Welcome to Fourier Analysis and Lebesgue Integration

http://eclass.uoa.gr/courses/MATH121/

Summer semester 2019-2020

Contents

1 Introduction
2 Trigonometric Series
3 Fourier Series
4 The Uniqueness Theorem
■ Absolutely convergent Fourier series
5 Simple cases of convergence
6 Fejér Summability
7 Lebesgue measure
8 Measurable functions

- The Cantor set - The Cantor-Lebesgue function
- Simple measurable functions

9 The Lebesgue Integral

- Convergence Theorems
- The Riemann integral and the Lebesgue integral
$10 L^{p}$ spaces
11 Fourier series for functions of class \mathcal{L}^{1} and \mathcal{L}^{2}
- Fourier series for functions of class \mathcal{L}^{2}
- A trigonometric series which is not a Fourier series

J. Fourier (1768-1830)
 H. Lebesgue (1875-1941)

(a) Complex Numbers.
(b) Periodic functions.

If $f: \mathbb{R} \rightarrow \mathbb{C}$ is 2π-periodic, it is determined by its restriction to any interval $[a, b] \subseteq \mathbb{R}$ of length 2π. Thus it is enough to study the restriction $g:=\left.f\right|_{[-\pi, \pi]}:[-\pi, \pi] \rightarrow \mathbb{R}$. Note: $g(-\pi)=g(\pi)$.

Let $f:[-\pi, \pi] \rightarrow \mathbb{R}$ be integrable (in the Riemann sense, for the first part of the course). The Fourier series of f is the series of functions

$$
S[f](x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

where the Fourier coefficients a_{k} and b_{k} of f are given by

$$
a_{k}=a_{k}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k x d x, \quad k=0,1,2, \ldots
$$

and

$$
b_{k}=b_{k}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin k x d x, \quad k=1,2, \ldots
$$

(the integrals exist).

Remark For each $k \in \mathbb{Z}_{+}$,

$$
\left|a_{k}\right| \leq \frac{1}{\pi} \int_{-\pi}^{\pi}|f(x)| d x \quad \text { and } \quad\left|b_{k}\right| \leq \frac{1}{\pi} \int_{-\pi}^{\pi}|f(x)| d x
$$

Thus, the sequences $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are bounded.
The n-th partial sum of $S[f]$ is the continuous function

$$
s_{n}(f)(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

Question: Does the sequence $s_{n}(f)$ "converge"? To f ?
NO, "usually"
YES, for "good functions"
YES, "for the appropriate mode of convergence".

Trigonometric polynomials

Trigonometric series :

$$
\frac{a_{o}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+\sum_{k=1}^{\infty} b_{k} \sin k x, \quad a_{k}, b_{k} \in \mathbb{R} .
$$

Trigonometric polynomial:

$$
\frac{a_{0}}{2}+\sum_{k=1}^{N} a_{k} \cos k x+\sum_{k=1}^{N} b_{k} \sin k x
$$

$a_{k}=b_{k}=0$ when $k>N$. Degree: the largest N so that $\left|a_{N}\right|+\left|b_{N}\right| \neq 0$.

Equivalent form $\sum_{k=-N}^{N} c_{k} \exp (i k x)$
where $\exp (i t)=\cos t+i \sin t$,

$$
c_{k}=\left\{\begin{array}{cc}
\frac{1}{2}\left(a_{k}-i b_{k}\right), & k \geq 1 \\
\frac{1}{2} a_{0}, & k=0 \\
\frac{1}{2}\left(a_{-k}+i b_{-k}\right), & k \leq-1
\end{array}\right.
$$

Example 1.

For each $x \in \mathbb{R}$,

$$
\begin{gathered}
s_{n}(x)=\sum_{k=1}^{n} \sin k x=\sin x+\sin 2 x+\ldots+\sin n x \\
= \begin{cases}\frac{\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}, & \frac{x}{2 \pi} \notin \mathbb{Z} \\
0, & \frac{x}{2 \pi} \in \mathbb{Z}\end{cases} \\
c_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x=\frac{1}{2}+\cos x+\cos 2 x+\ldots+\cos n x \\
= \begin{cases}\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}}, & x \neq 2 m \pi \\
n+\frac{1}{2}, & x=2 m \pi\end{cases}
\end{gathered}
$$

Example 1. (continued)

Although the two sequences do not converge (why?), they are bounded (when $x \neq 2 k \pi$).

Proof If $x \in(0,2 \pi)$, for each $n \in \mathbb{N}$ we have

$$
\left|\frac{1}{2}+\sum_{k=1}^{n} \cos k x\right| \leq \frac{1}{2\left|\sin \frac{x}{2}\right|} \text { and }\left|\sum_{k=1}^{n} \sin k x\right| \leq \frac{1}{\left|\sin \frac{x}{2}\right|}
$$

Furthermore, for each $\delta>0$ both sequences are uniformly bounded in the interval $[\delta, 2 \pi-\delta]$:
for each $x \in[\delta, 2 \pi-\delta]$ and every $n \in \mathbb{N}$ we have

$$
\left|\frac{1}{2}+\sum_{k=1}^{n} \cos k x\right| \leq \frac{1}{2 \sin \frac{\delta}{2}} \text { and }\left|\sum_{k=1}^{n} \sin k x\right| \leq \frac{1}{\sin \frac{\delta}{2}}
$$

Example 2

$$
\begin{aligned}
& s_{n}(x)=\sum_{k=1}^{n} \frac{1}{k^{2}} \sin k x=\sin x+\frac{1}{4} \sin 2 x+\ldots+\frac{1}{n^{2}} \sin n x \\
& c_{n}(x)=\sum_{k=1}^{n} \frac{1}{k^{2}} \cos k x=\cos x+\frac{1}{4} \cos 2 x+\ldots+\frac{1}{n^{2}} \cos n x
\end{aligned}
$$

converge uniformly to continuous functions $\mathbb{R} \rightarrow \mathbb{R}$ because

Theorem

If a sequence $\left(g_{n}\right)$ of functions $g_{n}: X \rightarrow \mathbb{C}$ (where $X \subseteq \mathbb{R}$) is uniformly Cauchy ${ }^{1}$, then $\left(g_{n}\right)$ converges uniformly on X.
If in addition the g_{n} are continuous on X, then their limit is a continuous function.

Proposition (Weierstrass M-test)

If for all $n \in \mathbb{N}, f_{n}: X \rightarrow \mathbb{C}$ satisfies $\left|f_{n}(t)\right| \leq M_{n} \forall t \in X$ where
$\sum_{n=1}^{\infty} M_{n}<\infty$ then the sequence $\left(g_{n}\right)$ where $g_{n}(t)=\sum_{k=1}^{n} f_{n}(t)$

converges uniformly.

${ }^{1}$ i.e. satisfies: for each $\varepsilon>0$ there is $n_{o} \in \mathbb{N}$ so that if $n, m \geq n_{o}$ then for each $x \in X$ we have $|g(x)-g(x)|<\varepsilon$

Example 3

Example

$$
\begin{aligned}
& s_{n}(x)=\sum_{k=1}^{n} \frac{1}{k} \sin k x=\sin x+\frac{1}{2} \sin 2 x+\ldots+\frac{1}{n} \sin n x \\
& c_{n}(x)=\sum_{k=1}^{n} \frac{1}{k} \cos k x=\cos x+\frac{1}{2} \cos 2 x+\ldots+\frac{1}{n} \cos n x
\end{aligned}
$$

We will show that both sequences converge for each $x \neq 2 k \pi$ and define continuous functions. It suffices to restrict to the interval $(0,2 \pi)$, since both sequences are trigonometric polynomials, hence 2π-periodic functions. (Observe that for $x=2 k \pi$ the sequence $\left(c_{n}(x)\right)$ diverges.)

Tools

Proposition (Dirichlet)

Let $\left(a_{k}\right)$ be a sequence of functions $a_{k}: X \rightarrow \mathbb{C}$ and $\left(b_{k}\right)$ a sequence of numbers. If
(i) there is $M<\infty$ so that $\forall t \in X, \forall n \in \mathbb{N}$, : $\left|\sum_{k=1}^{n} a_{k}(t)\right| \leq M$, (ii) $b_{1} \geq b_{2} \geq \ldots \geq b_{n} \geq 0$ and (iii) $b_{n} \rightarrow 0$,
then the series $\sum_{k} b_{k} a_{k}$ converges uniformly on X.

Lemma (summation by parts)

If $b_{1} \geq b_{2} \geq \ldots \geq b_{n} \geq 0$ and $a_{k} \in \mathbb{C}$, then setting $s_{0}=0$ and $s_{k}=a_{1}+a_{2}+\ldots+a_{k}$, we have for each $m, n \in \mathbb{N}$ with $n>m \geq 1$,

$$
\sum_{k=m}^{n} a_{k} b_{k}=\sum_{k=m}^{n-1} s_{k}\left(b_{k}-b_{k+1}\right)+s_{n} b_{n}-s_{m-1} b_{m}
$$

Proof of Dirichlet (Sketch) If $n, m \in \mathbb{N}$ and $n>m$, for each $t \in X$ we have (from the Lemma)

$$
\begin{aligned}
& \left|\sum_{k=m}^{n} a_{k}(t) b_{k}\right|=\left|\sum_{k=m}^{n-1} s_{k}(t)\left(b_{k}-b_{k+1}\right)+s_{n}(t) b_{n}-s_{m-1}(t) b_{m}\right| \\
& \leq \sum_{k=m}^{n-1}\left|s_{k}(t)\right|\left(b_{k}-b_{k+1}\right)+\left|s_{n}(t)\right| b_{n}+\left|s_{m-1}(t)\right| b_{m} \\
& \left(\text { since } b_{n}, b_{m}, b_{k}-b_{k+1} \geq 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{k=m}^{n-1} M\left(b_{k}-b_{k+1}\right)+M b_{n}+M b_{m} \\
& =M\left(b_{m}-b_{n}\right)+M b_{n}+M b_{m}=2 M b_{m}
\end{aligned}
$$

\ldots.. since $b_{m} \rightarrow 0$, we obtain that the sequence of partial sums of
$\sum_{k} b_{k} a_{k}$ is uniformly Cauchy, hence unifromly convergent.

Proposition

If $V \subseteq \mathbb{R}$ is open ${ }^{2}$ and $f_{n}: V \rightarrow \mathbb{C}$ satisfies: "for each compact $K \subseteq V$ the sequence $\left(\left.f_{n}\right|_{K}\right)$ converges uniformly on K " (we say: $\left(f_{n}\right)$ converges uniformly on compact subset of V) then for each $x \in V$ the sequence $\left(f_{n}(x)\right)$ converges.
If additionaly the f_{n} are continuous on V, then their limit $f: x \rightarrow \lim _{n} f_{n}(x)$ is also a continuous function on V.

[^0]$\left(\sum_{k=1}^{n} \sin k x\right) \quad$ Not convergent, but $\forall \delta>0$ uniformly bounded on $[\delta, 2 \pi-\delta]$.
$\left(\sum_{k=1}^{n} \frac{1}{k^{2}} \sin k x\right) \quad$ Converges uniformly on $[0,2 \pi]$, hence to a continuous function.
$\left(\sum_{k=1}^{n} \frac{1}{k} \sin k x\right)$
Converges for each $x \in(0,2 \pi)$ to a continuous function, because $\forall \delta>0$ it converges uniformly on $[\delta, 2 \pi-\delta]$.

Fourier Series

If I know that f is a trigonometric polynomial, how can I determine the coefficients?

Remark

$$
\text { If } \quad f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{N} a_{k} \cos k x+\sum_{k=1}^{N} b_{k} \sin k x
$$

then

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x \\
& b_{m}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin m x d x
\end{aligned}
$$

Fourier Series

Remark (Complex form)

$$
\text { if } \quad f(x)=\sum_{k=-N}^{N} c_{k} \exp i k x
$$

then,

$$
c_{m}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \exp (-i m x) d x, \quad-N \leq m \leq N
$$

because if $k \in \mathbb{Z}$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \exp (i k x) d x= \begin{cases}1 & k=0 \\ 0 & k \neq 0\end{cases}
$$

Fourier Series

Generalisation: Given a 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$, we define

$$
\begin{aligned}
a_{n}=a_{n}(f) & =\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x, \quad(n=0,1,2, \ldots) \\
b_{m}=b_{m}(f) & =\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin m x d x, \quad(m=1,2, \ldots) \\
\hat{f}(k) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \exp (-i k x) d x, \quad(k \in \mathbb{Z})
\end{aligned}
$$

It suffices that the integrals exist.
Definition: The Fourier series $S(f)$ of f :

$$
\begin{aligned}
S(f, x) & :=\frac{a_{o}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x+\sum_{k=1}^{\infty} b_{k} \sin k x \\
& =\sum_{k=-\infty}^{\infty} \hat{f}(k) e^{i k x} \text { (complex form) }
\end{aligned}
$$

(For now, we are not concerned with convergence or divergence of these series.)

Example

The Fourier series of the function $f(t)=t, t \in(-\pi, \pi)$ is

$$
f \sim 2\left(\sin t-\frac{1}{2} \sin 2 t+\frac{1}{3} \sin 3 t-\frac{1}{4} \sin 4 t+\ldots\right)
$$

Ic can be shown (Exercise!) that the partial sums of this series form a Cauchy sequence and therefore the series converges.
But does it converge to f ?

Parenthesis: periodic extension

$$
2\left(\sin t-\frac{1}{2} \sin 2 t+\frac{1}{3} \sin 3 t-\frac{1}{4} \sin 4 t+\ldots-\frac{1}{12} \sin 12 t\right)
$$

Fourier series

Remark

- The Fourier series of a trigonometric polynomial p is the trig. polynomial itself: $S_{n}(p)=p$ when $n \geq \operatorname{deg} p$, hence $S(p)=p$.
- If a trigonometric series $s(x)=\sum_{k} c_{k} e^{i k x}$ converge uniformly, then the Fourier coefficients $\hat{s}(k)$ of s are the c_{k}, hence the Fourier series of s is s.
- It is not however always true that every convergent trigonometric series is the Fourier series of some function (see later).

Fourier series

Proposition (Linearity!)

If f and g are integrable on $[0,2 \pi]$ and $\lambda \in \mathbb{C}$,

$$
\begin{aligned}
a_{n}(f+\lambda g) & =a_{n}(f)+\lambda a_{n}(g) \\
b_{n}(f+\lambda g) & =b_{n}(f)+\lambda b_{n}(g) \quad(n, m \in \mathbb{N})
\end{aligned}
$$

equivalently $\quad(\widehat{f+\lambda} g)(k)=\hat{f}(k)+\lambda \hat{g}(k) \quad(k \in \mathbb{Z})$
therefore $\quad S_{n}(f+\lambda g)=S_{n}(f)+\lambda S_{n}(g) \quad(n \in \mathbb{N})$.

