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Complex-valued functions on the unit circle

Denote by 𝕋 the unit circle

𝕋 = {𝑧 ∈ ℂ ∶ |𝑧| = 1} = {𝑒𝑖𝜃 ∶ 𝜃 ∈ ℝ}.

If 𝜙 ∶ 𝕋 → ℂ, define 𝑓 ∶ ℝ → ℂ by

𝑓(𝜃) = 𝜙(𝑒𝑖𝜃).

The function 𝑓 is 2𝜋-periodic.
Conversely, if 𝑓 ∶ ℝ → ℂ is 2𝜋-periodic, then the function 𝜙 ∶ 𝕋 → ℂ
given by 𝜙(𝑒𝑖𝜃) = 𝑓(𝜃) is well defined.
Thus we have a 1 − 1 correspondence between functions 𝜙 ∶ 𝕋 → ℂ and
2𝜋-periodic functions 𝑓 ∶ ℝ → ℂ.
We say 𝜙 is integrable if 𝑓 is integrable in some interval of length 2𝜋
(hence in all such intervals), we say 𝜙 is continuous if 𝑓 is continuous,
we say 𝜙 is differentiable if 𝑓 is differentiable, we say 𝜙 is continuously
differentiable if 𝑓 is continuously differentiable and so on.
In what follows we shall make no distinction between 𝜙 and 𝑓 .



Fourier Series

Remark (Trigonometric Polynomial)

If 𝑓(𝑥) =
𝑁

∑
𝑘=−𝑁

𝑐𝑘 exp 𝑖𝑘𝑥

then,

𝑐𝑚 = 1
2𝜋 ∫

2𝜋

0
𝑓(𝑥) exp(−𝑖𝑚𝑥)𝑑𝑥, −𝑁 ≤ 𝑚 ≤ 𝑁.

because if 𝑘 ∈ ℤ,

1
2𝜋 ∫

2𝜋

0
exp(𝑖𝑘𝑥)𝑑𝑥 = { 1 𝑘 = 0

0 𝑘 ≠ 0



Fourier Series

Generalisation: Given a 2𝜋-periodic function 𝑓 ∶ ℝ → ℂ, we define

𝑎𝑛 = 𝑎𝑛(𝑓) = 1
𝜋 ∫

2𝜋

0
𝑓(𝑥) cos 𝑛𝑥𝑑𝑥, (𝑛 = 0, 1, 2, …)

𝑏𝑚 = 𝑏𝑚(𝑓) = 1
𝜋 ∫

2𝜋

0
𝑓(𝑥) sin 𝑚𝑥𝑑𝑥, (𝑚 = 1, 2, …)

̂𝑓(𝑘) = 1
2𝜋 ∫

2𝜋

0
𝑓(𝑥) exp(−𝑖𝑘𝑥)𝑑𝑥, (𝑘 ∈ ℤ)

It suffices that the integrals exist.
Definition: The Fourier series 𝑆(𝑓) of 𝑓 :

𝑆(𝑓, 𝑥) ∶= 𝑎𝑜
2 +

∞
∑
𝑘=1

𝑎𝑘 cos 𝑘𝑥 +
∞

∑
𝑘=1

𝑏𝑘 sin 𝑘𝑥

=
∞

∑
𝑘=−∞

̂𝑓(𝑘)𝑒𝑖𝑘𝑥 (complex form)

(For now, we are not concerned with convergence or divergence of
these series.)



Fourier series

Remark
• The Fourier series of a trigonometric polynomial 𝑝 is the trig.
polynomial itself: 𝑆𝑛(𝑝) = 𝑝 when 𝑛 ≥ deg 𝑝, hence 𝑆(𝑝) = 𝑝.
• If a trigonometric series 𝑠(𝑥) = ∑𝑘 𝑐𝑘𝑒𝑖𝑘𝑥 converge uniformly, then
the Fourier coefficients ̂𝑠(𝑘) of 𝑠 are the 𝑐𝑘, hence the Fourier series of
𝑠 is 𝑠.
• It is not however always true that every convergent trigonometric
series is the Fourier series of some function (see later).



Fourier series

Proposition (Linearity!)

