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1. Introduction

These notes introduce some language from probability with the aim of understanding
the statement and proof of the following result, which is due to Wiener.

Theorem 1.1. Let bm, m ∈ Z, be complex-valued, independent random variables, all identically
distributed with a standard normal distribution. Then, with probability 1, the terms

bm

m
, m ∈ Z, m 6= 0,

are the Fourier coefficients of a continuous function σ . Furthermore, with probability 1, the Fourier
series for σ converges pointwise:

σ (t ) =
∑
m 6=0

(
bm

m

)
exp(2π imt ), ∀t.

This result is part of the story of Wiener measure and Brownian motion. For a fuller
account of these ideas you should turn elsewhere.

2. Definitions

Let (Ω,} ,P) be a probability space, i.e. a measure space with P(Ω) = 1.

Event. An event is a measurable subset of Ω.
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Probability. The probability of an event E is its measure, P(E ).

Almost sure. An event E is almost sure (or occurs almost surely) if P(E ) = 1. We say the
event has probability 1.

Random variable. A random variable is a measurable function a : Ω→ R. Sometimes we
will also use complex-valued random variables (which we regard as a pair of real-valued
random variables, the real and imaginary parts).

Expectation. The expectation (or expected value) of a random variable a ∈ L1(Ω) is its
integral: E(a) =

∫
Ω

a. Random variables that are not in L1 do not have an expectation,
though if the negative part of a is integrable and the positive part is not, then one may
say that the expected value is +∞. The expectation, or expected value, is also called the
mean.

Variance and standard deviation. If a has expectation µ, and a ∈ L2(Ω), then the variance
of a is

Var(a) = E((a − µ)2).

In particular if a has expectation 0, then Var(a) is its squared L2 norm,
∫
Ω

a2. The square
root of the variance is called the standard deviation.

Covariance. If E(ai ) = µi for i = 1, 2, and a1, a2 are both in L2, then the covariance of a1

and a2 is
Cov(a1, a2) = E((a1 − µ1)(a2 − µ2)).

As a special case, if µ1 = µ2 = 0, then the covariance is the inner product
∫
Ω

a1a2.

Example. If a1, . . . , an each have zero mean and unit variance and Cov(ai , a j ) = 0 for
i 6= j, then the ai are an orthonormal set in L2(Ω).

Distribution function. The distribution function of a random variable a is the function
F : R→ [0, 1] defined by

F (x ) = P(a ≤ x ).

It is a monotonic increasing function. It need not be continuous.
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Joint distribution function. Given random variable a1, . . . , aN on Ω, their joint distribu-
tion function is the function F : RN

→ [0, 1] defined by

F (x1, . . . , xN ) = P
(
∩

N
i=1(ai ≤ xi )

)
.

Independent random variables. Random variables a1, …aN are independent if, for all
λ1, . . . , λN we have

P
(
∩

N
i=1(ai ≤ λi )

)
=

N∏
i=1

P(ai ≤ λi ).

In other words, the joint distribution function, as a function of N variables, is the
product of the distribution functions of the individual random variables. This implies in
particular that

E(ap1
1 ap2

2 . . . apn
n ) =

n∏
i=1

E(api
i ), (1)

as long as all these expectations are defined (for example if ai ∈ L p for all i and all p ≥ 1).
Thus, if a1 and a2 belong to L2 and are independent, then Cov(a1, a2) = 0.

Borel-Cantelli lemma. Let En, n ∈ N, be a sequence of events. For any N , the event

∪n≥N En

is, of course, the set of ω ∈ Ω belonging to at least one En with n ≥ N . The event

∩
∞

N=1 ∪n≥N En

is the set of ω belonging to at least one n in each interval [N ,∞). In other words, it is
the set of ω belonging to infinitely many En. It is the event “infinitely many En occur.”
We record the following lemma.

Lemma 2.1. Suppose
∑
∞

n=1 P(En ) <∞. Then

P
(
∩
∞

N=1 ∪n≥N En
)
= 0.

That is, with probability 1, only finitely many En occur.

Proof. We have
P
(
∪n≥N En

)
≤

∑
n≥N

P(En )

which converges to 0 as N →∞ because of the hypothesis of the lemma. So the nested
sequence of events FN = ∪n≥N En have probability converging to zero. The intersection
of this nested sequence therefore has probability zero, by continuity of measure.
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3. Standard normal random variables and Gaussian measures

Normal and standard normal random variables

A random variable a has a standard normal distribution if

P(a ≤ λ) =
1

(2π )1/2

∫ λ

−∞

e−x2/2 dx.

