7 Mean square convergence

Let us begin with a simple, but crucial observation:
Proposition 7.1 (Best mean square approximation). Let $f:[-\pi, \pi] \rightarrow \mathbb{C}$ be a Riemann-integrable function and $n \in \mathbb{N}$. Then for every trigonometric polynomial p of degree $\operatorname{deg}(p) \leq n$ we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f-p|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f-S_{n}(f)\right|^{2}+\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{n}(f)-p\right|^{2} . \tag{1}
\end{equation*}
$$

Therefore the inequality

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f-p|^{2} \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f-S_{n}(f)\right|^{2} \tag{2}
\end{equation*}
$$

holds, and we have equality we have if and only if $p=S_{n}$.
In other words, S_{n} is the unique trigonometric polynomial which minimizes the integral $\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f-p|^{2}$ among all choices of trigonometric polynomials p of degree at most n.

In particular, if $m \leq n$ then $\quad\left\|f-S_{m}(f)\right\|_{2} \geq\left\|f-S_{n}(f)\right\|_{2}$.
Proof. It is clear that (2) follows at once from (1) and that equality holds in (2) if and only if the last term in (1) vanishes; this happens if and only if $p=S_{n}$.

So let $p(t)=\sum_{k=-n}^{n} c_{k} e^{i k t}$. If we set $g=f-S_{n}(f)$ and $q=S_{n}(f)-p$ we have

$$
f-p=\left(f-S_{n}(f)\right)+\left(S_{n}(f)-p\right)=g+q .
$$

Observe that, if $e_{k}(t)=e^{i k t},|k| \leq n$

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} f \overline{e_{k}}=\hat{f}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{n}(f) \overline{e_{k}}
$$

(from the definition of $S_{n}(f)$), and therefore

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} g \overline{e_{k}}=0, \quad|k| \leq n
$$

Since $q=\sum_{k=-n}^{n}\left(\hat{f}(k)-c_{k}\right) e_{k}$ is a linear combination of $\left\{e_{k}:|k| \leq n\right\}$, it follows that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} g \bar{q}=0
$$

and so

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f-p|^{2}= & \frac{1}{2 \pi} \int_{-\pi}^{\pi}|g+q|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(g+q)(\overline{g+q}) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} g \bar{g}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} g \bar{q}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} q \bar{g}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} q \bar{q} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g|^{2}+\frac{1}{2 \pi} \int_{-\pi}^{\pi}|q|^{2}
\end{aligned}
$$

and (11) is proved.
This Proposition suggests the study of the quantity

$$
\|f\|_{2}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)|^{2} d t\right)^{1 / 2} \quad f:[-\pi, \pi] \rightarrow \mathbb{C} \text { integrable. }
$$

If f, g are two (Riemann) integrable functions defined on $[-\pi, \pi]$ we define

$$
\begin{aligned}
& \qquad \begin{aligned}
\|f-g\|_{2} & :=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)-g(t)|^{2} d t\right)^{1 / 2} \\
\text { and } \quad\langle f, g\rangle & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} d t
\end{aligned} \quad . \quad \begin{aligned}
&
\end{aligned} \quad l
\end{aligned}
$$

Observe that $\|\cdot\|_{2}$ satisfies

$$
\|f-g\|_{2} \leq\|f-g\|_{\infty}:=\sup \{|f(t)-g(t)|: t \in[-\pi, \pi]\}
$$

and that $\quad\|f\|_{2}=\langle f, f\rangle^{1 / 2}$.
Remark $\hat{f}(k)=\left\langle f, e_{k}\right\rangle, k \in \mathbb{Z}$.
Lemma 7.2. If $f, g:[-\pi, \pi] \rightarrow \mathbb{C}$ are two (Riemann) integrable functions, we have

$$
\begin{aligned}
& \text { (a) }|\langle f, g\rangle| \leq\|f\|_{2}\|g\|_{2} \\
& \text { (b) }\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}
\end{aligned}
$$

