605: Comments on Exercises I

1. Show that the set \mathcal{T} of trigonometric polynomials is a linear space, a subspace of the space of continuous functions $f:[-\pi, \pi] \rightarrow \mathbb{C}$ and that the set $\left\{e_{k}: k \in \mathbb{Z}\right\}$ (where $e_{k}(x)=e^{i k x}$) is a linear basis of \mathcal{T}, as is the set $\left\{c_{0}, c_{n}, s_{n}, n=1,2, \ldots\right\}$ (where $\left.c_{0}(x)=1, c_{n}(x)=\cos n x, s_{n}(x)=\sin n x\right)$.
Show also that \mathcal{T} is closed under pointwise multiplication and therefore for example the function $p(x)=(7-2 \cos x)^{5}$ belongs to \mathcal{T}. Examine whether \mathcal{T} contains some nonzero polynomial.

Comments: To show that the family $\left\{e_{k}: k \in \mathbb{Z}\right\}$ is linearly independent: Suppose a certain linear combination $q:=\sum_{k=-N}^{N} a_{k} e_{k}$ is the zero function, i.e. $q(x)=\sum_{k=-N}^{N} a_{k} e^{i k x}=0$ for all x. We have to show that all the coefficients $a_{m}, m=-N, \ldots, N$ are 0 . For some integer $m \in[-N, N]$, consider

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} q(x) e^{-i m x} d x
$$

We know this is equal to $\hat{q}(m)=a_{m}$ (reason: the integral $\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i(k-m) x} d x=\delta_{k m}$). But $q=0$, so $\hat{q}(m)=0$ for all m.
The same method shows that the set $\left\{c_{0}, c_{n}, s_{n}, n=1,2, \ldots\right\}$ is linearly independent: now one must multiply separately by $\cos m x$ and by $\sin m x$.
Another method: consider the function

$$
e^{i N x} \sum_{k=-N}^{N} a_{k} e^{i k x}=a_{-N}+a_{-N+1} e^{i x}+\cdots+a_{N}\left(e^{i x}\right)^{2 N}
$$

This is a polynomial of degree (at most) $2 N$ in the complex variable $z:=e^{i x}$. So, if it has more than $2 N$ complex roots, it must be identically zero, i.e. $a_{k}=0$ for all k.
So we have reached a stronger conclusion: if the trig. polynomial $q(x)$ vanishes for more than $2 N$ distinct values of x, then it must be identically zero.
To show that \mathcal{T} is closed under multiplication: For the exponential form, this is obvious: the product of two elements of the basis is another element of the basis: $e_{k} e_{m}=e_{r}$ where $r=k+m$.
For the sine-cosine form one must remember the trig. formulae relating products $\cos k x \cos m x, \cos k x \sin m x$ and $\sin k x \sin m x$ to linear combinations of sines and cosines. But these formulae are easy to find and prove: use the relations $e^{i x}=\cos x+i \sin x$ to transform them into sums of products of exponentials.
Conclusion: The set \mathcal{T} is not only a linear space, but it is also a ring under pointwise operations; it is an algebra.
Question: Does \mathcal{T} contain any polynomial (except zero)? Can a polynomial in x be a linear combination of $\sin n x$ and $\cos n x$?

I will leave this question for the Discussions!
4. We have seen that for all $\delta>0$ there exists $M(\delta)<\infty$ so that for all $x \in[\delta, 2 \pi-\delta]$ and all $n \in \mathbb{N}$ we have

$$
\left|\frac{1}{2}+\sum_{k=1}^{n} \cos k x\right| \leq M(\delta) \kappa \alpha \imath \quad\left|\sum_{k=1}^{n} \sin k x\right| \leq M(\delta)
$$

Examine whether the two sequences are uniformly bounded in $(0,2 \pi)$.
Comments: They are not: There cannot exist a constant M such that $\left|c_{n}(x)\right| \leq M$ and $\left|s_{n}(x)\right| \leq M$ for all $x \in(0,2 \pi)$ and all $n \in \mathbb{N}$ simultaneously.
For the first, $c_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x$: this is a continuous function on $[0,2 \pi]$ and it takes the value $n+\frac{1}{2}$ at $x=0$. Therefore for each n there must exist a point $x_{n}>0$ so that $\left|c_{n}\left(x_{n}\right)\right|>n+\frac{1}{3} .{ }^{1}$
This argument does not work for s_{n}, since $s_{n}(0)=0$. But we can still find a suitable x_{n} : since $s_{n}(x)$ is given (for $x \in(0,2 \pi)$) by the formula $s_{n}(x)=\frac{\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}$, we need a sequence $\left(x_{n}\right)$ with $x_{n} \rightarrow 0$ (so that denominator $2 \sin \frac{x_{n}}{2}$ goes to 0) while at the same time the nominator $\cos \frac{x_{n}}{2}-\cos \left(n+\frac{1}{2}\right) x_{n}$ does not vanish. For example, we can try $x_{n}=\frac{\pi}{2 n+1}$. We get