Absolutely convergent Fourier series

Proposition

If f is a continuous and 2π-periodic function and $\sum|\hat{f}(k)|<\infty$ (equivalently $\sum\left(\left|a_{k}(f)+\left|b_{k}(f)\right|<\infty\right)\right.$ then the sequence $\left(S_{N}(f)\right)$ converges uniformly (and hence the fumction $S(f):=\lim _{N} S_{N}(f)$ is continuous).

Proof Weierstrass' M-test.
But how to conclude that $\left(S_{N}(f)\right)$ converges to f ?
Observe that for each $k \in \mathbb{Z}$ we have $\widehat{S_{N}(f)}(k)=\hat{f}(k)$ when $N \geq|k|$, hence $\widehat{S(f)}(k)=\hat{f}(k)$ for each $k \in \mathbb{Z}$ (why?).

It suffices therefore to prove the following Uniqueness Theorem:

The Uniqueness Theorem

Theorem

If f and g is continuous and 2π-periodic functions with $\hat{g}(k)=\hat{f}(k)$ for each $k \in \mathbb{Z}$ (equivalently $a_{n}(f)=a_{n}(g)$ and $b_{n}(f)=b_{n}(g)$ for each $n \in \mathbb{N}$), then $f=g$.

Sketch of Proof We will show that if $f \neq g$ there exists a trig. polynomial p with $\int_{-\pi}^{\pi} f p \neq \int_{-\pi}^{\pi} g p$. Then, there must exist k so that $\int_{-\pi}^{\pi} f e_{k} \neq \int_{-\pi}^{\pi} g e_{k}$, i.e. $\hat{f}(-k) \neq \hat{g}(-k)$.
Let $\psi:=f-g$. In the special case: $\psi(0)>0$, we will show there is a trigonometric polynomial of the form $p_{k, a}(t)=(a+\cos t)^{k}$ for appropriate a, k such that $\int_{-\pi}^{\pi} \psi p \neq 0$.
General case: If $\psi\left(t_{0}\right):=h\left(t_{0}\right) \neq 0$, there is a θ so that $e^{i \theta} \psi\left(t_{0}\right)>0$, hence the function ϕ given by $\phi(s)=e^{i \theta} \psi\left(s+t_{0}\right)$ satisfies $\phi(0)>0$. Thus some $\hat{\phi}(k)$ must be nonzero. But then $\hat{\psi}(k)=e^{-i \theta} e^{i k t_{0}} \hat{\phi}(k) \neq 0$.

The trigonometric polynomials $p_{k, a}$

Continuity was used only at the point t_{0} :

Theorem

If f and g are integrable on $[-\pi, \pi]$ and $\hat{g}(k)=\hat{f}(k)$ for each $k \in \mathbb{Z}$ (equivalently $a_{n}(f)=a_{n}(g)$ and $b_{n}(f)=b_{n}(g)$ for each $n \in \mathbb{N}$), then $f\left(t_{0}\right)=g\left(t_{0}\right)$ at each point where $f-g$ is continuous.

Simple cases of convergence

Proposition

If f continuous, 2π-periodic and $\sum|\hat{f}(k)|<\infty$ (equivalently $\sum\left(\left|a_{k}(f)+\left|b_{k}(f)\right|<\infty\right)\right.$ then $\left(S_{N}(f)\right)$ converges uniformly to f.

Proposition

If f continuous, 2π-periodic and its derivative f^{\prime} exists and is integrable,

$$
S\left(f^{\prime}, x\right)=\sum_{k=1}^{\infty}\left(k b_{k} \cos k x-k a_{k} \sin k x\right)
$$

Complex form:

$$
\widehat{f^{\prime}}(k)=i k \hat{f}(k) \quad(k \in \mathbb{Z})
$$

Simple cases of convergence

Proposition

If $f: \mathbb{R} \rightarrow \mathbb{C}$ is continuous, 2π-periodic and $\sum|k \hat{f}(k)|<\infty$, then f is continuously differentiable and the series $\sum i k \hat{f}(k) \exp i k x$ converges to f^{\prime} uniformly.

Lemma

If f and its derivatives $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n-1)}$ are continuous 2π-periodic functions and $\left|f^{(n)}\right|$ is integrable then $|\hat{f}(k)| \leq \frac{\left\|f^{(n)}\right\|_{1}}{\mid k^{n}}$ for each $k \neq 0$ (where $\|g\|_{1}=\frac{1}{2 \pi} \int|g|$).

Proposition
If f, f^{\prime} and $f^{\prime \prime}$ are continuous and 2π-periodic, the series $\sum \hat{f}(k) \exp i k x$ converges uniformly to f.

Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be continuous and 2π-periodic.
Reminder: $S_{n}(f, t)=\sum_{|k| \leq n} \hat{f}(k) e^{i k t}$.
The sequence $\left(S_{n}(f)\right)$ is not always always convergent (not even pointwise). However,

Theorem (Fejér)

If $f: \mathbb{R} \rightarrow \mathbb{C}$ is a continuous and 2π-periodic function, then the sequence $\left(\sigma_{n}(f)\right)$ where

$$
\sigma_{m}(f)=\frac{1}{m+1} \sum_{n=0}^{m} S_{n}(f) \quad(m \in \mathbb{N})
$$

converges to f uniformly.

$$
\begin{aligned}
& S_{n}(f)(t)=\sum_{k=-n}^{k=n} \hat{f}(k) \exp (i k t) \\
& =\sum_{k=-n}^{k=n}\left(\int_{-\pi}^{\pi} f(s) \exp (-i k s) \frac{d s}{2 \pi}\right) \exp (i k t) \\
& =\int_{-\pi}^{\pi}\left(\sum_{k=-n}^{k=n} \exp (i k(t-s))\right) f(s) \frac{d s}{2 \pi}:=\int_{-\pi}^{\pi} D_{n}(t-s) f(s) \frac{d s}{2 \pi} .
\end{aligned}
$$

$$
\begin{aligned}
\text { hence }_{\sigma_{m}(f)(t)} & =\frac{1}{m+1} \sum_{n=0}^{m} S_{n}(f)(t) \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{1}{m+1} \sum_{n=0}^{m} \sum_{k=-n}^{k=n} \exp (i k(t-s))\right) f(s) d s \\
& :=\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{m}(t-s) f(s) d s
\end{aligned}
$$

Two kernels: Dirichlet against Fejér

Dirichlet: $\quad D_{n}(x)=\sum_{k=-n}^{k=n} \exp (i k x)= \begin{cases}\frac{\sin \left(\frac{2 n+1}{2} x\right)}{\sin (x / 2)}, & x \neq 0, \\ 2 n+1, & x=0\end{cases}$
(d)

Fejér: $\quad K_{m}(x)=\frac{1}{m+1} \sum_{n=0}^{m}\left(\sum_{k=-n}^{n} \exp (i k x)\right)$

$$
= \begin{cases}\frac{1}{m+1}\left(\frac{\sin \left(\frac{m+1}{2} x\right)}{\sin (x / 2)}\right)^{2}, & x \neq 0, \tag{k}\\ m+1, & x=0\end{cases}
$$

Proof of (d) for $x \neq 0$

$$
\begin{aligned}
\sin \left(\frac{x}{2}\right) D_{n}(x) & =\sin \left(\frac{x}{2}\right) \sum_{k=-n}^{k=n} \exp (i k x) \\
\Rightarrow \quad\left(e^{\frac{i x}{2}}-e^{-\frac{i x}{2}}\right) D_{n}(x) & =\left(e^{\frac{i x}{2}}-e^{-\frac{i x}{2}}\right) \sum_{k=-n}^{k=n} \exp (i k x) \\
\Rightarrow \quad\left(e^{i x}-1\right) D_{n}(x) & =\left(e^{i x}-1\right) \sum_{k=-n}^{k=n} \exp (i k x) \\
& =\sum_{k=-n}^{k=n}(\exp (i(k+1) x)-\exp (i k x)) \\
& =\exp (i(n+1) x)-\exp (-i n x) \\
& =e^{\frac{i x}{2}}\left(\exp \left(i\left(n+\frac{1}{2}\right) x\right)-\exp \left(-i\left(n-\frac{1}{2} x\right)\right)\right. \\
& =e^{\frac{i x}{2}} 2 i \sin \left(\left(n+\frac{1}{2}\right) x\right)
\end{aligned}
$$

If $x \neq 0$,

$$
\begin{aligned}
\frac{1}{\sin \frac{x}{2}} \sum_{n=0}^{m} \sin \left(n+\frac{1}{2}\right) x & =\frac{1}{2 \sin ^{2} \frac{x}{2}} \sum_{n=0}^{m} 2 \sin \frac{x}{2} \sin \left(n+\frac{1}{2}\right) x \\
& =\frac{1}{2 \sin ^{2} \frac{x}{2}} \sum_{n=0}^{m}(\cos n x-\cos (n+1) x) \\
& =\frac{1}{2 \sin ^{2} \frac{x}{2}}(1-\cos (m+1) x)
\end{aligned}
$$

Therefore $K_{m}(x)=\frac{1}{m+1} \sum_{n=0}^{m} D_{n}(x)=\frac{1}{m+1} \sum_{n=0}^{m} \frac{\sin \left(n+\frac{1}{2}\right) x}{\sin (x / 2)}$,
$K_{m}(x)=\frac{1}{m+1} \cdot \frac{1}{\sin ^{2} \frac{x}{2}} \frac{1-\cos (m+1) x}{2}=\frac{1}{m+1} \cdot \frac{\sin ^{2}\left(\frac{m+1}{2} x\right)}{\sin ^{2} \frac{x}{2}}$.
If $x=0$,
$K_{m}(0)=\frac{1}{m+1} \sum_{n=0}^{m} \sum_{k=-n}^{k=n} \exp 0=\frac{1}{m+1} \sum_{n=0}^{m}(2 n+1)=m+1$.

Lemma

$$
\begin{aligned}
& \text { Claim: } \quad K_{m}=\sum_{k=-m}^{m}\left(1-\frac{|k|}{m+1}\right) e_{k} . \quad \text { Proof: } \\
& K_{m}=\frac{1}{m+1} \sum_{n=0}^{m}\left(\sum_{k=-n}^{n} e_{k}\right)=\frac{1}{m+1} \sum_{n=0}^{m}\left(e_{0}+\left(e_{1}+e_{-1}\right)+\cdots+\left(e_{n}+e_{-n}\right)\right) \\
& =\frac{1}{m+1}\left(e_{0}\right. \\
& +e_{0}+\left(e_{1}+e_{-1}\right) \\
& +e_{0}+\left(e_{1}+e_{-1}\right)+\left(e_{2}+e_{-2}\right) \\
& \text { (} n=0 \text {) } \\
& \text { (} n=1 \text {) } \\
& +\ldots \ldots \\
& \left.+e_{0}+\left(e_{1}+e_{-1}\right)+\left(e_{2}+e_{-2}\right)+\cdots+\left(e_{m}+e_{-m}\right)\right) \quad(n=m) \\
& =e_{0}+\frac{m}{m+1}\left(e_{1}+e_{-1}\right)+\frac{m-1}{m+1}\left(e_{2}+e_{-2}\right)+\cdots+\frac{1}{m+1}\left(e_{n}+e_{-n}\right) \\
& =\sum_{k=-m}^{m}\left(1-\frac{|k|}{m+1}\right) e_{k} \text {. }
\end{aligned}
$$

The Dirichlet kernel

$$
D_{m}(x)=\frac{\sin \left(\frac{2 m+1}{2} x\right)}{\sin (x / 2)}, x \neq 0, \quad D_{m}(0)=2 m+1
$$

$m=4.5,7.10 .14$.

The Fejér kernel

$$
m=4,5,7,10,14 .
$$

Properties of Fejér's kernel K_{m}

Remark

The Fejér kernel has the following properties:
(α) There exists M so that $\left\|K_{m}\right\|_{1} \leq M$ for each m.
(β) If $\delta \in(0, \pi)$ and $E_{\delta}=[-\pi,-\delta] \cup[\delta, \pi]$, then $\lim _{m} \int_{E_{\delta}}\left|K_{m}\right|=0$.
$(\gamma) \frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{m}(x) d x=1$ for every m.

- Property (γ) holds by the definition of K_{m}, since $\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i k t} d t=1$ if $k=0$ and 0 otherwise.
- Since $K_{m}(t) \geq 0,(\gamma)$ implies (α) with $M=1$.
- Property (β) follows from the remark that if $\delta \leq|x| \leq \pi$, then $\left|K_{m}(x)\right|=K_{m}(x) \leq \frac{1}{m+1} \frac{1}{\sin ^{2} \frac{\delta}{2}}$, hence $\lim _{m} K_{m}(x)=0$ uniformly in E_{δ} and hence $\lim _{m} \int_{E_{\delta}}\left|K_{m}\right|=0$.

Fejér's Theorem: Sketch of the proof

If $\delta>0$, for large enough $m \in \mathbb{N}$, the value $K_{m}(s)$ is almost 0 outside the interval $[-\delta, \delta]$ (by (β)). Therefore

$$
\sigma_{m}(f)(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t-s) K_{m}(s) d s \approx \frac{1}{2 \pi} \int_{-\delta}^{\delta} f(t-s) K_{m}(s) d s
$$

where the symbol \approx means "nearly equal" here. But f is uniformly continuous, hence if δ is small enough, when $|s|<\delta$ we have $f(t-s) \approx f(t)$. Therefore

$$
\frac{1}{2 \pi} \int_{-\delta}^{\delta} f(t-s) K_{m}(s) d s \approx f(t)\left(\frac{1}{2 \pi} \int_{-\delta}^{\delta} K_{m}(s) d s\right)
$$

and, again from (β),

$$
\frac{1}{2 \pi} \int_{-\delta}^{\delta} K_{m}(s) d s \approx \frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{m}(s) d s=1
$$

by (γ). Thus finally $\sigma_{m}(f)(t) \approx f(t)$.

First consequences of Fejér's Theorem

- Uniqueness. If f, g are continuous, 2π-periodic and $\hat{f}(k)=\hat{g}(k)$ for all $k \in \mathbb{Z}$, then $f=g$.

Second Proof. We have $\sigma_{n}(f)=\sigma_{n}(g)$ for each $n \in \mathbb{N}$, hence $f=\lim _{n} \sigma_{n}(f)=\lim _{n} \sigma_{n}(g)=g$ by Fejér.

- Proposition [Fejér] Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be Riemann integrable in $[-\pi, \pi]$ and 2π-periodic. If f is continuous at some $t \in[-\pi, \pi]$, then $\sigma_{n}(f, t) \rightarrow f(t)$. [The proof is a variation of the previous one: now δ will depend on t, and convergence is shown at t.]
[Remark: More generally, if the one-sided limits $f\left(t_{+}\right)$and $f\left(t_{-}\right)$exist, then $\sigma_{n}(f, t) \rightarrow \frac{f\left(t_{+}\right)+f\left(t_{-}\right)}{2}$. (Proof omitted).]
- Corollary Under the conditions of the Proposition, if $\left(S_{n}\left(f, t_{0}\right)\right)$ converges, then it must converge to $f\left(t_{0}\right)$.
- Remark For every f, Riemann integrable in $[-\pi, \pi]$ and 2π-periodic, we have $\left\|\sigma_{n}(f)\right\|_{\infty} \leq\|f\|_{\infty}$.