If a is a standard normal random variable then it has expectation 0 and variance 1. A
random variable a has a normal distribution with mean µ and variance σ 2 if

P(a ≤ λ) =
1

(2π )1/2σ

∫ λ

−∞

e−(x−µ)2/(2σ 2 ) dx.

If a is a standard normal random variable, then σ a has a normal distribution with mean
0 and variance σ 2.

A complex-valued random variable is standard normal if its real and imaginary parts are
independent (real) standard normal random variables.

Gaussian measure: independent standard normals r.v.’s.

The standard Gaussian measure on RN is the measure

PN (E ) =
1

(2π )N/2

∫
E

e−|x|
2/2 dx1 · · · dxN ,

defined on the σ -algebra of Borel subsets of RN . There are two things to notice about
the density function that appears here,

GN (x ) =
1

(2π )N/2
e−|x|

2/2.

First, it is invariant under orthogonal linear transformations of RN (those that preserve
|x|2). Second, it has a product form:

GN (x ) =G1(x1)G1(x2) · · ·G1(xN ).

This second property means that if we equip RN with its Gaussian measure, then the
coordinate functions

ai : RN
→ R, (i = 1, . . . ,N )

ai (x ) = xi
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are independent standard normal random variables (’s). The first property means
that the same is true for any collection of linear functions ai obtained from the coordinate
functions by an orthogonal transformation.

We spell out this last conclusion. Suppose we have an N ×M matrix

λ = (λnm )

(not necessarily square) whose columns are orthonormal, so that

N∑
n=1

λnmλnm′ =

{
1, m = m′

0, m 6= m′,

or in more compact notation,
λTλ = IM .

(the M ×M identity matrix). Then we have:

Proposition 3.1. Let a1, . . . , aN be a collection of ’s, and let λ = (λnm ) be a real N ×M
matrix with orthonormal columns as above. Then the random variables b1, . . . , bM defined by

bm =

N∑
n=1

λnman, m = 1, . . . ,M ,

are also ’s. The same holds for complex-valued ’s when λ is a complex matrix with
orthonormal columns, i.e. satisfying λT λ̄ = IM .

Infinitely many ISNRVs.

Now consider the space
Ω = RN,

the set of sequence a = (an )n∈N. We can define a version of Gaussian measure on Ω as
follows. For each N , let ΠN : Ω→ RN be the projection onto the first N coordinates.
Let ! ⊂ 3 (Ω) be the collection of subsets of the form

E = ΠN (S )

for S ⊂ RN a Borel subset. For E of this form, define

P(E ) = PN (S )
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where PN is the Gaussian measure on RN . This defines a premeasure on ! and hence
it extends to a measure on Ω. The coordinate functions

ai : Ω→ R, i ∈ N

are independent standard normal random variables (s). We can also construct a
probability space with a countable collection of complex-valued ’s this way.

Sums of independent normal random variables: convergence in square norm

Let an, n ∈ N, be a collection independent standard normal random variables (on a
probability space Ω). Let (λn )n∈N be a fixed sequence of real numbers and consider the
formal series

∞∑
1

λnan .

In what sense does this series converge? The random variables an are functions on a
probability space Ω, and as such they are an orthonormal sequence in L2(Ω). Our
knowledge of Hilbert spaces tells us the following:

Proposition 3.2. The above series converges in norm in L2(Ω) provided that

∞∑
1

λ2
n <∞,

and so defines a random variable

s =
∞∑
1

λnan .

Remark. The proposition does not assert that the series converges almost surely (i.e.
almost everywhere in Ω), though this is true.

What can we say about the random variable s that arises in the limit? It has expectation
0 and its variance is

E(s2) =
∫
Ω

s2

=

∞∑
1

λ2
n

= Λ2,
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say. In fact, s has a normal distribution; so in particular, if
∑
λ2

n = 1, then s is a standard
normal random variable. More generally, orthonormal linear combinations of ’s
are also ’s, just as in the finite case (cf. Proposition 3.1 above). That is, suppose we
have a matrix of scalars λ = (λnm ) (either real or complex) indexed by (n,m) ∈ N ×N.
Suppose that the columns are orthonormal:

∞∑
n=1

λnm λ̄nm′ =

{
1, m = m′

0, m 6= m′.