[^0]$\cos \frac{\pi}{4 n+2}-\cos \left(n+\frac{1}{2}\right) \frac{\pi}{2 n+1}=\cos \frac{\pi}{4 n+2}-\cos \left(\frac{2 n+1}{2} \frac{\pi}{2 n+1}\right)=\cos \frac{\pi}{4 n+2}-\cos \frac{\pi}{2} \rightarrow 1$.
Incidentally, this same sequence $x_{n}=\frac{\pi}{2 n+1}$ also works to show that $\left(c_{n}\left(x_{n}\right)\right)$ cannot be bounded.
5. For which real values of x does the series
$$
2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin k x
$$
converge? Recall (as shown in class) that this is the Fourier series of the 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $f(t)=t$ when $t \in(\pi, \pi]$.
Also find the Fourier series of the 2π-periodic function $g: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $g(t)=t$ when $t \in(0,2 \pi]$.
Comments: It clearly converges at every $x \in 2 \pi \mathbb{Z}$ (sum of zeroes). Therefore (periodicity) it is enough to examine what happens when $x \in(0,2 \pi)$. Let us prove that it aleways converges:
Observe that $\sin (n \pi-n x)=\frac{(-1)^{n+1}}{n} \sin n x$ (proof: check when n is even and when n is odd, remembering that \sin is 2π-periodic) and hence
$$
\sum_{k=1}^{N} \frac{(-1)^{k+1}}{k} \sin k x=\sum_{n=1}^{N} \frac{1}{n} \sin (n \pi-n x)
$$

Now you can use the argument used for the series $\sum_{k=1}^{\infty} \frac{1}{k} \sin k x$: indeed the sequence $\left(\frac{1}{k}\right)$ monotonically decreases to 0 , and for each $\delta \in(0, \pi)$ the partial sums $\sum_{n=1}^{N} \sin (n \pi-n x)$ are uniformly bounded in $[-\pi+\delta, \pi-\delta]$ (by $\frac{1}{\sin \left(\frac{\pi-\delta}{2}\right)}$, from the formula in Exercise 3), so the Dirichlet criterion applies, etcetera...
The Fourier series of the 2π-periodic function $g: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $g(t)=t$ when $t \in(0,2 \pi]$.

$$
\begin{gathered}
(n=0) \quad \hat{g}(0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} t d t=\frac{1}{2 \pi} \frac{(2 \pi)^{2}}{2}=\pi \\
(n \neq 0) \quad \hat{g}(n)=\frac{1}{2 \pi} \int_{0}^{2 \pi} t e^{-i n t} d t=\frac{1}{-2 \pi i n} \int_{0}^{2 \pi} t\left(e^{-i n t}\right)^{\prime} d t \\
=\frac{i}{2 \pi n} \int_{0}^{2 \pi} t\left(e^{-i n t}\right)^{\prime} d t=\frac{i}{2 \pi n}\left(\left[t e^{-i n t}\right]_{0}^{2 \pi}-\int_{0}^{2 \pi} e^{-i n t} d t\right) \\
=\frac{i}{2 \pi n}\left(2 \pi e^{-i 2 n \pi}-(0) e^{i n 0}-0\right)=\frac{i}{n} e^{-i 2 n \pi}=\frac{i}{n}
\end{gathered}
$$

So the complex form of $S(f)$ is

$$
g \sim \pi+\sum_{n \neq 0} \frac{i}{n} e^{i n t}
$$

Thus

$$
\begin{aligned}
a_{n}(g) & =\hat{g}(n)+\hat{g}(-n)=\frac{i}{n}+\frac{i}{-n}=0, \quad n=1, \ldots \\
\text { and } b_{m}(g) & =\frac{\hat{g}(-m)-\hat{g}(m)}{i}=\frac{1}{-m}-\frac{1}{m}=-2 \frac{1}{m}, \quad m=1,2, \ldots
\end{aligned}
$$

hence

$$
g \sim \pi-2 \sum_{m=1}^{\infty} \frac{1}{m} \sin m t
$$

Ia 2. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be 2π-periodic and integrable over compact intervals. If $x \in \mathbb{R}$ define $f_{x}: \mathbb{R} \rightarrow \mathbb{C}$ by $f_{x}(t)=f(t-x)(t \in \mathbb{R})$. Show that $\widehat{f}_{x}(k)=e^{-i k x} \hat{f}(k)$ for all $k \in \mathbb{Z}$.