For the following, see the file not60520en.pdf
7. Mean square convergence
8. The Poisson kernel
9. Pointwise convergence and the localisation principle
10. Complements: Divergent Fourier series

Example

If $\quad f(t)=\left\{\begin{array}{cc}-i(\pi+t), & -\pi \leq t<0 \\ i(\pi-t), & 0 \leq t<\pi\end{array}\right.$
then $\quad S_{n}(f, t)=\left(\sum_{k=-n}^{-1}+\sum_{k=1}^{n}\right) \frac{1}{k} e^{i k t}$

$$
\left|S_{n}(f, t)\right| \leq\|f\|_{\infty}+2=\pi+2
$$

is uniformly bounded, but its 'negative' (co-analytic) part
$g_{n}(t)=\sum_{k=-n}^{-1} \frac{1}{k} e^{i k t}$ is not : $g_{n}(0)=\sum_{m=1}^{n} \frac{1}{-m}$.
hence there cannot exist any Riemann-integrable g so that $g_{n}=S_{n}(g)$. We will see later that there exists a Lebesgue-integrable g with $g_{n}=S_{n}(g)$!

Example: A continuous f with $\limsup \left|S_{n}(f, 0)\right|=\infty$

If

$$
p_{N}(x)=e^{i 2 N x} \sum_{1 \leq|k| \leq N} \frac{e^{i k x}}{k}
$$

we have shown that there exists M so that $\left|p_{N}(x)\right| \leq M$ for all $N \in \mathbb{N}$ and every $x \in \mathbb{R}$. For a subsequence $\left(N_{k}\right)$, define

$$
f(x)=\sum_{k=1}^{\infty} a_{k} p_{N_{k}}(x)
$$

where $a_{k}=\frac{1}{k^{2}}$: the series converges uniformly, hence f is continuous.
But if $N_{k}=3^{2^{k}}, k=1,2, \ldots$, then

$$
\left|S_{2 N_{m}}(f)(0)\right| \rightarrow+\infty
$$

because $\left|S_{2 N_{m}}(f)(0)\right| \geq\left|g_{N_{m}}(0)\right|-c \geq c a_{m} \log \left|N_{m}\right|$ for a suitable $c>0$.

Part II

The Lebesgue integral

The Riemann integral

Behaviour with regard to limits:

Example

Consider the Dirichlet function $f=\chi_{\mathbb{Q}}:[0,1] \rightarrow \mathbb{R}$.

$$
f(x)= \begin{cases}1, & x \in \mathbb{Q} \cap[0,1] \\ 0, & x \notin \mathbb{Q} \cap[0,1]\end{cases}
$$

It is not Riemann integrable. But if $\left\{q_{n}: n \in \mathbb{N}\right\}$ is an enumeration of $\mathbb{Q} \cap[0,1]$ and

$$
f_{n}(x)= \begin{cases}1, & x \in\left\{q_{1}, \ldots, q_{n}\right\} \\ 0, & x \notin\left\{q_{1}, \ldots, q_{n}\right\}\end{cases}
$$

then $f_{n} \nearrow f$ in $[0,1]$ and each f_{n} is Riemann integrable, being a bounded function with a finite number of discontinuities.

The Riemann integral and the Lebesgue integral

Let $f:[a, b] \rightarrow \mathbb{R} \quad$ be bounded.
Riemann: Partition $[a, b]: \quad P=\left\{a=x_{0}<x_{1}<x_{2}<\ldots<x_{n}=b\right\}$

$$
L(f, P)=\sum_{k=0}^{n-1} m_{k}\left(x_{k+1}-x_{k}\right) \text { and } U(f, P)=\sum_{k=0}^{n-1} M_{k}\left(x_{k+1}-x_{k}\right)
$$

where

$$
m_{k}=\inf \left\{f(x): x_{k} \leq x \leq x_{k+1}\right\} \text { and } M_{k}=\sup \left\{f(x): x_{k} \leq x \leq x_{k+1}\right\} .
$$

Lebesgue: Partition the range $[m, M]$ of f

$$
\begin{aligned}
& Q=\left\{m=y_{0}<y_{1}<y_{2}<\ldots<y_{t}=M\right\} . \\
& \widetilde{L}(f, Q)=\sum_{k=0}^{t-1} y_{k} \mu\left(f^{-1}\left(\left[y_{k}, y_{k+1}\right)\right)\right) \text { and } \widetilde{U}(f, Q)=\sum_{k=1}^{t-1} y_{k+1} \mu\left(f^{-1}\left(\left[y_{k}, y_{k+1}\right)\right)\right. \\
& \mu=\text { "length" (??) }
\end{aligned}
$$

The Riemann integral and the Lebesgue integral

Problem: How to define the "length" of the (possibly complicated) set $\left.f^{-1}\left(\left[y_{k}, y_{k-1}\right)\right)=\left\{x \in[a, b]: y_{k} \leq f(x)<y_{k+1}\right\}\right)$.

Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann-integrable. Given $\varepsilon>0$, choose P with $U(f, P)-L(f, P)<\varepsilon$, pick any $t_{k} \in\left[x_{k}, x_{k+1}\right]$ and put

$$
f_{\varepsilon}=\sum_{k=0}^{n-1} f\left(t_{k}\right) \chi_{k} \quad \text { (a step function) }
$$

where $\chi_{k}=\chi_{\left(x_{k}, x_{k+1}\right)}$. Then $\int_{a}^{b}\left|f-f_{\varepsilon}\right|<\varepsilon$.
For each χ_{k} and every $\delta>0$ there exists a continuous h_{k} so that $\int_{a}^{b}\left|\chi_{k}-h_{k}\right|<\delta$.
Therefore, if $h_{\varepsilon}:=\sum_{k=0}^{n-1} f\left(t_{k}\right) h_{k}$ then $\int_{a}^{b}\left|f_{\varepsilon}-h_{\varepsilon}\right| \leq n \delta\|f\|_{\infty}$.
Conclusion: there exists $h_{\varepsilon}:[a, b] \rightarrow \mathbb{R}$ continuous so that

$$
\int_{a}^{b}\left|f-h_{\varepsilon}\right|<2 \varepsilon
$$

Desirable properties of "length"

(a) $\mu((a, b))=b-a$
(b) $\mu\left(\bigcup_{n \in \mathbb{N}} E_{n}\right)=\sum_{n \in \mathbb{N}} \mu\left(E_{n}\right)$ when $\left(E_{n}\right)$ are pairwise disjoint
(c) $\mu(E+x)=\mu(E)$ for all $E \subseteq \mathbb{R}$ and $x \in \mathbb{R}$

Remark (α) The map $\phi: t \mapsto e^{2 \pi i t}$ defines a bijective correspondence between $(0,1] \subseteq \mathbb{R}$ and the unit circle $\left.S:=\left\{e^{2 \pi i t}: t \in \mathbb{R}\right\} \subseteq \mathbb{C}\right\}$ which transforms "length" to "arc length".
(β) If there exists a set $U \subseteq S:=\left\{e^{2 \pi i t}: t \in \mathbb{R}\right\}$ such that the sets $U_{q}:=\left\{e^{2 \pi i q} w: w \in U\right\}$ (where $q \in \mathbb{Q}$) are pairwise disjoint and their union is the circle S, then U cannot be "measured", hence $\phi^{-1}(U) \subseteq(0,1]$ cannot be "measured".

There exist sets that cannot be "measured"

For z, w in the circle S define $\quad z \sim w \Longleftrightarrow \exists q \in \mathbb{Q}: w=e^{2 \pi i q} z$.
The equivalence relation \sim splits (partitions) S into (disjoint) classes:
$S=\bigcup_{z \in S}[z]$ where $[z]=\{w \in S: w \sim z\}$.
The Axiom of Choice (!) ensures that we may choose one representative $u \in[z]$ from each class. Let $U \subseteq S$ be the set of all these choices, so that $U \cap[z]$ is a singleton for each class $[z]$; thus we have

$$
S=\bigcup_{u \in U}[u] \quad \text { (a union of orbits). }
$$

For each $q \in \mathbb{Q}$, define $U_{q}:=\left\{e^{2 \pi i q} w: w \in U\right\}$.
This gives a (different) partition

$$
\left.S=\bigcup_{q \in \mathbb{Q}} U_{q} \quad \text { (countable union of translates of } U\right)
$$

Suppose that U could be "measured". Then $\mu\left(U_{q}\right)=\mu(U) \forall q$, so $\mu(S)=\sum_{q \in \mathbb{Q}} \mu\left(U_{q}\right)=\sum_{q \in \mathbb{Q}} \mu(U)$.
But if $\mu(U)=0$ then $\mu(S)=0$, while if $\mu(U)>0$ then $\mu(S)=\infty$. (!)

The strategy will be to define the "length" or "measure" only for a subclass of sets, for which the desirable requirements are fulfilled.

The method to achieve this will be to first define a function (called "outer measure") on all subsets of \mathbb{R} which partly satisfies the requirements, and then restrict to the class of sets on which this outer measure satisfies the requirements completely.
We will show that this class (the measurable sets) is large enough.

Definition of Lebesgue outer measure

Let $I=(a, b) \subseteq \mathbb{R}$ be a bounded open interval.
Its length: $\ell(I):=b-a$.
By a cover of a set $A \subseteq \mathbb{R}$ we will mean a countable family of bounded open intervals $\left(I_{n}\right)$ with $A \subseteq \bigcup_{n} I_{n}$.

Definition (Lebesgue outer measure)

Let $A \subseteq \mathbb{R}$. The outer measure of A is

$$
\lambda^{*}(A):=\inf \left\{\sum_{n} \ell\left(I_{n}\right):\left(I_{n}\right) \text { cover of } A\right\} .
$$

Lebesgue outer measure

Proposition

$$
\text { If } A \subseteq B \subseteq \mathbb{R} \text {, then } \lambda^{*}(A) \leq \lambda^{*}(B)
$$

Proposition

If $A \subseteq \mathbb{R}$ is finite or countably infinite, then $\lambda^{*}(A)=0$.
Note But there exist uncountable sets with $\lambda^{*}(A)=0$ (for example the Cantor set - see later).

Proposition
$\lambda^{*}(A+x)=\lambda^{*}(A)$ for each $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$.

Lebesgue outer measure

Proposition

$$
\lambda^{*}([a, b])=b-a
$$

Proposition

$$
\lambda^{*}((a, b))=b-a(=\ell((a, b))
$$

The property

$$
\begin{gathered}
\lambda\left(\bigcup_{n \in \mathbb{N}} E_{n}\right)=\sum_{n \in \mathbb{N}} \lambda\left(E_{n}\right) \\
\text { when }\left\{E_{n}: n \in \mathbb{N}\right\} \text { are pairwise disjoint (} \sigma \text {-additivity) }
\end{gathered}
$$

cannot hold for all families $\left\{E_{n}: n \in \mathbb{N}\right\}$, as we saw. Nevetheless,

Lebesgue outer measure and measurability

Proposition (countable subadditivity)

For each finite or countably infinite family $\left\{A_{n}\right\}$ of subsets of \mathbb{R},

$$
\lambda^{*}\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} \lambda^{*}\left(A_{n}\right)
$$

We want to achieve equality when the $\left\{A_{n}\right\}$ are pairwise disjoint.
We are forced to restrict to sets which "have length":

Definition (Lebesgue measurable set)

A sets $A \subseteq \mathbb{R}$ is called Lebesgue measurable if, for each $X \subseteq \mathbb{R}$,

$$
\lambda^{*}(X)=\lambda^{*}(X \cap A)+\lambda^{*}\left(X \cap A^{c}\right)
$$

The class of Lebesgue measurable sets is denoted by \mathcal{M}.
The restriction of λ^{*} to \mathcal{M} is called Lebesgue measure.
Thus, a set is measurable if "it splits correctly" - with respect to outer measure - all other sets.

The class of measurable sets

Remark. In order to prove that $A \in \mathcal{M}$, it suffices to show

$$
\lambda^{*}(X) \geq \lambda^{*}(X \cap A)+\lambda^{*}\left(X \cap A^{c}\right)
$$

for each $X \subseteq \mathbb{R}$ (in fact, it suffices to assume $\left.\lambda^{*}(X)<\infty\right)$.
Proposition
If $\lambda^{*}(A)=0$, then $A \in \mathcal{M}$.

Proposition

The complement of a measurable set is measurable:
if $A \in \mathcal{M}$ then $A^{c}=\mathbb{R} \backslash A \in \mathcal{M}$.

Proposition

The union of two measurable sets is measurable:
if $A, B \in \mathcal{M}$, then $A \cup B \in \mathcal{M}$.
Hence also the intersection: $(A \cap B)=\left(A^{c} \cup B^{c}\right)^{c}$.

The class of measurable sets

Proof
$X \cap(A \cup B)=X \cap\left(A \cup\left(A^{c} \cap B\right)\right)=(X \cap A) \cup\left(X \cap A^{c} \cap B\right)$, hence

$$
\begin{aligned}
& \lambda^{*}(X \cap(A \cup B))+\lambda^{*}\left(X \cap(A \cup B)^{c}\right)= \\
& =\lambda^{*}\left((X \cap A) \cup\left(X \cap A^{c} \cap B\right)\right)+\lambda^{*}\left(X \cap(A \cup B)^{c}\right) \\
& (\text { sub }) \\
& \leq \lambda^{*}(X \cap A)+\lambda^{*}\left(\left(X \cap A^{c}\right) \cap B\right)+\lambda^{*}\left(\left(X \cap A^{c}\right) \cap B^{c}\right) \\
& \stackrel{(B \in \mathcal{M})}{=} \lambda^{*}(X \cap A)+\lambda^{*}\left(X \cap A^{c}\right) \\
& \stackrel{(A \in \mathcal{M})}{=} \lambda^{*}(X) .
\end{aligned}
$$

Thus,

$$
\lambda^{*}(X \cap(A \cup B))+\lambda^{*}\left(X \cap(A \cup B)^{c}\right) \leq \lambda^{*}(X)
$$

The class of measurable sets

Proposition

If $A, B \in \mathcal{M}$ and $A \cap B=\emptyset$ then, for each $X \subseteq \mathbb{R}$,

$$
\lambda^{*}(X \cap(A \cup B))=\lambda^{*}(X \cap A)+\lambda^{*}(X \cap B)
$$

hence

$$
\lambda^{*}(A \cup B)=\lambda^{*}(A)+\lambda^{*}(B)
$$

By induction:

Corollary (Finite aditivity)

If B_{1}, \ldots, B_{m} are pairwise disjoint sets in \mathcal{M} then, for each $X \subseteq \mathbb{R}$,

$$
\lambda^{*}\left(X \cap\left(B_{1} \cup \cdots \cup B_{m}\right)\right)=\sum_{n=1}^{m} \lambda^{*}\left(X \cap B_{n}\right)
$$

hence

$$
\lambda^{*}\left(B_{1} \cup \cdots \cup B_{m}\right)=\sum_{n=1}^{m} \lambda^{*}\left(B_{n}\right)
$$

The class of measurable sets

Proposition

If $\left(A_{n}\right)_{n=1}^{\infty}$ is a countable family of measurable sets, then their union
∞
$\bigcup_{n=1}^{\infty} A_{n}$ is a measurable set.
$n=1$
*** *** ***

Definition (σ-algebra)

Let Ω be a nonempty set. A class \mathcal{A} of subsets of Ω is called a σ-algebra if it satisfies
(i) $\Omega \in \mathcal{A}$.
(ii) If $A \in \mathcal{A}$, then $\Omega \backslash A \in \mathcal{A}$.
(iii) If $A_{n} \in \mathcal{A}$ for all $n \in \mathbb{N}$, then $\bigcup_{n=1}^{\infty} A_{n} \in \mathcal{A}$.