Then we have the following result.

Proposition 3.3. Let {an}n∈N be a collection of ’s, either real or complex-valued. Let a
matrix of scalars λnm be given (real or complex respectively) be given, with orthonormal columns as
above. Then the random variables

bm =

∞∑
n=1

λnman, m ∈ N,

are also ’s, either real or complex respectively.

Proof. It is only necessary to check that the first M of the random variables bm are
orthonormal, for all M . We want to deduce the proposition from the case of a finite
sum (Proposition 3.1) by taking a limit. Let for each N ∈ N, let λN

= (λN
nm ) be the

N ×M matrix obtained taking the first N ×M entries of λ and applying Gram-Schmidt
orthogonalization to the columns. Consider the following approximation to bm:

bN
m =

N∑
n=1

λN
nman, m ∈ {1, . . . ,M}.

It is straightforward to verify that, for each m, we have

lim
N→∞

bN
m = bm

in the sense of convergence in L2(Ω). Furthermore, for each N , the random variables
(bN

1 , . . . , b
N
M ) are ’s by Proposition 3.1. The result of the proposition now follows

from the following lemma, which says tells us (in particular) that the property of being
’s is preserved under L2 limits.

Lemma 3.4. Let sN be a sequence of random variables, all having the same distribution function
F. Suppose that sN → s as N →∞, either pointwise almost surely, or in L p norm for some p.
Then s also has distribution function F.
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The same holds for a collection of M random variables (sN
1 , . . . , s

N
M ) which converge as N →∞,

(sN
1 , . . . , s

N
M )→ (s1, . . . , sM )

and which all share the same joint distribution function F (x1, . . . , xM ).

Proof. This is an exercise in standard material about distribution functions. We will
suppose that the convergence is pointwise, because in the L p case we can always pass
to a subsequence that converges almost surely. We will also do only the case of single
variable, because the ideas are the same.

For the proof, we need to understand first that random variables r and s have the same
distribution function if and only if

E(ψ B r ) = E(ψ B s) (2)

for all continuous, bounded functions ψ : R→ R. To see this in one direction, fix c ≥ 0,
and let ψn be a uniformly bounded sequence of functions converging pointwise to the
discontinuous function χ(−∞,c]. If the equality (2) holds for all ψn, then we can apply the
dominated convergence theorem to both sides to see that

E(χ(−∞,c] B r ) = E(χ(−∞,c] B s),

or in other words,
P(r ≤ c ) = P(s ≤ c ).

This holds for all c, which is to say that r and s have the same distribution function. The
other direction is left as another exercise in the dominated convergence theorem.

We can now complete the proof of the lemma. From what we have just learned, we
know that, for any continuous bounded function ψ , the terms

E(ψ B sN )

are independent of N . The integrands ψ B sN are uniformly bounded (by sup |ψ |) and
converge pointwise to ψ B s, because sN (ω)→ s(ω) and ψ is continuous. Applying the
dominated convergence theorem again, we have

E(ψ B sN ) = E(ψ B s).

So by our earlier observation, s and sN have the same distribution function.
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Estimating normal random variables

Let a be a standard normal random variables. We have

P(a > M ) =
1

(2π )1/2

∫
∞

M
e−x2/2 dx.

How small is this quantity when M is large? One estimate for this integral is:

P(a > M ) ≤ e−M 2/2. (3)

(This estimate is not hard to prove.) When we consider a sequence of standard normal
random variables, this estimate is useful when combined with the Borel-Cantelli lemma.
It yields the following.

Proposition 3.5. Let an, n ∈ N, be a sequence of standard normal random variables. Let β be a
fixed number larger than 1. Then with probability 1,

|an| ≤ (2β log(n))1/2

for all but finitely many n.

Proof. The inequality (3) gives us

P
(
|an| ≥ (2β log(n))1/2

)
= 2P

(
an ≥ (2β log(n))1/2

)
≤ 2n−β .

Since β > 1, the sum
∑

n−β is convergent, so the Borel-Cantelli lemma (Lemma 2.1)
applies.

