
On the Uniqueness Theorem in L1

Recall that, for f, g ∈ C(T), the following are equivalent:

(i) f̂(k) = ĝ(k) για κάθε k ∈ Z
(ii) f = g.

One cannot expect this equivalence to hold for f, g ∈ L1(T), since if an L1 function is modified
on a null set, then its Fourier coefficients are unchanged. In other words,

If f, g ∈ L1(T) and f = g almost everywhere, then f̂(k) = ĝ(k) για κάθε k ∈ Z.
The converse is also true:

Theorem 1 If f, g ∈ L1(T) the folowing are equivalent:
(i) f̂(k) = ĝ(k) for all k ∈ Z
(ii) f = g almost everywhere. That is, f and g determine the same element of L1(T).

The implication (i) ⇒ (ii)was observed above. The proof of the implication (ii) ⇒ (i)will follow
from an extension of Fejér’ s Theorem to the space (L1(T), ∥·∥1).
Recall that, for f ∈ L1(T), the trigonometric polynomial σm(f) is defined by

σm(f) =
1

m+ 1

m∑
n=0

Sn(f) (m ∈ N)

and is given by

σm(f)(t) =
1

2π

∫ π

−π

Km(t− s)f(s)ds

where

Km(x) =
n∑

k=−n

(
1− |k|

m+ 1

)
eikx .

Proposition 1 For every f ∈ L1(T), we have limn ∥σn(f)− f∥1 = 0.

Proof. Recall that, by Fejér’ s Theorem, for every g ∈ C(T) we have

lim
n

∥σn(g)− g∥∞ = 0

and therefore, since ∥h∥1 ≤ ∥h∥∞ for h ∈ C(T),

lim
n

∥σn(g)− g∥1 = 0 .

But we know that C(T) is dense in (L1(T), ∥·∥1). Thus, for every f ∈ L1(T), given ϵ > 0 there
exists f ∈ C(T) with

∥f − g∥1 < ϵ .

For g we may choose n0 ∈ N so that for all n ≥ n0 we have

∥σn(g)− g∥1 < ϵ .



Now we have, if n ≥ n0

∥σn(f)− f∥1 ≤ ∥σn(f)− σn(g)∥1 + ∥σn(g)− g∥1 + ∥g − f∥1
< ∥σn(f − g)∥1 + ϵ+ ϵ

and the proof will be complete if we can control the quantity ∥σn(f − g)∥1. But by Proposition 2
below, we have ∥σn(f − g)∥1 ≤ ∥f − g∥1.

Proposition 2 For every f ∈ L1(T), we have ∥σn(f)∥1 ≤ ∥f∥1.

Proof. We first claim that the inequality ∥σn(f)∥1 ≤ ∥f∥1 holds when f ∈ C(T). Indeed, we have

σm(f)(t) =

∫ π

−π

Km(t− s)f(s)
ds

2π

hence ∥σm(f)∥1 =
∫ π

−π

∣∣∣∣∫ π

−π

Km(t− s)f(s)
ds

2π

∣∣∣∣ dt2π
=

∫ π

−π

(∫ π

−π

|Km(t− s)f(s)| ds
2π

)
dt

2π

(!)
=

∫ π

−π

(∫ π

−π

|Km(t− s)f(s)| dt
2π

)
ds

2π

=

∫ π

−π

|f(s)|
(∫ π

−π

|Km(t− s)| dt
2π

)
ds

2π

But
∫ π

−π

|Km(t− s)| dt
2π

=

∫ π

−π

|Km(x)|
dx

2π
by periodicity, and we know that

∫ π

−π

|Km(x)|
dx

2π
= 1.

Hence the previous inequality becomes

∥σm(f)∥1 ≤
∫ π

−π

|f(s)| ds
2π

= ∥f∥1 .

Now suppose f ∈ L1(T) and let m ∈ N be fixed. Then given ϵ > 0 there exists fϵ ∈ C(T) such
that ∥f − fϵ∥1 <

ϵ
m+1

. Then,

σm(f)− σm(fϵ) =
m∑

k=−m

(
1− |k|

m+ 1

)
(f̂(k)− f̂ϵ(k))ek

so ∥σm(f)− σm(fϵ)∥1 ≤
m∑

k=−m

(
1− |k|

m+ 1

)
|f̂(k)− f̂ϵ(k)| ∥ek∥1

But ∥ek∥1 = 1 and |f̂(k)− f̂ϵ(k)| ≤
∥∥∥f̂ − f̂ϵ

∥∥∥
∞

≤ ∥f − fϵ∥1 for all k, so

∥σm(f)− σm(fϵ)∥1 ≤
m∑

k=−m

(
1− |k|

m+ 1

)
∥f − fϵ∥1 ≤ (m+ 1) ∥f − fϵ∥1 < ϵ

and therefore, using the fact that ∥σm(fϵ)∥1 ≤ ∥fϵ∥1 (by the claim)

∥σm(f)∥1 ≤ ∥σm(f)− σm(fϵ)∥1 + ∥σm(fϵ)∥1
≤ ∥σm(f)− σm(fϵ)∥1 + ∥fϵ∥1 < ϵ+ (∥f∥1 + ϵ)



so ∥σm(f)∥1 ≤ ∥f∥1 since ϵ > 0 was arbitrary. 2

Proof of Theorem 1 (ii) ⇒ (i): Suppose f̂(k) = ĝ(k) for all k ∈ Z. Then the partial sums of the
Fourier series of f and g are the same, and so σn(f) = σn(g), or σn(f−g) = 0 for all n. Therefore,
from Proposition 2,

∥f − g∥1 = lim
n

∥σn(f − g)∥1 = 0

and so f = g almost everywhere (or f = g in L1(T)). 2