It follows that:
(iv) If $A_{n} \in \mathcal{A}$ for all $n \in \mathbb{N}$, then $\bigcap_{n=1}^{\infty} A_{n} \in \mathcal{A}$.
(v) If $A, B \in \mathcal{A}$, then $A \backslash B=A \cap B^{c} \in \mathcal{A}$.

The class of measurable sets

Theorem

Let $\mathcal{M}=\{A \subseteq \mathbb{R} \mid A$ Lebesgue measurable $\}$. Then \mathcal{M} is a σ-algebra and the set function $\lambda: \mathcal{M} \rightarrow[0,+\infty]$

$$
A \mapsto \lambda(A):=\lambda^{*}(A)
$$

is countably additive (σ-additive). Thus, if $\left(A_{n}\right)_{n=1}^{\infty}$ is a countable family of pairwise disjoint Lebesgue measurable sets $\left(A_{n} \in \mathcal{M}\right.$ for all n and $A_{n} \cap A_{m}=\emptyset$ if $n \neq m$), then

$$
\lambda\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \lambda\left(A_{n}\right) .
$$

Definition (Lebesgue masure)

The set function $\lambda: \mathcal{M} \rightarrow[0,+\infty]$

$$
A \mapsto \lambda(A):=\lambda^{*}(A)
$$

is called Lebesgue measure.

Borel sets. They are Lebesgue measurable

Proposition

All intervals are Lebesgue measurable sets.
Consider the intersection of all σ-algebras containing the set of intervals:

Definition (The Borel σ-algebra)

The smallest σ-algebra of subsets of \mathbb{R} which contains the set of all intervals is called the σ-algebra of Borel subsets of \mathbb{R} (or the Borel σ-algebra) and is denoted by \mathcal{B}.

Proposition

$\mathcal{B} \subseteq \mathcal{M}$ (we will show later that $\mathcal{B} \neq \mathcal{M}$).

Proposition

Every open and every closed subset of \mathbb{R} is a Borel set, hence is measurable.
... hence every countable intersection of open sets (every G_{δ}) and every countable union of closed sets (every F_{σ}).

Approximating measurable sets

Proposition

Let $A \subseteq \mathbb{R}$. The following are equivalent:
1 The set A is measurable.
2 For every $\varepsilon>0$ there exists an open set $G \subseteq \mathbb{R}$ with $A \subseteq G$ and $\lambda^{*}(G \backslash A)<\varepsilon$.
3 There exists a $G_{\delta^{-s e t}} B$ so that $A \subseteq B$ and $\lambda^{*}(B \backslash A)=0$.

Proposition

Let $A \subseteq \mathbb{R}$. The following are equivalent:
1 The set A is measurable.
2. For every $\varepsilon>0$ there exists a closed set $F \subseteq \mathbb{R}$ with $F \subseteq A$ and $\lambda^{*}(A \backslash F)<\varepsilon$.
3 There exists an F_{σ}-set C such that $C \subseteq A$ and $\lambda^{*}(A \backslash C)=0$.
(Exercise)

Remark

$$
\begin{aligned}
& \text { If } X, Y \in \mathcal{M}, X \subseteq Y \text { and } \lambda(X)<\infty \text {, then } \\
& \lambda(Y \backslash X)=\lambda(Y)-\lambda(X) .
\end{aligned}
$$

Proposition

(i) If $\left(A_{n}\right)$ is an increasing sequence of measurable sets and $A:=\bigcup_{n=1}^{\infty} A_{n}$, then

$$
\lambda\left(A_{n}\right) \rightarrow \lambda(A)
$$

(ii) If $\left(B_{n}\right)$ is a decreasing sequence of measurable sets with
$\lambda\left(B_{1}\right)<+\infty$ and $B:=\bigcap_{n=1}^{\infty} B_{n}$, then

$$
\lambda\left(B_{n}\right) \rightarrow \lambda(B) .
$$

Remark: For (ii), it is enough to have $\lambda\left(B_{k}\right)<+\infty$ for some k. But (ii) fails for $B_{n}=[n, \infty)$, for example.

Regularity of Lebesgue measure

Theorem

Lebesgue measure λ on \mathbb{R}^{k} is a regular measure.
For each K compact, we have $\lambda(K)<\infty$ and for each $A \in \mathcal{M}$

$$
\begin{aligned}
\lambda(A) & =\sup \{\lambda(K): K \text { compact and } K \subseteq A\} \\
& =\inf \{\lambda(G): G \text { open and } G \supseteq A\} .
\end{aligned}
$$

For a proof for $k=1$ see regen. pdf.
It is possible for a measurable set of positive measure to contain no nonempty open intervals (examples later). However,

Theorem (Steinhaus)

If A is a Lebesgue measurable subset of \mathbb{R}^{k} with $\lambda(A)>0$, then there is a $\delta>0$ so that

$$
B(0, \delta) \subseteq A-A
$$

The outer Lebesgue measure of a subset $A \subseteq \mathbb{R}$ is

$$
\lambda^{*}(A)=\inf \left\{\sum_{n} \ell\left(I_{n}\right):\left(I_{n}\right) \text { cover of } A\right\}
$$

A set $A \subseteq \mathbb{R}$ is called Lebesgue measurable $(A \in \mathcal{M})$ if, for all $X \subseteq \mathbb{R}$,

$$
\lambda^{*}(X)=\lambda^{*}(X \cap A)+\lambda^{*}\left(X \cap A^{c}\right)
$$

Equivalently, if for every $\varepsilon>0$ there is an open $G \subseteq \mathbb{R}$ with $A \subseteq G$ and $\lambda^{*}(G \backslash A)<\varepsilon$.
Equivalently, if for every $\varepsilon>0$ there is a closed $F \subseteq \mathbb{R}$ with $F \subseteq A$ and $\lambda^{*}(A \backslash F)<\varepsilon$.
When $A \in \mathcal{M}$, the Lebesgue measure of A is defined to be its outer measure. The family \mathcal{M} contains all open sets, and is closed for complements and countable unions (it is a σ-algebra). But there exist non-measurable sets. The σ-algebra $\mathcal{B} \subseteq \mathcal{M}$ generated by the open sets is called the Borel σ-algebra. The map $\lambda: \mathcal{M} \rightarrow[0,+\infty]: A \mapsto \lambda^{*}(A)$ is σ-additive: if $\left\{A_{n}: n \in \mathbb{N}\right\} \subseteq \mathcal{M}$ are pairwise disjoint,

$$
\lambda\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} \lambda\left(A_{n}\right)
$$

The measure λ is invariant under translations. It is a regular measure.

Measurable functions

Reminder If $f: \mathbb{R} \rightarrow \mathbb{R}$, we want to define $\int f d \lambda$ by approximating it by sums of the form:

$$
\sum_{k=0}^{n-1} y_{k} \lambda\left(f^{-1}\left(\left[y_{k}, y_{k+1}\right)\right)\right)
$$

$\lambda=$ Lebesgue measure. We need measurability of :
$\left.f^{-1}\left(\left[y_{k}, y_{k+1}\right)\right)=\left\{x \in[a, b]: y_{k} \leq f(x)<y_{k+1}\right\}\right)$.

Definition

Let $X \subseteq \mathbb{R}, X \in \mathcal{M}$. A function $f: X \rightarrow \mathbb{R}$ is called (Lebesgue) measurable if

$$
f^{-1}((-\infty, b]) \in \mathcal{M}, \text { for all } b \in \mathbb{R}
$$

Definition

Let $Y \subseteq \mathbb{R}$ be a Borel set. A function $f: Y \rightarrow \mathbb{R}$ is called Borel measurable or just Borel if

$$
f^{-1}((-\infty, b]) \in \mathcal{B}, \text { for all } b \in \mathbb{R}
$$

Measurable functions

(Notation: $[f \leq b]:=f^{-1}((-\infty, b])=\{x \in X: f(x) \leq b\}$.)

Proposition

Let $X \subseteq \mathbb{R}, X \in \mathcal{M}$ and $f: X \rightarrow \mathbb{R}$ a function. The following are equivalent:
$1 f$ is measurable.
$2 f^{-1}((-\infty, b)) \in \mathcal{M}$ for all $b \in \mathbb{R}$.
$3 f^{-1}([b,+\infty)) \in \mathcal{M}$ for all $b \in \mathbb{R}$.
$4 f^{-1}((b,+\infty)) \in \mathcal{M}$ for all $b \in \mathbb{R}$.
Remark Then, for each interval $J \subseteq \mathbb{R}($ or $J=\{a\})$ we have $f^{-1}(J) \in \mathcal{M}$.

Proposition

If $\mathrm{B} \subseteq X \subseteq \mathbb{R}$ where $X \in \mathcal{M}$, the function $\chi_{B}: X \rightarrow \mathbb{R}$ with
$\chi_{B}(x)=\left\{\begin{array}{ll}1, & \text { if } x \in B \\ 0, & \text { if } x \notin B\end{array}\right.$ is measurable if and only if $B \in \mathcal{M}$.

Borel functions

Proposition

Let $X \subseteq \mathbb{R}, X \in \mathcal{B}$ and $f: X \rightarrow \mathbb{R}$ a function. The following are equivalent:
$1 f$ is Borel measurable.
$2 f^{-1}((-\infty, b)) \in \mathcal{B}$ for all $b \in \mathbb{R}$.
$3 f^{-1}([b,+\infty)) \in \mathcal{B}$ for all $b \in \mathbb{R}$.
$4 f^{-1}((b,+\infty)) \in \mathcal{B}$ for all $b \in \mathbb{R}$.
Remark Then, for each interval $J \subseteq \mathbb{R}($ or $J=\{a\})$ we have $f^{-1}(J) \in \mathcal{B}$.

Proposition

If $\mathrm{B} \subseteq X \subseteq \mathbb{R}$ where $X \in \mathcal{B}$, the function $\chi_{B}: X \rightarrow \mathbb{R}$ with
$\chi_{B}(x)=\left\{\begin{array}{ll}1, & \text { if } x \in B \\ 0, & \text { if } x \notin B\end{array}\right.$ is Borel measurable if and only if $B \in \mathcal{B}$.
Remark The Dirichlet function is Borel measurable.

Measurable functions

Proposition

If $f: \mathbb{R} \rightarrow \mathbb{R}$ then
f continuous $\Rightarrow f$ Borel measurable $\Rightarrow f$ Lebesgue measurable.

Example The function $\chi_{[0,1]}$ is Borel but not continuous.
The function χ_{A} where $A \in \mathcal{M} \backslash \mathcal{B}$ (does there exist such a set?) is Lebesgue measurable, but not Borel measurable.

Proposition

If $X \subseteq \mathbb{R}$ is measurable [resp. Borel] and $f: I \rightarrow \mathbb{R}$ is an increasing (or decreasing) function then f is measurable [resp. Borel measurable].

Measurable functions

Proposition

Let X be a measurable subset of \mathbb{R} and $f, g: X \rightarrow \mathbb{R}$ measurable functions. Then,

1 The function $f+g$ is measurable.
2 For each $\lambda \in \mathbb{R}$ the function λf is measurable.
3 The function $f \cdot g$ is measurable.
4 If $f(x) \neq 0$ for all $x \in X$, the function $1 / f$ is measurable.
5 The functions $\max \{f, g\}, \min \{f, g\}$ and $|f|$ are measurable.
Alternative approach for (1) and (3):

Proposition

Let X be a measurable subset of \mathbb{R} and $f, g: X \rightarrow \mathbb{R}$ measurable functions. If $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a continuous function, the function $h: X \rightarrow \mathbb{R}: x \rightarrow F(f(x), g(x))$ is measurable.

The functions f^{+}and f^{-}

$$
\begin{aligned}
& f^{+}=\max \{f, 0\}, \quad f^{-}=-\min \{f, 0\}, \quad f=f^{+}-f^{-}, \\
& |f|=f^{+}+f^{-}
\end{aligned}
$$

Measurable functions $f: X \rightarrow[-\infty,+\infty]$

Definition

Let $X \subseteq \mathbb{R}$ be measurable. A function $f: X \rightarrow[-\infty,+\infty]$ is called (Lebesgue) measurable if, for every $b \in \mathbb{R}$,

$$
f^{-1}([-\infty, b])=\{x \in X: f(x) \leq b\} \in \mathcal{M} .
$$

Remark Then, the set

$$
\{x \in X: f(x)=-\infty\}=\bigcap_{n=1}^{\infty}\{x \in X: f(x) \leq-n\}
$$

is measurable. So is the set $\{x \in X: f(x)=+\infty\}$.

Proposition

A function $f: X \rightarrow[-\infty,+\infty]$ is measurable iff $\forall a \in \mathbb{R}$ the set $f^{-1}([-\infty, a))$ is measurable, iff $\forall a \in \mathbb{R}$ the set $f^{-1}([a,+\infty])$ is measurable, iff $\forall a \in \mathbb{R}$ the set $f^{-1}((a,+\infty])$ is measurable.

The notion "almost everywhere"

Definition

Let X be a measurable subset of \mathbb{R}. We say that a property $P(x)$ holds almost everywhere in X (or for almost all $x \in X$) if

$$
\lambda^{*}(\{x \in X \mid P(x) \text { fails }\})=0 .
$$

Proposition

Let X be a measurable subset of \mathbb{R} and $f, g: X \rightarrow[-\infty,+\infty]$. If f is measurable and $f(x)=g(x)$ almost everywhere in X (we will write $f=g$ a.e.), then g is measurable.

Reminder: limsup, liminf

Let $\left(a_{n}\right)$ be a sequence, $a_{n} \in[-\infty, \infty]$. If $\sup \left\{a_{k}: k \geq 1\right\}=+\infty$, we set $\lim \sup _{n} \alpha_{n}=+\infty$. If not, for each $n \in \mathbb{N}$, define $b_{n}=\sup \left\{a_{k}: k \geq n\right\}$.
Observe that $b_{n} \geq a_{n}$ for all n and $\left(b_{n}\right)$ is decreasing. Therefore $\lim _{n} b_{n}$ exists and equals $\inf _{n} b_{n}$.

