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Reminder

(a) Complex Numbers.

(b) Periodic functions.
If 𝑓 ∶ ℝ → ℂ is 2𝜋-periodic, it is determined by its restriction to any
interval [𝑎, 𝑏] ⊆ ℝ of length 2𝜋. Thus it is enough to study the restriction
𝑔 ∶= 𝑓|[−𝜋,𝜋] ∶ [−𝜋, 𝜋] → ℝ. Note: 𝑔(−𝜋) = 𝑔(𝜋).



Fourier Series

Let 𝑓 ∶ [−𝜋, 𝜋] → ℝ be integrable (in the Riemann sense, for the first
part of the course). The Fourier series of 𝑓 is the series of functions

𝑆[𝑓](𝑥) = 𝑎0
2 +

∞
∑
𝑘=1

(𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥),

where the Fourier coefficients 𝑎𝑘 and 𝑏𝑘 of 𝑓 are given by

𝑎𝑘 = 𝑎𝑘(𝑓) =
1
𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) cos 𝑘𝑥 𝑑𝑥, 𝑘 = 0, 1, 2,…

and

𝑏𝑘 = 𝑏𝑘(𝑓) =
1
𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) sin 𝑘𝑥 𝑑𝑥, 𝑘 = 1, 2,…

(the integrals exist).



Fourier Series

Remark For each 𝑘 ∈ ℤ+,

|𝑎𝑘| ≤
1
𝜋 ∫

𝜋

−𝜋
|𝑓(𝑥)| 𝑑𝑥 and |𝑏𝑘| ≤

1
𝜋 ∫

𝜋

−𝜋
|𝑓(𝑥)| 𝑑𝑥.

Thus, the sequences {𝑎𝑘} and {𝑏𝑘} are bounded.
The 𝑛-th partial sum of 𝑆[𝑓] is the continuous function

𝑠𝑛(𝑓)(𝑥) =
𝑎0
2 +

𝑛
∑
𝑘=1

(𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥).

Question: Does the sequence 𝑠𝑛(𝑓) “converge”? To 𝑓?
NO, “usually”
YES, for “good functions”
YES, “for the appropriate mode of convergence”.



Trigonometric polynomials

Trigonometric series :

𝑎𝑜
2 +

∞
∑
𝑘=1

𝑎𝑘 cos 𝑘𝑥 +
∞
∑
𝑘=1

𝑏𝑘 sin 𝑘𝑥, 𝑎𝑘, 𝑏𝑘 ∈ ℝ .

Trigonometric polynomial:

𝑎0
2 +

𝑁
∑
𝑘=1

𝑎𝑘 cos 𝑘𝑥 +
𝑁
∑
𝑘=1

𝑏𝑘 sin 𝑘𝑥

𝑎𝑘 = 𝑏𝑘 = 0 when 𝑘 > 𝑁 . Degree: the largest 𝑁 so that
|𝑎𝑁 | + |𝑏𝑁 | ≠ 0.

Equivalent form
𝑁
∑

𝑘=−𝑁
𝑐𝑘 exp(𝑖𝑘𝑥)

where exp(𝑖𝑡) = cos 𝑡+𝑖 sin 𝑡 , 𝑐𝑘 =
⎧{
⎨{⎩

1
2(𝑎𝑘 − 𝑖𝑏𝑘), 𝑘 ≥ 1

1
2𝑎0, 𝑘 = 0

1
2(𝑎−𝑘 + 𝑖𝑏−𝑘), 𝑘 ≤ −1



Example 1.

For each 𝑥 ∈ ℝ,

𝑠𝑛(𝑥) =
𝑛

∑
𝑘=1

sin 𝑘𝑥 = sin𝑥 + sin 2𝑥 +…+ sin𝑛𝑥

= {
cos 𝑥

2−cos(𝑛+ 1
2 )𝑥

2 sin 𝑥
2

, 𝑥
2𝜋 ∉ ℤ

0, 𝑥
2𝜋 ∈ ℤ

𝑐𝑛(𝑥) =
1
2 +

𝑛
∑
𝑘=1

cos 𝑘𝑥 = 1
2 + cos𝑥 + cos 2𝑥 +…+ cos𝑛𝑥

= {
sin(𝑛+ 1

2 )𝑥
2 sin 𝑥

2
, 𝑥 ≠ 2𝑚𝜋

𝑛 + 1
2 , 𝑥 = 2𝑚𝜋



Example 1. (continued)

Although the two sequences do not converge (why?),
they are bounded (when 𝑥 ≠ 2𝑘𝜋).

Proof If 𝑥 ∈ (0, 2𝜋), for each 𝑛 ∈ ℕ we have

∣12 +
𝑛

∑
𝑘=1

cos 𝑘𝑥∣ ≤ 1
2 ∣sin 𝑥

2 ∣
and ∣

𝑛
∑
𝑘=1

sin 𝑘𝑥∣ ≤ 1
∣sin 𝑥

2 ∣
.

Furthermore, for each 𝛿 > 0 both sequences are uniformly bounded in
the interval [𝛿, 2𝜋 − 𝛿]:
for each 𝑥 ∈ [𝛿, 2𝜋 − 𝛿] and every 𝑛 ∈ ℕ we have

∣12 +
𝑛

∑
𝑘=1

cos 𝑘𝑥∣ ≤ 1
2 sin 𝛿

2
and ∣

𝑛
∑
𝑘=1

sin 𝑘𝑥∣ ≤ 1
sin 𝛿

2
.



Example 2

𝑠𝑛(𝑥) =
𝑛

∑
𝑘=1

1
𝑘2 sin 𝑘𝑥 = sin𝑥 + 1

4 sin 2𝑥 +…+ 1
𝑛2 sin𝑛𝑥

𝑐𝑛(𝑥) =
𝑛

∑
𝑘=1

1
𝑘2 cos 𝑘𝑥 = cos𝑥 + 1

4 cos 2𝑥 +…+ 1
𝑛2 cos𝑛𝑥

converge uniformly to continuous functions ℝ → ℝ because
Theorem
If a sequence (𝑔𝑛) of functions 𝑔𝑛 ∶ 𝑋 → ℂ (where 𝑋 ⊆ ℝ) is
uniformly Cauchy 1, then (𝑔𝑛) converges uniformly on 𝑋.
If in addition the 𝑔𝑛 are continuous on 𝑋, then their limit is a
continuous function.
Proposition (Weierstrass M-test)

If for all 𝑛 ∈ ℕ, 𝑓𝑛 ∶ 𝑋 → ℂ satisfies |𝑓𝑛(𝑡)| ≤ 𝑀𝑛 ∀𝑡 ∈ 𝑋 where
∞
∑
𝑛=1

𝑀𝑛 < ∞ then the sequence (𝑔𝑛) where 𝑔𝑛(𝑡) =
𝑛
∑
𝑘=1

𝑓𝑛(𝑡)
converges uniformly.

1i.e. satisfies: for each 𝜀 > 0 there is 𝑛𝑜 ∈ ℕ so that if 𝑛,𝑚 ≥ 𝑛𝑜 then for each
𝑥 ∈ 𝑋 we have |𝑔𝑛(𝑥) − 𝑔𝑚(𝑥)| < 𝜀



Example 3

Example

𝑠𝑛(𝑥) =
𝑛

∑
𝑘=1

1
𝑘 sin 𝑘𝑥 = sin𝑥 + 1

2 sin 2𝑥 +…+ 1
𝑛 sin𝑛𝑥

𝑐𝑛(𝑥) =
𝑛

∑
𝑘=1

1
𝑘 cos 𝑘𝑥 = cos𝑥 + 1

2 cos 2𝑥 +…+ 1
𝑛 cos𝑛𝑥

We will show that both sequences converge for each 𝑥 ≠ 2𝑘𝜋 and
define continuous functions. It suffices to restrict to the interval(0, 2𝜋),
since both sequences are trigonometric polynomials, hence 2𝜋-periodic
functions. (Observe that for 𝑥 = 2𝑘𝜋 the sequence (𝑐𝑛(𝑥)) diverges.)



Tools

Proposition (Dirichlet)

Let (𝑎𝑘) be a sequence of functions 𝑎𝑘 ∶ 𝑋 → ℂ and (𝑏𝑘) a sequence of
numbers. If

(𝑖) there is 𝑀 < ∞ so that ∀𝑡 ∈ 𝑋, ∀𝑛 ∈ ℕ, ∶ ∣
𝑛

∑
𝑘=1

𝑎𝑘(𝑡)∣ ≤ 𝑀,

(𝑖𝑖) 𝑏1 ≥ 𝑏2 ≥ … ≥ 𝑏𝑛 ≥ 0
and (𝑖𝑖𝑖) 𝑏𝑛 → 0,

then the series ∑𝑘 𝑏𝑘𝑎𝑘 converges uniformly on 𝑋.

Lemma (summation by parts)

If 𝑏1 ≥ 𝑏2 ≥ … ≥ 𝑏𝑛 ≥ 0 and 𝑎𝑘 ∈ ℂ, then setting 𝑠0 = 0 and
𝑠𝑘 = 𝑎1 + 𝑎2 +…+ 𝑎𝑘, we have for each 𝑚,𝑛 ∈ ℕ with 𝑛 > 𝑚 ≥ 1,

𝑛
∑
𝑘=𝑚

𝑎𝑘𝑏𝑘 =
𝑛−1
∑
𝑘=𝑚

𝑠𝑘(𝑏𝑘 − 𝑏𝑘+1) + 𝑠𝑛𝑏𝑛 − 𝑠𝑚−1𝑏𝑚



Tools

Proof of Dirichlet (Sketch) If 𝑛,𝑚 ∈ ℕ and 𝑛 > 𝑚, for each 𝑡 ∈ 𝑋 we
have (from the Lemma)

∣
𝑛

∑
𝑘=𝑚

𝑎𝑘(𝑡)𝑏𝑘∣ = ∣
𝑛−1
∑
𝑘=𝑚

𝑠𝑘(𝑡)(𝑏𝑘 − 𝑏𝑘+1) + 𝑠𝑛(𝑡)𝑏𝑛 − 𝑠𝑚−1(𝑡)𝑏𝑚∣

≤
𝑛−1
∑
𝑘=𝑚

|𝑠𝑘(𝑡)|(𝑏𝑘 − 𝑏𝑘+1) + |𝑠𝑛(𝑡)|𝑏𝑛 + |𝑠𝑚−1(𝑡)|𝑏𝑚

(since 𝑏𝑛, 𝑏𝑚, 𝑏𝑘 − 𝑏𝑘+1 ≥ 0)

≤
𝑛−1
∑
𝑘=𝑚

𝑀(𝑏𝑘 − 𝑏𝑘+1) +𝑀𝑏𝑛 +𝑀𝑏𝑚

= 𝑀(𝑏𝑚 − 𝑏𝑛) +𝑀𝑏𝑛 +𝑀𝑏𝑚 = 2𝑀𝑏𝑚.

... since 𝑏𝑚 → 0, we obtain that the sequence of partial sums of
∑𝑘 𝑏𝑘𝑎𝑘 is uniformly Cauchy, hence unifromly convergent.



Tools

Proposition

If 𝑉 ⊆ ℝ is open 2 and 𝑓𝑛 ∶ 𝑉 → ℂ satisfies: “for each compact
𝐾 ⊆ 𝑉 the sequence (𝑓𝑛|𝐾) converges uniformly on 𝐾” (we say: (𝑓𝑛)
converges uniformly on compact subset of 𝑉 ) then for each 𝑥 ∈ 𝑉 the
sequence (𝑓𝑛(𝑥)) converges.
If additionaly the 𝑓𝑛 are continuous on 𝑉 , then their limit
𝑓 ∶ 𝑥 → lim𝑛 𝑓𝑛(𝑥) is also a continuous function on 𝑉 .

2or, more generally, 𝑉 : metric space



Summarising

(
𝑛
∑
𝑘=1

sin 𝑘𝑥) Not convergent, but ∀𝛿 > 0 uniformly bounded on

[𝛿, 2𝜋 − 𝛿].

(
𝑛
∑
𝑘=1

1
𝑘2 sin 𝑘𝑥) Converges uniformly on [0, 2𝜋], hence to a

continuous function.

(
𝑛
∑
𝑘=1

1
𝑘 sin 𝑘𝑥) Converges for each 𝑥 ∈ (0, 2𝜋) to a continuous

function, because ∀𝛿 > 0 it converges uniformly on [𝛿, 2𝜋 − 𝛿].



Fourier Series

If I know that 𝑓 is a trigonometric polynomial, how can I determine the
coefficients?

Remark

If 𝑓(𝑥) = 𝑎0
2 +

𝑁
∑
𝑘=1

𝑎𝑘 cos 𝑘𝑥 +
𝑁
∑
𝑘=1

𝑏𝑘 sin 𝑘𝑥,

then

𝑎0 =1
𝜋 ∫

2𝜋

0
𝑓(𝑥)𝑑𝑥

𝑎𝑛 =1
𝜋 ∫

2𝜋

0
𝑓(𝑥) cos𝑛𝑥𝑑𝑥

𝑏𝑚 =1
𝜋 ∫

2𝜋

0
𝑓(𝑥) sin𝑚𝑥𝑑𝑥



Fourier Series

Remark (Complex form)

if 𝑓(𝑥) =
𝑁
∑

𝑘=−𝑁
𝑐𝑘 exp 𝑖𝑘𝑥

then,

𝑐𝑚 = 1
2𝜋 ∫

2𝜋

0
𝑓(𝑥) exp(−𝑖𝑚𝑥)𝑑𝑥, −𝑁 ≤ 𝑚 ≤ 𝑁.

because if 𝑘 ∈ ℤ,

1
2𝜋 ∫

2𝜋

0
exp(𝑖𝑘𝑥)𝑑𝑥 = { 1 𝑘 = 0

0 𝑘 ≠ 0



Fourier Series

Generalisation: Given a 2𝜋-periodic function 𝑓 ∶ ℝ → ℂ, we define

𝑎𝑛 = 𝑎𝑛(𝑓) =
1
𝜋 ∫

2𝜋

0
𝑓(𝑥) cos𝑛𝑥𝑑𝑥, (𝑛 = 0, 1, 2,…)

𝑏𝑚 = 𝑏𝑚(𝑓) = 1
𝜋 ∫

2𝜋

0
𝑓(𝑥) sin𝑚𝑥𝑑𝑥, (𝑚 = 1, 2,…)

̂𝑓(𝑘) = 1
2𝜋 ∫

2𝜋

0
𝑓(𝑥) exp(−𝑖𝑘𝑥)𝑑𝑥, (𝑘 ∈ ℤ)

It suffices that the integrals exist.
Definition: The Fourier series 𝑆(𝑓) of 𝑓 :

𝑆(𝑓, 𝑥) ∶= 𝑎𝑜
2 +

∞
∑
𝑘=1

𝑎𝑘 cos 𝑘𝑥 +
∞
∑
𝑘=1

𝑏𝑘 sin 𝑘𝑥

=
∞
∑

𝑘=−∞
̂𝑓(𝑘)𝑒𝑖𝑘𝑥 (complex form)

(For now, we are not concerned with convergence or divergence of
these series.)



Example

The Fourier series of the function 𝑓(𝑡) = 𝑡, 𝑡 ∈ (−𝜋, 𝜋) is

𝑓 ∼ 2(sin 𝑡 − 1
2 sin 2𝑡 + 1

3 sin 3𝑡 − 1
4 sin 4𝑡 + …)

Ic can be shown (Exercise!) that the partial sums of this series form a
Cauchy sequence and therefore the series converges.
But does it converge to 𝑓?



Parenthesis: periodic extension

2(sin 𝑡 − 1
2 sin 2𝑡 + 1

3 sin 3𝑡 − 1
4 sin 4𝑡 + …− 1

12 sin 12𝑡)



Fourier series

Remark
• The Fourier series of a trigonometric polynomial 𝑝 is the trig.
polynomial itself: 𝑆𝑛(𝑝) = 𝑝 when 𝑛 ≥ deg 𝑝, hence 𝑆(𝑝) = 𝑝.
• If a trigonometric series 𝑠(𝑥) = ∑𝑘 𝑐𝑘𝑒𝑖𝑘𝑥 converge uniformly, then
the Fourier coefficients ̂𝑠(𝑘) of 𝑠 are the 𝑐𝑘, hence the Fourier series of
𝑠 is 𝑠.
• It is not however always true that every convergent trigonometric
series is the Fourier series of some function (see later).



Fourier series

Proposition (Linearity!)

