605: Exercises III

1. If p and q are trigonometric polynomials, show that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} p(t-s) q(s) d s=\frac{1}{2 \pi} \int_{-\pi}^{\pi} p(x) q(t-x) d x:=(p * q)(t)
$$

for all t. Show that $p * q$ is a trigonometric polynomial and find $\widehat{p * q}(k)$ for each $k \in \mathbb{Z}$.
2. If q is a trigonometric polynomial and $f: \mathbb{T} \rightarrow \mathbb{C}$ is integrable, show that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t-s) q(s) d s=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) q(t-x) d x:=(f * q)(t)
$$

for all t. Show that $f * q$ is a trigonometric polynomial and find $\widehat{f * q}(k)$ for each $k \in \mathbb{Z}$.
3. If $f: \mathbb{T} \rightarrow \mathbb{C}$ is integrable, show that, for each $m \in \mathbb{N}$,

$$
\sigma_{m}(f)=\sum_{k=-m}^{m}\left(1-\frac{|k|}{m+1}\right) \hat{f}(k) e_{k} .
$$

4. If $f, g: \mathbb{T} \rightarrow \mathbb{C}$ are continuous, show that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t-s) g(s) d s=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) g(t-x) d x:=(f * g)(t)
$$

for all t. Show that $f * g$ is continuous and find $\widehat{f * g}(k)$ for each $k \in \mathbb{Z}$.
5. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a 2π-periodic function which is integrable over $[-\pi, \pi]$. Suppose that for some $x \in \mathbb{R}$ the limits

$$
f\left(x^{-}\right):=\lim _{t \rightarrow x^{-}} f(t) \quad \text { and } \quad f\left(x^{+}\right):=\lim _{t \rightarrow x^{+}} f(t)
$$

exist. Show that the Fourier series $S[f]$ of f is Abel summable at x : more precisely, show that

$$
\lim _{r \rightarrow 1^{-}} f_{r}(x)=\frac{f\left(x^{-}\right)+f\left(x^{+}\right)}{2}
$$

You may use the fact that

$$
\frac{1}{2 \pi} \int_{-\pi}^{0} P_{r}(x) d x=\frac{1}{2 \pi} \int_{0}^{\pi} P_{r}(x) d x
$$

(Reminder: $f_{r}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) P_{r}(t-s) d s$.)

