605: Exercises II

1. Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be an even integrable function such that: $a_{k}(f) \geq 0$ for every $k \geq 0$. Show that $\sum_{k=0}^{\infty} a_{k}(f)<\infty$. (Reminder: $a_{k}(f)=\hat{f}(k)+\hat{f}(-k)$.)
2. Every integrable function $f:[-\pi, \pi] \rightarrow \mathbb{C}$ can be written uniquely as $f=f_{a}+f_{p}$ where f_{a} is even and f_{p} is odd. Show that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f_{a}\right|^{2}+\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f_{p}\right|^{2}
$$

3. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a continuous 2π-periodic function. Suppose that $\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{k=-n}^{n}|k \hat{f}(k)|=0$. Show that then $S_{n}(f) \rightarrow f$ uniformly.
4. If $f: \mathbb{R} \rightarrow \mathbb{C}$ is a 2π periodic and integrable function, show that

$$
\lim _{x \rightarrow 0} \int|f(t-x)-f(t)| d t=0
$$

Hint: Consider first the case when f is continuous.
(From Exercises 2.5 of A. Giannopoulos' lecture notes 2012:)
5. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a 2π-periodic function which is Riemann integrable in $[-\pi, \pi]$. For each $m \in \mathbb{N}$, define

$$
g_{m}(x)=f(m x)
$$

Describe the graph of g_{m} compared to that of f. Is g_{m} periodic? Express the Fourier coefficients of g_{m} in terms of those of f.
8. Consider the 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is defined in $[-\pi, \pi]$ by

$$
f(x)=|x|
$$

Draw the graph of f, calculate its Fourier coefficients and show that $\widehat{f}(0)=\pi / 2 \kappa \alpha \downarrow$

$$
\widehat{f}(k)=\frac{-1+(-1)^{k}}{\pi k^{2}}, \quad k \neq 0
$$

Write the Fourier series $S[f]$ of f as a series of cosines and sines. Setting $x=0$, show that

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8} \quad \kappa \alpha \imath \quad \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

9. Let $[a, b]$ be a closed interval contained in the interior of $[-\pi, \pi]$. Consider the function $f(x)=\chi_{[a, b]}(x)$ defined in $[-\pi, \pi]$ by: $f(x)=1$ if $x \in[a, b]$ and $f(x)=0$ otherwise; extend $f 2 \pi$-periodically to \mathbb{R}. Show that the Fourier series of f is

$$
S[f](x)=\frac{b-a}{2 \pi}+\sum_{k \neq 0} \frac{e^{-i k a}-e^{-i k b}}{2 \pi i k} e^{i k x}
$$

Show that, for any $x \in \mathbb{R}, S[f](x)$ is not absolutely convergent. Find the points $x \in \mathbb{R}$ for which $S[f](x)$ converges.
11. Let $f, f_{n}(n \in \mathbb{N})$ be 2π-periodic functions, integrable in $[-\pi, \pi]$, which satisfy

$$
\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi}\left|f(x)-f_{n}(x)\right| d x=0
$$

Show that

$$
\widehat{f_{n}}(k) \rightarrow \widehat{f}(k) \quad \text { as } n \rightarrow \infty
$$

uniformly in k. That is, for every $\varepsilon>0$ there exists $n_{0} \in \mathbb{N}$ so that for each $n \geq n_{0}$ and each $k \in \mathbb{Z}$, we have

$$
\left|\widehat{f_{n}}(k)-\widehat{f}(k)\right|<\varepsilon
$$

