On the Uniqueness Theorem in \mathcal{L}^{1}

Recall that, for $f, g \in C(\mathbb{T})$, the following are equivalent:
(i) $\hat{f}(k)=\hat{g}(k) \gamma 1 \alpha \kappa \alpha ́ \theta \varepsilon k \in \mathbb{Z}$
(ii) $f=g$.

One cannot expect this equivalence to hold for $f, g \in \mathcal{L}^{1}(\mathbb{T})$, since if an \mathcal{L}^{1} function is modified on a null set, then its Fourier coefficients are unchanged. In other words,
If $f, g \in \mathcal{L}^{1}(\mathbb{T})$ and $f=g$ almost everywhere, then $\hat{f}(k)=\hat{g}(k) \gamma / \alpha \kappa \alpha ́ \theta \varepsilon k \in \mathbb{Z}$.
The converse is also true:
Theorem 1 If $f, g \in \mathcal{L}^{1}(\mathbb{T})$ the folowing are equivalent:
(i) $\hat{f}(k)=\hat{g}(k)$ for all $k \in \mathbb{Z}$
(ii) $f=g$ almost everywhere. That is, f and g determine the same element of $L^{1}(\mathbb{T})$.

The implication $(i) \Rightarrow(i i)$ was observed above. The proof of the implication $(i i) \Rightarrow(i)$ will follow from an extension of Fejér' s Theorem to the space $\left(L^{1}(\mathbb{T}),\|\cdot\|_{1}\right)$.
Recall that, for $f \in \mathcal{L}^{1}(\mathbb{T})$, the trigonometric polynomial $\sigma_{m}(f)$ is defined by

$$
\sigma_{m}(f)=\frac{1}{m+1} \sum_{n=0}^{m} S_{n}(f) \quad(m \in \mathbb{N})
$$

and is given by

$$
\sigma_{m}(f)(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{m}(t-s) f(s) d s
$$

where

$$
K_{m}(x)=\sum_{k=-n}^{n}\left(1-\frac{|k|}{m+1}\right) e^{i k x}
$$

Proposition 1 For every $f \in L^{1}(\mathbb{T})$, we have $\lim _{n}\left\|\sigma_{n}(f)-f\right\|_{1}=0$.

Proof. Recall that, by Fejér's Theorem, for every $g \in C(\mathbb{T})$ we have

$$
\lim _{n}\left\|\sigma_{n}(g)-g\right\|_{\infty}=0
$$

and therefore, since $\|h\|_{1} \leq\|h\|_{\infty}$ for $h \in C(\mathbb{T})$,

$$
\lim _{n}\left\|\sigma_{n}(g)-g\right\|_{1}=0
$$

But we know that $C(\mathbb{T})$ is dense in $\left(L^{1}(\mathbb{T}),\|\cdot\|_{1}\right)$. Thus, for every $f \in L^{1}(\mathbb{T})$, given $\epsilon>0$ there exists $f \in C(\mathbb{T})$ with

$$
\|f-g\|_{1}<\epsilon
$$

For g we may choose $n_{0} \in \mathbb{N}$ so that for all $n \geq n_{0}$ we have

$$
\left\|\sigma_{n}(g)-g\right\|_{1}<\epsilon .
$$

Now we have, if $n \geq n_{0}$

$$
\begin{aligned}
\left\|\sigma_{n}(f)-f\right\|_{1} & \leq\left\|\sigma_{n}(f)-\sigma_{n}(g)\right\|_{1}+\left\|\sigma_{n}(g)-g\right\|_{1}+\|g-f\|_{1} \\
& <\left\|\sigma_{n}(f-g)\right\|_{1}+\epsilon+\epsilon
\end{aligned}
$$

and the proof will be complete if we can control the quantity $\left\|\sigma_{n}(f-g)\right\|_{1}$. But by Proposition 2 below, we have $\left\|\sigma_{n}(f-g)\right\|_{1} \leq\|f-g\|_{1}$.

Proposition 2 For every $f \in L^{1}(\mathbb{T})$, we have $\left\|\sigma_{n}(f)\right\|_{1} \leq\|f\|_{1}$.
Proof. We first claim that the inequality $\left\|\sigma_{n}(f)\right\|_{1} \leq\|f\|_{1}$ holds when $f \in C(\mathbb{T})$. Indeed, we have