If 𝑓 and 𝑔 are integrable on [0, 2𝜋] and 𝜆 ∈ ℂ,

𝑎𝑛(𝑓 + 𝜆𝑔) = 𝑎𝑛(𝑓) + 𝜆𝑎𝑛(𝑔),
𝑏𝑛(𝑓 + 𝜆𝑔) = 𝑏𝑛(𝑓) + 𝜆𝑏𝑛(𝑔) (𝑛, 𝑚 ∈ ℕ)

equivalently ̂(𝑓 + 𝜆𝑔)(𝑘) = ̂𝑓(𝑘) + 𝜆 ̂𝑔(𝑘) (𝑘 ∈ ℤ)

therefore 𝑆𝑛(𝑓 + 𝜆𝑔) = 𝑆𝑛(𝑓) + 𝜆𝑆𝑛(𝑔) (𝑛 ∈ ℕ).



The Uniqueness Theorem

Theorem
If 𝑓 and 𝑔 is continuous and 2𝜋-periodic functions with ̂𝑔(𝑘) = ̂𝑓(𝑘)
for each 𝑘 ∈ ℤ (equivalently 𝑎𝑛(𝑓) = 𝑎𝑛(𝑔) and 𝑏𝑛(𝑓) = 𝑏𝑛(𝑔) for
each 𝑛 ∈ ℕ), then 𝑓 = 𝑔.

Continuity was used only at the point 𝑡0 :

Theorem
If 𝑓 and 𝑔 are integrable on [−𝜋, 𝜋] and ̂𝑔(𝑘) = ̂𝑓(𝑘) for each 𝑘 ∈ ℤ
(equivalently 𝑎𝑛(𝑓) = 𝑎𝑛(𝑔) and 𝑏𝑛(𝑓) = 𝑏𝑛(𝑔) for each 𝑛 ∈ ℕ), then
𝑓(𝑡0) = 𝑔(𝑡0) at each point 𝑡0 where 𝑓 − 𝑔 is continuous.



Simple cases of convergence

Proposition

If 𝑓 continuous, 2𝜋-periodic and ∑ | ̂𝑓(𝑘)| < ∞ (equivalently
∑(|𝑎𝑘(𝑓) + |𝑏𝑘(𝑓)| < ∞) then (𝑆𝑁(𝑓)) converges uniformly to 𝑓 .

Proposition

If 𝑓 continuous, 2𝜋-periodic and its derivative 𝑓 ′ exists and is
integrable,

𝑓 ′(𝑘) = 𝑖𝑘 ̂𝑓(𝑘) (𝑘 ∈ ℤ).



Simple cases of convergence

Proposition

If 𝑓 ∶ ℝ → ℂ is continuous, 2𝜋-periodic and ∑ |𝑘 ̂𝑓(𝑘)| < ∞, then 𝑓 is
continuously differentiable and the series ∑ 𝑖𝑘 ̂𝑓(𝑘) exp 𝑖𝑘𝑥 converges
to 𝑓 ′ uniformly.

Proposition

If 𝑓, 𝑓 ′ and 𝑓″ are continuous and 2𝜋-periodic, the series
∑ ̂𝑓(𝑘) exp 𝑖𝑘𝑥 converges uniformly to 𝑓 .



Fejér’ s Theorem

Let 𝑓 ∶ ℝ → ℂ be continuous and 2𝜋-periodic.
Reminder: 𝑆𝑛(𝑓, 𝑡) = ∑

|𝑘|≤𝑛
̂𝑓(𝑘)𝑒𝑖𝑘𝑡.

The sequence (𝑆𝑛(𝑓)) is not always always convergent (not even
pointwise). However,

Theorem (Fejér)

If 𝑓 ∶ ℝ → ℂ is a continuous and 2𝜋-periodic function, then the
sequence (𝜎𝑛(𝑓)) where

𝜎𝑚(𝑓) = 1
𝑚 + 1

𝑚
∑
𝑛=0

𝑆𝑛(𝑓) (𝑚 ∈ ℕ)

converges to 𝑓 uniformly.