Proof. (a) To show that $|\langle f, g\rangle| \leq\|f\|_{2}\|g\|_{2}$ I can assume that ${ }^{1}$ that $\|g\|_{2}=1$. If $\lambda \in \mathbb{C}$, from the definition of $\langle\cdot, \cdot\rangle$ we have

$$
\begin{aligned}
0 \leq\langle f-\lambda g, f-\lambda g\rangle & =\|f\|_{2}^{2}-\bar{\lambda}\langle f, g\rangle-\lambda\langle g, f\rangle+|\lambda|^{2}\|g\|_{2}^{2} \\
& =\|f\|_{2}^{2}-\bar{\lambda}\langle f, g\rangle-\lambda\langle g, f\rangle+|\lambda|^{2}
\end{aligned}
$$

so, setting $\lambda=\langle f, g\rangle$, we have $0 \leq\|f\|_{2}^{2}-2|\langle f, g\rangle|^{2}+|\langle f, g\rangle|^{2}$ hence $|\langle f, g\rangle|^{2} \leq\|f\|_{2}^{2}=\|f\|_{2}^{2}\|g\|_{2}^{2}$ and the required inequality is proved.
(b) For each every f, g we have

$$
\begin{aligned}
\|f+g\|_{2}^{2} & =\langle f+g, f+g\rangle=\langle f, f\rangle+\langle f, g\rangle+\langle g, f\rangle+\langle g, g\rangle \\
& =\langle f, f\rangle+2 \operatorname{Re}\langle f, g\rangle+\langle g, g\rangle \\
& \leq\langle f, f\rangle+2|\langle f, g\rangle|+\langle g, g\rangle \\
& \leq\|f\|_{2}^{2}+2\|f\|_{2}\|g\|_{2}+\|g\|_{2}^{2}=\left(\|f\|_{2}+\|g\|_{2}\right)^{2}
\end{aligned}
$$

by (a), hence $\|f+g\|_{2} \leq\|f\|_{2}+\|g\|_{2}$.
Corollary 7.3. The map $(f, g) \rightarrow\langle f, g\rangle$ is an inner product and the map $(f, g) \rightarrow d_{2}(f, g):=\|f-g\|_{2}$ is a metric on the linear space $C([-\pi, \pi])$. ${ }^{2}$ That is, they satisfy
(iv)

$$
\begin{array}{cl}
\langle f, g\rangle \in \mathbb{C} & d_{2}(f, g) \in \mathbb{R}_{+} \\
\langle f+\lambda g, h\rangle=\langle f, h\rangle+\lambda\langle g, h\rangle & \text { (a) } d_{2}(f, g)=d_{2}(g, f) \\
\langle g, f\rangle=\overline{\langle f, g\rangle} & \text { (b) } d_{2}(f, g) \leq d_{2}(f, h)+d_{2}(h, g) \\
\langle f, f\rangle \geq 0 & \text { (c) } d_{2}(f, g)=0 \Longleftrightarrow f=g
\end{array}
$$

$$
(i v)
$$

[^0]${ }^{2}$ However it is not a metric on the space of integrable functions, since the equality $\|f-g\|_{2}=0$ does not imply that $f(t)=g(t)$ for every $t \in[-\pi, \pi]$. It could happen for example that $f-g$ is $\neq 0$ at a single point of the interval only. We will see later that the only conclusion one can draw is that the equality $f=g$ is valid "almost everywhere" - a concept we will define then.

Proof. Relations $(i),(i i)$ and (iii) are immediate consequences of the linearity of the integral.
To prove that d_{2} is indeed a metric on $C[-\pi, \pi]$, we observe directly from its definition that

$$
d_{2}(f, g)=d_{2}(g, f) \quad \text { and } \quad d_{2}(f, g) \geq 0
$$

for every f, g. Also, if f, g are continuous and unequal, then there exists $\delta>0$ and an open neighbourhood $V \subseteq[-\pi, \pi]$ (of the form $(a, b) \cap[-\pi, \pi]$) so that $|f(t)-g(t)| \geq \delta$ for every $t \in V$; therefore

$$
d_{2}(f, g)^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)-g(t)|^{2} d t \geq \frac{1}{2 \pi} \int_{V}|f(t)-g(t)|^{2} d t \geq \frac{1}{2 \pi} \delta^{2} m(V)>0
$$

(where $m(V)$ denotes the length of V) and therefore $d_{2}(f, g)=0$ if and only if $f=g$ (thus we have also proved $(i v)$). It remains to prove the triangle inequality: if f, g, h are continuous, we have

$$
d_{2}(f, g)=\|(f-h)+(h-g)\|_{2} \leq\|f-h\|_{2}+\|h-g\|_{2}=d_{2}(f, h)+d_{2}(h, g)
$$

using the previous Lemma.
Remarks 7.4. (a) The elementary, but crucial remark that the expression $\langle f, g\rangle:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f \bar{g}$ has analogous properties to those of the inner product of Euclidean space, allows the introduction of geometric methods and notions, such as orthogonality.
(β) Equality (1]) in Lemma 7.1 can be written

$$
\|f-p\|_{2}^{2}=\left\|f-S_{n}(f)\right\|_{2}^{2}+\left\|S_{n}(f)-p\right\|_{2}^{2}
$$

and its proof only uses properties $(i),(i i)$ and (iii): it is an applications of the Pythagorean Theorem: $\langle f, g\rangle=0 \Rightarrow\|f+g\|_{2}^{2}=\|f\|_{2}^{2}+\|g\|_{2}^{2}$, if one observes that $\left\langle f-S_{n}(f), S_{n}(f)-p\right\rangle=0$.