If 𝑓 and 𝑔 are integrable on [0, 2𝜋] and 𝜆 ∈ ℂ,
𝑎𝑛(𝑓 + 𝜆𝑔) = 𝑎𝑛(𝑓) + 𝜆𝑎𝑛(𝑔),
𝑏𝑛(𝑓 + 𝜆𝑔) = 𝑏𝑛(𝑓) + 𝜆𝑏𝑛(𝑔) (𝑛,𝑚 ∈ ℕ)

equivalently ̂(𝑓 + 𝜆𝑔)(𝑘) = ̂𝑓(𝑘) + 𝜆 ̂𝑔(𝑘) (𝑘 ∈ ℤ)

therefore 𝑆𝑛(𝑓 + 𝜆𝑔) = 𝑆𝑛(𝑓) + 𝜆𝑆𝑛(𝑔) (𝑛 ∈ ℕ).



Absolutely convergent Fourier series

Proposition

If 𝑓 is a continuous and 2𝜋-periodic function and ∑| ̂𝑓(𝑘)| < ∞
(equivalently ∑(|𝑎𝑘(𝑓) + |𝑏𝑘(𝑓)| < ∞) then the sequence (𝑆𝑁(𝑓))
converges uniformly (and hence the fumction 𝑆(𝑓) ∶= lim

𝑁
𝑆𝑁(𝑓) is

continuous).

Proof Weierstrass’ M-test.

But how to conclude that (𝑆𝑁(𝑓)) converges to 𝑓?
Observe that for each 𝑘 ∈ ℤ we have 𝑆𝑁(𝑓)(𝑘) = ̂𝑓(𝑘) when 𝑁 ≥ |𝑘|,
hence 𝑆(𝑓)(𝑘) = ̂𝑓(𝑘) for each 𝑘 ∈ ℤ (why?).

It suffices therefore to prove the following Uniqueness Theorem:



The Uniqueness Theorem

Theorem
If 𝑓 and 𝑔 is continuous and 2𝜋-periodic functions with ̂𝑔(𝑘) = ̂𝑓(𝑘)
for each 𝑘 ∈ ℤ (equivalently 𝑎𝑛(𝑓) = 𝑎𝑛(𝑔) and 𝑏𝑛(𝑓) = 𝑏𝑛(𝑔) for
each 𝑛 ∈ ℕ), then 𝑓 = 𝑔.

Sketch of Proof We will show that if 𝑓 ≠ 𝑔 there exists a trig.
polynomial 𝑝 with ∫𝜋

−𝜋 𝑓𝑝 ≠ ∫𝜋
−𝜋 𝑔𝑝. Then, there must exist 𝑘 so that

∫𝜋
−𝜋 𝑓𝑒𝑘 ≠ ∫𝜋

−𝜋 𝑔𝑒𝑘, i.e. ̂𝑓(−𝑘) ≠ ̂𝑔(−𝑘).
Let 𝜓 ∶= 𝑓 − 𝑔. In the special case: 𝜓(0) > 0, we will show there is a
trigonometric polynomial of the form 𝑝𝑘,𝑎(𝑡) = (𝑎 + cos 𝑡)𝑘 for
appropriate 𝑎, 𝑘 such that ∫𝜋

−𝜋 𝜓𝑝 ≠ 0.
General case: If 𝜓(𝑡0) ∶= ℎ(𝑡0) ≠ 0, there is a 𝜃 so that 𝑒𝑖𝜃𝜓(𝑡0) > 0,
hence the function 𝜙 given by 𝜙(𝑠) = 𝑒𝑖𝜃𝜓(𝑠 + 𝑡0) satisfies 𝜙(0) > 0.
Thus some ̂𝜙(𝑘) must be nonzero. But then ̂𝜓(𝑘) = 𝑒−𝑖𝜃𝑒𝑖𝑘𝑡0 ̂𝜙(𝑘) ≠ 0.



The trigonometric polynomials 𝑝𝑘,𝑎
𝑝𝑘,𝑎(𝑡) = (𝑎 + cos 𝑡)𝑘, 𝑘 = 1, 2,…
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with 𝑎 = 1
10 , 𝑘 = 2, 7, 16, 25.



The Uniqueness Theorem

Continuity was used only at the point 𝑡0 :

Theorem
If 𝑓 and 𝑔 are integrable on [−𝜋, 𝜋] and ̂𝑔(𝑘) = ̂𝑓(𝑘) for each 𝑘 ∈ ℤ
(equivalently 𝑎𝑛(𝑓) = 𝑎𝑛(𝑔) and 𝑏𝑛(𝑓) = 𝑏𝑛(𝑔) for each 𝑛 ∈ ℕ), then
𝑓(𝑡0) = 𝑔(𝑡0) at each point where 𝑓 − 𝑔 is continuous.



Simple cases of convergence

Proposition

If 𝑓 continuous, 2𝜋-periodic and ∑| ̂𝑓(𝑘)| < ∞ (equivalently
∑(|𝑎𝑘(𝑓) + |𝑏𝑘(𝑓)| < ∞) then (𝑆𝑁(𝑓)) converges uniformly to 𝑓 .

Proposition

If 𝑓 continuous, 2𝜋-periodic and its derivative 𝑓 ′ exists and is
integrable,

𝑆(𝑓 ′, 𝑥) =
∞
∑
𝑘=1

(𝑘𝑏𝑘 cos 𝑘𝑥 − 𝑘𝑎𝑘 sin 𝑘𝑥).

Complex form:
𝑓 ′(𝑘) = 𝑖𝑘 ̂𝑓(𝑘) (𝑘 ∈ ℤ).



Simple cases of convergence

Proposition

If 𝑓 ∶ ℝ → ℂ is continuous, 2𝜋-periodic and ∑|𝑘 ̂𝑓(𝑘)| < ∞, then 𝑓 is
continuously differentiable and the series ∑𝑖𝑘 ̂𝑓(𝑘) exp 𝑖𝑘𝑥 converges
to 𝑓 ′ uniformly.

Lemma
If 𝑓 and its derivatives 𝑓 ′, 𝑓″,… , 𝑓 (𝑛−1) are continuous 2𝜋-periodic
functions and |𝑓 (𝑛)| is integrable then | ̂𝑓(𝑘)| ≤ ‖𝑓 (𝑛)‖1

|𝑘|𝑛 for each 𝑘 ≠ 0
(where ‖𝑔‖1 = 1

2𝜋 ∫ |𝑔|).

Proposition

If 𝑓, 𝑓 ′ and 𝑓″ are continuous and 2𝜋-periodic, the series
∑ ̂𝑓(𝑘) exp 𝑖𝑘𝑥 converges uniformly to 𝑓 .



Fejér’ s Theorem

Let 𝑓 ∶ ℝ → ℂ be continuous and 2𝜋-periodic.
Reminder: 𝑆𝑛(𝑓, 𝑡) = ∑

|𝑘|≤𝑛
̂𝑓(𝑘)𝑒𝑖𝑘𝑡.

The sequence (𝑆𝑛(𝑓)) is not always always convergent (not even
pointwise). However,

Theorem (Fejér)

If 𝑓 ∶ ℝ → ℂ is a continuous and 2𝜋-periodic function, then the
sequence (𝜎𝑛(𝑓)) where

𝜎𝑚(𝑓) = 1
𝑚+ 1

𝑚
∑
𝑛=0

𝑆𝑛(𝑓) (𝑚 ∈ ℕ)

converges to 𝑓 uniformly.



Summability

𝑆𝑛(𝑓)(𝑡) =
𝑘=𝑛
∑
𝑘=−𝑛

̂𝑓(𝑘) exp(𝑖𝑘𝑡)

=
𝑘=𝑛
∑
𝑘=−𝑛

(∫
𝜋

−𝜋
𝑓(𝑠) exp(−𝑖𝑘𝑠) 𝑑𝑠2𝜋) exp(𝑖𝑘𝑡)

= ∫
𝜋

−𝜋
(

𝑘=𝑛
∑
𝑘=−𝑛

exp(𝑖𝑘(𝑡 − 𝑠)))𝑓(𝑠) 𝑑𝑠2𝜋 ∶= ∫
𝜋

−𝜋
𝐷𝑛(𝑡 − 𝑠)𝑓(𝑠) 𝑑𝑠2𝜋 .

hence
𝜎𝑚(𝑓)(𝑡) = 1

𝑚+ 1
𝑚
∑
𝑛=0

𝑆𝑛(𝑓)(𝑡)

= 1
2𝜋 ∫

𝜋

−𝜋
( 1

𝑚+ 1
𝑚
∑
𝑛=0

𝑘=𝑛
∑
𝑘=−𝑛

exp(𝑖𝑘(𝑡 − 𝑠)))𝑓(𝑠)𝑑𝑠

∶= 1
2𝜋 ∫

𝜋

−𝜋
𝐾𝑚(𝑡 − 𝑠)𝑓(𝑠)𝑑𝑠.



Two kernels: Dirichlet against Fejér

Dirichlet: 𝐷𝑛(𝑥) =
𝑘=𝑛
∑
𝑘=−𝑛

exp(𝑖𝑘𝑥) =
⎧{
⎨{⎩

sin( 2𝑛+1
2 𝑥)

sin(𝑥/2) , 𝑥 ≠ 0,

2𝑛 + 1, 𝑥 = 0
(𝑑)

Fejér: 𝐾𝑚(𝑥) = 1
𝑚+ 1

𝑚
∑
𝑛=0

(
𝑛

∑
𝑘=−𝑛

exp(𝑖𝑘𝑥))

=
⎧{
⎨{⎩

1
𝑚+1 ( sin(𝑚+1

2 𝑥)
sin(𝑥/2) )

2
, 𝑥 ≠ 0,

𝑚 + 1, 𝑥 = 0
(𝑘)



Proof of (𝑑) for 𝑥 ≠ 0

sin(𝑥2 )𝐷𝑛(𝑥) = sin(𝑥2 )
𝑘=𝑛
∑
𝑘=−𝑛

exp(𝑖𝑘𝑥)

⇒ (𝑒 𝑖𝑥
2 − 𝑒− 𝑖𝑥

2 )𝐷𝑛(𝑥) = (𝑒 𝑖𝑥
2 − 𝑒− 𝑖𝑥

2 )
𝑘=𝑛
∑
𝑘=−𝑛

exp(𝑖𝑘𝑥)

⇒ (𝑒𝑖𝑥 − 1)𝐷𝑛(𝑥) = (𝑒𝑖𝑥 − 1)
𝑘=𝑛
∑
𝑘=−𝑛

exp(𝑖𝑘𝑥)

=
𝑘=𝑛
∑
𝑘=−𝑛

(exp(𝑖(𝑘 + 1)𝑥) − exp(𝑖𝑘𝑥))

= exp(𝑖(𝑛 + 1)𝑥) − exp(−𝑖𝑛𝑥)

= 𝑒 𝑖𝑥
2 (exp(𝑖(𝑛 + 1

2)𝑥) − exp(−𝑖(𝑛 − 1
2𝑥))

= 𝑒 𝑖𝑥
2 2𝑖 sin((𝑛 + 1

2)𝑥) .



Proof of (𝑘)

If 𝑥 ≠ 0,
1

sin 𝑥
2

𝑚
∑
𝑛=0

sin(𝑛 + 1
2)𝑥 = 1

2 sin2 𝑥
2

𝑚
∑
𝑛=0

2 sin 𝑥
2 sin(𝑛 + 1

2)𝑥

= 1
2 sin2 𝑥

2

𝑚
∑
𝑛=0

(cos𝑛𝑥 − cos(𝑛 + 1)𝑥)

= 1
2 sin2 𝑥

2
(1 − cos(𝑚 + 1)𝑥)

Therefore 𝐾𝑚(𝑥) = 1
𝑚+1 ∑𝑚

𝑛=0 𝐷𝑛(𝑥) = 1
𝑚+1 ∑𝑚

𝑛=0
sin(𝑛+ 1

2 )𝑥
sin(𝑥/2) ,

𝐾𝑚(𝑥) = 1
𝑚+ 1 ⋅ 1

sin2 𝑥
2

1 − cos(𝑚 + 1)𝑥
2 = 1

𝑚+ 1 ⋅ sin2(𝑚+1
2 𝑥)

sin2 𝑥
2

.

If 𝑥 = 0,

𝐾𝑚(0) = 1
𝑚+ 1

𝑚
∑
𝑛=0

𝑘=𝑛
∑
𝑘=−𝑛

exp 0 = 1
𝑚+ 1

𝑚
∑
𝑛=0

(2𝑛+1) = 𝑚+1 . 2



Lemma

Claim: 𝐾𝑚 =
𝑚
∑

𝑘=−𝑚
(1 − |𝑘|

𝑚 + 1)𝑒𝑘 . Proof:

𝐾𝑚 = 1
𝑚+ 1

𝑚
∑
𝑛=0

(
𝑛

∑
𝑘=−𝑛

𝑒𝑘)= 1
𝑚+ 1

𝑚
∑
𝑛=0

(𝑒0 + (𝑒1 + 𝑒−1) + ⋯ + (𝑒𝑛 + 𝑒−𝑛))

= 1
𝑚+ 1(𝑒0 (𝑛 = 0)

+ 𝑒0 + (𝑒1 + 𝑒−1) (𝑛 = 1)
+ 𝑒0 + (𝑒1 + 𝑒−1) + (𝑒2 + 𝑒−2) (𝑛 = 2)
+……
+ 𝑒0 + (𝑒1 + 𝑒−1) + (𝑒2 + 𝑒−2) + ⋯ + (𝑒𝑚 + 𝑒−𝑚)) (𝑛 = 𝑚)

= 𝑒0 +
𝑚

𝑚+ 1(𝑒1 + 𝑒−1) +
𝑚− 1
𝑚+ 1(𝑒2 + 𝑒−2) + ⋯ + 1

𝑚+ 1(𝑒𝑛 + 𝑒−𝑛)

=
𝑚
∑

𝑘=−𝑚
(1 − |𝑘|

𝑚 + 1)𝑒𝑘 .



The Dirichlet kernel

𝐷𝑚(𝑥) = sin (2𝑚+1
2 𝑥)

sin(𝑥/2) , 𝑥 ≠ 0, 𝐷𝑚(0) = 2𝑚+ 1.
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The Fejér kernel

𝐾𝑚(𝑥) = 1
𝑚+ 1 (sin(𝑚+1

2 𝑥)
sin(𝑥/2) )

2

, 𝑥 ≠ 0, 𝐾𝑚(0) = 𝑚+ 1.
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𝑚 = 4, 5, 7, 10, 14.



Properties of Fejér’s kernel 𝐾𝑚

Remark
The Fejér kernel has the following properties:
(α) There exists 𝑀 so that ‖𝐾𝑚‖1 ≤ 𝑀 for each 𝑚.

(β) If 𝛿 ∈ (0, 𝜋) and 𝐸𝛿 = [−𝜋,−𝛿] ∪ [𝛿, 𝜋], then lim
𝑚

∫
𝐸𝛿

|𝐾𝑚| = 0.

(γ)
1
2𝜋 ∫

𝜋

−𝜋
𝐾𝑚(𝑥)𝑑𝑥 = 1 for every 𝑚.

• Property (γ) holds by the definition of𝐾𝑚, since
1
2𝜋 ∫

𝜋

−𝜋
𝑒𝑖𝑘𝑡𝑑𝑡 = 1 if

𝑘 = 0 and 0 otherwise.
• Since 𝐾𝑚(𝑡) ≥ 0, (γ) implies (α) with 𝑀 = 1.
• Property (β) follows from the remark that if 𝛿 ≤ |𝑥| ≤ 𝜋, then
|𝐾𝑚(𝑥)| = 𝐾𝑚(𝑥) ≤ 1

𝑚+1
1

sin2 𝛿
2
, hence lim𝑚 𝐾𝑚(𝑥) = 0 uniformly

in 𝐸𝛿 and hence lim
𝑚

∫
𝐸𝛿

|𝐾𝑚| = 0.



Fejér’s Theorem: Sketch of the proof

If 𝛿 > 0, for large enough 𝑚 ∈ ℕ, the value 𝐾𝑚(𝑠) is almost 0 outside
the interval [−𝛿, 𝛿] (by (β)). Therefore

𝜎𝑚(𝑓)(𝑡) = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑡 − 𝑠)𝐾𝑚(𝑠)𝑑𝑠 ≈ 1

2𝜋 ∫
𝛿

−𝛿
𝑓(𝑡 − 𝑠)𝐾𝑚(𝑠)𝑑𝑠

where the symbol ≈ means “nearly equal” here. But 𝑓 is uniformly
continuous, hence if 𝛿 is small enough, when |𝑠| < 𝛿 we have
𝑓(𝑡 − 𝑠) ≈ 𝑓(𝑡). Therefore

1
2𝜋 ∫

𝛿

−𝛿
𝑓(𝑡 − 𝑠)𝐾𝑚(𝑠)𝑑𝑠 ≈ 𝑓(𝑡)( 1

2𝜋 ∫
𝛿

−𝛿
𝐾𝑚(𝑠)𝑑𝑠)

and, again from (β),

1
2𝜋 ∫

𝛿

−𝛿
𝐾𝑚(𝑠)𝑑𝑠 ≈ 1

2𝜋 ∫
𝜋

−𝜋
𝐾𝑚(𝑠)𝑑𝑠 = 1

by (γ). Thus finally 𝜎𝑚(𝑓)(𝑡) ≈ 𝑓(𝑡).