Two kernels: Dirichlet against Fejér

Dirichlet: 𝐷𝑛(𝑥) =
𝑘=𝑛
∑

𝑘=−𝑛
exp(𝑖𝑘𝑥) =

⎧{
⎨{⎩

sin( 2𝑛+1
2 𝑥)

sin(𝑥/2) , 𝑥 ≠ 0,

2𝑛 + 1, 𝑥 = 0
(𝑑)

Fejér: 𝐾𝑚(𝑥) = 1
𝑚 + 1

𝑚
∑
𝑛=0

(
𝑛

∑
𝑘=−𝑛

exp(𝑖𝑘𝑥))

=
⎧{
⎨{⎩

1
𝑚+1 ( sin( 𝑚+1

2 𝑥)
sin(𝑥/2) )

2
, 𝑥 ≠ 0,

𝑚 + 1, 𝑥 = 0
(𝑘)

𝐾𝑚 =
𝑚

∑
𝑘=−𝑚

(1 − |𝑘|
𝑚 + 1) 𝑒𝑘 .



The Dirichlet kernel

𝐷𝑚(𝑥) = sin (2𝑚+1
2 𝑥)

sin(𝑥/2) , 𝑥 ≠ 0, 𝐷𝑚(0) = 2𝑚 + 1.
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The Fejér kernel

𝐾𝑚(𝑥) = 1
𝑚 + 1 (sin(𝑚+1

2 𝑥)
sin(𝑥/2) )

2

, 𝑥 ≠ 0, 𝐾𝑚(0) = 𝑚 + 1.
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𝑚 = 4, 5, 7, 10, 14.



Properties of Fejér’s kernel 𝐾𝑚

Remark
The Fejér kernel has the following properties:
(α) There exists 𝑀 so that ‖𝐾𝑚‖1 ≤ 𝑀 for each 𝑚.

(β) If 𝛿 ∈ (0, 𝜋) and 𝐸𝛿 = [−𝜋, −𝛿] ∪ [𝛿, 𝜋], then lim
𝑚

∫
𝐸𝛿

|𝐾𝑚| = 0.

(γ)
1

2𝜋 ∫
𝜋

−𝜋
𝐾𝑚(𝑥)𝑑𝑥 = 1 for every 𝑚.



First consequences of Fejér’s Theorem

• Uniqueness. If 𝑓, 𝑔 are continuous, 2𝜋-periodic and ̂𝑓(𝑘) = ̂𝑔(𝑘) for
all 𝑘 ∈ ℤ, then 𝑓 = 𝑔.
Second Proof. We have 𝜎𝑛(𝑓) = 𝜎𝑛(𝑔) for each 𝑛 ∈ ℕ, hence
𝑓 = lim𝑛 𝜎𝑛(𝑓) = lim𝑛 𝜎𝑛(𝑔) = 𝑔 by Fejér.

• Proposition [Fejér] Let 𝑓 ∶ ℝ → ℂ be Riemann integrable in [−𝜋, 𝜋]
and 2𝜋-periodic. If 𝑓 is continuous at some 𝑡 ∈ [−𝜋, 𝜋], then
𝜎𝑛(𝑓, 𝑡) → 𝑓(𝑡). [The proof is a variation of the previous one: now 𝛿
will depend on 𝑡, and convergence is shown at 𝑡.]
[Remark: More generally, if the one-sided limits 𝑓(𝑡+) and 𝑓(𝑡−) exist,
then 𝜎𝑛(𝑓, 𝑡) → 𝑓(𝑡+)+𝑓(𝑡−)

2 . (Proof omitted).]

• Corollary Under the conditions of the Proposition, if (𝑆𝑛(𝑓, 𝑡0))
converges, then it must converge to 𝑓(𝑡0).
• Remark For every 𝑓 , Riemann integrable in [−𝜋, 𝜋] and 2𝜋-periodic,
we have ‖𝜎𝑛(𝑓)‖∞ ≤ ‖𝑓‖∞.