4. Random Fourier series

We now turn to Theorem 1.1. We will prove the theorem in two steps. In the first step,
we discard the usual basis of exponential functions exp(2π imt ) for L2[0, 1] and use an
orthonormal system that is better suited to the problem. In the second step, we consider
effect of the “change of basis”, to return to the exponential functions.
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Proof of Theorem 1.1: step 1 of 2

Let T denote the circle R/Z and let L2(T) denote the Hilbert space of periodic locally
square-integrable functions with the usual norm,

‖ f ‖22 =
∫ 1

0
| f |2.

The functions exp(2π imt ) for m 6= 0 that appear in the statement of Theorem 1.1 are a
complete orthonormal system not in the Hilbert space L2(T) but in the codimension-1
subspace L2(T)′ which we define as

L2(T)′ = { f ∈ L2(T) |
∫

f = 0}.

Let us similarly write C (T)′ for the continuous periodic functions with integral 0.

Rather than the exponentials, we consider the following complete orthonormal system,
{dn}n∈N, in L2(T)′. For n ≥ 1 we write n = 2l

+ k for l ≥ 0 and 0 ≤ k < 2l , and we
define dn(t ) by

dn(t ) =


2l/2, 2l t ∈ [k, k + 1/2)

−2l/2, 2l t ∈ [k + 1/2, k + 1)

0, otherwise.

We then define δn(t ) as the the unique antiderivative of dn belonging to C (T)′. That is,
we first define

δ̃n(t ) =
∫ t

0
dn(τ ) dτ

(which is the unique antiderivative with δ̃n(0) = 0), and we then define

δn(t ) = δ̃n(t )−
∫ 1

0
δ̃n .

For n = 2l
+ k we have

δ̃n(t ) =


2−l/2(2l t − k ), 2l t ∈ [k, k + 1/2)

−2−l/2(k + 1− 2l t ), 2l t ∈ [k + 1/2, k + 1)

0, otherwise.

Note that for 2l
≤ n < 2l+1, the function δ̃n is supported in an interval of length 2−l and

sup
t
|δ̃n(t )| = 1

22−l/2.
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Figure 1: The graph of a typical δ̃n (top, with n = 11), the superposition of the graphs
of δ̃n for n = 1, . . . , 15 (middle), and the sum

∑63
32 δ̃n (bottom).
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Figure 1 shows the graph of a typical δ̃n (top, with n = 11), the superposition of the
graphs of δ̃n for n = 1, . . . , 15 (middle), and the sum

∑63
32 δ̃n. The following proposition

is the counterpart of Theorem 1.1 for the orthonormal sequence dn. The convergence
is now a little better.

Proposition 4.1. Let an, n ∈ N, be a sequence of ’s. Then with probability 1, the series

σ (t ) =
∞∑
0

anδn(t )

converges uniformly for t ∈ [0, 1]. In particular, σ is almost surely a continuous function of t.

Proof. It is in fact the case that
∞∑
0

|an||δn(t )|

converges uniformly for t ∈ [0, 1] almost surely. This is easy to understand by recalling
Proposition 3.5 and then looking at the bottom graph in Figure 1. To spell it out,
Proposition 3.5 tells us that, almost surely, |an| ≤ 2(log(n))1/2 for all but finitely many n,
or more straightforwardly but a bit less sharply,

|an| ≤ log2 n

for all but finitely many n. It is therefore enough to check that the series

∞∑
1

log2(n)|δn(t )|

converges uniformly. Group the terms as follows:

∞∑
l=0

2l+1
−1∑

n=2l

log2(n)|δn(t )|

≤

∞∑
l=0

(l + 1)
2l+1
−1∑

n=2l

|δn(t )|.

(4)

In the range 2l
≤ n < 2l+1, the functions δ̃n are supported on disjoint intervals in [0, 1],

and each has supremum 2−l/2/2. The difference between δn and δ̃n is even smaller, being
of size 2−2−3l/2. So it is straightforward to verify that

sup
t

2l+1
−1∑

n=2l

|δn(t )|

 < (3/4)2−(l/2).
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So the series (4) converges uniformly because the sum
∞∑

l=0

(l + 1)2−l/2

is finite.

