605: Comments on Exercises I

1. Show that the set \mathcal{T} of trigonometric polynomials is a linear space, a subspace of the space of continuous functions $f: [-\pi, \pi] \to \mathbb{C}$ and that the set $\{e_k : k \in \mathbb{Z}\}$ (where $e_k(x) = e^{ikx}$) is a linear basis of \mathcal{T} , as is the set $\{c_0, c_n, s_n, n = 1, 2, ...\}$ (where $c_0(x) = 1, c_n(x) = \cos nx, s_n(x) = \sin nx$).

Show also that \mathcal{T} is closed under pointwise multiplication and therefore for example the function $p(x) = (7 - 2\cos x)^5$ belongs to \mathcal{T} . Examine whether \mathcal{T} contains some nonzero polynomial.

Comments: To show that the family $\{e_k : k \in \mathbb{Z}\}$ is linearly independent: Suppose a certain linear combination $q := \sum_{k=-N}^{N} a_k e_k$ is the zero function, i.e. $q(x) = \sum_{k=-N}^{N} a_k e^{ikx} = 0$ for all x. We have to show that all the coefficients $a_m, m = -N, \ldots, N$ are 0. For some integer $m \in [-N, N]$, consider

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} q(x) e^{-imx} dx.$$

We know this is equal to $\hat{q}(m) = a_m$ (reason: the integral $\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{i(k-m)x} dx = \delta_{km}$). But q = 0, so $\hat{q}(m) = 0$ for all m.

The same method shows that the set $\{c_0, c_n, s_n, n = 1, 2, ...\}$ is linearly independent: now one must multiply separately by $\cos mx$ and by $\sin mx$.

Another method: consider the function

$$e^{iNx} \sum_{k=-N}^{N} a_k e^{ikx} = a_{-N} + a_{-N+1} e^{ix} + \dots + a_N (e^{ix})^{2N}.$$

This is a polynomial of degree (at most) 2N in the complex variable $z := e^{ix}$. So, if it has more than 2N complex roots, it must be identically zero, i.e. $a_k = 0$ for all k.

So we have reached a stronger conclusion: if the trig. polynomial q(x) vanishes for more than 2N distinct values of x, then it must be identically zero.

To show that \mathcal{T} is closed under multiplication: For the exponential form, this is obvious: the product of two elements of the basis is another element of the basis: $e_k e_m = e_r$ where r = k + m.

For the sine-cosine form one must remember the trig. formulae relating products $\cos kx \cos mx$, $\cos kx \sin mx$ and $\sin kx \sin mx$ to linear combinations of sines and cosines. But these formulae are easy to find and prove: use the relations $e^{ix} = \cos x + i \sin x$ to transform them into sums of products of exponentials.

Conclusion: The set \mathcal{T} is not only a linear space, but it is also a ring under pointwise operations; it is an *algebra*.

Question: Does \mathcal{T} contain any polynomial (except zero)? Can a polynomial in x be a linear combination of sin nx and $\cos nx$?

I will leave this question for the Discussions!

4. We have seen that for all $\delta > 0$ there exists $M(\delta) < \infty$ so that for all $x \in [\delta, 2\pi - \delta]$ and all $n \in \mathbb{N}$ we have

$$\left|\frac{1}{2} + \sum_{k=1}^{n} \cos kx\right| \le M(\delta) \quad \text{kal} \quad \left|\sum_{k=1}^{n} \sin kx\right| \le M(\delta) \,.$$

Examine whether the two sequences are uniformly bounded in $(0, 2\pi)$ *.*

Comments: They are not: There cannot exist a *constant* M such that $|c_n(x)| \le M$ and $|s_n(x)| \le M$ for all $x \in (0, 2\pi)$ and all $n \in \mathbb{N}$ simultaneously.

