7 Mean square convergence

Let us begin with a simple, but crucial observation:

Proposition 7.1 (Best mean square approximation). Let $f : [-\pi, \pi] \to \mathbb{C}$ be a Riemann-integrable function and $n \in \mathbb{N}$. Then for every trigonometric polynomial p of degree $\deg(p) \le n$ we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f - p|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f - S_n(f)|^2 + \frac{1}{2\pi} \int_{-\pi}^{\pi} |S_n(f) - p|^2.$$
(1)

Therefore the inequality

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f - p|^2 \ge \frac{1}{2\pi} \int_{-\pi}^{\pi} |f - S_n(f)|^2 \tag{2}$$

holds, and we have equality we have if and only if $p = S_n$.

In other words, S_n is the unique trigonometric polynomial which minimizes the integral $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f - p|^2$ among all choices of trigonometric polynomials p of degree at most n.

 $\label{eq:states} \text{In particular, if } m \leq n \text{ then } \quad \left\|f - S_m(f)\right\|_2 \geq \left\|f - S_n(f)\right\|_2.$

Proof. It is clear that (2) follows at once from (1) and that equality holds in (2) if and only if the last term in (1) vanishes; this happens if and only if $p = S_n$.

So let
$$p(t) = \sum_{k=-n}^{n} c_k e^{ikt}$$
. If we set $g = f - S_n(f)$ and $q = S_n(f) - p$ we have

$$f - p = (f - S_n(f)) + (S_n(f) - p) = g + q$$

Observe that, if $e_k(t) = e^{ikt}$, $|k| \le n$

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}f\overline{e_k} = \hat{f}(k) = \frac{1}{2\pi}\int_{-\pi}^{\pi}S_n(f)\overline{e_k}$$

(from the definition of $S_n(f)$), and therefore

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} g\overline{e_k} = 0, \qquad |k| \le n.$$

Since $q = \sum_{k=-n}^{n} (\hat{f}(k) - c_k) e_k$ is a linear combination of $\{e_k : |k| \le n\}$, it follows that

$$\frac{1}{2\pi}\int_{-\pi}^{\pi}g\bar{q}=0,$$

and so

$$\begin{split} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f-p|^2 = &\frac{1}{2\pi} \int_{-\pi}^{\pi} |g+q|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} (g+q)(\overline{g+q}) \\ &= &\frac{1}{2\pi} \int_{-\pi}^{\pi} g\overline{g} + \frac{1}{2\pi} \int_{-\pi}^{\pi} g\overline{q} + \frac{1}{2\pi} \int_{-\pi}^{\pi} q\overline{g} + \frac{1}{2\pi} \int_{-\pi}^{\pi} q\overline{q} \\ &= &\frac{1}{2\pi} \int_{-\pi}^{\pi} |g|^2 + \frac{1}{2\pi} \int_{-\pi}^{\pi} |q|^2 \end{split}$$

and (1) is proved.

This Proposition suggests the study of the quantity

$$\left\|f\right\|_{2} = \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(t)|^{2}dt\right)^{1/2} \qquad f:[-\pi,\pi] \to \mathbb{C} \text{ integrable}.$$

If f, g are two (Riemann) integrable functions defined on $[-\pi, \pi]$ we define

$$\begin{split} \left\|f-g\right\|_2 &:= \left(\frac{1}{2\pi}\int_{-\pi}^{\pi}|f(t)-g(t)|^2dt\right)^{1/2}\\ \left\langle f,g\right\rangle &= \frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)\overline{g(t)}dt\,. \end{split}$$

and

Observe that $\left\|\cdot\right\|_2$ satisfies

$$\left\|f-g\right\|_{2} \leq \left\|f-g\right\|_{\infty} := \sup\{\left|f(t)-g(t)\right|: t \in [-\pi,\pi]\}$$

and that $\left\|f\right\|_{2} = \langle f, f \rangle^{1/2}$.