$$
\begin{aligned}
\sigma_{m}(f)(t) & =\int_{-\pi}^{\pi} K_{m}(t-s) f(s) \frac{d s}{2 \pi} \\
\text { hence }\left\|\sigma_{m}(f)\right\|_{1} & =\int_{-\pi}^{\pi}\left|\int_{-\pi}^{\pi} K_{m}(t-s) f(s) \frac{d s}{2 \pi}\right| \frac{d t}{2 \pi} \\
& =\int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi}\left|K_{m}(t-s) f(s)\right| \frac{d s}{2 \pi}\right) \frac{d t}{2 \pi} \\
& \stackrel{(!)}{=} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi}\left|K_{m}(t-s) f(s)\right| \frac{d t}{2 \pi}\right) \frac{d s}{2 \pi} \\
& =\int_{-\pi}^{\pi}|f(s)|\left(\int_{-\pi}^{\pi}\left|K_{m}(t-s)\right| \frac{d t}{2 \pi}\right) \frac{d s}{2 \pi}
\end{aligned}
$$

But $\int_{-\pi}^{\pi}\left|K_{m}(t-s)\right| \frac{d t}{2 \pi}=\int_{-\pi}^{\pi}\left|K_{m}(x)\right| \frac{d x}{2 \pi}$ by periodicity, and we know that $\int_{-\pi}^{\pi}\left|K_{m}(x)\right| \frac{d x}{2 \pi}=1$. Hence the previous inequality becomes

$$
\left\|\sigma_{m}(f)\right\|_{1} \leq \int_{-\pi}^{\pi}|f(s)| \frac{d s}{2 \pi}=\|f\|_{1}
$$

Now suppose $f \in L^{1}(\mathbb{T})$ and let $m \in \mathbb{N}$ be fixed. Then given $\epsilon>0$ there exists $f_{\epsilon} \in C(\mathbb{T})$ such that $\left\|f-f_{\epsilon}\right\|_{1}<\frac{\epsilon}{m+1}$. Then,

$$
\begin{aligned}
\sigma_{m}(f)-\sigma_{m}\left(f_{\epsilon}\right) & =\sum_{k=-m}^{m}\left(1-\frac{|k|}{m+1}\right)\left(\hat{f}(k)-\hat{f}_{\epsilon}(k)\right) e_{k} \\
\text { so } \quad\left\|\sigma_{m}(f)-\sigma_{m}\left(f_{\epsilon}\right)\right\|_{1} & \leq \sum_{k=-m}^{m}\left(1-\frac{|k|}{m+1}\right)\left|\hat{f}(k)-\hat{f}_{\epsilon}(k)\right|\left\|e_{k}\right\|_{1}
\end{aligned}
$$

But $\left\|e_{k}\right\|_{1}=1$ and $\left|\hat{f}(k)-\hat{f}_{\epsilon}(k)\right| \leq\left\|\hat{f}-\hat{f}_{\epsilon}\right\|_{\infty} \leq\left\|f-f_{\epsilon}\right\|_{1}$ for all k, so

$$
\left\|\sigma_{m}(f)-\sigma_{m}\left(f_{\epsilon}\right)\right\|_{1} \leq \sum_{k=-m}^{m}\left(1-\frac{|k|}{m+1}\right)\left\|f-f_{\epsilon}\right\|_{1} \leq(m+1)\left\|f-f_{\epsilon}\right\|_{1}<\epsilon
$$

and therefore, using the fact that $\left\|\sigma_{m}\left(f_{\epsilon}\right)\right\|_{1} \leq\left\|f_{\epsilon}\right\|_{1}$ (by the claim)

$$
\begin{aligned}
\left\|\sigma_{m}(f)\right\|_{1} & \leq\left\|\sigma_{m}(f)-\sigma_{m}\left(f_{\epsilon}\right)\right\|_{1}+\left\|\sigma_{m}\left(f_{\epsilon}\right)\right\|_{1} \\
& \leq\left\|\sigma_{m}(f)-\sigma_{m}\left(f_{\epsilon}\right)\right\|_{1}+\left\|f_{\epsilon}\right\|_{1}<\epsilon+\left(\|f\|_{1}+\epsilon\right)
\end{aligned}
$$

so $\left\|\sigma_{m}(f)\right\|_{1} \leq\|f\|_{1}$ since $\epsilon>0$ was arbitrary.
Proof of Theorem $1(i i) \Rightarrow(i)$: Suppose $\hat{f}(k)=\hat{g}(k)$ for all $k \in \mathbb{Z}$. Then the partial sums of the Fourier series of f and g are the same, and so $\sigma_{n}(f)=\sigma_{n}(g)$, or $\sigma_{n}(f-g)=0$ for all n. Therefore, from Proposition 2,

$$
\|f-g\|_{1}=\lim _{n}\left\|\sigma_{n}(f-g)\right\|_{1}=0
$$

and so $f=g$ almost everywhere (or $f=g$ in $L^{1}(\mathbb{T})$).