For the first, $c_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos kx$: this is a continuous function on $[0, 2\pi]$ and it takes the value $n + \frac{1}{2}$ at x = 0. Therefore for each n there must exist a point $x_n > 0$ so that $|c_n(x_n)| > n + \frac{1}{3}$.¹

This argument does not work for s_n , since $s_n(0) = 0$. But we can still find a suitable x_n : since $s_n(x)$ is given (for $x \in (0, 2\pi)$) by the formula $s_n(x) = \frac{\cos \frac{x}{2} - \cos(n + \frac{1}{2})x}{2\sin \frac{x}{2}}$, we need a sequence (x_n) with $x_n \to 0$ (so that the denominator $2\sin \frac{x_n}{2}$ goes to 0) while at the same time the nominator $\cos \frac{x_n}{2} - \cos(n + \frac{1}{2})x_n$ does not vanish. For example, we can try $x_n = \frac{\pi}{2n+1}$. We get

 $\cos \frac{\pi}{4n+2} - \cos(n+\frac{1}{2})\frac{\pi}{2n+1} = \cos \frac{\pi}{4n+2} - \cos(\frac{2n+1}{2}\frac{\pi}{2n+1}) = \cos \frac{\pi}{4n+2} - \cos \frac{\pi}{2} \to 1.$

Incidentally, this same sequence $x_n = \frac{\pi}{2n+1}$ also works to show that $(c_n(x_n))$ cannot be bounded.

5. For which real values of x does the series

$$2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin kx$$

converge? Recall (as shown in class) that this is the Fourier series of the 2π -periodic function $f : \mathbb{R} \to \mathbb{R}$ which satisfies f(t) = t when $t \in (\pi, \pi]$.

Also find the Fourier series of the 2π -periodic function $g: \mathbb{R} \to \mathbb{R}$ which satisfies g(t) = t when $t \in (0, 2\pi]$.

Comments: It clearly converges at every $x \in 2\pi\mathbb{Z}$ (sum of zeroes). Therefore (periodicity) it is enough to examine what happens when $x \in (0, 2\pi)$. Let us prove that it aleways converges:

Observe that $sin(n\pi - nx) = \frac{(-1)^{n+1}}{n} sin nx$ (proof: check when n is even and when n is odd, remembering that sin is 2π -periodic) and hence

$$\sum_{k=1}^{N} \frac{(-1)^{k+1}}{k} \sin kx = \sum_{n=1}^{N} \frac{1}{n} \sin(n\pi - nx).$$

Now you can use the argument used for the series $\sum_{k=1}^{\infty} \frac{1}{k} \sin kx$: indeed the sequence $(\frac{1}{k})$ monotonically decreases to 0, and for each $\delta \in (0, \pi)$ the partial sums $\sum_{n=1}^{N} \sin(n\pi - nx)$ are uniformly bounded in $[-\pi + \delta, \pi - \delta]$ (by $\frac{1}{\sin(\frac{\pi - \delta}{2})}$, from the formula in Exercise 3), so the Dirichlet criterion applies, etcetera...

1 (0) 2

The Fourier series of the 2π -periodic function $g : \mathbb{R} \to \mathbb{R}$ which satisfies g(t) = t when $t \in (0, 2\pi]$.

$$(n=0) \qquad \hat{g}(0) = \frac{1}{2\pi} \int_0^{2\pi} t dt = \frac{1}{2\pi} \frac{(2\pi)^2}{2} = \pi.$$

$$(n \neq 0) \qquad \hat{g}(n) = \frac{1}{2\pi} \int_0^{2\pi} t e^{-int} dt = \frac{1}{-2\pi i n} \int_0^{2\pi} t (e^{-int})' dt$$

$$= \frac{i}{2\pi n} \int_0^{2\pi} t (e^{-int})' dt = \frac{i}{2\pi n} \left(\left[t e^{-int} \right]_0^{2\pi} - \int_0^{2\pi} e^{-int} dt \right) = \frac{i}{2\pi n} (2\pi e^{-i2n\pi} - (0)e^{in0} - 0) = \frac{i}{n} e^{-i2n\pi} = \frac{i}{n}$$

So the complex form of S(f) is

$$g \sim \pi + \sum_{n \neq 0} \frac{i}{n} e^{int}.$$

Thus

$$a_n(g) = \hat{g}(n) + \hat{g}(-n) = \frac{i}{n} + \frac{i}{-n} = 0, \quad n = 1, \dots$$

and $b_m(g) = \frac{\hat{g}(-m) - \hat{g}(m)}{i} = \frac{1}{-m} - \frac{1}{m} = -2\frac{1}{m}, \quad m = 1, 2, \dots$

hence

$$g \sim \pi - 2\sum_{m=1}^{\infty} \frac{1}{m} \sin mt$$
.

Ia 2. Let $f : \mathbb{R} \to \mathbb{C}$ be 2π -periodic and integrable over compact intervals. If $x \in \mathbb{R}$ define $f_x : \mathbb{R} \to \mathbb{C}$ by $f_x(t) = f(t-x)$ $(t \in \mathbb{R})$. Show that $\hat{f}_x(k) = e^{-ikx}\hat{f}(k)$ for all $k \in \mathbb{Z}$.