First consequences of Fejér’s Theorem

• Uniqueness. If 𝑓, 𝑔 are continuous, 2𝜋-periodic and ̂𝑓(𝑘) = ̂𝑔(𝑘) for
all 𝑘 ∈ ℤ, then 𝑓 = 𝑔.
Second Proof. We have 𝜎𝑛(𝑓) = 𝜎𝑛(𝑔) for each 𝑛 ∈ ℕ, hence
𝑓 = lim𝑛 𝜎𝑛(𝑓) = lim𝑛 𝜎𝑛(𝑔) = 𝑔 by Fejér.

• Proposition [Fejér] Let 𝑓 ∶ ℝ → ℂ be Riemann integrable in [−𝜋, 𝜋]
and 2𝜋-periodic. If 𝑓 is continuous at some 𝑡 ∈ [−𝜋, 𝜋], then
𝜎𝑛(𝑓, 𝑡) → 𝑓(𝑡). [The proof is a variation of the previous one: now 𝛿
will depend on 𝑡, and convergence is shown at 𝑡.]
[Remark: More generally, if the one-sided limits 𝑓(𝑡+) and 𝑓(𝑡−) exist,
then 𝜎𝑛(𝑓, 𝑡) → 𝑓(𝑡+)+𝑓(𝑡−)

2 . (Proof omitted).]

• Corollary Under the conditions of the Proposition, if (𝑆𝑛(𝑓, 𝑡0))
converges, then it must converge to 𝑓(𝑡0).
• Remark For every 𝑓 , Riemann integrable in [−𝜋, 𝜋] and 2𝜋-periodic,
we have ‖𝜎𝑛(𝑓)‖∞ ≤ ‖𝑓‖∞.
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Example

If 𝑓(𝑡) = { −𝑖(𝜋 + 𝑡), −𝜋 ≤ 𝑡 < 0
𝑖(𝜋 − 𝑡), 0 ≤ 𝑡 < 𝜋

then 𝑆𝑛(𝑓, 𝑡) = (
−1
∑
𝑘=−𝑛

+
𝑛

∑
𝑘=1

) 1
𝑘𝑒

𝑖𝑘𝑡

|𝑆𝑛(𝑓, 𝑡)| ≤ ‖𝑓‖∞ + 2 = 𝜋 + 2
is uniformly bounded, but its ‘negative’ (co-analytic) part

𝑔𝑛(𝑡) =
−1
∑

𝑘=−𝑛
1
𝑘𝑒𝑖𝑘𝑡 is not : 𝑔𝑛(0) =

𝑛
∑
𝑚=1

1
−𝑚 .

hence there cannot exist any Riemann-integrable 𝑔 so that 𝑔𝑛 = 𝑆𝑛(𝑔).
We will see later that there exists a Lebesgue-integrable 𝑔 with
𝑔𝑛 = 𝑆𝑛(𝑔)!



Example: A continuous 𝑓 with lim sup |𝑆𝑛(𝑓, 0)| = ∞

If

𝑝𝑁(𝑥) = 𝑒𝑖2𝑁𝑥 ∑
1≤|𝑘|≤𝑁

𝑒𝑖𝑘𝑥
𝑘

we have shown that there exists 𝑀 so that |𝑝𝑁(𝑥)| ≤ 𝑀 for all 𝑁 ∈ ℕ
and every 𝑥 ∈ ℝ. For a subsequence (𝑁𝑘), define

𝑓(𝑥) =
∞
∑
𝑘=1

𝑎𝑘𝑝𝑁𝑘
(𝑥)

where 𝑎𝑘 = 1
𝑘2 : the series converges uniformly, hence 𝑓 is continuous.

But if 𝑁𝑘 = 32𝑘 , 𝑘 = 1, 2,…, then

|𝑆2𝑁𝑚
(𝑓)(0)| → +∞

because |𝑆2𝑁𝑚
(𝑓)(0)| ≥ |𝑔𝑁𝑚

(0)| − 𝑐 ≥ 𝑐𝑎𝑚 log |𝑁𝑚| for a suitable
𝑐 > 0.



Part II

The Lebesgue integral



The Riemann integral

Behaviour with regard to limits:

Example

Consider the Dirichlet function 𝑓 = 𝜒ℚ ∶ [0, 1] → ℝ.

𝑓(𝑥) = {1, 𝑥 ∈ ℚ ∩ [0, 1]
0, 𝑥 ∉ ℚ ∩ [0, 1].

It is not Riemann integrable. But if {𝑞𝑛 ∶ 𝑛 ∈ ℕ} is an enumeration of
ℚ ∩ [0, 1] and

𝑓𝑛(𝑥) = {1, 𝑥 ∈ {𝑞1,… , 𝑞𝑛}
0, 𝑥 ∉ {𝑞1,… , 𝑞𝑛},

then 𝑓𝑛 ↗ 𝑓 in [0, 1] and each 𝑓𝑛 is Riemann integrable, being a
bounded function with a finite number of discontinuities.



The Riemann integral and the Lebesgue integral

Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be bounded.

Riemann: Partition [𝑎, 𝑏]: 𝑃 = {𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ... < 𝑥𝑛 = 𝑏}

𝐿(𝑓, 𝑃 ) =
𝑛−1
∑
𝑘=0

𝑚𝑘(𝑥𝑘+1 − 𝑥𝑘) and 𝑈(𝑓, 𝑃 ) =
𝑛−1
∑
𝑘=0

𝑀𝑘(𝑥𝑘+1 − 𝑥𝑘)

where
𝑚𝑘 = inf{𝑓(𝑥) ∶ 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1} and 𝑀𝑘 = sup{𝑓(𝑥) ∶ 𝑥𝑘 ≤ 𝑥 ≤ 𝑥𝑘+1} .

Lebesgue: Partition the range [𝑚,𝑀] of 𝑓

𝑄 = {𝑚 = 𝑦0 < 𝑦1 < 𝑦2 < ... < 𝑦𝑡 = 𝑀}.

𝐿(𝑓,𝑄)=
𝑡−1
∑
𝑘=0

𝑦𝑘𝜇(𝑓−1([𝑦𝑘, 𝑦𝑘+1))) and 𝑈(𝑓,𝑄)=
𝑡−1
∑
𝑘=1

𝑦𝑘+1𝜇(𝑓−1([𝑦𝑘, 𝑦𝑘+1)))

𝜇 = “length” (??)



The Riemann integral and the Lebesgue integral

Problem: How to define the “length” of the (possibly complicated) set
𝑓−1([𝑦𝑘, 𝑦𝑘−1)) = {𝑥 ∈ [𝑎, 𝑏] ∶ 𝑦𝑘 ≤ 𝑓(𝑥) < 𝑦𝑘+1}).



Interlude: Approximating Riemann-integrable functions by continuous ones

Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be Riemann-integrable. Given 𝜀 > 0, choose 𝑃 with
𝑈(𝑓, 𝑃 ) − 𝐿(𝑓, 𝑃 ) < 𝜀, pick any 𝑡𝑘 ∈ [𝑥𝑘, 𝑥𝑘+1] and put

𝑓𝜀 =
𝑛−1
∑
𝑘=0

𝑓(𝑡𝑘)𝜒𝑘 (a step function)

where 𝜒𝑘 = 𝜒(𝑥𝑘,𝑥𝑘+1]. Then ∫
𝑏

𝑎
|𝑓 − 𝑓𝜀| < 𝜀.

For each 𝜒𝑘 and every 𝛿 > 0 there exists a continuous ℎ𝑘 so that

∫
𝑏

𝑎
|𝜒𝑘 − ℎ𝑘| < 𝛿.

Therefore, if ℎ𝜀 ∶=
𝑛−1
∑
𝑘=0

𝑓(𝑡𝑘)ℎ𝑘 then ∫
𝑏

𝑎
|𝑓𝜀 − ℎ𝜀| ≤ 𝑛𝛿 ‖𝑓‖∞.

Conclusion: there exists ℎ𝜀 ∶ [𝑎, 𝑏] → ℝ continuous so that

∫
𝑏

𝑎
|𝑓 − ℎ𝜀| < 2𝜀.



Desirable properties of “length”

(a) 𝜇((𝑎, 𝑏)) = 𝑏 − 𝑎
(b) 𝜇(⋃𝑛∈ℕ 𝐸𝑛) = ∑𝑛∈ℕ 𝜇(𝐸𝑛) when (𝐸𝑛) are pairwise disjoint
(c) 𝜇(𝐸 + 𝑥) = 𝜇(𝐸) for all 𝐸 ⊆ ℝ and 𝑥 ∈ ℝ

Remark (α) The map 𝜙 ∶ 𝑡 ↦ 𝑒2𝜋𝑖𝑡 defines a bijective correspondence
between (0, 1] ⊆ ℝ and the unit circle 𝑆 ∶= {𝑒2𝜋𝑖𝑡 ∶ 𝑡 ∈ ℝ} ⊆ ℂ}
which transforms “length” to “arc length”.
(β) If there exists a set 𝑈 ⊆ 𝑆 ∶= {𝑒2𝜋𝑖𝑡 ∶ 𝑡 ∈ ℝ} such that the sets
𝑈𝑞 ∶= {𝑒2𝜋𝑖𝑞𝑤 ∶ 𝑤 ∈ 𝑈} (where 𝑞 ∈ ℚ) are pairwise disjoint and their
union is the circle 𝑆, then 𝑈 cannot be “measured”, hence
𝜙−1(𝑈) ⊆ (0, 1] cannot be “measured”.

;



There exist sets that cannot be “measured”

For 𝑧, 𝑤 in the circle 𝑆 define 𝑧 ∼ 𝑤 ⟺ ∃ 𝑞 ∈ ℚ ∶ 𝑤 = 𝑒2𝜋𝑖𝑞𝑧.
The equivalence relation ∼ splits (partitions) 𝑆 into (disjoint) classes:
𝑆 = ⋃𝑧∈𝑆[𝑧] where [𝑧] = {𝑤 ∈ 𝑆 ∶ 𝑤 ∼ 𝑧}.
The Axiom of Choice (!) ensures that we may choose one representative
𝑢 ∈ [𝑧] from each class. Let 𝑈 ⊆ 𝑆 be the set of all these choices, so
that 𝑈 ∩ [𝑧] is a singleton for each class [𝑧]; thus we have

𝑆 = ⋃
𝑢∈𝑈

[𝑢] (a union of orbits).

For each 𝑞 ∈ ℚ, define 𝑈𝑞 ∶= {𝑒2𝜋𝑖𝑞𝑤 ∶ 𝑤 ∈ 𝑈}.
This gives a (different) partition

𝑆 = ⋃
𝑞∈ℚ

𝑈𝑞 (countable union of translates of 𝑈 ).

Suppose that 𝑈 could be “measured”. Then 𝜇(𝑈𝑞) = 𝜇(𝑈) ∀𝑞, so
𝜇(𝑆) = ∑

𝑞∈ℚ
𝜇(𝑈𝑞) = ∑

𝑞∈ℚ
𝜇(𝑈).

But if 𝜇(𝑈) = 0 then 𝜇(𝑆) = 0, while if 𝜇(𝑈) > 0 then 𝜇(𝑆) = ∞. (!)



Strategy: Restrict to “measurable” sets

The strategy will be to define the “length” or “measure” only for a
subclass of sets, for which the desirable requirements are fulfilled.

The method to achieve this will be to first define a function (called
“outer measure”) on all subsets of ℝ which partly satisfies the
requirements, and then restrict to the class of sets on which this outer
measure satisfies the requirements completely.
We will show that this class (the measurable sets) is large enough.



Definition of Lebesgue outer measure

Let 𝐼 = (𝑎, 𝑏) ⊆ ℝ be a bounded open interval.

Its length: ℓ(𝐼) ∶= 𝑏 − 𝑎.
By a cover of a set 𝐴 ⊆ ℝ we will mean a countable family of bounded
open intervals (𝐼𝑛) with 𝐴 ⊆ ⋃𝑛 𝐼𝑛.

Definition (Lebesgue outer measure)

Let 𝐴 ⊆ ℝ. The outer measure of 𝐴 is

𝜆∗(𝐴) ∶= inf{∑
𝑛

ℓ(𝐼𝑛) ∶ (𝐼𝑛) cover of 𝐴}.



Lebesgue outer measure

Proposition

If 𝐴 ⊆ 𝐵 ⊆ ℝ, then 𝜆∗(𝐴) ≤ 𝜆∗(𝐵).

Proposition

If 𝐴 ⊆ ℝ is finite or countably infinite, then 𝜆∗(𝐴) = 0.

Note But there exist uncountable sets with 𝜆∗(𝐴) = 0
(for example the Cantor set - see later).

Proposition

𝜆∗(𝐴 + 𝑥) = 𝜆∗(𝐴) for each 𝐴 ⊆ ℝ and 𝑥 ∈ ℝ.



Lebesgue outer measure

Proposition

𝜆∗([𝑎, 𝑏]) = 𝑏 − 𝑎.

Proposition

𝜆∗((𝑎, 𝑏)) = 𝑏 − 𝑎 (= ℓ((𝑎, 𝑏)).

The property

𝜆(⋃𝑛∈ℕ 𝐸𝑛) = ∑𝑛∈ℕ 𝜆(𝐸𝑛)
when {𝐸𝑛 ∶ 𝑛 ∈ ℕ} are pairwise disjoint (𝜎-additivity)

cannot hold for all families {𝐸𝑛 ∶ 𝑛 ∈ ℕ}, as we saw.
Nevetheless,



Lebesgue outer measure and measurability

Proposition (countable subadditivity)
For each finite or countably infinite family {𝐴𝑛} of subsets of ℝ,

𝜆∗ (⋃
𝑛

𝐴𝑛) ≤ ∑
𝑛

𝜆∗(𝐴𝑛).

We want to achieve equality when the {𝐴𝑛} are pairwise disjoint.
We are forced to restrict to sets which “have length”:
Definition (Lebesgue measurable set)
A sets 𝐴 ⊆ ℝ is called Lebesgue measurable if, for each 𝑋 ⊆ ℝ,

𝜆∗(𝑋) = 𝜆∗(𝑋 ∩ 𝐴) + 𝜆∗(𝑋 ∩ 𝐴𝑐).
The class of Lebesgue measurable sets is denoted byℳ.
The restriction of 𝜆∗ to ℳ is called Lebesgue measure.
Thus, a set is measurable if “it splits correctly” – with respect to outer
measure – all other sets.



The class of measurable sets

Remark. In order to prove that 𝐴 ∈ ℳ, it suffices to show

𝜆∗(𝑋) ≥ 𝜆∗(𝑋 ∩ 𝐴) + 𝜆∗(𝑋 ∩ 𝐴𝑐).
for each 𝑋 ⊆ ℝ (in fact, it suffices to assume 𝜆∗(𝑋) < ∞).

Proposition

If 𝜆∗(𝐴) = 0, then 𝐴 ∈ ℳ.

Proposition

The complement of a measurable set is measurable:
if 𝐴 ∈ ℳ then 𝐴𝑐 = ℝ\𝐴 ∈ ℳ.

Proposition

The union of two measurable sets is measurable:
if 𝐴,𝐵 ∈ ℳ, then 𝐴 ∪ 𝐵 ∈ ℳ.

Hence also the intersection: (𝐴 ∩ 𝐵) = (𝐴𝑐 ∪ 𝐵𝑐)𝑐.



The class of measurable sets

Proof
𝑋 ∩ (𝐴 ∪ 𝐵) = 𝑋 ∩ (𝐴 ∪ (𝐴𝑐 ∩ 𝐵)) = (𝑋 ∩ 𝐴) ∪ (𝑋 ∩ 𝐴𝑐 ∩ 𝐵),
hence

𝜆∗(𝑋 ∩ (𝐴 ∪ 𝐵)) + 𝜆∗(𝑋 ∩ (𝐴 ∪ 𝐵)𝑐) =
= 𝜆∗((𝑋 ∩ 𝐴) ∪ (𝑋 ∩ 𝐴𝑐 ∩ 𝐵)) + 𝜆∗(𝑋 ∩ (𝐴 ∪ 𝐵)𝑐)
(𝑠𝑢𝑏)
≤ 𝜆∗(𝑋 ∩ 𝐴) + 𝜆∗((𝑋 ∩ 𝐴𝑐) ∩ 𝐵) + 𝜆∗((𝑋 ∩ 𝐴𝑐) ∩ 𝐵𝑐)

(𝐵∈ℳ)= 𝜆∗(𝑋 ∩ 𝐴) + 𝜆∗(𝑋 ∩ 𝐴𝑐)
(𝐴∈ℳ)= 𝜆∗(𝑋).