Definition

If $\left(a_{n}\right)$ is bounded above, $\limsup _{n} a_{n}=\lim _{n} b_{n}=\inf _{n \in \mathbb{N}}\left(\sup _{k \geq n} a_{k}\right)$ (otherwise, $\limsup _{n} a_{n}=+\infty$).

Similarly,

Definition

If $\left(a_{n}\right)$ is bounded below, $\liminf _{n} a_{n}=\sup _{n \in \mathbb{N}}\left(\inf _{k \geq n} a_{k}\right)$ (otherwise, $\liminf _{n} a_{n}=-\infty$).
Remark Let $\left(a_{n}\right)$ be bounded above, $a \in \mathbb{R}$. Then: $a=\lim \sup _{n} a_{n} \Longleftrightarrow$ for every $\varepsilon>0$, the set $\left\{k \in \mathbb{N}: a_{k} \geq a+\varepsilon\right\}$ is finite and the set $\left\{k \in \mathbb{N}: a-\varepsilon<a_{k}<a+\varepsilon\right\}$ is infinite.

Sequences of measurable functions

Let $X \subseteq \mathbb{R}$ be a measurable set and $\left(f_{n}\right)$ a sequence of functions, $f_{n}: X \rightarrow[-\infty, \infty]$.
The function $f=\sup _{n} f_{n}$ is defined pointwise:
$f(x)=\sup \left\{f_{n}(x): n \in \mathbb{N}\right\} \in[-\infty, \infty]$ for all $x \in X$.
Similarly $\left(\lim \sup _{n} f_{n}\right)(x)=\lim \sup _{n} f_{n}(x)$ for all x.

Proposition

If every f_{n} is measurable,
(a The functions $\sup _{n} f_{n}$ and $\inf _{n} f_{n}$ are measurable.
[\boldsymbol{B} The functions $\lim \sup _{n} f_{n}$ and $\lim \inf _{n} f_{n}$ are measurable.
[vI If the sequence $\left\{f_{n}\right\}$ converges pointwise to a function f, then f is also measurable.

Remark The Proposition does NOT hold for continuous functions, nor for Riemann integrable functions. Examples?

Proposition

Let be a X measurable subset of \mathbb{R} and $f: X \rightarrow[-\infty,+\infty]$ a function. If $f_{n}: X \rightarrow[-\infty,+\infty]$ are measurable functions and $f_{n}(x) \rightarrow f(x)$ almost everywhere in X, then f is measurable.

The Cantor set $C=\bigcap_{n=1}^{\infty} C_{n}$

$$
\begin{aligned}
C_{0} & = \\
C_{1} & \left.=\quad\left[0, \frac{1}{3}\right] \quad \cup 0,1\right] \\
C_{2} & =\left[0, \frac{1}{9}\right] \cup\left[\frac{2}{9}, \frac{3}{9}\right] \cup\left[\frac{6}{9}, \frac{7}{9}\right] \cup\left[\frac{8}{9}, 1\right] \\
& \vdots
\end{aligned}
$$

Remark

The Cantor set has Lebesgue measure zero and is closed and has empty interior. It is however uncountable.

0 1

00	01		10	11
000	001	010	011	100

There exists a 1-1 onto map $\{0,1\}^{\mathbb{N}} \rightarrow C$.

The Cantor set

Remark

The Cantor set is perfect, i.e. it is closed and has no isolated points.

Remark

For each $a \in(0,1)$, one can construct a "Cantor-like set" C^{a} (i.e. a compact set, with empty interior and no isolated points) having measure a.

The Cantor-Lebesgue function or "devil's staircase"

For each $n \in \mathbb{N}$ define $f_{n}:[0,1] \rightarrow[0,1]$ as follows: If $J_{1}^{n}, \ldots, J_{2^{n}-1}^{n}$ denote the consecutive open intervals comprising $[0,1] \backslash C_{n}$, define: $f_{n}(0)=0$, $f_{n}(1)=1$ and $f_{n}(x)=\frac{k}{2^{n}}$ for all $x \in J_{k}^{n}$. In each of the closed intervals comprising C_{n}, extend linearly so as to obtain a continuous function:

The Cantor-Lebesgue function f

Proposition

The sequence $\left\{f_{n}\right\}_{n=1}^{\infty}$ converges uniformly to a continuous function $f:[0,1] \rightarrow[0,1]$. The function f is increasing and onto $[0,1]$. It is almost everywhere differentiable: For each x in the (open) set C^{c}, the derivative $f^{\prime}(x)$ exists, and in fact $f^{\prime}(x)=0$.
The image of C by f has measure $\lambda(f(C))=1$ (while $\lambda(C)=0)$.

There exists a measurable set which is not Borel:
If $g(x)=\frac{x+f(x)}{2}$, then g is a homeomorphism of $[0,1]$ which maps the set C to a set $g(C)$ of strictly positive measure! It follows that there exists $A \subseteq g(C)$ which is non-measurable (exercise).
Then $B:=g^{-1}(A)$ is measurable, since $B \subseteq C$. But it is not Borel: for if it were, then $A=h^{-1}(B)$ where $h=g^{-1}$ (a continuous function) would be Borel, hence measurable.

Simple measurable functions

Definition

Let X be a measurable subset of \mathbb{R}. A measurable function $s: X \rightarrow \mathbb{R}$ is called simple if its set of values $s(X)$ is finite.

Every simple function can be written in standard form

$$
s=\sum_{j=1}^{n} a_{j} \chi_{A_{j}}
$$

where $s(X)=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and $A_{j}=s^{-1}\left(\left\{a_{j}\right\}\right) \in \mathcal{M}$. The family $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is a (measurable) partition of X.
Every linear combination $s=\sum_{j=1}^{n} b_{j} \chi_{B_{j}}$ of characteristic (or indicator) functions of measurable sets is a simple measurable function (Exercise).

Example

Let $s=\chi_{[-1,1]}+\chi_{[0,2]}: \mathbb{R} \rightarrow \mathbb{R}$. Here $s(\mathbb{R})=\{0,1,2\}$.
Its standard form is $s=0 \chi_{A}+1 \chi_{B}+2 \chi_{[0,1]}$ where
$A=[-1,2]^{c}, B=[-1,0) \cup(1,2]$.

Theorem

Let X be a measurable subset of \mathbb{R} and $f: X \rightarrow[0, \infty]$ a non-negative measurable function. Then there is an increasing sequence of simple measurable functions $0 \leq s_{1} \leq s_{2} \leq \cdots \leq f$ so that

$$
s_{n} \nearrow f \quad \text { (pointwise). }
$$

If f is bounded, the sequence converges uniformly.

Approximation by simple functions: Proof

(a) If f is bounded: Let $N \in \mathbb{N}$ be such that $f(x)<N$ for all $x \in X$. For each $n \in \mathbb{N}$, partition $[0, N)$ into intervals of length $\frac{1}{2^{n}}$:

$$
[0, N)=\left[0, \frac{1}{2^{n}}\right) \cup\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right) \cup \ldots \cup\left[\frac{2^{n} N-1}{2^{n}}, \frac{2^{n} N}{2^{n}}\right)
$$

Consider their inverse images by f :

$$
E_{n, i}=\left\{x \in X: \frac{i-1}{2^{n}} \leq f(x)<\frac{i}{2^{n}}\right\}, \quad i=1,2, \ldots, 2^{n} N
$$

These are measurable sets, and they partition X. If $x \in E_{n, i}$, define

$$
s_{n}(x)=\frac{i-1}{2^{n}}
$$

i.e. put

$$
s_{n}=\sum_{i=1}^{2^{n} N} \frac{i-1}{2^{n}} \chi_{E_{n, i}}
$$

This is a simple measurable function and clearly $0 \leq s_{n} \leq f$.

Approximation by simple functions: Proof (II)

Claim. $s_{n} \rightarrow f$ uniformly on X.
Proof. Let $x \in X$. Then for each n there exists k so that $x \in E_{n, k}$, i.e. $\frac{k-1}{2^{n}} \leq f(x)<\frac{k}{2^{n}}$ while $s_{n}(x)=\frac{k-1}{2^{n}}$, and so

$$
0 \leq f(x)-s_{n}(x)<\frac{1}{2^{n}}, \quad \forall n
$$

Thus $\sup _{x \in X}\left|f(x)-s_{n}(x)\right| \leq \frac{1}{2^{n}}$, hence $s_{n} \rightarrow f$ uniformly.
(b) If f is not bounded: For each $n \in \mathbb{N}$, partition
$[0,+\infty]=[0, n) \cup[n,+\infty]$ and

$$
[0, n)=\left[0, \frac{1}{2^{n}}\right) \cup\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right) \cup \ldots \cup\left[\frac{2^{n} n-1}{2^{n}}, \frac{2^{n} n}{2^{n}}\right)
$$

Define: $F_{n}=\{x \in X: f(x) \geq n\}$

$$
E_{n, i}=\left\{x \in X: \frac{i-1}{2^{n}} \leq f(x)<\frac{i}{2^{n}}\right\}, \quad i=1,2, \ldots, n 2^{n}
$$

These are measurable sets, and they partition X.

Approximation by simple functions: Proof (III)

Define

$$
s_{n}(x)=\left\{\begin{array}{cl}
n, & \text { if } f(x) \geq n \\
\frac{i-1}{2^{n}}, & \text { if } \exists i=1,2, \ldots, n 2^{n} \text { so that } \frac{i-1}{2^{n}} \leq f(x)<\frac{i}{2^{n}}
\end{array}\right.
$$

that is, put

$$
s_{n}=\sum_{i=1}^{n 2^{n}} \frac{i-1}{2^{n}} \chi_{E_{n, i}}+n \chi_{F_{n}} .
$$

This is a simple measurable function and clearly $0 \leq s_{n} \leq f$.
Claim. $s_{n}(x) \rightarrow f(x)$ for each $x \in X$.
Proof. If $f(x)<+\infty$, there exists $n_{0}=n_{0}(x)$ so that $f(x)<n_{0}$. When $n \geq n_{0}$ we have $f(x)<n$, hence there is a unique k so that $\frac{k-1}{2^{n}} \leq f(x)<\frac{k}{2^{n}}$ while $s_{n}(x)=\frac{k-1}{2^{n}}$, hence

$$
0 \leq f(x)-s_{n}(x)<\frac{1}{2^{n}}, \quad \forall n \geq n_{0}(x)
$$

and so $s_{n}(x) \rightarrow f(x)$. If on the other hand $f(x)=+\infty$, then $f(x) \geq n$ for all n, hence $s_{n}(x)=n \rightarrow+\infty=f(x)$.

Approximation by simple functions: Proof (IV)

(c) Claim. The sequence $\left(s_{n}\right)$ is increasing.

Proof. Let $n \in \mathbb{N}$ and $x \in X$. To show that $s_{n}(x) \leq s_{n+1}(x)$.

- If $f(x) \geq n+1$ then $s_{n+1}(x)=n+1$, but $f(x)>n$ so $s_{n}(x)=n$, hence $s_{n}(x) \leq s_{n+1}(x)$.
- If $n+1>f(x) \geq n$ then $\exists k: f(x) \in\left[\frac{k}{2^{n+1}}, \frac{k+1}{2^{n+1}}\right)$, but $\frac{k}{2^{n+1}} \geq n$ (why?) so $s_{n+1}(x)=\frac{k}{2^{n+1}} \geq n$, while $s_{n}(x)=n$ since $f(x) \geq n$. Hence $s_{n}(x) \leq s_{n+1}(x)$.
- If $f(x)<n, \quad \leadsto$

Approximation by simple functions: Proof (V)

- If $f(x)<n$ then there exists k so that $\frac{k}{2^{n}} \leq f(x)<\frac{k+1}{2^{n}}$.

Now $s_{n}(x)=\frac{k}{2^{n}}$ and

$$
\left[\frac{k}{2^{n}}, \frac{k+1}{2^{n}}\right)=\left[\frac{2 k}{2^{n+1}}, \frac{2 k+1}{2^{n+1}}\right) \cup\left[\frac{2 k+1}{2^{n+1}}, \frac{2 k+2}{2^{n+1}}\right)
$$

There are two cases:

$$
\begin{aligned}
f(x) \in\left[\frac{2 k}{2^{n+1}}, \frac{2 k+1}{2^{n+1}}\right) \Rightarrow s_{n+1}(x)=\frac{2 k}{2^{n+1}}=s_{n}(x) \\
f(x) \in\left[\frac{2 k+1}{2^{n+1}}, \frac{2 k+2}{2^{n+1}}\right) \Rightarrow s_{n+1}(x)=\frac{2 k+1}{2^{n+1}}>s_{n}(x)
\end{aligned}
$$

In both cases, $s_{n}(x) \leq s_{n+1}(x)$.

Approximation by simple functions

Corollary

Let X be a measurable set and $f: X \rightarrow[-\infty, \infty]$ a measurable function. Then there exists a sequence $\left(s_{n}\right)_{n}$ of simple measurable functions with

$$
\begin{array}{cc}
& s_{n} \rightarrow f \\
\text { and } & 0 \leq\left|s_{1}\right| \leq\left|s_{2}\right| \leq \cdots \leq|f|
\end{array}
$$

In addition, if f is bounded, then the sequence converges uniformly.
Remark: In fact the sequence converges uniformly on any subset $Y \subseteq X$ on which $\left.f\right|_{Y}$ is bounded.

Littlewood's three principles

Let $X \subseteq \mathbb{R}$ be measurable with $\lambda(X)<\infty$.

Proposition (measurable sets)

For each $\varepsilon>0$ there exist intervals I_{1}, \ldots, I_{n} so that if
$E:=I_{1} \cup \cdots \cup I_{n}$ then $\lambda(E \triangle X)<\varepsilon$.

Theorem (Luzin)

If $f: X \rightarrow \mathbb{R}$ is measurable, then for every $\varepsilon>0$ there exists a closed set $F_{\varepsilon} \subseteq X$ with $\lambda\left(X \backslash F_{\varepsilon}\right)<\varepsilon$ so that the function $\left.f\right|_{F_{\varepsilon}}$ is continuous.

For a proof see luzinen.pdf.

Theorem (Egorov)

If $f_{n}, f: X \rightarrow \mathbb{R}$ are measurable with $f_{n} \rightarrow f$ almost everywhere in X, then for every $\varepsilon>0$ there is a closed set $F_{\varepsilon} \subseteq X$ with $\lambda\left(X \backslash F_{\varepsilon}\right)<\varepsilon$ so that $f_{n} \rightarrow f$ uniformly on F_{ε}.

Sketch of proof below.

Let $X \subseteq \mathbb{R}$ be measurable with $\lambda(X)<\infty$.
[Measurable sets] Every such $X \subseteq \mathbb{R}$ "is almost equal" to a finite union of intervals.
[Luzin's theorem] Every measurable function on X "is almost continuous".
[Egorov's theorem] Every sequence of measurable functions on X that converges pointwise, "converges almost uniformly".