Solution

$$\begin{aligned} 2\pi \widehat{f}_x(k) &= \int_{-\pi}^{\pi} f_x(t) e^{-ikt} dt = \int_{-\pi}^{\pi} f(t-x) e^{-ikt} dt \\ &\stackrel{(s=t-x)}{=} \int_{-\pi-x}^{\pi-x} f(s) e^{-ik(s+x)} ds = e^{-ikx} \int_{-\pi-x}^{\pi-x} f(s) e^{-iks} ds \\ &= e^{-ikx} \int_{-\pi}^{\pi} f(s) e^{-iks} ds \end{aligned}$$

(the last equality holds because the function $s \mapsto f(s)e^{-iks}$ is 2π -periodic hence its integral over any interval of length 2π is the same).

Comment on the previous Exercise Applying the last result to the function $g_{-\pi}(t) = g(t + \pi)$ we see that $\widehat{g_{-\pi}}(k) = e^{ik\pi}\widehat{g}(k)$ and so $\widehat{g_{-\pi}}(0) = \pi$ while for $m = 1, 2, \ldots, a_m(g_{-\pi}) = 0$ and

$$b_m(g_{-\pi}) = \frac{1}{i}(\widehat{g_{-\pi}}(-m) - \widehat{g_{-\pi}}(m)) = 2\frac{(-1)^{m+1}}{m}.$$

Thus

$$g_{\pi} \sim \pi + 2 \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin mt$$

But notice that when $t \in (-\pi, \pi]$, we have $t + \pi \in (0, 2\pi]$ and so $g_{-\pi}(t) = g(t + \pi) = t + \pi$. Therefore we recover the Fourier series for the 2π -periodic function f satisfying f(t) = t for $t \in (-\pi, \pi]$:

$$f = (g_{\pi} - \pi) \sim 2 \sum_{m=1}^{\infty} \frac{(-1)^{m+1}}{m} \sin mt$$

8. If $0 < \delta < \pi$, find the Fourier coefficients of the function $f : [-\pi, \pi] \to \mathbb{R}$ (whose graph is triangular) given by the formula

$$f(x) = \begin{cases} 1 - \frac{|x|}{\delta} & (|x| \le \delta) \\ 0 & (\delta < |x| \le \pi) \end{cases}$$

Solution The function is even. So $b_n(f) = 0$ for all $n \in \mathbb{N}$ by Exercise 6. Also,

$$\int_{-\pi}^{\pi} f(x) \cos nx dx \stackrel{(e)}{=} 2 \int_{0}^{\pi} f(x) \cos nx dx = 2 \int_{0}^{\delta} (1 - \frac{x}{\delta}) \cos nx dx$$

because $x \mapsto f(x) \cos nx$ is even (e) and f(x) = 0 for $x > \delta$. Therefore we have

$$a_{0}(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \delta \quad (\delta \text{ is the area of the triangle})$$

$$(n > 0) \qquad a_{n}(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{2}{\pi} \int_{0}^{\delta} (1 - \frac{x}{\delta}) \left(\frac{\sin nx}{n}\right)' dx$$

$$= \frac{2}{n\pi} \int_{0}^{\pi} \left(\left[(1 - \frac{x}{\delta}) \sin nx \right]_{0}^{\delta} - \int_{0}^{\delta} (1 - \frac{x}{\delta})' \sin nx dx \right)$$

$$= \frac{2}{n\pi} (0 + \frac{1}{\delta} \int_{0}^{\delta} \sin nx dx) = \frac{2}{n\pi\delta} \left[\frac{-\cos nx}{n} \right]_{0}^{\delta} = \frac{2}{n^{2}\pi\delta} (1 - \cos n\delta)$$

$$= \frac{2}{n^{2}\pi\delta} 2\sin^{2}(\frac{n\delta}{2}) = \frac{\delta}{\pi} \left(\frac{\sin \frac{n\delta}{2}}{\frac{n\delta}{2}} \right)^{2}$$

So

$$f \sim \frac{\delta}{2\pi} + \sum_{n \ge 1} \frac{\delta}{\pi} \left(\frac{\sin \frac{n\delta}{2}}{\frac{n\delta}{2}} \right)^2 \cos nx.$$