Mean square convergence

Proposition (Best mean square approximation)

Let 𝑓 ∶ [−𝜋, 𝜋] → ℂ be a Riemann-integrable function and 𝑛 ∈ ℕ.
Then for every trigonometric polynomial 𝑝 of degree deg(𝑝) ≤ 𝑛 we
have

1
2𝜋 ∫

𝜋

−𝜋
|𝑓 − 𝑝|2 = 1

2𝜋 ∫
𝜋

−𝜋
|𝑓 − 𝑆𝑛(𝑓)|2 + 1

2𝜋 ∫
𝜋

−𝜋
|𝑆𝑛(𝑓) − 𝑝|2. (1)

Therefore the inequality

1
2𝜋 ∫

𝜋

−𝜋
|𝑓 − 𝑝|2 ≥ 1

2𝜋 ∫
𝜋

−𝜋
|𝑓 − 𝑆𝑛(𝑓)|2 (2)

holds, and we have equality we have if and only if 𝑝 = 𝑆𝑛.
In other words, 𝑆𝑛 is the unique trigonometric polynomial which
minimizes the integral 1

2𝜋 ∫𝜋
−𝜋 |𝑓 − 𝑝|2 among all choices of

trigonometric polynomials 𝑝 of degree at most 𝑛.

In particular, if 𝑚 ≤ 𝑛 then ‖𝑓 − 𝑆𝑚(𝑓)‖2 ≥ ‖𝑓 − 𝑆𝑛(𝑓)‖2.



Mean square convergence

If 𝑓, 𝑔 are two (Riemann) integrable functions defined on [−𝜋, 𝜋] we
define

‖𝑓 − 𝑔‖2 ∶= ( 1
2𝜋 ∫

𝜋

−𝜋
|𝑓(𝑡) − 𝑔(𝑡)|2𝑑𝑡)

1/2

and ⟨𝑓, 𝑔⟩ = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑡)𝑔(𝑡)𝑑𝑡 .

Observe that ‖⋅‖2 satisfies

‖𝑓 − 𝑔‖2 ≤ ‖𝑓 − 𝑔‖∞ ∶= sup{|𝑓(𝑡) − 𝑔(𝑡)| ∶ 𝑡 ∈ [−𝜋, 𝜋]}

and that ‖𝑓‖2 = ⟨𝑓, 𝑓⟩1/2 .
Remark ̂𝑓(𝑘) = ⟨𝑓, 𝑒𝑘⟩ , 𝑘 ∈ ℤ.



Mean square convergence

Corollary

The map (𝑓, 𝑔) → ⟨𝑓, 𝑔⟩ is an inner product and the map
(𝑓, 𝑔) → 𝑑2(𝑓, 𝑔) ∶= ‖𝑓 − 𝑔‖2 is a metric on the linear space
𝐶([−𝜋, 𝜋]). 1 That is, they satisfy

⟨𝑓, 𝑔⟩ ∈ ℂ 𝑑2(𝑓, 𝑔) ∈ ℝ+
(𝑖) ⟨𝑓 + 𝜆𝑔, ℎ⟩ = ⟨𝑓, ℎ⟩ + 𝜆 ⟨𝑔, ℎ⟩ (𝑎) 𝑑2(𝑓, 𝑔) = 𝑑2(𝑔, 𝑓)

(𝑖𝑖) ⟨𝑔, 𝑓⟩ = ⟨𝑓, 𝑔⟩ (𝑏) 𝑑2(𝑓, 𝑔)≤𝑑2(𝑓, ℎ)+𝑑2(ℎ, 𝑔)
(𝑖𝑖𝑖) ⟨𝑓, 𝑓⟩ ≥ 0 (𝑐) 𝑑2(𝑓, 𝑔) = 0 ⟺ 𝑓 = 𝑔.
(𝑖𝑣) ⟨𝑓, 𝑓⟩ = 0 ⟺ 𝑓 = 0.

1However it is not a metric on the space of integrable functions.



Mean square convergence

Although the sequence (𝑆𝑛(𝑓)) for a continuous 𝑓 may fail to converge,
even pointwise, it does converge to 𝑓 with respect to the metric 𝑑2:

Theorem
If 𝑓 ∶ [−𝜋, 𝜋] → ℂ is are continuous and 2𝜋-periodic, then

𝑆𝑛(𝑓)
‖⋅‖2⟶ 𝑓

that is
lim

𝑛
1

2𝜋 ∫
𝜋

−𝜋
|𝑆𝑛(𝑓) − 𝑓|2 = 0.