Proof of Egorov's theorem

For each k and $m \in \mathbb{N}$, let

$$
E_{m}(k)=\left\{x: \exists n \geq m:\left|f_{n}(x)-f(x)\right| \geq \frac{1}{k}\right\}
$$

We have $E_{m}(k) \supset E_{m+1}(k)$ for each m and

$$
\begin{aligned}
\bigcap_{m \geq 1} E_{m}(k) & =\left\{x: \forall m \exists n \geq m:\left|f_{n}(x)-f(x)\right| \geq \frac{1}{k}\right\} \\
& \subseteq\left\{x:\left|f_{n}(x)-f(x)\right| \nrightarrow 0\right\}
\end{aligned}
$$

But $f_{n} \rightarrow f$ almost everywhere, hence $\lambda\left(\cap_{m} E_{m}(k)\right)=0$.
Since $\lambda\left(E_{1}(k)\right)<+\infty$, it follows that $\lim _{m} \lambda\left(E_{m}(k)\right)=0$.
Therefore for each $\delta>0$ and every $k \in \mathbb{N}$ there exists $m_{k} \in \mathbb{N}$ so that $\lambda\left(E_{m_{k}}(k)\right)<\frac{\delta}{2^{k}}$.
Define

$$
A_{\delta}=\bigcup_{k=1}^{\infty} E_{m_{k}}(k)
$$

Proof of Egorov's theorem (II)

$$
A_{\delta}=\bigcup_{k=1}^{\infty} E_{m_{k}}(k)
$$

Then $A_{\delta} \in \mathcal{M}$ and

$$
\lambda\left(A_{\delta}\right) \leq \sum_{k=1}^{\infty} \lambda\left(E_{m_{k}}(k)\right)<\sum_{k=1}^{\infty} \frac{\delta}{2^{k}}=\delta .
$$

Claim : $f_{n} \rightarrow f$ uniformly on $X \backslash A_{\delta}$.
Proof: Let $\varepsilon>0$ and $k \in \mathbb{N}$ with $\frac{1}{k}<\varepsilon$. Since $A_{\delta} \supseteq E_{m_{k}}(k)$, if $x \notin A_{\delta}$ we have $x \notin E_{m_{k}}(k)$; thus for all $n \geq m_{k}$ we have $\left|f_{n}(x)-f(x)\right|<\frac{1}{k}<\varepsilon$. Since m_{k} does not depend on x we have $f_{n} \rightarrow f$ uniformly on A_{δ}^{c}.
So, if I choose $F_{\delta} \subseteq\left(X \backslash A_{\delta}\right)$ with $\left.\lambda\left(\left(X \backslash A_{\delta}\right) \backslash F_{\delta}\right)\right)<\delta$ (regularity), then $\lambda\left(\left(X \backslash F_{\delta}\right)\right)<2 \delta$ and $f_{n} \rightarrow f$ uniformly on F_{δ}.
Counterexample when $\lambda(X)=\infty: f_{n}=\chi_{(n, \infty)} \rightarrow 0$ pointwise. But...

The Lebesgue Integral: Definitions

Let $X \subseteq \mathbb{R}$ be measurable.
(a) If $s: X \rightarrow \mathbb{R}^{+}$is simple measurable and $s(X)=\left\{a_{1}, \ldots, a_{n}\right\}$ we define

$$
\int s d \lambda=\sum_{k=1}^{n} a_{k} \lambda\left(A_{k}\right) \in[0,+\infty]
$$

where $A_{k}=s^{-1}\left(\left\{a_{k}\right\}\right)$ (we put $\left.0 \cdot(+\infty)=0\right)$.

$\Sigma \chi \emptyset \dot{\mu} \alpha$: Integral of a simple function

The Lebesgue Integral: Definitions

(b) If $f: X \rightarrow[0,+\infty]$ is measurable, we define

$$
\int f d \lambda=\sup \left\{\int s d \lambda: s \text { simple measurable, } 0 \leq s \leq f\right\} .
$$

For f simple, definitions (a) and (b) coincide.

- If $A \subseteq X$ is a measurable subset then we define $\int_{A} f d \lambda:=\int f \chi_{A} d \lambda$.
- If f is defined on a measurable subset $A \subseteq X$ and non-negative, we extend f to a (measurable) function $\tilde{f}: X \rightarrow[0,+\infty]$ by setting $\tilde{f}(x)=0$ for $x \in X \backslash A$ and define $\int f d \lambda:=\int \tilde{f} d \lambda$.

The Lebesgue Integral: Definitions

(c) Let $f: X \rightarrow \overline{\mathbb{R}}:=[-\infty,+\infty]$ be measurable. The functions $f^{+}=f \vee 0$ and $f^{-}=(-f) \vee 0$ are non-negative and measurable, hence the integrals $\int f^{+} d \lambda$ and $\int f^{-} d \lambda$ are well defined (in $\overline{\mathbb{R}}$). If at least one of them is finite, we define

$$
\int f d \lambda=\int f^{+} d \lambda-\int f^{-} d \lambda \in \overline{\mathbb{R}}
$$

(d) A function $f: X \rightarrow \overline{\mathbb{R}}$ is called (absolutely) integrable if is measurable and

$$
\int|f| d \lambda<+\infty
$$

The Lebesgue Integral for simple $f \geq 0$

Proposition

If $s_{1}, s_{2}: X \rightarrow[0,+\infty)$ are simple measurable and $a \geq 0$, then
ii $\int a s_{1} d \lambda=a \int s_{1} d \lambda \quad$ (positive homogeneity)
iil $\int\left(s_{1}+s_{2}\right) d \lambda=\int s_{1} d \lambda+\int s_{2} d \lambda \quad$ (additivity)
囲 If $s_{1} \leq s_{2}$ then $\int s_{1} d \lambda \leq \int s_{2} d \lambda$ (monotonicity).
For (ii), we will need the (temporary) lemma:

Lemma

If $s: X \rightarrow \mathbb{R}^{+}$is simple measurable and $s=\sum_{k=1}^{m} b_{k} \chi_{B_{k}}$ where $B_{k} \cap B_{j}=\emptyset$ for $k \neq j$, then

$$
\int s d \lambda=\sum_{k=1}^{m} b_{k} \lambda\left(B_{k}\right)
$$

The Lebesgue Integral for measurable $f \geq 0$

Reminder: If $f: X \rightarrow[0,+\infty]$ is measurable,

$$
\int f d \lambda=\sup \left\{\int s d \lambda: s \text { simple measurable, } 0 \leq s \leq f\right\}
$$

Recall that if $f: X \rightarrow[0,+\infty]$ is measurable and $A \in \mathcal{M}$,
$\int_{A} f d \lambda:=\int \chi_{A} f d \lambda$.

Proposition

If $f, g: X \rightarrow[0,+\infty]$ are measurable and $a \geq 0$, then
i $\int a f d \lambda=a \int f d \lambda$.
iii If $f \leq g$ then $\int f d \lambda \leq \int g d \lambda$.
囲 If $A \subseteq B(A, B \in \mathcal{M})$ then $\int_{A} f d \lambda \leq \int_{B} f d \lambda$.
iv If $A \in \mathcal{M}$ and $\lambda(A)=0$ or $\left.f\right|_{A}=0$ then $\int_{A} f d \lambda=0$.

The Lebesgue Integral for measurable $f \geq 0$

Proposition (Markov's Inequality)

Let $f: X \rightarrow[0,+\infty]$ be measurable. For every $a \geq 0$,

$$
\int f d \lambda \geq a \cdot \lambda(\{x \in X: f(x) \geq a\})
$$

Corollary

If $f: X \rightarrow[0,+\infty]$ is integrable (i.e. measurable and $\int|f| d \lambda<\infty$) then $f(x)<\infty$ far almost all $x \in X$.

Additivity of the Lebesgue Integral

The equality $\int f d \lambda+\int g d \lambda=\int(f+g) d \lambda$ holds for $f, g: X \rightarrow[0,+\infty]$ simple measurable.

More generally, what if $f, g: X \rightarrow[0,+\infty]$ are just measurable?
Observe that we can easily prove the inequality

$$
\int f d \lambda+\int g d \lambda \leq \int(f+g) d \lambda
$$

What about equality?? What about approximating by simple functions?

Is it true that $\int \lim f_{n} d \lambda \stackrel{?}{=} \lim \int f_{n} d \lambda ? ?$

Examples (a) On \mathbb{R} : Let $f_{n}:=\chi_{[n, n+1]}$. We have $f_{n} \rightarrow f=0$ pointwise, but $\int f_{n} d \lambda=1$ for all n while $\int f d \lambda=0$.
(The mass under the f_{n} "escapes to infinity horizontally".)
(b) On \mathbb{R} : Let $f_{n}:=\frac{1}{n} \chi_{[0, n]}$. This time $f_{n} \rightarrow f=0$ uniformly but $\int f_{n} d \lambda=1$ for each n while $\int f d \lambda=0$.
(Here the mass "spreads out" over the whole of \mathbb{R}_{+}.)
(c) On $[0,1]:$ Let $f_{n}:=n \chi\left[\frac{1}{n}, \frac{2}{n}\right]$. The measure of the space is finite, and $f_{n} \rightarrow f=0$ pointwise (not uniformly). Again $\int f_{n} d \lambda=1$ for all n while $\int f d \lambda=0$.
(Here the mass "escapes to infinity vertically".)

Theorem

Let $X \in \mathcal{M}$ and $f_{n}: X \rightarrow[0, \infty]$ an increasing sequence of non-negative measurable functions. Then

$$
\lim _{n}\left(\int f_{n} d \lambda\right)=\int\left(\lim _{n} f_{n}\right) d \lambda
$$

Consequence: If $f: X \rightarrow[0,+\infty]$ is measurable, then

$$
\int f d \lambda=\lim \int s_{n} d \lambda
$$

where $\left(s_{n}\right)$ is any increasing sequence of simple functions $s_{n} \geq 0$ with $s_{n} \nearrow f$.

Questions: (α) Does the Monotone Convergence Theorem hold for decreasing sequences?
(b) Perhaps under additional conditions?

First Consequences of the Monotone Convergence Theorem

Proposition (Additivity)

If $f, g: X \rightarrow[0,+\infty]$ are measurable, then

$$
\int(f+g) d \lambda=\int f d \lambda+\int g d \lambda
$$

Theorem (Beppo Levi)

If $\left(f_{n}\right)$ are measurable, $f_{n}: X \rightarrow[0,+\infty]$, then

$$
\int\left(\sum_{n} f_{n}\right) d \lambda=\sum_{n}\left(\int f_{n} d \lambda\right)
$$

Proposition (Fatou's Lemma)
If $f_{n}: X \rightarrow[0,+\infty]$ are measurable, then

$$
\int\left(\liminf _{n} f_{n}\right) d \lambda \leq \liminf _{n} \int f_{n} d \lambda .
$$

Definition (reminder):

- Let $X \in \mathcal{M}, f: X \rightarrow \overline{\mathbb{R}}:=[-\infty,+\infty]$ be measurable. The functions $f^{+}=f \vee 0$ and $f^{-}=(-f) \vee 0$ are non-negative and measurable, hence the integrals $\int f^{+} d \lambda$ and $\int f^{-} d \lambda$ are well defined (in $\overline{\mathbb{R}}$). If at least one of them is finite, we define

$$
\int f d \lambda=\int f^{+} d \lambda-\int f^{-} d \lambda \in \overline{\mathbb{R}}
$$

- A function $f: X \rightarrow \overline{\mathbb{R}}$ is called (absolutely) integrable if is measurable and

$$
\int|f| d \lambda<+\infty
$$

Remarks • If f is integrable, then $f(x) \in \mathbb{R}$ for almost all $x \in X$.

- The function f is integrable if and only if both f^{+}and f^{-}are integrable and then $\int f d \lambda=\int f^{+} d \lambda-\int f^{-} d \lambda \in \mathbb{R}$.

Integrable functions

Theorem

If $f, g: X \rightarrow \overline{\mathbb{R}}$ are integrable and $c \in \mathbb{R}$, then
(the function $f+c g$ is well-defined a.e. and)

$$
\int(f+c g) d \lambda=\int f d \lambda+c \int g d \lambda
$$

Proposition

If $f: X \rightarrow \overline{\mathbb{R}}$ is integrable and $A, B \in \mathcal{M} \mu \varepsilon A \cap B=\emptyset$, then

$$
\int_{A \cup B} f d \lambda=\int_{A} f d \lambda+\int_{B} f d \lambda
$$

Integrable functions

Proposition

If $f, g: X \rightarrow \overline{\mathbb{R}}$ are integrable then

$$
\begin{aligned}
& \text { (i) } \quad f \leq g \quad \Longrightarrow \quad \int f d \lambda \leq \int g d \lambda . \\
& \text { (ii) } \quad\left|\int f d \lambda\right| \leq \int|f| d \lambda
\end{aligned}
$$

Integrable functions

Proposition

Let $f, g: X \rightarrow \overline{\mathbb{R}}$ be integrable.
(i) If $f=g$ a.e. then $\int f d \lambda=\int g d \lambda$.
(ii) We have $f=0$ a.e. if and only if $\int_{A} f d \lambda=0$ for every $A \subseteq X$, $A \in \mathcal{M}$.

Corollary
If $f, g: X \rightarrow \overline{\mathbb{R}}$ are integrable and $f \leq g$ a.e. then $\int f d \lambda \leq \int g d \lambda$.

The Dominated Convergence Theorem

Theorem

Let $\left(f_{n}\right)$ be a sequence of measurable functions $f_{n}: X \rightarrow[-\infty,+\infty]$ which converges for almost all $x \in X$ to a function $f: X \rightarrow[-\infty,+\infty]$. If there exists an integrable function $g: X \rightarrow[0,+\infty]$ such that $\left|f_{n}\right| \leq g$ a.e. for all n, then

$$
\begin{aligned}
& f \text { is (absolutely) integrable } \\
& \text { and } \lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \lambda=0 \\
& \text { and } \lim _{n \rightarrow \infty} \int f_{n} d \lambda=\int f d \lambda .
\end{aligned}
$$

See also the counterexamples: [100] when there is no "dominating" integrable g.

Proof. First show that the f_{n} and f are integrable.
For convergence:

The Dominated Convergence Theorem: Proof of convergence

Put $h_{n}=\left|f_{n}-f\right|$ and observe that $0 \leq h_{n} \leq 2 g$ a.e. and that $h_{n}(x) \rightarrow 0$ for almost all x. Thus, $2 g-h_{n} \geq 0$ and $2 g-h_{n} \rightarrow 2 g$ pointwise, almost everywhere.
By Fatou's Lemma we have

$$
\begin{aligned}
& \int \liminf _{n}\left(2 g-h_{n}\right) d \lambda \leq \liminf _{n} \int\left(2 g-h_{n}\right) d \lambda . \\
& \text { But } \int \liminf _{n}\left(2 g-h_{n}\right) d \lambda=\int 2 g d \lambda \\
& \text { and } \underset{n}{\liminf } \int\left(2 g-h_{n}\right) d \lambda=\int 2 g d \lambda+\liminf _{n} \int\left(-h_{n}\right) d \lambda \\
& =\int 2 g d \lambda-\limsup _{n} \int h_{n} d \lambda,
\end{aligned}
$$

therefore $\limsup _{n} \int h_{n} d \lambda \leq 0$.
On the other hand $0 \leq \int h_{n} d \lambda$ so $0 \leq \liminf _{n} \int h_{n} d \lambda$.
Therefore the limit $\lim _{n} \int h_{n} d \lambda$ exists and is 0 .