Thus,

𝜆∗(𝑋 ∩ (𝐴 ∪ 𝐵)) + 𝜆∗(𝑋 ∩ (𝐴 ∪ 𝐵)𝑐) ≤ 𝜆∗(𝑋).



The class of measurable sets

Proposition

If 𝐴,𝐵 ∈ ℳ and 𝐴 ∩ 𝐵 = ∅ then, for each 𝑋 ⊆ ℝ,

𝜆∗(𝑋 ∩ (𝐴 ∪ 𝐵)) = 𝜆∗(𝑋 ∩ 𝐴) + 𝜆∗(𝑋 ∩ 𝐵).
hence

𝜆∗(𝐴 ∪ 𝐵) = 𝜆∗(𝐴) + 𝜆∗(𝐵).
By induction:

Corollary (Finite aditivity)

If 𝐵1,… ,𝐵𝑚 are pairwise disjoint sets in ℳ then, for each 𝑋 ⊆ ℝ,

𝜆∗(𝑋 ∩ (𝐵1 ∪ ⋯ ∪ 𝐵𝑚)) =
𝑚
∑
𝑛=1

𝜆∗(𝑋 ∩ 𝐵𝑛)

hence
𝜆∗(𝐵1 ∪ ⋯ ∪ 𝐵𝑚) =

𝑚
∑
𝑛=1

𝜆∗(𝐵𝑛).



The class of measurable sets

Proposition

If (𝐴𝑛)∞𝑛=1 is a countable family of measurable sets, then their union
∞
⋃
𝑛=1

𝐴𝑛 is a measurable set.

*** *** ***
Definition (𝜎-algebra)
Let Ω be a nonempty set. A class 𝒜 of subsets of Ω is called a 𝜎-algebra
if it satisfies
(i) Ω ∈ 𝒜.
(ii) If 𝐴 ∈ 𝒜, then Ω\𝐴 ∈ 𝒜.

(iii) If 𝐴𝑛 ∈ 𝒜 for all 𝑛 ∈ ℕ, then
∞
⋃
𝑛=1

𝐴𝑛 ∈ 𝒜.

It follows that:
(iv) If 𝐴𝑛 ∈ 𝒜 for all 𝑛 ∈ ℕ, then

∞
⋂
𝑛=1

𝐴𝑛 ∈ 𝒜.
(v) If 𝐴,𝐵 ∈ 𝒜, then 𝐴\𝐵 = 𝐴 ∩ 𝐵𝑐 ∈ 𝒜.



The class of measurable sets

Theorem
Let ℳ = {𝐴 ⊆ ℝ ∣ 𝐴 Lebesgue measurable}. Then ℳ is a 𝜎-algebra
and the set function 𝜆 ∶ ℳ → [0,+∞]

𝐴 ↦ 𝜆(𝐴) ∶= 𝜆∗(𝐴)
is countably additive (𝜎-additive). Thus, if (𝐴𝑛)∞𝑛=1 is a countable
family of pairwise disjoint Lebesgue measurable sets (𝐴𝑛 ∈ ℳ for all
𝑛 and 𝐴𝑛 ∩ 𝐴𝑚 = ∅ if 𝑛 ≠ 𝑚), then

𝜆(
∞
⋃
𝑛=1

𝐴𝑛) =
∞
∑
𝑛=1

𝜆(𝐴𝑛).

Definition (Lebesgue masure)

The set function 𝜆 ∶ ℳ → [0,+∞]
𝐴 ↦ 𝜆(𝐴) ∶= 𝜆∗(𝐴)

is called Lebesgue measure.



Borel sets. They are Lebesgue measurable

Proposition

All intervals are Lebesgue measurable sets.

Consider the intersection of all 𝜎-algebras containing the set of intervals:
Definition (The Borel 𝜎-algebra)
The smallest 𝜎-algebra of subsets of ℝ which contains the set of all
intervals is called the 𝜎-algebra of Borel subsets of ℝ (or the Borel
𝜎-algebra) and is denoted by ℬ.
Proposition

ℬ ⊆ ℳ (we will show later that ℬ ≠ ℳ).
Proposition

Every open and every closed subset of ℝ is a Borel set, hence is
measurable.

... hence every countable intersection of open sets (every 𝐺𝛿) and every
countable union of closed sets (every 𝐹𝜎).



Approximating measurable sets

Proposition

Let 𝐴 ⊆ ℝ. The following are equivalent:
1 The set 𝐴 is measurable.
2 For every 𝜀 > 0 there exists an open set 𝐺 ⊆ ℝ with 𝐴 ⊆ 𝐺 and

𝜆∗(𝐺\𝐴) < 𝜀.
3 There exists a 𝐺𝛿-set 𝐵 so that 𝐴 ⊆ 𝐵 and 𝜆∗(𝐵\𝐴) = 0.

Proposition

Let 𝐴 ⊆ ℝ. The following are equivalent:

1 The set 𝐴 is measurable.
2 For every 𝜀 > 0 there exists a closed set 𝐹 ⊆ ℝ with 𝐹 ⊆ 𝐴 and

𝜆∗(𝐴\𝐹) < 𝜀.
3 There exists an 𝐹𝜎-set 𝐶 such that 𝐶 ⊆ 𝐴 and 𝜆∗(𝐴\𝐶) = 0.

(Exercise)



“Continuity” of measure

Remark
If 𝑋,𝑌 ∈ ℳ, 𝑋 ⊆ 𝑌 and 𝜆(𝑋) < ∞, then
𝜆(𝑌 \𝑋) = 𝜆(𝑌 ) − 𝜆(𝑋).

Proposition

(i) If (𝐴𝑛) is an increasing sequence of measurable sets and
𝐴 ∶= ⋃∞

𝑛=1 𝐴𝑛, then
𝜆(𝐴𝑛) → 𝜆(𝐴).

(ii) If (𝐵𝑛) is a decreasing sequence of measurable sets with
𝜆(𝐵1) < +∞ and 𝐵 ∶= ⋂∞

𝑛=1 𝐵𝑛, then

𝜆(𝐵𝑛) → 𝜆(𝐵).

Remark: For (ii), it is enough to have 𝜆(𝐵𝑘) < +∞ for some 𝑘.
But (ii) fails for 𝐵𝑛 = [𝑛,∞), for example.



Regularity of Lebesgue measure

Theorem
Lebesgue measure 𝜆 on ℝ𝑘 is a regular measure.
For each 𝐾 compact, we have 𝜆(𝐾) < ∞ and for each 𝐴 ∈ ℳ

𝜆(𝐴) = sup{𝜆(𝐾) ∶ 𝐾 compact and 𝐾 ⊆ 𝐴}
= inf{𝜆(𝐺) ∶ 𝐺 open and 𝐺 ⊇ 𝐴} .

For a proof for 𝑘 = 1 see regen.pdf.

It is possible for a measurable set of positive measure to contain no
nonempty open intervals (examples later). However,

Theorem (Steinhaus)

If 𝐴 is a Lebesgue measurable subset of ℝ𝑘 with 𝜆(𝐴) > 0, then there
is a 𝛿 > 0 so that

𝐵(0, 𝛿) ⊆ 𝐴 − 𝐴.



Summary: Lebesgue Measure

The outer Lebesgue measure of a subset 𝐴 ⊆ ℝ is

𝜆∗(𝐴) = inf{∑
𝑛

ℓ(𝐼𝑛) ∶ (𝐼𝑛) cover of 𝐴}.
A set 𝐴 ⊆ ℝ is called Lebesgue measurable (𝐴 ∈ ℳ) if, for all 𝑋 ⊆ ℝ,

𝜆∗(𝑋) = 𝜆∗(𝑋 ∩ 𝐴) + 𝜆∗(𝑋 ∩ 𝐴𝑐).
Equivalently, if for every 𝜀 > 0 there is an open 𝐺 ⊆ ℝ with 𝐴 ⊆ 𝐺 and
𝜆∗(𝐺\𝐴) < 𝜀.
Equivalently, if for every 𝜀 > 0 there is a closed 𝐹 ⊆ ℝ with 𝐹 ⊆ 𝐴 and
𝜆∗(𝐴\𝐹) < 𝜀.
When 𝐴 ∈ ℳ, the Lebesgue measure of 𝐴 is defined to be its outer measure.
The family ℳ contains all open sets, and is closed for complements and
countable unions (it is a σ-algebra). But there exist non-measurable sets.
The σ-algebra ℬ ⊆ ℳ generated by the open sets is called the Borel σ-algebra.
The map 𝜆 ∶ ℳ → [0,+∞] ∶ 𝐴 ↦ 𝜆∗(𝐴) is σ-additive: if
{𝐴𝑛 ∶ 𝑛 ∈ ℕ} ⊆ ℳ are pairwise disjoint,

𝜆(
∞
⋃
𝑛=1

𝐴𝑛) =
∞
∑
𝑛=1

𝜆(𝐴𝑛).

The measure 𝜆 is invariant under translations. It is a regular measure.



Measurable functions

Reminder If 𝑓 ∶ ℝ → ℝ, we want to define ∫𝑓𝑑𝜆 by approximating it
by sums of the form:

𝑛−1
∑
𝑘=0

𝑦𝑘𝜆(𝑓−1([𝑦𝑘, 𝑦𝑘+1)))

𝜆 = Lebesgue measure. We need measurability of :
𝑓−1([𝑦𝑘, 𝑦𝑘+1)) = {𝑥 ∈ [𝑎, 𝑏] ∶ 𝑦𝑘 ≤ 𝑓(𝑥) < 𝑦𝑘+1}).
Definition
Let 𝑋 ⊆ ℝ, 𝑋 ∈ ℳ. A function 𝑓 ∶ 𝑋 → ℝ is called (Lebesgue)
measurable if

𝑓−1((−∞, 𝑏]) ∈ ℳ, for all 𝑏 ∈ ℝ.
Definition
Let 𝑌 ⊆ ℝ be a Borel set. A function 𝑓 ∶ 𝑌 → ℝ is called Borel
measurable or just Borel if

𝑓−1((−∞, 𝑏]) ∈ ℬ, for all 𝑏 ∈ ℝ.



Measurable functions

(Notation: [𝑓 ≤ 𝑏] ∶= 𝑓−1((−∞, 𝑏]) = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ≤ 𝑏}.)
Proposition

Let 𝑋 ⊆ ℝ, 𝑋 ∈ ℳ and 𝑓 ∶ 𝑋 → ℝ a function. The following are
equivalent:

1 𝑓 is measurable.
2 𝑓−1((−∞, 𝑏)) ∈ ℳ for all 𝑏 ∈ ℝ.
3 𝑓−1([𝑏,+∞)) ∈ ℳ for all 𝑏 ∈ ℝ.
4 𝑓−1((𝑏,+∞)) ∈ ℳ for all 𝑏 ∈ ℝ.

Remark Then, for each interval 𝐽 ⊆ ℝ (or 𝐽 = {𝑎}) we have
𝑓−1(𝐽) ∈ ℳ.
Proposition

If Β ⊆ 𝑋 ⊆ ℝ where 𝑋 ∈ ℳ, the function 𝜒𝐵 ∶ 𝑋 → ℝ with

𝜒𝐵(𝑥) = { 1, if 𝑥 ∈ 𝐵
0, if 𝑥 ∉ 𝐵 is measurable if and only if 𝐵 ∈ ℳ.



Borel functions

Proposition

Let 𝑋 ⊆ ℝ, 𝑋 ∈ ℬ and 𝑓 ∶ 𝑋 → ℝ a function. The following are
equivalent:

1 𝑓 is Borel measurable.
2 𝑓−1((−∞, 𝑏)) ∈ ℬ for all 𝑏 ∈ ℝ.
3 𝑓−1([𝑏,+∞)) ∈ ℬ for all 𝑏 ∈ ℝ.
4 𝑓−1((𝑏,+∞)) ∈ ℬ for all 𝑏 ∈ ℝ.

Remark Then, for each interval 𝐽 ⊆ ℝ (or 𝐽 = {𝑎}) we have
𝑓−1(𝐽) ∈ ℬ.

Proposition

If Β ⊆ 𝑋 ⊆ ℝ where 𝑋 ∈ ℬ, the function 𝜒𝐵 ∶ 𝑋 → ℝ with

𝜒𝐵(𝑥) = { 1, if 𝑥 ∈ 𝐵
0, if 𝑥 ∉ 𝐵 is Borel measurable if and only if 𝐵 ∈ ℬ.

Remark The Dirichlet function is Borel measurable.



Measurable functions

Proposition

If 𝑓 ∶ ℝ → ℝ then

𝑓 continuous ⇒ 𝑓 Borel measurable ⇒ 𝑓 Lebesgue measurable.

Example The function 𝜒[0,1] is Borel but not continuous.
The function 𝜒𝐴 where 𝐴 ∈ ℳ\ℬ (does there exist such a set?) is
Lebesgue measurable, but not Borel measurable.

Proposition

If 𝑋 ⊆ ℝ is measurable [resp. Borel] and 𝑓 ∶ 𝐼 → ℝ is an increasing
(or decreasing) function then 𝑓 is measurable [resp. Borel measurable].



Measurable functions

Proposition

Let 𝑋 be a measurable subset of ℝ and 𝑓, 𝑔 ∶ 𝑋 → ℝ measurable
functions. Then,

1 The function 𝑓 + 𝑔 is measurable.
2 For each 𝜆 ∈ ℝ the function 𝜆𝑓 is measurable.
3 The function 𝑓 ⋅ 𝑔 is measurable.
4 If 𝑓(𝑥) ≠ 0 for all 𝑥 ∈ 𝑋, the function 1/𝑓 is measurable.
5 The functions max{𝑓, 𝑔}, min{𝑓, 𝑔} and |𝑓| are measurable.

Alternative approach for (1) and (3):

Proposition

Let 𝑋 be a measurable subset of ℝ and 𝑓, 𝑔 ∶ 𝑋 → ℝ measurable
functions. If 𝐹 ∶ ℝ2 → ℝ is a continuous function, the function
ℎ ∶ 𝑋 → ℝ ∶ 𝑥 → 𝐹(𝑓(𝑥), 𝑔(𝑥)) is measurable.



The functions 𝑓+ and 𝑓−

𝑓+ = max{𝑓, 0}, 𝑓− = −min{𝑓, 0}, 𝑓 = 𝑓+ − 𝑓−,
|𝑓| = 𝑓+ + 𝑓−

f

f+

f−



Measurable functions 𝑓 ∶ 𝑋 → [−∞,+∞]

Definition
Let 𝑋 ⊆ ℝ be measurable. A function 𝑓 ∶ 𝑋 → [−∞,+∞] is called
(Lebesgue) measurable if, for every 𝑏 ∈ ℝ,

𝑓−1([−∞, 𝑏]) = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ≤ 𝑏} ∈ ℳ.

Remark Then, the set

{𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) = −∞} =
∞
⋂
𝑛=1

{𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ≤ −𝑛}

is measurable. So is the set {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) = +∞}.
Proposition

A function 𝑓 ∶ 𝑋 → [−∞,+∞] is measurable
iff ∀𝑎 ∈ ℝ the set 𝑓−1([−∞, 𝑎)) is measurable,
iff ∀𝑎 ∈ ℝ the set 𝑓−1([𝑎,+∞]) is measurable,
iff ∀𝑎 ∈ ℝ the set 𝑓−1((𝑎,+∞]) is measurable.



The notion “almost everywhere”

Definition
Let 𝑋 be a measurable subset of ℝ. We say that a property 𝑃(𝑥) holds
almost everywhere in 𝑋 (or for almost all 𝑥 ∈ 𝑋) if

𝜆∗({𝑥 ∈ 𝑋 ∣ 𝑃(𝑥) fails }) = 0.

Proposition

Let 𝑋 be a measurable subset of ℝ and 𝑓, 𝑔 ∶ 𝑋 → [−∞,+∞]. If 𝑓 is
measurable and 𝑓(𝑥) = 𝑔(𝑥) almost everywhere in 𝑋 (we will write
𝑓 = 𝑔 𝑎.𝑒.), then 𝑔 is measurable.