Solution

$$
\begin{aligned}
2 \pi \widehat{f}_{x}(k) & =\int_{-\pi}^{\pi} f_{x}(t) e^{-i k t} d t=\int_{-\pi}^{\pi} f(t-x) e^{-i k t} d t \\
& \stackrel{(s=t-x)}{=} \int_{-\pi-x}^{\pi-x} f(s) e^{-i k(s+x)} d s=e^{-i k x} \int_{-\pi-x}^{\pi-x} f(s) e^{-i k s} d s \\
& =e^{-i k x} \int_{-\pi}^{\pi} f(s) e^{-i k s} d s
\end{aligned}
$$

(the last equality holds because the function $s \mapsto f(s) e^{-i k s}$ is 2π-periodic hence its integral over any interval of length 2π is the same).

Comment on the previous Exercise Applying the last result to the function $g_{-\pi}(t)=g(t+\pi)$ we see that $\widehat{g_{-\pi}}(k)=$ $e^{i k \pi} \hat{g}(k)$ and so $\widehat{g_{-\pi}}(0)=\pi$ while for $m=1,2, \ldots, a_{m}\left(g_{-\pi}\right)=0$ and

$$
b_{m}\left(g_{-\pi}\right)=\frac{1}{i}\left(\widehat{g_{-\pi}}(-m)-\widehat{g_{-\pi}}(m)\right)=2 \frac{(-1)^{m+1}}{m}
$$

Thus

$$
g_{\pi} \sim \pi+2 \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin m t
$$

But notice that when $t \in(-\pi, \pi]$, we have $t+\pi \in(0,2 \pi]$ and so $g_{-\pi}(t)=g(t+\pi)=t+\pi$. Therefore we recover the Fourier series for the 2π-periodic function f satisfying $f(t)=t$ for $t \in(-\pi, \pi]$:

$$
f=\left(g_{\pi}-\pi\right) \sim 2 \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin m t
$$

8. If $0<\delta<\pi$, find the Fourier coefficients of the function $f:[-\pi, \pi] \rightarrow \mathbb{R}$ (whose graph is triangular) given by the formula

$$
f(x)= \begin{cases}1-\frac{|x|}{\delta} & (|x| \leq \delta) \\ 0 & (\delta<|x| \leq \pi)\end{cases}
$$

Solution The function is even. So $b_{n}(f)=0$ for all $n \in \mathbb{N}$ by Exercise 6. Also,

$$
\int_{-\pi}^{\pi} f(x) \cos n x d x \stackrel{(e)}{=} 2 \int_{0}^{\pi} f(x) \cos n x d x=2 \int_{0}^{\delta}\left(1-\frac{x}{\delta}\right) \cos n x d x
$$

because $x \mapsto f(x) \cos n x$ is even (e) and $f(x)=0$ for $x>\delta$. Therefore we have

$$
\begin{aligned}
a_{0}(f) & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \delta(\delta \text { is the area of the triangle }) \\
(n>0) \quad a_{n}(f) & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\delta}\left(1-\frac{x}{\delta}\right)\left(\frac{\sin n x}{n}\right)^{\prime} d x \\
& =\frac{2}{n \pi} \int_{0}^{\pi}\left(\left[\left(1-\frac{x}{\delta}\right) \sin n x\right]_{0}^{\delta}-\int_{0}^{\delta}\left(1-\frac{x}{\delta}\right)^{\prime} \sin n x d x\right) \\
& =\frac{2}{n \pi}\left(0+\frac{1}{\delta} \int_{0}^{\delta} \sin n x d x\right)=\frac{2}{n \pi \delta}\left[\frac{-\cos n x}{n}\right]_{0}^{\delta}=\frac{2}{n^{2} \pi \delta}(1-\cos n \delta) \\
& =\frac{2}{n^{2} \pi \delta} 2 \sin ^{2}\left(\frac{n \delta}{2}\right)=\frac{\delta}{\pi}\left(\frac{\sin \frac{n \delta}{2}}{\frac{n \delta}{2}}\right)^{2}
\end{aligned}
$$

So

$$
f \sim \frac{\delta}{2 \pi}+\sum_{n \geq 1} \frac{\delta}{\pi}\left(\frac{\sin \frac{n \delta}{2}}{\frac{n \delta}{2}}\right)^{2} \cos n x
$$

[^0]: ${ }^{1}$ Thanks, J. A.-B.