As we will show later, the next Theorem also holds for integrable functions.
Although the sequence $\left(S_{n}(f)\right)$ for a continuous f may fail to converge, even pointwise, it does converge to f with respect to the metric d_{2} :

Theorem 7.5. If $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is are continuous and 2π-periodic, then

$$
S_{n}(f) \xrightarrow{\|\cdot\|_{2}} f
$$

that is

$$
\lim _{n} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{n}(f)-f\right|^{2}=0
$$

Proof. Since f is continuous, from Fejér's Theorem we know that $\sigma_{n}(f) \rightarrow f$ uniformly. Therefore

$$
\left\|\sigma_{n}(f)-f\right\|_{2} \leq\left\|\sigma_{n}(f)-f\right\|_{\infty} \rightarrow 0
$$

But $\sigma_{n}(f)$ is a trigonometric polynomial of degree at most n, hence by the best approximation Lemma 7.1 we have $\left\|f-S_{n}(f)\right\|_{2} \leq\left\|f-\sigma_{n}(f)\right\|_{2}$ and so $\left\|f-S_{n}(f)\right\|_{2} \rightarrow 0$.
Our next target is to relate $\|f\|_{2}$ with the Fourier coefficients of f.
Remark 7.6. If $p(t)=\sum_{k=-n}^{n} c_{k} e^{i k t}$ is a trigonometric polynomial, then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|p|^{2}=\sum_{k=-n}^{n}\left|c_{k}\right|^{2}=\sum_{k=-n}^{n}|\hat{p}(k)|^{2} .
$$

Proof. Since $\hat{p}(k)=c_{k}=\left\langle p, e_{k}\right\rangle$ for $|k| \leq n$, we have

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|p|^{2} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} p \bar{p}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} p \sum_{k=-n}^{n} \bar{c}_{k} \bar{e}_{k} \\
& =\sum_{k=-n}^{n} \bar{c}_{k} \frac{1}{2 \pi} \int_{-\pi}^{\pi} p \bar{e}_{k}=\sum_{k=-n}^{n} \bar{c}_{k} c_{k}=\sum_{k=-n}^{n}\left|c_{k}\right|^{2} .
\end{aligned}
$$

Proposition 7.7 (Bessel's Inequality). Let $f:[-\pi, \pi] \rightarrow \mathbb{C}$ be integrable. Then

$$
\sum_{k=-\infty}^{+\infty}|\hat{f}(k)|^{2} \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2} .
$$

Proof. Let $n \in \mathbb{N}$. Applying (1) for $p=0$ we have

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f-S_{n}(f)\right|^{2}+\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{n}(f)\right|^{2} \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{n}(f)\right|^{2} \tag{3}
\end{equation*}
$$

But $S_{n}(f)$ is a trigonometric polynomial whose coefficients are $\hat{f}(k)$ for $|k| \leq n$ and 0 for $|k|>n$, hence by the previous Remark we have

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2} \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{n}(f)\right|^{2}=\sum_{k=-n}^{n}|\hat{f}(k)|^{2} .
$$

Since this inequality holds for every $n \in \mathbb{N}$, the conclusion follows.
We will show later that in fact equality holds.
An immediate corollary of Bessel's Inequality is the fundamental
Theorem 7.8 (Riemann - Lebesgue). If $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is an integrable function, then

$$
\begin{aligned}
\lim _{k \rightarrow+\infty} \hat{f}(k) & =\lim _{k \rightarrow \infty} \hat{f}(-k)=0 \\
\text { equivalently } \quad \lim _{n \rightarrow+\infty} a_{n}(f) & =\lim _{n \rightarrow \infty} b_{n}(f)=0 .
\end{aligned}
$$

Corollary 7.9 (Parseval's equality). If $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is a continuous function, then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2}=\sum_{k=-\infty}^{\infty}|\hat{f}(k)|^{2}
$$