The limit σ (t ) is a bit better than just continuous. With probability 1, it satisfies a Hölder
continuity condition with exponent α, for any α < 1/2. Recall that, for α ∈ (0, 1), the
Hölder-α norm of a function f : [0, 1]→ R is the quantity

‖ f ‖α = sup
t
| f (t )|+ sup

t1 6=t2

| f (t2)− f (t1)|
|t2 − t1|α

.

The space of functions for which this norm is finite is the Hölder space C0,α[0, 1]. The
functions δn(t ) have uniformly-bounded norm in C0,1/2, essentially because they gain
height ε1/2 in range of size ε.

With this in mind, look again at the sum defining σ (t ), and group the terms once more:

σ (t ) =
∞∑

n=0

anδn(t )

= a0t +
∞∑

l=0

2l+1
−1∑

n=2l

anδn(t )


= a0t +

∞∑
l=0

Al (t ).

(5)

Figure 2 shows a typical Al for randomly sampled coefficients an. We can bound the
Hölder-α norm of Al by

‖Al‖ ≤ Ml
2−l/2

2−αl

= Ml2
(α−1/2)l ,

where Ml = max |an| for n in the range 2l
≤ n < 2l+1

− 1. As above, with probability
1, we have Ml ≤ (l + 1) for all but finitely many l . So the sum on the last line of (5)
converges absolutely in C0,α. Thus:

Proposition 4.2. In the situation of Proposition 4.1, the series

σ (t ) =
∞∑
0

anδn(t )

converges in C0,α norm with probability 1, for any α < 1/2. The function σ (t ) is therefore almost
surely Hölder continuous with exponent α.
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Figure 2: The graph of a typical Al , with l = 5.

Proof of Theorem 1.1: step 2 of 2

We have proved that there is a null set 1 ⊂ Ω such that for all ω ∈ Ω \1 , the series

∞∑
n=1

an(ω)δn

converges uniformly on [0, 1] to define a Hölder-continuous periodic function σ . To
return to the exponential functions, we now examine the Fourier coefficients of σ .
Since

∫
σ = 0, the Fourier coefficient σ̂ (0) is zero. For the others, because the series

converges uniformly,

σ̂ (m) =
∞∑

n=1

an(ω)δ̂n(m).

Since δ̂n is an antiderivative of dn, we have

δ̂n(m) =
1

2π im
d̂n(m)

=
1

2π im
〈dn, em〉L2(T).

Let us write
λnm = 〈dn, em〉.

We can think of this as a “change of basis” matrix. We therefore have

σ̂ (m) =
1

2π im

∞∑
n=1

λnman(ω),
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and the sum converges for all ω ∈ Ω \1 . Let us write

bm : Ω \1 → C

for the sum

bm(ω) =
∞∑

n=1

λnman(ω).

The change-of-basis matrix (λnm ) is has orthonormal columns, because the collections
{dn} and {em} are two complete orthonormal systems in L2(T)′. So the random vari-
ables bm are independent standard normal random variables, just like the an, by Proposi-
tion 3.3.

The Fourier coefficient σ̂ (m) is thus bm/(2π im). Because σ̂ is Hölder continuous, it
satisfies Dini’s criterion and its Fourier series converges pointwise. We therefore have,
for all t,

σ (t ) =
1

2π i

∑
m 6=0

(
bm(ω)
2π im

)
em(t ).

So for all ω ∈ Ω \ N , the quantities bm/m are the Fourier coefficients of a continuous
function whose Fourier series converges pointwise. This concludes the proof of Theo-
rem 1.1.

Brownian paths

So far we have been working with L2(T)′ and C (T)′, the functions with average value 0
on T. Let us go back the orthonormal system dn defined above and adjoin the additional
element

d0 = 1

so as to have a complete orthonormal system in L2(T). Let δ̃n(t ) as before be the
indefinite integral of δ̃n(0) = 0, so that have

δ̃0(t ) = t.

Note that, unlike the others, δ̃0 does not extend to a continuous periodic function. We
regard all the functions δ̃n now as continuous functions on [0, 1].

Let an be again a collection of ’s, indexed now by n ∈ N ∪ {0}, and consider the
function

B(t ) =
∞∑

n=0

an δ̃n . (6)
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On the set Ω \1 where the series for σ converged uniformly, this new function B is
related very simply to our previous function σ (t ):

B(t ) = a0t + σ (t )− σ (0).