Proposition (Bessel’s Inequality)

Let 𝑓 ∶ [−𝜋, 𝜋] → ℂ be integrable. Then

+∞
∑

𝑘=−∞
| ̂𝑓(𝑘)|2 ≤ 1

2𝜋 ∫
𝜋

−𝜋
|𝑓|2.



Mean square convergence

Theorem (Riemann - Lebesgue)

If 𝑓 ∶ [−𝜋, 𝜋] → ℂ is an integrable function, then

lim
𝑘→+∞

̂𝑓(𝑘) = lim
𝑘→∞

̂𝑓(−𝑘) = 0

equivalently lim
𝑛→+∞

𝑎𝑛(𝑓) = lim
𝑛→∞

𝑏𝑛(𝑓) = 0.

Corollary (Parseval’s equality)

If 𝑓 ∶ [−𝜋, 𝜋] → ℂ is a continuous function, then

1
2𝜋 ∫

𝜋

−𝜋
|𝑓|2 =

∞
∑

𝑘=−∞
| ̂𝑓(𝑘)|2.

Note Let us state once again that the results of this Section will be
generalised and strengthened, if one uses the Lebesgue integral instead
of the Riemann integral.



Abel summability and the Poisson kernel

If 𝑓 ∶ [−𝜋, 𝜋] → ℂ is an integrable function, for each 0 ≤ 𝑟 < 1, the
series

𝐴𝑟(𝑓)(𝑡) = 𝑓𝑟(𝑡) ∶= ∑
𝑘∈ℤ

𝑟|𝑘| ̂𝑓(𝑘)𝑒𝑖𝑘𝑡, 𝑡 ∈ [−𝜋, 𝜋]

converges absolutely and uniformly, hence defines a continuous function
𝑓𝑟 ∶ [−𝜋, 𝜋] → ℂ. We find

𝑓𝑟(𝑡) = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑠)𝑃𝑟(𝑡 − 𝑠)𝑑𝑠

where 𝑃𝑟(𝑡) ∶= ∑
𝑛∈ℤ

𝑟|𝑛|𝑒𝑖𝑛𝑡 = 1 + 2
∞

∑
𝑛=1

𝑟𝑛 cos 𝑛𝑡



The Poisson kernel

𝑃𝑟(𝑡) = 1 − 𝑟2

1 − 2𝑟 cos 𝑡 + 𝑟2 , 0 ≤ 𝑟 < 1

𝑃𝑟(𝑘) = 𝑟|𝑘| , 𝑘 ∈ ℤ.

Proposition

(α) For each 𝑟 ∈ [0, 1), the function 𝑃𝑟 ∶ [−𝜋, 𝜋] → ℝ is continuoust
and non-negative.

(β) If 𝛿 ∈ (0, 𝜋/2) and 𝐸𝛿 ∶= [−𝜋, −𝛿] ∪ [𝛿, 𝜋], we have

lim
𝑟↗1

∫
𝐸𝛿

𝑃𝑟(𝑥)𝑑𝑥 = 0.

(γ)
1

2𝜋 ∫
𝜋

−𝜋
𝑃𝑟(𝑥)𝑑𝑥 = 1 for every 𝑟 ∈ [0, 1).



Abel summability and the Poisson kernel

Theorem
If 𝑓 is Riemann integrable and 2𝜋-periodic, then at every point 𝑡 of
continuity of 𝑓 we have lim

𝑟↗1
𝑓𝑟(𝑡) = 𝑓(𝑡).

If 𝑓 is continuous, then lim
𝑟↗1

𝑓𝑟(𝑥) = 𝑓(𝑥) uniformly, that is

lim
𝑟↗1

‖𝑓𝑟 − 𝑓‖∞ = 0.

Remark
Note that although the functions 𝑓𝑟 are (in general) not trigonometric
polynomials, they are continuous (in fact differentiable - why?)
functions given by absolutely and uniformly convergent Fourier series.


	Fejér Summability