Proof. We have shown that $d_{2}\left(S_{n}(f), f\right) \rightarrow 0$. Since d_{2} is a metric on $C([-\pi, \pi])$, by the triangle inequality we have

$$
\left|d_{2}(f, 0)-d_{2}\left(S_{n}(f), 0\right)\right| \leq d_{2}\left(S_{n}(f), f\right)
$$

hence $d_{2}\left(S_{n}(f), 0\right) \rightarrow d_{2}(f, 0)$, that is

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{n}(f)\right|^{2} \rightarrow \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2}
$$

But by Remark 7.6 we have $\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{n}(f)\right|^{2}=\sum_{k=-n}^{n}|\hat{f}(k)|^{2}$, hence

$$
\sum_{k=-\infty}^{\infty}|\hat{f}(k)|^{2}=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n}|\hat{f}(k)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2}
$$

Note Let us state once again that the results of this Section will be generalised and strengthened, if one uses the Lebesgue integral instead of the Riemann integral.

8 The Poisson kernel

If $f:[-\pi, \pi] \rightarrow \mathbb{C}$ is an integrable function, for each $0 \leq r<1$, the series

$$
A_{r}(f)(t)=f_{r}(t):=\sum_{k \in \mathbb{Z}} r^{|k|} \hat{f}(k) e^{i k t}, \quad t \in[-\pi, \pi]
$$

converges absolutely and uniformly, hence defines a continuous function $f_{r}:[-\pi, \pi] \rightarrow \mathbb{C}$ (although for $r=1$ the series, i.e. the Fourier series of f, may fail to converge, even pointwise). Indeed, the (double) sequence $(\hat{f}(k))$ is bounded, because

$$
|\hat{f}(k)| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|f(t) e^{-i k t}\right| d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)| d t:=\|f\|_{1}
$$

for all $k \in \mathbb{Z}$ and therefore

$$
\sum_{k \in \mathbb{Z}}\left|r^{|k|} \hat{f}(k) e^{i k t}\right| \leq\|f\|_{1} \sum_{k \in \mathbb{Z}} r^{|k|}<\infty .
$$

We have

$$
\begin{aligned}
f_{r}(t) & =\sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) e^{i n t}=\sum_{n \in \mathbb{Z}} r^{|n|}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-i n s} d s\right) e^{i n t} \\
& =\sum_{n \in \mathbb{Z}} r^{|n|} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) e^{-i n(t-s)} d s \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s)\left(\sum_{n \in \mathbb{Z}} r^{|n|} e^{-i n(t-s)}\right) d s \text { (uniform convergence) } \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) P_{r}(t-s) d s \\
\text { where } \quad P_{r}(t) & :=\sum_{n \in \mathbb{Z}} r^{|n|} e^{i n t}=\sum_{n=-\infty}^{-1} r^{-n} e^{i n t}+1+\sum_{n=1}^{\infty} r^{n} e^{i n t} \\
& =\sum_{k=1}^{\infty} r^{k} e^{-i k t}+1+\sum_{n=1}^{\infty} r^{n} e^{i n t}=1+2 \sum_{n=1}^{\infty} r^{n} \cos n t
\end{aligned}
$$

is the Poisson kernel. Writing $z=r e^{i t}$, we have $|z|<1$ and

$$
\begin{aligned}
P_{r}(t) & =\sum_{n=1}^{\infty} \bar{z}^{k}+1+\sum_{n=1}^{\infty} z^{n}=\frac{\bar{z}}{1-\bar{z}}+1+\frac{z}{1-z} \\
& =\frac{\bar{z}}{1-\bar{z}}+\frac{1}{1-z}=\frac{\bar{z}(1-z)+(1-\bar{z})}{(1-\bar{z})(1-z)}=\frac{1-|z|^{2}}{|1-z|^{2}}=\frac{1-r^{2}}{1-2 r \cos t+r^{2}}
\end{aligned}
$$

showing that $P_{r}(t) \geq 0$ for all t. Also, since the series converges uniformly, for all $r \in(0,1)$ and $k \in \mathbb{Z}$ we have

$$
\widehat{P}_{r}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(t) e^{-i k t} d t=\sum_{n \in \mathbb{Z}} r^{|n|} \frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(n-k) t} d t=r^{|k|}
$$

and in particular $\quad \frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(t) d t=r^{0}=1$.

