Regularity of Lebesgue measure

Remark Every compact $K \subseteq \mathbb{R}$ has $\lambda(K) < \infty$.

Indeed, every compact set is bounded, hence there exists a bounded interval [a, b] with $K \subseteq [a, b]$. It follows that $\lambda(K) \leq \lambda([a, b]) = b - a < \infty$.

Theorem 1 For every $A \in \mathcal{M}$ we have

$$\begin{split} \lambda(A) &= \inf\{\lambda(G) : G \text{ open and } G \supseteq A\} \\ &= \sup\{\lambda(K) : K \text{ compact and } K \subseteq A\}\,. \end{split}$$

Proof Let $A \in \mathcal{M}$. By the monotonicity of λ , we have

$$\sup\{\lambda(K): K \text{ compact and } K \subseteq A\} \le \lambda(A) \le \inf\{\lambda(G): G \text{ open and } G \supseteq A\}.$$

To prove that

$$\lambda(A) \ge \inf\{\lambda(G) : G \text{ open and } G \supseteq A\}$$
(*)

we may assume that $\lambda(A) < \infty$ (otherwise there is nothing to prove).

For each $\epsilon > 0$ we have shown that there exists an open set G with $G \supseteq A$ and $\lambda(G \setminus A) < \epsilon$, and so $\lambda(G) < \lambda(A) + \epsilon$ (because $\lambda(A) < \infty$). This proves (*).

To prove

$$\lambda(A) \le \sup\{\lambda(K) : K \text{ compact and } K \subseteq A\}.$$
(**)

Special case. Assume first that A is bounded. We have shown (as an exercise) that for each $\epsilon > 0$ there exists a closed set $F \subseteq A$ such that $\lambda(A \setminus F) < \epsilon$. It follows that $\lambda(A) < \lambda(F) + \epsilon$ (since A is bounded, hence $\lambda(A) < \infty$). But F is also bounded (since $F \subseteq A$) and a subset of \mathbb{R} , hence is compact. This proves (**) for bounded A.

General case. For $A \in \mathcal{M}$ define $A_n = A \cap [-n, n]$ where $n \in \mathbb{N}$. Then (A_n) is an increasing sequence of measurable sets with $\bigcup_n A_n = A$, hence

$$\lambda(A) = \lim_{n} \lambda(A_n) = \sup_{n} \lambda(A_n)$$

But since each A_n is bounded, by the special case we know that

$$\lambda(A_n) = \sup\{\lambda(K) : K \text{ compact and } K \subseteq A_n\}.$$

But $\{\lambda(K) : K \text{ compact and } K \subseteq A_n\} \subseteq \{\lambda(K) : K \text{ compact and } K \subseteq A\}$ for all $n \text{ (since } A_n \subseteq A)$ and therefore

$$\begin{split} \lambda(A) &= \sup_n \lambda(A_n) = \sup_n \sup \{\lambda(K) : K \text{ compact and } K \subseteq A_n \} \\ &\leq \sup \{\lambda(K) : K \text{ compact and } K \subseteq A \} \,. \end{split}$$

The proof of (**) is complete.