Reminder: lim sup, lim inf
Let (𝑎𝑛) be a sequence, 𝑎𝑛 ∈ [−∞,∞]. If sup{𝑎𝑘 ∶ 𝑘 ≥ 1} = +∞,
we set lim sup𝑛 𝛼𝑛 = +∞. If not, for each 𝑛 ∈ ℕ, define
𝑏𝑛 = sup{𝑎𝑘 ∶ 𝑘 ≥ 𝑛}.
Observe that 𝑏𝑛 ≥ 𝑎𝑛 for all 𝑛 and (𝑏𝑛) is decreasing. Therefore
lim𝑛 𝑏𝑛 exists and equals inf𝑛 𝑏𝑛.
Definition

If (𝑎𝑛) is bounded above, lim sup𝑛 𝑎𝑛= lim𝑛𝑏𝑛= inf
𝑛∈ℕ

(sup
𝑘≥𝑛

𝑎𝑘)
(otherwise, lim sup𝑛 𝑎𝑛 = +∞).

Similarly,
Definition

If (𝑎𝑛) is bounded below, lim inf𝑛 𝑎𝑛 = sup
𝑛∈ℕ

( inf
𝑘≥𝑛

𝑎𝑘)
(otherwise, lim inf𝑛 𝑎𝑛 = −∞).
Remark Let (𝑎𝑛) be bounded above, 𝑎 ∈ ℝ. Then: 𝑎 = lim sup𝑛 𝑎𝑛 ⟺
for every 𝜀 > 0, the set {𝑘 ∈ ℕ ∶ 𝑎𝑘 ≥ 𝑎 + 𝜀} is finite and the set
{𝑘 ∈ ℕ ∶ 𝑎 − 𝜀 < 𝑎𝑘 < 𝑎 + 𝜀} is infinite.



Sequences of measurable functions

Let 𝑋 ⊆ ℝ be a measurable set and (𝑓𝑛) a sequence of functions,
𝑓𝑛 ∶ 𝑋 → [−∞,∞].
The function 𝑓 = sup𝑛 𝑓𝑛 is defined pointwise:
𝑓(𝑥) = sup{𝑓𝑛(𝑥) ∶ 𝑛 ∈ ℕ} ∈ [−∞,∞] for all 𝑥 ∈ 𝑋.
Similarly (lim sup𝑛 𝑓𝑛)(𝑥) = lim sup𝑛 𝑓𝑛(𝑥) for all 𝑥.
Proposition

If every 𝑓𝑛 is measurable,

(α�)The functions sup𝑛 𝑓𝑛 and inf𝑛 𝑓𝑛 are measurable.
(β�)The functions lim sup𝑛 𝑓𝑛 and lim inf𝑛 𝑓𝑛 are measurable.
(γ�)If the sequence {𝑓𝑛} converges pointwise to a function 𝑓 , then 𝑓 is

also measurable.

Remark The Proposition does NOT hold for continuous functions, nor
for Riemann integrable functions. Examples?



Sequences of measurable functions

Proposition

Let be a 𝑋 measurable subset of ℝ and 𝑓 ∶ 𝑋 → [−∞,+∞] a
function. If 𝑓𝑛 ∶ 𝑋 → [−∞,+∞] are measurable functions and
𝑓𝑛(𝑥) → 𝑓(𝑥) almost everywhere in 𝑋, then 𝑓 is measurable.



The Cantor set 𝐶 = ⋂∞
𝑛=1 𝐶𝑛

𝐶0 = [0, 1]

𝐶1 = [0, 13] ∪ [23, 1]

𝐶2 = [0, 19] ∪ [29,
3
9] ∪ [69,

7
9 ] ∪ [89, 1]

⋮



The Cantor set 𝐶 = ⋂∞
𝑛=1 𝐶𝑛

Remark
The Cantor set has Lebesgue measure zero and is closed and has empty
interior. It is however uncountable.

0 1

00 01 10

000   100 101  110  111 011 010 001
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There exists a 1-1 onto map {0, 1}ℕ → 𝐶 .



The Cantor set

Remark
The Cantor set is perfect, i.e. it is closed and has no isolated points.

Remark
For each 𝑎 ∈ (0, 1), one can construct a “Cantor-like set” 𝐶𝑎 (i.e. a
compact set, with empty interior and no isolated points) having
measure 𝑎.



The Cantor-Lebesgue function or “devil’s staircase”

For each 𝑛 ∈ ℕ define 𝑓𝑛 ∶ [0, 1] → [0, 1] as follows: If 𝐽𝑛
1 ,… , 𝐽𝑛

2𝑛−1 denote
the consecutive open intervals comprising [0, 1]\𝐶𝑛, define: 𝑓𝑛(0) = 0,
𝑓𝑛(1) = 1 and 𝑓𝑛(𝑥) = 𝑘

2𝑛 for all 𝑥 ∈ 𝐽𝑛
𝑘 . In each of the closed intervals

comprising 𝐶𝑛, extend linearly so as to obtain a continuous function:

1
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1
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1
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The Cantor-Lebesgue function 𝑓

Proposition

The sequence {𝑓𝑛}∞𝑛=1 converges uniformly to a continuous function
𝑓 ∶ [0, 1] → [0, 1]. The function 𝑓 is increasing and onto [0, 1]. It is
almost everywhere differentiable: For each 𝑥 in the (open) set 𝐶𝑐, the
derivative 𝑓 ′(𝑥) exists, and in fact 𝑓 ′(𝑥) = 0.
The image of 𝐶 by 𝑓 has measure 𝜆(𝑓(𝐶)) = 1 (while 𝜆(𝐶) = 0).

There exists a measurable set which is not Borel:
If 𝑔(𝑥) = 𝑥+𝑓(𝑥)

2 , then 𝑔 is a homeomorphism of [0, 1] which maps the
set 𝐶 to a set 𝑔(𝐶) of strictly positive measure! It follows that there
exists 𝐴 ⊆ 𝑔(𝐶) which is non-measurable (exercise).
Then 𝐵 ∶= 𝑔−1(𝐴) is measurable, since 𝐵 ⊆ 𝐶 . But it is not Borel: for
if it were, then 𝐴 = ℎ−1(𝐵) where ℎ = 𝑔−1 (a continuous function)
would be Borel, hence measurable.



Simple measurable functions

Definition
Let𝑋 be a measurable subset of ℝ. A measurable function 𝑠 ∶ 𝑋 → ℝ is
called simple if its set of values 𝑠(𝑋) is finite.
Every simple function can be written in standard form

𝑠 =
𝑛

∑
𝑗=1

𝑎𝑗𝜒𝐴𝑗

where 𝑠(𝑋) = {𝑎1, 𝑎2, ..., 𝑎𝑛} and 𝐴𝑗 = 𝑠−1({𝑎𝑗}) ∈ ℳ. The family
{𝐴1, 𝐴2, ..., 𝐴𝑛} is a (measurable) partition of 𝑋.

Every linear combination 𝑠 =
𝑛
∑
𝑗=1

𝑏𝑗𝜒𝐵𝑗
of characteristic (or indicator)

functions of measurable sets is a simple measurable function (Exercise).
Example

Let 𝑠 = 𝜒[−1,1] + 𝜒[0,2] ∶ ℝ → ℝ. Here 𝑠(ℝ) = {0, 1, 2}.
Its standard form is 𝑠 = 0𝜒𝐴 + 1𝜒𝐵 + 2𝜒[0,1] where
𝐴 = [−1, 2]𝑐, 𝐵 = [−1, 0) ∪ (1, 2].



Simple measurable functions

Theorem
Let 𝑋 be a measurable subset of ℝ and 𝑓 ∶ 𝑋 → [0,∞] a non-negative
measurable function. Then there is an increasing sequence of simple
measurable functions 0 ≤ 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑓 so that

𝑠𝑛 ↗ 𝑓 (pointwise).
If 𝑓 is bounded, the sequence converges uniformly.

a2
a3
a4
a5
a6
a7

.

.

.

X



Approximation by simple functions: Proof

(a) If 𝑓 is bounded: Let 𝑁 ∈ ℕ be such that 𝑓(𝑥) < 𝑁 for all 𝑥 ∈ 𝑋.
For each 𝑛 ∈ ℕ, partition [0,𝑁) into intervals of length 1

2𝑛 :

[0,𝑁) = [0, 1
2𝑛) ∪ [ 1

2𝑛 ,
2
2𝑛) ∪… ∪ [2

𝑛𝑁 − 1
2𝑛 , 2

𝑛𝑁
2𝑛 ) .

Consider their inverse images by 𝑓 ∶

𝐸𝑛,𝑖 = {𝑥 ∈ 𝑋 ∶ 𝑖 − 1
2𝑛 ≤ 𝑓(𝑥) < 𝑖

2𝑛} , 𝑖 = 1, 2,… , 2𝑛𝑁.

These are measurable sets, and they partition𝑋. If 𝑥 ∈ 𝐸𝑛,𝑖 , define

𝑠𝑛(𝑥) =
𝑖 − 1
2𝑛

i.e. put
𝑠𝑛 =

2𝑛𝑁
∑
𝑖=1

𝑖 − 1
2𝑛 𝜒𝐸𝑛,𝑖

.

This is a simple measurable function and clearly 0 ≤ 𝑠𝑛 ≤ 𝑓 .



Approximation by simple functions: Proof (ΙΙ)

Claim. 𝑠𝑛 → 𝑓 uniformly on 𝑋.
Proof. Let 𝑥 ∈ 𝑋. Then for each 𝑛 there exists 𝑘 so that 𝑥 ∈ 𝐸𝑛,𝑘 , i.e.
𝑘−1
2𝑛 ≤ 𝑓(𝑥) < 𝑘

2𝑛 while 𝑠𝑛(𝑥) = 𝑘−1
2𝑛 , and so

0 ≤ 𝑓(𝑥) − 𝑠𝑛(𝑥) <
1
2𝑛 , ∀𝑛 .

Thus sup
𝑥∈𝑋

|𝑓(𝑥) − 𝑠𝑛(𝑥)| ≤ 1
2𝑛 , hence 𝑠𝑛 → 𝑓 uniformly.

(b) If 𝑓 is not bounded: For each 𝑛 ∈ ℕ, partition
[0,+∞] = [0, 𝑛) ∪ [𝑛,+∞] and

[0, 𝑛) = [0, 1
2𝑛) ∪ [ 1

2𝑛 ,
2
2𝑛) ∪… ∪ [2

𝑛𝑛 − 1
2𝑛 , 2

𝑛𝑛
2𝑛 ) .

Define: 𝐹𝑛 = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ≥ 𝑛}

𝐸𝑛,𝑖 = {𝑥 ∈ 𝑋 ∶ 𝑖 − 1
2𝑛 ≤ 𝑓(𝑥) < 𝑖

2𝑛} , 𝑖 = 1, 2,… , 𝑛2𝑛.

These are measurable sets, and they partition𝑋.



Approximation by simple functions: Proof (ΙΙΙ)

Define

𝑠𝑛(𝑥) =
⎧{
⎨{⎩

𝑛, if 𝑓(𝑥) ≥ 𝑛

𝑖−1
2𝑛 , if ∃𝑖 = 1, 2,… , 𝑛2𝑛 so that 𝑖−1

2𝑛 ≤ 𝑓(𝑥) < 𝑖
2𝑛

that is, put
𝑠𝑛 =

𝑛2𝑛

∑
𝑖=1

𝑖 − 1
2𝑛 𝜒𝐸𝑛,𝑖

+ 𝑛𝜒𝐹𝑛
.

This is a simple measurable function and clearly 0 ≤ 𝑠𝑛 ≤ 𝑓 .
Claim. 𝑠𝑛(𝑥) → 𝑓(𝑥) for each 𝑥 ∈ 𝑋.
Proof. If 𝑓(𝑥) < +∞, there exists 𝑛0 = 𝑛0(𝑥) so that 𝑓(𝑥) < 𝑛0.
When 𝑛 ≥ 𝑛0 we have 𝑓(𝑥) < 𝑛, hence there is a unique 𝑘 so that
𝑘−1
2𝑛 ≤ 𝑓(𝑥) < 𝑘

2𝑛 while 𝑠𝑛(𝑥) = 𝑘−1
2𝑛 , hence

0 ≤ 𝑓(𝑥) − 𝑠𝑛(𝑥) <
1
2𝑛 , ∀𝑛 ≥ 𝑛0(𝑥)

and so 𝑠𝑛(𝑥) → 𝑓(𝑥). If on the other hand 𝑓(𝑥) = +∞, then 𝑓(𝑥) ≥ 𝑛
for all 𝑛, hence 𝑠𝑛(𝑥) = 𝑛 → +∞ = 𝑓(𝑥).



Approximation by simple functions: Proof (IV)

(c) Claim. The sequence (𝑠𝑛) is increasing.
Proof. Let 𝑛 ∈ ℕ and 𝑥 ∈ 𝑋. To show that 𝑠𝑛(𝑥) ≤ 𝑠𝑛+1(𝑥).
• If 𝑓(𝑥) ≥ 𝑛 + 1 then 𝑠𝑛+1(𝑥) = 𝑛 + 1, but 𝑓(𝑥) > 𝑛 so 𝑠𝑛(𝑥) = 𝑛,
hence 𝑠𝑛(𝑥) ≤ 𝑠𝑛+1(𝑥).

• If 𝑛 + 1 > 𝑓(𝑥) ≥ 𝑛 then ∃𝑘 ∶ 𝑓(𝑥) ∈ [ 𝑘
2𝑛+1 , 𝑘+1

2𝑛+1 ), but 𝑘
2𝑛+1 ≥ 𝑛

(why?) so 𝑠𝑛+1(𝑥) = 𝑘
2𝑛+1 ≥ 𝑛, while 𝑠𝑛(𝑥) = 𝑛 since 𝑓(𝑥) ≥ 𝑛.

Hence 𝑠𝑛(𝑥) ≤ 𝑠𝑛+1(𝑥).

• If 𝑓(𝑥) < 𝑛, ;



Approximation by simple functions: Proof (V)

• If 𝑓(𝑥) < 𝑛 then there exists 𝑘 so that 𝑘
2𝑛 ≤ 𝑓(𝑥) < 𝑘+1

2𝑛 .
Now 𝑠𝑛(𝑥) = 𝑘

2𝑛 and

[ 𝑘
2𝑛 ,

𝑘 + 1
2𝑛 ) = [ 2𝑘

2𝑛+1 ,
2𝑘 + 1
2𝑛+1 ) ∪ [2𝑘 + 1

2𝑛+1 , 2𝑘 + 2
2𝑛+1 ) .

There are two cases:

𝑓(𝑥) ∈ [ 2𝑘
2𝑛+1 ,

2𝑘 + 1
2𝑛+1 ) ⇒ 𝑠𝑛+1(𝑥) =

2𝑘
2𝑛+1 = 𝑠𝑛(𝑥)

𝑓(𝑥) ∈ [2𝑘 + 1
2𝑛+1 , 2𝑘 + 2

2𝑛+1 ) ⇒ 𝑠𝑛+1(𝑥) =
2𝑘 + 1
2𝑛+1 > 𝑠𝑛(𝑥)

In both cases, 𝑠𝑛(𝑥) ≤ 𝑠𝑛+1(𝑥). 2



Approximation by simple functions

Corollary

Let 𝑋 be a measurable set and 𝑓 ∶ 𝑋 → [−∞,∞] a measurable
function. Then there exists a sequence (𝑠𝑛)𝑛 of simple measurable
functions with

𝑠𝑛 → 𝑓
and 0 ≤ |𝑠1| ≤ |𝑠2| ≤ ⋯ ≤ |𝑓|.

In addition, if 𝑓 is bounded, then the sequence converges uniformly.

Remark: In fact the sequence converges uniformly on any subset
𝑌 ⊆ 𝑋 on which 𝑓|𝑌 is bounded.



Littlewood’s three principles

Let 𝑋 ⊆ ℝ be measurable with 𝜆(𝑋) < ∞.

Proposition (measurable sets)

For each 𝜀 > 0 there exist intervals 𝐼1,… , 𝐼𝑛 so that if
𝐸 ∶= 𝐼1 ∪ ⋯ ∪ 𝐼𝑛 then 𝜆(𝐸△𝑋) < 𝜀.

Theorem (Luzin)

If 𝑓 ∶ 𝑋 → ℝ is measurable, then for every 𝜀 > 0 there exists a closed
set 𝐹𝜀 ⊆ 𝑋 with 𝜆(𝑋\𝐹𝜀) < 𝜀 so that the function 𝑓|𝐹𝜀

is continuous.

For a proof see luzinen.pdf.

Theorem (Egorov)

If 𝑓𝑛, 𝑓 ∶ 𝑋 → ℝ are measurable with 𝑓𝑛 → 𝑓 almost everywhere in
𝑋, then for every 𝜀 > 0 there is a closed set 𝐹𝜀 ⊆ 𝑋 with
𝜆(𝑋\𝐹𝜀) < 𝜀 so that 𝑓𝑛 → 𝑓 uniformly on 𝐹𝜀.