Remark 8.1. The Poisson kernel has the following properties

(a) For each $r \in[0,1)$, the function $P_{r}:[-\pi, \pi] \rightarrow \mathbb{R}$ is continuous and non-negative.
(β) If $\delta \in(0, \pi / 2)$ and $E_{\delta}:=[-\pi,-\delta] \cup[\delta, \pi]$, we have $P_{r}(t) \rightarrow 0$ uniformly for $t \in E_{\delta}$ as $r \nearrow 1$; hence $\lim _{r \nearrow 1} \int_{E_{\delta}} P_{r}(x) d x=0$. (γ) $\frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(x) d x=1$ for every $r \in[0,1)$.

Proof. It only remains to prove (β) : If $0<\delta<\pi / 2$ then for all t with $\delta \leq|t| \leq \pi$ we have $\cos t \leq \cos \delta$, hence

$$
0 \leq P_{r}(t)=\frac{1-r^{2}}{1-2 r \cos t+r^{2}} \leq \frac{1-r^{2}}{1-2 r \cos \delta+r^{2}}
$$

and the right hand side tends to 0 as $r \nearrow 1$.
Therefore, if f is Riemann integrable, and hence bounded, we have

$$
\left|f_{r}(t)\right| \leq\|f\|_{\infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|P_{r}(t-s)\right| d s=\|f\|_{\infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} P_{r}(s) d s=\|f\|_{\infty}
$$

(since P_{r} is 2π-periodic and nonnegative) for each t and r.
If in addition f is continuous $\kappa \alpha l 2 \pi$-periodic, then repeating the proof of Fejér's Theorem (which proof relied exclusively on the corresponding properties $(\alpha),(\beta)$ and (γ) of the Fejér kernel) we arrive at the following

Theorem 8.2. If f is Riemann integrable and 2π-periodic, then at every point t of continuity of f we have $\lim _{r \lambda 1} f_{r}(t)=f(t)$.

If f is continuous, then $\lim _{r \nearrow 1} f_{r}(x)=f(x)$ uniformly, that is, $\lim _{r \nearrow 1}\left\|f_{r}-f\right\|_{\infty}=0$.
Remark 8.3. Note that although the functions f_{r} are (in general) not trigonometric polynomials, they are continuous (in fact differentiable - why?) functions given by absolutely and uniformly convergent Fourier series.

9 Pointwise convergence and the localisation principle

(For proofs, see Stein \& Shakarchi, 'Fourier Analysis', paragraphs 3.2.1 and 3.2.2. 3)
Definition 9.1. Complex-valued functions on the unit circle
Denote by \mathbb{T} the unit circle

$$
\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}=\left\{e^{i \theta}: \theta \in \mathbb{R}\right\} .
$$

If $\phi: \mathbb{T} \rightarrow \mathbb{C}$, define $f: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
f(\theta)=\phi\left(e^{i \theta}\right) .
$$

The function f is 2π-periodic.
Conversely, if $f: \mathbb{R} \rightarrow \mathbb{C}$ is 2π-periodic, then the function $\phi: \mathbb{T} \rightarrow \mathbb{C}$ given by $\phi\left(e^{i \theta}\right)=f(\theta)$ is well defined. $母^{\text {Th }}$ Thus we have a $1-1$ correspondence between functions $\phi: \mathbb{T} \rightarrow \mathbb{C}$ and 2π-periodic functions $f: \mathbb{R} \rightarrow \mathbb{C}$.
We say ϕ is integrable if f is integrable in some interval of length 2π (hence in all such intervals), we say ϕ is continuous if f is continuous, we say ϕ is differentiable if f is differentiable, we say ϕ is continuously differentiable if f is continuously differentiable and so on.

In what follows we shall make no distinction between ϕ and f.
Theorem 9.1. Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be an integrable function. If f is differentiable at $\theta_{0} \in \mathbb{T}$, then

$$
S_{n}(f)\left(\theta_{0}\right) \rightarrow f\left(\theta_{0}\right) .
$$

Remark 9.2. If we examine the proof of Theorem 9.1 we can see that the conclusion $S_{n}(f)\left(\theta_{0}\right) \rightarrow f\left(\theta_{0}\right)$ still holds under the following weaker assumption for f :
'The function f is integrable and satisfies a Lipschitz condition at θ_{0}, that is, there exists $M>0$ such that

$$
\left|f\left(\theta_{0}-t\right)-f\left(\theta_{0}\right)\right| \leq M|t|
$$

for all $t \in[-\pi, \pi]$ '.
One can now repeat the proof without modifications.
An important consequence of Theorem 9.1 is the localisation principle of Riemann: the convergence or divergence of the sequence $S_{n}(f)\left(\theta_{0}\right)$ depends only on the behaviour of f in a neighbourhood of θ_{0}. This is not at all obvious; indeed, the partial sums $S_{n}(f)\left(\theta_{0}\right)$ are defined in terms of the Fourier coefficients $\hat{f}(k)$, $|k| \leq n$ of f, which coefficients are given by integration on $[-\pi, \pi]$, thus taking into account the values of f in the whole interval $[-\pi, \pi]$.