 $\label{eq:Remark} \textbf{Remark} \quad \widehat{f}(k) = \langle f, e_k \rangle, \; k \in \mathbb{Z}.$

Lemma 7.2. If $f, g: [-\pi, \pi] \to \mathbb{C}$ are two (Riemann) integrable functions, we have

$$\begin{split} &(a) \; |\langle f,g\rangle| \leq \|f\|_2 \; \|g\|_2 \\ &(b) \; \|f+g\|_2 \leq \|f\|_2 + \|g\|_2 \, . \end{split}$$

Proof. (a) To show that $|\langle f, g \rangle| \leq ||f||_2 ||g||_2$ I can assume that ¹ that $||g||_2 = 1$. If $\lambda \in \mathbb{C}$, from the definition of $\langle \cdot, \cdot \rangle$ we have

$$\begin{split} 0 &\leq \langle f - \lambda g, f - \lambda g \rangle = \|f\|_2^2 - \bar{\lambda} \langle f, g \rangle - \lambda \langle g, f \rangle + |\lambda|^2 \left\|g\right\|_2^2 \\ &= \|f\|_2^2 - \bar{\lambda} \langle f, g \rangle - \lambda \langle g, f \rangle + |\lambda|^2 \end{split}$$

so, setting $\lambda = \langle f, g \rangle$, we have $0 \le \|f\|_2^2 - 2|\langle f, g \rangle|^2 + |\langle f, g \rangle|^2$ hence $|\langle f, g \rangle|^2 \le \|f\|_2^2 = \|f\|_2^2 \|g\|_2^2$ and the required inequality is proved.

(b) For each every f, g we have

$$\begin{split} \|f + g\|_{2}^{2} &= \langle f + g, f + g \rangle = \langle f, f \rangle + \langle f, g \rangle + \langle g, f \rangle + \langle g, g \rangle \\ &= \langle f, f \rangle + 2 \operatorname{Re}\langle f, g \rangle + \langle g, g \rangle \\ &\leq \langle f, f \rangle + 2 |\langle f, g \rangle| + \langle g, g \rangle \\ &\leq \|f\|_{2}^{2} + 2 \|f\|_{2} \|g\|_{2} + \|g\|_{2}^{2} = (\|f\|_{2} + \|g\|_{2})^{2} \end{split}$$

by (a), hence $\left\|f+g\right\|_{2}\leq\left\|f\right\|_{2}+\left\|g\right\|_{2}.$

Corollary 7.3. The map $(f,g) \to \langle f,g \rangle$ is an inner product and the map $(f,g) \to d_2(f,g) := \|f-g\|_2$ is a metric on the linear space $C([-\pi,\pi])$.² That is, they satisfy

$$\begin{array}{ll} \langle f,g\rangle \in \mathbb{C} & d_2(f,g) \in \mathbb{R}_+ \\ (i) & \langle f+\lambda g,h\rangle = \langle f,h\rangle + \lambda \langle g,h\rangle & (a) \ d_2(f,g) = d_2(g,f) \\ (ii) & \langle g,f\rangle = \overline{\langle f,g\rangle} & (b) \ d_2(f,g) \leq d_2(f,h) + d_2(h,g) \\ (iii) & \langle f,f\rangle \geq 0 & (c) \ d_2(f,g) = 0 \iff f = g. \\ (iv) & \langle f,f\rangle = 0 \iff f = 0. \end{array}$$

¹If $||g||_2 = 0$ the inequality holds trivially and if $||g||_2 \neq 0$, replace g by $\frac{g}{||g||_2}$.

²However it is not a metric on the space of integrable functions, since the equality $||f - g||_2 = 0$ does not imply that f(t) = g(t) for every $t \in [-\pi, \pi]$. It could happen for example that f - g is $\neq 0$ at a single point of the interval only. We will see later that the only conclusion one can draw is that the equality f = g is valid "almost everywhere" - a concept we will define then.

Proof. Relations (i), (ii) and (iii) are immediate consequences of the *linearity of the integral*.

To prove that d_2 is indeed a metric on $C[-\pi,\pi]$, we observe directly from its definition that

$$d_2(f,g) = d_2(g,f) \quad \text{and} \quad d_2(f,g) \ge 0$$

for every f, g. Also, if f, g are *continuous* and unequal, then there exists $\delta > 0$ and an open neighbourhood $V \subseteq [-\pi, \pi]$ (of the form $(a, b) \cap [-\pi, \pi]$) so that $|f(t) - g(t)| \ge \delta$ for every $t \in V$; therefore

$$d_2(f,g)^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t) - g(t)|^2 dt \ge \frac{1}{2\pi} \int_{V} |f(t) - g(t)|^2 dt \ge \frac{1}{2\pi} \delta^2 m(V) > 0$$

(where m(V) denotes the length of V) and therefore $d_2(f,g) = 0$ if and only if f = g (thus we have also proved (iv)). It remains to prove the triangle inequality: if f, g, h are continuous, we have

$$d_2(f,g) = \left\| (f-h) + (h-g) \right\|_2 \le \left\| f-h \right\|_2 + \left\| h-g \right\|_2 = d_2(f,h) + d_2(h,g)$$

using the previous Lemma.