Sketch of proof below.



Littlewood’s three principles, intuitive formulation

Let 𝑋 ⊆ ℝ be measurable with 𝜆(𝑋) < ∞.

[Measurable sets] Every such 𝑋 ⊆ ℝ “is almost equal” to a finite union
of intervals.

[Luzin’s theorem] Every measurable function on 𝑋 “is almost
continuous”.

[Egorov’s theorem] Every sequence of measurable functions on𝑋 that
converges pointwise, “converges almost uniformly”.



Proof of Egorov’s theorem

For each 𝑘 and 𝑚 ∈ ℕ, let

𝐸𝑚(𝑘) = {𝑥 ∶ ∃𝑛 ≥ 𝑚 ∶ |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 1
𝑘}.

We have 𝐸𝑚(𝑘) ⊃ 𝐸𝑚+1(𝑘) for each 𝑚 and

⋂
𝑚≥1

𝐸𝑚(𝑘) = {𝑥 ∶ ∀𝑚 ∃𝑛 ≥ 𝑚 ∶ |𝑓𝑛(𝑥) − 𝑓(𝑥)| ≥ 1
𝑘}

⊆ {𝑥 ∶ |𝑓𝑛(𝑥) − 𝑓(𝑥)| ↛ 0}

But 𝑓𝑛 → 𝑓 almost everywhere, hence 𝜆 (∩𝑚𝐸𝑚(𝑘)) = 0.
Since 𝜆(𝐸1(𝑘)) < +∞, it follows that lim𝑚 𝜆(𝐸𝑚(𝑘)) = 0.
Therefore for each 𝛿 > 0 and every 𝑘 ∈ ℕ there exists 𝑚𝑘 ∈ ℕ so that

𝜆(𝐸𝑚𝑘
(𝑘)) < 𝛿

2𝑘 .
Define

𝐴𝛿 =
∞
⋃
𝑘=1

𝐸𝑚𝑘
(𝑘)



Proof of Egorov’s theorem (II)

𝐴𝛿 =
∞
⋃
𝑘=1

𝐸𝑚𝑘
(𝑘)

Then 𝐴𝛿 ∈ ℳ and

𝜆(𝐴𝛿) ≤
∞
∑
𝑘=1

𝜆(𝐸𝑚𝑘
(𝑘)) <

∞
∑
𝑘=1

𝛿
2𝑘 = 𝛿.

Claim : 𝑓𝑛 → 𝑓 uniformly on 𝑋\𝐴𝛿.
Proof : Let 𝜀 > 0 and 𝑘 ∈ ℕ with 1

𝑘 < 𝜀. Since 𝐴𝛿 ⊇ 𝐸𝑚𝑘
(𝑘), if

𝑥 ∉ 𝐴𝛿 we have 𝑥 ∉ 𝐸𝑚𝑘
(𝑘); thus for all 𝑛 ≥ 𝑚𝑘 we have

|𝑓𝑛(𝑥) − 𝑓(𝑥)| < 1
𝑘 < 𝜀. Since 𝑚𝑘 does not depend on 𝑥 we have

𝑓𝑛 → 𝑓 uniformly on 𝐴𝑐
𝛿.

So, if I choose 𝐹𝛿 ⊆ (𝑋\𝐴𝛿) with 𝜆((𝑋\𝐴𝛿)\𝐹𝛿)) < 𝛿 (regularity),
then 𝜆((𝑋\𝐹𝛿)) < 2𝛿 and 𝑓𝑛 → 𝑓 uniformly on 𝐹𝛿.
Counterexample when 𝜆(𝑋) = ∞: 𝑓𝑛 = 𝜒(𝑛,∞) → 0 pointwise. But...



The Lebesgue Integral: Definitions

Let 𝑋 ⊆ ℝ be measurable.
(a) If 𝑠 ∶ 𝑋 → ℝ+ is simple measurable and 𝑠(𝑋) = {𝑎1,… , 𝑎𝑛} we
define

∫𝑠𝑑𝜆 =
𝑛

∑
𝑘=1

𝑎𝑘𝜆(𝐴𝑘) ∈ [0,+∞]

where 𝐴𝑘 = 𝑠−1({𝑎𝑘}) (we put 0 ⋅ (+∞) = 0).

s

a1

a3a2

Σχήμα: Integral of a simple function



The Lebesgue Integral: Definitions

(b) If 𝑓 ∶ 𝑋 → [0,+∞] is measurable, we define

∫𝑓𝑑𝜆 = sup{∫𝑠𝑑𝜆 ∶ 𝑠 simple measurable, 0 ≤ 𝑠 ≤ 𝑓} .

For 𝑓 simple, definitions (a) and (b) coincide.

• If𝐴 ⊆ 𝑋 is a measurable subset then we define ∫𝐴 𝑓𝑑𝜆 ∶= ∫𝑓𝜒𝐴𝑑𝜆.
• If 𝑓 is defined on a measurable subset 𝐴 ⊆ 𝑋 and non-negative, we
extend 𝑓 to a (measurable) function ̃𝑓 ∶ 𝑋 → [0,+∞] by setting
̃𝑓(𝑥) = 0 for 𝑥 ∈ 𝑋\𝐴 and define ∫𝑓𝑑𝜆 ∶= ∫ ̃𝑓𝑑𝜆.



The Lebesgue Integral: Definitions

(c) Let 𝑓 ∶ 𝑋 → ℝ ∶= [−∞,+∞] be measurable. The functions
𝑓+ = 𝑓 ∨ 0 and 𝑓− = (−𝑓) ∨ 0 are non-negative and measurable,
hence the integrals ∫𝑓+𝑑𝜆 and ∫𝑓−𝑑𝜆 are well defined (in ℝ). If at
least one of them is finite, we define

∫𝑓𝑑𝜆 = ∫𝑓+𝑑𝜆 −∫𝑓−𝑑𝜆 ∈ ℝ.

(d) A function 𝑓 ∶ 𝑋 → ℝ is called (absolutely) integrable if is
measurable and

∫|𝑓|𝑑𝜆 < +∞.



The Lebesgue Integral for simple 𝑓 ≥ 0

Proposition

If 𝑠1, 𝑠2 ∶ 𝑋 → [0,+∞) are simple measurable and 𝑎 ≥ 0, then
i ∫𝑎𝑠1𝑑𝜆 = 𝑎∫ 𝑠1𝑑𝜆 (positive homogeneity)
ii ∫(𝑠1 + 𝑠2)𝑑𝜆 = ∫𝑠1𝑑𝜆 + ∫𝑠2𝑑𝜆 (additivity)
iii If 𝑠1 ≤ 𝑠2 then ∫𝑠1𝑑𝜆 ≤ ∫𝑠2𝑑𝜆 (monotonicity).

For (ii), we will need the (temporary) lemma:

Lemma

If 𝑠 ∶ 𝑋 → ℝ+ is simple measurable and 𝑠 =
𝑚
∑
𝑘=1

𝑏𝑘𝜒𝐵𝑘
where

𝐵𝑘 ∩ 𝐵𝑗 = ∅ for 𝑘 ≠ 𝑗, then

∫𝑠𝑑𝜆 =
𝑚
∑
𝑘=1

𝑏𝑘𝜆(𝐵𝑘).



The Lebesgue Integral for measurable 𝑓 ≥ 0

Reminder: If 𝑓 ∶ 𝑋 → [0,+∞] is measurable,

∫𝑓𝑑𝜆 = sup{∫𝑠𝑑𝜆 ∶ 𝑠 simple measurable, 0 ≤ 𝑠 ≤ 𝑓} .

Recall that if 𝑓 ∶ 𝑋 → [0,+∞] is measurable and 𝐴 ∈ ℳ,
∫𝐴 𝑓𝑑𝜆 ∶= ∫𝜒𝐴𝑓𝑑𝜆.

Proposition

If 𝑓, 𝑔 ∶ 𝑋 → [0,+∞] are measurable and 𝑎 ≥ 0, then
i ∫𝑎𝑓𝑑𝜆 = 𝑎∫𝑓𝑑𝜆.
ii If 𝑓 ≤ 𝑔 then ∫𝑓𝑑𝜆 ≤ ∫𝑔𝑑𝜆.
iii If 𝐴 ⊆ 𝐵 (𝐴,𝐵 ∈ ℳ) then ∫𝐴 𝑓𝑑𝜆 ≤ ∫𝐵 𝑓𝑑𝜆.
iv If 𝐴 ∈ ℳ and 𝜆(𝐴) = 0 or 𝑓|𝐴 = 0 then ∫𝐴 𝑓𝑑𝜆 = 0.



The Lebesgue Integral for measurable 𝑓 ≥ 0

Proposition (Markov’s Inequality)

Let 𝑓 ∶ 𝑋 → [0,+∞] be measurable. For every 𝑎 ≥ 0,

∫𝑓𝑑𝜆 ≥ 𝑎 ⋅ 𝜆({𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) ≥ 𝑎}) .

Corollary

If 𝑓 ∶ 𝑋 → [0,+∞] is integrable (i.e. measurable and ∫ |𝑓|𝑑𝜆 < ∞)
then 𝑓(𝑥) < ∞ far almost all 𝑥 ∈ 𝑋.



Additivity of the Lebesgue Integral

The equality ∫𝑓𝑑𝜆 + ∫𝑔𝑑𝜆 = ∫(𝑓 + 𝑔)𝑑𝜆 holds for
𝑓, 𝑔 ∶ 𝑋 → [0,+∞] simple measurable.

More generally, what if 𝑓, 𝑔 ∶ 𝑋 → [0,+∞] are just measurable?
Observe that we can easily prove the inequality

∫𝑓𝑑𝜆 +∫𝑔𝑑𝜆 ≤ ∫(𝑓 + 𝑔)𝑑𝜆 .

What about equality?? What about approximating by simple
functions?



Is it true that ∫ lim 𝑓𝑛𝑑𝜆
?= lim∫𝑓𝑛𝑑𝜆 ??

Examples (a) On ℝ: Let 𝑓𝑛 ∶= 𝜒[𝑛,𝑛+1]. We have 𝑓𝑛 → 𝑓 = 0
pointwise, but ∫𝑓𝑛𝑑𝜆 = 1 for all 𝑛 while ∫𝑓𝑑𝜆 = 0.
(The mass under the 𝑓𝑛 “escapes to infinity horizontally”.)

(b) On ℝ: Let 𝑓𝑛 ∶= 1
𝑛𝜒[0,𝑛]. This time 𝑓𝑛 → 𝑓 = 0 uniformly but

∫𝑓𝑛𝑑𝜆 = 1 for each 𝑛 while ∫𝑓𝑑𝜆 = 0.
(Here the mass “spreads out” over the whole of ℝ+.)

(c) On [0, 1]: Let 𝑓𝑛 ∶= 𝑛𝜒[ 1𝑛 , 2
𝑛 ]. The measure of the space is finite,

and 𝑓𝑛 → 𝑓 = 0 pointwise (not uniformly). Again ∫𝑓𝑛𝑑𝜆 = 1 for all 𝑛
while ∫𝑓𝑑𝜆 = 0.
(Here the mass “escapes to infinity vertically”.)



The Monotone Convergence Theorem

Theorem
Let 𝑋 ∈ ℳ and 𝑓𝑛 ∶ 𝑋 → [0,∞] an increasing sequence of
non-negative measurable functions. Then

lim
𝑛

(∫𝑓𝑛 𝑑𝜆) = ∫(lim
𝑛

𝑓𝑛) 𝑑𝜆 .



The Monotone Convergence Theorem

Consequence: If 𝑓 ∶ 𝑋 → [0,+∞] is measurable, then

∫𝑓𝑑𝜆 = lim∫𝑠𝑛𝑑𝜆

where (𝑠𝑛) is any increasing sequence of simple functions 𝑠𝑛 ≥ 0 with
𝑠𝑛 ↗ 𝑓 .

Questions: (α) Does the Monotone Convergence Theorem hold for
decreasing sequences?

(b) Perhaps under additional conditions?



First Consequences of the Monotone Convergence Theorem

Proposition (Additivity)

If 𝑓, 𝑔 ∶ 𝑋 → [0,+∞] are measurable, then

∫(𝑓 + 𝑔)𝑑𝜆 = ∫𝑓𝑑𝜆 +∫𝑔𝑑𝜆.

Theorem (Beppo Levi)

If (𝑓𝑛) are measurable, 𝑓𝑛 ∶ 𝑋 → [0,+∞], then

∫(∑
𝑛

𝑓𝑛)𝑑𝜆 = ∑
𝑛

(∫𝑓𝑛𝑑𝜆) .

Proposition (Fatou’s Lemma)

If 𝑓𝑛 ∶ 𝑋 → [0,+∞] are measurable, then

∫(lim inf
𝑛

𝑓𝑛)𝑑𝜆 ≤ lim inf
𝑛

∫𝑓𝑛𝑑𝜆.



Integrable functions

Definition (reminder):
• Let 𝑋 ∈ ℳ, 𝑓 ∶ 𝑋 → ℝ ∶= [−∞,+∞] be measurable. The
functions 𝑓+ = 𝑓 ∨ 0 and 𝑓− = (−𝑓) ∨ 0 are non-negative and
measurable, hence the integrals ∫𝑓+𝑑𝜆 and ∫𝑓−𝑑𝜆 are well defined
(in ℝ). If at least one of them is finite, we define

∫𝑓𝑑𝜆 = ∫𝑓+𝑑𝜆 −∫𝑓−𝑑𝜆 ∈ ℝ.

• A function 𝑓 ∶ 𝑋 → ℝ is called (absolutely) integrable if is
measurable and

∫|𝑓|𝑑𝜆 < +∞.

Remarks • If 𝑓 is integrable, then 𝑓(𝑥) ∈ ℝ for almost all 𝑥 ∈ 𝑋.
• The function 𝑓 is integrable if and only if both 𝑓+ and 𝑓− are
integrable and then ∫𝑓𝑑𝜆 = ∫𝑓+𝑑𝜆 − ∫𝑓−𝑑𝜆 ∈ ℝ.



Integrable functions

Theorem
If 𝑓, 𝑔 ∶ 𝑋 → ℝ are integrable and 𝑐 ∈ ℝ, then
(the function 𝑓 + 𝑐𝑔 is well-defined a.e. and)

∫(𝑓 + 𝑐𝑔)𝑑𝜆 = ∫𝑓𝑑𝜆 + 𝑐∫𝑔𝑑𝜆.

Proposition

If 𝑓 ∶ 𝑋 → ℝ is integrable and 𝐴,𝐵 ∈ ℳ με 𝐴 ∩ 𝐵 = ∅, then

∫
𝐴∪𝐵

𝑓𝑑𝜆 = ∫
𝐴
𝑓𝑑𝜆 +∫

𝐵
𝑓𝑑𝜆 .



Integrable functions

Proposition

If 𝑓, 𝑔 ∶ 𝑋 → ℝ are integrable then

(𝑖) 𝑓 ≤ 𝑔 ⟹ ∫𝑓𝑑𝜆 ≤ ∫𝑔𝑑𝜆.

(𝑖𝑖) ∣∫𝑓𝑑𝜆∣ ≤ ∫ |𝑓|𝑑𝜆



Integrable functions

Proposition

Let 𝑓, 𝑔 ∶ 𝑋 → ℝ be integrable.
(i) If 𝑓 = 𝑔 a.e. then ∫𝑓𝑑𝜆 = ∫𝑔𝑑𝜆.
(ii) We have 𝑓 = 0 a.e. if and only if ∫𝐴 𝑓𝑑𝜆 = 0 for every 𝐴 ⊆ 𝑋,
𝐴 ∈ ℳ.

Corollary

If 𝑓, 𝑔 ∶ 𝑋 → ℝ are integrable and 𝑓 ≤ 𝑔 a.e. then ∫𝑓𝑑𝜆 ≤ ∫𝑔𝑑𝜆.



The Dominated Convergence Theorem

Theorem
Let (𝑓𝑛) be a sequence of measurable functions 𝑓𝑛 ∶ 𝑋 → [−∞,+∞]
which converges for almost all 𝑥 ∈ 𝑋 to a function
𝑓 ∶ 𝑋 → [−∞,+∞]. If there exists an integrable function
𝑔 ∶ 𝑋 → [0,+∞] such that |𝑓𝑛| ≤ 𝑔 a.e. for all 𝑛, then

𝑓 is (absolutely) integrable

and lim
𝑛→∞

∫|𝑓𝑛 − 𝑓|𝑑𝜆 = 0

and lim
𝑛→∞

∫𝑓𝑛𝑑𝜆 = ∫𝑓𝑑𝜆.