Because the Fourier series of σ converges pointwise, we also have

σ (0) =
∑
m 6=0

bm

2piim
,

which leads to an alternative formula for B in terms of the exponentials:

B(t ) = b0t +
∑
m 6=0

bm

(
em(t )− 1
2π imt

)
.

Here b0 = a0 and bm (m 6= 0) are as before.

For ω ∈ Ω \ 1 , the function B(t ) is a continuous function on [0, 1] and is Hölder
continuous with exponent α for all α < 1/2.

We can think of B(t ) as a “random continuous function of t” on [0, 1]. Writing Ω∗ for
the probability space Ω \ 1 , we can regard B(t ) for each fixed t ∈ [0, 1] as a random
variable (over the probability space Ω∗). To emphasize its dependence on the variable
ω ∈ Ω∗ (which is usually hidden), we may write it as B(ω, t ). Here are some properties
of the random variable B(t ).

Proposition 4.3. As a collection of random variables indexed by t ∈ [0, 1], the B(t ) have the
following features.

(a) B(0) = 0.

(b) B(t ) is almost surely a continuous function of t: that is, for all ω ∈ Ω∗, the function
t 7→ B(ω, t ) is continuous.

(c) B(t ) has independent increments. This means that if 0 = t0 < t1 < . . . tN = 1, then the
random variables B(tk )− B(tk−1), for k = 1, . . . ,N, are independent.

(d) For t1 < t2, the random variable B(t2)−B(t1) has a normal distribution with mean 0 and
variance t2 − t1.

Proof. We only sketch the proof. The first item is clear and the second is what we have
devoted our efforts to, in the proofs above. For the second and third properties, we can
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start with the illustrative simple case that (t0, t1, t2) are (0, 1/2, 1). Since all the δ̃n vanish
at these points ti once n ≥ 2, we have (from the formulae for δ̃0 and δ̃1),

B(t1)− B(t0) =
1
2

(a1 + a0)

B(t2)− B(t1) =
1
2

(−a1 + a0).

The random variables on the right, when multiplied by
√

2, are independent standard
normal random variables, because they are obtained from a0 and a1 by an orthogonal
change of basis. So B(t1) − B(t0) and B(t2) − B(t1) are independent normal random
variables, both with mean 0 and standard deviation 1/

√
2 (i.e. variance 1/2, as the

proposition asserts).

For the case that N = 2l and tk = k/(2l ), the situation is similar, and the proposition can
be verified essentially by repeating the above calculation. From this case, one derives
the result for any case in which all the tk are dyadic rationals. Finally, the general case
follows from this case by an approximation argument, using the almost sure continuity
of B(t ) and Lemma 3.4.

The “independent increments” property described in the proposition is characteristic of
a random walk: the change in B(t ) in any one interval is independent of its change in
any other collection of intervals, as long as the intervals do not overlap. If the exchange
rate between the British pound and the US dollar were a Brownian path, then looking at
the past exchange rates would tell you nothing about whether the exchange rate might
go up or down over the coming month.

In the language of probability theory, a collection of random variables indexed by a pa-
rameter t (“time”, discrete or continuous), is a stochastic process. The particular stochastic
process B(t ) that we have arrived at is known as the Wiener process, or as Brownian
motion. The sample paths t 7→ B(t ) describe the motion of a particle along a single
axis when the particle is being buffeted at random from the left and the right. Figure 3
shows a sample Brownian path B(t ) (actually a partial sum of the first 214 terms of the
series (6), with the coefficients am pseudo-randomly generated according to a normal
distribution).

Wiener measure

With a slight change of language, we can regard this construction of B(t ) or σ (t ) as
defining a probability measure, PW , on a space of continuous functions: either the
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Figure 3: The graph at the top shows the graph of a sample Brownian path B(t ), or
more accurately a partial sum of the series for one. The graph below shows the currency
exchange rate GBP/USD in recent months.
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continuous functions B : [0, 1]→ R with B(0) = 0 or the continuous, periodic functions
with integral zero, the Banach space C (T)′. (The subscript W is for Wiener.) Thus,
given a Borel subset E of the Banach space C (T)′, we define

PW (E ) = P{ω | t 7→ σ (ω, t ) belongs to E }.

With respect to the Wiener measure, we can phrase questions such as, “What is the
expected value of supt σ (t )?" Or, "What is the probability that σ (t ) ≤ 1 for all t?"
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