposition 2,

$$||f - g||_1 = \lim_n ||\sigma_n(f - g)||_1 = 0$$

and so f = g almost everywhere (or f = g in $L^1(\mathbb{T})$).