Remarks 7.4. (a) The elementary, but crucial remark that the expression $\langle f, g \rangle := \frac{1}{2\pi} \int_{-\pi}^{\pi} f \bar{g}$ has analogous properties to those of the inner product of Euclidean space, allows the introduction of geometric methods and notions, such as orthogonality.

(β) Equality (1) in Lemma 7.1 can be written

$$\|f - p\|_{2}^{2} = \|f - S_{n}(f)\|_{2}^{2} + \|S_{n}(f) - p\|_{2}^{2}$$

and its proof only uses properties (i), (ii) and (iii): it is an applications of the Pythagorean Theorem: $\langle f, g \rangle = 0 \implies \|f + g\|_2^2 = \|f\|_2^2 + \|g\|_2^2$, if one observes that $\langle f - S_n(f), S_n(f) - p \rangle = 0$.

As we will show later, the next Theorem also holds for integrable functions.

Although the sequence $(S_n(f))$ for a continuous f may fail to converge, even pointwise, it does converge to f with respect to the metric d_2 :

Theorem 7.5. If $f : [-\pi, \pi] \to \mathbb{C}$ is are continuous and 2π -periodic, then

$$S_n(f) \xrightarrow{\|\cdot\|_2} f$$

that is

$$\lim_n \frac{1}{2\pi} \int_{-\pi}^{\pi} |S_n(f) - f|^2 = 0.$$

Proof. Since f is continuous, from Fejér's Theorem we know that $\sigma_n(f) \to f$ uniformly. Therefore

$$\left\|\sigma_n(f)-f\right\|_2 \leq \left\|\sigma_n(f)-f\right\|_\infty \to 0\,.$$

But $\sigma_n(f)$ is a trigonometric polynomial of degree at most n, hence by the best approximation Lemma 7.1 we have $||f - S_n(f)||_2 \le ||f - \sigma_n(f)||_2$ and so $||f - S_n(f)||_2 \to 0$. Our next target is to relate $||f||_2$ with the Fourier coefficients of f.

Remark 7.6. If $p(t) = \sum_{k=-n}^{n} c_k e^{ikt}$ is a trigonometric polynomial, then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |p|^2 = \sum_{k=-n}^{n} |c_k|^2 = \sum_{k=-n}^{n} |\hat{p}(k)|^2.$$

Proof. Since $\hat{p}(k) = c_k = \langle p, e_k \rangle$ for $|k| \leq n,$ we have

$$\begin{split} \frac{1}{2\pi} \int_{-\pi}^{\pi} |p|^2 &= \frac{1}{2\pi} \int_{-\pi}^{\pi} p\bar{p} = \frac{1}{2\pi} \int_{-\pi}^{\pi} p \sum_{k=-n}^{n} \bar{c}_k \bar{e}_k \\ &= \sum_{k=-n}^{n} \bar{c}_k \frac{1}{2\pi} \int_{-\pi}^{\pi} p \bar{e}_k = \sum_{k=-n}^{n} \bar{c}_k c_k = \sum_{k=-n}^{n} |c_k|^2. \end{split}$$

Proposition 7.7 (Bessel's Inequality). Let $f : [-\pi, \pi] \to \mathbb{C}$ be integrable. Then

$$\sum_{k=-\infty}^{+\infty} |\hat{f}(k)|^2 \le \frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2$$

Proof. Let $n \in \mathbb{N}$. Applying (1) for p = 0 we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f - S_n(f)|^2 + \frac{1}{2\pi} \int_{-\pi}^{\pi} |S_n(f)|^2 \ge \frac{1}{2\pi} \int_{-\pi}^{\pi} |S_n(f)|^2 \tag{3}$$

But $S_n(f)$ is a trigonometric polynomial whose coefficients are $\hat{f}(k)$ for $|k| \le n$ and 0 for |k| > n, hence by the previous Remark we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2 \ge \frac{1}{2\pi} \int_{-\pi}^{\pi} |S_n(f)|^2 = \sum_{k=-n}^n |\hat{f}(k)|^2.$$

Since this inequality holds for every $n \in \mathbb{N}$, the conclusion follows.

We will show later that in fact equality holds.