See also the counterexamples: [100] when there is no “dominating”
integrable 𝑔.
Proof. First show that the 𝑓𝑛 and 𝑓 are integrable.
For convergence:



The Dominated Convergence Theorem: Proof of convergence

Put ℎ𝑛 = |𝑓𝑛 − 𝑓| and observe that 0 ≤ ℎ𝑛 ≤ 2𝑔 a.e. and that ℎ𝑛(𝑥) → 0 for
almost all 𝑥. Thus, 2𝑔 − ℎ𝑛 ≥ 0 and 2𝑔 − ℎ𝑛 → 2𝑔 pointwise, almost
everywhere.
By Fatou’s Lemma we have

∫ lim inf
𝑛

(2𝑔 − ℎ𝑛)𝑑𝜆 ≤ lim inf
𝑛

∫(2𝑔 − ℎ𝑛)𝑑𝜆 .

But ∫ lim inf
𝑛

(2𝑔 − ℎ𝑛)𝑑𝜆 = ∫2𝑔𝑑𝜆

and lim inf
𝑛

∫(2𝑔 − ℎ𝑛)𝑑𝜆 = ∫2𝑔𝑑𝜆 + lim inf
𝑛

∫(−ℎ𝑛)𝑑𝜆

= ∫2𝑔𝑑𝜆 − lim sup
𝑛

∫ℎ𝑛𝑑𝜆 ,

therefore lim sup
𝑛

∫ℎ𝑛𝑑𝜆 ≤ 0 .

On the other hand 0 ≤∫ℎ𝑛𝑑𝜆 so 0 ≤ lim inf
𝑛

∫ℎ𝑛𝑑𝜆.

Therefore the limit lim
𝑛
∫ℎ𝑛𝑑𝜆 exists and is 0. 2



The Dominated Convergence Theorem

Corollary (The bounded convergence theorem)

Let 𝑋 ∈ ℳ with 𝜆(𝑋) < ∞, let 𝑓𝑛 ∶ 𝑋 → ℝ be a sequence of
measurable functions and 𝑓 ∶ 𝑋 → ℝ with 𝑓𝑛 → 𝑓 a.e. We assume
that, in addition, there exists an 𝑀 > 0 so that |𝑓𝑛| ≤ 𝑀 a.e. on 𝑋 for
all 𝑛. Then the 𝑓𝑛 and 𝑓 are integrable and we have:

∫|𝑓𝑛 − 𝑓| 𝑑𝜆 → 0.

It also follows that

lim
𝑛

∫𝑓𝑛 𝑑𝜆 = ∫𝑓 𝑑𝜆.



The Dominated Convergence Theorem

Corollary

Let 𝑓 ∶ ℝ → [−∞,+∞] be integrable. Then the function

𝐹(𝑥) = ∫
𝑥

−∞
𝑓 𝑑𝜆 ∶= ∫

(−∞,𝑥]
𝑓 𝑑𝜆

is continuous.

Corollary

Let 𝑓 ∶ ℝ → [−∞,+∞] be integrable. If 𝐸𝑛 ∈ ℳ, 𝐸𝑛 ⊆ 𝐸𝑛+1 for
every 𝑛 and 𝐸 = ⋃𝐸𝑛, then

∫
𝐸
𝑓 𝑑𝜆 = lim

𝑛
∫
𝐸𝑛

𝑓 𝑑𝜆 .



Reminder: The Riemann integral

A partition 𝒫 of [𝑎, 𝑏] is a finite set

𝒫 = {𝑎 = 𝑡0 < 𝑡1 < … < 𝑡𝑛−1 < 𝑡𝑛 = 𝑏}

If 𝑓 ∶ [𝑎, 𝑏] → ℝ is bounded, we set

𝑀𝑖 = 𝑀𝑖(𝑓) = sup{𝑓(𝑠) ∶ 𝑠 ∈ [𝑡𝑖−1, 𝑡𝑖]}
𝑚𝑖 = 𝑚𝑖(𝑓) = inf{𝑓(𝑠) ∶ 𝑠 ∈ [𝑡𝑖−1, 𝑡𝑖]} (𝑖 = 1,… , 𝑛).

and
𝐿(𝑓,𝒫) =

𝑛
∑
𝑖=1

𝑚𝑖(𝑓)(𝑡𝑖 − 𝑡𝑖−1)

𝑈(𝑓,𝒫) =
𝑛

∑
𝑖=1

𝑀𝑖(𝑓)(𝑡𝑖 − 𝑡𝑖−1).

The numbers 𝐿(𝑓,𝒫) and 𝑈(𝑓,𝒫) are called the lower and upper
Riemann sums of 𝑓 for the partition 𝒫.



Every Riemann integrable function Lebesgue integrable

Let 𝑓 ∶ [𝑎, 𝑏] → ℝ be Riemann integrable. Then, there is a sequence
(𝑃𝑛) of partitions of [𝑎, 𝑏] such that: 𝑃𝑛 ⊂ 𝑃𝑛+1 (𝑃𝑛+1 is a refinement
of 𝑃𝑛), ‖𝑃𝑛‖ → 0 (the sizes of the partitions 𝑃𝑛 tend to 0), and

𝐿(𝑓, 𝑃𝑛) → ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 , 𝑈(𝑓, 𝑃𝑛) → ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

Let 𝑔𝑛 be the step function with ∫
𝑏

𝑎
𝑔𝑛(𝑥) 𝑑𝑥 = 𝐿(𝑓, 𝑃𝑛) (that is, if

𝐿(𝑓, 𝑃𝑛) =
𝑘−1
∑
𝑖=0

𝑚𝑖(𝑥𝑖+1 −𝑥𝑖) then put 𝑔𝑛 =
𝑘−1
∑
𝑖=0

𝑚𝑖𝜒[𝑥𝑖,𝑥𝑖+1)) and let

𝑢𝑛 be the step function with ∫
𝑏

𝑎
𝑢𝑛(𝑥) 𝑑𝑥 = 𝑈(𝑓, 𝑃𝑛). Then

𝑔𝑛 ≤ 𝑓 ≤ 𝑢𝑛. The sequence (𝑔𝑛) is increasing and (𝑢𝑛) is decreasing,
hence ∃𝑔 ∶= lim𝑛 𝑔𝑛 and 𝑢 ∶= lim𝑛 𝑢𝑛 and 𝑔 ≤ 𝑓 ≤ 𝑢. The functions
𝑢 and 𝑔 are limits of monotone sequences of integrable functions.



Every Riemann integrable function Lebesgue integrable

Therefore 3

∫
𝑏

𝑎
𝑢 𝑑𝜆 = lim

𝑛
∫

𝑏

𝑎
𝑢𝑛 𝑑𝜆 (!)= lim

𝑛
∫

𝑏

𝑎
𝑢𝑛(𝑥) 𝑑𝑥 = ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥

and

∫
𝑏

𝑎
𝑔 𝑑𝜆 = lim

𝑛
∫

𝑏

𝑎
𝑔𝑛 𝑑𝜆 (!)= lim

𝑛
∫

𝑏

𝑎
𝑔𝑛(𝑥) 𝑑𝑥 = ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥.

Hence 𝑔 = 𝑢 almost everywhere. Since 𝑔 ≤ 𝑓 ≤ 𝑢, it follows that
𝑔 = 𝑓 = 𝑢 almost everywhere.
Thus, 𝑓 = lim 𝑔𝑛 almost everywhere, and hence 𝑓 is measurable and

∫
𝑏

𝑎
𝑓 𝑑𝜆 = lim

𝑛
∫

𝑏

𝑎
𝑔𝑛 𝑑𝜆 = ∫

𝑏

𝑎
𝑔 𝑑𝜆 = ∫

𝑏

𝑎
𝑓(𝑥) 𝑑𝑥. 2

3Since 𝑢𝑛 is a step function, ∫𝑏
𝑎 𝑢𝑛𝑑𝜆

(!)= ∫𝑏
𝑎 𝑢𝑛(𝑥)𝑑𝑥.



Riemann integrable functions

Theorem
A bounded function 𝑓 ∶ [𝑎, 𝑏] → ℝ is Riemann integrable if and only if
it is almost everywhere continuous, that is, if its set of discontinuities
has measure zero. Then 𝑓 is Lebesgue integrable and the two integrals
coincide.

Proof Later (if time permits).

Remark The characteristic functions of [13 , 2
3 ] is almost everywhere

continuous, but it is not almost everywhere equal to a continuous
function.
On the other hand, the Dirichlet functions is continuous nowhere, but it
is almost everywhere equal to the continuous function 𝑓(𝑡) = 0.



The space ℒ1
ℝ(𝑋)

Definition
If 𝑋 ⊆ ℝ is measurable, the space ℒ1

ℝ(𝑋) consists of all functions
𝑓 ∶ 𝑋 → ℝ which are measurable and satisfy ∫𝑋 |𝑓|𝑑𝜆 < +∞. The
quantity ∫𝑋 |𝑓|𝑑𝜆 is denoted ‖𝑓‖1.

Remarks (i) If 𝑓 ∶ 𝑋 → [−∞,+∞] is measurable then ‖𝑓‖1 < +∞ if
and only if 𝑓 takes finite values almost everywhere; therefore it is almost
everywhere equal to a function ̃𝑓 ∈ ℒ1

ℝ(𝑋).
Abusing terminology, we say 𝑓 ∈ ℒ1

ℝ(𝑋).
(ii) If 𝑓, 𝑔 ∈ ℒ1

ℝ(𝑋) and 𝜆 ∈ ℝ then 𝑓 + 𝜆𝑔 ∈ ℒ1
ℝ(𝑋) and

1 ‖𝜆𝑔‖1 = |𝜆|‖𝑔‖1
2 ‖𝑓 + 𝑔‖1 ≤ ‖𝑓‖1 + ‖𝑔‖1
3 ‖𝑓‖1 = 0 if and only if 𝑓 = 0 almost everywhere.



Completeness: The Riesz–Fischer Theorem

Definition
Let 𝑓𝑛, 𝑓 ∶ 𝑋 → ℝ be measurable.

(i) The sequence {𝑓𝑛} converges to 𝑓 in the mean or in 𝐿1 If
∫ |𝑓𝑛 − 𝑓| 𝑑𝜆 → 0.

(ii) The sequence {𝑓𝑛} is Cauchy in the mean if for every 𝜀 > 0 there
is 𝑛0(𝜀) ∈ ℕ such that: If 𝑚,𝑛 ≥ 𝑛0 then
∫ |𝑓𝑛 − 𝑓𝑚| 𝑑𝜆 < 𝜀.

Theorem
Let 𝑋 ⊆ ℝ be measurable and {𝑓𝑛} a sequence of functions in ℒ1

ℝ(𝑋).
• If {𝑓𝑛} is Cauchy in the mean, then there is a function 𝑓 ∶ 𝑋 → ℝ in
ℒ1

ℝ(𝑋) so that 𝑓𝑛 → 𝑓 in the mean.
• In addition, there is a subsequence {𝑓𝑛𝑘

} of {𝑓𝑛} so that 𝑓𝑛𝑘
→ 𝑓

almost everywhere.



The space (𝐿1
ℝ(𝑋), ‖ ⋅ ‖1)

The space ℒ1
ℝ(𝑋) is a linear space and ‖ ⋅ ‖1 is a seminorm on it. Define

𝒩 = {𝑓 ∶ 𝑋 → ℝ ∶ measurable, 𝑓 = 0 almost everywhere}.

Remark: 𝒩 = {𝑓 ∈ ℒ1
ℝ(𝑋) ∶ ‖𝑓‖1 = 0}.

If 𝑓, 𝑔 ∈ ℒ1, then: 𝑓 = 𝑔 almost everywhere ⟺ 𝑓 − 𝑔 ∈ 𝒩.
Also, 𝒩 is a linear subspace of ℒ1.
On the quotient space 𝐿1

ℝ(𝑋) ∶= ℒ1
ℝ(𝑋)/𝒩, define ‖[𝑓]𝒩‖1 ∶= ‖𝑓‖1,

where [𝑓]𝒩 ∶= {𝑓 + 𝑔 ∶ 𝑔 ∈ 𝒩}. This is a well-defined norm.
Thus, the space 𝐿1

ℝ(𝑋) consists of equivalence classes of ℒ1
ℝ(𝑋)

functions modulo equality almost everywhere.
The Riesz–Fischer Theorem states precisely that the space
(𝐿1

ℝ(𝑋), ‖ ⋅ ‖1) is a complete normed space, that is, a Banach space.



The space (𝐿𝑝
ℝ(𝑋), ‖ ⋅ ‖𝑝) where 1 ≤ 𝑝 < ∞

Let 𝑝 ∈ [1,∞). If 𝑋 ⊆ ℝ is measurable, the space ℒ𝑝
ℝ(𝑋) consists of

all functions 𝑓 ∶ 𝑋 → ℝ which are measurable and satisfy
∫𝑋 |𝑓|𝑝𝑑𝜆 < +∞.

The quantity (∫
𝑋
|𝑓|𝑝𝑑𝜆)

1/𝑝
is denoted ‖𝑓‖𝑝.

On the quotient space 𝐿𝑝
ℝ(𝑋) ∶= ℒ𝑝

ℝ(𝑋)/𝒩 (where
𝒩 = {𝑓 ∶ 𝑋 → ℝ ∶ measurable, 𝑓 = 0 almost everywhere}) define
‖[𝑓]𝒩‖𝑝 ∶= ‖𝑓‖𝑝, where [𝑓]𝒩 ∶= {𝑓 + 𝑔 ∶ 𝑔 ∈ 𝒩}. This is a
well-defined norm.

Theorem (Riesz-Fischer)

The space (𝐿𝑝
ℝ(𝑋), ‖ ⋅ ‖𝑝) is a complete normed space, that is, a

Banach space: If a sequence {𝑓𝑛} in ℒ𝑝
ℝ(𝑋) is Cauchy with respect to

‖ ⋅ ‖𝑝, there exists 𝑓 ∶ 𝑋 → ℝ in ℒ𝑝
ℝ(𝑋) so that ‖𝑓𝑛 − 𝑓‖𝑝 → 0.



Approximation in (𝐿𝑝
ℝ(𝑋), ‖ ⋅ ‖𝑝)

Let𝑋 ⊆ ℝ be measurable. We write 𝒮(𝑋) for the set of all (equivalence
classes, modulo equality almost everywhere, of) simple measurable
functions 𝑠 ∶ 𝑋 → ℝ such that 𝜆({𝑥 ∈ 𝑋 ∶ 𝑠(𝑥) ≠ 0}.
Proposition

The space 𝒮(𝑋) is a linear subspace of 𝐿𝑝
ℝ(𝑋) which is dense in

(𝐿𝑝
ℝ(𝑋), ‖ ⋅ ‖𝑝).

We write 𝐶𝑐(ℝ) for the set of continuous functions 𝑓 ∶ ℝ → ℝ which
have compact support, that is, there exists a compact 𝐾(𝑓) ⊆ ℝ so that
𝑓(𝑥) = 0 when 𝑥 ∉ 𝐾(𝑓).
Proposition

The space 𝐶𝑐(ℝ) is a linear subspace of 𝐿𝑝
ℝ(𝑋) which is dense in

(𝐿𝑝
ℝ(𝑋), ‖ ⋅ ‖𝑝).



Part ΙII

Fourier series for functions of class ℒ1 and ℒ2



Complex-valued functions on the unit circle (Reminder)

Denote by 𝕋 the unit circle

𝕋 = {𝑧 ∈ ℂ ∶ |𝑧| = 1} = {𝑒𝑖𝜃 ∶ 𝜃 ∈ ℝ}.

If 𝜙 ∶ 𝕋 → ℂ, define 𝑓 ∶ ℝ → ℂ by

𝑓(𝜃) = 𝜙(𝑒𝑖𝜃).

The function 𝑓 is 2𝜋-periodic.
Conversely, if 𝑓 ∶ ℝ → ℂ is 2𝜋-periodic, then the function 𝜙 ∶ 𝕋 → ℂ
given by 𝜙(𝑒𝑖𝜃) = 𝑓(𝜃) is well defined.
Thus we have a 1 − 1 correspondence between functions 𝜙 ∶ 𝕋 → ℂ and
2𝜋-periodic functions 𝑓 ∶ ℝ → ℂ.
In what follows we shall make no distinction between 𝜙 and 𝑓 .



The spaces 𝐿𝑝(𝕋)

For 𝑝 ∈ [1,∞), the symbol ℒ𝑝(𝕋) denotes the set of all measurable (*)
functions 𝑓 ∶ 𝕋 → ℂ satisfying

∫
𝜋

−𝜋
|𝑓(𝑡)|𝑝𝑑𝜆(𝑡) < ∞ ( Lebesgue measure).