Theorem 9.3 (Riemann's localisation principle). Let $f, g: \mathbb{T} \rightarrow \mathbb{C}$ be two integrable functions. Assume that, for some $\theta_{0} \in \mathbb{T}$ and some open interval $I \subset \mathbb{T}$ with $\theta_{0} \in I$, we have

$$
f(\theta)=g(\theta) \quad \text { for all } \theta \in I .
$$

Then

$$
S_{n}(f)\left(\theta_{0}\right)-S_{n}(g)\left(\theta_{0}\right) \rightarrow 0
$$

In particular, the sequence $\left\{S_{n}(f)\left(\theta_{0}\right)\right\}$ converges if and only if $\left\{S_{n}(g)\left(\theta_{0}\right)\right\}$ converges.

[^1]
10 Complements

The goal is to prove:
Theorem 10.1. There exists a continuous function $f: \mathbb{T} \rightarrow \mathbb{C}$ for which

$$
\limsup _{n \rightarrow \infty}\left|S_{n}(f)(0)\right|=+\infty
$$

Therefore $S[f](0)$ diverges.
An important role in the proof is played by the trigonometric series

$$
\sum_{k \neq 0} \frac{e^{i k x}}{k} \quad \text { and } \quad \sum_{k=-\infty}^{-1} \frac{e^{i k x}}{k}
$$

Lemma 10.2. Consider the function

$$
f(x)= \begin{cases}i(\pi-x) & \text { If } 0<x<\pi \\ -i(\pi+x) & \text { If }-\pi<x<0\end{cases}
$$

and extend it periodically to \mathbb{R}. Then, the Fourier series of f is

$$
S[f](x)=\sum_{k \neq 0} \frac{e^{i k x}}{k}
$$

Proposition 10.3. Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be an integrable function. If the sequence $\{|k \hat{f}(k)|\}_{k \in \mathbb{Z}}$ is bounded, then the partial sums $S_{n}(f)$ of the Fourier series of f are uniformly bounded:

$$
\sup _{n}\left\|S_{n}(f)\right\|_{\infty}<+\infty .
$$

That is, there exists $M>0$ so that

$$
\left|S_{n}(f)(x)\right| \leq M
$$

for all $n \in \mathbb{N}$ and all $x \in \mathbb{T}$.
Lemma 10.4. For each $n \in \mathbb{N}$ consider the trigonometric polynomial

$$
f_{n}(x)=\sum_{1 \leq|k| \leq n} \frac{e^{i k x}}{k}
$$

There exists $M>0$ so that $\left|f_{n}(x)\right| \leq M$ for all n and all x.
Lemma 10.5. For each $n \in \mathbb{N}$ consider the trigonometric polynomial

$$
g_{n}(x)=\sum_{k=-n}^{-1} \frac{e^{i k x}}{k}
$$

There exists $c>0$ so that $\left|g_{n}(0)\right| \geq c \log n$ for each $n \in \mathbb{N}$.
Corollary 10.6. There is no Riemann integrable function $g: \mathbb{T} \rightarrow \mathbb{C}$ with

$$
S[g](x)=\sum_{k=-\infty}^{-1} \frac{e^{i k x}}{k}
$$

Comment. We will show later that there does exist a Lebesgue integrable function g with
$S[g](x)=\sum_{k=-\infty}^{-1} \frac{e^{i k x}}{k}$.

[^0]: ${ }^{1}$ If $\|g\|_{2}=0$ the inequality holds trivially and if $\|g\|_{2} \neq 0$, replace g by $\frac{g}{\|g\|_{2}}$.

[^1]:
 ${ }^{4}$ Indeed, if $e^{i \theta_{1}}=e^{i \theta_{2}}$ for some $\theta_{1}, \theta_{2} \in \mathbb{R}$ then $\theta_{2}=\theta_{1}+2 k \pi$ for an integer k, hence $f\left(\theta_{1}\right)=f\left(\theta_{2}\right)$ since f is 2π-periodic.