An immediate corollary of Bessel's Inequality is the fundamental

Theorem 7.8 (Riemann - Lebesgue). If $f : [-\pi, \pi] \to \mathbb{C}$ is an integrable function, then

$$\begin{split} \lim_{k \to +\infty} \widehat{f}(k) &= \lim_{k \to \infty} \widehat{f}(-k) = 0 \\ equivalently \quad \lim_{n \to +\infty} a_n(f) &= \lim_{n \to \infty} b_n(f) = 0. \end{split}$$

Corollary 7.9 (Parseval's equality). If $f : [-\pi, \pi] \to \mathbb{C}$ is a continuous function, then

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2 = \sum_{k=-\infty}^{\infty} |\hat{f}(k)|^2.$$

Proof. We have shown that $d_2(S_n(f), f) \to 0$. Since d_2 is a metric on $C([-\pi, \pi])$, by the triangle inequality we have

$$|d_2(f,0)-d_2(S_n(f),0)|\leq d_2(S_n(f),f)$$

hence $d_2(S_n(f),0) \to d_2(f,0),$ that is

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |S_n(f)|^2 \to \frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2.$$

But by Remark 7.6 we have $\frac{1}{2\pi}\int_{-\pi}^{\pi}|S_n(f)|^2 = \sum_{k=-n}^n |\hat{f}(k)|^2$, hence

$$\sum_{k=-\infty}^{\infty} |\hat{f}(k)|^2 = \lim_{n \to \infty} \sum_{k=-n}^n |\hat{f}(k)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2.$$

Note Let us state once again that the results of this Section will be generalised and strengthened, if one uses the Lebesgue integral instead of the Riemann integral.

8 The Poisson kernel

If $f: [-\pi, \pi] \to \mathbb{C}$ is an integrable function, for each $0 \le r < 1$, the series

$$A_r(f)(t) = f_r(t) := \sum_{k \in \mathbb{Z}} r^{|k|} \widehat{f}(k) e^{ikt}, \qquad t \in [-\pi,\pi]$$

converges absolutely and uniformly, hence defines a continuous function $f_r : [-\pi, \pi] \to \mathbb{C}$ (although for r = 1 the series, i.e. the Fourier series of f, may fail to converge, even pointwise). Indeed, the (double) sequence $(\hat{f}(k))$ is bounded, because

$$|\hat{f}(k)| \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)e^{-ikt}| dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(t)| dt := \left\|f\right\|_{1}$$

for all $k \in \mathbb{Z}$ and therefore

$$\sum_{k\in\mathbb{Z}}\left|r^{|k|}\widehat{f}(k)e^{ikt}\right|\leq \left\|f\right\|_{1}\sum_{k\in\mathbb{Z}}r^{|k|}<\infty.$$

We have

$$\begin{split} f_r(t) &= \sum_{n \in \mathbb{Z}} r^{|n|} \hat{f}(n) e^{int} = \sum_{n \in \mathbb{Z}} r^{|n|} \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(s) e^{-ins} ds \right) e^{int} \\ &= \sum_{n \in \mathbb{Z}} r^{|n|} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s) e^{-in(t-s)} ds \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s) \left(\sum_{n \in \mathbb{Z}} r^{|n|} e^{-in(t-s)} \right) ds \text{ (uniform convergence)} \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(s) P_r(t-s) ds \\ \end{split}$$
where $P_r(t) := \sum_{n \in \mathbb{Z}} r^{|n|} e^{int} = \sum_{n=-\infty}^{-1} r^{-n} e^{int} + 1 + \sum_{n=1}^{\infty} r^n e^{int} \\ &= \sum_{k=1}^{\infty} r^k e^{-ikt} + 1 + \sum_{n=1}^{\infty} r^n e^{int} = 1 + 2 \sum_{n=1}^{\infty} r^n \cos nt \end{split}$

is the Poisson kernel. Writing $z = re^{it}$, we have |z| < 1 and

$$\begin{split} P_r(t) &= \sum_{n=1}^{\infty} \bar{z}^k + 1 + \sum_{n=1}^{\infty} z^n = \frac{\bar{z}}{1 - \bar{z}} + 1 + \frac{z}{1 - z} \\ &= \frac{\bar{z}}{1 - \bar{z}} + \frac{1}{1 - z} = \frac{\bar{z}(1 - z) + (1 - \bar{z})}{(1 - \bar{z})(1 - z)} = \frac{1 - |z|^2}{|1 - z|^2} = \frac{1 - r^2}{1 - 2r\cos t + r^2} \end{split}$$

showing that $P_r(t) \ge 0$ for all t. Also, since the series converges uniformly, for all $r \in (0,1)$ and $k \in \mathbb{Z}$ we have

$$\begin{split} \widehat{P_r}(k) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t) e^{-ikt} dt = \sum_{n \in \mathbb{Z}} r^{|n|} \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(n-k)t} dt = r^{|k|} \\ \text{and in particular} \quad \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(t) dt = r^0 = 1. \end{split}$$

(a) For each $r \in [0,1)$, the function $P_r : [-\pi,\pi] \to \mathbb{R}$ is continuous and non-negative.