We write
‖𝑓‖𝑝 ∶= (∫

𝜋

−𝜋
|𝑓(𝑡)|𝑝𝑑𝜆(𝑡)2𝜋 )

1/𝑝
.

Observe that ‖𝑓‖𝑝=0 if and only if 𝑓(𝑡)=0 for almost all 𝑡.
(*) A function ℎ ∶ 𝕋 → ℂ is called measurable iff both
𝑢 ∶= Reℎ = 1

2(ℎ + ℎ̄) and 𝑣 ∶= Imℎ = 1
2𝑖(ℎ − ℎ̄) are measurable

functions 𝕋 → ℝ.
Notice that then |ℎ| = (𝑢2 + 𝑣2)1/2 is measurable (why?).



The spaces 𝐿𝑝(𝕋)

The symbol 𝐿𝑝(𝕋) denotes the space of equivalence classes [𝑓], of
𝑓 ∈ ℒ𝑝(𝕋), modulo equality almost everywhere (we write 𝑓 instead of
[𝑓]).
The space 𝐿𝑝(𝕋) is a linear space and ‖⋅‖𝑝 is a norm on 𝐿𝑝(𝕋) with
respect to which 𝐿𝑝(𝕋) is a Banach space (Riesz-Fischer Theorem). The
space 𝐿2(𝕋) is a Hilbert space with respect to
⟨𝑓, 𝑔⟩ = 1

2𝜋 ∫
𝜋

−𝜋
𝑓(𝑡)𝑔(𝑡)𝑑𝜆(𝑡).

Here ∫ℎ𝑑𝜆 ∶= ∫Reℎ 𝑑𝜆 + 𝑖∫ Imℎ 𝑑𝜆 where

Reℎ = 1
2(ℎ + ℎ̄), Imℎ = 1

2𝑖(ℎ − ℎ̄).]
Remark
The mapping ℐ ∶ 𝑓 → ∫𝑓𝑑𝜆 ∶ 𝐿1(𝕋) → ℂ is linear, and it is positive:
if 𝑓 ∈ 𝐿1(𝕋) and 𝑓(𝑡) ∈ ℝ+ a.e. then ℐ(𝑓) ≥ 0.
It follows that ∣∫𝑔𝑑𝜆∣ ≤ ∫ |𝑔|𝑑𝜆 ∀𝑔 ∈ 𝐿1(𝕋).



The spaces 𝐿𝑝(𝕋)

If 1 ≤ 𝑝 ≤ 𝑞 < ∞ and 𝑓 is measurable, we have ‖𝑓‖𝑝 ≤ ‖𝑓‖𝑞 ≤ ‖𝑓‖∞
and hence

𝐶(𝕋) ⊆ 𝐿𝑞(𝕋) ⊆ 𝐿𝑝(𝕋) ⊆ 𝐿1(𝕋)
(recall that we identify 𝐶(𝕋) with the space of continuous 2𝜋 periodic
functions 𝑓 ∶ ℝ → ℂ.)
Proposition

If 𝑝 ∈ [1,∞), the space of simple measurable functions, the space of
step functions and 𝐶(𝕋) are dense in (𝐿𝑝(𝕋), ‖⋅‖𝑝).



Fourier series for functions of class ℒ1

Definition (Fourier coefficients)

Let 𝑓 ∈ ℒ1(𝕋). Define

̂𝑓(𝑘) = 1
2𝜋 ∫

𝜋

−𝜋
𝑓𝑒−𝑘𝑑𝜆 = 1

2𝜋 ∫
𝜋

−𝜋
𝑓(𝑡)𝑒−𝑖𝑘𝑡𝑑𝜆(𝑡) (𝑘 ∈ ℤ) .

Here ∫𝑓𝑑𝜆 ∶= ∫Re𝑓 𝑑𝜆 + 𝑖∫ Im𝑓 𝑑𝜆 where

Re𝑓 = 1
2(𝑓 + ̄𝑓), Im𝑓 = 1

2𝑖(𝑓 − ̄𝑓).
Remark. The function 𝑆𝑛(𝑓) = ∑

|𝑘|≤𝑛
̂𝑓(𝑘)𝑒𝑘 is a trigonometric

polynomial, hence a continuous (and 2𝜋-periodic) function, for every
𝑓 ∈ ℒ1(𝕋).



Fourier series for functions of class ℒ1

Remark
Let 𝑓 ∈ ℒ1(𝕋). Then

| ̂𝑓(𝑘)| ≤ ‖𝑓‖1 for all 𝑘 ∈ ℤ
thus ‖ ̂𝑓 ‖∞ ≤ ‖𝑓‖1 .

Proposition (the Riemann-Lebesgue lemma)

Let 𝑓 ∈ ℒ1(𝕋). Then
lim

|𝑘|→∞
̂𝑓(𝑘) = 0 .

Thus ( ̂𝑓(𝑘)) ∈ 𝑐0(ℤ).

Equivalently,
lim
𝑛→∞

1
2𝜋 ∫𝜋

−𝜋 𝑓(𝑡) cos𝑛𝑡 𝑑𝑡 = 0 lim
𝑛→∞

1
2𝜋 ∫𝜋

−𝜋 𝑓(𝑡) sin𝑛𝑡 𝑑𝑡 = 0 .



The Uniqueness Theorem for ℒ1

Remark If we change the values of an ℒ1 function on a set of measure
zero, its Fourier coefficients remain the same. In other words,
If 𝑓 = 𝑔 almost everywhere, then ̂𝑓(𝑘) = ̂𝑔(𝑘) for all 𝑘 ∈ ℤ. The
converse also holds:

Theorem
For 𝑓, 𝑔 ∈ 𝐿1(𝕋) the following are equivalent:
(i) ̂𝑓(𝑘) = ̂𝑔(𝑘) for all 𝑘 ∈ ℤ
(ii) 𝑓 = 𝑔 a.e.. That is, 𝑓 and 𝑔 determine the same element of 𝐿1(𝕋).

Proposition

For all 𝑓 ∈ 𝐿1(𝕋), we have ‖𝜎𝑛(𝑓)‖1 ≤ ‖𝑓‖1.

Proposition

For all 𝑓 ∈ 𝐿1(𝕋), we have lim𝑛 ‖𝜎𝑛(𝑓) − 𝑓‖1 = 0.

Conclusion : The space of trigonometric polynomials is dense in 𝐿1(𝕋).
For proofs, see L1uniq.pdf.



Fourier series for functions of class ℒ2

Best mean square approximation Lemma (see also Prop. 9.1 in
not60520en.pdf): Let 𝑓 ∈ ℒ2(𝕋), 𝑛 ∈ ℕ and 𝑝 a trigonometric poly-
nomial of degree deg(𝑝) ≤ 𝑛. Then ‖𝑓 − 𝑝‖2 ≥ ‖𝑓 − 𝑆𝑛(𝑓)‖2. In fact:

‖𝑝‖22 = ∑
|𝑘|≤𝑛

| ̂𝑝(𝑘)|2

‖𝑓 − 𝑝‖22
(!)= ‖𝑓 − 𝑆𝑛(𝑓)‖

2
2 + ‖𝑆𝑛(𝑓) − 𝑝‖22

= ‖𝑓 − 𝑆𝑛(𝑓)‖
2
2 + ∑

|𝑘|≤𝑛
| ̂𝑓(𝑘) − ̂𝑝(𝑘)|2

(𝑝 = 𝑆𝑚(𝑓)) ∶ ‖𝑓 − 𝑆𝑚(𝑓)‖22 ≥ ‖𝑓 − 𝑆𝑛(𝑓)‖
2
2 if 𝑚 ≤ 𝑛

(𝑝 = 0) ∶ ‖𝑓‖22 = ‖𝑓 − 𝑆𝑛(𝑓)‖
2
2 + ‖𝑆𝑛(𝑓)‖

2
2 ≥ ‖𝑆𝑛(𝑓)‖

2
2

Hence ∑
𝑘∈ℤ

| ̂𝑓(𝑘)|2 ≤ ‖𝑓‖22 (Bessel).

Corollary ‖𝑓 − 𝜎𝑛(𝑓)‖2 ≥ ‖𝑓 − 𝑆𝑛(𝑓)‖2. (put 𝑝 = 𝜎𝑛(𝑓))



Fourier series for functions of class ℒ2

Reminder Fejér: If 𝑔 ∈ 𝐶(𝕋), then lim𝑛 ‖𝑔 − 𝜎𝑛(𝑔)‖∞ = 0.
Hence lim𝑛 ‖𝑔 − 𝜎𝑛(𝑔)‖2 = 0. Hence lim𝑛 ‖𝑔 − 𝑆𝑛(𝑔)‖2 = 0.
Since 𝐶(𝕋) is dense in ℒ2(𝕋) and ‖𝑓‖2 ≥ ‖𝑆𝑛(𝑓)‖2, it follows that

Proposition

If 𝑓 ∈ ℒ2([−𝜋, 𝜋]), then 𝑆𝑛(𝑓)
‖⋅‖2⟶ 𝑓 , that is

lim
𝑛

1
2𝜋 ∫

𝜋

−𝜋
|𝑆𝑛(𝑓) − 𝑓|2𝑑𝜆 = 0.

Therefore | ‖𝑆𝑛(𝑓)‖2 − ‖𝑓‖2 | ≤ ‖𝑆𝑛(𝑓) − 𝑓‖2 → 0, that is

lim
𝑛→∞

∑
|𝑘|≤𝑛

| ̂𝑓(𝑘)|2 = ‖𝑓‖22 .



Fourier series for functions of class ℒ2

Proposition (Parseval’s equality)

If 𝑓, 𝑔 ∈ ℒ2(𝕋), then
1
2𝜋 ∫

𝜋

−𝜋
|𝑓|2𝑑𝜆 =

∞
∑

𝑘=−∞
| ̂𝑓(𝑘)|2 and

1
2𝜋 ∫

𝜋

−𝜋
𝑓 ̄𝑔𝑑𝜆 =

∞
∑

𝑘=−∞
̂𝑓(𝑘) ̂𝑔(𝑘).

Corollary

The map
ℱ2 ∶ (𝐿2(𝕋), ‖⋅‖2) → (ℓ2(ℤ), ‖⋅‖2) ∶ 𝑓 → ̂𝑓

is a well defined linear isometry.
(Uniqueness) In particular, the map 𝑓 → ̂𝑓 is 1-1 on 𝐿2(𝕋): If
̂𝑓(𝑘) = ̂𝑔(𝑘) for every 𝑘 ∈ ℤ, then 𝑓 and 𝑔 determine the same element

of 𝐿2(𝕋), i.e. they are equal almost everywhere.



Fourier series for functions of class ℒ2

The map ℱ2 ∶ (𝐶(𝕋), ‖⋅‖𝐿2) → (ℓ2(ℤ), ‖⋅‖ℓ2) ∶ 𝑓 → ( ̂𝑓(𝑘))𝑘 ∈ ℤ is
isometric, hence 1-1, and has dense range, but it is not onto (why?).
Completeness of 𝐿2(𝕋) yields:
Proposition

The map ℱ2 sends 𝐿2(𝕋) onto ℓ2(ℤ):
If ∑

𝑛∈ℤ
|𝑐𝑛|2 < +∞ then there exists an 𝑓 ∈ ℒ2(𝕋) so that ̂𝑓(𝑘) = 𝑐𝑘

for every 𝑘 ∈ ℤ. In fact, if 𝑠𝑛(𝑡) =
𝑛
∑

𝑘=−𝑛
𝑐𝑘𝑒𝑖𝑘𝑡 then ‖𝑓 − 𝑠𝑛‖2 → 0.

Sketch of proof Since

‖𝑓𝑛‖
2
𝐿2 = ∑

𝑘
| ̂𝑓𝑛(𝑘)|2 = ∑

|𝑘|≤𝑛
|𝑐𝑘|2

the sequence (𝑓𝑛) is Cauchy in the norm of 𝐿2(𝕋).
Hence (completeness!) there exists 𝑓 ∈ ℒ2(𝕋) so that ‖𝑓 − 𝑓𝑛‖𝐿2 → 0.
Then ̂𝑓(𝑘)=⟨𝑓, 𝑒𝑘⟩= lim𝑛⟨𝑓𝑛, 𝑒𝑘⟩= lim𝑛 ̂𝑓𝑛(𝑘)=𝑐𝑘 for all 𝑘 ∈ ℤ.



Reminder

Given a function 𝑓 ∈ ℒ1(𝕋),

𝑎𝑛 = 𝑎𝑛(𝑓) =
1
𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) cos(𝑛𝑥)𝑑𝜆(𝑥), (𝑛 = 0, 1, 2,…)

𝑏𝑚 = 𝑏𝑚(𝑓) = 1
𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) sin(𝑚𝑥)𝑑𝜆(𝑥), (𝑚 = 1, 2,…)

̂𝑓(𝑘) = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝑥) exp(−𝑖𝑘𝑥)𝑑𝜆(𝑥) = ⟨𝑓, 𝑒𝑘⟩ , (𝑘 ∈ ℤ)

̂𝑓(𝑛) = 1
2(𝑎𝑛 − 𝑖𝑏𝑛), (𝑛 > 0) 𝑎𝑛 = ̂𝑓(𝑛) + ̂𝑓(−𝑛)

̂𝑓(0) = 1
2𝑎0, (𝑛 = 0) 𝑎0 = 2 ̂𝑓(0)

̂𝑓(−𝑛) = 1
2(𝑎𝑛 + 𝑖𝑏𝑛), (𝑛 > 0) 𝑏𝑛 = 𝑖( ̂𝑓(𝑛) − ̂𝑓(−𝑛))



A trigonometric series which is not the Fourier series of an 𝑓 ∈ 𝐿1(𝕋)

The trig. series ∑∞
𝑘=1

1
𝑘𝑒𝑘 converges for every 𝑡 ≠ 2𝑘𝜋 (Dirichlet) but

is not the Fourier of a Riemann-integrable function, because its partial
sums are not uniformly bounded. However, it is the Fourier series of an
𝑓 ∈ ℒ2(𝕋) since ∑∞

𝑘=1 ∣ 1𝑘 ∣
2 < ∞.

We will prove that the convergent trigonometric series

∞
∑
𝑛=2

sin𝑛𝑡
log𝑛

(sine series) is not the Fourier series of any Lebesgue-integrable
function, while the corresponding cosine series

∞
∑
𝑛=2

cos𝑛𝑡
log𝑛

is a Fourier series!
Proofs in nofou.pdf.



A trigonometric series which is not the Fourier series of an 𝑓 ∈ 𝐿1(𝕋)

Proposition

If 𝑓 ∈ ℒ1(𝕋) and for every 𝑛 ∈ ℕ we have − ̂𝑓(−𝑛) = ̂𝑓(𝑛) ≥ 0 then

∞
∑
𝑛=1

1
𝑛

̂𝑓(𝑛) < ∞.

... hence 𝑓 cannot have ∑ sin𝑛𝑡
log𝑛 as its Fourier series.

Proposition

Let 𝑎𝑛 ≥ 0, 𝑎𝑛 → 0 and suppose 𝑎𝑛 ≤ 1
2(𝑎𝑛−1 +𝑎𝑛+1) for all 𝑛 ∈ ℕ.

Then there exists 𝑓 ∈ ℒ1(𝕋) such that

̂𝑓(𝑘) = 𝑎|𝑘| for all 𝑘 ∈ ℤ.

... hence there exists an 𝑓 ∈ ℒ1(𝕋) whose Fourier series is ∑ cos𝑛𝑡
log𝑛 .



A trigonometric series which is not the Fourier series of an 𝑓 ∈ 𝐿1(𝕋)

We have used two Lemmas:
Lemma
If 𝑓 ∈ ℒ1(𝕋) and 1

2𝜋 ∫𝜋
−𝜋 𝑓(𝑡)𝑑𝜆(𝑡) = 0, then the indefinite integral 𝑔

of 𝑓 ,
𝑔(𝑥) = ∫

𝑥

−𝜋
𝑓(𝑡)𝑑𝜆(𝑡), 𝑥 ∈ [−𝜋, 𝜋]

satisfies 𝑖𝑘 ̂𝑔(𝑘) = ̂𝑓(𝑘) for all 𝑘 ∈ ℤ and 𝑔(−𝜋) = 𝑔(𝜋) and is
continuous (it belongs to 𝐶(𝕋)).

Lemma
If (𝑎𝑛) is a null sequence of nonnegative real numbers with the property
2𝑎𝑛 ≤ 𝑎𝑛−1 + 𝑎𝑛+1 for all 𝑛 ∈ ℕ then

∞
∑
𝑛=1

𝑛(𝑎𝑛−1 + 𝑎𝑛+1 − 2𝑎𝑛) = 𝑎0.
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