The Dominated Convergence Theorem

Corollary (The bounded convergence theorem)

Let $X \in \mathcal{M}$ with $\lambda(X)<\infty$, let $f_{n}: X \rightarrow \mathbb{R}$ be a sequence of measurable functions and $f: X \rightarrow \mathbb{R}$ with $f_{n} \rightarrow f$ a.e. We assume that, in addition, there exists an $M>0$ so that $\left|f_{n}\right| \leq M$ a.e. on X for all n. Then the f_{n} and f are integrable and we have:

$$
\int\left|f_{n}-f\right| d \lambda \rightarrow 0
$$

It also follows that

$$
\lim _{n} \int f_{n} d \lambda=\int f d \lambda
$$

The Dominated Convergence Theorem

Corollary

Let $f: \mathbb{R} \rightarrow[-\infty,+\infty]$ be integrable. Then the function

$$
F(x)=\int_{-\infty}^{x} f d \lambda:=\int_{(-\infty, x]} f d \lambda
$$

is continuous.

Corollary

Let $f: \mathbb{R} \rightarrow[-\infty,+\infty]$ be integrable. If $E_{n} \in \mathcal{M}, E_{n} \subseteq E_{n+1}$ for every n and $E=\bigcup E_{n}$, then

$$
\int_{E} f d \lambda=\lim _{n} \int_{E_{n}} f d \lambda
$$

Reminder: The Riemann integral

A partition \mathcal{P} of $[a, b]$ is a finite set

$$
\mathcal{P}=\left\{a=t_{0}<t_{1}<\ldots<t_{n-1}<t_{n}=b\right\}
$$

If $f:[a, b] \rightarrow \mathbb{R}$ is bounded, we set

$$
\begin{aligned}
& M_{i}=M_{i}(f)=\sup \left\{f(s): s \in\left[t_{i-1}, t_{i}\right]\right\} \\
& m_{i}=m_{i}(f)=\inf \left\{f(s): s \in\left[t_{i-1}, t_{i}\right]\right\} \quad(i=1, \ldots, n)
\end{aligned}
$$

and

$$
\begin{aligned}
L(f, \mathcal{P}) & =\sum_{i=1}^{n} m_{i}(f)\left(t_{i}-t_{i-1}\right) \\
U(f, \mathcal{P}) & =\sum_{i=1}^{n} M_{i}(f)\left(t_{i}-t_{i-1}\right) .
\end{aligned}
$$

The numbers $L(f, \mathcal{P})$ and $U(f, \mathcal{P})$ are called the lower and upper Riemann sums of f for the partition \mathcal{P}.

Let $f:[a, b] \rightarrow \mathbb{R}$ be Riemann integrable. Then, there is a sequence $\left(P_{n}\right)$ of partitions of $[a, b]$ such that: $P_{n} \subset P_{n+1}\left(P_{n+1}\right.$ is a refinement of P_{n}), $\left\|P_{n}\right\| \rightarrow 0$ (the sizes of the partitions P_{n} tend to 0), and

$$
L\left(f, P_{n}\right) \rightarrow \int_{a}^{b} f(x) d x \quad, \quad U\left(f, P_{n}\right) \rightarrow \int_{a}^{b} f(x) d x
$$

Let g_{n} be the step function with $\int_{a}^{b} g_{n}(x) d x=L\left(f, P_{n}\right)$ (that is, if $L\left(f, P_{n}\right)=\sum_{i=0}^{k-1} m_{i}\left(x_{i+1}-x_{i}\right)$ then put $\left.g_{n}=\sum_{i=0}^{k-1} m_{i} \chi_{\left[x_{i}, x_{i+1}\right)}\right)$ and let u_{n} be the step function with $\int_{a}^{b} u_{n}(x) d x=U\left(f, P_{n}\right)$. Then $g_{n} \leq f \leq u_{n}$. The sequence $\left(g_{n}\right)$ is increasing and $\left(u_{n}\right)$ is decreasing, hence $\exists g:=\lim _{n} g_{n}$ and $u:=\lim _{n} u_{n}$ and $g \leq f \leq u$. The functions u and g are limits of monotone sequences of integrable functions.

Therefore ${ }^{3}$

$$
\int_{a}^{b} u d \lambda=\lim _{n} \int_{a}^{b} u_{n} d \lambda \stackrel{(!)}{=} \lim _{n} \int_{a}^{b} u_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

and

$$
\int_{a}^{b} g d \lambda=\lim _{n} \int_{a}^{b} g_{n} d \lambda \stackrel{(!)}{=} \lim _{n} \int_{a}^{b} g_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

Hence $g=u$ almost everywhere. Since $g \leq f \leq u$, it follows that $g=f=u$ almost everywhere.
Thus, $f=\lim g_{n}$ almost everywhere, and hence f is measurable and

$$
\int_{a}^{b} f d \lambda=\lim _{n} \int_{a}^{b} g_{n} d \lambda=\int_{a}^{b} g d \lambda=\int_{a}^{b} f(x) d x
$$

${ }^{3}$ Since u_{n} is a step function, $\int_{a}^{b} u_{n} d \lambda \stackrel{(!)}{=} \int_{a}^{b} u_{n}(x) d x$.

Riemann integrable functions

Theorem

A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable if and only if it is almost everywhere continuous, that is, if its set of discontinuities has measure zero. Then f is Lebesgue integrable and the two integrals coincide.

Proof Later (if time permits).
Remark The characteristic functions of $\left[\frac{1}{3}, \frac{2}{3}\right]$ is almost everywhere continuous, but it is not almost everywhere equal to a continuous function.
On the other hand, the Dirichlet functions is continuous nowhere, but it is almost everywhere equal to the continuous function $f(t)=0$.

Definition

If $X \subseteq \mathbb{R}$ is measurable, the space $\mathcal{L}_{\mathbb{R}}^{1}(X)$ consists of all functions $f: X \rightarrow \mathbb{R}$ which are measurable and satisfy $\int_{X}|f| d \lambda<+\infty$. The quantity $\int_{X}|f| d \lambda$ is denoted $\|f\|_{1}$.

Remarks (i) If $f: X \rightarrow[-\infty,+\infty]$ is measurable then $\|f\|_{1}<+\infty$ if and only if f takes finite values almost everywhere; therefore it is almost everywhere equal to a function $\tilde{f} \in \mathcal{L}_{\mathbb{R}}^{1}(X)$.
Abusing terminology, we say $f \in \mathcal{L}_{\mathbb{R}}^{1}(X)$.
(ii) If $f, g \in \mathcal{L}_{\mathbb{R}}^{1}(X)$ and $\lambda \in \mathbb{R}$ then $f+\lambda g \in \mathcal{L}_{\mathbb{R}}^{1}(X)$ and
$\square\|\lambda g\|_{1}=|\lambda|\|g\|_{1}$
2 $\|f+g\|_{1} \leq\|f\|_{1}+\|g\|_{1}$
$3\|f\|_{1}=0$ if and only if $f=0$ almost everywhere.

Completeness: The Riesz-Fischer Theorem

Definition

Let $f_{n}, f: X \rightarrow \mathbb{R}$ be measurable.
(ii) The sequence $\left\{f_{n}\right\}$ converges to f in the mean or in L^{1} If

$$
\int\left|f_{n}-f\right| d \lambda \rightarrow 0
$$

(iif The sequence $\left\{f_{n}\right\}$ is Cauchy in the mean if for every $\varepsilon>0$ there is $n_{0}(\varepsilon) \in \mathbb{N}$ such that: If $m, n \geq n_{0}$ then

$$
\int\left|f_{n}-f_{m}\right| d \lambda<\varepsilon
$$

Theorem

Let $X \subseteq \mathbb{R}$ be measurable and $\left\{f_{n}\right\}$ a sequence of functions in $\mathcal{L}_{\mathbb{R}}^{1}(X)$. - If $\left\{f_{n}\right\}$ is Cauchy in the mean, then there is a function $f: X \rightarrow \mathbb{R}$ in $\mathcal{L}_{\mathbb{R}}^{1}(X)$ so that $f_{n} \rightarrow f$ in the mean.

- In addition, there is a subsequence $\left\{f_{n_{k}}\right\}$ of $\left\{f_{n}\right\}$ so that $f_{n_{k}} \rightarrow f$ almost everywhere.

The space $\mathcal{L}_{\mathbb{R}}^{1}(X)$ is a linear space and $\|\cdot\|_{1}$ is a seminorm on it. Define

$$
\mathcal{N}=\{f: X \rightarrow \mathbb{R}: \text { measurable, } f=0 \text { almost everywhere }\} .
$$

Remark: $\mathcal{N}=\left\{f \in \mathcal{L}_{\mathbb{R}}^{1}(X):\|f\|_{1}=0\right\}$.
If $f, g \in \mathcal{L}^{1}$, then: $f=g$ almost everywhere $\Longleftrightarrow f-g \in \mathcal{N}$.
Also, \mathcal{N} is a linear subspace of \mathcal{L}^{1}.
On the quotient space $L_{\mathbb{R}}^{1}(X):=\mathcal{L}_{\mathbb{R}}^{1}(X) / \mathcal{N}$, define $\left\|[f]_{\mathcal{N}}\right\|_{1}:=\|f\|_{1}$, where $[f]_{\mathcal{N}}:=\{f+g: g \in \mathcal{N}\}$. This is a well-defined norm. Thus, the space $L_{\mathbb{R}}^{1}(X)$ consists of equivalence classes of $\mathcal{L}_{\mathbb{R}}^{1}(X)$ functions modulo equality almost everywhere.
The Riesz-Fischer Theorem states precisely that the space $\left(L_{\mathbb{R}}^{1}(X),\|\cdot\|_{1}\right)$ is a complete normed space, that is, a Banach space.

Let $p \in[1, \infty)$. If $X \subseteq \mathbb{R}$ is measurable, the space $\mathcal{L}_{\mathbb{R}}^{p}(X)$ consists of all functions $f: X \rightarrow \mathbb{R}$ which are measurable and satisfy
$\int_{X}|f|^{p} d \lambda<+\infty$.
The quantity $\left(\int_{X}|f|^{p} d \lambda\right)^{1 / p}$ is denoted $\|f\|_{p}$.
On the quotient space $L_{\mathbb{R}}^{p}(X):=\mathcal{L}_{\mathbb{R}}^{p}(X) / \mathcal{N}$ (where $\mathcal{N}=\{f: X \rightarrow \mathbb{R}:$ measurable, $f=0$ almost everywhere $\}$) define $\left\|[f]_{\mathcal{N}}\right\|_{p}:=\|f\|_{p}$, where $[f]_{\mathcal{N}}:=\{f+g: g \in \mathcal{N}\}$. This is a well-defined norm.

Theorem (Riesz-Fischer)

The space $\left(L_{\mathbb{R}}^{p}(X),\|\cdot\|_{p}\right)$ is a complete normed space, that is, a Banach space: If a sequence $\left\{f_{n}\right\}$ in $\mathcal{L}_{\mathbb{R}}^{p}(X)$ is Cauchy with respect to $\|\cdot\|_{p}$, there exists $f: X \rightarrow \mathbb{R}$ in $\mathcal{L}_{\mathbb{R}}^{p}(X)$ so that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$.

Approximation in $\left(L_{\mathbb{R}}^{p}(X),\|\cdot\|_{p}\right)$

Let $X \subseteq \mathbb{R}$ be measurable. We write $\mathcal{S}(X)$ for the set of all (equivalence classes, modulo equality almost everywhere, of) simple measurable functions $s: X \rightarrow \mathbb{R}$ such that $\lambda(\{x \in X: s(x) \neq 0\}$.

Proposition

The space $\mathcal{S}(X)$ is a linear subspace of $L_{\mathbb{R}}^{p}(X)$ which is dense in $\left(L_{\mathbb{R}}^{p}(X),\|\cdot\|_{p}\right)$.

We write $C_{c}(\mathbb{R})$ for the set of continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which have compact support, that is, there exists a compact $K(f) \subseteq \mathbb{R}$ so that $f(x)=0$ when $x \notin K(f)$.

Proposition

The space $C_{c}(\mathbb{R})$ is a linear subspace of $L_{\mathbb{R}}^{p}(X)$ which is dense in $\left(L_{\mathbb{R}}^{p}(X),\|\cdot\|_{p}\right)$.

Part III

Fourier series for functions of class \mathcal{L}^{1} and \mathcal{L}^{2}

Complex-valued functions on the unit circle (Reminder)

Denote by \mathbb{T} the unit circle

$$
\mathbb{T}=\{z \in \mathbb{C}:|z|=1\}=\left\{e^{i \theta}: \theta \in \mathbb{R}\right\} .
$$

If $\phi: \mathbb{T} \rightarrow \mathbb{C}$, define $f: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
f(\theta)=\phi\left(e^{i \theta}\right)
$$

The function f is 2π-periodic.
Conversely, if $f: \mathbb{R} \rightarrow \mathbb{C}$ is 2π-periodic, then the function $\phi: \mathbb{T} \rightarrow \mathbb{C}$ given by $\phi\left(e^{i \theta}\right)=f(\theta)$ is well defined.
Thus we have a $1-1$ correspondence between functions $\phi: \mathbb{T} \rightarrow \mathbb{C}$ and 2π-periodic functions $f: \mathbb{R} \rightarrow \mathbb{C}$.
In what follows we shall make no distinction between ϕ and f.

The spaces $L^{p}(\mathbb{T})$

For $p \in[1, \infty)$, the symbol $\mathcal{L}^{p}(\mathbb{T})$ denotes the set of all measurable (*) functions $f: \mathbb{T} \rightarrow \mathbb{C}$ satisfying

$$
\int_{-\pi}^{\pi}|f(t)|^{p} d \lambda(t)<\infty \quad \text { (Lebesgue measure) }
$$

We write

$$
\|f\|_{p}:=\left(\int_{-\pi}^{\pi}|f(t)|^{p} \frac{d \lambda(t)}{2 \pi}\right)^{1 / p}
$$

Observe that $\|f\|_{p}=0$ if and only if $f(t)=0$ for almost all t.
(*) A function $h: \mathbb{T} \rightarrow \mathbb{C}$ is called measurable iff both $u:=\operatorname{Re} h=\frac{1}{2}(h+\bar{h})$ and $v:=\operatorname{Im} h=\frac{1}{2 i}(h-\bar{h})$ are measurable functions $\mathbb{T} \rightarrow \mathbb{R}$.
Notice that then $|h|=\left(u^{2}+v^{2}\right)^{1 / 2}$ is measurable (why?).