(b) If
$$\delta \in (0, \pi/2)$$
 and $E_{\delta} := [-\pi, -\delta] \cup [\delta, \pi]$, we have $P_r(t) \to 0$ uniformly for $t \in E_{\delta}$ as $r \nearrow 1$;
hence $\lim_{r \nearrow 1} \int_{E_{\delta}} P_r(x) dx = 0$.
(y) $\frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(x) dx = 1$ for every $r \in [0, 1)$.

Proof. It only remains to prove (β): If $0 < \delta < \pi/2$ then for all t with $\delta \le |t| \le \pi$ we have $\cos t \le \cos \delta$, hence

$$0 \leq P_r(t) = \frac{1-r^2}{1-2r\cos t + r^2} \leq \frac{1-r^2}{1-2r\cos \delta + r^2}$$

and the right hand side tends to 0 as $r \nearrow 1$.

Therefore, if f is Riemann integrable, and hence bounded, we have

$$|f_r(t)| \le \|f\|_\infty \, \frac{1}{2\pi} \int_{-\pi}^{\pi} |P_r(t-s)| ds = \|f\|_\infty \, \frac{1}{2\pi} \int_{-\pi}^{\pi} P_r(s) ds = \|f\|_\infty$$

(since P_r is 2π -periodic and nonnegative) for each t and r.

If in addition *f* is *continuous* $\kappa \alpha \iota 2\pi$ -periodic, then repeating the proof of Fejér's Theorem (which proof relied exclusively on the corresponding properties (α), (β) and (γ) of the Fejér kernel) we arrive at the following

Theorem 8.2. If f is Riemann integrable and 2π -periodic, then at every point t of continuity of f we have $\lim_{r \neq 1} f_r(t) = f(t)$.

If f is continuous, then $\lim_{r \nearrow 1} f_r(x) = f(x)$ uniformly, that is, $\lim_{r \nearrow 1} \|f_r - f\|_{\infty} = 0$.

Remark 8.3. Note that although the functions f_r are (in general) not trigonometric polynomials, they are continuous (in fact differentiable - why?) functions given by absolutely and uniformly convergent Fourier series.

9 Pointwise convergence and the localisation principle

(For proofs, see Stein & Shakarchi, 'Fourier Analysis', paragraphs 3.2.1 and 3.2.2.³)

Definition 9.1. Complex-valued functions on the unit circle

Denote by \mathbb{T} *the unit circle*

$$\mathbb{T} = \{ z \in \mathbb{C} : |z| = 1 \} = \{ e^{i\theta} : \theta \in \mathbb{R} \}$$

If $\phi : \mathbb{T} \to \mathbb{C}$, define $f : \mathbb{R} \to \mathbb{C}$ by

$$f(\theta) = \phi(e^{i\theta}).$$

The function f *is* 2π *-periodic.*

Conversely, if $f : \mathbb{R} \to \mathbb{C}$ is 2π -periodic, then the function $\phi : \mathbb{T} \to \mathbb{C}$ given by $\phi(e^{i\theta}) = f(\theta)$ is well defined.⁴ Thus we have a 1-1 correspondence between functions $\phi : \mathbb{T} \to \mathbb{C}$ and 2π -periodic functions $f : \mathbb{R} \to \mathbb{C}$.

We say ϕ is integrable if f is integrable in some interval of length 2π (hence in all such intervals), we say ϕ is continuous if f is continuous, we say ϕ is differentiable if f is differentiable, we say ϕ is continuously differentiable if f is continuously differentiable and so on.

In what follows we shall make no distinction between ϕ and f.

Theorem 9.1. Let $f : \mathbb{T} \to \mathbb{C}$ be an integrable function. If f is differentiable at $\theta_0 \in \mathbb{T}$, then

$$S_n(f)(\theta_0) \to f(\theta_0).$$

Remark 9.2. If we examine the proof of Theorem 9.1 we can see that the conclusion $S_n(f)(\theta_0) \to f(\theta_0)$ still holds under the following weaker assumption for f:

'The function f is integrable and satisfies a Lipschitz condition at θ_0 , that is, there exists M > 0 such that

$$|f(\theta_0-t)-f(\theta_0)|\leq M|t|$$

for all $t \in [-\pi, \pi]$ '.