The spaces $L^{p}(\mathbb{T})$

The symbol $L^{p}(\mathbb{T})$ denotes the space of equivalence classes $[f]$, of $f \in \mathcal{L}^{p}(\mathbb{T})$, modulo equality almost everywhere (we write f instead of $[f]$).
The space $L^{p}(\mathbb{T})$ is a linear space and $\|\cdot\|_{p}$ is a norm on $L^{p}(\mathbb{T})$ with respect to which $L^{p}(\mathbb{T})$ is a Banach space (Riesz-Fischer Theorem). The space $L^{2}(\mathbb{T})$ is a Hilbert space with respect to
$\langle f, g\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \overline{g(t)} d \lambda(t)$.
Here $\int h d \lambda:=\int \operatorname{Re} h d \lambda+i \int \operatorname{Im} h d \lambda$ where
$\left.\operatorname{Re} h=\frac{1}{2}(h+\bar{h}), \operatorname{Im} h=\frac{1}{2 i}(h-\bar{h}).\right]$

Remark

The mapping $\mathcal{J}: f \rightarrow \int f d \lambda: L^{1}(\mathbb{T}) \rightarrow \mathbb{C}$ is linear, and it is positive: if $f \in L^{1}(\mathbb{T})$ and $f(t) \in \mathbb{R}_{+}$a.e. then $\mathcal{J}(f) \geq 0$.
It follows that $\left|\int g d \lambda\right| \leq \int|g| d \lambda \quad \forall g \in L^{1}(\mathbb{T})$.

The spaces $L^{p}(\mathbb{T})$

If $1 \leq p \leq q<\infty$ and f is measurable, we have $\|f\|_{p} \leq\|f\|_{q} \leq\|f\|_{\infty}$ and hence

$$
C(\mathbb{T}) \subseteq L^{q}(\mathbb{T}) \subseteq L^{p}(\mathbb{T}) \subseteq L^{1}(\mathbb{T})
$$

(recall that we identify $C(\mathbb{T})$ with the space of continuous 2π periodic functions $f: \mathbb{R} \rightarrow \mathbb{C}$.)

Proposition

If $p \in[1, \infty)$, the space of simple measurable functions, the space of step functions and $C(\mathbb{T})$ are dense in $\left(L^{p}(\mathbb{T}),\|\cdot\|_{p}\right)$.

Fourier series for functions of class \mathcal{L}^{1}

Definition (Fourier coefficients)

Let $f \in \mathcal{L}^{1}(\mathbb{T})$. Define

$$
\hat{f}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f e_{-k} d \lambda=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i k t} d \lambda(t) \quad(k \in \mathbb{Z})
$$

Here $\int f d \lambda:=\int \operatorname{Re} f d \lambda+i \int \operatorname{Im} f d \lambda$ where
$\operatorname{Re} f=\frac{1}{2}(f+\bar{f}), \operatorname{Im} f=\frac{1}{2 i}(f-\bar{f})$.
Remark. The function $S_{n}(f)=\sum_{|k| \leq n} \hat{f}(k) e_{k}$ is a trigonometric polynomial, hence a continuous (and 2π-periodic) function, for every $f \in \mathcal{L}^{1}(\mathbb{T})$.

Remark

Let $f \in \mathcal{L}^{1}(\mathbb{T})$. Then

$$
\begin{aligned}
|\hat{f}(k)| & \leq\|f\|_{1} \text { for all } k \in \mathbb{Z} \\
\text { thus }\|\hat{f}\|_{\infty} & \leq\|f\|_{1}
\end{aligned}
$$

Proposition (the Riemann-Lebesgue lemma)

Let $f \in \mathcal{L}^{1}(\mathbb{T})$. Then

$$
\lim _{|k| \rightarrow \infty} \hat{f}(k)=0
$$

Thus $(\hat{f}(k)) \in c_{0}(\mathbb{Z})$.
Equivalently,
$\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \cos n t d t=0 \quad \lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \sin n t d t=0$.

The Uniqueness Theorem for \mathcal{L}^{1}

Remark If we change the values of an \mathcal{L}^{1} function on a set of measure zero, its Fourier coefficients remain the same. In other words, If $f=g$ almost everywhere, then $\hat{f}(k)=\hat{g}(k)$ for all $k \in \mathbb{Z}$. The converse also holds:

Theorem

For $f, g \in L^{1}(\mathbb{T})$ the following are equivalent:
(i) $\hat{f}(k)=\hat{g}(k)$ for all $k \in \mathbb{Z}$
(ii) $f=g$ a.e.. That is, f and g determine the same element of $L^{1}(\mathbb{T})$.

Proposition

For all $f \in L^{1}(\mathbb{T})$, we have $\left\|\sigma_{n}(f)\right\|_{1} \leq\|f\|_{1}$.

Proposition

For all $f \in L^{1}(\mathbb{T})$, we have $\lim _{n}\left\|\sigma_{n}(f)-f\right\|_{1}=0$.
Conclusion : The space of trigonometric polynomials is dense in $L^{1}(\mathbb{T})$. For proofs, see L1uniq.pdf.

Best mean square approximation Lemma (see also Prop. 9.1 in not60520en.pdf): Let $f \in \mathcal{L}^{2}(\mathbb{T}), n \in \mathbb{N}$ and p a trigonometric polynomial of degree $\operatorname{deg}(p) \leq n$. Then $\|f-p\|_{2} \geq\left\|f-S_{n}(f)\right\|_{2}$. In fact:

$$
\begin{aligned}
&\|p\|_{2}^{2}=\sum_{|k| \leq n}|\hat{p}(k)|^{2} \\
&\|f-p\|_{2}^{2} \stackrel{(!)}{=}\left\|f-S_{n}(f)\right\|_{2}^{2}+\left\|S_{n}(f)-p\right\|_{2}^{2} \\
&=\left\|f-S_{n}(f)\right\|_{2}^{2}+\sum_{|k| \leq n}|\hat{f}(k)-\hat{p}(k)|^{2} \\
&\left(p=S_{m}(f)\right):\left\|f-S_{m}(f)\right\|_{2}^{2} \geq\left\|f-S_{n}(f)\right\|_{2}^{2} \quad \text { if } m \leq n \\
&(p=0): \quad\|f\|_{2}^{2}=\left\|f-S_{n}(f)\right\|_{2}^{2}+\left\|S_{n}(f)\right\|_{2}^{2} \geq\left\|S_{n}(f)\right\|_{2}^{2}
\end{aligned}
$$

Hence $\quad \sum_{k \in \mathbb{Z}}|\hat{f}(k)|^{2} \leq\|f\|_{2}^{2} \quad$ (Bessel).
Corollary $\quad\left\|f-\sigma_{n}(f)\right\|_{2} \geq\left\|f-S_{n}(f)\right\|_{2} . \quad\left(\right.$ put $\left.p=\sigma_{n}(f)\right)$

Fourier series for functions of class \mathcal{L}^{2}

Reminder Fejér: If $g \in C(\mathbb{T})$, then $\lim _{n}\left\|g-\sigma_{n}(g)\right\|_{\infty}=0$.
Hence $\lim _{n}\left\|g-\sigma_{n}(g)\right\|_{2}=0$. Hence $\lim _{n}\left\|g-S_{n}(g)\right\|_{2}=0$.
Since $C(\mathbb{T})$ is dense in $\mathcal{L}^{2}(\mathbb{T})$ and $\|f\|_{2} \geq\left\|S_{n}(f)\right\|_{2}$, it follows that
Proposition
If $f \in \mathcal{L}^{2}([-\pi, \pi])$, then $S_{n}(f) \xrightarrow{\|\cdot\|_{2}} f$, that is

$$
\lim _{n} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|S_{n}(f)-f\right|^{2} d \lambda=0
$$

Therefore $\left|\left\|S_{n}(f)\right\|_{2}-\|f\|_{2}\right| \leq\left\|S_{n}(f)-f\right\|_{2} \rightarrow 0$, that is

$$
\lim _{n \rightarrow \infty} \sum_{|k| \leq n}|\hat{f}(k)|^{2}=\|f\|_{2}^{2}
$$

Fourier series for functions of class \mathcal{L}^{2}

Proposition (Parseval's equality)

If $f, g \in \mathcal{L}^{2}(\mathbb{T})$, then

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f|^{2} d \lambda=\sum_{k=-\infty}^{\infty}|\hat{f}(k)|^{2} \quad \text { and } \quad \frac{1}{2 \pi} \int_{-\pi}^{\pi} f \bar{g} d \lambda=\sum_{k=-\infty}^{\infty} \hat{f}(k) \overline{\hat{g}(k)}
$$

Corollary

The map

$$
\mathcal{F}_{2}:\left(L^{2}(\mathbb{T}),\|\cdot\|_{2}\right) \rightarrow\left(\ell^{2}(\mathbb{Z}),\|\cdot\|_{2}\right): f \rightarrow \hat{f}
$$

is a well defined linear isometry.
(Uniqueness) In particular, the map $f \rightarrow \hat{f}$ is 1-1 on $L^{2}(\mathbb{T})$: If $\hat{f}(k)=\hat{g}(k)$ for every $k \in \mathbb{Z}$, then f and g determine the same element of $L^{2}(\mathbb{T})$, i.e. they are equal almost everywhere.

Fourier series for functions of class \mathcal{L}^{2}

The map $\mathcal{F}_{2}:\left(C(\mathbb{T}),\|\cdot\|_{L^{2}}\right) \rightarrow\left(\ell^{2}(\mathbb{Z}),\|\cdot\|_{\ell^{2}}\right): f \rightarrow(\hat{f}(k))_{k} \in \mathbb{Z}$ is isometric, hence 1-1, and has dense range, but it is not onto (why?).
Completeness of $L^{2}(\mathbb{T})$ yields:

Proposition

The map \mathcal{F}_{2} sends $L^{2}(\mathbb{T})$ onto $\ell^{2}(\mathbb{Z})$:
If $\sum_{n \in \mathbb{Z}}\left|c_{n}\right|^{2}<+\infty$ then there exists an $f \in \mathcal{L}^{2}(\mathbb{T})$ so that $\hat{f}(k)=c_{k}$
for every $k \in \mathbb{Z}$. In fact, if $s_{n}(t)=\sum_{k=-n}^{n} c_{k} e^{i k t}$ then $\left\|f-s_{n}\right\|_{2} \rightarrow 0$.
Sketch of proof Since

$$
\left\|f_{n}\right\|_{L^{2}}^{2}=\sum_{k}\left|\hat{f}_{n}(k)\right|^{2}=\sum_{|k| \leq n}\left|c_{k}\right|^{2}
$$

the sequence $\left(f_{n}\right)$ is Cauchy in the norm of $L^{2}(\mathbb{T})$.
Hence (completeness!) there exists $f \in \mathcal{L}^{2}(\mathbb{T})$ so that $\left\|f-f_{n}\right\|_{L^{2}} \rightarrow 0$.
Then $\hat{f}(k)=\left\langle f, e_{k}\right\rangle=\lim _{n}\left\langle f_{n}, e_{k}\right\rangle=\lim _{n} \hat{f}_{n}(k)=c_{k}$ for all $k \in \mathbb{Z}$.

Given a function $f \in \mathcal{L}^{1}(\mathbb{T})$,

$$
\left.\begin{array}{rlrl}
a_{n}=a_{n}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d \lambda(x), & (n=0,1,2, \ldots) \\
b_{m}=b_{m}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (m x) d \lambda(x), & (m=1,2, \ldots) \\
\hat{f}(k)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \exp (-i k x) d \lambda(x) & =\left\langle f, e_{k}\right\rangle, \quad(k \in \mathbb{Z}) \\
& & & \\
\hat{f}(n)=\frac{1}{2}\left(a_{n}-i b_{n}\right), & (n>0) & a_{n} & =\hat{f}(n)+\hat{f}(-n) \\
\hat{f}(0)= & \frac{1}{2} a_{0}, & (n=0) & a_{0}
\end{array}\right)=2 \hat{f}(0), \hat{f}(\hat{f}(n)-\hat{f}(-n)) .
$$

The trig. series $\sum_{k=1}^{\infty} \frac{1}{k} e_{k}$ converges for every $t \neq 2 k \pi$ (Dirichlet) but is not the Fourier of a Riemann-integrable function, because its partial sums are not uniformly bounded. However, it is the Fourier series of an $f \in \mathcal{L}^{2}(\mathbb{T})$ since $\sum_{k=1}^{\infty}\left|\frac{1}{k}\right|^{2}<\infty$.
We will prove that the convergent trigonometric series

$$
\sum_{n=2}^{\infty} \frac{\sin n t}{\log n}
$$

(sine series) is not the Fourier series of any Lebesgue-integrable function, while the corresponding cosine series

$$
\sum_{n=2}^{\infty} \frac{\cos n t}{\log n}
$$

is a Fourier series!
Proofs in nofou.pdf.

Proposition

If $f \in \mathcal{L}^{1}(\mathbb{T})$ and for every $n \in \mathbb{N}$ we have $-\hat{f}(-n)=\hat{f}(n) \geq 0$ then

$$
\sum_{n=1}^{\infty} \frac{1}{n} \hat{f}(n)<\infty
$$

... hence f cannot have $\sum \frac{\sin n t}{\log n}$ as its Fourier series.

Proposition

Let $a_{n} \geq 0, a_{n} \rightarrow 0$ and suppose $a_{n} \leq \frac{1}{2}\left(a_{n-1}+a_{n+1}\right)$ for all $n \in \mathbb{N}$. Then there exists $f \in \mathcal{L}^{1}(\mathbb{T})$ such that

$$
\hat{f}(k)=a_{|k|} \quad \text { for all } k \in \mathbb{Z}
$$

... hence there exists an $f \in \mathcal{L}^{1}(\mathbb{T})$ whose Fourier series is $\sum \frac{\cos n t}{\log n}$.

We have used two Lemmas:

Lemma

If $f \in \mathcal{L}^{1}(\mathbb{T})$ and $\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d \lambda(t)=0$, then the indefinite integral g of f,

$$
g(x)=\int_{-\pi}^{x} f(t) d \lambda(t), \quad x \in[-\pi, \pi]
$$

satisfies $i k \hat{g}(k)=\hat{f}(k)$ for all $k \in \mathbb{Z}$ and $g(-\pi)=g(\pi)$ and is continuous (it belongs to $C(\mathbb{T})$).

Lemma

If $\left(a_{n}\right)$ is a null sequence of nonnegative real numbers with the property $2 a_{n} \leq a_{n-1}+a_{n+1}$ for all $n \in \mathbb{N}$ then

$$
\sum_{n=1}^{\infty} n\left(a_{n-1}+a_{n+1}-2 a_{n}\right)=a_{0}
$$

[^0]: ${ }^{2}$ or, more generally, V : metric space