One can now repeat the proof without modifications.

An important consequence of Theorem 9.1 is the **localisation principle of Riemann**: the convergence or divergence of the sequence $S_n(f)(\theta_0)$ depends only on the behaviour of f in a neighbourhood of θ_0 . This is not at all obvious; indeed, the partial sums $S_n(f)(\theta_0)$ are defined in terms of the Fourier coefficients $\hat{f}(k)$, $|k| \leq n$ of f, which coefficients are given by integration on $[-\pi, \pi]$, thus taking into account the values of f in the whole interval $[-\pi, \pi]$.

Theorem 9.3 (Riemann's localisation principle). Let $f, g : \mathbb{T} \to \mathbb{C}$ be two integrable functions. Assume that, for some $\theta_0 \in \mathbb{T}$ and some open interval $I \subset \mathbb{T}$ with $\theta_0 \in I$, we have

$$f(\theta) = g(\theta)$$
 for all $\theta \in I$.

Then

$$S_n(f)(\theta_0) - S_n(g)(\theta_0) \to 0.$$

In particular, the sequence $\{S_n(f)(\theta_0)\}$ converges if and only if $\{S_n(g)(\theta_0)\}$ converges.

³Από τις σημειώσεις του Απ. Γιαννόπουλου (2012) Παράγραφος 3.3

⁴Indeed, if $e^{i\theta_1} = e^{i\theta_2}$ for some $\theta_1, \theta_2 \in \mathbb{R}$ then $\theta_2 = \theta_1 + 2k\pi$ for an integer k, hence $f(\theta_1) = f(\theta_2)$ since f is 2π -periodic.

10 Complements

The goal is to prove:

Theorem 10.1. *There exists a continuous function* $f : \mathbb{T} \to \mathbb{C}$ *for which*

$$\limsup_{n\to\infty}|S_n(f)(0)|=+\infty.$$

Therefore S[f](0) diverges.

An important role in the proof is played by the trigonometric series

$$\sum_{k \neq 0} \frac{e^{ikx}}{k} \quad \text{and} \quad \sum_{k = -\infty}^{-1} \frac{e^{ikx}}{k}.$$

Lemma 10.2. Consider the function

$$f(x) = \left\{ \begin{array}{ll} i(\pi - x) & \mbox{If} \ 0 < x < \pi \\ -i(\pi + x) & \mbox{If} \ -\pi < x < 0 \end{array} \right.$$

and extend it periodically to \mathbb{R} . Then, the Fourier series of f is

$$S[f](x) = \sum_{k \neq 0} \frac{e^{ikx}}{k}.$$

Proposition 10.3. Let $f : \mathbb{T} \to \mathbb{C}$ be an integrable function. If the sequence $\{|k\hat{f}(k)|\}_{k\in\mathbb{Z}}$ is bounded, then the partial sums $S_n(f)$ of the Fourier series of f are uniformly bounded:

$$\sup_n \|S_n(f)\|_\infty < +\infty.$$

That is, there exists M > 0 so that

$$|S_n(f)(x)| \leq M$$

for all $n \in \mathbb{N}$ and all $x \in \mathbb{T}$.

Lemma 10.4. For each $n \in \mathbb{N}$ consider the trigonometric polynomial

$$f_n(x) = \sum_{1 \le |k| \le n} \frac{e^{ikx}}{k}.$$

There exists M > 0 so that $|f_n(x)| \le M$ for all n and all x.

Lemma 10.5. For each $n \in \mathbb{N}$ consider the trigonometric polynomial

$$g_n(x) = \sum_{k=-n}^{-1} \frac{e^{ikx}}{k}$$

There exists c > 0 so that $|g_n(0)| \ge c \log n$ for each $n \in \mathbb{N}$.

Corollary 10.6. *There is no Riemann integrable function* $g : \mathbb{T} \to \mathbb{C}$ *with*

$$S[g](x) = \sum_{k=-\infty}^{-1} \frac{e^{ikx}}{k}.$$

Comment. We will show later that there does exist a Lebesgue integrable function g with

$$S[g](x) = \sum_{k=-\infty}^{-1} \frac{e^{ikx}}{k}.$$

г		-
		_